xref: /linux/kernel/sched/topology.c (revision bf76f23aa1c178e9115eba17f699fa726aed669b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Scheduler topology setup/handling methods
4  */
5 
6 #include <linux/sched/isolation.h>
7 #include <linux/bsearch.h>
8 #include "sched.h"
9 
10 DEFINE_MUTEX(sched_domains_mutex);
sched_domains_mutex_lock(void)11 void sched_domains_mutex_lock(void)
12 {
13 	mutex_lock(&sched_domains_mutex);
14 }
sched_domains_mutex_unlock(void)15 void sched_domains_mutex_unlock(void)
16 {
17 	mutex_unlock(&sched_domains_mutex);
18 }
19 
20 /* Protected by sched_domains_mutex: */
21 static cpumask_var_t sched_domains_tmpmask;
22 static cpumask_var_t sched_domains_tmpmask2;
23 
sched_debug_setup(char * str)24 static int __init sched_debug_setup(char *str)
25 {
26 	sched_debug_verbose = true;
27 
28 	return 0;
29 }
30 early_param("sched_verbose", sched_debug_setup);
31 
sched_debug(void)32 static inline bool sched_debug(void)
33 {
34 	return sched_debug_verbose;
35 }
36 
37 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
38 const struct sd_flag_debug sd_flag_debug[] = {
39 #include <linux/sched/sd_flags.h>
40 };
41 #undef SD_FLAG
42 
sched_domain_debug_one(struct sched_domain * sd,int cpu,int level,struct cpumask * groupmask)43 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
44 				  struct cpumask *groupmask)
45 {
46 	struct sched_group *group = sd->groups;
47 	unsigned long flags = sd->flags;
48 	unsigned int idx;
49 
50 	cpumask_clear(groupmask);
51 
52 	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
53 	printk(KERN_CONT "span=%*pbl level=%s\n",
54 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
55 
56 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
57 		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
58 	}
59 	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
60 		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
61 	}
62 
63 	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
64 		unsigned int flag = BIT(idx);
65 		unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
66 
67 		if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
68 		    !(sd->child->flags & flag))
69 			printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
70 			       sd_flag_debug[idx].name);
71 
72 		if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
73 		    !(sd->parent->flags & flag))
74 			printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
75 			       sd_flag_debug[idx].name);
76 	}
77 
78 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
79 	do {
80 		if (!group) {
81 			printk("\n");
82 			printk(KERN_ERR "ERROR: group is NULL\n");
83 			break;
84 		}
85 
86 		if (cpumask_empty(sched_group_span(group))) {
87 			printk(KERN_CONT "\n");
88 			printk(KERN_ERR "ERROR: empty group\n");
89 			break;
90 		}
91 
92 		if (!(sd->flags & SD_NUMA) &&
93 		    cpumask_intersects(groupmask, sched_group_span(group))) {
94 			printk(KERN_CONT "\n");
95 			printk(KERN_ERR "ERROR: repeated CPUs\n");
96 			break;
97 		}
98 
99 		cpumask_or(groupmask, groupmask, sched_group_span(group));
100 
101 		printk(KERN_CONT " %d:{ span=%*pbl",
102 				group->sgc->id,
103 				cpumask_pr_args(sched_group_span(group)));
104 
105 		if ((sd->flags & SD_NUMA) &&
106 		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
107 			printk(KERN_CONT " mask=%*pbl",
108 				cpumask_pr_args(group_balance_mask(group)));
109 		}
110 
111 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
112 			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
113 
114 		if (group == sd->groups && sd->child &&
115 		    !cpumask_equal(sched_domain_span(sd->child),
116 				   sched_group_span(group))) {
117 			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
118 		}
119 
120 		printk(KERN_CONT " }");
121 
122 		group = group->next;
123 
124 		if (group != sd->groups)
125 			printk(KERN_CONT ",");
126 
127 	} while (group != sd->groups);
128 	printk(KERN_CONT "\n");
129 
130 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
131 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
132 
133 	if (sd->parent &&
134 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
135 		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
136 	return 0;
137 }
138 
sched_domain_debug(struct sched_domain * sd,int cpu)139 static void sched_domain_debug(struct sched_domain *sd, int cpu)
140 {
141 	int level = 0;
142 
143 	if (!sched_debug_verbose)
144 		return;
145 
146 	if (!sd) {
147 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
148 		return;
149 	}
150 
151 	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
152 
153 	for (;;) {
154 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
155 			break;
156 		level++;
157 		sd = sd->parent;
158 		if (!sd)
159 			break;
160 	}
161 }
162 
163 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
164 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
165 static const unsigned int SD_DEGENERATE_GROUPS_MASK =
166 #include <linux/sched/sd_flags.h>
167 0;
168 #undef SD_FLAG
169 
sd_degenerate(struct sched_domain * sd)170 static int sd_degenerate(struct sched_domain *sd)
171 {
172 	if (cpumask_weight(sched_domain_span(sd)) == 1)
173 		return 1;
174 
175 	/* Following flags need at least 2 groups */
176 	if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
177 	    (sd->groups != sd->groups->next))
178 		return 0;
179 
180 	/* Following flags don't use groups */
181 	if (sd->flags & (SD_WAKE_AFFINE))
182 		return 0;
183 
184 	return 1;
185 }
186 
187 static int
sd_parent_degenerate(struct sched_domain * sd,struct sched_domain * parent)188 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
189 {
190 	unsigned long cflags = sd->flags, pflags = parent->flags;
191 
192 	if (sd_degenerate(parent))
193 		return 1;
194 
195 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
196 		return 0;
197 
198 	/* Flags needing groups don't count if only 1 group in parent */
199 	if (parent->groups == parent->groups->next)
200 		pflags &= ~SD_DEGENERATE_GROUPS_MASK;
201 
202 	if (~cflags & pflags)
203 		return 0;
204 
205 	return 1;
206 }
207 
208 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
209 DEFINE_STATIC_KEY_FALSE(sched_energy_present);
210 static unsigned int sysctl_sched_energy_aware = 1;
211 static DEFINE_MUTEX(sched_energy_mutex);
212 static bool sched_energy_update;
213 
sched_is_eas_possible(const struct cpumask * cpu_mask)214 static bool sched_is_eas_possible(const struct cpumask *cpu_mask)
215 {
216 	bool any_asym_capacity = false;
217 	int i;
218 
219 	/* EAS is enabled for asymmetric CPU capacity topologies. */
220 	for_each_cpu(i, cpu_mask) {
221 		if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, i))) {
222 			any_asym_capacity = true;
223 			break;
224 		}
225 	}
226 	if (!any_asym_capacity) {
227 		if (sched_debug()) {
228 			pr_info("rd %*pbl: Checking EAS, CPUs do not have asymmetric capacities\n",
229 				cpumask_pr_args(cpu_mask));
230 		}
231 		return false;
232 	}
233 
234 	/* EAS definitely does *not* handle SMT */
235 	if (sched_smt_active()) {
236 		if (sched_debug()) {
237 			pr_info("rd %*pbl: Checking EAS, SMT is not supported\n",
238 				cpumask_pr_args(cpu_mask));
239 		}
240 		return false;
241 	}
242 
243 	if (!arch_scale_freq_invariant()) {
244 		if (sched_debug()) {
245 			pr_info("rd %*pbl: Checking EAS: frequency-invariant load tracking not yet supported",
246 				cpumask_pr_args(cpu_mask));
247 		}
248 		return false;
249 	}
250 
251 	if (!cpufreq_ready_for_eas(cpu_mask)) {
252 		if (sched_debug()) {
253 			pr_info("rd %*pbl: Checking EAS: cpufreq is not ready\n",
254 				cpumask_pr_args(cpu_mask));
255 		}
256 		return false;
257 	}
258 
259 	return true;
260 }
261 
rebuild_sched_domains_energy(void)262 void rebuild_sched_domains_energy(void)
263 {
264 	mutex_lock(&sched_energy_mutex);
265 	sched_energy_update = true;
266 	rebuild_sched_domains();
267 	sched_energy_update = false;
268 	mutex_unlock(&sched_energy_mutex);
269 }
270 
271 #ifdef CONFIG_PROC_SYSCTL
sched_energy_aware_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)272 static int sched_energy_aware_handler(const struct ctl_table *table, int write,
273 		void *buffer, size_t *lenp, loff_t *ppos)
274 {
275 	int ret, state;
276 
277 	if (write && !capable(CAP_SYS_ADMIN))
278 		return -EPERM;
279 
280 	if (!sched_is_eas_possible(cpu_active_mask)) {
281 		if (write) {
282 			return -EOPNOTSUPP;
283 		} else {
284 			*lenp = 0;
285 			return 0;
286 		}
287 	}
288 
289 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
290 	if (!ret && write) {
291 		state = static_branch_unlikely(&sched_energy_present);
292 		if (state != sysctl_sched_energy_aware)
293 			rebuild_sched_domains_energy();
294 	}
295 
296 	return ret;
297 }
298 
299 static const struct ctl_table sched_energy_aware_sysctls[] = {
300 	{
301 		.procname       = "sched_energy_aware",
302 		.data           = &sysctl_sched_energy_aware,
303 		.maxlen         = sizeof(unsigned int),
304 		.mode           = 0644,
305 		.proc_handler   = sched_energy_aware_handler,
306 		.extra1         = SYSCTL_ZERO,
307 		.extra2         = SYSCTL_ONE,
308 	},
309 };
310 
sched_energy_aware_sysctl_init(void)311 static int __init sched_energy_aware_sysctl_init(void)
312 {
313 	register_sysctl_init("kernel", sched_energy_aware_sysctls);
314 	return 0;
315 }
316 
317 late_initcall(sched_energy_aware_sysctl_init);
318 #endif /* CONFIG_PROC_SYSCTL */
319 
free_pd(struct perf_domain * pd)320 static void free_pd(struct perf_domain *pd)
321 {
322 	struct perf_domain *tmp;
323 
324 	while (pd) {
325 		tmp = pd->next;
326 		kfree(pd);
327 		pd = tmp;
328 	}
329 }
330 
find_pd(struct perf_domain * pd,int cpu)331 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
332 {
333 	while (pd) {
334 		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
335 			return pd;
336 		pd = pd->next;
337 	}
338 
339 	return NULL;
340 }
341 
pd_init(int cpu)342 static struct perf_domain *pd_init(int cpu)
343 {
344 	struct em_perf_domain *obj = em_cpu_get(cpu);
345 	struct perf_domain *pd;
346 
347 	if (!obj) {
348 		if (sched_debug())
349 			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
350 		return NULL;
351 	}
352 
353 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
354 	if (!pd)
355 		return NULL;
356 	pd->em_pd = obj;
357 
358 	return pd;
359 }
360 
perf_domain_debug(const struct cpumask * cpu_map,struct perf_domain * pd)361 static void perf_domain_debug(const struct cpumask *cpu_map,
362 						struct perf_domain *pd)
363 {
364 	if (!sched_debug() || !pd)
365 		return;
366 
367 	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
368 
369 	while (pd) {
370 		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
371 				cpumask_first(perf_domain_span(pd)),
372 				cpumask_pr_args(perf_domain_span(pd)),
373 				em_pd_nr_perf_states(pd->em_pd));
374 		pd = pd->next;
375 	}
376 
377 	printk(KERN_CONT "\n");
378 }
379 
destroy_perf_domain_rcu(struct rcu_head * rp)380 static void destroy_perf_domain_rcu(struct rcu_head *rp)
381 {
382 	struct perf_domain *pd;
383 
384 	pd = container_of(rp, struct perf_domain, rcu);
385 	free_pd(pd);
386 }
387 
sched_energy_set(bool has_eas)388 static void sched_energy_set(bool has_eas)
389 {
390 	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
391 		if (sched_debug())
392 			pr_info("%s: stopping EAS\n", __func__);
393 		static_branch_disable_cpuslocked(&sched_energy_present);
394 	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
395 		if (sched_debug())
396 			pr_info("%s: starting EAS\n", __func__);
397 		static_branch_enable_cpuslocked(&sched_energy_present);
398 	}
399 }
400 
401 /*
402  * EAS can be used on a root domain if it meets all the following conditions:
403  *    1. an Energy Model (EM) is available;
404  *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
405  *    3. no SMT is detected.
