xref: /linux/security/selinux/ss/services.c (revision dffb641bea1d0c5a4017771aafb39513701095be)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Implementation of the security services.
4  *
5  * Authors : Stephen Smalley, <stephen.smalley.work@gmail.com>
6  *	     James Morris <jmorris@redhat.com>
7  *
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *	Support for enhanced MLS infrastructure.
11  *	Support for context based audit filters.
12  *
13  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14  *
15  *	Added conditional policy language extensions
16  *
17  * Updated: Hewlett-Packard <paul@paul-moore.com>
18  *
19  *      Added support for NetLabel
20  *      Added support for the policy capability bitmap
21  *
22  * Updated: Chad Sellers <csellers@tresys.com>
23  *
24  *  Added validation of kernel classes and permissions
25  *
26  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27  *
28  *  Added support for bounds domain and audit messaged on masked permissions
29  *
30  * Updated: Guido Trentalancia <guido@trentalancia.com>
31  *
32  *  Added support for runtime switching of the policy type
33  *
34  * Copyright (C) 2008, 2009 NEC Corporation
35  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39  */
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/parser.h>
50 #include <linux/vmalloc.h>
51 #include <linux/lsm_hooks.h>
52 #include <net/netlabel.h>
53 
54 #include "flask.h"
55 #include "avc.h"
56 #include "avc_ss.h"
57 #include "security.h"
58 #include "context.h"
59 #include "policydb.h"
60 #include "sidtab.h"
61 #include "services.h"
62 #include "conditional.h"
63 #include "mls.h"
64 #include "objsec.h"
65 #include "netlabel.h"
66 #include "xfrm.h"
67 #include "ebitmap.h"
68 #include "audit.h"
69 #include "policycap_names.h"
70 #include "ima.h"
71 
72 struct selinux_policy_convert_data {
73 	struct convert_context_args args;
74 	struct sidtab_convert_params sidtab_params;
75 };
76 
77 /* Forward declaration. */
78 static int context_struct_to_string(struct policydb *policydb,
79 				    struct context *context,
80 				    char **scontext,
81 				    u32 *scontext_len);
82 
83 static int sidtab_entry_to_string(struct policydb *policydb,
84 				  struct sidtab *sidtab,
85 				  struct sidtab_entry *entry,
86 				  char **scontext,
87 				  u32 *scontext_len);
88 
89 static void context_struct_compute_av(struct policydb *policydb,
90 				      struct context *scontext,
91 				      struct context *tcontext,
92 				      u16 tclass,
93 				      struct av_decision *avd,
94 				      struct extended_perms *xperms);
95 
selinux_set_mapping(struct policydb * pol,const struct security_class_mapping * map,struct selinux_map * out_map)96 static int selinux_set_mapping(struct policydb *pol,
97 			       const struct security_class_mapping *map,
98 			       struct selinux_map *out_map)
99 {
100 	u16 i, j;
101 	bool print_unknown_handle = false;
102 
103 	/* Find number of classes in the input mapping */
104 	if (!map)
105 		return -EINVAL;
106 	i = 0;
107 	while (map[i].name)
108 		i++;
109 
110 	/* Allocate space for the class records, plus one for class zero */
111 	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
112 	if (!out_map->mapping)
113 		return -ENOMEM;
114 
115 	/* Store the raw class and permission values */
116 	j = 0;
117 	while (map[j].name) {
118 		const struct security_class_mapping *p_in = map + (j++);
119 		struct selinux_mapping *p_out = out_map->mapping + j;
120 		u16 k;
121 
122 		/* An empty class string skips ahead */
123 		if (!strcmp(p_in->name, "")) {
124 			p_out->num_perms = 0;
125 			continue;
126 		}
127 
128 		p_out->value = string_to_security_class(pol, p_in->name);
129 		if (!p_out->value) {
130 			pr_info("SELinux:  Class %s not defined in policy.\n",
131 			       p_in->name);
132 			if (pol->reject_unknown)
133 				goto err;
134 			p_out->num_perms = 0;
135 			print_unknown_handle = true;
136 			continue;
137 		}
138 
139 		k = 0;
140 		while (p_in->perms[k]) {
141 			/* An empty permission string skips ahead */
142 			if (!*p_in->perms[k]) {
143 				k++;
144 				continue;
145 			}
146 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
147 							    p_in->perms[k]);
148 			if (!p_out->perms[k]) {
149 				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
150 				       p_in->perms[k], p_in->name);
151 				if (pol->reject_unknown)
152 					goto err;
153 				print_unknown_handle = true;
154 			}
155 
156 			k++;
157 		}
158 		p_out->num_perms = k;
159 	}
160 
161 	if (print_unknown_handle)
162 		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
163 		       pol->allow_unknown ? "allowed" : "denied");
164 
165 	out_map->size = i;
166 	return 0;
167 err:
168 	kfree(out_map->mapping);
169 	out_map->mapping = NULL;
170 	return -EINVAL;
171 }
172 
173 /*
174  * Get real, policy values from mapped values
175  */
176 
unmap_class(struct selinux_map * map,u16 tclass)177 static u16 unmap_class(struct selinux_map *map, u16 tclass)
178 {
179 	if (tclass < map->size)
180 		return map->mapping[tclass].value;
181 
182 	return tclass;
183 }
184 
185 /*
186  * Get kernel value for class from its policy value
187  */
map_class(struct selinux_map * map,u16 pol_value)188 static u16 map_class(struct selinux_map *map, u16 pol_value)
189 {
190 	u16 i;
191 
192 	for (i = 1; i < map->size; i++) {
193 		if (map->mapping[i].value == pol_value)
194 			return i;
195 	}
196 
197 	return SECCLASS_NULL;
198 }
199 
map_decision(struct selinux_map * map,u16 tclass,struct av_decision * avd,int allow_unknown)200 static void map_decision(struct selinux_map *map,
201 			 u16 tclass, struct av_decision *avd,
202 			 int allow_unknown)
203 {
204 	if (tclass < map->size) {
205 		struct selinux_mapping *mapping = &map->mapping[tclass];
206 		unsigned int i, n = mapping->num_perms;
207 		u32 result;
208 
209 		for (i = 0, result = 0; i < n; i++) {
210 			if (avd->allowed & mapping->perms[i])
211 				result |= (u32)1<<i;
212 			if (allow_unknown && !mapping->perms[i])
213 				result |= (u32)1<<i;
214 		}
215 		avd->allowed = result;
216 
217 		for (i = 0, result = 0; i < n; i++)
218 			if (avd->auditallow & mapping->perms[i])
219 				result |= (u32)1<<i;
220 		avd->auditallow = result;
221 
222 		for (i = 0, result = 0; i < n; i++) {
223 			if (avd->auditdeny & mapping->perms[i])
224 				result |= (u32)1<<i;
225 			if (!allow_unknown && !mapping->perms[i])
226 				result |= (u32)1<<i;
227 		}
228 		/*
229 		 * In case the kernel has a bug and requests a permission
230 		 * between num_perms and the maximum permission number, we
231 		 * should audit that denial
232 		 */
233 		for (; i < (sizeof(u32)*8); i++)
234 			result |= (u32)1<<i;
235 		avd->auditdeny = result;
236 	}
237 }
238 
security_mls_enabled(void)239 int security_mls_enabled(void)
240 {
241 	int mls_enabled;
242 	struct selinux_policy *policy;
243 
244 	if (!selinux_initialized())
245 		return 0;
246 
247 	rcu_read_lock();
248 	policy = rcu_dereference(selinux_state.policy);
249 	mls_enabled = policy->policydb.mls_enabled;
250 	rcu_read_unlock();
251 	return mls_enabled;
252 }
253 
254 /*
255  * Return the boolean value of a constraint expression
256  * when it is applied to the specified source and target
257  * security contexts.
258  *
259  * xcontext is a special beast...  It is used by the validatetrans rules
260  * only.  For these rules, scontext is the context before the transition,
261  * tcontext is the context after the transition, and xcontext is the context
262  * of the process performing the transition.  All other callers of
263  * constraint_expr_eval should pass in NULL for xcontext.
264  */
constraint_expr_eval(struct policydb * policydb,struct context * scontext,struct context * tcontext,struct context * xcontext,struct constraint_expr * cexpr)265 static int constraint_expr_eval(struct policydb *policydb,
266 				struct context *scontext,
267 				struct context *tcontext,
268 				struct context *xcontext,
269 				struct constraint_expr *cexpr)
270 {
271 	u32 val1, val2;
272 	struct context *c;
273 	struct role_datum *r1, *r2;
274 	struct mls_level *l1, *l2;
275 	struct constraint_expr *e;
276 	int s[CEXPR_MAXDEPTH];
277 	int sp = -1;
278 
279 	for (e = cexpr; e; e = e->next) {
280 		switch (e->expr_type) {
281 		case CEXPR_NOT:
282 			BUG_ON(sp < 0);
283 			s[sp] = !s[sp];
284 			break;
285 		case CEXPR_AND:
286 			BUG_ON(sp < 1);
287 			sp--;
288 			s[sp] &= s[sp + 1];
289 			break;
290 		case CEXPR_OR:
291 			BUG_ON(sp < 1);
292 			sp--;
293 			s[sp] |= s[sp + 1];
294 			break;
295 		case CEXPR_ATTR:
296 			if (sp == (CEXPR_MAXDEPTH - 1))
297 				return 0;
298 			switch (e->attr) {
299 			case CEXPR_USER:
300 				val1 = scontext->user;
301 				val2 = tcontext->user;
302 				break;
303 			case CEXPR_TYPE:
304 				val1 = scontext->type;
305 				val2 = tcontext->type;
306 				break;
307 			case CEXPR_ROLE:
308 				val1 = scontext->role;
309 				val2 = tcontext->role;
310 				r1 = policydb->role_val_to_struct[val1 - 1];
311 				r2 = policydb->role_val_to_struct[val2 - 1];
312 				switch (e->op) {
313 				case CEXPR_DOM:
314 					s[++sp] = ebitmap_get_bit(&r1->dominates,
315 								  val2 - 1);
316 					continue;
317 				case CEXPR_DOMBY:
318 					s[++sp] = ebitmap_get_bit(&r2->dominates,
319 								  val1 - 1);
320 					continue;
321 				case CEXPR_INCOMP:
322 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
323 								    val2 - 1) &&
324 						   !ebitmap_get_bit(&r2->dominates,
325 								    val1 - 1));
326 					continue;
327 				default:
328 					break;
329 				}
330 				break;
331 			case CEXPR_L1L2:
332 				l1 = &(scontext->range.level[0]);
333 				l2 = &(tcontext->range.level[0]);
334 				goto mls_ops;
335 			case CEXPR_L1H2:
336 				l1 = &(scontext->range.level[0]);
337 				l2 = &(tcontext->range.level[1]);
338 				goto mls_ops;
339 			case CEXPR_H1L2:
340 				l1 = &(scontext->range.level[1]);
341 				l2 = &(tcontext->range.level[0]);
342 				goto mls_ops;
343 			case CEXPR_H1H2:
344 				l1 = &(scontext->range.level[1]);
345 				l2 = &(tcontext->range.level[1]);
346 				goto mls_ops;
347 			case CEXPR_L1H1:
348 				l1 = &(scontext->range.level[0]);
349 				l2 = &(scontext->range.level[1]);
350 				goto mls_ops;
351 			case CEXPR_L2H2:
352 				l1 = &(tcontext->range.level[0]);
353 				l2 = &(tcontext->range.level[1]);
354 				goto mls_ops;
355 mls_ops:
356 				switch (e->op) {
357 				case CEXPR_EQ:
358 					s[++sp] = mls_level_eq(l1, l2);
359 					continue;
360 				case CEXPR_NEQ:
361 					s[++sp] = !mls_level_eq(l1, l2);
362 					continue;
363 				case CEXPR_DOM:
364 					s[++sp] = mls_level_dom(l1, l2);
365 					continue;
366 				case CEXPR_DOMBY:
367 					s[++sp] = mls_level_dom(l2, l1);
368 					continue;
369 				case CEXPR_INCOMP:
370 					s[++sp] = mls_level_incomp(l2, l1);
371 					continue;
372 				default:
373 					BUG();
374 					return 0;
375 				}
376 				break;
377 			default:
378 				BUG();
379 				return 0;
380 			}
381 
382 			switch (e->op) {
383 			case CEXPR_EQ:
384 				s[++sp] = (val1 == val2);
385 				break;
386 			case CEXPR_NEQ:
387 				s[++sp] = (val1 != val2);
388 				break;
389 			default:
390 				BUG();
391 				return 0;
392 			}
393 			break;
394 		case CEXPR_NAMES:
395 			if (sp == (CEXPR_MAXDEPTH-1))
396 				return 0;
397 			c = scontext;
398 			if (e->attr & CEXPR_TARGET)
399 				c = tcontext;
400 			else if (e->attr & CEXPR_XTARGET) {
401 				c = xcontext;
402 				if (!c) {
403 					BUG();
404 					return 0;
405 				}
406 			}
407 			if (e->attr & CEXPR_USER)
408 				val1 = c->user;
409 			else if (e->attr & CEXPR_ROLE)
410 				val1 = c->role;
411 			else if (e->attr & CEXPR_TYPE)
412 				val1 = c->type;
413 			else {
414 				BUG();
415 				return 0;
416 			}
417 
418 			switch (e->op) {
419 			case CEXPR_EQ:
420 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
421 				break;
422 			case CEXPR_NEQ:
423 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
424 				break;
425 			default:
426 				BUG();
427 				return 0;
428 			}
429 			break;
430 		default:
431 			BUG();
432 			return 0;
433 		}
434 	}
435 
436 	BUG_ON(sp != 0);
437 	return s[0];
438 }
439 
440 /*
441  * security_dump_masked_av - dumps masked permissions during
442  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
443  */
dump_masked_av_helper(void * k,void * d,void * args)444 static int dump_masked_av_helper(void *k, void *d, void *args)
445 {
446 	struct perm_datum *pdatum = d;
447 	char **permission_names = args;
448 
449 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
450 
451 	permission_names[pdatum->value - 1] = (char *)k;
452 
453 	return 0;
454 }
455 
security_dump_masked_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,u32 permissions,const char * reason)456 static void security_dump_masked_av(struct policydb *policydb,
457 				    struct context *scontext,
458 				    struct context *tcontext,
459 				    u16 tclass,
460 				    u32 permissions,
461 				    const char *reason)
462 {
463 	struct common_datum *common_dat;
464 	struct class_datum *tclass_dat;
465 	struct audit_buffer *ab;
466 	char *tclass_name;
467 	char *scontext_name = NULL;
468 	char *tcontext_name = NULL;
469 	char *permission_names[32];
470 	int index;
471 	u32 length;
472 	bool need_comma = false;
473 
474 	if (!permissions)
475 		return;
476 
477 	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
478 	tclass_dat = policydb->class_val_to_struct[tclass - 1];
479 	common_dat = tclass_dat->comdatum;
480 
481 	/* init permission_names */
482 	if (common_dat &&
483 	    hashtab_map(&common_dat->permissions.table,
484 			dump_masked_av_helper, permission_names) < 0)
485 		goto out;
486 
487 	if (hashtab_map(&tclass_dat->permissions.table,
488 			dump_masked_av_helper, permission_names) < 0)
489 		goto out;
490 
491 	/* get scontext/tcontext in text form */
492 	if (context_struct_to_string(policydb, scontext,
493 				     &scontext_name, &length) < 0)
494 		goto out;
495 
496 	if (context_struct_to_string(policydb, tcontext,
497 				     &tcontext_name, &length) < 0)
498 		goto out;
499 
500 	/* audit a message */
501 	ab = audit_log_start(audit_context(),
502 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
503 	if (!ab)
504 		goto out;
505 
506 	audit_log_format(ab, "op=security_compute_av reason=%s "
507 			 "scontext=%s tcontext=%s tclass=%s perms=",
508 			 reason, scontext_name, tcontext_name, tclass_name);
509 
510 	for (index = 0; index < 32; index++) {
511 		u32 mask = (1 << index);
512 
513 		if ((mask & permissions) == 0)
514 			continue;
515 
516 		audit_log_format(ab, "%s%s",
517 				 need_comma ? "," : "",
518 				 permission_names[index]
519 				 ? permission_names[index] : "????");
520 		need_comma = true;
521 	}
522 	audit_log_end(ab);
523 out:
524 	/* release scontext/tcontext */
525 	kfree(tcontext_name);
526 	kfree(scontext_name);
527 }
528 
529 /*
530  * security_boundary_permission - drops violated permissions
531  * on boundary constraint.
