xref: /linux/drivers/gpu/drm/xe/xe_device.c (revision 89748acdf226fd1a8775ff6fa2703f8412b286c8)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_device.h"
7 
8 #include <linux/aperture.h>
9 #include <linux/delay.h>
10 #include <linux/fault-inject.h>
11 #include <linux/units.h>
12 
13 #include <drm/drm_atomic_helper.h>
14 #include <drm/drm_client.h>
15 #include <drm/drm_gem_ttm_helper.h>
16 #include <drm/drm_ioctl.h>
17 #include <drm/drm_managed.h>
18 #include <drm/drm_print.h>
19 #include <uapi/drm/xe_drm.h>
20 
21 #include "display/xe_display.h"
22 #include "instructions/xe_gpu_commands.h"
23 #include "regs/xe_gt_regs.h"
24 #include "regs/xe_regs.h"
25 #include "xe_bo.h"
26 #include "xe_bo_evict.h"
27 #include "xe_debugfs.h"
28 #include "xe_devcoredump.h"
29 #include "xe_device_sysfs.h"
30 #include "xe_dma_buf.h"
31 #include "xe_drm_client.h"
32 #include "xe_drv.h"
33 #include "xe_exec.h"
34 #include "xe_exec_queue.h"
35 #include "xe_force_wake.h"
36 #include "xe_ggtt.h"
37 #include "xe_gsc_proxy.h"
38 #include "xe_gt.h"
39 #include "xe_gt_mcr.h"
40 #include "xe_gt_printk.h"
41 #include "xe_gt_sriov_vf.h"
42 #include "xe_guc.h"
43 #include "xe_guc_pc.h"
44 #include "xe_hw_engine_group.h"
45 #include "xe_hwmon.h"
46 #include "xe_i2c.h"
47 #include "xe_irq.h"
48 #include "xe_mmio.h"
49 #include "xe_module.h"
50 #include "xe_nvm.h"
51 #include "xe_oa.h"
52 #include "xe_observation.h"
53 #include "xe_pat.h"
54 #include "xe_pcode.h"
55 #include "xe_pm.h"
56 #include "xe_pmu.h"
57 #include "xe_pxp.h"
58 #include "xe_query.h"
59 #include "xe_shrinker.h"
60 #include "xe_survivability_mode.h"
61 #include "xe_sriov.h"
62 #include "xe_tile.h"
63 #include "xe_ttm_stolen_mgr.h"
64 #include "xe_ttm_sys_mgr.h"
65 #include "xe_vm.h"
66 #include "xe_vram.h"
67 #include "xe_vsec.h"
68 #include "xe_wait_user_fence.h"
69 #include "xe_wa.h"
70 
71 #include <generated/xe_device_wa_oob.h>
72 #include <generated/xe_wa_oob.h>
73 
xe_file_open(struct drm_device * dev,struct drm_file * file)74 static int xe_file_open(struct drm_device *dev, struct drm_file *file)
75 {
76 	struct xe_device *xe = to_xe_device(dev);
77 	struct xe_drm_client *client;
78 	struct xe_file *xef;
79 	int ret = -ENOMEM;
80 	struct task_struct *task = NULL;
81 
82 	xef = kzalloc(sizeof(*xef), GFP_KERNEL);
83 	if (!xef)
84 		return ret;
85 
86 	client = xe_drm_client_alloc();
87 	if (!client) {
88 		kfree(xef);
89 		return ret;
90 	}
91 
92 	xef->drm = file;
93 	xef->client = client;
94 	xef->xe = xe;
95 
96 	mutex_init(&xef->vm.lock);
97 	xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1);
98 
99 	mutex_init(&xef->exec_queue.lock);
100 	xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1);
101 
102 	file->driver_priv = xef;
103 	kref_init(&xef->refcount);
104 
105 	task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID);
106 	if (task) {
107 		xef->process_name = kstrdup(task->comm, GFP_KERNEL);
108 		xef->pid = task->pid;
109 		put_task_struct(task);
110 	}
111 
112 	return 0;
113 }
114 
xe_file_destroy(struct kref * ref)115 static void xe_file_destroy(struct kref *ref)
116 {
117 	struct xe_file *xef = container_of(ref, struct xe_file, refcount);
118 
119 	xa_destroy(&xef->exec_queue.xa);
120 	mutex_destroy(&xef->exec_queue.lock);
121 	xa_destroy(&xef->vm.xa);
122 	mutex_destroy(&xef->vm.lock);
123 
124 	xe_drm_client_put(xef->client);
125 	kfree(xef->process_name);
126 	kfree(xef);
127 }
128 
129 /**
130  * xe_file_get() - Take a reference to the xe file object
131  * @xef: Pointer to the xe file
132  *
133  * Anyone with a pointer to xef must take a reference to the xe file
134  * object using this call.