406  *    4. schedutil is driving the frequency of all CPUs of the rd;
407  *    5. frequency invariance support is present;
408  */
build_perf_domains(const struct cpumask * cpu_map)409 static bool build_perf_domains(const struct cpumask *cpu_map)
410 {
411 	int i;
412 	struct perf_domain *pd = NULL, *tmp;
413 	int cpu = cpumask_first(cpu_map);
414 	struct root_domain *rd = cpu_rq(cpu)->rd;
415 
416 	if (!sysctl_sched_energy_aware)
417 		goto free;
418 
419 	if (!sched_is_eas_possible(cpu_map))
420 		goto free;
421 
422 	for_each_cpu(i, cpu_map) {
423 		/* Skip already covered CPUs. */
424 		if (find_pd(pd, i))
425 			continue;
426 
427 		/* Create the new pd and add it to the local list. */
428 		tmp = pd_init(i);
429 		if (!tmp)
430 			goto free;
431 		tmp->next = pd;
432 		pd = tmp;
433 	}
434 
435 	perf_domain_debug(cpu_map, pd);
436 
437 	/* Attach the new list of performance domains to the root domain. */
438 	tmp = rd->pd;
439 	rcu_assign_pointer(rd->pd, pd);
440 	if (tmp)
441 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
442 
443 	return !!pd;
444 
445 free:
446 	free_pd(pd);
447 	tmp = rd->pd;
448 	rcu_assign_pointer(rd->pd, NULL);
449 	if (tmp)
450 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
451 
452 	return false;
453 }
454 #else /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL): */
free_pd(struct perf_domain * pd)455 static void free_pd(struct perf_domain *pd) { }
456 #endif /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
457 
free_rootdomain(struct rcu_head * rcu)458 static void free_rootdomain(struct rcu_head *rcu)
459 {
460 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
461 
462 	cpupri_cleanup(&rd->cpupri);
463 	cpudl_cleanup(&rd->cpudl);
464 	free_cpumask_var(rd->dlo_mask);
465 	free_cpumask_var(rd->rto_mask);
466 	free_cpumask_var(rd->online);
467 	free_cpumask_var(rd->span);
468 	free_pd(rd->pd);
469 	kfree(rd);
470 }
471 
rq_attach_root(struct rq * rq,struct root_domain * rd)472 void rq_attach_root(struct rq *rq, struct root_domain *rd)
473 {
474 	struct root_domain *old_rd = NULL;
475 	struct rq_flags rf;
476 
477 	rq_lock_irqsave(rq, &rf);
478 
479 	if (rq->rd) {
480 		old_rd = rq->rd;
481 
482 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
483 			set_rq_offline(rq);
484 
485 		cpumask_clear_cpu(rq->cpu, old_rd->span);
486 
487 		/*
488 		 * If we don't want to free the old_rd yet then
489 		 * set old_rd to NULL to skip the freeing later
490 		 * in this function:
491 		 */
492 		if (!atomic_dec_and_test(&old_rd->refcount))
493 			old_rd = NULL;
494 	}
495 
496 	atomic_inc(&rd->refcount);
497 	rq->rd = rd;
498 
499 	cpumask_set_cpu(rq->cpu, rd->span);
500 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
501 		set_rq_online(rq);
502 
503 	/*
504 	 * Because the rq is not a task, dl_add_task_root_domain() did not
505 	 * move the fair server bw to the rd if it already started.
506 	 * Add it now.
507 	 */
508 	if (rq->fair_server.dl_server)
509 		__dl_server_attach_root(&rq->fair_server, rq);
510 
511 	rq_unlock_irqrestore(rq, &rf);
512 
513 	if (old_rd)
514 		call_rcu(&old_rd->rcu, free_rootdomain);
515 }
516 
sched_get_rd(struct root_domain * rd)517 void sched_get_rd(struct root_domain *rd)
518 {
519 	atomic_inc(&rd->refcount);
520 }
521 
sched_put_rd(struct root_domain * rd)522 void sched_put_rd(struct root_domain *rd)
523 {
524 	if (!atomic_dec_and_test(&rd->refcount))
525 		return;
526 
527 	call_rcu(&rd->rcu, free_rootdomain);
528 }
529 
init_rootdomain(struct root_domain * rd)530 static int init_rootdomain(struct root_domain *rd)
531 {
532 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
533 		goto out;
534 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
535 		goto free_span;
536 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
537 		goto free_online;
538 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
539 		goto free_dlo_mask;
540 
541 #ifdef HAVE_RT_PUSH_IPI
542 	rd->rto_cpu = -1;
543 	raw_spin_lock_init(&rd->rto_lock);
544 	rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func);
545 #endif
546 
547 	rd->visit_cookie = 0;
548 	init_dl_bw(&rd->dl_bw);
549 	if (cpudl_init(&rd->cpudl) != 0)
550 		goto free_rto_mask;
551 
552 	if (cpupri_init(&rd->cpupri) != 0)
553 		goto free_cpudl;
554 	return 0;
555 
556 free_cpudl:
557 	cpudl_cleanup(&rd->cpudl);
558 free_rto_mask:
559 	free_cpumask_var(rd->rto_mask);
560 free_dlo_mask:
561 	free_cpumask_var(rd->dlo_mask);
562 free_online:
563 	free_cpumask_var(rd->online);
564 free_span:
565 	free_cpumask_var(rd->span);
566 out:
567 	return -ENOMEM;
568 }
569 
570 /*
571  * By default the system creates a single root-domain with all CPUs as
572  * members (mimicking the global state we have today).
573  */
574 struct root_domain def_root_domain;
575 
init_defrootdomain(void)576 void __init init_defrootdomain(void)
577 {
578 	init_rootdomain(&def_root_domain);
579 
580 	atomic_set(&def_root_domain.refcount, 1);
581 }
582 
alloc_rootdomain(void)583 static struct root_domain *alloc_rootdomain(void)
584 {
585 	struct root_domain *rd;
586 
587 	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
588 	if (!rd)
589 		return NULL;
590 
591 	if (init_rootdomain(rd) != 0) {
592 		kfree(rd);
593 		return NULL;
594 	}
595 
596 	return rd;
597 }
598 
free_sched_groups(struct sched_group * sg,int free_sgc)599 static void free_sched_groups(struct sched_group *sg, int free_sgc)
600 {
601 	struct sched_group *tmp, *first;
602 
603 	if (!sg)
604 		return;
605 
606 	first = sg;
607 	do {
608 		tmp = sg->next;
609 
610 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
611 			kfree(sg->sgc);
612 
613 		if (atomic_dec_and_test(&sg->ref))
614 			kfree(sg);
615 		sg = tmp;
616 	} while (sg != first);
617 }
618 
destroy_sched_domain(struct sched_domain * sd)619 static void destroy_sched_domain(struct sched_domain *sd)
620 {
621 	/*
622 	 * A normal sched domain may have multiple group references, an
623 	 * overlapping domain, having private groups, only one.  Iterate,
624 	 * dropping group/capacity references, freeing where none remain.
625 	 */
626 	free_sched_groups(sd->groups, 1);
627 
628 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
629 		kfree(sd->shared);
630 	kfree(sd);
631 }
632 
destroy_sched_domains_rcu(struct rcu_head * rcu)633 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
634 {
635 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
636 
637 	while (sd) {
638 		struct sched_domain *parent = sd->parent;
639 		destroy_sched_domain(sd);
640 		sd = parent;
641 	}
642 }
643 
destroy_sched_domains(struct sched_domain * sd)644 static void destroy_sched_domains(struct sched_domain *sd)
645 {
646 	if (sd)
647 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
648 }
649 
650 /*
651  * Keep a special pointer to the highest sched_domain that has SD_SHARE_LLC set
652  * (Last Level Cache Domain) for this allows us to avoid some pointer chasing
653  * select_idle_sibling().
654  *
655  * Also keep a unique ID per domain (we use the first CPU number in the cpumask
656  * of the domain), this allows us to quickly tell if two CPUs are in the same
657  * cache domain, see cpus_share_cache().
658  */
659 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
660 DEFINE_PER_CPU(int, sd_llc_size);
661 DEFINE_PER_CPU(int, sd_llc_id);
662 DEFINE_PER_CPU(int, sd_share_id);
663 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
664 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
665 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
666 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
667 
668 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
669 DEFINE_STATIC_KEY_FALSE(sched_cluster_active);
670 
update_top_cache_domain(int cpu)671 static void update_top_cache_domain(int cpu)
672 {
673 	struct sched_domain_shared *sds = NULL;
674 	struct sched_domain *sd;
675 	int id = cpu;
676 	int size = 1;
677 
678 	sd = highest_flag_domain(cpu, SD_SHARE_LLC);
679 	if (sd) {
680 		id = cpumask_first(sched_domain_span(sd));
681 		size = cpumask_weight(sched_domain_span(sd));
682 		sds = sd->shared;
683 	}
684 
685 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
686 	per_cpu(sd_llc_size, cpu) = size;
687 	per_cpu(sd_llc_id, cpu) = id;
688 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
689 
690 	sd = lowest_flag_domain(cpu, SD_CLUSTER);
691 	if (sd)
692 		id = cpumask_first(sched_domain_span(sd));
693 
694 	/*
695 	 * This assignment should be placed after the sd_llc_id as
696 	 * we want this id equals to cluster id on cluster machines
697 	 * but equals to LLC id on non-Cluster machines.
698 	 */
699 	per_cpu(sd_share_id, cpu) = id;
700 
701 	sd = lowest_flag_domain(cpu, SD_NUMA);
702 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
703 
704 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
705 	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
706 
707 	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL);
708 	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
709 }
710 
711 /*
712  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
713  * hold the hotplug lock.
714  */
715 static void
cpu_attach_domain(struct sched_domain * sd,struct root_domain * rd,int cpu)716 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
717 {
718 	struct rq *rq = cpu_rq(cpu);
719 	struct sched_domain *tmp;
720 
721 	/* Remove the sched domains which do not contribute to scheduling. */
722 	for (tmp = sd; tmp; ) {
723 		struct sched_domain *parent = tmp->parent;
724 		if (!parent)
725 			break;
726 
727 		if (sd_parent_degenerate(tmp, parent)) {
728 			tmp->parent = parent->parent;
729 
730 			if (parent->parent) {
731 				parent->parent->child = tmp;
732 				parent->parent->groups->flags = tmp->flags;
733 			}
734 
735 			/*
736 			 * Transfer SD_PREFER_SIBLING down in case of a
737 			 * degenerate parent; the spans match for this
738 			 * so the property transfers.
739 			 */
740 			if (parent->flags & SD_PREFER_SIBLING)
741 				tmp->flags |= SD_PREFER_SIBLING;
742 			destroy_sched_domain(parent);
743 		} else
744 			tmp = tmp->parent;
745 	}
746 
747 	if (sd && sd_degenerate(sd)) {
748 		tmp = sd;
749 		sd = sd->parent;
750 		destroy_sched_domain(tmp);
751 		if (sd) {
752 			struct sched_group *sg = sd->groups;
753 
754 			/*
755 			 * sched groups hold the flags of the child sched
756 			 * domain for convenience. Clear such flags since
757 			 * the child is being destroyed.
758 			 */
759 			do {
760 				sg->flags = 0;
761 			} while (sg != sd->groups);
762 
763 			sd->child = NULL;
764 		}
765 	}
766 
767 	sched_domain_debug(sd, cpu);
768 
769 	rq_attach_root(rq, rd);
770 	tmp = rq->sd;
771 	rcu_assign_pointer(rq->sd, sd);
772 	dirty_sched_domain_sysctl(cpu);
773 	destroy_sched_domains(tmp);
774 
775 	update_top_cache_domain(cpu);
776 }
777 
778 struct s_data {
779 	struct sched_domain * __percpu *sd;
780 	struct root_domain	*rd;
781 };
782 
783 enum s_alloc {
784 	sa_rootdomain,
785 	sa_sd,
786 	sa_sd_storage,
787 	sa_none,
788 };
789 
790 /*
791  * Return the canonical balance CPU for this group, this is the first CPU
792  * of this group that's also in the balance mask.
