1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * (C) 1999-2001 Paul `Rusty' Russell
4 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
5 * (C) 2011 Patrick McHardy <kaber@trash.net>
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/module.h>
11 #include <linux/types.h>
12 #include <linux/timer.h>
13 #include <linux/skbuff.h>
14 #include <linux/gfp.h>
15 #include <net/xfrm.h>
16 #include <linux/siphash.h>
17 #include <linux/rtnetlink.h>
18
19 #include <net/netfilter/nf_conntrack_bpf.h>
20 #include <net/netfilter/nf_conntrack_core.h>
21 #include <net/netfilter/nf_conntrack_helper.h>
22 #include <net/netfilter/nf_conntrack_seqadj.h>
23 #include <net/netfilter/nf_conntrack_zones.h>
24 #include <net/netfilter/nf_nat.h>
25 #include <net/netfilter/nf_nat_helper.h>
26 #include <uapi/linux/netfilter/nf_nat.h>
27
28 #include "nf_internals.h"
29
30 #define NF_NAT_MAX_ATTEMPTS 128
31 #define NF_NAT_HARDER_THRESH (NF_NAT_MAX_ATTEMPTS / 4)
32
33 static spinlock_t nf_nat_locks[CONNTRACK_LOCKS];
34
35 static DEFINE_MUTEX(nf_nat_proto_mutex);
36 static unsigned int nat_net_id __read_mostly;
37
38 static struct hlist_head *nf_nat_bysource __read_mostly;
39 static unsigned int nf_nat_htable_size __read_mostly;
40 static siphash_aligned_key_t nf_nat_hash_rnd;
41
42 struct nf_nat_lookup_hook_priv {
43 struct nf_hook_entries __rcu *entries;
44
45 struct rcu_head rcu_head;
46 };
47
48 struct nf_nat_hooks_net {
49 struct nf_hook_ops *nat_hook_ops;
50 unsigned int users;
51 };
52
53 struct nat_net {
54 struct nf_nat_hooks_net nat_proto_net[NFPROTO_NUMPROTO];
55 };
56
57 #ifdef CONFIG_XFRM
nf_nat_ipv4_decode_session(struct sk_buff * skb,const struct nf_conn * ct,enum ip_conntrack_dir dir,unsigned long statusbit,struct flowi * fl)58 static void nf_nat_ipv4_decode_session(struct sk_buff *skb,
59 const struct nf_conn *ct,
60 enum ip_conntrack_dir dir,
61 unsigned long statusbit,
62 struct flowi *fl)
63 {
64 const struct nf_conntrack_tuple *t = &ct->tuplehash[dir].tuple;
65 struct flowi4 *fl4 = &fl->u.ip4;
66
67 if (ct->status & statusbit) {
68 fl4->daddr = t->dst.u3.ip;
69 if (t->dst.protonum == IPPROTO_TCP ||
70 t->dst.protonum == IPPROTO_UDP ||
71 t->dst.protonum == IPPROTO_UDPLITE ||
72 t->dst.protonum == IPPROTO_DCCP ||
73 t->dst.protonum == IPPROTO_SCTP)
74 fl4->fl4_dport = t->dst.u.all;
75 }
76
77 statusbit ^= IPS_NAT_MASK;
78
79 if (ct->status & statusbit) {
80 fl4->saddr = t->src.u3.ip;
81 if (t->dst.protonum == IPPROTO_TCP ||
82 t->dst.protonum == IPPROTO_UDP ||
83 t->dst.protonum == IPPROTO_UDPLITE ||
84 t->dst.protonum == IPPROTO_DCCP ||
85 t->dst.protonum == IPPROTO_SCTP)
86 fl4->fl4_sport = t->src.u.all;
87 }
88 }
89
nf_nat_ipv6_decode_session(struct sk_buff * skb,const struct nf_conn * ct,enum ip_conntrack_dir dir,unsigned long statusbit,struct flowi * fl)90 static void nf_nat_ipv6_decode_session(struct sk_buff *skb,
91 const struct nf_conn *ct,
92 enum ip_conntrack_dir dir,
93 unsigned long statusbit,
94 struct flowi *fl)
95 {
96 #if IS_ENABLED(CONFIG_IPV6)
97 const struct nf_conntrack_tuple *t = &ct->tuplehash[dir].tuple;
98 struct flowi6 *fl6 = &fl->u.ip6;
99
100 if (ct->status & statusbit) {
101 fl6->daddr = t->dst.u3.in6;
102 if (t->dst.protonum == IPPROTO_TCP ||
103 t->dst.protonum == IPPROTO_UDP ||
104 t->dst.protonum == IPPROTO_UDPLITE ||
105 t->dst.protonum == IPPROTO_DCCP ||
106 t->dst.protonum == IPPROTO_SCTP)
107 fl6->fl6_dport = t->dst.u.all;
108 }
109
110 statusbit ^= IPS_NAT_MASK;
111
112 if (ct->status & statusbit) {
113 fl6->saddr = t->src.u3.in6;
114 if (t->dst.protonum == IPPROTO_TCP ||
115 t->dst.protonum == IPPROTO_UDP ||
116 t->dst.protonum == IPPROTO_UDPLITE ||
117 t->dst.protonum == IPPROTO_DCCP ||
118 t->dst.protonum == IPPROTO_SCTP)
119 fl6->fl6_sport = t->src.u.all;
120 }
121 #endif
122 }
123
__nf_nat_decode_session(struct sk_buff * skb,struct flowi * fl)124 static void __nf_nat_decode_session(struct sk_buff *skb, struct flowi *fl)
125 {
126 const struct nf_conn *ct;
127 enum ip_conntrack_info ctinfo;
128 enum ip_conntrack_dir dir;
129 unsigned long statusbit;
130 u8 family;
131
132 ct = nf_ct_get(skb, &ctinfo);
133 if (ct == NULL)
134 return;
135
136 family = nf_ct_l3num(ct);
137 dir = CTINFO2DIR(ctinfo);
138 if (dir == IP_CT_DIR_ORIGINAL)
139 statusbit = IPS_DST_NAT;
140 else
141 statusbit = IPS_SRC_NAT;
142
143 switch (family) {
144 case NFPROTO_IPV4:
145 nf_nat_ipv4_decode_session(skb, ct, dir, statusbit, fl);
146 return;
147 case NFPROTO_IPV6:
148 nf_nat_ipv6_decode_session(skb, ct, dir, statusbit, fl);
149 return;
150 }
151 }
152 #endif /* CONFIG_XFRM */
153
154 /* We keep an extra hash for each conntrack, for fast searching. */
155 static unsigned int
hash_by_src(const struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple)156 hash_by_src(const struct net *net,
157 const struct nf_conntrack_zone *zone,
158 const struct nf_conntrack_tuple *tuple)
159 {
160 unsigned int hash;
161 struct {
162 struct nf_conntrack_man src;
163 u32 net_mix;
164 u32 protonum;
165 u32 zone;
166 } __aligned(SIPHASH_ALIGNMENT) combined;
167
168 get_random_once(&nf_nat_hash_rnd, sizeof(nf_nat_hash_rnd));
169
170 memset(&combined, 0, sizeof(combined));
171
172 /* Original src, to ensure we map it consistently if poss. */
173 combined.src = tuple->src;
174 combined.net_mix = net_hash_mix(net);
175 combined.protonum = tuple->dst.protonum;
176
177 /* Zone ID can be used provided its valid for both directions */
178 if (zone->dir == NF_CT_DEFAULT_ZONE_DIR)
179 combined.zone = zone->id;
180
181 hash = siphash(&combined, sizeof(combined), &nf_nat_hash_rnd);
182
183 return reciprocal_scale(hash, nf_nat_htable_size);
184 }
185
186 /**
187 * nf_nat_used_tuple - check if proposed nat tuple clashes with existing entry
188 * @tuple: proposed NAT binding
189 * @ignored_conntrack: our (unconfirmed) conntrack entry
190 *
191 * A conntrack entry can be inserted to the connection tracking table
192 * if there is no existing entry with an identical tuple in either direction.
