xref: /linux/arch/x86/kvm/svm/nested.c (revision 256e3417065b2721f77bcd37331796b59483ef3b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM support
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *   Avi Kivity   <avi@qumranet.com>
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/kvm_types.h>
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 
21 #include <asm/msr-index.h>
22 #include <asm/debugreg.h>
23 
24 #include "kvm_emulate.h"
25 #include "trace.h"
26 #include "mmu.h"
27 #include "x86.h"
28 #include "smm.h"
29 #include "cpuid.h"
30 #include "lapic.h"
31 #include "svm.h"
32 #include "hyperv.h"
33 
34 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
35 
nested_svm_inject_npf_exit(struct kvm_vcpu * vcpu,struct x86_exception * fault)36 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
37 				       struct x86_exception *fault)
38 {
39 	struct vcpu_svm *svm = to_svm(vcpu);
40 	struct vmcb *vmcb = svm->vmcb;
41 
42 	if (vmcb->control.exit_code != SVM_EXIT_NPF) {
43 		/*
44 		 * TODO: track the cause of the nested page fault, and
45 		 * correctly fill in the high bits of exit_info_1.
46 		 */
47 		vmcb->control.exit_code = SVM_EXIT_NPF;
48 		vmcb->control.exit_code_hi = 0;
49 		vmcb->control.exit_info_1 = (1ULL << 32);
50 		vmcb->control.exit_info_2 = fault->address;
51 	}
52 
53 	vmcb->control.exit_info_1 &= ~0xffffffffULL;
54 	vmcb->control.exit_info_1 |= fault->error_code;
55 
56 	nested_svm_vmexit(svm);
57 }
58 
nested_svm_get_tdp_pdptr(struct kvm_vcpu * vcpu,int index)59 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
60 {
61 	struct vcpu_svm *svm = to_svm(vcpu);
62 	u64 cr3 = svm->nested.ctl.nested_cr3;
63 	u64 pdpte;
64 	int ret;
65 
66 	/*
67 	 * Note, nCR3 is "assumed" to be 32-byte aligned, i.e. the CPU ignores
68 	 * nCR3[4:0] when loading PDPTEs from memory.
69 	 */
70 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
71 				       (cr3 & GENMASK(11, 5)) + index * 8, 8);
72 	if (ret)
73 		return 0;
74 	return pdpte;
75 }
76 
nested_svm_get_tdp_cr3(struct kvm_vcpu * vcpu)77 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
78 {
79 	struct vcpu_svm *svm = to_svm(vcpu);
80 
81 	return svm->nested.ctl.nested_cr3;
82 }
83 
nested_svm_init_mmu_context(struct kvm_vcpu * vcpu)84 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
85 {
86 	struct vcpu_svm *svm = to_svm(vcpu);
87 
88 	WARN_ON(mmu_is_nested(vcpu));
89 
90 	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
91 
92 	/*
93 	 * The NPT format depends on L1's CR4 and EFER, which is in vmcb01.  Note,
94 	 * when called via KVM_SET_NESTED_STATE, that state may _not_ match current
95 	 * vCPU state.  CR0.WP is explicitly ignored, while CR0.PG is required.
96 	 */
97 	kvm_init_shadow_npt_mmu(vcpu, X86_CR0_PG, svm->vmcb01.ptr->save.cr4,
98 				svm->vmcb01.ptr->save.efer,
99 				svm->nested.ctl.nested_cr3);
100 	vcpu->arch.mmu->get_guest_pgd     = nested_svm_get_tdp_cr3;
101 	vcpu->arch.mmu->get_pdptr         = nested_svm_get_tdp_pdptr;
102 	vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit;
103 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
104 }
105 
nested_svm_uninit_mmu_context(struct kvm_vcpu * vcpu)106 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
107 {
108 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
109 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
110 }
111 
nested_vmcb_needs_vls_intercept(struct vcpu_svm * svm)112 static bool nested_vmcb_needs_vls_intercept(struct vcpu_svm *svm)
113 {
114 	if (!guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_V_VMSAVE_VMLOAD))
115 		return true;
116 
117 	if (!nested_npt_enabled(svm))
118 		return true;
119 
120 	if (!(svm->nested.ctl.virt_ext & VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK))
121 		return true;
122 
123 	return false;
124 }
125 
recalc_intercepts(struct vcpu_svm * svm)126 void recalc_intercepts(struct vcpu_svm *svm)
127 {
128 	struct vmcb_control_area *c, *h;
129 	struct vmcb_ctrl_area_cached *g;
130 	unsigned int i;
131 
132 	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
133 
134 	if (!is_guest_mode(&svm->vcpu))
135 		return;
136 
137 	c = &svm->vmcb->control;
138 	h = &svm->vmcb01.ptr->control;
139 	g = &svm->nested.ctl;
140 
141 	for (i = 0; i < MAX_INTERCEPT; i++)
142 		c->intercepts[i] = h->intercepts[i];
143 
144 	if (g->int_ctl & V_INTR_MASKING_MASK) {
145 		/*
146 		 * If L2 is active and V_INTR_MASKING is enabled in vmcb12,
147 		 * disable intercept of CR8 writes as L2's CR8 does not affect
148 		 * any interrupt KVM may want to inject.
149 		 *
150 		 * Similarly, disable intercept of virtual interrupts (used to
151 		 * detect interrupt windows) if the saved RFLAGS.IF is '0', as
152 		 * the effective RFLAGS.IF for L1 interrupts will never be set
153 		 * while L2 is running (L2's RFLAGS.IF doesn't affect L1 IRQs).
154 		 */
155 		vmcb_clr_intercept(c, INTERCEPT_CR8_WRITE);
156 		if (!(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF))
157 			vmcb_clr_intercept(c, INTERCEPT_VINTR);
158 	}
159 
160 	/*
161 	 * We want to see VMMCALLs from a nested guest only when Hyper-V L2 TLB
162 	 * flush feature is enabled.
163 	 */
164 	if (!nested_svm_l2_tlb_flush_enabled(&svm->vcpu))
165 		vmcb_clr_intercept(c, INTERCEPT_VMMCALL);
166 
167 	for (i = 0; i < MAX_INTERCEPT; i++)
168 		c->intercepts[i] |= g->intercepts[i];
169 
170 	/* If SMI is not intercepted, ignore guest SMI intercept as well  */
171 	if (!intercept_smi)
172 		vmcb_clr_intercept(c, INTERCEPT_SMI);
173 
174 	if (nested_vmcb_needs_vls_intercept(svm)) {
175 		/*
176 		 * If the virtual VMLOAD/VMSAVE is not enabled for the L2,
177 		 * we must intercept these instructions to correctly
178 		 * emulate them in case L1 doesn't intercept them.
179 		 */
180 		vmcb_set_intercept(c, INTERCEPT_VMLOAD);
181 		vmcb_set_intercept(c, INTERCEPT_VMSAVE);
182 	} else {
183 		WARN_ON(!(c->virt_ext & VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK));
184 	}
185 }
186 
187 /*
188  * This array (and its actual size) holds the set of offsets (indexing by chunk
189  * size) to process when merging vmcb12's MSRPM with vmcb01's MSRPM.  Note, the
190  * set of MSRs for which interception is disabled in vmcb01 is per-vCPU, e.g.
191  * based on CPUID features.  This array only tracks MSRs that *might* be passed
192  * through to the guest.
193  *
194  * Hardcode the capacity of the array based on the maximum number of _offsets_.
195  * MSRs are batched together, so there are fewer offsets than MSRs.
196  */
197 static int nested_svm_msrpm_merge_offsets[7] __ro_after_init;
198 static int nested_svm_nr_msrpm_merge_offsets __ro_after_init;
199 typedef unsigned long nsvm_msrpm_merge_t;
200 
nested_svm_init_msrpm_merge_offsets(void)201 int __init nested_svm_init_msrpm_merge_offsets(void)
202 {
203 	static const u32 merge_msrs[] __initconst = {
204 		MSR_STAR,
205 		MSR_IA32_SYSENTER_CS,
206 		MSR_IA32_SYSENTER_EIP,
207 		MSR_IA32_SYSENTER_ESP,
208 	#ifdef CONFIG_X86_64
209 		MSR_GS_BASE,
210 		MSR_FS_BASE,
211 		MSR_KERNEL_GS_BASE,
212 		MSR_LSTAR,
213 		MSR_CSTAR,
214 		MSR_SYSCALL_MASK,
215 	#endif
216 		MSR_IA32_SPEC_CTRL,
217 		MSR_IA32_PRED_CMD,
218 		MSR_IA32_FLUSH_CMD,
219 		MSR_IA32_APERF,
220 		MSR_IA32_MPERF,
221 		MSR_IA32_LASTBRANCHFROMIP,
222 		MSR_IA32_LASTBRANCHTOIP,
223 		MSR_IA32_LASTINTFROMIP,
224 		MSR_IA32_LASTINTTOIP,
225 	};
226 	int i, j;
227 
228 	for (i = 0; i < ARRAY_SIZE(merge_msrs); i++) {
229 		int bit_nr = svm_msrpm_bit_nr(merge_msrs[i]);
230 		u32 offset;
231 
232 		if (WARN_ON(bit_nr < 0))
233 			return -EIO;
234 
235 		/*
236 		 * Merging is done in chunks to reduce the number of accesses
237 		 * to L1's bitmap.
238 		 */
239 		offset = bit_nr / BITS_PER_BYTE / sizeof(nsvm_msrpm_merge_t);
240 
241 		for (j = 0; j < nested_svm_nr_msrpm_merge_offsets; j++) {
242 			if (nested_svm_msrpm_merge_offsets[j] == offset)
243 				break;
244 		}
245 
246 		if (j < nested_svm_nr_msrpm_merge_offsets)
247 			continue;
248 
249 		if (WARN_ON(j >= ARRAY_SIZE(nested_svm_msrpm_merge_offsets)))
250 			return -EIO;
251 
252 		nested_svm_msrpm_merge_offsets[j] = offset;
253 		nested_svm_nr_msrpm_merge_offsets++;
254 	}
255 
256 	return 0;
257 }
258 
259 /*
260  * Merge L0's (KVM) and L1's (Nested VMCB) MSR permission bitmaps. The function
261  * is optimized in that it only merges the parts where KVM MSR permission bitmap
262  * may contain zero bits.
263  */
nested_svm_merge_msrpm(struct kvm_vcpu * vcpu)264 static bool nested_svm_merge_msrpm(struct kvm_vcpu *vcpu)
265 {
266 	struct vcpu_svm *svm = to_svm(vcpu);
267 	nsvm_msrpm_merge_t *msrpm02 = svm->nested.msrpm;
268 	nsvm_msrpm_merge_t *msrpm01 = svm->msrpm;
269 	int i;
270 
271 	/*
272 	 * MSR bitmap update can be skipped when:
273 	 * - MSR bitmap for L1 hasn't changed.
274 	 * - Nested hypervisor (L1) is attempting to launch the same L2 as
275 	 *   before.
276 	 * - Nested hypervisor (L1) is using Hyper-V emulation interface and
277 	 * tells KVM (L0) there were no changes in MSR bitmap for L2.
