xref: /linux/arch/s390/kernel/crash_dump.c (revision bc46b7cbc58c4cb562b6a45a1fbc7b8e7b23df58)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * S390 kdump implementation
4  *
5  * Copyright IBM Corp. 2011
6  * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
7  */
8 
9 #include <linux/crash_dump.h>
10 #include <linux/export.h>
11 #include <asm/lowcore.h>
12 #include <linux/kernel.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/gfp.h>
16 #include <linux/slab.h>
17 #include <linux/memblock.h>
18 #include <linux/elf.h>
19 #include <linux/uio.h>
20 #include <asm/asm-offsets.h>
21 #include <asm/os_info.h>
22 #include <asm/elf.h>
23 #include <asm/ipl.h>
24 #include <asm/sclp.h>
25 #include <asm/maccess.h>
26 #include <asm/fpu.h>
27 
28 #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
29 #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
30 #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
31 
32 static struct memblock_region oldmem_region;
33 
34 static struct memblock_type oldmem_type = {
35 	.cnt = 1,
36 	.max = 1,
37 	.total_size = 0,
38 	.regions = &oldmem_region,
39 	.name = "oldmem",
40 };
41 
42 struct save_area {
43 	struct list_head list;
44 	u64 psw[2];
45 	u64 ctrs[16];
46 	u64 gprs[16];
47 	u32 acrs[16];
48 	u64 fprs[16];
49 	u32 fpc;
50 	u32 prefix;
51 	u32 todpreg;
52 	u64 timer;
53 	u64 todcmp;
54 	u64 vxrs_low[16];
55 	__vector128 vxrs_high[16];
56 };
57 
58 static LIST_HEAD(dump_save_areas);
59 
60 /*
61  * Allocate a save area
62  */
save_area_alloc(bool is_boot_cpu)63 struct save_area * __init save_area_alloc(bool is_boot_cpu)
64 {
65 	struct save_area *sa;
66 
67 	sa = memblock_alloc_or_panic(sizeof(*sa), 8);
68 
69 	if (is_boot_cpu)
70 		list_add(&sa->list, &dump_save_areas);
71 	else
72 		list_add_tail(&sa->list, &dump_save_areas);
73 	return sa;
74 }
75 
76 /*
77  * Return the address of the save area for the boot CPU
78  */
save_area_boot_cpu(void)79 struct save_area * __init save_area_boot_cpu(void)
80 {
81 	return list_first_entry_or_null(&dump_save_areas, struct save_area, list);
82 }
83 
84 /*
85  * Copy CPU registers into the save area
86  */
save_area_add_regs(struct save_area * sa,void * regs)87 void __init save_area_add_regs(struct save_area *sa, void *regs)
88 {
89 	struct lowcore *lc;
90 
91 	lc = (struct lowcore *)(regs - __LC_FPREGS_SAVE_AREA);
92 	memcpy(&sa->psw, &lc->psw_save_area, sizeof(sa->psw));
93 	memcpy(&sa->ctrs, &lc->cregs_save_area, sizeof(sa->ctrs));
94 	memcpy(&sa->gprs, &lc->gpregs_save_area, sizeof(sa->gprs));
95 	memcpy(&sa->acrs, &lc->access_regs_save_area, sizeof(sa->acrs));
96 	memcpy(&sa->fprs, &lc->floating_pt_save_area, sizeof(sa->fprs));
97 	memcpy(&sa->fpc, &lc->fpt_creg_save_area, sizeof(sa->fpc));
98 	memcpy(&sa->prefix, &lc->prefixreg_save_area, sizeof(sa->prefix));
99 	memcpy(&sa->todpreg, &lc->tod_progreg_save_area, sizeof(sa->todpreg));
100 	memcpy(&sa->timer, &lc->cpu_timer_save_area, sizeof(sa->timer));
101 	memcpy(&sa->todcmp, &lc->clock_comp_save_area, sizeof(sa->todcmp));
102 }
103 
104 /*
105  * Copy vector registers into the save area
106  */
save_area_add_vxrs(struct save_area * sa,__vector128 * vxrs)107 void __init save_area_add_vxrs(struct save_area *sa, __vector128 *vxrs)
108 {
109 	int i;