193 *
194 * Example:
195 * INITIATOR -> NAT/PAT -> RESPONDER
196 *
197 * INITIATOR passes through NAT/PAT ("us") and SNAT is done (saddr rewrite).
198 * Then, later, NAT/PAT itself also connects to RESPONDER.
199 *
200 * This will not work if the SNAT done earlier has same IP:PORT source pair.
201 *
202 * Conntrack table has:
203 * ORIGINAL: $IP_INITIATOR:$SPORT -> $IP_RESPONDER:$DPORT
204 * REPLY: $IP_RESPONDER:$DPORT -> $IP_NAT:$SPORT
205 *
206 * and new locally originating connection wants:
207 * ORIGINAL: $IP_NAT:$SPORT -> $IP_RESPONDER:$DPORT
208 * REPLY: $IP_RESPONDER:$DPORT -> $IP_NAT:$SPORT
209 *
210 * ... which would mean incoming packets cannot be distinguished between
211 * the existing and the newly added entry (identical IP_CT_DIR_REPLY tuple).
212 *
213 * @return: true if the proposed NAT mapping collides with an existing entry.
214 */
215 static int
nf_nat_used_tuple(const struct nf_conntrack_tuple * tuple,const struct nf_conn * ignored_conntrack)216 nf_nat_used_tuple(const struct nf_conntrack_tuple *tuple,
217 const struct nf_conn *ignored_conntrack)
218 {
219 /* Conntrack tracking doesn't keep track of outgoing tuples; only
220 * incoming ones. NAT means they don't have a fixed mapping,
221 * so we invert the tuple and look for the incoming reply.
222 *
223 * We could keep a separate hash if this proves too slow.
224 */
225 struct nf_conntrack_tuple reply;
226
227 nf_ct_invert_tuple(&reply, tuple);
228 return nf_conntrack_tuple_taken(&reply, ignored_conntrack);
229 }
230
nf_nat_allow_clash(const struct nf_conn * ct)231 static bool nf_nat_allow_clash(const struct nf_conn *ct)
232 {
233 return nf_ct_l4proto_find(nf_ct_protonum(ct))->allow_clash;
234 }
235
236 /**
237 * nf_nat_used_tuple_new - check if to-be-inserted conntrack collides with existing entry
238 * @tuple: proposed NAT binding
239 * @ignored_ct: our (unconfirmed) conntrack entry
240 *
241 * Same as nf_nat_used_tuple, but also check for rare clash in reverse
242 * direction. Should be called only when @tuple has not been altered, i.e.
243 * @ignored_conntrack will not be subject to NAT.
244 *
245 * @return: true if the proposed NAT mapping collides with existing entry.
246 */
247 static noinline bool
nf_nat_used_tuple_new(const struct nf_conntrack_tuple * tuple,const struct nf_conn * ignored_ct)248 nf_nat_used_tuple_new(const struct nf_conntrack_tuple *tuple,
249 const struct nf_conn *ignored_ct)
250 {
251 static const unsigned long uses_nat = IPS_NAT_MASK | IPS_SEQ_ADJUST;
252 const struct nf_conntrack_tuple_hash *thash;
253 const struct nf_conntrack_zone *zone;
254 struct nf_conn *ct;
255 bool taken = true;
256 struct net *net;
257
258 if (!nf_nat_used_tuple(tuple, ignored_ct))
259 return false;
260
261 if (!nf_nat_allow_clash(ignored_ct))
262 return true;
263
264 /* Initial choice clashes with existing conntrack.
265 * Check for (rare) reverse collision.
266 *
267 * This can happen when new packets are received in both directions
268 * at the exact same time on different CPUs.
269 *
270 * Without SMP, first packet creates new conntrack entry and second
271 * packet is resolved as established reply packet.
272 *
273 * With parallel processing, both packets could be picked up as
274 * new and both get their own ct entry allocated.
275 *
276 * If ignored_conntrack and colliding ct are not subject to NAT then
277 * pretend the tuple is available and let later clash resolution
278 * handle this at insertion time.
279 *
280 * Without it, the 'reply' packet has its source port rewritten
281 * by nat engine.
282 */
283 if (READ_ONCE(ignored_ct->status) & uses_nat)
284 return true;
285
286 net = nf_ct_net(ignored_ct);
287 zone = nf_ct_zone(ignored_ct);
288
289 thash = nf_conntrack_find_get(net, zone, tuple);
290 if (unlikely(!thash)) {
291 struct nf_conntrack_tuple reply;
292
293 nf_ct_invert_tuple(&reply, tuple);
294 thash = nf_conntrack_find_get(net, zone, &reply);
295 if (!thash) /* clashing entry went away */
296 return false;
297 }
298
299 ct = nf_ct_tuplehash_to_ctrack(thash);
300
301 /* NB: IP_CT_DIR_ORIGINAL should be impossible because
302 * nf_nat_used_tuple() handles origin collisions.
303 *
304 * Handle remote chance other CPU confirmed its ct right after.
305 */
306 if (thash->tuple.dst.dir != IP_CT_DIR_REPLY)
307 goto out;
308
309 /* clashing connection subject to NAT? Retry with new tuple. */
310 if (READ_ONCE(ct->status) & uses_nat)
311 goto out;
312
313 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
314 &ignored_ct->tuplehash[IP_CT_DIR_REPLY].tuple) &&
315 nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
316 &ignored_ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple)) {
317 taken = false;
318 goto out;
319 }
320 out:
321 nf_ct_put(ct);
322 return taken;
323 }
324
nf_nat_may_kill(struct nf_conn * ct,unsigned long flags)325 static bool nf_nat_may_kill(struct nf_conn *ct, unsigned long flags)
326 {
327 static const unsigned long flags_refuse = IPS_FIXED_TIMEOUT |
328 IPS_DYING;
329 static const unsigned long flags_needed = IPS_SRC_NAT;
330 enum tcp_conntrack old_state;
331
332 old_state = READ_ONCE(ct->proto.tcp.state);
333 if (old_state < TCP_CONNTRACK_TIME_WAIT)
334 return false;
335
336 if (flags & flags_refuse)
337 return false;
338
339 return (flags & flags_needed) == flags_needed;
340 }
341
342 /* reverse direction will send packets to new source, so
343 * make sure such packets are invalid.