278 	 */
279 #ifdef CONFIG_KVM_HYPERV
280 	if (!svm->nested.force_msr_bitmap_recalc) {
281 		struct hv_vmcb_enlightenments *hve = &svm->nested.ctl.hv_enlightenments;
282 
283 		if (kvm_hv_hypercall_enabled(vcpu) &&
284 		    hve->hv_enlightenments_control.msr_bitmap &&
285 		    (svm->nested.ctl.clean & BIT(HV_VMCB_NESTED_ENLIGHTENMENTS)))
286 			goto set_msrpm_base_pa;
287 	}
288 #endif
289 
290 	if (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_MSR_PROT)))
291 		return true;
292 
293 	for (i = 0; i < nested_svm_nr_msrpm_merge_offsets; i++) {
294 		const int p = nested_svm_msrpm_merge_offsets[i];
295 		nsvm_msrpm_merge_t l1_val;
296 		gpa_t gpa;
297 
298 		gpa = svm->nested.ctl.msrpm_base_pa + (p * sizeof(l1_val));
299 
300 		if (kvm_vcpu_read_guest(vcpu, gpa, &l1_val, sizeof(l1_val)))
301 			return false;
302 
303 		msrpm02[p] = msrpm01[p] | l1_val;
304 	}
305 
306 	svm->nested.force_msr_bitmap_recalc = false;
307 
308 #ifdef CONFIG_KVM_HYPERV
309 set_msrpm_base_pa:
310 #endif
311 	svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
312 
313 	return true;
314 }
315 
316 /*
317  * Bits 11:0 of bitmap address are ignored by hardware
318  */
nested_svm_check_bitmap_pa(struct kvm_vcpu * vcpu,u64 pa,u32 size)319 static bool nested_svm_check_bitmap_pa(struct kvm_vcpu *vcpu, u64 pa, u32 size)
320 {
321 	u64 addr = PAGE_ALIGN(pa);
322 
323 	return kvm_vcpu_is_legal_gpa(vcpu, addr) &&
324 	    kvm_vcpu_is_legal_gpa(vcpu, addr + size - 1);
325 }
326 
__nested_vmcb_check_controls(struct kvm_vcpu * vcpu,struct vmcb_ctrl_area_cached * control)327 static bool __nested_vmcb_check_controls(struct kvm_vcpu *vcpu,
328 					 struct vmcb_ctrl_area_cached *control)
329 {
330 	if (CC(!vmcb12_is_intercept(control, INTERCEPT_VMRUN)))
331 		return false;
332 
333 	if (CC(control->asid == 0))
334 		return false;
335 
336 	if (CC((control->nested_ctl & SVM_NESTED_CTL_NP_ENABLE) && !npt_enabled))
337 		return false;
338 
339 	if (CC(!nested_svm_check_bitmap_pa(vcpu, control->msrpm_base_pa,
340 					   MSRPM_SIZE)))
341 		return false;
342 	if (CC(!nested_svm_check_bitmap_pa(vcpu, control->iopm_base_pa,
343 					   IOPM_SIZE)))
344 		return false;
345 
346 	if (CC((control->int_ctl & V_NMI_ENABLE_MASK) &&
347 	       !vmcb12_is_intercept(control, INTERCEPT_NMI))) {
348 		return false;
349 	}
350 
351 	return true;
352 }
353 
354 /* Common checks that apply to both L1 and L2 state.  */
__nested_vmcb_check_save(struct kvm_vcpu * vcpu,struct vmcb_save_area_cached * save)355 static bool __nested_vmcb_check_save(struct kvm_vcpu *vcpu,
356 				     struct vmcb_save_area_cached *save)
357 {
358 	if (CC(!(save->efer & EFER_SVME)))
359 		return false;
360 
361 	if (CC((save->cr0 & X86_CR0_CD) == 0 && (save->cr0 & X86_CR0_NW)) ||
362 	    CC(save->cr0 & ~0xffffffffULL))
363 		return false;
364 
365 	if (CC(!kvm_dr6_valid(save->dr6)) || CC(!kvm_dr7_valid(save->dr7)))
366 		return false;
367 
368 	/*
369 	 * These checks are also performed by KVM_SET_SREGS,
370 	 * except that EFER.LMA is not checked by SVM against
371 	 * CR0.PG && EFER.LME.
372 	 */
373 	if ((save->efer & EFER_LME) && (save->cr0 & X86_CR0_PG)) {
374 		if (CC(!(save->cr4 & X86_CR4_PAE)) ||
375 		    CC(!(save->cr0 & X86_CR0_PE)) ||
376 		    CC(!kvm_vcpu_is_legal_cr3(vcpu, save->cr3)))
377 			return false;
378 	}
379 
380 	/* Note, SVM doesn't have any additional restrictions on CR4. */
381 	if (CC(!__kvm_is_valid_cr4(vcpu, save->cr4)))
382 		return false;
383 
384 	if (CC(!kvm_valid_efer(vcpu, save->efer)))
385 		return false;
386 
387 	return true;
388 }
389 
nested_vmcb_check_save(struct kvm_vcpu * vcpu)390 static bool nested_vmcb_check_save(struct kvm_vcpu *vcpu)
391 {
392 	struct vcpu_svm *svm = to_svm(vcpu);
393 	struct vmcb_save_area_cached *save = &svm->nested.save;
394 
395 	return __nested_vmcb_check_save(vcpu, save);
396 }
397 
nested_vmcb_check_controls(struct kvm_vcpu * vcpu)398 static bool nested_vmcb_check_controls(struct kvm_vcpu *vcpu)
399 {
400 	struct vcpu_svm *svm = to_svm(vcpu);
401 	struct vmcb_ctrl_area_cached *ctl = &svm->nested.ctl;
402 
403 	return __nested_vmcb_check_controls(vcpu, ctl);
404 }
405 
406 static
__nested_copy_vmcb_control_to_cache(struct kvm_vcpu * vcpu,struct vmcb_ctrl_area_cached * to,struct vmcb_control_area * from)407 void __nested_copy_vmcb_control_to_cache(struct kvm_vcpu *vcpu,
408 					 struct vmcb_ctrl_area_cached *to,
409 					 struct vmcb_control_area *from)
410 {
411 	unsigned int i;
412 
413 	for (i = 0; i < MAX_INTERCEPT; i++)
414 		to->intercepts[i] = from->intercepts[i];
415 
416 	to->iopm_base_pa        = from->iopm_base_pa;
417 	to->msrpm_base_pa       = from->msrpm_base_pa;
418 	to->tsc_offset          = from->tsc_offset;
419 	to->tlb_ctl             = from->tlb_ctl;
420 	to->int_ctl             = from->int_ctl;
421 	to->int_vector          = from->int_vector;
422 	to->int_state           = from->int_state;
423 	to->exit_code           = from->exit_code;
424 	to->exit_code_hi        = from->exit_code_hi;
425 	to->exit_info_1         = from->exit_info_1;
426 	to->exit_info_2         = from->exit_info_2;
427 	to->exit_int_info       = from->exit_int_info;
428 	to->exit_int_info_err   = from->exit_int_info_err;
429 	to->nested_ctl          = from->nested_ctl;
430 	to->event_inj           = from->event_inj;
431 	to->event_inj_err       = from->event_inj_err;
432 	to->next_rip            = from->next_rip;
433 	to->nested_cr3          = from->nested_cr3;
434 	to->virt_ext            = from->virt_ext;
435 	to->pause_filter_count  = from->pause_filter_count;
436 	to->pause_filter_thresh = from->pause_filter_thresh;
437 
438 	/* Copy asid here because nested_vmcb_check_controls will check it.  */
439 	to->asid           = from->asid;
440 	to->msrpm_base_pa &= ~0x0fffULL;
441 	to->iopm_base_pa  &= ~0x0fffULL;
442 
443 #ifdef CONFIG_KVM_HYPERV
444 	/* Hyper-V extensions (Enlightened VMCB) */
445 	if (kvm_hv_hypercall_enabled(vcpu)) {
446 		to->clean = from->clean;
447 		memcpy(&to->hv_enlightenments, &from->hv_enlightenments,
448 		       sizeof(to->hv_enlightenments));
449 	}
450 #endif
451 }
452 
nested_copy_vmcb_control_to_cache(struct vcpu_svm * svm,struct vmcb_control_area * control)453 void nested_copy_vmcb_control_to_cache(struct vcpu_svm *svm,
454 				       struct vmcb_control_area *control)
455 {
456 	__nested_copy_vmcb_control_to_cache(&svm->vcpu, &svm->nested.ctl, control);
457 }
458 
__nested_copy_vmcb_save_to_cache(struct vmcb_save_area_cached * to,struct vmcb_save_area * from)459 static void __nested_copy_vmcb_save_to_cache(struct vmcb_save_area_cached *to,
460 					     struct vmcb_save_area *from)
461 {
462 	/*
463 	 * Copy only fields that are validated, as we need them
464 	 * to avoid TOC/TOU races.
465 	 */
466 	to->efer = from->efer;
467 	to->cr0 = from->cr0;
468 	to->cr3 = from->cr3;
469 	to->cr4 = from->cr4;
470 
471 	to->dr6 = from->dr6;
472 	to->dr7 = from->dr7;
473 }
474 
nested_copy_vmcb_save_to_cache(struct vcpu_svm * svm,struct vmcb_save_area * save)475 void nested_copy_vmcb_save_to_cache(struct vcpu_svm *svm,
476 				    struct vmcb_save_area *save)
477 {
478 	__nested_copy_vmcb_save_to_cache(&svm->nested.save, save);
479 }
480 
481 /*
482  * Synchronize fields that are written by the processor, so that
483  * they can be copied back into the vmcb12.
484  */
nested_sync_control_from_vmcb02(struct vcpu_svm * svm)485 void nested_sync_control_from_vmcb02(struct vcpu_svm *svm)
486 {
487 	u32 mask;
488 	svm->nested.ctl.event_inj      = svm->vmcb->control.event_inj;
489 	svm->nested.ctl.event_inj_err  = svm->vmcb->control.event_inj_err;
490 
491 	/* Only a few fields of int_ctl are written by the processor.  */
492 	mask = V_IRQ_MASK | V_TPR_MASK;
493 	/*
494 	 * Don't sync vmcb02 V_IRQ back to vmcb12 if KVM (L0) is intercepting
495 	 * virtual interrupts in order to request an interrupt window, as KVM
496 	 * has usurped vmcb02's int_ctl.  If an interrupt window opens before
497 	 * the next VM-Exit, svm_clear_vintr() will restore vmcb12's int_ctl.
498 	 * If no window opens, V_IRQ will be correctly preserved in vmcb12's
499 	 * int_ctl (because it was never recognized while L2 was running).
500 	 */
501 	if (svm_is_intercept(svm, INTERCEPT_VINTR) &&
502 	    !test_bit(INTERCEPT_VINTR, (unsigned long *)svm->nested.ctl.intercepts))
503 		mask &= ~V_IRQ_MASK;
504 
505 	if (nested_vgif_enabled(svm))
506 		mask |= V_GIF_MASK;
507 
508 	if (nested_vnmi_enabled(svm))
509 		mask |= V_NMI_BLOCKING_MASK | V_NMI_PENDING_MASK;
510 
511 	svm->nested.ctl.int_ctl        &= ~mask;
512 	svm->nested.ctl.int_ctl        |= svm->vmcb->control.int_ctl & mask;
513 }
514 
515 /*
516  * Transfer any event that L0 or L1 wanted to inject into L2 to
517  * EXIT_INT_INFO.
