xref: /linux/drivers/gpu/drm/amd/amdgpu/sdma_v3_0.c (revision 2c1ed907520c50326b8f604907a8478b27881a2e)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Alex Deucher
23  */
24 
25 #include <linux/delay.h>
26 #include <linux/firmware.h>
27 #include <linux/module.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32 #include "vi.h"
33 #include "vid.h"
34 
35 #include "oss/oss_3_0_d.h"
36 #include "oss/oss_3_0_sh_mask.h"
37 
38 #include "gmc/gmc_8_1_d.h"
39 #include "gmc/gmc_8_1_sh_mask.h"
40 
41 #include "gca/gfx_8_0_d.h"
42 #include "gca/gfx_8_0_enum.h"
43 #include "gca/gfx_8_0_sh_mask.h"
44 
45 #include "bif/bif_5_0_d.h"
46 #include "bif/bif_5_0_sh_mask.h"
47 
48 #include "tonga_sdma_pkt_open.h"
49 
50 #include "ivsrcid/ivsrcid_vislands30.h"
51 
52 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
53 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
54 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
55 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
56 
57 MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
58 MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
59 MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
60 MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
61 MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
63 MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
64 MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
65 MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
66 MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
67 MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
68 MODULE_FIRMWARE("amdgpu/polaris12_sdma.bin");
69 MODULE_FIRMWARE("amdgpu/polaris12_sdma1.bin");
70 MODULE_FIRMWARE("amdgpu/vegam_sdma.bin");
71 MODULE_FIRMWARE("amdgpu/vegam_sdma1.bin");
72 
73 
74 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
75 {
76 	SDMA0_REGISTER_OFFSET,
77 	SDMA1_REGISTER_OFFSET
78 };
79 
80 static const u32 golden_settings_tonga_a11[] =
81 {
82 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
83 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
84 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
85 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
86 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
87 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
88 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
89 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
90 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
91 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
92 };
93 
94 static const u32 tonga_mgcg_cgcg_init[] =
95 {
96 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
97 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
98 };
99 
100 static const u32 golden_settings_fiji_a10[] =
101 {
102 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
103 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
104 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
105 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
106 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
107 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
108 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
109 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
110 };
111 
112 static const u32 fiji_mgcg_cgcg_init[] =
113 {
114 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
115 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
116 };
117 
118 static const u32 golden_settings_polaris11_a11[] =
119 {
120 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
121 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
122 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
123 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
124 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
125 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
126 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
127 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
128 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
129 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
130 };
131 
132 static const u32 golden_settings_polaris10_a11[] =
133 {
134 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
135 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
136 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
137 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
138 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
139 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
140 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
141 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
142 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
143 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
144 };
145 
146 static const u32 cz_golden_settings_a11[] =
147 {
148 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
149 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
150 	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
151 	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
152 	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
153 	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
154 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
155 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
156 	mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
157 	mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
158 	mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
159 	mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
160 };
161 
162 static const u32 cz_mgcg_cgcg_init[] =
163 {
164 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
165 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
166 };
167 
168 static const u32 stoney_golden_settings_a11[] =
169 {
170 	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
171 	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
172 	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
173 	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
174 };
175 
176 static const u32 stoney_mgcg_cgcg_init[] =
177 {
178 	mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
179 };
180 
181 /*
182  * sDMA - System DMA
183  * Starting with CIK, the GPU has new asynchronous
184  * DMA engines.  These engines are used for compute
185  * and gfx.  There are two DMA engines (SDMA0, SDMA1)
186  * and each one supports 1 ring buffer used for gfx
187  * and 2 queues used for compute.
188  *
189  * The programming model is very similar to the CP
190  * (ring buffer, IBs, etc.), but sDMA has it's own
191  * packet format that is different from the PM4 format
192  * used by the CP. sDMA supports copying data, writing
193  * embedded data, solid fills, and a number of other
194  * things.  It also has support for tiling/detiling of
195  * buffers.
196  */
197 
sdma_v3_0_init_golden_registers(struct amdgpu_device * adev)198 static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
199 {
200 	switch (adev->asic_type) {
201 	case CHIP_FIJI:
202 		amdgpu_device_program_register_sequence(adev,
203 							fiji_mgcg_cgcg_init,
204 							ARRAY_SIZE(fiji_mgcg_cgcg_init));
205 		amdgpu_device_program_register_sequence(adev,
206 							golden_settings_fiji_a10,
207 							ARRAY_SIZE(golden_settings_fiji_a10));
208 		break;
209 	case CHIP_TONGA:
210 		amdgpu_device_program_register_sequence(adev,
211 							tonga_mgcg_cgcg_init,
212 							ARRAY_SIZE(tonga_mgcg_cgcg_init));
213 		amdgpu_device_program_register_sequence(adev,
214 							golden_settings_tonga_a11,
215 							ARRAY_SIZE(golden_settings_tonga_a11));
216 		break;
217 	case CHIP_POLARIS11:
218 	case CHIP_POLARIS12:
219 	case CHIP_VEGAM:
220 		amdgpu_device_program_register_sequence(adev,
221 							golden_settings_polaris11_a11,
222 							ARRAY_SIZE(golden_settings_polaris11_a11));
223 		break;
224 	case CHIP_POLARIS10:
225 		amdgpu_device_program_register_sequence(adev,
226 							golden_settings_polaris10_a11,
227 							ARRAY_SIZE(golden_settings_polaris10_a11));
228 		break;
229 	case CHIP_CARRIZO:
230 		amdgpu_device_program_register_sequence(adev,
231 							cz_mgcg_cgcg_init,
232 							ARRAY_SIZE(cz_mgcg_cgcg_init));
233 		amdgpu_device_program_register_sequence(adev,
234 							cz_golden_settings_a11,
235 							ARRAY_SIZE(cz_golden_settings_a11));
236 		break;
237 	case CHIP_STONEY:
238 		amdgpu_device_program_register_sequence(adev,
239 							stoney_mgcg_cgcg_init,
240 							ARRAY_SIZE(stoney_mgcg_cgcg_init));
241 		amdgpu_device_program_register_sequence(adev,
242 							stoney_golden_settings_a11,
243 							ARRAY_SIZE(stoney_golden_settings_a11));
244 		break;
245 	default:
246 		break;
247 	}
248 }
249 
sdma_v3_0_free_microcode(struct amdgpu_device * adev)250 static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
251 {
252 	int i;
253 
254 	for (i = 0; i < adev->sdma.num_instances; i++)
255 		amdgpu_ucode_release(&adev->sdma.instance[i].fw);
256 }
257 
258 /**
259  * sdma_v3_0_init_microcode - load ucode images from disk
260  *
261  * @adev: amdgpu_device pointer
262  *
263  * Use the firmware interface to load the ucode images into
264  * the driver (not loaded into hw).
265  * Returns 0 on success, error on failure.
