xref: /linux/drivers/md/dm-pcache/cache_segment.c (revision d358e5254674b70f34c847715ca509e46eb81e6f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 
3 #include "cache_dev.h"
4 #include "cache.h"
5 #include "backing_dev.h"
6 #include "dm_pcache.h"
7 
get_seg_info_addr(struct pcache_cache_segment * cache_seg)8 static inline struct pcache_segment_info *get_seg_info_addr(struct pcache_cache_segment *cache_seg)
9 {
10 	struct pcache_segment_info *seg_info_addr;
11 	u32 seg_id = cache_seg->segment.seg_id;
12 	void *seg_addr;
13 
14 	seg_addr = CACHE_DEV_SEGMENT(cache_seg->cache->cache_dev, seg_id);
15 	seg_info_addr = seg_addr + PCACHE_SEG_INFO_SIZE * cache_seg->info_index;
16 
17 	return seg_info_addr;
18 }
19 
cache_seg_info_write(struct pcache_cache_segment * cache_seg)20 static void cache_seg_info_write(struct pcache_cache_segment *cache_seg)
21 {
22 	struct pcache_segment_info *seg_info_addr;
23 	struct pcache_segment_info *seg_info = &cache_seg->cache_seg_info;
24 
25 	mutex_lock(&cache_seg->info_lock);
26 	seg_info->header.seq++;
27 	seg_info->header.crc = pcache_meta_crc(&seg_info->header, sizeof(struct pcache_segment_info));
28 
29 	cache_seg->info_index = (cache_seg->info_index + 1) % PCACHE_META_INDEX_MAX;
30 
31 	seg_info_addr = get_seg_info_addr(cache_seg);
32 	memcpy_flushcache(seg_info_addr, seg_info, sizeof(struct pcache_segment_info));
33 	pmem_wmb();
34 	mutex_unlock(&cache_seg->info_lock);
35 }
36 
cache_seg_info_load(struct pcache_cache_segment * cache_seg)37 static int cache_seg_info_load(struct pcache_cache_segment *cache_seg)
38 {
39 	struct pcache_segment_info *cache_seg_info_addr_base, *cache_seg_info_addr;
40 	struct pcache_cache_dev *cache_dev = cache_seg->cache->cache_dev;
41 	struct dm_pcache *pcache = CACHE_DEV_TO_PCACHE(cache_dev);
42 	u32 seg_id = cache_seg->segment.seg_id;
43 	int ret = 0;
44 
45 	cache_seg_info_addr_base = CACHE_DEV_SEGMENT(cache_dev, seg_id);
46 
47 	mutex_lock(&cache_seg->info_lock);
48 	cache_seg_info_addr = pcache_meta_find_latest(&cache_seg_info_addr_base->header,
49 						sizeof(struct pcache_segment_info),
50 						PCACHE_SEG_INFO_SIZE,
51 						&cache_seg->cache_seg_info);
52 	if (IS_ERR(cache_seg_info_addr)) {
53 		ret = PTR_ERR(cache_seg_info_addr);
54 		goto out;
55 	} else if (!cache_seg_info_addr) {
56 		ret = -EIO;
57 		goto out;
58 	}
59 
60 	cache_seg->info_index =
61 		((char *)cache_seg_info_addr - (char *)cache_seg_info_addr_base) /
62 		PCACHE_SEG_INFO_SIZE;
63 out:
64 	mutex_unlock(&cache_seg->info_lock);
65 
66 	if (ret)
67 		pcache_dev_err(pcache, "can't read segment info of segment: %u, ret: %d\n",
68 			      cache_seg->segment.seg_id, ret);
69 	return ret;
70 }
71 
cache_seg_ctrl_load(struct pcache_cache_segment * cache_seg)72 static int cache_seg_ctrl_load(struct pcache_cache_segment *cache_seg)
73 {
74 	struct pcache_cache_seg_ctrl *cache_seg_ctrl = cache_seg->cache_seg_ctrl;
75 	struct pcache_cache_seg_gen cache_seg_gen, *cache_seg_gen_addr;
76 	int ret = 0;
77 
78 	cache_seg_gen_addr = pcache_meta_find_latest(&cache_seg_ctrl->gen->header,
79 					     sizeof(struct pcache_cache_seg_gen),
80 					     sizeof(struct pcache_cache_seg_gen),
81 					     &cache_seg_gen);
82 	if (IS_ERR(cache_seg_gen_addr)) {
83 		ret = PTR_ERR(cache_seg_gen_addr);
84 		goto out;
85 	}
86 
87 	if (!cache_seg_gen_addr) {
88 		cache_seg->gen = 0;
89 		cache_seg->gen_seq = 0;
90 		cache_seg->gen_index = 0;
91 		goto out;
92 	}
93 
94 	cache_seg->gen = cache_seg_gen.gen;
95 	cache_seg->gen_seq = cache_seg_gen.header.seq;
96 	cache_seg->gen_index = (cache_seg_gen_addr - cache_seg_ctrl->gen);
97 out:
98 
99 	return ret;
100 }
101 
get_cache_seg_gen_addr(struct pcache_cache_segment * cache_seg)102 static inline struct pcache_cache_seg_gen *get_cache_seg_gen_addr(struct pcache_cache_segment *cache_seg)
103 {
104 	struct pcache_cache_seg_ctrl *cache_seg_ctrl = cache_seg->cache_seg_ctrl;
105 
106 	return (cache_seg_ctrl->gen + cache_seg->gen_index);
107 }
108 
109 /*
110  * cache_seg_ctrl_write - write cache segment control information
111  * @seg: the cache segment to update
112  *
113  * This function writes the control information of a cache segment to media.
