xref: /linux/kernel/sched/ext.c (revision 36ae1c45b2cede43ab2fc679b450060bbf119f1b)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst
4  *
5  * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
6  * Copyright (c) 2022 Tejun Heo <tj@kernel.org>
7  * Copyright (c) 2022 David Vernet <dvernet@meta.com>
8  */
9 #include <linux/btf_ids.h>
10 #include "ext_idle.h"
11 
12 /*
13  * NOTE: sched_ext is in the process of growing multiple scheduler support and
14  * scx_root usage is in a transitional state. Naked dereferences are safe if the
15  * caller is one of the tasks attached to SCX and explicit RCU dereference is
16  * necessary otherwise. Naked scx_root dereferences trigger sparse warnings but
17  * are used as temporary markers to indicate that the dereferences need to be
18  * updated to point to the associated scheduler instances rather than scx_root.
19  */
20 static struct scx_sched __rcu *scx_root;
21 
22 /*
23  * During exit, a task may schedule after losing its PIDs. When disabling the
24  * BPF scheduler, we need to be able to iterate tasks in every state to
25  * guarantee system safety. Maintain a dedicated task list which contains every
26  * task between its fork and eventual free.
27  */
28 static DEFINE_RAW_SPINLOCK(scx_tasks_lock);
29 static LIST_HEAD(scx_tasks);
30 
31 /* ops enable/disable */
32 static DEFINE_MUTEX(scx_enable_mutex);
33 DEFINE_STATIC_KEY_FALSE(__scx_enabled);
34 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem);
35 static atomic_t scx_enable_state_var = ATOMIC_INIT(SCX_DISABLED);
36 static int scx_bypass_depth;
37 static cpumask_var_t scx_bypass_lb_donee_cpumask;
38 static cpumask_var_t scx_bypass_lb_resched_cpumask;
39 static bool scx_aborting;
40 static bool scx_init_task_enabled;
41 static bool scx_switching_all;
42 DEFINE_STATIC_KEY_FALSE(__scx_switched_all);
43 
44 /*
45  * Tracks whether scx_enable() called scx_bypass(true). Used to balance bypass
46  * depth on enable failure. Will be removed when bypass depth is moved into the
47  * sched instance.
48  */
49 static bool scx_bypassed_for_enable;
50 
51 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0);
52 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0);
53 
54 /*
55  * A monotically increasing sequence number that is incremented every time a
56  * scheduler is enabled. This can be used by to check if any custom sched_ext
57  * scheduler has ever been used in the system.
58  */
59 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0);
60 
61 /*
62  * The maximum amount of time in jiffies that a task may be runnable without
63  * being scheduled on a CPU. If this timeout is exceeded, it will trigger
64  * scx_error().
65  */
66 static unsigned long scx_watchdog_timeout;
67 
68 /*
69  * The last time the delayed work was run. This delayed work relies on
70  * ksoftirqd being able to run to service timer interrupts, so it's possible
71  * that this work itself could get wedged. To account for this, we check that
72  * it's not stalled in the timer tick, and trigger an error if it is.
73  */
74 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES;
75 
76 static struct delayed_work scx_watchdog_work;
77 
78 /*
79  * For %SCX_KICK_WAIT: Each CPU has a pointer to an array of kick_sync sequence
80  * numbers. The arrays are allocated with kvzalloc() as size can exceed percpu
81  * allocator limits on large machines. O(nr_cpu_ids^2) allocation, allocated
82  * lazily when enabling and freed when disabling to avoid waste when sched_ext
83  * isn't active.
84  */
85 struct scx_kick_syncs {
86 	struct rcu_head		rcu;
87 	unsigned long		syncs[];
88 };
89 
90 static DEFINE_PER_CPU(struct scx_kick_syncs __rcu *, scx_kick_syncs);
91 
92 /*
93  * Direct dispatch marker.
94  *
95  * Non-NULL values are used for direct dispatch from enqueue path. A valid
96  * pointer points to the task currently being enqueued. An ERR_PTR value is used
97  * to indicate that direct dispatch has already happened.
98  */
99 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task);
100 
101 static const struct rhashtable_params dsq_hash_params = {
102 	.key_len		= sizeof_field(struct scx_dispatch_q, id),
103 	.key_offset		= offsetof(struct scx_dispatch_q, id),
104 	.head_offset		= offsetof(struct scx_dispatch_q, hash_node),
105 };
106 
107 static LLIST_HEAD(dsqs_to_free);
108 
109 /* dispatch buf */
110 struct scx_dsp_buf_ent {
111 	struct task_struct	*task;
112 	unsigned long		qseq;
113 	u64			dsq_id;
114 	u64			enq_flags;
115 };
116 
117 static u32 scx_dsp_max_batch;
118 
119 struct scx_dsp_ctx {
120 	struct rq		*rq;
121 	u32			cursor;
122 	u32			nr_tasks;
123 	struct scx_dsp_buf_ent	buf[];
124 };
125 
126 static struct scx_dsp_ctx __percpu *scx_dsp_ctx;
127 
128 /* string formatting from BPF */
129 struct scx_bstr_buf {
130 	u64			data[MAX_BPRINTF_VARARGS];
131 	char			line[SCX_EXIT_MSG_LEN];
132 };
133 
134 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock);
135 static struct scx_bstr_buf scx_exit_bstr_buf;
136 
137 /* ops debug dump */
138 struct scx_dump_data {
139 	s32			cpu;
140 	bool			first;
141 	s32			cursor;
142 	struct seq_buf		*s;
143 	const char		*prefix;
144 	struct scx_bstr_buf	buf;
145 };
146 
147 static struct scx_dump_data scx_dump_data = {
148 	.cpu			= -1,
149 };
150 
151 /* /sys/kernel/sched_ext interface */
152 static struct kset *scx_kset;
153 
154 /*
155  * Parameters that can be adjusted through /sys/module/sched_ext/parameters.
156  * There usually is no reason to modify these as normal scheduler operation
157  * shouldn't be affected by them. The knobs are primarily for debugging.
158  */
159 static u64 scx_slice_dfl = SCX_SLICE_DFL;
160 static unsigned int scx_slice_bypass_us = SCX_SLICE_BYPASS / NSEC_PER_USEC;
161 static unsigned int scx_bypass_lb_intv_us = SCX_BYPASS_LB_DFL_INTV_US;
162 
163 static int set_slice_us(const char *val, const struct kernel_param *kp)
164 {
165 	return param_set_uint_minmax(val, kp, 100, 100 * USEC_PER_MSEC);
166 }
167 
168 static const struct kernel_param_ops slice_us_param_ops = {
169 	.set = set_slice_us,
170 	.get = param_get_uint,
171 };
172 
173 static int set_bypass_lb_intv_us(const char *val, const struct kernel_param *kp)
174 {
175 	return param_set_uint_minmax(val, kp, 0, 10 * USEC_PER_SEC);
176 }
177 
178 static const struct kernel_param_ops bypass_lb_intv_us_param_ops = {
179 	.set = set_bypass_lb_intv_us,
180 	.get = param_get_uint,
181 };
182 
183 #undef MODULE_PARAM_PREFIX
184 #define MODULE_PARAM_PREFIX	"sched_ext."
185 
186 module_param_cb(slice_bypass_us, &slice_us_param_ops, &scx_slice_bypass_us, 0600);
187 MODULE_PARM_DESC(slice_bypass_us, "bypass slice in microseconds, applied on [un]load (100us to 100ms)");
188 module_param_cb(bypass_lb_intv_us, &bypass_lb_intv_us_param_ops, &scx_bypass_lb_intv_us, 0600);
189 MODULE_PARM_DESC(bypass_lb_intv_us, "bypass load balance interval in microseconds (0 (disable) to 10s)");
190 
191 #undef MODULE_PARAM_PREFIX
192 
193 #define CREATE_TRACE_POINTS
194 #include <trace/events/sched_ext.h>
195 
196 static void process_ddsp_deferred_locals(struct rq *rq);
197 static bool task_dead_and_done(struct task_struct *p);
198 static u32 reenq_local(struct rq *rq);
199 static void scx_kick_cpu(struct scx_sched *sch, s32 cpu, u64 flags);
200 static bool scx_vexit(struct scx_sched *sch, enum scx_exit_kind kind,
201 		      s64 exit_code, const char *fmt, va_list args);
202 
203 static __printf(4, 5) bool scx_exit(struct scx_sched *sch,
204 				    enum scx_exit_kind kind, s64 exit_code,
205 				    const char *fmt, ...)
206 {
207 	va_list args;
208 	bool ret;
209 
210 	va_start(args, fmt);
211 	ret = scx_vexit(sch, kind, exit_code, fmt, args);
212 	va_end(args);
213 
214 	return ret;
215 }
216 
217 #define scx_error(sch, fmt, args...)	scx_exit((sch), SCX_EXIT_ERROR, 0, fmt, ##args)
218 #define scx_verror(sch, fmt, args)	scx_vexit((sch), SCX_EXIT_ERROR, 0, fmt, args)
219 
220 #define SCX_HAS_OP(sch, op)	test_bit(SCX_OP_IDX(op), (sch)->has_op)
221 
222 static long jiffies_delta_msecs(unsigned long at, unsigned long now)
223 {
224 	if (time_after(at, now))
225 		return jiffies_to_msecs(at - now);
226 	else
227 		return -(long)jiffies_to_msecs(now - at);
228 }
229 
230 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */
231 static u32 higher_bits(u32 flags)
232 {
233 	return ~((1 << fls(flags)) - 1);
234 }
235 
236 /* return the mask with only the highest bit set */
237 static u32 highest_bit(u32 flags)
238 {
239 	int bit = fls(flags);
240 	return ((u64)1 << bit) >> 1;
241 }
242 
243 static bool u32_before(u32 a, u32 b)
244 {
245 	return (s32)(a - b) < 0;
246 }
247 
248 static struct scx_dispatch_q *find_global_dsq(struct scx_sched *sch,
249 					      struct task_struct *p)
250 {
251 	return sch->global_dsqs[cpu_to_node(task_cpu(p))];
252 }
253 
254 static struct scx_dispatch_q *find_user_dsq(struct scx_sched *sch, u64 dsq_id)
255 {
256 	return rhashtable_lookup(&sch->dsq_hash, &dsq_id, dsq_hash_params);
257 }
258 
259 static const struct sched_class *scx_setscheduler_class(struct task_struct *p)
260 {
261 	if (p->sched_class == &stop_sched_class)
262 		return &stop_sched_class;
263 
264 	return __setscheduler_class(p->policy, p->prio);
265 }
266 
267 /*
268  * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX
269  * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate
270  * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check
271  * whether it's running from an allowed context.
272  *
273  * @mask is constant, always inline to cull the mask calculations.
274  */
275 static __always_inline void scx_kf_allow(u32 mask)
276 {
277 	/* nesting is allowed only in increasing scx_kf_mask order */
278 	WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask,
279 		  "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n",
280 		  current->scx.kf_mask, mask);
281 	current->scx.kf_mask |= mask;
282 	barrier();
283 }
284 
285 static void scx_kf_disallow(u32 mask)
286 {
287 	barrier();
288 	current->scx.kf_mask &= ~mask;
289 }
290 
291 /*
292  * Track the rq currently locked.
293  *
294  * This allows kfuncs to safely operate on rq from any scx ops callback,
295  * knowing which rq is already locked.
296  */
297 DEFINE_PER_CPU(struct rq *, scx_locked_rq_state);
298 
299 static inline void update_locked_rq(struct rq *rq)
300 {
301 	/*
302 	 * Check whether @rq is actually locked. This can help expose bugs
303 	 * or incorrect assumptions about the context in which a kfunc or
304 	 * callback is executed.
305 	 */
306 	if (rq)
307 		lockdep_assert_rq_held(rq);
308 	__this_cpu_write(scx_locked_rq_state, rq);
309 }
310 
311 #define SCX_CALL_OP(sch, mask, op, rq, args...)					\
312 do {										\
313 	if (rq)									\
314 		update_locked_rq(rq);						\
315 	if (mask) {								\
316 		scx_kf_allow(mask);						\
317 		(sch)->ops.op(args);						\
318 		scx_kf_disallow(mask);						\
319 	} else {								\
320 		(sch)->ops.op(args);						\
321 	}									\
322 	if (rq)									\
323 		update_locked_rq(NULL);						\
324 } while (0)
325 
326 #define SCX_CALL_OP_RET(sch, mask, op, rq, args...)				\
327 ({										\
328 	__typeof__((sch)->ops.op(args)) __ret;					\
329 										\
330 	if (rq)									\
331 		update_locked_rq(rq);						\
332 	if (mask) {								\
333 		scx_kf_allow(mask);						\
334 		__ret = (sch)->ops.op(args);					\
335 		scx_kf_disallow(mask);						\
336 	} else {								\
337 		__ret = (sch)->ops.op(args);					\
338 	}									\
339 	if (rq)									\
340 		update_locked_rq(NULL);						\
341 	__ret;									\
342 })
343 
344 /*
345  * Some kfuncs are allowed only on the tasks that are subjects of the
346  * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such
347  * restrictions, the following SCX_CALL_OP_*() variants should be used when
348  * invoking scx_ops operations that take task arguments. These can only be used
349  * for non-nesting operations due to the way the tasks are tracked.
350  *
351  * kfuncs which can only operate on such tasks can in turn use
352  * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on
353  * the specific task.
354  */
355 #define SCX_CALL_OP_TASK(sch, mask, op, rq, task, args...)			\
356 do {										\
357 	BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL);				\
358 	current->scx.kf_tasks[0] = task;					\
359 	SCX_CALL_OP((sch), mask, op, rq, task, ##args);				\
360 	current->scx.kf_tasks[0] = NULL;					\
361 } while (0)
362 
363 #define SCX_CALL_OP_TASK_RET(sch, mask, op, rq, task, args...)			\
364 ({										\
365 	__typeof__((sch)->ops.op(task, ##args)) __ret;				\
366 	BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL);				\
367 	current->scx.kf_tasks[0] = task;					\
368 	__ret = SCX_CALL_OP_RET((sch), mask, op, rq, task, ##args);		\
369 	current->scx.kf_tasks[0] = NULL;					\
370 	__ret;									\
371 })
372 
373 #define SCX_CALL_OP_2TASKS_RET(sch, mask, op, rq, task0, task1, args...)	\
374 ({										\
375 	__typeof__((sch)->ops.op(task0, task1, ##args)) __ret;			\
376 	BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL);				\
377 	current->scx.kf_tasks[0] = task0;					\
378 	current->scx.kf_tasks[1] = task1;					\
379 	__ret = SCX_CALL_OP_RET((sch), mask, op, rq, task0, task1, ##args);	\
380 	current->scx.kf_tasks[0] = NULL;					\
381 	current->scx.kf_tasks[1] = NULL;					\
382 	__ret;									\
383 })
384 
385 /* @mask is constant, always inline to cull unnecessary branches */
386 static __always_inline bool scx_kf_allowed(struct scx_sched *sch, u32 mask)
387 {
388 	if (unlikely(!(current->scx.kf_mask & mask))) {
389 		scx_error(sch, "kfunc with mask 0x%x called from an operation only allowing 0x%x",
390 			  mask, current->scx.kf_mask);
391 		return false;
392 	}
393 
394 	/*
395 	 * Enforce nesting boundaries. e.g. A kfunc which can be called from
396 	 * DISPATCH must not be called if we're running DEQUEUE which is nested
397 	 * inside ops.dispatch(). We don't need to check boundaries for any
398 	 * blocking kfuncs as the verifier ensures they're only called from
399 	 * sleepable progs.
400 	 */
401 	if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE &&
402 		     (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) {
403 		scx_error(sch, "cpu_release kfunc called from a nested operation");
404 		return false;
405 	}
406 
407 	if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH &&
408 		     (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) {
409 		scx_error(sch, "dispatch kfunc called from a nested operation");
410 		return false;
411 	}
412 
413 	return true;
414 }
415 
416 /* see SCX_CALL_OP_TASK() */
417 static __always_inline bool scx_kf_allowed_on_arg_tasks(struct scx_sched *sch,
418 							u32 mask,
419 							struct task_struct *p)
420 {
421 	if (!scx_kf_allowed(sch, mask))
422 		return false;
423 
424 	if (unlikely((p != current->scx.kf_tasks[0] &&
425 		      p != current->scx.kf_tasks[1]))) {
426 		scx_error(sch, "called on a task not being operated on");
427 		return false;
428 	}
429 
430 	return true;
431 }
432 
433 /**
434  * nldsq_next_task - Iterate to the next task in a non-local DSQ
435  * @dsq: user dsq being iterated
436  * @cur: current position, %NULL to start iteration
437  * @rev: walk backwards
438  *
439  * Returns %NULL when iteration is finished.
440  */
441 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq,
442 					   struct task_struct *cur, bool rev)
443 {
444 	struct list_head *list_node;
445 	struct scx_dsq_list_node *dsq_lnode;
446 
447 	lockdep_assert_held(&dsq->lock);
448 
449 	if (cur)
450 		list_node = &cur->scx.dsq_list.node;
451 	else
452 		list_node = &dsq->list;
453 
454 	/* find the next task, need to skip BPF iteration cursors */
455 	do {
456 		if (rev)
457 			list_node = list_node->prev;
458 		else
459 			list_node = list_node->next;
460 
461 		if (list_node == &dsq->list)
462 			return NULL;
463 
464 		dsq_lnode = container_of(list_node, struct scx_dsq_list_node,
465 					 node);
466 	} while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR);
467 
468 	return container_of(dsq_lnode, struct task_struct, scx.dsq_list);
469 }
470 
471 #define nldsq_for_each_task(p, dsq)						\
472 	for ((p) = nldsq_next_task((dsq), NULL, false); (p);			\
473 	     (p) = nldsq_next_task((dsq), (p), false))
474 
475 
476 /*
477  * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse]
478  * dispatch order. BPF-visible iterator is opaque and larger to allow future
479  * changes without breaking backward compatibility. Can be used with
480  * bpf_for_each(). See bpf_iter_scx_dsq_*().
481  */
482 enum scx_dsq_iter_flags {
483 	/* iterate in the reverse dispatch order */
484 	SCX_DSQ_ITER_REV		= 1U << 16,
485 
486 	__SCX_DSQ_ITER_HAS_SLICE	= 1U << 30,
487 	__SCX_DSQ_ITER_HAS_VTIME	= 1U << 31,
488 
489 	__SCX_DSQ_ITER_USER_FLAGS	= SCX_DSQ_ITER_REV,
490 	__SCX_DSQ_ITER_ALL_FLAGS	= __SCX_DSQ_ITER_USER_FLAGS |
491 					  __SCX_DSQ_ITER_HAS_SLICE |
492 					  __SCX_DSQ_ITER_HAS_VTIME,
493 };
494 
495 struct bpf_iter_scx_dsq_kern {
496 	struct scx_dsq_list_node	cursor;
497 	struct scx_dispatch_q		*dsq;
498 	u64				slice;
499 	u64				vtime;
500 } __attribute__((aligned(8)));
501 
502 struct bpf_iter_scx_dsq {
503 	u64				__opaque[6];
504 } __attribute__((aligned(8)));
505 
506 
507 /*
508  * SCX task iterator.
509  */
510 struct scx_task_iter {
511 	struct sched_ext_entity		cursor;
512 	struct task_struct		*locked_task;
513 	struct rq			*rq;
514 	struct rq_flags			rf;
515 	u32				cnt;
516 	bool				list_locked;
517 };
518 
519 /**
520  * scx_task_iter_start - Lock scx_tasks_lock and start a task iteration
521  * @iter: iterator to init
522  *
523  * Initialize @iter and return with scx_tasks_lock held. Once initialized, @iter
524  * must eventually be stopped with scx_task_iter_stop().
525  *
526  * scx_tasks_lock and the rq lock may be released using scx_task_iter_unlock()
527  * between this and the first next() call or between any two next() calls. If
528  * the locks are released between two next() calls, the caller is responsible
529  * for ensuring that the task being iterated remains accessible either through
530  * RCU read lock or obtaining a reference count.
531  *
532  * All tasks which existed when the iteration started are guaranteed to be
533  * visited as long as they are not dead.
534  */
535 static void scx_task_iter_start(struct scx_task_iter *iter)
536 {
537 	memset(iter, 0, sizeof(*iter));
538 
539 	raw_spin_lock_irq(&scx_tasks_lock);
540 
541 	iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR };
542 	list_add(&iter->cursor.tasks_node, &scx_tasks);
543 	iter->list_locked = true;
544 }
545 
546 static void __scx_task_iter_rq_unlock(struct scx_task_iter *iter)
547 {
548 	if (iter->locked_task) {
549 		__balance_callbacks(iter->rq, &iter->rf);
550 		task_rq_unlock(iter->rq, iter->locked_task, &iter->rf);
551 		iter->locked_task = NULL;
552 	}
553 }
554 
555 /**
556  * scx_task_iter_unlock - Unlock rq and scx_tasks_lock held by a task iterator
557  * @iter: iterator to unlock
558  *
559  * If @iter is in the middle of a locked iteration, it may be locking the rq of
560  * the task currently being visited in addition to scx_tasks_lock. Unlock both.
561  * This function can be safely called anytime during an iteration. The next
562  * iterator operation will automatically restore the necessary locking.
563  */
564 static void scx_task_iter_unlock(struct scx_task_iter *iter)
565 {
566 	__scx_task_iter_rq_unlock(iter);
567 	if (iter->list_locked) {
568 		iter->list_locked = false;
569 		raw_spin_unlock_irq(&scx_tasks_lock);
570 	}
571 }
572 
573 static void __scx_task_iter_maybe_relock(struct scx_task_iter *iter)
574 {
575 	if (!iter->list_locked) {
576 		raw_spin_lock_irq(&scx_tasks_lock);
577 		iter->list_locked = true;
578 	}
579 }
580 
581 /**
582  * scx_task_iter_stop - Stop a task iteration and unlock scx_tasks_lock
583  * @iter: iterator to exit
584  *
585  * Exit a previously initialized @iter. Must be called with scx_tasks_lock held
586  * which is released on return. If the iterator holds a task's rq lock, that rq
587  * lock is also released. See scx_task_iter_start() for details.
588  */
589 static void scx_task_iter_stop(struct scx_task_iter *iter)
590 {
591 	__scx_task_iter_maybe_relock(iter);
592 	list_del_init(&iter->cursor.tasks_node);
593 	scx_task_iter_unlock(iter);
594 }
595 
596 /**
597  * scx_task_iter_next - Next task
598  * @iter: iterator to walk
599  *
600  * Visit the next task. See scx_task_iter_start() for details. Locks are dropped
601  * and re-acquired every %SCX_TASK_ITER_BATCH iterations to avoid causing stalls
602  * by holding scx_tasks_lock for too long.
603  */
604 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter)
605 {
606 	struct list_head *cursor = &iter->cursor.tasks_node;
607 	struct sched_ext_entity *pos;
608 
609 	if (!(++iter->cnt % SCX_TASK_ITER_BATCH)) {
610 		scx_task_iter_unlock(iter);
611 		cond_resched();
612 	}
613 
614 	__scx_task_iter_maybe_relock(iter);
615 
616 	list_for_each_entry(pos, cursor, tasks_node) {
617 		if (&pos->tasks_node == &scx_tasks)
618 			return NULL;
619 		if (!(pos->flags & SCX_TASK_CURSOR)) {
620 			list_move(cursor, &pos->tasks_node);
621 			return container_of(pos, struct task_struct, scx);
622 		}
623 	}
624 
625 	/* can't happen, should always terminate at scx_tasks above */
626 	BUG();
627 }
628 
629 /**
630  * scx_task_iter_next_locked - Next non-idle task with its rq locked
631  * @iter: iterator to walk
632  *
633  * Visit the non-idle task with its rq lock held. Allows callers to specify
634  * whether they would like to filter out dead tasks. See scx_task_iter_start()
635  * for details.
636  */
637 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter)
638 {
639 	struct task_struct *p;
640 
641 	__scx_task_iter_rq_unlock(iter);
642 
643 	while ((p = scx_task_iter_next(iter))) {
644 		/*
645 		 * scx_task_iter is used to prepare and move tasks into SCX
646 		 * while loading the BPF scheduler and vice-versa while
647 		 * unloading. The init_tasks ("swappers") should be excluded
648 		 * from the iteration because:
649 		 *
650 		 * - It's unsafe to use __setschduler_prio() on an init_task to
651 		 *   determine the sched_class to use as it won't preserve its
652 		 *   idle_sched_class.
653 		 *
654 		 * - ops.init/exit_task() can easily be confused if called with
655 		 *   init_tasks as they, e.g., share PID 0.
656 		 *
657 		 * As init_tasks are never scheduled through SCX, they can be
658 		 * skipped safely. Note that is_idle_task() which tests %PF_IDLE
659 		 * doesn't work here:
660 		 *
661 		 * - %PF_IDLE may not be set for an init_task whose CPU hasn't
662 		 *   yet been onlined.
663 		 *
664 		 * - %PF_IDLE can be set on tasks that are not init_tasks. See
665 		 *   play_idle_precise() used by CONFIG_IDLE_INJECT.
666 		 *
667 		 * Test for idle_sched_class as only init_tasks are on it.
668 		 */
669 		if (p->sched_class != &idle_sched_class)
670 			break;
671 	}
672 	if (!p)
673 		return NULL;
674 
675 	iter->rq = task_rq_lock(p, &iter->rf);
676 	iter->locked_task = p;
677 
678 	return p;
679 }
680 
681 /**
682  * scx_add_event - Increase an event counter for 'name' by 'cnt'
683  * @sch: scx_sched to account events for
684  * @name: an event name defined in struct scx_event_stats
685  * @cnt: the number of the event occurred
686  *
687  * This can be used when preemption is not disabled.
688  */
689 #define scx_add_event(sch, name, cnt) do {					\
690 	this_cpu_add((sch)->pcpu->event_stats.name, (cnt));			\
691 	trace_sched_ext_event(#name, (cnt));					\
692 } while(0)
693 
694 /**
695  * __scx_add_event - Increase an event counter for 'name' by 'cnt'
696  * @sch: scx_sched to account events for
697  * @name: an event name defined in struct scx_event_stats
698  * @cnt: the number of the event occurred
699  *
700  * This should be used only when preemption is disabled.
701  */
702 #define __scx_add_event(sch, name, cnt) do {					\
703 	__this_cpu_add((sch)->pcpu->event_stats.name, (cnt));			\
704 	trace_sched_ext_event(#name, cnt);					\
705 } while(0)
706 
707 /**
708  * scx_agg_event - Aggregate an event counter 'kind' from 'src_e' to 'dst_e'
709  * @dst_e: destination event stats
710  * @src_e: source event stats
711  * @kind: a kind of event to be aggregated
712  */
713 #define scx_agg_event(dst_e, src_e, kind) do {					\
714 	(dst_e)->kind += READ_ONCE((src_e)->kind);				\
715 } while(0)
716 
717 /**
718  * scx_dump_event - Dump an event 'kind' in 'events' to 's'
719  * @s: output seq_buf
720  * @events: event stats
721  * @kind: a kind of event to dump
722  */
723 #define scx_dump_event(s, events, kind) do {					\
724 	dump_line(&(s), "%40s: %16lld", #kind, (events)->kind);			\
725 } while (0)
726 
727 
728 static void scx_read_events(struct scx_sched *sch,
729 			    struct scx_event_stats *events);
730 
731 static enum scx_enable_state scx_enable_state(void)
732 {
733 	return atomic_read(&scx_enable_state_var);
734 }
735 
736 static enum scx_enable_state scx_set_enable_state(enum scx_enable_state to)
737 {
738 	return atomic_xchg(&scx_enable_state_var, to);
739 }
740 
741 static bool scx_tryset_enable_state(enum scx_enable_state to,
742 				    enum scx_enable_state from)
743 {
744 	int from_v = from;
745 
746 	return atomic_try_cmpxchg(&scx_enable_state_var, &from_v, to);
747 }
748 
749 /**
750  * wait_ops_state - Busy-wait the specified ops state to end
751  * @p: target task
752  * @opss: state to wait the end of
753  *
754  * Busy-wait for @p to transition out of @opss. This can only be used when the
755  * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also
756  * has load_acquire semantics to ensure that the caller can see the updates made
757  * in the enqueueing and dispatching paths.
758  */
759 static void wait_ops_state(struct task_struct *p, unsigned long opss)
760 {
761 	do {
762 		cpu_relax();
763 	} while (atomic_long_read_acquire(&p->scx.ops_state) == opss);
764 }
765 
766 static inline bool __cpu_valid(s32 cpu)
767 {
768 	return likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu));
769 }
770 
771 /**
772  * ops_cpu_valid - Verify a cpu number, to be used on ops input args
773  * @sch: scx_sched to abort on error
774  * @cpu: cpu number which came from a BPF ops
775  * @where: extra information reported on error
776  *
777  * @cpu is a cpu number which came from the BPF scheduler and can be any value.
778  * Verify that it is in range and one of the possible cpus. If invalid, trigger
779  * an ops error.
780  */
781 static bool ops_cpu_valid(struct scx_sched *sch, s32 cpu, const char *where)
782 {
783 	if (__cpu_valid(cpu)) {
784 		return true;
785 	} else {
786 		scx_error(sch, "invalid CPU %d%s%s", cpu, where ? " " : "", where ?: "");
787 		return false;
788 	}
789 }
790 
791 /**
792  * ops_sanitize_err - Sanitize a -errno value
793  * @sch: scx_sched to error out on error
794  * @ops_name: operation to blame on failure
795  * @err: -errno value to sanitize
796  *
797  * Verify @err is a valid -errno. If not, trigger scx_error() and return
798  * -%EPROTO. This is necessary because returning a rogue -errno up the chain can
799  * cause misbehaviors. For an example, a large negative return from
800  * ops.init_task() triggers an oops when passed up the call chain because the
801  * value fails IS_ERR() test after being encoded with ERR_PTR() and then is
802  * handled as a pointer.
803  */
804 static int ops_sanitize_err(struct scx_sched *sch, const char *ops_name, s32 err)
805 {
806 	if (err < 0 && err >= -MAX_ERRNO)
807 		return err;
808 
809 	scx_error(sch, "ops.%s() returned an invalid errno %d", ops_name, err);
810 	return -EPROTO;
811 }
812 
813 static void run_deferred(struct rq *rq)
814 {
815 	process_ddsp_deferred_locals(rq);
816 
817 	if (local_read(&rq->scx.reenq_local_deferred)) {
818 		local_set(&rq->scx.reenq_local_deferred, 0);
819 		reenq_local(rq);
820 	}
821 }
822 
823 static void deferred_bal_cb_workfn(struct rq *rq)
824 {
825 	run_deferred(rq);
826 }
827 
828 static void deferred_irq_workfn(struct irq_work *irq_work)
829 {
830 	struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work);
831 
832 	raw_spin_rq_lock(rq);
833 	run_deferred(rq);
834 	raw_spin_rq_unlock(rq);
835 }
836 
837 /**
838  * schedule_deferred - Schedule execution of deferred actions on an rq
839  * @rq: target rq
840  *
841  * Schedule execution of deferred actions on @rq. Deferred actions are executed
842  * with @rq locked but unpinned, and thus can unlock @rq to e.g. migrate tasks
843  * to other rqs.
844  */
845 static void schedule_deferred(struct rq *rq)
846 {
847 	/*
848 	 * Queue an irq work. They are executed on IRQ re-enable which may take
849 	 * a bit longer than the scheduler hook in schedule_deferred_locked().
850 	 */
851 	irq_work_queue(&rq->scx.deferred_irq_work);
852 }
853 
854 /**
855  * schedule_deferred_locked - Schedule execution of deferred actions on an rq
856  * @rq: target rq
857  *
858  * Schedule execution of deferred actions on @rq. Equivalent to
859  * schedule_deferred() but requires @rq to be locked and can be more efficient.
860  */
861 static void schedule_deferred_locked(struct rq *rq)
862 {
863 	lockdep_assert_rq_held(rq);
864 
865 	/*
866 	 * If in the middle of waking up a task, task_woken_scx() will be called
867 	 * afterwards which will then run the deferred actions, no need to
868 	 * schedule anything.
869 	 */
870 	if (rq->scx.flags & SCX_RQ_IN_WAKEUP)
871 		return;
872 
873 	/* Don't do anything if there already is a deferred operation. */
874 	if (rq->scx.flags & SCX_RQ_BAL_CB_PENDING)
875 		return;
876 
877 	/*
878 	 * If in balance, the balance callbacks will be called before rq lock is
879 	 * released. Schedule one.
880 	 *
881 	 *
882 	 * We can't directly insert the callback into the
883 	 * rq's list: The call can drop its lock and make the pending balance
884 	 * callback visible to unrelated code paths that call rq_pin_lock().
885 	 *
886 	 * Just let balance_one() know that it must do it itself.
887 	 */
888 	if (rq->scx.flags & SCX_RQ_IN_BALANCE) {
889 		rq->scx.flags |= SCX_RQ_BAL_CB_PENDING;
890 		return;
891 	}
892 
893 	/*
894 	 * No scheduler hooks available. Use the generic irq_work path. The
895 	 * above WAKEUP and BALANCE paths should cover most of the cases and the
896 	 * time to IRQ re-enable shouldn't be long.
897 	 */
898 	schedule_deferred(rq);
899 }
900 
901 /**
902  * touch_core_sched - Update timestamp used for core-sched task ordering
903  * @rq: rq to read clock from, must be locked
904  * @p: task to update the timestamp for
905  *
906  * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to
907  * implement global or local-DSQ FIFO ordering for core-sched. Should be called
908  * when a task becomes runnable and its turn on the CPU ends (e.g. slice
909  * exhaustion).
910  */
911 static void touch_core_sched(struct rq *rq, struct task_struct *p)
912 {
913 	lockdep_assert_rq_held(rq);
914 
915 #ifdef CONFIG_SCHED_CORE
916 	/*
917 	 * It's okay to update the timestamp spuriously. Use
918 	 * sched_core_disabled() which is cheaper than enabled().
919 	 *
920 	 * As this is used to determine ordering between tasks of sibling CPUs,
921 	 * it may be better to use per-core dispatch sequence instead.
922 	 */
923 	if (!sched_core_disabled())
924 		p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq));
925 #endif
926 }
927 
928 /**
929  * touch_core_sched_dispatch - Update core-sched timestamp on dispatch
930  * @rq: rq to read clock from, must be locked
931  * @p: task being dispatched
932  *
933  * If the BPF scheduler implements custom core-sched ordering via
934  * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO
935  * ordering within each local DSQ. This function is called from dispatch paths
936  * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect.
937  */
938 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p)
939 {
940 	lockdep_assert_rq_held(rq);
941 
942 #ifdef CONFIG_SCHED_CORE
943 	if (unlikely(SCX_HAS_OP(scx_root, core_sched_before)))
944 		touch_core_sched(rq, p);
945 #endif
946 }
947 
948 static void update_curr_scx(struct rq *rq)
949 {
950 	struct task_struct *curr = rq->curr;
951 	s64 delta_exec;
952 
953 	delta_exec = update_curr_common(rq);
954 	if (unlikely(delta_exec <= 0))
955 		return;
956 
957 	if (curr->scx.slice != SCX_SLICE_INF) {
958 		curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec);
959 		if (!curr->scx.slice)
960 			touch_core_sched(rq, curr);
961 	}
962 
963 	dl_server_update(&rq->ext_server, delta_exec);
964 }
965 
966 static bool scx_dsq_priq_less(struct rb_node *node_a,
967 			      const struct rb_node *node_b)
968 {
969 	const struct task_struct *a =
970 		container_of(node_a, struct task_struct, scx.dsq_priq);
971 	const struct task_struct *b =
972 		container_of(node_b, struct task_struct, scx.dsq_priq);
973 
974 	return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime);
975 }
976 
977 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta)
978 {
979 	/* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */
980 	WRITE_ONCE(dsq->nr, dsq->nr + delta);
981 }
982 
983 static void refill_task_slice_dfl(struct scx_sched *sch, struct task_struct *p)
984 {
985 	p->scx.slice = READ_ONCE(scx_slice_dfl);
986 	__scx_add_event(sch, SCX_EV_REFILL_SLICE_DFL, 1);
987 }
988 
989 static void local_dsq_post_enq(struct scx_dispatch_q *dsq, struct task_struct *p,
990 			       u64 enq_flags)
991 {
992 	struct rq *rq = container_of(dsq, struct rq, scx.local_dsq);
993 	bool preempt = false;
994 
995 	/*
996 	 * If @rq is in balance, the CPU is already vacant and looking for the
997 	 * next task to run. No need to preempt or trigger resched after moving
998 	 * @p into its local DSQ.