266  */
sdma_v3_0_init_microcode(struct amdgpu_device * adev)267 static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
268 {
269 	const char *chip_name;
270 	int err = 0, i;
271 	struct amdgpu_firmware_info *info = NULL;
272 	const struct common_firmware_header *header = NULL;
273 	const struct sdma_firmware_header_v1_0 *hdr;
274 
275 	DRM_DEBUG("\n");
276 
277 	switch (adev->asic_type) {
278 	case CHIP_TONGA:
279 		chip_name = "tonga";
280 		break;
281 	case CHIP_FIJI:
282 		chip_name = "fiji";
283 		break;
284 	case CHIP_POLARIS10:
285 		chip_name = "polaris10";
286 		break;
287 	case CHIP_POLARIS11:
288 		chip_name = "polaris11";
289 		break;
290 	case CHIP_POLARIS12:
291 		chip_name = "polaris12";
292 		break;
293 	case CHIP_VEGAM:
294 		chip_name = "vegam";
295 		break;
296 	case CHIP_CARRIZO:
297 		chip_name = "carrizo";
298 		break;
299 	case CHIP_STONEY:
300 		chip_name = "stoney";
301 		break;
302 	default: BUG();
303 	}
304 
305 	for (i = 0; i < adev->sdma.num_instances; i++) {
306 		if (i == 0)
307 			err = amdgpu_ucode_request(adev, &adev->sdma.instance[i].fw,
308 						   AMDGPU_UCODE_REQUIRED,
309 						   "amdgpu/%s_sdma.bin", chip_name);
310 		else
311 			err = amdgpu_ucode_request(adev, &adev->sdma.instance[i].fw,
312 						   AMDGPU_UCODE_REQUIRED,
313 						   "amdgpu/%s_sdma1.bin", chip_name);
314 		if (err)
315 			goto out;
316 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
317 		adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
318 		adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
319 		if (adev->sdma.instance[i].feature_version >= 20)
320 			adev->sdma.instance[i].burst_nop = true;
321 
322 		info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
323 		info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
324 		info->fw = adev->sdma.instance[i].fw;
325 		header = (const struct common_firmware_header *)info->fw->data;
326 		adev->firmware.fw_size +=
327 			ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
328 
329 	}
330 out:
331 	if (err) {
332 		pr_err("sdma_v3_0: Failed to load firmware \"%s_sdma%s.bin\"\n",
333 		       chip_name, i == 0 ? "" : "1");
334 		for (i = 0; i < adev->sdma.num_instances; i++)
335 			amdgpu_ucode_release(&adev->sdma.instance[i].fw);
336 	}
337 	return err;
338 }
339 
340 /**
341  * sdma_v3_0_ring_get_rptr - get the current read pointer
342  *
343  * @ring: amdgpu ring pointer
344  *
345  * Get the current rptr from the hardware (VI+).
346  */
sdma_v3_0_ring_get_rptr(struct amdgpu_ring * ring)347 static uint64_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
348 {
349 	/* XXX check if swapping is necessary on BE */
350 	return *ring->rptr_cpu_addr >> 2;
351 }
352 
353 /**
354  * sdma_v3_0_ring_get_wptr - get the current write pointer
355  *
356  * @ring: amdgpu ring pointer
357  *
358  * Get the current wptr from the hardware (VI+).
359  */
sdma_v3_0_ring_get_wptr(struct amdgpu_ring * ring)360 static uint64_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
361 {
362 	struct amdgpu_device *adev = ring->adev;
363 	u32 wptr;
364 
365 	if (ring->use_doorbell || ring->use_pollmem) {
366 		/* XXX check if swapping is necessary on BE */
367 		wptr = *ring->wptr_cpu_addr >> 2;
368 	} else {
369 		wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me]) >> 2;
370 	}
371 
372 	return wptr;
373 }
374 
375 /**
376  * sdma_v3_0_ring_set_wptr - commit the write pointer
377  *
378  * @ring: amdgpu ring pointer
379  *
380  * Write the wptr back to the hardware (VI+).
381  */
sdma_v3_0_ring_set_wptr(struct amdgpu_ring * ring)382 static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
383 {
384 	struct amdgpu_device *adev = ring->adev;
385 
386 	if (ring->use_doorbell) {
387 		u32 *wb = (u32 *)ring->wptr_cpu_addr;
388 		/* XXX check if swapping is necessary on BE */
389 		WRITE_ONCE(*wb, ring->wptr << 2);
390 		WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
391 	} else if (ring->use_pollmem) {
392 		u32 *wb = (u32 *)ring->wptr_cpu_addr;
393 
394 		WRITE_ONCE(*wb, ring->wptr << 2);
395 	} else {
396 		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me], ring->wptr << 2);
397 	}
398 }
399 
sdma_v3_0_ring_insert_nop(struct amdgpu_ring * ring,uint32_t count)400 static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
401 {
402 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
403 	int i;
404 
405 	for (i = 0; i < count; i++)
406 		if (sdma && sdma->burst_nop && (i == 0))
407 			amdgpu_ring_write(ring, ring->funcs->nop |
408 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
409 		else
410 			amdgpu_ring_write(ring, ring->funcs->nop);
411 }
412 
413 /**
414  * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
415  *
416  * @ring: amdgpu ring pointer
417  * @job: job to retrieve vmid from
418  * @ib: IB object to schedule
419  * @flags: unused
420  *
421  * Schedule an IB in the DMA ring (VI).
422  */
sdma_v3_0_ring_emit_ib(struct amdgpu_ring * ring,struct amdgpu_job * job,struct amdgpu_ib * ib,uint32_t flags)423 static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
424 				   struct amdgpu_job *job,
425 				   struct amdgpu_ib *ib,
426 				   uint32_t flags)
427 {
428 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
429 
430 	/* IB packet must end on a 8 DW boundary */
431 	sdma_v3_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
432 
433 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
434 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
435 	/* base must be 32 byte aligned */
436 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
437 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
438 	amdgpu_ring_write(ring, ib->length_dw);
439 	amdgpu_ring_write(ring, 0);
440 	amdgpu_ring_write(ring, 0);
441 
442 }
443 
444 /**
445  * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
446  *
447  * @ring: amdgpu ring pointer
448  *
449  * Emit an hdp flush packet on the requested DMA ring.
450  */
sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring * ring)451 static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
452 {
453 	u32 ref_and_mask = 0;
454 
455 	if (ring->me == 0)
456 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
457 	else
458 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
459 
460 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
461 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
462 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
463 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
464 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
465 	amdgpu_ring_write(ring, ref_and_mask); /* reference */
466 	amdgpu_ring_write(ring, ref_and_mask); /* mask */
467 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
468 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
469 }
470 
471 /**
472  * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
473  *
474  * @ring: amdgpu ring pointer
475  * @addr: address
476  * @seq: sequence number
477  * @flags: fence related flags
478  *
479  * Add a DMA fence packet to the ring to write
480  * the fence seq number and DMA trap packet to generate
481  * an interrupt if needed (VI).