793  *
794  * The balance mask are all those CPUs that could actually end up at this
795  * group. See build_balance_mask().
796  *
797  * Also see should_we_balance().
798  */
group_balance_cpu(struct sched_group * sg)799 int group_balance_cpu(struct sched_group *sg)
800 {
801 	return cpumask_first(group_balance_mask(sg));
802 }
803 
804 
805 /*
806  * NUMA topology (first read the regular topology blurb below)
807  *
808  * Given a node-distance table, for example:
809  *
810  *   node   0   1   2   3
811  *     0:  10  20  30  20
812  *     1:  20  10  20  30
813  *     2:  30  20  10  20
814  *     3:  20  30  20  10
815  *
816  * which represents a 4 node ring topology like:
817  *
818  *   0 ----- 1
819  *   |       |
820  *   |       |
821  *   |       |
822  *   3 ----- 2
823  *
824  * We want to construct domains and groups to represent this. The way we go
825  * about doing this is to build the domains on 'hops'. For each NUMA level we
826  * construct the mask of all nodes reachable in @level hops.
827  *
828  * For the above NUMA topology that gives 3 levels:
829  *
830  * NUMA-2	0-3		0-3		0-3		0-3
831  *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
832  *
833  * NUMA-1	0-1,3		0-2		1-3		0,2-3
834  *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
835  *
836  * NUMA-0	0		1		2		3
837  *
838  *
839  * As can be seen; things don't nicely line up as with the regular topology.
840  * When we iterate a domain in child domain chunks some nodes can be
841  * represented multiple times -- hence the "overlap" naming for this part of
842  * the topology.
843  *
844  * In order to minimize this overlap, we only build enough groups to cover the
845  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
846  *
847  * Because:
848  *
849  *  - the first group of each domain is its child domain; this
850  *    gets us the first 0-1,3
851  *  - the only uncovered node is 2, who's child domain is 1-3.
852  *
853  * However, because of the overlap, computing a unique CPU for each group is
854  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
855  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
856  * end up at those groups (they would end up in group: 0-1,3).
857  *
858  * To correct this we have to introduce the group balance mask. This mask
859  * will contain those CPUs in the group that can reach this group given the
860  * (child) domain tree.
861  *
862  * With this we can once again compute balance_cpu and sched_group_capacity
863  * relations.
864  *
865  * XXX include words on how balance_cpu is unique and therefore can be
866  * used for sched_group_capacity links.
867  *
868  *
869  * Another 'interesting' topology is:
870  *
871  *   node   0   1   2   3
872  *     0:  10  20  20  30
873  *     1:  20  10  20  20
874  *     2:  20  20  10  20
875  *     3:  30  20  20  10
876  *
877  * Which looks a little like:
878  *
879  *   0 ----- 1
880  *   |     / |
881  *   |   /   |
882  *   | /     |
883  *   2 ----- 3
884  *
885  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
886  * are not.
887  *
888  * This leads to a few particularly weird cases where the sched_domain's are
889  * not of the same number for each CPU. Consider:
890  *
891  * NUMA-2	0-3						0-3
892  *  groups:	{0-2},{1-3}					{1-3},{0-2}
893  *
894  * NUMA-1	0-2		0-3		0-3		1-3
895  *
896  * NUMA-0	0		1		2		3
897  *
898  */
899 
900 
901 /*
902  * Build the balance mask; it contains only those CPUs that can arrive at this
903  * group and should be considered to continue balancing.
904  *
905  * We do this during the group creation pass, therefore the group information
906  * isn't complete yet, however since each group represents a (child) domain we
907  * can fully construct this using the sched_domain bits (which are already
908  * complete).
909  */
910 static void
build_balance_mask(struct sched_domain * sd,struct sched_group * sg,struct cpumask * mask)911 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
912 {
913 	const struct cpumask *sg_span = sched_group_span(sg);
914 	struct sd_data *sdd = sd->private;
915 	struct sched_domain *sibling;
916 	int i;
917 
918 	cpumask_clear(mask);
919 
920 	for_each_cpu(i, sg_span) {
921 		sibling = *per_cpu_ptr(sdd->sd, i);
922 
923 		/*
924 		 * Can happen in the asymmetric case, where these siblings are
925 		 * unused. The mask will not be empty because those CPUs that
926 		 * do have the top domain _should_ span the domain.
927 		 */
928 		if (!sibling->child)
929 			continue;
930 
931 		/* If we would not end up here, we can't continue from here */
932 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
933 			continue;
934 
935 		cpumask_set_cpu(i, mask);
936 	}
937 
938 	/* We must not have empty masks here */
939 	WARN_ON_ONCE(cpumask_empty(mask));
940 }
941 
942 /*
943  * XXX: This creates per-node group entries; since the load-balancer will
944  * immediately access remote memory to construct this group's load-balance
945  * statistics having the groups node local is of dubious benefit.
946  */
947 static struct sched_group *
build_group_from_child_sched_domain(struct sched_domain * sd,int cpu)948 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
949 {
950 	struct sched_group *sg;
951 	struct cpumask *sg_span;
952 
953 	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
954 			GFP_KERNEL, cpu_to_node(cpu));
955 
956 	if (!sg)
957 		return NULL;
958 
959 	sg_span = sched_group_span(sg);
960 	if (sd->child) {
961 		cpumask_copy(sg_span, sched_domain_span(sd->child));
962 		sg->flags = sd->child->flags;
963 	} else {
964 		cpumask_copy(sg_span, sched_domain_span(sd));
965 	}
966 
967 	atomic_inc(&sg->ref);
968 	return sg;
969 }
970 
init_overlap_sched_group(struct sched_domain * sd,struct sched_group * sg)971 static void init_overlap_sched_group(struct sched_domain *sd,
972 				     struct sched_group *sg)
973 {
974 	struct cpumask *mask = sched_domains_tmpmask2;
975 	struct sd_data *sdd = sd->private;
976 	struct cpumask *sg_span;
977 	int cpu;
978 
979 	build_balance_mask(sd, sg, mask);
980 	cpu = cpumask_first(mask);
981 
982 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
983 	if (atomic_inc_return(&sg->sgc->ref) == 1)
984 		cpumask_copy(group_balance_mask(sg), mask);
985 	else
986 		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
987 
988 	/*
989 	 * Initialize sgc->capacity such that even if we mess up the
990 	 * domains and no possible iteration will get us here, we won't
991 	 * die on a /0 trap.
992 	 */
993 	sg_span = sched_group_span(sg);
994 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
995 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
996 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
997 }
998 
999 static struct sched_domain *
find_descended_sibling(struct sched_domain * sd,struct sched_domain * sibling)1000 find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)
1001 {
1002 	/*
1003 	 * The proper descendant would be the one whose child won't span out
1004 	 * of sd
1005 	 */
1006 	while (sibling->child &&
1007 	       !cpumask_subset(sched_domain_span(sibling->child),
1008 			       sched_domain_span(sd)))
1009 		sibling = sibling->child;
1010 
1011 	/*
1012 	 * As we are referencing sgc across different topology level, we need
1013 	 * to go down to skip those sched_domains which don't contribute to
1014 	 * scheduling because they will be degenerated in cpu_attach_domain
1015 	 */
1016 	while (sibling->child &&
1017 	       cpumask_equal(sched_domain_span(sibling->child),
1018 			     sched_domain_span(sibling)))
1019 		sibling = sibling->child;
1020 
1021 	return sibling;
1022 }
1023 
1024 static int
build_overlap_sched_groups(struct sched_domain * sd,int cpu)1025 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
1026 {
1027 	struct sched_group *first = NULL, *last = NULL, *sg;
1028 	const struct cpumask *span = sched_domain_span(sd);
1029 	struct cpumask *covered = sched_domains_tmpmask;
1030 	struct sd_data *sdd = sd->private;
1031 	struct sched_domain *sibling;
1032 	int i;
1033 
1034 	cpumask_clear(covered);
1035 
1036 	for_each_cpu_wrap(i, span, cpu) {
1037 		struct cpumask *sg_span;
1038 
1039 		if (cpumask_test_cpu(i, covered))
1040 			continue;
1041 
1042 		sibling = *per_cpu_ptr(sdd->sd, i);
1043 
1044 		/*
1045 		 * Asymmetric node setups can result in situations where the
1046 		 * domain tree is of unequal depth, make sure to skip domains
1047 		 * that already cover the entire range.
1048 		 *
1049 		 * In that case build_sched_domains() will have terminated the
1050 		 * iteration early and our sibling sd spans will be empty.
1051 		 * Domains should always include the CPU they're built on, so
1052 		 * check that.
1053 		 */
1054 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1055 			continue;
1056 
1057 		/*
1058 		 * Usually we build sched_group by sibling's child sched_domain
1059 		 * But for machines whose NUMA diameter are 3 or above, we move
1060 		 * to build sched_group by sibling's proper descendant's child
1061 		 * domain because sibling's child sched_domain will span out of
1062 		 * the sched_domain being built as below.
1063 		 *
1064 		 * Smallest diameter=3 topology is:
1065 		 *
1066 		 *   node   0   1   2   3
1067 		 *     0:  10  20  30  40
1068 		 *     1:  20  10  20  30
1069 		 *     2:  30  20  10  20
1070 		 *     3:  40  30  20  10
1071 		 *
1072 		 *   0 --- 1 --- 2 --- 3
1073 		 *
1074 		 * NUMA-3       0-3             N/A             N/A             0-3
1075 		 *  groups:     {0-2},{1-3}                                     {1-3},{0-2}
1076 		 *
1077 		 * NUMA-2       0-2             0-3             0-3             1-3
1078 		 *  groups:     {0-1},{1-3}     {0-2},{2-3}     {1-3},{0-1}     {2-3},{0-2}
1079 		 *
1080 		 * NUMA-1       0-1             0-2             1-3             2-3
1081 		 *  groups:     {0},{1}         {1},{2},{0}     {2},{3},{1}     {3},{2}
1082 		 *
1083 		 * NUMA-0       0               1               2               3
1084 		 *
1085 		 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
1086 		 * group span isn't a subset of the domain span.
1087 		 */
1088 		if (sibling->child &&
1089 		    !cpumask_subset(sched_domain_span(sibling->child), span))
1090 			sibling = find_descended_sibling(sd, sibling);
1091 
1092 		sg = build_group_from_child_sched_domain(sibling, cpu);
1093 		if (!sg)
1094 			goto fail;
1095 
1096 		sg_span = sched_group_span(sg);
1097 		cpumask_or(covered, covered, sg_span);
1098 
1099 		init_overlap_sched_group(sibling, sg);
1100 
1101 		if (!first)
1102 			first = sg;
1103 		if (last)
1104 			last->next = sg;
1105 		last = sg;
1106 		last->next = first;
1107 	}
1108 	sd->groups = first;
1109 
1110 	return 0;
1111 
1112 fail:
1113 	free_sched_groups(first, 0);
1114 
1115 	return -ENOMEM;
1116 }
1117 
1118 
1119 /*
1120  * Package topology (also see the load-balance blurb in fair.c)
1121  *
1122  * The scheduler builds a tree structure to represent a number of important
1123  * topology features. By default (default_topology[]) these include:
1124  *
1125  *  - Simultaneous multithreading (SMT)
1126  *  - Multi-Core Cache (MC)
1127  *  - Package (PKG)
1128  *
1129  * Where the last one more or less denotes everything up to a NUMA node.
1130  *
1131  * The tree consists of 3 primary data structures:
1132  *
1133  *	sched_domain -> sched_group -> sched_group_capacity
1134  *	    ^ ^             ^ ^
1135  *          `-'             `-'
1136  *
1137  * The sched_domains are per-CPU and have a two way link (parent & child) and
1138  * denote the ever growing mask of CPUs belonging to that level of topology.
1139  *
1140  * Each sched_domain has a circular (double) linked list of sched_group's, each
1141  * denoting the domains of the level below (or individual CPUs in case of the
1142  * first domain level). The sched_group linked by a sched_domain includes the
1143  * CPU of that sched_domain [*].