532  */
type_attribute_bounds_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd)533 static void type_attribute_bounds_av(struct policydb *policydb,
534 				     struct context *scontext,
535 				     struct context *tcontext,
536 				     u16 tclass,
537 				     struct av_decision *avd)
538 {
539 	struct context lo_scontext;
540 	struct context lo_tcontext, *tcontextp = tcontext;
541 	struct av_decision lo_avd;
542 	struct type_datum *source;
543 	struct type_datum *target;
544 	u32 masked = 0;
545 
546 	source = policydb->type_val_to_struct[scontext->type - 1];
547 	BUG_ON(!source);
548 
549 	if (!source->bounds)
550 		return;
551 
552 	target = policydb->type_val_to_struct[tcontext->type - 1];
553 	BUG_ON(!target);
554 
555 	memset(&lo_avd, 0, sizeof(lo_avd));
556 
557 	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
558 	lo_scontext.type = source->bounds;
559 
560 	if (target->bounds) {
561 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
562 		lo_tcontext.type = target->bounds;
563 		tcontextp = &lo_tcontext;
564 	}
565 
566 	context_struct_compute_av(policydb, &lo_scontext,
567 				  tcontextp,
568 				  tclass,
569 				  &lo_avd,
570 				  NULL);
571 
572 	masked = ~lo_avd.allowed & avd->allowed;
573 
574 	if (likely(!masked))
575 		return;		/* no masked permission */
576 
577 	/* mask violated permissions */
578 	avd->allowed &= ~masked;
579 
580 	/* audit masked permissions */
581 	security_dump_masked_av(policydb, scontext, tcontext,
582 				tclass, masked, "bounds");
583 }
584 
585 /*
586  * Flag which drivers have permissions and which base permissions are covered.
587  */
services_compute_xperms_drivers(struct extended_perms * xperms,struct avtab_node * node)588 void services_compute_xperms_drivers(
589 		struct extended_perms *xperms,
590 		struct avtab_node *node)
591 {
592 	unsigned int i;
593 
594 	switch (node->datum.u.xperms->specified) {
595 	case AVTAB_XPERMS_IOCTLDRIVER:
596 		xperms->base_perms |= AVC_EXT_IOCTL;
597 		/* if one or more driver has all permissions allowed */
598 		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
599 			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
600 		break;
601 	case AVTAB_XPERMS_IOCTLFUNCTION:
602 		xperms->base_perms |= AVC_EXT_IOCTL;
603 		/* if allowing permissions within a driver */
604 		security_xperm_set(xperms->drivers.p,
605 					node->datum.u.xperms->driver);
606 		break;
607 	case AVTAB_XPERMS_NLMSG:
608 		xperms->base_perms |= AVC_EXT_NLMSG;
609 		/* if allowing permissions within a driver */
610 		security_xperm_set(xperms->drivers.p,
611 					node->datum.u.xperms->driver);
612 		break;
613 	}
614 
615 	xperms->len = 1;
616 }
617 
618 /*
619  * Compute access vectors and extended permissions based on a context
620  * structure pair for the permissions in a particular class.
621  */
context_struct_compute_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd,struct extended_perms * xperms)622 static void context_struct_compute_av(struct policydb *policydb,
623 				      struct context *scontext,
624 				      struct context *tcontext,
625 				      u16 tclass,
626 				      struct av_decision *avd,
627 				      struct extended_perms *xperms)
628 {
629 	struct constraint_node *constraint;
630 	struct role_allow *ra;
631 	struct avtab_key avkey;
632 	struct avtab_node *node;
633 	struct class_datum *tclass_datum;
634 	struct ebitmap *sattr, *tattr;
635 	struct ebitmap_node *snode, *tnode;
636 	unsigned int i, j;
637 
638 	avd->allowed = 0;
639 	avd->auditallow = 0;
640 	avd->auditdeny = 0xffffffff;
641 	if (xperms) {
642 		memset(xperms, 0, sizeof(*xperms));
643 	}
644 
645 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
646 		pr_warn_ratelimited("SELinux:  Invalid class %u\n", tclass);
647 		return;
648 	}
649 
650 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
651 
652 	/*
653 	 * If a specific type enforcement rule was defined for
654 	 * this permission check, then use it.
655 	 */
656 	avkey.target_class = tclass;
657 	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
658 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
659 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
660 	ebitmap_for_each_positive_bit(sattr, snode, i) {
661 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
662 			avkey.source_type = i + 1;
663 			avkey.target_type = j + 1;
664 			for (node = avtab_search_node(&policydb->te_avtab,
665 						      &avkey);
666 			     node;
667 			     node = avtab_search_node_next(node, avkey.specified)) {
668 				if (node->key.specified == AVTAB_ALLOWED)
669 					avd->allowed |= node->datum.u.data;
670 				else if (node->key.specified == AVTAB_AUDITALLOW)
671 					avd->auditallow |= node->datum.u.data;
672 				else if (node->key.specified == AVTAB_AUDITDENY)
673 					avd->auditdeny &= node->datum.u.data;
674 				else if (xperms && (node->key.specified & AVTAB_XPERMS))
675 					services_compute_xperms_drivers(xperms, node);
676 			}
677 
678 			/* Check conditional av table for additional permissions */
679 			cond_compute_av(&policydb->te_cond_avtab, &avkey,
680 					avd, xperms);
681 
682 		}
683 	}
684 
685 	/*
686 	 * Remove any permissions prohibited by a constraint (this includes
687 	 * the MLS policy).
688 	 */
689 	constraint = tclass_datum->constraints;
690 	while (constraint) {
691 		if ((constraint->permissions & (avd->allowed)) &&
692 		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
693 					  constraint->expr)) {
694 			avd->allowed &= ~(constraint->permissions);
695 		}
696 		constraint = constraint->next;
697 	}
698 
699 	/*
700 	 * If checking process transition permission and the
701 	 * role is changing, then check the (current_role, new_role)
702 	 * pair.
703 	 */
704 	if (tclass == policydb->process_class &&
705 	    (avd->allowed & policydb->process_trans_perms) &&
706 	    scontext->role != tcontext->role) {
707 		for (ra = policydb->role_allow; ra; ra = ra->next) {
708 			if (scontext->role == ra->role &&
709 			    tcontext->role == ra->new_role)
710 				break;
711 		}
712 		if (!ra)
713 			avd->allowed &= ~policydb->process_trans_perms;
714 	}
715 
716 	/*
717 	 * If the given source and target types have boundary
718 	 * constraint, lazy checks have to mask any violated
719 	 * permission and notice it to userspace via audit.
720 	 */
721 	type_attribute_bounds_av(policydb, scontext, tcontext,
722 				 tclass, avd);
723 }
724 
security_validtrans_handle_fail(struct selinux_policy * policy,struct sidtab_entry * oentry,struct sidtab_entry * nentry,struct sidtab_entry * tentry,u16 tclass)725 static int security_validtrans_handle_fail(struct selinux_policy *policy,
726 					struct sidtab_entry *oentry,
727 					struct sidtab_entry *nentry,
728 					struct sidtab_entry *tentry,
729 					u16 tclass)
730 {
731 	struct policydb *p = &policy->policydb;
732 	struct sidtab *sidtab = policy->sidtab;
733 	char *o = NULL, *n = NULL, *t = NULL;
734 	u32 olen, nlen, tlen;
735 
736 	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
737 		goto out;
738 	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
739 		goto out;
740 	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
741 		goto out;
742 	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
743 		  "op=security_validate_transition seresult=denied"
744 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
745 		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
746 out:
747 	kfree(o);
748 	kfree(n);
749 	kfree(t);
750 
751 	if (!enforcing_enabled())
752 		return 0;
753 	return -EPERM;
754 }
755 
security_compute_validatetrans(u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass,bool user)756 static int security_compute_validatetrans(u32 oldsid, u32 newsid, u32 tasksid,
757 					  u16 orig_tclass, bool user)
758 {
759 	struct selinux_policy *policy;
760 	struct policydb *policydb;
761 	struct sidtab *sidtab;
762 	struct sidtab_entry *oentry;
763 	struct sidtab_entry *nentry;
764 	struct sidtab_entry *tentry;
765 	struct class_datum *tclass_datum;
766 	struct constraint_node *constraint;
767 	u16 tclass;
768 	int rc = 0;
769 
770 
771 	if (!selinux_initialized())
772 		return 0;
773 
774 	rcu_read_lock();
775 
776 	policy = rcu_dereference(selinux_state.policy);
777 	policydb = &policy->policydb;
778 	sidtab = policy->sidtab;
779 
780 	if (!user)
781 		tclass = unmap_class(&policy->map, orig_tclass);
782 	else
783 		tclass = orig_tclass;
784 
785 	if (!tclass || tclass > policydb->p_classes.nprim) {
786 		rc = -EINVAL;
787 		goto out;
788 	}
789 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
790 
791 	oentry = sidtab_search_entry(sidtab, oldsid);
792 	if (!oentry) {
793 		pr_err("SELinux: %s:  unrecognized SID %d\n",
794 			__func__, oldsid);
795 		rc = -EINVAL;
796 		goto out;
797 	}
798 
799 	nentry = sidtab_search_entry(sidtab, newsid);
800 	if (!nentry) {
801 		pr_err("SELinux: %s:  unrecognized SID %d\n",
802 			__func__, newsid);
803 		rc = -EINVAL;
804 		goto out;
805 	}
806 
807 	tentry = sidtab_search_entry(sidtab, tasksid);
808 	if (!tentry) {
809 		pr_err("SELinux: %s:  unrecognized SID %d\n",
810 			__func__, tasksid);
811 		rc = -EINVAL;
812 		goto out;
813 	}
814 
815 	constraint = tclass_datum->validatetrans;
816 	while (constraint) {
817 		if (!constraint_expr_eval(policydb, &oentry->context,
818 					  &nentry->context, &tentry->context,
819 					  constraint->expr)) {
820 			if (user)
821 				rc = -EPERM;
822 			else
823 				rc = security_validtrans_handle_fail(policy,
824 								oentry,
825 								nentry,
826 								tentry,
827 								tclass);
828 			goto out;
829 		}
830 		constraint = constraint->next;
831 	}
832 
833 out:
834 	rcu_read_unlock();
835 	return rc;
836 }
837 
security_validate_transition_user(u32 oldsid,u32 newsid,u32 tasksid,u16 tclass)838 int security_validate_transition_user(u32 oldsid, u32 newsid, u32 tasksid,
839 				      u16 tclass)
840 {
841 	return security_compute_validatetrans(oldsid, newsid, tasksid,
842 					      tclass, true);
843 }
844 
security_validate_transition(u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass)845 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
846 				 u16 orig_tclass)
847 {
848 	return security_compute_validatetrans(oldsid, newsid, tasksid,
849 					      orig_tclass, false);
850 }
851 
852 /*
853  * security_bounded_transition - check whether the given
854  * transition is directed to bounded, or not.
855  * It returns 0, if @newsid is bounded by @oldsid.
856  * Otherwise, it returns error code.
857  *
858  * @oldsid : current security identifier
859  * @newsid : destinated security identifier
860  */
security_bounded_transition(u32 old_sid,u32 new_sid)861 int security_bounded_transition(u32 old_sid, u32 new_sid)
862 {
863 	struct selinux_policy *policy;
864 	struct policydb *policydb;
865 	struct sidtab *sidtab;
866 	struct sidtab_entry *old_entry, *new_entry;
867 	struct type_datum *type;
868 	u32 index;
869 	int rc;
870 
871 	if (!selinux_initialized())
872 		return 0;
873 
874 	rcu_read_lock();
875 	policy = rcu_dereference(selinux_state.policy);
876 	policydb = &policy->policydb;
877 	sidtab = policy->sidtab;
878 
879 	rc = -EINVAL;
880 	old_entry = sidtab_search_entry(sidtab, old_sid);
881 	if (!old_entry) {
882 		pr_err("SELinux: %s: unrecognized SID %u\n",
883 		       __func__, old_sid);
884 		goto out;
885 	}
886 
887 	rc = -EINVAL;
888 	new_entry = sidtab_search_entry(sidtab, new_sid);
889 	if (!new_entry) {
890 		pr_err("SELinux: %s: unrecognized SID %u\n",
891 		       __func__, new_sid);
892 		goto out;
893 	}
894 
895 	rc = 0;
896 	/* type/domain unchanged */
897 	if (old_entry->context.type == new_entry->context.type)
898 		goto out;
899 
900 	index = new_entry->context.type;
901 	while (true) {
902 		type = policydb->type_val_to_struct[index - 1];
903 		BUG_ON(!type);
904 
905 		/* not bounded anymore */
906 		rc = -EPERM;
907 		if (!type->bounds)
908 			break;
909 
910 		/* @newsid is bounded by @oldsid */
911 		rc = 0;
912 		if (type->bounds == old_entry->context.type)
913 			break;
914 
915 		index = type->bounds;
916 	}
917 
918 	if (rc) {
919 		char *old_name = NULL;
920 		char *new_name = NULL;
921 		u32 length;
922 
923 		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
924 					    &old_name, &length) &&
925 		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
926 					    &new_name, &length)) {
927 			audit_log(audit_context(),
928 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
929 				  "op=security_bounded_transition "
930 				  "seresult=denied "
931 				  "oldcontext=%s newcontext=%s",
932 				  old_name, new_name);
933 		}
934 		kfree(new_name);
935 		kfree(old_name);
936 	}
937 out:
938 	rcu_read_unlock();
939 
940 	return rc;
941 }
942 
avd_init(struct selinux_policy * policy,struct av_decision * avd)943 static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
944 {
945 	avd->allowed = 0;
946 	avd->auditallow = 0;
947 	avd->auditdeny = 0xffffffff;
948 	if (policy)
949 		avd->seqno = policy->latest_granting;
950 	else
951 		avd->seqno = 0;
952 	avd->flags = 0;
953 }
954 
update_xperms_extended_data(u8 specified,const struct extended_perms_data * from,struct extended_perms_data * xp_data)955 static void update_xperms_extended_data(u8 specified,
956 					const struct extended_perms_data *from,
957 					struct extended_perms_data *xp_data)
958 {
959 	unsigned int i;
960 
961 	switch (specified) {
962 	case AVTAB_XPERMS_IOCTLDRIVER:
963 		memset(xp_data->p, 0xff, sizeof(xp_data->p));
964 		break;
965 	case AVTAB_XPERMS_IOCTLFUNCTION:
966 	case AVTAB_XPERMS_NLMSG:
967 		for (i = 0; i < ARRAY_SIZE(xp_data->p); i++)
968 			xp_data->p[i] |= from->p[i];
969 		break;
970 	}
971 
972 }
973 
services_compute_xperms_decision(struct extended_perms_decision * xpermd,struct avtab_node * node)974 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
975 					struct avtab_node *node)
976 {
977 	u16 specified;
978 
979 	switch (node->datum.u.xperms->specified) {
980 	case AVTAB_XPERMS_IOCTLFUNCTION:
981 		if (xpermd->base_perm != AVC_EXT_IOCTL ||
982 		    xpermd->driver != node->datum.u.xperms->driver)
983 			return;
984 		break;
985 	case AVTAB_XPERMS_IOCTLDRIVER:
986 		if (xpermd->base_perm != AVC_EXT_IOCTL ||
987 		    !security_xperm_test(node->datum.u.xperms->perms.p,
988 					 xpermd->driver))
989 			return;
990 		break;
991 	case AVTAB_XPERMS_NLMSG:
992 		if (xpermd->base_perm != AVC_EXT_NLMSG ||
993 		    xpermd->driver != node->datum.u.xperms->driver)
994 			return;
995 		break;
996 	default:
997 		pr_warn_once(
998 			"SELinux: unknown extended permission (%u) will be ignored\n",
999 			node->datum.u.xperms->specified);
1000 		return;
1001 	}
1002 
1003 	specified = node->key.specified & ~(AVTAB_ENABLED | AVTAB_ENABLED_OLD);
1004 
1005 	if (specified == AVTAB_XPERMS_ALLOWED) {
1006 		xpermd->used |= XPERMS_ALLOWED;
1007 		update_xperms_extended_data(node->datum.u.xperms->specified,
1008 					    &node->datum.u.xperms->perms,
1009 					    xpermd->allowed);
1010 	} else if (specified == AVTAB_XPERMS_AUDITALLOW) {
1011 		xpermd->used |= XPERMS_AUDITALLOW;
1012 		update_xperms_extended_data(node->datum.u.xperms->specified,
1013 					    &node->datum.u.xperms->perms,
1014 					    xpermd->auditallow);
1015 	} else if (specified == AVTAB_XPERMS_DONTAUDIT) {
1016 		xpermd->used |= XPERMS_DONTAUDIT;
1017 		update_xperms_extended_data(node->datum.u.xperms->specified,
1018 					    &node->datum.u.xperms->perms,
1019 					    xpermd->dontaudit);
1020 	} else {
1021 		pr_warn_once("SELinux: unknown specified key (%u)\n",
1022 			     node->key.specified);
1023 	}
1024 }
1025 
security_compute_xperms_decision(u32 ssid,u32 tsid,u16 orig_tclass,u8 driver,u8 base_perm,struct extended_perms_decision * xpermd)1026 void security_compute_xperms_decision(u32 ssid,
1027 				      u32 tsid,
1028 				      u16 orig_tclass,
1029 				      u8 driver,
1030 				      u8 base_perm,
1031 				      struct extended_perms_decision *xpermd)
1032 {
1033 	struct selinux_policy *policy;
1034 	struct policydb *policydb;
1035 	struct sidtab *sidtab;
1036 	u16 tclass;
1037 	struct context *scontext, *tcontext;
1038 	struct avtab_key avkey;
1039 	struct avtab_node *node;
1040 	struct ebitmap *sattr, *tattr;
1041 	struct ebitmap_node *snode, *tnode;
1042 	unsigned int i, j;
1043 
1044 	xpermd->base_perm = base_perm;
1045 	xpermd->driver = driver;
1046 	xpermd->used = 0;
1047 	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1048 	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1049 	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1050 
1051 	rcu_read_lock();
1052 	if (!selinux_initialized())
1053 		goto allow;
1054 
1055 	policy = rcu_dereference(selinux_state.policy);
1056 	policydb = &policy->policydb;
1057 	sidtab = policy->sidtab;
1058 
1059 	scontext = sidtab_search(sidtab, ssid);
1060 	if (!scontext) {
1061 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1062 		       __func__, ssid);
1063 		goto out;
1064 	}
1065 
1066 	tcontext = sidtab_search(sidtab, tsid);
1067 	if (!tcontext) {
1068 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1069 		       __func__, tsid);
1070 		goto out;
1071 	}
1072 
1073 	tclass = unmap_class(&policy->map, orig_tclass);
1074 	if (unlikely(orig_tclass && !tclass)) {
1075 		if (policydb->allow_unknown)
1076 			goto allow;
1077 		goto out;
1078 	}
1079 
1080 
1081 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1082 		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1083 		goto out;
1084 	}
1085 
1086 	avkey.target_class = tclass;
1087 	avkey.specified = AVTAB_XPERMS;
1088 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1089 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1090 	ebitmap_for_each_positive_bit(sattr, snode, i) {
1091 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1092 			avkey.source_type = i + 1;
1093 			avkey.target_type = j + 1;
1094 			for (node = avtab_search_node(&policydb->te_avtab,
1095 						      &avkey);
1096 			     node;
1097 			     node = avtab_search_node_next(node, avkey.specified))
1098 				services_compute_xperms_decision(xpermd, node);
1099 
1100 			cond_compute_xperms(&policydb->te_cond_avtab,
1101 						&avkey, xpermd);
1102 		}
1103 	}
1104 out:
1105 	rcu_read_unlock();
1106 	return;
1107 allow:
1108 	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1109 	goto out;
1110 }
1111 
1112 /**
1113  * security_compute_av - Compute access vector decisions.
