xref: /linux/drivers/tty/serial/sh-sci.c (revision 91e60731dd605c5d6bab8b9ccac886da1780d5ca)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
4  *
5  *  Copyright (C) 2002 - 2011  Paul Mundt
6  *  Copyright (C) 2015 Glider bvba
7  *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
8  *
9  * based off of the old drivers/char/sh-sci.c by:
10  *
11  *   Copyright (C) 1999, 2000  Niibe Yutaka
12  *   Copyright (C) 2000  Sugioka Toshinobu
13  *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
14  *   Modified to support SecureEdge. David McCullough (2002)
15  *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
16  *   Removed SH7300 support (Jul 2007).
17  */
18 #undef DEBUG
19 
20 #include <linux/clk.h>
21 #include <linux/console.h>
22 #include <linux/ctype.h>
23 #include <linux/cpufreq.h>
24 #include <linux/delay.h>
25 #include <linux/dmaengine.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/err.h>
28 #include <linux/errno.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/ioport.h>
32 #include <linux/ktime.h>
33 #include <linux/major.h>
34 #include <linux/minmax.h>
35 #include <linux/module.h>
36 #include <linux/mm.h>
37 #include <linux/of.h>
38 #include <linux/platform_device.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/reset.h>
41 #include <linux/scatterlist.h>
42 #include <linux/serial.h>
43 #include <linux/serial_sci.h>
44 #include <linux/sh_dma.h>
45 #include <linux/slab.h>
46 #include <linux/string.h>
47 #include <linux/sysrq.h>
48 #include <linux/timer.h>
49 #include <linux/tty.h>
50 #include <linux/tty_flip.h>
51 
52 #ifdef CONFIG_SUPERH
53 #include <asm/sh_bios.h>
54 #include <asm/platform_early.h>
55 #endif
56 
57 #include "rsci.h"
58 #include "serial_mctrl_gpio.h"
59 #include "sh-sci.h"
60 #include "sh-sci-common.h"
61 
62 #define SCIx_IRQ_IS_MUXED(port)			\
63 	((port)->irqs[SCIx_ERI_IRQ] ==	\
64 	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
65 	((port)->irqs[SCIx_ERI_IRQ] &&	\
66 	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
67 
68 #define SCI_SR_SCIFAB		SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
69 				SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
70 				SCI_SR(19) | SCI_SR(27)
71 
72 /* Iterate over all supported sampling rates, from high to low */
73 #define for_each_sr(_sr, _port)						\
74 	for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--)	\
75 		if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
76 
77 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
78 
79 #define SCI_PUBLIC_PORT_ID(port) (((port) & BIT(7)) ? PORT_GENERIC : (port))
80 
81 static struct sci_port sci_ports[SCI_NPORTS];
82 static unsigned long sci_ports_in_use;
83 static struct uart_driver sci_uart_driver;
84 static bool sci_uart_earlycon;
85 static bool sci_uart_earlycon_dev_probing;
86 
87 static const struct sci_port_params_bits sci_sci_port_params_bits = {
88 	.rxtx_enable = SCSCR_RE | SCSCR_TE,
89 	.te_clear = SCSCR_TE | SCSCR_TEIE,
90 	.poll_sent_bits = SCI_TDRE | SCI_TEND
91 };
92 
93 static const struct sci_port_params_bits sci_scif_port_params_bits = {
94 	.rxtx_enable = SCSCR_RE | SCSCR_TE,
95 	.te_clear = SCSCR_TE | SCSCR_TEIE,
96 	.poll_sent_bits = SCIF_TDFE | SCIF_TEND
97 };
98 
99 static const struct sci_common_regs sci_common_regs = {
100 	.status = SCxSR,
101 	.control = SCSCR,
102 };
103 
104 struct sci_suspend_regs {
105 	u16 scdl;
106 	u16 sccks;
107 	u16 scsmr;
108 	u16 scscr;
109 	u16 scfcr;
110 	u16 scsptr;
111 	u16 hssrr;
112 	u16 scpcr;
113 	u16 scpdr;
114 	u8 scbrr;
115 	u8 semr;
116 };
117 
sci_suspend_regs_size(void)118 static size_t sci_suspend_regs_size(void)
119 {
120 	return sizeof(struct sci_suspend_regs);
121 }
122 
123 static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = {
124 	/*
125 	 * Common SCI definitions, dependent on the port's regshift
126 	 * value.
127 	 */
128 	[SCIx_SCI_REGTYPE] = {
129 		.regs = {
130 			[SCSMR]		= { 0x00,  8 },
131 			[SCBRR]		= { 0x01,  8 },
132 			[SCSCR]		= { 0x02,  8 },
133 			[SCxTDR]	= { 0x03,  8 },
134 			[SCxSR]		= { 0x04,  8 },
135 			[SCxRDR]	= { 0x05,  8 },
136 		},
137 		.fifosize = 1,
138 		.overrun_reg = SCxSR,
139 		.overrun_mask = SCI_ORER,
140 		.sampling_rate_mask = SCI_SR(32),
141 		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
142 		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
143 		.param_bits = &sci_sci_port_params_bits,
144 		.common_regs = &sci_common_regs,
145 	},
146 
147 	/*
148 	 * Common definitions for legacy IrDA ports.
149 	 */
150 	[SCIx_IRDA_REGTYPE] = {
151 		.regs = {
152 			[SCSMR]		= { 0x00,  8 },
153 			[SCBRR]		= { 0x02,  8 },
154 			[SCSCR]		= { 0x04,  8 },
155 			[SCxTDR]	= { 0x06,  8 },
156 			[SCxSR]		= { 0x08, 16 },
157 			[SCxRDR]	= { 0x0a,  8 },
158 			[SCFCR]		= { 0x0c,  8 },
159 			[SCFDR]		= { 0x0e, 16 },
160 		},
161 		.fifosize = 1,
162 		.overrun_reg = SCxSR,
163 		.overrun_mask = SCI_ORER,
164 		.sampling_rate_mask = SCI_SR(32),
165 		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
166 		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
167 		.param_bits = &sci_scif_port_params_bits,
168 		.common_regs = &sci_common_regs,
169 	},
170 
171 	/*
172 	 * Common SCIFA definitions.
173 	 */
174 	[SCIx_SCIFA_REGTYPE] = {
175 		.regs = {
176 			[SCSMR]		= { 0x00, 16 },
177 			[SCBRR]		= { 0x04,  8 },
178 			[SCSCR]		= { 0x08, 16 },
179 			[SCxTDR]	= { 0x20,  8 },
180 			[SCxSR]		= { 0x14, 16 },
181 			[SCxRDR]	= { 0x24,  8 },
182 			[SCFCR]		= { 0x18, 16 },
183 			[SCFDR]		= { 0x1c, 16 },
184 			[SCPCR]		= { 0x30, 16 },
185 			[SCPDR]		= { 0x34, 16 },
186 		},
187 		.fifosize = 64,
188 		.overrun_reg = SCxSR,
189 		.overrun_mask = SCIFA_ORER,
190 		.sampling_rate_mask = SCI_SR_SCIFAB,
191 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
192 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
193 		.param_bits = &sci_scif_port_params_bits,
194 		.common_regs = &sci_common_regs,
195 	},
196 
197 	/*
198 	 * Common SCIFB definitions.
199 	 */
200 	[SCIx_SCIFB_REGTYPE] = {
201 		.regs = {
202 			[SCSMR]		= { 0x00, 16 },
203 			[SCBRR]		= { 0x04,  8 },
204 			[SCSCR]		= { 0x08, 16 },
205 			[SCxTDR]	= { 0x40,  8 },
206 			[SCxSR]		= { 0x14, 16 },
207 			[SCxRDR]	= { 0x60,  8 },
208 			[SCFCR]		= { 0x18, 16 },
209 			[SCTFDR]	= { 0x38, 16 },
210 			[SCRFDR]	= { 0x3c, 16 },
211 			[SCPCR]		= { 0x30, 16 },
212 			[SCPDR]		= { 0x34, 16 },
213 		},
214 		.fifosize = 256,
215 		.overrun_reg = SCxSR,
216 		.overrun_mask = SCIFA_ORER,
217 		.sampling_rate_mask = SCI_SR_SCIFAB,
218 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
219 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
220 		.param_bits = &sci_scif_port_params_bits,
221 		.common_regs = &sci_common_regs,
222 	},
223 
224 	/*
225 	 * Common SH-2(A) SCIF definitions for ports with FIFO data
226 	 * count registers.
227 	 */
228 	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
229 		.regs = {
230 			[SCSMR]		= { 0x00, 16 },
231 			[SCBRR]		= { 0x04,  8 },
232 			[SCSCR]		= { 0x08, 16 },
233 			[SCxTDR]	= { 0x0c,  8 },
234 			[SCxSR]		= { 0x10, 16 },
235 			[SCxRDR]	= { 0x14,  8 },
236 			[SCFCR]		= { 0x18, 16 },
237 			[SCFDR]		= { 0x1c, 16 },
238 			[SCSPTR]	= { 0x20, 16 },
239 			[SCLSR]		= { 0x24, 16 },
240 		},
241 		.fifosize = 16,
242 		.overrun_reg = SCLSR,
243 		.overrun_mask = SCLSR_ORER,
244 		.sampling_rate_mask = SCI_SR(32),
245 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
246 		.error_clear = SCIF_ERROR_CLEAR,
247 		.param_bits = &sci_scif_port_params_bits,
248 		.common_regs = &sci_common_regs,
249 	},
250 
251 	/*
252 	 * The "SCIFA" that is in RZ/A2, RZ/G2L and RZ/T1.
253 	 * It looks like a normal SCIF with FIFO data, but with a
254 	 * compressed address space. Also, the break out of interrupts
255 	 * are different: ERI/BRI, RXI, TXI, TEI, DRI.
256 	 */
257 	[SCIx_RZ_SCIFA_REGTYPE] = {
258 		.regs = {
259 			[SCSMR]		= { 0x00, 16 },
260 			[SCBRR]		= { 0x02,  8 },
261 			[SCSCR]		= { 0x04, 16 },
262 			[SCxTDR]	= { 0x06,  8 },
263 			[SCxSR]		= { 0x08, 16 },
264 			[SCxRDR]	= { 0x0A,  8 },
265 			[SCFCR]		= { 0x0C, 16 },
266 			[SCFDR]		= { 0x0E, 16 },
267 			[SCSPTR]	= { 0x10, 16 },
268 			[SCLSR]		= { 0x12, 16 },
269 			[SEMR]		= { 0x14, 8 },
270 		},
271 		.fifosize = 16,
272 		.overrun_reg = SCLSR,
273 		.overrun_mask = SCLSR_ORER,
274 		.sampling_rate_mask = SCI_SR(32),
275 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
276 		.error_clear = SCIF_ERROR_CLEAR,
277 		.param_bits = &sci_scif_port_params_bits,
278 		.common_regs = &sci_common_regs,
279 	},
280 
281 	/*
282 	 * The "SCIF" that is in RZ/V2H(P) SoC is similar to one found on RZ/G2L SoC
283 	 * with below differences,
284 	 * - Break out of interrupts are different: ERI, BRI, RXI, TXI, TEI, DRI,
285 	 *   TEI-DRI, RXI-EDGE and TXI-EDGE.
286 	 * - SCSMR register does not have CM bit (BIT(7)) ie it does not support synchronous mode.
287 	 * - SCFCR register does not have SCFCR_MCE bit.
288 	 * - SCSPTR register has only bits SCSPTR_SPB2DT and SCSPTR_SPB2IO.
289 	 */
290 	[SCIx_RZV2H_SCIF_REGTYPE] = {
291 		.regs = {
292 			[SCSMR]		= { 0x00, 16 },
293 			[SCBRR]		= { 0x02,  8 },
294 			[SCSCR]		= { 0x04, 16 },
295 			[SCxTDR]	= { 0x06,  8 },
296 			[SCxSR]		= { 0x08, 16 },
297 			[SCxRDR]	= { 0x0a,  8 },
298 			[SCFCR]		= { 0x0c, 16 },
299 			[SCFDR]		= { 0x0e, 16 },
300 			[SCSPTR]	= { 0x10, 16 },
301 			[SCLSR]		= { 0x12, 16 },
302 			[SEMR]		= { 0x14, 8 },
303 		},
304 		.fifosize = 16,
305 		.overrun_reg = SCLSR,
306 		.overrun_mask = SCLSR_ORER,
307 		.sampling_rate_mask = SCI_SR(32),
308 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
309 		.error_clear = SCIF_ERROR_CLEAR,
310 		.param_bits = &sci_scif_port_params_bits,
311 		.common_regs = &sci_common_regs,
312 	},
313 
314 	/*
315 	 * Common SH-3 SCIF definitions.
316 	 */
317 	[SCIx_SH3_SCIF_REGTYPE] = {
318 		.regs = {
319 			[SCSMR]		= { 0x00,  8 },
320 			[SCBRR]		= { 0x02,  8 },
321 			[SCSCR]		= { 0x04,  8 },
322 			[SCxTDR]	= { 0x06,  8 },
323 			[SCxSR]		= { 0x08, 16 },
324 			[SCxRDR]	= { 0x0a,  8 },
325 			[SCFCR]		= { 0x0c,  8 },
326 			[SCFDR]		= { 0x0e, 16 },
327 		},
328 		.fifosize = 16,
329 		.overrun_reg = SCLSR,
330 		.overrun_mask = SCLSR_ORER,
331 		.sampling_rate_mask = SCI_SR(32),
332 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
333 		.error_clear = SCIF_ERROR_CLEAR,
334 		.param_bits = &sci_scif_port_params_bits,
335 		.common_regs = &sci_common_regs,
336 	},
337 
338 	/*
339 	 * Common SH-4(A) SCIF(B) definitions.
340 	 */
341 	[SCIx_SH4_SCIF_REGTYPE] = {
342 		.regs = {
343 			[SCSMR]		= { 0x00, 16 },
344 			[SCBRR]		= { 0x04,  8 },
345 			[SCSCR]		= { 0x08, 16 },
346 			[SCxTDR]	= { 0x0c,  8 },
347 			[SCxSR]		= { 0x10, 16 },
348 			[SCxRDR]	= { 0x14,  8 },
349 			[SCFCR]		= { 0x18, 16 },
350 			[SCFDR]		= { 0x1c, 16 },
351 			[SCSPTR]	= { 0x20, 16 },
352 			[SCLSR]		= { 0x24, 16 },
353 		},
354 		.fifosize = 16,
355 		.overrun_reg = SCLSR,
356 		.overrun_mask = SCLSR_ORER,
357 		.sampling_rate_mask = SCI_SR(32),
358 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
359 		.error_clear = SCIF_ERROR_CLEAR,
360 		.param_bits = &sci_scif_port_params_bits,
361 		.common_regs = &sci_common_regs,
362 	},
363 
364 	/*
365 	 * Common SCIF definitions for ports with a Baud Rate Generator for
366 	 * External Clock (BRG).
367 	 */
368 	[SCIx_SH4_SCIF_BRG_REGTYPE] = {
369 		.regs = {
370 			[SCSMR]		= { 0x00, 16 },
371 			[SCBRR]		= { 0x04,  8 },
372 			[SCSCR]		= { 0x08, 16 },
373 			[SCxTDR]	= { 0x0c,  8 },
374 			[SCxSR]		= { 0x10, 16 },
375 			[SCxRDR]	= { 0x14,  8 },
376 			[SCFCR]		= { 0x18, 16 },
377 			[SCFDR]		= { 0x1c, 16 },
378 			[SCSPTR]	= { 0x20, 16 },
379 			[SCLSR]		= { 0x24, 16 },
380 			[SCDL]		= { 0x30, 16 },
381 			[SCCKS]		= { 0x34, 16 },
382 		},
383 		.fifosize = 16,
384 		.overrun_reg = SCLSR,
385 		.overrun_mask = SCLSR_ORER,
386 		.sampling_rate_mask = SCI_SR(32),
387 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
388 		.error_clear = SCIF_ERROR_CLEAR,
389 		.param_bits = &sci_scif_port_params_bits,
390 		.common_regs = &sci_common_regs,
391 	},
392 
393 	/*
394 	 * Common HSCIF definitions.
395 	 */
396 	[SCIx_HSCIF_REGTYPE] = {
397 		.regs = {
398 			[SCSMR]		= { 0x00, 16 },
399 			[SCBRR]		= { 0x04,  8 },
400 			[SCSCR]		= { 0x08, 16 },
401 			[SCxTDR]	= { 0x0c,  8 },
402 			[SCxSR]		= { 0x10, 16 },
403 			[SCxRDR]	= { 0x14,  8 },
404 			[SCFCR]		= { 0x18, 16 },
405 			[SCFDR]		= { 0x1c, 16 },
406 			[SCSPTR]	= { 0x20, 16 },
407 			[SCLSR]		= { 0x24, 16 },
408 			[HSSRR]		= { 0x40, 16 },
409 			[SCDL]		= { 0x30, 16 },
410 			[SCCKS]		= { 0x34, 16 },
411 			[HSRTRGR]	= { 0x54, 16 },
412 			[HSTTRGR]	= { 0x58, 16 },
413 		},
414 		.fifosize = 128,
415 		.overrun_reg = SCLSR,
416 		.overrun_mask = SCLSR_ORER,
417 		.sampling_rate_mask = SCI_SR_RANGE(8, 32),
418 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
419 		.error_clear = SCIF_ERROR_CLEAR,
420 		.param_bits = &sci_scif_port_params_bits,
421 		.common_regs = &sci_common_regs,
422 	},
423 
424 	/*
425 	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
426 	 * register.
427 	 */
428 	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
429 		.regs = {
430 			[SCSMR]		= { 0x00, 16 },
431 			[SCBRR]		= { 0x04,  8 },
432 			[SCSCR]		= { 0x08, 16 },
433 			[SCxTDR]	= { 0x0c,  8 },
434 			[SCxSR]		= { 0x10, 16 },
435 			[SCxRDR]	= { 0x14,  8 },
436 			[SCFCR]		= { 0x18, 16 },
437 			[SCFDR]		= { 0x1c, 16 },
438 			[SCLSR]		= { 0x24, 16 },
439 		},
440 		.fifosize = 16,
441 		.overrun_reg = SCLSR,
442 		.overrun_mask = SCLSR_ORER,
443 		.sampling_rate_mask = SCI_SR(32),
444 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
445 		.error_clear = SCIF_ERROR_CLEAR,
446 		.param_bits = &sci_scif_port_params_bits,
447 		.common_regs = &sci_common_regs,
448 	},
449 
450 	/*
451 	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
452 	 * count registers.