518  */
nested_save_pending_event_to_vmcb12(struct vcpu_svm * svm,struct vmcb * vmcb12)519 static void nested_save_pending_event_to_vmcb12(struct vcpu_svm *svm,
520 						struct vmcb *vmcb12)
521 {
522 	struct kvm_vcpu *vcpu = &svm->vcpu;
523 	u32 exit_int_info = 0;
524 	unsigned int nr;
525 
526 	if (vcpu->arch.exception.injected) {
527 		nr = vcpu->arch.exception.vector;
528 		exit_int_info = nr | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT;
529 
530 		if (vcpu->arch.exception.has_error_code) {
531 			exit_int_info |= SVM_EVTINJ_VALID_ERR;
532 			vmcb12->control.exit_int_info_err =
533 				vcpu->arch.exception.error_code;
534 		}
535 
536 	} else if (vcpu->arch.nmi_injected) {
537 		exit_int_info = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
538 
539 	} else if (vcpu->arch.interrupt.injected) {
540 		nr = vcpu->arch.interrupt.nr;
541 		exit_int_info = nr | SVM_EVTINJ_VALID;
542 
543 		if (vcpu->arch.interrupt.soft)
544 			exit_int_info |= SVM_EVTINJ_TYPE_SOFT;
545 		else
546 			exit_int_info |= SVM_EVTINJ_TYPE_INTR;
547 	}
548 
549 	vmcb12->control.exit_int_info = exit_int_info;
550 }
551 
nested_svm_transition_tlb_flush(struct kvm_vcpu * vcpu)552 static void nested_svm_transition_tlb_flush(struct kvm_vcpu *vcpu)
553 {
554 	/* Handle pending Hyper-V TLB flush requests */
555 	kvm_hv_nested_transtion_tlb_flush(vcpu, npt_enabled);
556 
557 	/*
558 	 * TODO: optimize unconditional TLB flush/MMU sync.  A partial list of
559 	 * things to fix before this can be conditional:
560 	 *
561 	 *  - Flush TLBs for both L1 and L2 remote TLB flush
562 	 *  - Honor L1's request to flush an ASID on nested VMRUN
563 	 *  - Sync nested NPT MMU on VMRUN that flushes L2's ASID[*]
564 	 *  - Don't crush a pending TLB flush in vmcb02 on nested VMRUN
565 	 *  - Flush L1's ASID on KVM_REQ_TLB_FLUSH_GUEST
566 	 *
567 	 * [*] Unlike nested EPT, SVM's ASID management can invalidate nested
568 	 *     NPT guest-physical mappings on VMRUN.
569 	 */
570 	kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
571 	kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
572 }
573 
574 /*
575  * Load guest's/host's cr3 on nested vmentry or vmexit. @nested_npt is true
576  * if we are emulating VM-Entry into a guest with NPT enabled.
577  */
nested_svm_load_cr3(struct kvm_vcpu * vcpu,unsigned long cr3,bool nested_npt,bool reload_pdptrs)578 static int nested_svm_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
579 			       bool nested_npt, bool reload_pdptrs)
580 {
581 	if (CC(!kvm_vcpu_is_legal_cr3(vcpu, cr3)))
582 		return -EINVAL;
583 
584 	if (reload_pdptrs && !nested_npt && is_pae_paging(vcpu) &&
585 	    CC(!load_pdptrs(vcpu, cr3)))
586 		return -EINVAL;
587 
588 	vcpu->arch.cr3 = cr3;
589 
590 	/* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
591 	kvm_init_mmu(vcpu);
592 
593 	if (!nested_npt)
594 		kvm_mmu_new_pgd(vcpu, cr3);
595 
596 	return 0;
597 }
598 
nested_vmcb02_compute_g_pat(struct vcpu_svm * svm)599 void nested_vmcb02_compute_g_pat(struct vcpu_svm *svm)
600 {
601 	if (!svm->nested.vmcb02.ptr)
602 		return;
603 
604 	/* FIXME: merge g_pat from vmcb01 and vmcb12.  */
605 	svm->nested.vmcb02.ptr->save.g_pat = svm->vmcb01.ptr->save.g_pat;
606 }
607 
nested_vmcb02_prepare_save(struct vcpu_svm * svm,struct vmcb * vmcb12)608 static void nested_vmcb02_prepare_save(struct vcpu_svm *svm, struct vmcb *vmcb12)
609 {
610 	bool new_vmcb12 = false;
611 	struct vmcb *vmcb01 = svm->vmcb01.ptr;
612 	struct vmcb *vmcb02 = svm->nested.vmcb02.ptr;
613 	struct kvm_vcpu *vcpu = &svm->vcpu;
614 
615 	nested_vmcb02_compute_g_pat(svm);
616 
617 	/* Load the nested guest state */
618 	if (svm->nested.vmcb12_gpa != svm->nested.last_vmcb12_gpa) {
619 		new_vmcb12 = true;
620 		svm->nested.last_vmcb12_gpa = svm->nested.vmcb12_gpa;
621 		svm->nested.force_msr_bitmap_recalc = true;
622 	}
623 
624 	if (unlikely(new_vmcb12 || vmcb_is_dirty(vmcb12, VMCB_SEG))) {
625 		vmcb02->save.es = vmcb12->save.es;
626 		vmcb02->save.cs = vmcb12->save.cs;
627 		vmcb02->save.ss = vmcb12->save.ss;
628 		vmcb02->save.ds = vmcb12->save.ds;
629 		vmcb02->save.cpl = vmcb12->save.cpl;
630 		vmcb_mark_dirty(vmcb02, VMCB_SEG);
631 	}
632 
633 	if (unlikely(new_vmcb12 || vmcb_is_dirty(vmcb12, VMCB_DT))) {
634 		vmcb02->save.gdtr = vmcb12->save.gdtr;
635 		vmcb02->save.idtr = vmcb12->save.idtr;
636 		vmcb_mark_dirty(vmcb02, VMCB_DT);
637 	}
638 
639 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) &&
640 	    (unlikely(new_vmcb12 || vmcb_is_dirty(vmcb12, VMCB_CET)))) {
641 		vmcb02->save.s_cet  = vmcb12->save.s_cet;
642 		vmcb02->save.isst_addr = vmcb12->save.isst_addr;
643 		vmcb02->save.ssp = vmcb12->save.ssp;
644 		vmcb_mark_dirty(vmcb02, VMCB_CET);
645 	}
646 
647 	kvm_set_rflags(vcpu, vmcb12->save.rflags | X86_EFLAGS_FIXED);
648 
649 	svm_set_efer(vcpu, svm->nested.save.efer);
650 
651 	svm_set_cr0(vcpu, svm->nested.save.cr0);
652 	svm_set_cr4(vcpu, svm->nested.save.cr4);
653 
654 	svm->vcpu.arch.cr2 = vmcb12->save.cr2;
655 
656 	kvm_rax_write(vcpu, vmcb12->save.rax);
657 	kvm_rsp_write(vcpu, vmcb12->save.rsp);
658 	kvm_rip_write(vcpu, vmcb12->save.rip);
659 
660 	/* In case we don't even reach vcpu_run, the fields are not updated */
661 	vmcb02->save.rax = vmcb12->save.rax;
662 	vmcb02->save.rsp = vmcb12->save.rsp;
663 	vmcb02->save.rip = vmcb12->save.rip;
664 
665 	/* These bits will be set properly on the first execution when new_vmc12 is true */
666 	if (unlikely(new_vmcb12 || vmcb_is_dirty(vmcb12, VMCB_DR))) {
667 		vmcb02->save.dr7 = svm->nested.save.dr7 | DR7_FIXED_1;
668 		svm->vcpu.arch.dr6  = svm->nested.save.dr6 | DR6_ACTIVE_LOW;
669 		vmcb_mark_dirty(vmcb02, VMCB_DR);
670 	}
671 
672 	if (unlikely(guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) &&
673 		     (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK))) {
674 		/*
675 		 * Reserved bits of DEBUGCTL are ignored.  Be consistent with
676 		 * svm_set_msr's definition of reserved bits.
677 		 */
678 		svm_copy_lbrs(vmcb02, vmcb12);
679 		vmcb02->save.dbgctl &= ~DEBUGCTL_RESERVED_BITS;
680 		svm_update_lbrv(&svm->vcpu);
681 
682 	} else if (unlikely(vmcb01->control.virt_ext & LBR_CTL_ENABLE_MASK)) {
683 		svm_copy_lbrs(vmcb02, vmcb01);
684 	}
685 }
686 
is_evtinj_soft(u32 evtinj)687 static inline bool is_evtinj_soft(u32 evtinj)
688 {
689 	u32 type = evtinj & SVM_EVTINJ_TYPE_MASK;
690 	u8 vector = evtinj & SVM_EVTINJ_VEC_MASK;
691 
692 	if (!(evtinj & SVM_EVTINJ_VALID))
693 		return false;
694 
695 	if (type == SVM_EVTINJ_TYPE_SOFT)
696 		return true;
697 
698 	return type == SVM_EVTINJ_TYPE_EXEPT && kvm_exception_is_soft(vector);
699 }
700 
is_evtinj_nmi(u32 evtinj)701 static bool is_evtinj_nmi(u32 evtinj)
702 {
703 	u32 type = evtinj & SVM_EVTINJ_TYPE_MASK;
704 
705 	if (!(evtinj & SVM_EVTINJ_VALID))
706 		return false;
707 
708 	return type == SVM_EVTINJ_TYPE_NMI;
709 }
710 
nested_vmcb02_prepare_control(struct vcpu_svm * svm,unsigned long vmcb12_rip,unsigned long vmcb12_csbase)711 static void nested_vmcb02_prepare_control(struct vcpu_svm *svm,
712 					  unsigned long vmcb12_rip,
713 					  unsigned long vmcb12_csbase)
714 {
715 	u32 int_ctl_vmcb01_bits = V_INTR_MASKING_MASK;
716 	u32 int_ctl_vmcb12_bits = V_TPR_MASK | V_IRQ_INJECTION_BITS_MASK;
717 
718 	struct kvm_vcpu *vcpu = &svm->vcpu;
719 	struct vmcb *vmcb01 = svm->vmcb01.ptr;
720 	struct vmcb *vmcb02 = svm->nested.vmcb02.ptr;
721 	u32 pause_count12;
722 	u32 pause_thresh12;
723 
724 	nested_svm_transition_tlb_flush(vcpu);
725 
726 	/* Enter Guest-Mode */
727 	enter_guest_mode(vcpu);
728 
729 	/*
730 	 * Filled at exit: exit_code, exit_code_hi, exit_info_1, exit_info_2,
731 	 * exit_int_info, exit_int_info_err, next_rip, insn_len, insn_bytes.