135  *
136  * Return: xe file pointer
137  */
xe_file_get(struct xe_file * xef)138 struct xe_file *xe_file_get(struct xe_file *xef)
139 {
140 	kref_get(&xef->refcount);
141 	return xef;
142 }
143 
144 /**
145  * xe_file_put() - Drop a reference to the xe file object
146  * @xef: Pointer to the xe file
147  *
148  * Used to drop reference to the xef object
149  */
xe_file_put(struct xe_file * xef)150 void xe_file_put(struct xe_file *xef)
151 {
152 	kref_put(&xef->refcount, xe_file_destroy);
153 }
154 
xe_file_close(struct drm_device * dev,struct drm_file * file)155 static void xe_file_close(struct drm_device *dev, struct drm_file *file)
156 {
157 	struct xe_device *xe = to_xe_device(dev);
158 	struct xe_file *xef = file->driver_priv;
159 	struct xe_vm *vm;
160 	struct xe_exec_queue *q;
161 	unsigned long idx;
162 
163 	xe_pm_runtime_get(xe);
164 
165 	/*
166 	 * No need for exec_queue.lock here as there is no contention for it
167 	 * when FD is closing as IOCTLs presumably can't be modifying the
168 	 * xarray. Taking exec_queue.lock here causes undue dependency on
169 	 * vm->lock taken during xe_exec_queue_kill().
170 	 */
171 	xa_for_each(&xef->exec_queue.xa, idx, q) {
172 		if (q->vm && q->hwe->hw_engine_group)
173 			xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q);
174 		xe_exec_queue_kill(q);
175 		xe_exec_queue_put(q);
176 	}
177 	xa_for_each(&xef->vm.xa, idx, vm)
178 		xe_vm_close_and_put(vm);
179 
180 	xe_file_put(xef);
181 
182 	xe_pm_runtime_put(xe);
183 }
184 
185 static const struct drm_ioctl_desc xe_ioctls[] = {
186 	DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW),
187 	DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW),
188 	DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl,
189 			  DRM_RENDER_ALLOW),
190 	DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW),
191 	DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW),
192 	DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW),
193 	DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW),
194 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl,
195 			  DRM_RENDER_ALLOW),
196 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl,
197 			  DRM_RENDER_ALLOW),
198 	DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl,
199 			  DRM_RENDER_ALLOW),
200 	DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl,
201 			  DRM_RENDER_ALLOW),
202 	DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW),
203 };
204 
xe_drm_ioctl(struct file * file,unsigned int cmd,unsigned long arg)205 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
206 {
207 	struct drm_file *file_priv = file->private_data;
208 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
209 	long ret;
210 
211 	if (xe_device_wedged(xe))
212 		return -ECANCELED;
213 
214 	ret = xe_pm_runtime_get_ioctl(xe);
215 	if (ret >= 0)
216 		ret = drm_ioctl(file, cmd, arg);
217 	xe_pm_runtime_put(xe);
218 
219 	return ret;
220 }
221 
222 #ifdef CONFIG_COMPAT
xe_drm_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)223 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
224 {
225 	struct drm_file *file_priv = file->private_data;
226 	struct xe_device *xe = to_xe_device(file_priv->minor->dev);
227 	long ret;
228 
229 	if (xe_device_wedged(xe))
230 		return -ECANCELED;
231 
232 	ret = xe_pm_runtime_get_ioctl(xe);
233 	if (ret >= 0)
234 		ret = drm_compat_ioctl(file, cmd, arg);
235 	xe_pm_runtime_put(xe);
236 
237 	return ret;
238 }
239 #else
240 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */
241 #define xe_drm_compat_ioctl NULL
242 #endif
243 
barrier_open(struct vm_area_struct * vma)244 static void barrier_open(struct vm_area_struct *vma)
245 {
246 	drm_dev_get(vma->vm_private_data);
247 }
248 
barrier_close(struct vm_area_struct * vma)249 static void barrier_close(struct vm_area_struct *vma)
250 {
251 	drm_dev_put(vma->vm_private_data);
252 }
253 
barrier_release_dummy_page(struct drm_device * dev,void * res)254 static void barrier_release_dummy_page(struct drm_device *dev, void *res)
255 {
256 	struct page *dummy_page = (struct page *)res;
257 
258 	__free_page(dummy_page);
259 }
260 
barrier_fault(struct vm_fault * vmf)261 static vm_fault_t barrier_fault(struct vm_fault *vmf)
262 {
263 	struct drm_device *dev = vmf->vma->vm_private_data;
264 	struct vm_area_struct *vma = vmf->vma;
265 	vm_fault_t ret = VM_FAULT_NOPAGE;
