1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018-2023, Intel Corporation. */
3
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <generated/utsrelease.h>
9 #include <linux/crash_dump.h>
10 #include "ice.h"
11 #include "ice_base.h"
12 #include "ice_lib.h"
13 #include "ice_fltr.h"
14 #include "ice_dcb_lib.h"
15 #include "ice_dcb_nl.h"
16 #include "devlink/devlink.h"
17 #include "devlink/port.h"
18 #include "ice_sf_eth.h"
19 #include "ice_hwmon.h"
20 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
21 * ice tracepoint functions. This must be done exactly once across the
22 * ice driver.
23 */
24 #define CREATE_TRACE_POINTS
25 #include "ice_trace.h"
26 #include "ice_eswitch.h"
27 #include "ice_tc_lib.h"
28 #include "ice_vsi_vlan_ops.h"
29 #include <net/xdp_sock_drv.h>
30
31 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver"
32 static const char ice_driver_string[] = DRV_SUMMARY;
33 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
34
35 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
36 #define ICE_DDP_PKG_PATH "intel/ice/ddp/"
37 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg"
38
39 MODULE_DESCRIPTION(DRV_SUMMARY);
40 MODULE_IMPORT_NS("LIBIE");
41 MODULE_IMPORT_NS("LIBIE_ADMINQ");
42 MODULE_LICENSE("GPL v2");
43 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
44
45 static int debug = -1;
46 module_param(debug, int, 0644);
47 #ifndef CONFIG_DYNAMIC_DEBUG
48 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
49 #else
50 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
51 #endif /* !CONFIG_DYNAMIC_DEBUG */
52
53 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
54 EXPORT_SYMBOL(ice_xdp_locking_key);
55
56 /**
57 * ice_hw_to_dev - Get device pointer from the hardware structure
58 * @hw: pointer to the device HW structure
59 *
60 * Used to access the device pointer from compilation units which can't easily
61 * include the definition of struct ice_pf without leading to circular header
62 * dependencies.
63 */
ice_hw_to_dev(struct ice_hw * hw)64 struct device *ice_hw_to_dev(struct ice_hw *hw)
65 {
66 struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
67
68 return &pf->pdev->dev;
69 }
70
71 static struct workqueue_struct *ice_wq;
72 struct workqueue_struct *ice_lag_wq;
73 static const struct net_device_ops ice_netdev_safe_mode_ops;
74 static const struct net_device_ops ice_netdev_ops;
75
76 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
77
78 static void ice_vsi_release_all(struct ice_pf *pf);
79
80 static int ice_rebuild_channels(struct ice_pf *pf);
81 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
82
83 static int
84 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
85 void *cb_priv, enum tc_setup_type type, void *type_data,
86 void *data,
87 void (*cleanup)(struct flow_block_cb *block_cb));
88
netif_is_ice(const struct net_device * dev)89 bool netif_is_ice(const struct net_device *dev)
90 {
91 return dev && (dev->netdev_ops == &ice_netdev_ops ||
92 dev->netdev_ops == &ice_netdev_safe_mode_ops);
93 }
94
95 /**
96 * ice_get_tx_pending - returns number of Tx descriptors not processed
97 * @ring: the ring of descriptors
98 */
ice_get_tx_pending(struct ice_tx_ring * ring)99 static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
100 {
101 u16 head, tail;
102
103 head = ring->next_to_clean;
104 tail = ring->next_to_use;
105
106 if (head != tail)
107 return (head < tail) ?
108 tail - head : (tail + ring->count - head);
109 return 0;
110 }
111
112 /**
113 * ice_check_for_hang_subtask - check for and recover hung queues
114 * @pf: pointer to PF struct
115 */
ice_check_for_hang_subtask(struct ice_pf * pf)116 static void ice_check_for_hang_subtask(struct ice_pf *pf)
117 {
118 struct ice_vsi *vsi = NULL;
119 struct ice_hw *hw;
120 unsigned int i;
121 int packets;
122 u32 v;
123
124 ice_for_each_vsi(pf, v)
125 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
126 vsi = pf->vsi[v];
127 break;
128 }
129
130 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
131 return;
132
133 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
134 return;
135
136 hw = &vsi->back->hw;
137
138 ice_for_each_txq(vsi, i) {
139 struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
140 struct ice_ring_stats *ring_stats;
141
142 if (!tx_ring)
143 continue;
144 if (ice_ring_ch_enabled(tx_ring))
145 continue;
146
147 ring_stats = tx_ring->ring_stats;
148 if (!ring_stats)
149 continue;
150
151 if (tx_ring->desc) {
152 /* If packet counter has not changed the queue is
153 * likely stalled, so force an interrupt for this
154 * queue.
155 *
156 * prev_pkt would be negative if there was no
157 * pending work.
158 */
159 packets = ring_stats->stats.pkts & INT_MAX;
160 if (ring_stats->tx_stats.prev_pkt == packets) {
161 /* Trigger sw interrupt to revive the queue */
162 ice_trigger_sw_intr(hw, tx_ring->q_vector);
163 continue;
164 }
165
166 /* Memory barrier between read of packet count and call
167 * to ice_get_tx_pending()
168 */
169 smp_rmb();
170 ring_stats->tx_stats.prev_pkt =
171 ice_get_tx_pending(tx_ring) ? packets : -1;
172 }
173 }
174 }
175
176 /**
177 * ice_init_mac_fltr - Set initial MAC filters
178 * @pf: board private structure
179 *
180 * Set initial set of MAC filters for PF VSI; configure filters for permanent
181 * address and broadcast address. If an error is encountered, netdevice will be
182 * unregistered.
183 */
ice_init_mac_fltr(struct ice_pf * pf)184 static int ice_init_mac_fltr(struct ice_pf *pf)
185 {
186 struct ice_vsi *vsi;
187 u8 *perm_addr;
188
189 vsi = ice_get_main_vsi(pf);
190 if (!vsi)
191 return -EINVAL;
192
193 perm_addr = vsi->port_info->mac.perm_addr;
194 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
195 }
196
197 /**
198 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
199 * @netdev: the net device on which the sync is happening
200 * @addr: MAC address to sync
201 *
202 * This is a callback function which is called by the in kernel device sync
203 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
204 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
205 * MAC filters from the hardware.
206 */
ice_add_mac_to_sync_list(struct net_device * netdev,const u8 * addr)207 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
208 {
209 struct ice_netdev_priv *np = netdev_priv(netdev);
210 struct ice_vsi *vsi = np->vsi;
211
212 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
213 ICE_FWD_TO_VSI))
214 return -EINVAL;
215
216 return 0;
217 }
218
219 /**
220 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
221 * @netdev: the net device on which the unsync is happening
222 * @addr: MAC address to unsync
223 *
224 * This is a callback function which is called by the in kernel device unsync
225 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
226 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
227 * delete the MAC filters from the hardware.
228 */
ice_add_mac_to_unsync_list(struct net_device * netdev,const u8 * addr)229 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
230 {
231 struct ice_netdev_priv *np = netdev_priv(netdev);
232 struct ice_vsi *vsi = np->vsi;
233
234 /* Under some circumstances, we might receive a request to delete our
235 * own device address from our uc list. Because we store the device
236 * address in the VSI's MAC filter list, we need to ignore such
237 * requests and not delete our device address from this list.