999 	 */
1000 	if (rq->scx.flags & SCX_RQ_IN_BALANCE)
1001 		return;
1002 
1003 	if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr &&
1004 	    rq->curr->sched_class == &ext_sched_class) {
1005 		rq->curr->scx.slice = 0;
1006 		preempt = true;
1007 	}
1008 
1009 	if (preempt || sched_class_above(&ext_sched_class, rq->curr->sched_class))
1010 		resched_curr(rq);
1011 }
1012 
1013 static void dispatch_enqueue(struct scx_sched *sch, struct scx_dispatch_q *dsq,
1014 			     struct task_struct *p, u64 enq_flags)
1015 {
1016 	bool is_local = dsq->id == SCX_DSQ_LOCAL;
1017 
1018 	WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
1019 	WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) ||
1020 		     !RB_EMPTY_NODE(&p->scx.dsq_priq));
1021 
1022 	if (!is_local) {
1023 		raw_spin_lock_nested(&dsq->lock,
1024 			(enq_flags & SCX_ENQ_NESTED) ? SINGLE_DEPTH_NESTING : 0);
1025 
1026 		if (unlikely(dsq->id == SCX_DSQ_INVALID)) {
1027 			scx_error(sch, "attempting to dispatch to a destroyed dsq");
1028 			/* fall back to the global dsq */
1029 			raw_spin_unlock(&dsq->lock);
1030 			dsq = find_global_dsq(sch, p);
1031 			raw_spin_lock(&dsq->lock);
1032 		}
1033 	}
1034 
1035 	if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) &&
1036 		     (enq_flags & SCX_ENQ_DSQ_PRIQ))) {
1037 		/*
1038 		 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from
1039 		 * their FIFO queues. To avoid confusion and accidentally
1040 		 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we
1041 		 * disallow any internal DSQ from doing vtime ordering of
1042 		 * tasks.
1043 		 */
1044 		scx_error(sch, "cannot use vtime ordering for built-in DSQs");
1045 		enq_flags &= ~SCX_ENQ_DSQ_PRIQ;
1046 	}
1047 
1048 	if (enq_flags & SCX_ENQ_DSQ_PRIQ) {
1049 		struct rb_node *rbp;
1050 
1051 		/*
1052 		 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are
1053 		 * linked to both the rbtree and list on PRIQs, this can only be
1054 		 * tested easily when adding the first task.
1055 		 */
1056 		if (unlikely(RB_EMPTY_ROOT(&dsq->priq) &&
1057 			     nldsq_next_task(dsq, NULL, false)))
1058 			scx_error(sch, "DSQ ID 0x%016llx already had FIFO-enqueued tasks",
1059 				  dsq->id);
1060 
1061 		p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ;
1062 		rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less);
1063 
1064 		/*
1065 		 * Find the previous task and insert after it on the list so
1066 		 * that @dsq->list is vtime ordered.
1067 		 */
1068 		rbp = rb_prev(&p->scx.dsq_priq);
1069 		if (rbp) {
1070 			struct task_struct *prev =
1071 				container_of(rbp, struct task_struct,
1072 					     scx.dsq_priq);
1073 			list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node);
1074 			/* first task unchanged - no update needed */
1075 		} else {
1076 			list_add(&p->scx.dsq_list.node, &dsq->list);
1077 			/* not builtin and new task is at head - use fastpath */
1078 			rcu_assign_pointer(dsq->first_task, p);
1079 		}
1080 	} else {
1081 		/* a FIFO DSQ shouldn't be using PRIQ enqueuing */
1082 		if (unlikely(!RB_EMPTY_ROOT(&dsq->priq)))
1083 			scx_error(sch, "DSQ ID 0x%016llx already had PRIQ-enqueued tasks",
1084 				  dsq->id);
1085 
1086 		if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) {
1087 			list_add(&p->scx.dsq_list.node, &dsq->list);
1088 			/* new task inserted at head - use fastpath */
1089 			if (!(dsq->id & SCX_DSQ_FLAG_BUILTIN))
1090 				rcu_assign_pointer(dsq->first_task, p);
1091 		} else {
1092 			bool was_empty;
1093 
1094 			was_empty = list_empty(&dsq->list);
1095 			list_add_tail(&p->scx.dsq_list.node, &dsq->list);
1096 			if (was_empty && !(dsq->id & SCX_DSQ_FLAG_BUILTIN))
1097 				rcu_assign_pointer(dsq->first_task, p);
1098 		}
1099 	}
1100 
1101 	/* seq records the order tasks are queued, used by BPF DSQ iterator */
1102 	dsq->seq++;
1103 	p->scx.dsq_seq = dsq->seq;
1104 
1105 	dsq_mod_nr(dsq, 1);
1106 	p->scx.dsq = dsq;
1107 
1108 	/*
1109 	 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the
1110 	 * direct dispatch path, but we clear them here because the direct
1111 	 * dispatch verdict may be overridden on the enqueue path during e.g.
1112 	 * bypass.
1113 	 */
1114 	p->scx.ddsp_dsq_id = SCX_DSQ_INVALID;
1115 	p->scx.ddsp_enq_flags = 0;
1116 
1117 	/*
1118 	 * We're transitioning out of QUEUEING or DISPATCHING. store_release to
1119 	 * match waiters' load_acquire.
1120 	 */
1121 	if (enq_flags & SCX_ENQ_CLEAR_OPSS)
1122 		atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1123 
1124 	if (is_local)
1125 		local_dsq_post_enq(dsq, p, enq_flags);
1126 	else
1127 		raw_spin_unlock(&dsq->lock);
1128 }
1129 
1130 static void task_unlink_from_dsq(struct task_struct *p,
1131 				 struct scx_dispatch_q *dsq)
1132 {
1133 	WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node));
1134 
1135 	if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) {
1136 		rb_erase(&p->scx.dsq_priq, &dsq->priq);
1137 		RB_CLEAR_NODE(&p->scx.dsq_priq);
1138 		p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ;
1139 	}
1140 
1141 	list_del_init(&p->scx.dsq_list.node);
1142 	dsq_mod_nr(dsq, -1);
1143 
1144 	if (!(dsq->id & SCX_DSQ_FLAG_BUILTIN) && dsq->first_task == p) {
1145 		struct task_struct *first_task;
1146 
1147 		first_task = nldsq_next_task(dsq, NULL, false);
1148 		rcu_assign_pointer(dsq->first_task, first_task);
1149 	}
1150 }
1151 
1152 static void dispatch_dequeue(struct rq *rq, struct task_struct *p)
1153 {
1154 	struct scx_dispatch_q *dsq = p->scx.dsq;
1155 	bool is_local = dsq == &rq->scx.local_dsq;
1156 
1157 	lockdep_assert_rq_held(rq);
1158 
1159 	if (!dsq) {
1160 		/*
1161 		 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals.
1162 		 * Unlinking is all that's needed to cancel.
1163 		 */
1164 		if (unlikely(!list_empty(&p->scx.dsq_list.node)))
1165 			list_del_init(&p->scx.dsq_list.node);
1166 
1167 		/*
1168 		 * When dispatching directly from the BPF scheduler to a local
1169 		 * DSQ, the task isn't associated with any DSQ but
1170 		 * @p->scx.holding_cpu may be set under the protection of
1171 		 * %SCX_OPSS_DISPATCHING.
1172 		 */
1173 		if (p->scx.holding_cpu >= 0)
1174 			p->scx.holding_cpu = -1;
1175 
1176 		return;
1177 	}
1178 
1179 	if (!is_local)
1180 		raw_spin_lock(&dsq->lock);
1181 
1182 	/*
1183 	 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't
1184 	 * change underneath us.
1185 	*/
1186 	if (p->scx.holding_cpu < 0) {
1187 		/* @p must still be on @dsq, dequeue */
1188 		task_unlink_from_dsq(p, dsq);
1189 	} else {
1190 		/*
1191 		 * We're racing against dispatch_to_local_dsq() which already
1192 		 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the
1193 		 * holding_cpu which tells dispatch_to_local_dsq() that it lost
1194 		 * the race.
1195 		 */
1196 		WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node));
1197 		p->scx.holding_cpu = -1;
1198 	}
1199 	p->scx.dsq = NULL;
1200 
1201 	if (!is_local)
1202 		raw_spin_unlock(&dsq->lock);
1203 }
1204 
1205 /*
1206  * Abbreviated version of dispatch_dequeue() that can be used when both @p's rq
1207  * and dsq are locked.
1208  */
1209 static void dispatch_dequeue_locked(struct task_struct *p,
1210 				    struct scx_dispatch_q *dsq)
1211 {
1212 	lockdep_assert_rq_held(task_rq(p));
1213 	lockdep_assert_held(&dsq->lock);
1214 
1215 	task_unlink_from_dsq(p, dsq);
1216 	p->scx.dsq = NULL;
1217 }
1218 
1219 static struct scx_dispatch_q *find_dsq_for_dispatch(struct scx_sched *sch,
1220 						    struct rq *rq, u64 dsq_id,
1221 						    struct task_struct *p)
1222 {
1223 	struct scx_dispatch_q *dsq;
1224 
1225 	if (dsq_id == SCX_DSQ_LOCAL)
1226 		return &rq->scx.local_dsq;
1227 
1228 	if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
1229 		s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
1230 
1231 		if (!ops_cpu_valid(sch, cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict"))
1232 			return find_global_dsq(sch, p);
1233 
1234 		return &cpu_rq(cpu)->scx.local_dsq;
1235 	}
1236 
1237 	if (dsq_id == SCX_DSQ_GLOBAL)
1238 		dsq = find_global_dsq(sch, p);
1239 	else
1240 		dsq = find_user_dsq(sch, dsq_id);
1241 
1242 	if (unlikely(!dsq)) {
1243 		scx_error(sch, "non-existent DSQ 0x%llx for %s[%d]",
1244 			  dsq_id, p->comm, p->pid);
1245 		return find_global_dsq(sch, p);
1246 	}
1247 
1248 	return dsq;
1249 }
1250 
1251 static void mark_direct_dispatch(struct scx_sched *sch,
1252 				 struct task_struct *ddsp_task,
1253 				 struct task_struct *p, u64 dsq_id,
1254 				 u64 enq_flags)
1255 {
1256 	/*
1257 	 * Mark that dispatch already happened from ops.select_cpu() or
1258 	 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value
1259 	 * which can never match a valid task pointer.
1260 	 */
1261 	__this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH));
1262 
1263 	/* @p must match the task on the enqueue path */
1264 	if (unlikely(p != ddsp_task)) {
1265 		if (IS_ERR(ddsp_task))
1266 			scx_error(sch, "%s[%d] already direct-dispatched",
1267 				  p->comm, p->pid);
1268 		else
1269 			scx_error(sch, "scheduling for %s[%d] but trying to direct-dispatch %s[%d]",
1270 				  ddsp_task->comm, ddsp_task->pid,
1271 				  p->comm, p->pid);
1272 		return;
1273 	}
1274 
1275 	WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID);
1276 	WARN_ON_ONCE(p->scx.ddsp_enq_flags);
1277 
1278 	p->scx.ddsp_dsq_id = dsq_id;
1279 	p->scx.ddsp_enq_flags = enq_flags;
1280 }
1281 
1282 static void direct_dispatch(struct scx_sched *sch, struct task_struct *p,
1283 			    u64 enq_flags)
1284 {
1285 	struct rq *rq = task_rq(p);
1286 	struct scx_dispatch_q *dsq =
1287 		find_dsq_for_dispatch(sch, rq, p->scx.ddsp_dsq_id, p);
1288 
1289 	touch_core_sched_dispatch(rq, p);
1290 
1291 	p->scx.ddsp_enq_flags |= enq_flags;
1292 
1293 	/*
1294 	 * We are in the enqueue path with @rq locked and pinned, and thus can't
1295 	 * double lock a remote rq and enqueue to its local DSQ. For
1296 	 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer
1297 	 * the enqueue so that it's executed when @rq can be unlocked.
1298 	 */
1299 	if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) {
1300 		unsigned long opss;
1301 
1302 		opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK;
1303 
1304 		switch (opss & SCX_OPSS_STATE_MASK) {
1305 		case SCX_OPSS_NONE:
1306 			break;
1307 		case SCX_OPSS_QUEUEING:
1308 			/*
1309 			 * As @p was never passed to the BPF side, _release is
1310 			 * not strictly necessary. Still do it for consistency.
1311 			 */
1312 			atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1313 			break;
1314 		default:
1315 			WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()",
1316 				  p->comm, p->pid, opss);
1317 			atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1318 			break;
1319 		}
1320 
1321 		WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
1322 		list_add_tail(&p->scx.dsq_list.node,
1323 			      &rq->scx.ddsp_deferred_locals);
1324 		schedule_deferred_locked(rq);
1325 		return;
1326 	}
1327 
1328 	dispatch_enqueue(sch, dsq, p,
1329 			 p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS);
1330 }
1331 
1332 static bool scx_rq_online(struct rq *rq)
1333 {
1334 	/*
1335 	 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates
1336 	 * the online state as seen from the BPF scheduler. cpu_active() test
1337 	 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will
1338 	 * stay set until the current scheduling operation is complete even if
1339 	 * we aren't locking @rq.
1340 	 */
1341 	return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq)));
1342 }
1343 
1344 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags,
1345 			    int sticky_cpu)
1346 {
1347 	struct scx_sched *sch = scx_root;
1348 	struct task_struct **ddsp_taskp;
1349 	struct scx_dispatch_q *dsq;
1350 	unsigned long qseq;
1351 
1352 	WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED));
1353 
1354 	/* rq migration */
1355 	if (sticky_cpu == cpu_of(rq))
1356 		goto local_norefill;
1357 
1358 	/*
1359 	 * If !scx_rq_online(), we already told the BPF scheduler that the CPU
1360 	 * is offline and are just running the hotplug path. Don't bother the
1361 	 * BPF scheduler.
1362 	 */
1363 	if (!scx_rq_online(rq))
1364 		goto local;
1365 
1366 	if (scx_rq_bypassing(rq)) {
1367 		__scx_add_event(sch, SCX_EV_BYPASS_DISPATCH, 1);
1368 		goto bypass;
1369 	}
1370 
1371 	if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
1372 		goto direct;
1373 
1374 	/* see %SCX_OPS_ENQ_EXITING */
1375 	if (!(sch->ops.flags & SCX_OPS_ENQ_EXITING) &&
1376 	    unlikely(p->flags & PF_EXITING)) {
1377 		__scx_add_event(sch, SCX_EV_ENQ_SKIP_EXITING, 1);
1378 		goto local;
1379 	}
1380 
1381 	/* see %SCX_OPS_ENQ_MIGRATION_DISABLED */
1382 	if (!(sch->ops.flags & SCX_OPS_ENQ_MIGRATION_DISABLED) &&
1383 	    is_migration_disabled(p)) {
1384 		__scx_add_event(sch, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED, 1);
1385 		goto local;
1386 	}
1387 
1388 	if (unlikely(!SCX_HAS_OP(sch, enqueue)))
1389 		goto global;
1390 
1391 	/* DSQ bypass didn't trigger, enqueue on the BPF scheduler */
1392 	qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT;
1393 
1394 	WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
1395 	atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq);
1396 
1397 	ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
1398 	WARN_ON_ONCE(*ddsp_taskp);
1399 	*ddsp_taskp = p;
1400 
1401 	SCX_CALL_OP_TASK(sch, SCX_KF_ENQUEUE, enqueue, rq, p, enq_flags);
1402 
1403 	*ddsp_taskp = NULL;
1404 	if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
1405 		goto direct;
1406 
1407 	/*
1408 	 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or
1409 	 * dequeue may be waiting. The store_release matches their load_acquire.
1410 	 */
1411 	atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq);
1412 	return;
1413 
1414 direct:
1415 	direct_dispatch(sch, p, enq_flags);
1416 	return;
1417 local_norefill:
1418 	dispatch_enqueue(sch, &rq->scx.local_dsq, p, enq_flags);
1419 	return;
1420 local:
1421 	dsq = &rq->scx.local_dsq;
1422 	goto enqueue;
1423 global:
1424 	dsq = find_global_dsq(sch, p);
1425 	goto enqueue;
1426 bypass:
1427 	dsq = &task_rq(p)->scx.bypass_dsq;
1428 	goto enqueue;
1429 
1430 enqueue:
1431 	/*
1432 	 * For task-ordering, slice refill must be treated as implying the end
1433 	 * of the current slice. Otherwise, the longer @p stays on the CPU, the
1434 	 * higher priority it becomes from scx_prio_less()'s POV.
1435 	 */
1436 	touch_core_sched(rq, p);
1437 	refill_task_slice_dfl(sch, p);
1438 	dispatch_enqueue(sch, dsq, p, enq_flags);
1439 }
1440 
1441 static bool task_runnable(const struct task_struct *p)
1442 {
1443 	return !list_empty(&p->scx.runnable_node);
1444 }
1445 
1446 static void set_task_runnable(struct rq *rq, struct task_struct *p)
1447 {
1448 	lockdep_assert_rq_held(rq);
1449 
1450 	if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) {
1451 		p->scx.runnable_at = jiffies;
1452 		p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT;
1453 	}
1454 
1455 	/*
1456 	 * list_add_tail() must be used. scx_bypass() depends on tasks being
1457 	 * appended to the runnable_list.
1458 	 */
1459 	list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list);
1460 }
1461 
1462 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at)
1463 {
1464 	list_del_init(&p->scx.runnable_node);
1465 	if (reset_runnable_at)
1466 		p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
1467 }
1468 
1469 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags)
1470 {
1471 	struct scx_sched *sch = scx_root;
1472 	int sticky_cpu = p->scx.sticky_cpu;
1473 
1474 	if (enq_flags & ENQUEUE_WAKEUP)
1475 		rq->scx.flags |= SCX_RQ_IN_WAKEUP;
1476 
1477 	enq_flags |= rq->scx.extra_enq_flags;
1478 
1479 	if (sticky_cpu >= 0)
1480 		p->scx.sticky_cpu = -1;
1481 
1482 	/*
1483 	 * Restoring a running task will be immediately followed by
1484 	 * set_next_task_scx() which expects the task to not be on the BPF
1485 	 * scheduler as tasks can only start running through local DSQs. Force
1486 	 * direct-dispatch into the local DSQ by setting the sticky_cpu.
1487 	 */
1488 	if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p))
1489 		sticky_cpu = cpu_of(rq);
1490 
1491 	if (p->scx.flags & SCX_TASK_QUEUED) {
1492 		WARN_ON_ONCE(!task_runnable(p));
1493 		goto out;
1494 	}
1495 
1496 	set_task_runnable(rq, p);
1497 	p->scx.flags |= SCX_TASK_QUEUED;
1498 	rq->scx.nr_running++;
1499 	add_nr_running(rq, 1);
1500 
1501 	if (SCX_HAS_OP(sch, runnable) && !task_on_rq_migrating(p))
1502 		SCX_CALL_OP_TASK(sch, SCX_KF_REST, runnable, rq, p, enq_flags);
1503 
1504 	if (enq_flags & SCX_ENQ_WAKEUP)
1505 		touch_core_sched(rq, p);
1506 
1507 	/* Start dl_server if this is the first task being enqueued */
1508 	if (rq->scx.nr_running == 1)
1509 		dl_server_start(&rq->ext_server);
1510 
1511 	do_enqueue_task(rq, p, enq_flags, sticky_cpu);
1512 out:
1513 	rq->scx.flags &= ~SCX_RQ_IN_WAKEUP;
1514 
1515 	if ((enq_flags & SCX_ENQ_CPU_SELECTED) &&
1516 	    unlikely(cpu_of(rq) != p->scx.selected_cpu))
1517 		__scx_add_event(sch, SCX_EV_SELECT_CPU_FALLBACK, 1);
1518 }
1519 
1520 static void ops_dequeue(struct rq *rq, struct task_struct *p, u64 deq_flags)
1521 {
1522 	struct scx_sched *sch = scx_root;
1523 	unsigned long opss;
1524 
1525 	/* dequeue is always temporary, don't reset runnable_at */
1526 	clr_task_runnable(p, false);
1527 
1528 	/* acquire ensures that we see the preceding updates on QUEUED */
1529 	opss = atomic_long_read_acquire(&p->scx.ops_state);
1530 
1531 	switch (opss & SCX_OPSS_STATE_MASK) {
1532 	case SCX_OPSS_NONE:
1533 		break;
1534 	case SCX_OPSS_QUEUEING:
1535 		/*
1536 		 * QUEUEING is started and finished while holding @p's rq lock.
1537 		 * As we're holding the rq lock now, we shouldn't see QUEUEING.
1538 		 */
1539 		BUG();
1540 	case SCX_OPSS_QUEUED:
1541 		if (SCX_HAS_OP(sch, dequeue))
1542 			SCX_CALL_OP_TASK(sch, SCX_KF_REST, dequeue, rq,
1543 					 p, deq_flags);
1544 
1545 		if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
1546 					    SCX_OPSS_NONE))
1547 			break;
1548 		fallthrough;
1549 	case SCX_OPSS_DISPATCHING:
1550 		/*
1551 		 * If @p is being dispatched from the BPF scheduler to a DSQ,
1552 		 * wait for the transfer to complete so that @p doesn't get
1553 		 * added to its DSQ after dequeueing is complete.
1554 		 *
1555 		 * As we're waiting on DISPATCHING with the rq locked, the
1556 		 * dispatching side shouldn't try to lock the rq while
1557 		 * DISPATCHING is set. See dispatch_to_local_dsq().
1558 		 *
1559 		 * DISPATCHING shouldn't have qseq set and control can reach
1560 		 * here with NONE @opss from the above QUEUED case block.
1561 		 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss.
1562 		 */
1563 		wait_ops_state(p, SCX_OPSS_DISPATCHING);
1564 		BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
1565 		break;
1566 	}
1567 }
1568 
1569 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags)
1570 {
1571 	struct scx_sched *sch = scx_root;
1572 
1573 	if (!(p->scx.flags & SCX_TASK_QUEUED)) {
1574 		WARN_ON_ONCE(task_runnable(p));
1575 		return true;
1576 	}
1577 
1578 	ops_dequeue(rq, p, deq_flags);
1579 
1580 	/*
1581 	 * A currently running task which is going off @rq first gets dequeued
1582 	 * and then stops running. As we want running <-> stopping transitions
1583 	 * to be contained within runnable <-> quiescent transitions, trigger
1584 	 * ->stopping() early here instead of in put_prev_task_scx().
1585 	 *
1586 	 * @p may go through multiple stopping <-> running transitions between
1587 	 * here and put_prev_task_scx() if task attribute changes occur while
1588 	 * balance_one() leaves @rq unlocked. However, they don't contain any
1589 	 * information meaningful to the BPF scheduler and can be suppressed by
1590 	 * skipping the callbacks if the task is !QUEUED.
1591 	 */
1592 	if (SCX_HAS_OP(sch, stopping) && task_current(rq, p)) {
1593 		update_curr_scx(rq);
1594 		SCX_CALL_OP_TASK(sch, SCX_KF_REST, stopping, rq, p, false);
1595 	}
1596 
1597 	if (SCX_HAS_OP(sch, quiescent) && !task_on_rq_migrating(p))
1598 		SCX_CALL_OP_TASK(sch, SCX_KF_REST, quiescent, rq, p, deq_flags);
1599 
1600 	if (deq_flags & SCX_DEQ_SLEEP)
1601 		p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP;
1602 	else
1603 		p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP;
1604 
1605 	p->scx.flags &= ~SCX_TASK_QUEUED;
1606 	rq->scx.nr_running--;
1607 	sub_nr_running(rq, 1);
1608 
1609 	dispatch_dequeue(rq, p);
1610 	return true;
1611 }
1612 
1613 static void yield_task_scx(struct rq *rq)
1614 {
1615 	struct scx_sched *sch = scx_root;
1616 	struct task_struct *p = rq->donor;
1617 
1618 	if (SCX_HAS_OP(sch, yield))
1619 		SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, yield, rq, p, NULL);
1620 	else
1621 		p->scx.slice = 0;
1622 }
1623 
1624 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to)
1625 {
1626 	struct scx_sched *sch = scx_root;
1627 	struct task_struct *from = rq->donor;
1628 
1629 	if (SCX_HAS_OP(sch, yield))
1630 		return SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, yield, rq,
1631 					      from, to);
1632 	else
1633 		return false;
1634 }
1635 
1636 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
1637 					 struct scx_dispatch_q *src_dsq,
1638 					 struct rq *dst_rq)
1639 {
1640 	struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq;
1641 
1642 	/* @dsq is locked and @p is on @dst_rq */
1643 	lockdep_assert_held(&src_dsq->lock);
1644 	lockdep_assert_rq_held(dst_rq);
1645 
1646 	WARN_ON_ONCE(p->scx.holding_cpu >= 0);
1647 
1648 	if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT))
1649 		list_add(&p->scx.dsq_list.node, &dst_dsq->list);
1650 	else
1651 		list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list);
1652 
1653 	dsq_mod_nr(dst_dsq, 1);
1654 	p->scx.dsq = dst_dsq;
1655 
1656 	local_dsq_post_enq(dst_dsq, p, enq_flags);
1657 }
1658 
1659 /**
1660  * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ
1661  * @p: task to move
1662  * @enq_flags: %SCX_ENQ_*
1663  * @src_rq: rq to move the task from, locked on entry, released on return
1664  * @dst_rq: rq to move the task into, locked on return
1665  *
1666  * Move @p which is currently on @src_rq to @dst_rq's local DSQ.
1667  */
1668 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
1669 					  struct rq *src_rq, struct rq *dst_rq)
1670 {
1671 	lockdep_assert_rq_held(src_rq);
1672 
1673 	/* the following marks @p MIGRATING which excludes dequeue */
1674 	deactivate_task(src_rq, p, 0);
1675 	set_task_cpu(p, cpu_of(dst_rq));
1676 	p->scx.sticky_cpu = cpu_of(dst_rq);
1677 
1678 	raw_spin_rq_unlock(src_rq);
1679 	raw_spin_rq_lock(dst_rq);
1680 
1681 	/*
1682 	 * We want to pass scx-specific enq_flags but activate_task() will
1683 	 * truncate the upper 32 bit. As we own @rq, we can pass them through
1684 	 * @rq->scx.extra_enq_flags instead.
1685 	 */
1686 	WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr));
1687 	WARN_ON_ONCE(dst_rq->scx.extra_enq_flags);
1688 	dst_rq->scx.extra_enq_flags = enq_flags;
1689 	activate_task(dst_rq, p, 0);
1690 	dst_rq->scx.extra_enq_flags = 0;
1691 }
1692 
1693 /*
1694  * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two
1695  * differences:
1696  *
1697  * - is_cpu_allowed() asks "Can this task run on this CPU?" while
1698  *   task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to
1699  *   this CPU?".
1700  *
1701  *   While migration is disabled, is_cpu_allowed() has to say "yes" as the task
1702  *   must be allowed to finish on the CPU that it's currently on regardless of
1703  *   the CPU state. However, task_can_run_on_remote_rq() must say "no" as the
1704  *   BPF scheduler shouldn't attempt to migrate a task which has migration
1705  *   disabled.
1706  *
1707  * - The BPF scheduler is bypassed while the rq is offline and we can always say
1708  *   no to the BPF scheduler initiated migrations while offline.
1709  *
1710  * The caller must ensure that @p and @rq are on different CPUs.
1711  */
1712 static bool task_can_run_on_remote_rq(struct scx_sched *sch,
1713 				      struct task_struct *p, struct rq *rq,
1714 				      bool enforce)
1715 {
1716 	int cpu = cpu_of(rq);
1717 
1718 	WARN_ON_ONCE(task_cpu(p) == cpu);
1719 
1720 	/*
1721 	 * If @p has migration disabled, @p->cpus_ptr is updated to contain only
1722 	 * the pinned CPU in migrate_disable_switch() while @p is being switched
1723 	 * out. However, put_prev_task_scx() is called before @p->cpus_ptr is
1724 	 * updated and thus another CPU may see @p on a DSQ inbetween leading to
1725 	 * @p passing the below task_allowed_on_cpu() check while migration is
1726 	 * disabled.
1727 	 *
1728 	 * Test the migration disabled state first as the race window is narrow
1729 	 * and the BPF scheduler failing to check migration disabled state can
1730 	 * easily be masked if task_allowed_on_cpu() is done first.
1731 	 */
1732 	if (unlikely(is_migration_disabled(p))) {
1733 		if (enforce)
1734 			scx_error(sch, "SCX_DSQ_LOCAL[_ON] cannot move migration disabled %s[%d] from CPU %d to %d",
1735 				  p->comm, p->pid, task_cpu(p), cpu);
1736 		return false;
1737 	}
1738 
1739 	/*
1740 	 * We don't require the BPF scheduler to avoid dispatching to offline
1741 	 * CPUs mostly for convenience but also because CPUs can go offline
1742 	 * between scx_bpf_dsq_insert() calls and here. Trigger error iff the
1743 	 * picked CPU is outside the allowed mask.
1744 	 */
1745 	if (!task_allowed_on_cpu(p, cpu)) {
1746 		if (enforce)
1747 			scx_error(sch, "SCX_DSQ_LOCAL[_ON] target CPU %d not allowed for %s[%d]",
1748 				  cpu, p->comm, p->pid);
1749 		return false;
1750 	}
1751 
1752 	if (!scx_rq_online(rq)) {
1753 		if (enforce)
1754 			__scx_add_event(sch, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE, 1);
1755 		return false;
1756 	}
1757 
1758 	return true;
1759 }
1760 
1761 /**
1762  * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq
1763  * @p: target task
1764  * @dsq: locked DSQ @p is currently on
1765  * @src_rq: rq @p is currently on, stable with @dsq locked
1766  *
1767  * Called with @dsq locked but no rq's locked. We want to move @p to a different
1768  * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is
1769  * required when transferring into a local DSQ. Even when transferring into a
1770  * non-local DSQ, it's better to use the same mechanism to protect against
1771  * dequeues and maintain the invariant that @p->scx.dsq can only change while
1772  * @src_rq is locked, which e.g. scx_dump_task() depends on.
1773  *
1774  * We want to grab @src_rq but that can deadlock if we try while locking @dsq,
1775  * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As
1776  * this may race with dequeue, which can't drop the rq lock or fail, do a little
1777  * dancing from our side.
1778  *
1779  * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets
1780  * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu
1781  * would be cleared to -1. While other cpus may have updated it to different
1782  * values afterwards, as this operation can't be preempted or recurse, the
1783  * holding_cpu can never become this CPU again before we're done. Thus, we can
1784  * tell whether we lost to dequeue by testing whether the holding_cpu still
1785  * points to this CPU. See dispatch_dequeue() for the counterpart.
1786  *
1787  * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is
1788  * still valid. %false if lost to dequeue.
1789  */
1790 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p,
1791 				       struct scx_dispatch_q *dsq,
1792 				       struct rq *src_rq)
1793 {
1794 	s32 cpu = raw_smp_processor_id();
1795 
1796 	lockdep_assert_held(&dsq->lock);
1797 
1798 	WARN_ON_ONCE(p->scx.holding_cpu >= 0);
1799 	task_unlink_from_dsq(p, dsq);
1800 	p->scx.holding_cpu = cpu;
1801 
1802 	raw_spin_unlock(&dsq->lock);
1803 	raw_spin_rq_lock(src_rq);
1804 
1805 	/* task_rq couldn't have changed if we're still the holding cpu */
1806 	return likely(p->scx.holding_cpu == cpu) &&
1807 		!WARN_ON_ONCE(src_rq != task_rq(p));
1808 }
1809 
1810 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p,
1811 				struct scx_dispatch_q *dsq, struct rq *src_rq)
1812 {
1813 	raw_spin_rq_unlock(this_rq);
1814 
1815 	if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) {
1816 		move_remote_task_to_local_dsq(p, 0, src_rq, this_rq);
1817 		return true;
1818 	} else {
1819 		raw_spin_rq_unlock(src_rq);
1820 		raw_spin_rq_lock(this_rq);
1821 		return false;
1822 	}
1823 }
1824 
1825 /**
1826  * move_task_between_dsqs() - Move a task from one DSQ to another
1827  * @sch: scx_sched being operated on
1828  * @p: target task
1829  * @enq_flags: %SCX_ENQ_*
1830  * @src_dsq: DSQ @p is currently on, must not be a local DSQ
1831  * @dst_dsq: DSQ @p is being moved to, can be any DSQ
1832  *
1833  * Must be called with @p's task_rq and @src_dsq locked. If @dst_dsq is a local
1834  * DSQ and @p is on a different CPU, @p will be migrated and thus its task_rq
1835  * will change. As @p's task_rq is locked, this function doesn't need to use the
1836  * holding_cpu mechanism.
1837  *
1838  * On return, @src_dsq is unlocked and only @p's new task_rq, which is the
1839  * return value, is locked.
1840  */
1841 static struct rq *move_task_between_dsqs(struct scx_sched *sch,
1842 					 struct task_struct *p, u64 enq_flags,
1843 					 struct scx_dispatch_q *src_dsq,
1844 					 struct scx_dispatch_q *dst_dsq)
1845 {
1846 	struct rq *src_rq = task_rq(p), *dst_rq;
1847 
1848 	BUG_ON(src_dsq->id == SCX_DSQ_LOCAL);
1849 	lockdep_assert_held(&src_dsq->lock);
1850 	lockdep_assert_rq_held(src_rq);
1851 
1852 	if (dst_dsq->id == SCX_DSQ_LOCAL) {
1853 		dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
1854 		if (src_rq != dst_rq &&
1855 		    unlikely(!task_can_run_on_remote_rq(sch, p, dst_rq, true))) {
1856 			dst_dsq = find_global_dsq(sch, p);
1857 			dst_rq = src_rq;
1858 		}
1859 	} else {
1860 		/* no need to migrate if destination is a non-local DSQ */
1861 		dst_rq = src_rq;
1862 	}
1863 
1864 	/*
1865 	 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different
1866 	 * CPU, @p will be migrated.
1867 	 */
1868 	if (dst_dsq->id == SCX_DSQ_LOCAL) {
1869 		/* @p is going from a non-local DSQ to a local DSQ */
1870 		if (src_rq == dst_rq) {
1871 			task_unlink_from_dsq(p, src_dsq);
1872 			move_local_task_to_local_dsq(p, enq_flags,
1873 						     src_dsq, dst_rq);
1874 			raw_spin_unlock(&src_dsq->lock);
1875 		} else {
1876 			raw_spin_unlock(&src_dsq->lock);
1877 			move_remote_task_to_local_dsq(p, enq_flags,
1878 						      src_rq, dst_rq);
1879 		}
1880 	} else {
1881 		/*
1882 		 * @p is going from a non-local DSQ to a non-local DSQ. As
1883 		 * $src_dsq is already locked, do an abbreviated dequeue.
