1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * AMD SVM support
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Yaniv Kamay <yaniv@qumranet.com>
12 * Avi Kivity <avi@qumranet.com>
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/kvm_types.h>
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20
21 #include <asm/msr-index.h>
22 #include <asm/debugreg.h>
23
24 #include "kvm_emulate.h"
25 #include "trace.h"
26 #include "mmu.h"
27 #include "x86.h"
28 #include "smm.h"
29 #include "cpuid.h"
30 #include "lapic.h"
31 #include "svm.h"
32 #include "hyperv.h"
33
34 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
35
nested_svm_inject_npf_exit(struct kvm_vcpu * vcpu,struct x86_exception * fault)36 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
37 struct x86_exception *fault)
38 {
39 struct vcpu_svm *svm = to_svm(vcpu);
40 struct vmcb *vmcb = svm->vmcb;
41
42 if (vmcb->control.exit_code != SVM_EXIT_NPF) {
43 /*
44 * TODO: track the cause of the nested page fault, and
45 * correctly fill in the high bits of exit_info_1.
46 */
47 vmcb->control.exit_code = SVM_EXIT_NPF;
48 vmcb->control.exit_code_hi = 0;
49 vmcb->control.exit_info_1 = (1ULL << 32);
50 vmcb->control.exit_info_2 = fault->address;
51 }
52
53 vmcb->control.exit_info_1 &= ~0xffffffffULL;
54 vmcb->control.exit_info_1 |= fault->error_code;
55
56 nested_svm_vmexit(svm);
57 }
58
nested_svm_get_tdp_pdptr(struct kvm_vcpu * vcpu,int index)59 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
60 {
61 struct vcpu_svm *svm = to_svm(vcpu);
62 u64 cr3 = svm->nested.ctl.nested_cr3;
63 u64 pdpte;
64 int ret;
65
66 /*
67 * Note, nCR3 is "assumed" to be 32-byte aligned, i.e. the CPU ignores
68 * nCR3[4:0] when loading PDPTEs from memory.
69 */
70 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
71 (cr3 & GENMASK(11, 5)) + index * 8, 8);
72 if (ret)
73 return 0;
74 return pdpte;
75 }
76
nested_svm_get_tdp_cr3(struct kvm_vcpu * vcpu)77 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
78 {
79 struct vcpu_svm *svm = to_svm(vcpu);
80
81 return svm->nested.ctl.nested_cr3;
82 }
83
nested_svm_init_mmu_context(struct kvm_vcpu * vcpu)84 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
85 {
86 struct vcpu_svm *svm = to_svm(vcpu);
87
88 WARN_ON(mmu_is_nested(vcpu));
89
90 vcpu->arch.mmu = &vcpu->arch.guest_mmu;
91
92 /*
93 * The NPT format depends on L1's CR4 and EFER, which is in vmcb01. Note,
94 * when called via KVM_SET_NESTED_STATE, that state may _not_ match current
95 * vCPU state. CR0.WP is explicitly ignored, while CR0.PG is required.
96 */
97 kvm_init_shadow_npt_mmu(vcpu, X86_CR0_PG, svm->vmcb01.ptr->save.cr4,
98 svm->vmcb01.ptr->save.efer,
99 svm->nested.ctl.nested_cr3);
100 vcpu->arch.mmu->get_guest_pgd = nested_svm_get_tdp_cr3;
101 vcpu->arch.mmu->get_pdptr = nested_svm_get_tdp_pdptr;
102 vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit;
103 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
104 }
105
nested_svm_uninit_mmu_context(struct kvm_vcpu * vcpu)106 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
107 {
108 vcpu->arch.mmu = &vcpu->arch.root_mmu;
109 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
110 }
111
nested_vmcb_needs_vls_intercept(struct vcpu_svm * svm)112 static bool nested_vmcb_needs_vls_intercept(struct vcpu_svm *svm)
113 {
114 if (!guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_V_VMSAVE_VMLOAD))
115 return true;
116
117 if (!nested_npt_enabled(svm))
118 return true;
119
120 if (!(svm->nested.ctl.virt_ext & VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK))
121 return true;
122
123 return false;
124 }
125
recalc_intercepts(struct vcpu_svm * svm)126 void recalc_intercepts(struct vcpu_svm *svm)
127 {
128 struct vmcb_control_area *c, *h;
129 struct vmcb_ctrl_area_cached *g;
130 unsigned int i;
131
132 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
133
134 if (!is_guest_mode(&svm->vcpu))
135 return;
136
137 c = &svm->vmcb->control;
138 h = &svm->vmcb01.ptr->control;
139 g = &svm->nested.ctl;
140
141 for (i = 0; i < MAX_INTERCEPT; i++)
142 c->intercepts[i] = h->intercepts[i];
143
144 if (g->int_ctl & V_INTR_MASKING_MASK) {
145 /*
146 * If L2 is active and V_INTR_MASKING is enabled in vmcb12,
147 * disable intercept of CR8 writes as L2's CR8 does not affect
148 * any interrupt KVM may want to inject.
149 *
150 * Similarly, disable intercept of virtual interrupts (used to
151 * detect interrupt windows) if the saved RFLAGS.IF is '0', as
152 * the effective RFLAGS.IF for L1 interrupts will never be set
153 * while L2 is running (L2's RFLAGS.IF doesn't affect L1 IRQs).
154 */
155 vmcb_clr_intercept(c, INTERCEPT_CR8_WRITE);
156 if (!(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF))
157 vmcb_clr_intercept(c, INTERCEPT_VINTR);
158 }
159
160 /*
161 * We want to see VMMCALLs from a nested guest only when Hyper-V L2 TLB
162 * flush feature is enabled.
163 */
164 if (!nested_svm_l2_tlb_flush_enabled(&svm->vcpu))
165 vmcb_clr_intercept(c, INTERCEPT_VMMCALL);
166
167 for (i = 0; i < MAX_INTERCEPT; i++)
168 c->intercepts[i] |= g->intercepts[i];
169
170 /* If SMI is not intercepted, ignore guest SMI intercept as well */
171 if (!intercept_smi)
172 vmcb_clr_intercept(c, INTERCEPT_SMI);
173
174 if (nested_vmcb_needs_vls_intercept(svm)) {
175 /*
176 * If the virtual VMLOAD/VMSAVE is not enabled for the L2,
177 * we must intercept these instructions to correctly
178 * emulate them in case L1 doesn't intercept them.
179 */
180 vmcb_set_intercept(c, INTERCEPT_VMLOAD);
181 vmcb_set_intercept(c, INTERCEPT_VMSAVE);
182 } else {
183 WARN_ON(!(c->virt_ext & VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK));
184 }
185 }
186
187 /*
188 * This array (and its actual size) holds the set of offsets (indexing by chunk
189 * size) to process when merging vmcb12's MSRPM with vmcb01's MSRPM. Note, the
190 * set of MSRs for which interception is disabled in vmcb01 is per-vCPU, e.g.
191 * based on CPUID features. This array only tracks MSRs that *might* be passed
192 * through to the guest.
193 *
194 * Hardcode the capacity of the array based on the maximum number of _offsets_.
195 * MSRs are batched together, so there are fewer offsets than MSRs.
196 */
197 static int nested_svm_msrpm_merge_offsets[7] __ro_after_init;
198 static int nested_svm_nr_msrpm_merge_offsets __ro_after_init;
199 typedef unsigned long nsvm_msrpm_merge_t;
200
nested_svm_init_msrpm_merge_offsets(void)201 int __init nested_svm_init_msrpm_merge_offsets(void)
202 {
203 static const u32 merge_msrs[] __initconst = {
204 MSR_STAR,
205 MSR_IA32_SYSENTER_CS,
206 MSR_IA32_SYSENTER_EIP,
207 MSR_IA32_SYSENTER_ESP,
208 #ifdef CONFIG_X86_64
209 MSR_GS_BASE,
210 MSR_FS_BASE,
211 MSR_KERNEL_GS_BASE,
212 MSR_LSTAR,
213 MSR_CSTAR,
214 MSR_SYSCALL_MASK,
215 #endif
216 MSR_IA32_SPEC_CTRL,
217 MSR_IA32_PRED_CMD,
218 MSR_IA32_FLUSH_CMD,
219 MSR_IA32_APERF,
220 MSR_IA32_MPERF,
221 MSR_IA32_LASTBRANCHFROMIP,
222 MSR_IA32_LASTBRANCHTOIP,
223 MSR_IA32_LASTINTFROMIP,
224 MSR_IA32_LASTINTTOIP,
225 };
226 int i, j;
227
228 for (i = 0; i < ARRAY_SIZE(merge_msrs); i++) {
229 int bit_nr = svm_msrpm_bit_nr(merge_msrs[i]);
230 u32 offset;
231
232 if (WARN_ON(bit_nr < 0))
233 return -EIO;
234
235 /*
236 * Merging is done in chunks to reduce the number of accesses
237 * to L1's bitmap.
238 */
239 offset = bit_nr / BITS_PER_BYTE / sizeof(nsvm_msrpm_merge_t);
240
241 for (j = 0; j < nested_svm_nr_msrpm_merge_offsets; j++) {
242 if (nested_svm_msrpm_merge_offsets[j] == offset)
243 break;
244 }
245
246 if (j < nested_svm_nr_msrpm_merge_offsets)
247 continue;
248
249 if (WARN_ON(j >= ARRAY_SIZE(nested_svm_msrpm_merge_offsets)))
250 return -EIO;
251
252 nested_svm_msrpm_merge_offsets[j] = offset;
253 nested_svm_nr_msrpm_merge_offsets++;
254 }
255
256 return 0;
257 }
258
259 /*
260 * Merge L0's (KVM) and L1's (Nested VMCB) MSR permission bitmaps. The function
261 * is optimized in that it only merges the parts where KVM MSR permission bitmap
262 * may contain zero bits.
263 */
nested_svm_merge_msrpm(struct kvm_vcpu * vcpu)264 static bool nested_svm_merge_msrpm(struct kvm_vcpu *vcpu)
265 {
266 struct vcpu_svm *svm = to_svm(vcpu);
267 nsvm_msrpm_merge_t *msrpm02 = svm->nested.msrpm;
268 nsvm_msrpm_merge_t *msrpm01 = svm->msrpm;
269 int i;
270
271 /*
272 * MSR bitmap update can be skipped when:
273 * - MSR bitmap for L1 hasn't changed.
274 * - Nested hypervisor (L1) is attempting to launch the same L2 as
275 * before.