110 
111 	/* Copy lower halves of vector registers 0-15 */
112 	for (i = 0; i < 16; i++)
113 		sa->vxrs_low[i] = vxrs[i].low;
114 	/* Copy vector registers 16-31 */
115 	memcpy(sa->vxrs_high, vxrs + 16, 16 * sizeof(__vector128));
116 }
117 
copy_oldmem_iter(struct iov_iter * iter,unsigned long src,size_t count)118 static size_t copy_oldmem_iter(struct iov_iter *iter, unsigned long src, size_t count)
119 {
120 	size_t len, copied, res = 0;
121 
122 	while (count) {
123 		if (!oldmem_data.start && src < sclp.hsa_size) {
124 			/* Copy from zfcp/nvme dump HSA area */
125 			len = min(count, sclp.hsa_size - src);
126 			copied = memcpy_hsa_iter(iter, src, len);
127 		} else {
128 			/* Check for swapped kdump oldmem areas */
129 			if (oldmem_data.start && src - oldmem_data.start < oldmem_data.size) {
130 				src -= oldmem_data.start;
131 				len = min(count, oldmem_data.size - src);
132 			} else if (oldmem_data.start && src < oldmem_data.size) {
133 				len = min(count, oldmem_data.size - src);
134 				src += oldmem_data.start;
135 			} else {
136 				len = count;
137 			}
138 			copied = memcpy_real_iter(iter, src, len);
139 		}
140 		count -= copied;
141 		src += copied;
142 		res += copied;
143 		if (copied < len)
144 			break;
145 	}
146 	return res;
147 }
148 
copy_oldmem_kernel(void * dst,unsigned long src,size_t count)149 int copy_oldmem_kernel(void *dst, unsigned long src, size_t count)
150 {
151 	struct iov_iter iter;
152 	struct kvec kvec;
153 
154 	kvec.iov_base = dst;
155 	kvec.iov_len = count;
156 	iov_iter_kvec(&iter, ITER_DEST, &kvec, 1, count);
157 	if (copy_oldmem_iter(&iter, src, count) < count)
158 		return -EFAULT;
159 	return 0;
160 }
161 
162 /*
163  * Copy one page from "oldmem"
164  */
copy_oldmem_page(struct iov_iter * iter,unsigned long pfn,size_t csize,unsigned long offset)165 ssize_t copy_oldmem_page(struct iov_iter *iter, unsigned long pfn, size_t csize,
166 			 unsigned long offset)
167 {
168 	unsigned long src;
169 
170 	src = pfn_to_phys(pfn) + offset;
171 	return copy_oldmem_iter(iter, src, csize);
172 }
173 
174 /*
175  * Remap "oldmem" for kdump
176  *
177  * For the kdump reserved memory this functions performs a swap operation:
178  * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
179  */
remap_oldmem_pfn_range_kdump(struct vm_area_struct * vma,unsigned long from,unsigned long pfn,unsigned long size,pgprot_t prot)180 static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
181 					unsigned long from, unsigned long pfn,
182 					unsigned long size, pgprot_t prot)
183 {
184 	unsigned long size_old;
185 	int rc;
186 
187 	if (pfn < oldmem_data.size >> PAGE_SHIFT) {
188 		size_old = min(size, oldmem_data.size - (pfn << PAGE_SHIFT));
189 		rc = remap_pfn_range(vma, from,
190 				     pfn + (oldmem_data.start >> PAGE_SHIFT),
191 				     size_old, prot);
192 		if (rc || size == size_old)
193 			return rc;
194 		size -= size_old;
195 		from += size_old;
196 		pfn += size_old >> PAGE_SHIFT;
197 	}
198 	return remap_pfn_range(vma, from, pfn, size, prot);
199 }
200 
201 /*
202  * Remap "oldmem" for zfcp/nvme dump
203  *
204  * We only map available memory above HSA size. Memory below HSA size
205  * is read on demand using the copy_oldmem_page() function.