344 */
nf_seq_has_advanced(const struct nf_conn * old,const struct nf_conn * new)345 static bool nf_seq_has_advanced(const struct nf_conn *old, const struct nf_conn *new)
346 {
347 return (__s32)(new->proto.tcp.seen[0].td_end -
348 old->proto.tcp.seen[0].td_end) > 0;
349 }
350
351 static int
nf_nat_used_tuple_harder(const struct nf_conntrack_tuple * tuple,const struct nf_conn * ignored_conntrack,unsigned int attempts_left)352 nf_nat_used_tuple_harder(const struct nf_conntrack_tuple *tuple,
353 const struct nf_conn *ignored_conntrack,
354 unsigned int attempts_left)
355 {
356 static const unsigned long flags_offload = IPS_OFFLOAD | IPS_HW_OFFLOAD;
357 struct nf_conntrack_tuple_hash *thash;
358 const struct nf_conntrack_zone *zone;
359 struct nf_conntrack_tuple reply;
360 unsigned long flags;
361 struct nf_conn *ct;
362 bool taken = true;
363 struct net *net;
364
365 nf_ct_invert_tuple(&reply, tuple);
366
367 if (attempts_left > NF_NAT_HARDER_THRESH ||
368 tuple->dst.protonum != IPPROTO_TCP ||
369 ignored_conntrack->proto.tcp.state != TCP_CONNTRACK_SYN_SENT)
370 return nf_conntrack_tuple_taken(&reply, ignored_conntrack);
371
372 /* :ast few attempts to find a free tcp port. Destructive
373 * action: evict colliding if its in timewait state and the
374 * tcp sequence number has advanced past the one used by the
375 * old entry.
376 */
377 net = nf_ct_net(ignored_conntrack);
378 zone = nf_ct_zone(ignored_conntrack);
379
380 thash = nf_conntrack_find_get(net, zone, &reply);
381 if (!thash)
382 return false;
383
384 ct = nf_ct_tuplehash_to_ctrack(thash);
385
386 if (thash->tuple.dst.dir == IP_CT_DIR_ORIGINAL)
387 goto out;
388
389 if (WARN_ON_ONCE(ct == ignored_conntrack))
390 goto out;
391
392 flags = READ_ONCE(ct->status);
393 if (!nf_nat_may_kill(ct, flags))
394 goto out;
395
396 if (!nf_seq_has_advanced(ct, ignored_conntrack))
397 goto out;
398
399 /* Even if we can evict do not reuse if entry is offloaded. */
400 if (nf_ct_kill(ct))
401 taken = flags & flags_offload;
402 out:
403 nf_ct_put(ct);
404 return taken;
405 }
406
nf_nat_inet_in_range(const struct nf_conntrack_tuple * t,const struct nf_nat_range2 * range)407 static bool nf_nat_inet_in_range(const struct nf_conntrack_tuple *t,
408 const struct nf_nat_range2 *range)
409 {
410 if (t->src.l3num == NFPROTO_IPV4)
411 return ntohl(t->src.u3.ip) >= ntohl(range->min_addr.ip) &&
412 ntohl(t->src.u3.ip) <= ntohl(range->max_addr.ip);
413
414 return ipv6_addr_cmp(&t->src.u3.in6, &range->min_addr.in6) >= 0 &&
415 ipv6_addr_cmp(&t->src.u3.in6, &range->max_addr.in6) <= 0;
416 }
417
418 /* Is the manipable part of the tuple between min and max incl? */
l4proto_in_range(const struct nf_conntrack_tuple * tuple,enum nf_nat_manip_type maniptype,const union nf_conntrack_man_proto * min,const union nf_conntrack_man_proto * max)419 static bool l4proto_in_range(const struct nf_conntrack_tuple *tuple,
420 enum nf_nat_manip_type maniptype,
421 const union nf_conntrack_man_proto *min,
422 const union nf_conntrack_man_proto *max)
423 {
424 __be16 port;
425
426 switch (tuple->dst.protonum) {
427 case IPPROTO_ICMP:
428 case IPPROTO_ICMPV6:
429 return ntohs(tuple->src.u.icmp.id) >= ntohs(min->icmp.id) &&
430 ntohs(tuple->src.u.icmp.id) <= ntohs(max->icmp.id);
431 case IPPROTO_GRE: /* all fall though */
432 case IPPROTO_TCP:
433 case IPPROTO_UDP:
434 case IPPROTO_UDPLITE:
435 case IPPROTO_DCCP:
436 case IPPROTO_SCTP:
437 if (maniptype == NF_NAT_MANIP_SRC)
438 port = tuple->src.u.all;
439 else
440 port = tuple->dst.u.all;
441
442 return ntohs(port) >= ntohs(min->all) &&
443 ntohs(port) <= ntohs(max->all);
444 default:
445 return true;
446 }
447 }
448
449 /* If we source map this tuple so reply looks like reply_tuple, will
450 * that meet the constraints of range.
451 */
nf_in_range(const struct nf_conntrack_tuple * tuple,const struct nf_nat_range2 * range)452 static int nf_in_range(const struct nf_conntrack_tuple *tuple,
453 const struct nf_nat_range2 *range)
454 {
455 /* If we are supposed to map IPs, then we must be in the
456 * range specified, otherwise let this drag us onto a new src IP.
457 */
458 if (range->flags & NF_NAT_RANGE_MAP_IPS &&
459 !nf_nat_inet_in_range(tuple, range))
460 return 0;
461
462 if (!(range->flags & NF_NAT_RANGE_PROTO_SPECIFIED))
463 return 1;
464
465 return l4proto_in_range(tuple, NF_NAT_MANIP_SRC,
466 &range->min_proto, &range->max_proto);
467 }
468
469 static inline int
same_src(const struct nf_conn * ct,const struct nf_conntrack_tuple * tuple)470 same_src(const struct nf_conn *ct,
471 const struct nf_conntrack_tuple *tuple)
472 {
473 const struct nf_conntrack_tuple *t;
474
475 t = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
476 return (t->dst.protonum == tuple->dst.protonum &&
477 nf_inet_addr_cmp(&t->src.u3, &tuple->src.u3) &&
478 t->src.u.all == tuple->src.u.all);
479 }
480
481 /* Only called for SRC manip */
482 static int
find_appropriate_src(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple,struct nf_conntrack_tuple * result,const struct nf_nat_range2 * range)483 find_appropriate_src(struct net *net,
484 const struct nf_conntrack_zone *zone,
485 const struct nf_conntrack_tuple *tuple,
486 struct nf_conntrack_tuple *result,
487 const struct nf_nat_range2 *range)
488 {
489 unsigned int h = hash_by_src(net, zone, tuple);
490 const struct nf_conn *ct;
491
492 hlist_for_each_entry_rcu(ct, &nf_nat_bysource[h], nat_bysource) {
493 if (same_src(ct, tuple) &&
494 net_eq(net, nf_ct_net(ct)) &&
495 nf_ct_zone_equal(ct, zone, IP_CT_DIR_ORIGINAL)) {
496 /* Copy source part from reply tuple. */
497 nf_ct_invert_tuple(result,
498 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
499 result->dst = tuple->dst;
500
501 if (nf_in_range(result, range))
502 return 1;
503 }
504 }
505 return 0;
506 }
507
508 /* For [FUTURE] fragmentation handling, we want the least-used
509 * src-ip/dst-ip/proto triple. Fairness doesn't come into it. Thus
510 * if the range specifies 1.2.3.4 ports 10000-10005 and 1.2.3.5 ports
511 * 1-65535, we don't do pro-rata allocation based on ports; we choose
512 * the ip with the lowest src-ip/dst-ip/proto usage.