482  */
sdma_v3_0_ring_emit_fence(struct amdgpu_ring * ring,u64 addr,u64 seq,unsigned flags)483 static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
484 				      unsigned flags)
485 {
486 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
487 	/* write the fence */
488 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
489 	amdgpu_ring_write(ring, lower_32_bits(addr));
490 	amdgpu_ring_write(ring, upper_32_bits(addr));
491 	amdgpu_ring_write(ring, lower_32_bits(seq));
492 
493 	/* optionally write high bits as well */
494 	if (write64bit) {
495 		addr += 4;
496 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
497 		amdgpu_ring_write(ring, lower_32_bits(addr));
498 		amdgpu_ring_write(ring, upper_32_bits(addr));
499 		amdgpu_ring_write(ring, upper_32_bits(seq));
500 	}
501 
502 	/* generate an interrupt */
503 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
504 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
505 }
506 
507 /**
508  * sdma_v3_0_gfx_stop - stop the gfx async dma engines
509  *
510  * @adev: amdgpu_device pointer
511  *
512  * Stop the gfx async dma ring buffers (VI).
513  */
sdma_v3_0_gfx_stop(struct amdgpu_device * adev)514 static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
515 {
516 	u32 rb_cntl, ib_cntl;
517 	int i;
518 
519 	for (i = 0; i < adev->sdma.num_instances; i++) {
520 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
521 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
522 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
523 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
524 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
525 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
526 	}
527 }
528 
529 /**
530  * sdma_v3_0_rlc_stop - stop the compute async dma engines
531  *
532  * @adev: amdgpu_device pointer
533  *
534  * Stop the compute async dma queues (VI).
535  */
sdma_v3_0_rlc_stop(struct amdgpu_device * adev)536 static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
537 {
538 	/* XXX todo */
539 }
540 
541 /**
542  * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
543  *
544  * @adev: amdgpu_device pointer
545  * @enable: enable/disable the DMA MEs context switch.
546  *
547  * Halt or unhalt the async dma engines context switch (VI).
548  */
sdma_v3_0_ctx_switch_enable(struct amdgpu_device * adev,bool enable)549 static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
550 {
551 	u32 f32_cntl, phase_quantum = 0;
552 	int i;
553 
554 	if (amdgpu_sdma_phase_quantum) {
555 		unsigned value = amdgpu_sdma_phase_quantum;
556 		unsigned unit = 0;
557 
558 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
559 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
560 			value = (value + 1) >> 1;
561 			unit++;
562 		}
563 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
564 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
565 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
566 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
567 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
568 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
569 			WARN_ONCE(1,
570 			"clamping sdma_phase_quantum to %uK clock cycles\n",
571 				  value << unit);
572 		}
573 		phase_quantum =
574 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
575 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
576 	}
577 
578 	for (i = 0; i < adev->sdma.num_instances; i++) {
579 		f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
580 		if (enable) {
581 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
582 					AUTO_CTXSW_ENABLE, 1);
583 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
584 					ATC_L1_ENABLE, 1);
585 			if (amdgpu_sdma_phase_quantum) {
586 				WREG32(mmSDMA0_PHASE0_QUANTUM + sdma_offsets[i],
587 				       phase_quantum);
588 				WREG32(mmSDMA0_PHASE1_QUANTUM + sdma_offsets[i],
589 				       phase_quantum);
590 			}
591 		} else {
592 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
593 					AUTO_CTXSW_ENABLE, 0);
594 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
595 					ATC_L1_ENABLE, 1);
596 		}
597 
598 		WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
599 	}
600 }
601 
602 /**
603  * sdma_v3_0_enable - stop the async dma engines
604  *
605  * @adev: amdgpu_device pointer
606  * @enable: enable/disable the DMA MEs.
607  *
608  * Halt or unhalt the async dma engines (VI).
609  */
sdma_v3_0_enable(struct amdgpu_device * adev,bool enable)610 static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
611 {
612 	u32 f32_cntl;
613 	int i;
614 
615 	if (!enable) {
616 		sdma_v3_0_gfx_stop(adev);
617 		sdma_v3_0_rlc_stop(adev);
618 	}
619 
620 	for (i = 0; i < adev->sdma.num_instances; i++) {
621 		f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
622 		if (enable)
623 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
624 		else
625 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
626 		WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
627 	}
628 }
629 
630 /**
631  * sdma_v3_0_gfx_resume - setup and start the async dma engines
632  *
633  * @adev: amdgpu_device pointer
634  *
635  * Set up the gfx DMA ring buffers and enable them (VI).
636  * Returns 0 for success, error for failure.
637  */
sdma_v3_0_gfx_resume(struct amdgpu_device * adev)638 static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
639 {
640 	struct amdgpu_ring *ring;
641 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
642 	u32 rb_bufsz;
643 	u32 doorbell;
644 	u64 wptr_gpu_addr;
645 	int i, j, r;
646 
647 	for (i = 0; i < adev->sdma.num_instances; i++) {
648 		ring = &adev->sdma.instance[i].ring;
649 		amdgpu_ring_clear_ring(ring);
650 
651 		mutex_lock(&adev->srbm_mutex);
652 		for (j = 0; j < 16; j++) {
653 			vi_srbm_select(adev, 0, 0, 0, j);
654 			/* SDMA GFX */
655 			WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
656 			WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
657 		}
658 		vi_srbm_select(adev, 0, 0, 0, 0);
659 		mutex_unlock(&adev->srbm_mutex);
660 
661 		WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
662 		       adev->gfx.config.gb_addr_config & 0x70);
663 
664 		WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
665 
666 		/* Set ring buffer size in dwords */
667 		rb_bufsz = order_base_2(ring->ring_size / 4);
668 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
669 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
670 #ifdef __BIG_ENDIAN
671 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
672 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
673 					RPTR_WRITEBACK_SWAP_ENABLE, 1);
674 #endif
675 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
676 
677 		/* Initialize the ring buffer's read and write pointers */
678 		ring->wptr = 0;
679 		WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
680 		sdma_v3_0_ring_set_wptr(ring);
681 		WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
682 		WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
683 
684 		/* set the wb address whether it's enabled or not */
685 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
686 		       upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF);
687 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
688 		       lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC);
689 
690 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
691 
692 		WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
693 		WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
694 
695 		doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
696 
697 		if (ring->use_doorbell) {
698 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
699 						 OFFSET, ring->doorbell_index);
700 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
701 		} else {
702 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
703 		}
704 		WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
705 
706 		/* setup the wptr shadow polling */
707 		wptr_gpu_addr = ring->wptr_gpu_addr;
708 
709 		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO + sdma_offsets[i],
710 		       lower_32_bits(wptr_gpu_addr));
711 		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI + sdma_offsets[i],
712 		       upper_32_bits(wptr_gpu_addr));
713 		wptr_poll_cntl = RREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i]);
714 		if (ring->use_pollmem) {
715 			/*wptr polling is not enough fast, directly clean the wptr register */
716 			WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
717 			wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
718 						       SDMA0_GFX_RB_WPTR_POLL_CNTL,
719 						       ENABLE, 1);
720 		} else {
721 			wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
722 						       SDMA0_GFX_RB_WPTR_POLL_CNTL,
723 						       ENABLE, 0);
724 		}
725 		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i], wptr_poll_cntl);
726 
727 		/* enable DMA RB */
728 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
729 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
730 
731 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
732 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
733 #ifdef __BIG_ENDIAN
734 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
735 #endif
736 		/* enable DMA IBs */
737 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
738 	}
739 
740 	/* unhalt the MEs */
741 	sdma_v3_0_enable(adev, true);
742 	/* enable sdma ring preemption */
743 	sdma_v3_0_ctx_switch_enable(adev, true);
744 
745 	for (i = 0; i < adev->sdma.num_instances; i++) {
746 		ring = &adev->sdma.instance[i].ring;
747 		r = amdgpu_ring_test_helper(ring);
748 		if (r)
749 			return r;
750 	}
751 
752 	return 0;
753 }
754 
755 /**
756  * sdma_v3_0_rlc_resume - setup and start the async dma engines
757  *
758  * @adev: amdgpu_device pointer
759  *
760  * Set up the compute DMA queues and enable them (VI).