238 */
239 if (ether_addr_equal(addr, netdev->dev_addr))
240 return 0;
241
242 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
243 ICE_FWD_TO_VSI))
244 return -EINVAL;
245
246 return 0;
247 }
248
249 /**
250 * ice_vsi_fltr_changed - check if filter state changed
251 * @vsi: VSI to be checked
252 *
253 * returns true if filter state has changed, false otherwise.
254 */
ice_vsi_fltr_changed(struct ice_vsi * vsi)255 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
256 {
257 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
258 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
259 }
260
261 /**
262 * ice_set_promisc - Enable promiscuous mode for a given PF
263 * @vsi: the VSI being configured
264 * @promisc_m: mask of promiscuous config bits
265 *
266 */
ice_set_promisc(struct ice_vsi * vsi,u8 promisc_m)267 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
268 {
269 int status;
270
271 if (vsi->type != ICE_VSI_PF)
272 return 0;
273
274 if (ice_vsi_has_non_zero_vlans(vsi)) {
275 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
276 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
277 promisc_m);
278 } else {
279 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
280 promisc_m, 0);
281 }
282 if (status && status != -EEXIST)
283 return status;
284
285 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n",
286 vsi->vsi_num, promisc_m);
287 return 0;
288 }
289
290 /**
291 * ice_clear_promisc - Disable promiscuous mode for a given PF
292 * @vsi: the VSI being configured
293 * @promisc_m: mask of promiscuous config bits
294 *
295 */
ice_clear_promisc(struct ice_vsi * vsi,u8 promisc_m)296 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
297 {
298 int status;
299
300 if (vsi->type != ICE_VSI_PF)
301 return 0;
302
303 if (ice_vsi_has_non_zero_vlans(vsi)) {
304 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
305 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
306 promisc_m);
307 } else {
308 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
309 promisc_m, 0);
310 }
311
312 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n",
313 vsi->vsi_num, promisc_m);
314 return status;
315 }
316
317 /**
318 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
319 * @vsi: ptr to the VSI
320 *
321 * Push any outstanding VSI filter changes through the AdminQ.
322 */
ice_vsi_sync_fltr(struct ice_vsi * vsi)323 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
324 {
325 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
326 struct device *dev = ice_pf_to_dev(vsi->back);
327 struct net_device *netdev = vsi->netdev;
328 bool promisc_forced_on = false;
329 struct ice_pf *pf = vsi->back;
330 struct ice_hw *hw = &pf->hw;
331 u32 changed_flags = 0;
332 int err;
333
334 if (!vsi->netdev)
335 return -EINVAL;
336
337 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
338 usleep_range(1000, 2000);
339
340 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
341 vsi->current_netdev_flags = vsi->netdev->flags;
342
343 INIT_LIST_HEAD(&vsi->tmp_sync_list);
344 INIT_LIST_HEAD(&vsi->tmp_unsync_list);
345
346 if (ice_vsi_fltr_changed(vsi)) {
347 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
348 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
349
350 /* grab the netdev's addr_list_lock */
351 netif_addr_lock_bh(netdev);
352 __dev_uc_sync(netdev, ice_add_mac_to_sync_list,
353 ice_add_mac_to_unsync_list);
354 __dev_mc_sync(netdev, ice_add_mac_to_sync_list,
355 ice_add_mac_to_unsync_list);
356 /* our temp lists are populated. release lock */
357 netif_addr_unlock_bh(netdev);
358 }
359
360 /* Remove MAC addresses in the unsync list */
361 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
362 ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
363 if (err) {
364 netdev_err(netdev, "Failed to delete MAC filters\n");
365 /* if we failed because of alloc failures, just bail */
366 if (err == -ENOMEM)
367 goto out;
368 }
369
370 /* Add MAC addresses in the sync list */
371 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
372 ice_fltr_free_list(dev, &vsi->tmp_sync_list);
373 /* If filter is added successfully or already exists, do not go into
374 * 'if' condition and report it as error. Instead continue processing
375 * rest of the function.
376 */
377 if (err && err != -EEXIST) {
378 netdev_err(netdev, "Failed to add MAC filters\n");
379 /* If there is no more space for new umac filters, VSI
380 * should go into promiscuous mode. There should be some
381 * space reserved for promiscuous filters.
382 */
383 if (hw->adminq.sq_last_status == LIBIE_AQ_RC_ENOSPC &&
384 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
385 vsi->state)) {
386 promisc_forced_on = true;
387 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
388 vsi->vsi_num);
389 } else {
390 goto out;
391 }
392 }
393 err = 0;
394 /* check for changes in promiscuous modes */
395 if (changed_flags & IFF_ALLMULTI) {
396 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
397 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
398 if (err) {
399 vsi->current_netdev_flags &= ~IFF_ALLMULTI;
400 goto out_promisc;
401 }
402 } else {
403 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
404 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
405 if (err) {
406 vsi->current_netdev_flags |= IFF_ALLMULTI;
407 goto out_promisc;
408 }
409 }
410 }
411
412 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
413 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
414 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
415 if (vsi->current_netdev_flags & IFF_PROMISC) {
416 /* Apply Rx filter rule to get traffic from wire */
417 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) {
418 err = ice_set_dflt_vsi(vsi);
419 if (err && err != -EEXIST) {
420 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
421 err, vsi->vsi_num);
422 vsi->current_netdev_flags &=
423 ~IFF_PROMISC;
424 goto out_promisc;
425 }
426 err = 0;
427 vlan_ops->dis_rx_filtering(vsi);
428
429 /* promiscuous mode implies allmulticast so
430 * that VSIs that are in promiscuous mode are
431 * subscribed to multicast packets coming to
432 * the port
433 */
434 err = ice_set_promisc(vsi,
435 ICE_MCAST_PROMISC_BITS);
436 if (err)
437 goto out_promisc;
438 }
439 } else {
440 /* Clear Rx filter to remove traffic from wire */
441 if (ice_is_vsi_dflt_vsi(vsi)) {
442 err = ice_clear_dflt_vsi(vsi);
443 if (err) {
444 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
445 err, vsi->vsi_num);
446 vsi->current_netdev_flags |=
447 IFF_PROMISC;
448 goto out_promisc;
449 }
450 if (vsi->netdev->features &
451 NETIF_F_HW_VLAN_CTAG_FILTER)
452 vlan_ops->ena_rx_filtering(vsi);
453 }
454
455 /* disable allmulti here, but only if allmulti is not
456 * still enabled for the netdev
457 */
458 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
459 err = ice_clear_promisc(vsi,
460 ICE_MCAST_PROMISC_BITS);
461 if (err) {
462 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n",
463 err, vsi->vsi_num);
464 }
465 }
466 }
467 }
468 goto exit;
469
470 out_promisc:
471 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
472 goto exit;
473 out:
474 /* if something went wrong then set the changed flag so we try again */
475 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
476 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
477 exit:
478 clear_bit(ICE_CFG_BUSY, vsi->state);
479 return err;
480 }
481
482 /**
483 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
484 * @pf: board private structure
485 */
ice_sync_fltr_subtask(struct ice_pf * pf)486 static void ice_sync_fltr_subtask(struct ice_pf *pf)
487 {
488 int v;
489
490 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
491 return;
492
493 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
494
495 ice_for_each_vsi(pf, v)
496 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
497 ice_vsi_sync_fltr(pf->vsi[v])) {
498 /* come back and try again later */
499 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
500 break;
501 }
502 }
503
504 /**
505 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
506 * @pf: the PF
507 * @locked: is the rtnl_lock already held
508 */
ice_pf_dis_all_vsi(struct ice_pf * pf,bool locked)509 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
510 {
511 int node;
512 int v;
513
514 ice_for_each_vsi(pf, v)
515 if (pf->vsi[v])
516 ice_dis_vsi(pf->vsi[v], locked);
517
518 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
519 pf->pf_agg_node[node].num_vsis = 0;
520
521 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
522 pf->vf_agg_node[node].num_vsis = 0;
523 }
524
525 /**
526 * ice_prepare_for_reset - prep for reset
527 * @pf: board private structure
528 * @reset_type: reset type requested
529 *
530 * Inform or close all dependent features in prep for reset.