513 */
514 static void
find_best_ips_proto(const struct nf_conntrack_zone * zone,struct nf_conntrack_tuple * tuple,const struct nf_nat_range2 * range,const struct nf_conn * ct,enum nf_nat_manip_type maniptype)515 find_best_ips_proto(const struct nf_conntrack_zone *zone,
516 struct nf_conntrack_tuple *tuple,
517 const struct nf_nat_range2 *range,
518 const struct nf_conn *ct,
519 enum nf_nat_manip_type maniptype)
520 {
521 union nf_inet_addr *var_ipp;
522 unsigned int i, max;
523 /* Host order */
524 u32 minip, maxip, j, dist;
525 bool full_range;
526
527 /* No IP mapping? Do nothing. */
528 if (!(range->flags & NF_NAT_RANGE_MAP_IPS))
529 return;
530
531 if (maniptype == NF_NAT_MANIP_SRC)
532 var_ipp = &tuple->src.u3;
533 else
534 var_ipp = &tuple->dst.u3;
535
536 /* Fast path: only one choice. */
537 if (nf_inet_addr_cmp(&range->min_addr, &range->max_addr)) {
538 *var_ipp = range->min_addr;
539 return;
540 }
541
542 if (nf_ct_l3num(ct) == NFPROTO_IPV4)
543 max = sizeof(var_ipp->ip) / sizeof(u32) - 1;
544 else
545 max = sizeof(var_ipp->ip6) / sizeof(u32) - 1;
546
547 /* Hashing source and destination IPs gives a fairly even
548 * spread in practice (if there are a small number of IPs
549 * involved, there usually aren't that many connections
550 * anyway). The consistency means that servers see the same
551 * client coming from the same IP (some Internet Banking sites
552 * like this), even across reboots.
553 */
554 j = jhash2((u32 *)&tuple->src.u3, sizeof(tuple->src.u3) / sizeof(u32),
555 range->flags & NF_NAT_RANGE_PERSISTENT ?
556 0 : (__force u32)tuple->dst.u3.all[max] ^ zone->id);
557
558 full_range = false;
559 for (i = 0; i <= max; i++) {
560 /* If first bytes of the address are at the maximum, use the
561 * distance. Otherwise use the full range.
562 */
563 if (!full_range) {
564 minip = ntohl((__force __be32)range->min_addr.all[i]);
565 maxip = ntohl((__force __be32)range->max_addr.all[i]);
566 dist = maxip - minip + 1;
567 } else {
568 minip = 0;
569 dist = ~0;
570 }
571
572 var_ipp->all[i] = (__force __u32)
573 htonl(minip + reciprocal_scale(j, dist));
574 if (var_ipp->all[i] != range->max_addr.all[i])
575 full_range = true;
576
577 if (!(range->flags & NF_NAT_RANGE_PERSISTENT))
578 j ^= (__force u32)tuple->dst.u3.all[i];
579 }
580 }
581
582 /* Alter the per-proto part of the tuple (depending on maniptype), to
583 * give a unique tuple in the given range if possible.
584 *
585 * Per-protocol part of tuple is initialized to the incoming packet.
586 */
nf_nat_l4proto_unique_tuple(struct nf_conntrack_tuple * tuple,const struct nf_nat_range2 * range,enum nf_nat_manip_type maniptype,const struct nf_conn * ct)587 static void nf_nat_l4proto_unique_tuple(struct nf_conntrack_tuple *tuple,
588 const struct nf_nat_range2 *range,
589 enum nf_nat_manip_type maniptype,
590 const struct nf_conn *ct)
591 {
592 unsigned int range_size, min, max, i, attempts;
593 __be16 *keyptr;
594 u16 off;
595
596 switch (tuple->dst.protonum) {
597 case IPPROTO_ICMP:
598 case IPPROTO_ICMPV6:
599 /* id is same for either direction... */
600 keyptr = &tuple->src.u.icmp.id;
601 if (!(range->flags & NF_NAT_RANGE_PROTO_SPECIFIED)) {
602 min = 0;
603 range_size = 65536;
604 } else {
605 min = ntohs(range->min_proto.icmp.id);
606 range_size = ntohs(range->max_proto.icmp.id) -
607 ntohs(range->min_proto.icmp.id) + 1;
608 }
609 goto find_free_id;
610 #if IS_ENABLED(CONFIG_NF_CT_PROTO_GRE)
611 case IPPROTO_GRE:
612 /* If there is no master conntrack we are not PPTP,
613 do not change tuples */
614 if (!ct->master)
615 return;
616
617 if (maniptype == NF_NAT_MANIP_SRC)
618 keyptr = &tuple->src.u.gre.key;
619 else
620 keyptr = &tuple->dst.u.gre.key;
621
622 if (!(range->flags & NF_NAT_RANGE_PROTO_SPECIFIED)) {
623 min = 1;
624 range_size = 65535;
625 } else {
626 min = ntohs(range->min_proto.gre.key);
627 range_size = ntohs(range->max_proto.gre.key) - min + 1;
628 }
629 goto find_free_id;
630 #endif
631 case IPPROTO_UDP:
632 case IPPROTO_UDPLITE:
633 case IPPROTO_TCP:
634 case IPPROTO_SCTP:
635 case IPPROTO_DCCP:
636 if (maniptype == NF_NAT_MANIP_SRC)
637 keyptr = &tuple->src.u.all;
638 else
639 keyptr = &tuple->dst.u.all;
640
641 break;
642 default:
643 return;
644 }
645
646 /* If no range specified... */
647 if (!(range->flags & NF_NAT_RANGE_PROTO_SPECIFIED)) {
648 /* If it's dst rewrite, can't change port */
649 if (maniptype == NF_NAT_MANIP_DST)
650 return;
651
652 if (ntohs(*keyptr) < 1024) {
653 /* Loose convention: >> 512 is credential passing */
654 if (ntohs(*keyptr) < 512) {
655 min = 1;
656 range_size = 511 - min + 1;
657 } else {
658 min = 600;
659 range_size = 1023 - min + 1;
660 }
661 } else {
662 min = 1024;
663 range_size = 65535 - 1024 + 1;
664 }
665 } else {
666 min = ntohs(range->min_proto.all);
667 max = ntohs(range->max_proto.all);
668 if (unlikely(max < min))
669 swap(max, min);
670 range_size = max - min + 1;
671 }
672
673 find_free_id:
674 if (range->flags & NF_NAT_RANGE_PROTO_OFFSET)
675 off = (ntohs(*keyptr) - ntohs(range->base_proto.all));
676 else if ((range->flags & NF_NAT_RANGE_PROTO_RANDOM_ALL) ||
677 maniptype != NF_NAT_MANIP_DST)
678 off = get_random_u16();
679 else
680 off = 0;
681
682 attempts = range_size;
683 if (attempts > NF_NAT_MAX_ATTEMPTS)
684 attempts = NF_NAT_MAX_ATTEMPTS;
685
686 /* We are in softirq; doing a search of the entire range risks
687 * soft lockup when all tuples are already used.
688 *
689 * If we can't find any free port from first offset, pick a new
690 * one and try again, with ever smaller search window.
691 */
692 another_round:
693 for (i = 0; i < attempts; i++, off++) {
694 *keyptr = htons(min + off % range_size);
695 if (!nf_nat_used_tuple_harder(tuple, ct, attempts - i))
696 return;
697 }
698
699 if (attempts >= range_size || attempts < 16)
700 return;
701 attempts /= 2;
702 off = get_random_u16();
703 goto another_round;
704 }
705
706 /* Manipulate the tuple into the range given. For NF_INET_POST_ROUTING,
707 * we change the source to map into the range. For NF_INET_PRE_ROUTING
708 * and NF_INET_LOCAL_OUT, we change the destination to map into the
709 * range. It might not be possible to get a unique tuple, but we try.