732 	 */
733 
734 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_VGIF) &&
735 	    (svm->nested.ctl.int_ctl & V_GIF_ENABLE_MASK))
736 		int_ctl_vmcb12_bits |= (V_GIF_MASK | V_GIF_ENABLE_MASK);
737 	else
738 		int_ctl_vmcb01_bits |= (V_GIF_MASK | V_GIF_ENABLE_MASK);
739 
740 	if (vnmi) {
741 		if (vmcb01->control.int_ctl & V_NMI_PENDING_MASK) {
742 			svm->vcpu.arch.nmi_pending++;
743 			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
744 		}
745 		if (nested_vnmi_enabled(svm))
746 			int_ctl_vmcb12_bits |= (V_NMI_PENDING_MASK |
747 						V_NMI_ENABLE_MASK |
748 						V_NMI_BLOCKING_MASK);
749 	}
750 
751 	/* Copied from vmcb01.  msrpm_base can be overwritten later.  */
752 	vmcb02->control.nested_ctl = vmcb01->control.nested_ctl;
753 	vmcb02->control.iopm_base_pa = vmcb01->control.iopm_base_pa;
754 	vmcb02->control.msrpm_base_pa = vmcb01->control.msrpm_base_pa;
755 
756 	/*
757 	 * Stash vmcb02's counter if the guest hasn't moved past the guilty
758 	 * instruction; otherwise, reset the counter to '0'.
759 	 *
760 	 * In order to detect if L2 has made forward progress or not, track the
761 	 * RIP at which a bus lock has occurred on a per-vmcb12 basis.  If RIP
762 	 * is changed, guest has clearly made forward progress, bus_lock_counter
763 	 * still remained '1', so reset bus_lock_counter to '0'. Eg. In the
764 	 * scenario, where a buslock happened in L1 before VMRUN, the bus lock
765 	 * firmly happened on an instruction in the past. Even if vmcb01's
766 	 * counter is still '1', (because the guilty instruction got patched),
767 	 * the vCPU has clearly made forward progress and so KVM should reset
768 	 * vmcb02's counter to '0'.
769 	 *
770 	 * If the RIP hasn't changed, stash the bus lock counter at nested VMRUN
771 	 * to prevent the same guilty instruction from triggering a VM-Exit. Eg.
772 	 * if userspace rate-limits the vCPU, then it's entirely possible that
773 	 * L1's tick interrupt is pending by the time userspace re-runs the
774 	 * vCPU.  If KVM unconditionally clears the counter on VMRUN, then when
775 	 * L1 re-enters L2, the same instruction will trigger a VM-Exit and the
776 	 * entire cycle start over.
777 	 */
778 	if (vmcb02->save.rip && (svm->nested.ctl.bus_lock_rip == vmcb02->save.rip))
779 		vmcb02->control.bus_lock_counter = 1;
780 	else
781 		vmcb02->control.bus_lock_counter = 0;
782 
783 	/* Done at vmrun: asid.  */
784 
785 	/* Also overwritten later if necessary.  */
786 	vmcb02->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
787 
788 	/* nested_cr3.  */
789 	if (nested_npt_enabled(svm))
790 		nested_svm_init_mmu_context(vcpu);
791 
792 	vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
793 			vcpu->arch.l1_tsc_offset,
794 			svm->nested.ctl.tsc_offset,
795 			svm->tsc_ratio_msr);
796 
797 	vmcb02->control.tsc_offset = vcpu->arch.tsc_offset;
798 
799 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR) &&
800 	    svm->tsc_ratio_msr != kvm_caps.default_tsc_scaling_ratio)
801 		nested_svm_update_tsc_ratio_msr(vcpu);
802 
803 	vmcb02->control.int_ctl             =
804 		(svm->nested.ctl.int_ctl & int_ctl_vmcb12_bits) |
805 		(vmcb01->control.int_ctl & int_ctl_vmcb01_bits);
806 
807 	vmcb02->control.int_vector          = svm->nested.ctl.int_vector;
808 	vmcb02->control.int_state           = svm->nested.ctl.int_state;
809 	vmcb02->control.event_inj           = svm->nested.ctl.event_inj;
810 	vmcb02->control.event_inj_err       = svm->nested.ctl.event_inj_err;
811 
812 	/*
813 	 * next_rip is consumed on VMRUN as the return address pushed on the
814 	 * stack for injected soft exceptions/interrupts.  If nrips is exposed
815 	 * to L1, take it verbatim from vmcb12.  If nrips is supported in
816 	 * hardware but not exposed to L1, stuff the actual L2 RIP to emulate
817 	 * what a nrips=0 CPU would do (L1 is responsible for advancing RIP
818 	 * prior to injecting the event).
819 	 */
820 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_NRIPS))
821 		vmcb02->control.next_rip    = svm->nested.ctl.next_rip;
822 	else if (boot_cpu_has(X86_FEATURE_NRIPS))
823 		vmcb02->control.next_rip    = vmcb12_rip;
824 
825 	svm->nmi_l1_to_l2 = is_evtinj_nmi(vmcb02->control.event_inj);
826 	if (is_evtinj_soft(vmcb02->control.event_inj)) {
827 		svm->soft_int_injected = true;
828 		svm->soft_int_csbase = vmcb12_csbase;
829 		svm->soft_int_old_rip = vmcb12_rip;
830 		if (guest_cpu_cap_has(vcpu, X86_FEATURE_NRIPS))
831 			svm->soft_int_next_rip = svm->nested.ctl.next_rip;
832 		else
833 			svm->soft_int_next_rip = vmcb12_rip;
834 	}
835 
836 	vmcb02->control.virt_ext            = vmcb01->control.virt_ext &
837 					      LBR_CTL_ENABLE_MASK;
838 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV))
839 		vmcb02->control.virt_ext  |=
840 			(svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK);
841 
842 	if (!nested_vmcb_needs_vls_intercept(svm))
843 		vmcb02->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
844 
845 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_PAUSEFILTER))
846 		pause_count12 = svm->nested.ctl.pause_filter_count;
847 	else
848 		pause_count12 = 0;
849 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_PFTHRESHOLD))
850 		pause_thresh12 = svm->nested.ctl.pause_filter_thresh;
851 	else
852 		pause_thresh12 = 0;
853 	if (kvm_pause_in_guest(svm->vcpu.kvm)) {
854 		/* use guest values since host doesn't intercept PAUSE */
855 		vmcb02->control.pause_filter_count = pause_count12;
856 		vmcb02->control.pause_filter_thresh = pause_thresh12;
857 
858 	} else {
859 		/* start from host values otherwise */
860 		vmcb02->control.pause_filter_count = vmcb01->control.pause_filter_count;
861 		vmcb02->control.pause_filter_thresh = vmcb01->control.pause_filter_thresh;
862 
863 		/* ... but ensure filtering is disabled if so requested.  */
864 		if (vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_PAUSE)) {
865 			if (!pause_count12)
866 				vmcb02->control.pause_filter_count = 0;
867 			if (!pause_thresh12)
868 				vmcb02->control.pause_filter_thresh = 0;
869 		}
870 	}
871 
872 	/*
873 	 * Merge guest and host intercepts - must be called with vcpu in
874 	 * guest-mode to take effect.
875 	 */
876 	recalc_intercepts(svm);
877 }
878 
nested_svm_copy_common_state(struct vmcb * from_vmcb,struct vmcb * to_vmcb)879 static void nested_svm_copy_common_state(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
880 {
881 	/*
882 	 * Some VMCB state is shared between L1 and L2 and thus has to be
883 	 * moved at the time of nested vmrun and vmexit.
884 	 *
885 	 * VMLOAD/VMSAVE state would also belong in this category, but KVM
886 	 * always performs VMLOAD and VMSAVE from the VMCB01.
887 	 */
888 	to_vmcb->save.spec_ctrl = from_vmcb->save.spec_ctrl;
889 }
890 
enter_svm_guest_mode(struct kvm_vcpu * vcpu,u64 vmcb12_gpa,struct vmcb * vmcb12,bool from_vmrun)891 int enter_svm_guest_mode(struct kvm_vcpu *vcpu, u64 vmcb12_gpa,
892 			 struct vmcb *vmcb12, bool from_vmrun)
893 {
894 	struct vcpu_svm *svm = to_svm(vcpu);
895 	int ret;
896 
897 	trace_kvm_nested_vmenter(svm->vmcb->save.rip,
898 				 vmcb12_gpa,
899 				 vmcb12->save.rip,
900 				 vmcb12->control.int_ctl,
901 				 vmcb12->control.event_inj,
902 				 vmcb12->control.nested_ctl,
903 				 vmcb12->control.nested_cr3,
904 				 vmcb12->save.cr3,
905 				 KVM_ISA_SVM);
906 
907 	trace_kvm_nested_intercepts(vmcb12->control.intercepts[INTERCEPT_CR] & 0xffff,
908 				    vmcb12->control.intercepts[INTERCEPT_CR] >> 16,
909 				    vmcb12->control.intercepts[INTERCEPT_EXCEPTION],
910 				    vmcb12->control.intercepts[INTERCEPT_WORD3],
911 				    vmcb12->control.intercepts[INTERCEPT_WORD4],
912 				    vmcb12->control.intercepts[INTERCEPT_WORD5]);
913 
914 
915 	svm->nested.vmcb12_gpa = vmcb12_gpa;
916 
917 	WARN_ON(svm->vmcb == svm->nested.vmcb02.ptr);
918 
919 	nested_svm_copy_common_state(svm->vmcb01.ptr, svm->nested.vmcb02.ptr);
920 
921 	svm_switch_vmcb(svm, &svm->nested.vmcb02);
922 	nested_vmcb02_prepare_control(svm, vmcb12->save.rip, vmcb12->save.cs.base);
923 	nested_vmcb02_prepare_save(svm, vmcb12);
924 
925 	ret = nested_svm_load_cr3(&svm->vcpu, svm->nested.save.cr3,
926 				  nested_npt_enabled(svm), from_vmrun);
927 	if (ret)
928 		return ret;
929 
930 	if (!from_vmrun)
931 		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
932 
933 	svm_set_gif(svm, true);
934 
935 	if (kvm_vcpu_apicv_active(vcpu))
936 		kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
937 
938 	nested_svm_hv_update_vm_vp_ids(vcpu);
939 
940 	return 0;
941 }
942 
nested_svm_vmrun(struct kvm_vcpu * vcpu)943 int nested_svm_vmrun(struct kvm_vcpu *vcpu)
944 {
945 	struct vcpu_svm *svm = to_svm(vcpu);
946 	int ret;
947 	struct vmcb *vmcb12;
948 	struct kvm_host_map map;
949 	u64 vmcb12_gpa;
950 	struct vmcb *vmcb01 = svm->vmcb01.ptr;
951 
952 	if (!svm->nested.hsave_msr) {
953 		kvm_inject_gp(vcpu, 0);
954 		return 1;
955 	}
956 
957 	if (is_smm(vcpu)) {
958 		kvm_queue_exception(vcpu, UD_VECTOR);
959 		return 1;
960 	}
961 
962 	/* This fails when VP assist page is enabled but the supplied GPA is bogus */
963 	ret = kvm_hv_verify_vp_assist(vcpu);
964 	if (ret) {
965 		kvm_inject_gp(vcpu, 0);
966 		return ret;
967 	}
968 
969 	vmcb12_gpa = svm->vmcb->save.rax;
970 	ret = kvm_vcpu_map(vcpu, gpa_to_gfn(vmcb12_gpa), &map);
971 	if (ret == -EINVAL) {
972 		kvm_inject_gp(vcpu, 0);
973 		return 1;
974 	} else if (ret) {
975 		return kvm_skip_emulated_instruction(vcpu);
976 	}
977 
978 	ret = kvm_skip_emulated_instruction(vcpu);
979 
980 	vmcb12 = map.hva;
981 
982 	if (WARN_ON_ONCE(!svm->nested.initialized))
983 		return -EINVAL;
984 
985 	nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
986 	nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
987 
988 	if (!nested_vmcb_check_save(vcpu) ||
989 	    !nested_vmcb_check_controls(vcpu)) {
990 		vmcb12->control.exit_code    = SVM_EXIT_ERR;
991 		vmcb12->control.exit_code_hi = 0;
992 		vmcb12->control.exit_info_1  = 0;
993 		vmcb12->control.exit_info_2  = 0;
994 		goto out;
995 	}
996 
997 	/*
998 	 * Since vmcb01 is not in use, we can use it to store some of the L1
999 	 * state.