453 	 */
454 	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
455 		.regs = {
456 			[SCSMR]		= { 0x00, 16 },
457 			[SCBRR]		= { 0x04,  8 },
458 			[SCSCR]		= { 0x08, 16 },
459 			[SCxTDR]	= { 0x0c,  8 },
460 			[SCxSR]		= { 0x10, 16 },
461 			[SCxRDR]	= { 0x14,  8 },
462 			[SCFCR]		= { 0x18, 16 },
463 			[SCFDR]		= { 0x1c, 16 },
464 			[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
465 			[SCRFDR]	= { 0x20, 16 },
466 			[SCSPTR]	= { 0x24, 16 },
467 			[SCLSR]		= { 0x28, 16 },
468 		},
469 		.fifosize = 16,
470 		.overrun_reg = SCLSR,
471 		.overrun_mask = SCLSR_ORER,
472 		.sampling_rate_mask = SCI_SR(32),
473 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
474 		.error_clear = SCIF_ERROR_CLEAR,
475 		.param_bits = &sci_scif_port_params_bits,
476 		.common_regs = &sci_common_regs,
477 	},
478 
479 	/*
480 	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
481 	 * registers.
482 	 */
483 	[SCIx_SH7705_SCIF_REGTYPE] = {
484 		.regs = {
485 			[SCSMR]		= { 0x00, 16 },
486 			[SCBRR]		= { 0x04,  8 },
487 			[SCSCR]		= { 0x08, 16 },
488 			[SCxTDR]	= { 0x20,  8 },
489 			[SCxSR]		= { 0x14, 16 },
490 			[SCxRDR]	= { 0x24,  8 },
491 			[SCFCR]		= { 0x18, 16 },
492 			[SCFDR]		= { 0x1c, 16 },
493 		},
494 		.fifosize = 64,
495 		.overrun_reg = SCxSR,
496 		.overrun_mask = SCIFA_ORER,
497 		.sampling_rate_mask = SCI_SR(16),
498 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
499 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
500 		.param_bits = &sci_scif_port_params_bits,
501 		.common_regs = &sci_common_regs,
502 	},
503 };
504 
505 #define sci_getreg(up, offset)		(&to_sci_port(up)->params->regs[offset])
506 
507 /*
508  * The "offset" here is rather misleading, in that it refers to an enum
509  * value relative to the port mapping rather than the fixed offset
510  * itself, which needs to be manually retrieved from the platform's
511  * register map for the given port.
512  */
sci_serial_in(struct uart_port * p,int offset)513 static unsigned int sci_serial_in(struct uart_port *p, int offset)
514 {
515 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
516 
517 	if (reg->size == 8)
518 		return ioread8(p->membase + (reg->offset << p->regshift));
519 	else if (reg->size == 16)
520 		return ioread16(p->membase + (reg->offset << p->regshift));
521 	else
522 		WARN(1, "Invalid register access\n");
523 
524 	return 0;
525 }
526 
sci_serial_out(struct uart_port * p,int offset,int value)527 static void sci_serial_out(struct uart_port *p, int offset, int value)
528 {
529 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
530 
531 	if (reg->size == 8)
532 		iowrite8(value, p->membase + (reg->offset << p->regshift));
533 	else if (reg->size == 16)
534 		iowrite16(value, p->membase + (reg->offset << p->regshift));
535 	else
536 		WARN(1, "Invalid register access\n");
537 }
538 
sci_port_enable(struct sci_port * sci_port)539 void sci_port_enable(struct sci_port *sci_port)
540 {
541 	unsigned int i;
542 
543 	if (!sci_port->port.dev)
544 		return;
545 
546 	pm_runtime_get_sync(sci_port->port.dev);
547 
548 	for (i = 0; i < SCI_NUM_CLKS; i++) {
549 		clk_prepare_enable(sci_port->clks[i]);
550 		sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
551 	}
552 	sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
553 }
554 EXPORT_SYMBOL_NS_GPL(sci_port_enable, "SH_SCI");
555 
sci_port_disable(struct sci_port * sci_port)556 void sci_port_disable(struct sci_port *sci_port)
557 {
558 	unsigned int i;
559 
560 	if (!sci_port->port.dev)
561 		return;
562 
563 	for (i = SCI_NUM_CLKS; i-- > 0; )
564 		clk_disable_unprepare(sci_port->clks[i]);
565 
566 	pm_runtime_put_sync(sci_port->port.dev);
567 }
568 EXPORT_SYMBOL_NS_GPL(sci_port_disable, "SH_SCI");
569 
port_rx_irq_mask(struct uart_port * port)570 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
571 {
572 	/*
573 	 * Not all ports (such as SCIFA) will support REIE. Rather than
574 	 * special-casing the port type, we check the port initialization
575 	 * IRQ enable mask to see whether the IRQ is desired at all. If
576 	 * it's unset, it's logically inferred that there's no point in
577 	 * testing for it.
578 	 */
579 	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
580 }
581 
sci_start_tx(struct uart_port * port)582 static void sci_start_tx(struct uart_port *port)
583 {
584 	struct sci_port *s = to_sci_port(port);
585 	unsigned short ctrl;
586 
587 #ifdef CONFIG_SERIAL_SH_SCI_DMA
588 	if (s->type == PORT_SCIFA || s->type == PORT_SCIFB) {
589 		u16 new, scr = sci_serial_in(port, SCSCR);
590 		if (s->chan_tx)
591 			new = scr | SCSCR_TDRQE;
592 		else
593 			new = scr & ~SCSCR_TDRQE;
594 		if (new != scr)
595 			sci_serial_out(port, SCSCR, new);
596 	}
597 
598 	if (s->chan_tx && !kfifo_is_empty(&port->state->port.xmit_fifo) &&
599 	    dma_submit_error(s->cookie_tx)) {
600 		if (s->regtype == SCIx_RZ_SCIFA_REGTYPE)
601 			/* Switch irq from SCIF to DMA */
602 			disable_irq_nosync(s->irqs[SCIx_TXI_IRQ]);
603 
604 		s->cookie_tx = 0;
605 		schedule_work(&s->work_tx);
606 	}
607 #endif
608 
609 	if (!s->chan_tx || s->regtype == SCIx_RZ_SCIFA_REGTYPE ||
610 	    s->type == PORT_SCIFA || s->type == PORT_SCIFB) {
611 		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
612 		ctrl = sci_serial_in(port, SCSCR);
613 
614 		/*
615 		 * For SCI, TE (transmit enable) must be set after setting TIE
616 		 * (transmit interrupt enable) or in the same instruction to start
617 		 * the transmit process.
618 		 */
619 		if (s->type == PORT_SCI)
620 			ctrl |= SCSCR_TE;
621 
622 		sci_serial_out(port, SCSCR, ctrl | SCSCR_TIE);
623 	}
624 }
625 
sci_stop_tx(struct uart_port * port)626 static void sci_stop_tx(struct uart_port *port)
627 {
628 	struct sci_port *s = to_sci_port(port);
629 	unsigned short ctrl;
630 
631 	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
632 	ctrl = sci_serial_in(port, SCSCR);
633 
634 	if (s->type == PORT_SCIFA || s->type == PORT_SCIFB)
635 		ctrl &= ~SCSCR_TDRQE;
636 
637 	ctrl &= ~SCSCR_TIE;
638 
639 	sci_serial_out(port, SCSCR, ctrl);
640 
641 #ifdef CONFIG_SERIAL_SH_SCI_DMA
642 	if (s->chan_tx &&
643 	    !dma_submit_error(s->cookie_tx)) {
644 		dmaengine_terminate_async(s->chan_tx);
645 		s->cookie_tx = -EINVAL;
646 	}
647 #endif
648 }
649 
sci_start_rx(struct uart_port * port)650 static void sci_start_rx(struct uart_port *port)
651 {
652 	struct sci_port *s = to_sci_port(port);
653 	unsigned short ctrl;
654 
655 	ctrl = sci_serial_in(port, SCSCR) | port_rx_irq_mask(port);
656 
657 	if (s->type == PORT_SCIFA || s->type == PORT_SCIFB)
658 		ctrl &= ~SCSCR_RDRQE;
659 
660 	sci_serial_out(port, SCSCR, ctrl);
661 }
662 
sci_stop_rx(struct uart_port * port)663 static void sci_stop_rx(struct uart_port *port)
664 {
665 	struct sci_port *s = to_sci_port(port);
666 	unsigned short ctrl;
667 
668 	ctrl = sci_serial_in(port, SCSCR);
669 
670 	if (s->type == PORT_SCIFA || s->type == PORT_SCIFB)
671 		ctrl &= ~SCSCR_RDRQE;
672 
673 	ctrl &= ~port_rx_irq_mask(port);
674 
675 	sci_serial_out(port, SCSCR, ctrl);
676 }
677 
sci_clear_SCxSR(struct uart_port * port,unsigned int mask)678 static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
679 {
680 	struct sci_port *s = to_sci_port(port);
681 
682 	if (s->type == PORT_SCI) {
683 		/* Just store the mask */
684 		sci_serial_out(port, SCxSR, mask);
685 	} else if (s->params->overrun_mask == SCIFA_ORER) {
686 		/* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
687 		/* Only clear the status bits we want to clear */
688 		sci_serial_out(port, SCxSR, sci_serial_in(port, SCxSR) & mask);
689 	} else {
690 		/* Store the mask, clear parity/framing errors */
691 		sci_serial_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
692 	}
693 }
694 
695 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
696     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
697 
698 #ifdef CONFIG_CONSOLE_POLL
sci_poll_get_char(struct uart_port * port)699 static int sci_poll_get_char(struct uart_port *port)
700 {
701 	unsigned short status;
702 	struct sci_port *s = to_sci_port(port);
703 	int c;
704 
705 	do {
706 		status = sci_serial_in(port, SCxSR);
707 		if (status & SCxSR_ERRORS(port)) {
708 			s->ops->clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
709 			continue;
710 		}
711 		break;
712 	} while (1);
713 
714 	if (!(status & SCxSR_RDxF(port)))
715 		return NO_POLL_CHAR;
716 
717 	c = sci_serial_in(port, SCxRDR);
718 
719 	/* Dummy read */
720 	sci_serial_in(port, SCxSR);
721 	s->ops->clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
722 
723 	return c;
724 }
725 #endif
726 
sci_poll_put_char(struct uart_port * port,unsigned char c)727 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
728 {
729 	struct sci_port *s = to_sci_port(port);
730 	const struct sci_common_regs *regs = s->params->common_regs;
731 	unsigned int status;
732 
733 	do {
734 		status = s->ops->read_reg(port, regs->status);
735 	} while (!(status & SCxSR_TDxE(port)));
736 
737 	sci_serial_out(port, SCxTDR, c);
738 	s->ops->clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
739 }
740 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
741 	  CONFIG_SERIAL_SH_SCI_EARLYCON */
742 
sci_init_pins(struct uart_port * port,unsigned int cflag)743 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
744 {
745 	struct sci_port *s = to_sci_port(port);
746 
747 	/*
748 	 * Use port-specific handler if provided.
749 	 */
750 	if (s->cfg->ops && s->cfg->ops->init_pins) {
751 		s->cfg->ops->init_pins(port, cflag);
752 		return;
753 	}
754 
755 	if (s->type == PORT_SCIFA || s->type == PORT_SCIFB) {
756 		u16 data = sci_serial_in(port, SCPDR);
757 		u16 ctrl = sci_serial_in(port, SCPCR);
758 
759 		/* Enable RXD and TXD pin functions */
760 		ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
761 		if (s->has_rtscts) {
762 			/* RTS# is output, active low, unless autorts */
763 			if (!(port->mctrl & TIOCM_RTS)) {
764 				ctrl |= SCPCR_RTSC;
765 				data |= SCPDR_RTSD;
766 			} else if (!s->autorts) {
767 				ctrl |= SCPCR_RTSC;
768 				data &= ~SCPDR_RTSD;
769 			} else {
770 				/* Enable RTS# pin function */
771 				ctrl &= ~SCPCR_RTSC;
772 			}
773 			/* Enable CTS# pin function */
774 			ctrl &= ~SCPCR_CTSC;
775 		}
776 		sci_serial_out(port, SCPDR, data);
777 		sci_serial_out(port, SCPCR, ctrl);
778 	} else if (sci_getreg(port, SCSPTR)->size && s->regtype != SCIx_RZV2H_SCIF_REGTYPE) {
779 		u16 status = sci_serial_in(port, SCSPTR);
780 
781 		/* RTS# is always output; and active low, unless autorts */
782 		status |= SCSPTR_RTSIO;
783 		if (!(port->mctrl & TIOCM_RTS))
784 			status |= SCSPTR_RTSDT;
785 		else if (!s->autorts)
786 			status &= ~SCSPTR_RTSDT;
787 		/* CTS# and SCK are inputs */
788 		status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
789 		sci_serial_out(port, SCSPTR, status);
790 	}
791 }
792 
sci_txfill(struct uart_port * port)793 static int sci_txfill(struct uart_port *port)
794 {
795 	struct sci_port *s = to_sci_port(port);
796 	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
797 	const struct plat_sci_reg *reg;
798 
799 	reg = sci_getreg(port, SCTFDR);
800 	if (reg->size)
801 		return sci_serial_in(port, SCTFDR) & fifo_mask;
802 
803 	reg = sci_getreg(port, SCFDR);
804 	if (reg->size)
805 		return sci_serial_in(port, SCFDR) >> 8;
806 
807 	return !(sci_serial_in(port, SCxSR) & SCI_TDRE);
808 }
809 
sci_txroom(struct uart_port * port)810 static int sci_txroom(struct uart_port *port)
811 {
812 	return port->fifosize - sci_txfill(port);
813 }
814 
sci_rxfill(struct uart_port * port)815 static int sci_rxfill(struct uart_port *port)
816 {
817 	struct sci_port *s = to_sci_port(port);
818 	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
819 	const struct plat_sci_reg *reg;
820 
821 	reg = sci_getreg(port, SCRFDR);
822 	if (reg->size)
823 		return sci_serial_in(port, SCRFDR) & fifo_mask;
824 
825 	reg = sci_getreg(port, SCFDR);
826 	if (reg->size)
827 		return sci_serial_in(port, SCFDR) & fifo_mask;
828 
829 	return (sci_serial_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
830 }
831 
832 /* ********************************************************************** *
833  *                   the interrupt related routines                       *
834  * ********************************************************************** */
835 
sci_transmit_chars(struct uart_port * port)836 static void sci_transmit_chars(struct uart_port *port)
837 {
838 	struct tty_port *tport = &port->state->port;
839 	unsigned int stopped = uart_tx_stopped(port);
840 	struct sci_port *s = to_sci_port(port);
841 	unsigned short status;
842 	unsigned short ctrl;
843 	int count;
844 
845 	status = sci_serial_in(port, SCxSR);
846 	if (!(status & SCxSR_TDxE(port))) {
847 		ctrl = sci_serial_in(port, SCSCR);
848 		if (kfifo_is_empty(&tport->xmit_fifo))
849 			ctrl &= ~SCSCR_TIE;
850 		else
851 			ctrl |= SCSCR_TIE;
852 		sci_serial_out(port, SCSCR, ctrl);
853 		return;
854 	}
855 
856 	count = sci_txroom(port);
857 
858 	do {
859 		unsigned char c;
860 
861 		if (port->x_char) {
862 			c = port->x_char;
863 			port->x_char = 0;
864 		} else if (stopped || !kfifo_get(&tport->xmit_fifo, &c)) {
865 			if (s->type == PORT_SCI &&
866 			    kfifo_is_empty(&tport->xmit_fifo)) {
867 				ctrl = sci_serial_in(port, SCSCR);
868 				ctrl &= ~SCSCR_TE;
869 				sci_serial_out(port, SCSCR, ctrl);
870 				return;
871 			}
872 			break;
873 		}
874 
875 		sci_serial_out(port, SCxTDR, c);
876 		s->tx_occurred = true;
877 
878 		port->icount.tx++;
879 	} while (--count > 0);
880 
881 	s->ops->clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
882 
883 	if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
884 		uart_write_wakeup(port);
885 	if (kfifo_is_empty(&tport->xmit_fifo)) {
886 		if (s->type == PORT_SCI) {
887 			ctrl = sci_serial_in(port, SCSCR);
888 			ctrl &= ~SCSCR_TIE;
889 			ctrl |= SCSCR_TEIE;
890 			sci_serial_out(port, SCSCR, ctrl);
891 		}
892 
893 		sci_stop_tx(port);
894 	}
895 }
896 
sci_receive_chars(struct uart_port * port)897 static void sci_receive_chars(struct uart_port *port)
898 {
899 	struct tty_port *tport = &port->state->port;
900 	struct sci_port *s = to_sci_port(port);
901 	int i, count, copied = 0;
902 	unsigned short status;
903 	unsigned char flag;
904 
905 	status = sci_serial_in(port, SCxSR);
906 	if (!(status & SCxSR_RDxF(port)))
907 		return;
908 
909 	while (1) {
910 		/* Don't copy more bytes than there is room for in the buffer */
911 		count = tty_buffer_request_room(tport, sci_rxfill(port));
912 
913 		/* If for any reason we can't copy more data, we're done! */
914 		if (count == 0)
915 			break;
916 
917 		if (s->type == PORT_SCI) {
918 			char c = sci_serial_in(port, SCxRDR);
919 			if (uart_handle_sysrq_char(port, c))
920 				count = 0;
921 			else
922 				tty_insert_flip_char(tport, c, TTY_NORMAL);
923 		} else {
924 			for (i = 0; i < count; i++) {
925 				char c;
926 
927 				if (s->type == PORT_SCIF ||
928 				    s->type == PORT_HSCIF) {
929 					status = sci_serial_in(port, SCxSR);
930 					c = sci_serial_in(port, SCxRDR);
931 				} else {
932 					c = sci_serial_in(port, SCxRDR);
933 					status = sci_serial_in(port, SCxSR);
934 				}
935 				if (uart_handle_sysrq_char(port, c)) {
936 					count--; i--;
937 					continue;
938 				}
939 
940 				/* Store data and status */
941 				if (status & SCxSR_FER(port)) {
942 					flag = TTY_FRAME;
943 					port->icount.frame++;
944 				} else if (status & SCxSR_PER(port)) {
945 					flag = TTY_PARITY;
946 					port->icount.parity++;
947 				} else
948 					flag = TTY_NORMAL;
949 
950 				tty_insert_flip_char(tport, c, flag);
951 			}
952 		}
953 
954 		sci_serial_in(port, SCxSR); /* dummy read */