710 * At worst (or if we race), we will end up with a final duplicate in
711 * __nf_conntrack_confirm and drop the packet. */
712 static void
get_unique_tuple(struct nf_conntrack_tuple * tuple,const struct nf_conntrack_tuple * orig_tuple,const struct nf_nat_range2 * range,struct nf_conn * ct,enum nf_nat_manip_type maniptype)713 get_unique_tuple(struct nf_conntrack_tuple *tuple,
714 const struct nf_conntrack_tuple *orig_tuple,
715 const struct nf_nat_range2 *range,
716 struct nf_conn *ct,
717 enum nf_nat_manip_type maniptype)
718 {
719 const struct nf_conntrack_zone *zone;
720 struct net *net = nf_ct_net(ct);
721
722 zone = nf_ct_zone(ct);
723
724 /* 1) If this srcip/proto/src-proto-part is currently mapped,
725 * and that same mapping gives a unique tuple within the given
726 * range, use that.
727 *
728 * This is only required for source (ie. NAT/masq) mappings.
729 * So far, we don't do local source mappings, so multiple
730 * manips not an issue.
731 */
732 if (maniptype == NF_NAT_MANIP_SRC &&
733 !(range->flags & NF_NAT_RANGE_PROTO_RANDOM_ALL)) {
734 /* try the original tuple first */
735 if (nf_in_range(orig_tuple, range)) {
736 if (!nf_nat_used_tuple_new(orig_tuple, ct)) {
737 *tuple = *orig_tuple;
738 return;
739 }
740 } else if (find_appropriate_src(net, zone,
741 orig_tuple, tuple, range)) {
742 pr_debug("get_unique_tuple: Found current src map\n");
743 if (!nf_nat_used_tuple(tuple, ct))
744 return;
745 }
746 }
747
748 /* 2) Select the least-used IP/proto combination in the given range */
749 *tuple = *orig_tuple;
750 find_best_ips_proto(zone, tuple, range, ct, maniptype);
751
752 /* 3) The per-protocol part of the manip is made to map into
753 * the range to make a unique tuple.
754 */
755
756 /* Only bother mapping if it's not already in range and unique */
757 if (!(range->flags & NF_NAT_RANGE_PROTO_RANDOM_ALL)) {
758 if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) {
759 if (!(range->flags & NF_NAT_RANGE_PROTO_OFFSET) &&
760 l4proto_in_range(tuple, maniptype,
761 &range->min_proto,
762 &range->max_proto) &&
763 (range->min_proto.all == range->max_proto.all ||
764 !nf_nat_used_tuple(tuple, ct)))
765 return;
766 } else if (!nf_nat_used_tuple(tuple, ct)) {
767 return;
768 }
769 }
770
771 /* Last chance: get protocol to try to obtain unique tuple. */
772 nf_nat_l4proto_unique_tuple(tuple, range, maniptype, ct);
773 }
774
nf_ct_nat_ext_add(struct nf_conn * ct)775 struct nf_conn_nat *nf_ct_nat_ext_add(struct nf_conn *ct)
776 {
777 struct nf_conn_nat *nat = nfct_nat(ct);
778 if (nat)
779 return nat;
780
781 if (!nf_ct_is_confirmed(ct))
782 nat = nf_ct_ext_add(ct, NF_CT_EXT_NAT, GFP_ATOMIC);
783
784 return nat;
785 }
786 EXPORT_SYMBOL_GPL(nf_ct_nat_ext_add);
787
788 unsigned int
nf_nat_setup_info(struct nf_conn * ct,const struct nf_nat_range2 * range,enum nf_nat_manip_type maniptype)789 nf_nat_setup_info(struct nf_conn *ct,
790 const struct nf_nat_range2 *range,
791 enum nf_nat_manip_type maniptype)
792 {
793 struct net *net = nf_ct_net(ct);
794 struct nf_conntrack_tuple curr_tuple, new_tuple;
795
796 /* Can't setup nat info for confirmed ct. */
797 if (nf_ct_is_confirmed(ct))
798 return NF_ACCEPT;
799
800 WARN_ON(maniptype != NF_NAT_MANIP_SRC &&
801 maniptype != NF_NAT_MANIP_DST);
802
803 if (WARN_ON(nf_nat_initialized(ct, maniptype)))
804 return NF_DROP;
805
806 /* What we've got will look like inverse of reply. Normally
807 * this is what is in the conntrack, except for prior
808 * manipulations (future optimization: if num_manips == 0,
809 * orig_tp = ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple)
810 */
811 nf_ct_invert_tuple(&curr_tuple,
812 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
813
814 get_unique_tuple(&new_tuple, &curr_tuple, range, ct, maniptype);
815
816 if (!nf_ct_tuple_equal(&new_tuple, &curr_tuple)) {
817 struct nf_conntrack_tuple reply;
818
819 /* Alter conntrack table so will recognize replies. */
820 nf_ct_invert_tuple(&reply, &new_tuple);
821 nf_conntrack_alter_reply(ct, &reply);
822
823 /* Non-atomic: we own this at the moment. */
824 if (maniptype == NF_NAT_MANIP_SRC)
825 ct->status |= IPS_SRC_NAT;
826 else
827 ct->status |= IPS_DST_NAT;
828
829 if (nfct_help(ct) && !nfct_seqadj(ct))
830 if (!nfct_seqadj_ext_add(ct))
831 return NF_DROP;
832 }
833
834 if (maniptype == NF_NAT_MANIP_SRC) {
835 unsigned int srchash;
836 spinlock_t *lock;
837
838 srchash = hash_by_src(net, nf_ct_zone(ct),
839 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
840 lock = &nf_nat_locks[srchash % CONNTRACK_LOCKS];
841 spin_lock_bh(lock);
842 hlist_add_head_rcu(&ct->nat_bysource,
843 &nf_nat_bysource[srchash]);
844 spin_unlock_bh(lock);
845 }
846
847 /* It's done. */
848 if (maniptype == NF_NAT_MANIP_DST)
849 ct->status |= IPS_DST_NAT_DONE;
850 else
851 ct->status |= IPS_SRC_NAT_DONE;
852
853 return NF_ACCEPT;
854 }
855 EXPORT_SYMBOL(nf_nat_setup_info);
856
857 static unsigned int
__nf_nat_alloc_null_binding(struct nf_conn * ct,enum nf_nat_manip_type manip)858 __nf_nat_alloc_null_binding(struct nf_conn *ct, enum nf_nat_manip_type manip)
859 {
860 /* Force range to this IP; let proto decide mapping for
861 * per-proto parts (hence not IP_NAT_RANGE_PROTO_SPECIFIED).
862 * Use reply in case it's already been mangled (eg local packet).
863 */
864 union nf_inet_addr ip =
865 (manip == NF_NAT_MANIP_SRC ?