1000 	 */
1001 	vmcb01->save.efer   = vcpu->arch.efer;
1002 	vmcb01->save.cr0    = kvm_read_cr0(vcpu);
1003 	vmcb01->save.cr4    = vcpu->arch.cr4;
1004 	vmcb01->save.rflags = kvm_get_rflags(vcpu);
1005 	vmcb01->save.rip    = kvm_rip_read(vcpu);
1006 
1007 	if (!npt_enabled)
1008 		vmcb01->save.cr3 = kvm_read_cr3(vcpu);
1009 
1010 	svm->nested.nested_run_pending = 1;
1011 
1012 	if (enter_svm_guest_mode(vcpu, vmcb12_gpa, vmcb12, true))
1013 		goto out_exit_err;
1014 
1015 	if (nested_svm_merge_msrpm(vcpu))
1016 		goto out;
1017 
1018 out_exit_err:
1019 	svm->nested.nested_run_pending = 0;
1020 	svm->nmi_l1_to_l2 = false;
1021 	svm->soft_int_injected = false;
1022 
1023 	svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
1024 	svm->vmcb->control.exit_code_hi = 0;
1025 	svm->vmcb->control.exit_info_1  = 0;
1026 	svm->vmcb->control.exit_info_2  = 0;
1027 
1028 	nested_svm_vmexit(svm);
1029 
1030 out:
1031 	kvm_vcpu_unmap(vcpu, &map);
1032 
1033 	return ret;
1034 }
1035 
1036 /* Copy state save area fields which are handled by VMRUN */
svm_copy_vmrun_state(struct vmcb_save_area * to_save,struct vmcb_save_area * from_save)1037 void svm_copy_vmrun_state(struct vmcb_save_area *to_save,
1038 			  struct vmcb_save_area *from_save)
1039 {
1040 	to_save->es = from_save->es;
1041 	to_save->cs = from_save->cs;
1042 	to_save->ss = from_save->ss;
1043 	to_save->ds = from_save->ds;
1044 	to_save->gdtr = from_save->gdtr;
1045 	to_save->idtr = from_save->idtr;
1046 	to_save->rflags = from_save->rflags | X86_EFLAGS_FIXED;
1047 	to_save->efer = from_save->efer;
1048 	to_save->cr0 = from_save->cr0;
1049 	to_save->cr3 = from_save->cr3;
1050 	to_save->cr4 = from_save->cr4;
1051 	to_save->rax = from_save->rax;
1052 	to_save->rsp = from_save->rsp;
1053 	to_save->rip = from_save->rip;
1054 	to_save->cpl = 0;
1055 
1056 	if (kvm_cpu_cap_has(X86_FEATURE_SHSTK)) {
1057 		to_save->s_cet  = from_save->s_cet;
1058 		to_save->isst_addr = from_save->isst_addr;
1059 		to_save->ssp = from_save->ssp;
1060 	}
1061 }
1062 
svm_copy_vmloadsave_state(struct vmcb * to_vmcb,struct vmcb * from_vmcb)1063 void svm_copy_vmloadsave_state(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
1064 {
1065 	to_vmcb->save.fs = from_vmcb->save.fs;
1066 	to_vmcb->save.gs = from_vmcb->save.gs;
1067 	to_vmcb->save.tr = from_vmcb->save.tr;
1068 	to_vmcb->save.ldtr = from_vmcb->save.ldtr;
1069 	to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
1070 	to_vmcb->save.star = from_vmcb->save.star;
1071 	to_vmcb->save.lstar = from_vmcb->save.lstar;
1072 	to_vmcb->save.cstar = from_vmcb->save.cstar;
1073 	to_vmcb->save.sfmask = from_vmcb->save.sfmask;
1074 	to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
1075 	to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
1076 	to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
1077 }
1078 
nested_svm_vmexit(struct vcpu_svm * svm)1079 int nested_svm_vmexit(struct vcpu_svm *svm)
1080 {
1081 	struct kvm_vcpu *vcpu = &svm->vcpu;
1082 	struct vmcb *vmcb01 = svm->vmcb01.ptr;
1083 	struct vmcb *vmcb02 = svm->nested.vmcb02.ptr;
1084 	struct vmcb *vmcb12;
1085 	struct kvm_host_map map;
1086 	int rc;
1087 
1088 	rc = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.vmcb12_gpa), &map);
1089 	if (rc) {
1090 		if (rc == -EINVAL)
1091 			kvm_inject_gp(vcpu, 0);
1092 		return 1;
1093 	}
1094 
1095 	vmcb12 = map.hva;
1096 
1097 	/* Exit Guest-Mode */
1098 	leave_guest_mode(vcpu);
1099 	svm->nested.vmcb12_gpa = 0;
1100 	WARN_ON_ONCE(svm->nested.nested_run_pending);
1101 
1102 	kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
1103 
1104 	/* in case we halted in L2 */
1105 	kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
1106 
1107 	/* Give the current vmcb to the guest */
1108 
1109 	vmcb12->save.es     = vmcb02->save.es;
1110 	vmcb12->save.cs     = vmcb02->save.cs;
1111 	vmcb12->save.ss     = vmcb02->save.ss;
1112 	vmcb12->save.ds     = vmcb02->save.ds;
1113 	vmcb12->save.gdtr   = vmcb02->save.gdtr;
1114 	vmcb12->save.idtr   = vmcb02->save.idtr;
1115 	vmcb12->save.efer   = svm->vcpu.arch.efer;
1116 	vmcb12->save.cr0    = kvm_read_cr0(vcpu);
1117 	vmcb12->save.cr3    = kvm_read_cr3(vcpu);
1118 	vmcb12->save.cr2    = vmcb02->save.cr2;
1119 	vmcb12->save.cr4    = svm->vcpu.arch.cr4;
1120 	vmcb12->save.rflags = kvm_get_rflags(vcpu);
1121 	vmcb12->save.rip    = kvm_rip_read(vcpu);
1122 	vmcb12->save.rsp    = kvm_rsp_read(vcpu);
1123 	vmcb12->save.rax    = kvm_rax_read(vcpu);
1124 	vmcb12->save.dr7    = vmcb02->save.dr7;
1125 	vmcb12->save.dr6    = svm->vcpu.arch.dr6;
1126 	vmcb12->save.cpl    = vmcb02->save.cpl;
1127 
1128 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK)) {
1129 		vmcb12->save.s_cet	= vmcb02->save.s_cet;
1130 		vmcb12->save.isst_addr	= vmcb02->save.isst_addr;
1131 		vmcb12->save.ssp	= vmcb02->save.ssp;
1132 	}
1133 
1134 	vmcb12->control.int_state         = vmcb02->control.int_state;
1135 	vmcb12->control.exit_code         = vmcb02->control.exit_code;
1136 	vmcb12->control.exit_code_hi      = vmcb02->control.exit_code_hi;
1137 	vmcb12->control.exit_info_1       = vmcb02->control.exit_info_1;
1138 	vmcb12->control.exit_info_2       = vmcb02->control.exit_info_2;
1139 
1140 	if (vmcb12->control.exit_code != SVM_EXIT_ERR)
1141 		nested_save_pending_event_to_vmcb12(svm, vmcb12);
1142 
1143 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_NRIPS))
1144 		vmcb12->control.next_rip  = vmcb02->control.next_rip;
1145 
1146 	vmcb12->control.int_ctl           = svm->nested.ctl.int_ctl;
1147 	vmcb12->control.event_inj         = svm->nested.ctl.event_inj;
1148 	vmcb12->control.event_inj_err     = svm->nested.ctl.event_inj_err;
1149 
1150 	if (!kvm_pause_in_guest(vcpu->kvm)) {
1151 		vmcb01->control.pause_filter_count = vmcb02->control.pause_filter_count;
1152 		vmcb_mark_dirty(vmcb01, VMCB_INTERCEPTS);
1153 
1154 	}
1155 
1156 	/*
1157 	 * Invalidate bus_lock_rip unless KVM is still waiting for the guest
1158 	 * to make forward progress before re-enabling bus lock detection.
1159 	 */
1160 	if (!vmcb02->control.bus_lock_counter)
1161 		svm->nested.ctl.bus_lock_rip = INVALID_GPA;
1162 
1163 	nested_svm_copy_common_state(svm->nested.vmcb02.ptr, svm->vmcb01.ptr);
1164 
1165 	kvm_nested_vmexit_handle_ibrs(vcpu);
1166 
1167 	svm_switch_vmcb(svm, &svm->vmcb01);
1168 
1169 	/*
1170 	 * Rules for synchronizing int_ctl bits from vmcb02 to vmcb01:
1171 	 *
1172 	 * V_IRQ, V_IRQ_VECTOR, V_INTR_PRIO_MASK, V_IGN_TPR:  If L1 doesn't
1173 	 * intercept interrupts, then KVM will use vmcb02's V_IRQ (and related
1174 	 * flags) to detect interrupt windows for L1 IRQs (even if L1 uses
1175 	 * virtual interrupt masking).  Raise KVM_REQ_EVENT to ensure that
1176 	 * KVM re-requests an interrupt window if necessary, which implicitly
1177 	 * copies this bits from vmcb02 to vmcb01.
1178 	 *
1179 	 * V_TPR: If L1 doesn't use virtual interrupt masking, then L1's vTPR
1180 	 * is stored in vmcb02, but its value doesn't need to be copied from/to
1181 	 * vmcb01 because it is copied from/to the virtual APIC's TPR register
1182 	 * on each VM entry/exit.
1183 	 *
1184 	 * V_GIF: If nested vGIF is not used, KVM uses vmcb02's V_GIF for L1's
1185 	 * V_GIF.  However, GIF is architecturally clear on each VM exit, thus
1186 	 * there is no need to copy V_GIF from vmcb02 to vmcb01.