761  * Returns 0 for success, error for failure.
762  */
sdma_v3_0_rlc_resume(struct amdgpu_device * adev)763 static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
764 {
765 	/* XXX todo */
766 	return 0;
767 }
768 
769 /**
770  * sdma_v3_0_start - setup and start the async dma engines
771  *
772  * @adev: amdgpu_device pointer
773  *
774  * Set up the DMA engines and enable them (VI).
775  * Returns 0 for success, error for failure.
776  */
sdma_v3_0_start(struct amdgpu_device * adev)777 static int sdma_v3_0_start(struct amdgpu_device *adev)
778 {
779 	int r;
780 
781 	/* disable sdma engine before programing it */
782 	sdma_v3_0_ctx_switch_enable(adev, false);
783 	sdma_v3_0_enable(adev, false);
784 
785 	/* start the gfx rings and rlc compute queues */
786 	r = sdma_v3_0_gfx_resume(adev);
787 	if (r)
788 		return r;
789 	r = sdma_v3_0_rlc_resume(adev);
790 	if (r)
791 		return r;
792 
793 	return 0;
794 }
795 
796 /**
797  * sdma_v3_0_ring_test_ring - simple async dma engine test
798  *
799  * @ring: amdgpu_ring structure holding ring information
800  *
801  * Test the DMA engine by writing using it to write an
802  * value to memory. (VI).
803  * Returns 0 for success, error for failure.
804  */
sdma_v3_0_ring_test_ring(struct amdgpu_ring * ring)805 static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
806 {
807 	struct amdgpu_device *adev = ring->adev;
808 	unsigned i;
809 	unsigned index;
810 	int r;
811 	u32 tmp;
812 	u64 gpu_addr;
813 
814 	r = amdgpu_device_wb_get(adev, &index);
815 	if (r)
816 		return r;
817 
818 	gpu_addr = adev->wb.gpu_addr + (index * 4);
819 	tmp = 0xCAFEDEAD;
820 	adev->wb.wb[index] = cpu_to_le32(tmp);
821 
822 	r = amdgpu_ring_alloc(ring, 5);
823 	if (r)
824 		goto error_free_wb;
825 
826 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
827 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
828 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
829 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
830 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
831 	amdgpu_ring_write(ring, 0xDEADBEEF);
832 	amdgpu_ring_commit(ring);
833 
834 	for (i = 0; i < adev->usec_timeout; i++) {
835 		tmp = le32_to_cpu(adev->wb.wb[index]);
836 		if (tmp == 0xDEADBEEF)
837 			break;
838 		udelay(1);
839 	}
840 
841 	if (i >= adev->usec_timeout)
842 		r = -ETIMEDOUT;
843 
844 error_free_wb:
845 	amdgpu_device_wb_free(adev, index);
846 	return r;
847 }
848 
849 /**
850  * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
851  *
852  * @ring: amdgpu_ring structure holding ring information
853  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
854  *
855  * Test a simple IB in the DMA ring (VI).
856  * Returns 0 on success, error on failure.
857  */
sdma_v3_0_ring_test_ib(struct amdgpu_ring * ring,long timeout)858 static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
859 {
860 	struct amdgpu_device *adev = ring->adev;
861 	struct amdgpu_ib ib;
862 	struct dma_fence *f = NULL;
863 	unsigned index;
864 	u32 tmp = 0;
865 	u64 gpu_addr;
866 	long r;
867 
868 	r = amdgpu_device_wb_get(adev, &index);
869 	if (r)
870 		return r;
871 
872 	gpu_addr = adev->wb.gpu_addr + (index * 4);
873 	tmp = 0xCAFEDEAD;
874 	adev->wb.wb[index] = cpu_to_le32(tmp);
875 	memset(&ib, 0, sizeof(ib));
876 	r = amdgpu_ib_get(adev, NULL, 256,
877 					AMDGPU_IB_POOL_DIRECT, &ib);
878 	if (r)
879 		goto err0;
880 
881 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
882 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
883 	ib.ptr[1] = lower_32_bits(gpu_addr);
884 	ib.ptr[2] = upper_32_bits(gpu_addr);
885 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
886 	ib.ptr[4] = 0xDEADBEEF;
887 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
888 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
889 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
890 	ib.length_dw = 8;
891 
892 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
893 	if (r)
894 		goto err1;
895 
896 	r = dma_fence_wait_timeout(f, false, timeout);
897 	if (r == 0) {
898 		r = -ETIMEDOUT;
899 		goto err1;
900 	} else if (r < 0) {
901 		goto err1;
902 	}
903 	tmp = le32_to_cpu(adev->wb.wb[index]);
904 	if (tmp == 0xDEADBEEF)
905 		r = 0;
906 	else
907 		r = -EINVAL;
908 err1:
909 	amdgpu_ib_free(&ib, NULL);
910 	dma_fence_put(f);
911 err0:
912 	amdgpu_device_wb_free(adev, index);
913 	return r;
914 }
915 
916 /**
917  * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
918  *
919  * @ib: indirect buffer to fill with commands
920  * @pe: addr of the page entry
921  * @src: src addr to copy from
922  * @count: number of page entries to update
923  *
924  * Update PTEs by copying them from the GART using sDMA (CIK).