1144  *
1145  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1146  *
1147  * CPU   0   1   2   3   4   5   6   7
1148  *
1149  * PKG  [                             ]
1150  * MC   [             ] [             ]
1151  * SMT  [     ] [     ] [     ] [     ]
1152  *
1153  *  - or -
1154  *
1155  * PKG  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1156  * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1157  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1158  *
1159  * CPU   0   1   2   3   4   5   6   7
1160  *
1161  * One way to think about it is: sched_domain moves you up and down among these
1162  * topology levels, while sched_group moves you sideways through it, at child
1163  * domain granularity.
1164  *
1165  * sched_group_capacity ensures each unique sched_group has shared storage.
1166  *
1167  * There are two related construction problems, both require a CPU that
1168  * uniquely identify each group (for a given domain):
1169  *
1170  *  - The first is the balance_cpu (see should_we_balance() and the
1171  *    load-balance blurb in fair.c); for each group we only want 1 CPU to
1172  *    continue balancing at a higher domain.
1173  *
1174  *  - The second is the sched_group_capacity; we want all identical groups
1175  *    to share a single sched_group_capacity.
1176  *
1177  * Since these topologies are exclusive by construction. That is, its
1178  * impossible for an SMT thread to belong to multiple cores, and cores to
1179  * be part of multiple caches. There is a very clear and unique location
1180  * for each CPU in the hierarchy.
1181  *
1182  * Therefore computing a unique CPU for each group is trivial (the iteration
1183  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1184  * group), we can simply pick the first CPU in each group.
1185  *
1186  *
1187  * [*] in other words, the first group of each domain is its child domain.
1188  */
1189 
get_group(int cpu,struct sd_data * sdd)1190 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1191 {
1192 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1193 	struct sched_domain *child = sd->child;
1194 	struct sched_group *sg;
1195 	bool already_visited;
1196 
1197 	if (child)
1198 		cpu = cpumask_first(sched_domain_span(child));
1199 
1200 	sg = *per_cpu_ptr(sdd->sg, cpu);
1201 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1202 
1203 	/* Increase refcounts for claim_allocations: */
1204 	already_visited = atomic_inc_return(&sg->ref) > 1;
1205 	/* sgc visits should follow a similar trend as sg */
1206 	WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1207 
1208 	/* If we have already visited that group, it's already initialized. */
1209 	if (already_visited)
1210 		return sg;
1211 
1212 	if (child) {
1213 		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1214 		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1215 		sg->flags = child->flags;
1216 	} else {
1217 		cpumask_set_cpu(cpu, sched_group_span(sg));
1218 		cpumask_set_cpu(cpu, group_balance_mask(sg));
1219 	}
1220 
1221 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1222 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1223 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1224 
1225 	return sg;
1226 }
1227 
1228 /*
1229  * build_sched_groups will build a circular linked list of the groups
1230  * covered by the given span, will set each group's ->cpumask correctly,
1231  * and will initialize their ->sgc.
1232  *
1233  * Assumes the sched_domain tree is fully constructed
1234  */
1235 static int
build_sched_groups(struct sched_domain * sd,int cpu)1236 build_sched_groups(struct sched_domain *sd, int cpu)
1237 {
1238 	struct sched_group *first = NULL, *last = NULL;
1239 	struct sd_data *sdd = sd->private;
1240 	const struct cpumask *span = sched_domain_span(sd);
1241 	struct cpumask *covered;
1242 	int i;
1243 
1244 	lockdep_assert_held(&sched_domains_mutex);
1245 	covered = sched_domains_tmpmask;
1246 
1247 	cpumask_clear(covered);
1248 
1249 	for_each_cpu_wrap(i, span, cpu) {
1250 		struct sched_group *sg;
1251 
1252 		if (cpumask_test_cpu(i, covered))
1253 			continue;
1254 
1255 		sg = get_group(i, sdd);
1256 
1257 		cpumask_or(covered, covered, sched_group_span(sg));
1258 
1259 		if (!first)
1260 			first = sg;
1261 		if (last)
1262 			last->next = sg;
1263 		last = sg;
1264 	}
1265 	last->next = first;
1266 	sd->groups = first;
1267 
1268 	return 0;
1269 }
1270 
1271 /*
1272  * Initialize sched groups cpu_capacity.
1273  *
1274  * cpu_capacity indicates the capacity of sched group, which is used while
1275  * distributing the load between different sched groups in a sched domain.
1276  * Typically cpu_capacity for all the groups in a sched domain will be same
1277  * unless there are asymmetries in the topology. If there are asymmetries,
1278  * group having more cpu_capacity will pickup more load compared to the
1279  * group having less cpu_capacity.
1280  */
init_sched_groups_capacity(int cpu,struct sched_domain * sd)1281 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1282 {
1283 	struct sched_group *sg = sd->groups;
1284 	struct cpumask *mask = sched_domains_tmpmask2;
1285 
1286 	WARN_ON(!sg);
1287 
1288 	do {
1289 		int cpu, cores = 0, max_cpu = -1;
1290 
1291 		sg->group_weight = cpumask_weight(sched_group_span(sg));
1292 
1293 		cpumask_copy(mask, sched_group_span(sg));
1294 		for_each_cpu(cpu, mask) {
1295 			cores++;
1296 #ifdef CONFIG_SCHED_SMT
1297 			cpumask_andnot(mask, mask, cpu_smt_mask(cpu));
1298 #endif
1299 		}
1300 		sg->cores = cores;
1301 
1302 		if (!(sd->flags & SD_ASYM_PACKING))
1303 			goto next;
1304 
1305 		for_each_cpu(cpu, sched_group_span(sg)) {
1306 			if (max_cpu < 0)
1307 				max_cpu = cpu;
1308 			else if (sched_asym_prefer(cpu, max_cpu))
1309 				max_cpu = cpu;
1310 		}
1311 		sg->asym_prefer_cpu = max_cpu;
1312 
1313 next:
1314 		sg = sg->next;
1315 	} while (sg != sd->groups);
1316 
1317 	if (cpu != group_balance_cpu(sg))
1318 		return;
1319 
1320 	update_group_capacity(sd, cpu);
1321 }
1322 
1323 /* Update the "asym_prefer_cpu" when arch_asym_cpu_priority() changes. */
sched_update_asym_prefer_cpu(int cpu,int old_prio,int new_prio)1324 void sched_update_asym_prefer_cpu(int cpu, int old_prio, int new_prio)
1325 {
1326 	int asym_prefer_cpu = cpu;
1327 	struct sched_domain *sd;
1328 
1329 	guard(rcu)();
1330 
1331 	for_each_domain(cpu, sd) {
1332 		struct sched_group *sg;
1333 		int group_cpu;
1334 
1335 		if (!(sd->flags & SD_ASYM_PACKING))
1336 			continue;
1337 
1338 		/*
1339 		 * Groups of overlapping domain are replicated per NUMA
1340 		 * node and will require updating "asym_prefer_cpu" on
1341 		 * each local copy.
1342 		 *
1343 		 * If you are hitting this warning, consider moving
1344 		 * "sg->asym_prefer_cpu" to "sg->sgc->asym_prefer_cpu"
1345 		 * which is shared by all the overlapping groups.
1346 		 */
1347 		WARN_ON_ONCE(sd->flags & SD_NUMA);
1348 
1349 		sg = sd->groups;
1350 		if (cpu != sg->asym_prefer_cpu) {
1351 			/*
1352 			 * Since the parent is a superset of the current group,
1353 			 * if the cpu is not the "asym_prefer_cpu" at the
1354 			 * current level, it cannot be the preferred CPU at a
1355 			 * higher levels either.
1356 			 */
1357 			if (!sched_asym_prefer(cpu, sg->asym_prefer_cpu))
1358 				return;
1359 
1360 			WRITE_ONCE(sg->asym_prefer_cpu, cpu);
1361 			continue;
1362 		}
1363 
1364 		/* Ranking has improved; CPU is still the preferred one. */
1365 		if (new_prio >= old_prio)
1366 			continue;
1367 
1368 		for_each_cpu(group_cpu, sched_group_span(sg)) {
1369 			if (sched_asym_prefer(group_cpu, asym_prefer_cpu))
1370 				asym_prefer_cpu = group_cpu;
1371 		}
1372 
1373 		WRITE_ONCE(sg->asym_prefer_cpu, asym_prefer_cpu);
1374 	}
1375 }
1376 
1377 /*
1378  * Set of available CPUs grouped by their corresponding capacities
1379  * Each list entry contains a CPU mask reflecting CPUs that share the same
1380  * capacity.
1381  * The lifespan of data is unlimited.
1382  */
1383 LIST_HEAD(asym_cap_list);
1384 
1385 /*
1386  * Verify whether there is any CPU capacity asymmetry in a given sched domain.
1387  * Provides sd_flags reflecting the asymmetry scope.
1388  */
1389 static inline int
asym_cpu_capacity_classify(const struct cpumask * sd_span,const struct cpumask * cpu_map)1390 asym_cpu_capacity_classify(const struct cpumask *sd_span,
1391 			   const struct cpumask *cpu_map)
1392 {
1393 	struct asym_cap_data *entry;
1394 	int count = 0, miss = 0;
1395 
1396 	/*
1397 	 * Count how many unique CPU capacities this domain spans across
1398 	 * (compare sched_domain CPUs mask with ones representing  available
1399 	 * CPUs capacities). Take into account CPUs that might be offline:
1400 	 * skip those.
1401 	 */
1402 	list_for_each_entry(entry, &asym_cap_list, link) {
1403 		if (cpumask_intersects(sd_span, cpu_capacity_span(entry)))
1404 			++count;
1405 		else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry)))
1406 			++miss;
1407 	}
1408 
1409 	WARN_ON_ONCE(!count && !list_empty(&asym_cap_list));
1410 
1411 	/* No asymmetry detected */
1412 	if (count < 2)
1413 		return 0;
1414 	/* Some of the available CPU capacity values have not been detected */
1415 	if (miss)
1416 		return SD_ASYM_CPUCAPACITY;
1417 
1418 	/* Full asymmetry */
1419 	return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL;
1420 
1421 }
1422 
free_asym_cap_entry(struct rcu_head * head)1423 static void free_asym_cap_entry(struct rcu_head *head)
1424 {
1425 	struct asym_cap_data *entry = container_of(head, struct asym_cap_data, rcu);
1426 	kfree(entry);
1427 }
1428 
asym_cpu_capacity_update_data(int cpu)1429 static inline void asym_cpu_capacity_update_data(int cpu)
1430 {
1431 	unsigned long capacity = arch_scale_cpu_capacity(cpu);
1432 	struct asym_cap_data *insert_entry = NULL;
1433 	struct asym_cap_data *entry;
1434 
1435 	/*
1436 	 * Search if capacity already exits. If not, track which the entry
1437 	 * where we should insert to keep the list ordered descending.
1438 	 */
1439 	list_for_each_entry(entry, &asym_cap_list, link) {
1440 		if (capacity == entry->capacity)
1441 			goto done;
1442 		else if (!insert_entry && capacity > entry->capacity)
1443 			insert_entry = list_prev_entry(entry, link);
1444 	}
1445 
1446 	entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL);
1447 	if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n"))
1448 		return;
1449 	entry->capacity = capacity;
1450 
1451 	/* If NULL then the new capacity is the smallest, add last. */
1452 	if (!insert_entry)
1453 		list_add_tail_rcu(&entry->link, &asym_cap_list);
1454 	else
1455 		list_add_rcu(&entry->link, &insert_entry->link);
1456 done:
1457 	__cpumask_set_cpu(cpu, cpu_capacity_span(entry));
1458 }
1459 
1460 /*
1461  * Build-up/update list of CPUs grouped by their capacities
1462  * An update requires explicit request to rebuild sched domains
1463  * with state indicating CPU topology changes.
1464  */
asym_cpu_capacity_scan(void)1465 static void asym_cpu_capacity_scan(void)
1466 {
1467 	struct asym_cap_data *entry, *next;
1468 	int cpu;
1469 
1470 	list_for_each_entry(entry, &asym_cap_list, link)
1471 		cpumask_clear(cpu_capacity_span(entry));
1472 
1473 	for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN))
1474 		asym_cpu_capacity_update_data(cpu);
1475 
1476 	list_for_each_entry_safe(entry, next, &asym_cap_list, link) {
1477 		if (cpumask_empty(cpu_capacity_span(entry))) {
1478 			list_del_rcu(&entry->link);
1479 			call_rcu(&entry->rcu, free_asym_cap_entry);
1480 		}
1481 	}
1482 
1483 	/*
1484 	 * Only one capacity value has been detected i.e. this system is symmetric.