276 * - Nested hypervisor (L1) is using Hyper-V emulation interface and
277 * tells KVM (L0) there were no changes in MSR bitmap for L2.
278 */
279 #ifdef CONFIG_KVM_HYPERV
280 if (!svm->nested.force_msr_bitmap_recalc) {
281 struct hv_vmcb_enlightenments *hve = &svm->nested.ctl.hv_enlightenments;
282
283 if (kvm_hv_hypercall_enabled(vcpu) &&
284 hve->hv_enlightenments_control.msr_bitmap &&
285 (svm->nested.ctl.clean & BIT(HV_VMCB_NESTED_ENLIGHTENMENTS)))
286 goto set_msrpm_base_pa;
287 }
288 #endif
289
290 if (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_MSR_PROT)))
291 return true;
292
293 for (i = 0; i < nested_svm_nr_msrpm_merge_offsets; i++) {
294 const int p = nested_svm_msrpm_merge_offsets[i];
295 nsvm_msrpm_merge_t l1_val;
296 gpa_t gpa;
297
298 gpa = svm->nested.ctl.msrpm_base_pa + (p * sizeof(l1_val));
299
300 if (kvm_vcpu_read_guest(vcpu, gpa, &l1_val, sizeof(l1_val)))
301 return false;
302
303 msrpm02[p] = msrpm01[p] | l1_val;
304 }
305
306 svm->nested.force_msr_bitmap_recalc = false;
307
308 #ifdef CONFIG_KVM_HYPERV
309 set_msrpm_base_pa:
310 #endif
311 svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
312
313 return true;
314 }
315
316 /*
317 * Bits 11:0 of bitmap address are ignored by hardware
318 */
nested_svm_check_bitmap_pa(struct kvm_vcpu * vcpu,u64 pa,u32 size)319 static bool nested_svm_check_bitmap_pa(struct kvm_vcpu *vcpu, u64 pa, u32 size)
320 {
321 u64 addr = PAGE_ALIGN(pa);
322
323 return kvm_vcpu_is_legal_gpa(vcpu, addr) &&
324 kvm_vcpu_is_legal_gpa(vcpu, addr + size - 1);
325 }
326
__nested_vmcb_check_controls(struct kvm_vcpu * vcpu,struct vmcb_ctrl_area_cached * control)327 static bool __nested_vmcb_check_controls(struct kvm_vcpu *vcpu,
328 struct vmcb_ctrl_area_cached *control)
329 {
330 if (CC(!vmcb12_is_intercept(control, INTERCEPT_VMRUN)))
331 return false;
332
333 if (CC(control->asid == 0))
334 return false;
335
336 if (CC((control->nested_ctl & SVM_NESTED_CTL_NP_ENABLE) && !npt_enabled))
337 return false;
338
339 if (CC(!nested_svm_check_bitmap_pa(vcpu, control->msrpm_base_pa,
340 MSRPM_SIZE)))
341 return false;
342 if (CC(!nested_svm_check_bitmap_pa(vcpu, control->iopm_base_pa,
343 IOPM_SIZE)))
344 return false;
345
346 if (CC((control->int_ctl & V_NMI_ENABLE_MASK) &&
347 !vmcb12_is_intercept(control, INTERCEPT_NMI))) {
348 return false;
349 }
350
351 return true;
352 }
353
354 /* Common checks that apply to both L1 and L2 state. */
__nested_vmcb_check_save(struct kvm_vcpu * vcpu,struct vmcb_save_area_cached * save)355 static bool __nested_vmcb_check_save(struct kvm_vcpu *vcpu,
356 struct vmcb_save_area_cached *save)
357 {
358 if (CC(!(save->efer & EFER_SVME)))
359 return false;
360
361 if (CC((save->cr0 & X86_CR0_CD) == 0 && (save->cr0 & X86_CR0_NW)) ||
362 CC(save->cr0 & ~0xffffffffULL))
363 return false;
364
365 if (CC(!kvm_dr6_valid(save->dr6)) || CC(!kvm_dr7_valid(save->dr7)))
366 return false;
367
368 /*
369 * These checks are also performed by KVM_SET_SREGS,
370 * except that EFER.LMA is not checked by SVM against
371 * CR0.PG && EFER.LME.
372 */
373 if ((save->efer & EFER_LME) && (save->cr0 & X86_CR0_PG)) {
374 if (CC(!(save->cr4 & X86_CR4_PAE)) ||
375 CC(!(save->cr0 & X86_CR0_PE)) ||
376 CC(!kvm_vcpu_is_legal_cr3(vcpu, save->cr3)))
377 return false;
378 }
379
380 /* Note, SVM doesn't have any additional restrictions on CR4. */
381 if (CC(!__kvm_is_valid_cr4(vcpu, save->cr4)))
382 return false;
383
384 if (CC(!kvm_valid_efer(vcpu, save->efer)))
385 return false;
386
387 return true;
388 }
389
nested_vmcb_check_save(struct kvm_vcpu * vcpu)390 static bool nested_vmcb_check_save(struct kvm_vcpu *vcpu)
391 {
392 struct vcpu_svm *svm = to_svm(vcpu);
393 struct vmcb_save_area_cached *save = &svm->nested.save;
394
395 return __nested_vmcb_check_save(vcpu, save);
396 }
397
nested_vmcb_check_controls(struct kvm_vcpu * vcpu)398 static bool nested_vmcb_check_controls(struct kvm_vcpu *vcpu)
399 {
400 struct vcpu_svm *svm = to_svm(vcpu);
401 struct vmcb_ctrl_area_cached *ctl = &svm->nested.ctl;
402
403 return __nested_vmcb_check_controls(vcpu, ctl);
404 }
405
406 static
__nested_copy_vmcb_control_to_cache(struct kvm_vcpu * vcpu,struct vmcb_ctrl_area_cached * to,struct vmcb_control_area * from)407 void __nested_copy_vmcb_control_to_cache(struct kvm_vcpu *vcpu,
408 struct vmcb_ctrl_area_cached *to,
409 struct vmcb_control_area *from)
410 {
411 unsigned int i;
412
413 for (i = 0; i < MAX_INTERCEPT; i++)
414 to->intercepts[i] = from->intercepts[i];
415
416 to->iopm_base_pa = from->iopm_base_pa;
417 to->msrpm_base_pa = from->msrpm_base_pa;
418 to->tsc_offset = from->tsc_offset;
419 to->tlb_ctl = from->tlb_ctl;
420 to->int_ctl = from->int_ctl;
421 to->int_vector = from->int_vector;
422 to->int_state = from->int_state;
423 to->exit_code = from->exit_code;
424 to->exit_code_hi = from->exit_code_hi;
425 to->exit_info_1 = from->exit_info_1;
426 to->exit_info_2 = from->exit_info_2;
427 to->exit_int_info = from->exit_int_info;
428 to->exit_int_info_err = from->exit_int_info_err;
429 to->nested_ctl = from->nested_ctl;
430 to->event_inj = from->event_inj;
431 to->event_inj_err = from->event_inj_err;
432 to->next_rip = from->next_rip;
433 to->nested_cr3 = from->nested_cr3;
434 to->virt_ext = from->virt_ext;
435 to->pause_filter_count = from->pause_filter_count;
436 to->pause_filter_thresh = from->pause_filter_thresh;
437
438 /* Copy asid here because nested_vmcb_check_controls will check it. */
439 to->asid = from->asid;
440 to->msrpm_base_pa &= ~0x0fffULL;
441 to->iopm_base_pa &= ~0x0fffULL;
442
443 #ifdef CONFIG_KVM_HYPERV
444 /* Hyper-V extensions (Enlightened VMCB) */
445 if (kvm_hv_hypercall_enabled(vcpu)) {
446 to->clean = from->clean;
447 memcpy(&to->hv_enlightenments, &from->hv_enlightenments,
448 sizeof(to->hv_enlightenments));
449 }
450 #endif
451 }
452
nested_copy_vmcb_control_to_cache(struct vcpu_svm * svm,struct vmcb_control_area * control)453 void nested_copy_vmcb_control_to_cache(struct vcpu_svm *svm,
454 struct vmcb_control_area *control)
455 {
456 __nested_copy_vmcb_control_to_cache(&svm->vcpu, &svm->nested.ctl, control);
457 }
458
__nested_copy_vmcb_save_to_cache(struct vmcb_save_area_cached * to,struct vmcb_save_area * from)459 static void __nested_copy_vmcb_save_to_cache(struct vmcb_save_area_cached *to,
460 struct vmcb_save_area *from)
461 {
462 /*
463 * Copy only fields that are validated, as we need them
464 * to avoid TOC/TOU races.
465 */
466 to->efer = from->efer;
467 to->cr0 = from->cr0;
468 to->cr3 = from->cr3;
469 to->cr4 = from->cr4;
470
471 to->dr6 = from->dr6;
472 to->dr7 = from->dr7;
473 }
474
nested_copy_vmcb_save_to_cache(struct vcpu_svm * svm,struct vmcb_save_area * save)475 void nested_copy_vmcb_save_to_cache(struct vcpu_svm *svm,
476 struct vmcb_save_area *save)
477 {
478 __nested_copy_vmcb_save_to_cache(&svm->nested.save, save);
479 }
480
481 /*
482 * Synchronize fields that are written by the processor, so that
483 * they can be copied back into the vmcb12.
484 */
nested_sync_control_from_vmcb02(struct vcpu_svm * svm)485 void nested_sync_control_from_vmcb02(struct vcpu_svm *svm)
486 {
487 u32 mask;
488 svm->nested.ctl.event_inj = svm->vmcb->control.event_inj;
489 svm->nested.ctl.event_inj_err = svm->vmcb->control.event_inj_err;
490
491 /* Only a few fields of int_ctl are written by the processor. */
492 mask = V_IRQ_MASK | V_TPR_MASK;
493 /*
494 * Don't sync vmcb02 V_IRQ back to vmcb12 if KVM (L0) is intercepting
495 * virtual interrupts in order to request an interrupt window, as KVM
496 * has usurped vmcb02's int_ctl. If an interrupt window opens before
497 * the next VM-Exit, svm_clear_vintr() will restore vmcb12's int_ctl.
498 * If no window opens, V_IRQ will be correctly preserved in vmcb12's
499 * int_ctl (because it was never recognized while L2 was running).