925  */
sdma_v3_0_vm_copy_pte(struct amdgpu_ib * ib,uint64_t pe,uint64_t src,unsigned count)926 static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
927 				  uint64_t pe, uint64_t src,
928 				  unsigned count)
929 {
930 	unsigned bytes = count * 8;
931 
932 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
933 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
934 	ib->ptr[ib->length_dw++] = bytes;
935 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
936 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
937 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
938 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
939 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
940 }
941 
942 /**
943  * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
944  *
945  * @ib: indirect buffer to fill with commands
946  * @pe: addr of the page entry
947  * @value: dst addr to write into pe
948  * @count: number of page entries to update
949  * @incr: increase next addr by incr bytes
950  *
951  * Update PTEs by writing them manually using sDMA (CIK).
952  */
sdma_v3_0_vm_write_pte(struct amdgpu_ib * ib,uint64_t pe,uint64_t value,unsigned count,uint32_t incr)953 static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
954 				   uint64_t value, unsigned count,
955 				   uint32_t incr)
956 {
957 	unsigned ndw = count * 2;
958 
959 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
960 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
961 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
962 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
963 	ib->ptr[ib->length_dw++] = ndw;
964 	for (; ndw > 0; ndw -= 2) {
965 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
966 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
967 		value += incr;
968 	}
969 }
970 
971 /**
972  * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
973  *
974  * @ib: indirect buffer to fill with commands
975  * @pe: addr of the page entry
976  * @addr: dst addr to write into pe
977  * @count: number of page entries to update
978  * @incr: increase next addr by incr bytes
979  * @flags: access flags
980  *
981  * Update the page tables using sDMA (CIK).
982  */
sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib * ib,uint64_t pe,uint64_t addr,unsigned count,uint32_t incr,uint64_t flags)983 static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
984 				     uint64_t addr, unsigned count,
985 				     uint32_t incr, uint64_t flags)
986 {
987 	/* for physically contiguous pages (vram) */
988 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
989 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
990 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
991 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
992 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
993 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
994 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
995 	ib->ptr[ib->length_dw++] = incr; /* increment size */
996 	ib->ptr[ib->length_dw++] = 0;
997 	ib->ptr[ib->length_dw++] = count; /* number of entries */
998 }
999 
1000 /**
1001  * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
1002  *
1003  * @ring: amdgpu_ring structure holding ring information
1004  * @ib: indirect buffer to fill with padding
1005  *
1006  */
sdma_v3_0_ring_pad_ib(struct amdgpu_ring * ring,struct amdgpu_ib * ib)1007 static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1008 {
1009 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1010 	u32 pad_count;
1011 	int i;
1012 
1013 	pad_count = (-ib->length_dw) & 7;
1014 	for (i = 0; i < pad_count; i++)
1015 		if (sdma && sdma->burst_nop && (i == 0))
1016 			ib->ptr[ib->length_dw++] =
1017 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1018 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1019 		else
1020 			ib->ptr[ib->length_dw++] =
1021 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1022 }
1023 
1024 /**
1025  * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
1026  *
1027  * @ring: amdgpu_ring pointer
1028  *
1029  * Make sure all previous operations are completed (CIK).
1030  */
sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring * ring)1031 static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1032 {
1033 	uint32_t seq = ring->fence_drv.sync_seq;
1034 	uint64_t addr = ring->fence_drv.gpu_addr;
1035 
1036 	/* wait for idle */
1037 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1038 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1039 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1040 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1041 	amdgpu_ring_write(ring, addr & 0xfffffffc);
1042 	amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1043 	amdgpu_ring_write(ring, seq); /* reference */
1044 	amdgpu_ring_write(ring, 0xffffffff); /* mask */
1045 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1046 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1047 }
1048 
1049 /**
1050  * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
1051  *
1052  * @ring: amdgpu_ring pointer
1053  * @vmid: vmid number to use
1054  * @pd_addr: address
1055  *
1056  * Update the page table base and flush the VM TLB
1057  * using sDMA (VI).
1058  */
sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring * ring,unsigned vmid,uint64_t pd_addr)1059 static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1060 					 unsigned vmid, uint64_t pd_addr)
1061 {
1062 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1063 
1064 	/* wait for flush */
1065 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1066 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1067 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
1068 	amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
1069 	amdgpu_ring_write(ring, 0);
1070 	amdgpu_ring_write(ring, 0); /* reference */
1071 	amdgpu_ring_write(ring, 0); /* mask */
1072 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1073 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
1074 }
1075 
sdma_v3_0_ring_emit_wreg(struct amdgpu_ring * ring,uint32_t reg,uint32_t val)1076 static void sdma_v3_0_ring_emit_wreg(struct amdgpu_ring *ring,
1077 				     uint32_t reg, uint32_t val)
1078 {
1079 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1080 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1081 	amdgpu_ring_write(ring, reg);
1082 	amdgpu_ring_write(ring, val);
1083 }
1084 
sdma_v3_0_early_init(struct amdgpu_ip_block * ip_block)1085 static int sdma_v3_0_early_init(struct amdgpu_ip_block *ip_block)
1086 {
1087 	struct amdgpu_device *adev = ip_block->adev;
1088 	int r;
1089 
1090 	switch (adev->asic_type) {
1091 	case CHIP_STONEY:
1092 		adev->sdma.num_instances = 1;
1093 		break;
1094 	default:
1095 		adev->sdma.num_instances = SDMA_MAX_INSTANCE;
1096 		break;
1097 	}
1098 
1099 	r = sdma_v3_0_init_microcode(adev);
1100 	if (r)
1101 		return r;
1102 
1103 	sdma_v3_0_set_ring_funcs(adev);
1104 	sdma_v3_0_set_buffer_funcs(adev);
1105 	sdma_v3_0_set_vm_pte_funcs(adev);