1884 		 */
1885 		dispatch_dequeue_locked(p, src_dsq);
1886 		raw_spin_unlock(&src_dsq->lock);
1887 
1888 		dispatch_enqueue(sch, dst_dsq, p, enq_flags);
1889 	}
1890 
1891 	return dst_rq;
1892 }
1893 
1894 static bool consume_dispatch_q(struct scx_sched *sch, struct rq *rq,
1895 			       struct scx_dispatch_q *dsq)
1896 {
1897 	struct task_struct *p;
1898 retry:
1899 	/*
1900 	 * The caller can't expect to successfully consume a task if the task's
1901 	 * addition to @dsq isn't guaranteed to be visible somehow. Test
1902 	 * @dsq->list without locking and skip if it seems empty.
1903 	 */
1904 	if (list_empty(&dsq->list))
1905 		return false;
1906 
1907 	raw_spin_lock(&dsq->lock);
1908 
1909 	nldsq_for_each_task(p, dsq) {
1910 		struct rq *task_rq = task_rq(p);
1911 
1912 		/*
1913 		 * This loop can lead to multiple lockup scenarios, e.g. the BPF
1914 		 * scheduler can put an enormous number of affinitized tasks into
1915 		 * a contended DSQ, or the outer retry loop can repeatedly race
1916 		 * against scx_bypass() dequeueing tasks from @dsq trying to put
1917 		 * the system into the bypass mode. This can easily live-lock the
1918 		 * machine. If aborting, exit from all non-bypass DSQs.
1919 		 */
1920 		if (unlikely(READ_ONCE(scx_aborting)) && dsq->id != SCX_DSQ_BYPASS)
1921 			break;
1922 
1923 		if (rq == task_rq) {
1924 			task_unlink_from_dsq(p, dsq);
1925 			move_local_task_to_local_dsq(p, 0, dsq, rq);
1926 			raw_spin_unlock(&dsq->lock);
1927 			return true;
1928 		}
1929 
1930 		if (task_can_run_on_remote_rq(sch, p, rq, false)) {
1931 			if (likely(consume_remote_task(rq, p, dsq, task_rq)))
1932 				return true;
1933 			goto retry;
1934 		}
1935 	}
1936 
1937 	raw_spin_unlock(&dsq->lock);
1938 	return false;
1939 }
1940 
1941 static bool consume_global_dsq(struct scx_sched *sch, struct rq *rq)
1942 {
1943 	int node = cpu_to_node(cpu_of(rq));
1944 
1945 	return consume_dispatch_q(sch, rq, sch->global_dsqs[node]);
1946 }
1947 
1948 /**
1949  * dispatch_to_local_dsq - Dispatch a task to a local dsq
1950  * @sch: scx_sched being operated on
1951  * @rq: current rq which is locked
1952  * @dst_dsq: destination DSQ
1953  * @p: task to dispatch
1954  * @enq_flags: %SCX_ENQ_*
1955  *
1956  * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local
1957  * DSQ. This function performs all the synchronization dancing needed because
1958  * local DSQs are protected with rq locks.
1959  *
1960  * The caller must have exclusive ownership of @p (e.g. through
1961  * %SCX_OPSS_DISPATCHING).
1962  */
1963 static void dispatch_to_local_dsq(struct scx_sched *sch, struct rq *rq,
1964 				  struct scx_dispatch_q *dst_dsq,
1965 				  struct task_struct *p, u64 enq_flags)
1966 {
1967 	struct rq *src_rq = task_rq(p);
1968 	struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
1969 	struct rq *locked_rq = rq;
1970 
1971 	/*
1972 	 * We're synchronized against dequeue through DISPATCHING. As @p can't
1973 	 * be dequeued, its task_rq and cpus_allowed are stable too.
1974 	 *
1975 	 * If dispatching to @rq that @p is already on, no lock dancing needed.
1976 	 */
1977 	if (rq == src_rq && rq == dst_rq) {
1978 		dispatch_enqueue(sch, dst_dsq, p,
1979 				 enq_flags | SCX_ENQ_CLEAR_OPSS);
1980 		return;
1981 	}
1982 
1983 	if (src_rq != dst_rq &&
1984 	    unlikely(!task_can_run_on_remote_rq(sch, p, dst_rq, true))) {
1985 		dispatch_enqueue(sch, find_global_dsq(sch, p), p,
1986 				 enq_flags | SCX_ENQ_CLEAR_OPSS);
1987 		return;
1988 	}
1989 
1990 	/*
1991 	 * @p is on a possibly remote @src_rq which we need to lock to move the
1992 	 * task. If dequeue is in progress, it'd be locking @src_rq and waiting
1993 	 * on DISPATCHING, so we can't grab @src_rq lock while holding
1994 	 * DISPATCHING.
1995 	 *
1996 	 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that
1997 	 * we're moving from a DSQ and use the same mechanism - mark the task
1998 	 * under transfer with holding_cpu, release DISPATCHING and then follow
1999 	 * the same protocol. See unlink_dsq_and_lock_src_rq().
2000 	 */
2001 	p->scx.holding_cpu = raw_smp_processor_id();
2002 
2003 	/* store_release ensures that dequeue sees the above */
2004 	atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
2005 
2006 	/* switch to @src_rq lock */
2007 	if (locked_rq != src_rq) {
2008 		raw_spin_rq_unlock(locked_rq);
2009 		locked_rq = src_rq;
2010 		raw_spin_rq_lock(src_rq);
2011 	}
2012 
2013 	/* task_rq couldn't have changed if we're still the holding cpu */
2014 	if (likely(p->scx.holding_cpu == raw_smp_processor_id()) &&
2015 	    !WARN_ON_ONCE(src_rq != task_rq(p))) {
2016 		/*
2017 		 * If @p is staying on the same rq, there's no need to go
2018 		 * through the full deactivate/activate cycle. Optimize by
2019 		 * abbreviating move_remote_task_to_local_dsq().
2020 		 */
2021 		if (src_rq == dst_rq) {
2022 			p->scx.holding_cpu = -1;
2023 			dispatch_enqueue(sch, &dst_rq->scx.local_dsq, p,
2024 					 enq_flags);
2025 		} else {
2026 			move_remote_task_to_local_dsq(p, enq_flags,
2027 						      src_rq, dst_rq);
2028 			/* task has been moved to dst_rq, which is now locked */
2029 			locked_rq = dst_rq;
2030 		}
2031 
2032 		/* if the destination CPU is idle, wake it up */
2033 		if (sched_class_above(p->sched_class, dst_rq->curr->sched_class))
2034 			resched_curr(dst_rq);
2035 	}
2036 
2037 	/* switch back to @rq lock */
2038 	if (locked_rq != rq) {
2039 		raw_spin_rq_unlock(locked_rq);
2040 		raw_spin_rq_lock(rq);
2041 	}
2042 }
2043 
2044 /**
2045  * finish_dispatch - Asynchronously finish dispatching a task
2046  * @rq: current rq which is locked
2047  * @p: task to finish dispatching
2048  * @qseq_at_dispatch: qseq when @p started getting dispatched
2049  * @dsq_id: destination DSQ ID
2050  * @enq_flags: %SCX_ENQ_*
2051  *
2052  * Dispatching to local DSQs may need to wait for queueing to complete or
2053  * require rq lock dancing. As we don't wanna do either while inside
2054  * ops.dispatch() to avoid locking order inversion, we split dispatching into
2055  * two parts. scx_bpf_dsq_insert() which is called by ops.dispatch() records the
2056  * task and its qseq. Once ops.dispatch() returns, this function is called to
2057  * finish up.
2058  *
2059  * There is no guarantee that @p is still valid for dispatching or even that it
2060  * was valid in the first place. Make sure that the task is still owned by the
2061  * BPF scheduler and claim the ownership before dispatching.
2062  */
2063 static void finish_dispatch(struct scx_sched *sch, struct rq *rq,
2064 			    struct task_struct *p,
2065 			    unsigned long qseq_at_dispatch,
2066 			    u64 dsq_id, u64 enq_flags)
2067 {
2068 	struct scx_dispatch_q *dsq;
2069 	unsigned long opss;
2070 
2071 	touch_core_sched_dispatch(rq, p);
2072 retry:
2073 	/*
2074 	 * No need for _acquire here. @p is accessed only after a successful
2075 	 * try_cmpxchg to DISPATCHING.
2076 	 */
2077 	opss = atomic_long_read(&p->scx.ops_state);
2078 
2079 	switch (opss & SCX_OPSS_STATE_MASK) {
2080 	case SCX_OPSS_DISPATCHING:
2081 	case SCX_OPSS_NONE:
2082 		/* someone else already got to it */
2083 		return;
2084 	case SCX_OPSS_QUEUED:
2085 		/*
2086 		 * If qseq doesn't match, @p has gone through at least one
2087 		 * dispatch/dequeue and re-enqueue cycle between
2088 		 * scx_bpf_dsq_insert() and here and we have no claim on it.
2089 		 */
2090 		if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch)
2091 			return;
2092 
2093 		/*
2094 		 * While we know @p is accessible, we don't yet have a claim on
2095 		 * it - the BPF scheduler is allowed to dispatch tasks
2096 		 * spuriously and there can be a racing dequeue attempt. Let's
2097 		 * claim @p by atomically transitioning it from QUEUED to
2098 		 * DISPATCHING.
2099 		 */
2100 		if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
2101 						   SCX_OPSS_DISPATCHING)))
2102 			break;
2103 		goto retry;
2104 	case SCX_OPSS_QUEUEING:
2105 		/*
2106 		 * do_enqueue_task() is in the process of transferring the task
2107 		 * to the BPF scheduler while holding @p's rq lock. As we aren't
2108 		 * holding any kernel or BPF resource that the enqueue path may
2109 		 * depend upon, it's safe to wait.
2110 		 */
2111 		wait_ops_state(p, opss);
2112 		goto retry;
2113 	}
2114 
2115 	BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED));
2116 
2117 	dsq = find_dsq_for_dispatch(sch, this_rq(), dsq_id, p);
2118 
2119 	if (dsq->id == SCX_DSQ_LOCAL)
2120 		dispatch_to_local_dsq(sch, rq, dsq, p, enq_flags);
2121 	else
2122 		dispatch_enqueue(sch, dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
2123 }
2124 
2125 static void flush_dispatch_buf(struct scx_sched *sch, struct rq *rq)
2126 {
2127 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
2128 	u32 u;
2129 
2130 	for (u = 0; u < dspc->cursor; u++) {
2131 		struct scx_dsp_buf_ent *ent = &dspc->buf[u];
2132 
2133 		finish_dispatch(sch, rq, ent->task, ent->qseq, ent->dsq_id,
2134 				ent->enq_flags);
2135 	}
2136 
2137 	dspc->nr_tasks += dspc->cursor;
2138 	dspc->cursor = 0;
2139 }
2140 
2141 static inline void maybe_queue_balance_callback(struct rq *rq)
2142 {
2143 	lockdep_assert_rq_held(rq);
2144 
2145 	if (!(rq->scx.flags & SCX_RQ_BAL_CB_PENDING))
2146 		return;
2147 
2148 	queue_balance_callback(rq, &rq->scx.deferred_bal_cb,
2149 				deferred_bal_cb_workfn);
2150 
2151 	rq->scx.flags &= ~SCX_RQ_BAL_CB_PENDING;
2152 }
2153 
2154 static int balance_one(struct rq *rq, struct task_struct *prev)
2155 {
2156 	struct scx_sched *sch = scx_root;
2157 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
2158 	bool prev_on_scx = prev->sched_class == &ext_sched_class;
2159 	bool prev_on_rq = prev->scx.flags & SCX_TASK_QUEUED;
2160 	int nr_loops = SCX_DSP_MAX_LOOPS;
2161 
2162 	lockdep_assert_rq_held(rq);
2163 	rq->scx.flags |= SCX_RQ_IN_BALANCE;
2164 	rq->scx.flags &= ~SCX_RQ_BAL_KEEP;
2165 
2166 	if ((sch->ops.flags & SCX_OPS_HAS_CPU_PREEMPT) &&
2167 	    unlikely(rq->scx.cpu_released)) {
2168 		/*
2169 		 * If the previous sched_class for the current CPU was not SCX,
2170 		 * notify the BPF scheduler that it again has control of the
2171 		 * core. This callback complements ->cpu_release(), which is
2172 		 * emitted in switch_class().
2173 		 */
2174 		if (SCX_HAS_OP(sch, cpu_acquire))
2175 			SCX_CALL_OP(sch, SCX_KF_REST, cpu_acquire, rq,
2176 				    cpu_of(rq), NULL);
2177 		rq->scx.cpu_released = false;
2178 	}
2179 
2180 	if (prev_on_scx) {
2181 		update_curr_scx(rq);
2182 
2183 		/*
2184 		 * If @prev is runnable & has slice left, it has priority and
2185 		 * fetching more just increases latency for the fetched tasks.
2186 		 * Tell pick_task_scx() to keep running @prev. If the BPF
2187 		 * scheduler wants to handle this explicitly, it should
2188 		 * implement ->cpu_release().
2189 		 *
2190 		 * See scx_disable_workfn() for the explanation on the bypassing
2191 		 * test.
2192 		 */
2193 		if (prev_on_rq && prev->scx.slice && !scx_rq_bypassing(rq)) {
2194 			rq->scx.flags |= SCX_RQ_BAL_KEEP;
2195 			goto has_tasks;
2196 		}
2197 	}
2198 
2199 	/* if there already are tasks to run, nothing to do */
2200 	if (rq->scx.local_dsq.nr)
2201 		goto has_tasks;
2202 
2203 	if (consume_global_dsq(sch, rq))
2204 		goto has_tasks;
2205 
2206 	if (scx_rq_bypassing(rq)) {
2207 		if (consume_dispatch_q(sch, rq, &rq->scx.bypass_dsq))
2208 			goto has_tasks;
2209 		else
2210 			goto no_tasks;
2211 	}
2212 
2213 	if (unlikely(!SCX_HAS_OP(sch, dispatch)) || !scx_rq_online(rq))
2214 		goto no_tasks;
2215 
2216 	dspc->rq = rq;
2217 
2218 	/*
2219 	 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock,
2220 	 * the local DSQ might still end up empty after a successful
2221 	 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch()
2222 	 * produced some tasks, retry. The BPF scheduler may depend on this
2223 	 * looping behavior to simplify its implementation.
2224 	 */
2225 	do {
2226 		dspc->nr_tasks = 0;
2227 
2228 		SCX_CALL_OP(sch, SCX_KF_DISPATCH, dispatch, rq,
2229 			    cpu_of(rq), prev_on_scx ? prev : NULL);
2230 
2231 		flush_dispatch_buf(sch, rq);
2232 
2233 		if (prev_on_rq && prev->scx.slice) {
2234 			rq->scx.flags |= SCX_RQ_BAL_KEEP;
2235 			goto has_tasks;
2236 		}
2237 		if (rq->scx.local_dsq.nr)
2238 			goto has_tasks;
2239 		if (consume_global_dsq(sch, rq))
2240 			goto has_tasks;
2241 
2242 		/*
2243 		 * ops.dispatch() can trap us in this loop by repeatedly
2244 		 * dispatching ineligible tasks. Break out once in a while to
2245 		 * allow the watchdog to run. As IRQ can't be enabled in
2246 		 * balance(), we want to complete this scheduling cycle and then
2247 		 * start a new one. IOW, we want to call resched_curr() on the
2248 		 * next, most likely idle, task, not the current one. Use
2249 		 * scx_kick_cpu() for deferred kicking.
2250 		 */
2251 		if (unlikely(!--nr_loops)) {
2252 			scx_kick_cpu(sch, cpu_of(rq), 0);
2253 			break;
2254 		}
2255 	} while (dspc->nr_tasks);
2256 
2257 no_tasks:
2258 	/*
2259 	 * Didn't find another task to run. Keep running @prev unless
2260 	 * %SCX_OPS_ENQ_LAST is in effect.
2261 	 */
2262 	if (prev_on_rq &&
2263 	    (!(sch->ops.flags & SCX_OPS_ENQ_LAST) || scx_rq_bypassing(rq))) {
2264 		rq->scx.flags |= SCX_RQ_BAL_KEEP;
2265 		__scx_add_event(sch, SCX_EV_DISPATCH_KEEP_LAST, 1);
2266 		goto has_tasks;
2267 	}
2268 	rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
2269 	return false;
2270 
2271 has_tasks:
2272 	rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
2273 	return true;
2274 }
2275 
2276 static void process_ddsp_deferred_locals(struct rq *rq)
2277 {
2278 	struct task_struct *p;
2279 
2280 	lockdep_assert_rq_held(rq);
2281 
2282 	/*
2283 	 * Now that @rq can be unlocked, execute the deferred enqueueing of
2284 	 * tasks directly dispatched to the local DSQs of other CPUs. See
2285 	 * direct_dispatch(). Keep popping from the head instead of using
2286 	 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq
2287 	 * temporarily.
2288 	 */
2289 	while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals,
2290 				struct task_struct, scx.dsq_list.node))) {
2291 		struct scx_sched *sch = scx_root;
2292 		struct scx_dispatch_q *dsq;
2293 
2294 		list_del_init(&p->scx.dsq_list.node);
2295 
2296 		dsq = find_dsq_for_dispatch(sch, rq, p->scx.ddsp_dsq_id, p);
2297 		if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL))
2298 			dispatch_to_local_dsq(sch, rq, dsq, p,
2299 					      p->scx.ddsp_enq_flags);
2300 	}
2301 }
2302 
2303 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first)
2304 {
2305 	struct scx_sched *sch = scx_root;
2306 
2307 	if (p->scx.flags & SCX_TASK_QUEUED) {
2308 		/*
2309 		 * Core-sched might decide to execute @p before it is
2310 		 * dispatched. Call ops_dequeue() to notify the BPF scheduler.
2311 		 */
2312 		ops_dequeue(rq, p, SCX_DEQ_CORE_SCHED_EXEC);
2313 		dispatch_dequeue(rq, p);
2314 	}
2315 
2316 	p->se.exec_start = rq_clock_task(rq);
2317 
2318 	/* see dequeue_task_scx() on why we skip when !QUEUED */
2319 	if (SCX_HAS_OP(sch, running) && (p->scx.flags & SCX_TASK_QUEUED))
2320 		SCX_CALL_OP_TASK(sch, SCX_KF_REST, running, rq, p);
2321 
2322 	clr_task_runnable(p, true);
2323 
2324 	/*
2325 	 * @p is getting newly scheduled or got kicked after someone updated its
2326 	 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick().
2327 	 */
2328 	if ((p->scx.slice == SCX_SLICE_INF) !=
2329 	    (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) {
2330 		if (p->scx.slice == SCX_SLICE_INF)
2331 			rq->scx.flags |= SCX_RQ_CAN_STOP_TICK;
2332 		else
2333 			rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK;
2334 
2335 		sched_update_tick_dependency(rq);
2336 
2337 		/*
2338 		 * For now, let's refresh the load_avgs just when transitioning
2339 		 * in and out of nohz. In the future, we might want to add a
2340 		 * mechanism which calls the following periodically on
2341 		 * tick-stopped CPUs.
2342 		 */
2343 		update_other_load_avgs(rq);
2344 	}
2345 }
2346 
2347 static enum scx_cpu_preempt_reason
2348 preempt_reason_from_class(const struct sched_class *class)
2349 {
2350 	if (class == &stop_sched_class)
2351 		return SCX_CPU_PREEMPT_STOP;
2352 	if (class == &dl_sched_class)
2353 		return SCX_CPU_PREEMPT_DL;
2354 	if (class == &rt_sched_class)
2355 		return SCX_CPU_PREEMPT_RT;
2356 	return SCX_CPU_PREEMPT_UNKNOWN;
2357 }
2358 
2359 static void switch_class(struct rq *rq, struct task_struct *next)
2360 {
2361 	struct scx_sched *sch = scx_root;
2362 	const struct sched_class *next_class = next->sched_class;
2363 
2364 	if (!(sch->ops.flags & SCX_OPS_HAS_CPU_PREEMPT))
2365 		return;
2366 
2367 	/*
2368 	 * The callback is conceptually meant to convey that the CPU is no
2369 	 * longer under the control of SCX. Therefore, don't invoke the callback
2370 	 * if the next class is below SCX (in which case the BPF scheduler has
2371 	 * actively decided not to schedule any tasks on the CPU).
2372 	 */
2373 	if (sched_class_above(&ext_sched_class, next_class))
2374 		return;
2375 
2376 	/*
2377 	 * At this point we know that SCX was preempted by a higher priority
2378 	 * sched_class, so invoke the ->cpu_release() callback if we have not
2379 	 * done so already. We only send the callback once between SCX being
2380 	 * preempted, and it regaining control of the CPU.
2381 	 *
2382 	 * ->cpu_release() complements ->cpu_acquire(), which is emitted the
2383 	 *  next time that balance_one() is invoked.
2384 	 */
2385 	if (!rq->scx.cpu_released) {
2386 		if (SCX_HAS_OP(sch, cpu_release)) {
2387 			struct scx_cpu_release_args args = {
2388 				.reason = preempt_reason_from_class(next_class),
2389 				.task = next,
2390 			};
2391 
2392 			SCX_CALL_OP(sch, SCX_KF_CPU_RELEASE, cpu_release, rq,
2393 				    cpu_of(rq), &args);
2394 		}
2395 		rq->scx.cpu_released = true;
2396 	}
2397 }
2398 
2399 static void put_prev_task_scx(struct rq *rq, struct task_struct *p,
2400 			      struct task_struct *next)
2401 {
2402 	struct scx_sched *sch = scx_root;
2403 
2404 	/* see kick_cpus_irq_workfn() */
2405 	smp_store_release(&rq->scx.kick_sync, rq->scx.kick_sync + 1);
2406 
2407 	update_curr_scx(rq);
2408 
2409 	/* see dequeue_task_scx() on why we skip when !QUEUED */
2410 	if (SCX_HAS_OP(sch, stopping) && (p->scx.flags & SCX_TASK_QUEUED))
2411 		SCX_CALL_OP_TASK(sch, SCX_KF_REST, stopping, rq, p, true);
2412 
2413 	if (p->scx.flags & SCX_TASK_QUEUED) {
2414 		set_task_runnable(rq, p);
2415 
2416 		/*
2417 		 * If @p has slice left and is being put, @p is getting
2418 		 * preempted by a higher priority scheduler class or core-sched
2419 		 * forcing a different task. Leave it at the head of the local
2420 		 * DSQ.
2421 		 */
2422 		if (p->scx.slice && !scx_rq_bypassing(rq)) {
2423 			dispatch_enqueue(sch, &rq->scx.local_dsq, p,
2424 					 SCX_ENQ_HEAD);
2425 			goto switch_class;
2426 		}
2427 
2428 		/*
2429 		 * If @p is runnable but we're about to enter a lower
2430 		 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell
2431 		 * ops.enqueue() that @p is the only one available for this cpu,
2432 		 * which should trigger an explicit follow-up scheduling event.
2433 		 */
2434 		if (next && sched_class_above(&ext_sched_class, next->sched_class)) {
2435 			WARN_ON_ONCE(!(sch->ops.flags & SCX_OPS_ENQ_LAST));
2436 			do_enqueue_task(rq, p, SCX_ENQ_LAST, -1);
2437 		} else {
2438 			do_enqueue_task(rq, p, 0, -1);
2439 		}
2440 	}
2441 
2442 switch_class:
2443 	if (next && next->sched_class != &ext_sched_class)
2444 		switch_class(rq, next);
2445 }
2446 
2447 static struct task_struct *first_local_task(struct rq *rq)
2448 {
2449 	return list_first_entry_or_null(&rq->scx.local_dsq.list,
2450 					struct task_struct, scx.dsq_list.node);
2451 }
2452 
2453 static struct task_struct *
2454 do_pick_task_scx(struct rq *rq, struct rq_flags *rf, bool force_scx)
2455 {
2456 	struct task_struct *prev = rq->curr;
2457 	bool keep_prev;
2458 	struct task_struct *p;
2459 
2460 	/* see kick_cpus_irq_workfn() */
2461 	smp_store_release(&rq->scx.kick_sync, rq->scx.kick_sync + 1);
2462 
2463 	rq->next_class = &ext_sched_class;
2464 
2465 	rq_unpin_lock(rq, rf);
2466 	balance_one(rq, prev);
2467 	rq_repin_lock(rq, rf);
2468 	maybe_queue_balance_callback(rq);
2469 
2470 	/*
2471 	 * If any higher-priority sched class enqueued a runnable task on
2472 	 * this rq during balance_one(), abort and return RETRY_TASK, so
2473 	 * that the scheduler loop can restart.
2474 	 *
2475 	 * If @force_scx is true, always try to pick a SCHED_EXT task,
2476 	 * regardless of any higher-priority sched classes activity.
2477 	 */
2478 	if (!force_scx && sched_class_above(rq->next_class, &ext_sched_class))
2479 		return RETRY_TASK;
2480 
2481 	keep_prev = rq->scx.flags & SCX_RQ_BAL_KEEP;
2482 	if (unlikely(keep_prev &&
2483 		     prev->sched_class != &ext_sched_class)) {
2484 		WARN_ON_ONCE(scx_enable_state() == SCX_ENABLED);
2485 		keep_prev = false;
2486 	}
2487 
2488 	/*
2489 	 * If balance_one() is telling us to keep running @prev, replenish slice
2490 	 * if necessary and keep running @prev. Otherwise, pop the first one
2491 	 * from the local DSQ.
2492 	 */
2493 	if (keep_prev) {
2494 		p = prev;
2495 		if (!p->scx.slice)
2496 			refill_task_slice_dfl(rcu_dereference_sched(scx_root), p);
2497 	} else {
2498 		p = first_local_task(rq);
2499 		if (!p)
2500 			return NULL;
2501 
2502 		if (unlikely(!p->scx.slice)) {
2503 			struct scx_sched *sch = rcu_dereference_sched(scx_root);
2504 
2505 			if (!scx_rq_bypassing(rq) && !sch->warned_zero_slice) {
2506 				printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in %s()\n",
2507 						p->comm, p->pid, __func__);
2508 				sch->warned_zero_slice = true;
2509 			}
2510 			refill_task_slice_dfl(sch, p);
2511 		}
2512 	}
2513 
2514 	return p;
2515 }
2516 
2517 static struct task_struct *pick_task_scx(struct rq *rq, struct rq_flags *rf)
2518 {
2519 	return do_pick_task_scx(rq, rf, false);
2520 }
2521 
2522 /*
2523  * Select the next task to run from the ext scheduling class.
2524  *
2525  * Use do_pick_task_scx() directly with @force_scx enabled, since the
2526  * dl_server must always select a sched_ext task.
2527  */
2528 static struct task_struct *
2529 ext_server_pick_task(struct sched_dl_entity *dl_se, struct rq_flags *rf)
2530 {
2531 	if (!scx_enabled())
2532 		return NULL;
2533 
2534 	return do_pick_task_scx(dl_se->rq, rf, true);
2535 }
2536 
2537 /*
2538  * Initialize the ext server deadline entity.
2539  */
2540 void ext_server_init(struct rq *rq)
2541 {
2542 	struct sched_dl_entity *dl_se = &rq->ext_server;
2543 
2544 	init_dl_entity(dl_se);
2545 
2546 	dl_server_init(dl_se, rq, ext_server_pick_task);
2547 }
2548 
2549 #ifdef CONFIG_SCHED_CORE
2550 /**
2551  * scx_prio_less - Task ordering for core-sched
2552  * @a: task A
2553  * @b: task B
2554  * @in_fi: in forced idle state
2555  *
2556  * Core-sched is implemented as an additional scheduling layer on top of the
2557  * usual sched_class'es and needs to find out the expected task ordering. For
2558  * SCX, core-sched calls this function to interrogate the task ordering.
2559  *
2560  * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used
2561  * to implement the default task ordering. The older the timestamp, the higher
2562  * priority the task - the global FIFO ordering matching the default scheduling
2563  * behavior.
2564  *
2565  * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to
2566  * implement FIFO ordering within each local DSQ. See pick_task_scx().
2567  */
2568 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b,
2569 		   bool in_fi)
2570 {
2571 	struct scx_sched *sch = scx_root;
2572 
2573 	/*
2574 	 * The const qualifiers are dropped from task_struct pointers when
2575 	 * calling ops.core_sched_before(). Accesses are controlled by the
2576 	 * verifier.
2577 	 */
2578 	if (SCX_HAS_OP(sch, core_sched_before) &&
2579 	    !scx_rq_bypassing(task_rq(a)))
2580 		return SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, core_sched_before,
2581 					      NULL,
2582 					      (struct task_struct *)a,
2583 					      (struct task_struct *)b);
2584 	else
2585 		return time_after64(a->scx.core_sched_at, b->scx.core_sched_at);
2586 }
2587 #endif	/* CONFIG_SCHED_CORE */
2588 
2589 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags)
2590 {
2591 	struct scx_sched *sch = scx_root;
2592 	bool rq_bypass;
2593 
2594 	/*
2595 	 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it
2596 	 * can be a good migration opportunity with low cache and memory
2597 	 * footprint. Returning a CPU different than @prev_cpu triggers
2598 	 * immediate rq migration. However, for SCX, as the current rq
2599 	 * association doesn't dictate where the task is going to run, this
2600 	 * doesn't fit well. If necessary, we can later add a dedicated method
2601 	 * which can decide to preempt self to force it through the regular
2602 	 * scheduling path.
2603 	 */
2604 	if (unlikely(wake_flags & WF_EXEC))
2605 		return prev_cpu;
2606 
2607 	rq_bypass = scx_rq_bypassing(task_rq(p));
2608 	if (likely(SCX_HAS_OP(sch, select_cpu)) && !rq_bypass) {
2609 		s32 cpu;
2610 		struct task_struct **ddsp_taskp;
2611 
2612 		ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
2613 		WARN_ON_ONCE(*ddsp_taskp);
2614 		*ddsp_taskp = p;
2615 
2616 		cpu = SCX_CALL_OP_TASK_RET(sch,
2617 					   SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU,
2618 					   select_cpu, NULL, p, prev_cpu,
2619 					   wake_flags);
2620 		p->scx.selected_cpu = cpu;
2621 		*ddsp_taskp = NULL;
2622 		if (ops_cpu_valid(sch, cpu, "from ops.select_cpu()"))
2623 			return cpu;
2624 		else
2625 			return prev_cpu;
2626 	} else {
2627 		s32 cpu;
2628 
2629 		cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, NULL, 0);
2630 		if (cpu >= 0) {
2631 			refill_task_slice_dfl(sch, p);
2632 			p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL;
2633 		} else {
2634 			cpu = prev_cpu;
2635 		}
2636 		p->scx.selected_cpu = cpu;
2637 
2638 		if (rq_bypass)
2639 			__scx_add_event(sch, SCX_EV_BYPASS_DISPATCH, 1);
2640 		return cpu;
2641 	}
2642 }
2643 
2644 static void task_woken_scx(struct rq *rq, struct task_struct *p)
2645 {
2646 	run_deferred(rq);
2647 }
2648 
2649 static void set_cpus_allowed_scx(struct task_struct *p,
2650 				 struct affinity_context *ac)
2651 {
2652 	struct scx_sched *sch = scx_root;
2653 
2654 	set_cpus_allowed_common(p, ac);
2655 
2656 	if (task_dead_and_done(p))
2657 		return;
2658 
2659 	/*
2660 	 * The effective cpumask is stored in @p->cpus_ptr which may temporarily
2661 	 * differ from the configured one in @p->cpus_mask. Always tell the bpf
2662 	 * scheduler the effective one.
2663 	 *
2664 	 * Fine-grained memory write control is enforced by BPF making the const
2665 	 * designation pointless. Cast it away when calling the operation.
2666 	 */
2667 	if (SCX_HAS_OP(sch, set_cpumask))
2668 		SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_cpumask, NULL,
2669 				 p, (struct cpumask *)p->cpus_ptr);
2670 }
2671 
2672 static void handle_hotplug(struct rq *rq, bool online)
2673 {
2674 	struct scx_sched *sch = scx_root;
2675 	int cpu = cpu_of(rq);
2676 
2677 	atomic_long_inc(&scx_hotplug_seq);
2678 
2679 	/*
2680 	 * scx_root updates are protected by cpus_read_lock() and will stay
2681 	 * stable here. Note that we can't depend on scx_enabled() test as the
2682 	 * hotplug ops need to be enabled before __scx_enabled is set.
2683 	 */
2684 	if (unlikely(!sch))
2685 		return;
2686 
2687 	if (scx_enabled())
2688 		scx_idle_update_selcpu_topology(&sch->ops);
2689 
2690 	if (online && SCX_HAS_OP(sch, cpu_online))
2691 		SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cpu_online, NULL, cpu);
2692 	else if (!online && SCX_HAS_OP(sch, cpu_offline))
2693 		SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cpu_offline, NULL, cpu);
2694 	else
2695 		scx_exit(sch, SCX_EXIT_UNREG_KERN,
2696 			 SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
2697 			 "cpu %d going %s, exiting scheduler", cpu,
2698 			 online ? "online" : "offline");
2699 }
2700 
2701 void scx_rq_activate(struct rq *rq)
2702 {
2703 	handle_hotplug(rq, true);
2704 }
2705 
2706 void scx_rq_deactivate(struct rq *rq)
2707 {
2708 	handle_hotplug(rq, false);
2709 }
2710 
2711 static void rq_online_scx(struct rq *rq)
2712 {
2713 	rq->scx.flags |= SCX_RQ_ONLINE;
2714 }
2715 
2716 static void rq_offline_scx(struct rq *rq)
2717 {
2718 	rq->scx.flags &= ~SCX_RQ_ONLINE;
2719 }
2720 
2721 
2722 static bool check_rq_for_timeouts(struct rq *rq)
2723 {
2724 	struct scx_sched *sch;
2725 	struct task_struct *p;
2726 	struct rq_flags rf;
2727 	bool timed_out = false;
2728 
2729 	rq_lock_irqsave(rq, &rf);
2730 	sch = rcu_dereference_bh(scx_root);
2731 	if (unlikely(!sch))
2732 		goto out_unlock;
2733 
2734 	list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) {
2735 		unsigned long last_runnable = p->scx.runnable_at;
2736 
2737 		if (unlikely(time_after(jiffies,
2738 					last_runnable + scx_watchdog_timeout))) {
2739 			u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable);
2740 
2741 			scx_exit(sch, SCX_EXIT_ERROR_STALL, 0,
2742 				 "%s[%d] failed to run for %u.%03us",
2743 				 p->comm, p->pid, dur_ms / 1000, dur_ms % 1000);
2744 			timed_out = true;
2745 			break;
2746 		}
2747 	}
2748 out_unlock:
2749 	rq_unlock_irqrestore(rq, &rf);
2750 	return timed_out;
2751 }
2752 
2753 static void scx_watchdog_workfn(struct work_struct *work)
2754 {
2755 	int cpu;
2756 
2757 	WRITE_ONCE(scx_watchdog_timestamp, jiffies);
2758 
2759 	for_each_online_cpu(cpu) {
2760 		if (unlikely(check_rq_for_timeouts(cpu_rq(cpu))))
2761 			break;
2762 
2763 		cond_resched();
2764 	}
2765 	queue_delayed_work(system_unbound_wq, to_delayed_work(work),
2766 			   scx_watchdog_timeout / 2);
2767 }
2768 
2769 void scx_tick(struct rq *rq)
2770 {
2771 	struct scx_sched *sch;
2772 	unsigned long last_check;
2773 
2774 	if (!scx_enabled())
2775 		return;
2776 
2777 	sch = rcu_dereference_bh(scx_root);
2778 	if (unlikely(!sch))
2779 		return;
2780 
2781 	last_check = READ_ONCE(scx_watchdog_timestamp);
2782 	if (unlikely(time_after(jiffies,
2783 				last_check + READ_ONCE(scx_watchdog_timeout)))) {
2784 		u32 dur_ms = jiffies_to_msecs(jiffies - last_check);
2785 
2786 		scx_exit(sch, SCX_EXIT_ERROR_STALL, 0,
2787 			 "watchdog failed to check in for %u.%03us",
2788 			 dur_ms / 1000, dur_ms % 1000);
2789 	}
2790 
2791 	update_other_load_avgs(rq);
2792 }
2793 
2794 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued)
2795 {
2796 	struct scx_sched *sch = scx_root;
2797 
2798 	update_curr_scx(rq);
2799 
2800 	/*
2801 	 * While disabling, always resched and refresh core-sched timestamp as
2802 	 * we can't trust the slice management or ops.core_sched_before().