500 */
501 if (svm_is_intercept(svm, INTERCEPT_VINTR) &&
502 !test_bit(INTERCEPT_VINTR, (unsigned long *)svm->nested.ctl.intercepts))
503 mask &= ~V_IRQ_MASK;
504
505 if (nested_vgif_enabled(svm))
506 mask |= V_GIF_MASK;
507
508 if (nested_vnmi_enabled(svm))
509 mask |= V_NMI_BLOCKING_MASK | V_NMI_PENDING_MASK;
510
511 svm->nested.ctl.int_ctl &= ~mask;
512 svm->nested.ctl.int_ctl |= svm->vmcb->control.int_ctl & mask;
513 }
514
515 /*
516 * Transfer any event that L0 or L1 wanted to inject into L2 to
517 * EXIT_INT_INFO.
518 */
nested_save_pending_event_to_vmcb12(struct vcpu_svm * svm,struct vmcb * vmcb12)519 static void nested_save_pending_event_to_vmcb12(struct vcpu_svm *svm,
520 struct vmcb *vmcb12)
521 {
522 struct kvm_vcpu *vcpu = &svm->vcpu;
523 u32 exit_int_info = 0;
524 unsigned int nr;
525
526 if (vcpu->arch.exception.injected) {
527 nr = vcpu->arch.exception.vector;
528 exit_int_info = nr | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT;
529
530 if (vcpu->arch.exception.has_error_code) {
531 exit_int_info |= SVM_EVTINJ_VALID_ERR;
532 vmcb12->control.exit_int_info_err =
533 vcpu->arch.exception.error_code;
534 }
535
536 } else if (vcpu->arch.nmi_injected) {
537 exit_int_info = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
538
539 } else if (vcpu->arch.interrupt.injected) {
540 nr = vcpu->arch.interrupt.nr;
541 exit_int_info = nr | SVM_EVTINJ_VALID;
542
543 if (vcpu->arch.interrupt.soft)
544 exit_int_info |= SVM_EVTINJ_TYPE_SOFT;
545 else
546 exit_int_info |= SVM_EVTINJ_TYPE_INTR;
547 }
548
549 vmcb12->control.exit_int_info = exit_int_info;
550 }
551
nested_svm_transition_tlb_flush(struct kvm_vcpu * vcpu)552 static void nested_svm_transition_tlb_flush(struct kvm_vcpu *vcpu)
553 {
554 /* Handle pending Hyper-V TLB flush requests */
555 kvm_hv_nested_transtion_tlb_flush(vcpu, npt_enabled);
556
557 /*
558 * TODO: optimize unconditional TLB flush/MMU sync. A partial list of
559 * things to fix before this can be conditional:
560 *
561 * - Flush TLBs for both L1 and L2 remote TLB flush
562 * - Honor L1's request to flush an ASID on nested VMRUN
563 * - Sync nested NPT MMU on VMRUN that flushes L2's ASID[*]
564 * - Don't crush a pending TLB flush in vmcb02 on nested VMRUN
565 * - Flush L1's ASID on KVM_REQ_TLB_FLUSH_GUEST
566 *
567 * [*] Unlike nested EPT, SVM's ASID management can invalidate nested
568 * NPT guest-physical mappings on VMRUN.
569 */
570 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
571 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
572 }
573
574 /*
575 * Load guest's/host's cr3 on nested vmentry or vmexit. @nested_npt is true
576 * if we are emulating VM-Entry into a guest with NPT enabled.
577 */
nested_svm_load_cr3(struct kvm_vcpu * vcpu,unsigned long cr3,bool nested_npt,bool reload_pdptrs)578 static int nested_svm_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
579 bool nested_npt, bool reload_pdptrs)
580 {
581 if (CC(!kvm_vcpu_is_legal_cr3(vcpu, cr3)))
582 return -EINVAL;
583
584 if (reload_pdptrs && !nested_npt && is_pae_paging(vcpu) &&
585 CC(!load_pdptrs(vcpu, cr3)))
586 return -EINVAL;
587
588 vcpu->arch.cr3 = cr3;
589
590 /* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
591 kvm_init_mmu(vcpu);
592
593 if (!nested_npt)
594 kvm_mmu_new_pgd(vcpu, cr3);
595
596 return 0;
597 }
598
nested_vmcb02_compute_g_pat(struct vcpu_svm * svm)599 void nested_vmcb02_compute_g_pat(struct vcpu_svm *svm)
600 {
601 if (!svm->nested.vmcb02.ptr)
602 return;
603
604 /* FIXME: merge g_pat from vmcb01 and vmcb12. */
605 svm->nested.vmcb02.ptr->save.g_pat = svm->vmcb01.ptr->save.g_pat;
606 }
607
nested_vmcb02_prepare_save(struct vcpu_svm * svm,struct vmcb * vmcb12)608 static void nested_vmcb02_prepare_save(struct vcpu_svm *svm, struct vmcb *vmcb12)
609 {
610 bool new_vmcb12 = false;
611 struct vmcb *vmcb01 = svm->vmcb01.ptr;
612 struct vmcb *vmcb02 = svm->nested.vmcb02.ptr;
613 struct kvm_vcpu *vcpu = &svm->vcpu;
614
615 nested_vmcb02_compute_g_pat(svm);
616
617 /* Load the nested guest state */
618 if (svm->nested.vmcb12_gpa != svm->nested.last_vmcb12_gpa) {
619 new_vmcb12 = true;
620 svm->nested.last_vmcb12_gpa = svm->nested.vmcb12_gpa;
621 svm->nested.force_msr_bitmap_recalc = true;
622 }
623
624 if (unlikely(new_vmcb12 || vmcb_is_dirty(vmcb12, VMCB_SEG))) {
625 vmcb02->save.es = vmcb12->save.es;
626 vmcb02->save.cs = vmcb12->save.cs;
627 vmcb02->save.ss = vmcb12->save.ss;
628 vmcb02->save.ds = vmcb12->save.ds;
629 vmcb02->save.cpl = vmcb12->save.cpl;
630 vmcb_mark_dirty(vmcb02, VMCB_SEG);
631 }
632
633 if (unlikely(new_vmcb12 || vmcb_is_dirty(vmcb12, VMCB_DT))) {
634 vmcb02->save.gdtr = vmcb12->save.gdtr;
635 vmcb02->save.idtr = vmcb12->save.idtr;
636 vmcb_mark_dirty(vmcb02, VMCB_DT);
637 }
638
639 if (guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) &&
640 (unlikely(new_vmcb12 || vmcb_is_dirty(vmcb12, VMCB_CET)))) {
641 vmcb02->save.s_cet = vmcb12->save.s_cet;
642 vmcb02->save.isst_addr = vmcb12->save.isst_addr;
643 vmcb02->save.ssp = vmcb12->save.ssp;
644 vmcb_mark_dirty(vmcb02, VMCB_CET);
645 }
646
647 kvm_set_rflags(vcpu, vmcb12->save.rflags | X86_EFLAGS_FIXED);
648
649 svm_set_efer(vcpu, svm->nested.save.efer);
650
651 svm_set_cr0(vcpu, svm->nested.save.cr0);
652 svm_set_cr4(vcpu, svm->nested.save.cr4);
653
654 svm->vcpu.arch.cr2 = vmcb12->save.cr2;
655
656 kvm_rax_write(vcpu, vmcb12->save.rax);
657 kvm_rsp_write(vcpu, vmcb12->save.rsp);
658 kvm_rip_write(vcpu, vmcb12->save.rip);
659
660 /* In case we don't even reach vcpu_run, the fields are not updated */
661 vmcb02->save.rax = vmcb12->save.rax;
662 vmcb02->save.rsp = vmcb12->save.rsp;
663 vmcb02->save.rip = vmcb12->save.rip;
664
665 /* These bits will be set properly on the first execution when new_vmc12 is true */
666 if (unlikely(new_vmcb12 || vmcb_is_dirty(vmcb12, VMCB_DR))) {
667 vmcb02->save.dr7 = svm->nested.save.dr7 | DR7_FIXED_1;
668 svm->vcpu.arch.dr6 = svm->nested.save.dr6 | DR6_ACTIVE_LOW;
669 vmcb_mark_dirty(vmcb02, VMCB_DR);
670 }
671
672 if (unlikely(guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) &&
673 (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK))) {
674 /*
675 * Reserved bits of DEBUGCTL are ignored. Be consistent with
676 * svm_set_msr's definition of reserved bits.
677 */
678 svm_copy_lbrs(vmcb02, vmcb12);
679 vmcb02->save.dbgctl &= ~DEBUGCTL_RESERVED_BITS;
680 svm_update_lbrv(&svm->vcpu);
681
682 } else if (unlikely(vmcb01->control.virt_ext & LBR_CTL_ENABLE_MASK)) {
683 svm_copy_lbrs(vmcb02, vmcb01);
684 }
685 }
686
is_evtinj_soft(u32 evtinj)687 static inline bool is_evtinj_soft(u32 evtinj)
688 {
689 u32 type = evtinj & SVM_EVTINJ_TYPE_MASK;
690 u8 vector = evtinj & SVM_EVTINJ_VEC_MASK;
691
692 if (!(evtinj & SVM_EVTINJ_VALID))
693 return false;
694
695 if (type == SVM_EVTINJ_TYPE_SOFT)
696 return true;
697
698 return type == SVM_EVTINJ_TYPE_EXEPT && kvm_exception_is_soft(vector);
699 }
700
is_evtinj_nmi(u32 evtinj)701 static bool is_evtinj_nmi(u32 evtinj)
702 {
703 u32 type = evtinj & SVM_EVTINJ_TYPE_MASK;
704
705 if (!(evtinj & SVM_EVTINJ_VALID))
706 return false;
707
708 return type == SVM_EVTINJ_TYPE_NMI;
709 }
710
nested_vmcb02_prepare_control(struct vcpu_svm * svm,unsigned long vmcb12_rip,unsigned long vmcb12_csbase)711 static void nested_vmcb02_prepare_control(struct vcpu_svm *svm,
712 unsigned long vmcb12_rip,
713 unsigned long vmcb12_csbase)
714 {
715 u32 int_ctl_vmcb01_bits = V_INTR_MASKING_MASK;
716 u32 int_ctl_vmcb12_bits = V_TPR_MASK | V_IRQ_INJECTION_BITS_MASK;
717
718 struct kvm_vcpu *vcpu = &svm->vcpu;
719 struct vmcb *vmcb01 = svm->vmcb01.ptr;
720 struct vmcb *vmcb02 = svm->nested.vmcb02.ptr;
721 u32 pause_count12;
722 u32 pause_thresh12;
723
724 nested_svm_transition_tlb_flush(vcpu);
725
726 /* Enter Guest-Mode */
727 enter_guest_mode(vcpu);
728
729 /*
730 * Filled at exit: exit_code, exit_code_hi, exit_info_1, exit_info_2,
731 * exit_int_info, exit_int_info_err, next_rip, insn_len, insn_bytes.