1114  * @ssid: source security identifier
1115  * @tsid: target security identifier
1116  * @orig_tclass: target security class
1117  * @avd: access vector decisions
1118  * @xperms: extended permissions
1119  *
1120  * Compute a set of access vector decisions based on the
1121  * SID pair (@ssid, @tsid) for the permissions in @tclass.
1122  */
security_compute_av(u32 ssid,u32 tsid,u16 orig_tclass,struct av_decision * avd,struct extended_perms * xperms)1123 void security_compute_av(u32 ssid,
1124 			 u32 tsid,
1125 			 u16 orig_tclass,
1126 			 struct av_decision *avd,
1127 			 struct extended_perms *xperms)
1128 {
1129 	struct selinux_policy *policy;
1130 	struct policydb *policydb;
1131 	struct sidtab *sidtab;
1132 	u16 tclass;
1133 	struct context *scontext = NULL, *tcontext = NULL;
1134 
1135 	rcu_read_lock();
1136 	policy = rcu_dereference(selinux_state.policy);
1137 	avd_init(policy, avd);
1138 	xperms->len = 0;
1139 	if (!selinux_initialized())
1140 		goto allow;
1141 
1142 	policydb = &policy->policydb;
1143 	sidtab = policy->sidtab;
1144 
1145 	scontext = sidtab_search(sidtab, ssid);
1146 	if (!scontext) {
1147 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1148 		       __func__, ssid);
1149 		goto out;
1150 	}
1151 
1152 	/* permissive domain? */
1153 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1154 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1155 
1156 	/* neveraudit domain? */
1157 	if (ebitmap_get_bit(&policydb->neveraudit_map, scontext->type))
1158 		avd->flags |= AVD_FLAGS_NEVERAUDIT;
1159 
1160 	/* both permissive and neveraudit => allow */
1161 	if (avd->flags == (AVD_FLAGS_PERMISSIVE|AVD_FLAGS_NEVERAUDIT))
1162 		goto allow;
1163 
1164 	tcontext = sidtab_search(sidtab, tsid);
1165 	if (!tcontext) {
1166 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1167 		       __func__, tsid);
1168 		goto out;
1169 	}
1170 
1171 	tclass = unmap_class(&policy->map, orig_tclass);
1172 	if (unlikely(orig_tclass && !tclass)) {
1173 		if (policydb->allow_unknown)
1174 			goto allow;
1175 		goto out;
1176 	}
1177 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1178 				  xperms);
1179 	map_decision(&policy->map, orig_tclass, avd,
1180 		     policydb->allow_unknown);
1181 out:
1182 	rcu_read_unlock();
1183 	if (avd->flags & AVD_FLAGS_NEVERAUDIT)
1184 		avd->auditallow = avd->auditdeny = 0;
1185 	return;
1186 allow:
1187 	avd->allowed = 0xffffffff;
1188 	goto out;
1189 }
1190 
security_compute_av_user(u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)1191 void security_compute_av_user(u32 ssid,
1192 			      u32 tsid,
1193 			      u16 tclass,
1194 			      struct av_decision *avd)
1195 {
1196 	struct selinux_policy *policy;
1197 	struct policydb *policydb;
1198 	struct sidtab *sidtab;
1199 	struct context *scontext = NULL, *tcontext = NULL;
1200 
1201 	rcu_read_lock();
1202 	policy = rcu_dereference(selinux_state.policy);
1203 	avd_init(policy, avd);
1204 	if (!selinux_initialized())
1205 		goto allow;
1206 
1207 	policydb = &policy->policydb;
1208 	sidtab = policy->sidtab;
1209 
1210 	scontext = sidtab_search(sidtab, ssid);
1211 	if (!scontext) {
1212 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1213 		       __func__, ssid);
1214 		goto out;
1215 	}
1216 
1217 	/* permissive domain? */
1218 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1219 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1220 
1221 	/* neveraudit domain? */
1222 	if (ebitmap_get_bit(&policydb->neveraudit_map, scontext->type))
1223 		avd->flags |= AVD_FLAGS_NEVERAUDIT;
1224 
1225 	/* both permissive and neveraudit => allow */
1226 	if (avd->flags == (AVD_FLAGS_PERMISSIVE|AVD_FLAGS_NEVERAUDIT))
1227 		goto allow;
1228 
1229 	tcontext = sidtab_search(sidtab, tsid);
1230 	if (!tcontext) {
1231 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1232 		       __func__, tsid);
1233 		goto out;
1234 	}
1235 
1236 	if (unlikely(!tclass)) {
1237 		if (policydb->allow_unknown)
1238 			goto allow;
1239 		goto out;
1240 	}
1241 
1242 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1243 				  NULL);
1244  out:
1245 	rcu_read_unlock();
1246 	if (avd->flags & AVD_FLAGS_NEVERAUDIT)
1247 		avd->auditallow = avd->auditdeny = 0;
1248 	return;
1249 allow:
1250 	avd->allowed = 0xffffffff;
1251 	goto out;
1252 }
1253 
1254 /*
1255  * Write the security context string representation of
1256  * the context structure `context' into a dynamically
1257  * allocated string of the correct size.  Set `*scontext'
1258  * to point to this string and set `*scontext_len' to
1259  * the length of the string.
1260  */
context_struct_to_string(struct policydb * p,struct context * context,char ** scontext,u32 * scontext_len)1261 static int context_struct_to_string(struct policydb *p,
1262 				    struct context *context,
1263 				    char **scontext, u32 *scontext_len)
1264 {
1265 	char *scontextp;
1266 
1267 	if (scontext)
1268 		*scontext = NULL;
1269 	*scontext_len = 0;
1270 
1271 	if (context->len) {
1272 		*scontext_len = context->len;
1273 		if (scontext) {
1274 			*scontext = kstrdup(context->str, GFP_ATOMIC);
1275 			if (!(*scontext))
1276 				return -ENOMEM;
1277 		}
1278 		return 0;
1279 	}
1280 
1281 	/* Compute the size of the context. */
1282 	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1283 	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1284 	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1285 	*scontext_len += mls_compute_context_len(p, context);
1286 
1287 	if (!scontext)
1288 		return 0;
1289 
1290 	/* Allocate space for the context; caller must free this space. */
1291 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1292 	if (!scontextp)
1293 		return -ENOMEM;
1294 	*scontext = scontextp;
1295 
1296 	/*
1297 	 * Copy the user name, role name and type name into the context.
1298 	 */
1299 	scontextp += sprintf(scontextp, "%s:%s:%s",
1300 		sym_name(p, SYM_USERS, context->user - 1),
1301 		sym_name(p, SYM_ROLES, context->role - 1),
1302 		sym_name(p, SYM_TYPES, context->type - 1));
1303 
1304 	mls_sid_to_context(p, context, &scontextp);
1305 
1306 	*scontextp = 0;
1307 
1308 	return 0;
1309 }
1310 
sidtab_entry_to_string(struct policydb * p,struct sidtab * sidtab,struct sidtab_entry * entry,char ** scontext,u32 * scontext_len)1311 static int sidtab_entry_to_string(struct policydb *p,
1312 				  struct sidtab *sidtab,
1313 				  struct sidtab_entry *entry,
1314 				  char **scontext, u32 *scontext_len)
1315 {
1316 	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1317 
1318 	if (rc != -ENOENT)
1319 		return rc;
1320 
1321 	rc = context_struct_to_string(p, &entry->context, scontext,
1322 				      scontext_len);
1323 	if (!rc && scontext)
1324 		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1325 	return rc;
1326 }
1327 
1328 #include "initial_sid_to_string.h"
1329 
security_sidtab_hash_stats(char * page)1330 int security_sidtab_hash_stats(char *page)
1331 {
1332 	struct selinux_policy *policy;
1333 	int rc;
1334 
1335 	if (!selinux_initialized()) {
1336 		pr_err("SELinux: %s:  called before initial load_policy\n",
1337 		       __func__);
1338 		return -EINVAL;
1339 	}
1340 
1341 	rcu_read_lock();
1342 	policy = rcu_dereference(selinux_state.policy);
1343 	rc = sidtab_hash_stats(policy->sidtab, page);
1344 	rcu_read_unlock();
1345 
1346 	return rc;
1347 }
1348 
security_get_initial_sid_context(u32 sid)1349 const char *security_get_initial_sid_context(u32 sid)
1350 {
1351 	if (unlikely(sid > SECINITSID_NUM))
1352 		return NULL;
1353 	return initial_sid_to_string[sid];
1354 }
1355 
security_sid_to_context_core(u32 sid,char ** scontext,u32 * scontext_len,int force,int only_invalid)1356 static int security_sid_to_context_core(u32 sid, char **scontext,
1357 					u32 *scontext_len, int force,
1358 					int only_invalid)
1359 {
1360 	struct selinux_policy *policy;
1361 	struct policydb *policydb;
1362 	struct sidtab *sidtab;
1363 	struct sidtab_entry *entry;
1364 	int rc = 0;
1365 
1366 	if (scontext)
1367 		*scontext = NULL;
1368 	*scontext_len  = 0;
1369 
1370 	if (!selinux_initialized()) {
1371 		if (sid <= SECINITSID_NUM) {
1372 			char *scontextp;
1373 			const char *s;
1374 
1375 			/*
1376 			 * Before the policy is loaded, translate
1377 			 * SECINITSID_INIT to "kernel", because systemd and
1378 			 * libselinux < 2.6 take a getcon_raw() result that is
1379 			 * both non-null and not "kernel" to mean that a policy
1380 			 * is already loaded.
1381 			 */
1382 			if (sid == SECINITSID_INIT)
1383 				sid = SECINITSID_KERNEL;
1384 
1385 			s = initial_sid_to_string[sid];
1386 			if (!s)
1387 				return -EINVAL;
1388 			*scontext_len = strlen(s) + 1;
1389 			if (!scontext)
1390 				return 0;
1391 			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1392 			if (!scontextp)
1393 				return -ENOMEM;
1394 			*scontext = scontextp;
1395 			return 0;
1396 		}
1397 		pr_err("SELinux: %s:  called before initial "
1398 		       "load_policy on unknown SID %d\n", __func__, sid);
1399 		return -EINVAL;
1400 	}
1401 	rcu_read_lock();
1402 	policy = rcu_dereference(selinux_state.policy);
1403 	policydb = &policy->policydb;
1404 	sidtab = policy->sidtab;
1405 
1406 	if (force)
1407 		entry = sidtab_search_entry_force(sidtab, sid);
1408 	else
1409 		entry = sidtab_search_entry(sidtab, sid);
1410 	if (!entry) {
1411 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1412 			__func__, sid);
1413 		rc = -EINVAL;
1414 		goto out_unlock;
1415 	}
1416 	if (only_invalid && !entry->context.len)
1417 		goto out_unlock;
1418 
1419 	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1420 				    scontext_len);
1421 
1422 out_unlock:
1423 	rcu_read_unlock();
1424 	return rc;
1425 
1426 }
1427 
1428 /**
1429  * security_sid_to_context - Obtain a context for a given SID.
1430  * @sid: security identifier, SID
1431  * @scontext: security context
1432  * @scontext_len: length in bytes
1433  *
1434  * Write the string representation of the context associated with @sid
1435  * into a dynamically allocated string of the correct size.  Set @scontext
1436  * to point to this string and set @scontext_len to the length of the string.
1437  */
security_sid_to_context(u32 sid,char ** scontext,u32 * scontext_len)1438 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1439 {
1440 	return security_sid_to_context_core(sid, scontext,
1441 					    scontext_len, 0, 0);
1442 }
1443 
security_sid_to_context_force(u32 sid,char ** scontext,u32 * scontext_len)1444 int security_sid_to_context_force(u32 sid,
1445 				  char **scontext, u32 *scontext_len)
1446 {
1447 	return security_sid_to_context_core(sid, scontext,
1448 					    scontext_len, 1, 0);
1449 }
1450 
1451 /**
1452  * security_sid_to_context_inval - Obtain a context for a given SID if it
1453  *                                 is invalid.
1454  * @sid: security identifier, SID
1455  * @scontext: security context
1456  * @scontext_len: length in bytes
1457  *
1458  * Write the string representation of the context associated with @sid
1459  * into a dynamically allocated string of the correct size, but only if the
1460  * context is invalid in the current policy.  Set @scontext to point to
1461  * this string (or NULL if the context is valid) and set @scontext_len to
1462  * the length of the string (or 0 if the context is valid).
1463  */
security_sid_to_context_inval(u32 sid,char ** scontext,u32 * scontext_len)1464 int security_sid_to_context_inval(u32 sid,
1465 				  char **scontext, u32 *scontext_len)
1466 {
1467 	return security_sid_to_context_core(sid, scontext,
1468 					    scontext_len, 1, 1);
1469 }
1470 
1471 /*
1472  * Caveat:  Mutates scontext.