531 */
532 static void
ice_prepare_for_reset(struct ice_pf * pf,enum ice_reset_req reset_type)533 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
534 {
535 struct ice_hw *hw = &pf->hw;
536 struct ice_vsi *vsi;
537 struct ice_vf *vf;
538 unsigned int bkt;
539
540 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
541
542 /* already prepared for reset */
543 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
544 return;
545
546 synchronize_irq(pf->oicr_irq.virq);
547
548 ice_unplug_aux_dev(pf);
549
550 /* Notify VFs of impending reset */
551 if (ice_check_sq_alive(hw, &hw->mailboxq))
552 ice_vc_notify_reset(pf);
553
554 /* Disable VFs until reset is completed */
555 mutex_lock(&pf->vfs.table_lock);
556 ice_for_each_vf(pf, bkt, vf)
557 ice_set_vf_state_dis(vf);
558 mutex_unlock(&pf->vfs.table_lock);
559
560 if (ice_is_eswitch_mode_switchdev(pf)) {
561 rtnl_lock();
562 ice_eswitch_br_fdb_flush(pf->eswitch.br_offloads->bridge);
563 rtnl_unlock();
564 }
565
566 /* release ADQ specific HW and SW resources */
567 vsi = ice_get_main_vsi(pf);
568 if (!vsi)
569 goto skip;
570
571 /* to be on safe side, reset orig_rss_size so that normal flow
572 * of deciding rss_size can take precedence
573 */
574 vsi->orig_rss_size = 0;
575
576 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
577 if (reset_type == ICE_RESET_PFR) {
578 vsi->old_ena_tc = vsi->all_enatc;
579 vsi->old_numtc = vsi->all_numtc;
580 } else {
581 ice_remove_q_channels(vsi, true);
582
583 /* for other reset type, do not support channel rebuild
584 * hence reset needed info
585 */
586 vsi->old_ena_tc = 0;
587 vsi->all_enatc = 0;
588 vsi->old_numtc = 0;
589 vsi->all_numtc = 0;
590 vsi->req_txq = 0;
591 vsi->req_rxq = 0;
592 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
593 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
594 }
595 }
596
597 if (vsi->netdev)
598 netif_device_detach(vsi->netdev);
599 skip:
600
601 /* clear SW filtering DB */
602 ice_clear_hw_tbls(hw);
603 /* disable the VSIs and their queues that are not already DOWN */
604 set_bit(ICE_VSI_REBUILD_PENDING, ice_get_main_vsi(pf)->state);
605 ice_pf_dis_all_vsi(pf, false);
606
607 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
608 ice_ptp_prepare_for_reset(pf, reset_type);
609
610 if (ice_is_feature_supported(pf, ICE_F_GNSS))
611 ice_gnss_exit(pf);
612
613 if (hw->port_info)
614 ice_sched_clear_port(hw->port_info);
615
616 ice_shutdown_all_ctrlq(hw, false);
617
618 set_bit(ICE_PREPARED_FOR_RESET, pf->state);
619 }
620
621 /**
622 * ice_do_reset - Initiate one of many types of resets
623 * @pf: board private structure
624 * @reset_type: reset type requested before this function was called.
625 */
ice_do_reset(struct ice_pf * pf,enum ice_reset_req reset_type)626 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
627 {
628 struct device *dev = ice_pf_to_dev(pf);
629 struct ice_hw *hw = &pf->hw;
630
631 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
632
633 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) {
634 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n");
635 reset_type = ICE_RESET_CORER;
636 }
637
638 ice_prepare_for_reset(pf, reset_type);
639
640 /* trigger the reset */
641 if (ice_reset(hw, reset_type)) {
642 dev_err(dev, "reset %d failed\n", reset_type);
643 set_bit(ICE_RESET_FAILED, pf->state);
644 clear_bit(ICE_RESET_OICR_RECV, pf->state);
645 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
646 clear_bit(ICE_PFR_REQ, pf->state);
647 clear_bit(ICE_CORER_REQ, pf->state);
648 clear_bit(ICE_GLOBR_REQ, pf->state);
649 wake_up(&pf->reset_wait_queue);
650 return;
651 }
652
653 /* PFR is a bit of a special case because it doesn't result in an OICR
654 * interrupt. So for PFR, rebuild after the reset and clear the reset-
655 * associated state bits.
656 */
657 if (reset_type == ICE_RESET_PFR) {
658 pf->pfr_count++;
659 ice_rebuild(pf, reset_type);
660 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
661 clear_bit(ICE_PFR_REQ, pf->state);
662 wake_up(&pf->reset_wait_queue);
663 ice_reset_all_vfs(pf);
664 }
665 }
666
667 /**
668 * ice_reset_subtask - Set up for resetting the device and driver
669 * @pf: board private structure
670 */
ice_reset_subtask(struct ice_pf * pf)671 static void ice_reset_subtask(struct ice_pf *pf)
672 {
673 enum ice_reset_req reset_type = ICE_RESET_INVAL;
674
675 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
676 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
677 * of reset is pending and sets bits in pf->state indicating the reset
678 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
679 * prepare for pending reset if not already (for PF software-initiated
680 * global resets the software should already be prepared for it as
681 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
682 * by firmware or software on other PFs, that bit is not set so prepare
683 * for the reset now), poll for reset done, rebuild and return.