206  */
remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct * vma,unsigned long from,unsigned long pfn,unsigned long size,pgprot_t prot)207 static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
208 					   unsigned long from,
209 					   unsigned long pfn,
210 					   unsigned long size, pgprot_t prot)
211 {
212 	unsigned long hsa_end = sclp.hsa_size;
213 	unsigned long size_hsa;
214 
215 	if (pfn < hsa_end >> PAGE_SHIFT) {
216 		size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
217 		if (size == size_hsa)
218 			return 0;
219 		size -= size_hsa;
220 		from += size_hsa;
221 		pfn += size_hsa >> PAGE_SHIFT;
222 	}
223 	return remap_pfn_range(vma, from, pfn, size, prot);
224 }
225 
226 /*
227  * Remap "oldmem" for kdump or zfcp/nvme dump
228  */
remap_oldmem_pfn_range(struct vm_area_struct * vma,unsigned long from,unsigned long pfn,unsigned long size,pgprot_t prot)229 int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
230 			   unsigned long pfn, unsigned long size, pgprot_t prot)
231 {
232 	if (oldmem_data.start)
233 		return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
234 	else
235 		return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
236 						       prot);
237 }
238 
239 /*
240  * Return true only when in a kdump or stand-alone kdump environment.
241  * Note that /proc/vmcore might also be available in "standard zfcp/nvme dump"
242  * environments, where this function returns false; see dump_available().
243  */
is_kdump_kernel(void)244 bool is_kdump_kernel(void)
245 {
246 	return oldmem_data.start;
247 }
248 EXPORT_SYMBOL_GPL(is_kdump_kernel);
249 
250 /*
251  * Initialize ELF note
252  */
nt_init_name(void * buf,Elf64_Word type,void * desc,int d_len,const char * name)253 static void *nt_init_name(void *buf, Elf64_Word type, void *desc, int d_len,
254 			  const char *name)
255 {
256 	Elf64_Nhdr *note;
257 	u64 len;
258 
259 	note = (Elf64_Nhdr *)buf;
260 	note->n_namesz = strlen(name) + 1;
261 	note->n_descsz = d_len;
262 	note->n_type = type;
263 	len = sizeof(Elf64_Nhdr);
264 
265 	memcpy(buf + len, name, note->n_namesz);
266 	len = roundup(len + note->n_namesz, 4);
267 
268 	memcpy(buf + len, desc, note->n_descsz);
269 	len = roundup(len + note->n_descsz, 4);
270 
271 	return PTR_ADD(buf, len);
272 }
273 
274 #define nt_init(buf, type, desc) \
275 	nt_init_name(buf, NT_ ## type, &(desc), sizeof(desc), NN_ ## type)
276 
277 /*
278  * Calculate the size of ELF note
279  */
nt_size_name(int d_len,const char * name)280 static size_t nt_size_name(int d_len, const char *name)
281 {
282 	size_t size;
283 
284 	size = sizeof(Elf64_Nhdr);
285 	size += roundup(strlen(name) + 1, 4);
286 	size += roundup(d_len, 4);
287 
288 	return size;
289 }
290 
291 #define nt_size(type, desc) nt_size_name(sizeof(desc), NN_ ## type)
292 
293 /*
294  * Fill ELF notes for one CPU with save area registers
295  */
fill_cpu_elf_notes(void * ptr,int cpu,struct save_area * sa)296 static void *fill_cpu_elf_notes(void *ptr, int cpu, struct save_area *sa)
297 {
298 	struct elf_prstatus nt_prstatus;
299 	elf_fpregset_t nt_fpregset;
300 
301 	/* Prepare prstatus note */
302 	memset(&nt_prstatus, 0, sizeof(nt_prstatus));
303 	memcpy(&nt_prstatus.pr_reg.gprs, sa->gprs, sizeof(sa->gprs));
304 	memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
305 	memcpy(&nt_prstatus.pr_reg.acrs, sa->acrs, sizeof(sa->acrs));
306 	nt_prstatus.common.pr_pid = cpu;