1485 	 * No need to keep this data around.
1486 	 */
1487 	if (list_is_singular(&asym_cap_list)) {
1488 		entry = list_first_entry(&asym_cap_list, typeof(*entry), link);
1489 		list_del_rcu(&entry->link);
1490 		call_rcu(&entry->rcu, free_asym_cap_entry);
1491 	}
1492 }
1493 
1494 /*
1495  * Initializers for schedule domains
1496  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1497  */
1498 
1499 static int default_relax_domain_level = -1;
1500 int sched_domain_level_max;
1501 
setup_relax_domain_level(char * str)1502 static int __init setup_relax_domain_level(char *str)
1503 {
1504 	if (kstrtoint(str, 0, &default_relax_domain_level))
1505 		pr_warn("Unable to set relax_domain_level\n");
1506 
1507 	return 1;
1508 }
1509 __setup("relax_domain_level=", setup_relax_domain_level);
1510 
set_domain_attribute(struct sched_domain * sd,struct sched_domain_attr * attr)1511 static void set_domain_attribute(struct sched_domain *sd,
1512 				 struct sched_domain_attr *attr)
1513 {
1514 	int request;
1515 
1516 	if (!attr || attr->relax_domain_level < 0) {
1517 		if (default_relax_domain_level < 0)
1518 			return;
1519 		request = default_relax_domain_level;
1520 	} else
1521 		request = attr->relax_domain_level;
1522 
1523 	if (sd->level >= request) {
1524 		/* Turn off idle balance on this domain: */
1525 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1526 	}
1527 }
1528 
1529 static void __sdt_free(const struct cpumask *cpu_map);
1530 static int __sdt_alloc(const struct cpumask *cpu_map);
1531 
__free_domain_allocs(struct s_data * d,enum s_alloc what,const struct cpumask * cpu_map)1532 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1533 				 const struct cpumask *cpu_map)
1534 {
1535 	switch (what) {
1536 	case sa_rootdomain:
1537 		if (!atomic_read(&d->rd->refcount))
1538 			free_rootdomain(&d->rd->rcu);
1539 		fallthrough;
1540 	case sa_sd:
1541 		free_percpu(d->sd);
1542 		fallthrough;
1543 	case sa_sd_storage:
1544 		__sdt_free(cpu_map);
1545 		fallthrough;
1546 	case sa_none:
1547 		break;
1548 	}
1549 }
1550 
1551 static enum s_alloc
__visit_domain_allocation_hell(struct s_data * d,const struct cpumask * cpu_map)1552 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1553 {
1554 	memset(d, 0, sizeof(*d));
1555 
1556 	if (__sdt_alloc(cpu_map))
1557 		return sa_sd_storage;
1558 	d->sd = alloc_percpu(struct sched_domain *);
1559 	if (!d->sd)
1560 		return sa_sd_storage;
1561 	d->rd = alloc_rootdomain();
1562 	if (!d->rd)
1563 		return sa_sd;
1564 
1565 	return sa_rootdomain;
1566 }
1567 
1568 /*
1569  * NULL the sd_data elements we've used to build the sched_domain and
1570  * sched_group structure so that the subsequent __free_domain_allocs()
1571  * will not free the data we're using.
1572  */
claim_allocations(int cpu,struct sched_domain * sd)1573 static void claim_allocations(int cpu, struct sched_domain *sd)
1574 {
1575 	struct sd_data *sdd = sd->private;
1576 
1577 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1578 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1579 
1580 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1581 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1582 
1583 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1584 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1585 
1586 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1587 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1588 }
1589 
1590 #ifdef CONFIG_NUMA
1591 enum numa_topology_type sched_numa_topology_type;
1592 
1593 static int			sched_domains_numa_levels;
1594 static int			sched_domains_curr_level;
1595 
1596 int				sched_max_numa_distance;
1597 static int			*sched_domains_numa_distance;
1598 static struct cpumask		***sched_domains_numa_masks;
1599 #endif /* CONFIG_NUMA */
1600 
1601 /*
1602  * SD_flags allowed in topology descriptions.
1603  *
1604  * These flags are purely descriptive of the topology and do not prescribe
1605  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1606  * function. For details, see include/linux/sched/sd_flags.h.
1607  *
1608  *   SD_SHARE_CPUCAPACITY
1609  *   SD_SHARE_LLC
1610  *   SD_CLUSTER
1611  *   SD_NUMA
1612  *
1613  * Odd one out, which beside describing the topology has a quirk also
1614  * prescribes the desired behaviour that goes along with it:
1615  *
1616  *   SD_ASYM_PACKING        - describes SMT quirks
1617  */
1618 #define TOPOLOGY_SD_FLAGS		\
1619 	(SD_SHARE_CPUCAPACITY	|	\
1620 	 SD_CLUSTER		|	\
1621 	 SD_SHARE_LLC		|	\
1622 	 SD_NUMA		|	\
1623 	 SD_ASYM_PACKING)
1624 
1625 static struct sched_domain *
sd_init(struct sched_domain_topology_level * tl,const struct cpumask * cpu_map,struct sched_domain * child,int cpu)1626 sd_init(struct sched_domain_topology_level *tl,
1627 	const struct cpumask *cpu_map,
1628 	struct sched_domain *child, int cpu)
1629 {
1630 	struct sd_data *sdd = &tl->data;
1631 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1632 	int sd_id, sd_weight, sd_flags = 0;
1633 	struct cpumask *sd_span;
1634 
1635 #ifdef CONFIG_NUMA
1636 	/*
1637 	 * Ugly hack to pass state to sd_numa_mask()...
1638 	 */
1639 	sched_domains_curr_level = tl->numa_level;
1640 #endif
1641 
1642 	sd_weight = cpumask_weight(tl->mask(cpu));
1643 
1644 	if (tl->sd_flags)
1645 		sd_flags = (*tl->sd_flags)();
1646 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1647 			"wrong sd_flags in topology description\n"))
1648 		sd_flags &= TOPOLOGY_SD_FLAGS;
1649 
1650 	*sd = (struct sched_domain){
1651 		.min_interval		= sd_weight,
1652 		.max_interval		= 2*sd_weight,
1653 		.busy_factor		= 16,
1654 		.imbalance_pct		= 117,
1655 
1656 		.cache_nice_tries	= 0,
1657 
1658 		.flags			= 1*SD_BALANCE_NEWIDLE
1659 					| 1*SD_BALANCE_EXEC
1660 					| 1*SD_BALANCE_FORK
1661 					| 0*SD_BALANCE_WAKE
1662 					| 1*SD_WAKE_AFFINE
1663 					| 0*SD_SHARE_CPUCAPACITY
1664 					| 0*SD_SHARE_LLC
1665 					| 0*SD_SERIALIZE
1666 					| 1*SD_PREFER_SIBLING
1667 					| 0*SD_NUMA
1668 					| sd_flags
1669 					,
1670 
1671 		.last_balance		= jiffies,
1672 		.balance_interval	= sd_weight,
1673 		.max_newidle_lb_cost	= 0,
1674 		.last_decay_max_lb_cost	= jiffies,
1675 		.child			= child,
1676 		.name			= tl->name,
1677 	};
1678 
1679 	sd_span = sched_domain_span(sd);
1680 	cpumask_and(sd_span, cpu_map, tl->mask(cpu));
1681 	sd_id = cpumask_first(sd_span);
1682 
1683 	sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map);
1684 
1685 	WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) ==
1686 		  (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY),
1687 		  "CPU capacity asymmetry not supported on SMT\n");
1688 
1689 	/*
1690 	 * Convert topological properties into behaviour.
1691 	 */
1692 	/* Don't attempt to spread across CPUs of different capacities. */
1693 	if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1694 		sd->child->flags &= ~SD_PREFER_SIBLING;
1695 
1696 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1697 		sd->imbalance_pct = 110;
1698 
1699 	} else if (sd->flags & SD_SHARE_LLC) {
1700 		sd->imbalance_pct = 117;
1701 		sd->cache_nice_tries = 1;
1702 
1703 #ifdef CONFIG_NUMA
1704 	} else if (sd->flags & SD_NUMA) {
1705 		sd->cache_nice_tries = 2;
1706 
1707 		sd->flags &= ~SD_PREFER_SIBLING;
1708 		sd->flags |= SD_SERIALIZE;
1709 		if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1710 			sd->flags &= ~(SD_BALANCE_EXEC |
1711 				       SD_BALANCE_FORK |
1712 				       SD_WAKE_AFFINE);
1713 		}
1714 
1715 #endif /* CONFIG_NUMA */
1716 	} else {
1717 		sd->cache_nice_tries = 1;
1718 	}
1719 
1720 	/*
1721 	 * For all levels sharing cache; connect a sched_domain_shared
1722 	 * instance.
1723 	 */
1724 	if (sd->flags & SD_SHARE_LLC) {
1725 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1726 		atomic_inc(&sd->shared->ref);
1727 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1728 	}
1729 
1730 	sd->private = sdd;
1731 
1732 	return sd;
1733 }
1734 
1735 /*
1736  * Topology list, bottom-up.
1737  */
1738 static struct sched_domain_topology_level default_topology[] = {
1739 #ifdef CONFIG_SCHED_SMT
1740 	SDTL_INIT(cpu_smt_mask, cpu_smt_flags, SMT),
1741 #endif
1742 
1743 #ifdef CONFIG_SCHED_CLUSTER
1744 	SDTL_INIT(cpu_clustergroup_mask, cpu_cluster_flags, CLS),
1745 #endif
1746 
1747 #ifdef CONFIG_SCHED_MC
1748 	SDTL_INIT(cpu_coregroup_mask, cpu_core_flags, MC),
1749 #endif
1750 	SDTL_INIT(cpu_cpu_mask, NULL, PKG),
1751 	{ NULL, },
1752 };
1753 
1754 static struct sched_domain_topology_level *sched_domain_topology =
1755 	default_topology;
1756 static struct sched_domain_topology_level *sched_domain_topology_saved;
1757 
1758 #define for_each_sd_topology(tl)			\
1759 	for (tl = sched_domain_topology; tl->mask; tl++)
1760 
set_sched_topology(struct sched_domain_topology_level * tl)1761 void __init set_sched_topology(struct sched_domain_topology_level *tl)
1762 {
1763 	if (WARN_ON_ONCE(sched_smp_initialized))
1764 		return;
1765 
1766 	sched_domain_topology = tl;
1767 	sched_domain_topology_saved = NULL;
1768 }
1769 
1770 #ifdef CONFIG_NUMA
1771 
sd_numa_mask(int cpu)1772 static const struct cpumask *sd_numa_mask(int cpu)
1773 {
1774 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1775 }
1776 
sched_numa_warn(const char * str)1777 static void sched_numa_warn(const char *str)
1778 {
1779 	static int done = false;
1780 	int i,j;
1781 
1782 	if (done)
1783 		return;
1784 
1785 	done = true;
1786 
1787 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1788 
1789 	for (i = 0; i < nr_node_ids; i++) {
1790 		printk(KERN_WARNING "  ");
1791 		for (j = 0; j < nr_node_ids; j++) {
1792 			if (!node_state(i, N_CPU) || !node_state(j, N_CPU))
1793 				printk(KERN_CONT "(%02d) ", node_distance(i,j));
1794 			else
1795 				printk(KERN_CONT " %02d  ", node_distance(i,j));
1796 		}
1797 		printk(KERN_CONT "\n");
1798 	}
1799 	printk(KERN_WARNING "\n");
1800 }
1801 
find_numa_distance(int distance)1802 bool find_numa_distance(int distance)
1803 {
1804 	bool found = false;
1805 	int i, *distances;
1806 
1807 	if (distance == node_distance(0, 0))
1808 		return true;
1809 
1810 	rcu_read_lock();
1811 	distances = rcu_dereference(sched_domains_numa_distance);
1812 	if (!distances)
1813 		goto unlock;
1814 	for (i = 0; i < sched_domains_numa_levels; i++) {
1815 		if (distances[i] == distance) {
1816 			found = true;
1817 			break;
1818 		}
1819 	}
1820 unlock:
1821 	rcu_read_unlock();
1822 
1823 	return found;
1824 }
1825 
1826 #define for_each_cpu_node_but(n, nbut)		\
1827 	for_each_node_state(n, N_CPU)		\
1828 		if (n == nbut)			\
1829 			continue;		\
1830 		else
1831 
1832 /*
1833  * A system can have three types of NUMA topology:
1834  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1835  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1836  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1837  *
1838  * The difference between a glueless mesh topology and a backplane
1839  * topology lies in whether communication between not directly
1840  * connected nodes goes through intermediary nodes (where programs
1841  * could run), or through backplane controllers. This affects
1842  * placement of programs.