1187 	 */
1188 	if (!nested_exit_on_intr(svm))
1189 		kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
1190 
1191 	if (unlikely(guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) &&
1192 		     (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK))) {
1193 		svm_copy_lbrs(vmcb12, vmcb02);
1194 		svm_update_lbrv(vcpu);
1195 	} else if (unlikely(vmcb01->control.virt_ext & LBR_CTL_ENABLE_MASK)) {
1196 		svm_copy_lbrs(vmcb01, vmcb02);
1197 		svm_update_lbrv(vcpu);
1198 	}
1199 
1200 	if (vnmi) {
1201 		if (vmcb02->control.int_ctl & V_NMI_BLOCKING_MASK)
1202 			vmcb01->control.int_ctl |= V_NMI_BLOCKING_MASK;
1203 		else
1204 			vmcb01->control.int_ctl &= ~V_NMI_BLOCKING_MASK;
1205 
1206 		if (vcpu->arch.nmi_pending) {
1207 			vcpu->arch.nmi_pending--;
1208 			vmcb01->control.int_ctl |= V_NMI_PENDING_MASK;
1209 		} else {
1210 			vmcb01->control.int_ctl &= ~V_NMI_PENDING_MASK;
1211 		}
1212 	}
1213 
1214 	/*
1215 	 * On vmexit the  GIF is set to false and
1216 	 * no event can be injected in L1.
1217 	 */
1218 	svm_set_gif(svm, false);
1219 	vmcb01->control.exit_int_info = 0;
1220 
1221 	svm->vcpu.arch.tsc_offset = svm->vcpu.arch.l1_tsc_offset;
1222 	if (vmcb01->control.tsc_offset != svm->vcpu.arch.tsc_offset) {
1223 		vmcb01->control.tsc_offset = svm->vcpu.arch.tsc_offset;
1224 		vmcb_mark_dirty(vmcb01, VMCB_INTERCEPTS);
1225 	}
1226 
1227 	if (kvm_caps.has_tsc_control &&
1228 	    vcpu->arch.tsc_scaling_ratio != vcpu->arch.l1_tsc_scaling_ratio) {
1229 		vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
1230 		svm_write_tsc_multiplier(vcpu);
1231 	}
1232 
1233 	svm->nested.ctl.nested_cr3 = 0;
1234 
1235 	/*
1236 	 * Restore processor state that had been saved in vmcb01
1237 	 */
1238 	kvm_set_rflags(vcpu, vmcb01->save.rflags);
1239 	svm_set_efer(vcpu, vmcb01->save.efer);
1240 	svm_set_cr0(vcpu, vmcb01->save.cr0 | X86_CR0_PE);
1241 	svm_set_cr4(vcpu, vmcb01->save.cr4);
1242 	kvm_rax_write(vcpu, vmcb01->save.rax);
1243 	kvm_rsp_write(vcpu, vmcb01->save.rsp);
1244 	kvm_rip_write(vcpu, vmcb01->save.rip);
1245 
1246 	svm->vcpu.arch.dr7 = DR7_FIXED_1;
1247 	kvm_update_dr7(&svm->vcpu);
1248 
1249 	trace_kvm_nested_vmexit_inject(vmcb12->control.exit_code,
1250 				       vmcb12->control.exit_info_1,
1251 				       vmcb12->control.exit_info_2,
1252 				       vmcb12->control.exit_int_info,
1253 				       vmcb12->control.exit_int_info_err,
1254 				       KVM_ISA_SVM);
1255 
1256 	kvm_vcpu_unmap(vcpu, &map);
1257 
1258 	nested_svm_transition_tlb_flush(vcpu);
1259 
1260 	nested_svm_uninit_mmu_context(vcpu);
1261 
1262 	rc = nested_svm_load_cr3(vcpu, vmcb01->save.cr3, false, true);
1263 	if (rc)
1264 		return 1;
1265 
1266 	/*
1267 	 * Drop what we picked up for L2 via svm_complete_interrupts() so it
1268 	 * doesn't end up in L1.
1269 	 */
1270 	svm->vcpu.arch.nmi_injected = false;
1271 	kvm_clear_exception_queue(vcpu);
1272 	kvm_clear_interrupt_queue(vcpu);
1273 
1274 	/*
1275 	 * If we are here following the completion of a VMRUN that
1276 	 * is being single-stepped, queue the pending #DB intercept
1277 	 * right now so that it an be accounted for before we execute
1278 	 * L1's next instruction.
1279 	 */
1280 	if (unlikely(vmcb01->save.rflags & X86_EFLAGS_TF))
1281 		kvm_queue_exception(&(svm->vcpu), DB_VECTOR);
1282 
1283 	/*
1284 	 * Un-inhibit the AVIC right away, so that other vCPUs can start
1285 	 * to benefit from it right away.
1286 	 */
1287 	if (kvm_apicv_activated(vcpu->kvm))
1288 		__kvm_vcpu_update_apicv(vcpu);
1289 
1290 	return 0;
1291 }
1292 
nested_svm_triple_fault(struct kvm_vcpu * vcpu)1293 static void nested_svm_triple_fault(struct kvm_vcpu *vcpu)
1294 {
1295 	struct vcpu_svm *svm = to_svm(vcpu);
1296 
1297 	if (!vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SHUTDOWN))
1298 		return;
1299 
1300 	kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1301 	nested_svm_simple_vmexit(to_svm(vcpu), SVM_EXIT_SHUTDOWN);
1302 }
1303 
svm_allocate_nested(struct vcpu_svm * svm)1304 int svm_allocate_nested(struct vcpu_svm *svm)
1305 {
1306 	struct page *vmcb02_page;
1307 
1308 	if (svm->nested.initialized)
1309 		return 0;
1310 
1311 	vmcb02_page = snp_safe_alloc_page();
1312 	if (!vmcb02_page)
1313 		return -ENOMEM;
1314 	svm->nested.vmcb02.ptr = page_address(vmcb02_page);
1315 	svm->nested.vmcb02.pa = __sme_set(page_to_pfn(vmcb02_page) << PAGE_SHIFT);
1316 
1317 	svm->nested.msrpm = svm_vcpu_alloc_msrpm();
1318 	if (!svm->nested.msrpm)
1319 		goto err_free_vmcb02;
1320 
1321 	svm->nested.initialized = true;
1322 	return 0;
1323 
1324 err_free_vmcb02:
1325 	__free_page(vmcb02_page);
1326 	return -ENOMEM;
1327 }
1328 
svm_free_nested(struct vcpu_svm * svm)1329 void svm_free_nested(struct vcpu_svm *svm)
1330 {
1331 	if (!svm->nested.initialized)
1332 		return;
1333 
1334 	if (WARN_ON_ONCE(svm->vmcb != svm->vmcb01.ptr))
1335 		svm_switch_vmcb(svm, &svm->vmcb01);
1336 
1337 	svm_vcpu_free_msrpm(svm->nested.msrpm);
1338 	svm->nested.msrpm = NULL;
1339 
1340 	__free_page(virt_to_page(svm->nested.vmcb02.ptr));
1341 	svm->nested.vmcb02.ptr = NULL;
1342 
1343 	/*
1344 	 * When last_vmcb12_gpa matches the current vmcb12 gpa,
1345 	 * some vmcb12 fields are not loaded if they are marked clean
1346 	 * in the vmcb12, since in this case they are up to date already.
1347 	 *
1348 	 * When the vmcb02 is freed, this optimization becomes invalid.
1349 	 */
1350 	svm->nested.last_vmcb12_gpa = INVALID_GPA;
1351 
1352 	svm->nested.initialized = false;
1353 }
1354 
svm_leave_nested(struct kvm_vcpu * vcpu)1355 void svm_leave_nested(struct kvm_vcpu *vcpu)
1356 {
1357 	struct vcpu_svm *svm = to_svm(vcpu);
1358 
1359 	if (is_guest_mode(vcpu)) {
1360 		svm->nested.nested_run_pending = 0;
1361 		svm->nested.vmcb12_gpa = INVALID_GPA;
1362 
1363 		leave_guest_mode(vcpu);
1364 
1365 		svm_switch_vmcb(svm, &svm->vmcb01);
1366 
1367 		nested_svm_uninit_mmu_context(vcpu);
1368 		vmcb_mark_all_dirty(svm->vmcb);
1369 
1370 		if (kvm_apicv_activated(vcpu->kvm))
1371 			kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
1372 	}
1373 
1374 	kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
1375 }
1376 
nested_svm_exit_handled_msr(struct vcpu_svm * svm)1377 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
1378 {
1379 	gpa_t base = svm->nested.ctl.msrpm_base_pa;
1380 	int write, bit_nr;
1381 	u8 value, mask;
1382 	u32 msr;
1383 
1384 	if (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_MSR_PROT)))
1385 		return NESTED_EXIT_HOST;
1386 
1387 	msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1388 	bit_nr = svm_msrpm_bit_nr(msr);
1389 	write  = svm->vmcb->control.exit_info_1 & 1;
1390 
1391 	if (bit_nr < 0)
1392 		return NESTED_EXIT_DONE;
1393 
1394 	if (kvm_vcpu_read_guest(&svm->vcpu, base + bit_nr / BITS_PER_BYTE,
1395 				&value, sizeof(value)))
1396 		return NESTED_EXIT_DONE;
1397 
1398 	mask = BIT(write) << (bit_nr & (BITS_PER_BYTE - 1));
1399 	return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1400 }
1401 
nested_svm_intercept_ioio(struct vcpu_svm * svm)1402 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
1403 {
1404 	unsigned port, size, iopm_len;
1405 	u16 val, mask;
1406 	u8 start_bit;
1407 	u64 gpa;
1408 
1409 	if (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_IOIO_PROT)))
1410 		return NESTED_EXIT_HOST;
1411 
1412 	port = svm->vmcb->control.exit_info_1 >> 16;
1413 	size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
1414 		SVM_IOIO_SIZE_SHIFT;
1415 	gpa  = svm->nested.ctl.iopm_base_pa + (port / 8);
1416 	start_bit = port % 8;
1417 	iopm_len = (start_bit + size > 8) ? 2 : 1;
1418 	mask = (0xf >> (4 - size)) << start_bit;
1419 	val = 0;
1420 
1421 	if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
1422 		return NESTED_EXIT_DONE;
1423 
1424 	return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1425 }
1426 
nested_svm_intercept(struct vcpu_svm * svm)1427 static int nested_svm_intercept(struct vcpu_svm *svm)
1428 {
1429 	u32 exit_code = svm->vmcb->control.exit_code;
1430 	int vmexit = NESTED_EXIT_HOST;
1431 
1432 	switch (exit_code) {
1433 	case SVM_EXIT_MSR:
1434 		vmexit = nested_svm_exit_handled_msr(svm);
1435 		break;
1436 	case SVM_EXIT_IOIO:
1437 		vmexit = nested_svm_intercept_ioio(svm);
1438 		break;
1439 	case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
1440 		if (vmcb12_is_intercept(&svm->nested.ctl, exit_code))
1441 			vmexit = NESTED_EXIT_DONE;
1442 		break;
1443 	}
1444 	case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
1445 		if (vmcb12_is_intercept(&svm->nested.ctl, exit_code))
1446 			vmexit = NESTED_EXIT_DONE;
1447 		break;
1448 	}
1449 	case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
1450 		/*
1451 		 * Host-intercepted exceptions have been checked already in
1452 		 * nested_svm_exit_special.  There is nothing to do here,
1453 		 * the vmexit is injected by svm_check_nested_events.