307 	/* Prepare fpregset (floating point) note */
308 	memset(&nt_fpregset, 0, sizeof(nt_fpregset));
309 	memcpy(&nt_fpregset.fpc, &sa->fpc, sizeof(sa->fpc));
310 	memcpy(&nt_fpregset.fprs, &sa->fprs, sizeof(sa->fprs));
311 	/* Create ELF notes for the CPU */
312 	ptr = nt_init(ptr, PRSTATUS, nt_prstatus);
313 	ptr = nt_init(ptr, PRFPREG, nt_fpregset);
314 	ptr = nt_init(ptr, S390_TIMER, sa->timer);
315 	ptr = nt_init(ptr, S390_TODCMP, sa->todcmp);
316 	ptr = nt_init(ptr, S390_TODPREG, sa->todpreg);
317 	ptr = nt_init(ptr, S390_CTRS, sa->ctrs);
318 	ptr = nt_init(ptr, S390_PREFIX, sa->prefix);
319 	if (cpu_has_vx()) {
320 		ptr = nt_init(ptr, S390_VXRS_HIGH, sa->vxrs_high);
321 		ptr = nt_init(ptr, S390_VXRS_LOW, sa->vxrs_low);
322 	}
323 	return ptr;
324 }
325 
326 /*
327  * Calculate size of ELF notes per cpu
328  */
get_cpu_elf_notes_size(void)329 static size_t get_cpu_elf_notes_size(void)
330 {
331 	struct save_area *sa = NULL;
332 	size_t size;
333 
334 	size =	nt_size(PRSTATUS, struct elf_prstatus);
335 	size += nt_size(PRFPREG, elf_fpregset_t);
336 	size += nt_size(S390_TIMER, sa->timer);
337 	size += nt_size(S390_TODCMP, sa->todcmp);
338 	size += nt_size(S390_TODPREG, sa->todpreg);
339 	size += nt_size(S390_CTRS, sa->ctrs);
340 	size += nt_size(S390_PREFIX, sa->prefix);
341 	if (cpu_has_vx()) {
342 		size += nt_size(S390_VXRS_HIGH, sa->vxrs_high);
343 		size += nt_size(S390_VXRS_LOW, sa->vxrs_low);
344 	}
345 
346 	return size;
347 }
348 
349 /*
350  * Initialize prpsinfo note (new kernel)
351  */
nt_prpsinfo(void * ptr)352 static void *nt_prpsinfo(void *ptr)
353 {
354 	struct elf_prpsinfo prpsinfo;
355 
356 	memset(&prpsinfo, 0, sizeof(prpsinfo));
357 	prpsinfo.pr_sname = 'R';
358 	strscpy(prpsinfo.pr_fname, "vmlinux");
359 	return nt_init(ptr, PRPSINFO, prpsinfo);
360 }
361 
362 /*
363  * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
364  */
get_vmcoreinfo_old(unsigned long * size)365 static void *get_vmcoreinfo_old(unsigned long *size)
366 {
367 	char nt_name[11], *vmcoreinfo;
368 	unsigned long addr;
369 	Elf64_Nhdr note;
370 
371 	if (copy_oldmem_kernel(&addr, __LC_VMCORE_INFO, sizeof(addr)))
372 		return NULL;
373 	memset(nt_name, 0, sizeof(nt_name));
374 	if (copy_oldmem_kernel(&note, addr, sizeof(note)))
375 		return NULL;
376 	if (copy_oldmem_kernel(nt_name, addr + sizeof(note),
377 			       sizeof(nt_name) - 1))
378 		return NULL;
379 	if (strcmp(nt_name, VMCOREINFO_NOTE_NAME) != 0)
380 		return NULL;
381 	vmcoreinfo = kzalloc(note.n_descsz, GFP_KERNEL);
382 	if (!vmcoreinfo)
383 		return NULL;
384 	if (copy_oldmem_kernel(vmcoreinfo, addr + 24, note.n_descsz)) {
385 		kfree(vmcoreinfo);
386 		return NULL;
387 	}
388 	*size = note.n_descsz;
389 	return vmcoreinfo;
390 }
391 
392 /*
393  * Initialize vmcoreinfo note (new kernel)
394  */
nt_vmcoreinfo(void * ptr)395 static void *nt_vmcoreinfo(void *ptr)
396 {
397 	const char *name = VMCOREINFO_NOTE_NAME;
398 	unsigned long size;
399 	void *vmcoreinfo;
400 
401 	vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
402 	if (vmcoreinfo)
403 		return nt_init_name(ptr, 0, vmcoreinfo, size, name);
404 
405 	vmcoreinfo = get_vmcoreinfo_old(&size);
406 	if (!vmcoreinfo)
407 		return ptr;
408 	ptr = nt_init_name(ptr, 0, vmcoreinfo, size, name);
409 	kfree(vmcoreinfo);
410 	return ptr;
411 }
412 
nt_vmcoreinfo_size(void)413 static size_t nt_vmcoreinfo_size(void)
414 {
415 	const char *name = VMCOREINFO_NOTE_NAME;