866 ct->tuplehash[IP_CT_DIR_REPLY].tuple.dst.u3 :
867 ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.u3);
868 struct nf_nat_range2 range = {
869 .flags = NF_NAT_RANGE_MAP_IPS,
870 .min_addr = ip,
871 .max_addr = ip,
872 };
873 return nf_nat_setup_info(ct, &range, manip);
874 }
875
876 unsigned int
nf_nat_alloc_null_binding(struct nf_conn * ct,unsigned int hooknum)877 nf_nat_alloc_null_binding(struct nf_conn *ct, unsigned int hooknum)
878 {
879 return __nf_nat_alloc_null_binding(ct, HOOK2MANIP(hooknum));
880 }
881 EXPORT_SYMBOL_GPL(nf_nat_alloc_null_binding);
882
883 /* Do packet manipulations according to nf_nat_setup_info. */
nf_nat_packet(struct nf_conn * ct,enum ip_conntrack_info ctinfo,unsigned int hooknum,struct sk_buff * skb)884 unsigned int nf_nat_packet(struct nf_conn *ct,
885 enum ip_conntrack_info ctinfo,
886 unsigned int hooknum,
887 struct sk_buff *skb)
888 {
889 enum nf_nat_manip_type mtype = HOOK2MANIP(hooknum);
890 enum ip_conntrack_dir dir = CTINFO2DIR(ctinfo);
891 unsigned int verdict = NF_ACCEPT;
892 unsigned long statusbit;
893
894 if (mtype == NF_NAT_MANIP_SRC)
895 statusbit = IPS_SRC_NAT;
896 else
897 statusbit = IPS_DST_NAT;
898
899 /* Invert if this is reply dir. */
900 if (dir == IP_CT_DIR_REPLY)
901 statusbit ^= IPS_NAT_MASK;
902
903 /* Non-atomic: these bits don't change. */
904 if (ct->status & statusbit)
905 verdict = nf_nat_manip_pkt(skb, ct, mtype, dir);
906
907 return verdict;
908 }
909 EXPORT_SYMBOL_GPL(nf_nat_packet);
910
in_vrf_postrouting(const struct nf_hook_state * state)911 static bool in_vrf_postrouting(const struct nf_hook_state *state)
912 {
913 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
914 if (state->hook == NF_INET_POST_ROUTING &&
915 netif_is_l3_master(state->out))
916 return true;
917 #endif
918 return false;
919 }
920
921 unsigned int
nf_nat_inet_fn(void * priv,struct sk_buff * skb,const struct nf_hook_state * state)922 nf_nat_inet_fn(void *priv, struct sk_buff *skb,
923 const struct nf_hook_state *state)
924 {
925 struct nf_conn *ct;
926 enum ip_conntrack_info ctinfo;
927 struct nf_conn_nat *nat;
928 /* maniptype == SRC for postrouting. */
929 enum nf_nat_manip_type maniptype = HOOK2MANIP(state->hook);
930
931 ct = nf_ct_get(skb, &ctinfo);
932 /* Can't track? It's not due to stress, or conntrack would
933 * have dropped it. Hence it's the user's responsibilty to
934 * packet filter it out, or implement conntrack/NAT for that
935 * protocol. 8) --RR
936 */
937 if (!ct || in_vrf_postrouting(state))
938 return NF_ACCEPT;
939
940 nat = nfct_nat(ct);
941
942 switch (ctinfo) {
943 case IP_CT_RELATED:
944 case IP_CT_RELATED_REPLY:
945 /* Only ICMPs can be IP_CT_IS_REPLY. Fallthrough */
946 case IP_CT_NEW:
947 /* Seen it before? This can happen for loopback, retrans,
948 * or local packets.
949 */
950 if (!nf_nat_initialized(ct, maniptype)) {
951 struct nf_nat_lookup_hook_priv *lpriv = priv;
952 struct nf_hook_entries *e = rcu_dereference(lpriv->entries);
953 unsigned int ret;
954 int i;
955
956 if (!e)
957 goto null_bind;
958
959 for (i = 0; i < e->num_hook_entries; i++) {
960 ret = e->hooks[i].hook(e->hooks[i].priv, skb,
961 state);
962 if (ret != NF_ACCEPT)
963 return ret;
964 if (nf_nat_initialized(ct, maniptype))
965 goto do_nat;
966 }
967 null_bind:
968 ret = nf_nat_alloc_null_binding(ct, state->hook);
969 if (ret != NF_ACCEPT)
970 return ret;
971 } else {
972 pr_debug("Already setup manip %s for ct %p (status bits 0x%lx)\n",
973 maniptype == NF_NAT_MANIP_SRC ? "SRC" : "DST",
974 ct, ct->status);
975 if (nf_nat_oif_changed(state->hook, ctinfo, nat,
976 state->out))
977 goto oif_changed;
978 }
979 break;
980 default:
981 /* ESTABLISHED */
982 WARN_ON(ctinfo != IP_CT_ESTABLISHED &&
983 ctinfo != IP_CT_ESTABLISHED_REPLY);
984 if (nf_nat_oif_changed(state->hook, ctinfo, nat, state->out))
985 goto oif_changed;
986 }
987 do_nat:
988 return nf_nat_packet(ct, ctinfo, state->hook, skb);
989
990 oif_changed:
991 nf_ct_kill_acct(ct, ctinfo, skb);
992 return NF_DROP;
993 }
994 EXPORT_SYMBOL_GPL(nf_nat_inet_fn);
995
996 struct nf_nat_proto_clean {
997 u8 l3proto;
998 u8 l4proto;
999 };
1000
1001 /* kill conntracks with affected NAT section */
nf_nat_proto_remove(struct nf_conn * i,void * data)1002 static int nf_nat_proto_remove(struct nf_conn *i, void *data)
1003 {
1004 const struct nf_nat_proto_clean *clean = data;
1005
1006 if ((clean->l3proto && nf_ct_l3num(i) != clean->l3proto) ||
1007 (clean->l4proto && nf_ct_protonum(i) != clean->l4proto))
1008 return 0;
1009
1010 return i->status & IPS_NAT_MASK ? 1 : 0;
1011 }
1012
nf_nat_cleanup_conntrack(struct nf_conn * ct)1013 static void nf_nat_cleanup_conntrack(struct nf_conn *ct)
1014 {
1015 unsigned int h;
1016
1017 h = hash_by_src(nf_ct_net(ct), nf_ct_zone(ct), &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
1018 spin_lock_bh(&nf_nat_locks[h % CONNTRACK_LOCKS]);
1019 hlist_del_rcu(&ct->nat_bysource);
1020 spin_unlock_bh(&nf_nat_locks[h % CONNTRACK_LOCKS]);
1021 }
1022
nf_nat_proto_clean(struct nf_conn * ct,void * data)1023 static int nf_nat_proto_clean(struct nf_conn *ct, void *data)
1024 {
1025 if (nf_nat_proto_remove(ct, data))
1026 return 1;
1027
1028 /* This module is being removed and conntrack has nat null binding.
1029 * Remove it from bysource hash, as the table will be freed soon.
1030 *
1031 * Else, when the conntrack is destoyed, nf_nat_cleanup_conntrack()
1032 * will delete entry from already-freed table.
1033 */
1034 if (test_and_clear_bit(IPS_SRC_NAT_DONE_BIT, &ct->status))
1035 nf_nat_cleanup_conntrack(ct);
1036
1037 /* don't delete conntrack. Although that would make things a lot
1038 * simpler, we'd end up flushing all conntracks on nat rmmod.