266 	pgprot_t prot;
267 	int idx;
268 
269 	prot = vm_get_page_prot(vma->vm_flags);
270 
271 	if (drm_dev_enter(dev, &idx)) {
272 		unsigned long pfn;
273 
274 #define LAST_DB_PAGE_OFFSET 0x7ff001
275 		pfn = PHYS_PFN(pci_resource_start(to_pci_dev(dev->dev), 0) +
276 				LAST_DB_PAGE_OFFSET);
277 		ret = vmf_insert_pfn_prot(vma, vma->vm_start, pfn,
278 					  pgprot_noncached(prot));
279 		drm_dev_exit(idx);
280 	} else {
281 		struct page *page;
282 
283 		/* Allocate new dummy page to map all the VA range in this VMA to it*/
284 		page = alloc_page(GFP_KERNEL | __GFP_ZERO);
285 		if (!page)
286 			return VM_FAULT_OOM;
287 
288 		/* Set the page to be freed using drmm release action */
289 		if (drmm_add_action_or_reset(dev, barrier_release_dummy_page, page))
290 			return VM_FAULT_OOM;
291 
292 		ret = vmf_insert_pfn_prot(vma, vma->vm_start, page_to_pfn(page),
293 					  prot);
294 	}
295 
296 	return ret;
297 }
298 
299 static const struct vm_operations_struct vm_ops_barrier = {
300 	.open = barrier_open,
301 	.close = barrier_close,
302 	.fault = barrier_fault,
303 };
304 
xe_pci_barrier_mmap(struct file * filp,struct vm_area_struct * vma)305 static int xe_pci_barrier_mmap(struct file *filp,
306 			       struct vm_area_struct *vma)
307 {
308 	struct drm_file *priv = filp->private_data;
309 	struct drm_device *dev = priv->minor->dev;
310 	struct xe_device *xe = to_xe_device(dev);
311 
312 	if (!IS_DGFX(xe))
313 		return -EINVAL;
314 
315 	if (vma->vm_end - vma->vm_start > SZ_4K)
316 		return -EINVAL;
317 
318 	if (is_cow_mapping(vma->vm_flags))
319 		return -EINVAL;
320 
321 	if (vma->vm_flags & (VM_READ | VM_EXEC))
322 		return -EINVAL;
323 
324 	vm_flags_clear(vma, VM_MAYREAD | VM_MAYEXEC);
325 	vm_flags_set(vma, VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP | VM_IO);
326 	vma->vm_ops = &vm_ops_barrier;
327 	vma->vm_private_data = dev;
328 	drm_dev_get(vma->vm_private_data);
329 
330 	return 0;
331 }
332 
xe_mmap(struct file * filp,struct vm_area_struct * vma)333 static int xe_mmap(struct file *filp, struct vm_area_struct *vma)
334 {
335 	struct drm_file *priv = filp->private_data;
336 	struct drm_device *dev = priv->minor->dev;
337 
338 	if (drm_dev_is_unplugged(dev))
339 		return -ENODEV;
340 
341 	switch (vma->vm_pgoff) {
342 	case XE_PCI_BARRIER_MMAP_OFFSET >> XE_PTE_SHIFT:
343 		return xe_pci_barrier_mmap(filp, vma);
344 	}
345 
346 	return drm_gem_mmap(filp, vma);
347 }
348 
349 static const struct file_operations xe_driver_fops = {
350 	.owner = THIS_MODULE,
351 	.open = drm_open,
352 	.release = drm_release_noglobal,
353 	.unlocked_ioctl = xe_drm_ioctl,
354 	.mmap = xe_mmap,
355 	.poll = drm_poll,
356 	.read = drm_read,
357 	.compat_ioctl = xe_drm_compat_ioctl,
358 	.llseek = noop_llseek,
359 #ifdef CONFIG_PROC_FS
360 	.show_fdinfo = drm_show_fdinfo,
361 #endif
362 	.fop_flags = FOP_UNSIGNED_OFFSET,
363 };
364 
365 static struct drm_driver driver = {
366 	/* Don't use MTRRs here; the Xserver or userspace app should
367 	 * deal with them for Intel hardware.
368 	 */
369 	.driver_features =
370 	    DRIVER_GEM |
371 	    DRIVER_RENDER | DRIVER_SYNCOBJ |
372 	    DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA,
373 	.open = xe_file_open,
374 	.postclose = xe_file_close,
375 
376 	.gem_prime_import = xe_gem_prime_import,
377 
378 	.dumb_create = xe_bo_dumb_create,
379 	.dumb_map_offset = drm_gem_ttm_dumb_map_offset,
380 #ifdef CONFIG_PROC_FS
381 	.show_fdinfo = xe_drm_client_fdinfo,
382 #endif
383 	.ioctls = xe_ioctls,
384 	.num_ioctls = ARRAY_SIZE(xe_ioctls),
385 	.fops = &xe_driver_fops,
386 	.name = DRIVER_NAME,
387 	.desc = DRIVER_DESC,
388 	.major = DRIVER_MAJOR,
389 	.minor = DRIVER_MINOR,
390 	.patchlevel = DRIVER_PATCHLEVEL,
391 };
392 
xe_device_destroy(struct drm_device * dev,void * dummy)393 static void xe_device_destroy(struct drm_device *dev, void *dummy)
394 {
395 	struct xe_device *xe = to_xe_device(dev);
396 
397 	xe_bo_dev_fini(&xe->bo_device);
398 
399 	if (xe->preempt_fence_wq)
400 		destroy_workqueue(xe->preempt_fence_wq);
401 
402 	if (xe->ordered_wq)
403 		destroy_workqueue(xe->ordered_wq);
404 
405 	if (xe->unordered_wq)
406 		destroy_workqueue(xe->unordered_wq);
407 
408 	if (xe->destroy_wq)
409 		destroy_workqueue(xe->destroy_wq);
410 
411 	ttm_device_fini(&xe->ttm);
412 }
413 
xe_device_create(struct pci_dev * pdev,const struct pci_device_id * ent)414 struct xe_device *xe_device_create(struct pci_dev *pdev,