416 	unsigned long size;
417 	void *vmcoreinfo;
418 
419 	vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
420 	if (vmcoreinfo)
421 		return nt_size_name(size, name);
422 
423 	vmcoreinfo = get_vmcoreinfo_old(&size);
424 	if (!vmcoreinfo)
425 		return 0;
426 
427 	kfree(vmcoreinfo);
428 	return nt_size_name(size, name);
429 }
430 
431 /*
432  * Initialize final note (needed for /proc/vmcore code)
433  */
nt_final(void * ptr)434 static void *nt_final(void *ptr)
435 {
436 	Elf64_Nhdr *note;
437 
438 	note = (Elf64_Nhdr *) ptr;
439 	note->n_namesz = 0;
440 	note->n_descsz = 0;
441 	note->n_type = 0;
442 	return PTR_ADD(ptr, sizeof(Elf64_Nhdr));
443 }
444 
445 /*
446  * Initialize ELF header (new kernel)
447  */
ehdr_init(Elf64_Ehdr * ehdr,int phdr_count)448 static void *ehdr_init(Elf64_Ehdr *ehdr, int phdr_count)
449 {
450 	memset(ehdr, 0, sizeof(*ehdr));
451 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
452 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
453 	ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
454 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
455 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
456 	ehdr->e_type = ET_CORE;
457 	ehdr->e_machine = EM_S390;
458 	ehdr->e_version = EV_CURRENT;
459 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
460 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
461 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
462 	/* Number of PT_LOAD program headers plus PT_NOTE program header */
463 	ehdr->e_phnum = phdr_count + 1;
464 	return ehdr + 1;
465 }
466 
467 /*
468  * Return CPU count for ELF header (new kernel)
469  */
get_cpu_cnt(void)470 static int get_cpu_cnt(void)
471 {
472 	struct save_area *sa;
473 	int cpus = 0;
474 
475 	list_for_each_entry(sa, &dump_save_areas, list)
476 		if (sa->prefix != 0)
477 			cpus++;
478 	return cpus;
479 }
480 
481 /*
482  * Return memory chunk count for ELF header (new kernel)
483  */
get_mem_chunk_cnt(void)484 static int get_mem_chunk_cnt(void)
485 {
486 	int cnt = 0;
487 	u64 idx;
488 
489 	for_each_physmem_range(idx, &oldmem_type, NULL, NULL)
490 		cnt++;
491 	return cnt;
492 }
493 
fill_ptload(Elf64_Phdr * phdr,unsigned long paddr,unsigned long vaddr,unsigned long size)494 static void fill_ptload(Elf64_Phdr *phdr, unsigned long paddr,
495 		unsigned long vaddr, unsigned long size)
496 {
497 	phdr->p_type = PT_LOAD;
498 	phdr->p_vaddr = vaddr;
499 	phdr->p_offset = paddr;
500 	phdr->p_paddr = paddr;
501 	phdr->p_filesz = size;
502 	phdr->p_memsz = size;
503 	phdr->p_flags = PF_R | PF_W | PF_X;
504 	phdr->p_align = PAGE_SIZE;
505 }
506 
507 /*
508  * Initialize ELF loads (new kernel)
509  */
loads_init(Elf64_Phdr * phdr,bool os_info_has_vm)510 static void loads_init(Elf64_Phdr *phdr, bool os_info_has_vm)
511 {
512 	unsigned long old_identity_base = 0;
513 	phys_addr_t start, end;
514 	u64 idx;
515 
516 	if (os_info_has_vm)
517 		old_identity_base = os_info_old_value(OS_INFO_IDENTITY_BASE);
518 	for_each_physmem_range(idx, &oldmem_type, &start, &end) {
519 		fill_ptload(phdr, start, old_identity_base + start,
520 			    end - start);
521 		phdr++;
522 	}
523 }
524 
os_info_has_vm(void)525 static bool os_info_has_vm(void)
526 {
527 	return os_info_old_value(OS_INFO_KASLR_OFFSET);
528 }
529 
530 #ifdef CONFIG_PROC_VMCORE_DEVICE_RAM
531 /*
532  * Fill PT_LOAD for a physical memory range owned by a device and detected by
533  * its device driver.