1106 	sdma_v3_0_set_irq_funcs(adev);
1107 
1108 	return 0;
1109 }
1110 
sdma_v3_0_sw_init(struct amdgpu_ip_block * ip_block)1111 static int sdma_v3_0_sw_init(struct amdgpu_ip_block *ip_block)
1112 {
1113 	struct amdgpu_ring *ring;
1114 	int r, i;
1115 	struct amdgpu_device *adev = ip_block->adev;
1116 
1117 	/* SDMA trap event */
1118 	r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_TRAP,
1119 			      &adev->sdma.trap_irq);
1120 	if (r)
1121 		return r;
1122 
1123 	/* SDMA Privileged inst */
1124 	r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, 241,
1125 			      &adev->sdma.illegal_inst_irq);
1126 	if (r)
1127 		return r;
1128 
1129 	/* SDMA Privileged inst */
1130 	r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_SRBM_WRITE,
1131 			      &adev->sdma.illegal_inst_irq);
1132 	if (r)
1133 		return r;
1134 
1135 	for (i = 0; i < adev->sdma.num_instances; i++) {
1136 		ring = &adev->sdma.instance[i].ring;
1137 		ring->ring_obj = NULL;
1138 		if (!amdgpu_sriov_vf(adev)) {
1139 			ring->use_doorbell = true;
1140 			ring->doorbell_index = adev->doorbell_index.sdma_engine[i];
1141 		} else {
1142 			ring->use_pollmem = true;
1143 		}
1144 
1145 		sprintf(ring->name, "sdma%d", i);
1146 		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1147 				     (i == 0) ? AMDGPU_SDMA_IRQ_INSTANCE0 :
1148 				     AMDGPU_SDMA_IRQ_INSTANCE1,
1149 				     AMDGPU_RING_PRIO_DEFAULT, NULL);
1150 		if (r)
1151 			return r;
1152 	}
1153 
1154 	return r;
1155 }
1156 
sdma_v3_0_sw_fini(struct amdgpu_ip_block * ip_block)1157 static int sdma_v3_0_sw_fini(struct amdgpu_ip_block *ip_block)
1158 {
1159 	struct amdgpu_device *adev = ip_block->adev;
1160 	int i;
1161 
1162 	for (i = 0; i < adev->sdma.num_instances; i++)
1163 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1164 
1165 	sdma_v3_0_free_microcode(adev);
1166 	return 0;
1167 }
1168 
sdma_v3_0_hw_init(struct amdgpu_ip_block * ip_block)1169 static int sdma_v3_0_hw_init(struct amdgpu_ip_block *ip_block)
1170 {
1171 	int r;
1172 	struct amdgpu_device *adev = ip_block->adev;
1173 
1174 	sdma_v3_0_init_golden_registers(adev);
1175 
1176 	r = sdma_v3_0_start(adev);
1177 	if (r)
1178 		return r;
1179 
1180 	return r;
1181 }
1182 
sdma_v3_0_hw_fini(struct amdgpu_ip_block * ip_block)1183 static int sdma_v3_0_hw_fini(struct amdgpu_ip_block *ip_block)
1184 {
1185 	struct amdgpu_device *adev = ip_block->adev;
1186 
1187 	sdma_v3_0_ctx_switch_enable(adev, false);
1188 	sdma_v3_0_enable(adev, false);
1189 
1190 	return 0;
1191 }
1192 
sdma_v3_0_suspend(struct amdgpu_ip_block * ip_block)1193 static int sdma_v3_0_suspend(struct amdgpu_ip_block *ip_block)
1194 {
1195 	return sdma_v3_0_hw_fini(ip_block);
1196 }
1197 
sdma_v3_0_resume(struct amdgpu_ip_block * ip_block)1198 static int sdma_v3_0_resume(struct amdgpu_ip_block *ip_block)
1199 {
1200 	return sdma_v3_0_hw_init(ip_block);
1201 }
1202 
sdma_v3_0_is_idle(void * handle)1203 static bool sdma_v3_0_is_idle(void *handle)
1204 {
1205 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1206 	u32 tmp = RREG32(mmSRBM_STATUS2);
1207 
1208 	if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1209 		   SRBM_STATUS2__SDMA1_BUSY_MASK))
1210 	    return false;
1211 
1212 	return true;
1213 }
1214 
sdma_v3_0_wait_for_idle(struct amdgpu_ip_block * ip_block)1215 static int sdma_v3_0_wait_for_idle(struct amdgpu_ip_block *ip_block)
1216 {
1217 	unsigned i;
1218 	u32 tmp;
1219 	struct amdgpu_device *adev = ip_block->adev;
1220 
1221 	for (i = 0; i < adev->usec_timeout; i++) {
1222 		tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1223 				SRBM_STATUS2__SDMA1_BUSY_MASK);
1224 
1225 		if (!tmp)
1226 			return 0;
1227 		udelay(1);
1228 	}
1229 	return -ETIMEDOUT;
1230 }
1231 
sdma_v3_0_check_soft_reset(struct amdgpu_ip_block * ip_block)1232 static bool sdma_v3_0_check_soft_reset(struct amdgpu_ip_block *ip_block)
1233 {
1234 	struct amdgpu_device *adev = ip_block->adev;
1235 	u32 srbm_soft_reset = 0;
1236 	u32 tmp = RREG32(mmSRBM_STATUS2);
1237 
1238 	if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) ||
1239 	    (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) {
1240 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1241 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1242 	}
1243 
1244 	if (srbm_soft_reset) {
1245 		adev->sdma.srbm_soft_reset = srbm_soft_reset;
1246 		return true;
1247 	} else {
1248 		adev->sdma.srbm_soft_reset = 0;
1249 		return false;
1250 	}
1251 }
1252 
sdma_v3_0_pre_soft_reset(struct amdgpu_ip_block * ip_block)1253 static int sdma_v3_0_pre_soft_reset(struct amdgpu_ip_block *ip_block)
1254 {
1255 	struct amdgpu_device *adev = ip_block->adev;
1256 	u32 srbm_soft_reset = 0;
1257 
1258 	if (!adev->sdma.srbm_soft_reset)
1259 		return 0;
1260 
1261 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1262 
1263 	if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1264 	    REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1265 		sdma_v3_0_ctx_switch_enable(adev, false);
1266 		sdma_v3_0_enable(adev, false);
1267 	}
1268 
1269 	return 0;
1270 }
1271 
sdma_v3_0_post_soft_reset(struct amdgpu_ip_block * ip_block)1272 static int sdma_v3_0_post_soft_reset(struct amdgpu_ip_block *ip_block)
1273 {
1274 	struct amdgpu_device *adev = ip_block->adev;
1275 	u32 srbm_soft_reset = 0;
1276 
1277 	if (!adev->sdma.srbm_soft_reset)
1278 		return 0;
1279 
1280 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1281 
1282 	if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1283 	    REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1284 		sdma_v3_0_gfx_resume(adev);
1285 		sdma_v3_0_rlc_resume(adev);
1286 	}
1287 
1288 	return 0;
1289 }
1290 
sdma_v3_0_soft_reset(struct amdgpu_ip_block * ip_block)1291 static int sdma_v3_0_soft_reset(struct amdgpu_ip_block *ip_block)
1292 {
1293 	struct amdgpu_device *adev = ip_block->adev;
1294 	u32 srbm_soft_reset = 0;
1295 	u32 tmp;
1296 
1297 	if (!adev->sdma.srbm_soft_reset)
1298 		return 0;
1299 
1300 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1301 
1302 	if (srbm_soft_reset) {
1303 		tmp = RREG32(mmSRBM_SOFT_RESET);
1304 		tmp |= srbm_soft_reset;
1305 		dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1306 		WREG32(mmSRBM_SOFT_RESET, tmp);
1307 		tmp = RREG32(mmSRBM_SOFT_RESET);
1308 
1309 		udelay(50);
1310 
1311 		tmp &= ~srbm_soft_reset;
1312 		WREG32(mmSRBM_SOFT_RESET, tmp);
1313 		tmp = RREG32(mmSRBM_SOFT_RESET);
1314 
1315 		/* Wait a little for things to settle down */
1316 		udelay(50);
1317 	}
1318 
1319 	return 0;
1320 }
1321 
sdma_v3_0_set_trap_irq_state(struct amdgpu_device * adev,struct amdgpu_irq_src * source,unsigned type,enum amdgpu_interrupt_state state)1322 static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
1323 					struct amdgpu_irq_src *source,
1324 					unsigned type,
1325 					enum amdgpu_interrupt_state state)
1326 {
1327 	u32 sdma_cntl;
1328 
1329 	switch (type) {
1330 	case AMDGPU_SDMA_IRQ_INSTANCE0:
1331 		switch (state) {
1332 		case AMDGPU_IRQ_STATE_DISABLE:
1333 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1334 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1335 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1336 			break;
1337 		case AMDGPU_IRQ_STATE_ENABLE:
1338 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1339 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1340 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1341 			break;
1342 		default:
1343 			break;
1344 		}
1345 		break;
1346 	case AMDGPU_SDMA_IRQ_INSTANCE1:
1347 		switch (state) {
1348 		case AMDGPU_IRQ_STATE_DISABLE:
1349 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1350 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1351 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1352 			break;
1353 		case AMDGPU_IRQ_STATE_ENABLE:
1354 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1355 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1356 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1357 			break;
1358 		default:
1359 			break;
1360 		}
1361 		break;
1362 	default:
1363 		break;
1364 	}
1365 	return 0;
1366 }
1367 
sdma_v3_0_process_trap_irq(struct amdgpu_device * adev,struct amdgpu_irq_src * source,struct amdgpu_iv_entry * entry)1368 static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
1369 				      struct amdgpu_irq_src *source,
1370 				      struct amdgpu_iv_entry *entry)
1371 {
1372 	u8 instance_id, queue_id;
1373 
1374 	instance_id = (entry->ring_id & 0x3) >> 0;
1375 	queue_id = (entry->ring_id & 0xc) >> 2;
1376 	DRM_DEBUG("IH: SDMA trap\n");
1377 	switch (instance_id) {
1378 	case 0:
1379 		switch (queue_id) {
1380 		case 0:
1381 			amdgpu_fence_process(&adev->sdma.instance[0].ring);
1382 			break;
1383 		case 1:
1384 			/* XXX compute */
1385 			break;
1386 		case 2:
1387 			/* XXX compute */
1388 			break;
1389 		}
1390 		break;
1391 	case 1:
1392 		switch (queue_id) {
1393 		case 0:
1394 			amdgpu_fence_process(&adev->sdma.instance[1].ring);
1395 			break;
1396 		case 1:
1397 			/* XXX compute */
1398 			break;
1399 		case 2:
1400 			/* XXX compute */
1401 			break;
1402 		}
1403 		break;
1404 	}
1405 	return 0;
1406 }
1407 
sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device * adev,struct amdgpu_irq_src * source,struct amdgpu_iv_entry * entry)1408 static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1409 					      struct amdgpu_irq_src *source,
1410 					      struct amdgpu_iv_entry *entry)
1411 {
1412 	u8 instance_id, queue_id;
1413 
1414 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1415 	instance_id = (entry->ring_id & 0x3) >> 0;
1416 	queue_id = (entry->ring_id & 0xc) >> 2;
1417 
1418 	if (instance_id <= 1 && queue_id == 0)
1419 		drm_sched_fault(&adev->sdma.instance[instance_id].ring.sched);
1420 	return 0;
1421 }
1422 
sdma_v3_0_update_sdma_medium_grain_clock_gating(struct amdgpu_device * adev,bool enable)1423 static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
1424 		struct amdgpu_device *adev,
1425 		bool enable)
1426 {
1427 	uint32_t temp, data;
1428 	int i;
1429 
1430 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1431 		for (i = 0; i < adev->sdma.num_instances; i++) {
1432 			temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1433 			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1434 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1435 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1436 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1437 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1438 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1439 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1440 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1441 			if (data != temp)
1442 				WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1443 		}
1444 	} else {
1445 		for (i = 0; i < adev->sdma.num_instances; i++) {
1446 			temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1447 			data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1448 				SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1449 				SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1450 				SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1451 				SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1452 				SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1453 				SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1454 				SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
1455 
1456 			if (data != temp)
1457 				WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1458 		}
1459 	}
1460 }
1461 
sdma_v3_0_update_sdma_medium_grain_light_sleep(struct amdgpu_device * adev,bool enable)1462 static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
1463 		struct amdgpu_device *adev,
1464 		bool enable)
1465 {
1466 	uint32_t temp, data;
1467 	int i;
1468 
1469 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1470 		for (i = 0; i < adev->sdma.num_instances; i++) {
1471 			temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1472 			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1473 
1474 			if (temp != data)
1475 				WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1476 		}
1477 	} else {
1478 		for (i = 0; i < adev->sdma.num_instances; i++) {
1479 			temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1480 			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1481 
1482 			if (temp != data)
1483 				WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1484 		}
1485 	}
1486 }
1487 
sdma_v3_0_set_clockgating_state(struct amdgpu_ip_block * ip_block,enum amd_clockgating_state state)1488 static int sdma_v3_0_set_clockgating_state(struct amdgpu_ip_block *ip_block,
1489 					  enum amd_clockgating_state state)
1490 {
1491 	struct amdgpu_device *adev = ip_block->adev;
1492 
1493 	if (amdgpu_sriov_vf(adev))
1494 		return 0;
1495 
1496 	switch (adev->asic_type) {
1497 	case CHIP_FIJI:
1498 	case CHIP_CARRIZO:
1499 	case CHIP_STONEY:
1500 		sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
1501 				state == AMD_CG_STATE_GATE);
1502 		sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
1503 				state == AMD_CG_STATE_GATE);
1504 		break;
1505 	default:
1506 		break;
1507 	}
1508 	return 0;
1509 }
1510 
sdma_v3_0_set_powergating_state(struct amdgpu_ip_block * ip_block,enum amd_powergating_state state)1511 static int sdma_v3_0_set_powergating_state(struct amdgpu_ip_block *ip_block,
1512 					  enum amd_powergating_state state)
1513 {
1514 	return 0;
1515 }
1516 
sdma_v3_0_get_clockgating_state(void * handle,u64 * flags)1517 static void sdma_v3_0_get_clockgating_state(void *handle, u64 *flags)
1518 {
1519 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1520 	int data;
1521 
1522 	if (amdgpu_sriov_vf(adev))
1523 		*flags = 0;
1524 
1525 	/* AMD_CG_SUPPORT_SDMA_MGCG */
1526 	data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[0]);
1527 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK))
1528 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1529 
1530 	/* AMD_CG_SUPPORT_SDMA_LS */
1531 	data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[0]);