1473  */
string_to_context_struct(struct policydb * pol,struct sidtab * sidtabp,char * scontext,struct context * ctx,u32 def_sid)1474 static int string_to_context_struct(struct policydb *pol,
1475 				    struct sidtab *sidtabp,
1476 				    char *scontext,
1477 				    struct context *ctx,
1478 				    u32 def_sid)
1479 {
1480 	struct role_datum *role;
1481 	struct type_datum *typdatum;
1482 	struct user_datum *usrdatum;
1483 	char *scontextp, *p, oldc;
1484 	int rc = 0;
1485 
1486 	context_init(ctx);
1487 
1488 	/* Parse the security context. */
1489 
1490 	rc = -EINVAL;
1491 	scontextp = scontext;
1492 
1493 	/* Extract the user. */
1494 	p = scontextp;
1495 	while (*p && *p != ':')
1496 		p++;
1497 
1498 	if (*p == 0)
1499 		goto out;
1500 
1501 	*p++ = 0;
1502 
1503 	usrdatum = symtab_search(&pol->p_users, scontextp);
1504 	if (!usrdatum)
1505 		goto out;
1506 
1507 	ctx->user = usrdatum->value;
1508 
1509 	/* Extract role. */
1510 	scontextp = p;
1511 	while (*p && *p != ':')
1512 		p++;
1513 
1514 	if (*p == 0)
1515 		goto out;
1516 
1517 	*p++ = 0;
1518 
1519 	role = symtab_search(&pol->p_roles, scontextp);
1520 	if (!role)
1521 		goto out;
1522 	ctx->role = role->value;
1523 
1524 	/* Extract type. */
1525 	scontextp = p;
1526 	while (*p && *p != ':')
1527 		p++;
1528 	oldc = *p;
1529 	*p++ = 0;
1530 
1531 	typdatum = symtab_search(&pol->p_types, scontextp);
1532 	if (!typdatum || typdatum->attribute)
1533 		goto out;
1534 
1535 	ctx->type = typdatum->value;
1536 
1537 	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1538 	if (rc)
1539 		goto out;
1540 
1541 	/* Check the validity of the new context. */
1542 	rc = -EINVAL;
1543 	if (!policydb_context_isvalid(pol, ctx))
1544 		goto out;
1545 	rc = 0;
1546 out:
1547 	if (rc)
1548 		context_destroy(ctx);
1549 	return rc;
1550 }
1551 
security_context_to_sid_core(const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags,int force)1552 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1553 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1554 					int force)
1555 {
1556 	struct selinux_policy *policy;
1557 	struct policydb *policydb;
1558 	struct sidtab *sidtab;
1559 	char *scontext2, *str = NULL;
1560 	struct context context;
1561 	int rc = 0;
1562 
1563 	/* An empty security context is never valid. */
1564 	if (!scontext_len)
1565 		return -EINVAL;
1566 
1567 	/* Copy the string to allow changes and ensure a NUL terminator */
1568 	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1569 	if (!scontext2)
1570 		return -ENOMEM;
1571 
1572 	if (!selinux_initialized()) {
1573 		u32 i;
1574 
1575 		for (i = 1; i < SECINITSID_NUM; i++) {
1576 			const char *s = initial_sid_to_string[i];
1577 
1578 			if (s && !strcmp(s, scontext2)) {
1579 				*sid = i;
1580 				goto out;
1581 			}
1582 		}
1583 		*sid = SECINITSID_KERNEL;
1584 		goto out;
1585 	}
1586 	*sid = SECSID_NULL;
1587 
1588 	if (force) {
1589 		/* Save another copy for storing in uninterpreted form */
1590 		rc = -ENOMEM;
1591 		str = kstrdup(scontext2, gfp_flags);
1592 		if (!str)
1593 			goto out;
1594 	}
1595 retry:
1596 	rcu_read_lock();
1597 	policy = rcu_dereference(selinux_state.policy);
1598 	policydb = &policy->policydb;
1599 	sidtab = policy->sidtab;
1600 	rc = string_to_context_struct(policydb, sidtab, scontext2,
1601 				      &context, def_sid);
1602 	if (rc == -EINVAL && force) {
1603 		context.str = str;
1604 		context.len = strlen(str) + 1;
1605 		str = NULL;
1606 	} else if (rc)
1607 		goto out_unlock;
1608 	rc = sidtab_context_to_sid(sidtab, &context, sid);
1609 	if (rc == -ESTALE) {
1610 		rcu_read_unlock();
1611 		if (context.str) {
1612 			str = context.str;
1613 			context.str = NULL;
1614 		}
1615 		context_destroy(&context);
1616 		goto retry;
1617 	}
1618 	context_destroy(&context);
1619 out_unlock:
1620 	rcu_read_unlock();
1621 out:
1622 	kfree(scontext2);
1623 	kfree(str);
1624 	return rc;
1625 }
1626 
1627 /**
1628  * security_context_to_sid - Obtain a SID for a given security context.
1629  * @scontext: security context
1630  * @scontext_len: length in bytes
1631  * @sid: security identifier, SID
1632  * @gfp: context for the allocation
1633  *
1634  * Obtains a SID associated with the security context that
1635  * has the string representation specified by @scontext.
1636  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1637  * memory is available, or 0 on success.
1638  */
security_context_to_sid(const char * scontext,u32 scontext_len,u32 * sid,gfp_t gfp)1639 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
1640 			    gfp_t gfp)
1641 {
1642 	return security_context_to_sid_core(scontext, scontext_len,
1643 					    sid, SECSID_NULL, gfp, 0);
1644 }
1645 
security_context_str_to_sid(const char * scontext,u32 * sid,gfp_t gfp)1646 int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp)
1647 {
1648 	return security_context_to_sid(scontext, strlen(scontext),
1649 				       sid, gfp);
1650 }
1651 
1652 /**
1653  * security_context_to_sid_default - Obtain a SID for a given security context,
1654  * falling back to specified default if needed.
1655  *
1656  * @scontext: security context
1657  * @scontext_len: length in bytes
1658  * @sid: security identifier, SID
1659  * @def_sid: default SID to assign on error
1660  * @gfp_flags: the allocator get-free-page (GFP) flags
1661  *
1662  * Obtains a SID associated with the security context that
1663  * has the string representation specified by @scontext.
1664  * The default SID is passed to the MLS layer to be used to allow
1665  * kernel labeling of the MLS field if the MLS field is not present
1666  * (for upgrading to MLS without full relabel).
1667  * Implicitly forces adding of the context even if it cannot be mapped yet.
1668  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1669  * memory is available, or 0 on success.
1670  */
security_context_to_sid_default(const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags)1671 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1672 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1673 {
1674 	return security_context_to_sid_core(scontext, scontext_len,
1675 					    sid, def_sid, gfp_flags, 1);
1676 }
1677 
security_context_to_sid_force(const char * scontext,u32 scontext_len,u32 * sid)1678 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1679 				  u32 *sid)
1680 {
1681 	return security_context_to_sid_core(scontext, scontext_len,
1682 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1683 }
1684 
compute_sid_handle_invalid_context(struct selinux_policy * policy,struct sidtab_entry * sentry,struct sidtab_entry * tentry,u16 tclass,struct context * newcontext)1685 static int compute_sid_handle_invalid_context(
1686 	struct selinux_policy *policy,
1687 	struct sidtab_entry *sentry,
1688 	struct sidtab_entry *tentry,
1689 	u16 tclass,
1690 	struct context *newcontext)
1691 {
1692 	struct policydb *policydb = &policy->policydb;
1693 	struct sidtab *sidtab = policy->sidtab;
1694 	char *s = NULL, *t = NULL, *n = NULL;
1695 	u32 slen, tlen, nlen;
1696 	struct audit_buffer *ab;
1697 
1698 	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1699 		goto out;
1700 	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1701 		goto out;
1702 	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1703 		goto out;
1704 	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1705 	if (!ab)
1706 		goto out;
1707 	audit_log_format(ab,
1708 			 "op=security_compute_sid invalid_context=");
1709 	/* no need to record the NUL with untrusted strings */
1710 	audit_log_n_untrustedstring(ab, n, nlen - 1);
1711 	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1712 			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1713 	audit_log_end(ab);
1714 out:
1715 	kfree(s);
1716 	kfree(t);
1717 	kfree(n);
1718 	if (!enforcing_enabled())
1719 		return 0;
1720 	return -EACCES;
1721 }
1722 
filename_compute_type(struct policydb * policydb,struct context * newcontext,u32 stype,u32 ttype,u16 tclass,const char * objname)1723 static void filename_compute_type(struct policydb *policydb,
1724 				  struct context *newcontext,
1725 				  u32 stype, u32 ttype, u16 tclass,
1726 				  const char *objname)
1727 {
1728 	struct filename_trans_key ft;
1729 	struct filename_trans_datum *datum;
1730 
1731 	/*
1732 	 * Most filename trans rules are going to live in specific directories
1733 	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1734 	 * if the ttype does not contain any rules.
1735 	 */
1736 	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1737 		return;
1738 
1739 	ft.ttype = ttype;
1740 	ft.tclass = tclass;
1741 	ft.name = objname;
1742 
1743 	datum = policydb_filenametr_search(policydb, &ft);
1744 	while (datum) {
1745 		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1746 			newcontext->type = datum->otype;
1747 			return;
1748 		}
1749 		datum = datum->next;
1750 	}
1751 }
1752 
security_compute_sid(u32 ssid,u32 tsid,u16 orig_tclass,u16 specified,const char * objname,u32 * out_sid,bool kern)1753 static int security_compute_sid(u32 ssid,
1754 				u32 tsid,
1755 				u16 orig_tclass,
1756 				u16 specified,
1757 				const char *objname,
1758 				u32 *out_sid,
1759 				bool kern)
1760 {
1761 	struct selinux_policy *policy;
1762 	struct policydb *policydb;
1763 	struct sidtab *sidtab;
1764 	struct class_datum *cladatum;
1765 	struct context *scontext, *tcontext, newcontext;
1766 	struct sidtab_entry *sentry, *tentry;
1767 	struct avtab_key avkey;
1768 	struct avtab_node *avnode, *node;
1769 	u16 tclass;
1770 	int rc = 0;
1771 	bool sock;
1772 
1773 	if (!selinux_initialized()) {
1774 		switch (orig_tclass) {
1775 		case SECCLASS_PROCESS: /* kernel value */
1776 			*out_sid = ssid;
1777 			break;
1778 		default:
1779 			*out_sid = tsid;
1780 			break;
1781 		}
1782 		goto out;
1783 	}
1784 
1785 retry:
1786 	cladatum = NULL;
1787 	context_init(&newcontext);
1788 
1789 	rcu_read_lock();
1790 
1791 	policy = rcu_dereference(selinux_state.policy);
1792 
1793 	if (kern) {
1794 		tclass = unmap_class(&policy->map, orig_tclass);
1795 		sock = security_is_socket_class(orig_tclass);
1796 	} else {
1797 		tclass = orig_tclass;
1798 		sock = security_is_socket_class(map_class(&policy->map,
1799 							  tclass));
1800 	}
1801 
1802 	policydb = &policy->policydb;
1803 	sidtab = policy->sidtab;
1804 
1805 	sentry = sidtab_search_entry(sidtab, ssid);
1806 	if (!sentry) {
1807 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1808 		       __func__, ssid);
1809 		rc = -EINVAL;
1810 		goto out_unlock;
1811 	}
1812 	tentry = sidtab_search_entry(sidtab, tsid);
1813 	if (!tentry) {
1814 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1815 		       __func__, tsid);
1816 		rc = -EINVAL;
1817 		goto out_unlock;
1818 	}
1819 
1820 	scontext = &sentry->context;
1821 	tcontext = &tentry->context;
1822 
1823 	if (tclass && tclass <= policydb->p_classes.nprim)
1824 		cladatum = policydb->class_val_to_struct[tclass - 1];
1825 
1826 	/* Set the user identity. */
1827 	switch (specified) {
1828 	case AVTAB_TRANSITION:
1829 	case AVTAB_CHANGE:
1830 		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1831 			newcontext.user = tcontext->user;
1832 		} else {
1833 			/* notice this gets both DEFAULT_SOURCE and unset */
1834 			/* Use the process user identity. */
1835 			newcontext.user = scontext->user;
1836 		}
1837 		break;
1838 	case AVTAB_MEMBER:
1839 		/* Use the related object owner. */
1840 		newcontext.user = tcontext->user;
1841 		break;
1842 	}
1843 
1844 	/* Set the role to default values. */
1845 	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1846 		newcontext.role = scontext->role;
1847 	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1848 		newcontext.role = tcontext->role;
1849 	} else {
1850 		if ((tclass == policydb->process_class) || sock)
1851 			newcontext.role = scontext->role;
1852 		else
1853 			newcontext.role = OBJECT_R_VAL;
1854 	}
1855 
1856 	/* Set the type.
1857 	 * Look for a type transition/member/change rule.
1858 	 */
1859 	avkey.source_type = scontext->type;
1860 	avkey.target_type = tcontext->type;
1861 	avkey.target_class = tclass;
1862 	avkey.specified = specified;
1863 	avnode = avtab_search_node(&policydb->te_avtab, &avkey);
1864 
1865 	/* If no permanent rule, also check for enabled conditional rules */
1866 	if (!avnode) {
1867 		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1868 		for (; node; node = avtab_search_node_next(node, specified)) {
1869 			if (node->key.specified & AVTAB_ENABLED) {
1870 				avnode = node;
1871 				break;
1872 			}
1873 		}
1874 	}
1875 
1876 	/* If a permanent rule is found, use the type from
1877 	 * the type transition/member/change rule. Otherwise,
1878 	 * set the type to its default values.
1879 	 */
1880 	if (avnode) {
1881 		newcontext.type = avnode->datum.u.data;
1882 	} else if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1883 		newcontext.type = scontext->type;
1884 	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1885 		newcontext.type = tcontext->type;
1886 	} else {
1887 		if ((tclass == policydb->process_class) || sock) {
1888 			/* Use the type of process. */
1889 			newcontext.type = scontext->type;
1890 		} else {
1891 			/* Use the type of the related object. */
1892 			newcontext.type = tcontext->type;
1893 		}
1894 	}
1895 
1896 	/* if we have a objname this is a file trans check so check those rules */
1897 	if (objname)
1898 		filename_compute_type(policydb, &newcontext, scontext->type,
1899 				      tcontext->type, tclass, objname);
1900 
1901 	/* Check for class-specific changes. */
1902 	if (specified & AVTAB_TRANSITION) {
1903 		/* Look for a role transition rule. */
1904 		struct role_trans_datum *rtd;
1905 		struct role_trans_key rtk = {
1906 			.role = scontext->role,
1907 			.type = tcontext->type,
1908 			.tclass = tclass,
1909 		};
1910 
1911 		rtd = policydb_roletr_search(policydb, &rtk);
1912 		if (rtd)
1913 			newcontext.role = rtd->new_role;
1914 	}
1915 
1916 	/* Set the MLS attributes.
1917 	   This is done last because it may allocate memory. */
1918 	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1919 			     &newcontext, sock);
1920 	if (rc)
1921 		goto out_unlock;
1922 
1923 	/* Check the validity of the context. */
1924 	if (!policydb_context_isvalid(policydb, &newcontext)) {
1925 		rc = compute_sid_handle_invalid_context(policy, sentry,
1926 							tentry, tclass,
1927 							&newcontext);
1928 		if (rc)
1929 			goto out_unlock;
1930 	}
1931 	/* Obtain the sid for the context. */
1932 	if (context_equal(scontext, &newcontext))
1933 		*out_sid = ssid;
1934 	else if (context_equal(tcontext, &newcontext))
1935 		*out_sid = tsid;
1936 	else {
1937 		rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1938 		if (rc == -ESTALE) {
1939 			rcu_read_unlock();
1940 			context_destroy(&newcontext);
1941 			goto retry;
1942 		}
1943 	}
1944 out_unlock:
1945 	rcu_read_unlock();
1946 	context_destroy(&newcontext);
1947 out:
1948 	return rc;
1949 }
1950 
1951 /**
1952  * security_transition_sid - Compute the SID for a new subject/object.
1953  * @ssid: source security identifier
1954  * @tsid: target security identifier
1955  * @tclass: target security class
1956  * @qstr: object name
1957  * @out_sid: security identifier for new subject/object
1958  *
1959  * Compute a SID to use for labeling a new subject or object in the
1960  * class @tclass based on a SID pair (@ssid, @tsid).
1961  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1962  * if insufficient memory is available, or %0 if the new SID was
1963  * computed successfully.
1964  */
security_transition_sid(u32 ssid,u32 tsid,u16 tclass,const struct qstr * qstr,u32 * out_sid)1965 int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1966 			    const struct qstr *qstr, u32 *out_sid)
1967 {
1968 	return security_compute_sid(ssid, tsid, tclass,
1969 				    AVTAB_TRANSITION,
1970 				    qstr ? qstr->name : NULL, out_sid, true);
1971 }
1972 
security_transition_sid_user(u32 ssid,u32 tsid,u16 tclass,const char * objname,u32 * out_sid)1973 int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1974 				 const char *objname, u32 *out_sid)
1975 {
1976 	return security_compute_sid(ssid, tsid, tclass,
1977 				    AVTAB_TRANSITION,
1978 				    objname, out_sid, false);
1979 }
1980 
1981 /**
1982  * security_member_sid - Compute the SID for member selection.
1983  * @ssid: source security identifier
1984  * @tsid: target security identifier
1985  * @tclass: target security class
1986  * @out_sid: security identifier for selected member
1987  *
1988  * Compute a SID to use when selecting a member of a polyinstantiated
1989  * object of class @tclass based on a SID pair (@ssid, @tsid).
1990  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1991  * if insufficient memory is available, or %0 if the SID was
1992  * computed successfully.
1993  */
security_member_sid(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1994 int security_member_sid(u32 ssid,
1995 			u32 tsid,
1996 			u16 tclass,
1997 			u32 *out_sid)
1998 {
1999 	return security_compute_sid(ssid, tsid, tclass,
2000 				    AVTAB_MEMBER, NULL,
2001 				    out_sid, false);
2002 }
2003 
2004 /**
2005  * security_change_sid - Compute the SID for object relabeling.
2006  * @ssid: source security identifier
2007  * @tsid: target security identifier
2008  * @tclass: target security class
2009  * @out_sid: security identifier for selected member
2010  *
2011  * Compute a SID to use for relabeling an object of class @tclass
2012  * based on a SID pair (@ssid, @tsid).
2013  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
2014  * if insufficient memory is available, or %0 if the SID was
2015  * computed successfully.