955 		s->ops->clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
956 
957 		copied += count;
958 		port->icount.rx += count;
959 	}
960 
961 	if (copied) {
962 		/* Tell the rest of the system the news. New characters! */
963 		tty_flip_buffer_push(tport);
964 	} else {
965 		/* TTY buffers full; read from RX reg to prevent lockup */
966 		sci_serial_in(port, SCxRDR);
967 		sci_serial_in(port, SCxSR); /* dummy read */
968 		s->ops->clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
969 	}
970 }
971 
sci_handle_errors(struct uart_port * port)972 static int sci_handle_errors(struct uart_port *port)
973 {
974 	int copied = 0;
975 	struct sci_port *s = to_sci_port(port);
976 	const struct sci_common_regs *regs = s->params->common_regs;
977 	unsigned int status = s->ops->read_reg(port, regs->status);
978 	struct tty_port *tport = &port->state->port;
979 
980 	/* Handle overruns */
981 	if (status & s->params->overrun_mask) {
982 		port->icount.overrun++;
983 
984 		/* overrun error */
985 		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
986 			copied++;
987 	}
988 
989 	if (status & SCxSR_FER(port)) {
990 		/* frame error */
991 		port->icount.frame++;
992 
993 		if (tty_insert_flip_char(tport, 0, TTY_FRAME))
994 			copied++;
995 	}
996 
997 	if (status & SCxSR_PER(port)) {
998 		/* parity error */
999 		port->icount.parity++;
1000 
1001 		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
1002 			copied++;
1003 	}
1004 
1005 	if (copied)
1006 		tty_flip_buffer_push(tport);
1007 
1008 	return copied;
1009 }
1010 
sci_handle_fifo_overrun(struct uart_port * port)1011 static int sci_handle_fifo_overrun(struct uart_port *port)
1012 {
1013 	struct tty_port *tport = &port->state->port;
1014 	struct sci_port *s = to_sci_port(port);
1015 	const struct plat_sci_reg *reg;
1016 	int copied = 0;
1017 	u16 status;
1018 
1019 	reg = sci_getreg(port, s->params->overrun_reg);
1020 	if (!reg->size)
1021 		return 0;
1022 
1023 	status = sci_serial_in(port, s->params->overrun_reg);
1024 	if (status & s->params->overrun_mask) {
1025 		status &= ~s->params->overrun_mask;
1026 		sci_serial_out(port, s->params->overrun_reg, status);
1027 
1028 		port->icount.overrun++;
1029 
1030 		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
1031 		tty_flip_buffer_push(tport);
1032 		copied++;
1033 	}
1034 
1035 	return copied;
1036 }
1037 
sci_handle_breaks(struct uart_port * port)1038 static int sci_handle_breaks(struct uart_port *port)
1039 {
1040 	int copied = 0;
1041 	unsigned short status = sci_serial_in(port, SCxSR);
1042 	struct tty_port *tport = &port->state->port;
1043 
1044 	if (uart_handle_break(port))
1045 		return 0;
1046 
1047 	if (status & SCxSR_BRK(port)) {
1048 		port->icount.brk++;
1049 
1050 		/* Notify of BREAK */
1051 		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1052 			copied++;
1053 	}
1054 
1055 	if (copied)
1056 		tty_flip_buffer_push(tport);
1057 
1058 	copied += sci_handle_fifo_overrun(port);
1059 
1060 	return copied;
1061 }
1062 
scif_set_rtrg(struct uart_port * port,int rx_trig)1063 static int scif_set_rtrg(struct uart_port *port, int rx_trig)
1064 {
1065 	struct sci_port *s = to_sci_port(port);
1066 	unsigned int bits;
1067 
1068 	if (rx_trig >= port->fifosize)
1069 		rx_trig = port->fifosize - 1;
1070 	if (rx_trig < 1)
1071 		rx_trig = 1;
1072 
1073 	/* HSCIF can be set to an arbitrary level. */
1074 	if (sci_getreg(port, HSRTRGR)->size) {
1075 		sci_serial_out(port, HSRTRGR, rx_trig);
1076 		return rx_trig;
1077 	}
1078 
1079 	switch (s->type) {
1080 	case PORT_SCIF:
1081 		if (rx_trig < 4) {
1082 			bits = 0;
1083 			rx_trig = 1;
1084 		} else if (rx_trig < 8) {
1085 			bits = SCFCR_RTRG0;
1086 			rx_trig = 4;
1087 		} else if (rx_trig < 14) {
1088 			bits = SCFCR_RTRG1;
1089 			rx_trig = 8;
1090 		} else {
1091 			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1092 			rx_trig = 14;
1093 		}
1094 		break;
1095 	case PORT_SCIFA:
1096 	case PORT_SCIFB:
1097 		if (rx_trig < 16) {
1098 			bits = 0;
1099 			rx_trig = 1;
1100 		} else if (rx_trig < 32) {
1101 			bits = SCFCR_RTRG0;
1102 			rx_trig = 16;
1103 		} else if (rx_trig < 48) {
1104 			bits = SCFCR_RTRG1;
1105 			rx_trig = 32;
1106 		} else {
1107 			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1108 			rx_trig = 48;
1109 		}
1110 		break;
1111 	default:
1112 		WARN(1, "unknown FIFO configuration");
1113 		return 1;
1114 	}
1115 
1116 	sci_serial_out(port, SCFCR,
1117 		       (sci_serial_in(port, SCFCR) &
1118 			~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits);
1119 
1120 	return rx_trig;
1121 }
1122 
scif_rtrg_enabled(struct uart_port * port)1123 static int scif_rtrg_enabled(struct uart_port *port)
1124 {
1125 	if (sci_getreg(port, HSRTRGR)->size)
1126 		return sci_serial_in(port, HSRTRGR) != 0;
1127 	else
1128 		return (sci_serial_in(port, SCFCR) &
1129 			(SCFCR_RTRG0 | SCFCR_RTRG1)) != 0;
1130 }
1131 
rx_fifo_timer_fn(struct timer_list * t)1132 static void rx_fifo_timer_fn(struct timer_list *t)
1133 {
1134 	struct sci_port *s = timer_container_of(s, t, rx_fifo_timer);
1135 	struct uart_port *port = &s->port;
1136 
1137 	dev_dbg(port->dev, "Rx timed out\n");
1138 	s->ops->set_rtrg(port, 1);
1139 }
1140 
rx_fifo_trigger_show(struct device * dev,struct device_attribute * attr,char * buf)1141 static ssize_t rx_fifo_trigger_show(struct device *dev,
1142 				    struct device_attribute *attr, char *buf)
1143 {
1144 	struct uart_port *port = dev_get_drvdata(dev);
1145 	struct sci_port *sci = to_sci_port(port);
1146 
1147 	return sprintf(buf, "%d\n", sci->rx_trigger);
1148 }
1149 
rx_fifo_trigger_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1150 static ssize_t rx_fifo_trigger_store(struct device *dev,
1151 				     struct device_attribute *attr,
1152 				     const char *buf, size_t count)
1153 {
1154 	struct uart_port *port = dev_get_drvdata(dev);
1155 	struct sci_port *sci = to_sci_port(port);
1156 	int ret;
1157 	long r;
1158 
1159 	ret = kstrtol(buf, 0, &r);
1160 	if (ret)
1161 		return ret;
1162 
1163 	sci->rx_trigger = sci->ops->set_rtrg(port, r);
1164 	if (sci->type == PORT_SCIFA || sci->type == PORT_SCIFB)
1165 		sci->ops->set_rtrg(port, 1);
1166 
1167 	return count;
1168 }
1169 
1170 static DEVICE_ATTR_RW(rx_fifo_trigger);
1171 
rx_fifo_timeout_show(struct device * dev,struct device_attribute * attr,char * buf)1172 static ssize_t rx_fifo_timeout_show(struct device *dev,
1173 			       struct device_attribute *attr,
1174 			       char *buf)
1175 {
1176 	struct uart_port *port = dev_get_drvdata(dev);
1177 	struct sci_port *sci = to_sci_port(port);
1178 	int v;
1179 
1180 	if (sci->type == PORT_HSCIF)
1181 		v = sci->hscif_tot >> HSSCR_TOT_SHIFT;
1182 	else
1183 		v = sci->rx_fifo_timeout;
1184 
1185 	return sprintf(buf, "%d\n", v);
1186 }
1187 
rx_fifo_timeout_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1188 static ssize_t rx_fifo_timeout_store(struct device *dev,
1189 				struct device_attribute *attr,
1190 				const char *buf,
1191 				size_t count)
1192 {
1193 	struct uart_port *port = dev_get_drvdata(dev);
1194 	struct sci_port *sci = to_sci_port(port);
1195 	int ret;
1196 	long r;
1197 
1198 	ret = kstrtol(buf, 0, &r);
1199 	if (ret)
1200 		return ret;
1201 
1202 	if (sci->type == PORT_HSCIF) {
1203 		if (r < 0 || r > 3)
1204 			return -EINVAL;
1205 		sci->hscif_tot = r << HSSCR_TOT_SHIFT;
1206 	} else {
1207 		sci->rx_fifo_timeout = r;
1208 		sci->ops->set_rtrg(port, 1);
1209 		if (r > 0)
1210 			timer_setup(&sci->rx_fifo_timer, rx_fifo_timer_fn, 0);
1211 	}
1212 
1213 	return count;
1214 }
1215 
1216 static DEVICE_ATTR_RW(rx_fifo_timeout);
1217 
1218 
1219 #ifdef CONFIG_SERIAL_SH_SCI_DMA
sci_dma_tx_complete(void * arg)1220 static void sci_dma_tx_complete(void *arg)
1221 {
1222 	struct sci_port *s = arg;
1223 	struct uart_port *port = &s->port;
1224 	struct tty_port *tport = &port->state->port;
1225 	unsigned long flags;
1226 
1227 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1228 
1229 	uart_port_lock_irqsave(port, &flags);
1230 
1231 	uart_xmit_advance(port, s->tx_dma_len);
1232 
1233 	if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
1234 		uart_write_wakeup(port);
1235 
1236 	s->tx_occurred = true;
1237 
1238 	if (!kfifo_is_empty(&tport->xmit_fifo)) {
1239 		s->cookie_tx = 0;
1240 		schedule_work(&s->work_tx);
1241 	} else {
1242 		s->cookie_tx = -EINVAL;
1243 		if (s->type == PORT_SCIFA || s->type == PORT_SCIFB ||
1244 		    s->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1245 			u16 ctrl = sci_serial_in(port, SCSCR);
1246 			sci_serial_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1247 			if (s->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1248 				/* Switch irq from DMA to SCIF */
1249 				dmaengine_pause(s->chan_tx_saved);
1250 				enable_irq(s->irqs[SCIx_TXI_IRQ]);
1251 			}
1252 		}
1253 	}
1254 
1255 	uart_port_unlock_irqrestore(port, flags);
1256 }
1257 
1258 /* Locking: called with port lock held */
sci_dma_rx_push(struct sci_port * s,void * buf,size_t count)1259 static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1260 {
1261 	struct uart_port *port = &s->port;
1262 	struct tty_port *tport = &port->state->port;
1263 	int copied;
1264 
1265 	copied = tty_insert_flip_string(tport, buf, count);
1266 	if (copied < count)
1267 		port->icount.buf_overrun++;
1268 
1269 	port->icount.rx += copied;
1270 
1271 	return copied;
1272 }
1273 
sci_dma_rx_find_active(struct sci_port * s)1274 static int sci_dma_rx_find_active(struct sci_port *s)
1275 {
1276 	unsigned int i;
1277 
1278 	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1279 		if (s->active_rx == s->cookie_rx[i])
1280 			return i;
1281 
1282 	return -1;
1283 }
1284 
1285 /* Must only be called with uart_port_lock taken */
sci_dma_rx_chan_invalidate(struct sci_port * s)1286 static void sci_dma_rx_chan_invalidate(struct sci_port *s)
1287 {
1288 	unsigned int i;
1289 
1290 	s->chan_rx = NULL;
1291 	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1292 		s->cookie_rx[i] = -EINVAL;
1293 	s->active_rx = 0;
1294 }
1295 
sci_dma_rx_release(struct sci_port * s)1296 static void sci_dma_rx_release(struct sci_port *s)
1297 {
1298 	struct dma_chan *chan = s->chan_rx_saved;
1299 	struct uart_port *port = &s->port;
1300 	unsigned long flags;
1301 
1302 	uart_port_lock_irqsave(port, &flags);
1303 	s->chan_rx_saved = NULL;
1304 	sci_dma_rx_chan_invalidate(s);
1305 	uart_port_unlock_irqrestore(port, flags);
1306 
1307 	dmaengine_terminate_sync(chan);
1308 	dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1309 			  sg_dma_address(&s->sg_rx[0]));
1310 	dma_release_channel(chan);
1311 }
1312 
start_hrtimer_us(struct hrtimer * hrt,unsigned long usec)1313 static void start_hrtimer_us(struct hrtimer *hrt, unsigned long usec)
1314 {
1315 	long sec = usec / 1000000;
1316 	long nsec = (usec % 1000000) * 1000;
1317 	ktime_t t = ktime_set(sec, nsec);
1318 
1319 	hrtimer_start(hrt, t, HRTIMER_MODE_REL);
1320 }
1321 
sci_dma_rx_reenable_irq(struct sci_port * s)1322 static void sci_dma_rx_reenable_irq(struct sci_port *s)
1323 {
1324 	struct uart_port *port = &s->port;
1325 	u16 scr;
1326 
1327 	/* Direct new serial port interrupts back to CPU */
1328 	scr = sci_serial_in(port, SCSCR);
1329 	if (s->type == PORT_SCIFA || s->type == PORT_SCIFB ||
1330 	    s->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1331 		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1332 		if (s->regtype == SCIx_RZ_SCIFA_REGTYPE)
1333 			s->ops->set_rtrg(port, s->rx_trigger);
1334 		else
1335 			scr &= ~SCSCR_RDRQE;
1336 	}
1337 	sci_serial_out(port, SCSCR, scr | SCSCR_RIE);
1338 }
1339 
sci_dma_rx_complete(void * arg)1340 static void sci_dma_rx_complete(void *arg)
1341 {
1342 	struct sci_port *s = arg;
1343 	struct dma_chan *chan = s->chan_rx;
1344 	struct uart_port *port = &s->port;
1345 	struct dma_async_tx_descriptor *desc;
1346 	unsigned long flags;
1347 	int active, count = 0;
1348 
1349 	dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1350 		s->active_rx);
1351 
1352 	hrtimer_cancel(&s->rx_timer);
1353 
1354 	uart_port_lock_irqsave(port, &flags);
1355 
1356 	active = sci_dma_rx_find_active(s);
1357 	if (active >= 0)
1358 		count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1359 
1360 	if (count)
1361 		tty_flip_buffer_push(&port->state->port);
1362 
1363 	desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1364 				       DMA_DEV_TO_MEM,
1365 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1366 	if (!desc)
1367 		goto fail;
1368 
1369 	desc->callback = sci_dma_rx_complete;
1370 	desc->callback_param = s;
1371 	s->cookie_rx[active] = dmaengine_submit(desc);
1372 	if (dma_submit_error(s->cookie_rx[active]))
1373 		goto fail;
1374 
1375 	s->active_rx = s->cookie_rx[!active];
1376 
1377 	dma_async_issue_pending(chan);
1378 
1379 	uart_port_unlock_irqrestore(port, flags);
1380 	dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1381 		__func__, s->cookie_rx[active], active, s->active_rx);
1382 
1383 	start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1384 
1385 	return;
1386 
1387 fail:
1388 	/* Switch to PIO */
1389 	dmaengine_terminate_async(chan);
1390 	sci_dma_rx_chan_invalidate(s);
1391 	sci_dma_rx_reenable_irq(s);
1392 	uart_port_unlock_irqrestore(port, flags);
1393 	dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1394 }
1395 
sci_dma_tx_release(struct sci_port * s)1396 static void sci_dma_tx_release(struct sci_port *s)
1397 {
1398 	struct dma_chan *chan = s->chan_tx_saved;
1399 
1400 	cancel_work_sync(&s->work_tx);
1401 	s->chan_tx_saved = s->chan_tx = NULL;
1402 	s->cookie_tx = -EINVAL;
1403 	dmaengine_terminate_sync(chan);
1404 	dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1405 			 DMA_TO_DEVICE);
1406 	dma_release_channel(chan);
1407 }
1408 
sci_dma_rx_submit(struct sci_port * s,bool port_lock_held)1409 static int sci_dma_rx_submit(struct sci_port *s, bool port_lock_held)
1410 {
1411 	struct dma_chan *chan = s->chan_rx;
1412 	struct uart_port *port = &s->port;
1413 	unsigned long flags;
1414 	int i;
1415 
1416 	for (i = 0; i < 2; i++) {
1417 		struct scatterlist *sg = &s->sg_rx[i];
1418 		struct dma_async_tx_descriptor *desc;
1419 
1420 		desc = dmaengine_prep_slave_sg(chan,
1421 			sg, 1, DMA_DEV_TO_MEM,
1422 			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1423 		if (!desc)
1424 			goto fail;
1425 
1426 		desc->callback = sci_dma_rx_complete;
1427 		desc->callback_param = s;
1428 		s->cookie_rx[i] = dmaengine_submit(desc);
1429 		if (dma_submit_error(s->cookie_rx[i]))
1430 			goto fail;
1431 
1432 	}
1433 
1434 	s->active_rx = s->cookie_rx[0];
1435 
1436 	dma_async_issue_pending(chan);
1437 	return 0;
1438 
1439 fail:
1440 	/* Switch to PIO */
1441 	if (!port_lock_held)
1442 		uart_port_lock_irqsave(port, &flags);
1443 	if (i)
1444 		dmaengine_terminate_async(chan);
1445 	sci_dma_rx_chan_invalidate(s);
1446 	sci_start_rx(port);
1447 	if (!port_lock_held)
1448 		uart_port_unlock_irqrestore(port, flags);
1449 	return -EAGAIN;
1450 }
1451 
sci_dma_tx_work_fn(struct work_struct * work)1452 static void sci_dma_tx_work_fn(struct work_struct *work)
1453 {
1454 	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1455 	struct dma_async_tx_descriptor *desc;
1456 	struct dma_chan *chan = s->chan_tx;
1457 	struct uart_port *port = &s->port;
1458 	struct tty_port *tport = &port->state->port;
1459 	unsigned long flags;
1460 	unsigned int tail;
1461 	dma_addr_t buf;
1462 
1463 	/*
1464 	 * DMA is idle now.
1465 	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1466 	 * offsets and lengths. Since it is a circular buffer, we have to
1467 	 * transmit till the end, and then the rest. Take the port lock to get a
1468 	 * consistent xmit buffer state.