415 				   const struct pci_device_id *ent)
416 {
417 	struct xe_device *xe;
418 	int err;
419 
420 	xe_display_driver_set_hooks(&driver);
421 
422 	err = aperture_remove_conflicting_pci_devices(pdev, driver.name);
423 	if (err)
424 		return ERR_PTR(err);
425 
426 	xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm);
427 	if (IS_ERR(xe))
428 		return xe;
429 
430 	err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev,
431 			      xe->drm.anon_inode->i_mapping,
432 			      xe->drm.vma_offset_manager, false, false);
433 	if (WARN_ON(err))
434 		goto err;
435 
436 	xe_bo_dev_init(&xe->bo_device);
437 	err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL);
438 	if (err)
439 		goto err;
440 
441 	err = xe_shrinker_create(xe);
442 	if (err)
443 		goto err;
444 
445 	xe->info.devid = pdev->device;
446 	xe->info.revid = pdev->revision;
447 	xe->info.force_execlist = xe_modparam.force_execlist;
448 	xe->atomic_svm_timeslice_ms = 5;
449 
450 	err = xe_irq_init(xe);
451 	if (err)
452 		goto err;
453 
454 	init_waitqueue_head(&xe->ufence_wq);
455 
456 	init_rwsem(&xe->usm.lock);
457 
458 	xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC);
459 
460 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
461 		/* Trigger a large asid and an early asid wrap. */
462 		u32 asid;
463 
464 		BUILD_BUG_ON(XE_MAX_ASID < 2);
465 		err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL,
466 				      XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1),
467 				      &xe->usm.next_asid, GFP_KERNEL);
468 		drm_WARN_ON(&xe->drm, err);
469 		if (err >= 0)
470 			xa_erase(&xe->usm.asid_to_vm, asid);
471 	}
472 
473 	err = xe_bo_pinned_init(xe);
474 	if (err)
475 		goto err;
476 
477 	xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq",
478 						       WQ_MEM_RECLAIM);
479 	xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0);
480 	xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0);
481 	xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0);
482 	if (!xe->ordered_wq || !xe->unordered_wq ||
483 	    !xe->preempt_fence_wq || !xe->destroy_wq) {
484 		/*
485 		 * Cleanup done in xe_device_destroy via
486 		 * drmm_add_action_or_reset register above
487 		 */
488 		drm_err(&xe->drm, "Failed to allocate xe workqueues\n");
489 		err = -ENOMEM;
490 		goto err;
491 	}
492 
493 	err = drmm_mutex_init(&xe->drm, &xe->pmt.lock);
494 	if (err)
495 		goto err;
496 
497 	return xe;
498 
499 err:
500 	return ERR_PTR(err);
501 }
502 ALLOW_ERROR_INJECTION(xe_device_create, ERRNO); /* See xe_pci_probe() */
503 
xe_driver_flr_disabled(struct xe_device * xe)504 static bool xe_driver_flr_disabled(struct xe_device *xe)
505 {
506 	if (IS_SRIOV_VF(xe))
507 		return true;
508 
509 	if (xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS) {
510 		drm_info(&xe->drm, "Driver-FLR disabled by BIOS\n");
511 		return true;
512 	}
513 
514 	return false;
515 }
516 
517 /*
518  * The driver-initiated FLR is the highest level of reset that we can trigger
519  * from within the driver. It is different from the PCI FLR in that it doesn't
520  * fully reset the SGUnit and doesn't modify the PCI config space and therefore
521  * it doesn't require a re-enumeration of the PCI BARs. However, the
522  * driver-initiated FLR does still cause a reset of both GT and display and a
523  * memory wipe of local and stolen memory, so recovery would require a full HW
524  * re-init and saving/restoring (or re-populating) the wiped memory. Since we
525  * perform the FLR as the very last action before releasing access to the HW
526  * during the driver release flow, we don't attempt recovery at all, because
527  * if/when a new instance of i915 is bound to the device it will do a full
528  * re-init anyway.
529  */
__xe_driver_flr(struct xe_device * xe)530 static void __xe_driver_flr(struct xe_device *xe)
531 {
532 	const unsigned int flr_timeout = 3 * USEC_PER_SEC; /* specs recommend a 3s wait */
533 	struct xe_mmio *mmio = xe_root_tile_mmio(xe);
534 	int ret;
535 
536 	drm_dbg(&xe->drm, "Triggering Driver-FLR\n");
537 
538 	/*
539 	 * Make sure any pending FLR requests have cleared by waiting for the
540 	 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS
541 	 * to make sure it's not still set from a prior attempt (it's a write to
542 	 * clear bit).