2803 	 */
2804 	if (scx_rq_bypassing(rq)) {
2805 		curr->scx.slice = 0;
2806 		touch_core_sched(rq, curr);
2807 	} else if (SCX_HAS_OP(sch, tick)) {
2808 		SCX_CALL_OP_TASK(sch, SCX_KF_REST, tick, rq, curr);
2809 	}
2810 
2811 	if (!curr->scx.slice)
2812 		resched_curr(rq);
2813 }
2814 
2815 #ifdef CONFIG_EXT_GROUP_SCHED
2816 static struct cgroup *tg_cgrp(struct task_group *tg)
2817 {
2818 	/*
2819 	 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup,
2820 	 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the
2821 	 * root cgroup.
2822 	 */
2823 	if (tg && tg->css.cgroup)
2824 		return tg->css.cgroup;
2825 	else
2826 		return &cgrp_dfl_root.cgrp;
2827 }
2828 
2829 #define SCX_INIT_TASK_ARGS_CGROUP(tg)		.cgroup = tg_cgrp(tg),
2830 
2831 #else	/* CONFIG_EXT_GROUP_SCHED */
2832 
2833 #define SCX_INIT_TASK_ARGS_CGROUP(tg)
2834 
2835 #endif	/* CONFIG_EXT_GROUP_SCHED */
2836 
2837 static enum scx_task_state scx_get_task_state(const struct task_struct *p)
2838 {
2839 	return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT;
2840 }
2841 
2842 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state)
2843 {
2844 	enum scx_task_state prev_state = scx_get_task_state(p);
2845 	bool warn = false;
2846 
2847 	BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS));
2848 
2849 	switch (state) {
2850 	case SCX_TASK_NONE:
2851 		break;
2852 	case SCX_TASK_INIT:
2853 		warn = prev_state != SCX_TASK_NONE;
2854 		break;
2855 	case SCX_TASK_READY:
2856 		warn = prev_state == SCX_TASK_NONE;
2857 		break;
2858 	case SCX_TASK_ENABLED:
2859 		warn = prev_state != SCX_TASK_READY;
2860 		break;
2861 	default:
2862 		warn = true;
2863 		return;
2864 	}
2865 
2866 	WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]",
2867 		  prev_state, state, p->comm, p->pid);
2868 
2869 	p->scx.flags &= ~SCX_TASK_STATE_MASK;
2870 	p->scx.flags |= state << SCX_TASK_STATE_SHIFT;
2871 }
2872 
2873 static int scx_init_task(struct task_struct *p, struct task_group *tg, bool fork)
2874 {
2875 	struct scx_sched *sch = scx_root;
2876 	int ret;
2877 
2878 	p->scx.disallow = false;
2879 
2880 	if (SCX_HAS_OP(sch, init_task)) {
2881 		struct scx_init_task_args args = {
2882 			SCX_INIT_TASK_ARGS_CGROUP(tg)
2883 			.fork = fork,
2884 		};
2885 
2886 		ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, init_task, NULL,
2887 				      p, &args);
2888 		if (unlikely(ret)) {
2889 			ret = ops_sanitize_err(sch, "init_task", ret);
2890 			return ret;
2891 		}
2892 	}
2893 
2894 	scx_set_task_state(p, SCX_TASK_INIT);
2895 
2896 	if (p->scx.disallow) {
2897 		if (!fork) {
2898 			struct rq *rq;
2899 			struct rq_flags rf;
2900 
2901 			rq = task_rq_lock(p, &rf);
2902 
2903 			/*
2904 			 * We're in the load path and @p->policy will be applied
2905 			 * right after. Reverting @p->policy here and rejecting
2906 			 * %SCHED_EXT transitions from scx_check_setscheduler()
2907 			 * guarantees that if ops.init_task() sets @p->disallow,
2908 			 * @p can never be in SCX.
2909 			 */
2910 			if (p->policy == SCHED_EXT) {
2911 				p->policy = SCHED_NORMAL;
2912 				atomic_long_inc(&scx_nr_rejected);
2913 			}
2914 
2915 			task_rq_unlock(rq, p, &rf);
2916 		} else if (p->policy == SCHED_EXT) {
2917 			scx_error(sch, "ops.init_task() set task->scx.disallow for %s[%d] during fork",
2918 				  p->comm, p->pid);
2919 		}
2920 	}
2921 
2922 	p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
2923 	return 0;
2924 }
2925 
2926 static void scx_enable_task(struct task_struct *p)
2927 {
2928 	struct scx_sched *sch = scx_root;
2929 	struct rq *rq = task_rq(p);
2930 	u32 weight;
2931 
2932 	lockdep_assert_rq_held(rq);
2933 
2934 	/*
2935 	 * Set the weight before calling ops.enable() so that the scheduler
2936 	 * doesn't see a stale value if they inspect the task struct.
2937 	 */
2938 	if (task_has_idle_policy(p))
2939 		weight = WEIGHT_IDLEPRIO;
2940 	else
2941 		weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO];
2942 
2943 	p->scx.weight = sched_weight_to_cgroup(weight);
2944 
2945 	if (SCX_HAS_OP(sch, enable))
2946 		SCX_CALL_OP_TASK(sch, SCX_KF_REST, enable, rq, p);
2947 	scx_set_task_state(p, SCX_TASK_ENABLED);
2948 
2949 	if (SCX_HAS_OP(sch, set_weight))
2950 		SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_weight, rq,
2951 				 p, p->scx.weight);
2952 }
2953 
2954 static void scx_disable_task(struct task_struct *p)
2955 {
2956 	struct scx_sched *sch = scx_root;
2957 	struct rq *rq = task_rq(p);
2958 
2959 	lockdep_assert_rq_held(rq);
2960 	WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED);
2961 
2962 	if (SCX_HAS_OP(sch, disable))
2963 		SCX_CALL_OP_TASK(sch, SCX_KF_REST, disable, rq, p);
2964 	scx_set_task_state(p, SCX_TASK_READY);
2965 }
2966 
2967 static void scx_exit_task(struct task_struct *p)
2968 {
2969 	struct scx_sched *sch = scx_root;
2970 	struct scx_exit_task_args args = {
2971 		.cancelled = false,
2972 	};
2973 
2974 	lockdep_assert_rq_held(task_rq(p));
2975 
2976 	switch (scx_get_task_state(p)) {
2977 	case SCX_TASK_NONE:
2978 		return;
2979 	case SCX_TASK_INIT:
2980 		args.cancelled = true;
2981 		break;
2982 	case SCX_TASK_READY:
2983 		break;
2984 	case SCX_TASK_ENABLED:
2985 		scx_disable_task(p);
2986 		break;
2987 	default:
2988 		WARN_ON_ONCE(true);
2989 		return;
2990 	}
2991 
2992 	if (SCX_HAS_OP(sch, exit_task))
2993 		SCX_CALL_OP_TASK(sch, SCX_KF_REST, exit_task, task_rq(p),
2994 				 p, &args);
2995 	scx_set_task_state(p, SCX_TASK_NONE);
2996 }
2997 
2998 void init_scx_entity(struct sched_ext_entity *scx)
2999 {
3000 	memset(scx, 0, sizeof(*scx));
3001 	INIT_LIST_HEAD(&scx->dsq_list.node);
3002 	RB_CLEAR_NODE(&scx->dsq_priq);
3003 	scx->sticky_cpu = -1;
3004 	scx->holding_cpu = -1;
3005 	INIT_LIST_HEAD(&scx->runnable_node);
3006 	scx->runnable_at = jiffies;
3007 	scx->ddsp_dsq_id = SCX_DSQ_INVALID;
3008 	scx->slice = READ_ONCE(scx_slice_dfl);
3009 }
3010 
3011 void scx_pre_fork(struct task_struct *p)
3012 {
3013 	/*
3014 	 * BPF scheduler enable/disable paths want to be able to iterate and
3015 	 * update all tasks which can become complex when racing forks. As
3016 	 * enable/disable are very cold paths, let's use a percpu_rwsem to
3017 	 * exclude forks.
3018 	 */
3019 	percpu_down_read(&scx_fork_rwsem);
3020 }
3021 
3022 int scx_fork(struct task_struct *p)
3023 {
3024 	percpu_rwsem_assert_held(&scx_fork_rwsem);
3025 
3026 	if (scx_init_task_enabled)
3027 		return scx_init_task(p, task_group(p), true);
3028 	else
3029 		return 0;
3030 }
3031 
3032 void scx_post_fork(struct task_struct *p)
3033 {
3034 	if (scx_init_task_enabled) {
3035 		scx_set_task_state(p, SCX_TASK_READY);
3036 
3037 		/*
3038 		 * Enable the task immediately if it's running on sched_ext.
3039 		 * Otherwise, it'll be enabled in switching_to_scx() if and
3040 		 * when it's ever configured to run with a SCHED_EXT policy.
3041 		 */
3042 		if (p->sched_class == &ext_sched_class) {
3043 			struct rq_flags rf;
3044 			struct rq *rq;
3045 
3046 			rq = task_rq_lock(p, &rf);
3047 			scx_enable_task(p);
3048 			task_rq_unlock(rq, p, &rf);
3049 		}
3050 	}
3051 
3052 	raw_spin_lock_irq(&scx_tasks_lock);
3053 	list_add_tail(&p->scx.tasks_node, &scx_tasks);
3054 	raw_spin_unlock_irq(&scx_tasks_lock);
3055 
3056 	percpu_up_read(&scx_fork_rwsem);
3057 }
3058 
3059 void scx_cancel_fork(struct task_struct *p)
3060 {
3061 	if (scx_enabled()) {
3062 		struct rq *rq;
3063 		struct rq_flags rf;
3064 
3065 		rq = task_rq_lock(p, &rf);
3066 		WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY);
3067 		scx_exit_task(p);
3068 		task_rq_unlock(rq, p, &rf);
3069 	}
3070 
3071 	percpu_up_read(&scx_fork_rwsem);
3072 }
3073 
3074 /**
3075  * task_dead_and_done - Is a task dead and done running?
3076  * @p: target task
3077  *
3078  * Once sched_ext_dead() removes the dead task from scx_tasks and exits it, the
3079  * task no longer exists from SCX's POV. However, certain sched_class ops may be
3080  * invoked on these dead tasks leading to failures - e.g. sched_setscheduler()
3081  * may try to switch a task which finished sched_ext_dead() back into SCX
3082  * triggering invalid SCX task state transitions and worse.
3083  *
3084  * Once a task has finished the final switch, sched_ext_dead() is the only thing
3085  * that needs to happen on the task. Use this test to short-circuit sched_class
3086  * operations which may be called on dead tasks.
3087  */
3088 static bool task_dead_and_done(struct task_struct *p)
3089 {
3090 	struct rq *rq = task_rq(p);
3091 
3092 	lockdep_assert_rq_held(rq);
3093 
3094 	/*
3095 	 * In do_task_dead(), a dying task sets %TASK_DEAD with preemption
3096 	 * disabled and __schedule(). If @p has %TASK_DEAD set and off CPU, @p
3097 	 * won't ever run again.
3098 	 */
3099 	return unlikely(READ_ONCE(p->__state) == TASK_DEAD) &&
3100 		!task_on_cpu(rq, p);
3101 }
3102 
3103 void sched_ext_dead(struct task_struct *p)
3104 {
3105 	unsigned long flags;
3106 
3107 	/*
3108 	 * By the time control reaches here, @p has %TASK_DEAD set, switched out
3109 	 * for the last time and then dropped the rq lock - task_dead_and_done()
3110 	 * should be returning %true nullifying the straggling sched_class ops.
3111 	 * Remove from scx_tasks and exit @p.
3112 	 */
3113 	raw_spin_lock_irqsave(&scx_tasks_lock, flags);
3114 	list_del_init(&p->scx.tasks_node);
3115 	raw_spin_unlock_irqrestore(&scx_tasks_lock, flags);
3116 
3117 	/*
3118 	 * @p is off scx_tasks and wholly ours. scx_enable()'s READY -> ENABLED
3119 	 * transitions can't race us. Disable ops for @p.
3120 	 */
3121 	if (scx_get_task_state(p) != SCX_TASK_NONE) {
3122 		struct rq_flags rf;
3123 		struct rq *rq;
3124 
3125 		rq = task_rq_lock(p, &rf);
3126 		scx_exit_task(p);
3127 		task_rq_unlock(rq, p, &rf);
3128 	}
3129 }
3130 
3131 static void reweight_task_scx(struct rq *rq, struct task_struct *p,
3132 			      const struct load_weight *lw)
3133 {
3134 	struct scx_sched *sch = scx_root;
3135 
3136 	lockdep_assert_rq_held(task_rq(p));
3137 
3138 	if (task_dead_and_done(p))
3139 		return;
3140 
3141 	p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight));
3142 	if (SCX_HAS_OP(sch, set_weight))
3143 		SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_weight, rq,
3144 				 p, p->scx.weight);
3145 }
3146 
3147 static void prio_changed_scx(struct rq *rq, struct task_struct *p, u64 oldprio)
3148 {
3149 }
3150 
3151 static void switching_to_scx(struct rq *rq, struct task_struct *p)
3152 {
3153 	struct scx_sched *sch = scx_root;
3154 
3155 	if (task_dead_and_done(p))
3156 		return;
3157 
3158 	scx_enable_task(p);
3159 
3160 	/*
3161 	 * set_cpus_allowed_scx() is not called while @p is associated with a
3162 	 * different scheduler class. Keep the BPF scheduler up-to-date.
3163 	 */
3164 	if (SCX_HAS_OP(sch, set_cpumask))
3165 		SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_cpumask, rq,
3166 				 p, (struct cpumask *)p->cpus_ptr);
3167 }
3168 
3169 static void switched_from_scx(struct rq *rq, struct task_struct *p)
3170 {
3171 	if (task_dead_and_done(p))
3172 		return;
3173 
3174 	scx_disable_task(p);
3175 }
3176 
3177 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p, int wake_flags) {}
3178 
3179 static void switched_to_scx(struct rq *rq, struct task_struct *p) {}
3180 
3181 int scx_check_setscheduler(struct task_struct *p, int policy)
3182 {
3183 	lockdep_assert_rq_held(task_rq(p));
3184 
3185 	/* if disallow, reject transitioning into SCX */
3186 	if (scx_enabled() && READ_ONCE(p->scx.disallow) &&
3187 	    p->policy != policy && policy == SCHED_EXT)
3188 		return -EACCES;
3189 
3190 	return 0;
3191 }
3192 
3193 #ifdef CONFIG_NO_HZ_FULL
3194 bool scx_can_stop_tick(struct rq *rq)
3195 {
3196 	struct task_struct *p = rq->curr;
3197 
3198 	if (scx_rq_bypassing(rq))
3199 		return false;
3200 
3201 	if (p->sched_class != &ext_sched_class)
3202 		return true;
3203 
3204 	/*
3205 	 * @rq can dispatch from different DSQs, so we can't tell whether it
3206 	 * needs the tick or not by looking at nr_running. Allow stopping ticks
3207 	 * iff the BPF scheduler indicated so. See set_next_task_scx().
3208 	 */
3209 	return rq->scx.flags & SCX_RQ_CAN_STOP_TICK;
3210 }
3211 #endif
3212 
3213 #ifdef CONFIG_EXT_GROUP_SCHED
3214 
3215 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_ops_rwsem);
3216 static bool scx_cgroup_enabled;
3217 
3218 void scx_tg_init(struct task_group *tg)
3219 {
3220 	tg->scx.weight = CGROUP_WEIGHT_DFL;
3221 	tg->scx.bw_period_us = default_bw_period_us();
3222 	tg->scx.bw_quota_us = RUNTIME_INF;
3223 	tg->scx.idle = false;
3224 }
3225 
3226 int scx_tg_online(struct task_group *tg)
3227 {
3228 	struct scx_sched *sch = scx_root;
3229 	int ret = 0;
3230 
3231 	WARN_ON_ONCE(tg->scx.flags & (SCX_TG_ONLINE | SCX_TG_INITED));
3232 
3233 	if (scx_cgroup_enabled) {
3234 		if (SCX_HAS_OP(sch, cgroup_init)) {
3235 			struct scx_cgroup_init_args args =
3236 				{ .weight = tg->scx.weight,
3237 				  .bw_period_us = tg->scx.bw_period_us,
3238 				  .bw_quota_us = tg->scx.bw_quota_us,
3239 				  .bw_burst_us = tg->scx.bw_burst_us };
3240 
3241 			ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, cgroup_init,
3242 					      NULL, tg->css.cgroup, &args);
3243 			if (ret)
3244 				ret = ops_sanitize_err(sch, "cgroup_init", ret);
3245 		}
3246 		if (ret == 0)
3247 			tg->scx.flags |= SCX_TG_ONLINE | SCX_TG_INITED;
3248 	} else {
3249 		tg->scx.flags |= SCX_TG_ONLINE;
3250 	}
3251 
3252 	return ret;
3253 }
3254 
3255 void scx_tg_offline(struct task_group *tg)
3256 {
3257 	struct scx_sched *sch = scx_root;
3258 
3259 	WARN_ON_ONCE(!(tg->scx.flags & SCX_TG_ONLINE));
3260 
3261 	if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_exit) &&
3262 	    (tg->scx.flags & SCX_TG_INITED))
3263 		SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_exit, NULL,
3264 			    tg->css.cgroup);
3265 	tg->scx.flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED);
3266 }
3267 
3268 int scx_cgroup_can_attach(struct cgroup_taskset *tset)
3269 {
3270 	struct scx_sched *sch = scx_root;
3271 	struct cgroup_subsys_state *css;
3272 	struct task_struct *p;
3273 	int ret;
3274 
3275 	if (!scx_cgroup_enabled)
3276 		return 0;
3277 
3278 	cgroup_taskset_for_each(p, css, tset) {
3279 		struct cgroup *from = tg_cgrp(task_group(p));
3280 		struct cgroup *to = tg_cgrp(css_tg(css));
3281 
3282 		WARN_ON_ONCE(p->scx.cgrp_moving_from);
3283 
3284 		/*
3285 		 * sched_move_task() omits identity migrations. Let's match the
3286 		 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move()
3287 		 * always match one-to-one.
3288 		 */
3289 		if (from == to)
3290 			continue;
3291 
3292 		if (SCX_HAS_OP(sch, cgroup_prep_move)) {
3293 			ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED,
3294 					      cgroup_prep_move, NULL,
3295 					      p, from, css->cgroup);
3296 			if (ret)
3297 				goto err;
3298 		}
3299 
3300 		p->scx.cgrp_moving_from = from;
3301 	}
3302 
3303 	return 0;
3304 
3305 err:
3306 	cgroup_taskset_for_each(p, css, tset) {
3307 		if (SCX_HAS_OP(sch, cgroup_cancel_move) &&
3308 		    p->scx.cgrp_moving_from)
3309 			SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_cancel_move, NULL,
3310 				    p, p->scx.cgrp_moving_from, css->cgroup);
3311 		p->scx.cgrp_moving_from = NULL;
3312 	}
3313 
3314 	return ops_sanitize_err(sch, "cgroup_prep_move", ret);
3315 }
3316 
3317 void scx_cgroup_move_task(struct task_struct *p)
3318 {
3319 	struct scx_sched *sch = scx_root;
3320 
3321 	if (!scx_cgroup_enabled)
3322 		return;
3323 
3324 	/*
3325 	 * @p must have ops.cgroup_prep_move() called on it and thus
3326 	 * cgrp_moving_from set.
3327 	 */
3328 	if (SCX_HAS_OP(sch, cgroup_move) &&
3329 	    !WARN_ON_ONCE(!p->scx.cgrp_moving_from))
3330 		SCX_CALL_OP_TASK(sch, SCX_KF_UNLOCKED, cgroup_move, NULL,
3331 				 p, p->scx.cgrp_moving_from,
3332 				 tg_cgrp(task_group(p)));
3333 	p->scx.cgrp_moving_from = NULL;
3334 }
3335 
3336 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset)
3337 {
3338 	struct scx_sched *sch = scx_root;
3339 	struct cgroup_subsys_state *css;
3340 	struct task_struct *p;
3341 
3342 	if (!scx_cgroup_enabled)
3343 		return;
3344 
3345 	cgroup_taskset_for_each(p, css, tset) {
3346 		if (SCX_HAS_OP(sch, cgroup_cancel_move) &&
3347 		    p->scx.cgrp_moving_from)
3348 			SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_cancel_move, NULL,
3349 				    p, p->scx.cgrp_moving_from, css->cgroup);
3350 		p->scx.cgrp_moving_from = NULL;
3351 	}
3352 }
3353 
3354 void scx_group_set_weight(struct task_group *tg, unsigned long weight)
3355 {
3356 	struct scx_sched *sch = scx_root;
3357 
3358 	percpu_down_read(&scx_cgroup_ops_rwsem);
3359 
3360 	if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_weight) &&
3361 	    tg->scx.weight != weight)
3362 		SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_weight, NULL,
3363 			    tg_cgrp(tg), weight);
3364 
3365 	tg->scx.weight = weight;
3366 
3367 	percpu_up_read(&scx_cgroup_ops_rwsem);
3368 }
3369 
3370 void scx_group_set_idle(struct task_group *tg, bool idle)
3371 {
3372 	struct scx_sched *sch = scx_root;
3373 
3374 	percpu_down_read(&scx_cgroup_ops_rwsem);
3375 
3376 	if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_idle))
3377 		SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_idle, NULL,
3378 			    tg_cgrp(tg), idle);
3379 
3380 	/* Update the task group's idle state */
3381 	tg->scx.idle = idle;
3382 
3383 	percpu_up_read(&scx_cgroup_ops_rwsem);
3384 }
3385 
3386 void scx_group_set_bandwidth(struct task_group *tg,
3387 			     u64 period_us, u64 quota_us, u64 burst_us)
3388 {
3389 	struct scx_sched *sch = scx_root;
3390 
3391 	percpu_down_read(&scx_cgroup_ops_rwsem);
3392 
3393 	if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_bandwidth) &&
3394 	    (tg->scx.bw_period_us != period_us ||
3395 	     tg->scx.bw_quota_us != quota_us ||
3396 	     tg->scx.bw_burst_us != burst_us))
3397 		SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_bandwidth, NULL,
3398 			    tg_cgrp(tg), period_us, quota_us, burst_us);
3399 
3400 	tg->scx.bw_period_us = period_us;
3401 	tg->scx.bw_quota_us = quota_us;
3402 	tg->scx.bw_burst_us = burst_us;
3403 
3404 	percpu_up_read(&scx_cgroup_ops_rwsem);
3405 }
3406 
3407 static void scx_cgroup_lock(void)
3408 {
3409 	percpu_down_write(&scx_cgroup_ops_rwsem);
3410 	cgroup_lock();
3411 }
3412 
3413 static void scx_cgroup_unlock(void)
3414 {
3415 	cgroup_unlock();
3416 	percpu_up_write(&scx_cgroup_ops_rwsem);
3417 }
3418 
3419 #else	/* CONFIG_EXT_GROUP_SCHED */
3420 
3421 static void scx_cgroup_lock(void) {}
3422 static void scx_cgroup_unlock(void) {}
3423 
3424 #endif	/* CONFIG_EXT_GROUP_SCHED */
3425 
3426 /*
3427  * Omitted operations:
3428  *
3429  * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task
3430  *   isn't tied to the CPU at that point. Preemption is implemented by resetting
3431  *   the victim task's slice to 0 and triggering reschedule on the target CPU.
3432  *
3433  * - migrate_task_rq: Unnecessary as task to cpu mapping is transient.
3434  *
3435  * - task_fork/dead: We need fork/dead notifications for all tasks regardless of
3436  *   their current sched_class. Call them directly from sched core instead.
3437  */
3438 DEFINE_SCHED_CLASS(ext) = {
3439 	.enqueue_task		= enqueue_task_scx,
3440 	.dequeue_task		= dequeue_task_scx,
3441 	.yield_task		= yield_task_scx,
3442 	.yield_to_task		= yield_to_task_scx,
3443 
3444 	.wakeup_preempt		= wakeup_preempt_scx,
3445 
3446 	.pick_task		= pick_task_scx,
3447 
3448 	.put_prev_task		= put_prev_task_scx,
3449 	.set_next_task		= set_next_task_scx,
3450 
3451 	.select_task_rq		= select_task_rq_scx,
3452 	.task_woken		= task_woken_scx,
3453 	.set_cpus_allowed	= set_cpus_allowed_scx,
3454 
3455 	.rq_online		= rq_online_scx,
3456 	.rq_offline		= rq_offline_scx,
3457 
3458 	.task_tick		= task_tick_scx,
3459 
3460 	.switching_to		= switching_to_scx,
3461 	.switched_from		= switched_from_scx,
3462 	.switched_to		= switched_to_scx,
3463 	.reweight_task		= reweight_task_scx,
3464 	.prio_changed		= prio_changed_scx,
3465 
3466 	.update_curr		= update_curr_scx,
3467 
3468 #ifdef CONFIG_UCLAMP_TASK
3469 	.uclamp_enabled		= 1,
3470 #endif
3471 };
3472 
3473 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id)
3474 {
3475 	memset(dsq, 0, sizeof(*dsq));
3476 
3477 	raw_spin_lock_init(&dsq->lock);
3478 	INIT_LIST_HEAD(&dsq->list);
3479 	dsq->id = dsq_id;
3480 }
3481 
3482 static void free_dsq_irq_workfn(struct irq_work *irq_work)
3483 {
3484 	struct llist_node *to_free = llist_del_all(&dsqs_to_free);
3485 	struct scx_dispatch_q *dsq, *tmp_dsq;
3486 
3487 	llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node)
3488 		kfree_rcu(dsq, rcu);
3489 }
3490 
3491 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn);
3492 
3493 static void destroy_dsq(struct scx_sched *sch, u64 dsq_id)
3494 {
3495 	struct scx_dispatch_q *dsq;
3496 	unsigned long flags;
3497 
3498 	rcu_read_lock();
3499 
3500 	dsq = find_user_dsq(sch, dsq_id);
3501 	if (!dsq)
3502 		goto out_unlock_rcu;
3503 
3504 	raw_spin_lock_irqsave(&dsq->lock, flags);
3505 
3506 	if (dsq->nr) {
3507 		scx_error(sch, "attempting to destroy in-use dsq 0x%016llx (nr=%u)",
3508 			  dsq->id, dsq->nr);
3509 		goto out_unlock_dsq;
3510 	}
3511 
3512 	if (rhashtable_remove_fast(&sch->dsq_hash, &dsq->hash_node,
3513 				   dsq_hash_params))
3514 		goto out_unlock_dsq;
3515 
3516 	/*
3517 	 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from
3518 	 * queueing more tasks. As this function can be called from anywhere,
3519 	 * freeing is bounced through an irq work to avoid nesting RCU
3520 	 * operations inside scheduler locks.
3521 	 */
3522 	dsq->id = SCX_DSQ_INVALID;
3523 	llist_add(&dsq->free_node, &dsqs_to_free);
3524 	irq_work_queue(&free_dsq_irq_work);
3525 
3526 out_unlock_dsq:
3527 	raw_spin_unlock_irqrestore(&dsq->lock, flags);
3528 out_unlock_rcu:
3529 	rcu_read_unlock();
3530 }
3531 
3532 #ifdef CONFIG_EXT_GROUP_SCHED
3533 static void scx_cgroup_exit(struct scx_sched *sch)
3534 {
3535 	struct cgroup_subsys_state *css;
3536 
3537 	scx_cgroup_enabled = false;
3538 
3539 	/*
3540 	 * scx_tg_on/offline() are excluded through cgroup_lock(). If we walk
3541 	 * cgroups and exit all the inited ones, all online cgroups are exited.
3542 	 */
3543 	css_for_each_descendant_post(css, &root_task_group.css) {
3544 		struct task_group *tg = css_tg(css);
3545 
3546 		if (!(tg->scx.flags & SCX_TG_INITED))
3547 			continue;
3548 		tg->scx.flags &= ~SCX_TG_INITED;
3549 
3550 		if (!sch->ops.cgroup_exit)
3551 			continue;
3552 
3553 		SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_exit, NULL,
3554 			    css->cgroup);
3555 	}
3556 }
3557 
3558 static int scx_cgroup_init(struct scx_sched *sch)
3559 {
3560 	struct cgroup_subsys_state *css;
3561 	int ret;
3562 
3563 	/*
3564 	 * scx_tg_on/offline() are excluded through cgroup_lock(). If we walk
3565 	 * cgroups and init, all online cgroups are initialized.
3566 	 */
3567 	css_for_each_descendant_pre(css, &root_task_group.css) {
3568 		struct task_group *tg = css_tg(css);
3569 		struct scx_cgroup_init_args args = {
3570 			.weight = tg->scx.weight,
3571 			.bw_period_us = tg->scx.bw_period_us,
3572 			.bw_quota_us = tg->scx.bw_quota_us,
3573 			.bw_burst_us = tg->scx.bw_burst_us,
3574 		};
3575 
3576 		if ((tg->scx.flags &
3577 		     (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE)
3578 			continue;
3579 
3580 		if (!sch->ops.cgroup_init) {
3581 			tg->scx.flags |= SCX_TG_INITED;
3582 			continue;
3583 		}
3584 
3585 		ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, cgroup_init, NULL,
3586 				      css->cgroup, &args);
3587 		if (ret) {
3588 			css_put(css);
3589 			scx_error(sch, "ops.cgroup_init() failed (%d)", ret);
3590 			return ret;
3591 		}
3592 		tg->scx.flags |= SCX_TG_INITED;
3593 	}
3594 
3595 	WARN_ON_ONCE(scx_cgroup_enabled);
3596 	scx_cgroup_enabled = true;
3597 
3598 	return 0;
3599 }
3600 
3601 #else
3602 static void scx_cgroup_exit(struct scx_sched *sch) {}
3603 static int scx_cgroup_init(struct scx_sched *sch) { return 0; }
3604 #endif
3605 
3606 
3607 /********************************************************************************
3608  * Sysfs interface and ops enable/disable.
3609  */
3610 
3611 #define SCX_ATTR(_name)								\
3612 	static struct kobj_attribute scx_attr_##_name = {			\
3613 		.attr = { .name = __stringify(_name), .mode = 0444 },		\
3614 		.show = scx_attr_##_name##_show,				\
3615 	}
3616 
3617 static ssize_t scx_attr_state_show(struct kobject *kobj,
3618 				   struct kobj_attribute *ka, char *buf)
3619 {
3620 	return sysfs_emit(buf, "%s\n", scx_enable_state_str[scx_enable_state()]);
3621 }
3622 SCX_ATTR(state);
3623 
3624 static ssize_t scx_attr_switch_all_show(struct kobject *kobj,
3625 					struct kobj_attribute *ka, char *buf)
3626 {
3627 	return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all));
3628 }
3629 SCX_ATTR(switch_all);
3630 
3631 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj,
3632 					 struct kobj_attribute *ka, char *buf)
3633 {
3634 	return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected));
3635 }
3636 SCX_ATTR(nr_rejected);
3637 
3638 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj,
3639 					 struct kobj_attribute *ka, char *buf)
3640 {
3641 	return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq));
3642 }
3643 SCX_ATTR(hotplug_seq);
3644 
3645 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj,
3646 					struct kobj_attribute *ka, char *buf)
3647 {
3648 	return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq));
3649 }
3650 SCX_ATTR(enable_seq);
3651 
3652 static struct attribute *scx_global_attrs[] = {
3653 	&scx_attr_state.attr,
3654 	&scx_attr_switch_all.attr,
3655 	&scx_attr_nr_rejected.attr,
3656 	&scx_attr_hotplug_seq.attr,
3657 	&scx_attr_enable_seq.attr,
3658 	NULL,
3659 };
3660 
3661 static const struct attribute_group scx_global_attr_group = {
3662 	.attrs = scx_global_attrs,
3663 };
3664 
3665 static void free_exit_info(struct scx_exit_info *ei);
3666 
3667 static void scx_sched_free_rcu_work(struct work_struct *work)
3668 {
3669 	struct rcu_work *rcu_work = to_rcu_work(work);
3670 	struct scx_sched *sch = container_of(rcu_work, struct scx_sched, rcu_work);
3671 	struct rhashtable_iter rht_iter;
3672 	struct scx_dispatch_q *dsq;
3673 	int node;
3674 
3675 	irq_work_sync(&sch->error_irq_work);
3676 	kthread_destroy_worker(sch->helper);
3677 
3678 	free_percpu(sch->pcpu);
3679 
3680 	for_each_node_state(node, N_POSSIBLE)
3681 		kfree(sch->global_dsqs[node]);
3682 	kfree(sch->global_dsqs);
3683 
3684 	rhashtable_walk_enter(&sch->dsq_hash, &rht_iter);
3685 	do {
3686 		rhashtable_walk_start(&rht_iter);
3687 
3688 		while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq))
3689 			destroy_dsq(sch, dsq->id);
3690 
3691 		rhashtable_walk_stop(&rht_iter);
3692 	} while (dsq == ERR_PTR(-EAGAIN));
3693 	rhashtable_walk_exit(&rht_iter);
3694 
3695 	rhashtable_free_and_destroy(&sch->dsq_hash, NULL, NULL);
3696 	free_exit_info(sch->exit_info);
3697 	kfree(sch);
3698 }
3699 
3700 static void scx_kobj_release(struct kobject *kobj)
3701 {
3702 	struct scx_sched *sch = container_of(kobj, struct scx_sched, kobj);
3703 
3704 	INIT_RCU_WORK(&sch->rcu_work, scx_sched_free_rcu_work);
3705 	queue_rcu_work(system_unbound_wq, &sch->rcu_work);
3706 }
3707 
3708 static ssize_t scx_attr_ops_show(struct kobject *kobj,
3709 				 struct kobj_attribute *ka, char *buf)
3710 {
3711 	return sysfs_emit(buf, "%s\n", scx_root->ops.name);
3712 }
3713 SCX_ATTR(ops);
3714 
3715 #define scx_attr_event_show(buf, at, events, kind) ({				\
3716 	sysfs_emit_at(buf, at, "%s %llu\n", #kind, (events)->kind);		\
3717 })
3718 
3719 static ssize_t scx_attr_events_show(struct kobject *kobj,
3720 				    struct kobj_attribute *ka, char *buf)
3721 {
3722 	struct scx_sched *sch = container_of(kobj, struct scx_sched, kobj);
3723 	struct scx_event_stats events;
3724 	int at = 0;
3725 
3726 	scx_read_events(sch, &events);
3727 	at += scx_attr_event_show(buf, at, &events, SCX_EV_SELECT_CPU_FALLBACK);
3728 	at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE);
3729 	at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_KEEP_LAST);
3730 	at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_EXITING);
3731 	at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED);
3732 	at += scx_attr_event_show(buf, at, &events, SCX_EV_REFILL_SLICE_DFL);
3733 	at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DURATION);
3734 	at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DISPATCH);
3735 	at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_ACTIVATE);
3736 	return at;
3737 }
3738 SCX_ATTR(events);
3739 
3740 static struct attribute *scx_sched_attrs[] = {
3741 	&scx_attr_ops.attr,
3742 	&scx_attr_events.attr,
3743 	NULL,
3744 };
3745 ATTRIBUTE_GROUPS(scx_sched);
3746 
3747 static const struct kobj_type scx_ktype = {
3748 	.release = scx_kobj_release,
3749 	.sysfs_ops = &kobj_sysfs_ops,
3750 	.default_groups = scx_sched_groups,
3751 };
3752 
3753 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
3754 {
3755 	return add_uevent_var(env, "SCXOPS=%s", scx_root->ops.name);
3756 }
3757 
3758 static const struct kset_uevent_ops scx_uevent_ops = {
3759 	.uevent = scx_uevent,
3760 };
3761 
3762 /*
3763  * Used by sched_fork() and __setscheduler_prio() to pick the matching
3764  * sched_class. dl/rt are already handled.