1469 	 */
1470 	uart_port_lock_irq(port);
1471 	s->tx_dma_len = kfifo_out_linear(&tport->xmit_fifo, &tail,
1472 			UART_XMIT_SIZE);
1473 	buf = s->tx_dma_addr + tail;
1474 	if (!s->tx_dma_len) {
1475 		/* Transmit buffer has been flushed */
1476 		uart_port_unlock_irq(port);
1477 		return;
1478 	}
1479 
1480 	desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1481 					   DMA_MEM_TO_DEV,
1482 					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1483 	if (!desc) {
1484 		uart_port_unlock_irq(port);
1485 		dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1486 		goto switch_to_pio;
1487 	}
1488 
1489 	dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1490 				   DMA_TO_DEVICE);
1491 
1492 	desc->callback = sci_dma_tx_complete;
1493 	desc->callback_param = s;
1494 	s->cookie_tx = dmaengine_submit(desc);
1495 	if (dma_submit_error(s->cookie_tx)) {
1496 		uart_port_unlock_irq(port);
1497 		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1498 		goto switch_to_pio;
1499 	}
1500 
1501 	uart_port_unlock_irq(port);
1502 	dev_dbg(port->dev, "%s: %p: %u, cookie %d\n",
1503 		__func__, tport->xmit_buf, tail, s->cookie_tx);
1504 
1505 	dma_async_issue_pending(chan);
1506 	return;
1507 
1508 switch_to_pio:
1509 	uart_port_lock_irqsave(port, &flags);
1510 	s->chan_tx = NULL;
1511 	sci_start_tx(port);
1512 	uart_port_unlock_irqrestore(port, flags);
1513 	return;
1514 }
1515 
sci_dma_rx_timer_fn(struct hrtimer * t)1516 static enum hrtimer_restart sci_dma_rx_timer_fn(struct hrtimer *t)
1517 {
1518 	struct sci_port *s = container_of(t, struct sci_port, rx_timer);
1519 	struct dma_chan *chan = s->chan_rx;
1520 	struct uart_port *port = &s->port;
1521 	struct dma_tx_state state;
1522 	enum dma_status status;
1523 	unsigned long flags;
1524 	unsigned int read;
1525 	int active, count;
1526 
1527 	dev_dbg(port->dev, "DMA Rx timed out\n");
1528 
1529 	uart_port_lock_irqsave(port, &flags);
1530 
1531 	active = sci_dma_rx_find_active(s);
1532 	if (active < 0) {
1533 		uart_port_unlock_irqrestore(port, flags);
1534 		return HRTIMER_NORESTART;
1535 	}
1536 
1537 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1538 	if (status == DMA_COMPLETE) {
1539 		uart_port_unlock_irqrestore(port, flags);
1540 		dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1541 			s->active_rx, active);
1542 
1543 		/* Let packet complete handler take care of the packet */
1544 		return HRTIMER_NORESTART;
1545 	}
1546 
1547 	dmaengine_pause(chan);
1548 
1549 	/*
1550 	 * sometimes DMA transfer doesn't stop even if it is stopped and
1551 	 * data keeps on coming until transaction is complete so check
1552 	 * for DMA_COMPLETE again
1553 	 * Let packet complete handler take care of the packet
1554 	 */
1555 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1556 	if (status == DMA_COMPLETE) {
1557 		uart_port_unlock_irqrestore(port, flags);
1558 		dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1559 		return HRTIMER_NORESTART;
1560 	}
1561 
1562 	/* Handle incomplete DMA receive */
1563 	dmaengine_terminate_async(s->chan_rx);
1564 	read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1565 
1566 	if (read) {
1567 		count = sci_dma_rx_push(s, s->rx_buf[active], read);
1568 		if (count)
1569 			tty_flip_buffer_push(&port->state->port);
1570 	}
1571 
1572 	if (s->type == PORT_SCIFA || s->type == PORT_SCIFB ||
1573 	    s->regtype == SCIx_RZ_SCIFA_REGTYPE)
1574 		sci_dma_rx_submit(s, true);
1575 
1576 	sci_dma_rx_reenable_irq(s);
1577 
1578 	uart_port_unlock_irqrestore(port, flags);
1579 
1580 	return HRTIMER_NORESTART;
1581 }
1582 
sci_request_dma_chan(struct uart_port * port,enum dma_transfer_direction dir)1583 static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1584 					     enum dma_transfer_direction dir)
1585 {
1586 	struct dma_chan *chan;
1587 	struct dma_slave_config cfg;
1588 	int ret;
1589 
1590 	chan = dma_request_chan(port->dev, dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1591 	if (IS_ERR(chan)) {
1592 		dev_dbg(port->dev, "dma_request_chan failed\n");
1593 		return NULL;
1594 	}
1595 
1596 	memset(&cfg, 0, sizeof(cfg));
1597 	cfg.direction = dir;
1598 	cfg.dst_addr = port->mapbase +
1599 		(sci_getreg(port, SCxTDR)->offset << port->regshift);
1600 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1601 	cfg.src_addr = port->mapbase +
1602 		(sci_getreg(port, SCxRDR)->offset << port->regshift);
1603 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1604 
1605 	ret = dmaengine_slave_config(chan, &cfg);
1606 	if (ret) {
1607 		dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1608 		dma_release_channel(chan);
1609 		return NULL;
1610 	}
1611 
1612 	return chan;
1613 }
1614 
sci_request_dma(struct uart_port * port)1615 static void sci_request_dma(struct uart_port *port)
1616 {
1617 	struct sci_port *s = to_sci_port(port);
1618 	struct tty_port *tport = &port->state->port;
1619 	struct dma_chan *chan;
1620 
1621 	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1622 
1623 	/*
1624 	 * DMA on console may interfere with Kernel log messages which use
1625 	 * plain putchar(). So, simply don't use it with a console.
1626 	 */
1627 	if (uart_console(port))
1628 		return;
1629 
1630 	if (!port->dev->of_node)
1631 		return;
1632 
1633 	s->cookie_tx = -EINVAL;
1634 
1635 	/*
1636 	 * Don't request a dma channel if no channel was specified
1637 	 * in the device tree.
1638 	 */
1639 	if (!of_property_present(port->dev->of_node, "dmas"))
1640 		return;
1641 
1642 	chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV);
1643 	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1644 	if (chan) {
1645 		/* UART circular tx buffer is an aligned page. */
1646 		s->tx_dma_addr = dma_map_single(chan->device->dev,
1647 						tport->xmit_buf,
1648 						UART_XMIT_SIZE,
1649 						DMA_TO_DEVICE);
1650 		if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1651 			dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1652 			dma_release_channel(chan);
1653 		} else {
1654 			dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1655 				__func__, UART_XMIT_SIZE,
1656 				tport->xmit_buf, &s->tx_dma_addr);
1657 
1658 			INIT_WORK(&s->work_tx, sci_dma_tx_work_fn);
1659 			s->chan_tx_saved = s->chan_tx = chan;
1660 		}
1661 	}
1662 
1663 	chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM);
1664 	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1665 	if (chan) {
1666 		unsigned int i;
1667 		dma_addr_t dma;
1668 		void *buf;
1669 
1670 		s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1671 		buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1672 					 &dma, GFP_KERNEL);
1673 		if (!buf) {
1674 			dev_warn(port->dev,
1675 				 "Failed to allocate Rx dma buffer, using PIO\n");
1676 			dma_release_channel(chan);
1677 			return;
1678 		}
1679 
1680 		for (i = 0; i < 2; i++) {
1681 			struct scatterlist *sg = &s->sg_rx[i];
1682 
1683 			sg_init_table(sg, 1);
1684 			s->rx_buf[i] = buf;
1685 			sg_dma_address(sg) = dma;
1686 			sg_dma_len(sg) = s->buf_len_rx;
1687 
1688 			buf += s->buf_len_rx;
1689 			dma += s->buf_len_rx;
1690 		}
1691 
1692 		hrtimer_setup(&s->rx_timer, sci_dma_rx_timer_fn, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1693 
1694 		s->chan_rx_saved = s->chan_rx = chan;
1695 
1696 		if (s->type == PORT_SCIFA || s->type == PORT_SCIFB ||
1697 		    s->regtype == SCIx_RZ_SCIFA_REGTYPE)
1698 			sci_dma_rx_submit(s, false);
1699 	}
1700 }
1701 
sci_free_dma(struct uart_port * port)1702 static void sci_free_dma(struct uart_port *port)
1703 {
1704 	struct sci_port *s = to_sci_port(port);
1705 
1706 	if (s->chan_tx_saved)
1707 		sci_dma_tx_release(s);
1708 	if (s->chan_rx_saved)
1709 		sci_dma_rx_release(s);
1710 }
1711 
sci_flush_buffer(struct uart_port * port)1712 static void sci_flush_buffer(struct uart_port *port)
1713 {
1714 	struct sci_port *s = to_sci_port(port);
1715 
1716 	/*
1717 	 * In uart_flush_buffer(), the xmit circular buffer has just been
1718 	 * cleared, so we have to reset tx_dma_len accordingly, and stop any
1719 	 * pending transfers
1720 	 */
1721 	s->tx_dma_len = 0;
1722 	if (s->chan_tx) {
1723 		dmaengine_terminate_async(s->chan_tx);
1724 		s->cookie_tx = -EINVAL;
1725 	}
1726 }
1727 
sci_dma_check_tx_occurred(struct sci_port * s)1728 static void sci_dma_check_tx_occurred(struct sci_port *s)
1729 {
1730 	struct dma_tx_state state;
1731 	enum dma_status status;
1732 
1733 	if (!s->chan_tx)
1734 		return;
1735 
1736 	status = dmaengine_tx_status(s->chan_tx, s->cookie_tx, &state);
1737 	if (status == DMA_COMPLETE || status == DMA_IN_PROGRESS)
1738 		s->tx_occurred = true;
1739 }
1740 #else /* !CONFIG_SERIAL_SH_SCI_DMA */
sci_request_dma(struct uart_port * port)1741 static inline void sci_request_dma(struct uart_port *port)
1742 {
1743 }
1744 
sci_free_dma(struct uart_port * port)1745 static inline void sci_free_dma(struct uart_port *port)
1746 {
1747 }
1748 
sci_dma_check_tx_occurred(struct sci_port * s)1749 static void sci_dma_check_tx_occurred(struct sci_port *s)
1750 {
1751 }
1752 
1753 #define sci_flush_buffer	NULL
1754 #endif /* !CONFIG_SERIAL_SH_SCI_DMA */
1755 
sci_rx_interrupt(int irq,void * ptr)1756 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1757 {
1758 	struct uart_port *port = ptr;
1759 	struct sci_port *s = to_sci_port(port);
1760 
1761 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1762 	if (s->chan_rx) {
1763 		u16 scr = sci_serial_in(port, SCSCR);
1764 		u16 ssr = sci_serial_in(port, SCxSR);
1765 
1766 		/* Disable future Rx interrupts */
1767 		if (s->type == PORT_SCIFA || s->type == PORT_SCIFB ||
1768 		    s->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1769 			disable_irq_nosync(s->irqs[SCIx_RXI_IRQ]);
1770 			if (s->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1771 				s->ops->set_rtrg(port, 1);
1772 				scr |= SCSCR_RIE;
1773 			} else {
1774 				scr |= SCSCR_RDRQE;
1775 			}
1776 		} else {
1777 			if (sci_dma_rx_submit(s, false) < 0)
1778 				goto handle_pio;
1779 
1780 			scr &= ~SCSCR_RIE;
1781 		}
1782 		sci_serial_out(port, SCSCR, scr);
1783 		/* Clear current interrupt */
1784 		sci_serial_out(port, SCxSR,
1785 			       ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1786 		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u us\n",
1787 			jiffies, s->rx_timeout);
1788 		start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1789 
1790 		return IRQ_HANDLED;
1791 	}
1792 
1793 handle_pio:
1794 #endif
1795 
1796 	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) {
1797 		if (!s->ops->rtrg_enabled(port))
1798 			s->ops->set_rtrg(port, s->rx_trigger);
1799 
1800 		mod_timer(&s->rx_fifo_timer, jiffies + DIV_ROUND_UP(
1801 			  s->rx_frame * HZ * s->rx_fifo_timeout, 1000000));
1802 	}
1803 
1804 	/* I think sci_receive_chars has to be called irrespective
1805 	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1806 	 * to be disabled?
1807 	 */
1808 	s->ops->receive_chars(port);
1809 
1810 	return IRQ_HANDLED;
1811 }
1812 
sci_tx_interrupt(int irq,void * ptr)1813 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1814 {
1815 	struct uart_port *port = ptr;
1816 	unsigned long flags;
1817 	struct sci_port *s = to_sci_port(port);
1818 
1819 	uart_port_lock_irqsave(port, &flags);
1820 	s->ops->transmit_chars(port);
1821 	uart_port_unlock_irqrestore(port, flags);
1822 
1823 	return IRQ_HANDLED;
1824 }
1825 
sci_tx_end_interrupt(int irq,void * ptr)1826 static irqreturn_t sci_tx_end_interrupt(int irq, void *ptr)
1827 {
1828 	struct uart_port *port = ptr;
1829 	struct sci_port *s = to_sci_port(port);
1830 	const struct sci_common_regs *regs = s->params->common_regs;
1831 	unsigned long flags;
1832 	u32 ctrl;
1833 
1834 	if (s->type != PORT_SCI && s->type != SCI_PORT_RSCI)
1835 		return sci_tx_interrupt(irq, ptr);
1836 
1837 	uart_port_lock_irqsave(port, &flags);
1838 	ctrl = s->ops->read_reg(port, regs->control) &
1839 		~(s->params->param_bits->te_clear);
1840 	s->ops->write_reg(port, regs->control, ctrl);
1841 	uart_port_unlock_irqrestore(port, flags);
1842 
1843 	return IRQ_HANDLED;
1844 }
1845 
sci_br_interrupt(int irq,void * ptr)1846 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1847 {
1848 	struct uart_port *port = ptr;
1849 	struct sci_port *s = to_sci_port(port);
1850 
1851 	/* Handle BREAKs */
1852 	sci_handle_breaks(port);
1853 
1854 	/* drop invalid character received before break was detected */
1855 	sci_serial_in(port, SCxRDR);
1856 
1857 	s->ops->clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1858 
1859 	return IRQ_HANDLED;
1860 }
1861 
sci_er_interrupt(int irq,void * ptr)1862 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1863 {
1864 	struct uart_port *port = ptr;
1865 	struct sci_port *s = to_sci_port(port);
1866 
1867 	if (s->irqs[SCIx_ERI_IRQ] == s->irqs[SCIx_BRI_IRQ]) {
1868 		/* Break and Error interrupts are muxed */
1869 		unsigned short ssr_status = sci_serial_in(port, SCxSR);
1870 
1871 		/* Break Interrupt */
1872 		if (ssr_status & SCxSR_BRK(port))
1873 			sci_br_interrupt(irq, ptr);
1874 
1875 		/* Break only? */
1876 		if (!(ssr_status & SCxSR_ERRORS(port)))
1877 			return IRQ_HANDLED;
1878 	}
1879 
1880 	/* Handle errors */
1881 	if (s->type == PORT_SCI) {
1882 		if (sci_handle_errors(port)) {
1883 			/* discard character in rx buffer */
1884 			sci_serial_in(port, SCxSR);
1885 			s->ops->clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1886 		}
1887 	} else {
1888 		sci_handle_fifo_overrun(port);
1889 		if (!s->chan_rx)
1890 			s->ops->receive_chars(port);
1891 	}
1892 
1893 	s->ops->clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1894 
1895 	/* Kick the transmission */
1896 	if (!s->chan_tx)
1897 		sci_tx_interrupt(irq, ptr);
1898 
1899 	return IRQ_HANDLED;
1900 }
1901 
sci_mpxed_interrupt(int irq,void * ptr)1902 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1903 {
1904 	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1905 	struct uart_port *port = ptr;
1906 	struct sci_port *s = to_sci_port(port);
1907 	irqreturn_t ret = IRQ_NONE;
1908 
1909 	ssr_status = sci_serial_in(port, SCxSR);
1910 	scr_status = sci_serial_in(port, SCSCR);
1911 	if (s->params->overrun_reg == SCxSR)
1912 		orer_status = ssr_status;
1913 	else if (sci_getreg(port, s->params->overrun_reg)->size)
1914 		orer_status = sci_serial_in(port, s->params->overrun_reg);
1915 
1916 	err_enabled = scr_status & port_rx_irq_mask(port);
1917 
1918 	/* Tx Interrupt */
1919 	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1920 	    !s->chan_tx)
1921 		ret = sci_tx_interrupt(irq, ptr);
1922 
1923 	/*
1924 	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1925 	 * DR flags
1926 	 */
1927 	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1928 	    (scr_status & SCSCR_RIE))
1929 		ret = sci_rx_interrupt(irq, ptr);
1930 
1931 	/* Error Interrupt */
1932 	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1933 		ret = sci_er_interrupt(irq, ptr);
1934 
1935 	/* Break Interrupt */
1936 	if (s->irqs[SCIx_ERI_IRQ] != s->irqs[SCIx_BRI_IRQ] &&
1937 	    (ssr_status & SCxSR_BRK(port)) && err_enabled)
1938 		ret = sci_br_interrupt(irq, ptr);
1939 
1940 	/* Overrun Interrupt */
1941 	if (orer_status & s->params->overrun_mask) {
1942 		sci_handle_fifo_overrun(port);
1943 		ret = IRQ_HANDLED;
1944 	}
1945 
1946 	return ret;
1947 }
1948 
1949 static const struct sci_irq_desc {
1950 	const char	*desc;
1951 	irq_handler_t	handler;
1952 } sci_irq_desc[] = {
1953 	/*
1954 	 * Split out handlers, the default case.
1955 	 */
1956 	[SCIx_ERI_IRQ] = {
1957 		.desc = "rx err",
1958 		.handler = sci_er_interrupt,
1959 	},
1960 
1961 	[SCIx_RXI_IRQ] = {
1962 		.desc = "rx full",
1963 		.handler = sci_rx_interrupt,
1964 	},
1965 
1966 	[SCIx_TXI_IRQ] = {
1967 		.desc = "tx empty",
1968 		.handler = sci_tx_interrupt,
1969 	},
1970 
1971 	[SCIx_BRI_IRQ] = {
1972 		.desc = "break",
1973 		.handler = sci_br_interrupt,
1974 	},
1975 
1976 	[SCIx_DRI_IRQ] = {
1977 		.desc = "rx ready",
1978 		.handler = sci_rx_interrupt,
1979 	},
1980 
1981 	[SCIx_TEI_IRQ] = {
1982 		.desc = "tx end",
1983 		.handler = sci_tx_end_interrupt,
1984 	},
1985 
1986 	/*
1987 	 * Special muxed handler.
1988 	 */
1989 	[SCIx_MUX_IRQ] = {
1990 		.desc = "mux",
1991 		.handler = sci_mpxed_interrupt,
1992 	},
1993 };
1994 
sci_request_irq(struct sci_port * port)1995 static int sci_request_irq(struct sci_port *port)
1996 {
1997 	struct uart_port *up = &port->port;
1998 	int i, j, w, ret = 0;
1999 
2000 	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
2001 		const struct sci_irq_desc *desc;
2002 		int irq;
2003 
2004 		/* Check if already registered (muxed) */
2005 		for (w = 0; w < i; w++)
2006 			if (port->irqs[w] == port->irqs[i])
2007 				w = i + 1;
2008 		if (w > i)
2009 			continue;
2010 
2011 		if (SCIx_IRQ_IS_MUXED(port)) {
2012 			i = SCIx_MUX_IRQ;
2013 			irq = up->irq;
2014 		} else {
2015 			irq = port->irqs[i];
2016 
2017 			/*
2018 			 * Certain port types won't support all of the
2019 			 * available interrupt sources.