1454 		 */
1455 		vmexit = NESTED_EXIT_DONE;
1456 		break;
1457 	}
1458 	case SVM_EXIT_ERR: {
1459 		vmexit = NESTED_EXIT_DONE;
1460 		break;
1461 	}
1462 	default: {
1463 		if (vmcb12_is_intercept(&svm->nested.ctl, exit_code))
1464 			vmexit = NESTED_EXIT_DONE;
1465 	}
1466 	}
1467 
1468 	return vmexit;
1469 }
1470 
nested_svm_exit_handled(struct vcpu_svm * svm)1471 int nested_svm_exit_handled(struct vcpu_svm *svm)
1472 {
1473 	int vmexit;
1474 
1475 	vmexit = nested_svm_intercept(svm);
1476 
1477 	if (vmexit == NESTED_EXIT_DONE)
1478 		nested_svm_vmexit(svm);
1479 
1480 	return vmexit;
1481 }
1482 
nested_svm_check_permissions(struct kvm_vcpu * vcpu)1483 int nested_svm_check_permissions(struct kvm_vcpu *vcpu)
1484 {
1485 	if (!(vcpu->arch.efer & EFER_SVME) || !is_paging(vcpu)) {
1486 		kvm_queue_exception(vcpu, UD_VECTOR);
1487 		return 1;
1488 	}
1489 
1490 	if (to_svm(vcpu)->vmcb->save.cpl) {
1491 		kvm_inject_gp(vcpu, 0);
1492 		return 1;
1493 	}
1494 
1495 	return 0;
1496 }
1497 
nested_svm_is_exception_vmexit(struct kvm_vcpu * vcpu,u8 vector,u32 error_code)1498 static bool nested_svm_is_exception_vmexit(struct kvm_vcpu *vcpu, u8 vector,
1499 					   u32 error_code)
1500 {
1501 	struct vcpu_svm *svm = to_svm(vcpu);
1502 
1503 	return (svm->nested.ctl.intercepts[INTERCEPT_EXCEPTION] & BIT(vector));
1504 }
1505 
nested_svm_inject_exception_vmexit(struct kvm_vcpu * vcpu)1506 static void nested_svm_inject_exception_vmexit(struct kvm_vcpu *vcpu)
1507 {
1508 	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
1509 	struct vcpu_svm *svm = to_svm(vcpu);
1510 	struct vmcb *vmcb = svm->vmcb;
1511 
1512 	vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + ex->vector;
1513 	vmcb->control.exit_code_hi = 0;
1514 
1515 	if (ex->has_error_code)
1516 		vmcb->control.exit_info_1 = ex->error_code;
1517 
1518 	/*
1519 	 * EXITINFO2 is undefined for all exception intercepts other
1520 	 * than #PF.
1521 	 */
1522 	if (ex->vector == PF_VECTOR) {
1523 		if (ex->has_payload)
1524 			vmcb->control.exit_info_2 = ex->payload;
1525 		else
1526 			vmcb->control.exit_info_2 = vcpu->arch.cr2;
1527 	} else if (ex->vector == DB_VECTOR) {
1528 		/* See kvm_check_and_inject_events().  */
1529 		kvm_deliver_exception_payload(vcpu, ex);
1530 
1531 		if (vcpu->arch.dr7 & DR7_GD) {
1532 			vcpu->arch.dr7 &= ~DR7_GD;
1533 			kvm_update_dr7(vcpu);
1534 		}
1535 	} else {
1536 		WARN_ON(ex->has_payload);
1537 	}
1538 
1539 	nested_svm_vmexit(svm);
1540 }
1541 
nested_exit_on_init(struct vcpu_svm * svm)1542 static inline bool nested_exit_on_init(struct vcpu_svm *svm)
1543 {
1544 	return vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_INIT);
1545 }
1546 
svm_check_nested_events(struct kvm_vcpu * vcpu)1547 static int svm_check_nested_events(struct kvm_vcpu *vcpu)
1548 {
1549 	struct kvm_lapic *apic = vcpu->arch.apic;
1550 	struct vcpu_svm *svm = to_svm(vcpu);
1551 	/*
1552 	 * Only a pending nested run blocks a pending exception.  If there is a
1553 	 * previously injected event, the pending exception occurred while said
1554 	 * event was being delivered and thus needs to be handled.
1555 	 */
1556 	bool block_nested_exceptions = svm->nested.nested_run_pending;
1557 	/*
1558 	 * New events (not exceptions) are only recognized at instruction
1559 	 * boundaries.  If an event needs reinjection, then KVM is handling a
1560 	 * VM-Exit that occurred _during_ instruction execution; new events are
1561 	 * blocked until the instruction completes.
1562 	 */
1563 	bool block_nested_events = block_nested_exceptions ||
1564 				   kvm_event_needs_reinjection(vcpu);
1565 
1566 	if (lapic_in_kernel(vcpu) &&
1567 	    test_bit(KVM_APIC_INIT, &apic->pending_events)) {
1568 		if (block_nested_events)
1569 			return -EBUSY;
1570 		if (!nested_exit_on_init(svm))
1571 			return 0;
1572 		nested_svm_simple_vmexit(svm, SVM_EXIT_INIT);
1573 		return 0;
1574 	}
1575 
1576 	if (vcpu->arch.exception_vmexit.pending) {
1577 		if (block_nested_exceptions)
1578                         return -EBUSY;
1579 		nested_svm_inject_exception_vmexit(vcpu);
1580 		return 0;
1581 	}
1582 
1583 	if (vcpu->arch.exception.pending) {
1584 		if (block_nested_exceptions)
1585 			return -EBUSY;
1586 		return 0;
1587 	}
1588 
1589 #ifdef CONFIG_KVM_SMM
1590 	if (vcpu->arch.smi_pending && !svm_smi_blocked(vcpu)) {
1591 		if (block_nested_events)
1592 			return -EBUSY;
1593 		if (!nested_exit_on_smi(svm))
1594 			return 0;
1595 		nested_svm_simple_vmexit(svm, SVM_EXIT_SMI);
1596 		return 0;
1597 	}
1598 #endif
1599 
1600 	if (vcpu->arch.nmi_pending && !svm_nmi_blocked(vcpu)) {
1601 		if (block_nested_events)
1602 			return -EBUSY;
1603 		if (!nested_exit_on_nmi(svm))
1604 			return 0;
1605 		nested_svm_simple_vmexit(svm, SVM_EXIT_NMI);
1606 		return 0;
1607 	}
1608 
1609 	if (kvm_cpu_has_interrupt(vcpu) && !svm_interrupt_blocked(vcpu)) {
1610 		if (block_nested_events)
1611 			return -EBUSY;
1612 		if (!nested_exit_on_intr(svm))
1613 			return 0;
1614 		trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
1615 		nested_svm_simple_vmexit(svm, SVM_EXIT_INTR);
1616 		return 0;
1617 	}
1618 
1619 	return 0;
1620 }
1621 
nested_svm_exit_special(struct vcpu_svm * svm)1622 int nested_svm_exit_special(struct vcpu_svm *svm)
1623 {
1624 	u32 exit_code = svm->vmcb->control.exit_code;
1625 	struct kvm_vcpu *vcpu = &svm->vcpu;
1626 
1627 	switch (exit_code) {
1628 	case SVM_EXIT_INTR:
1629 	case SVM_EXIT_NMI:
1630 	case SVM_EXIT_NPF:
1631 		return NESTED_EXIT_HOST;
1632 	case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
1633 		u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
1634 
1635 		if (svm->vmcb01.ptr->control.intercepts[INTERCEPT_EXCEPTION] &
1636 		    excp_bits)
1637 			return NESTED_EXIT_HOST;
1638 		else if (exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR &&
1639 			 svm->vcpu.arch.apf.host_apf_flags)
1640 			/* Trap async PF even if not shadowing */
1641 			return NESTED_EXIT_HOST;
1642 		break;
1643 	}
1644 	case SVM_EXIT_VMMCALL:
1645 		/* Hyper-V L2 TLB flush hypercall is handled by L0 */
1646 		if (guest_hv_cpuid_has_l2_tlb_flush(vcpu) &&
1647 		    nested_svm_l2_tlb_flush_enabled(vcpu) &&
1648 		    kvm_hv_is_tlb_flush_hcall(vcpu))
1649 			return NESTED_EXIT_HOST;
1650 		break;
1651 	default:
1652 		break;
1653 	}
1654 
1655 	return NESTED_EXIT_CONTINUE;
1656 }
1657 
nested_svm_update_tsc_ratio_msr(struct kvm_vcpu * vcpu)1658 void nested_svm_update_tsc_ratio_msr(struct kvm_vcpu *vcpu)
1659 {
1660 	struct vcpu_svm *svm = to_svm(vcpu);
1661 
1662 	vcpu->arch.tsc_scaling_ratio =
1663 		kvm_calc_nested_tsc_multiplier(vcpu->arch.l1_tsc_scaling_ratio,
1664 					       svm->tsc_ratio_msr);
1665 	svm_write_tsc_multiplier(vcpu);
1666 }
1667 
1668 /* Inverse operation of nested_copy_vmcb_control_to_cache(). asid is copied too. */
nested_copy_vmcb_cache_to_control(struct vmcb_control_area * dst,struct vmcb_ctrl_area_cached * from)1669 static void nested_copy_vmcb_cache_to_control(struct vmcb_control_area *dst,
1670 					      struct vmcb_ctrl_area_cached *from)
1671 {
1672 	unsigned int i;
1673 
1674 	memset(dst, 0, sizeof(struct vmcb_control_area));
1675 
1676 	for (i = 0; i < MAX_INTERCEPT; i++)
1677 		dst->intercepts[i] = from->intercepts[i];
1678 
1679 	dst->iopm_base_pa         = from->iopm_base_pa;
1680 	dst->msrpm_base_pa        = from->msrpm_base_pa;
1681 	dst->tsc_offset           = from->tsc_offset;
1682 	dst->asid                 = from->asid;
1683 	dst->tlb_ctl              = from->tlb_ctl;
1684 	dst->int_ctl              = from->int_ctl;
1685 	dst->int_vector           = from->int_vector;
1686 	dst->int_state            = from->int_state;
1687 	dst->exit_code            = from->exit_code;
1688 	dst->exit_code_hi         = from->exit_code_hi;
1689 	dst->exit_info_1          = from->exit_info_1;
1690 	dst->exit_info_2          = from->exit_info_2;
1691 	dst->exit_int_info        = from->exit_int_info;
1692 	dst->exit_int_info_err    = from->exit_int_info_err;
1693 	dst->nested_ctl           = from->nested_ctl;
1694 	dst->event_inj            = from->event_inj;
1695 	dst->event_inj_err        = from->event_inj_err;
1696 	dst->next_rip             = from->next_rip;
1697 	dst->nested_cr3           = from->nested_cr3;
1698 	dst->virt_ext              = from->virt_ext;
1699 	dst->pause_filter_count   = from->pause_filter_count;
1700 	dst->pause_filter_thresh  = from->pause_filter_thresh;
1701 	/* 'clean' and 'hv_enlightenments' are not changed by KVM */
1702 }
1703 
svm_get_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,u32 user_data_size)1704 static int svm_get_nested_state(struct kvm_vcpu *vcpu,
1705 				struct kvm_nested_state __user *user_kvm_nested_state,
1706 				u32 user_data_size)
1707 {
1708 	struct vcpu_svm *svm;
1709 	struct vmcb_control_area *ctl;
1710 	unsigned long r;
1711 	struct kvm_nested_state kvm_state = {
1712 		.flags = 0,
1713 		.format = KVM_STATE_NESTED_FORMAT_SVM,
1714 		.size = sizeof(kvm_state),
1715 	};
1716 	struct vmcb __user *user_vmcb = (struct vmcb __user *)
1717 		&user_kvm_nested_state->data.svm[0];
1718 
1719 	if (!vcpu)
1720 		return kvm_state.size + KVM_STATE_NESTED_SVM_VMCB_SIZE;
1721 
1722 	svm = to_svm(vcpu);
1723 
1724 	if (user_data_size < kvm_state.size)
1725 		goto out;
1726 
1727 	/* First fill in the header and copy it out.  */
1728 	if (is_guest_mode(vcpu)) {
1729 		kvm_state.hdr.svm.vmcb_pa = svm->nested.vmcb12_gpa;
1730 		kvm_state.size += KVM_STATE_NESTED_SVM_VMCB_SIZE;
1731 		kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
1732 
1733 		if (svm->nested.nested_run_pending)
1734 			kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
1735 	}
1736 
1737 	if (gif_set(svm))
1738 		kvm_state.flags |= KVM_STATE_NESTED_GIF_SET;
1739 
1740 	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
1741 		return -EFAULT;
1742 
1743 	if (!is_guest_mode(vcpu))
1744 		goto out;
1745 
1746 	/*
1747 	 * Copy over the full size of the VMCB rather than just the size
1748 	 * of the structs.