114  *
115  * Although this updates shared control data, we intentionally do not use
116  * any locking here.  All accesses to control information are single-threaded:
117  *
118  *   - All reads occur during the init phase, where no concurrent writes
119  *     can happen.
120  *   - Writes happen once during init and once when the last reference
121  *     to the segment is dropped in cache_seg_put().
122  *
123  * Both cases are guaranteed to be single-threaded, so there is no risk
124  * of concurrent read/write races.
125  */
cache_seg_ctrl_write(struct pcache_cache_segment * cache_seg)126 static void cache_seg_ctrl_write(struct pcache_cache_segment *cache_seg)
127 {
128 	struct pcache_cache_seg_gen cache_seg_gen;
129 
130 	cache_seg_gen.gen = cache_seg->gen;
131 	cache_seg_gen.header.seq = ++cache_seg->gen_seq;
132 	cache_seg_gen.header.crc = pcache_meta_crc(&cache_seg_gen.header,
133 						 sizeof(struct pcache_cache_seg_gen));
134 
135 	cache_seg->gen_index = (cache_seg->gen_index + 1) % PCACHE_META_INDEX_MAX;
136 
137 	memcpy_flushcache(get_cache_seg_gen_addr(cache_seg), &cache_seg_gen, sizeof(struct pcache_cache_seg_gen));
138 	pmem_wmb();
139 }
140 
cache_seg_ctrl_init(struct pcache_cache_segment * cache_seg)141 static void cache_seg_ctrl_init(struct pcache_cache_segment *cache_seg)
142 {
143 	cache_seg->gen = 0;
144 	cache_seg->gen_seq = 0;
145 	cache_seg->gen_index = 0;
146 	cache_seg_ctrl_write(cache_seg);
147 }
148 
cache_seg_meta_load(struct pcache_cache_segment * cache_seg)149 static int cache_seg_meta_load(struct pcache_cache_segment *cache_seg)
150 {
151 	int ret;
152 
153 	ret = cache_seg_info_load(cache_seg);
154 	if (ret)
155 		goto err;
156 
157 	ret = cache_seg_ctrl_load(cache_seg);
158 	if (ret)
159 		goto err;
160 
161 	return 0;
162 err:
163 	return ret;
164 }
165 
166 /**
167  * cache_seg_set_next_seg - Sets the ID of the next segment
168  * @cache_seg: Pointer to the cache segment structure.
169  * @seg_id: The segment ID to set as the next segment.
170  *
171  * A pcache_cache allocates multiple cache segments, which are linked together
172  * through next_seg. When loading a pcache_cache, the first cache segment can
173  * be found using cache->seg_id, which allows access to all the cache segments.
174  */
cache_seg_set_next_seg(struct pcache_cache_segment * cache_seg,u32 seg_id)175 void cache_seg_set_next_seg(struct pcache_cache_segment *cache_seg, u32 seg_id)
176 {
177 	cache_seg->cache_seg_info.flags |= PCACHE_SEG_INFO_FLAGS_HAS_NEXT;
178 	cache_seg->cache_seg_info.next_seg = seg_id;
179 	cache_seg_info_write(cache_seg);
180 }
181 
cache_seg_init(struct pcache_cache * cache,u32 seg_id,u32 cache_seg_id,bool new_cache)182 int cache_seg_init(struct pcache_cache *cache, u32 seg_id, u32 cache_seg_id,
183 		   bool new_cache)
184 {
185 	struct pcache_cache_dev *cache_dev = cache->cache_dev;
186 	struct pcache_cache_segment *cache_seg = &cache->segments[cache_seg_id];
187 	struct pcache_segment_init_options seg_options = { 0 };
188 	struct pcache_segment *segment = &cache_seg->segment;
189 	int ret;
190 
191 	cache_seg->cache = cache;
192 	cache_seg->cache_seg_id = cache_seg_id;
193 	spin_lock_init(&cache_seg->gen_lock);
194 	atomic_set(&cache_seg->refs, 0);
195 	mutex_init(&cache_seg->info_lock);
196 
197 	/* init pcache_segment */
198 	seg_options.type = PCACHE_SEGMENT_TYPE_CACHE_DATA;
199 	seg_options.data_off = PCACHE_CACHE_SEG_CTRL_OFF + PCACHE_CACHE_SEG_CTRL_SIZE;
200 	seg_options.seg_id = seg_id;
201 	seg_options.seg_info = &cache_seg->cache_seg_info;