2020 			 */
2021 			if (unlikely(irq < 0))
2022 				continue;
2023 		}
2024 
2025 		desc = sci_irq_desc + i;
2026 		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
2027 					    dev_name(up->dev), desc->desc);
2028 		if (!port->irqstr[j]) {
2029 			ret = -ENOMEM;
2030 			goto out_nomem;
2031 		}
2032 
2033 		ret = request_irq(irq, desc->handler, up->irqflags,
2034 				  port->irqstr[j], port);
2035 		if (unlikely(ret)) {
2036 			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
2037 			goto out_noirq;
2038 		}
2039 	}
2040 
2041 	return 0;
2042 
2043 out_noirq:
2044 	while (--i >= 0)
2045 		free_irq(port->irqs[i], port);
2046 
2047 out_nomem:
2048 	while (--j >= 0)
2049 		kfree(port->irqstr[j]);
2050 
2051 	return ret;
2052 }
2053 
sci_free_irq(struct sci_port * port)2054 static void sci_free_irq(struct sci_port *port)
2055 {
2056 	int i, j;
2057 
2058 	/*
2059 	 * Intentionally in reverse order so we iterate over the muxed
2060 	 * IRQ first.
2061 	 */
2062 	for (i = 0; i < SCIx_NR_IRQS; i++) {
2063 		int irq = port->irqs[i];
2064 
2065 		/*
2066 		 * Certain port types won't support all of the available
2067 		 * interrupt sources.
2068 		 */
2069 		if (unlikely(irq < 0))
2070 			continue;
2071 
2072 		/* Check if already freed (irq was muxed) */
2073 		for (j = 0; j < i; j++)
2074 			if (port->irqs[j] == irq)
2075 				j = i + 1;
2076 		if (j > i)
2077 			continue;
2078 
2079 		free_irq(port->irqs[i], port);
2080 		kfree(port->irqstr[i]);
2081 
2082 		if (SCIx_IRQ_IS_MUXED(port)) {
2083 			/* If there's only one IRQ, we're done. */
2084 			return;
2085 		}
2086 	}
2087 }
2088 
sci_tx_empty(struct uart_port * port)2089 static unsigned int sci_tx_empty(struct uart_port *port)
2090 {
2091 	unsigned short status = sci_serial_in(port, SCxSR);
2092 	unsigned short in_tx_fifo = sci_txfill(port);
2093 	struct sci_port *s = to_sci_port(port);
2094 
2095 	sci_dma_check_tx_occurred(s);
2096 
2097 	if (!s->tx_occurred)
2098 		return TIOCSER_TEMT;
2099 
2100 	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
2101 }
2102 
sci_set_rts(struct uart_port * port,bool state)2103 static void sci_set_rts(struct uart_port *port, bool state)
2104 {
2105 	struct sci_port *s = to_sci_port(port);
2106 
2107 	if (s->type == PORT_SCIFA || s->type == PORT_SCIFB) {
2108 		u16 data = sci_serial_in(port, SCPDR);
2109 
2110 		/* Active low */
2111 		if (state)
2112 			data &= ~SCPDR_RTSD;
2113 		else
2114 			data |= SCPDR_RTSD;
2115 		sci_serial_out(port, SCPDR, data);
2116 
2117 		/* RTS# is output */
2118 		sci_serial_out(port, SCPCR,
2119 			       sci_serial_in(port, SCPCR) | SCPCR_RTSC);
2120 	} else if (sci_getreg(port, SCSPTR)->size) {
2121 		u16 ctrl = sci_serial_in(port, SCSPTR);
2122 
2123 		/* Active low */
2124 		if (state)
2125 			ctrl &= ~SCSPTR_RTSDT;
2126 		else
2127 			ctrl |= SCSPTR_RTSDT;
2128 		sci_serial_out(port, SCSPTR, ctrl);
2129 	}
2130 }
2131 
sci_get_cts(struct uart_port * port)2132 static bool sci_get_cts(struct uart_port *port)
2133 {
2134 	struct sci_port *s = to_sci_port(port);
2135 
2136 	if (s->type == PORT_SCIFA || s->type == PORT_SCIFB) {
2137 		/* Active low */
2138 		return !(sci_serial_in(port, SCPDR) & SCPDR_CTSD);
2139 	} else if (sci_getreg(port, SCSPTR)->size) {
2140 		/* Active low */
2141 		return !(sci_serial_in(port, SCSPTR) & SCSPTR_CTSDT);
2142 	}
2143 
2144 	return true;
2145 }
2146 
2147 /*
2148  * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
2149  * CTS/RTS is supported in hardware by at least one port and controlled
2150  * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
2151  * handled via the ->init_pins() op, which is a bit of a one-way street,
2152  * lacking any ability to defer pin control -- this will later be
2153  * converted over to the GPIO framework).
2154  *
2155  * Other modes (such as loopback) are supported generically on certain
2156  * port types, but not others. For these it's sufficient to test for the
2157  * existence of the support register and simply ignore the port type.
2158  */
sci_set_mctrl(struct uart_port * port,unsigned int mctrl)2159 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
2160 {
2161 	struct sci_port *s = to_sci_port(port);
2162 
2163 	if (mctrl & TIOCM_LOOP) {
2164 		const struct plat_sci_reg *reg;
2165 
2166 		/*
2167 		 * Standard loopback mode for SCFCR ports.
2168 		 */
2169 		reg = sci_getreg(port, SCFCR);
2170 		if (reg->size)
2171 			sci_serial_out(port, SCFCR,
2172 				       sci_serial_in(port, SCFCR) | SCFCR_LOOP);
2173 	}
2174 
2175 	mctrl_gpio_set(s->gpios, mctrl);
2176 
2177 	if (!s->has_rtscts)
2178 		return;
2179 
2180 	if (!(mctrl & TIOCM_RTS)) {
2181 		/* Disable Auto RTS */
2182 		if (s->regtype != SCIx_RZV2H_SCIF_REGTYPE)
2183 			sci_serial_out(port, SCFCR,
2184 				       sci_serial_in(port, SCFCR) & ~SCFCR_MCE);
2185 
2186 		/* Clear RTS */
2187 		sci_set_rts(port, 0);
2188 	} else if (s->autorts) {
2189 		if (s->type == PORT_SCIFA || s->type == PORT_SCIFB) {
2190 			/* Enable RTS# pin function */
2191 			sci_serial_out(port, SCPCR,
2192 				sci_serial_in(port, SCPCR) & ~SCPCR_RTSC);
2193 		}
2194 
2195 		/* Enable Auto RTS */
2196 		if (s->regtype != SCIx_RZV2H_SCIF_REGTYPE)
2197 			sci_serial_out(port, SCFCR,
2198 				       sci_serial_in(port, SCFCR) | SCFCR_MCE);
2199 	} else {
2200 		/* Set RTS */
2201 		sci_set_rts(port, 1);
2202 	}
2203 }
2204 
sci_get_mctrl(struct uart_port * port)2205 static unsigned int sci_get_mctrl(struct uart_port *port)
2206 {
2207 	struct sci_port *s = to_sci_port(port);
2208 	struct mctrl_gpios *gpios = s->gpios;
2209 	unsigned int mctrl = 0;
2210 
2211 	mctrl_gpio_get(gpios, &mctrl);
2212 
2213 	/*
2214 	 * CTS/RTS is handled in hardware when supported, while nothing
2215 	 * else is wired up.
2216 	 */
2217 	if (s->autorts) {
2218 		if (sci_get_cts(port))
2219 			mctrl |= TIOCM_CTS;
2220 	} else if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS)) {
2221 		mctrl |= TIOCM_CTS;
2222 	}
2223 	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR))
2224 		mctrl |= TIOCM_DSR;
2225 	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD))
2226 		mctrl |= TIOCM_CAR;
2227 
2228 	return mctrl;
2229 }
2230 
sci_enable_ms(struct uart_port * port)2231 static void sci_enable_ms(struct uart_port *port)
2232 {
2233 	mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
2234 }
2235 
sci_break_ctl(struct uart_port * port,int break_state)2236 static void sci_break_ctl(struct uart_port *port, int break_state)
2237 {
2238 	unsigned short scscr, scsptr;
2239 	unsigned long flags;
2240 
2241 	/* check whether the port has SCSPTR */
2242 	if (!sci_getreg(port, SCSPTR)->size) {
2243 		/*
2244 		 * Not supported by hardware. Most parts couple break and rx
2245 		 * interrupts together, with break detection always enabled.
2246 		 */
2247 		return;
2248 	}
2249 
2250 	uart_port_lock_irqsave(port, &flags);
2251 	scsptr = sci_serial_in(port, SCSPTR);
2252 	scscr = sci_serial_in(port, SCSCR);
2253 
2254 	if (break_state == -1) {
2255 		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
2256 		scscr &= ~SCSCR_TE;
2257 	} else {
2258 		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
2259 		scscr |= SCSCR_TE;
2260 	}
2261 
2262 	sci_serial_out(port, SCSPTR, scsptr);
2263 	sci_serial_out(port, SCSCR, scscr);
2264 	uart_port_unlock_irqrestore(port, flags);
2265 }
2266 
sci_shutdown_complete(struct uart_port * port)2267 static void sci_shutdown_complete(struct uart_port *port)
2268 {
2269 	struct sci_port *s = to_sci_port(port);
2270 	u16 scr;
2271 
2272 	scr = sci_serial_in(port, SCSCR);
2273 	sci_serial_out(port, SCSCR,
2274 		       scr & (SCSCR_CKE1 | SCSCR_CKE0 | s->hscif_tot));
2275 }
2276 
sci_startup(struct uart_port * port)2277 int sci_startup(struct uart_port *port)
2278 {
2279 	struct sci_port *s = to_sci_port(port);
2280 	int ret;
2281 
2282 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2283 
2284 	s->tx_occurred = false;
2285 	sci_request_dma(port);
2286 
2287 	ret = sci_request_irq(s);
2288 	if (unlikely(ret < 0)) {
2289 		sci_free_dma(port);
2290 		return ret;
2291 	}
2292 
2293 	return 0;
2294 }
2295 EXPORT_SYMBOL_NS_GPL(sci_startup, "SH_SCI");
2296 
sci_shutdown(struct uart_port * port)2297 void sci_shutdown(struct uart_port *port)
2298 {
2299 	struct sci_port *s = to_sci_port(port);
2300 	unsigned long flags;
2301 
2302 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2303 
2304 	s->autorts = false;
2305 	mctrl_gpio_disable_ms_sync(to_sci_port(port)->gpios);
2306 
2307 	uart_port_lock_irqsave(port, &flags);
2308 	s->port.ops->stop_rx(port);
2309 	s->port.ops->stop_tx(port);
2310 	s->ops->shutdown_complete(port);
2311 	uart_port_unlock_irqrestore(port, flags);
2312 
2313 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2314 	if (s->chan_rx_saved) {
2315 		dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2316 			port->line);
2317 		hrtimer_cancel(&s->rx_timer);
2318 	}
2319 #endif
2320 
2321 	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0)
2322 		timer_delete_sync(&s->rx_fifo_timer);
2323 	sci_free_irq(s);
2324 	sci_free_dma(port);
2325 }
2326 EXPORT_SYMBOL_NS_GPL(sci_shutdown, "SH_SCI");
2327 
sci_sck_calc(struct sci_port * s,unsigned int bps,unsigned int * srr)2328 static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2329 			unsigned int *srr)
2330 {
2331 	unsigned long freq = s->clk_rates[SCI_SCK];
2332 	int err, min_err = INT_MAX;
2333 	unsigned int sr;
2334 
2335 	if (s->type != PORT_HSCIF)
2336 		freq *= 2;
2337 
2338 	for_each_sr(sr, s) {
2339 		err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2340 		if (abs(err) >= abs(min_err))
2341 			continue;
2342 
2343 		min_err = err;
2344 		*srr = sr - 1;
2345 
2346 		if (!err)
2347 			break;
2348 	}
2349 
2350 	dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2351 		*srr + 1);
2352 	return min_err;
2353 }
2354 
sci_brg_calc(struct sci_port * s,unsigned int bps,unsigned long freq,unsigned int * dlr,unsigned int * srr)2355 static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2356 			unsigned long freq, unsigned int *dlr,
2357 			unsigned int *srr)
2358 {
2359 	int err, min_err = INT_MAX;
2360 	unsigned int sr, dl;
2361 
2362 	if (s->type != PORT_HSCIF)
2363 		freq *= 2;
2364 
2365 	for_each_sr(sr, s) {
2366 		dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2367 		dl = clamp(dl, 1U, 65535U);
2368 
2369 		err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2370 		if (abs(err) >= abs(min_err))
2371 			continue;
2372 
2373 		min_err = err;
2374 		*dlr = dl;
2375 		*srr = sr - 1;
2376 
2377 		if (!err)
2378 			break;
2379 	}
2380 
2381 	dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2382 		min_err, *dlr, *srr + 1);
2383 	return min_err;
2384 }
2385 
2386 /* calculate sample rate, BRR, and clock select */
sci_scbrr_calc(struct sci_port * s,unsigned int bps,unsigned int * brr,unsigned int * srr,unsigned int * cks)2387 static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
2388 		   unsigned int *brr, unsigned int *srr,
2389 		   unsigned int *cks)
2390 {
2391 	unsigned long freq = s->clk_rates[SCI_FCK];
2392 	unsigned int sr, br, prediv, scrate, c;
2393 	int err, min_err = INT_MAX;
2394 
2395 	if (s->type != PORT_HSCIF)
2396 		freq *= 2;
2397 
2398 	/*
2399 	 * Find the combination of sample rate and clock select with the
2400 	 * smallest deviation from the desired baud rate.
2401 	 * Prefer high sample rates to maximise the receive margin.
2402 	 *
2403 	 * M: Receive margin (%)
2404 	 * N: Ratio of bit rate to clock (N = sampling rate)
2405 	 * D: Clock duty (D = 0 to 1.0)
2406 	 * L: Frame length (L = 9 to 12)
2407 	 * F: Absolute value of clock frequency deviation
2408 	 *
2409 	 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2410 	 *      (|D - 0.5| / N * (1 + F))|
2411 	 *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2412 	 */
2413 	for_each_sr(sr, s) {
2414 		for (c = 0; c <= 3; c++) {
2415 			/* integerized formulas from HSCIF documentation */
2416 			prediv = sr << (2 * c + 1);
2417 
2418 			/*
2419 			 * We need to calculate:
2420 			 *
2421 			 *     br = freq / (prediv * bps) clamped to [1..256]
2422 			 *     err = freq / (br * prediv) - bps
2423 			 *
2424 			 * Watch out for overflow when calculating the desired
2425 			 * sampling clock rate!
2426 			 */
2427 			if (bps > UINT_MAX / prediv)
2428 				break;
2429 
2430 			scrate = prediv * bps;
2431 			br = DIV_ROUND_CLOSEST(freq, scrate);
2432 			br = clamp(br, 1U, 256U);
2433 
2434 			err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2435 			if (abs(err) >= abs(min_err))
2436 				continue;
2437 
2438 			min_err = err;
2439 			*brr = br - 1;
2440 			*srr = sr - 1;
2441 			*cks = c;
2442 
2443 			if (!err)
2444 				goto found;
2445 		}
2446 	}
2447 
2448 found:
2449 	dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2450 		min_err, *brr, *srr + 1, *cks);
2451 	return min_err;
2452 }
2453 
sci_reset(struct uart_port * port)2454 static void sci_reset(struct uart_port *port)
2455 {
2456 	const struct plat_sci_reg *reg;
2457 	unsigned int status;
2458 	struct sci_port *s = to_sci_port(port);
2459 
2460 	sci_serial_out(port, SCSCR, s->hscif_tot);	/* TE=0, RE=0, CKE1=0 */
2461 
2462 	reg = sci_getreg(port, SCFCR);
2463 	if (reg->size)
2464 		sci_serial_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2465 
2466 	s->ops->clear_SCxSR(port,
2467 			    SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2468 			    SCxSR_BREAK_CLEAR(port));
2469 	if (sci_getreg(port, SCLSR)->size) {
2470 		status = sci_serial_in(port, SCLSR);
2471 		status &= ~(SCLSR_TO | SCLSR_ORER);
2472 		sci_serial_out(port, SCLSR, status);
2473 	}
2474 
2475 	if (s->rx_trigger > 1) {
2476 		if (s->rx_fifo_timeout) {
2477 			s->ops->set_rtrg(port, 1);
2478 			timer_setup(&s->rx_fifo_timer, rx_fifo_timer_fn, 0);
2479 		} else {
2480 			if (s->type == PORT_SCIFA ||
2481 			    s->type == PORT_SCIFB)
2482 				s->ops->set_rtrg(port, 1);
2483 			else
2484 				s->ops->set_rtrg(port, s->rx_trigger);
2485 		}
2486 	}
2487 }
2488 
sci_set_termios(struct uart_port * port,struct ktermios * termios,const struct ktermios * old)2489 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2490 		            const struct ktermios *old)
2491 {
2492 	unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits;
2493 	unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2494 	unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2495 	struct sci_port *s = to_sci_port(port);
2496 	const struct plat_sci_reg *reg;
2497 	int min_err = INT_MAX, err;
2498 	unsigned long max_freq = 0;
2499 	int best_clk = -1;
2500 	unsigned long flags;
2501 
2502 	if ((termios->c_cflag & CSIZE) == CS7) {
2503 		smr_val |= SCSMR_CHR;
2504 	} else {
2505 		termios->c_cflag &= ~CSIZE;
2506 		termios->c_cflag |= CS8;
2507 	}
2508 	if (termios->c_cflag & PARENB)
2509 		smr_val |= SCSMR_PE;
2510 	if (termios->c_cflag & PARODD)
2511 		smr_val |= SCSMR_PE | SCSMR_ODD;
2512 	if (termios->c_cflag & CSTOPB)
2513 		smr_val |= SCSMR_STOP;
2514 
2515 	/*
2516 	 * earlyprintk comes here early on with port->uartclk set to zero.
2517 	 * the clock framework is not up and running at this point so here
2518 	 * we assume that 115200 is the maximum baud rate. please note that
2519 	 * the baud rate is not programmed during earlyprintk - it is assumed
2520 	 * that the previous boot loader has enabled required clocks and
2521 	 * setup the baud rate generator hardware for us already.