732 */
733
734 if (guest_cpu_cap_has(vcpu, X86_FEATURE_VGIF) &&
735 (svm->nested.ctl.int_ctl & V_GIF_ENABLE_MASK))
736 int_ctl_vmcb12_bits |= (V_GIF_MASK | V_GIF_ENABLE_MASK);
737 else
738 int_ctl_vmcb01_bits |= (V_GIF_MASK | V_GIF_ENABLE_MASK);
739
740 if (vnmi) {
741 if (vmcb01->control.int_ctl & V_NMI_PENDING_MASK) {
742 svm->vcpu.arch.nmi_pending++;
743 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
744 }
745 if (nested_vnmi_enabled(svm))
746 int_ctl_vmcb12_bits |= (V_NMI_PENDING_MASK |
747 V_NMI_ENABLE_MASK |
748 V_NMI_BLOCKING_MASK);
749 }
750
751 /* Copied from vmcb01. msrpm_base can be overwritten later. */
752 vmcb02->control.nested_ctl = vmcb01->control.nested_ctl;
753 vmcb02->control.iopm_base_pa = vmcb01->control.iopm_base_pa;
754 vmcb02->control.msrpm_base_pa = vmcb01->control.msrpm_base_pa;
755
756 /*
757 * Stash vmcb02's counter if the guest hasn't moved past the guilty
758 * instruction; otherwise, reset the counter to '0'.
759 *
760 * In order to detect if L2 has made forward progress or not, track the
761 * RIP at which a bus lock has occurred on a per-vmcb12 basis. If RIP
762 * is changed, guest has clearly made forward progress, bus_lock_counter
763 * still remained '1', so reset bus_lock_counter to '0'. Eg. In the
764 * scenario, where a buslock happened in L1 before VMRUN, the bus lock
765 * firmly happened on an instruction in the past. Even if vmcb01's
766 * counter is still '1', (because the guilty instruction got patched),
767 * the vCPU has clearly made forward progress and so KVM should reset
768 * vmcb02's counter to '0'.
769 *
770 * If the RIP hasn't changed, stash the bus lock counter at nested VMRUN
771 * to prevent the same guilty instruction from triggering a VM-Exit. Eg.
772 * if userspace rate-limits the vCPU, then it's entirely possible that
773 * L1's tick interrupt is pending by the time userspace re-runs the
774 * vCPU. If KVM unconditionally clears the counter on VMRUN, then when
775 * L1 re-enters L2, the same instruction will trigger a VM-Exit and the
776 * entire cycle start over.
777 */
778 if (vmcb02->save.rip && (svm->nested.ctl.bus_lock_rip == vmcb02->save.rip))
779 vmcb02->control.bus_lock_counter = 1;
780 else
781 vmcb02->control.bus_lock_counter = 0;
782
783 /* Done at vmrun: asid. */
784
785 /* Also overwritten later if necessary. */
786 vmcb02->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
787
788 /* nested_cr3. */
789 if (nested_npt_enabled(svm))
790 nested_svm_init_mmu_context(vcpu);
791
792 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
793 vcpu->arch.l1_tsc_offset,
794 svm->nested.ctl.tsc_offset,
795 svm->tsc_ratio_msr);
796
797 vmcb02->control.tsc_offset = vcpu->arch.tsc_offset;
798
799 if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR) &&
800 svm->tsc_ratio_msr != kvm_caps.default_tsc_scaling_ratio)
801 nested_svm_update_tsc_ratio_msr(vcpu);
802
803 vmcb02->control.int_ctl =
804 (svm->nested.ctl.int_ctl & int_ctl_vmcb12_bits) |
805 (vmcb01->control.int_ctl & int_ctl_vmcb01_bits);
806
807 vmcb02->control.int_vector = svm->nested.ctl.int_vector;
808 vmcb02->control.int_state = svm->nested.ctl.int_state;
809 vmcb02->control.event_inj = svm->nested.ctl.event_inj;
810 vmcb02->control.event_inj_err = svm->nested.ctl.event_inj_err;
811
812 /*
813 * next_rip is consumed on VMRUN as the return address pushed on the
814 * stack for injected soft exceptions/interrupts. If nrips is exposed
815 * to L1, take it verbatim from vmcb12. If nrips is supported in
816 * hardware but not exposed to L1, stuff the actual L2 RIP to emulate
817 * what a nrips=0 CPU would do (L1 is responsible for advancing RIP
818 * prior to injecting the event).
819 */
820 if (guest_cpu_cap_has(vcpu, X86_FEATURE_NRIPS))
821 vmcb02->control.next_rip = svm->nested.ctl.next_rip;
822 else if (boot_cpu_has(X86_FEATURE_NRIPS))
823 vmcb02->control.next_rip = vmcb12_rip;
824
825 svm->nmi_l1_to_l2 = is_evtinj_nmi(vmcb02->control.event_inj);
826 if (is_evtinj_soft(vmcb02->control.event_inj)) {
827 svm->soft_int_injected = true;
828 svm->soft_int_csbase = vmcb12_csbase;
829 svm->soft_int_old_rip = vmcb12_rip;
830 if (guest_cpu_cap_has(vcpu, X86_FEATURE_NRIPS))
831 svm->soft_int_next_rip = svm->nested.ctl.next_rip;
832 else
833 svm->soft_int_next_rip = vmcb12_rip;
834 }
835
836 vmcb02->control.virt_ext = vmcb01->control.virt_ext &
837 LBR_CTL_ENABLE_MASK;
838 if (guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV))
839 vmcb02->control.virt_ext |=
840 (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK);
841
842 if (!nested_vmcb_needs_vls_intercept(svm))
843 vmcb02->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
844
845 if (guest_cpu_cap_has(vcpu, X86_FEATURE_PAUSEFILTER))
846 pause_count12 = svm->nested.ctl.pause_filter_count;
847 else
848 pause_count12 = 0;
849 if (guest_cpu_cap_has(vcpu, X86_FEATURE_PFTHRESHOLD))
850 pause_thresh12 = svm->nested.ctl.pause_filter_thresh;
851 else
852 pause_thresh12 = 0;
853 if (kvm_pause_in_guest(svm->vcpu.kvm)) {
854 /* use guest values since host doesn't intercept PAUSE */
855 vmcb02->control.pause_filter_count = pause_count12;
856 vmcb02->control.pause_filter_thresh = pause_thresh12;
857
858 } else {
859 /* start from host values otherwise */
860 vmcb02->control.pause_filter_count = vmcb01->control.pause_filter_count;
861 vmcb02->control.pause_filter_thresh = vmcb01->control.pause_filter_thresh;
862
863 /* ... but ensure filtering is disabled if so requested. */
864 if (vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_PAUSE)) {
865 if (!pause_count12)
866 vmcb02->control.pause_filter_count = 0;
867 if (!pause_thresh12)
868 vmcb02->control.pause_filter_thresh = 0;
869 }
870 }
871
872 /*
873 * Merge guest and host intercepts - must be called with vcpu in
874 * guest-mode to take effect.
875 */
876 recalc_intercepts(svm);
877 }
878
nested_svm_copy_common_state(struct vmcb * from_vmcb,struct vmcb * to_vmcb)879 static void nested_svm_copy_common_state(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
880 {
881 /*
882 * Some VMCB state is shared between L1 and L2 and thus has to be
883 * moved at the time of nested vmrun and vmexit.
884 *
885 * VMLOAD/VMSAVE state would also belong in this category, but KVM
886 * always performs VMLOAD and VMSAVE from the VMCB01.
887 */
888 to_vmcb->save.spec_ctrl = from_vmcb->save.spec_ctrl;
889 }
890
enter_svm_guest_mode(struct kvm_vcpu * vcpu,u64 vmcb12_gpa,struct vmcb * vmcb12,bool from_vmrun)891 int enter_svm_guest_mode(struct kvm_vcpu *vcpu, u64 vmcb12_gpa,
892 struct vmcb *vmcb12, bool from_vmrun)
893 {
894 struct vcpu_svm *svm = to_svm(vcpu);
895 int ret;
896
897 trace_kvm_nested_vmenter(svm->vmcb->save.rip,
898 vmcb12_gpa,
899 vmcb12->save.rip,
900 vmcb12->control.int_ctl,
901 vmcb12->control.event_inj,
902 vmcb12->control.nested_ctl,
903 vmcb12->control.nested_cr3,
904 vmcb12->save.cr3,
905 KVM_ISA_SVM);
906
907 trace_kvm_nested_intercepts(vmcb12->control.intercepts[INTERCEPT_CR] & 0xffff,
908 vmcb12->control.intercepts[INTERCEPT_CR] >> 16,
909 vmcb12->control.intercepts[INTERCEPT_EXCEPTION],
910 vmcb12->control.intercepts[INTERCEPT_WORD3],
911 vmcb12->control.intercepts[INTERCEPT_WORD4],
912 vmcb12->control.intercepts[INTERCEPT_WORD5]);
913
914
915 svm->nested.vmcb12_gpa = vmcb12_gpa;
916
917 WARN_ON(svm->vmcb == svm->nested.vmcb02.ptr);
918
919 nested_svm_copy_common_state(svm->vmcb01.ptr, svm->nested.vmcb02.ptr);
920
921 svm_switch_vmcb(svm, &svm->nested.vmcb02);
922 nested_vmcb02_prepare_control(svm, vmcb12->save.rip, vmcb12->save.cs.base);
923 nested_vmcb02_prepare_save(svm, vmcb12);
924
925 ret = nested_svm_load_cr3(&svm->vcpu, svm->nested.save.cr3,
926 nested_npt_enabled(svm), from_vmrun);
927 if (ret)
928 return ret;
929
930 if (!from_vmrun)
931 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
932
933 svm_set_gif(svm, true);
934
935 if (kvm_vcpu_apicv_active(vcpu))
936 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
937
938 nested_svm_hv_update_vm_vp_ids(vcpu);
939
940 return 0;
941 }
942
nested_svm_vmrun(struct kvm_vcpu * vcpu)943 int nested_svm_vmrun(struct kvm_vcpu *vcpu)
944 {
945 struct vcpu_svm *svm = to_svm(vcpu);
946 int ret;
947 struct vmcb *vmcb12;
948 struct kvm_host_map map;
949 u64 vmcb12_gpa;
950 struct vmcb *vmcb01 = svm->vmcb01.ptr;
951
952 if (!svm->nested.hsave_msr) {
953 kvm_inject_gp(vcpu, 0);
954 return 1;
955 }
956
957 if (is_smm(vcpu)) {
958 kvm_queue_exception(vcpu, UD_VECTOR);
959 return 1;
960 }
961
962 /* This fails when VP assist page is enabled but the supplied GPA is bogus */
963 ret = kvm_hv_verify_vp_assist(vcpu);
964 if (ret) {
965 kvm_inject_gp(vcpu, 0);
966 return ret;
967 }
968
969 vmcb12_gpa = svm->vmcb->save.rax;
970 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(vmcb12_gpa), &map);
971 if (ret == -EINVAL) {
972 kvm_inject_gp(vcpu, 0);
973 return 1;
974 } else if (ret) {
975 return kvm_skip_emulated_instruction(vcpu);
976 }
977
978 ret = kvm_skip_emulated_instruction(vcpu);
979
980 vmcb12 = map.hva;
981
982 if (WARN_ON_ONCE(!svm->nested.initialized))
983 return -EINVAL;
984
985 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
986 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
987
988 if (!nested_vmcb_check_save(vcpu) ||
989 !nested_vmcb_check_controls(vcpu)) {
990 vmcb12->control.exit_code = SVM_EXIT_ERR;
991 vmcb12->control.exit_code_hi = 0;
992 vmcb12->control.exit_info_1 = 0;
993 vmcb12->control.exit_info_2 = 0;
994 goto out;
995 }
996
997 /*
998 * Since vmcb01 is not in use, we can use it to store some of the L1
999 * state.