2016  */
security_change_sid(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)2017 int security_change_sid(u32 ssid,
2018 			u32 tsid,
2019 			u16 tclass,
2020 			u32 *out_sid)
2021 {
2022 	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
2023 				    out_sid, false);
2024 }
2025 
convert_context_handle_invalid_context(struct policydb * policydb,struct context * context)2026 static inline int convert_context_handle_invalid_context(
2027 	struct policydb *policydb,
2028 	struct context *context)
2029 {
2030 	char *s;
2031 	u32 len;
2032 
2033 	if (enforcing_enabled())
2034 		return -EINVAL;
2035 
2036 	if (!context_struct_to_string(policydb, context, &s, &len)) {
2037 		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
2038 			s);
2039 		kfree(s);
2040 	}
2041 	return 0;
2042 }
2043 
2044 /**
2045  * services_convert_context - Convert a security context across policies.
2046  * @args: populated convert_context_args struct
2047  * @oldc: original context
2048  * @newc: converted context
2049  * @gfp_flags: allocation flags
2050  *
2051  * Convert the values in the security context structure @oldc from the values
2052  * specified in the policy @args->oldp to the values specified in the policy
2053  * @args->newp, storing the new context in @newc, and verifying that the
2054  * context is valid under the new policy.
2055  */
services_convert_context(struct convert_context_args * args,struct context * oldc,struct context * newc,gfp_t gfp_flags)2056 int services_convert_context(struct convert_context_args *args,
2057 			     struct context *oldc, struct context *newc,
2058 			     gfp_t gfp_flags)
2059 {
2060 	struct ocontext *oc;
2061 	struct role_datum *role;
2062 	struct type_datum *typdatum;
2063 	struct user_datum *usrdatum;
2064 	char *s;
2065 	u32 len;
2066 	int rc;
2067 
2068 	if (oldc->str) {
2069 		s = kstrdup(oldc->str, gfp_flags);
2070 		if (!s)
2071 			return -ENOMEM;
2072 
2073 		rc = string_to_context_struct(args->newp, NULL, s, newc, SECSID_NULL);
2074 		if (rc == -EINVAL) {
2075 			/*
2076 			 * Retain string representation for later mapping.
2077 			 *
2078 			 * IMPORTANT: We need to copy the contents of oldc->str
2079 			 * back into s again because string_to_context_struct()
2080 			 * may have garbled it.
2081 			 */
2082 			memcpy(s, oldc->str, oldc->len);
2083 			context_init(newc);
2084 			newc->str = s;
2085 			newc->len = oldc->len;
2086 			return 0;
2087 		}
2088 		kfree(s);
2089 		if (rc) {
2090 			/* Other error condition, e.g. ENOMEM. */
2091 			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2092 			       oldc->str, -rc);
2093 			return rc;
2094 		}
2095 		pr_info("SELinux:  Context %s became valid (mapped).\n",
2096 			oldc->str);
2097 		return 0;
2098 	}
2099 
2100 	context_init(newc);
2101 
2102 	/* Convert the user. */
2103 	usrdatum = symtab_search(&args->newp->p_users,
2104 				 sym_name(args->oldp, SYM_USERS, oldc->user - 1));
2105 	if (!usrdatum)
2106 		goto bad;
2107 	newc->user = usrdatum->value;
2108 
2109 	/* Convert the role. */
2110 	role = symtab_search(&args->newp->p_roles,
2111 			     sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2112 	if (!role)
2113 		goto bad;
2114 	newc->role = role->value;
2115 
2116 	/* Convert the type. */
2117 	typdatum = symtab_search(&args->newp->p_types,
2118 				 sym_name(args->oldp, SYM_TYPES, oldc->type - 1));
2119 	if (!typdatum)
2120 		goto bad;
2121 	newc->type = typdatum->value;
2122 
2123 	/* Convert the MLS fields if dealing with MLS policies */
2124 	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2125 		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2126 		if (rc)
2127 			goto bad;
2128 	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2129 		/*
2130 		 * Switching between non-MLS and MLS policy:
2131 		 * ensure that the MLS fields of the context for all
2132 		 * existing entries in the sidtab are filled in with a
2133 		 * suitable default value, likely taken from one of the
2134 		 * initial SIDs.
2135 		 */
2136 		oc = args->newp->ocontexts[OCON_ISID];
2137 		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2138 			oc = oc->next;
2139 		if (!oc) {
2140 			pr_err("SELinux:  unable to look up"
2141 				" the initial SIDs list\n");
2142 			goto bad;
2143 		}
2144 		rc = mls_range_set(newc, &oc->context[0].range);
2145 		if (rc)
2146 			goto bad;
2147 	}
2148 
2149 	/* Check the validity of the new context. */
2150 	if (!policydb_context_isvalid(args->newp, newc)) {
2151 		rc = convert_context_handle_invalid_context(args->oldp, oldc);
2152 		if (rc)
2153 			goto bad;
2154 	}
2155 
2156 	return 0;
2157 bad:
2158 	/* Map old representation to string and save it. */
2159 	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2160 	if (rc)
2161 		return rc;
2162 	context_destroy(newc);
2163 	newc->str = s;
2164 	newc->len = len;
2165 	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2166 		newc->str);
2167 	return 0;
2168 }
2169 
security_load_policycaps(struct selinux_policy * policy)2170 static void security_load_policycaps(struct selinux_policy *policy)
2171 {
2172 	struct policydb *p;
2173 	unsigned int i;
2174 	struct ebitmap_node *node;
2175 
2176 	p = &policy->policydb;
2177 
2178 	for (i = 0; i < ARRAY_SIZE(selinux_state.policycap); i++)
2179 		WRITE_ONCE(selinux_state.policycap[i],
2180 			ebitmap_get_bit(&p->policycaps, i));
2181 
2182 	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2183 		pr_info("SELinux:  policy capability %s=%d\n",
2184 			selinux_policycap_names[i],
2185 			ebitmap_get_bit(&p->policycaps, i));
2186 
2187 	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2188 		if (i >= ARRAY_SIZE(selinux_policycap_names))
2189 			pr_info("SELinux:  unknown policy capability %u\n",
2190 				i);
2191 	}
2192 }
2193 
2194 static int security_preserve_bools(struct selinux_policy *oldpolicy,
2195 				struct selinux_policy *newpolicy);
2196 
selinux_policy_free(struct selinux_policy * policy)2197 static void selinux_policy_free(struct selinux_policy *policy)
2198 {
2199 	if (!policy)
2200 		return;
2201 
2202 	sidtab_destroy(policy->sidtab);
2203 	kfree(policy->map.mapping);
2204 	policydb_destroy(&policy->policydb);
2205 	kfree(policy->sidtab);
2206 	kfree(policy);
2207 }
2208 
selinux_policy_cond_free(struct selinux_policy * policy)2209 static void selinux_policy_cond_free(struct selinux_policy *policy)
2210 {
2211 	cond_policydb_destroy_dup(&policy->policydb);
2212 	kfree(policy);
2213 }
2214 
selinux_policy_cancel(struct selinux_load_state * load_state)2215 void selinux_policy_cancel(struct selinux_load_state *load_state)
2216 {
2217 	struct selinux_state *state = &selinux_state;
2218 	struct selinux_policy *oldpolicy;
2219 
2220 	oldpolicy = rcu_dereference_protected(state->policy,
2221 					lockdep_is_held(&state->policy_mutex));
2222 
2223 	sidtab_cancel_convert(oldpolicy->sidtab);
2224 	selinux_policy_free(load_state->policy);
2225 	kfree(load_state->convert_data);
2226 }
2227 
selinux_notify_policy_change(u32 seqno)2228 static void selinux_notify_policy_change(u32 seqno)
2229 {
2230 	/* Flush external caches and notify userspace of policy load */
2231 	avc_ss_reset(seqno);
2232 	selnl_notify_policyload(seqno);
2233 	selinux_status_update_policyload(seqno);
2234 	selinux_netlbl_cache_invalidate();
2235 	selinux_xfrm_notify_policyload();
2236 	selinux_ima_measure_state_locked();
2237 }
2238 
selinux_policy_commit(struct selinux_load_state * load_state)2239 void selinux_policy_commit(struct selinux_load_state *load_state)
2240 {
2241 	struct selinux_state *state = &selinux_state;
2242 	struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2243 	unsigned long flags;
2244 	u32 seqno;
2245 
2246 	oldpolicy = rcu_dereference_protected(state->policy,
2247 					lockdep_is_held(&state->policy_mutex));
2248 
2249 	/* If switching between different policy types, log MLS status */
2250 	if (oldpolicy) {
2251 		if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2252 			pr_info("SELinux: Disabling MLS support...\n");
2253 		else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2254 			pr_info("SELinux: Enabling MLS support...\n");
2255 	}
2256 
2257 	/* Set latest granting seqno for new policy. */
2258 	if (oldpolicy)
2259 		newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2260 	else
2261 		newpolicy->latest_granting = 1;
2262 	seqno = newpolicy->latest_granting;
2263 
2264 	/* Install the new policy. */
2265 	if (oldpolicy) {
2266 		sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2267 		rcu_assign_pointer(state->policy, newpolicy);
2268 		sidtab_freeze_end(oldpolicy->sidtab, &flags);
2269 	} else {
2270 		rcu_assign_pointer(state->policy, newpolicy);
2271 	}
2272 
2273 	/* Load the policycaps from the new policy */
2274 	security_load_policycaps(newpolicy);
2275 
2276 	if (!selinux_initialized()) {
2277 		/*
2278 		 * After first policy load, the security server is
2279 		 * marked as initialized and ready to handle requests and
2280 		 * any objects created prior to policy load are then labeled.
2281 		 */
2282 		selinux_mark_initialized();
2283 		selinux_complete_init();
2284 	}
2285 
2286 	/* Free the old policy */
2287 	synchronize_rcu();
2288 	selinux_policy_free(oldpolicy);
2289 	kfree(load_state->convert_data);
2290 
2291 	/* Notify others of the policy change */
2292 	selinux_notify_policy_change(seqno);
2293 }
2294 
2295 /**
2296  * security_load_policy - Load a security policy configuration.
2297  * @data: binary policy data
2298  * @len: length of data in bytes
2299  * @load_state: policy load state
2300  *
2301  * Load a new set of security policy configuration data,
2302  * validate it and convert the SID table as necessary.
2303  * This function will flush the access vector cache after
2304  * loading the new policy.
2305  */
security_load_policy(void * data,size_t len,struct selinux_load_state * load_state)2306 int security_load_policy(void *data, size_t len,
2307 			 struct selinux_load_state *load_state)
2308 {
2309 	struct selinux_state *state = &selinux_state;
2310 	struct selinux_policy *newpolicy, *oldpolicy;
2311 	struct selinux_policy_convert_data *convert_data;
2312 	int rc = 0;
2313 	struct policy_file file = { data, len }, *fp = &file;
2314 
2315 	newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2316 	if (!newpolicy)
2317 		return -ENOMEM;
2318 
2319 	newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2320 	if (!newpolicy->sidtab) {
2321 		rc = -ENOMEM;
2322 		goto err_policy;
2323 	}
2324 
2325 	rc = policydb_read(&newpolicy->policydb, fp);
2326 	if (rc)
2327 		goto err_sidtab;
2328 
2329 	newpolicy->policydb.len = len;
2330 	rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2331 				&newpolicy->map);
2332 	if (rc)
2333 		goto err_policydb;
2334 
2335 	rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2336 	if (rc) {
2337 		pr_err("SELinux:  unable to load the initial SIDs\n");
2338 		goto err_mapping;
2339 	}
2340 
2341 	if (!selinux_initialized()) {
2342 		/* First policy load, so no need to preserve state from old policy */
2343 		load_state->policy = newpolicy;
2344 		load_state->convert_data = NULL;
2345 		return 0;
2346 	}
2347 
2348 	oldpolicy = rcu_dereference_protected(state->policy,
2349 					lockdep_is_held(&state->policy_mutex));
2350 
2351 	/* Preserve active boolean values from the old policy */
2352 	rc = security_preserve_bools(oldpolicy, newpolicy);
2353 	if (rc) {
2354 		pr_err("SELinux:  unable to preserve booleans\n");
2355 		goto err_free_isids;
2356 	}
2357 
2358 	/*
2359 	 * Convert the internal representations of contexts
2360 	 * in the new SID table.
2361 	 */
2362 
2363 	convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2364 	if (!convert_data) {
2365 		rc = -ENOMEM;
2366 		goto err_free_isids;
2367 	}
2368 
2369 	convert_data->args.oldp = &oldpolicy->policydb;
2370 	convert_data->args.newp = &newpolicy->policydb;
2371 
2372 	convert_data->sidtab_params.args = &convert_data->args;
2373 	convert_data->sidtab_params.target = newpolicy->sidtab;
2374 
2375 	rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2376 	if (rc) {
2377 		pr_err("SELinux:  unable to convert the internal"
2378 			" representation of contexts in the new SID"
2379 			" table\n");
2380 		goto err_free_convert_data;
2381 	}
2382 
2383 	load_state->policy = newpolicy;
2384 	load_state->convert_data = convert_data;
2385 	return 0;
2386 
2387 err_free_convert_data:
2388 	kfree(convert_data);
2389 err_free_isids:
2390 	sidtab_destroy(newpolicy->sidtab);
2391 err_mapping:
2392 	kfree(newpolicy->map.mapping);
2393 err_policydb:
2394 	policydb_destroy(&newpolicy->policydb);
2395 err_sidtab:
2396 	kfree(newpolicy->sidtab);
2397 err_policy:
2398 	kfree(newpolicy);
2399 
2400 	return rc;
2401 }
2402 
2403 /**
2404  * ocontext_to_sid - Helper to safely get sid for an ocontext
2405  * @sidtab: SID table
2406  * @c: ocontext structure
2407  * @index: index of the context entry (0 or 1)
2408  * @out_sid: pointer to the resulting SID value
2409  *
2410  * For all ocontexts except OCON_ISID the SID fields are populated
2411  * on-demand when needed. Since updating the SID value is an SMP-sensitive
2412  * operation, this helper must be used to do that safely.
2413  *
2414  * WARNING: This function may return -ESTALE, indicating that the caller
2415  * must retry the operation after re-acquiring the policy pointer!
2416  */
ocontext_to_sid(struct sidtab * sidtab,struct ocontext * c,size_t index,u32 * out_sid)2417 static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2418 			   size_t index, u32 *out_sid)
2419 {
2420 	int rc;
2421 	u32 sid;
2422 
2423 	/* Ensure the associated sidtab entry is visible to this thread. */
2424 	sid = smp_load_acquire(&c->sid[index]);
2425 	if (!sid) {
2426 		rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2427 		if (rc)
2428 			return rc;
2429 
2430 		/*
2431 		 * Ensure the new sidtab entry is visible to other threads
2432 		 * when they see the SID.
2433 		 */
2434 		smp_store_release(&c->sid[index], sid);
2435 	}
2436 	*out_sid = sid;
2437 	return 0;
2438 }
2439 
2440 /**
2441  * security_port_sid - Obtain the SID for a port.
2442  * @protocol: protocol number
2443  * @port: port number
2444  * @out_sid: security identifier
2445  */
security_port_sid(u8 protocol,u16 port,u32 * out_sid)2446 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
2447 {
2448 	struct selinux_policy *policy;
2449 	struct policydb *policydb;
2450 	struct sidtab *sidtab;
2451 	struct ocontext *c;
2452 	int rc;
2453 
2454 	if (!selinux_initialized()) {
2455 		*out_sid = SECINITSID_PORT;
2456 		return 0;
2457 	}
2458 
2459 retry:
2460 	rc = 0;
2461 	rcu_read_lock();
2462 	policy = rcu_dereference(selinux_state.policy);
2463 	policydb = &policy->policydb;
2464 	sidtab = policy->sidtab;
2465 
2466 	c = policydb->ocontexts[OCON_PORT];
2467 	while (c) {
2468 		if (c->u.port.protocol == protocol &&
2469 		    c->u.port.low_port <= port &&
2470 		    c->u.port.high_port >= port)
2471 			break;
2472 		c = c->next;
2473 	}
2474 
2475 	if (c) {
2476 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2477 		if (rc == -ESTALE) {
2478 			rcu_read_unlock();
2479 			goto retry;
2480 		}
2481 		if (rc)
2482 			goto out;
2483 	} else {
2484 		*out_sid = SECINITSID_PORT;
2485 	}
2486 
2487 out:
2488 	rcu_read_unlock();
2489 	return rc;
2490 }
2491 
2492 /**
2493  * security_ib_pkey_sid - Obtain the SID for a pkey.