1532 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1533 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
1534 }
1535 
1536 static const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
1537 	.name = "sdma_v3_0",
1538 	.early_init = sdma_v3_0_early_init,
1539 	.sw_init = sdma_v3_0_sw_init,
1540 	.sw_fini = sdma_v3_0_sw_fini,
1541 	.hw_init = sdma_v3_0_hw_init,
1542 	.hw_fini = sdma_v3_0_hw_fini,
1543 	.suspend = sdma_v3_0_suspend,
1544 	.resume = sdma_v3_0_resume,
1545 	.is_idle = sdma_v3_0_is_idle,
1546 	.wait_for_idle = sdma_v3_0_wait_for_idle,
1547 	.check_soft_reset = sdma_v3_0_check_soft_reset,
1548 	.pre_soft_reset = sdma_v3_0_pre_soft_reset,
1549 	.post_soft_reset = sdma_v3_0_post_soft_reset,
1550 	.soft_reset = sdma_v3_0_soft_reset,
1551 	.set_clockgating_state = sdma_v3_0_set_clockgating_state,
1552 	.set_powergating_state = sdma_v3_0_set_powergating_state,
1553 	.get_clockgating_state = sdma_v3_0_get_clockgating_state,
1554 };
1555 
1556 static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
1557 	.type = AMDGPU_RING_TYPE_SDMA,
1558 	.align_mask = 0xf,
1559 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1560 	.support_64bit_ptrs = false,
1561 	.secure_submission_supported = true,
1562 	.get_rptr = sdma_v3_0_ring_get_rptr,
1563 	.get_wptr = sdma_v3_0_ring_get_wptr,
1564 	.set_wptr = sdma_v3_0_ring_set_wptr,
1565 	.emit_frame_size =
1566 		6 + /* sdma_v3_0_ring_emit_hdp_flush */
1567 		3 + /* hdp invalidate */
1568 		6 + /* sdma_v3_0_ring_emit_pipeline_sync */
1569 		VI_FLUSH_GPU_TLB_NUM_WREG * 3 + 6 + /* sdma_v3_0_ring_emit_vm_flush */
1570 		10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */
1571 	.emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */
1572 	.emit_ib = sdma_v3_0_ring_emit_ib,
1573 	.emit_fence = sdma_v3_0_ring_emit_fence,
1574 	.emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
1575 	.emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
1576 	.emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
1577 	.test_ring = sdma_v3_0_ring_test_ring,
1578 	.test_ib = sdma_v3_0_ring_test_ib,
1579 	.insert_nop = sdma_v3_0_ring_insert_nop,
1580 	.pad_ib = sdma_v3_0_ring_pad_ib,
1581 	.emit_wreg = sdma_v3_0_ring_emit_wreg,
1582 };
1583 
sdma_v3_0_set_ring_funcs(struct amdgpu_device * adev)1584 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
1585 {
1586 	int i;
1587 
1588 	for (i = 0; i < adev->sdma.num_instances; i++) {
1589 		adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
1590 		adev->sdma.instance[i].ring.me = i;
1591 	}
1592 }
1593 
1594 static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
1595 	.set = sdma_v3_0_set_trap_irq_state,
1596 	.process = sdma_v3_0_process_trap_irq,
1597 };
1598 
1599 static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
1600 	.process = sdma_v3_0_process_illegal_inst_irq,
1601 };
1602 
sdma_v3_0_set_irq_funcs(struct amdgpu_device * adev)1603 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
1604 {
1605 	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1606 	adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
1607 	adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
1608 }
1609 
1610 /**
1611  * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
1612  *
1613  * @ib: indirect buffer to copy to
1614  * @src_offset: src GPU address
1615  * @dst_offset: dst GPU address
1616  * @byte_count: number of bytes to xfer
1617  * @copy_flags: unused
1618  *
1619  * Copy GPU buffers using the DMA engine (VI).
1620  * Used by the amdgpu ttm implementation to move pages if
1621  * registered as the asic copy callback.
1622  */
sdma_v3_0_emit_copy_buffer(struct amdgpu_ib * ib,uint64_t src_offset,uint64_t dst_offset,uint32_t byte_count,uint32_t copy_flags)1623 static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
1624 				       uint64_t src_offset,
1625 				       uint64_t dst_offset,
1626 				       uint32_t byte_count,
1627 				       uint32_t copy_flags)
1628 {
1629 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1630 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1631 	ib->ptr[ib->length_dw++] = byte_count;
1632 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1633 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1634 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1635 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1636 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1637 }
1638 
1639 /**
1640  * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
1641  *
1642  * @ib: indirect buffer to copy to
1643  * @src_data: value to write to buffer
1644  * @dst_offset: dst GPU address
1645  * @byte_count: number of bytes to xfer
1646  *
1647  * Fill GPU buffers using the DMA engine (VI).
1648  */
sdma_v3_0_emit_fill_buffer(struct amdgpu_ib * ib,uint32_t src_data,uint64_t dst_offset,uint32_t byte_count)1649 static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
1650 				       uint32_t src_data,
1651 				       uint64_t dst_offset,
1652 				       uint32_t byte_count)
1653 {
1654 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1655 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1656 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1657 	ib->ptr[ib->length_dw++] = src_data;
1658 	ib->ptr[ib->length_dw++] = byte_count;
1659 }
1660 
1661 static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
1662 	.copy_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1663 	.copy_num_dw = 7,
1664 	.emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
1665 
1666 	.fill_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1667 	.fill_num_dw = 5,
1668 	.emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
1669 };
1670 
sdma_v3_0_set_buffer_funcs(struct amdgpu_device * adev)1671 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
1672 {
1673 	adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
1674 	adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1675 }
1676 
1677 static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
1678 	.copy_pte_num_dw = 7,
1679 	.copy_pte = sdma_v3_0_vm_copy_pte,
1680 
1681 	.write_pte = sdma_v3_0_vm_write_pte,
1682 	.set_pte_pde = sdma_v3_0_vm_set_pte_pde,
1683 };
1684 
sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device * adev)1685 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1686 {
1687 	unsigned i;
1688 
1689 	adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
1690 	for (i = 0; i < adev->sdma.num_instances; i++) {
1691 		adev->vm_manager.vm_pte_scheds[i] =
1692 			 &adev->sdma.instance[i].ring.sched;
1693 	}
1694 	adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
1695 }
1696 
1697 const struct amdgpu_ip_block_version sdma_v3_0_ip_block =
1698 {
1699 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1700 	.major = 3,
1701 	.minor = 0,
1702 	.rev = 0,
1703 	.funcs = &sdma_v3_0_ip_funcs,
1704 };
1705 
1706 const struct amdgpu_ip_block_version sdma_v3_1_ip_block =
1707 {
1708 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1709 	.major = 3,
1710 	.minor = 1,
1711 	.rev = 0,
1712 	.funcs = &sdma_v3_0_ip_funcs,
1713 };
1714