1000 */
1001 vmcb01->save.efer = vcpu->arch.efer;
1002 vmcb01->save.cr0 = kvm_read_cr0(vcpu);
1003 vmcb01->save.cr4 = vcpu->arch.cr4;
1004 vmcb01->save.rflags = kvm_get_rflags(vcpu);
1005 vmcb01->save.rip = kvm_rip_read(vcpu);
1006
1007 if (!npt_enabled)
1008 vmcb01->save.cr3 = kvm_read_cr3(vcpu);
1009
1010 svm->nested.nested_run_pending = 1;
1011
1012 if (enter_svm_guest_mode(vcpu, vmcb12_gpa, vmcb12, true))
1013 goto out_exit_err;
1014
1015 if (nested_svm_merge_msrpm(vcpu))
1016 goto out;
1017
1018 out_exit_err:
1019 svm->nested.nested_run_pending = 0;
1020 svm->nmi_l1_to_l2 = false;
1021 svm->soft_int_injected = false;
1022
1023 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
1024 svm->vmcb->control.exit_code_hi = 0;
1025 svm->vmcb->control.exit_info_1 = 0;
1026 svm->vmcb->control.exit_info_2 = 0;
1027
1028 nested_svm_vmexit(svm);
1029
1030 out:
1031 kvm_vcpu_unmap(vcpu, &map);
1032
1033 return ret;
1034 }
1035
1036 /* Copy state save area fields which are handled by VMRUN */
svm_copy_vmrun_state(struct vmcb_save_area * to_save,struct vmcb_save_area * from_save)1037 void svm_copy_vmrun_state(struct vmcb_save_area *to_save,
1038 struct vmcb_save_area *from_save)
1039 {
1040 to_save->es = from_save->es;
1041 to_save->cs = from_save->cs;
1042 to_save->ss = from_save->ss;
1043 to_save->ds = from_save->ds;
1044 to_save->gdtr = from_save->gdtr;
1045 to_save->idtr = from_save->idtr;
1046 to_save->rflags = from_save->rflags | X86_EFLAGS_FIXED;
1047 to_save->efer = from_save->efer;
1048 to_save->cr0 = from_save->cr0;
1049 to_save->cr3 = from_save->cr3;
1050 to_save->cr4 = from_save->cr4;
1051 to_save->rax = from_save->rax;
1052 to_save->rsp = from_save->rsp;
1053 to_save->rip = from_save->rip;
1054 to_save->cpl = 0;
1055
1056 if (kvm_cpu_cap_has(X86_FEATURE_SHSTK)) {
1057 to_save->s_cet = from_save->s_cet;
1058 to_save->isst_addr = from_save->isst_addr;
1059 to_save->ssp = from_save->ssp;
1060 }
1061 }
1062
svm_copy_vmloadsave_state(struct vmcb * to_vmcb,struct vmcb * from_vmcb)1063 void svm_copy_vmloadsave_state(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
1064 {
1065 to_vmcb->save.fs = from_vmcb->save.fs;
1066 to_vmcb->save.gs = from_vmcb->save.gs;
1067 to_vmcb->save.tr = from_vmcb->save.tr;
1068 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
1069 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
1070 to_vmcb->save.star = from_vmcb->save.star;
1071 to_vmcb->save.lstar = from_vmcb->save.lstar;
1072 to_vmcb->save.cstar = from_vmcb->save.cstar;
1073 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
1074 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
1075 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
1076 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
1077 }
1078
nested_svm_vmexit(struct vcpu_svm * svm)1079 int nested_svm_vmexit(struct vcpu_svm *svm)
1080 {
1081 struct kvm_vcpu *vcpu = &svm->vcpu;
1082 struct vmcb *vmcb01 = svm->vmcb01.ptr;
1083 struct vmcb *vmcb02 = svm->nested.vmcb02.ptr;
1084 struct vmcb *vmcb12;
1085 struct kvm_host_map map;
1086 int rc;
1087
1088 rc = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.vmcb12_gpa), &map);
1089 if (rc) {
1090 if (rc == -EINVAL)
1091 kvm_inject_gp(vcpu, 0);
1092 return 1;
1093 }
1094
1095 vmcb12 = map.hva;
1096
1097 /* Exit Guest-Mode */
1098 leave_guest_mode(vcpu);
1099 svm->nested.vmcb12_gpa = 0;
1100 WARN_ON_ONCE(svm->nested.nested_run_pending);
1101
1102 kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
1103
1104 /* in case we halted in L2 */
1105 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
1106
1107 /* Give the current vmcb to the guest */
1108
1109 vmcb12->save.es = vmcb02->save.es;
1110 vmcb12->save.cs = vmcb02->save.cs;
1111 vmcb12->save.ss = vmcb02->save.ss;
1112 vmcb12->save.ds = vmcb02->save.ds;
1113 vmcb12->save.gdtr = vmcb02->save.gdtr;
1114 vmcb12->save.idtr = vmcb02->save.idtr;
1115 vmcb12->save.efer = svm->vcpu.arch.efer;
1116 vmcb12->save.cr0 = kvm_read_cr0(vcpu);
1117 vmcb12->save.cr3 = kvm_read_cr3(vcpu);
1118 vmcb12->save.cr2 = vmcb02->save.cr2;
1119 vmcb12->save.cr4 = svm->vcpu.arch.cr4;
1120 vmcb12->save.rflags = kvm_get_rflags(vcpu);
1121 vmcb12->save.rip = kvm_rip_read(vcpu);
1122 vmcb12->save.rsp = kvm_rsp_read(vcpu);
1123 vmcb12->save.rax = kvm_rax_read(vcpu);
1124 vmcb12->save.dr7 = vmcb02->save.dr7;
1125 vmcb12->save.dr6 = svm->vcpu.arch.dr6;
1126 vmcb12->save.cpl = vmcb02->save.cpl;
1127
1128 if (guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK)) {
1129 vmcb12->save.s_cet = vmcb02->save.s_cet;
1130 vmcb12->save.isst_addr = vmcb02->save.isst_addr;
1131 vmcb12->save.ssp = vmcb02->save.ssp;
1132 }
1133
1134 vmcb12->control.int_state = vmcb02->control.int_state;
1135 vmcb12->control.exit_code = vmcb02->control.exit_code;
1136 vmcb12->control.exit_code_hi = vmcb02->control.exit_code_hi;
1137 vmcb12->control.exit_info_1 = vmcb02->control.exit_info_1;
1138 vmcb12->control.exit_info_2 = vmcb02->control.exit_info_2;
1139
1140 if (vmcb12->control.exit_code != SVM_EXIT_ERR)
1141 nested_save_pending_event_to_vmcb12(svm, vmcb12);
1142
1143 if (guest_cpu_cap_has(vcpu, X86_FEATURE_NRIPS))
1144 vmcb12->control.next_rip = vmcb02->control.next_rip;
1145
1146 vmcb12->control.int_ctl = svm->nested.ctl.int_ctl;
1147 vmcb12->control.event_inj = svm->nested.ctl.event_inj;
1148 vmcb12->control.event_inj_err = svm->nested.ctl.event_inj_err;
1149
1150 if (!kvm_pause_in_guest(vcpu->kvm)) {
1151 vmcb01->control.pause_filter_count = vmcb02->control.pause_filter_count;
1152 vmcb_mark_dirty(vmcb01, VMCB_INTERCEPTS);
1153
1154 }
1155
1156 /*
1157 * Invalidate bus_lock_rip unless KVM is still waiting for the guest
1158 * to make forward progress before re-enabling bus lock detection.
1159 */
1160 if (!vmcb02->control.bus_lock_counter)
1161 svm->nested.ctl.bus_lock_rip = INVALID_GPA;
1162
1163 nested_svm_copy_common_state(svm->nested.vmcb02.ptr, svm->vmcb01.ptr);
1164
1165 kvm_nested_vmexit_handle_ibrs(vcpu);
1166
1167 svm_switch_vmcb(svm, &svm->vmcb01);
1168
1169 /*
1170 * Rules for synchronizing int_ctl bits from vmcb02 to vmcb01:
1171 *
1172 * V_IRQ, V_IRQ_VECTOR, V_INTR_PRIO_MASK, V_IGN_TPR: If L1 doesn't
1173 * intercept interrupts, then KVM will use vmcb02's V_IRQ (and related
1174 * flags) to detect interrupt windows for L1 IRQs (even if L1 uses
1175 * virtual interrupt masking). Raise KVM_REQ_EVENT to ensure that
1176 * KVM re-requests an interrupt window if necessary, which implicitly
1177 * copies this bits from vmcb02 to vmcb01.
1178 *
1179 * V_TPR: If L1 doesn't use virtual interrupt masking, then L1's vTPR
1180 * is stored in vmcb02, but its value doesn't need to be copied from/to
1181 * vmcb01 because it is copied from/to the virtual APIC's TPR register
1182 * on each VM entry/exit.