543 	 * Note that we should never be in a situation where a previous attempt
544 	 * is still pending (unless the HW is totally dead), but better to be
545 	 * safe in case something unexpected happens
546 	 */
547 	ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
548 	if (ret) {
549 		drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret);
550 		return;
551 	}
552 	xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
553 
554 	/* Trigger the actual Driver-FLR */
555 	xe_mmio_rmw32(mmio, GU_CNTL, 0, DRIVERFLR);
556 
557 	/* Wait for hardware teardown to complete */
558 	ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
559 	if (ret) {
560 		drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret);
561 		return;
562 	}
563 
564 	/* Wait for hardware/firmware re-init to complete */
565 	ret = xe_mmio_wait32(mmio, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS,
566 			     flr_timeout, NULL, false);
567 	if (ret) {
568 		drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret);
569 		return;
570 	}
571 
572 	/* Clear sticky completion status */
573 	xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
574 }
575 
xe_driver_flr(struct xe_device * xe)576 static void xe_driver_flr(struct xe_device *xe)
577 {
578 	if (xe_driver_flr_disabled(xe))
579 		return;
580 
581 	__xe_driver_flr(xe);
582 }
583 
xe_driver_flr_fini(void * arg)584 static void xe_driver_flr_fini(void *arg)
585 {
586 	struct xe_device *xe = arg;
587 
588 	if (xe->needs_flr_on_fini)
589 		xe_driver_flr(xe);
590 }
591 
xe_device_sanitize(void * arg)592 static void xe_device_sanitize(void *arg)
593 {
594 	struct xe_device *xe = arg;
595 	struct xe_gt *gt;
596 	u8 id;
597 
598 	for_each_gt(gt, xe, id)
599 		xe_gt_sanitize(gt);
600 }
601 
xe_set_dma_info(struct xe_device * xe)602 static int xe_set_dma_info(struct xe_device *xe)
603 {
604 	unsigned int mask_size = xe->info.dma_mask_size;
605 	int err;
606 
607 	dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev));
608 
609 	err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
610 	if (err)
611 		goto mask_err;
612 
613 	err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
614 	if (err)
615 		goto mask_err;
616 
617 	return 0;
618 
619 mask_err:
620 	drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err);
621 	return err;
622 }
623 
verify_lmem_ready(struct xe_device * xe)624 static bool verify_lmem_ready(struct xe_device *xe)
625 {
626 	u32 val = xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL) & LMEM_INIT;
627 
628 	return !!val;
629 }
630 
wait_for_lmem_ready(struct xe_device * xe)631 static int wait_for_lmem_ready(struct xe_device *xe)
632 {
633 	unsigned long timeout, start;
634 
635 	if (!IS_DGFX(xe))
636 		return 0;
637 
638 	if (IS_SRIOV_VF(xe))
639 		return 0;
640 
641 	if (verify_lmem_ready(xe))
642 		return 0;
643 
644 	drm_dbg(&xe->drm, "Waiting for lmem initialization\n");
645 
646 	start = jiffies;
647 	timeout = start + secs_to_jiffies(60); /* 60 sec! */
648 
649 	do {
650 		if (signal_pending(current))
651 			return -EINTR;
652 
653 		/*
654 		 * The boot firmware initializes local memory and
655 		 * assesses its health. If memory training fails,
656 		 * the punit will have been instructed to keep the GT powered
657 		 * down.we won't be able to communicate with it
658 		 *
659 		 * If the status check is done before punit updates the register,
660 		 * it can lead to the system being unusable.
661 		 * use a timeout and defer the probe to prevent this.
662 		 */
663 		if (time_after(jiffies, timeout)) {
664 			drm_dbg(&xe->drm, "lmem not initialized by firmware\n");
665 			return -EPROBE_DEFER;
666 		}
667 
668 		msleep(20);
669 
670 	} while (!verify_lmem_ready(xe));
671 
672 	drm_dbg(&xe->drm, "lmem ready after %ums",
673 		jiffies_to_msecs(jiffies - start));
674 
675 	return 0;
676 }
677 ALLOW_ERROR_INJECTION(wait_for_lmem_ready, ERRNO); /* See xe_pci_probe() */
678 
sriov_update_device_info(struct xe_device * xe)679 static void sriov_update_device_info(struct xe_device *xe)
680 {
681 	/* disable features that are not available/applicable to VFs */
682 	if (IS_SRIOV_VF(xe)) {
683 		xe->info.probe_display = 0;
684 		xe->info.has_heci_cscfi = 0;
685 		xe->info.has_heci_gscfi = 0;
686 		xe->info.skip_guc_pc = 1;
687 		xe->info.skip_pcode = 1;
688 	}
689 }
690 
691 /**
692  * xe_device_probe_early: Device early probe
693  * @xe: xe device instance
694  *
695  * Initialize MMIO resources that don't require any
696  * knowledge about tile count. Also initialize pcode and
697  * check vram initialization on root tile.