1843  *
1844  * The type of topology can be discerned with the following tests:
1845  * - If the maximum distance between any nodes is 1 hop, the system
1846  *   is directly connected.
1847  * - If for two nodes A and B, located N > 1 hops away from each other,
1848  *   there is an intermediary node C, which is < N hops away from both
1849  *   nodes A and B, the system is a glueless mesh.
1850  */
init_numa_topology_type(int offline_node)1851 static void init_numa_topology_type(int offline_node)
1852 {
1853 	int a, b, c, n;
1854 
1855 	n = sched_max_numa_distance;
1856 
1857 	if (sched_domains_numa_levels <= 2) {
1858 		sched_numa_topology_type = NUMA_DIRECT;
1859 		return;
1860 	}
1861 
1862 	for_each_cpu_node_but(a, offline_node) {
1863 		for_each_cpu_node_but(b, offline_node) {
1864 			/* Find two nodes furthest removed from each other. */
1865 			if (node_distance(a, b) < n)
1866 				continue;
1867 
1868 			/* Is there an intermediary node between a and b? */
1869 			for_each_cpu_node_but(c, offline_node) {
1870 				if (node_distance(a, c) < n &&
1871 				    node_distance(b, c) < n) {
1872 					sched_numa_topology_type =
1873 							NUMA_GLUELESS_MESH;
1874 					return;
1875 				}
1876 			}
1877 
1878 			sched_numa_topology_type = NUMA_BACKPLANE;
1879 			return;
1880 		}
1881 	}
1882 
1883 	pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n");
1884 	sched_numa_topology_type = NUMA_DIRECT;
1885 }
1886 
1887 
1888 #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1889 
sched_init_numa(int offline_node)1890 void sched_init_numa(int offline_node)
1891 {
1892 	struct sched_domain_topology_level *tl;
1893 	unsigned long *distance_map;
1894 	int nr_levels = 0;
1895 	int i, j;
1896 	int *distances;
1897 	struct cpumask ***masks;
1898 
1899 	/*
1900 	 * O(nr_nodes^2) de-duplicating selection sort -- in order to find the
1901 	 * unique distances in the node_distance() table.
1902 	 */
1903 	distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1904 	if (!distance_map)
1905 		return;
1906 
1907 	bitmap_zero(distance_map, NR_DISTANCE_VALUES);
1908 	for_each_cpu_node_but(i, offline_node) {
1909 		for_each_cpu_node_but(j, offline_node) {
1910 			int distance = node_distance(i, j);
1911 
1912 			if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1913 				sched_numa_warn("Invalid distance value range");
1914 				bitmap_free(distance_map);
1915 				return;
1916 			}
1917 
1918 			bitmap_set(distance_map, distance, 1);
1919 		}
1920 	}
1921 	/*
1922 	 * We can now figure out how many unique distance values there are and
1923 	 * allocate memory accordingly.
1924 	 */
1925 	nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
1926 
1927 	distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
1928 	if (!distances) {
1929 		bitmap_free(distance_map);
1930 		return;
1931 	}
1932 
1933 	for (i = 0, j = 0; i < nr_levels; i++, j++) {
1934 		j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
1935 		distances[i] = j;
1936 	}
1937 	rcu_assign_pointer(sched_domains_numa_distance, distances);
1938 
1939 	bitmap_free(distance_map);
1940 
1941 	/*
1942 	 * 'nr_levels' contains the number of unique distances
1943 	 *
1944 	 * The sched_domains_numa_distance[] array includes the actual distance
1945 	 * numbers.
1946 	 */
1947 
1948 	/*
1949 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1950 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1951 	 * the array will contain less then 'nr_levels' members. This could be
1952 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1953 	 * in other functions.
1954 	 *
1955 	 * We reset it to 'nr_levels' at the end of this function.
1956 	 */
1957 	sched_domains_numa_levels = 0;
1958 
1959 	masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
1960 	if (!masks)
1961 		return;
1962 
1963 	/*
1964 	 * Now for each level, construct a mask per node which contains all
1965 	 * CPUs of nodes that are that many hops away from us.
1966 	 */
1967 	for (i = 0; i < nr_levels; i++) {
1968 		masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1969 		if (!masks[i])
1970 			return;
1971 
1972 		for_each_cpu_node_but(j, offline_node) {
1973 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1974 			int k;
1975 
1976 			if (!mask)
1977 				return;
1978 
1979 			masks[i][j] = mask;
1980 
1981 			for_each_cpu_node_but(k, offline_node) {
1982 				if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
1983 					sched_numa_warn("Node-distance not symmetric");
1984 
1985 				if (node_distance(j, k) > sched_domains_numa_distance[i])
1986 					continue;
1987 
1988 				cpumask_or(mask, mask, cpumask_of_node(k));
1989 			}
1990 		}
1991 	}
1992 	rcu_assign_pointer(sched_domains_numa_masks, masks);
1993 
1994 	/* Compute default topology size */
1995 	for (i = 0; sched_domain_topology[i].mask; i++);
1996 
1997 	tl = kzalloc((i + nr_levels + 1) *
1998 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1999 	if (!tl)
2000 		return;
2001 
2002 	/*
2003 	 * Copy the default topology bits..
2004 	 */
2005 	for (i = 0; sched_domain_topology[i].mask; i++)
2006 		tl[i] = sched_domain_topology[i];
2007 
2008 	/*
2009 	 * Add the NUMA identity distance, aka single NODE.
2010 	 */
2011 	tl[i++] = SDTL_INIT(sd_numa_mask, NULL, NODE);
2012 
2013 	/*
2014 	 * .. and append 'j' levels of NUMA goodness.
2015 	 */
2016 	for (j = 1; j < nr_levels; i++, j++) {
2017 		tl[i] = SDTL_INIT(sd_numa_mask, cpu_numa_flags, NUMA);
2018 		tl[i].numa_level = j;
2019 	}
2020 
2021 	sched_domain_topology_saved = sched_domain_topology;
2022 	sched_domain_topology = tl;
2023 
2024 	sched_domains_numa_levels = nr_levels;
2025 	WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]);
2026 
2027 	init_numa_topology_type(offline_node);
2028 }
2029 
2030 
sched_reset_numa(void)2031 static void sched_reset_numa(void)
2032 {
2033 	int nr_levels, *distances;
2034 	struct cpumask ***masks;
2035 
2036 	nr_levels = sched_domains_numa_levels;
2037 	sched_domains_numa_levels = 0;
2038 	sched_max_numa_distance = 0;
2039 	sched_numa_topology_type = NUMA_DIRECT;
2040 	distances = sched_domains_numa_distance;
2041 	rcu_assign_pointer(sched_domains_numa_distance, NULL);
2042 	masks = sched_domains_numa_masks;
2043 	rcu_assign_pointer(sched_domains_numa_masks, NULL);
2044 	if (distances || masks) {
2045 		int i, j;
2046 
2047 		synchronize_rcu();
2048 		kfree(distances);
2049 		for (i = 0; i < nr_levels && masks; i++) {
2050 			if (!masks[i])
2051 				continue;
2052 			for_each_node(j)
2053 				kfree(masks[i][j]);
2054 			kfree(masks[i]);
2055 		}
2056 		kfree(masks);
2057 	}
2058 	if (sched_domain_topology_saved) {
2059 		kfree(sched_domain_topology);
2060 		sched_domain_topology = sched_domain_topology_saved;
2061 		sched_domain_topology_saved = NULL;
2062 	}
2063 }
2064 
2065 /*
2066  * Call with hotplug lock held
2067  */
sched_update_numa(int cpu,bool online)2068 void sched_update_numa(int cpu, bool online)
2069 {
2070 	int node;
2071 
2072 	node = cpu_to_node(cpu);
2073 	/*
2074 	 * Scheduler NUMA topology is updated when the first CPU of a
2075 	 * node is onlined or the last CPU of a node is offlined.
2076 	 */
2077 	if (cpumask_weight(cpumask_of_node(node)) != 1)
2078 		return;
2079 
2080 	sched_reset_numa();
2081 	sched_init_numa(online ? NUMA_NO_NODE : node);
2082 }
2083 
sched_domains_numa_masks_set(unsigned int cpu)2084 void sched_domains_numa_masks_set(unsigned int cpu)
2085 {
2086 	int node = cpu_to_node(cpu);
2087 	int i, j;
2088 
2089 	for (i = 0; i < sched_domains_numa_levels; i++) {
2090 		for (j = 0; j < nr_node_ids; j++) {
2091 			if (!node_state(j, N_CPU))
2092 				continue;
2093 
2094 			/* Set ourselves in the remote node's masks */
2095 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
2096 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
2097 		}
2098 	}
2099 }
2100 
sched_domains_numa_masks_clear(unsigned int cpu)2101 void sched_domains_numa_masks_clear(unsigned int cpu)
2102 {
2103 	int i, j;
2104 
2105 	for (i = 0; i < sched_domains_numa_levels; i++) {
2106 		for (j = 0; j < nr_node_ids; j++) {
2107 			if (sched_domains_numa_masks[i][j])
2108 				cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
2109 		}
2110 	}
2111 }
2112 
2113 /*
2114  * sched_numa_find_closest() - given the NUMA topology, find the cpu
2115  *                             closest to @cpu from @cpumask.
2116  * cpumask: cpumask to find a cpu from
2117  * cpu: cpu to be close to
2118  *
2119  * returns: cpu, or nr_cpu_ids when nothing found.
2120  */
sched_numa_find_closest(const struct cpumask * cpus,int cpu)2121 int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
2122 {
2123 	int i, j = cpu_to_node(cpu), found = nr_cpu_ids;
2124 	struct cpumask ***masks;
2125 
2126 	rcu_read_lock();
2127 	masks = rcu_dereference(sched_domains_numa_masks);
2128 	if (!masks)
2129 		goto unlock;
2130 	for (i = 0; i < sched_domains_numa_levels; i++) {
2131 		if (!masks[i][j])
2132 			break;
2133 		cpu = cpumask_any_and_distribute(cpus, masks[i][j]);
2134 		if (cpu < nr_cpu_ids) {
2135 			found = cpu;
2136 			break;
2137 		}
2138 	}
2139 unlock:
2140 	rcu_read_unlock();
2141 
2142 	return found;
2143 }
2144 
2145 struct __cmp_key {
2146 	const struct cpumask *cpus;
2147 	struct cpumask ***masks;
2148 	int node;
2149 	int cpu;
2150 	int w;
2151 };
2152 
hop_cmp(const void * a,const void * b)2153 static int hop_cmp(const void *a, const void *b)
2154 {
2155 	struct cpumask **prev_hop, **cur_hop = *(struct cpumask ***)b;
2156 	struct __cmp_key *k = (struct __cmp_key *)a;
2157 
2158 	if (cpumask_weight_and(k->cpus, cur_hop[k->node]) <= k->cpu)
2159 		return 1;
2160 
2161 	if (b == k->masks) {
2162 		k->w = 0;
2163 		return 0;
2164 	}
2165 
2166 	prev_hop = *((struct cpumask ***)b - 1);
2167 	k->w = cpumask_weight_and(k->cpus, prev_hop[k->node]);
2168 	if (k->w <= k->cpu)
2169 		return 0;
2170 
2171 	return -1;
2172 }
2173 
2174 /**
2175  * sched_numa_find_nth_cpu() - given the NUMA topology, find the Nth closest CPU
2176  *                             from @cpus to @cpu, taking into account distance
2177  *                             from a given @node.