2494  * @subnet_prefix: Subnet Prefix
2495  * @pkey_num: pkey number
2496  * @out_sid: security identifier
2497  */
security_ib_pkey_sid(u64 subnet_prefix,u16 pkey_num,u32 * out_sid)2498 int security_ib_pkey_sid(u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2499 {
2500 	struct selinux_policy *policy;
2501 	struct policydb *policydb;
2502 	struct sidtab *sidtab;
2503 	struct ocontext *c;
2504 	int rc;
2505 
2506 	if (!selinux_initialized()) {
2507 		*out_sid = SECINITSID_UNLABELED;
2508 		return 0;
2509 	}
2510 
2511 retry:
2512 	rc = 0;
2513 	rcu_read_lock();
2514 	policy = rcu_dereference(selinux_state.policy);
2515 	policydb = &policy->policydb;
2516 	sidtab = policy->sidtab;
2517 
2518 	c = policydb->ocontexts[OCON_IBPKEY];
2519 	while (c) {
2520 		if (c->u.ibpkey.low_pkey <= pkey_num &&
2521 		    c->u.ibpkey.high_pkey >= pkey_num &&
2522 		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2523 			break;
2524 
2525 		c = c->next;
2526 	}
2527 
2528 	if (c) {
2529 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2530 		if (rc == -ESTALE) {
2531 			rcu_read_unlock();
2532 			goto retry;
2533 		}
2534 		if (rc)
2535 			goto out;
2536 	} else
2537 		*out_sid = SECINITSID_UNLABELED;
2538 
2539 out:
2540 	rcu_read_unlock();
2541 	return rc;
2542 }
2543 
2544 /**
2545  * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2546  * @dev_name: device name
2547  * @port_num: port number
2548  * @out_sid: security identifier
2549  */
security_ib_endport_sid(const char * dev_name,u8 port_num,u32 * out_sid)2550 int security_ib_endport_sid(const char *dev_name, u8 port_num, u32 *out_sid)
2551 {
2552 	struct selinux_policy *policy;
2553 	struct policydb *policydb;
2554 	struct sidtab *sidtab;
2555 	struct ocontext *c;
2556 	int rc;
2557 
2558 	if (!selinux_initialized()) {
2559 		*out_sid = SECINITSID_UNLABELED;
2560 		return 0;
2561 	}
2562 
2563 retry:
2564 	rc = 0;
2565 	rcu_read_lock();
2566 	policy = rcu_dereference(selinux_state.policy);
2567 	policydb = &policy->policydb;
2568 	sidtab = policy->sidtab;
2569 
2570 	c = policydb->ocontexts[OCON_IBENDPORT];
2571 	while (c) {
2572 		if (c->u.ibendport.port == port_num &&
2573 		    !strncmp(c->u.ibendport.dev_name,
2574 			     dev_name,
2575 			     IB_DEVICE_NAME_MAX))
2576 			break;
2577 
2578 		c = c->next;
2579 	}
2580 
2581 	if (c) {
2582 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2583 		if (rc == -ESTALE) {
2584 			rcu_read_unlock();
2585 			goto retry;
2586 		}
2587 		if (rc)
2588 			goto out;
2589 	} else
2590 		*out_sid = SECINITSID_UNLABELED;
2591 
2592 out:
2593 	rcu_read_unlock();
2594 	return rc;
2595 }
2596 
2597 /**
2598  * security_netif_sid - Obtain the SID for a network interface.
2599  * @name: interface name
2600  * @if_sid: interface SID
2601  */
security_netif_sid(const char * name,u32 * if_sid)2602 int security_netif_sid(const char *name, u32 *if_sid)
2603 {
2604 	struct selinux_policy *policy;
2605 	struct policydb *policydb;
2606 	struct sidtab *sidtab;
2607 	int rc;
2608 	struct ocontext *c;
2609 	bool wildcard_support;
2610 
2611 	if (!selinux_initialized()) {
2612 		*if_sid = SECINITSID_NETIF;
2613 		return 0;
2614 	}
2615 
2616 retry:
2617 	rc = 0;
2618 	rcu_read_lock();
2619 	policy = rcu_dereference(selinux_state.policy);
2620 	policydb = &policy->policydb;
2621 	sidtab = policy->sidtab;
2622 	wildcard_support = ebitmap_get_bit(&policydb->policycaps, POLICYDB_CAP_NETIF_WILDCARD);
2623 
2624 	c = policydb->ocontexts[OCON_NETIF];
2625 	while (c) {
2626 		if (wildcard_support) {
2627 			if (match_wildcard(c->u.name, name))
2628 				break;
2629 		} else {
2630 			if (strcmp(c->u.name, name) == 0)
2631 				break;
2632 		}
2633 
2634 		c = c->next;
2635 	}
2636 
2637 	if (c) {
2638 		rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2639 		if (rc == -ESTALE) {
2640 			rcu_read_unlock();
2641 			goto retry;
2642 		}
2643 		if (rc)
2644 			goto out;
2645 	} else
2646 		*if_sid = SECINITSID_NETIF;
2647 
2648 out:
2649 	rcu_read_unlock();
2650 	return rc;
2651 }
2652 
match_ipv6_addrmask(const u32 input[4],const u32 addr[4],const u32 mask[4])2653 static bool match_ipv6_addrmask(const u32 input[4], const u32 addr[4], const u32 mask[4])
2654 {
2655 	int i;
2656 
2657 	for (i = 0; i < 4; i++)
2658 		if (addr[i] != (input[i] & mask[i]))
2659 			return false;
2660 
2661 	return true;
2662 }
2663 
2664 /**
2665  * security_node_sid - Obtain the SID for a node (host).
2666  * @domain: communication domain aka address family
2667  * @addrp: address
2668  * @addrlen: address length in bytes
2669  * @out_sid: security identifier
2670  */
security_node_sid(u16 domain,const void * addrp,u32 addrlen,u32 * out_sid)2671 int security_node_sid(u16 domain,
2672 		      const void *addrp,
2673 		      u32 addrlen,
2674 		      u32 *out_sid)
2675 {
2676 	struct selinux_policy *policy;
2677 	struct policydb *policydb;
2678 	struct sidtab *sidtab;
2679 	int rc;
2680 	struct ocontext *c;
2681 
2682 	if (!selinux_initialized()) {
2683 		*out_sid = SECINITSID_NODE;
2684 		return 0;
2685 	}
2686 
2687 retry:
2688 	rcu_read_lock();
2689 	policy = rcu_dereference(selinux_state.policy);
2690 	policydb = &policy->policydb;
2691 	sidtab = policy->sidtab;
2692 
2693 	switch (domain) {
2694 	case AF_INET: {
2695 		u32 addr;
2696 
2697 		rc = -EINVAL;
2698 		if (addrlen != sizeof(u32))
2699 			goto out;
2700 
2701 		addr = *((const u32 *)addrp);
2702 
2703 		c = policydb->ocontexts[OCON_NODE];
2704 		while (c) {
2705 			if (c->u.node.addr == (addr & c->u.node.mask))
2706 				break;
2707 			c = c->next;
2708 		}
2709 		break;
2710 	}
2711 
2712 	case AF_INET6:
2713 		rc = -EINVAL;
2714 		if (addrlen != sizeof(u64) * 2)
2715 			goto out;
2716 		c = policydb->ocontexts[OCON_NODE6];
2717 		while (c) {
2718 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2719 						c->u.node6.mask))
2720 				break;
2721 			c = c->next;
2722 		}
2723 		break;
2724 
2725 	default:
2726 		rc = 0;
2727 		*out_sid = SECINITSID_NODE;
2728 		goto out;
2729 	}
2730 
2731 	if (c) {
2732 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2733 		if (rc == -ESTALE) {
2734 			rcu_read_unlock();
2735 			goto retry;
2736 		}
2737 		if (rc)
2738 			goto out;
2739 	} else {
2740 		*out_sid = SECINITSID_NODE;
2741 	}
2742 
2743 	rc = 0;
2744 out:
2745 	rcu_read_unlock();
2746 	return rc;
2747 }
2748 
2749 #define SIDS_NEL 25
2750 
2751 /**
2752  * security_get_user_sids - Obtain reachable SIDs for a user.
2753  * @fromsid: starting SID
2754  * @username: username
2755  * @sids: array of reachable SIDs for user
2756  * @nel: number of elements in @sids
2757  *
2758  * Generate the set of SIDs for legal security contexts
2759  * for a given user that can be reached by @fromsid.
2760  * Set *@sids to point to a dynamically allocated
2761  * array containing the set of SIDs.  Set *@nel to the
2762  * number of elements in the array.
2763  */
2764 
security_get_user_sids(u32 fromsid,const char * username,u32 ** sids,u32 * nel)2765 int security_get_user_sids(u32 fromsid,
2766 			   const char *username,
2767 			   u32 **sids,
2768 			   u32 *nel)
2769 {
2770 	struct selinux_policy *policy;
2771 	struct policydb *policydb;
2772 	struct sidtab *sidtab;
2773 	struct context *fromcon, usercon;
2774 	u32 *mysids = NULL, *mysids2, sid;
2775 	u32 i, j, mynel, maxnel = SIDS_NEL;
2776 	struct user_datum *user;
2777 	struct role_datum *role;
2778 	struct ebitmap_node *rnode, *tnode;
2779 	int rc;
2780 
2781 	*sids = NULL;
2782 	*nel = 0;
2783 
2784 	if (!selinux_initialized())
2785 		return 0;
2786 
2787 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2788 	if (!mysids)
2789 		return -ENOMEM;
2790 
2791 retry:
2792 	mynel = 0;
2793 	rcu_read_lock();
2794 	policy = rcu_dereference(selinux_state.policy);
2795 	policydb = &policy->policydb;
2796 	sidtab = policy->sidtab;
2797 
2798 	context_init(&usercon);
2799 
2800 	rc = -EINVAL;
2801 	fromcon = sidtab_search(sidtab, fromsid);
2802 	if (!fromcon)
2803 		goto out_unlock;
2804 
2805 	rc = -EINVAL;
2806 	user = symtab_search(&policydb->p_users, username);
2807 	if (!user)
2808 		goto out_unlock;
2809 
2810 	usercon.user = user->value;
2811 
2812 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2813 		role = policydb->role_val_to_struct[i];
2814 		usercon.role = i + 1;
2815 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2816 			usercon.type = j + 1;
2817 
2818 			if (mls_setup_user_range(policydb, fromcon, user,
2819 						 &usercon))
2820 				continue;
2821 
2822 			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2823 			if (rc == -ESTALE) {
2824 				rcu_read_unlock();
2825 				goto retry;
2826 			}
2827 			if (rc)
2828 				goto out_unlock;
2829 			if (mynel < maxnel) {
2830 				mysids[mynel++] = sid;
2831 			} else {
2832 				rc = -ENOMEM;
2833 				maxnel += SIDS_NEL;
2834 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2835 				if (!mysids2)
2836 					goto out_unlock;
2837 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2838 				kfree(mysids);
2839 				mysids = mysids2;
2840 				mysids[mynel++] = sid;
2841 			}
2842 		}
2843 	}
2844 	rc = 0;
2845 out_unlock:
2846 	rcu_read_unlock();
2847 	if (rc || !mynel) {
2848 		kfree(mysids);
2849 		return rc;
2850 	}
2851 
2852 	rc = -ENOMEM;
2853 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2854 	if (!mysids2) {
2855 		kfree(mysids);
2856 		return rc;
2857 	}
2858 	for (i = 0, j = 0; i < mynel; i++) {
2859 		struct av_decision dummy_avd;
2860 		rc = avc_has_perm_noaudit(fromsid, mysids[i],
2861 					  SECCLASS_PROCESS, /* kernel value */
2862 					  PROCESS__TRANSITION, AVC_STRICT,
2863 					  &dummy_avd);
2864 		if (!rc)
2865 			mysids2[j++] = mysids[i];
2866 		cond_resched();
2867 	}
2868 	kfree(mysids);
2869 	*sids = mysids2;
2870 	*nel = j;
2871 	return 0;
2872 }
2873 
2874 /**
2875  * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2876  * @policy: policy
2877  * @fstype: filesystem type
2878  * @path: path from root of mount
2879  * @orig_sclass: file security class
2880  * @sid: SID for path
2881  *
2882  * Obtain a SID to use for a file in a filesystem that
2883  * cannot support xattr or use a fixed labeling behavior like
2884  * transition SIDs or task SIDs.
2885  *
2886  * WARNING: This function may return -ESTALE, indicating that the caller
2887  * must retry the operation after re-acquiring the policy pointer!
2888  */
__security_genfs_sid(struct selinux_policy * policy,const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2889 static inline int __security_genfs_sid(struct selinux_policy *policy,
2890 				       const char *fstype,
2891 				       const char *path,
2892 				       u16 orig_sclass,
2893 				       u32 *sid)
2894 {
2895 	struct policydb *policydb = &policy->policydb;
2896 	struct sidtab *sidtab = policy->sidtab;
2897 	u16 sclass;
2898 	struct genfs *genfs;
2899 	struct ocontext *c;
2900 	int cmp = 0;
2901 	bool wildcard;
2902 
2903 	while (path[0] == '/' && path[1] == '/')
2904 		path++;
2905 
2906 	sclass = unmap_class(&policy->map, orig_sclass);
2907 	*sid = SECINITSID_UNLABELED;
2908 
2909 	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2910 		cmp = strcmp(fstype, genfs->fstype);
2911 		if (cmp <= 0)
2912 			break;
2913 	}
2914 
2915 	if (!genfs || cmp)
2916 		return -ENOENT;
2917 
2918 	wildcard = ebitmap_get_bit(&policy->policydb.policycaps,
2919 				   POLICYDB_CAP_GENFS_SECLABEL_WILDCARD);
2920 	for (c = genfs->head; c; c = c->next) {
2921 		if (!c->v.sclass || sclass == c->v.sclass) {
2922 			if (wildcard) {
2923 				if (match_wildcard(c->u.name, path))
2924 					break;
2925 			} else {
2926 				size_t len = strlen(c->u.name);
2927 
2928 				if ((strncmp(c->u.name, path, len)) == 0)
2929 					break;
2930 			}
2931 		}
2932 	}
2933 
2934 	if (!c)
2935 		return -ENOENT;
2936 
2937 	return ocontext_to_sid(sidtab, c, 0, sid);
2938 }
2939 
2940 /**
2941  * security_genfs_sid - Obtain a SID for a file in a filesystem
2942  * @fstype: filesystem type
2943  * @path: path from root of mount
2944  * @orig_sclass: file security class
2945  * @sid: SID for path
2946  *
2947  * Acquire policy_rwlock before calling __security_genfs_sid() and release
2948  * it afterward.
2949  */
security_genfs_sid(const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2950 int security_genfs_sid(const char *fstype,
2951 		       const char *path,
2952 		       u16 orig_sclass,
2953 		       u32 *sid)
2954 {
2955 	struct selinux_policy *policy;
2956 	int retval;
2957 
2958 	if (!selinux_initialized()) {
2959 		*sid = SECINITSID_UNLABELED;
2960 		return 0;
2961 	}
2962 
2963 	do {
2964 		rcu_read_lock();
2965 		policy = rcu_dereference(selinux_state.policy);
2966 		retval = __security_genfs_sid(policy, fstype, path,
2967 					      orig_sclass, sid);
2968 		rcu_read_unlock();
2969 	} while (retval == -ESTALE);
2970 	return retval;
2971 }
2972 
selinux_policy_genfs_sid(struct selinux_policy * policy,const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2973 int selinux_policy_genfs_sid(struct selinux_policy *policy,
2974 			const char *fstype,
2975 			const char *path,
2976 			u16 orig_sclass,
2977 			u32 *sid)
2978 {
2979 	/* no lock required, policy is not yet accessible by other threads */
2980 	return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2981 }
2982 
2983 /**
2984  * security_fs_use - Determine how to handle labeling for a filesystem.