698  *
699  * Return: 0 on success, error code on failure
700  */
xe_device_probe_early(struct xe_device * xe)701 int xe_device_probe_early(struct xe_device *xe)
702 {
703 	int err;
704 
705 	xe_wa_device_init(xe);
706 	xe_wa_process_device_oob(xe);
707 
708 	err = xe_mmio_probe_early(xe);
709 	if (err)
710 		return err;
711 
712 	xe_sriov_probe_early(xe);
713 
714 	sriov_update_device_info(xe);
715 
716 	err = xe_pcode_probe_early(xe);
717 	if (err || xe_survivability_mode_is_requested(xe)) {
718 		int save_err = err;
719 
720 		/*
721 		 * Try to leave device in survivability mode if device is
722 		 * possible, but still return the previous error for error
723 		 * propagation
724 		 */
725 		err = xe_survivability_mode_enable(xe);
726 		if (err)
727 			return err;
728 
729 		return save_err;
730 	}
731 
732 	err = wait_for_lmem_ready(xe);
733 	if (err)
734 		return err;
735 
736 	xe->wedged.mode = xe_modparam.wedged_mode;
737 
738 	return 0;
739 }
740 ALLOW_ERROR_INJECTION(xe_device_probe_early, ERRNO); /* See xe_pci_probe() */
741 
probe_has_flat_ccs(struct xe_device * xe)742 static int probe_has_flat_ccs(struct xe_device *xe)
743 {
744 	struct xe_gt *gt;
745 	unsigned int fw_ref;
746 	u32 reg;
747 
748 	/* Always enabled/disabled, no runtime check to do */
749 	if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs || IS_SRIOV_VF(xe))
750 		return 0;
751 
752 	gt = xe_root_mmio_gt(xe);
753 
754 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
755 	if (!fw_ref)
756 		return -ETIMEDOUT;
757 
758 	reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER);
759 	xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE);
760 
761 	if (!xe->info.has_flat_ccs)
762 		drm_dbg(&xe->drm,
763 			"Flat CCS has been disabled in bios, May lead to performance impact");
764 
765 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
766 
767 	return 0;
768 }
769 
xe_device_probe(struct xe_device * xe)770 int xe_device_probe(struct xe_device *xe)
771 {
772 	struct xe_tile *tile;
773 	struct xe_gt *gt;
774 	int err;
775 	u8 id;
776 
777 	xe_pat_init_early(xe);
778 
779 	err = xe_sriov_init(xe);
780 	if (err)
781 		return err;
782 
783 	xe->info.mem_region_mask = 1;
784 
785 	err = xe_set_dma_info(xe);
786 	if (err)
787 		return err;
788 
789 	err = xe_mmio_probe_tiles(xe);
790 	if (err)
791 		return err;
792 
793 	for_each_gt(gt, xe, id) {
794 		err = xe_gt_init_early(gt);
795 		if (err)
796 			return err;
797 	}
798 
799 	for_each_tile(tile, xe, id) {
800 		err = xe_ggtt_init_early(tile->mem.ggtt);
801 		if (err)
802 			return err;
803 	}
804 
805 	err = xe_devcoredump_init(xe);
806 	if (err)
807 		return err;
808 
809 	/*
810 	 * From here on, if a step fails, make sure a Driver-FLR is triggereed
811 	 */
812 	err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe);
813 	if (err)
814 		return err;
815 
816 	err = probe_has_flat_ccs(xe);
817 	if (err)
818 		return err;
819 
820 	err = xe_vram_probe(xe);
821 	if (err)
822 		return err;
823 
824 	for_each_tile(tile, xe, id) {
825 		err = xe_tile_init_noalloc(tile);
826 		if (err)
827 			return err;
828 	}
829 
830 	/*
831 	 * Allow allocations only now to ensure xe_display_init_early()
832 	 * is the first to allocate, always.
833 	 */
834 	err = xe_ttm_sys_mgr_init(xe);
835 	if (err)
836 		return err;
837 
838 	/* Allocate and map stolen after potential VRAM resize */
839 	err = xe_ttm_stolen_mgr_init(xe);
840 	if (err)
841 		return err;
842 
843 	/*
844 	 * Now that GT is initialized (TTM in particular),
845 	 * we can try to init display, and inherit the initial fb.
846 	 * This is the reason the first allocation needs to be done
847 	 * inside display.
848 	 */
849 	err = xe_display_init_early(xe);
850 	if (err)
851 		return err;
852 
853 	for_each_tile(tile, xe, id) {
854 		err = xe_tile_init(tile);
855 		if (err)
856 			return err;
857 	}
858 
859 	err = xe_irq_install(xe);
860 	if (err)
861 		return err;
862 
863 	for_each_gt(gt, xe, id) {
864 		err = xe_gt_init(gt);
865 		if (err)
866 			return err;
867 	}
868 
869 	if (xe->tiles->media_gt &&
870 	    XE_WA(xe->tiles->media_gt, 15015404425_disable))
871 		XE_DEVICE_WA_DISABLE(xe, 15015404425);
872 
873 	xe_nvm_init(xe);
874 
875 	err = xe_heci_gsc_init(xe);
876 	if (err)
877 		return err;
878 
879 	err = xe_oa_init(xe);
880 	if (err)
881 		return err;
882 
883 	err = xe_display_init(xe);
884 	if (err)
885 		return err;
886 
887 	err = xe_pxp_init(xe);
888 	if (err)
889 		return err;
890 
891 	err = drm_dev_register(&xe->drm, 0);
892 	if (err)
893 		return err;
894 
895 	xe_display_register(xe);
896 
897 	err = xe_oa_register(xe);
898 	if (err)
899 		goto err_unregister_display;
900 
901 	err = xe_pmu_register(&xe->pmu);
902 	if (err)