2522 	 */
2523 	if (!port->uartclk) {
2524 		baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2525 		goto done;
2526 	}
2527 
2528 	for (i = 0; i < SCI_NUM_CLKS; i++)
2529 		max_freq = max(max_freq, s->clk_rates[i]);
2530 
2531 	baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2532 	if (!baud)
2533 		goto done;
2534 
2535 	/*
2536 	 * There can be multiple sources for the sampling clock.  Find the one
2537 	 * that gives us the smallest deviation from the desired baud rate.
2538 	 */
2539 
2540 	/* Optional Undivided External Clock */
2541 	if (s->clk_rates[SCI_SCK] && s->type != PORT_SCIFA &&
2542 	    s->type != PORT_SCIFB) {
2543 		err = sci_sck_calc(s, baud, &srr1);
2544 		if (abs(err) < abs(min_err)) {
2545 			best_clk = SCI_SCK;
2546 			scr_val = SCSCR_CKE1;
2547 			sccks = SCCKS_CKS;
2548 			min_err = err;
2549 			srr = srr1;
2550 			if (!err)
2551 				goto done;
2552 		}
2553 	}
2554 
2555 	/* Optional BRG Frequency Divided External Clock */
2556 	if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2557 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2558 				   &srr1);
2559 		if (abs(err) < abs(min_err)) {
2560 			best_clk = SCI_SCIF_CLK;
2561 			scr_val = SCSCR_CKE1;
2562 			sccks = 0;
2563 			min_err = err;
2564 			dl = dl1;
2565 			srr = srr1;
2566 			if (!err)
2567 				goto done;
2568 		}
2569 	}
2570 
2571 	/* Optional BRG Frequency Divided Internal Clock */
2572 	if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2573 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2574 				   &srr1);
2575 		if (abs(err) < abs(min_err)) {
2576 			best_clk = SCI_BRG_INT;
2577 			scr_val = SCSCR_CKE1;
2578 			sccks = SCCKS_XIN;
2579 			min_err = err;
2580 			dl = dl1;
2581 			srr = srr1;
2582 			if (!min_err)
2583 				goto done;
2584 		}
2585 	}
2586 
2587 	/* Divided Functional Clock using standard Bit Rate Register */
2588 	err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2589 	if (abs(err) < abs(min_err)) {
2590 		best_clk = SCI_FCK;
2591 		scr_val = 0;
2592 		min_err = err;
2593 		brr = brr1;
2594 		srr = srr1;
2595 		cks = cks1;
2596 	}
2597 
2598 done:
2599 	if (best_clk >= 0)
2600 		dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2601 			s->clks[best_clk], baud, min_err);
2602 
2603 	sci_port_enable(s);
2604 
2605 	/*
2606 	 * Program the optional External Baud Rate Generator (BRG) first.
2607 	 * It controls the mux to select (H)SCK or frequency divided clock.
2608 	 */
2609 	if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2610 		sci_serial_out(port, SCDL, dl);
2611 		sci_serial_out(port, SCCKS, sccks);
2612 	}
2613 
2614 	uart_port_lock_irqsave(port, &flags);
2615 
2616 	sci_reset(port);
2617 
2618 	uart_update_timeout(port, termios->c_cflag, baud);
2619 
2620 	/* byte size and parity */
2621 	bits = tty_get_frame_size(termios->c_cflag);
2622 
2623 	if (sci_getreg(port, SEMR)->size)
2624 		sci_serial_out(port, SEMR, 0);
2625 
2626 	if (best_clk >= 0) {
2627 		if (s->type == PORT_SCIFA || s->type == PORT_SCIFB)
2628 			switch (srr + 1) {
2629 			case 5:  smr_val |= SCSMR_SRC_5;  break;
2630 			case 7:  smr_val |= SCSMR_SRC_7;  break;
2631 			case 11: smr_val |= SCSMR_SRC_11; break;
2632 			case 13: smr_val |= SCSMR_SRC_13; break;
2633 			case 16: smr_val |= SCSMR_SRC_16; break;
2634 			case 17: smr_val |= SCSMR_SRC_17; break;
2635 			case 19: smr_val |= SCSMR_SRC_19; break;
2636 			case 27: smr_val |= SCSMR_SRC_27; break;
2637 			}
2638 		smr_val |= cks;
2639 		sci_serial_out(port, SCSCR, scr_val | s->hscif_tot);
2640 		sci_serial_out(port, SCSMR, smr_val);
2641 		sci_serial_out(port, SCBRR, brr);
2642 		if (sci_getreg(port, HSSRR)->size) {
2643 			unsigned int hssrr = srr | HSCIF_SRE;
2644 			/* Calculate deviation from intended rate at the
2645 			 * center of the last stop bit in sampling clocks.
2646 			 */
2647 			int last_stop = bits * 2 - 1;
2648 			int deviation = DIV_ROUND_CLOSEST(min_err * last_stop *
2649 							  (int)(srr + 1),
2650 							  2 * (int)baud);
2651 
2652 			if (abs(deviation) >= 2) {
2653 				/* At least two sampling clocks off at the
2654 				 * last stop bit; we can increase the error
2655 				 * margin by shifting the sampling point.
2656 				 */
2657 				int shift = clamp(deviation / 2, -8, 7);
2658 
2659 				hssrr |= (shift << HSCIF_SRHP_SHIFT) &
2660 					 HSCIF_SRHP_MASK;
2661 				hssrr |= HSCIF_SRDE;
2662 			}
2663 			sci_serial_out(port, HSSRR, hssrr);
2664 		}
2665 
2666 		/* Wait one bit interval */
2667 		udelay((1000000 + (baud - 1)) / baud);
2668 	} else {
2669 		/* Don't touch the bit rate configuration */
2670 		scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2671 		smr_val |= sci_serial_in(port, SCSMR) &
2672 			   (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2673 		sci_serial_out(port, SCSCR, scr_val | s->hscif_tot);
2674 		sci_serial_out(port, SCSMR, smr_val);
2675 	}
2676 
2677 	sci_init_pins(port, termios->c_cflag);
2678 
2679 	port->status &= ~UPSTAT_AUTOCTS;
2680 	s->autorts = false;
2681 	reg = sci_getreg(port, SCFCR);
2682 	if (reg->size) {
2683 		unsigned short ctrl = sci_serial_in(port, SCFCR);
2684 
2685 		if ((port->flags & UPF_HARD_FLOW) &&
2686 		    (termios->c_cflag & CRTSCTS)) {
2687 			/* There is no CTS interrupt to restart the hardware */
2688 			port->status |= UPSTAT_AUTOCTS;
2689 			/* MCE is enabled when RTS is raised */
2690 			s->autorts = true;
2691 		}
2692 
2693 		/*
2694 		 * As we've done a sci_reset() above, ensure we don't
2695 		 * interfere with the FIFOs while toggling MCE. As the
2696 		 * reset values could still be set, simply mask them out.
2697 		 */
2698 		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2699 
2700 		sci_serial_out(port, SCFCR, ctrl);
2701 	}
2702 	if (port->flags & UPF_HARD_FLOW) {
2703 		/* Refresh (Auto) RTS */
2704 		sci_set_mctrl(port, port->mctrl);
2705 	}
2706 
2707 	/*
2708 	 * For SCI, TE (transmit enable) must be set after setting TIE
2709 	 * (transmit interrupt enable) or in the same instruction to
2710 	 * start the transmitting process. So skip setting TE here for SCI.
2711 	 */
2712 	if (s->type != PORT_SCI)
2713 		scr_val |= SCSCR_TE;
2714 	scr_val |= SCSCR_RE | (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0));
2715 	sci_serial_out(port, SCSCR, scr_val | s->hscif_tot);
2716 	if ((srr + 1 == 5) &&
2717 	    (s->type == PORT_SCIFA || s->type == PORT_SCIFB)) {
2718 		/*
2719 		 * In asynchronous mode, when the sampling rate is 1/5, first
2720 		 * received data may become invalid on some SCIFA and SCIFB.
2721 		 * To avoid this problem wait more than 1 serial data time (1
2722 		 * bit time x serial data number) after setting SCSCR.RE = 1.
2723 		 */
2724 		udelay(DIV_ROUND_UP(10 * 1000000, baud));
2725 	}
2726 
2727 	/* Calculate delay for 2 DMA buffers (4 FIFO). */
2728 	s->rx_frame = (10000 * bits) / (baud / 100);
2729 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2730 	s->rx_timeout = s->buf_len_rx * 2 * s->rx_frame;
2731 #endif
2732 
2733 	if ((termios->c_cflag & CREAD) != 0)
2734 		sci_start_rx(port);
2735 
2736 	uart_port_unlock_irqrestore(port, flags);
2737 
2738 	sci_port_disable(s);
2739 
2740 	if (UART_ENABLE_MS(port, termios->c_cflag))
2741 		sci_enable_ms(port);
2742 }
2743 
sci_pm(struct uart_port * port,unsigned int state,unsigned int oldstate)2744 void sci_pm(struct uart_port *port, unsigned int state,
2745 		   unsigned int oldstate)
2746 {
2747 	struct sci_port *sci_port = to_sci_port(port);
2748 
2749 	switch (state) {
2750 	case UART_PM_STATE_OFF:
2751 		sci_port_disable(sci_port);
2752 		break;
2753 	default:
2754 		sci_port_enable(sci_port);
2755 		break;
2756 	}
2757 }
2758 EXPORT_SYMBOL_NS_GPL(sci_pm, "SH_SCI");
2759 
sci_type(struct uart_port * port)2760 static const char *sci_type(struct uart_port *port)
2761 {
2762 	struct sci_port *s = to_sci_port(port);
2763 
2764 	switch (s->type) {
2765 	case PORT_IRDA:
2766 		return "irda";
2767 	case PORT_SCI:
2768 		return "sci";
2769 	case PORT_SCIF:
2770 		return "scif";
2771 	case PORT_SCIFA:
2772 		return "scifa";
2773 	case PORT_SCIFB:
2774 		return "scifb";
2775 	case PORT_HSCIF:
2776 		return "hscif";
2777 	}
2778 
2779 	return NULL;
2780 }
2781 
sci_remap_port(struct uart_port * port)2782 static int sci_remap_port(struct uart_port *port)
2783 {
2784 	struct sci_port *sport = to_sci_port(port);
2785 
2786 	/*
2787 	 * Nothing to do if there's already an established membase.
2788 	 */
2789 	if (port->membase)
2790 		return 0;
2791 
2792 	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2793 		port->membase = ioremap(port->mapbase, sport->reg_size);
2794 		if (unlikely(!port->membase)) {
2795 			dev_err(port->dev, "can't remap port#%d\n", port->line);
2796 			return -ENXIO;
2797 		}
2798 	} else {
2799 		/*
2800 		 * For the simple (and majority of) cases where we don't
2801 		 * need to do any remapping, just cast the cookie
2802 		 * directly.
2803 		 */
2804 		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2805 	}
2806 
2807 	return 0;
2808 }
2809 
sci_release_port(struct uart_port * port)2810 void sci_release_port(struct uart_port *port)
2811 {
2812 	struct sci_port *sport = to_sci_port(port);
2813 
2814 	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2815 		iounmap(port->membase);
2816 		port->membase = NULL;
2817 	}
2818 
2819 	release_mem_region(port->mapbase, sport->reg_size);
2820 }
2821 EXPORT_SYMBOL_NS_GPL(sci_release_port, "SH_SCI");
2822 
sci_request_port(struct uart_port * port)2823 int sci_request_port(struct uart_port *port)
2824 {
2825 	struct resource *res;
2826 	struct sci_port *sport = to_sci_port(port);
2827 	int ret;
2828 
2829 	res = request_mem_region(port->mapbase, sport->reg_size,
2830 				 dev_name(port->dev));
2831 	if (unlikely(res == NULL)) {
2832 		dev_err(port->dev, "request_mem_region failed.");
2833 		return -EBUSY;
2834 	}
2835 
2836 	ret = sci_remap_port(port);
2837 	if (unlikely(ret != 0)) {
2838 		release_resource(res);
2839 		return ret;
2840 	}
2841 
2842 	return 0;
2843 }
2844 EXPORT_SYMBOL_NS_GPL(sci_request_port, "SH_SCI");
2845 
sci_config_port(struct uart_port * port,int flags)2846 void sci_config_port(struct uart_port *port, int flags)
2847 {
2848 	if (flags & UART_CONFIG_TYPE) {
2849 		struct sci_port *sport = to_sci_port(port);
2850 		port->type = SCI_PUBLIC_PORT_ID(sport->type);
2851 		sci_request_port(port);
2852 	}
2853 }
2854 EXPORT_SYMBOL_NS_GPL(sci_config_port, "SH_SCI");
2855 
sci_verify_port(struct uart_port * port,struct serial_struct * ser)2856 int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2857 {
2858 	if (ser->baud_base < 2400)
2859 		/* No paper tape reader for Mitch.. */
2860 		return -EINVAL;
2861 
2862 	return 0;
2863 }
2864 EXPORT_SYMBOL_NS_GPL(sci_verify_port, "SH_SCI");
2865 
sci_prepare_console_write(struct uart_port * port,u32 ctrl)2866 static void sci_prepare_console_write(struct uart_port *port, u32 ctrl)
2867 {
2868 	struct sci_port *s = to_sci_port(port);
2869 	u32 ctrl_temp =
2870 		s->params->param_bits->rxtx_enable |
2871 		(s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
2872 		(ctrl & (SCSCR_CKE1 | SCSCR_CKE0)) |
2873 		s->hscif_tot;
2874 	sci_serial_out(port, SCSCR, ctrl_temp);
2875 }
2876 
sci_console_save(struct uart_port * port)2877 static void sci_console_save(struct uart_port *port)
2878 {
2879 	struct sci_port *s = to_sci_port(port);
2880 	struct sci_suspend_regs *regs = s->suspend_regs;
2881 
2882 	if (sci_getreg(port, SCDL)->size)
2883 		regs->scdl = sci_serial_in(port, SCDL);
2884 	if (sci_getreg(port, SCCKS)->size)
2885 		regs->sccks = sci_serial_in(port, SCCKS);
2886 	if (sci_getreg(port, SCSMR)->size)
2887 		regs->scsmr = sci_serial_in(port, SCSMR);
2888 	if (sci_getreg(port, SCSCR)->size)
2889 		regs->scscr = sci_serial_in(port, SCSCR);
2890 	if (sci_getreg(port, SCFCR)->size)
2891 		regs->scfcr = sci_serial_in(port, SCFCR);
2892 	if (sci_getreg(port, SCSPTR)->size)
2893 		regs->scsptr = sci_serial_in(port, SCSPTR);
2894 	if (sci_getreg(port, SCBRR)->size)
2895 		regs->scbrr = sci_serial_in(port, SCBRR);
2896 	if (sci_getreg(port, HSSRR)->size)
2897 		regs->hssrr = sci_serial_in(port, HSSRR);
2898 	if (sci_getreg(port, SCPCR)->size)
2899 		regs->scpcr = sci_serial_in(port, SCPCR);
2900 	if (sci_getreg(port, SCPDR)->size)
2901 		regs->scpdr = sci_serial_in(port, SCPDR);
2902 	if (sci_getreg(port, SEMR)->size)
2903 		regs->semr = sci_serial_in(port, SEMR);
2904 }
2905 
sci_console_restore(struct uart_port * port)2906 static void sci_console_restore(struct uart_port *port)
2907 {
2908 	struct sci_port *s = to_sci_port(port);
2909 	struct sci_suspend_regs *regs = s->suspend_regs;
2910 
2911 	if (sci_getreg(port, SCDL)->size)
2912 		sci_serial_out(port, SCDL, regs->scdl);
2913 	if (sci_getreg(port, SCCKS)->size)
2914 		sci_serial_out(port, SCCKS, regs->sccks);
2915 	if (sci_getreg(port, SCSMR)->size)
2916 		sci_serial_out(port, SCSMR, regs->scsmr);
2917 	if (sci_getreg(port, SCSCR)->size)
2918 		sci_serial_out(port, SCSCR, regs->scscr);
2919 	if (sci_getreg(port, SCFCR)->size)
2920 		sci_serial_out(port, SCFCR, regs->scfcr);
2921 	if (sci_getreg(port, SCSPTR)->size)
2922 		sci_serial_out(port, SCSPTR, regs->scsptr);
2923 	if (sci_getreg(port, SCBRR)->size)
2924 		sci_serial_out(port, SCBRR, regs->scbrr);
2925 	if (sci_getreg(port, HSSRR)->size)
2926 		sci_serial_out(port, HSSRR, regs->hssrr);
2927 	if (sci_getreg(port, SCPCR)->size)
2928 		sci_serial_out(port, SCPCR, regs->scpcr);
2929 	if (sci_getreg(port, SCPDR)->size)
2930 		sci_serial_out(port, SCPDR, regs->scpdr);
2931 	if (sci_getreg(port, SEMR)->size)
2932 		sci_serial_out(port, SEMR, regs->semr);
2933 }
2934 
2935 static const struct uart_ops sci_uart_ops = {
2936 	.tx_empty	= sci_tx_empty,
2937 	.set_mctrl	= sci_set_mctrl,
2938 	.get_mctrl	= sci_get_mctrl,
2939 	.start_tx	= sci_start_tx,
2940 	.stop_tx	= sci_stop_tx,
2941 	.stop_rx	= sci_stop_rx,
2942 	.enable_ms	= sci_enable_ms,
2943 	.break_ctl	= sci_break_ctl,
2944 	.startup	= sci_startup,
2945 	.shutdown	= sci_shutdown,
2946 	.flush_buffer	= sci_flush_buffer,
2947 	.set_termios	= sci_set_termios,
2948 	.pm		= sci_pm,
2949 	.type		= sci_type,
2950 	.release_port	= sci_release_port,
2951 	.request_port	= sci_request_port,
2952 	.config_port	= sci_config_port,
2953 	.verify_port	= sci_verify_port,
2954 #ifdef CONFIG_CONSOLE_POLL
2955 	.poll_get_char	= sci_poll_get_char,
2956 	.poll_put_char	= sci_poll_put_char,
2957 #endif
2958 };
2959 
2960 static const struct sci_port_ops sci_port_ops = {
2961 	.read_reg		= sci_serial_in,
2962 	.write_reg		= sci_serial_out,
2963 	.clear_SCxSR		= sci_clear_SCxSR,
2964 	.transmit_chars		= sci_transmit_chars,
2965 	.receive_chars		= sci_receive_chars,
2966 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
2967     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
2968 	.poll_put_char		= sci_poll_put_char,
2969 #endif
2970 	.set_rtrg		= scif_set_rtrg,
2971 	.rtrg_enabled		= scif_rtrg_enabled,
2972 	.shutdown_complete	= sci_shutdown_complete,
2973 	.prepare_console_write	= sci_prepare_console_write,
2974 	.console_save		= sci_console_save,
2975 	.console_restore	= sci_console_restore,
2976 	.suspend_regs_size	= sci_suspend_regs_size,
2977 };
2978 
sci_init_clocks(struct sci_port * sci_port,struct device * dev)2979 static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2980 {
2981 	const char *clk_names[] = {
2982 		[SCI_FCK] = "fck",
2983 		[SCI_SCK] = "sck",
2984 		[SCI_BRG_INT] = "brg_int",
2985 		[SCI_SCIF_CLK] = "scif_clk",
2986 	};
2987 	struct clk *clk;
2988 	unsigned int i;
2989 
2990 	if (sci_port->type == PORT_HSCIF) {
2991 		clk_names[SCI_SCK] = "hsck";
2992 	} else if (sci_port->type == SCI_PORT_RSCI) {
2993 		clk_names[SCI_FCK] = "operation";
2994 		clk_names[SCI_BRG_INT] = "bus";
2995 	}
2996 
2997 	for (i = 0; i < SCI_NUM_CLKS; i++) {
2998 		const char *name = clk_names[i];
2999 
3000 		clk = devm_clk_get_optional(dev, name);
3001 		if (IS_ERR(clk))
3002 			return PTR_ERR(clk);
3003 
3004 		if (!clk && sci_port->type == SCI_PORT_RSCI &&
3005 		    (i == SCI_FCK || i == SCI_BRG_INT)) {
3006 			return dev_err_probe(dev, -ENODEV,
3007 					     "failed to get %s\n",
3008 					     name);
3009 		}
3010 
3011 		if (!clk && i == SCI_FCK) {
3012 			/*
3013 			 * Not all SH platforms declare a clock lookup entry
3014 			 * for SCI devices, in which case we need to get the
3015 			 * global "peripheral_clk" clock.