534  */
elfcorehdr_fill_device_ram_ptload_elf64(Elf64_Phdr * phdr,unsigned long long paddr,unsigned long long size)535 void elfcorehdr_fill_device_ram_ptload_elf64(Elf64_Phdr *phdr,
536 		unsigned long long paddr, unsigned long long size)
537 {
538 	unsigned long old_identity_base = 0;
539 
540 	if (os_info_has_vm())
541 		old_identity_base = os_info_old_value(OS_INFO_IDENTITY_BASE);
542 	fill_ptload(phdr, paddr, old_identity_base + paddr, size);
543 }
544 #endif
545 
546 /*
547  * Prepare PT_LOAD type program header for kernel image region
548  */
text_init(Elf64_Phdr * phdr)549 static void text_init(Elf64_Phdr *phdr)
550 {
551 	unsigned long start_phys = os_info_old_value(OS_INFO_IMAGE_PHYS);
552 	unsigned long start = os_info_old_value(OS_INFO_IMAGE_START);
553 	unsigned long end = os_info_old_value(OS_INFO_IMAGE_END);
554 
555 	phdr->p_type = PT_LOAD;
556 	phdr->p_vaddr = start;
557 	phdr->p_filesz = end - start;
558 	phdr->p_memsz = end - start;
559 	phdr->p_offset = start_phys;
560 	phdr->p_paddr = start_phys;
561 	phdr->p_flags = PF_R | PF_W | PF_X;
562 	phdr->p_align = PAGE_SIZE;
563 }
564 
565 /*
566  * Initialize notes (new kernel)
567  */
notes_init(Elf64_Phdr * phdr,void * ptr,u64 notes_offset)568 static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
569 {
570 	struct save_area *sa;
571 	void *ptr_start = ptr;
572 	int cpu;
573 
574 	ptr = nt_prpsinfo(ptr);
575 
576 	cpu = 1;
577 	list_for_each_entry(sa, &dump_save_areas, list)
578 		if (sa->prefix != 0)
579 			ptr = fill_cpu_elf_notes(ptr, cpu++, sa);
580 	ptr = nt_vmcoreinfo(ptr);
581 	ptr = nt_final(ptr);
582 	memset(phdr, 0, sizeof(*phdr));
583 	phdr->p_type = PT_NOTE;
584 	phdr->p_offset = notes_offset;
585 	phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
586 	phdr->p_memsz = phdr->p_filesz;
587 	return ptr;
588 }
589 
get_elfcorehdr_size(int phdr_count)590 static size_t get_elfcorehdr_size(int phdr_count)
591 {
592 	size_t size;
593 
594 	size = sizeof(Elf64_Ehdr);
595 	/* PT_NOTES */
596 	size += sizeof(Elf64_Phdr);
597 	/* nt_prpsinfo */
598 	size += nt_size(PRPSINFO, struct elf_prpsinfo);
599 	/* regsets */
600 	size += get_cpu_cnt() * get_cpu_elf_notes_size();
601 	/* nt_vmcoreinfo */
602 	size += nt_vmcoreinfo_size();
603 	/* nt_final */
604 	size += sizeof(Elf64_Nhdr);
605 	/* PT_LOADS */
606 	size += phdr_count * sizeof(Elf64_Phdr);
607 
608 	return size;
609 }
610 
611 /*
612  * Create ELF core header (new kernel)
613  */
elfcorehdr_alloc(unsigned long long * addr,unsigned long long * size)614 int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
615 {
616 	Elf64_Phdr *phdr_notes, *phdr_loads, *phdr_text;
617 	int mem_chunk_cnt, phdr_text_cnt;
618 	size_t alloc_size;