684 */
685 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
686 /* Perform the largest reset requested */
687 if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
688 reset_type = ICE_RESET_CORER;
689 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
690 reset_type = ICE_RESET_GLOBR;
691 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
692 reset_type = ICE_RESET_EMPR;
693 /* return if no valid reset type requested */
694 if (reset_type == ICE_RESET_INVAL)
695 return;
696 ice_prepare_for_reset(pf, reset_type);
697
698 /* make sure we are ready to rebuild */
699 if (ice_check_reset(&pf->hw)) {
700 set_bit(ICE_RESET_FAILED, pf->state);
701 } else {
702 /* done with reset. start rebuild */
703 pf->hw.reset_ongoing = false;
704 ice_rebuild(pf, reset_type);
705 /* clear bit to resume normal operations, but
706 * ICE_NEEDS_RESTART bit is set in case rebuild failed
707 */
708 clear_bit(ICE_RESET_OICR_RECV, pf->state);
709 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
710 clear_bit(ICE_PFR_REQ, pf->state);
711 clear_bit(ICE_CORER_REQ, pf->state);
712 clear_bit(ICE_GLOBR_REQ, pf->state);
713 wake_up(&pf->reset_wait_queue);
714 ice_reset_all_vfs(pf);
715 }
716
717 return;
718 }
719
720 /* No pending resets to finish processing. Check for new resets */
721 if (test_bit(ICE_PFR_REQ, pf->state)) {
722 reset_type = ICE_RESET_PFR;
723 if (pf->lag && pf->lag->bonded) {
724 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n");
725 reset_type = ICE_RESET_CORER;
726 }
727 }
728 if (test_bit(ICE_CORER_REQ, pf->state))
729 reset_type = ICE_RESET_CORER;
730 if (test_bit(ICE_GLOBR_REQ, pf->state))
731 reset_type = ICE_RESET_GLOBR;
732 /* If no valid reset type requested just return */
733 if (reset_type == ICE_RESET_INVAL)
734 return;
735
736 /* reset if not already down or busy */
737 if (!test_bit(ICE_DOWN, pf->state) &&
738 !test_bit(ICE_CFG_BUSY, pf->state)) {
739 ice_do_reset(pf, reset_type);
740 }
741 }
742
743 /**
744 * ice_print_topo_conflict - print topology conflict message
745 * @vsi: the VSI whose topology status is being checked
746 */
ice_print_topo_conflict(struct ice_vsi * vsi)747 static void ice_print_topo_conflict(struct ice_vsi *vsi)
748 {
749 switch (vsi->port_info->phy.link_info.topo_media_conflict) {
750 case ICE_AQ_LINK_TOPO_CONFLICT:
751 case ICE_AQ_LINK_MEDIA_CONFLICT:
752 case ICE_AQ_LINK_TOPO_UNREACH_PRT:
753 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
754 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
755 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
756 break;
757 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
758 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
759 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
760 else
761 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
762 break;
763 default:
764 break;
765 }
766 }
767
768 /**
769 * ice_print_link_msg - print link up or down message
770 * @vsi: the VSI whose link status is being queried
771 * @isup: boolean for if the link is now up or down
772 */
ice_print_link_msg(struct ice_vsi * vsi,bool isup)773 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
774 {
775 struct ice_aqc_get_phy_caps_data *caps;
776 const char *an_advertised;
777 const char *fec_req;
778 const char *speed;
779 const char *fec;
780 const char *fc;
781 const char *an;
782 int status;
783
784 if (!vsi)
785 return;
786
787 if (vsi->current_isup == isup)
788 return;
789
790 vsi->current_isup = isup;
791
792 if (!isup) {
793 netdev_info(vsi->netdev, "NIC Link is Down\n");
794 return;
795 }
796
797 switch (vsi->port_info->phy.link_info.link_speed) {
798 case ICE_AQ_LINK_SPEED_200GB:
799 speed = "200 G";
800 break;
801 case ICE_AQ_LINK_SPEED_100GB:
802 speed = "100 G";
803 break;
804 case ICE_AQ_LINK_SPEED_50GB:
805 speed = "50 G";
806 break;
807 case ICE_AQ_LINK_SPEED_40GB:
808 speed = "40 G";
809 break;
810 case ICE_AQ_LINK_SPEED_25GB:
811 speed = "25 G";
812 break;
813 case ICE_AQ_LINK_SPEED_20GB:
814 speed = "20 G";
815 break;
816 case ICE_AQ_LINK_SPEED_10GB:
817 speed = "10 G";
818 break;
819 case ICE_AQ_LINK_SPEED_5GB:
820 speed = "5 G";
821 break;
822 case ICE_AQ_LINK_SPEED_2500MB:
823 speed = "2.5 G";
824 break;
825 case ICE_AQ_LINK_SPEED_1000MB:
826 speed = "1 G";
827 break;
828 case ICE_AQ_LINK_SPEED_100MB:
829 speed = "100 M";
830 break;
831 default:
832 speed = "Unknown ";
833 break;
834 }
835
836 switch (vsi->port_info->fc.current_mode) {
837 case ICE_FC_FULL:
838 fc = "Rx/Tx";
839 break;
840 case ICE_FC_TX_PAUSE:
841 fc = "Tx";
842 break;
843 case ICE_FC_RX_PAUSE:
844 fc = "Rx";
845 break;
846 case ICE_FC_NONE:
847 fc = "None";
848 break;
849 default:
850 fc = "Unknown";
851 break;
852 }
853
854 /* Get FEC mode based on negotiated link info */
855 switch (vsi->port_info->phy.link_info.fec_info) {
856 case ICE_AQ_LINK_25G_RS_528_FEC_EN:
857 case ICE_AQ_LINK_25G_RS_544_FEC_EN:
858 fec = "RS-FEC";
859 break;
860 case ICE_AQ_LINK_25G_KR_FEC_EN:
861 fec = "FC-FEC/BASE-R";
862 break;
863 default:
864 fec = "NONE";
865 break;
866 }
867
868 /* check if autoneg completed, might be false due to not supported */
869 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
870 an = "True";
871 else
872 an = "False";
873
874 /* Get FEC mode requested based on PHY caps last SW configuration */
875 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
876 if (!caps) {
877 fec_req = "Unknown";
878 an_advertised = "Unknown";
879 goto done;
880 }
881
882 status = ice_aq_get_phy_caps(vsi->port_info, false,
883 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
884 if (status)
885 netdev_info(vsi->netdev, "Get phy capability failed.\n");
886
887 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
888
889 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
890 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
891 fec_req = "RS-FEC";
892 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
893 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
894 fec_req = "FC-FEC/BASE-R";
895 else
896 fec_req = "NONE";
897
898 kfree(caps);
899
900 done:
901 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
902 speed, fec_req, fec, an_advertised, an, fc);
903 ice_print_topo_conflict(vsi);
904 }
905
906 /**
907 * ice_vsi_link_event - update the VSI's netdev
908 * @vsi: the VSI on which the link event occurred
909 * @link_up: whether or not the VSI needs to be set up or down
910 */
ice_vsi_link_event(struct ice_vsi * vsi,bool link_up)911 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
912 {
913 if (!vsi)
914 return;
915
916 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
917 return;
918
919 if (vsi->type == ICE_VSI_PF) {
920 if (link_up == netif_carrier_ok(vsi->netdev))
921 return;
922
923 if (link_up) {
924 netif_carrier_on(vsi->netdev);
925 netif_tx_wake_all_queues(vsi->netdev);
926 } else {
927 netif_carrier_off(vsi->netdev);
928 netif_tx_stop_all_queues(vsi->netdev);
929 }
930 }
931 }
932
933 /**
934 * ice_set_dflt_mib - send a default config MIB to the FW
935 * @pf: private PF struct
936 *
937 * This function sends a default configuration MIB to the FW.
938 *
939 * If this function errors out at any point, the driver is still able to
940 * function. The main impact is that LFC may not operate as expected.