3016 			 */
3017 			clk = devm_clk_get(dev, "peripheral_clk");
3018 			if (IS_ERR(clk))
3019 				return dev_err_probe(dev, PTR_ERR(clk),
3020 						     "failed to get %s\n",
3021 						     name);
3022 		}
3023 
3024 		if (!clk)
3025 			dev_dbg(dev, "failed to get %s\n", name);
3026 		else
3027 			dev_dbg(dev, "clk %s is %pC rate %lu\n", name,
3028 				clk, clk_get_rate(clk));
3029 		sci_port->clks[i] = clk;
3030 	}
3031 	return 0;
3032 }
3033 
3034 static const struct sci_port_params *
sci_probe_regmap(const struct plat_sci_port * cfg,struct sci_port * sci_port)3035 sci_probe_regmap(const struct plat_sci_port *cfg, struct sci_port *sci_port)
3036 {
3037 	unsigned int regtype;
3038 
3039 	sci_port->ops = &sci_port_ops;
3040 	sci_port->port.ops = &sci_uart_ops;
3041 
3042 	if (cfg->regtype != SCIx_PROBE_REGTYPE)
3043 		return &sci_port_params[cfg->regtype];
3044 
3045 	switch (cfg->type) {
3046 	case PORT_SCI:
3047 		regtype = SCIx_SCI_REGTYPE;
3048 		break;
3049 	case PORT_IRDA:
3050 		regtype = SCIx_IRDA_REGTYPE;
3051 		break;
3052 	case PORT_SCIFA:
3053 		regtype = SCIx_SCIFA_REGTYPE;
3054 		break;
3055 	case PORT_SCIFB:
3056 		regtype = SCIx_SCIFB_REGTYPE;
3057 		break;
3058 	case PORT_SCIF:
3059 		/*
3060 		 * The SH-4 is a bit of a misnomer here, although that's
3061 		 * where this particular port layout originated. This
3062 		 * configuration (or some slight variation thereof)
3063 		 * remains the dominant model for all SCIFs.
3064 		 */
3065 		regtype = SCIx_SH4_SCIF_REGTYPE;
3066 		break;
3067 	case PORT_HSCIF:
3068 		regtype = SCIx_HSCIF_REGTYPE;
3069 		break;
3070 	default:
3071 		pr_err("Can't probe register map for given port\n");
3072 		return NULL;
3073 	}
3074 
3075 	return &sci_port_params[regtype];
3076 }
3077 
sci_init_single(struct platform_device * dev,struct sci_port * sci_port,unsigned int index,const struct plat_sci_port * p,bool early)3078 static int sci_init_single(struct platform_device *dev,
3079 			   struct sci_port *sci_port, unsigned int index,
3080 			   const struct plat_sci_port *p, bool early)
3081 {
3082 	struct uart_port *port = &sci_port->port;
3083 	const struct resource *res;
3084 	unsigned int i;
3085 	int ret;
3086 
3087 	sci_port->cfg	= p;
3088 
3089 	sci_port->type	= p->type;
3090 	sci_port->regtype = p->regtype;
3091 
3092 	port->iotype	= UPIO_MEM;
3093 	port->line	= index;
3094 	port->has_sysrq = IS_ENABLED(CONFIG_SERIAL_SH_SCI_CONSOLE);
3095 
3096 	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
3097 	if (res == NULL)
3098 		return -ENOMEM;
3099 
3100 	port->mapbase = res->start;
3101 	sci_port->reg_size = resource_size(res);
3102 
3103 	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i) {
3104 		if (i)
3105 			sci_port->irqs[i] = platform_get_irq_optional(dev, i);
3106 		else
3107 			sci_port->irqs[i] = platform_get_irq(dev, i);
3108 	}
3109 
3110 	/*
3111 	 * The fourth interrupt on SCI and RSCI port is transmit end interrupt, so
3112 	 * shuffle the interrupts.
3113 	 */
3114 	if (p->type == PORT_SCI || p->type == SCI_PORT_RSCI)
3115 		swap(sci_port->irqs[SCIx_BRI_IRQ], sci_port->irqs[SCIx_TEI_IRQ]);
3116 
3117 	/* The SCI generates several interrupts. They can be muxed together or
3118 	 * connected to different interrupt lines. In the muxed case only one
3119 	 * interrupt resource is specified as there is only one interrupt ID.
3120 	 * In the non-muxed case, up to 6 interrupt signals might be generated
3121 	 * from the SCI, however those signals might have their own individual
3122 	 * interrupt ID numbers, or muxed together with another interrupt.
3123 	 */
3124 	if (sci_port->irqs[0] < 0)
3125 		return -ENXIO;
3126 
3127 	if (sci_port->irqs[1] < 0)
3128 		for (i = 1; i < ARRAY_SIZE(sci_port->irqs); i++)
3129 			sci_port->irqs[i] = sci_port->irqs[0];
3130 
3131 	switch (p->type) {
3132 	case PORT_SCIFB:
3133 		sci_port->rx_trigger = 48;
3134 		break;
3135 	case PORT_HSCIF:
3136 		sci_port->rx_trigger = 64;
3137 		break;
3138 	case PORT_SCIFA:
3139 		sci_port->rx_trigger = 32;
3140 		break;
3141 	case PORT_SCIF:
3142 		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE)
3143 			/* RX triggering not implemented for this IP */
3144 			sci_port->rx_trigger = 1;
3145 		else
3146 			sci_port->rx_trigger = 8;
3147 		break;
3148 	case SCI_PORT_RSCI:
3149 		sci_port->rx_trigger = 15;
3150 		break;
3151 	default:
3152 		sci_port->rx_trigger = 1;
3153 		break;
3154 	}
3155 
3156 	sci_port->rx_fifo_timeout = 0;
3157 	sci_port->hscif_tot = 0;
3158 
3159 	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
3160 	 * match the SoC datasheet, this should be investigated. Let platform
3161 	 * data override the sampling rate for now.
3162 	 */
3163 	sci_port->sampling_rate_mask = p->sampling_rate
3164 				     ? SCI_SR(p->sampling_rate)
3165 				     : sci_port->params->sampling_rate_mask;
3166 
3167 	if (!early) {
3168 		ret = sci_init_clocks(sci_port, &dev->dev);
3169 		if (ret < 0)
3170 			return ret;
3171 	}
3172 
3173 	port->type		= SCI_PUBLIC_PORT_ID(p->type);
3174 	port->flags		= UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags;
3175 	port->fifosize		= sci_port->params->fifosize;
3176 
3177 	if (p->type == PORT_SCI && !dev->dev.of_node) {
3178 		if (sci_port->reg_size >= 0x20)
3179 			port->regshift = 2;
3180 		else
3181 			port->regshift = 1;
3182 	}
3183 
3184 	/*
3185 	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
3186 	 * for the multi-IRQ ports, which is where we are primarily
3187 	 * concerned with the shutdown path synchronization.
3188 	 *
3189 	 * For the muxed case there's nothing more to do.
3190 	 */
3191 	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
3192 	port->irqflags		= 0;
3193 
3194 	return 0;
3195 }
3196 
3197 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
3198     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
serial_console_putchar(struct uart_port * port,unsigned char ch)3199 static void serial_console_putchar(struct uart_port *port, unsigned char ch)
3200 {
3201 	to_sci_port(port)->ops->poll_put_char(port, ch);
3202 }
3203 
3204 /*
3205  *	Print a string to the serial port trying not to disturb
3206  *	any possible real use of the port...
3207  */
serial_console_write(struct console * co,const char * s,unsigned count)3208 static void serial_console_write(struct console *co, const char *s,
3209 				 unsigned count)
3210 {
3211 	struct sci_port *sci_port = &sci_ports[co->index];
3212 	struct uart_port *port = &sci_port->port;
3213 	const struct sci_common_regs *regs = sci_port->params->common_regs;
3214 	unsigned int bits;
3215 	u32 ctrl;
3216 	unsigned long flags;
3217 	int locked = 1;
3218 
3219 	if (port->sysrq)
3220 		locked = 0;
3221 	else if (oops_in_progress)
3222 		locked = uart_port_trylock_irqsave(port, &flags);
3223 	else
3224 		uart_port_lock_irqsave(port, &flags);
3225 
3226 	/* first save SCSCR then disable interrupts, keep clock source */
3227 
3228 	ctrl = sci_port->ops->read_reg(port, regs->control);
3229 	sci_port->ops->prepare_console_write(port, ctrl);
3230 
3231 	uart_console_write(port, s, count, serial_console_putchar);
3232 
3233 	/* wait until fifo is empty and last bit has been transmitted */
3234 
3235 	bits = sci_port->params->param_bits->poll_sent_bits;
3236 
3237 	while ((sci_port->ops->read_reg(port, regs->status) & bits) != bits)
3238 		cpu_relax();
3239 
3240 	/* restore the SCSCR */
3241 	sci_port->ops->write_reg(port, regs->control, ctrl);
3242 
3243 	if (locked)
3244 		uart_port_unlock_irqrestore(port, flags);
3245 }
3246 
serial_console_setup(struct console * co,char * options)3247 static int serial_console_setup(struct console *co, char *options)
3248 {
3249 	struct sci_port *sci_port;
3250 	struct uart_port *port;
3251 	int baud = 115200;
3252 	int bits = 8;
3253 	int parity = 'n';
3254 	int flow = 'n';
3255 	int ret;
3256 
3257 	/*
3258 	 * Refuse to handle any bogus ports.
3259 	 */
3260 	if (co->index < 0 || co->index >= SCI_NPORTS)
3261 		return -ENODEV;
3262 
3263 	sci_port = &sci_ports[co->index];
3264 	port = &sci_port->port;
3265 
3266 	/*
3267 	 * Refuse to handle uninitialized ports.
3268 	 */
3269 	if (!port->ops)
3270 		return -ENODEV;
3271 
3272 	ret = sci_remap_port(port);
3273 	if (unlikely(ret != 0))
3274 		return ret;
3275 
3276 	if (options)
3277 		uart_parse_options(options, &baud, &parity, &bits, &flow);
3278 
3279 	return uart_set_options(port, co, baud, parity, bits, flow);
3280 }
3281 
3282 static struct console serial_console = {
3283 	.name		= "ttySC",
3284 	.device		= uart_console_device,
3285 	.write		= serial_console_write,
3286 	.setup		= serial_console_setup,
3287 	.flags		= CON_PRINTBUFFER,
3288 	.index		= -1,
3289 	.data		= &sci_uart_driver,
3290 };
3291 
3292 #ifdef CONFIG_SUPERH
3293 static char early_serial_buf[32];
3294 
early_serial_console_setup(struct console * co,char * options)3295 static int early_serial_console_setup(struct console *co, char *options)
3296 {
3297 	/*
3298 	 * This early console is always registered using the earlyprintk=
3299 	 * parameter, which does not call add_preferred_console(). Thus
3300 	 * @options is always NULL and the options for this early console
3301 	 * are passed using a custom buffer.
3302 	 */
3303 	WARN_ON(options);
3304 
3305 	return serial_console_setup(co, early_serial_buf);
3306 }
3307 
3308 static struct console early_serial_console = {
3309 	.name           = "early_ttySC",
3310 	.write          = serial_console_write,
3311 	.setup		= early_serial_console_setup,
3312 	.flags          = CON_PRINTBUFFER,
3313 	.index		= -1,
3314 };
3315 
sci_probe_earlyprintk(struct platform_device * pdev)3316 static int sci_probe_earlyprintk(struct platform_device *pdev)
3317 {
3318 	const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
3319 	struct sci_port *sp = &sci_ports[pdev->id];
3320 
3321 	if (early_serial_console.data)
3322 		return -EEXIST;
3323 
3324 	early_serial_console.index = pdev->id;
3325 
3326 	sp->params = sci_probe_regmap(cfg, sp);
3327 	if (!sp->params)
3328 		return -ENODEV;
3329 
3330 	sci_init_single(pdev, sp, pdev->id, cfg, true);
3331 
3332 	if (!strstr(early_serial_buf, "keep"))
3333 		early_serial_console.flags |= CON_BOOT;
3334 
3335 	register_console(&early_serial_console);
3336 	return 0;
3337 }
3338 #endif
3339 
3340 #define SCI_CONSOLE	(&serial_console)
3341 
3342 #else
sci_probe_earlyprintk(struct platform_device * pdev)3343 static inline int sci_probe_earlyprintk(struct platform_device *pdev)
3344 {
3345 	return -EINVAL;
3346 }
3347 
3348 #define SCI_CONSOLE	NULL
3349 
3350 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
3351 
3352 static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
3353 
3354 static DEFINE_MUTEX(sci_uart_registration_lock);
3355 static struct uart_driver sci_uart_driver = {
3356 	.owner		= THIS_MODULE,
3357 	.driver_name	= "sci",
3358 	.dev_name	= "ttySC",
3359 	.major		= SCI_MAJOR,
3360 	.minor		= SCI_MINOR_START,
3361 	.nr		= SCI_NPORTS,
3362 	.cons		= SCI_CONSOLE,
3363 };
3364 
sci_remove(struct platform_device * dev)3365 static void sci_remove(struct platform_device *dev)
3366 {
3367 	struct sci_port *s = platform_get_drvdata(dev);
3368 	unsigned int type = s->type;	/* uart_remove_... clears it */
3369 
3370 	sci_ports_in_use &= ~BIT(s->port.line);
3371 	uart_remove_one_port(&sci_uart_driver, &s->port);
3372 
3373 	if (s->port.fifosize > 1)
3374 		device_remove_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3375 	if (type == PORT_SCIFA || type == PORT_SCIFB || type == PORT_HSCIF ||
3376 	    type == SCI_PORT_RSCI)
3377 		device_remove_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3378 }
3379 
3380 static const struct sci_of_data of_sci_scif_sh2 = {
3381 	.type = PORT_SCIF,
3382 	.regtype = SCIx_SH2_SCIF_FIFODATA_REGTYPE,
3383 	.ops = &sci_port_ops,
3384 	.uart_ops = &sci_uart_ops,
3385 	.params = &sci_port_params[SCIx_SH2_SCIF_FIFODATA_REGTYPE],
3386 };
3387 
3388 static const struct sci_of_data of_sci_scif_rz_scifa = {
3389 	.type = PORT_SCIF,
3390 	.regtype = SCIx_RZ_SCIFA_REGTYPE,
3391 	.ops = &sci_port_ops,
3392 	.uart_ops = &sci_uart_ops,
3393 	.params = &sci_port_params[SCIx_RZ_SCIFA_REGTYPE],
3394 };
3395 
3396 static const struct sci_of_data of_sci_scif_rzv2h = {
3397 	.type = PORT_SCIF,
3398 	.regtype = SCIx_RZV2H_SCIF_REGTYPE,
3399 	.ops = &sci_port_ops,
3400 	.uart_ops = &sci_uart_ops,
3401 	.params = &sci_port_params[SCIx_RZV2H_SCIF_REGTYPE],
3402 };
3403 
3404 static const struct sci_of_data of_sci_rcar_scif = {
3405 	.type = PORT_SCIF,
3406 	.regtype = SCIx_SH4_SCIF_BRG_REGTYPE,
3407 	.ops = &sci_port_ops,
3408 	.uart_ops = &sci_uart_ops,
3409 	.params = &sci_port_params[SCIx_SH4_SCIF_BRG_REGTYPE],
3410 };
3411 
3412 static const struct sci_of_data of_sci_scif_sh4 = {
3413 	.type = PORT_SCIF,
3414 	.regtype = SCIx_SH4_SCIF_REGTYPE,
3415 	.ops = &sci_port_ops,
3416 	.uart_ops = &sci_uart_ops,
3417 	.params = &sci_port_params[SCIx_SH4_SCIF_REGTYPE],
3418 };
3419 
3420 static const struct sci_of_data of_sci_scifa = {
3421 	.type = PORT_SCIFA,
3422 	.regtype = SCIx_SCIFA_REGTYPE,
3423 	.ops = &sci_port_ops,
3424 	.uart_ops = &sci_uart_ops,
3425 	.params = &sci_port_params[SCIx_SCIFA_REGTYPE],
3426 };
3427 
3428 static const struct sci_of_data of_sci_scifb = {
3429 	.type = PORT_SCIFB,
3430 	.regtype = SCIx_SCIFB_REGTYPE,
3431 	.ops = &sci_port_ops,
3432 	.uart_ops = &sci_uart_ops,
3433 	.params = &sci_port_params[SCIx_SCIFB_REGTYPE],
3434 };
3435 
3436 static const struct sci_of_data of_sci_hscif = {
3437 	.type = PORT_HSCIF,
3438 	.regtype = SCIx_HSCIF_REGTYPE,
3439 	.ops = &sci_port_ops,
3440 	.uart_ops = &sci_uart_ops,
3441 	.params = &sci_port_params[SCIx_HSCIF_REGTYPE],
3442 };
3443 
3444 static const struct sci_of_data of_sci_sci = {
3445 	.type = PORT_SCI,
3446 	.regtype = SCIx_SCI_REGTYPE,
3447 	.ops = &sci_port_ops,
3448 	.uart_ops = &sci_uart_ops,
3449 	.params = &sci_port_params[SCIx_SCI_REGTYPE],
3450 };
3451 
3452 static const struct of_device_id of_sci_match[] __maybe_unused = {
3453 	/* SoC-specific types */
3454 	{
3455 		.compatible = "renesas,scif-r7s72100",
3456 		.data = &of_sci_scif_sh2,
3457 	},
3458 	{
3459 		.compatible = "renesas,scif-r7s9210",
3460 		.data = &of_sci_scif_rz_scifa,
3461 	},
3462 	{
3463 		.compatible = "renesas,scif-r9a07g044",
3464 		.data = &of_sci_scif_rz_scifa,
3465 	},
3466 	{
3467 		.compatible = "renesas,scif-r9a09g057",
3468 		.data = &of_sci_scif_rzv2h,
3469 	},
3470 #ifdef CONFIG_SERIAL_RSCI
3471 	{
3472 		.compatible = "renesas,r9a09g077-rsci",
3473 		.data = &of_sci_rsci_data,
3474 	},
3475 #endif	/* CONFIG_SERIAL_RSCI */
3476 	/* Family-specific types */
3477 	{
3478 		.compatible = "renesas,rcar-gen1-scif",
3479 		.data = &of_sci_rcar_scif,
3480 	}, {
3481 		.compatible = "renesas,rcar-gen2-scif",
3482 		.data = &of_sci_rcar_scif,
3483 	}, {
3484 		.compatible = "renesas,rcar-gen3-scif",
3485 		.data = &of_sci_rcar_scif
3486 	}, {