1039 */
1040 return 0;
1041 }
1042
1043 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1044
1045 #include <linux/netfilter/nfnetlink.h>
1046 #include <linux/netfilter/nfnetlink_conntrack.h>
1047
1048 static const struct nla_policy protonat_nla_policy[CTA_PROTONAT_MAX+1] = {
1049 [CTA_PROTONAT_PORT_MIN] = { .type = NLA_U16 },
1050 [CTA_PROTONAT_PORT_MAX] = { .type = NLA_U16 },
1051 };
1052
nf_nat_l4proto_nlattr_to_range(struct nlattr * tb[],struct nf_nat_range2 * range)1053 static int nf_nat_l4proto_nlattr_to_range(struct nlattr *tb[],
1054 struct nf_nat_range2 *range)
1055 {
1056 if (tb[CTA_PROTONAT_PORT_MIN]) {
1057 range->min_proto.all = nla_get_be16(tb[CTA_PROTONAT_PORT_MIN]);
1058 range->max_proto.all = range->min_proto.all;
1059 range->flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1060 }
1061 if (tb[CTA_PROTONAT_PORT_MAX]) {
1062 range->max_proto.all = nla_get_be16(tb[CTA_PROTONAT_PORT_MAX]);
1063 range->flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1064 }
1065 return 0;
1066 }
1067
nfnetlink_parse_nat_proto(struct nlattr * attr,const struct nf_conn * ct,struct nf_nat_range2 * range)1068 static int nfnetlink_parse_nat_proto(struct nlattr *attr,
1069 const struct nf_conn *ct,
1070 struct nf_nat_range2 *range)
1071 {
1072 struct nlattr *tb[CTA_PROTONAT_MAX+1];
1073 int err;
1074
1075 err = nla_parse_nested_deprecated(tb, CTA_PROTONAT_MAX, attr,
1076 protonat_nla_policy, NULL);
1077 if (err < 0)
1078 return err;
1079
1080 return nf_nat_l4proto_nlattr_to_range(tb, range);
1081 }
1082
1083 static const struct nla_policy nat_nla_policy[CTA_NAT_MAX+1] = {
1084 [CTA_NAT_V4_MINIP] = { .type = NLA_U32 },
1085 [CTA_NAT_V4_MAXIP] = { .type = NLA_U32 },
1086 [CTA_NAT_V6_MINIP] = { .len = sizeof(struct in6_addr) },
1087 [CTA_NAT_V6_MAXIP] = { .len = sizeof(struct in6_addr) },
1088 [CTA_NAT_PROTO] = { .type = NLA_NESTED },
1089 };
1090
nf_nat_ipv4_nlattr_to_range(struct nlattr * tb[],struct nf_nat_range2 * range)1091 static int nf_nat_ipv4_nlattr_to_range(struct nlattr *tb[],
1092 struct nf_nat_range2 *range)
1093 {
1094 if (tb[CTA_NAT_V4_MINIP]) {
1095 range->min_addr.ip = nla_get_be32(tb[CTA_NAT_V4_MINIP]);
1096 range->flags |= NF_NAT_RANGE_MAP_IPS;
1097 }
1098
1099 range->max_addr.ip = nla_get_be32_default(tb[CTA_NAT_V4_MAXIP],
1100 range->min_addr.ip);
1101
1102 return 0;
1103 }
1104
nf_nat_ipv6_nlattr_to_range(struct nlattr * tb[],struct nf_nat_range2 * range)1105 static int nf_nat_ipv6_nlattr_to_range(struct nlattr *tb[],
1106 struct nf_nat_range2 *range)
1107 {
1108 if (tb[CTA_NAT_V6_MINIP]) {
1109 nla_memcpy(&range->min_addr.ip6, tb[CTA_NAT_V6_MINIP],
1110 sizeof(struct in6_addr));
1111 range->flags |= NF_NAT_RANGE_MAP_IPS;
1112 }
1113
1114 if (tb[CTA_NAT_V6_MAXIP])
1115 nla_memcpy(&range->max_addr.ip6, tb[CTA_NAT_V6_MAXIP],
1116 sizeof(struct in6_addr));
1117 else
1118 range->max_addr = range->min_addr;
1119
1120 return 0;
1121 }
1122
1123 static int
nfnetlink_parse_nat(const struct nlattr * nat,const struct nf_conn * ct,struct nf_nat_range2 * range)1124 nfnetlink_parse_nat(const struct nlattr *nat,
1125 const struct nf_conn *ct, struct nf_nat_range2 *range)
1126 {
1127 struct nlattr *tb[CTA_NAT_MAX+1];
1128 int err;
1129
1130 memset(range, 0, sizeof(*range));
1131
1132 err = nla_parse_nested_deprecated(tb, CTA_NAT_MAX, nat,
1133 nat_nla_policy, NULL);
1134 if (err < 0)
1135 return err;
1136
1137 switch (nf_ct_l3num(ct)) {
1138 case NFPROTO_IPV4:
1139 err = nf_nat_ipv4_nlattr_to_range(tb, range);
1140 break;
1141 case NFPROTO_IPV6:
1142 err = nf_nat_ipv6_nlattr_to_range(tb, range);
1143 break;
1144 default:
1145 err = -EPROTONOSUPPORT;
1146 break;
1147 }
1148
1149 if (err)
1150 return err;
1151
1152 if (!tb[CTA_NAT_PROTO])
1153 return 0;
1154
1155 return nfnetlink_parse_nat_proto(tb[CTA_NAT_PROTO], ct, range);
1156 }
1157
1158 /* This function is called under rcu_read_lock() */
1159 static int
nfnetlink_parse_nat_setup(struct nf_conn * ct,enum nf_nat_manip_type manip,const struct nlattr * attr)1160 nfnetlink_parse_nat_setup(struct nf_conn *ct,
1161 enum nf_nat_manip_type manip,
1162 const struct nlattr *attr)
1163 {
1164 struct nf_nat_range2 range;
1165 int err;
1166
1167 /* Should not happen, restricted to creating new conntracks
1168 * via ctnetlink.