619 	void *ptr, *hdr;
620 	u64 hdr_off;
621 
622 	/* If we are not in kdump or zfcp/nvme dump mode return */
623 	if (!oldmem_data.start && !is_ipl_type_dump())
624 		return 0;
625 	/* If we cannot get HSA size for zfcp/nvme dump return error */
626 	if (is_ipl_type_dump() && !sclp.hsa_size)
627 		return -ENODEV;
628 
629 	/* For kdump, exclude previous crashkernel memory */
630 	if (oldmem_data.start) {
631 		oldmem_region.base = oldmem_data.start;
632 		oldmem_region.size = oldmem_data.size;
633 		oldmem_type.total_size = oldmem_data.size;
634 	}
635 
636 	mem_chunk_cnt = get_mem_chunk_cnt();
637 	phdr_text_cnt = os_info_has_vm() ? 1 : 0;
638 
639 	alloc_size = get_elfcorehdr_size(mem_chunk_cnt + phdr_text_cnt);
640 
641 	hdr = kzalloc(alloc_size, GFP_KERNEL);
642 
643 	/*
644 	 * Without elfcorehdr /proc/vmcore cannot be created. Thus creating
645 	 * a dump with this crash kernel will fail. Panic now to allow other
646 	 * dump mechanisms to take over.
647 	 */
648 	if (!hdr)
649 		panic("s390 kdump allocating elfcorehdr failed");
650 
651 	/* Init elf header */
652 	phdr_notes = ehdr_init(hdr, mem_chunk_cnt + phdr_text_cnt);
653 	/* Init program headers */
654 	if (phdr_text_cnt) {
655 		phdr_text = phdr_notes + 1;
656 		phdr_loads = phdr_text + 1;
657 	} else {
658 		phdr_loads = phdr_notes + 1;
659 	}
660 	ptr = PTR_ADD(phdr_loads, sizeof(Elf64_Phdr) * mem_chunk_cnt);
661 	/* Init notes */
662 	hdr_off = PTR_DIFF(ptr, hdr);
663 	ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
664 	/* Init kernel text program header */
665 	if (phdr_text_cnt)
666 		text_init(phdr_text);
667 	/* Init loads */
668 	loads_init(phdr_loads, phdr_text_cnt);
669 	/* Finalize program headers */
670 	hdr_off = PTR_DIFF(ptr, hdr);
671 	*addr = (unsigned long long) hdr;
672 	*size = (unsigned long long) hdr_off;
673 	BUG_ON(elfcorehdr_size > alloc_size);
674 	return 0;
675 }
676 
677 /*
678  * Free ELF core header (new kernel)
679  */
elfcorehdr_free(unsigned long long addr)680 void elfcorehdr_free(unsigned long long addr)
681 {
682 	kfree((void *)(unsigned long)addr);
683 }
684 
685 /*
686  * Read from ELF header
687  */
elfcorehdr_read(char * buf,size_t count,u64 * ppos)688 ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
689 {
690 	void *src = (void *)(unsigned long)*ppos;
691 
692 	memcpy(buf, src, count);
693 	*ppos += count;
694 	return count;
695 }
696 
697 /*
698  * Read from ELF notes data
699  */
elfcorehdr_read_notes(char * buf,size_t count,u64 * ppos)700 ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
701 {
702 	void *src = (void *)(unsigned long)*ppos;
703 
704 	memcpy(buf, src, count);
705 	*ppos += count;
706 	return count;
707 }
708