3487 		.compatible = "renesas,rcar-gen4-scif",
3488 		.data = &of_sci_rcar_scif
3489 	}, {
3490 		.compatible = "renesas,rcar-gen5-scif",
3491 		.data = &of_sci_rcar_scif
3492 	},
3493 	/* Generic types */
3494 	{
3495 		.compatible = "renesas,scif",
3496 		.data = &of_sci_scif_sh4,
3497 	}, {
3498 		.compatible = "renesas,scifa",
3499 		.data = &of_sci_scifa,
3500 	}, {
3501 		.compatible = "renesas,scifb",
3502 		.data = &of_sci_scifb,
3503 	}, {
3504 		.compatible = "renesas,hscif",
3505 		.data = &of_sci_hscif,
3506 	}, {
3507 		.compatible = "renesas,sci",
3508 		.data = &of_sci_sci,
3509 	}, {
3510 		/* Terminator */
3511 	},
3512 };
3513 MODULE_DEVICE_TABLE(of, of_sci_match);
3514 
sci_reset_control_assert(void * data)3515 static void sci_reset_control_assert(void *data)
3516 {
3517 	reset_control_assert(data);
3518 }
3519 
sci_parse_dt(struct platform_device * pdev,unsigned int * dev_id)3520 static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev,
3521 					  unsigned int *dev_id)
3522 {
3523 	struct device_node *np = pdev->dev.of_node;
3524 	struct reset_control *rstc;
3525 	struct plat_sci_port *p;
3526 	struct sci_port *sp;
3527 	const struct sci_of_data *data;
3528 	int id, ret;
3529 
3530 	if (!IS_ENABLED(CONFIG_OF) || !np)
3531 		return ERR_PTR(-EINVAL);
3532 
3533 	data = of_device_get_match_data(&pdev->dev);
3534 
3535 	rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
3536 	if (IS_ERR(rstc))
3537 		return ERR_PTR(dev_err_probe(&pdev->dev, PTR_ERR(rstc),
3538 					     "failed to get reset ctrl\n"));
3539 
3540 	ret = reset_control_deassert(rstc);
3541 	if (ret) {
3542 		dev_err(&pdev->dev, "failed to deassert reset %d\n", ret);
3543 		return ERR_PTR(ret);
3544 	}
3545 
3546 	ret = devm_add_action_or_reset(&pdev->dev, sci_reset_control_assert, rstc);
3547 	if (ret) {
3548 		dev_err(&pdev->dev, "failed to register assert devm action, %d\n",
3549 			ret);
3550 		return ERR_PTR(ret);
3551 	}
3552 
3553 	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
3554 	if (!p)
3555 		return ERR_PTR(-ENOMEM);
3556 
3557 	/* Get the line number from the aliases node. */
3558 	id = of_alias_get_id(np, "serial");
3559 	if (id < 0 && ~sci_ports_in_use)
3560 		id = ffz(sci_ports_in_use);
3561 	if (id < 0) {
3562 		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
3563 		return ERR_PTR(-EINVAL);
3564 	}
3565 	if (id >= ARRAY_SIZE(sci_ports)) {
3566 		dev_err(&pdev->dev, "serial%d out of range\n", id);
3567 		return ERR_PTR(-EINVAL);
3568 	}
3569 
3570 	sp = &sci_ports[id];
3571 	sp->rstc = rstc;
3572 	*dev_id = id;
3573 
3574 	p->type = data->type;
3575 	p->regtype = data->regtype;
3576 
3577 	sp->ops = data->ops;
3578 	sp->port.ops = data->uart_ops;
3579 	sp->params = data->params;
3580 
3581 	sp->has_rtscts = of_property_read_bool(np, "uart-has-rtscts");
3582 
3583 	return p;
3584 }
3585 
sci_probe_single(struct platform_device * dev,unsigned int index,struct plat_sci_port * p,struct sci_port * sciport,struct resource * sci_res)3586 static int sci_probe_single(struct platform_device *dev,
3587 				      unsigned int index,
3588 				      struct plat_sci_port *p,
3589 				      struct sci_port *sciport,
3590 				      struct resource *sci_res)
3591 {
3592 	int ret;
3593 
3594 	/* Sanity check */
3595 	if (unlikely(index >= SCI_NPORTS)) {
3596 		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
3597 			   index+1, SCI_NPORTS);
3598 		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3599 		return -EINVAL;
3600 	}
3601 	BUILD_BUG_ON(SCI_NPORTS > sizeof(sci_ports_in_use) * 8);
3602 	if (sci_ports_in_use & BIT(index))
3603 		return -EBUSY;
3604 
3605 	mutex_lock(&sci_uart_registration_lock);
3606 	if (!sci_uart_driver.state) {
3607 		ret = uart_register_driver(&sci_uart_driver);
3608 		if (ret) {
3609 			mutex_unlock(&sci_uart_registration_lock);
3610 			return ret;
3611 		}
3612 	}
3613 	mutex_unlock(&sci_uart_registration_lock);
3614 
3615 	ret = sci_init_single(dev, sciport, index, p, false);
3616 	if (ret)
3617 		return ret;
3618 
3619 	sciport->port.dev = &dev->dev;
3620 	ret = devm_pm_runtime_enable(&dev->dev);
3621 	if (ret)
3622 		return ret;
3623 
3624 	sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
3625 	if (IS_ERR(sciport->gpios))
3626 		return PTR_ERR(sciport->gpios);
3627 
3628 	if (sciport->has_rtscts) {
3629 		if (mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_CTS) ||
3630 		    mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_RTS)) {
3631 			dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3632 			return -EINVAL;
3633 		}
3634 		sciport->port.flags |= UPF_HARD_FLOW;
3635 	}
3636 
3637 	if (sci_uart_earlycon && sci_ports[0].port.mapbase == sci_res->start) {
3638 		/*
3639 		 * In case:
3640 		 * - this is the earlycon port (mapped on index 0 in sci_ports[]) and
3641 		 * - it now maps to an alias other than zero and
3642 		 * - the earlycon is still alive (e.g., "earlycon keep_bootcon" is
3643 		 *   available in bootargs)
3644 		 *
3645 		 * we need to avoid disabling clocks and PM domains through the runtime
3646 		 * PM APIs called in __device_attach(). For this, increment the runtime
3647 		 * PM reference counter (the clocks and PM domains were already enabled
3648 		 * by the bootloader). Otherwise the earlycon may access the HW when it
3649 		 * has no clocks enabled leading to failures (infinite loop in
3650 		 * sci_poll_put_char()).
3651 		 */
3652 		pm_runtime_get_noresume(&dev->dev);
3653 
3654 		/*
3655 		 * Skip cleanup the sci_port[0] in early_console_exit(), this
3656 		 * port is the same as the earlycon one.
3657 		 */
3658 		sci_uart_earlycon_dev_probing = true;
3659 	}
3660 
3661 	return uart_add_one_port(&sci_uart_driver, &sciport->port);
3662 }
3663 
sci_probe(struct platform_device * dev)3664 static int sci_probe(struct platform_device *dev)
3665 {
3666 	struct plat_sci_port *p;
3667 	struct resource *res;
3668 	struct sci_port *sp;
3669 	unsigned int dev_id;
3670 	int ret;
3671 
3672 	/*
3673 	 * If we've come here via earlyprintk initialization, head off to
3674 	 * the special early probe. We don't have sufficient device state
3675 	 * to make it beyond this yet.
3676 	 */
3677 #ifdef CONFIG_SUPERH
3678 	if (is_sh_early_platform_device(dev))
3679 		return sci_probe_earlyprintk(dev);
3680 #endif
3681 
3682 	if (dev->dev.of_node) {
3683 		p = sci_parse_dt(dev, &dev_id);
3684 		if (IS_ERR(p))
3685 			return PTR_ERR(p);
3686 		sp = &sci_ports[dev_id];
3687 	} else {
3688 		p = dev->dev.platform_data;
3689 		if (p == NULL) {
3690 			dev_err(&dev->dev, "no platform data supplied\n");
3691 			return -EINVAL;
3692 		}
3693 
3694 		dev_id = dev->id;
3695 		sp = &sci_ports[dev_id];
3696 		sp->params = sci_probe_regmap(p, sp);
3697 		if (!sp->params)
3698 			return -ENODEV;
3699 	}
3700 
3701 	sp->suspend_regs = devm_kzalloc(&dev->dev,
3702 					sp->ops->suspend_regs_size(),
3703 					GFP_KERNEL);
3704 	if (!sp->suspend_regs)
3705 		return -ENOMEM;
3706 
3707 	/*
3708 	 * In case:
3709 	 * - the probed port alias is zero (as the one used by earlycon), and
3710 	 * - the earlycon is still active (e.g., "earlycon keep_bootcon" in
3711 	 *   bootargs)
3712 	 *
3713 	 * defer the probe of this serial. This is a debug scenario and the user
3714 	 * must be aware of it.
3715 	 *
3716 	 * Except when the probed port is the same as the earlycon port.
3717 	 */
3718 
3719 	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
3720 	if (!res)
3721 		return -ENODEV;
3722 
3723 	if (sci_uart_earlycon && sp == &sci_ports[0] && sp->port.mapbase != res->start)
3724 		return dev_err_probe(&dev->dev, -EBUSY, "sci_port[0] is used by earlycon!\n");
3725 
3726 	platform_set_drvdata(dev, sp);
3727 
3728 	ret = sci_probe_single(dev, dev_id, p, sp, res);
3729 	if (ret)
3730 		return ret;
3731 
3732 	if (sp->port.fifosize > 1) {
3733 		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3734 		if (ret)
3735 			return ret;
3736 	}
3737 	if (sp->type == PORT_SCIFA || sp->type == PORT_SCIFB ||
3738 	    sp->type == PORT_HSCIF || sp->type == SCI_PORT_RSCI) {
3739 		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3740 		if (ret) {
3741 			if (sp->port.fifosize > 1) {
3742 				device_remove_file(&dev->dev,
3743 						   &dev_attr_rx_fifo_trigger);
3744 			}
3745 			return ret;
3746 		}
3747 	}
3748 
3749 #ifdef CONFIG_SH_STANDARD_BIOS
3750 	sh_bios_gdb_detach();
3751 #endif
3752 
3753 	sci_ports_in_use |= BIT(dev_id);
3754 	return 0;
3755 }
3756 
sci_suspend(struct device * dev)3757 static int sci_suspend(struct device *dev)
3758 {
3759 	struct sci_port *sport = dev_get_drvdata(dev);
3760 
3761 	if (sport) {
3762 		uart_suspend_port(&sci_uart_driver, &sport->port);
3763 
3764 		if (!console_suspend_enabled && uart_console(&sport->port)) {
3765 			if (sport->ops->console_save)
3766 				sport->ops->console_save(&sport->port);
3767 		}
3768 		else
3769 			return reset_control_assert(sport->rstc);
3770 	}
3771 
3772 	return 0;
3773 }
3774 
sci_resume(struct device * dev)3775 static int sci_resume(struct device *dev)
3776 {
3777 	struct sci_port *sport = dev_get_drvdata(dev);
3778 
3779 	if (sport) {
3780 		if (!console_suspend_enabled && uart_console(&sport->port)) {
3781 			if (sport->ops->console_restore)
3782 				sport->ops->console_restore(&sport->port);
3783 		} else {
3784 			int ret = reset_control_deassert(sport->rstc);
3785 
3786 			if (ret)
3787 				return ret;
3788 		}
3789 
3790 		uart_resume_port(&sci_uart_driver, &sport->port);
3791 	}
3792 
3793 	return 0;
3794 }
3795 
3796 static DEFINE_SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
3797 
3798 static struct platform_driver sci_driver = {
3799 	.probe		= sci_probe,
3800 	.remove		= sci_remove,
3801 	.driver		= {
3802 		.name	= "sh-sci",
3803 		.pm	= pm_sleep_ptr(&sci_dev_pm_ops),
3804 		.of_match_table = of_match_ptr(of_sci_match),
3805 	},
3806 };
3807 
sci_init(void)3808 static int __init sci_init(void)
3809 {
3810 	pr_info("%s\n", banner);
3811 
3812 	return platform_driver_register(&sci_driver);
3813 }
3814 
sci_exit(void)3815 static void __exit sci_exit(void)
3816 {
3817 	platform_driver_unregister(&sci_driver);
3818 
3819 	if (sci_uart_driver.state)
3820 		uart_unregister_driver(&sci_uart_driver);
3821 }
3822 
3823 #if defined(CONFIG_SUPERH) && defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
3824 sh_early_platform_init_buffer("earlyprintk", &sci_driver,
3825 			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
3826 #endif
3827 #ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3828 static struct plat_sci_port port_cfg;
3829 
early_console_exit(struct console * co)3830 static int early_console_exit(struct console *co)
3831 {
3832 	struct sci_port *sci_port = &sci_ports[0];
3833 
3834 	/*
3835 	 * Clean the slot used by earlycon. A new SCI device might
3836 	 * map to this slot.
3837 	 */
3838 	if (!sci_uart_earlycon_dev_probing) {
3839 		memset(sci_port, 0, sizeof(*sci_port));
3840 		sci_uart_earlycon = false;
3841 	}
3842 
3843 	return 0;
3844 }
3845 
scix_early_console_setup(struct earlycon_device * device,const struct sci_of_data * data)3846 int __init scix_early_console_setup(struct earlycon_device *device,
3847 				    const struct sci_of_data *data)
3848 {
3849 	const struct sci_common_regs *regs;
3850 
3851 	if (!device->port.membase)
3852 		return -ENODEV;
3853 
3854 	device->port.type = SCI_PUBLIC_PORT_ID(data->type);
3855 
3856 	sci_ports[0].port = device->port;
3857 	sci_ports[0].type = data->type;
3858 	sci_ports[0].regtype = data->regtype;
3859 
3860 	port_cfg.type = data->type;
3861 	port_cfg.regtype = data->regtype;
3862 
3863 	sci_ports[0].cfg = &port_cfg;
3864 	sci_ports[0].params = data->params;
3865 	sci_ports[0].ops = data->ops;
3866 	sci_ports[0].port.ops = data->uart_ops;
3867 	sci_uart_earlycon = true;
3868 	regs = sci_ports[0].params->common_regs;
3869 
3870 	port_cfg.scscr = sci_ports[0].ops->read_reg(&sci_ports[0].port, regs->control);
3871 	sci_ports[0].ops->write_reg(&sci_ports[0].port,
3872 				    regs->control,
3873 				    sci_ports[0].params->param_bits->rxtx_enable | port_cfg.scscr);
3874 
3875 	device->con->write = serial_console_write;
3876 	device->con->exit = early_console_exit;
3877 
3878 	return 0;
3879 }
sci_early_console_setup(struct earlycon_device * device,const char * opt)3880 static int __init sci_early_console_setup(struct earlycon_device *device,
3881 					  const char *opt)
3882 {
3883 	return scix_early_console_setup(device, &of_sci_sci);
3884 }
scif_early_console_setup(struct earlycon_device * device,const char * opt)3885 static int __init scif_early_console_setup(struct earlycon_device *device,
3886 					  const char *opt)
3887 {
3888 	return scix_early_console_setup(device, &of_sci_scif_sh4);
3889 }
rzscifa_early_console_setup(struct earlycon_device * device,const char * opt)3890 static int __init rzscifa_early_console_setup(struct earlycon_device *device,
3891 					  const char *opt)
3892 {
3893 	return scix_early_console_setup(device, &of_sci_scif_rz_scifa);
3894 }
3895 
rzv2hscif_early_console_setup(struct earlycon_device * device,const char * opt)3896 static int __init rzv2hscif_early_console_setup(struct earlycon_device *device,
3897 						const char *opt)
3898 {
3899 	return scix_early_console_setup(device, &of_sci_scif_rzv2h);
3900 }
3901 
scifa_early_console_setup(struct earlycon_device * device,const char * opt)3902 static int __init scifa_early_console_setup(struct earlycon_device *device,
3903 					  const char *opt)
3904 {
3905 	return scix_early_console_setup(device, &of_sci_scifa);
3906 }
scifb_early_console_setup(struct earlycon_device * device,const char * opt)3907 static int __init scifb_early_console_setup(struct earlycon_device *device,
3908 					  const char *opt)
3909 {
3910 	return scix_early_console_setup(device, &of_sci_scifb);
3911 }
hscif_early_console_setup(struct earlycon_device * device,const char * opt)3912 static int __init hscif_early_console_setup(struct earlycon_device *device,
3913 					  const char *opt)
3914 {
3915 	return scix_early_console_setup(device, &of_sci_hscif);
3916 }
3917 
3918 OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3919 OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3920 OF_EARLYCON_DECLARE(scif, "renesas,scif-r7s9210", rzscifa_early_console_setup);
3921 OF_EARLYCON_DECLARE(scif, "renesas,scif-r9a07g044", rzscifa_early_console_setup);
3922 OF_EARLYCON_DECLARE(scif, "renesas,scif-r9a09g057", rzv2hscif_early_console_setup);
3923 OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3924 OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3925 OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3926 #endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3927 
3928 module_init(sci_init);
3929 module_exit(sci_exit);
3930 
3931 MODULE_LICENSE("GPL");
3932 MODULE_ALIAS("platform:sh-sci");
3933 MODULE_AUTHOR("Paul Mundt");
3934 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
3935