941 * Therefore an error state in this function should be treated with a DBG
942 * message and continue on with driver rebuild/reenable.
943 */
ice_set_dflt_mib(struct ice_pf * pf)944 static void ice_set_dflt_mib(struct ice_pf *pf)
945 {
946 struct device *dev = ice_pf_to_dev(pf);
947 u8 mib_type, *buf, *lldpmib = NULL;
948 u16 len, typelen, offset = 0;
949 struct ice_lldp_org_tlv *tlv;
950 struct ice_hw *hw = &pf->hw;
951 u32 ouisubtype;
952
953 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
954 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
955 if (!lldpmib) {
956 dev_dbg(dev, "%s Failed to allocate MIB memory\n",
957 __func__);
958 return;
959 }
960
961 /* Add ETS CFG TLV */
962 tlv = (struct ice_lldp_org_tlv *)lldpmib;
963 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
964 ICE_IEEE_ETS_TLV_LEN);
965 tlv->typelen = htons(typelen);
966 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
967 ICE_IEEE_SUBTYPE_ETS_CFG);
968 tlv->ouisubtype = htonl(ouisubtype);
969
970 buf = tlv->tlvinfo;
971 buf[0] = 0;
972
973 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
974 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
975 * Octets 13 - 20 are TSA values - leave as zeros
976 */
977 buf[5] = 0x64;
978 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
979 offset += len + 2;
980 tlv = (struct ice_lldp_org_tlv *)
981 ((char *)tlv + sizeof(tlv->typelen) + len);
982
983 /* Add ETS REC TLV */
984 buf = tlv->tlvinfo;
985 tlv->typelen = htons(typelen);
986
987 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
988 ICE_IEEE_SUBTYPE_ETS_REC);
989 tlv->ouisubtype = htonl(ouisubtype);
990
991 /* First octet of buf is reserved
992 * Octets 1 - 4 map UP to TC - all UPs map to zero
993 * Octets 5 - 12 are BW values - set TC 0 to 100%.
994 * Octets 13 - 20 are TSA value - leave as zeros
995 */
996 buf[5] = 0x64;
997 offset += len + 2;
998 tlv = (struct ice_lldp_org_tlv *)
999 ((char *)tlv + sizeof(tlv->typelen) + len);
1000
1001 /* Add PFC CFG TLV */
1002 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
1003 ICE_IEEE_PFC_TLV_LEN);
1004 tlv->typelen = htons(typelen);
1005
1006 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
1007 ICE_IEEE_SUBTYPE_PFC_CFG);
1008 tlv->ouisubtype = htonl(ouisubtype);
1009
1010 /* Octet 1 left as all zeros - PFC disabled */
1011 buf[0] = 0x08;
1012 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
1013 offset += len + 2;
1014
1015 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
1016 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
1017
1018 kfree(lldpmib);
1019 }
1020
1021 /**
1022 * ice_check_phy_fw_load - check if PHY FW load failed
1023 * @pf: pointer to PF struct
1024 * @link_cfg_err: bitmap from the link info structure
1025 *
1026 * check if external PHY FW load failed and print an error message if it did
1027 */
ice_check_phy_fw_load(struct ice_pf * pf,u8 link_cfg_err)1028 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
1029 {
1030 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
1031 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1032 return;
1033 }
1034
1035 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1036 return;
1037
1038 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1039 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1040 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1041 }
1042 }
1043
1044 /**
1045 * ice_check_module_power
1046 * @pf: pointer to PF struct
1047 * @link_cfg_err: bitmap from the link info structure
1048 *
1049 * check module power level returned by a previous call to aq_get_link_info
1050 * and print error messages if module power level is not supported
1051 */
ice_check_module_power(struct ice_pf * pf,u8 link_cfg_err)1052 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1053 {
1054 /* if module power level is supported, clear the flag */
1055 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1056 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1057 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1058 return;
1059 }
1060
1061 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1062 * above block didn't clear this bit, there's nothing to do
1063 */
1064 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1065 return;
1066
1067 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1068 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1069 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1070 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1071 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1072 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1073 }
1074 }
1075
1076 /**
1077 * ice_check_link_cfg_err - check if link configuration failed
1078 * @pf: pointer to the PF struct
1079 * @link_cfg_err: bitmap from the link info structure
1080 *
1081 * print if any link configuration failure happens due to the value in the
1082 * link_cfg_err parameter in the link info structure
1083 */
ice_check_link_cfg_err(struct ice_pf * pf,u8 link_cfg_err)1084 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1085 {
1086 ice_check_module_power(pf, link_cfg_err);
1087 ice_check_phy_fw_load(pf, link_cfg_err);
1088 }
1089
1090 /**
1091 * ice_link_event - process the link event
1092 * @pf: PF that the link event is associated with
1093 * @pi: port_info for the port that the link event is associated with
1094 * @link_up: true if the physical link is up and false if it is down
1095 * @link_speed: current link speed received from the link event
1096 *
1097 * Returns 0 on success and negative on failure
1098 */
1099 static int
ice_link_event(struct ice_pf * pf,struct ice_port_info * pi,bool link_up,u16 link_speed)1100 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1101 u16 link_speed)
1102 {
1103 struct device *dev = ice_pf_to_dev(pf);
1104 struct ice_phy_info *phy_info;
1105 struct ice_vsi *vsi;
1106 u16 old_link_speed;
1107 bool old_link;
1108 int status;
1109
1110 phy_info = &pi->phy;
1111 phy_info->link_info_old = phy_info->link_info;
1112
1113 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1114 old_link_speed = phy_info->link_info_old.link_speed;
1115
1116 /* update the link info structures and re-enable link events,
1117 * don't bail on failure due to other book keeping needed
1118 */
1119 status = ice_update_link_info(pi);
1120 if (status)
1121 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1122 pi->lport, status,
1123 libie_aq_str(pi->hw->adminq.sq_last_status));
1124
1125 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1126
1127 /* Check if the link state is up after updating link info, and treat
1128 * this event as an UP event since the link is actually UP now.