3765  */
3766 bool task_should_scx(int policy)
3767 {
3768 	if (!scx_enabled() || unlikely(scx_enable_state() == SCX_DISABLING))
3769 		return false;
3770 	if (READ_ONCE(scx_switching_all))
3771 		return true;
3772 	return policy == SCHED_EXT;
3773 }
3774 
3775 bool scx_allow_ttwu_queue(const struct task_struct *p)
3776 {
3777 	struct scx_sched *sch;
3778 
3779 	if (!scx_enabled())
3780 		return true;
3781 
3782 	sch = rcu_dereference_sched(scx_root);
3783 	if (unlikely(!sch))
3784 		return true;
3785 
3786 	if (sch->ops.flags & SCX_OPS_ALLOW_QUEUED_WAKEUP)
3787 		return true;
3788 
3789 	if (unlikely(p->sched_class != &ext_sched_class))
3790 		return true;
3791 
3792 	return false;
3793 }
3794 
3795 /**
3796  * handle_lockup - sched_ext common lockup handler
3797  * @fmt: format string
3798  *
3799  * Called on system stall or lockup condition and initiates abort of sched_ext
3800  * if enabled, which may resolve the reported lockup.
3801  *
3802  * Returns %true if sched_ext is enabled and abort was initiated, which may
3803  * resolve the lockup. %false if sched_ext is not enabled or abort was already
3804  * initiated by someone else.
3805  */
3806 static __printf(1, 2) bool handle_lockup(const char *fmt, ...)
3807 {
3808 	struct scx_sched *sch;
3809 	va_list args;
3810 	bool ret;
3811 
3812 	guard(rcu)();
3813 
3814 	sch = rcu_dereference(scx_root);
3815 	if (unlikely(!sch))
3816 		return false;
3817 
3818 	switch (scx_enable_state()) {
3819 	case SCX_ENABLING:
3820 	case SCX_ENABLED:
3821 		va_start(args, fmt);
3822 		ret = scx_verror(sch, fmt, args);
3823 		va_end(args);
3824 		return ret;
3825 	default:
3826 		return false;
3827 	}
3828 }
3829 
3830 /**
3831  * scx_rcu_cpu_stall - sched_ext RCU CPU stall handler
3832  *
3833  * While there are various reasons why RCU CPU stalls can occur on a system
3834  * that may not be caused by the current BPF scheduler, try kicking out the
3835  * current scheduler in an attempt to recover the system to a good state before
3836  * issuing panics.
3837  *
3838  * Returns %true if sched_ext is enabled and abort was initiated, which may
3839  * resolve the reported RCU stall. %false if sched_ext is not enabled or someone
3840  * else already initiated abort.
3841  */
3842 bool scx_rcu_cpu_stall(void)
3843 {
3844 	return handle_lockup("RCU CPU stall detected!");
3845 }
3846 
3847 /**
3848  * scx_softlockup - sched_ext softlockup handler
3849  * @dur_s: number of seconds of CPU stuck due to soft lockup
3850  *
3851  * On some multi-socket setups (e.g. 2x Intel 8480c), the BPF scheduler can
3852  * live-lock the system by making many CPUs target the same DSQ to the point
3853  * where soft-lockup detection triggers. This function is called from
3854  * soft-lockup watchdog when the triggering point is close and tries to unjam
3855  * the system and aborting the BPF scheduler.
3856  */
3857 void scx_softlockup(u32 dur_s)
3858 {
3859 	if (!handle_lockup("soft lockup - CPU %d stuck for %us", smp_processor_id(), dur_s))
3860 		return;
3861 
3862 	printk_deferred(KERN_ERR "sched_ext: Soft lockup - CPU %d stuck for %us, disabling BPF scheduler\n",
3863 			smp_processor_id(), dur_s);
3864 }
3865 
3866 /**
3867  * scx_hardlockup - sched_ext hardlockup handler
3868  *
3869  * A poorly behaving BPF scheduler can trigger hard lockup by e.g. putting
3870  * numerous affinitized tasks in a single queue and directing all CPUs at it.
3871  * Try kicking out the current scheduler in an attempt to recover the system to
3872  * a good state before taking more drastic actions.
3873  *
3874  * Returns %true if sched_ext is enabled and abort was initiated, which may
3875  * resolve the reported hardlockdup. %false if sched_ext is not enabled or
3876  * someone else already initiated abort.
3877  */
3878 bool scx_hardlockup(int cpu)
3879 {
3880 	if (!handle_lockup("hard lockup - CPU %d", cpu))
3881 		return false;
3882 
3883 	printk_deferred(KERN_ERR "sched_ext: Hard lockup - CPU %d, disabling BPF scheduler\n",
3884 			cpu);
3885 	return true;
3886 }
3887 
3888 static u32 bypass_lb_cpu(struct scx_sched *sch, struct rq *rq,
3889 			 struct cpumask *donee_mask, struct cpumask *resched_mask,
3890 			 u32 nr_donor_target, u32 nr_donee_target)
3891 {
3892 	struct scx_dispatch_q *donor_dsq = &rq->scx.bypass_dsq;
3893 	struct task_struct *p, *n;
3894 	struct scx_dsq_list_node cursor = INIT_DSQ_LIST_CURSOR(cursor, 0, 0);
3895 	s32 delta = READ_ONCE(donor_dsq->nr) - nr_donor_target;
3896 	u32 nr_balanced = 0, min_delta_us;
3897 
3898 	/*
3899 	 * All we want to guarantee is reasonable forward progress. No reason to
3900 	 * fine tune. Assuming every task on @donor_dsq runs their full slice,
3901 	 * consider offloading iff the total queued duration is over the
3902 	 * threshold.
3903 	 */
3904 	min_delta_us = scx_bypass_lb_intv_us / SCX_BYPASS_LB_MIN_DELTA_DIV;
3905 	if (delta < DIV_ROUND_UP(min_delta_us, scx_slice_bypass_us))
3906 		return 0;
3907 
3908 	raw_spin_rq_lock_irq(rq);
3909 	raw_spin_lock(&donor_dsq->lock);
3910 	list_add(&cursor.node, &donor_dsq->list);
3911 resume:
3912 	n = container_of(&cursor, struct task_struct, scx.dsq_list);
3913 	n = nldsq_next_task(donor_dsq, n, false);
3914 
3915 	while ((p = n)) {
3916 		struct rq *donee_rq;
3917 		struct scx_dispatch_q *donee_dsq;
3918 		int donee;
3919 
3920 		n = nldsq_next_task(donor_dsq, n, false);
3921 
3922 		if (donor_dsq->nr <= nr_donor_target)
3923 			break;
3924 
3925 		if (cpumask_empty(donee_mask))
3926 			break;
3927 
3928 		donee = cpumask_any_and_distribute(donee_mask, p->cpus_ptr);
3929 		if (donee >= nr_cpu_ids)
3930 			continue;
3931 
3932 		donee_rq = cpu_rq(donee);
3933 		donee_dsq = &donee_rq->scx.bypass_dsq;
3934 
3935 		/*
3936 		 * $p's rq is not locked but $p's DSQ lock protects its
3937 		 * scheduling properties making this test safe.
3938 		 */
3939 		if (!task_can_run_on_remote_rq(sch, p, donee_rq, false))
3940 			continue;
3941 
3942 		/*
3943 		 * Moving $p from one non-local DSQ to another. The source rq
3944 		 * and DSQ are already locked. Do an abbreviated dequeue and
3945 		 * then perform enqueue without unlocking $donor_dsq.
3946 		 *
3947 		 * We don't want to drop and reacquire the lock on each
3948 		 * iteration as @donor_dsq can be very long and potentially
3949 		 * highly contended. Donee DSQs are less likely to be contended.
3950 		 * The nested locking is safe as only this LB moves tasks
3951 		 * between bypass DSQs.
3952 		 */
3953 		dispatch_dequeue_locked(p, donor_dsq);
3954 		dispatch_enqueue(sch, donee_dsq, p, SCX_ENQ_NESTED);
3955 
3956 		/*
3957 		 * $donee might have been idle and need to be woken up. No need
3958 		 * to be clever. Kick every CPU that receives tasks.
3959 		 */
3960 		cpumask_set_cpu(donee, resched_mask);
3961 
3962 		if (READ_ONCE(donee_dsq->nr) >= nr_donee_target)
3963 			cpumask_clear_cpu(donee, donee_mask);
3964 
3965 		nr_balanced++;
3966 		if (!(nr_balanced % SCX_BYPASS_LB_BATCH) && n) {
3967 			list_move_tail(&cursor.node, &n->scx.dsq_list.node);
3968 			raw_spin_unlock(&donor_dsq->lock);
3969 			raw_spin_rq_unlock_irq(rq);
3970 			cpu_relax();
3971 			raw_spin_rq_lock_irq(rq);
3972 			raw_spin_lock(&donor_dsq->lock);
3973 			goto resume;
3974 		}
3975 	}
3976 
3977 	list_del_init(&cursor.node);
3978 	raw_spin_unlock(&donor_dsq->lock);
3979 	raw_spin_rq_unlock_irq(rq);
3980 
3981 	return nr_balanced;
3982 }
3983 
3984 static void bypass_lb_node(struct scx_sched *sch, int node)
3985 {
3986 	const struct cpumask *node_mask = cpumask_of_node(node);
3987 	struct cpumask *donee_mask = scx_bypass_lb_donee_cpumask;
3988 	struct cpumask *resched_mask = scx_bypass_lb_resched_cpumask;
3989 	u32 nr_tasks = 0, nr_cpus = 0, nr_balanced = 0;
3990 	u32 nr_target, nr_donor_target;
3991 	u32 before_min = U32_MAX, before_max = 0;
3992 	u32 after_min = U32_MAX, after_max = 0;
3993 	int cpu;
3994 
3995 	/* count the target tasks and CPUs */
3996 	for_each_cpu_and(cpu, cpu_online_mask, node_mask) {
3997 		u32 nr = READ_ONCE(cpu_rq(cpu)->scx.bypass_dsq.nr);
3998 
3999 		nr_tasks += nr;
4000 		nr_cpus++;
4001 
4002 		before_min = min(nr, before_min);
4003 		before_max = max(nr, before_max);
4004 	}
4005 
4006 	if (!nr_cpus)
4007 		return;
4008 
4009 	/*
4010 	 * We don't want CPUs to have more than $nr_donor_target tasks and
4011 	 * balancing to fill donee CPUs upto $nr_target. Once targets are
4012 	 * calculated, find the donee CPUs.
4013 	 */
4014 	nr_target = DIV_ROUND_UP(nr_tasks, nr_cpus);
4015 	nr_donor_target = DIV_ROUND_UP(nr_target * SCX_BYPASS_LB_DONOR_PCT, 100);
4016 
4017 	cpumask_clear(donee_mask);
4018 	for_each_cpu_and(cpu, cpu_online_mask, node_mask) {
4019 		if (READ_ONCE(cpu_rq(cpu)->scx.bypass_dsq.nr) < nr_target)
4020 			cpumask_set_cpu(cpu, donee_mask);
4021 	}
4022 
4023 	/* iterate !donee CPUs and see if they should be offloaded */
4024 	cpumask_clear(resched_mask);
4025 	for_each_cpu_and(cpu, cpu_online_mask, node_mask) {
4026 		struct rq *rq = cpu_rq(cpu);
4027 		struct scx_dispatch_q *donor_dsq = &rq->scx.bypass_dsq;
4028 
4029 		if (cpumask_empty(donee_mask))
4030 			break;
4031 		if (cpumask_test_cpu(cpu, donee_mask))
4032 			continue;
4033 		if (READ_ONCE(donor_dsq->nr) <= nr_donor_target)
4034 			continue;
4035 
4036 		nr_balanced += bypass_lb_cpu(sch, rq, donee_mask, resched_mask,
4037 					     nr_donor_target, nr_target);
4038 	}
4039 
4040 	for_each_cpu(cpu, resched_mask)
4041 		resched_cpu(cpu);
4042 
4043 	for_each_cpu_and(cpu, cpu_online_mask, node_mask) {
4044 		u32 nr = READ_ONCE(cpu_rq(cpu)->scx.bypass_dsq.nr);
4045 
4046 		after_min = min(nr, after_min);
4047 		after_max = max(nr, after_max);
4048 
4049 	}
4050 
4051 	trace_sched_ext_bypass_lb(node, nr_cpus, nr_tasks, nr_balanced,
4052 				  before_min, before_max, after_min, after_max);
4053 }
4054 
4055 /*
4056  * In bypass mode, all tasks are put on the per-CPU bypass DSQs. If the machine
4057  * is over-saturated and the BPF scheduler skewed tasks into few CPUs, some
4058  * bypass DSQs can be overloaded. If there are enough tasks to saturate other
4059  * lightly loaded CPUs, such imbalance can lead to very high execution latency
4060  * on the overloaded CPUs and thus to hung tasks and RCU stalls. To avoid such
4061  * outcomes, a simple load balancing mechanism is implemented by the following
4062  * timer which runs periodically while bypass mode is in effect.
4063  */
4064 static void scx_bypass_lb_timerfn(struct timer_list *timer)
4065 {
4066 	struct scx_sched *sch;
4067 	int node;
4068 	u32 intv_us;
4069 
4070 	sch = rcu_dereference_all(scx_root);
4071 	if (unlikely(!sch) || !READ_ONCE(scx_bypass_depth))
4072 		return;
4073 
4074 	for_each_node_with_cpus(node)
4075 		bypass_lb_node(sch, node);
4076 
4077 	intv_us = READ_ONCE(scx_bypass_lb_intv_us);
4078 	if (intv_us)
4079 		mod_timer(timer, jiffies + usecs_to_jiffies(intv_us));
4080 }
4081 
4082 static DEFINE_TIMER(scx_bypass_lb_timer, scx_bypass_lb_timerfn);
4083 
4084 /**
4085  * scx_bypass - [Un]bypass scx_ops and guarantee forward progress
4086  * @bypass: true for bypass, false for unbypass
4087  *
4088  * Bypassing guarantees that all runnable tasks make forward progress without
4089  * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might
4090  * be held by tasks that the BPF scheduler is forgetting to run, which
4091  * unfortunately also excludes toggling the static branches.
4092  *
4093  * Let's work around by overriding a couple ops and modifying behaviors based on
4094  * the DISABLING state and then cycling the queued tasks through dequeue/enqueue
4095  * to force global FIFO scheduling.
4096  *
4097  * - ops.select_cpu() is ignored and the default select_cpu() is used.
4098  *
4099  * - ops.enqueue() is ignored and tasks are queued in simple global FIFO order.
4100  *   %SCX_OPS_ENQ_LAST is also ignored.
4101  *
4102  * - ops.dispatch() is ignored.
4103  *
4104  * - balance_one() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice
4105  *   can't be trusted. Whenever a tick triggers, the running task is rotated to
4106  *   the tail of the queue with core_sched_at touched.
4107  *
4108  * - pick_next_task() suppresses zero slice warning.
4109  *
4110  * - scx_kick_cpu() is disabled to avoid irq_work malfunction during PM
4111  *   operations.
4112  *
4113  * - scx_prio_less() reverts to the default core_sched_at order.
4114  */
4115 static void scx_bypass(bool bypass)
4116 {
4117 	static DEFINE_RAW_SPINLOCK(bypass_lock);
4118 	static unsigned long bypass_timestamp;
4119 	struct scx_sched *sch;
4120 	unsigned long flags;
4121 	int cpu;
4122 
4123 	raw_spin_lock_irqsave(&bypass_lock, flags);
4124 	sch = rcu_dereference_bh(scx_root);
4125 
4126 	if (bypass) {
4127 		u32 intv_us;
4128 
4129 		WRITE_ONCE(scx_bypass_depth, scx_bypass_depth + 1);
4130 		WARN_ON_ONCE(scx_bypass_depth <= 0);
4131 		if (scx_bypass_depth != 1)
4132 			goto unlock;
4133 		WRITE_ONCE(scx_slice_dfl, scx_slice_bypass_us * NSEC_PER_USEC);
4134 		bypass_timestamp = ktime_get_ns();
4135 		if (sch)
4136 			scx_add_event(sch, SCX_EV_BYPASS_ACTIVATE, 1);
4137 
4138 		intv_us = READ_ONCE(scx_bypass_lb_intv_us);
4139 		if (intv_us && !timer_pending(&scx_bypass_lb_timer)) {
4140 			scx_bypass_lb_timer.expires =
4141 				jiffies + usecs_to_jiffies(intv_us);
4142 			add_timer_global(&scx_bypass_lb_timer);
4143 		}
4144 	} else {
4145 		WRITE_ONCE(scx_bypass_depth, scx_bypass_depth - 1);
4146 		WARN_ON_ONCE(scx_bypass_depth < 0);
4147 		if (scx_bypass_depth != 0)
4148 			goto unlock;
4149 		WRITE_ONCE(scx_slice_dfl, SCX_SLICE_DFL);
4150 		if (sch)
4151 			scx_add_event(sch, SCX_EV_BYPASS_DURATION,
4152 				      ktime_get_ns() - bypass_timestamp);
4153 	}
4154 
4155 	/*
4156 	 * No task property is changing. We just need to make sure all currently
4157 	 * queued tasks are re-queued according to the new scx_rq_bypassing()
4158 	 * state. As an optimization, walk each rq's runnable_list instead of
4159 	 * the scx_tasks list.
4160 	 *
4161 	 * This function can't trust the scheduler and thus can't use
4162 	 * cpus_read_lock(). Walk all possible CPUs instead of online.
4163 	 */
4164 	for_each_possible_cpu(cpu) {
4165 		struct rq *rq = cpu_rq(cpu);
4166 		struct task_struct *p, *n;
4167 
4168 		raw_spin_rq_lock(rq);
4169 
4170 		if (bypass) {
4171 			WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING);
4172 			rq->scx.flags |= SCX_RQ_BYPASSING;
4173 		} else {
4174 			WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING));
4175 			rq->scx.flags &= ~SCX_RQ_BYPASSING;
4176 		}
4177 
4178 		/*
4179 		 * We need to guarantee that no tasks are on the BPF scheduler
4180 		 * while bypassing. Either we see enabled or the enable path
4181 		 * sees scx_rq_bypassing() before moving tasks to SCX.
4182 		 */
4183 		if (!scx_enabled()) {
4184 			raw_spin_rq_unlock(rq);
4185 			continue;
4186 		}
4187 
4188 		/*
4189 		 * The use of list_for_each_entry_safe_reverse() is required
4190 		 * because each task is going to be removed from and added back
4191 		 * to the runnable_list during iteration. Because they're added
4192 		 * to the tail of the list, safe reverse iteration can still
4193 		 * visit all nodes.
4194 		 */
4195 		list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list,
4196 						 scx.runnable_node) {
4197 			/* cycling deq/enq is enough, see the function comment */
4198 			scoped_guard (sched_change, p, DEQUEUE_SAVE | DEQUEUE_MOVE) {
4199 				/* nothing */ ;
4200 			}
4201 		}
4202 
4203 		/* resched to restore ticks and idle state */
4204 		if (cpu_online(cpu) || cpu == smp_processor_id())
4205 			resched_curr(rq);
4206 
4207 		raw_spin_rq_unlock(rq);
4208 	}
4209 
4210 unlock:
4211 	raw_spin_unlock_irqrestore(&bypass_lock, flags);
4212 }
4213 
4214 static void free_exit_info(struct scx_exit_info *ei)
4215 {
4216 	kvfree(ei->dump);
4217 	kfree(ei->msg);
4218 	kfree(ei->bt);
4219 	kfree(ei);
4220 }
4221 
4222 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len)
4223 {
4224 	struct scx_exit_info *ei;
4225 
4226 	ei = kzalloc(sizeof(*ei), GFP_KERNEL);
4227 	if (!ei)
4228 		return NULL;
4229 
4230 	ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL);
4231 	ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL);
4232 	ei->dump = kvzalloc(exit_dump_len, GFP_KERNEL);
4233 
4234 	if (!ei->bt || !ei->msg || !ei->dump) {
4235 		free_exit_info(ei);
4236 		return NULL;
4237 	}
4238 
4239 	return ei;
4240 }
4241 
4242 static const char *scx_exit_reason(enum scx_exit_kind kind)
4243 {
4244 	switch (kind) {
4245 	case SCX_EXIT_UNREG:
4246 		return "unregistered from user space";
4247 	case SCX_EXIT_UNREG_BPF:
4248 		return "unregistered from BPF";
4249 	case SCX_EXIT_UNREG_KERN:
4250 		return "unregistered from the main kernel";
4251 	case SCX_EXIT_SYSRQ:
4252 		return "disabled by sysrq-S";
4253 	case SCX_EXIT_ERROR:
4254 		return "runtime error";
4255 	case SCX_EXIT_ERROR_BPF:
4256 		return "scx_bpf_error";
4257 	case SCX_EXIT_ERROR_STALL:
4258 		return "runnable task stall";
4259 	default:
4260 		return "<UNKNOWN>";
4261 	}
4262 }
4263 
4264 static void free_kick_syncs(void)
4265 {
4266 	int cpu;
4267 
4268 	for_each_possible_cpu(cpu) {
4269 		struct scx_kick_syncs **ksyncs = per_cpu_ptr(&scx_kick_syncs, cpu);
4270 		struct scx_kick_syncs *to_free;
4271 
4272 		to_free = rcu_replace_pointer(*ksyncs, NULL, true);
4273 		if (to_free)
4274 			kvfree_rcu(to_free, rcu);
4275 	}
4276 }
4277 
4278 static void scx_disable_workfn(struct kthread_work *work)
4279 {
4280 	struct scx_sched *sch = container_of(work, struct scx_sched, disable_work);
4281 	struct scx_exit_info *ei = sch->exit_info;
4282 	struct scx_task_iter sti;
4283 	struct task_struct *p;
4284 	int kind, cpu;
4285 
4286 	kind = atomic_read(&sch->exit_kind);
4287 	while (true) {
4288 		if (kind == SCX_EXIT_DONE)	/* already disabled? */
4289 			return;
4290 		WARN_ON_ONCE(kind == SCX_EXIT_NONE);
4291 		if (atomic_try_cmpxchg(&sch->exit_kind, &kind, SCX_EXIT_DONE))
4292 			break;
4293 	}
4294 	ei->kind = kind;
4295 	ei->reason = scx_exit_reason(ei->kind);
4296 
4297 	/* guarantee forward progress by bypassing scx_ops */
4298 	scx_bypass(true);
4299 	WRITE_ONCE(scx_aborting, false);
4300 
4301 	switch (scx_set_enable_state(SCX_DISABLING)) {
4302 	case SCX_DISABLING:
4303 		WARN_ONCE(true, "sched_ext: duplicate disabling instance?");
4304 		break;
4305 	case SCX_DISABLED:
4306 		pr_warn("sched_ext: ops error detected without ops (%s)\n",
4307 			sch->exit_info->msg);
4308 		WARN_ON_ONCE(scx_set_enable_state(SCX_DISABLED) != SCX_DISABLING);
4309 		goto done;
4310 	default:
4311 		break;
4312 	}
4313 
4314 	/*
4315 	 * Here, every runnable task is guaranteed to make forward progress and
4316 	 * we can safely use blocking synchronization constructs. Actually
4317 	 * disable ops.
4318 	 */
4319 	mutex_lock(&scx_enable_mutex);
4320 
4321 	static_branch_disable(&__scx_switched_all);
4322 	WRITE_ONCE(scx_switching_all, false);
4323 
4324 	/*
4325 	 * Shut down cgroup support before tasks so that the cgroup attach path
4326 	 * doesn't race against scx_exit_task().
4327 	 */
4328 	scx_cgroup_lock();
4329 	scx_cgroup_exit(sch);
4330 	scx_cgroup_unlock();
4331 
4332 	/*
4333 	 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones
4334 	 * must be switched out and exited synchronously.
4335 	 */
4336 	percpu_down_write(&scx_fork_rwsem);
4337 
4338 	scx_init_task_enabled = false;
4339 
4340 	scx_task_iter_start(&sti);
4341 	while ((p = scx_task_iter_next_locked(&sti))) {
4342 		unsigned int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4343 		const struct sched_class *old_class = p->sched_class;
4344 		const struct sched_class *new_class = scx_setscheduler_class(p);
4345 
4346 		update_rq_clock(task_rq(p));
4347 
4348 		if (old_class != new_class)
4349 			queue_flags |= DEQUEUE_CLASS;
4350 
4351 		scoped_guard (sched_change, p, queue_flags) {
4352 			p->sched_class = new_class;
4353 		}
4354 
4355 		scx_exit_task(p);
4356 	}
4357 	scx_task_iter_stop(&sti);
4358 	percpu_up_write(&scx_fork_rwsem);
4359 
4360 	/*
4361 	 * Invalidate all the rq clocks to prevent getting outdated
4362 	 * rq clocks from a previous scx scheduler.
4363 	 */
4364 	for_each_possible_cpu(cpu) {
4365 		struct rq *rq = cpu_rq(cpu);
4366 		scx_rq_clock_invalidate(rq);
4367 	}
4368 
4369 	/* no task is on scx, turn off all the switches and flush in-progress calls */
4370 	static_branch_disable(&__scx_enabled);
4371 	bitmap_zero(sch->has_op, SCX_OPI_END);
4372 	scx_idle_disable();
4373 	synchronize_rcu();
4374 
4375 	if (ei->kind >= SCX_EXIT_ERROR) {
4376 		pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
4377 		       sch->ops.name, ei->reason);
4378 
4379 		if (ei->msg[0] != '\0')
4380 			pr_err("sched_ext: %s: %s\n", sch->ops.name, ei->msg);
4381 #ifdef CONFIG_STACKTRACE
4382 		stack_trace_print(ei->bt, ei->bt_len, 2);
4383 #endif
4384 	} else {
4385 		pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
4386 			sch->ops.name, ei->reason);
4387 	}
4388 
4389 	if (sch->ops.exit)
4390 		SCX_CALL_OP(sch, SCX_KF_UNLOCKED, exit, NULL, ei);
4391 
4392 	cancel_delayed_work_sync(&scx_watchdog_work);
4393 
4394 	/*
4395 	 * scx_root clearing must be inside cpus_read_lock(). See
4396 	 * handle_hotplug().
4397 	 */
4398 	cpus_read_lock();
4399 	RCU_INIT_POINTER(scx_root, NULL);
4400 	cpus_read_unlock();
4401 
4402 	/*
4403 	 * Delete the kobject from the hierarchy synchronously. Otherwise, sysfs
4404 	 * could observe an object of the same name still in the hierarchy when
4405 	 * the next scheduler is loaded.
4406 	 */
4407 	kobject_del(&sch->kobj);
4408 
4409 	free_percpu(scx_dsp_ctx);
4410 	scx_dsp_ctx = NULL;
4411 	scx_dsp_max_batch = 0;
4412 	free_kick_syncs();
4413 
4414 	if (scx_bypassed_for_enable) {
4415 		scx_bypassed_for_enable = false;
4416 		scx_bypass(false);
4417 	}
4418 
4419 	mutex_unlock(&scx_enable_mutex);
4420 
4421 	WARN_ON_ONCE(scx_set_enable_state(SCX_DISABLED) != SCX_DISABLING);
4422 done:
4423 	scx_bypass(false);
4424 }
4425 
4426 static bool scx_claim_exit(struct scx_sched *sch, enum scx_exit_kind kind)
4427 {
4428 	int none = SCX_EXIT_NONE;
4429 
4430 	if (!atomic_try_cmpxchg(&sch->exit_kind, &none, kind))
4431 		return false;
4432 
4433 	/*
4434 	 * Some CPUs may be trapped in the dispatch paths. Set the aborting
4435 	 * flag to break potential live-lock scenarios, ensuring we can
4436 	 * successfully reach scx_bypass().
4437 	 */
4438 	WRITE_ONCE(scx_aborting, true);
4439 	return true;
4440 }
4441 
4442 static void scx_disable(enum scx_exit_kind kind)
4443 {
4444 	struct scx_sched *sch;
4445 
4446 	if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE))
4447 		kind = SCX_EXIT_ERROR;
4448 
4449 	rcu_read_lock();
4450 	sch = rcu_dereference(scx_root);
4451 	if (sch) {
4452 		scx_claim_exit(sch, kind);
4453 		kthread_queue_work(sch->helper, &sch->disable_work);
4454 	}
4455 	rcu_read_unlock();
4456 }
4457 
4458 static void dump_newline(struct seq_buf *s)
4459 {
4460 	trace_sched_ext_dump("");
4461 
4462 	/* @s may be zero sized and seq_buf triggers WARN if so */
4463 	if (s->size)
4464 		seq_buf_putc(s, '\n');
4465 }
4466 
4467 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...)
4468 {
4469 	va_list args;
4470 
4471 #ifdef CONFIG_TRACEPOINTS
4472 	if (trace_sched_ext_dump_enabled()) {
4473 		/* protected by scx_dump_state()::dump_lock */
4474 		static char line_buf[SCX_EXIT_MSG_LEN];
4475 
4476 		va_start(args, fmt);
4477 		vscnprintf(line_buf, sizeof(line_buf), fmt, args);
4478 		va_end(args);
4479 
4480 		trace_sched_ext_dump(line_buf);
4481 	}
4482 #endif
4483 	/* @s may be zero sized and seq_buf triggers WARN if so */
4484 	if (s->size) {
4485 		va_start(args, fmt);
4486 		seq_buf_vprintf(s, fmt, args);
4487 		va_end(args);
4488 
4489 		seq_buf_putc(s, '\n');
4490 	}
4491 }
4492 
4493 static void dump_stack_trace(struct seq_buf *s, const char *prefix,
4494 			     const unsigned long *bt, unsigned int len)
4495 {
4496 	unsigned int i;
4497 
4498 	for (i = 0; i < len; i++)
4499 		dump_line(s, "%s%pS", prefix, (void *)bt[i]);
4500 }
4501 
4502 static void ops_dump_init(struct seq_buf *s, const char *prefix)
4503 {
4504 	struct scx_dump_data *dd = &scx_dump_data;
4505 
4506 	lockdep_assert_irqs_disabled();
4507 
4508 	dd->cpu = smp_processor_id();		/* allow scx_bpf_dump() */
4509 	dd->first = true;
4510 	dd->cursor = 0;
4511 	dd->s = s;
4512 	dd->prefix = prefix;
4513 }
4514 
4515 static void ops_dump_flush(void)
4516 {
4517 	struct scx_dump_data *dd = &scx_dump_data;
4518 	char *line = dd->buf.line;
4519 
4520 	if (!dd->cursor)
4521 		return;
4522 
4523 	/*
4524 	 * There's something to flush and this is the first line. Insert a blank
4525 	 * line to distinguish ops dump.
4526 	 */
4527 	if (dd->first) {
4528 		dump_newline(dd->s);
4529 		dd->first = false;
4530 	}
4531 
4532 	/*
4533 	 * There may be multiple lines in $line. Scan and emit each line
4534 	 * separately.
4535 	 */
4536 	while (true) {
4537 		char *end = line;
4538 		char c;
4539 
4540 		while (*end != '\n' && *end != '\0')
4541 			end++;
4542 
4543 		/*
4544 		 * If $line overflowed, it may not have newline at the end.
4545 		 * Always emit with a newline.
4546 		 */
4547 		c = *end;
4548 		*end = '\0';
4549 		dump_line(dd->s, "%s%s", dd->prefix, line);
4550 		if (c == '\0')
4551 			break;
4552 
4553 		/* move to the next line */
4554 		end++;
4555 		if (*end == '\0')
4556 			break;
4557 		line = end;
4558 	}
4559 
4560 	dd->cursor = 0;
4561 }
4562 
4563 static void ops_dump_exit(void)
4564 {
4565 	ops_dump_flush();
4566 	scx_dump_data.cpu = -1;
4567 }
4568 
4569 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx,
4570 			  struct task_struct *p, char marker)
4571 {
4572 	static unsigned long bt[SCX_EXIT_BT_LEN];
4573 	struct scx_sched *sch = scx_root;
4574 	char dsq_id_buf[19] = "(n/a)";
4575 	unsigned long ops_state = atomic_long_read(&p->scx.ops_state);
4576 	unsigned int bt_len = 0;
4577 
4578 	if (p->scx.dsq)
4579 		scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx",
4580 			  (unsigned long long)p->scx.dsq->id);
4581 
4582 	dump_newline(s);
4583 	dump_line(s, " %c%c %s[%d] %+ldms",
4584 		  marker, task_state_to_char(p), p->comm, p->pid,
4585 		  jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies));
4586 	dump_line(s, "      scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu",
4587 		  scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK,
4588 		  p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK,
4589 		  ops_state >> SCX_OPSS_QSEQ_SHIFT);
4590 	dump_line(s, "      sticky/holding_cpu=%d/%d dsq_id=%s",
4591 		  p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf);
4592 	dump_line(s, "      dsq_vtime=%llu slice=%llu weight=%u",
4593 		  p->scx.dsq_vtime, p->scx.slice, p->scx.weight);
4594 	dump_line(s, "      cpus=%*pb no_mig=%u", cpumask_pr_args(p->cpus_ptr),
4595 		  p->migration_disabled);
4596 
4597 	if (SCX_HAS_OP(sch, dump_task)) {
4598 		ops_dump_init(s, "    ");
4599 		SCX_CALL_OP(sch, SCX_KF_REST, dump_task, NULL, dctx, p);
4600 		ops_dump_exit();
4601 	}
4602 
4603 #ifdef CONFIG_STACKTRACE
4604 	bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1);
4605 #endif
4606 	if (bt_len) {
4607 		dump_newline(s);
4608 		dump_stack_trace(s, "    ", bt, bt_len);
4609 	}
4610 }
4611 
4612 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len)
4613 {
4614 	static DEFINE_SPINLOCK(dump_lock);
4615 	static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n";
4616 	struct scx_sched *sch = scx_root;
4617 	struct scx_dump_ctx dctx = {
4618 		.kind = ei->kind,
4619 		.exit_code = ei->exit_code,
4620 		.reason = ei->reason,
4621 		.at_ns = ktime_get_ns(),
4622 		.at_jiffies = jiffies,
4623 	};
4624 	struct seq_buf s;
4625 	struct scx_event_stats events;
4626 	unsigned long flags;
4627 	char *buf;
4628 	int cpu;
4629 
4630 	spin_lock_irqsave(&dump_lock, flags);
4631 
4632 	seq_buf_init(&s, ei->dump, dump_len);
4633 
4634 	if (ei->kind == SCX_EXIT_NONE) {
4635 		dump_line(&s, "Debug dump triggered by %s", ei->reason);
4636 	} else {
4637 		dump_line(&s, "%s[%d] triggered exit kind %d:",
4638 			  current->comm, current->pid, ei->kind);
4639 		dump_line(&s, "  %s (%s)", ei->reason, ei->msg);
4640 		dump_newline(&s);
4641 		dump_line(&s, "Backtrace:");
4642 		dump_stack_trace(&s, "  ", ei->bt, ei->bt_len);
4643 	}
4644 
4645 	if (SCX_HAS_OP(sch, dump)) {
4646 		ops_dump_init(&s, "");
4647 		SCX_CALL_OP(sch, SCX_KF_UNLOCKED, dump, NULL, &dctx);
4648 		ops_dump_exit();
4649 	}
4650 
4651 	dump_newline(&s);
4652 	dump_line(&s, "CPU states");
4653 	dump_line(&s, "----------");
4654 
4655 	for_each_possible_cpu(cpu) {
4656 		struct rq *rq = cpu_rq(cpu);
4657 		struct rq_flags rf;
4658 		struct task_struct *p;
4659 		struct seq_buf ns;
4660 		size_t avail, used;
4661 		bool idle;
4662 
4663 		rq_lock_irqsave(rq, &rf);
4664 
4665 		idle = list_empty(&rq->scx.runnable_list) &&
4666 			rq->curr->sched_class == &idle_sched_class;
4667 
4668 		if (idle && !SCX_HAS_OP(sch, dump_cpu))
4669 			goto next;
4670 
4671 		/*
4672 		 * We don't yet know whether ops.dump_cpu() will produce output
4673 		 * and we may want to skip the default CPU dump if it doesn't.