2985  * @sb: superblock in question
2986  */
security_fs_use(struct super_block * sb)2987 int security_fs_use(struct super_block *sb)
2988 {
2989 	struct selinux_policy *policy;
2990 	struct policydb *policydb;
2991 	struct sidtab *sidtab;
2992 	int rc;
2993 	struct ocontext *c;
2994 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2995 	const char *fstype = sb->s_type->name;
2996 
2997 	if (!selinux_initialized()) {
2998 		sbsec->behavior = SECURITY_FS_USE_NONE;
2999 		sbsec->sid = SECINITSID_UNLABELED;
3000 		return 0;
3001 	}
3002 
3003 retry:
3004 	rcu_read_lock();
3005 	policy = rcu_dereference(selinux_state.policy);
3006 	policydb = &policy->policydb;
3007 	sidtab = policy->sidtab;
3008 
3009 	c = policydb->ocontexts[OCON_FSUSE];
3010 	while (c) {
3011 		if (strcmp(fstype, c->u.name) == 0)
3012 			break;
3013 		c = c->next;
3014 	}
3015 
3016 	if (c) {
3017 		sbsec->behavior = c->v.behavior;
3018 		rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
3019 		if (rc == -ESTALE) {
3020 			rcu_read_unlock();
3021 			goto retry;
3022 		}
3023 		if (rc)
3024 			goto out;
3025 	} else {
3026 		rc = __security_genfs_sid(policy, fstype, "/",
3027 					SECCLASS_DIR, &sbsec->sid);
3028 		if (rc == -ESTALE) {
3029 			rcu_read_unlock();
3030 			goto retry;
3031 		}
3032 		if (rc) {
3033 			sbsec->behavior = SECURITY_FS_USE_NONE;
3034 			rc = 0;
3035 		} else {
3036 			sbsec->behavior = SECURITY_FS_USE_GENFS;
3037 		}
3038 	}
3039 
3040 out:
3041 	rcu_read_unlock();
3042 	return rc;
3043 }
3044 
security_get_bools(struct selinux_policy * policy,u32 * len,char *** names,int ** values)3045 int security_get_bools(struct selinux_policy *policy,
3046 		       u32 *len, char ***names, int **values)
3047 {
3048 	struct policydb *policydb;
3049 	u32 i;
3050 	int rc;
3051 
3052 	policydb = &policy->policydb;
3053 
3054 	*names = NULL;
3055 	*values = NULL;
3056 
3057 	rc = 0;
3058 	*len = policydb->p_bools.nprim;
3059 	if (!*len)
3060 		goto out;
3061 
3062 	rc = -ENOMEM;
3063 	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
3064 	if (!*names)
3065 		goto err;
3066 
3067 	rc = -ENOMEM;
3068 	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3069 	if (!*values)
3070 		goto err;
3071 
3072 	for (i = 0; i < *len; i++) {
3073 		(*values)[i] = policydb->bool_val_to_struct[i]->state;
3074 
3075 		rc = -ENOMEM;
3076 		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3077 				      GFP_ATOMIC);
3078 		if (!(*names)[i])
3079 			goto err;
3080 	}
3081 	rc = 0;
3082 out:
3083 	return rc;
3084 err:
3085 	if (*names) {
3086 		for (i = 0; i < *len; i++)
3087 			kfree((*names)[i]);
3088 		kfree(*names);
3089 	}
3090 	kfree(*values);
3091 	*len = 0;
3092 	*names = NULL;
3093 	*values = NULL;
3094 	goto out;
3095 }
3096 
3097 
security_set_bools(u32 len,const int * values)3098 int security_set_bools(u32 len, const int *values)
3099 {
3100 	struct selinux_state *state = &selinux_state;
3101 	struct selinux_policy *newpolicy, *oldpolicy;
3102 	int rc;
3103 	u32 i, seqno = 0;
3104 
3105 	if (!selinux_initialized())
3106 		return -EINVAL;
3107 
3108 	oldpolicy = rcu_dereference_protected(state->policy,
3109 					lockdep_is_held(&state->policy_mutex));
3110 
3111 	/* Consistency check on number of booleans, should never fail */
3112 	if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3113 		return -EINVAL;
3114 
3115 	newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3116 	if (!newpolicy)
3117 		return -ENOMEM;
3118 
3119 	/*
3120 	 * Deep copy only the parts of the policydb that might be
3121 	 * modified as a result of changing booleans.
3122 	 */
3123 	rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3124 	if (rc) {
3125 		kfree(newpolicy);
3126 		return -ENOMEM;
3127 	}
3128 
3129 	/* Update the boolean states in the copy */
3130 	for (i = 0; i < len; i++) {
3131 		int new_state = !!values[i];
3132 		int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3133 
3134 		if (new_state != old_state) {
3135 			audit_log(audit_context(), GFP_ATOMIC,
3136 				AUDIT_MAC_CONFIG_CHANGE,
3137 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
3138 				sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3139 				new_state,
3140 				old_state,
3141 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
3142 				audit_get_sessionid(current));
3143 			newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3144 		}
3145 	}
3146 
3147 	/* Re-evaluate the conditional rules in the copy */
3148 	evaluate_cond_nodes(&newpolicy->policydb);
3149 
3150 	/* Set latest granting seqno for new policy */
3151 	newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3152 	seqno = newpolicy->latest_granting;
3153 
3154 	/* Install the new policy */
3155 	rcu_assign_pointer(state->policy, newpolicy);
3156 
3157 	/*
3158 	 * Free the conditional portions of the old policydb
3159 	 * that were copied for the new policy, and the oldpolicy
3160 	 * structure itself but not what it references.
3161 	 */
3162 	synchronize_rcu();
3163 	selinux_policy_cond_free(oldpolicy);
3164 
3165 	/* Notify others of the policy change */
3166 	selinux_notify_policy_change(seqno);
3167 	return 0;
3168 }
3169 
security_get_bool_value(u32 index)3170 int security_get_bool_value(u32 index)
3171 {
3172 	struct selinux_policy *policy;
3173 	struct policydb *policydb;
3174 	int rc;
3175 	u32 len;
3176 
3177 	if (!selinux_initialized())
3178 		return 0;
3179 
3180 	rcu_read_lock();
3181 	policy = rcu_dereference(selinux_state.policy);
3182 	policydb = &policy->policydb;
3183 
3184 	rc = -EFAULT;
3185 	len = policydb->p_bools.nprim;
3186 	if (index >= len)
3187 		goto out;
3188 
3189 	rc = policydb->bool_val_to_struct[index]->state;
3190 out:
3191 	rcu_read_unlock();
3192 	return rc;
3193 }
3194 
security_preserve_bools(struct selinux_policy * oldpolicy,struct selinux_policy * newpolicy)3195 static int security_preserve_bools(struct selinux_policy *oldpolicy,
3196 				struct selinux_policy *newpolicy)
3197 {
3198 	int rc, *bvalues = NULL;
3199 	char **bnames = NULL;
3200 	struct cond_bool_datum *booldatum;
3201 	u32 i, nbools = 0;
3202 
3203 	rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3204 	if (rc)
3205 		goto out;
3206 	for (i = 0; i < nbools; i++) {
3207 		booldatum = symtab_search(&newpolicy->policydb.p_bools,
3208 					bnames[i]);
3209 		if (booldatum)
3210 			booldatum->state = bvalues[i];
3211 	}
3212 	evaluate_cond_nodes(&newpolicy->policydb);
3213 
3214 out:
3215 	if (bnames) {
3216 		for (i = 0; i < nbools; i++)
3217 			kfree(bnames[i]);
3218 	}
3219 	kfree(bnames);
3220 	kfree(bvalues);
3221 	return rc;
3222 }
3223 
3224 /*
3225  * security_sid_mls_copy() - computes a new sid based on the given
3226  * sid and the mls portion of mls_sid.
3227  */
security_sid_mls_copy(u32 sid,u32 mls_sid,u32 * new_sid)3228 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
3229 {
3230 	struct selinux_policy *policy;
3231 	struct policydb *policydb;
3232 	struct sidtab *sidtab;
3233 	struct context *context1;
3234 	struct context *context2;
3235 	struct context newcon;
3236 	char *s;
3237 	u32 len;
3238 	int rc;
3239 
3240 	if (!selinux_initialized()) {
3241 		*new_sid = sid;
3242 		return 0;
3243 	}
3244 
3245 retry:
3246 	rc = 0;
3247 	context_init(&newcon);
3248 
3249 	rcu_read_lock();
3250 	policy = rcu_dereference(selinux_state.policy);
3251 	policydb = &policy->policydb;
3252 	sidtab = policy->sidtab;
3253 
3254 	if (!policydb->mls_enabled) {
3255 		*new_sid = sid;
3256 		goto out_unlock;
3257 	}
3258 
3259 	rc = -EINVAL;
3260 	context1 = sidtab_search(sidtab, sid);
3261 	if (!context1) {
3262 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3263 			__func__, sid);
3264 		goto out_unlock;
3265 	}
3266 
3267 	rc = -EINVAL;
3268 	context2 = sidtab_search(sidtab, mls_sid);
3269 	if (!context2) {
3270 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3271 			__func__, mls_sid);
3272 		goto out_unlock;
3273 	}
3274 
3275 	newcon.user = context1->user;
3276 	newcon.role = context1->role;
3277 	newcon.type = context1->type;
3278 	rc = mls_context_cpy(&newcon, context2);
3279 	if (rc)
3280 		goto out_unlock;
3281 
3282 	/* Check the validity of the new context. */
3283 	if (!policydb_context_isvalid(policydb, &newcon)) {
3284 		rc = convert_context_handle_invalid_context(policydb,
3285 							&newcon);
3286 		if (rc) {
3287 			if (!context_struct_to_string(policydb, &newcon, &s,
3288 						      &len)) {
3289 				struct audit_buffer *ab;
3290 
3291 				ab = audit_log_start(audit_context(),
3292 						     GFP_ATOMIC,
3293 						     AUDIT_SELINUX_ERR);
3294 				audit_log_format(ab,
3295 						 "op=security_sid_mls_copy invalid_context=");
3296 				/* don't record NUL with untrusted strings */
3297 				audit_log_n_untrustedstring(ab, s, len - 1);
3298 				audit_log_end(ab);
3299 				kfree(s);
3300 			}
3301 			goto out_unlock;
3302 		}
3303 	}
3304 	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3305 	if (rc == -ESTALE) {
3306 		rcu_read_unlock();
3307 		context_destroy(&newcon);
3308 		goto retry;
3309 	}
3310 out_unlock:
3311 	rcu_read_unlock();
3312 	context_destroy(&newcon);
3313 	return rc;
3314 }
3315 
3316 /**
3317  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3318  * @nlbl_sid: NetLabel SID
3319  * @nlbl_type: NetLabel labeling protocol type
3320  * @xfrm_sid: XFRM SID
3321  * @peer_sid: network peer sid
3322  *
3323  * Description:
3324  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3325  * resolved into a single SID it is returned via @peer_sid and the function
3326  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3327  * returns a negative value.  A table summarizing the behavior is below:
3328  *
3329  *                                 | function return |      @sid
3330  *   ------------------------------+-----------------+-----------------
3331  *   no peer labels                |        0        |    SECSID_NULL
3332  *   single peer label             |        0        |    <peer_label>
3333  *   multiple, consistent labels   |        0        |    <peer_label>
3334  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3335  *
3336  */
security_net_peersid_resolve(u32 nlbl_sid,u32 nlbl_type,u32 xfrm_sid,u32 * peer_sid)3337 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
3338 				 u32 xfrm_sid,
3339 				 u32 *peer_sid)
3340 {
3341 	struct selinux_policy *policy;
3342 	struct policydb *policydb;
3343 	struct sidtab *sidtab;
3344 	int rc;
3345 	struct context *nlbl_ctx;
3346 	struct context *xfrm_ctx;
3347 
3348 	*peer_sid = SECSID_NULL;
3349 
3350 	/* handle the common (which also happens to be the set of easy) cases
3351 	 * right away, these two if statements catch everything involving a
3352 	 * single or absent peer SID/label */
3353 	if (xfrm_sid == SECSID_NULL) {
3354 		*peer_sid = nlbl_sid;
3355 		return 0;
3356 	}
3357 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3358 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3359 	 * is present */
3360 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3361 		*peer_sid = xfrm_sid;
3362 		return 0;
3363 	}
3364 
3365 	if (!selinux_initialized())
3366 		return 0;
3367 
3368 	rcu_read_lock();
3369 	policy = rcu_dereference(selinux_state.policy);
3370 	policydb = &policy->policydb;
3371 	sidtab = policy->sidtab;
3372 
3373 	/*
3374 	 * We don't need to check initialized here since the only way both
3375 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3376 	 * security server was initialized and state->initialized was true.
3377 	 */
3378 	if (!policydb->mls_enabled) {
3379 		rc = 0;
3380 		goto out;
3381 	}
3382 
3383 	rc = -EINVAL;
3384 	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3385 	if (!nlbl_ctx) {
3386 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3387 		       __func__, nlbl_sid);
3388 		goto out;
3389 	}
3390 	rc = -EINVAL;
3391 	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3392 	if (!xfrm_ctx) {
3393 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3394 		       __func__, xfrm_sid);
3395 		goto out;
3396 	}
3397 	rc = (mls_context_equal(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3398 	if (rc)
3399 		goto out;
3400 
3401 	/* at present NetLabel SIDs/labels really only carry MLS
3402 	 * information so if the MLS portion of the NetLabel SID
3403 	 * matches the MLS portion of the labeled XFRM SID/label
3404 	 * then pass along the XFRM SID as it is the most
3405 	 * expressive */
3406 	*peer_sid = xfrm_sid;
3407 out:
3408 	rcu_read_unlock();
3409 	return rc;
3410 }
3411 
get_classes_callback(void * k,void * d,void * args)3412 static int get_classes_callback(void *k, void *d, void *args)
3413 {
3414 	struct class_datum *datum = d;
3415 	char *name = k, **classes = args;
3416 	u32 value = datum->value - 1;
3417 
3418 	classes[value] = kstrdup(name, GFP_ATOMIC);
3419 	if (!classes[value])
3420 		return -ENOMEM;
3421 
3422 	return 0;
3423 }
3424 
security_get_classes(struct selinux_policy * policy,char *** classes,u32 * nclasses)3425 int security_get_classes(struct selinux_policy *policy,
3426 			 char ***classes, u32 *nclasses)
3427 {
3428 	struct policydb *policydb;
3429 	int rc;
3430 
3431 	policydb = &policy->policydb;
3432 
3433 	rc = -ENOMEM;
3434 	*nclasses = policydb->p_classes.nprim;
3435 	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3436 	if (!*classes)
3437 		goto out;
3438 
3439 	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3440 			 *classes);
3441 	if (rc) {
3442 		u32 i;
3443 
3444 		for (i = 0; i < *nclasses; i++)
3445 			kfree((*classes)[i]);
3446 		kfree(*classes);
3447 	}
3448 
3449 out:
3450 	return rc;
3451 }
3452 
get_permissions_callback(void * k,void * d,void * args)3453 static int get_permissions_callback(void *k, void *d, void *args)
3454 {
3455 	struct perm_datum *datum = d;
3456 	char *name = k, **perms = args;
3457 	u32 value = datum->value - 1;
3458 
3459 	perms[value] = kstrdup(name, GFP_ATOMIC);
3460 	if (!perms[value])
3461 		return -ENOMEM;
3462 
3463 	return 0;
3464 }
3465 
security_get_permissions(struct selinux_policy * policy,const char * class,char *** perms,u32 * nperms)3466 int security_get_permissions(struct selinux_policy *policy,
3467 			     const char *class, char ***perms, u32 *nperms)
3468 {
3469 	struct policydb *policydb;
3470 	u32 i;
3471 	int rc;
3472 	struct class_datum *match;
3473 
3474 	policydb = &policy->policydb;
3475 
3476 	rc = -EINVAL;
3477 	match = symtab_search(&policydb->p_classes, class);
3478 	if (!match) {
3479 		pr_err("SELinux: %s:  unrecognized class %s\n",
3480 			__func__, class);
3481 		goto out;
3482 	}
3483 
3484 	rc = -ENOMEM;
3485 	*nperms = match->permissions.nprim;
3486 	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3487 	if (!*perms)
3488 		goto out;
3489 
3490 	if (match->comdatum) {
3491 		rc = hashtab_map(&match->comdatum->permissions.table,
3492 				 get_permissions_callback, *perms);
3493 		if (rc)
3494 			goto err;
3495 	}
3496 
3497 	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3498 			 *perms);
3499 	if (rc)
3500 		goto err;
3501 
3502 out:
3503 	return rc;
3504 
3505 err:
3506 	for (i = 0; i < *nperms; i++)
3507 		kfree((*perms)[i]);
3508 	kfree(*perms);
3509 	return rc;
3510 }
3511 
security_get_reject_unknown(void)3512 int security_get_reject_unknown(void)
3513 {
3514 	struct selinux_policy *policy;
3515 	int value;
3516 
3517 	if (!selinux_initialized())
3518 		return 0;
3519 
3520 	rcu_read_lock();
3521 	policy = rcu_dereference(selinux_state.policy);
3522 	value = policy->policydb.reject_unknown;
3523 	rcu_read_unlock();
3524 	return value;
3525 }
3526 
security_get_allow_unknown(void)3527 int security_get_allow_unknown(void)
3528 {
3529 	struct selinux_policy *policy;
3530 	int value;
3531 
3532 	if (!selinux_initialized())
3533 		return 0;
3534 
3535 	rcu_read_lock();
3536 	policy = rcu_dereference(selinux_state.policy);
3537 	value = policy->policydb.allow_unknown;
3538 	rcu_read_unlock();
3539 	return value;
3540 }
3541 
3542 /**
3543  * security_policycap_supported - Check for a specific policy capability
3544  * @req_cap: capability
3545  *
3546  * Description:
3547  * This function queries the currently loaded policy to see if it supports the
3548  * capability specified by @req_cap.  Returns true (1) if the capability is
3549  * supported, false (0) if it isn't supported.