1183 *
1184 * V_GIF: If nested vGIF is not used, KVM uses vmcb02's V_GIF for L1's
1185 * V_GIF. However, GIF is architecturally clear on each VM exit, thus
1186 * there is no need to copy V_GIF from vmcb02 to vmcb01.
1187 */
1188 if (!nested_exit_on_intr(svm))
1189 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
1190
1191 if (unlikely(guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) &&
1192 (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK))) {
1193 svm_copy_lbrs(vmcb12, vmcb02);
1194 svm_update_lbrv(vcpu);
1195 } else if (unlikely(vmcb01->control.virt_ext & LBR_CTL_ENABLE_MASK)) {
1196 svm_copy_lbrs(vmcb01, vmcb02);
1197 svm_update_lbrv(vcpu);
1198 }
1199
1200 if (vnmi) {
1201 if (vmcb02->control.int_ctl & V_NMI_BLOCKING_MASK)
1202 vmcb01->control.int_ctl |= V_NMI_BLOCKING_MASK;
1203 else
1204 vmcb01->control.int_ctl &= ~V_NMI_BLOCKING_MASK;
1205
1206 if (vcpu->arch.nmi_pending) {
1207 vcpu->arch.nmi_pending--;
1208 vmcb01->control.int_ctl |= V_NMI_PENDING_MASK;
1209 } else {
1210 vmcb01->control.int_ctl &= ~V_NMI_PENDING_MASK;
1211 }
1212 }
1213
1214 /*
1215 * On vmexit the GIF is set to false and
1216 * no event can be injected in L1.
1217 */
1218 svm_set_gif(svm, false);
1219 vmcb01->control.exit_int_info = 0;
1220
1221 svm->vcpu.arch.tsc_offset = svm->vcpu.arch.l1_tsc_offset;
1222 if (vmcb01->control.tsc_offset != svm->vcpu.arch.tsc_offset) {
1223 vmcb01->control.tsc_offset = svm->vcpu.arch.tsc_offset;
1224 vmcb_mark_dirty(vmcb01, VMCB_INTERCEPTS);
1225 }
1226
1227 if (kvm_caps.has_tsc_control &&
1228 vcpu->arch.tsc_scaling_ratio != vcpu->arch.l1_tsc_scaling_ratio) {
1229 vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
1230 svm_write_tsc_multiplier(vcpu);
1231 }
1232
1233 svm->nested.ctl.nested_cr3 = 0;
1234
1235 /*
1236 * Restore processor state that had been saved in vmcb01
1237 */
1238 kvm_set_rflags(vcpu, vmcb01->save.rflags);
1239 svm_set_efer(vcpu, vmcb01->save.efer);
1240 svm_set_cr0(vcpu, vmcb01->save.cr0 | X86_CR0_PE);
1241 svm_set_cr4(vcpu, vmcb01->save.cr4);
1242 kvm_rax_write(vcpu, vmcb01->save.rax);
1243 kvm_rsp_write(vcpu, vmcb01->save.rsp);
1244 kvm_rip_write(vcpu, vmcb01->save.rip);
1245
1246 svm->vcpu.arch.dr7 = DR7_FIXED_1;
1247 kvm_update_dr7(&svm->vcpu);
1248
1249 trace_kvm_nested_vmexit_inject(vmcb12->control.exit_code,
1250 vmcb12->control.exit_info_1,
1251 vmcb12->control.exit_info_2,
1252 vmcb12->control.exit_int_info,
1253 vmcb12->control.exit_int_info_err,
1254 KVM_ISA_SVM);
1255
1256 kvm_vcpu_unmap(vcpu, &map);
1257
1258 nested_svm_transition_tlb_flush(vcpu);
1259
1260 nested_svm_uninit_mmu_context(vcpu);
1261
1262 rc = nested_svm_load_cr3(vcpu, vmcb01->save.cr3, false, true);
1263 if (rc)
1264 return 1;
1265
1266 /*
1267 * Drop what we picked up for L2 via svm_complete_interrupts() so it
1268 * doesn't end up in L1.
1269 */
1270 svm->vcpu.arch.nmi_injected = false;
1271 kvm_clear_exception_queue(vcpu);
1272 kvm_clear_interrupt_queue(vcpu);
1273
1274 /*
1275 * If we are here following the completion of a VMRUN that
1276 * is being single-stepped, queue the pending #DB intercept
1277 * right now so that it an be accounted for before we execute
1278 * L1's next instruction.
1279 */
1280 if (unlikely(vmcb01->save.rflags & X86_EFLAGS_TF))
1281 kvm_queue_exception(&(svm->vcpu), DB_VECTOR);
1282
1283 /*
1284 * Un-inhibit the AVIC right away, so that other vCPUs can start
1285 * to benefit from it right away.
1286 */
1287 if (kvm_apicv_activated(vcpu->kvm))
1288 __kvm_vcpu_update_apicv(vcpu);
1289
1290 return 0;
1291 }
1292
nested_svm_triple_fault(struct kvm_vcpu * vcpu)1293 static void nested_svm_triple_fault(struct kvm_vcpu *vcpu)
1294 {
1295 struct vcpu_svm *svm = to_svm(vcpu);
1296
1297 if (!vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SHUTDOWN))
1298 return;
1299
1300 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1301 nested_svm_simple_vmexit(to_svm(vcpu), SVM_EXIT_SHUTDOWN);
1302 }
1303
svm_allocate_nested(struct vcpu_svm * svm)1304 int svm_allocate_nested(struct vcpu_svm *svm)
1305 {
1306 struct page *vmcb02_page;
1307
1308 if (svm->nested.initialized)
1309 return 0;
1310
1311 vmcb02_page = snp_safe_alloc_page();
1312 if (!vmcb02_page)
1313 return -ENOMEM;
1314 svm->nested.vmcb02.ptr = page_address(vmcb02_page);
1315 svm->nested.vmcb02.pa = __sme_set(page_to_pfn(vmcb02_page) << PAGE_SHIFT);
1316
1317 svm->nested.msrpm = svm_vcpu_alloc_msrpm();
1318 if (!svm->nested.msrpm)
1319 goto err_free_vmcb02;
1320
1321 svm->nested.initialized = true;
1322 return 0;
1323
1324 err_free_vmcb02:
1325 __free_page(vmcb02_page);
1326 return -ENOMEM;
1327 }
1328
svm_free_nested(struct vcpu_svm * svm)1329 void svm_free_nested(struct vcpu_svm *svm)
1330 {
1331 if (!svm->nested.initialized)
1332 return;
1333
1334 if (WARN_ON_ONCE(svm->vmcb != svm->vmcb01.ptr))
1335 svm_switch_vmcb(svm, &svm->vmcb01);
1336
1337 svm_vcpu_free_msrpm(svm->nested.msrpm);
1338 svm->nested.msrpm = NULL;
1339
1340 __free_page(virt_to_page(svm->nested.vmcb02.ptr));
1341 svm->nested.vmcb02.ptr = NULL;
1342
1343 /*
1344 * When last_vmcb12_gpa matches the current vmcb12 gpa,
1345 * some vmcb12 fields are not loaded if they are marked clean
1346 * in the vmcb12, since in this case they are up to date already.
1347 *
1348 * When the vmcb02 is freed, this optimization becomes invalid.
1349 */
1350 svm->nested.last_vmcb12_gpa = INVALID_GPA;
1351
1352 svm->nested.initialized = false;
1353 }
1354
svm_leave_nested(struct kvm_vcpu * vcpu)1355 void svm_leave_nested(struct kvm_vcpu *vcpu)
1356 {
1357 struct vcpu_svm *svm = to_svm(vcpu);
1358
1359 if (is_guest_mode(vcpu)) {
1360 svm->nested.nested_run_pending = 0;
1361 svm->nested.vmcb12_gpa = INVALID_GPA;
1362
1363 leave_guest_mode(vcpu);
1364
1365 svm_switch_vmcb(svm, &svm->vmcb01);
1366
1367 nested_svm_uninit_mmu_context(vcpu);
1368 vmcb_mark_all_dirty(svm->vmcb);
1369
1370 if (kvm_apicv_activated(vcpu->kvm))
1371 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
1372 }
1373
1374 kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
1375 }
1376
nested_svm_exit_handled_msr(struct vcpu_svm * svm)1377 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
1378 {
1379 gpa_t base = svm->nested.ctl.msrpm_base_pa;
1380 int write, bit_nr;
1381 u8 value, mask;
1382 u32 msr;
1383
1384 if (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_MSR_PROT)))
1385 return NESTED_EXIT_HOST;
1386
1387 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1388 bit_nr = svm_msrpm_bit_nr(msr);
1389 write = svm->vmcb->control.exit_info_1 & 1;
1390
1391 if (bit_nr < 0)
1392 return NESTED_EXIT_DONE;
1393
1394 if (kvm_vcpu_read_guest(&svm->vcpu, base + bit_nr / BITS_PER_BYTE,
1395 &value, sizeof(value)))
1396 return NESTED_EXIT_DONE;
1397
1398 mask = BIT(write) << (bit_nr & (BITS_PER_BYTE - 1));
1399 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1400 }
1401
nested_svm_intercept_ioio(struct vcpu_svm * svm)1402 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
1403 {
1404 unsigned port, size, iopm_len;
1405 u16 val, mask;
1406 u8 start_bit;
1407 u64 gpa;
1408
1409 if (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_IOIO_PROT)))
1410 return NESTED_EXIT_HOST;
1411
1412 port = svm->vmcb->control.exit_info_1 >> 16;
1413 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
1414 SVM_IOIO_SIZE_SHIFT;
1415 gpa = svm->nested.ctl.iopm_base_pa + (port / 8);
1416 start_bit = port % 8;
1417 iopm_len = (start_bit + size > 8) ? 2 : 1;
1418 mask = (0xf >> (4 - size)) << start_bit;
1419 val = 0;
1420
1421 if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
1422 return NESTED_EXIT_DONE;
1423
1424 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1425 }
1426
nested_svm_intercept(struct vcpu_svm * svm)1427 static int nested_svm_intercept(struct vcpu_svm *svm)
1428 {
1429 u32 exit_code = svm->vmcb->control.exit_code;
1430 int vmexit = NESTED_EXIT_HOST;
1431
1432 switch (exit_code) {
1433 case SVM_EXIT_MSR:
1434 vmexit = nested_svm_exit_handled_msr(svm);
1435 break;
1436 case SVM_EXIT_IOIO:
1437 vmexit = nested_svm_intercept_ioio(svm);
1438 break;
1439 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
1440 if (vmcb12_is_intercept(&svm->nested.ctl, exit_code))
1441 vmexit = NESTED_EXIT_DONE;
1442 break;
1443 }
1444 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
1445 if (vmcb12_is_intercept(&svm->nested.ctl, exit_code))
1446 vmexit = NESTED_EXIT_DONE;
1447 break;
1448 }
1449 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
1450 /*
1451 * Host-intercepted exceptions have been checked already in
1452 * nested_svm_exit_special. There is nothing to do here,
1453 * the vmexit is injected by svm_check_nested_events.