4674 		 * Use a nested seq_buf to generate the standard dump so that we
4675 		 * can decide whether to commit later.
4676 		 */
4677 		avail = seq_buf_get_buf(&s, &buf);
4678 		seq_buf_init(&ns, buf, avail);
4679 
4680 		dump_newline(&ns);
4681 		dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu ksync=%lu",
4682 			  cpu, rq->scx.nr_running, rq->scx.flags,
4683 			  rq->scx.cpu_released, rq->scx.ops_qseq,
4684 			  rq->scx.kick_sync);
4685 		dump_line(&ns, "          curr=%s[%d] class=%ps",
4686 			  rq->curr->comm, rq->curr->pid,
4687 			  rq->curr->sched_class);
4688 		if (!cpumask_empty(rq->scx.cpus_to_kick))
4689 			dump_line(&ns, "  cpus_to_kick   : %*pb",
4690 				  cpumask_pr_args(rq->scx.cpus_to_kick));
4691 		if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle))
4692 			dump_line(&ns, "  idle_to_kick   : %*pb",
4693 				  cpumask_pr_args(rq->scx.cpus_to_kick_if_idle));
4694 		if (!cpumask_empty(rq->scx.cpus_to_preempt))
4695 			dump_line(&ns, "  cpus_to_preempt: %*pb",
4696 				  cpumask_pr_args(rq->scx.cpus_to_preempt));
4697 		if (!cpumask_empty(rq->scx.cpus_to_wait))
4698 			dump_line(&ns, "  cpus_to_wait   : %*pb",
4699 				  cpumask_pr_args(rq->scx.cpus_to_wait));
4700 
4701 		used = seq_buf_used(&ns);
4702 		if (SCX_HAS_OP(sch, dump_cpu)) {
4703 			ops_dump_init(&ns, "  ");
4704 			SCX_CALL_OP(sch, SCX_KF_REST, dump_cpu, NULL,
4705 				    &dctx, cpu, idle);
4706 			ops_dump_exit();
4707 		}
4708 
4709 		/*
4710 		 * If idle && nothing generated by ops.dump_cpu(), there's
4711 		 * nothing interesting. Skip.
4712 		 */
4713 		if (idle && used == seq_buf_used(&ns))
4714 			goto next;
4715 
4716 		/*
4717 		 * $s may already have overflowed when $ns was created. If so,
4718 		 * calling commit on it will trigger BUG.
4719 		 */
4720 		if (avail) {
4721 			seq_buf_commit(&s, seq_buf_used(&ns));
4722 			if (seq_buf_has_overflowed(&ns))
4723 				seq_buf_set_overflow(&s);
4724 		}
4725 
4726 		if (rq->curr->sched_class == &ext_sched_class)
4727 			scx_dump_task(&s, &dctx, rq->curr, '*');
4728 
4729 		list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node)
4730 			scx_dump_task(&s, &dctx, p, ' ');
4731 	next:
4732 		rq_unlock_irqrestore(rq, &rf);
4733 	}
4734 
4735 	dump_newline(&s);
4736 	dump_line(&s, "Event counters");
4737 	dump_line(&s, "--------------");
4738 
4739 	scx_read_events(sch, &events);
4740 	scx_dump_event(s, &events, SCX_EV_SELECT_CPU_FALLBACK);
4741 	scx_dump_event(s, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE);
4742 	scx_dump_event(s, &events, SCX_EV_DISPATCH_KEEP_LAST);
4743 	scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_EXITING);
4744 	scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED);
4745 	scx_dump_event(s, &events, SCX_EV_REFILL_SLICE_DFL);
4746 	scx_dump_event(s, &events, SCX_EV_BYPASS_DURATION);
4747 	scx_dump_event(s, &events, SCX_EV_BYPASS_DISPATCH);
4748 	scx_dump_event(s, &events, SCX_EV_BYPASS_ACTIVATE);
4749 
4750 	if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker))
4751 		memcpy(ei->dump + dump_len - sizeof(trunc_marker),
4752 		       trunc_marker, sizeof(trunc_marker));
4753 
4754 	spin_unlock_irqrestore(&dump_lock, flags);
4755 }
4756 
4757 static void scx_error_irq_workfn(struct irq_work *irq_work)
4758 {
4759 	struct scx_sched *sch = container_of(irq_work, struct scx_sched, error_irq_work);
4760 	struct scx_exit_info *ei = sch->exit_info;
4761 
4762 	if (ei->kind >= SCX_EXIT_ERROR)
4763 		scx_dump_state(ei, sch->ops.exit_dump_len);
4764 
4765 	kthread_queue_work(sch->helper, &sch->disable_work);
4766 }
4767 
4768 static bool scx_vexit(struct scx_sched *sch,
4769 		      enum scx_exit_kind kind, s64 exit_code,
4770 		      const char *fmt, va_list args)
4771 {
4772 	struct scx_exit_info *ei = sch->exit_info;
4773 
4774 	if (!scx_claim_exit(sch, kind))
4775 		return false;
4776 
4777 	ei->exit_code = exit_code;
4778 #ifdef CONFIG_STACKTRACE
4779 	if (kind >= SCX_EXIT_ERROR)
4780 		ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1);
4781 #endif
4782 	vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args);
4783 
4784 	/*
4785 	 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again
4786 	 * in scx_disable_workfn().
4787 	 */
4788 	ei->kind = kind;
4789 	ei->reason = scx_exit_reason(ei->kind);
4790 
4791 	irq_work_queue(&sch->error_irq_work);
4792 	return true;
4793 }
4794 
4795 static int alloc_kick_syncs(void)
4796 {
4797 	int cpu;
4798 
4799 	/*
4800 	 * Allocate per-CPU arrays sized by nr_cpu_ids. Use kvzalloc as size
4801 	 * can exceed percpu allocator limits on large machines.
4802 	 */
4803 	for_each_possible_cpu(cpu) {
4804 		struct scx_kick_syncs **ksyncs = per_cpu_ptr(&scx_kick_syncs, cpu);
4805 		struct scx_kick_syncs *new_ksyncs;
4806 
4807 		WARN_ON_ONCE(rcu_access_pointer(*ksyncs));
4808 
4809 		new_ksyncs = kvzalloc_node(struct_size(new_ksyncs, syncs, nr_cpu_ids),
4810 					   GFP_KERNEL, cpu_to_node(cpu));
4811 		if (!new_ksyncs) {
4812 			free_kick_syncs();
4813 			return -ENOMEM;
4814 		}
4815 
4816 		rcu_assign_pointer(*ksyncs, new_ksyncs);
4817 	}
4818 
4819 	return 0;
4820 }
4821 
4822 static struct scx_sched *scx_alloc_and_add_sched(struct sched_ext_ops *ops)
4823 {
4824 	struct scx_sched *sch;
4825 	int node, ret;
4826 
4827 	sch = kzalloc(sizeof(*sch), GFP_KERNEL);
4828 	if (!sch)
4829 		return ERR_PTR(-ENOMEM);
4830 
4831 	sch->exit_info = alloc_exit_info(ops->exit_dump_len);
4832 	if (!sch->exit_info) {
4833 		ret = -ENOMEM;
4834 		goto err_free_sch;
4835 	}
4836 
4837 	ret = rhashtable_init(&sch->dsq_hash, &dsq_hash_params);
4838 	if (ret < 0)
4839 		goto err_free_ei;
4840 
4841 	sch->global_dsqs = kcalloc(nr_node_ids, sizeof(sch->global_dsqs[0]),
4842 				   GFP_KERNEL);
4843 	if (!sch->global_dsqs) {
4844 		ret = -ENOMEM;
4845 		goto err_free_hash;
4846 	}
4847 
4848 	for_each_node_state(node, N_POSSIBLE) {
4849 		struct scx_dispatch_q *dsq;
4850 
4851 		dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node);
4852 		if (!dsq) {
4853 			ret = -ENOMEM;
4854 			goto err_free_gdsqs;
4855 		}
4856 
4857 		init_dsq(dsq, SCX_DSQ_GLOBAL);
4858 		sch->global_dsqs[node] = dsq;
4859 	}
4860 
4861 	sch->pcpu = alloc_percpu(struct scx_sched_pcpu);
4862 	if (!sch->pcpu) {
4863 		ret = -ENOMEM;
4864 		goto err_free_gdsqs;
4865 	}
4866 
4867 	sch->helper = kthread_run_worker(0, "sched_ext_helper");
4868 	if (IS_ERR(sch->helper)) {
4869 		ret = PTR_ERR(sch->helper);
4870 		goto err_free_pcpu;
4871 	}
4872 
4873 	sched_set_fifo(sch->helper->task);
4874 
4875 	atomic_set(&sch->exit_kind, SCX_EXIT_NONE);
4876 	init_irq_work(&sch->error_irq_work, scx_error_irq_workfn);
4877 	kthread_init_work(&sch->disable_work, scx_disable_workfn);
4878 	sch->ops = *ops;
4879 	ops->priv = sch;
4880 
4881 	sch->kobj.kset = scx_kset;
4882 	ret = kobject_init_and_add(&sch->kobj, &scx_ktype, NULL, "root");
4883 	if (ret < 0)
4884 		goto err_stop_helper;
4885 
4886 	return sch;
4887 
4888 err_stop_helper:
4889 	kthread_destroy_worker(sch->helper);
4890 err_free_pcpu:
4891 	free_percpu(sch->pcpu);
4892 err_free_gdsqs:
4893 	for_each_node_state(node, N_POSSIBLE)
4894 		kfree(sch->global_dsqs[node]);
4895 	kfree(sch->global_dsqs);
4896 err_free_hash:
4897 	rhashtable_free_and_destroy(&sch->dsq_hash, NULL, NULL);
4898 err_free_ei:
4899 	free_exit_info(sch->exit_info);
4900 err_free_sch:
4901 	kfree(sch);
4902 	return ERR_PTR(ret);
4903 }
4904 
4905 static int check_hotplug_seq(struct scx_sched *sch,
4906 			      const struct sched_ext_ops *ops)
4907 {
4908 	unsigned long long global_hotplug_seq;
4909 
4910 	/*
4911 	 * If a hotplug event has occurred between when a scheduler was
4912 	 * initialized, and when we were able to attach, exit and notify user
4913 	 * space about it.
4914 	 */
4915 	if (ops->hotplug_seq) {
4916 		global_hotplug_seq = atomic_long_read(&scx_hotplug_seq);
4917 		if (ops->hotplug_seq != global_hotplug_seq) {
4918 			scx_exit(sch, SCX_EXIT_UNREG_KERN,
4919 				 SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
4920 				 "expected hotplug seq %llu did not match actual %llu",
4921 				 ops->hotplug_seq, global_hotplug_seq);
4922 			return -EBUSY;
4923 		}
4924 	}
4925 
4926 	return 0;
4927 }
4928 
4929 static int validate_ops(struct scx_sched *sch, const struct sched_ext_ops *ops)
4930 {
4931 	/*
4932 	 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the
4933 	 * ops.enqueue() callback isn't implemented.
4934 	 */
4935 	if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) {
4936 		scx_error(sch, "SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented");
4937 		return -EINVAL;
4938 	}
4939 
4940 	/*
4941 	 * SCX_OPS_BUILTIN_IDLE_PER_NODE requires built-in CPU idle
4942 	 * selection policy to be enabled.
4943 	 */
4944 	if ((ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE) &&
4945 	    (ops->update_idle && !(ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE))) {
4946 		scx_error(sch, "SCX_OPS_BUILTIN_IDLE_PER_NODE requires CPU idle selection enabled");
4947 		return -EINVAL;
4948 	}
4949 
4950 	if (ops->flags & SCX_OPS_HAS_CGROUP_WEIGHT)
4951 		pr_warn("SCX_OPS_HAS_CGROUP_WEIGHT is deprecated and a noop\n");
4952 
4953 	if (ops->cpu_acquire || ops->cpu_release)
4954 		pr_warn("ops->cpu_acquire/release() are deprecated, use sched_switch TP instead\n");
4955 
4956 	return 0;
4957 }
4958 
4959 static int scx_enable(struct sched_ext_ops *ops, struct bpf_link *link)
4960 {
4961 	struct scx_sched *sch;
4962 	struct scx_task_iter sti;
4963 	struct task_struct *p;
4964 	unsigned long timeout;
4965 	int i, cpu, ret;
4966 
4967 	if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN),
4968 			   cpu_possible_mask)) {
4969 		pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation\n");
4970 		return -EINVAL;
4971 	}
4972 
4973 	mutex_lock(&scx_enable_mutex);
4974 
4975 	if (scx_enable_state() != SCX_DISABLED) {
4976 		ret = -EBUSY;
4977 		goto err_unlock;
4978 	}
4979 
4980 	ret = alloc_kick_syncs();
4981 	if (ret)
4982 		goto err_unlock;
4983 
4984 	sch = scx_alloc_and_add_sched(ops);
4985 	if (IS_ERR(sch)) {
4986 		ret = PTR_ERR(sch);
4987 		goto err_free_ksyncs;
4988 	}
4989 
4990 	/*
4991 	 * Transition to ENABLING and clear exit info to arm the disable path.
4992 	 * Failure triggers full disabling from here on.
4993 	 */
4994 	WARN_ON_ONCE(scx_set_enable_state(SCX_ENABLING) != SCX_DISABLED);
4995 	WARN_ON_ONCE(scx_root);
4996 	if (WARN_ON_ONCE(READ_ONCE(scx_aborting)))
4997 		WRITE_ONCE(scx_aborting, false);
4998 
4999 	atomic_long_set(&scx_nr_rejected, 0);
5000 
5001 	for_each_possible_cpu(cpu)
5002 		cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE;
5003 
5004 	/*
5005 	 * Keep CPUs stable during enable so that the BPF scheduler can track
5006 	 * online CPUs by watching ->on/offline_cpu() after ->init().
5007 	 */
5008 	cpus_read_lock();
5009 
5010 	/*
5011 	 * Make the scheduler instance visible. Must be inside cpus_read_lock().
5012 	 * See handle_hotplug().
5013 	 */
5014 	rcu_assign_pointer(scx_root, sch);
5015 
5016 	scx_idle_enable(ops);
5017 
5018 	if (sch->ops.init) {
5019 		ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, init, NULL);
5020 		if (ret) {
5021 			ret = ops_sanitize_err(sch, "init", ret);
5022 			cpus_read_unlock();
5023 			scx_error(sch, "ops.init() failed (%d)", ret);
5024 			goto err_disable;
5025 		}
5026 		sch->exit_info->flags |= SCX_EFLAG_INITIALIZED;
5027 	}
5028 
5029 	for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++)
5030 		if (((void (**)(void))ops)[i])
5031 			set_bit(i, sch->has_op);
5032 
5033 	ret = check_hotplug_seq(sch, ops);
5034 	if (ret) {
5035 		cpus_read_unlock();
5036 		goto err_disable;
5037 	}
5038 	scx_idle_update_selcpu_topology(ops);
5039 
5040 	cpus_read_unlock();
5041 
5042 	ret = validate_ops(sch, ops);
5043 	if (ret)
5044 		goto err_disable;
5045 
5046 	WARN_ON_ONCE(scx_dsp_ctx);
5047 	scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH;
5048 	scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf,
5049 						   scx_dsp_max_batch),
5050 				     __alignof__(struct scx_dsp_ctx));
5051 	if (!scx_dsp_ctx) {
5052 		ret = -ENOMEM;
5053 		goto err_disable;
5054 	}
5055 
5056 	if (ops->timeout_ms)
5057 		timeout = msecs_to_jiffies(ops->timeout_ms);
5058 	else
5059 		timeout = SCX_WATCHDOG_MAX_TIMEOUT;
5060 
5061 	WRITE_ONCE(scx_watchdog_timeout, timeout);
5062 	WRITE_ONCE(scx_watchdog_timestamp, jiffies);
5063 	queue_delayed_work(system_unbound_wq, &scx_watchdog_work,
5064 			   scx_watchdog_timeout / 2);
5065 
5066 	/*
5067 	 * Once __scx_enabled is set, %current can be switched to SCX anytime.
5068 	 * This can lead to stalls as some BPF schedulers (e.g. userspace
5069 	 * scheduling) may not function correctly before all tasks are switched.
5070 	 * Init in bypass mode to guarantee forward progress.
5071 	 */
5072 	scx_bypass(true);
5073 	scx_bypassed_for_enable = true;
5074 
5075 	for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++)
5076 		if (((void (**)(void))ops)[i])
5077 			set_bit(i, sch->has_op);
5078 
5079 	if (sch->ops.cpu_acquire || sch->ops.cpu_release)
5080 		sch->ops.flags |= SCX_OPS_HAS_CPU_PREEMPT;
5081 
5082 	/*
5083 	 * Lock out forks, cgroup on/offlining and moves before opening the
5084 	 * floodgate so that they don't wander into the operations prematurely.
5085 	 */
5086 	percpu_down_write(&scx_fork_rwsem);
5087 
5088 	WARN_ON_ONCE(scx_init_task_enabled);
5089 	scx_init_task_enabled = true;
5090 
5091 	/*
5092 	 * Enable ops for every task. Fork is excluded by scx_fork_rwsem
5093 	 * preventing new tasks from being added. No need to exclude tasks
5094 	 * leaving as sched_ext_free() can handle both prepped and enabled
5095 	 * tasks. Prep all tasks first and then enable them with preemption
5096 	 * disabled.
5097 	 *
5098 	 * All cgroups should be initialized before scx_init_task() so that the
5099 	 * BPF scheduler can reliably track each task's cgroup membership from
5100 	 * scx_init_task(). Lock out cgroup on/offlining and task migrations
5101 	 * while tasks are being initialized so that scx_cgroup_can_attach()
5102 	 * never sees uninitialized tasks.
5103 	 */
5104 	scx_cgroup_lock();
5105 	ret = scx_cgroup_init(sch);
5106 	if (ret)
5107 		goto err_disable_unlock_all;
5108 
5109 	scx_task_iter_start(&sti);
5110 	while ((p = scx_task_iter_next_locked(&sti))) {
5111 		/*
5112 		 * @p may already be dead, have lost all its usages counts and
5113 		 * be waiting for RCU grace period before being freed. @p can't
5114 		 * be initialized for SCX in such cases and should be ignored.
5115 		 */
5116 		if (!tryget_task_struct(p))
5117 			continue;
5118 
5119 		scx_task_iter_unlock(&sti);
5120 
5121 		ret = scx_init_task(p, task_group(p), false);
5122 		if (ret) {
5123 			put_task_struct(p);
5124 			scx_task_iter_stop(&sti);
5125 			scx_error(sch, "ops.init_task() failed (%d) for %s[%d]",
5126 				  ret, p->comm, p->pid);
5127 			goto err_disable_unlock_all;
5128 		}
5129 
5130 		scx_set_task_state(p, SCX_TASK_READY);
5131 
5132 		put_task_struct(p);
5133 	}
5134 	scx_task_iter_stop(&sti);
5135 	scx_cgroup_unlock();
5136 	percpu_up_write(&scx_fork_rwsem);
5137 
5138 	/*
5139 	 * All tasks are READY. It's safe to turn on scx_enabled() and switch
5140 	 * all eligible tasks.
5141 	 */
5142 	WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL));
5143 	static_branch_enable(&__scx_enabled);
5144 
5145 	/*
5146 	 * We're fully committed and can't fail. The task READY -> ENABLED
5147 	 * transitions here are synchronized against sched_ext_free() through
5148 	 * scx_tasks_lock.
5149 	 */
5150 	percpu_down_write(&scx_fork_rwsem);
5151 	scx_task_iter_start(&sti);
5152 	while ((p = scx_task_iter_next_locked(&sti))) {
5153 		unsigned int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
5154 		const struct sched_class *old_class = p->sched_class;
5155 		const struct sched_class *new_class = scx_setscheduler_class(p);
5156 
5157 		if (scx_get_task_state(p) != SCX_TASK_READY)
5158 			continue;
5159 
5160 		if (old_class != new_class)
5161 			queue_flags |= DEQUEUE_CLASS;
5162 
5163 		scoped_guard (sched_change, p, queue_flags) {
5164 			p->scx.slice = READ_ONCE(scx_slice_dfl);
5165 			p->sched_class = new_class;
5166 		}
5167 	}
5168 	scx_task_iter_stop(&sti);
5169 	percpu_up_write(&scx_fork_rwsem);
5170 
5171 	scx_bypassed_for_enable = false;
5172 	scx_bypass(false);
5173 
5174 	if (!scx_tryset_enable_state(SCX_ENABLED, SCX_ENABLING)) {
5175 		WARN_ON_ONCE(atomic_read(&sch->exit_kind) == SCX_EXIT_NONE);
5176 		goto err_disable;
5177 	}
5178 
5179 	if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL))
5180 		static_branch_enable(&__scx_switched_all);
5181 
5182 	pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n",
5183 		sch->ops.name, scx_switched_all() ? "" : " (partial)");
5184 	kobject_uevent(&sch->kobj, KOBJ_ADD);
5185 	mutex_unlock(&scx_enable_mutex);
5186 
5187 	atomic_long_inc(&scx_enable_seq);
5188 
5189 	return 0;
5190 
5191 err_free_ksyncs:
5192 	free_kick_syncs();
5193 err_unlock:
5194 	mutex_unlock(&scx_enable_mutex);
5195 	return ret;
5196 
5197 err_disable_unlock_all:
5198 	scx_cgroup_unlock();
5199 	percpu_up_write(&scx_fork_rwsem);
5200 	/* we'll soon enter disable path, keep bypass on */
5201 err_disable:
5202 	mutex_unlock(&scx_enable_mutex);
5203 	/*
5204 	 * Returning an error code here would not pass all the error information
5205 	 * to userspace. Record errno using scx_error() for cases scx_error()
5206 	 * wasn't already invoked and exit indicating success so that the error
5207 	 * is notified through ops.exit() with all the details.
5208 	 *
5209 	 * Flush scx_disable_work to ensure that error is reported before init
5210 	 * completion. sch's base reference will be put by bpf_scx_unreg().
5211 	 */
5212 	scx_error(sch, "scx_enable() failed (%d)", ret);
5213 	kthread_flush_work(&sch->disable_work);
5214 	return 0;
5215 }
5216 
5217 
5218 /********************************************************************************
5219  * bpf_struct_ops plumbing.
5220  */
5221 #include <linux/bpf_verifier.h>
5222 #include <linux/bpf.h>
5223 #include <linux/btf.h>
5224 
5225 static const struct btf_type *task_struct_type;
5226 
5227 static bool bpf_scx_is_valid_access(int off, int size,
5228 				    enum bpf_access_type type,
5229 				    const struct bpf_prog *prog,
5230 				    struct bpf_insn_access_aux *info)
5231 {
5232 	if (type != BPF_READ)
5233 		return false;
5234 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
5235 		return false;
5236 	if (off % size != 0)
5237 		return false;
5238 
5239 	return btf_ctx_access(off, size, type, prog, info);
5240 }
5241 
5242 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log,
5243 				     const struct bpf_reg_state *reg, int off,
5244 				     int size)
5245 {
5246 	const struct btf_type *t;
5247 
5248 	t = btf_type_by_id(reg->btf, reg->btf_id);
5249 	if (t == task_struct_type) {
5250 		if (off >= offsetof(struct task_struct, scx.slice) &&
5251 		    off + size <= offsetofend(struct task_struct, scx.slice))
5252 			return SCALAR_VALUE;
5253 		if (off >= offsetof(struct task_struct, scx.dsq_vtime) &&
5254 		    off + size <= offsetofend(struct task_struct, scx.dsq_vtime))
5255 			return SCALAR_VALUE;
5256 		if (off >= offsetof(struct task_struct, scx.disallow) &&
5257 		    off + size <= offsetofend(struct task_struct, scx.disallow))
5258 			return SCALAR_VALUE;
5259 	}
5260 
5261 	return -EACCES;
5262 }
5263 
5264 static const struct bpf_verifier_ops bpf_scx_verifier_ops = {
5265 	.get_func_proto = bpf_base_func_proto,
5266 	.is_valid_access = bpf_scx_is_valid_access,
5267 	.btf_struct_access = bpf_scx_btf_struct_access,
5268 };
5269 
5270 static int bpf_scx_init_member(const struct btf_type *t,
5271 			       const struct btf_member *member,
5272 			       void *kdata, const void *udata)
5273 {
5274 	const struct sched_ext_ops *uops = udata;
5275 	struct sched_ext_ops *ops = kdata;
5276 	u32 moff = __btf_member_bit_offset(t, member) / 8;
5277 	int ret;
5278 
5279 	switch (moff) {
5280 	case offsetof(struct sched_ext_ops, dispatch_max_batch):
5281 		if (*(u32 *)(udata + moff) > INT_MAX)
5282 			return -E2BIG;
5283 		ops->dispatch_max_batch = *(u32 *)(udata + moff);
5284 		return 1;
5285 	case offsetof(struct sched_ext_ops, flags):
5286 		if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS)
5287 			return -EINVAL;
5288 		ops->flags = *(u64 *)(udata + moff);
5289 		return 1;
5290 	case offsetof(struct sched_ext_ops, name):
5291 		ret = bpf_obj_name_cpy(ops->name, uops->name,
5292 				       sizeof(ops->name));
5293 		if (ret < 0)
5294 			return ret;
5295 		if (ret == 0)
5296 			return -EINVAL;
5297 		return 1;
5298 	case offsetof(struct sched_ext_ops, timeout_ms):
5299 		if (msecs_to_jiffies(*(u32 *)(udata + moff)) >
5300 		    SCX_WATCHDOG_MAX_TIMEOUT)
5301 			return -E2BIG;
5302 		ops->timeout_ms = *(u32 *)(udata + moff);
5303 		return 1;
5304 	case offsetof(struct sched_ext_ops, exit_dump_len):
5305 		ops->exit_dump_len =
5306 			*(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN;
5307 		return 1;
5308 	case offsetof(struct sched_ext_ops, hotplug_seq):
5309 		ops->hotplug_seq = *(u64 *)(udata + moff);
5310 		return 1;
5311 	}
5312 
5313 	return 0;
5314 }
5315 
5316 static int bpf_scx_check_member(const struct btf_type *t,
5317 				const struct btf_member *member,
5318 				const struct bpf_prog *prog)
5319 {
5320 	u32 moff = __btf_member_bit_offset(t, member) / 8;
5321 
5322 	switch (moff) {
5323 	case offsetof(struct sched_ext_ops, init_task):
5324 #ifdef CONFIG_EXT_GROUP_SCHED
5325 	case offsetof(struct sched_ext_ops, cgroup_init):
5326 	case offsetof(struct sched_ext_ops, cgroup_exit):
5327 	case offsetof(struct sched_ext_ops, cgroup_prep_move):
5328 #endif
5329 	case offsetof(struct sched_ext_ops, cpu_online):
5330 	case offsetof(struct sched_ext_ops, cpu_offline):
5331 	case offsetof(struct sched_ext_ops, init):
5332 	case offsetof(struct sched_ext_ops, exit):
5333 		break;
5334 	default:
5335 		if (prog->sleepable)
5336 			return -EINVAL;
5337 	}
5338 
5339 	return 0;
5340 }
5341 
5342 static int bpf_scx_reg(void *kdata, struct bpf_link *link)
5343 {
5344 	return scx_enable(kdata, link);
5345 }
5346 
5347 static void bpf_scx_unreg(void *kdata, struct bpf_link *link)
5348 {
5349 	struct sched_ext_ops *ops = kdata;
5350 	struct scx_sched *sch = ops->priv;
5351 
5352 	scx_disable(SCX_EXIT_UNREG);
5353 	kthread_flush_work(&sch->disable_work);
5354 	kobject_put(&sch->kobj);
5355 }
5356 
5357 static int bpf_scx_init(struct btf *btf)
5358 {
5359 	task_struct_type = btf_type_by_id(btf, btf_tracing_ids[BTF_TRACING_TYPE_TASK]);
5360 
5361 	return 0;
5362 }
5363 
5364 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link)
5365 {
5366 	/*
5367 	 * sched_ext does not support updating the actively-loaded BPF
5368 	 * scheduler, as registering a BPF scheduler can always fail if the
5369 	 * scheduler returns an error code for e.g. ops.init(), ops.init_task(),
5370 	 * etc. Similarly, we can always race with unregistration happening
5371 	 * elsewhere, such as with sysrq.
5372 	 */
5373 	return -EOPNOTSUPP;
5374 }
5375 
5376 static int bpf_scx_validate(void *kdata)
5377 {
5378 	return 0;
5379 }
5380 
5381 static s32 sched_ext_ops__select_cpu(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; }
5382 static void sched_ext_ops__enqueue(struct task_struct *p, u64 enq_flags) {}
5383 static void sched_ext_ops__dequeue(struct task_struct *p, u64 enq_flags) {}
5384 static void sched_ext_ops__dispatch(s32 prev_cpu, struct task_struct *prev__nullable) {}
5385 static void sched_ext_ops__tick(struct task_struct *p) {}
5386 static void sched_ext_ops__runnable(struct task_struct *p, u64 enq_flags) {}
5387 static void sched_ext_ops__running(struct task_struct *p) {}
5388 static void sched_ext_ops__stopping(struct task_struct *p, bool runnable) {}
5389 static void sched_ext_ops__quiescent(struct task_struct *p, u64 deq_flags) {}
5390 static bool sched_ext_ops__yield(struct task_struct *from, struct task_struct *to__nullable) { return false; }
5391 static bool sched_ext_ops__core_sched_before(struct task_struct *a, struct task_struct *b) { return false; }
5392 static void sched_ext_ops__set_weight(struct task_struct *p, u32 weight) {}
5393 static void sched_ext_ops__set_cpumask(struct task_struct *p, const struct cpumask *mask) {}
5394 static void sched_ext_ops__update_idle(s32 cpu, bool idle) {}
5395 static void sched_ext_ops__cpu_acquire(s32 cpu, struct scx_cpu_acquire_args *args) {}
5396 static void sched_ext_ops__cpu_release(s32 cpu, struct scx_cpu_release_args *args) {}
5397 static s32 sched_ext_ops__init_task(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; }
5398 static void sched_ext_ops__exit_task(struct task_struct *p, struct scx_exit_task_args *args) {}
5399 static void sched_ext_ops__enable(struct task_struct *p) {}
5400 static void sched_ext_ops__disable(struct task_struct *p) {}
5401 #ifdef CONFIG_EXT_GROUP_SCHED
5402 static s32 sched_ext_ops__cgroup_init(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; }
5403 static void sched_ext_ops__cgroup_exit(struct cgroup *cgrp) {}
5404 static s32 sched_ext_ops__cgroup_prep_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; }
5405 static void sched_ext_ops__cgroup_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
5406 static void sched_ext_ops__cgroup_cancel_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
5407 static void sched_ext_ops__cgroup_set_weight(struct cgroup *cgrp, u32 weight) {}
5408 static void sched_ext_ops__cgroup_set_bandwidth(struct cgroup *cgrp, u64 period_us, u64 quota_us, u64 burst_us) {}
5409 static void sched_ext_ops__cgroup_set_idle(struct cgroup *cgrp, bool idle) {}
5410 #endif
5411 static void sched_ext_ops__cpu_online(s32 cpu) {}
5412 static void sched_ext_ops__cpu_offline(s32 cpu) {}
5413 static s32 sched_ext_ops__init(void) { return -EINVAL; }
5414 static void sched_ext_ops__exit(struct scx_exit_info *info) {}
5415 static void sched_ext_ops__dump(struct scx_dump_ctx *ctx) {}
5416 static void sched_ext_ops__dump_cpu(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {}
5417 static void sched_ext_ops__dump_task(struct scx_dump_ctx *ctx, struct task_struct *p) {}
5418 
5419 static struct sched_ext_ops __bpf_ops_sched_ext_ops = {
5420 	.select_cpu		= sched_ext_ops__select_cpu,
5421 	.enqueue		= sched_ext_ops__enqueue,
5422 	.dequeue		= sched_ext_ops__dequeue,
5423 	.dispatch		= sched_ext_ops__dispatch,
5424 	.tick			= sched_ext_ops__tick,
5425 	.runnable		= sched_ext_ops__runnable,
5426 	.running		= sched_ext_ops__running,
5427 	.stopping		= sched_ext_ops__stopping,
5428 	.quiescent		= sched_ext_ops__quiescent,
5429 	.yield			= sched_ext_ops__yield,
5430 	.core_sched_before	= sched_ext_ops__core_sched_before,
5431 	.set_weight		= sched_ext_ops__set_weight,
5432 	.set_cpumask		= sched_ext_ops__set_cpumask,
5433 	.update_idle		= sched_ext_ops__update_idle,
5434 	.cpu_acquire		= sched_ext_ops__cpu_acquire,
5435 	.cpu_release		= sched_ext_ops__cpu_release,
5436 	.init_task		= sched_ext_ops__init_task,
5437 	.exit_task		= sched_ext_ops__exit_task,
5438 	.enable			= sched_ext_ops__enable,
5439 	.disable		= sched_ext_ops__disable,
5440 #ifdef CONFIG_EXT_GROUP_SCHED
5441 	.cgroup_init		= sched_ext_ops__cgroup_init,
5442 	.cgroup_exit		= sched_ext_ops__cgroup_exit,
5443 	.cgroup_prep_move	= sched_ext_ops__cgroup_prep_move,
5444 	.cgroup_move		= sched_ext_ops__cgroup_move,
5445 	.cgroup_cancel_move	= sched_ext_ops__cgroup_cancel_move,
5446 	.cgroup_set_weight	= sched_ext_ops__cgroup_set_weight,
5447 	.cgroup_set_bandwidth	= sched_ext_ops__cgroup_set_bandwidth,
5448 	.cgroup_set_idle	= sched_ext_ops__cgroup_set_idle,
5449 #endif
5450 	.cpu_online		= sched_ext_ops__cpu_online,
5451 	.cpu_offline		= sched_ext_ops__cpu_offline,
5452 	.init			= sched_ext_ops__init,
5453 	.exit			= sched_ext_ops__exit,
5454 	.dump			= sched_ext_ops__dump,
5455 	.dump_cpu		= sched_ext_ops__dump_cpu,
5456 	.dump_task		= sched_ext_ops__dump_task,
5457 };
5458 
5459 static struct bpf_struct_ops bpf_sched_ext_ops = {
5460 	.verifier_ops = &bpf_scx_verifier_ops,
5461 	.reg = bpf_scx_reg,
5462 	.unreg = bpf_scx_unreg,
5463 	.check_member = bpf_scx_check_member,
5464 	.init_member = bpf_scx_init_member,
5465 	.init = bpf_scx_init,
5466 	.update = bpf_scx_update,
5467 	.validate = bpf_scx_validate,
5468 	.name = "sched_ext_ops",
5469 	.owner = THIS_MODULE,
5470 	.cfi_stubs = &__bpf_ops_sched_ext_ops
5471 };
5472 
5473 
5474 /********************************************************************************
5475  * System integration and init.