1749 	 */
1750 	if (clear_user(user_vmcb, KVM_STATE_NESTED_SVM_VMCB_SIZE))
1751 		return -EFAULT;
1752 
1753 	ctl = kzalloc(sizeof(*ctl), GFP_KERNEL);
1754 	if (!ctl)
1755 		return -ENOMEM;
1756 
1757 	nested_copy_vmcb_cache_to_control(ctl, &svm->nested.ctl);
1758 	r = copy_to_user(&user_vmcb->control, ctl,
1759 			 sizeof(user_vmcb->control));
1760 	kfree(ctl);
1761 	if (r)
1762 		return -EFAULT;
1763 
1764 	if (copy_to_user(&user_vmcb->save, &svm->vmcb01.ptr->save,
1765 			 sizeof(user_vmcb->save)))
1766 		return -EFAULT;
1767 out:
1768 	return kvm_state.size;
1769 }
1770 
svm_set_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,struct kvm_nested_state * kvm_state)1771 static int svm_set_nested_state(struct kvm_vcpu *vcpu,
1772 				struct kvm_nested_state __user *user_kvm_nested_state,
1773 				struct kvm_nested_state *kvm_state)
1774 {
1775 	struct vcpu_svm *svm = to_svm(vcpu);
1776 	struct vmcb __user *user_vmcb = (struct vmcb __user *)
1777 		&user_kvm_nested_state->data.svm[0];
1778 	struct vmcb_control_area *ctl;
1779 	struct vmcb_save_area *save;
1780 	struct vmcb_save_area_cached save_cached;
1781 	struct vmcb_ctrl_area_cached ctl_cached;
1782 	unsigned long cr0;
1783 	int ret;
1784 
1785 	BUILD_BUG_ON(sizeof(struct vmcb_control_area) + sizeof(struct vmcb_save_area) >
1786 		     KVM_STATE_NESTED_SVM_VMCB_SIZE);
1787 
1788 	if (kvm_state->format != KVM_STATE_NESTED_FORMAT_SVM)
1789 		return -EINVAL;
1790 
1791 	if (kvm_state->flags & ~(KVM_STATE_NESTED_GUEST_MODE |
1792 				 KVM_STATE_NESTED_RUN_PENDING |
1793 				 KVM_STATE_NESTED_GIF_SET))
1794 		return -EINVAL;
1795 
1796 	/*
1797 	 * If in guest mode, vcpu->arch.efer actually refers to the L2 guest's
1798 	 * EFER.SVME, but EFER.SVME still has to be 1 for VMRUN to succeed.
1799 	 */
1800 	if (!(vcpu->arch.efer & EFER_SVME)) {
1801 		/* GIF=1 and no guest mode are required if SVME=0.  */
1802 		if (kvm_state->flags != KVM_STATE_NESTED_GIF_SET)
1803 			return -EINVAL;
1804 	}
1805 
1806 	/* SMM temporarily disables SVM, so we cannot be in guest mode.  */
1807 	if (is_smm(vcpu) && (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
1808 		return -EINVAL;
1809 
1810 	if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE)) {
1811 		svm_leave_nested(vcpu);
1812 		svm_set_gif(svm, !!(kvm_state->flags & KVM_STATE_NESTED_GIF_SET));
1813 		return 0;
1814 	}
1815 
1816 	if (!page_address_valid(vcpu, kvm_state->hdr.svm.vmcb_pa))
1817 		return -EINVAL;
1818 	if (kvm_state->size < sizeof(*kvm_state) + KVM_STATE_NESTED_SVM_VMCB_SIZE)
1819 		return -EINVAL;
1820 
1821 	ctl = memdup_user(&user_vmcb->control, sizeof(*ctl));
1822 	if (IS_ERR(ctl))
1823 		return PTR_ERR(ctl);
1824 
1825 	save = memdup_user(&user_vmcb->save, sizeof(*save));
1826 	if (IS_ERR(save)) {
1827 		kfree(ctl);
1828 		return PTR_ERR(save);
1829 	}
1830 
1831 	ret = -EINVAL;
1832 	__nested_copy_vmcb_control_to_cache(vcpu, &ctl_cached, ctl);
1833 	if (!__nested_vmcb_check_controls(vcpu, &ctl_cached))
1834 		goto out_free;
1835 
1836 	/*
1837 	 * Processor state contains L2 state.  Check that it is
1838 	 * valid for guest mode (see nested_vmcb_check_save).
1839 	 */
1840 	cr0 = kvm_read_cr0(vcpu);
1841         if (((cr0 & X86_CR0_CD) == 0) && (cr0 & X86_CR0_NW))
1842 		goto out_free;
1843 
1844 	/*
1845 	 * Validate host state saved from before VMRUN (see
1846 	 * nested_svm_check_permissions).
1847 	 */
1848 	__nested_copy_vmcb_save_to_cache(&save_cached, save);
1849 	if (!(save->cr0 & X86_CR0_PG) ||
1850 	    !(save->cr0 & X86_CR0_PE) ||
1851 	    (save->rflags & X86_EFLAGS_VM) ||
1852 	    !__nested_vmcb_check_save(vcpu, &save_cached))
1853 		goto out_free;
1854 
1855 
1856 	/*
1857 	 * All checks done, we can enter guest mode. Userspace provides
1858 	 * vmcb12.control, which will be combined with L1 and stored into
1859 	 * vmcb02, and the L1 save state which we store in vmcb01.
1860 	 * L2 registers if needed are moved from the current VMCB to VMCB02.
1861 	 */
1862 
1863 	if (is_guest_mode(vcpu))
1864 		svm_leave_nested(vcpu);
1865 	else
1866 		svm->nested.vmcb02.ptr->save = svm->vmcb01.ptr->save;
1867 
1868 	svm_set_gif(svm, !!(kvm_state->flags & KVM_STATE_NESTED_GIF_SET));
1869 
1870 	svm->nested.nested_run_pending =
1871 		!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
1872 
1873 	svm->nested.vmcb12_gpa = kvm_state->hdr.svm.vmcb_pa;
1874 
1875 	svm_copy_vmrun_state(&svm->vmcb01.ptr->save, save);
1876 	nested_copy_vmcb_control_to_cache(svm, ctl);
1877 
1878 	svm_switch_vmcb(svm, &svm->nested.vmcb02);
1879 	nested_vmcb02_prepare_control(svm, svm->vmcb->save.rip, svm->vmcb->save.cs.base);
1880 
1881 	/*
1882 	 * While the nested guest CR3 is already checked and set by
1883 	 * KVM_SET_SREGS, it was set when nested state was yet loaded,
1884 	 * thus MMU might not be initialized correctly.
1885 	 * Set it again to fix this.
1886 	 */
1887 
1888 	ret = nested_svm_load_cr3(&svm->vcpu, vcpu->arch.cr3,
1889 				  nested_npt_enabled(svm), false);
1890 	if (WARN_ON_ONCE(ret))
1891 		goto out_free;
1892 
1893 	svm->nested.force_msr_bitmap_recalc = true;
1894 
1895 	kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
1896 	ret = 0;
1897 out_free:
1898 	kfree(save);
1899 	kfree(ctl);
1900 
1901 	return ret;
1902 }
1903 
svm_get_nested_state_pages(struct kvm_vcpu * vcpu)1904 static bool svm_get_nested_state_pages(struct kvm_vcpu *vcpu)
1905 {
1906 	if (WARN_ON(!is_guest_mode(vcpu)))
1907 		return true;
1908 
1909 	if (!vcpu->arch.pdptrs_from_userspace &&
1910 	    !nested_npt_enabled(to_svm(vcpu)) && is_pae_paging(vcpu))
1911 		/*
1912 		 * Reload the guest's PDPTRs since after a migration
1913 		 * the guest CR3 might be restored prior to setting the nested
1914 		 * state which can lead to a load of wrong PDPTRs.
1915 		 */
1916 		if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
1917 			return false;
1918 
1919 	if (!nested_svm_merge_msrpm(vcpu)) {
1920 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1921 		vcpu->run->internal.suberror =
1922 			KVM_INTERNAL_ERROR_EMULATION;
1923 		vcpu->run->internal.ndata = 0;
1924 		return false;
1925 	}
1926 
1927 	if (kvm_hv_verify_vp_assist(vcpu))
1928 		return false;
1929 
1930 	return true;
1931 }
1932 
1933 struct kvm_x86_nested_ops svm_nested_ops = {
1934 	.leave_nested = svm_leave_nested,
1935 	.is_exception_vmexit = nested_svm_is_exception_vmexit,
1936 	.check_events = svm_check_nested_events,
1937 	.triple_fault = nested_svm_triple_fault,
1938 	.get_nested_state_pages = svm_get_nested_state_pages,
1939 	.get_state = svm_get_nested_state,
1940 	.set_state = svm_set_nested_state,
1941 	.hv_inject_synthetic_vmexit_post_tlb_flush = svm_hv_inject_synthetic_vmexit_post_tlb_flush,
1942 };
1943