1454 */
1455 vmexit = NESTED_EXIT_DONE;
1456 break;
1457 }
1458 case SVM_EXIT_ERR: {
1459 vmexit = NESTED_EXIT_DONE;
1460 break;
1461 }
1462 default: {
1463 if (vmcb12_is_intercept(&svm->nested.ctl, exit_code))
1464 vmexit = NESTED_EXIT_DONE;
1465 }
1466 }
1467
1468 return vmexit;
1469 }
1470
nested_svm_exit_handled(struct vcpu_svm * svm)1471 int nested_svm_exit_handled(struct vcpu_svm *svm)
1472 {
1473 int vmexit;
1474
1475 vmexit = nested_svm_intercept(svm);
1476
1477 if (vmexit == NESTED_EXIT_DONE)
1478 nested_svm_vmexit(svm);
1479
1480 return vmexit;
1481 }
1482
nested_svm_check_permissions(struct kvm_vcpu * vcpu)1483 int nested_svm_check_permissions(struct kvm_vcpu *vcpu)
1484 {
1485 if (!(vcpu->arch.efer & EFER_SVME) || !is_paging(vcpu)) {
1486 kvm_queue_exception(vcpu, UD_VECTOR);
1487 return 1;
1488 }
1489
1490 if (to_svm(vcpu)->vmcb->save.cpl) {
1491 kvm_inject_gp(vcpu, 0);
1492 return 1;
1493 }
1494
1495 return 0;
1496 }
1497
nested_svm_is_exception_vmexit(struct kvm_vcpu * vcpu,u8 vector,u32 error_code)1498 static bool nested_svm_is_exception_vmexit(struct kvm_vcpu *vcpu, u8 vector,
1499 u32 error_code)
1500 {
1501 struct vcpu_svm *svm = to_svm(vcpu);
1502
1503 return (svm->nested.ctl.intercepts[INTERCEPT_EXCEPTION] & BIT(vector));
1504 }
1505
nested_svm_inject_exception_vmexit(struct kvm_vcpu * vcpu)1506 static void nested_svm_inject_exception_vmexit(struct kvm_vcpu *vcpu)
1507 {
1508 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
1509 struct vcpu_svm *svm = to_svm(vcpu);
1510 struct vmcb *vmcb = svm->vmcb;
1511
1512 vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + ex->vector;
1513 vmcb->control.exit_code_hi = 0;
1514
1515 if (ex->has_error_code)
1516 vmcb->control.exit_info_1 = ex->error_code;
1517
1518 /*
1519 * EXITINFO2 is undefined for all exception intercepts other
1520 * than #PF.
1521 */
1522 if (ex->vector == PF_VECTOR) {
1523 if (ex->has_payload)
1524 vmcb->control.exit_info_2 = ex->payload;
1525 else
1526 vmcb->control.exit_info_2 = vcpu->arch.cr2;
1527 } else if (ex->vector == DB_VECTOR) {
1528 /* See kvm_check_and_inject_events(). */
1529 kvm_deliver_exception_payload(vcpu, ex);
1530
1531 if (vcpu->arch.dr7 & DR7_GD) {
1532 vcpu->arch.dr7 &= ~DR7_GD;
1533 kvm_update_dr7(vcpu);
1534 }
1535 } else {
1536 WARN_ON(ex->has_payload);
1537 }
1538
1539 nested_svm_vmexit(svm);
1540 }
1541
nested_exit_on_init(struct vcpu_svm * svm)1542 static inline bool nested_exit_on_init(struct vcpu_svm *svm)
1543 {
1544 return vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_INIT);
1545 }
1546
svm_check_nested_events(struct kvm_vcpu * vcpu)1547 static int svm_check_nested_events(struct kvm_vcpu *vcpu)
1548 {
1549 struct kvm_lapic *apic = vcpu->arch.apic;
1550 struct vcpu_svm *svm = to_svm(vcpu);
1551 /*
1552 * Only a pending nested run blocks a pending exception. If there is a
1553 * previously injected event, the pending exception occurred while said
1554 * event was being delivered and thus needs to be handled.
1555 */
1556 bool block_nested_exceptions = svm->nested.nested_run_pending;
1557 /*
1558 * New events (not exceptions) are only recognized at instruction
1559 * boundaries. If an event needs reinjection, then KVM is handling a
1560 * VM-Exit that occurred _during_ instruction execution; new events are
1561 * blocked until the instruction completes.
1562 */
1563 bool block_nested_events = block_nested_exceptions ||
1564 kvm_event_needs_reinjection(vcpu);
1565
1566 if (lapic_in_kernel(vcpu) &&
1567 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
1568 if (block_nested_events)
1569 return -EBUSY;
1570 if (!nested_exit_on_init(svm))
1571 return 0;
1572 nested_svm_simple_vmexit(svm, SVM_EXIT_INIT);
1573 return 0;
1574 }
1575
1576 if (vcpu->arch.exception_vmexit.pending) {
1577 if (block_nested_exceptions)
1578 return -EBUSY;
1579 nested_svm_inject_exception_vmexit(vcpu);
1580 return 0;
1581 }
1582
1583 if (vcpu->arch.exception.pending) {
1584 if (block_nested_exceptions)
1585 return -EBUSY;
1586 return 0;
1587 }
1588
1589 #ifdef CONFIG_KVM_SMM
1590 if (vcpu->arch.smi_pending && !svm_smi_blocked(vcpu)) {
1591 if (block_nested_events)
1592 return -EBUSY;
1593 if (!nested_exit_on_smi(svm))
1594 return 0;
1595 nested_svm_simple_vmexit(svm, SVM_EXIT_SMI);
1596 return 0;
1597 }
1598 #endif
1599
1600 if (vcpu->arch.nmi_pending && !svm_nmi_blocked(vcpu)) {
1601 if (block_nested_events)
1602 return -EBUSY;
1603 if (!nested_exit_on_nmi(svm))
1604 return 0;
1605 nested_svm_simple_vmexit(svm, SVM_EXIT_NMI);
1606 return 0;
1607 }
1608
1609 if (kvm_cpu_has_interrupt(vcpu) && !svm_interrupt_blocked(vcpu)) {
1610 if (block_nested_events)
1611 return -EBUSY;
1612 if (!nested_exit_on_intr(svm))
1613 return 0;
1614 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
1615 nested_svm_simple_vmexit(svm, SVM_EXIT_INTR);
1616 return 0;
1617 }
1618
1619 return 0;
1620 }
1621
nested_svm_exit_special(struct vcpu_svm * svm)1622 int nested_svm_exit_special(struct vcpu_svm *svm)
1623 {
1624 u32 exit_code = svm->vmcb->control.exit_code;
1625 struct kvm_vcpu *vcpu = &svm->vcpu;
1626
1627 switch (exit_code) {
1628 case SVM_EXIT_INTR:
1629 case SVM_EXIT_NMI:
1630 case SVM_EXIT_NPF:
1631 return NESTED_EXIT_HOST;
1632 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
1633 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
1634
1635 if (svm->vmcb01.ptr->control.intercepts[INTERCEPT_EXCEPTION] &
1636 excp_bits)
1637 return NESTED_EXIT_HOST;
1638 else if (exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR &&
1639 svm->vcpu.arch.apf.host_apf_flags)
1640 /* Trap async PF even if not shadowing */
1641 return NESTED_EXIT_HOST;
1642 break;
1643 }
1644 case SVM_EXIT_VMMCALL:
1645 /* Hyper-V L2 TLB flush hypercall is handled by L0 */
1646 if (guest_hv_cpuid_has_l2_tlb_flush(vcpu) &&
1647 nested_svm_l2_tlb_flush_enabled(vcpu) &&
1648 kvm_hv_is_tlb_flush_hcall(vcpu))
1649 return NESTED_EXIT_HOST;
1650 break;
1651 default:
1652 break;
1653 }
1654
1655 return NESTED_EXIT_CONTINUE;
1656 }
1657
nested_svm_update_tsc_ratio_msr(struct kvm_vcpu * vcpu)1658 void nested_svm_update_tsc_ratio_msr(struct kvm_vcpu *vcpu)
1659 {
1660 struct vcpu_svm *svm = to_svm(vcpu);
1661
1662 vcpu->arch.tsc_scaling_ratio =
1663 kvm_calc_nested_tsc_multiplier(vcpu->arch.l1_tsc_scaling_ratio,
1664 svm->tsc_ratio_msr);
1665 svm_write_tsc_multiplier(vcpu);
1666 }
1667
1668 /* Inverse operation of nested_copy_vmcb_control_to_cache(). asid is copied too. */
nested_copy_vmcb_cache_to_control(struct vmcb_control_area * dst,struct vmcb_ctrl_area_cached * from)1669 static void nested_copy_vmcb_cache_to_control(struct vmcb_control_area *dst,
1670 struct vmcb_ctrl_area_cached *from)
1671 {
1672 unsigned int i;
1673
1674 memset(dst, 0, sizeof(struct vmcb_control_area));
1675
1676 for (i = 0; i < MAX_INTERCEPT; i++)
1677 dst->intercepts[i] = from->intercepts[i];
1678
1679 dst->iopm_base_pa = from->iopm_base_pa;
1680 dst->msrpm_base_pa = from->msrpm_base_pa;
1681 dst->tsc_offset = from->tsc_offset;
1682 dst->asid = from->asid;
1683 dst->tlb_ctl = from->tlb_ctl;
1684 dst->int_ctl = from->int_ctl;
1685 dst->int_vector = from->int_vector;
1686 dst->int_state = from->int_state;
1687 dst->exit_code = from->exit_code;
1688 dst->exit_code_hi = from->exit_code_hi;
1689 dst->exit_info_1 = from->exit_info_1;
1690 dst->exit_info_2 = from->exit_info_2;
1691 dst->exit_int_info = from->exit_int_info;
1692 dst->exit_int_info_err = from->exit_int_info_err;
1693 dst->nested_ctl = from->nested_ctl;
1694 dst->event_inj = from->event_inj;
1695 dst->event_inj_err = from->event_inj_err;
1696 dst->next_rip = from->next_rip;
1697 dst->nested_cr3 = from->nested_cr3;
1698 dst->virt_ext = from->virt_ext;
1699 dst->pause_filter_count = from->pause_filter_count;
1700 dst->pause_filter_thresh = from->pause_filter_thresh;
1701 /* 'clean' and 'hv_enlightenments' are not changed by KVM */
1702 }
1703
svm_get_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,u32 user_data_size)1704 static int svm_get_nested_state(struct kvm_vcpu *vcpu,
1705 struct kvm_nested_state __user *user_kvm_nested_state,
1706 u32 user_data_size)
1707 {
1708 struct vcpu_svm *svm;
1709 struct vmcb_control_area *ctl;
1710 unsigned long r;
1711 struct kvm_nested_state kvm_state = {
1712 .flags = 0,
1713 .format = KVM_STATE_NESTED_FORMAT_SVM,
1714 .size = sizeof(kvm_state),
1715 };
1716 struct vmcb __user *user_vmcb = (struct vmcb __user *)
1717 &user_kvm_nested_state->data.svm[0];
1718
1719 if (!vcpu)
1720 return kvm_state.size + KVM_STATE_NESTED_SVM_VMCB_SIZE;
1721
1722 svm = to_svm(vcpu);
1723
1724 if (user_data_size < kvm_state.size)
1725 goto out;
1726
1727 /* First fill in the header and copy it out. */
1728 if (is_guest_mode(vcpu)) {
1729 kvm_state.hdr.svm.vmcb_pa = svm->nested.vmcb12_gpa;
1730 kvm_state.size += KVM_STATE_NESTED_SVM_VMCB_SIZE;
1731 kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
1732
1733 if (svm->nested.nested_run_pending)
1734 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
1735 }
1736
1737 if (gif_set(svm))
1738 kvm_state.flags |= KVM_STATE_NESTED_GIF_SET;
1739
1740 if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
1741 return -EFAULT;
1742
1743 if (!is_guest_mode(vcpu))
1744 goto out;
1745
1746 /*
1747 * Copy over the full size of the VMCB rather than just the size
1748 * of the structs.