1129 */
1130 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1131 link_up = true;
1132
1133 vsi = ice_get_main_vsi(pf);
1134 if (!vsi || !vsi->port_info)
1135 return -EINVAL;
1136
1137 /* turn off PHY if media was removed */
1138 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1139 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1140 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1141 ice_set_link(vsi, false);
1142 }
1143
1144 /* if the old link up/down and speed is the same as the new */
1145 if (link_up == old_link && link_speed == old_link_speed)
1146 return 0;
1147
1148 if (!link_up && old_link)
1149 pf->link_down_events++;
1150
1151 ice_ptp_link_change(pf, link_up);
1152
1153 if (ice_is_dcb_active(pf)) {
1154 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1155 ice_dcb_rebuild(pf);
1156 } else {
1157 if (link_up)
1158 ice_set_dflt_mib(pf);
1159 }
1160 ice_vsi_link_event(vsi, link_up);
1161 ice_print_link_msg(vsi, link_up);
1162
1163 ice_vc_notify_link_state(pf);
1164
1165 return 0;
1166 }
1167
1168 /**
1169 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1170 * @pf: board private structure
1171 */
ice_watchdog_subtask(struct ice_pf * pf)1172 static void ice_watchdog_subtask(struct ice_pf *pf)
1173 {
1174 int i;
1175
1176 /* if interface is down do nothing */
1177 if (test_bit(ICE_DOWN, pf->state) ||
1178 test_bit(ICE_CFG_BUSY, pf->state))
1179 return;
1180
1181 /* make sure we don't do these things too often */
1182 if (time_before(jiffies,
1183 pf->serv_tmr_prev + pf->serv_tmr_period))
1184 return;
1185
1186 pf->serv_tmr_prev = jiffies;
1187
1188 /* Update the stats for active netdevs so the network stack
1189 * can look at updated numbers whenever it cares to
1190 */
1191 ice_update_pf_stats(pf);
1192 ice_for_each_vsi(pf, i)
1193 if (pf->vsi[i] && pf->vsi[i]->netdev)
1194 ice_update_vsi_stats(pf->vsi[i]);
1195 }
1196
1197 /**
1198 * ice_init_link_events - enable/initialize link events
1199 * @pi: pointer to the port_info instance
1200 *
1201 * Returns -EIO on failure, 0 on success
1202 */
ice_init_link_events(struct ice_port_info * pi)1203 static int ice_init_link_events(struct ice_port_info *pi)
1204 {
1205 u16 mask;
1206
1207 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1208 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1209 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1210
1211 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1212 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1213 pi->lport);
1214 return -EIO;
1215 }
1216
1217 if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1218 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1219 pi->lport);
1220 return -EIO;
1221 }
1222
1223 return 0;
1224 }
1225
1226 /**
1227 * ice_handle_link_event - handle link event via ARQ
1228 * @pf: PF that the link event is associated with
1229 * @event: event structure containing link status info
1230 */
1231 static int
ice_handle_link_event(struct ice_pf * pf,struct ice_rq_event_info * event)1232 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1233 {
1234 struct ice_aqc_get_link_status_data *link_data;
1235 struct ice_port_info *port_info;
1236 int status;
1237
1238 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1239 port_info = pf->hw.port_info;
1240 if (!port_info)
1241 return -EINVAL;
1242
1243 status = ice_link_event(pf, port_info,
1244 !!(link_data->link_info & ICE_AQ_LINK_UP),
1245 le16_to_cpu(link_data->link_speed));
1246 if (status)
1247 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1248 status);
1249
1250 return status;
1251 }
1252
1253 /**
1254 * ice_get_fwlog_data - copy the FW log data from ARQ event
1255 * @pf: PF that the FW log event is associated with
1256 * @event: event structure containing FW log data
1257 */
1258 static void
ice_get_fwlog_data(struct ice_pf * pf,struct ice_rq_event_info * event)1259 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event)
1260 {
1261 struct ice_fwlog_data *fwlog;
1262 struct ice_hw *hw = &pf->hw;
1263
1264 fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail];
1265
1266 memset(fwlog->data, 0, PAGE_SIZE);
1267 fwlog->data_size = le16_to_cpu(event->desc.datalen);
1268
1269 memcpy(fwlog->data, event->msg_buf, fwlog->data_size);
1270 ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size);
1271
1272 if (ice_fwlog_ring_full(&hw->fwlog_ring)) {
1273 /* the rings are full so bump the head to create room */
1274 ice_fwlog_ring_increment(&hw->fwlog_ring.head,
1275 hw->fwlog_ring.size);
1276 }
1277 }
1278
1279 /**
1280 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware
1281 * @pf: pointer to the PF private structure
1282 * @task: intermediate helper storage and identifier for waiting
1283 * @opcode: the opcode to wait for
1284 *
1285 * Prepares to wait for a specific AdminQ completion event on the ARQ for
1286 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event().
1287 *
1288 * Calls are separated to allow caller registering for event before sending
1289 * the command, which mitigates a race between registering and FW responding.
1290 *
1291 * To obtain only the descriptor contents, pass an task->event with null
1292 * msg_buf. If the complete data buffer is desired, allocate the
1293 * task->event.msg_buf with enough space ahead of time.
1294 */
ice_aq_prep_for_event(struct ice_pf * pf,struct ice_aq_task * task,u16 opcode)1295 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1296 u16 opcode)
1297 {
1298 INIT_HLIST_NODE(&task->entry);
1299 task->opcode = opcode;
1300 task->state = ICE_AQ_TASK_WAITING;
1301
1302 spin_lock_bh(&pf->aq_wait_lock);
1303 hlist_add_head(&task->entry, &pf->aq_wait_list);
1304 spin_unlock_bh(&pf->aq_wait_lock);
1305 }
1306
1307 /**
1308 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1309 * @pf: pointer to the PF private structure
1310 * @task: ptr prepared by ice_aq_prep_for_event()
1311 * @timeout: how long to wait, in jiffies
1312 *
1313 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1314 * current thread will be put to sleep until the specified event occurs or
1315 * until the given timeout is reached.
1316 *
1317 * Returns: zero on success, or a negative error code on failure.
1318 */
ice_aq_wait_for_event(struct ice_pf * pf,struct ice_aq_task * task,unsigned long timeout)1319 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1320 unsigned long timeout)
1321 {
1322 enum ice_aq_task_state *state = &task->state;
1323 struct device *dev = ice_pf_to_dev(pf);
1324 unsigned long start = jiffies;
1325 long ret;
1326 int err;
1327
1328 ret = wait_event_interruptible_timeout(pf->aq_wait_queue,
1329 *state != ICE_AQ_TASK_WAITING,
1330 timeout);
1331 switch (*state) {
1332 case ICE_AQ_TASK_NOT_PREPARED:
1333 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__);
1334 err = -EINVAL;
1335 break;
1336 case ICE_AQ_TASK_WAITING:
1337 err = ret < 0 ? ret : -ETIMEDOUT;
1338 break;
1339 case ICE_AQ_TASK_CANCELED:
1340 err = ret < 0 ? ret : -ECANCELED;
1341 break;
1342 case ICE_AQ_TASK_COMPLETE:
1343 err = ret < 0 ? ret : 0;
1344 break;
1345 default:
1346 WARN(1, "Unexpected AdminQ wait task state %u", *state);
1347 err = -EINVAL;
1348 break;
1349 }
1350
1351 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1352 jiffies_to_msecs(jiffies - start),
1353 jiffies_to_msecs(timeout),
1354 task->opcode);
1355
1356 spin_lock_bh(&pf->aq_wait_lock);
1357 hlist_del(&task->entry);
1358 spin_unlock_bh(&pf->aq_wait_lock);
1359
1360 return err;
1361 }
1362
1363 /**
1364 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1365 * @pf: pointer to the PF private structure
1366 * @opcode: the opcode of the event
1367 * @event: the event to check
1368 *
1369 * Loops over the current list of pending threads waiting for an AdminQ event.
1370 * For each matching task, copy the contents of the event into the task
1371 * structure and wake up the thread.
1372 *
1373 * If multiple threads wait for the same opcode, they will all be woken up.
1374 *
1375 * Note that event->msg_buf will only be duplicated if the event has a buffer
1376 * with enough space already allocated. Otherwise, only the descriptor and
1377 * message length will be copied.