903 		goto err_unregister_display;
904 
905 	err = xe_device_sysfs_init(xe);
906 	if (err)
907 		goto err_unregister_display;
908 
909 	xe_debugfs_register(xe);
910 
911 	err = xe_hwmon_register(xe);
912 	if (err)
913 		goto err_unregister_display;
914 
915 	err = xe_i2c_probe(xe);
916 	if (err)
917 		goto err_unregister_display;
918 
919 	for_each_gt(gt, xe, id)
920 		xe_gt_sanitize_freq(gt);
921 
922 	xe_vsec_init(xe);
923 
924 	return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe);
925 
926 err_unregister_display:
927 	xe_display_unregister(xe);
928 
929 	return err;
930 }
931 
xe_device_remove(struct xe_device * xe)932 void xe_device_remove(struct xe_device *xe)
933 {
934 	xe_display_unregister(xe);
935 
936 	xe_nvm_fini(xe);
937 
938 	drm_dev_unplug(&xe->drm);
939 
940 	xe_bo_pci_dev_remove_all(xe);
941 }
942 
xe_device_shutdown(struct xe_device * xe)943 void xe_device_shutdown(struct xe_device *xe)
944 {
945 	struct xe_gt *gt;
946 	u8 id;
947 
948 	drm_dbg(&xe->drm, "Shutting down device\n");
949 
950 	if (xe_driver_flr_disabled(xe)) {
951 		xe_display_pm_shutdown(xe);
952 
953 		xe_irq_suspend(xe);
954 
955 		for_each_gt(gt, xe, id)
956 			xe_gt_shutdown(gt);
957 
958 		xe_display_pm_shutdown_late(xe);
959 	} else {
960 		/* BOOM! */
961 		__xe_driver_flr(xe);
962 	}
963 }
964 
965 /**
966  * xe_device_wmb() - Device specific write memory barrier
967  * @xe: the &xe_device
968  *
969  * While wmb() is sufficient for a barrier if we use system memory, on discrete
970  * platforms with device memory we additionally need to issue a register write.
971  * Since it doesn't matter which register we write to, use the read-only VF_CAP
972  * register that is also marked as accessible by the VFs.
973  */
xe_device_wmb(struct xe_device * xe)974 void xe_device_wmb(struct xe_device *xe)
975 {
976 	wmb();
977 	if (IS_DGFX(xe))
978 		xe_mmio_write32(xe_root_tile_mmio(xe), VF_CAP_REG, 0);
979 }
980 
981 /*
982  * Issue a TRANSIENT_FLUSH_REQUEST and wait for completion on each gt.
983  */
tdf_request_sync(struct xe_device * xe)984 static void tdf_request_sync(struct xe_device *xe)
985 {
986 	unsigned int fw_ref;
987 	struct xe_gt *gt;
988 	u8 id;
989 
990 	for_each_gt(gt, xe, id) {
991 		if (xe_gt_is_media_type(gt))
992 			continue;
993 
994 		fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
995 		if (!fw_ref)
996 			return;
997 
998 		xe_mmio_write32(&gt->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST);
999 
1000 		/*
1001 		 * FIXME: We can likely do better here with our choice of
1002 		 * timeout. Currently we just assume the worst case, i.e. 150us,
1003 		 * which is believed to be sufficient to cover the worst case
1004 		 * scenario on current platforms if all cache entries are
1005 		 * transient and need to be flushed..
1006 		 */
1007 		if (xe_mmio_wait32(&gt->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0,
1008 				   150, NULL, false))
1009 			xe_gt_err_once(gt, "TD flush timeout\n");
1010 
1011 		xe_force_wake_put(gt_to_fw(gt), fw_ref);
1012 	}
1013 }
1014 
xe_device_l2_flush(struct xe_device * xe)1015 void xe_device_l2_flush(struct xe_device *xe)
1016 {
1017 	struct xe_gt *gt;
1018 	unsigned int fw_ref;
1019 
1020 	gt = xe_root_mmio_gt(xe);
1021 
1022 	if (!XE_WA(gt, 16023588340))
1023 		return;
1024 
1025 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
1026 	if (!fw_ref)
1027 		return;
1028 
1029 	spin_lock(&gt->global_invl_lock);
1030 
1031 	xe_mmio_write32(&gt->mmio, XE2_GLOBAL_INVAL, 0x1);
1032 	if (xe_mmio_wait32(&gt->mmio, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true))
1033 		xe_gt_err_once(gt, "Global invalidation timeout\n");
1034 
1035 	spin_unlock(&gt->global_invl_lock);
1036 
1037 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
1038 }
1039 
1040 /**
1041  * xe_device_td_flush() - Flush transient L3 cache entries
1042  * @xe: The device
1043  *
1044  * Display engine has direct access to memory and is never coherent with L3/L4
1045  * caches (or CPU caches), however KMD is responsible for specifically flushing
1046  * transient L3 GPU cache entries prior to the flip sequence to ensure scanout
1047  * can happen from such a surface without seeing corruption.
1048  *
1049  * Display surfaces can be tagged as transient by mapping it using one of the
1050  * various L3:XD PAT index modes on Xe2.
1051  *
1052  * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed
1053  * at the end of each submission via PIPE_CONTROL for compute/render, since SA
1054  * Media is not coherent with L3 and we want to support render-vs-media
1055  * usescases. For other engines like copy/blt the HW internally forces uncached
1056  * behaviour, hence why we can skip the TDF on such platforms.