2178  * @cpus: cpumask to find a cpu from
2179  * @cpu: CPU to start searching
2180  * @node: NUMA node to order CPUs by distance
2181  *
2182  * Return: cpu, or nr_cpu_ids when nothing found.
2183  */
sched_numa_find_nth_cpu(const struct cpumask * cpus,int cpu,int node)2184 int sched_numa_find_nth_cpu(const struct cpumask *cpus, int cpu, int node)
2185 {
2186 	struct __cmp_key k = { .cpus = cpus, .cpu = cpu };
2187 	struct cpumask ***hop_masks;
2188 	int hop, ret = nr_cpu_ids;
2189 
2190 	if (node == NUMA_NO_NODE)
2191 		return cpumask_nth_and(cpu, cpus, cpu_online_mask);
2192 
2193 	rcu_read_lock();
2194 
2195 	/* CPU-less node entries are uninitialized in sched_domains_numa_masks */
2196 	node = numa_nearest_node(node, N_CPU);
2197 	k.node = node;
2198 
2199 	k.masks = rcu_dereference(sched_domains_numa_masks);
2200 	if (!k.masks)
2201 		goto unlock;
2202 
2203 	hop_masks = bsearch(&k, k.masks, sched_domains_numa_levels, sizeof(k.masks[0]), hop_cmp);
2204 	hop = hop_masks	- k.masks;
2205 
2206 	ret = hop ?
2207 		cpumask_nth_and_andnot(cpu - k.w, cpus, k.masks[hop][node], k.masks[hop-1][node]) :
2208 		cpumask_nth_and(cpu, cpus, k.masks[0][node]);
2209 unlock:
2210 	rcu_read_unlock();
2211 	return ret;
2212 }
2213 EXPORT_SYMBOL_GPL(sched_numa_find_nth_cpu);
2214 
2215 /**
2216  * sched_numa_hop_mask() - Get the cpumask of CPUs at most @hops hops away from
2217  *                         @node
2218  * @node: The node to count hops from.
2219  * @hops: Include CPUs up to that many hops away. 0 means local node.
2220  *
2221  * Return: On success, a pointer to a cpumask of CPUs at most @hops away from
2222  * @node, an error value otherwise.
2223  *
2224  * Requires rcu_lock to be held. Returned cpumask is only valid within that
2225  * read-side section, copy it if required beyond that.
2226  *
2227  * Note that not all hops are equal in distance; see sched_init_numa() for how
2228  * distances and masks are handled.
2229  * Also note that this is a reflection of sched_domains_numa_masks, which may change
2230  * during the lifetime of the system (offline nodes are taken out of the masks).
2231  */
sched_numa_hop_mask(unsigned int node,unsigned int hops)2232 const struct cpumask *sched_numa_hop_mask(unsigned int node, unsigned int hops)
2233 {
2234 	struct cpumask ***masks;
2235 
2236 	if (node >= nr_node_ids || hops >= sched_domains_numa_levels)
2237 		return ERR_PTR(-EINVAL);
2238 
2239 	masks = rcu_dereference(sched_domains_numa_masks);
2240 	if (!masks)
2241 		return ERR_PTR(-EBUSY);
2242 
2243 	return masks[hops][node];
2244 }
2245 EXPORT_SYMBOL_GPL(sched_numa_hop_mask);
2246 
2247 #endif /* CONFIG_NUMA */
2248 
__sdt_alloc(const struct cpumask * cpu_map)2249 static int __sdt_alloc(const struct cpumask *cpu_map)
2250 {
2251 	struct sched_domain_topology_level *tl;
2252 	int j;
2253 
2254 	for_each_sd_topology(tl) {
2255 		struct sd_data *sdd = &tl->data;
2256 
2257 		sdd->sd = alloc_percpu(struct sched_domain *);
2258 		if (!sdd->sd)
2259 			return -ENOMEM;
2260 
2261 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
2262 		if (!sdd->sds)
2263 			return -ENOMEM;
2264 
2265 		sdd->sg = alloc_percpu(struct sched_group *);
2266 		if (!sdd->sg)
2267 			return -ENOMEM;
2268 
2269 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
2270 		if (!sdd->sgc)
2271 			return -ENOMEM;
2272 
2273 		for_each_cpu(j, cpu_map) {
2274 			struct sched_domain *sd;
2275 			struct sched_domain_shared *sds;
2276 			struct sched_group *sg;
2277 			struct sched_group_capacity *sgc;
2278 
2279 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
2280 					GFP_KERNEL, cpu_to_node(j));
2281 			if (!sd)
2282 				return -ENOMEM;
2283 
2284 			*per_cpu_ptr(sdd->sd, j) = sd;
2285 
2286 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
2287 					GFP_KERNEL, cpu_to_node(j));
2288 			if (!sds)
2289 				return -ENOMEM;
2290 
2291 			*per_cpu_ptr(sdd->sds, j) = sds;
2292 
2293 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
2294 					GFP_KERNEL, cpu_to_node(j));
2295 			if (!sg)
2296 				return -ENOMEM;
2297 
2298 			sg->next = sg;
2299 
2300 			*per_cpu_ptr(sdd->sg, j) = sg;
2301 
2302 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
2303 					GFP_KERNEL, cpu_to_node(j));
2304 			if (!sgc)
2305 				return -ENOMEM;
2306 
2307 			sgc->id = j;
2308 
2309 			*per_cpu_ptr(sdd->sgc, j) = sgc;
2310 		}
2311 	}
2312 
2313 	return 0;
2314 }
2315 
__sdt_free(const struct cpumask * cpu_map)2316 static void __sdt_free(const struct cpumask *cpu_map)
2317 {
2318 	struct sched_domain_topology_level *tl;
2319 	int j;
2320 
2321 	for_each_sd_topology(tl) {
2322 		struct sd_data *sdd = &tl->data;
2323 
2324 		for_each_cpu(j, cpu_map) {
2325 			struct sched_domain *sd;
2326 
2327 			if (sdd->sd) {
2328 				sd = *per_cpu_ptr(sdd->sd, j);
2329 				if (sd && (sd->flags & SD_NUMA))
2330 					free_sched_groups(sd->groups, 0);
2331 				kfree(*per_cpu_ptr(sdd->sd, j));
2332 			}
2333 
2334 			if (sdd->sds)
2335 				kfree(*per_cpu_ptr(sdd->sds, j));
2336 			if (sdd->sg)
2337 				kfree(*per_cpu_ptr(sdd->sg, j));
2338 			if (sdd->sgc)
2339 				kfree(*per_cpu_ptr(sdd->sgc, j));
2340 		}
2341 		free_percpu(sdd->sd);
2342 		sdd->sd = NULL;
2343 		free_percpu(sdd->sds);
2344 		sdd->sds = NULL;
2345 		free_percpu(sdd->sg);
2346 		sdd->sg = NULL;
2347 		free_percpu(sdd->sgc);
2348 		sdd->sgc = NULL;
2349 	}
2350 }
2351 
build_sched_domain(struct sched_domain_topology_level * tl,const struct cpumask * cpu_map,struct sched_domain_attr * attr,struct sched_domain * child,int cpu)2352 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
2353 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
2354 		struct sched_domain *child, int cpu)
2355 {
2356 	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2357 
2358 	if (child) {
2359 		sd->level = child->level + 1;
2360 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
2361 		child->parent = sd;
2362 
2363 		if (!cpumask_subset(sched_domain_span(child),
2364 				    sched_domain_span(sd))) {
2365 			pr_err("BUG: arch topology borken\n");
2366 			pr_err("     the %s domain not a subset of the %s domain\n",
2367 					child->name, sd->name);
2368 			/* Fixup, ensure @sd has at least @child CPUs. */
2369 			cpumask_or(sched_domain_span(sd),
2370 				   sched_domain_span(sd),
2371 				   sched_domain_span(child));
2372 		}
2373 
2374 	}
2375 	set_domain_attribute(sd, attr);
2376 
2377 	return sd;
2378 }
2379 
2380 /*
2381  * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
2382  * any two given CPUs on non-NUMA topology levels.
2383  */
topology_span_sane(const struct cpumask * cpu_map)2384 static bool topology_span_sane(const struct cpumask *cpu_map)
2385 {
2386 	struct sched_domain_topology_level *tl;
2387 	struct cpumask *covered, *id_seen;
2388 	int cpu;
2389 
2390 	lockdep_assert_held(&sched_domains_mutex);
2391 	covered = sched_domains_tmpmask;
2392 	id_seen = sched_domains_tmpmask2;
2393 
2394 	for_each_sd_topology(tl) {
2395 		int tl_common_flags = 0;
2396 
2397 		if (tl->sd_flags)
2398 			tl_common_flags = (*tl->sd_flags)();
2399 
2400 		/* NUMA levels are allowed to overlap */
2401 		if (tl_common_flags & SD_NUMA)
2402 			continue;
2403 
2404 		cpumask_clear(covered);
2405 		cpumask_clear(id_seen);
2406 
2407 		/*
2408 		 * Non-NUMA levels cannot partially overlap - they must be either
2409 		 * completely equal or completely disjoint. Otherwise we can end up
2410 		 * breaking the sched_group lists - i.e. a later get_group() pass
2411 		 * breaks the linking done for an earlier span.
2412 		 */
2413 		for_each_cpu(cpu, cpu_map) {
2414 			const struct cpumask *tl_cpu_mask = tl->mask(cpu);
2415 			int id;
2416 
2417 			/* lowest bit set in this mask is used as a unique id */
2418 			id = cpumask_first(tl_cpu_mask);
2419 
2420 			if (cpumask_test_cpu(id, id_seen)) {
2421 				/* First CPU has already been seen, ensure identical spans */
2422 				if (!cpumask_equal(tl->mask(id), tl_cpu_mask))
2423 					return false;
2424 			} else {
2425 				/* First CPU hasn't been seen before, ensure it's a completely new span */
2426 				if (cpumask_intersects(tl_cpu_mask, covered))
2427 					return false;
2428 
2429 				cpumask_or(covered, covered, tl_cpu_mask);
2430 				cpumask_set_cpu(id, id_seen);
2431 			}
2432 		}
2433 	}
2434 	return true;
2435 }
2436 
2437 /*
2438  * Build sched domains for a given set of CPUs and attach the sched domains
2439  * to the individual CPUs
2440  */
2441 static int
build_sched_domains(const struct cpumask * cpu_map,struct sched_domain_attr * attr)2442 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2443 {
2444 	enum s_alloc alloc_state = sa_none;
2445 	struct sched_domain *sd;
2446 	struct s_data d;
2447 	struct rq *rq = NULL;
2448 	int i, ret = -ENOMEM;
2449 	bool has_asym = false;
2450 	bool has_cluster = false;
2451 
2452 	if (WARN_ON(cpumask_empty(cpu_map)))
2453 		goto error;
2454 
2455 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2456 	if (alloc_state != sa_rootdomain)
2457 		goto error;
2458 
2459 	/* Set up domains for CPUs specified by the cpu_map: */
2460 	for_each_cpu(i, cpu_map) {
2461 		struct sched_domain_topology_level *tl;
2462 
2463 		sd = NULL;
2464 		for_each_sd_topology(tl) {
2465 
2466 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
2467 
2468 			has_asym |= sd->flags & SD_ASYM_CPUCAPACITY;
2469 
2470 			if (tl == sched_domain_topology)
2471 				*per_cpu_ptr(d.sd, i) = sd;
2472 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2473 				break;
2474 		}
2475 	}
2476 
2477 	if (WARN_ON(!topology_span_sane(cpu_map)))
2478 		goto error;
2479 
2480 	/* Build the groups for the domains */
2481 	for_each_cpu(i, cpu_map) {
2482 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2483 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
2484 			if (sd->flags & SD_NUMA) {
2485 				if (build_overlap_sched_groups(sd, i))
2486 					goto error;
2487 			} else {
2488 				if (build_sched_groups(sd, i))
2489 					goto error;
2490 			}
2491 		}
2492 	}
2493 
2494 	/*
2495 	 * Calculate an allowed NUMA imbalance such that LLCs do not get
2496 	 * imbalanced.