5476  */
5477 
5478 static void sysrq_handle_sched_ext_reset(u8 key)
5479 {
5480 	scx_disable(SCX_EXIT_SYSRQ);
5481 }
5482 
5483 static const struct sysrq_key_op sysrq_sched_ext_reset_op = {
5484 	.handler	= sysrq_handle_sched_ext_reset,
5485 	.help_msg	= "reset-sched-ext(S)",
5486 	.action_msg	= "Disable sched_ext and revert all tasks to CFS",
5487 	.enable_mask	= SYSRQ_ENABLE_RTNICE,
5488 };
5489 
5490 static void sysrq_handle_sched_ext_dump(u8 key)
5491 {
5492 	struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" };
5493 
5494 	if (scx_enabled())
5495 		scx_dump_state(&ei, 0);
5496 }
5497 
5498 static const struct sysrq_key_op sysrq_sched_ext_dump_op = {
5499 	.handler	= sysrq_handle_sched_ext_dump,
5500 	.help_msg	= "dump-sched-ext(D)",
5501 	.action_msg	= "Trigger sched_ext debug dump",
5502 	.enable_mask	= SYSRQ_ENABLE_RTNICE,
5503 };
5504 
5505 static bool can_skip_idle_kick(struct rq *rq)
5506 {
5507 	lockdep_assert_rq_held(rq);
5508 
5509 	/*
5510 	 * We can skip idle kicking if @rq is going to go through at least one
5511 	 * full SCX scheduling cycle before going idle. Just checking whether
5512 	 * curr is not idle is insufficient because we could be racing
5513 	 * balance_one() trying to pull the next task from a remote rq, which
5514 	 * may fail, and @rq may become idle afterwards.
5515 	 *
5516 	 * The race window is small and we don't and can't guarantee that @rq is
5517 	 * only kicked while idle anyway. Skip only when sure.
5518 	 */
5519 	return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE);
5520 }
5521 
5522 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *ksyncs)
5523 {
5524 	struct rq *rq = cpu_rq(cpu);
5525 	struct scx_rq *this_scx = &this_rq->scx;
5526 	const struct sched_class *cur_class;
5527 	bool should_wait = false;
5528 	unsigned long flags;
5529 
5530 	raw_spin_rq_lock_irqsave(rq, flags);
5531 	cur_class = rq->curr->sched_class;
5532 
5533 	/*
5534 	 * During CPU hotplug, a CPU may depend on kicking itself to make
5535 	 * forward progress. Allow kicking self regardless of online state. If
5536 	 * @cpu is running a higher class task, we have no control over @cpu.
5537 	 * Skip kicking.
5538 	 */
5539 	if ((cpu_online(cpu) || cpu == cpu_of(this_rq)) &&
5540 	    !sched_class_above(cur_class, &ext_sched_class)) {
5541 		if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) {
5542 			if (cur_class == &ext_sched_class)
5543 				rq->curr->scx.slice = 0;
5544 			cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
5545 		}
5546 
5547 		if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) {
5548 			if (cur_class == &ext_sched_class) {
5549 				ksyncs[cpu] = rq->scx.kick_sync;
5550 				should_wait = true;
5551 			} else {
5552 				cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
5553 			}
5554 		}
5555 
5556 		resched_curr(rq);
5557 	} else {
5558 		cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
5559 		cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
5560 	}
5561 
5562 	raw_spin_rq_unlock_irqrestore(rq, flags);
5563 
5564 	return should_wait;
5565 }
5566 
5567 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq)
5568 {
5569 	struct rq *rq = cpu_rq(cpu);
5570 	unsigned long flags;
5571 
5572 	raw_spin_rq_lock_irqsave(rq, flags);
5573 
5574 	if (!can_skip_idle_kick(rq) &&
5575 	    (cpu_online(cpu) || cpu == cpu_of(this_rq)))
5576 		resched_curr(rq);
5577 
5578 	raw_spin_rq_unlock_irqrestore(rq, flags);
5579 }
5580 
5581 static void kick_cpus_irq_workfn(struct irq_work *irq_work)
5582 {
5583 	struct rq *this_rq = this_rq();
5584 	struct scx_rq *this_scx = &this_rq->scx;
5585 	struct scx_kick_syncs __rcu *ksyncs_pcpu = __this_cpu_read(scx_kick_syncs);
5586 	bool should_wait = false;
5587 	unsigned long *ksyncs;
5588 	s32 cpu;
5589 
5590 	if (unlikely(!ksyncs_pcpu)) {
5591 		pr_warn_once("kick_cpus_irq_workfn() called with NULL scx_kick_syncs");
5592 		return;
5593 	}
5594 
5595 	ksyncs = rcu_dereference_bh(ksyncs_pcpu)->syncs;
5596 
5597 	for_each_cpu(cpu, this_scx->cpus_to_kick) {
5598 		should_wait |= kick_one_cpu(cpu, this_rq, ksyncs);
5599 		cpumask_clear_cpu(cpu, this_scx->cpus_to_kick);
5600 		cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
5601 	}
5602 
5603 	for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) {
5604 		kick_one_cpu_if_idle(cpu, this_rq);
5605 		cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
5606 	}
5607 
5608 	if (!should_wait)
5609 		return;
5610 
5611 	for_each_cpu(cpu, this_scx->cpus_to_wait) {
5612 		unsigned long *wait_kick_sync = &cpu_rq(cpu)->scx.kick_sync;
5613 
5614 		/*
5615 		 * Busy-wait until the task running at the time of kicking is no
5616 		 * longer running. This can be used to implement e.g. core
5617 		 * scheduling.
5618 		 *
5619 		 * smp_cond_load_acquire() pairs with store_releases in
5620 		 * pick_task_scx() and put_prev_task_scx(). The former breaks
5621 		 * the wait if SCX's scheduling path is entered even if the same
5622 		 * task is picked subsequently. The latter is necessary to break
5623 		 * the wait when $cpu is taken by a higher sched class.
5624 		 */
5625 		if (cpu != cpu_of(this_rq))
5626 			smp_cond_load_acquire(wait_kick_sync, VAL != ksyncs[cpu]);
5627 
5628 		cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
5629 	}
5630 }
5631 
5632 /**
5633  * print_scx_info - print out sched_ext scheduler state
5634  * @log_lvl: the log level to use when printing
5635  * @p: target task
5636  *
5637  * If a sched_ext scheduler is enabled, print the name and state of the
5638  * scheduler. If @p is on sched_ext, print further information about the task.
5639  *
5640  * This function can be safely called on any task as long as the task_struct
5641  * itself is accessible. While safe, this function isn't synchronized and may
5642  * print out mixups or garbages of limited length.
5643  */
5644 void print_scx_info(const char *log_lvl, struct task_struct *p)
5645 {
5646 	struct scx_sched *sch = scx_root;
5647 	enum scx_enable_state state = scx_enable_state();
5648 	const char *all = READ_ONCE(scx_switching_all) ? "+all" : "";
5649 	char runnable_at_buf[22] = "?";
5650 	struct sched_class *class;
5651 	unsigned long runnable_at;
5652 
5653 	if (state == SCX_DISABLED)
5654 		return;
5655 
5656 	/*
5657 	 * Carefully check if the task was running on sched_ext, and then
5658 	 * carefully copy the time it's been runnable, and its state.
5659 	 */
5660 	if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) ||
5661 	    class != &ext_sched_class) {
5662 		printk("%sSched_ext: %s (%s%s)", log_lvl, sch->ops.name,
5663 		       scx_enable_state_str[state], all);
5664 		return;
5665 	}
5666 
5667 	if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at,
5668 				      sizeof(runnable_at)))
5669 		scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms",
5670 			  jiffies_delta_msecs(runnable_at, jiffies));
5671 
5672 	/* print everything onto one line to conserve console space */
5673 	printk("%sSched_ext: %s (%s%s), task: runnable_at=%s",
5674 	       log_lvl, sch->ops.name, scx_enable_state_str[state], all,
5675 	       runnable_at_buf);
5676 }
5677 
5678 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr)
5679 {
5680 	/*
5681 	 * SCX schedulers often have userspace components which are sometimes
5682 	 * involved in critial scheduling paths. PM operations involve freezing
5683 	 * userspace which can lead to scheduling misbehaviors including stalls.
5684 	 * Let's bypass while PM operations are in progress.
5685 	 */
5686 	switch (event) {
5687 	case PM_HIBERNATION_PREPARE:
5688 	case PM_SUSPEND_PREPARE:
5689 	case PM_RESTORE_PREPARE:
5690 		scx_bypass(true);
5691 		break;
5692 	case PM_POST_HIBERNATION:
5693 	case PM_POST_SUSPEND:
5694 	case PM_POST_RESTORE:
5695 		scx_bypass(false);
5696 		break;
5697 	}
5698 
5699 	return NOTIFY_OK;
5700 }
5701 
5702 static struct notifier_block scx_pm_notifier = {
5703 	.notifier_call = scx_pm_handler,
5704 };
5705 
5706 void __init init_sched_ext_class(void)
5707 {
5708 	s32 cpu, v;
5709 
5710 	/*
5711 	 * The following is to prevent the compiler from optimizing out the enum
5712 	 * definitions so that BPF scheduler implementations can use them
5713 	 * through the generated vmlinux.h.
5714 	 */
5715 	WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT |
5716 		   SCX_TG_ONLINE);
5717 
5718 	scx_idle_init_masks();
5719 
5720 	for_each_possible_cpu(cpu) {
5721 		struct rq *rq = cpu_rq(cpu);
5722 		int  n = cpu_to_node(cpu);
5723 
5724 		init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL);
5725 		init_dsq(&rq->scx.bypass_dsq, SCX_DSQ_BYPASS);
5726 		INIT_LIST_HEAD(&rq->scx.runnable_list);
5727 		INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals);
5728 
5729 		BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick, GFP_KERNEL, n));
5730 		BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL, n));
5731 		BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_preempt, GFP_KERNEL, n));
5732 		BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_wait, GFP_KERNEL, n));
5733 		rq->scx.deferred_irq_work = IRQ_WORK_INIT_HARD(deferred_irq_workfn);
5734 		rq->scx.kick_cpus_irq_work = IRQ_WORK_INIT_HARD(kick_cpus_irq_workfn);
5735 
5736 		if (cpu_online(cpu))
5737 			cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE;
5738 	}
5739 
5740 	register_sysrq_key('S', &sysrq_sched_ext_reset_op);
5741 	register_sysrq_key('D', &sysrq_sched_ext_dump_op);
5742 	INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn);
5743 }
5744 
5745 
5746 /********************************************************************************
5747  * Helpers that can be called from the BPF scheduler.
5748  */
5749 static bool scx_dsq_insert_preamble(struct scx_sched *sch, struct task_struct *p,
5750 				    u64 enq_flags)
5751 {
5752 	if (!scx_kf_allowed(sch, SCX_KF_ENQUEUE | SCX_KF_DISPATCH))
5753 		return false;
5754 
5755 	lockdep_assert_irqs_disabled();
5756 
5757 	if (unlikely(!p)) {
5758 		scx_error(sch, "called with NULL task");
5759 		return false;
5760 	}
5761 
5762 	if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) {
5763 		scx_error(sch, "invalid enq_flags 0x%llx", enq_flags);
5764 		return false;
5765 	}
5766 
5767 	return true;
5768 }
5769 
5770 static void scx_dsq_insert_commit(struct scx_sched *sch, struct task_struct *p,
5771 				  u64 dsq_id, u64 enq_flags)
5772 {
5773 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
5774 	struct task_struct *ddsp_task;
5775 
5776 	ddsp_task = __this_cpu_read(direct_dispatch_task);
5777 	if (ddsp_task) {
5778 		mark_direct_dispatch(sch, ddsp_task, p, dsq_id, enq_flags);
5779 		return;
5780 	}
5781 
5782 	if (unlikely(dspc->cursor >= scx_dsp_max_batch)) {
5783 		scx_error(sch, "dispatch buffer overflow");
5784 		return;
5785 	}
5786 
5787 	dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){
5788 		.task = p,
5789 		.qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK,
5790 		.dsq_id = dsq_id,
5791 		.enq_flags = enq_flags,
5792 	};
5793 }
5794 
5795 __bpf_kfunc_start_defs();
5796 
5797 /**
5798  * scx_bpf_dsq_insert - Insert a task into the FIFO queue of a DSQ
5799  * @p: task_struct to insert
5800  * @dsq_id: DSQ to insert into
5801  * @slice: duration @p can run for in nsecs, 0 to keep the current value
5802  * @enq_flags: SCX_ENQ_*
5803  *
5804  * Insert @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe to
5805  * call this function spuriously. Can be called from ops.enqueue(),
5806  * ops.select_cpu(), and ops.dispatch().
5807  *
5808  * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch
5809  * and @p must match the task being enqueued.
5810  *
5811  * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p
5812  * will be directly inserted into the corresponding dispatch queue after
5813  * ops.select_cpu() returns. If @p is inserted into SCX_DSQ_LOCAL, it will be
5814  * inserted into the local DSQ of the CPU returned by ops.select_cpu().
5815  * @enq_flags are OR'd with the enqueue flags on the enqueue path before the
5816  * task is inserted.
5817  *
5818  * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id
5819  * and this function can be called upto ops.dispatch_max_batch times to insert
5820  * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the
5821  * remaining slots. scx_bpf_dsq_move_to_local() flushes the batch and resets the
5822  * counter.
5823  *
5824  * This function doesn't have any locking restrictions and may be called under
5825  * BPF locks (in the future when BPF introduces more flexible locking).
5826  *
5827  * @p is allowed to run for @slice. The scheduling path is triggered on slice
5828  * exhaustion. If zero, the current residual slice is maintained. If
5829  * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with
5830  * scx_bpf_kick_cpu() to trigger scheduling.
5831  *
5832  * Returns %true on successful insertion, %false on failure. On the root
5833  * scheduler, %false return triggers scheduler abort and the caller doesn't need
5834  * to check the return value.
5835  */
5836 __bpf_kfunc bool scx_bpf_dsq_insert___v2(struct task_struct *p, u64 dsq_id,
5837 					 u64 slice, u64 enq_flags)
5838 {
5839 	struct scx_sched *sch;
5840 
5841 	guard(rcu)();
5842 	sch = rcu_dereference(scx_root);
5843 	if (unlikely(!sch))
5844 		return false;
5845 
5846 	if (!scx_dsq_insert_preamble(sch, p, enq_flags))
5847 		return false;
5848 
5849 	if (slice)
5850 		p->scx.slice = slice;
5851 	else
5852 		p->scx.slice = p->scx.slice ?: 1;
5853 
5854 	scx_dsq_insert_commit(sch, p, dsq_id, enq_flags);
5855 
5856 	return true;
5857 }
5858 
5859 /*
5860  * COMPAT: Will be removed in v6.23 along with the ___v2 suffix.
5861  */
5862 __bpf_kfunc void scx_bpf_dsq_insert(struct task_struct *p, u64 dsq_id,
5863 					     u64 slice, u64 enq_flags)
5864 {
5865 	scx_bpf_dsq_insert___v2(p, dsq_id, slice, enq_flags);
5866 }
5867 
5868 static bool scx_dsq_insert_vtime(struct scx_sched *sch, struct task_struct *p,
5869 				 u64 dsq_id, u64 slice, u64 vtime, u64 enq_flags)
5870 {
5871 	if (!scx_dsq_insert_preamble(sch, p, enq_flags))
5872 		return false;
5873 
5874 	if (slice)
5875 		p->scx.slice = slice;
5876 	else
5877 		p->scx.slice = p->scx.slice ?: 1;
5878 
5879 	p->scx.dsq_vtime = vtime;
5880 
5881 	scx_dsq_insert_commit(sch, p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
5882 
5883 	return true;
5884 }
5885 
5886 struct scx_bpf_dsq_insert_vtime_args {
5887 	/* @p can't be packed together as KF_RCU is not transitive */
5888 	u64			dsq_id;
5889 	u64			slice;
5890 	u64			vtime;
5891 	u64			enq_flags;
5892 };
5893 
5894 /**
5895  * __scx_bpf_dsq_insert_vtime - Arg-wrapped vtime DSQ insertion
5896  * @p: task_struct to insert
5897  * @args: struct containing the rest of the arguments
5898  *       @args->dsq_id: DSQ to insert into
5899  *       @args->slice: duration @p can run for in nsecs, 0 to keep the current value
5900  *       @args->vtime: @p's ordering inside the vtime-sorted queue of the target DSQ
5901  *       @args->enq_flags: SCX_ENQ_*
5902  *
5903  * Wrapper kfunc that takes arguments via struct to work around BPF's 5 argument
5904  * limit. BPF programs should use scx_bpf_dsq_insert_vtime() which is provided
5905  * as an inline wrapper in common.bpf.h.
5906  *
5907  * Insert @p into the vtime priority queue of the DSQ identified by
5908  * @args->dsq_id. Tasks queued into the priority queue are ordered by
5909  * @args->vtime. All other aspects are identical to scx_bpf_dsq_insert().
5910  *
5911  * @args->vtime ordering is according to time_before64() which considers
5912  * wrapping. A numerically larger vtime may indicate an earlier position in the
5913  * ordering and vice-versa.
5914  *
5915  * A DSQ can only be used as a FIFO or priority queue at any given time and this
5916  * function must not be called on a DSQ which already has one or more FIFO tasks
5917  * queued and vice-versa. Also, the built-in DSQs (SCX_DSQ_LOCAL and
5918  * SCX_DSQ_GLOBAL) cannot be used as priority queues.
5919  *
5920  * Returns %true on successful insertion, %false on failure. On the root
5921  * scheduler, %false return triggers scheduler abort and the caller doesn't need
5922  * to check the return value.
5923  */
5924 __bpf_kfunc bool
5925 __scx_bpf_dsq_insert_vtime(struct task_struct *p,
5926 			   struct scx_bpf_dsq_insert_vtime_args *args)
5927 {
5928 	struct scx_sched *sch;
5929 
5930 	guard(rcu)();
5931 
5932 	sch = rcu_dereference(scx_root);
5933 	if (unlikely(!sch))
5934 		return false;
5935 
5936 	return scx_dsq_insert_vtime(sch, p, args->dsq_id, args->slice,
5937 				    args->vtime, args->enq_flags);
5938 }
5939 
5940 /*
5941  * COMPAT: Will be removed in v6.23.
5942  */
5943 __bpf_kfunc void scx_bpf_dsq_insert_vtime(struct task_struct *p, u64 dsq_id,
5944 					  u64 slice, u64 vtime, u64 enq_flags)
5945 {
5946 	struct scx_sched *sch;
5947 
5948 	guard(rcu)();
5949 
5950 	sch = rcu_dereference(scx_root);
5951 	if (unlikely(!sch))
5952 		return;
5953 
5954 	scx_dsq_insert_vtime(sch, p, dsq_id, slice, vtime, enq_flags);
5955 }
5956 
5957 __bpf_kfunc_end_defs();
5958 
5959 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch)
5960 BTF_ID_FLAGS(func, scx_bpf_dsq_insert, KF_RCU)
5961 BTF_ID_FLAGS(func, scx_bpf_dsq_insert___v2, KF_RCU)
5962 BTF_ID_FLAGS(func, __scx_bpf_dsq_insert_vtime, KF_RCU)
5963 BTF_ID_FLAGS(func, scx_bpf_dsq_insert_vtime, KF_RCU)
5964 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch)
5965 
5966 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = {
5967 	.owner			= THIS_MODULE,
5968 	.set			= &scx_kfunc_ids_enqueue_dispatch,
5969 };
5970 
5971 static bool scx_dsq_move(struct bpf_iter_scx_dsq_kern *kit,
5972 			 struct task_struct *p, u64 dsq_id, u64 enq_flags)
5973 {
5974 	struct scx_sched *sch = scx_root;
5975 	struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq;
5976 	struct rq *this_rq, *src_rq, *locked_rq;
5977 	bool dispatched = false;
5978 	bool in_balance;
5979 	unsigned long flags;
5980 
5981 	if (!scx_kf_allowed_if_unlocked() &&
5982 	    !scx_kf_allowed(sch, SCX_KF_DISPATCH))
5983 		return false;
5984 
5985 	/*
5986 	 * If the BPF scheduler keeps calling this function repeatedly, it can
5987 	 * cause similar live-lock conditions as consume_dispatch_q().
5988 	 */
5989 	if (unlikely(READ_ONCE(scx_aborting)))
5990 		return false;
5991 
5992 	/*
5993 	 * Can be called from either ops.dispatch() locking this_rq() or any
5994 	 * context where no rq lock is held. If latter, lock @p's task_rq which
5995 	 * we'll likely need anyway.
5996 	 */
5997 	src_rq = task_rq(p);
5998 
5999 	local_irq_save(flags);
6000 	this_rq = this_rq();
6001 	in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE;
6002 
6003 	if (in_balance) {
6004 		if (this_rq != src_rq) {
6005 			raw_spin_rq_unlock(this_rq);
6006 			raw_spin_rq_lock(src_rq);
6007 		}
6008 	} else {
6009 		raw_spin_rq_lock(src_rq);
6010 	}
6011 
6012 	locked_rq = src_rq;
6013 	raw_spin_lock(&src_dsq->lock);
6014 
6015 	/*
6016 	 * Did someone else get to it? @p could have already left $src_dsq, got
6017 	 * re-enqueud, or be in the process of being consumed by someone else.
6018 	 */
6019 	if (unlikely(p->scx.dsq != src_dsq ||
6020 		     u32_before(kit->cursor.priv, p->scx.dsq_seq) ||
6021 		     p->scx.holding_cpu >= 0) ||
6022 	    WARN_ON_ONCE(src_rq != task_rq(p))) {
6023 		raw_spin_unlock(&src_dsq->lock);
6024 		goto out;
6025 	}
6026 
6027 	/* @p is still on $src_dsq and stable, determine the destination */
6028 	dst_dsq = find_dsq_for_dispatch(sch, this_rq, dsq_id, p);
6029 
6030 	/*
6031 	 * Apply vtime and slice updates before moving so that the new time is
6032 	 * visible before inserting into $dst_dsq. @p is still on $src_dsq but
6033 	 * this is safe as we're locking it.
6034 	 */
6035 	if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME)
6036 		p->scx.dsq_vtime = kit->vtime;
6037 	if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE)
6038 		p->scx.slice = kit->slice;
6039 
6040 	/* execute move */
6041 	locked_rq = move_task_between_dsqs(sch, p, enq_flags, src_dsq, dst_dsq);
6042 	dispatched = true;
6043 out:
6044 	if (in_balance) {
6045 		if (this_rq != locked_rq) {
6046 			raw_spin_rq_unlock(locked_rq);
6047 			raw_spin_rq_lock(this_rq);
6048 		}
6049 	} else {
6050 		raw_spin_rq_unlock_irqrestore(locked_rq, flags);
6051 	}
6052 
6053 	kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE |
6054 			       __SCX_DSQ_ITER_HAS_VTIME);
6055 	return dispatched;
6056 }
6057 
6058 __bpf_kfunc_start_defs();
6059 
6060 /**
6061  * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots
6062  *
6063  * Can only be called from ops.dispatch().
6064  */
6065 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void)
6066 {
6067 	struct scx_sched *sch;
6068 
6069 	guard(rcu)();
6070 
6071 	sch = rcu_dereference(scx_root);
6072 	if (unlikely(!sch))
6073 		return 0;
6074 
6075 	if (!scx_kf_allowed(sch, SCX_KF_DISPATCH))
6076 		return 0;
6077 
6078 	return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor);
6079 }
6080 
6081 /**
6082  * scx_bpf_dispatch_cancel - Cancel the latest dispatch
6083  *
6084  * Cancel the latest dispatch. Can be called multiple times to cancel further
6085  * dispatches. Can only be called from ops.dispatch().
6086  */
6087 __bpf_kfunc void scx_bpf_dispatch_cancel(void)
6088 {
6089 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
6090 	struct scx_sched *sch;
6091 
6092 	guard(rcu)();
6093 
6094 	sch = rcu_dereference(scx_root);
6095 	if (unlikely(!sch))
6096 		return;
6097 
6098 	if (!scx_kf_allowed(sch, SCX_KF_DISPATCH))
6099 		return;
6100 
6101 	if (dspc->cursor > 0)
6102 		dspc->cursor--;
6103 	else
6104 		scx_error(sch, "dispatch buffer underflow");
6105 }
6106 
6107 /**
6108  * scx_bpf_dsq_move_to_local - move a task from a DSQ to the current CPU's local DSQ
6109  * @dsq_id: DSQ to move task from
6110  *
6111  * Move a task from the non-local DSQ identified by @dsq_id to the current CPU's
6112  * local DSQ for execution. Can only be called from ops.dispatch().
6113  *
6114  * This function flushes the in-flight dispatches from scx_bpf_dsq_insert()
6115  * before trying to move from the specified DSQ. It may also grab rq locks and
6116  * thus can't be called under any BPF locks.
6117  *
6118  * Returns %true if a task has been moved, %false if there isn't any task to
6119  * move.
6120  */
6121 __bpf_kfunc bool scx_bpf_dsq_move_to_local(u64 dsq_id)
6122 {
6123 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
6124 	struct scx_dispatch_q *dsq;
6125 	struct scx_sched *sch;
6126 
6127 	guard(rcu)();
6128 
6129 	sch = rcu_dereference(scx_root);
6130 	if (unlikely(!sch))
6131 		return false;
6132 
6133 	if (!scx_kf_allowed(sch, SCX_KF_DISPATCH))
6134 		return false;
6135 
6136 	flush_dispatch_buf(sch, dspc->rq);
6137 
6138 	dsq = find_user_dsq(sch, dsq_id);
6139 	if (unlikely(!dsq)) {
6140 		scx_error(sch, "invalid DSQ ID 0x%016llx", dsq_id);
6141 		return false;
6142 	}
6143 
6144 	if (consume_dispatch_q(sch, dspc->rq, dsq)) {
6145 		/*
6146 		 * A successfully consumed task can be dequeued before it starts
6147 		 * running while the CPU is trying to migrate other dispatched
6148 		 * tasks. Bump nr_tasks to tell balance_one() to retry on empty
6149 		 * local DSQ.
6150 		 */
6151 		dspc->nr_tasks++;
6152 		return true;
6153 	} else {
6154 		return false;
6155 	}
6156 }
6157 
6158 /**
6159  * scx_bpf_dsq_move_set_slice - Override slice when moving between DSQs
6160  * @it__iter: DSQ iterator in progress
6161  * @slice: duration the moved task can run for in nsecs
6162  *
6163  * Override the slice of the next task that will be moved from @it__iter using
6164  * scx_bpf_dsq_move[_vtime](). If this function is not called, the previous
6165  * slice duration is kept.
6166  */
6167 __bpf_kfunc void scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq *it__iter,
6168 					    u64 slice)
6169 {
6170 	struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
6171 
6172 	kit->slice = slice;
6173 	kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE;
6174 }
6175 
6176 /**
6177  * scx_bpf_dsq_move_set_vtime - Override vtime when moving between DSQs
6178  * @it__iter: DSQ iterator in progress
6179  * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ
6180  *
6181  * Override the vtime of the next task that will be moved from @it__iter using
6182  * scx_bpf_dsq_move_vtime(). If this function is not called, the previous slice
6183  * vtime is kept. If scx_bpf_dsq_move() is used to dispatch the next task, the
6184  * override is ignored and cleared.
6185  */
6186 __bpf_kfunc void scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq *it__iter,
6187 					    u64 vtime)
6188 {
6189 	struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
6190 
6191 	kit->vtime = vtime;
6192 	kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME;
6193 }
6194 
6195 /**
6196  * scx_bpf_dsq_move - Move a task from DSQ iteration to a DSQ
6197  * @it__iter: DSQ iterator in progress
6198  * @p: task to transfer
6199  * @dsq_id: DSQ to move @p to
6200  * @enq_flags: SCX_ENQ_*
6201  *
6202  * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ
6203  * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can
6204  * be the destination.
6205  *
6206  * For the transfer to be successful, @p must still be on the DSQ and have been
6207  * queued before the DSQ iteration started. This function doesn't care whether
6208  * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have
6209  * been queued before the iteration started.
6210  *
6211  * @p's slice is kept by default. Use scx_bpf_dsq_move_set_slice() to update.
6212  *
6213  * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq
6214  * lock (e.g. BPF timers or SYSCALL programs).
6215  *
6216  * Returns %true if @p has been consumed, %false if @p had already been
6217  * consumed, dequeued, or, for sub-scheds, @dsq_id points to a disallowed local
6218  * DSQ.
6219  */
6220 __bpf_kfunc bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq *it__iter,
6221 				  struct task_struct *p, u64 dsq_id,
6222 				  u64 enq_flags)
6223 {
6224 	return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter,
6225 			    p, dsq_id, enq_flags);
6226 }
6227 
6228 /**
6229  * scx_bpf_dsq_move_vtime - Move a task from DSQ iteration to a PRIQ DSQ
6230  * @it__iter: DSQ iterator in progress
6231  * @p: task to transfer
6232  * @dsq_id: DSQ to move @p to
6233  * @enq_flags: SCX_ENQ_*
6234  *
6235  * Transfer @p which is on the DSQ currently iterated by @it__iter to the
6236  * priority queue of the DSQ specified by @dsq_id. The destination must be a
6237  * user DSQ as only user DSQs support priority queue.
6238  *
6239  * @p's slice and vtime are kept by default. Use scx_bpf_dsq_move_set_slice()
6240  * and scx_bpf_dsq_move_set_vtime() to update.
6241  *
6242  * All other aspects are identical to scx_bpf_dsq_move(). See
6243  * scx_bpf_dsq_insert_vtime() for more information on @vtime.
6244  */
6245 __bpf_kfunc bool scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq *it__iter,
6246 					struct task_struct *p, u64 dsq_id,
6247 					u64 enq_flags)
6248 {
6249 	return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter,
6250 			    p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
6251 }
6252 
6253 __bpf_kfunc_end_defs();
6254 
6255 BTF_KFUNCS_START(scx_kfunc_ids_dispatch)
6256 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots)
6257 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel)
6258 BTF_ID_FLAGS(func, scx_bpf_dsq_move_to_local)
6259 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice, KF_RCU)
6260 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime, KF_RCU)
6261 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU)
6262 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU)
6263 BTF_KFUNCS_END(scx_kfunc_ids_dispatch)
6264 
6265 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = {
6266 	.owner			= THIS_MODULE,
6267 	.set			= &scx_kfunc_ids_dispatch,
6268 };
6269 
6270 static u32 reenq_local(struct rq *rq)
6271 {
6272 	LIST_HEAD(tasks);
6273 	u32 nr_enqueued = 0;
6274 	struct task_struct *p, *n;
6275 
6276 	lockdep_assert_rq_held(rq);
6277 
6278 	/*
6279 	 * The BPF scheduler may choose to dispatch tasks back to
6280 	 * @rq->scx.local_dsq. Move all candidate tasks off to a private list
6281 	 * first to avoid processing the same tasks repeatedly.
6282 	 */
6283 	list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list,
6284 				 scx.dsq_list.node) {
6285 		/*
6286 		 * If @p is being migrated, @p's current CPU may not agree with
6287 		 * its allowed CPUs and the migration_cpu_stop is about to
6288 		 * deactivate and re-activate @p anyway. Skip re-enqueueing.
6289 		 *
6290 		 * While racing sched property changes may also dequeue and
6291 		 * re-enqueue a migrating task while its current CPU and allowed
6292 		 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to
6293 		 * the current local DSQ for running tasks and thus are not
6294 		 * visible to the BPF scheduler.
6295 		 */
6296 		if (p->migration_pending)
6297 			continue;
6298 
6299 		dispatch_dequeue(rq, p);
6300 		list_add_tail(&p->scx.dsq_list.node, &tasks);
6301 	}
6302 
6303 	list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) {
6304 		list_del_init(&p->scx.dsq_list.node);
6305 		do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1);
6306 		nr_enqueued++;
6307 	}
6308 
6309 	return nr_enqueued;
6310 }
6311 
6312 __bpf_kfunc_start_defs();
6313 
6314 /**
6315  * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ
6316  *
6317  * Iterate over all of the tasks currently enqueued on the local DSQ of the
6318  * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of
6319  * processed tasks. Can only be called from ops.cpu_release().
6320  *
6321  * COMPAT: Will be removed in v6.23 along with the ___v2 suffix on the void
6322  * returning variant that can be called from anywhere.
6323  */
6324 __bpf_kfunc u32 scx_bpf_reenqueue_local(void)
6325 {
6326 	struct scx_sched *sch;
6327 	struct rq *rq;
6328 
6329 	guard(rcu)();
6330 	sch = rcu_dereference(scx_root);
6331 	if (unlikely(!sch))
6332 		return 0;
6333 
6334 	if (!scx_kf_allowed(sch, SCX_KF_CPU_RELEASE))
6335 		return 0;
6336 
6337 	rq = cpu_rq(smp_processor_id());
6338 	lockdep_assert_rq_held(rq);
6339 
6340 	return reenq_local(rq);
6341 }
6342 
6343 __bpf_kfunc_end_defs();
6344 
6345 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release)
6346 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local)
6347 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release)
6348 
6349 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = {
6350 	.owner			= THIS_MODULE,
6351 	.set			= &scx_kfunc_ids_cpu_release,
6352 };
6353 
6354 __bpf_kfunc_start_defs();
6355 
6356 /**
6357  * scx_bpf_create_dsq - Create a custom DSQ
6358  * @dsq_id: DSQ to create
6359  * @node: NUMA node to allocate from
6360  *
6361  * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable
6362  * scx callback, and any BPF_PROG_TYPE_SYSCALL prog.
6363  */
6364 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node)
6365 {
6366 	struct scx_dispatch_q *dsq;
6367 	struct scx_sched *sch;
6368 	s32 ret;
6369 
6370 	if (unlikely(node >= (int)nr_node_ids ||
6371 		     (node < 0 && node != NUMA_NO_NODE)))
6372 		return -EINVAL;
6373 
6374 	if (unlikely(dsq_id & SCX_DSQ_FLAG_BUILTIN))
6375 		return -EINVAL;
6376 
6377 	dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node);
6378 	if (!dsq)
6379 		return -ENOMEM;
6380 
6381 	init_dsq(dsq, dsq_id);
6382 
6383 	rcu_read_lock();
6384 
6385 	sch = rcu_dereference(scx_root);
6386 	if (sch)
6387 		ret = rhashtable_lookup_insert_fast(&sch->dsq_hash, &dsq->hash_node,
6388 						    dsq_hash_params);
6389 	else
6390 		ret = -ENODEV;
6391 
6392 	rcu_read_unlock();
6393 	if (ret)
6394 		kfree(dsq);
6395 	return ret;
6396 }
6397 
6398 __bpf_kfunc_end_defs();
6399 
6400 BTF_KFUNCS_START(scx_kfunc_ids_unlocked)
6401 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE)
6402 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice, KF_RCU)
6403 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime, KF_RCU)
6404 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU)
6405 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU)
6406 BTF_KFUNCS_END(scx_kfunc_ids_unlocked)
6407 
6408 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = {
6409 	.owner			= THIS_MODULE,
6410 	.set			= &scx_kfunc_ids_unlocked,
6411 };
6412 
6413 __bpf_kfunc_start_defs();
6414 
6415 /**
6416  * scx_bpf_task_set_slice - Set task's time slice
6417  * @p: task of interest
6418  * @slice: time slice to set in nsecs
6419  *
6420  * Set @p's time slice to @slice. Returns %true on success, %false if the
6421  * calling scheduler doesn't have authority over @p.