1378 *
1379 * Returns: true if an event was found, false otherwise
1380 */
ice_aq_check_events(struct ice_pf * pf,u16 opcode,struct ice_rq_event_info * event)1381 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1382 struct ice_rq_event_info *event)
1383 {
1384 struct ice_rq_event_info *task_ev;
1385 struct ice_aq_task *task;
1386 bool found = false;
1387
1388 spin_lock_bh(&pf->aq_wait_lock);
1389 hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1390 if (task->state != ICE_AQ_TASK_WAITING)
1391 continue;
1392 if (task->opcode != opcode)
1393 continue;
1394
1395 task_ev = &task->event;
1396 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc));
1397 task_ev->msg_len = event->msg_len;
1398
1399 /* Only copy the data buffer if a destination was set */
1400 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) {
1401 memcpy(task_ev->msg_buf, event->msg_buf,
1402 event->buf_len);
1403 task_ev->buf_len = event->buf_len;
1404 }
1405
1406 task->state = ICE_AQ_TASK_COMPLETE;
1407 found = true;
1408 }
1409 spin_unlock_bh(&pf->aq_wait_lock);
1410
1411 if (found)
1412 wake_up(&pf->aq_wait_queue);
1413 }
1414
1415 /**
1416 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1417 * @pf: the PF private structure
1418 *
1419 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1420 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1421 */
ice_aq_cancel_waiting_tasks(struct ice_pf * pf)1422 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1423 {
1424 struct ice_aq_task *task;
1425
1426 spin_lock_bh(&pf->aq_wait_lock);
1427 hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1428 task->state = ICE_AQ_TASK_CANCELED;
1429 spin_unlock_bh(&pf->aq_wait_lock);
1430
1431 wake_up(&pf->aq_wait_queue);
1432 }
1433
1434 #define ICE_MBX_OVERFLOW_WATERMARK 64
1435
1436 /**
1437 * __ice_clean_ctrlq - helper function to clean controlq rings
1438 * @pf: ptr to struct ice_pf
1439 * @q_type: specific Control queue type
1440 */
__ice_clean_ctrlq(struct ice_pf * pf,enum ice_ctl_q q_type)1441 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1442 {
1443 struct device *dev = ice_pf_to_dev(pf);
1444 struct ice_rq_event_info event;
1445 struct ice_hw *hw = &pf->hw;
1446 struct ice_ctl_q_info *cq;
1447 u16 pending, i = 0;
1448 const char *qtype;
1449 u32 oldval, val;
1450
1451 /* Do not clean control queue if/when PF reset fails */
1452 if (test_bit(ICE_RESET_FAILED, pf->state))
1453 return 0;
1454
1455 switch (q_type) {
1456 case ICE_CTL_Q_ADMIN:
1457 cq = &hw->adminq;
1458 qtype = "Admin";
1459 break;
1460 case ICE_CTL_Q_SB:
1461 cq = &hw->sbq;
1462 qtype = "Sideband";
1463 break;
1464 case ICE_CTL_Q_MAILBOX:
1465 cq = &hw->mailboxq;
1466 qtype = "Mailbox";
1467 /* we are going to try to detect a malicious VF, so set the
1468 * state to begin detection
1469 */
1470 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1471 break;
1472 default:
1473 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1474 return 0;
1475 }
1476
1477 /* check for error indications - PF_xx_AxQLEN register layout for
1478 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1479 */
1480 val = rd32(hw, cq->rq.len);
1481 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1482 PF_FW_ARQLEN_ARQCRIT_M)) {
1483 oldval = val;
1484 if (val & PF_FW_ARQLEN_ARQVFE_M)
1485 dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1486 qtype);
1487 if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1488 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1489 qtype);
1490 }
1491 if (val & PF_FW_ARQLEN_ARQCRIT_M)
1492 dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1493 qtype);
1494 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1495 PF_FW_ARQLEN_ARQCRIT_M);
1496 if (oldval != val)
1497 wr32(hw, cq->rq.len, val);
1498 }
1499
1500 val = rd32(hw, cq->sq.len);
1501 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1502 PF_FW_ATQLEN_ATQCRIT_M)) {
1503 oldval = val;
1504 if (val & PF_FW_ATQLEN_ATQVFE_M)
1505 dev_dbg(dev, "%s Send Queue VF Error detected\n",
1506 qtype);
1507 if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1508 dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1509 qtype);
1510 }
1511 if (val & PF_FW_ATQLEN_ATQCRIT_M)
1512 dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1513 qtype);
1514 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1515 PF_FW_ATQLEN_ATQCRIT_M);
1516 if (oldval != val)
1517 wr32(hw, cq->sq.len, val);
1518 }
1519
1520 event.buf_len = cq->rq_buf_size;
1521 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1522 if (!event.msg_buf)
1523 return 0;
1524
1525 do {
1526 struct ice_mbx_data data = {};
1527 u16 opcode;
1528 int ret;
1529
1530 ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1531 if (ret == -EALREADY)
1532 break;
1533 if (ret) {
1534 dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1535 ret);
1536 break;
1537 }
1538
1539 opcode = le16_to_cpu(event.desc.opcode);
1540
1541 /* Notify any thread that might be waiting for this event */
1542 ice_aq_check_events(pf, opcode, &event);
1543
1544 switch (opcode) {
1545 case ice_aqc_opc_get_link_status:
1546 if (ice_handle_link_event(pf, &event))
1547 dev_err(dev, "Could not handle link event\n");
1548 break;
1549 case ice_aqc_opc_event_lan_overflow:
1550 ice_vf_lan_overflow_event(pf, &event);
1551 break;
1552 case ice_mbx_opc_send_msg_to_pf:
1553 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) {
1554 ice_vc_process_vf_msg(pf, &event, NULL);
1555 ice_mbx_vf_dec_trig_e830(hw, &event);
1556 } else {
1557 u16 val = hw->mailboxq.num_rq_entries;
1558
1559 data.max_num_msgs_mbx = val;
1560 val = ICE_MBX_OVERFLOW_WATERMARK;
1561 data.async_watermark_val = val;
1562 data.num_msg_proc = i;
1563 data.num_pending_arq = pending;
1564
1565 ice_vc_process_vf_msg(pf, &event, &data);
1566 }
1567 break;
1568 case ice_aqc_opc_fw_logs_event:
1569 ice_get_fwlog_data(pf, &event);
1570 break;
1571 case ice_aqc_opc_lldp_set_mib_change:
1572 ice_dcb_process_lldp_set_mib_change(pf, &event);
1573 break;
1574 case ice_aqc_opc_get_health_status:
1575 ice_process_health_status_event(pf, &event);
1576 break;
1577 default:
1578 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1579 qtype, opcode);
1580 break;
1581 }
1582 } while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1583
1584 kfree(event.msg_buf);
1585
1586 return pending && (i == ICE_DFLT_IRQ_WORK);
1587 }
1588
1589 /**
1590 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1591 * @hw: pointer to hardware info
1592 * @cq: control queue information
1593 *
1594 * returns true if there are pending messages in a queue, false if there aren't
1595 */
ice_ctrlq_pending(struct ice_hw * hw,struct ice_ctl_q_info * cq)1596 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1597 {
1598 u16 ntu;
1599
1600 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1601 return cq->rq.next_to_clean != ntu;
1602 }
1603
1604 /**
1605 * ice_clean_adminq_subtask - clean the AdminQ rings
1606 * @pf: board private structure
1607 */
ice_clean_adminq_subtask(struct ice_pf * pf)1608 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1609 {
1610 struct ice_hw *hw = &pf->hw;
1611
1612 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1613 return;
1614
1615 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1616 return;
1617
1618 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1619
1620 /* There might be a situation where new messages arrive to a control
1621 * queue between processing the last message and clearing the
1622 * EVENT_PENDING bit. So before exiting, check queue head again (using
1623 * ice_ctrlq_pending) and process new messages if any.