2497 	 */
2498 	for_each_cpu(i, cpu_map) {
2499 		unsigned int imb = 0;
2500 		unsigned int imb_span = 1;
2501 
2502 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2503 			struct sched_domain *child = sd->child;
2504 
2505 			if (!(sd->flags & SD_SHARE_LLC) && child &&
2506 			    (child->flags & SD_SHARE_LLC)) {
2507 				struct sched_domain __rcu *top_p;
2508 				unsigned int nr_llcs;
2509 
2510 				/*
2511 				 * For a single LLC per node, allow an
2512 				 * imbalance up to 12.5% of the node. This is
2513 				 * arbitrary cutoff based two factors -- SMT and
2514 				 * memory channels. For SMT-2, the intent is to
2515 				 * avoid premature sharing of HT resources but
2516 				 * SMT-4 or SMT-8 *may* benefit from a different
2517 				 * cutoff. For memory channels, this is a very
2518 				 * rough estimate of how many channels may be
2519 				 * active and is based on recent CPUs with
2520 				 * many cores.
2521 				 *
2522 				 * For multiple LLCs, allow an imbalance
2523 				 * until multiple tasks would share an LLC
2524 				 * on one node while LLCs on another node
2525 				 * remain idle. This assumes that there are
2526 				 * enough logical CPUs per LLC to avoid SMT
2527 				 * factors and that there is a correlation
2528 				 * between LLCs and memory channels.
2529 				 */
2530 				nr_llcs = sd->span_weight / child->span_weight;
2531 				if (nr_llcs == 1)
2532 					imb = sd->span_weight >> 3;
2533 				else
2534 					imb = nr_llcs;
2535 				imb = max(1U, imb);
2536 				sd->imb_numa_nr = imb;
2537 
2538 				/* Set span based on the first NUMA domain. */
2539 				top_p = sd->parent;
2540 				while (top_p && !(top_p->flags & SD_NUMA)) {
2541 					top_p = top_p->parent;
2542 				}
2543 				imb_span = top_p ? top_p->span_weight : sd->span_weight;
2544 			} else {
2545 				int factor = max(1U, (sd->span_weight / imb_span));
2546 
2547 				sd->imb_numa_nr = imb * factor;
2548 			}
2549 		}
2550 	}
2551 
2552 	/* Calculate CPU capacity for physical packages and nodes */
2553 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
2554 		if (!cpumask_test_cpu(i, cpu_map))
2555 			continue;
2556 
2557 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2558 			claim_allocations(i, sd);
2559 			init_sched_groups_capacity(i, sd);
2560 		}
2561 	}
2562 
2563 	/* Attach the domains */
2564 	rcu_read_lock();
2565 	for_each_cpu(i, cpu_map) {
2566 		rq = cpu_rq(i);
2567 		sd = *per_cpu_ptr(d.sd, i);
2568 
2569 		cpu_attach_domain(sd, d.rd, i);
2570 
2571 		if (lowest_flag_domain(i, SD_CLUSTER))
2572 			has_cluster = true;
2573 	}
2574 	rcu_read_unlock();
2575 
2576 	if (has_asym)
2577 		static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2578 
2579 	if (has_cluster)
2580 		static_branch_inc_cpuslocked(&sched_cluster_active);
2581 
2582 	if (rq && sched_debug_verbose)
2583 		pr_info("root domain span: %*pbl\n", cpumask_pr_args(cpu_map));
2584 
2585 	ret = 0;
2586 error:
2587 	__free_domain_allocs(&d, alloc_state, cpu_map);
2588 
2589 	return ret;
2590 }
2591 
2592 /* Current sched domains: */
2593 static cpumask_var_t			*doms_cur;
2594 
2595 /* Number of sched domains in 'doms_cur': */
2596 static int				ndoms_cur;
2597 
2598 /* Attributes of custom domains in 'doms_cur' */
2599 static struct sched_domain_attr		*dattr_cur;
2600 
2601 /*
2602  * Special case: If a kmalloc() of a doms_cur partition (array of
2603  * cpumask) fails, then fallback to a single sched domain,
2604  * as determined by the single cpumask fallback_doms.
2605  */
2606 static cpumask_var_t			fallback_doms;
2607 
2608 /*
2609  * arch_update_cpu_topology lets virtualized architectures update the
2610  * CPU core maps. It is supposed to return 1 if the topology changed
2611  * or 0 if it stayed the same.
2612  */
arch_update_cpu_topology(void)2613 int __weak arch_update_cpu_topology(void)
2614 {
2615 	return 0;
2616 }
2617 
alloc_sched_domains(unsigned int ndoms)2618 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2619 {
2620 	int i;
2621 	cpumask_var_t *doms;
2622 
2623 	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2624 	if (!doms)
2625 		return NULL;
2626 	for (i = 0; i < ndoms; i++) {
2627 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2628 			free_sched_domains(doms, i);
2629 			return NULL;
2630 		}
2631 	}
2632 	return doms;
2633 }
2634 
free_sched_domains(cpumask_var_t doms[],unsigned int ndoms)2635 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2636 {
2637 	unsigned int i;
2638 	for (i = 0; i < ndoms; i++)
2639 		free_cpumask_var(doms[i]);
2640 	kfree(doms);
2641 }
2642 
2643 /*
2644  * Set up scheduler domains and groups.  For now this just excludes isolated
2645  * CPUs, but could be used to exclude other special cases in the future.
2646  */
sched_init_domains(const struct cpumask * cpu_map)2647 int __init sched_init_domains(const struct cpumask *cpu_map)
2648 {
2649 	int err;
2650 
2651 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2652 	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2653 	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2654 
2655 	arch_update_cpu_topology();
2656 	asym_cpu_capacity_scan();
2657 	ndoms_cur = 1;
2658 	doms_cur = alloc_sched_domains(ndoms_cur);
2659 	if (!doms_cur)
2660 		doms_cur = &fallback_doms;
2661 	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN));
2662 	err = build_sched_domains(doms_cur[0], NULL);
2663 
2664 	return err;
2665 }
2666 
2667 /*
2668  * Detach sched domains from a group of CPUs specified in cpu_map
2669  * These CPUs will now be attached to the NULL domain
2670  */
detach_destroy_domains(const struct cpumask * cpu_map)2671 static void detach_destroy_domains(const struct cpumask *cpu_map)
2672 {
2673 	unsigned int cpu = cpumask_any(cpu_map);
2674 	int i;
2675 
2676 	if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2677 		static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2678 
2679 	if (static_branch_unlikely(&sched_cluster_active))
2680 		static_branch_dec_cpuslocked(&sched_cluster_active);
2681 
2682 	rcu_read_lock();
2683 	for_each_cpu(i, cpu_map)
2684 		cpu_attach_domain(NULL, &def_root_domain, i);
2685 	rcu_read_unlock();
2686 }
2687 
2688 /* handle null as "default" */
dattrs_equal(struct sched_domain_attr * cur,int idx_cur,struct sched_domain_attr * new,int idx_new)2689 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2690 			struct sched_domain_attr *new, int idx_new)
2691 {
2692 	struct sched_domain_attr tmp;
2693 
2694 	/* Fast path: */
2695 	if (!new && !cur)
2696 		return 1;
2697 
2698 	tmp = SD_ATTR_INIT;
2699 
2700 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2701 			new ? (new + idx_new) : &tmp,
2702 			sizeof(struct sched_domain_attr));
2703 }
2704 
2705 /*
2706  * Partition sched domains as specified by the 'ndoms_new'
2707  * cpumasks in the array doms_new[] of cpumasks. This compares
2708  * doms_new[] to the current sched domain partitioning, doms_cur[].
2709  * It destroys each deleted domain and builds each new domain.
2710  *
2711  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2712  * The masks don't intersect (don't overlap.) We should setup one
2713  * sched domain for each mask. CPUs not in any of the cpumasks will
2714  * not be load balanced. If the same cpumask appears both in the
2715  * current 'doms_cur' domains and in the new 'doms_new', we can leave
2716  * it as it is.
2717  *
2718  * The passed in 'doms_new' should be allocated using
2719  * alloc_sched_domains.  This routine takes ownership of it and will
2720  * free_sched_domains it when done with it. If the caller failed the
2721  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2722  * and partition_sched_domains() will fallback to the single partition
2723  * 'fallback_doms', it also forces the domains to be rebuilt.
2724  *
2725  * If doms_new == NULL it will be replaced with cpu_online_mask.
2726  * ndoms_new == 0 is a special case for destroying existing domains,
2727  * and it will not create the default domain.
2728  *
2729  * Call with hotplug lock and sched_domains_mutex held
2730  */
partition_sched_domains_locked(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)2731 static void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2732 				    struct sched_domain_attr *dattr_new)
2733 {
2734 	bool __maybe_unused has_eas = false;
2735 	int i, j, n;
2736 	int new_topology;
2737 
2738 	lockdep_assert_held(&sched_domains_mutex);
2739 
2740 	/* Let the architecture update CPU core mappings: */
2741 	new_topology = arch_update_cpu_topology();
2742 	/* Trigger rebuilding CPU capacity asymmetry data */
2743 	if (new_topology)
2744 		asym_cpu_capacity_scan();
2745 
2746 	if (!doms_new) {
2747 		WARN_ON_ONCE(dattr_new);
2748 		n = 0;
2749 		doms_new = alloc_sched_domains(1);
2750 		if (doms_new) {
2751 			n = 1;
2752 			cpumask_and(doms_new[0], cpu_active_mask,
2753 				    housekeeping_cpumask(HK_TYPE_DOMAIN));
2754 		}
2755 	} else {
2756 		n = ndoms_new;
2757 	}
2758 
2759 	/* Destroy deleted domains: */
2760 	for (i = 0; i < ndoms_cur; i++) {
2761 		for (j = 0; j < n && !new_topology; j++) {
2762 			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2763 			    dattrs_equal(dattr_cur, i, dattr_new, j))
2764 				goto match1;
2765 		}
2766 		/* No match - a current sched domain not in new doms_new[] */
2767 		detach_destroy_domains(doms_cur[i]);
2768 match1:
2769 		;
2770 	}
2771 
2772 	n = ndoms_cur;
2773 	if (!doms_new) {
2774 		n = 0;
2775 		doms_new = &fallback_doms;
2776 		cpumask_and(doms_new[0], cpu_active_mask,
2777 			    housekeeping_cpumask(HK_TYPE_DOMAIN));
2778 	}
2779 
2780 	/* Build new domains: */
2781 	for (i = 0; i < ndoms_new; i++) {
2782 		for (j = 0; j < n && !new_topology; j++) {
2783 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2784 			    dattrs_equal(dattr_new, i, dattr_cur, j))
2785 				goto match2;
2786 		}
2787 		/* No match - add a new doms_new */
2788 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2789 match2:
2790 		;
2791 	}
2792 
2793 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2794 	/* Build perf domains: */
2795 	for (i = 0; i < ndoms_new; i++) {
2796 		for (j = 0; j < n && !sched_energy_update; j++) {
2797 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2798 			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2799 				has_eas = true;
2800 				goto match3;
2801 			}
2802 		}
2803 		/* No match - add perf domains for a new rd */
2804 		has_eas |= build_perf_domains(doms_new[i]);
2805 match3:
2806 		;
2807 	}
2808 	sched_energy_set(has_eas);
2809 #endif
2810 
2811 	/* Remember the new sched domains: */
2812 	if (doms_cur != &fallback_doms)
2813 		free_sched_domains(doms_cur, ndoms_cur);
2814 
2815 	kfree(dattr_cur);
2816 	doms_cur = doms_new;
2817 	dattr_cur = dattr_new;
2818 	ndoms_cur = ndoms_new;
2819 
2820 	update_sched_domain_debugfs();
2821 	dl_rebuild_rd_accounting();
2822 }
2823 
2824 /*
2825  * Call with hotplug lock held
2826  */
partition_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)2827 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2828 			     struct sched_domain_attr *dattr_new)
2829 {
2830 	sched_domains_mutex_lock();
2831 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2832 	sched_domains_mutex_unlock();
2833 }
2834