1057  */
xe_device_td_flush(struct xe_device * xe)1058 void xe_device_td_flush(struct xe_device *xe)
1059 {
1060 	struct xe_gt *root_gt;
1061 
1062 	if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20)
1063 		return;
1064 
1065 	root_gt = xe_root_mmio_gt(xe);
1066 	if (XE_WA(root_gt, 16023588340)) {
1067 		/* A transient flush is not sufficient: flush the L2 */
1068 		xe_device_l2_flush(xe);
1069 	} else {
1070 		xe_guc_pc_apply_flush_freq_limit(&root_gt->uc.guc.pc);
1071 		tdf_request_sync(xe);
1072 		xe_guc_pc_remove_flush_freq_limit(&root_gt->uc.guc.pc);
1073 	}
1074 }
1075 
xe_device_ccs_bytes(struct xe_device * xe,u64 size)1076 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size)
1077 {
1078 	return xe_device_has_flat_ccs(xe) ?
1079 		DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0;
1080 }
1081 
1082 /**
1083  * xe_device_assert_mem_access - Inspect the current runtime_pm state.
1084  * @xe: xe device instance
1085  *
1086  * To be used before any kind of memory access. It will splat a debug warning
1087  * if the device is currently sleeping. But it doesn't guarantee in any way
1088  * that the device is going to remain awake. Xe PM runtime get and put
1089  * functions might be added to the outer bound of the memory access, while
1090  * this check is intended for inner usage to splat some warning if the worst
1091  * case has just happened.
1092  */
xe_device_assert_mem_access(struct xe_device * xe)1093 void xe_device_assert_mem_access(struct xe_device *xe)
1094 {
1095 	xe_assert(xe, !xe_pm_runtime_suspended(xe));
1096 }
1097 
xe_device_snapshot_print(struct xe_device * xe,struct drm_printer * p)1098 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p)
1099 {
1100 	struct xe_gt *gt;
1101 	u8 id;
1102 
1103 	drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid);
1104 	drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid);
1105 
1106 	for_each_gt(gt, xe, id) {
1107 		drm_printf(p, "GT id: %u\n", id);
1108 		drm_printf(p, "\tTile: %u\n", gt->tile->id);
1109 		drm_printf(p, "\tType: %s\n",
1110 			   gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media");
1111 		drm_printf(p, "\tIP ver: %u.%u.%u\n",
1112 			   REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid),
1113 			   REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid),
1114 			   REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid));
1115 		drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock);
1116 	}
1117 }
1118 
xe_device_canonicalize_addr(struct xe_device * xe,u64 address)1119 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address)
1120 {
1121 	return sign_extend64(address, xe->info.va_bits - 1);
1122 }
1123 
xe_device_uncanonicalize_addr(struct xe_device * xe,u64 address)1124 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address)
1125 {
1126 	return address & GENMASK_ULL(xe->info.va_bits - 1, 0);
1127 }
1128 
xe_device_wedged_fini(struct drm_device * drm,void * arg)1129 static void xe_device_wedged_fini(struct drm_device *drm, void *arg)
1130 {
1131 	struct xe_device *xe = arg;
1132 
1133 	xe_pm_runtime_put(xe);
1134 }
1135 
1136 /**
1137  * xe_device_declare_wedged - Declare device wedged
1138  * @xe: xe device instance
1139  *
1140  * This is a final state that can only be cleared with a module
1141  * re-probe (unbind + bind).
1142  * In this state every IOCTL will be blocked so the GT cannot be used.
1143  * In general it will be called upon any critical error such as gt reset
1144  * failure or guc loading failure. Userspace will be notified of this state
1145  * through device wedged uevent.
1146  * If xe.wedged module parameter is set to 2, this function will be called
1147  * on every single execution timeout (a.k.a. GPU hang) right after devcoredump
1148  * snapshot capture. In this mode, GT reset won't be attempted so the state of
1149  * the issue is preserved for further debugging.
1150  */
xe_device_declare_wedged(struct xe_device * xe)1151 void xe_device_declare_wedged(struct xe_device *xe)
1152 {
1153 	struct xe_gt *gt;
1154 	u8 id;
1155 
1156 	if (xe->wedged.mode == 0) {
1157 		drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n");
1158 		return;
1159 	}
1160 
1161 	xe_pm_runtime_get_noresume(xe);
1162 
1163 	if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) {
1164 		drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n");
1165 		return;
1166 	}
1167 
1168 	if (!atomic_xchg(&xe->wedged.flag, 1)) {
1169 		xe->needs_flr_on_fini = true;
1170 		drm_err(&xe->drm,
1171 			"CRITICAL: Xe has declared device %s as wedged.\n"
1172 			"IOCTLs and executions are blocked. Only a rebind may clear the failure\n"
1173 			"Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n",
1174 			dev_name(xe->drm.dev));
1175 
1176 		/* Notify userspace of wedged device */
1177 		drm_dev_wedged_event(&xe->drm,
1178 				     DRM_WEDGE_RECOVERY_REBIND | DRM_WEDGE_RECOVERY_BUS_RESET,
1179 				     NULL);
1180 	}
1181 
1182 	for_each_gt(gt, xe, id)
1183 		xe_gt_declare_wedged(gt);
1184 }
1185