3550  *
3551  */
security_policycap_supported(unsigned int req_cap)3552 int security_policycap_supported(unsigned int req_cap)
3553 {
3554 	struct selinux_policy *policy;
3555 	int rc;
3556 
3557 	if (!selinux_initialized())
3558 		return 0;
3559 
3560 	rcu_read_lock();
3561 	policy = rcu_dereference(selinux_state.policy);
3562 	rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3563 	rcu_read_unlock();
3564 
3565 	return rc;
3566 }
3567 
3568 struct selinux_audit_rule {
3569 	u32 au_seqno;
3570 	struct context au_ctxt;
3571 };
3572 
selinux_audit_rule_free(void * vrule)3573 void selinux_audit_rule_free(void *vrule)
3574 {
3575 	struct selinux_audit_rule *rule = vrule;
3576 
3577 	if (rule) {
3578 		context_destroy(&rule->au_ctxt);
3579 		kfree(rule);
3580 	}
3581 }
3582 
selinux_audit_rule_init(u32 field,u32 op,char * rulestr,void ** vrule,gfp_t gfp)3583 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule,
3584 			    gfp_t gfp)
3585 {
3586 	struct selinux_state *state = &selinux_state;
3587 	struct selinux_policy *policy;
3588 	struct policydb *policydb;
3589 	struct selinux_audit_rule *tmprule;
3590 	struct role_datum *roledatum;
3591 	struct type_datum *typedatum;
3592 	struct user_datum *userdatum;
3593 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3594 	int rc = 0;
3595 
3596 	*rule = NULL;
3597 
3598 	if (!selinux_initialized())
3599 		return -EOPNOTSUPP;
3600 
3601 	switch (field) {
3602 	case AUDIT_SUBJ_USER:
3603 	case AUDIT_SUBJ_ROLE:
3604 	case AUDIT_SUBJ_TYPE:
3605 	case AUDIT_OBJ_USER:
3606 	case AUDIT_OBJ_ROLE:
3607 	case AUDIT_OBJ_TYPE:
3608 		/* only 'equals' and 'not equals' fit user, role, and type */
3609 		if (op != Audit_equal && op != Audit_not_equal)
3610 			return -EINVAL;
3611 		break;
3612 	case AUDIT_SUBJ_SEN:
3613 	case AUDIT_SUBJ_CLR:
3614 	case AUDIT_OBJ_LEV_LOW:
3615 	case AUDIT_OBJ_LEV_HIGH:
3616 		/* we do not allow a range, indicated by the presence of '-' */
3617 		if (strchr(rulestr, '-'))
3618 			return -EINVAL;
3619 		break;
3620 	default:
3621 		/* only the above fields are valid */
3622 		return -EINVAL;
3623 	}
3624 
3625 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), gfp);
3626 	if (!tmprule)
3627 		return -ENOMEM;
3628 	context_init(&tmprule->au_ctxt);
3629 
3630 	rcu_read_lock();
3631 	policy = rcu_dereference(state->policy);
3632 	policydb = &policy->policydb;
3633 	tmprule->au_seqno = policy->latest_granting;
3634 	switch (field) {
3635 	case AUDIT_SUBJ_USER:
3636 	case AUDIT_OBJ_USER:
3637 		userdatum = symtab_search(&policydb->p_users, rulestr);
3638 		if (!userdatum) {
3639 			rc = -EINVAL;
3640 			goto err;
3641 		}
3642 		tmprule->au_ctxt.user = userdatum->value;
3643 		break;
3644 	case AUDIT_SUBJ_ROLE:
3645 	case AUDIT_OBJ_ROLE:
3646 		roledatum = symtab_search(&policydb->p_roles, rulestr);
3647 		if (!roledatum) {
3648 			rc = -EINVAL;
3649 			goto err;
3650 		}
3651 		tmprule->au_ctxt.role = roledatum->value;
3652 		break;
3653 	case AUDIT_SUBJ_TYPE:
3654 	case AUDIT_OBJ_TYPE:
3655 		typedatum = symtab_search(&policydb->p_types, rulestr);
3656 		if (!typedatum) {
3657 			rc = -EINVAL;
3658 			goto err;
3659 		}
3660 		tmprule->au_ctxt.type = typedatum->value;
3661 		break;
3662 	case AUDIT_SUBJ_SEN:
3663 	case AUDIT_SUBJ_CLR:
3664 	case AUDIT_OBJ_LEV_LOW:
3665 	case AUDIT_OBJ_LEV_HIGH:
3666 		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3667 				     GFP_ATOMIC);
3668 		if (rc)
3669 			goto err;
3670 		break;
3671 	}
3672 	rcu_read_unlock();
3673 
3674 	*rule = tmprule;
3675 	return 0;
3676 
3677 err:
3678 	rcu_read_unlock();
3679 	selinux_audit_rule_free(tmprule);
3680 	*rule = NULL;
3681 	return rc;
3682 }
3683 
3684 /* Check to see if the rule contains any selinux fields */
selinux_audit_rule_known(struct audit_krule * rule)3685 int selinux_audit_rule_known(struct audit_krule *rule)
3686 {
3687 	u32 i;
3688 
3689 	for (i = 0; i < rule->field_count; i++) {
3690 		struct audit_field *f = &rule->fields[i];
3691 		switch (f->type) {
3692 		case AUDIT_SUBJ_USER:
3693 		case AUDIT_SUBJ_ROLE:
3694 		case AUDIT_SUBJ_TYPE:
3695 		case AUDIT_SUBJ_SEN:
3696 		case AUDIT_SUBJ_CLR:
3697 		case AUDIT_OBJ_USER:
3698 		case AUDIT_OBJ_ROLE:
3699 		case AUDIT_OBJ_TYPE:
3700 		case AUDIT_OBJ_LEV_LOW:
3701 		case AUDIT_OBJ_LEV_HIGH:
3702 			return 1;
3703 		}
3704 	}
3705 
3706 	return 0;
3707 }
3708 
selinux_audit_rule_match(struct lsm_prop * prop,u32 field,u32 op,void * vrule)3709 int selinux_audit_rule_match(struct lsm_prop *prop, u32 field, u32 op, void *vrule)
3710 {
3711 	struct selinux_state *state = &selinux_state;
3712 	struct selinux_policy *policy;
3713 	struct context *ctxt;
3714 	struct mls_level *level;
3715 	struct selinux_audit_rule *rule = vrule;
3716 	int match = 0;
3717 
3718 	if (unlikely(!rule)) {
3719 		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3720 		return -ENOENT;
3721 	}
3722 
3723 	if (!selinux_initialized())
3724 		return 0;
3725 
3726 	rcu_read_lock();
3727 
3728 	policy = rcu_dereference(state->policy);
3729 
3730 	if (rule->au_seqno < policy->latest_granting) {
3731 		match = -ESTALE;
3732 		goto out;
3733 	}
3734 
3735 	ctxt = sidtab_search(policy->sidtab, prop->selinux.secid);
3736 	if (unlikely(!ctxt)) {
3737 		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3738 			  prop->selinux.secid);
3739 		match = -ENOENT;
3740 		goto out;
3741 	}
3742 
3743 	/* a field/op pair that is not caught here will simply fall through
3744 	   without a match */
3745 	switch (field) {
3746 	case AUDIT_SUBJ_USER:
3747 	case AUDIT_OBJ_USER:
3748 		switch (op) {
3749 		case Audit_equal:
3750 			match = (ctxt->user == rule->au_ctxt.user);
3751 			break;
3752 		case Audit_not_equal:
3753 			match = (ctxt->user != rule->au_ctxt.user);
3754 			break;
3755 		}
3756 		break;
3757 	case AUDIT_SUBJ_ROLE:
3758 	case AUDIT_OBJ_ROLE:
3759 		switch (op) {
3760 		case Audit_equal:
3761 			match = (ctxt->role == rule->au_ctxt.role);
3762 			break;
3763 		case Audit_not_equal:
3764 			match = (ctxt->role != rule->au_ctxt.role);
3765 			break;
3766 		}
3767 		break;
3768 	case AUDIT_SUBJ_TYPE:
3769 	case AUDIT_OBJ_TYPE:
3770 		switch (op) {
3771 		case Audit_equal:
3772 			match = (ctxt->type == rule->au_ctxt.type);
3773 			break;
3774 		case Audit_not_equal:
3775 			match = (ctxt->type != rule->au_ctxt.type);
3776 			break;
3777 		}
3778 		break;
3779 	case AUDIT_SUBJ_SEN:
3780 	case AUDIT_SUBJ_CLR:
3781 	case AUDIT_OBJ_LEV_LOW:
3782 	case AUDIT_OBJ_LEV_HIGH:
3783 		level = ((field == AUDIT_SUBJ_SEN ||
3784 			  field == AUDIT_OBJ_LEV_LOW) ?
3785 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3786 		switch (op) {
3787 		case Audit_equal:
3788 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3789 					     level);
3790 			break;
3791 		case Audit_not_equal:
3792 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3793 					      level);
3794 			break;
3795 		case Audit_lt:
3796 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3797 					       level) &&
3798 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3799 					       level));
3800 			break;
3801 		case Audit_le:
3802 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3803 					      level);
3804 			break;
3805 		case Audit_gt:
3806 			match = (mls_level_dom(level,
3807 					      &rule->au_ctxt.range.level[0]) &&
3808 				 !mls_level_eq(level,
3809 					       &rule->au_ctxt.range.level[0]));
3810 			break;
3811 		case Audit_ge:
3812 			match = mls_level_dom(level,
3813 					      &rule->au_ctxt.range.level[0]);
3814 			break;
3815 		}
3816 	}
3817 
3818 out:
3819 	rcu_read_unlock();
3820 	return match;
3821 }
3822 
aurule_avc_callback(u32 event)3823 static int aurule_avc_callback(u32 event)
3824 {
3825 	if (event == AVC_CALLBACK_RESET)
3826 		return audit_update_lsm_rules();
3827 	return 0;
3828 }
3829 
aurule_init(void)3830 static int __init aurule_init(void)
3831 {
3832 	int err;
3833 
3834 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3835 	if (err)
3836 		panic("avc_add_callback() failed, error %d\n", err);
3837 
3838 	return err;
3839 }
3840 __initcall(aurule_init);
3841 
3842 #ifdef CONFIG_NETLABEL
3843 /**
3844  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3845  * @secattr: the NetLabel packet security attributes
3846  * @sid: the SELinux SID
3847  *
3848  * Description:
3849  * Attempt to cache the context in @ctx, which was derived from the packet in
3850  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3851  * already been initialized.
3852  *
3853  */
security_netlbl_cache_add(struct netlbl_lsm_secattr * secattr,u32 sid)3854 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3855 				      u32 sid)
3856 {
3857 	u32 *sid_cache;
3858 
3859 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3860 	if (sid_cache == NULL)
3861 		return;
3862 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3863 	if (secattr->cache == NULL) {
3864 		kfree(sid_cache);
3865 		return;
3866 	}
3867 
3868 	*sid_cache = sid;
3869 	secattr->cache->free = kfree;
3870 	secattr->cache->data = sid_cache;
3871 	secattr->flags |= NETLBL_SECATTR_CACHE;
3872 }
3873 
3874 /**
3875  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3876  * @secattr: the NetLabel packet security attributes
3877  * @sid: the SELinux SID
3878  *
3879  * Description:
3880  * Convert the given NetLabel security attributes in @secattr into a
3881  * SELinux SID.  If the @secattr field does not contain a full SELinux
3882  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3883  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3884  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3885  * conversion for future lookups.  Returns zero on success, negative values on
3886  * failure.
3887  *
3888  */
security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr * secattr,u32 * sid)3889 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3890 				   u32 *sid)
3891 {
3892 	struct selinux_policy *policy;
3893 	struct policydb *policydb;
3894 	struct sidtab *sidtab;
3895 	int rc;
3896 	struct context *ctx;
3897 	struct context ctx_new;
3898 
3899 	if (!selinux_initialized()) {
3900 		*sid = SECSID_NULL;
3901 		return 0;
3902 	}
3903 
3904 retry:
3905 	rc = 0;
3906 	rcu_read_lock();
3907 	policy = rcu_dereference(selinux_state.policy);
3908 	policydb = &policy->policydb;
3909 	sidtab = policy->sidtab;
3910 
3911 	if (secattr->flags & NETLBL_SECATTR_CACHE)
3912 		*sid = *(u32 *)secattr->cache->data;
3913 	else if (secattr->flags & NETLBL_SECATTR_SECID)
3914 		*sid = secattr->attr.secid;
3915 	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3916 		rc = -EIDRM;
3917 		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3918 		if (ctx == NULL)
3919 			goto out;
3920 
3921 		context_init(&ctx_new);
3922 		ctx_new.user = ctx->user;
3923 		ctx_new.role = ctx->role;
3924 		ctx_new.type = ctx->type;
3925 		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3926 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3927 			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3928 			if (rc)
3929 				goto out;
3930 		}
3931 		rc = -EIDRM;
3932 		if (!mls_context_isvalid(policydb, &ctx_new)) {
3933 			ebitmap_destroy(&ctx_new.range.level[0].cat);
3934 			goto out;
3935 		}
3936 
3937 		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3938 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3939 		if (rc == -ESTALE) {
3940 			rcu_read_unlock();
3941 			goto retry;
3942 		}
3943 		if (rc)
3944 			goto out;
3945 
3946 		security_netlbl_cache_add(secattr, *sid);
3947 	} else
3948 		*sid = SECSID_NULL;
3949 
3950 out:
3951 	rcu_read_unlock();
3952 	return rc;
3953 }
3954 
3955 /**
3956  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3957  * @sid: the SELinux SID
3958  * @secattr: the NetLabel packet security attributes
3959  *
3960  * Description:
3961  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3962  * Returns zero on success, negative values on failure.
3963  *
3964  */
security_netlbl_sid_to_secattr(u32 sid,struct netlbl_lsm_secattr * secattr)3965 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3966 {
3967 	struct selinux_policy *policy;
3968 	struct policydb *policydb;
3969 	int rc;
3970 	struct context *ctx;
3971 
3972 	if (!selinux_initialized())
3973 		return 0;
3974 
3975 	rcu_read_lock();
3976 	policy = rcu_dereference(selinux_state.policy);
3977 	policydb = &policy->policydb;
3978 
3979 	rc = -ENOENT;
3980 	ctx = sidtab_search(policy->sidtab, sid);
3981 	if (ctx == NULL)
3982 		goto out;
3983 
3984 	rc = -ENOMEM;
3985 	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3986 				  GFP_ATOMIC);
3987 	if (secattr->domain == NULL)
3988 		goto out;
3989 
3990 	secattr->attr.secid = sid;
3991 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3992 	mls_export_netlbl_lvl(policydb, ctx, secattr);
3993 	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3994 out:
3995 	rcu_read_unlock();
3996 	return rc;
3997 }
3998 #endif /* CONFIG_NETLABEL */
3999 
4000 /**
4001  * __security_read_policy - read the policy.
4002  * @policy: SELinux policy
4003  * @data: binary policy data
4004  * @len: length of data in bytes
4005  *
4006  */
__security_read_policy(struct selinux_policy * policy,void * data,size_t * len)4007 static int __security_read_policy(struct selinux_policy *policy,
4008 				  void *data, size_t *len)
4009 {
4010 	int rc;
4011 	struct policy_file fp;
4012 
4013 	fp.data = data;
4014 	fp.len = *len;
4015 
4016 	rc = policydb_write(&policy->policydb, &fp);
4017 	if (rc)
4018 		return rc;
4019 
4020 	*len = (unsigned long)fp.data - (unsigned long)data;
4021 	return 0;
4022 }
4023 
4024 /**
4025  * security_read_policy - read the policy.
4026  * @data: binary policy data
4027  * @len: length of data in bytes
4028  *
4029  */
security_read_policy(void ** data,size_t * len)4030 int security_read_policy(void **data, size_t *len)
4031 {
4032 	struct selinux_state *state = &selinux_state;
4033 	struct selinux_policy *policy;
4034 
4035 	policy = rcu_dereference_protected(
4036 			state->policy, lockdep_is_held(&state->policy_mutex));
4037 	if (!policy)
4038 		return -EINVAL;
4039 
4040 	*len = policy->policydb.len;
4041 	*data = vmalloc_user(*len);
4042 	if (!*data)
4043 		return -ENOMEM;
4044 
4045 	return __security_read_policy(policy, *data, len);
4046 }
4047 
4048 /**
4049  * security_read_state_kernel - read the policy.
4050  * @data: binary policy data
4051  * @len: length of data in bytes
4052  *
4053  * Allocates kernel memory for reading SELinux policy.
4054  * This function is for internal use only and should not
4055  * be used for returning data to user space.
4056  *
4057  * This function must be called with policy_mutex held.
4058  */
security_read_state_kernel(void ** data,size_t * len)4059 int security_read_state_kernel(void **data, size_t *len)
4060 {
4061 	int err;
4062 	struct selinux_state *state = &selinux_state;
4063 	struct selinux_policy *policy;
4064 
4065 	policy = rcu_dereference_protected(
4066 			state->policy, lockdep_is_held(&state->policy_mutex));
4067 	if (!policy)
4068 		return -EINVAL;
4069 
4070 	*len = policy->policydb.len;
4071 	*data = vmalloc(*len);
4072 	if (!*data)
4073 		return -ENOMEM;
4074 
4075 	err = __security_read_policy(policy, *data, len);
4076 	if (err) {
4077 		vfree(*data);
4078 		*data = NULL;
4079 		*len = 0;
4080 	}
4081 	return err;
4082 }
4083