1169 */
1170 if (WARN_ON_ONCE(nf_nat_initialized(ct, manip)))
1171 return -EEXIST;
1172
1173 /* No NAT information has been passed, allocate the null-binding */
1174 if (attr == NULL)
1175 return __nf_nat_alloc_null_binding(ct, manip) == NF_DROP ? -ENOMEM : 0;
1176
1177 err = nfnetlink_parse_nat(attr, ct, &range);
1178 if (err < 0)
1179 return err;
1180
1181 return nf_nat_setup_info(ct, &range, manip) == NF_DROP ? -ENOMEM : 0;
1182 }
1183 #else
1184 static int
nfnetlink_parse_nat_setup(struct nf_conn * ct,enum nf_nat_manip_type manip,const struct nlattr * attr)1185 nfnetlink_parse_nat_setup(struct nf_conn *ct,
1186 enum nf_nat_manip_type manip,
1187 const struct nlattr *attr)
1188 {
1189 return -EOPNOTSUPP;
1190 }
1191 #endif
1192
1193 static struct nf_ct_helper_expectfn follow_master_nat = {
1194 .name = "nat-follow-master",
1195 .expectfn = nf_nat_follow_master,
1196 };
1197
nf_nat_register_fn(struct net * net,u8 pf,const struct nf_hook_ops * ops,const struct nf_hook_ops * orig_nat_ops,unsigned int ops_count)1198 int nf_nat_register_fn(struct net *net, u8 pf, const struct nf_hook_ops *ops,
1199 const struct nf_hook_ops *orig_nat_ops, unsigned int ops_count)
1200 {
1201 struct nat_net *nat_net = net_generic(net, nat_net_id);
1202 struct nf_nat_hooks_net *nat_proto_net;
1203 struct nf_nat_lookup_hook_priv *priv;
1204 unsigned int hooknum = ops->hooknum;
1205 struct nf_hook_ops *nat_ops;
1206 int i, ret;
1207
1208 if (WARN_ON_ONCE(pf >= ARRAY_SIZE(nat_net->nat_proto_net)))
1209 return -EINVAL;
1210
1211 nat_proto_net = &nat_net->nat_proto_net[pf];
1212
1213 for (i = 0; i < ops_count; i++) {
1214 if (orig_nat_ops[i].hooknum == hooknum) {
1215 hooknum = i;
1216 break;
1217 }
1218 }
1219
1220 if (WARN_ON_ONCE(i == ops_count))
1221 return -EINVAL;
1222
1223 mutex_lock(&nf_nat_proto_mutex);
1224 if (!nat_proto_net->nat_hook_ops) {
1225 WARN_ON(nat_proto_net->users != 0);
1226
1227 nat_ops = kmemdup_array(orig_nat_ops, ops_count, sizeof(*orig_nat_ops), GFP_KERNEL);
1228 if (!nat_ops) {
1229 mutex_unlock(&nf_nat_proto_mutex);
1230 return -ENOMEM;
1231 }
1232
1233 for (i = 0; i < ops_count; i++) {
1234 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1235 if (priv) {
1236 nat_ops[i].priv = priv;
1237 continue;
1238 }
1239 mutex_unlock(&nf_nat_proto_mutex);
1240 while (i)
1241 kfree(nat_ops[--i].priv);
1242 kfree(nat_ops);
1243 return -ENOMEM;
1244 }
1245
1246 ret = nf_register_net_hooks(net, nat_ops, ops_count);
1247 if (ret < 0) {
1248 mutex_unlock(&nf_nat_proto_mutex);
1249 for (i = 0; i < ops_count; i++)
1250 kfree(nat_ops[i].priv);
1251 kfree(nat_ops);
1252 return ret;
1253 }
1254
1255 nat_proto_net->nat_hook_ops = nat_ops;
1256 }
1257
1258 nat_ops = nat_proto_net->nat_hook_ops;
1259 priv = nat_ops[hooknum].priv;
1260 if (WARN_ON_ONCE(!priv)) {
1261 mutex_unlock(&nf_nat_proto_mutex);
1262 return -EOPNOTSUPP;
1263 }
1264
1265 ret = nf_hook_entries_insert_raw(&priv->entries, ops);
1266 if (ret == 0)
1267 nat_proto_net->users++;
1268
1269 mutex_unlock(&nf_nat_proto_mutex);
1270 return ret;
1271 }
1272
nf_nat_unregister_fn(struct net * net,u8 pf,const struct nf_hook_ops * ops,unsigned int ops_count)1273 void nf_nat_unregister_fn(struct net *net, u8 pf, const struct nf_hook_ops *ops,
1274 unsigned int ops_count)
1275 {
1276 struct nat_net *nat_net = net_generic(net, nat_net_id);
1277 struct nf_nat_hooks_net *nat_proto_net;
1278 struct nf_nat_lookup_hook_priv *priv;
1279 struct nf_hook_ops *nat_ops;
1280 int hooknum = ops->hooknum;
1281 int i;
1282
1283 if (pf >= ARRAY_SIZE(nat_net->nat_proto_net))
1284 return;
1285
1286 nat_proto_net = &nat_net->nat_proto_net[pf];
1287
1288 mutex_lock(&nf_nat_proto_mutex);
1289 if (WARN_ON(nat_proto_net->users == 0))
1290 goto unlock;
1291
1292 nat_proto_net->users--;
1293
1294 nat_ops = nat_proto_net->nat_hook_ops;
1295 for (i = 0; i < ops_count; i++) {
1296 if (nat_ops[i].hooknum == hooknum) {
1297 hooknum = i;
1298 break;
1299 }
1300 }
1301 if (WARN_ON_ONCE(i == ops_count))
1302 goto unlock;
1303 priv = nat_ops[hooknum].priv;
1304 nf_hook_entries_delete_raw(&priv->entries, ops);
1305
1306 if (nat_proto_net->users == 0) {
1307 nf_unregister_net_hooks(net, nat_ops, ops_count);
1308
1309 for (i = 0; i < ops_count; i++) {
1310 priv = nat_ops[i].priv;
1311 kfree_rcu(priv, rcu_head);
1312 }
1313
1314 nat_proto_net->nat_hook_ops = NULL;
1315 kfree(nat_ops);
1316 }
1317 unlock:
1318 mutex_unlock(&nf_nat_proto_mutex);
1319 }
1320
1321 static struct pernet_operations nat_net_ops = {
1322 .id = &nat_net_id,
1323 .size = sizeof(struct nat_net),
1324 };
1325
1326 static const struct nf_nat_hook nat_hook = {
1327 .parse_nat_setup = nfnetlink_parse_nat_setup,
1328 #ifdef CONFIG_XFRM
1329 .decode_session = __nf_nat_decode_session,
1330 #endif
1331 .remove_nat_bysrc = nf_nat_cleanup_conntrack,
1332 };
1333
nf_nat_init(void)1334 static int __init nf_nat_init(void)
1335 {
1336 int ret, i;
1337
1338 /* Leave them the same for the moment. */
1339 nf_nat_htable_size = nf_conntrack_htable_size;
1340 if (nf_nat_htable_size < CONNTRACK_LOCKS)
1341 nf_nat_htable_size = CONNTRACK_LOCKS;
1342
1343 nf_nat_bysource = nf_ct_alloc_hashtable(&nf_nat_htable_size, 0);
1344 if (!nf_nat_bysource)
1345 return -ENOMEM;
1346
1347 for (i = 0; i < CONNTRACK_LOCKS; i++)
1348 spin_lock_init(&nf_nat_locks[i]);
1349
1350 ret = register_pernet_subsys(&nat_net_ops);
1351 if (ret < 0) {
1352 kvfree(nf_nat_bysource);
1353 return ret;
1354 }
1355
1356 nf_ct_helper_expectfn_register(&follow_master_nat);
1357
1358 WARN_ON(nf_nat_hook != NULL);
1359 RCU_INIT_POINTER(nf_nat_hook, &nat_hook);
1360
1361 ret = register_nf_nat_bpf();
1362 if (ret < 0) {
1363 RCU_INIT_POINTER(nf_nat_hook, NULL);
1364 nf_ct_helper_expectfn_unregister(&follow_master_nat);
1365 synchronize_net();
1366 unregister_pernet_subsys(&nat_net_ops);
1367 kvfree(nf_nat_bysource);
1368 }
1369
1370 return ret;
1371 }
1372
nf_nat_cleanup(void)1373 static void __exit nf_nat_cleanup(void)
1374 {
1375 struct nf_nat_proto_clean clean = {};
1376
1377 nf_ct_iterate_destroy(nf_nat_proto_clean, &clean);
1378
1379 nf_ct_helper_expectfn_unregister(&follow_master_nat);
1380 RCU_INIT_POINTER(nf_nat_hook, NULL);
1381
1382 synchronize_net();
1383 kvfree(nf_nat_bysource);
1384 unregister_pernet_subsys(&nat_net_ops);
1385 }
1386
1387 MODULE_LICENSE("GPL");
1388 MODULE_DESCRIPTION("Network address translation core");
1389
1390 module_init(nf_nat_init);
1391 module_exit(nf_nat_cleanup);
1392