202 	pcache_segment_init(cache_dev, segment, &seg_options);
203 
204 	cache_seg->cache_seg_ctrl = CACHE_DEV_SEGMENT(cache_dev, seg_id) + PCACHE_CACHE_SEG_CTRL_OFF;
205 
206 	if (new_cache) {
207 		cache_dev_zero_range(cache_dev, CACHE_DEV_SEGMENT(cache_dev, seg_id),
208 				     PCACHE_SEG_INFO_SIZE * PCACHE_META_INDEX_MAX +
209 				     PCACHE_CACHE_SEG_CTRL_SIZE);
210 
211 		cache_seg_ctrl_init(cache_seg);
212 
213 		cache_seg->info_index = 0;
214 		cache_seg_info_write(cache_seg);
215 
216 		/* clear outdated kset in segment */
217 		memcpy_flushcache(segment->data, &pcache_empty_kset, sizeof(struct pcache_cache_kset_onmedia));
218 		pmem_wmb();
219 	} else {
220 		ret = cache_seg_meta_load(cache_seg);
221 		if (ret)
222 			goto err;
223 	}
224 
225 	return 0;
226 err:
227 	return ret;
228 }
229 
230 /**
231  * get_cache_segment - Retrieves a free cache segment from the cache.
232  * @cache: Pointer to the cache structure.
233  *
234  * This function attempts to find a free cache segment that can be used.
235  * It locks the segment map and checks for the next available segment ID.
236  * If a free segment is found, it initializes it and returns a pointer to the
237  * cache segment structure. Returns NULL if no segments are available.
238  */
get_cache_segment(struct pcache_cache * cache)239 struct pcache_cache_segment *get_cache_segment(struct pcache_cache *cache)
240 {
241 	struct pcache_cache_segment *cache_seg;
242 	u32 seg_id;
243 
244 	spin_lock(&cache->seg_map_lock);
245 again:
246 	seg_id = find_next_zero_bit(cache->seg_map, cache->n_segs, cache->last_cache_seg);
247 	if (seg_id == cache->n_segs) {
248 		/* reset the hint of ->last_cache_seg and retry */
249 		if (cache->last_cache_seg) {
250 			cache->last_cache_seg = 0;
251 			goto again;
252 		}
253 		cache->cache_full = true;
254 		spin_unlock(&cache->seg_map_lock);
255 		return NULL;
256 	}
257 
258 	/*
259 	 * found an available cache_seg, mark it used in seg_map
260 	 * and update the search hint ->last_cache_seg
261 	 */
262 	__set_bit(seg_id, cache->seg_map);
263 	cache->last_cache_seg = seg_id;
264 	spin_unlock(&cache->seg_map_lock);
265 
266 	cache_seg = &cache->segments[seg_id];
267 	cache_seg->cache_seg_id = seg_id;
268 
269 	return cache_seg;
270 }
271 
cache_seg_gen_increase(struct pcache_cache_segment * cache_seg)272 static void cache_seg_gen_increase(struct pcache_cache_segment *cache_seg)
273 {
274 	spin_lock(&cache_seg->gen_lock);
275 	cache_seg->gen++;
276 	spin_unlock(&cache_seg->gen_lock);
277 
278 	cache_seg_ctrl_write(cache_seg);
279 }
280 
cache_seg_get(struct pcache_cache_segment * cache_seg)281 void cache_seg_get(struct pcache_cache_segment *cache_seg)
282 {
283 	atomic_inc(&cache_seg->refs);
284 }
285 
cache_seg_invalidate(struct pcache_cache_segment * cache_seg)286 static void cache_seg_invalidate(struct pcache_cache_segment *cache_seg)
287 {
288 	struct pcache_cache *cache;
289 
290 	cache = cache_seg->cache;
291 	cache_seg_gen_increase(cache_seg);
292 
293 	spin_lock(&cache->seg_map_lock);
294 	if (cache->cache_full)
295 		cache->cache_full = false;
296 	__clear_bit(cache_seg->cache_seg_id, cache->seg_map);
297 	spin_unlock(&cache->seg_map_lock);
298 
299 	pcache_defer_reqs_kick(CACHE_TO_PCACHE(cache));
300 	/* clean_work will clean the bad key in key_tree*/
301 	queue_work(cache_get_wq(cache), &cache->clean_work);
302 }
303 
cache_seg_put(struct pcache_cache_segment * cache_seg)304 void cache_seg_put(struct pcache_cache_segment *cache_seg)
305 {
306 	if (atomic_dec_and_test(&cache_seg->refs))
307 		cache_seg_invalidate(cache_seg);
308 }
309