1749 */
1750 if (clear_user(user_vmcb, KVM_STATE_NESTED_SVM_VMCB_SIZE))
1751 return -EFAULT;
1752
1753 ctl = kzalloc(sizeof(*ctl), GFP_KERNEL);
1754 if (!ctl)
1755 return -ENOMEM;
1756
1757 nested_copy_vmcb_cache_to_control(ctl, &svm->nested.ctl);
1758 r = copy_to_user(&user_vmcb->control, ctl,
1759 sizeof(user_vmcb->control));
1760 kfree(ctl);
1761 if (r)
1762 return -EFAULT;
1763
1764 if (copy_to_user(&user_vmcb->save, &svm->vmcb01.ptr->save,
1765 sizeof(user_vmcb->save)))
1766 return -EFAULT;
1767 out:
1768 return kvm_state.size;
1769 }
1770
svm_set_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,struct kvm_nested_state * kvm_state)1771 static int svm_set_nested_state(struct kvm_vcpu *vcpu,
1772 struct kvm_nested_state __user *user_kvm_nested_state,
1773 struct kvm_nested_state *kvm_state)
1774 {
1775 struct vcpu_svm *svm = to_svm(vcpu);
1776 struct vmcb __user *user_vmcb = (struct vmcb __user *)
1777 &user_kvm_nested_state->data.svm[0];
1778 struct vmcb_control_area *ctl;
1779 struct vmcb_save_area *save;
1780 struct vmcb_save_area_cached save_cached;
1781 struct vmcb_ctrl_area_cached ctl_cached;
1782 unsigned long cr0;
1783 int ret;
1784
1785 BUILD_BUG_ON(sizeof(struct vmcb_control_area) + sizeof(struct vmcb_save_area) >
1786 KVM_STATE_NESTED_SVM_VMCB_SIZE);
1787
1788 if (kvm_state->format != KVM_STATE_NESTED_FORMAT_SVM)
1789 return -EINVAL;
1790
1791 if (kvm_state->flags & ~(KVM_STATE_NESTED_GUEST_MODE |
1792 KVM_STATE_NESTED_RUN_PENDING |
1793 KVM_STATE_NESTED_GIF_SET))
1794 return -EINVAL;
1795
1796 /*
1797 * If in guest mode, vcpu->arch.efer actually refers to the L2 guest's
1798 * EFER.SVME, but EFER.SVME still has to be 1 for VMRUN to succeed.
1799 */
1800 if (!(vcpu->arch.efer & EFER_SVME)) {
1801 /* GIF=1 and no guest mode are required if SVME=0. */
1802 if (kvm_state->flags != KVM_STATE_NESTED_GIF_SET)
1803 return -EINVAL;
1804 }
1805
1806 /* SMM temporarily disables SVM, so we cannot be in guest mode. */
1807 if (is_smm(vcpu) && (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
1808 return -EINVAL;
1809
1810 if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE)) {
1811 svm_leave_nested(vcpu);
1812 svm_set_gif(svm, !!(kvm_state->flags & KVM_STATE_NESTED_GIF_SET));
1813 return 0;
1814 }
1815
1816 if (!page_address_valid(vcpu, kvm_state->hdr.svm.vmcb_pa))
1817 return -EINVAL;
1818 if (kvm_state->size < sizeof(*kvm_state) + KVM_STATE_NESTED_SVM_VMCB_SIZE)
1819 return -EINVAL;
1820
1821 ctl = memdup_user(&user_vmcb->control, sizeof(*ctl));
1822 if (IS_ERR(ctl))
1823 return PTR_ERR(ctl);
1824
1825 save = memdup_user(&user_vmcb->save, sizeof(*save));
1826 if (IS_ERR(save)) {
1827 kfree(ctl);
1828 return PTR_ERR(save);
1829 }
1830
1831 ret = -EINVAL;
1832 __nested_copy_vmcb_control_to_cache(vcpu, &ctl_cached, ctl);
1833 if (!__nested_vmcb_check_controls(vcpu, &ctl_cached))
1834 goto out_free;
1835
1836 /*
1837 * Processor state contains L2 state. Check that it is
1838 * valid for guest mode (see nested_vmcb_check_save).
1839 */
1840 cr0 = kvm_read_cr0(vcpu);
1841 if (((cr0 & X86_CR0_CD) == 0) && (cr0 & X86_CR0_NW))
1842 goto out_free;
1843
1844 /*
1845 * Validate host state saved from before VMRUN (see
1846 * nested_svm_check_permissions).
1847 */
1848 __nested_copy_vmcb_save_to_cache(&save_cached, save);
1849 if (!(save->cr0 & X86_CR0_PG) ||
1850 !(save->cr0 & X86_CR0_PE) ||
1851 (save->rflags & X86_EFLAGS_VM) ||
1852 !__nested_vmcb_check_save(vcpu, &save_cached))
1853 goto out_free;
1854
1855
1856 /*
1857 * All checks done, we can enter guest mode. Userspace provides
1858 * vmcb12.control, which will be combined with L1 and stored into
1859 * vmcb02, and the L1 save state which we store in vmcb01.
1860 * L2 registers if needed are moved from the current VMCB to VMCB02.
1861 */
1862
1863 if (is_guest_mode(vcpu))
1864 svm_leave_nested(vcpu);
1865 else
1866 svm->nested.vmcb02.ptr->save = svm->vmcb01.ptr->save;
1867
1868 svm_set_gif(svm, !!(kvm_state->flags & KVM_STATE_NESTED_GIF_SET));
1869
1870 svm->nested.nested_run_pending =
1871 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
1872
1873 svm->nested.vmcb12_gpa = kvm_state->hdr.svm.vmcb_pa;
1874
1875 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, save);
1876 nested_copy_vmcb_control_to_cache(svm, ctl);
1877
1878 svm_switch_vmcb(svm, &svm->nested.vmcb02);
1879 nested_vmcb02_prepare_control(svm, svm->vmcb->save.rip, svm->vmcb->save.cs.base);
1880
1881 /*
1882 * While the nested guest CR3 is already checked and set by
1883 * KVM_SET_SREGS, it was set when nested state was yet loaded,
1884 * thus MMU might not be initialized correctly.
1885 * Set it again to fix this.
1886 */
1887
1888 ret = nested_svm_load_cr3(&svm->vcpu, vcpu->arch.cr3,
1889 nested_npt_enabled(svm), false);
1890 if (WARN_ON_ONCE(ret))
1891 goto out_free;
1892
1893 svm->nested.force_msr_bitmap_recalc = true;
1894
1895 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
1896 ret = 0;
1897 out_free:
1898 kfree(save);
1899 kfree(ctl);
1900
1901 return ret;
1902 }
1903
svm_get_nested_state_pages(struct kvm_vcpu * vcpu)1904 static bool svm_get_nested_state_pages(struct kvm_vcpu *vcpu)
1905 {
1906 if (WARN_ON(!is_guest_mode(vcpu)))
1907 return true;
1908
1909 if (!vcpu->arch.pdptrs_from_userspace &&
1910 !nested_npt_enabled(to_svm(vcpu)) && is_pae_paging(vcpu))
1911 /*
1912 * Reload the guest's PDPTRs since after a migration
1913 * the guest CR3 might be restored prior to setting the nested
1914 * state which can lead to a load of wrong PDPTRs.
1915 */
1916 if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
1917 return false;
1918
1919 if (!nested_svm_merge_msrpm(vcpu)) {
1920 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1921 vcpu->run->internal.suberror =
1922 KVM_INTERNAL_ERROR_EMULATION;
1923 vcpu->run->internal.ndata = 0;
1924 return false;
1925 }
1926
1927 if (kvm_hv_verify_vp_assist(vcpu))
1928 return false;
1929
1930 return true;
1931 }
1932
1933 struct kvm_x86_nested_ops svm_nested_ops = {
1934 .leave_nested = svm_leave_nested,
1935 .is_exception_vmexit = nested_svm_is_exception_vmexit,
1936 .check_events = svm_check_nested_events,
1937 .triple_fault = nested_svm_triple_fault,
1938 .get_nested_state_pages = svm_get_nested_state_pages,
1939 .get_state = svm_get_nested_state,
1940 .set_state = svm_set_nested_state,
1941 .hv_inject_synthetic_vmexit_post_tlb_flush = svm_hv_inject_synthetic_vmexit_post_tlb_flush,
1942 };
1943