6422  */
6423 __bpf_kfunc bool scx_bpf_task_set_slice(struct task_struct *p, u64 slice)
6424 {
6425 	p->scx.slice = slice;
6426 	return true;
6427 }
6428 
6429 /**
6430  * scx_bpf_task_set_dsq_vtime - Set task's virtual time for DSQ ordering
6431  * @p: task of interest
6432  * @vtime: virtual time to set
6433  *
6434  * Set @p's virtual time to @vtime. Returns %true on success, %false if the
6435  * calling scheduler doesn't have authority over @p.
6436  */
6437 __bpf_kfunc bool scx_bpf_task_set_dsq_vtime(struct task_struct *p, u64 vtime)
6438 {
6439 	p->scx.dsq_vtime = vtime;
6440 	return true;
6441 }
6442 
6443 static void scx_kick_cpu(struct scx_sched *sch, s32 cpu, u64 flags)
6444 {
6445 	struct rq *this_rq;
6446 	unsigned long irq_flags;
6447 
6448 	if (!ops_cpu_valid(sch, cpu, NULL))
6449 		return;
6450 
6451 	local_irq_save(irq_flags);
6452 
6453 	this_rq = this_rq();
6454 
6455 	/*
6456 	 * While bypassing for PM ops, IRQ handling may not be online which can
6457 	 * lead to irq_work_queue() malfunction such as infinite busy wait for
6458 	 * IRQ status update. Suppress kicking.
6459 	 */
6460 	if (scx_rq_bypassing(this_rq))
6461 		goto out;
6462 
6463 	/*
6464 	 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting
6465 	 * rq locks. We can probably be smarter and avoid bouncing if called
6466 	 * from ops which don't hold a rq lock.
6467 	 */
6468 	if (flags & SCX_KICK_IDLE) {
6469 		struct rq *target_rq = cpu_rq(cpu);
6470 
6471 		if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT)))
6472 			scx_error(sch, "PREEMPT/WAIT cannot be used with SCX_KICK_IDLE");
6473 
6474 		if (raw_spin_rq_trylock(target_rq)) {
6475 			if (can_skip_idle_kick(target_rq)) {
6476 				raw_spin_rq_unlock(target_rq);
6477 				goto out;
6478 			}
6479 			raw_spin_rq_unlock(target_rq);
6480 		}
6481 		cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle);
6482 	} else {
6483 		cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick);
6484 
6485 		if (flags & SCX_KICK_PREEMPT)
6486 			cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt);
6487 		if (flags & SCX_KICK_WAIT)
6488 			cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait);
6489 	}
6490 
6491 	irq_work_queue(&this_rq->scx.kick_cpus_irq_work);
6492 out:
6493 	local_irq_restore(irq_flags);
6494 }
6495 
6496 /**
6497  * scx_bpf_kick_cpu - Trigger reschedule on a CPU
6498  * @cpu: cpu to kick
6499  * @flags: %SCX_KICK_* flags
6500  *
6501  * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or
6502  * trigger rescheduling on a busy CPU. This can be called from any online
6503  * scx_ops operation and the actual kicking is performed asynchronously through
6504  * an irq work.
6505  */
6506 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags)
6507 {
6508 	struct scx_sched *sch;
6509 
6510 	guard(rcu)();
6511 	sch = rcu_dereference(scx_root);
6512 	if (likely(sch))
6513 		scx_kick_cpu(sch, cpu, flags);
6514 }
6515 
6516 /**
6517  * scx_bpf_dsq_nr_queued - Return the number of queued tasks
6518  * @dsq_id: id of the DSQ
6519  *
6520  * Return the number of tasks in the DSQ matching @dsq_id. If not found,
6521  * -%ENOENT is returned.
6522  */
6523 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id)
6524 {
6525 	struct scx_sched *sch;
6526 	struct scx_dispatch_q *dsq;
6527 	s32 ret;
6528 
6529 	preempt_disable();
6530 
6531 	sch = rcu_dereference_sched(scx_root);
6532 	if (unlikely(!sch)) {
6533 		ret = -ENODEV;
6534 		goto out;
6535 	}
6536 
6537 	if (dsq_id == SCX_DSQ_LOCAL) {
6538 		ret = READ_ONCE(this_rq()->scx.local_dsq.nr);
6539 		goto out;
6540 	} else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
6541 		s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
6542 
6543 		if (ops_cpu_valid(sch, cpu, NULL)) {
6544 			ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr);
6545 			goto out;
6546 		}
6547 	} else {
6548 		dsq = find_user_dsq(sch, dsq_id);
6549 		if (dsq) {
6550 			ret = READ_ONCE(dsq->nr);
6551 			goto out;
6552 		}
6553 	}
6554 	ret = -ENOENT;
6555 out:
6556 	preempt_enable();
6557 	return ret;
6558 }
6559 
6560 /**
6561  * scx_bpf_destroy_dsq - Destroy a custom DSQ
6562  * @dsq_id: DSQ to destroy
6563  *
6564  * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with
6565  * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is
6566  * empty and no further tasks are dispatched to it. Ignored if called on a DSQ
6567  * which doesn't exist. Can be called from any online scx_ops operations.
6568  */
6569 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id)
6570 {
6571 	struct scx_sched *sch;
6572 
6573 	rcu_read_lock();
6574 	sch = rcu_dereference(scx_root);
6575 	if (sch)
6576 		destroy_dsq(sch, dsq_id);
6577 	rcu_read_unlock();
6578 }
6579 
6580 /**
6581  * bpf_iter_scx_dsq_new - Create a DSQ iterator
6582  * @it: iterator to initialize
6583  * @dsq_id: DSQ to iterate
6584  * @flags: %SCX_DSQ_ITER_*
6585  *
6586  * Initialize BPF iterator @it which can be used with bpf_for_each() to walk
6587  * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes
6588  * tasks which are already queued when this function is invoked.
6589  */
6590 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id,
6591 				     u64 flags)
6592 {
6593 	struct bpf_iter_scx_dsq_kern *kit = (void *)it;
6594 	struct scx_sched *sch;
6595 
6596 	BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) >
6597 		     sizeof(struct bpf_iter_scx_dsq));
6598 	BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) !=
6599 		     __alignof__(struct bpf_iter_scx_dsq));
6600 	BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS &
6601 		     ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1));
6602 
6603 	/*
6604 	 * next() and destroy() will be called regardless of the return value.
6605 	 * Always clear $kit->dsq.
6606 	 */
6607 	kit->dsq = NULL;
6608 
6609 	sch = rcu_dereference_check(scx_root, rcu_read_lock_bh_held());
6610 	if (unlikely(!sch))
6611 		return -ENODEV;
6612 
6613 	if (flags & ~__SCX_DSQ_ITER_USER_FLAGS)
6614 		return -EINVAL;
6615 
6616 	kit->dsq = find_user_dsq(sch, dsq_id);
6617 	if (!kit->dsq)
6618 		return -ENOENT;
6619 
6620 	kit->cursor = INIT_DSQ_LIST_CURSOR(kit->cursor, flags,
6621 					   READ_ONCE(kit->dsq->seq));
6622 
6623 	return 0;
6624 }
6625 
6626 /**
6627  * bpf_iter_scx_dsq_next - Progress a DSQ iterator
6628  * @it: iterator to progress
6629  *
6630  * Return the next task. See bpf_iter_scx_dsq_new().
6631  */
6632 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it)
6633 {
6634 	struct bpf_iter_scx_dsq_kern *kit = (void *)it;
6635 	bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV;
6636 	struct task_struct *p;
6637 	unsigned long flags;
6638 
6639 	if (!kit->dsq)
6640 		return NULL;
6641 
6642 	raw_spin_lock_irqsave(&kit->dsq->lock, flags);
6643 
6644 	if (list_empty(&kit->cursor.node))
6645 		p = NULL;
6646 	else
6647 		p = container_of(&kit->cursor, struct task_struct, scx.dsq_list);
6648 
6649 	/*
6650 	 * Only tasks which were queued before the iteration started are
6651 	 * visible. This bounds BPF iterations and guarantees that vtime never
6652 	 * jumps in the other direction while iterating.
6653 	 */
6654 	do {
6655 		p = nldsq_next_task(kit->dsq, p, rev);
6656 	} while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq)));
6657 
6658 	if (p) {
6659 		if (rev)
6660 			list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node);
6661 		else
6662 			list_move(&kit->cursor.node, &p->scx.dsq_list.node);
6663 	} else {
6664 		list_del_init(&kit->cursor.node);
6665 	}
6666 
6667 	raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
6668 
6669 	return p;
6670 }
6671 
6672 /**
6673  * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator
6674  * @it: iterator to destroy
6675  *
6676  * Undo scx_iter_scx_dsq_new().
6677  */
6678 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it)
6679 {
6680 	struct bpf_iter_scx_dsq_kern *kit = (void *)it;
6681 
6682 	if (!kit->dsq)
6683 		return;
6684 
6685 	if (!list_empty(&kit->cursor.node)) {
6686 		unsigned long flags;
6687 
6688 		raw_spin_lock_irqsave(&kit->dsq->lock, flags);
6689 		list_del_init(&kit->cursor.node);
6690 		raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
6691 	}
6692 	kit->dsq = NULL;
6693 }
6694 
6695 /**
6696  * scx_bpf_dsq_peek - Lockless peek at the first element.
6697  * @dsq_id: DSQ to examine.
6698  *
6699  * Read the first element in the DSQ. This is semantically equivalent to using
6700  * the DSQ iterator, but is lockfree. Of course, like any lockless operation,
6701  * this provides only a point-in-time snapshot, and the contents may change
6702  * by the time any subsequent locking operation reads the queue.
6703  *
6704  * Returns the pointer, or NULL indicates an empty queue OR internal error.
6705  */
6706 __bpf_kfunc struct task_struct *scx_bpf_dsq_peek(u64 dsq_id)
6707 {
6708 	struct scx_sched *sch;
6709 	struct scx_dispatch_q *dsq;
6710 
6711 	sch = rcu_dereference(scx_root);
6712 	if (unlikely(!sch))
6713 		return NULL;
6714 
6715 	if (unlikely(dsq_id & SCX_DSQ_FLAG_BUILTIN)) {
6716 		scx_error(sch, "peek disallowed on builtin DSQ 0x%llx", dsq_id);
6717 		return NULL;
6718 	}
6719 
6720 	dsq = find_user_dsq(sch, dsq_id);
6721 	if (unlikely(!dsq)) {
6722 		scx_error(sch, "peek on non-existent DSQ 0x%llx", dsq_id);
6723 		return NULL;
6724 	}
6725 
6726 	return rcu_dereference(dsq->first_task);
6727 }
6728 
6729 __bpf_kfunc_end_defs();
6730 
6731 static s32 __bstr_format(struct scx_sched *sch, u64 *data_buf, char *line_buf,
6732 			 size_t line_size, char *fmt, unsigned long long *data,
6733 			 u32 data__sz)
6734 {
6735 	struct bpf_bprintf_data bprintf_data = { .get_bin_args = true };
6736 	s32 ret;
6737 
6738 	if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 ||
6739 	    (data__sz && !data)) {
6740 		scx_error(sch, "invalid data=%p and data__sz=%u", (void *)data, data__sz);
6741 		return -EINVAL;
6742 	}
6743 
6744 	ret = copy_from_kernel_nofault(data_buf, data, data__sz);
6745 	if (ret < 0) {
6746 		scx_error(sch, "failed to read data fields (%d)", ret);
6747 		return ret;
6748 	}
6749 
6750 	ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8,
6751 				  &bprintf_data);
6752 	if (ret < 0) {
6753 		scx_error(sch, "format preparation failed (%d)", ret);
6754 		return ret;
6755 	}
6756 
6757 	ret = bstr_printf(line_buf, line_size, fmt,
6758 			  bprintf_data.bin_args);
6759 	bpf_bprintf_cleanup(&bprintf_data);
6760 	if (ret < 0) {
6761 		scx_error(sch, "(\"%s\", %p, %u) failed to format", fmt, data, data__sz);
6762 		return ret;
6763 	}
6764 
6765 	return ret;
6766 }
6767 
6768 static s32 bstr_format(struct scx_sched *sch, struct scx_bstr_buf *buf,
6769 		       char *fmt, unsigned long long *data, u32 data__sz)
6770 {
6771 	return __bstr_format(sch, buf->data, buf->line, sizeof(buf->line),
6772 			     fmt, data, data__sz);
6773 }
6774 
6775 __bpf_kfunc_start_defs();
6776 
6777 /**
6778  * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler.
6779  * @exit_code: Exit value to pass to user space via struct scx_exit_info.
6780  * @fmt: error message format string
6781  * @data: format string parameters packaged using ___bpf_fill() macro
6782  * @data__sz: @data len, must end in '__sz' for the verifier
6783  *
6784  * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops
6785  * disabling.
6786  */
6787 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt,
6788 				   unsigned long long *data, u32 data__sz)
6789 {
6790 	struct scx_sched *sch;
6791 	unsigned long flags;
6792 
6793 	raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
6794 	sch = rcu_dereference_bh(scx_root);
6795 	if (likely(sch) &&
6796 	    bstr_format(sch, &scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
6797 		scx_exit(sch, SCX_EXIT_UNREG_BPF, exit_code, "%s", scx_exit_bstr_buf.line);
6798 	raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
6799 }
6800 
6801 /**
6802  * scx_bpf_error_bstr - Indicate fatal error
6803  * @fmt: error message format string
6804  * @data: format string parameters packaged using ___bpf_fill() macro
6805  * @data__sz: @data len, must end in '__sz' for the verifier
6806  *
6807  * Indicate that the BPF scheduler encountered a fatal error and initiate ops
6808  * disabling.
6809  */
6810 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data,
6811 				    u32 data__sz)
6812 {
6813 	struct scx_sched *sch;
6814 	unsigned long flags;
6815 
6816 	raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
6817 	sch = rcu_dereference_bh(scx_root);
6818 	if (likely(sch) &&
6819 	    bstr_format(sch, &scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
6820 		scx_exit(sch, SCX_EXIT_ERROR_BPF, 0, "%s", scx_exit_bstr_buf.line);
6821 	raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
6822 }
6823 
6824 /**
6825  * scx_bpf_dump_bstr - Generate extra debug dump specific to the BPF scheduler
6826  * @fmt: format string
6827  * @data: format string parameters packaged using ___bpf_fill() macro
6828  * @data__sz: @data len, must end in '__sz' for the verifier
6829  *
6830  * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and
6831  * dump_task() to generate extra debug dump specific to the BPF scheduler.
6832  *
6833  * The extra dump may be multiple lines. A single line may be split over
6834  * multiple calls. The last line is automatically terminated.
6835  */
6836 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data,
6837 				   u32 data__sz)
6838 {
6839 	struct scx_sched *sch;
6840 	struct scx_dump_data *dd = &scx_dump_data;
6841 	struct scx_bstr_buf *buf = &dd->buf;
6842 	s32 ret;
6843 
6844 	guard(rcu)();
6845 
6846 	sch = rcu_dereference(scx_root);
6847 	if (unlikely(!sch))
6848 		return;
6849 
6850 	if (raw_smp_processor_id() != dd->cpu) {
6851 		scx_error(sch, "scx_bpf_dump() must only be called from ops.dump() and friends");
6852 		return;
6853 	}
6854 
6855 	/* append the formatted string to the line buf */
6856 	ret = __bstr_format(sch, buf->data, buf->line + dd->cursor,
6857 			    sizeof(buf->line) - dd->cursor, fmt, data, data__sz);
6858 	if (ret < 0) {
6859 		dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)",
6860 			  dd->prefix, fmt, data, data__sz, ret);
6861 		return;
6862 	}
6863 
6864 	dd->cursor += ret;
6865 	dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line));
6866 
6867 	if (!dd->cursor)
6868 		return;
6869 
6870 	/*
6871 	 * If the line buf overflowed or ends in a newline, flush it into the
6872 	 * dump. This is to allow the caller to generate a single line over
6873 	 * multiple calls. As ops_dump_flush() can also handle multiple lines in
6874 	 * the line buf, the only case which can lead to an unexpected
6875 	 * truncation is when the caller keeps generating newlines in the middle
6876 	 * instead of the end consecutively. Don't do that.
6877 	 */
6878 	if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n')
6879 		ops_dump_flush();
6880 }
6881 
6882 /**
6883  * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ
6884  *
6885  * Iterate over all of the tasks currently enqueued on the local DSQ of the
6886  * caller's CPU, and re-enqueue them in the BPF scheduler. Can be called from
6887  * anywhere.
6888  */
6889 __bpf_kfunc void scx_bpf_reenqueue_local___v2(void)
6890 {
6891 	struct rq *rq;
6892 
6893 	guard(preempt)();
6894 
6895 	rq = this_rq();
6896 	local_set(&rq->scx.reenq_local_deferred, 1);
6897 	schedule_deferred(rq);
6898 }
6899 
6900 /**
6901  * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU
6902  * @cpu: CPU of interest
6903  *
6904  * Return the maximum relative capacity of @cpu in relation to the most
6905  * performant CPU in the system. The return value is in the range [1,
6906  * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur().
6907  */
6908 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu)
6909 {
6910 	struct scx_sched *sch;
6911 
6912 	guard(rcu)();
6913 
6914 	sch = rcu_dereference(scx_root);
6915 	if (likely(sch) && ops_cpu_valid(sch, cpu, NULL))
6916 		return arch_scale_cpu_capacity(cpu);
6917 	else
6918 		return SCX_CPUPERF_ONE;
6919 }
6920 
6921 /**
6922  * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU
6923  * @cpu: CPU of interest
6924  *
6925  * Return the current relative performance of @cpu in relation to its maximum.
6926  * The return value is in the range [1, %SCX_CPUPERF_ONE].
6927  *
6928  * The current performance level of a CPU in relation to the maximum performance
6929  * available in the system can be calculated as follows:
6930  *
6931  *   scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE
6932  *
6933  * The result is in the range [1, %SCX_CPUPERF_ONE].
6934  */
6935 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu)
6936 {
6937 	struct scx_sched *sch;
6938 
6939 	guard(rcu)();
6940 
6941 	sch = rcu_dereference(scx_root);
6942 	if (likely(sch) && ops_cpu_valid(sch, cpu, NULL))
6943 		return arch_scale_freq_capacity(cpu);
6944 	else
6945 		return SCX_CPUPERF_ONE;
6946 }
6947 
6948 /**
6949  * scx_bpf_cpuperf_set - Set the relative performance target of a CPU
6950  * @cpu: CPU of interest
6951  * @perf: target performance level [0, %SCX_CPUPERF_ONE]
6952  *
6953  * Set the target performance level of @cpu to @perf. @perf is in linear
6954  * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the
6955  * schedutil cpufreq governor chooses the target frequency.
6956  *
6957  * The actual performance level chosen, CPU grouping, and the overhead and
6958  * latency of the operations are dependent on the hardware and cpufreq driver in
6959  * use. Consult hardware and cpufreq documentation for more information. The
6960  * current performance level can be monitored using scx_bpf_cpuperf_cur().
6961  */
6962 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf)
6963 {
6964 	struct scx_sched *sch;
6965 
6966 	guard(rcu)();
6967 
6968 	sch = rcu_dereference(scx_root);
6969 	if (unlikely(!sch))
6970 		return;
6971 
6972 	if (unlikely(perf > SCX_CPUPERF_ONE)) {
6973 		scx_error(sch, "Invalid cpuperf target %u for CPU %d", perf, cpu);
6974 		return;
6975 	}
6976 
6977 	if (ops_cpu_valid(sch, cpu, NULL)) {
6978 		struct rq *rq = cpu_rq(cpu), *locked_rq = scx_locked_rq();
6979 		struct rq_flags rf;
6980 
6981 		/*
6982 		 * When called with an rq lock held, restrict the operation
6983 		 * to the corresponding CPU to prevent ABBA deadlocks.
6984 		 */
6985 		if (locked_rq && rq != locked_rq) {
6986 			scx_error(sch, "Invalid target CPU %d", cpu);
6987 			return;
6988 		}
6989 
6990 		/*
6991 		 * If no rq lock is held, allow to operate on any CPU by
6992 		 * acquiring the corresponding rq lock.
6993 		 */
6994 		if (!locked_rq) {
6995 			rq_lock_irqsave(rq, &rf);
6996 			update_rq_clock(rq);
6997 		}
6998 
6999 		rq->scx.cpuperf_target = perf;
7000 		cpufreq_update_util(rq, 0);
7001 
7002 		if (!locked_rq)
7003 			rq_unlock_irqrestore(rq, &rf);
7004 	}
7005 }
7006 
7007 /**
7008  * scx_bpf_nr_node_ids - Return the number of possible node IDs
7009  *
7010  * All valid node IDs in the system are smaller than the returned value.
7011  */
7012 __bpf_kfunc u32 scx_bpf_nr_node_ids(void)
7013 {
7014 	return nr_node_ids;
7015 }
7016 
7017 /**
7018  * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs
7019  *
7020  * All valid CPU IDs in the system are smaller than the returned value.
7021  */
7022 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void)
7023 {
7024 	return nr_cpu_ids;
7025 }
7026 
7027 /**
7028  * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask
7029  */
7030 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void)
7031 {
7032 	return cpu_possible_mask;
7033 }
7034 
7035 /**
7036  * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask
7037  */
7038 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void)
7039 {
7040 	return cpu_online_mask;
7041 }
7042 
7043 /**
7044  * scx_bpf_put_cpumask - Release a possible/online cpumask
7045  * @cpumask: cpumask to release
7046  */
7047 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask)
7048 {
7049 	/*
7050 	 * Empty function body because we aren't actually acquiring or releasing
7051 	 * a reference to a global cpumask, which is read-only in the caller and
7052 	 * is never released. The acquire / release semantics here are just used
7053 	 * to make the cpumask is a trusted pointer in the caller.
7054 	 */
7055 }
7056 
7057 /**
7058  * scx_bpf_task_running - Is task currently running?
7059  * @p: task of interest
7060  */
7061 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p)
7062 {
7063 	return task_rq(p)->curr == p;
7064 }
7065 
7066 /**
7067  * scx_bpf_task_cpu - CPU a task is currently associated with
7068  * @p: task of interest
7069  */
7070 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p)
7071 {
7072 	return task_cpu(p);
7073 }
7074 
7075 /**
7076  * scx_bpf_cpu_rq - Fetch the rq of a CPU
7077  * @cpu: CPU of the rq
7078  */
7079 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu)
7080 {
7081 	struct scx_sched *sch;
7082 
7083 	guard(rcu)();
7084 
7085 	sch = rcu_dereference(scx_root);
7086 	if (unlikely(!sch))
7087 		return NULL;
7088 
7089 	if (!ops_cpu_valid(sch, cpu, NULL))
7090 		return NULL;
7091 
7092 	if (!sch->warned_deprecated_rq) {
7093 		printk_deferred(KERN_WARNING "sched_ext: %s() is deprecated; "
7094 				"use scx_bpf_locked_rq() when holding rq lock "
7095 				"or scx_bpf_cpu_curr() to read remote curr safely.\n", __func__);
7096 		sch->warned_deprecated_rq = true;
7097 	}
7098 
7099 	return cpu_rq(cpu);
7100 }
7101 
7102 /**
7103  * scx_bpf_locked_rq - Return the rq currently locked by SCX
7104  *
7105  * Returns the rq if a rq lock is currently held by SCX.
7106  * Otherwise emits an error and returns NULL.
7107  */
7108 __bpf_kfunc struct rq *scx_bpf_locked_rq(void)
7109 {
7110 	struct scx_sched *sch;
7111 	struct rq *rq;
7112 
7113 	guard(preempt)();
7114 
7115 	sch = rcu_dereference_sched(scx_root);
7116 	if (unlikely(!sch))
7117 		return NULL;
7118 
7119 	rq = scx_locked_rq();
7120 	if (!rq) {
7121 		scx_error(sch, "accessing rq without holding rq lock");
7122 		return NULL;
7123 	}
7124 
7125 	return rq;
7126 }
7127 
7128 /**
7129  * scx_bpf_cpu_curr - Return remote CPU's curr task
7130  * @cpu: CPU of interest
7131  *
7132  * Callers must hold RCU read lock (KF_RCU).
7133  */
7134 __bpf_kfunc struct task_struct *scx_bpf_cpu_curr(s32 cpu)
7135 {
7136 	struct scx_sched *sch;
7137 
7138 	guard(rcu)();
7139 
7140 	sch = rcu_dereference(scx_root);
7141 	if (unlikely(!sch))
7142 		return NULL;
7143 
7144 	if (!ops_cpu_valid(sch, cpu, NULL))
7145 		return NULL;
7146 
7147 	return rcu_dereference(cpu_rq(cpu)->curr);
7148 }
7149 
7150 /**
7151  * scx_bpf_task_cgroup - Return the sched cgroup of a task
7152  * @p: task of interest
7153  *
7154  * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with
7155  * from the scheduler's POV. SCX operations should use this function to
7156  * determine @p's current cgroup as, unlike following @p->cgroups,
7157  * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all
7158  * rq-locked operations. Can be called on the parameter tasks of rq-locked
7159  * operations. The restriction guarantees that @p's rq is locked by the caller.
7160  */
7161 #ifdef CONFIG_CGROUP_SCHED
7162 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p)
7163 {
7164 	struct task_group *tg = p->sched_task_group;
7165 	struct cgroup *cgrp = &cgrp_dfl_root.cgrp;
7166 	struct scx_sched *sch;
7167 
7168 	guard(rcu)();
7169 
7170 	sch = rcu_dereference(scx_root);
7171 	if (unlikely(!sch))
7172 		goto out;
7173 
7174 	if (!scx_kf_allowed_on_arg_tasks(sch, __SCX_KF_RQ_LOCKED, p))
7175 		goto out;
7176 
7177 	cgrp = tg_cgrp(tg);
7178 
7179 out:
7180 	cgroup_get(cgrp);
7181 	return cgrp;
7182 }
7183 #endif
7184 
7185 /**
7186  * scx_bpf_now - Returns a high-performance monotonically non-decreasing
7187  * clock for the current CPU. The clock returned is in nanoseconds.
7188  *
7189  * It provides the following properties:
7190  *
7191  * 1) High performance: Many BPF schedulers call bpf_ktime_get_ns() frequently
7192  *  to account for execution time and track tasks' runtime properties.
7193  *  Unfortunately, in some hardware platforms, bpf_ktime_get_ns() -- which
7194  *  eventually reads a hardware timestamp counter -- is neither performant nor
7195  *  scalable. scx_bpf_now() aims to provide a high-performance clock by
7196  *  using the rq clock in the scheduler core whenever possible.
7197  *
7198  * 2) High enough resolution for the BPF scheduler use cases: In most BPF
7199  *  scheduler use cases, the required clock resolution is lower than the most
7200  *  accurate hardware clock (e.g., rdtsc in x86). scx_bpf_now() basically
7201  *  uses the rq clock in the scheduler core whenever it is valid. It considers
7202  *  that the rq clock is valid from the time the rq clock is updated
7203  *  (update_rq_clock) until the rq is unlocked (rq_unpin_lock).
7204  *
7205  * 3) Monotonically non-decreasing clock for the same CPU: scx_bpf_now()
7206  *  guarantees the clock never goes backward when comparing them in the same
7207  *  CPU. On the other hand, when comparing clocks in different CPUs, there
7208  *  is no such guarantee -- the clock can go backward. It provides a
7209  *  monotonically *non-decreasing* clock so that it would provide the same
7210  *  clock values in two different scx_bpf_now() calls in the same CPU
7211  *  during the same period of when the rq clock is valid.
7212  */
7213 __bpf_kfunc u64 scx_bpf_now(void)
7214 {
7215 	struct rq *rq;
7216 	u64 clock;
7217 
7218 	preempt_disable();
7219 
7220 	rq = this_rq();
7221 	if (smp_load_acquire(&rq->scx.flags) & SCX_RQ_CLK_VALID) {
7222 		/*
7223 		 * If the rq clock is valid, use the cached rq clock.
7224 		 *
7225 		 * Note that scx_bpf_now() is re-entrant between a process
7226 		 * context and an interrupt context (e.g., timer interrupt).
7227 		 * However, we don't need to consider the race between them
7228 		 * because such race is not observable from a caller.
7229 		 */
7230 		clock = READ_ONCE(rq->scx.clock);
7231 	} else {
7232 		/*
7233 		 * Otherwise, return a fresh rq clock.
7234 		 *
7235 		 * The rq clock is updated outside of the rq lock.
7236 		 * In this case, keep the updated rq clock invalid so the next
7237 		 * kfunc call outside the rq lock gets a fresh rq clock.
7238 		 */
7239 		clock = sched_clock_cpu(cpu_of(rq));
7240 	}
7241 
7242 	preempt_enable();
7243 
7244 	return clock;
7245 }
7246 
7247 static void scx_read_events(struct scx_sched *sch, struct scx_event_stats *events)
7248 {
7249 	struct scx_event_stats *e_cpu;
7250 	int cpu;
7251 
7252 	/* Aggregate per-CPU event counters into @events. */
7253 	memset(events, 0, sizeof(*events));
7254 	for_each_possible_cpu(cpu) {
7255 		e_cpu = &per_cpu_ptr(sch->pcpu, cpu)->event_stats;
7256 		scx_agg_event(events, e_cpu, SCX_EV_SELECT_CPU_FALLBACK);
7257 		scx_agg_event(events, e_cpu, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE);
7258 		scx_agg_event(events, e_cpu, SCX_EV_DISPATCH_KEEP_LAST);
7259 		scx_agg_event(events, e_cpu, SCX_EV_ENQ_SKIP_EXITING);
7260 		scx_agg_event(events, e_cpu, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED);
7261 		scx_agg_event(events, e_cpu, SCX_EV_REFILL_SLICE_DFL);
7262 		scx_agg_event(events, e_cpu, SCX_EV_BYPASS_DURATION);
7263 		scx_agg_event(events, e_cpu, SCX_EV_BYPASS_DISPATCH);
7264 		scx_agg_event(events, e_cpu, SCX_EV_BYPASS_ACTIVATE);
7265 	}
7266 }
7267 
7268 /*
7269  * scx_bpf_events - Get a system-wide event counter to
7270  * @events: output buffer from a BPF program
7271  * @events__sz: @events len, must end in '__sz'' for the verifier
7272  */
7273 __bpf_kfunc void scx_bpf_events(struct scx_event_stats *events,
7274 				size_t events__sz)
7275 {
7276 	struct scx_sched *sch;
7277 	struct scx_event_stats e_sys;
7278 
7279 	rcu_read_lock();
7280 	sch = rcu_dereference(scx_root);
7281 	if (sch)
7282 		scx_read_events(sch, &e_sys);
7283 	else
7284 		memset(&e_sys, 0, sizeof(e_sys));
7285 	rcu_read_unlock();
7286 
7287 	/*
7288 	 * We cannot entirely trust a BPF-provided size since a BPF program
7289 	 * might be compiled against a different vmlinux.h, of which
7290 	 * scx_event_stats would be larger (a newer vmlinux.h) or smaller
7291 	 * (an older vmlinux.h). Hence, we use the smaller size to avoid
7292 	 * memory corruption.
7293 	 */
7294 	events__sz = min(events__sz, sizeof(*events));
7295 	memcpy(events, &e_sys, events__sz);
7296 }
7297 
7298 __bpf_kfunc_end_defs();
7299 
7300 BTF_KFUNCS_START(scx_kfunc_ids_any)
7301 BTF_ID_FLAGS(func, scx_bpf_task_set_slice, KF_RCU);
7302 BTF_ID_FLAGS(func, scx_bpf_task_set_dsq_vtime, KF_RCU);
7303 BTF_ID_FLAGS(func, scx_bpf_kick_cpu)
7304 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued)
7305 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq)
7306 BTF_ID_FLAGS(func, scx_bpf_dsq_peek, KF_RCU_PROTECTED | KF_RET_NULL)
7307 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED)
7308 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL)
7309 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY)
7310 BTF_ID_FLAGS(func, scx_bpf_exit_bstr)
7311 BTF_ID_FLAGS(func, scx_bpf_error_bstr)
7312 BTF_ID_FLAGS(func, scx_bpf_dump_bstr)
7313 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local___v2)
7314 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap)
7315 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur)
7316 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set)
7317 BTF_ID_FLAGS(func, scx_bpf_nr_node_ids)
7318 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids)
7319 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE)
7320 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE)
7321 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE)
7322 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU)
7323 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU)
7324 BTF_ID_FLAGS(func, scx_bpf_cpu_rq)
7325 BTF_ID_FLAGS(func, scx_bpf_locked_rq, KF_RET_NULL)
7326 BTF_ID_FLAGS(func, scx_bpf_cpu_curr, KF_RET_NULL | KF_RCU_PROTECTED)
7327 #ifdef CONFIG_CGROUP_SCHED
7328 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE)
7329 #endif
7330 BTF_ID_FLAGS(func, scx_bpf_now)
7331 BTF_ID_FLAGS(func, scx_bpf_events)
7332 BTF_KFUNCS_END(scx_kfunc_ids_any)
7333 
7334 static const struct btf_kfunc_id_set scx_kfunc_set_any = {
7335 	.owner			= THIS_MODULE,
7336 	.set			= &scx_kfunc_ids_any,
7337 };
7338 
7339 static int __init scx_init(void)
7340 {
7341 	int ret;
7342 
7343 	/*
7344 	 * kfunc registration can't be done from init_sched_ext_class() as
7345 	 * register_btf_kfunc_id_set() needs most of the system to be up.
7346 	 *
7347 	 * Some kfuncs are context-sensitive and can only be called from
7348 	 * specific SCX ops. They are grouped into BTF sets accordingly.
7349 	 * Unfortunately, BPF currently doesn't have a way of enforcing such
7350 	 * restrictions. Eventually, the verifier should be able to enforce
7351 	 * them. For now, register them the same and make each kfunc explicitly
7352 	 * check using scx_kf_allowed().
7353 	 */
7354 	if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7355 					     &scx_kfunc_set_enqueue_dispatch)) ||
7356 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7357 					     &scx_kfunc_set_dispatch)) ||
7358 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7359 					     &scx_kfunc_set_cpu_release)) ||
7360 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7361 					     &scx_kfunc_set_unlocked)) ||
7362 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
7363 					     &scx_kfunc_set_unlocked)) ||
7364 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7365 					     &scx_kfunc_set_any)) ||
7366 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
7367 					     &scx_kfunc_set_any)) ||
7368 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
7369 					     &scx_kfunc_set_any))) {
7370 		pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret);
7371 		return ret;
7372 	}
7373 
7374 	ret = scx_idle_init();
7375 	if (ret) {
7376 		pr_err("sched_ext: Failed to initialize idle tracking (%d)\n", ret);
7377 		return ret;
7378 	}
7379 
7380 	ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops);
7381 	if (ret) {
7382 		pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret);
7383 		return ret;
7384 	}
7385 
7386 	ret = register_pm_notifier(&scx_pm_notifier);
7387 	if (ret) {
7388 		pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret);
7389 		return ret;
7390 	}
7391 
7392 	scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj);
7393 	if (!scx_kset) {
7394 		pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n");
7395 		return -ENOMEM;
7396 	}
7397 
7398 	ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group);
7399 	if (ret < 0) {
7400 		pr_err("sched_ext: Failed to add global attributes\n");
7401 		return ret;
7402 	}
7403 
7404 	if (!alloc_cpumask_var(&scx_bypass_lb_donee_cpumask, GFP_KERNEL) ||
7405 	    !alloc_cpumask_var(&scx_bypass_lb_resched_cpumask, GFP_KERNEL)) {
7406 		pr_err("sched_ext: Failed to allocate cpumasks\n");
7407 		return -ENOMEM;
7408 	}
7409 
7410 	return 0;
7411 }
7412 __initcall(scx_init);
7413