1624 */
1625 if (ice_ctrlq_pending(hw, &hw->adminq))
1626 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1627
1628 ice_flush(hw);
1629 }
1630
1631 /**
1632 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1633 * @pf: board private structure
1634 */
ice_clean_mailboxq_subtask(struct ice_pf * pf)1635 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1636 {
1637 struct ice_hw *hw = &pf->hw;
1638
1639 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1640 return;
1641
1642 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1643 return;
1644
1645 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1646
1647 if (ice_ctrlq_pending(hw, &hw->mailboxq))
1648 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1649
1650 ice_flush(hw);
1651 }
1652
1653 /**
1654 * ice_clean_sbq_subtask - clean the Sideband Queue rings
1655 * @pf: board private structure
1656 */
ice_clean_sbq_subtask(struct ice_pf * pf)1657 static void ice_clean_sbq_subtask(struct ice_pf *pf)
1658 {
1659 struct ice_hw *hw = &pf->hw;
1660
1661 /* if mac_type is not generic, sideband is not supported
1662 * and there's nothing to do here
1663 */
1664 if (!ice_is_generic_mac(hw)) {
1665 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1666 return;
1667 }
1668
1669 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1670 return;
1671
1672 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1673 return;
1674
1675 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1676
1677 if (ice_ctrlq_pending(hw, &hw->sbq))
1678 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1679
1680 ice_flush(hw);
1681 }
1682
1683 /**
1684 * ice_service_task_schedule - schedule the service task to wake up
1685 * @pf: board private structure
1686 *
1687 * If not already scheduled, this puts the task into the work queue.
1688 */
ice_service_task_schedule(struct ice_pf * pf)1689 void ice_service_task_schedule(struct ice_pf *pf)
1690 {
1691 if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1692 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1693 !test_bit(ICE_NEEDS_RESTART, pf->state))
1694 queue_work(ice_wq, &pf->serv_task);
1695 }
1696
1697 /**
1698 * ice_service_task_complete - finish up the service task
1699 * @pf: board private structure
1700 */
ice_service_task_complete(struct ice_pf * pf)1701 static void ice_service_task_complete(struct ice_pf *pf)
1702 {
1703 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1704
1705 /* force memory (pf->state) to sync before next service task */
1706 smp_mb__before_atomic();
1707 clear_bit(ICE_SERVICE_SCHED, pf->state);
1708 }
1709
1710 /**
1711 * ice_service_task_stop - stop service task and cancel works
1712 * @pf: board private structure
1713 *
1714 * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1715 * 1 otherwise.
1716 */
ice_service_task_stop(struct ice_pf * pf)1717 static int ice_service_task_stop(struct ice_pf *pf)
1718 {
1719 int ret;
1720
1721 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1722
1723 if (pf->serv_tmr.function)
1724 timer_delete_sync(&pf->serv_tmr);
1725 if (pf->serv_task.func)
1726 cancel_work_sync(&pf->serv_task);
1727
1728 clear_bit(ICE_SERVICE_SCHED, pf->state);
1729 return ret;
1730 }
1731
1732 /**
1733 * ice_service_task_restart - restart service task and schedule works
1734 * @pf: board private structure
1735 *
1736 * This function is needed for suspend and resume works (e.g WoL scenario)
1737 */
ice_service_task_restart(struct ice_pf * pf)1738 static void ice_service_task_restart(struct ice_pf *pf)
1739 {
1740 clear_bit(ICE_SERVICE_DIS, pf->state);
1741 ice_service_task_schedule(pf);
1742 }
1743
1744 /**
1745 * ice_service_timer - timer callback to schedule service task
1746 * @t: pointer to timer_list
1747 */
ice_service_timer(struct timer_list * t)1748 static void ice_service_timer(struct timer_list *t)
1749 {
1750 struct ice_pf *pf = timer_container_of(pf, t, serv_tmr);
1751
1752 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1753 ice_service_task_schedule(pf);
1754 }
1755
1756 /**
1757 * ice_mdd_maybe_reset_vf - reset VF after MDD event
1758 * @pf: pointer to the PF structure
1759 * @vf: pointer to the VF structure
1760 * @reset_vf_tx: whether Tx MDD has occurred
1761 * @reset_vf_rx: whether Rx MDD has occurred
1762 *
1763 * Since the queue can get stuck on VF MDD events, the PF can be configured to
1764 * automatically reset the VF by enabling the private ethtool flag
1765 * mdd-auto-reset-vf.
1766 */
ice_mdd_maybe_reset_vf(struct ice_pf * pf,struct ice_vf * vf,bool reset_vf_tx,bool reset_vf_rx)1767 static void ice_mdd_maybe_reset_vf(struct ice_pf *pf, struct ice_vf *vf,
1768 bool reset_vf_tx, bool reset_vf_rx)
1769 {
1770 struct device *dev = ice_pf_to_dev(pf);
1771
1772 if (!test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags))
1773 return;
1774
1775 /* VF MDD event counters will be cleared by reset, so print the event
1776 * prior to reset.
1777 */
1778 if (reset_vf_tx)
1779 ice_print_vf_tx_mdd_event(vf);
1780
1781 if (reset_vf_rx)
1782 ice_print_vf_rx_mdd_event(vf);
1783
1784 dev_info(dev, "PF-to-VF reset on PF %d VF %d due to MDD event\n",
1785 pf->hw.pf_id, vf->vf_id);
1786 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
1787 }
1788
1789 /**
1790 * ice_handle_mdd_event - handle malicious driver detect event
1791 * @pf: pointer to the PF structure
1792 *
1793 * Called from service task. OICR interrupt handler indicates MDD event.
1794 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1795 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1796 * disable the queue, the PF can be configured to reset the VF using ethtool
1797 * private flag mdd-auto-reset-vf.
1798 */
ice_handle_mdd_event(struct ice_pf * pf)1799 static void ice_handle_mdd_event(struct ice_pf *pf)
1800 {
1801 struct device *dev = ice_pf_to_dev(pf);
1802 struct ice_hw *hw = &pf->hw;
1803 struct ice_vf *vf;
1804 unsigned int bkt;
1805 u32 reg;
1806
1807 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1808 /* Since the VF MDD event logging is rate limited, check if
1809 * there are pending MDD events.
1810 */
1811 ice_print_vfs_mdd_events(pf);
1812 return;
1813 }
1814
1815 /* find what triggered an MDD event */
1816 reg = rd32(hw, GL_MDET_TX_PQM);
1817 if (reg & GL_MDET_TX_PQM_VALID_M) {
1818 u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg);
1819 u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg);
1820 u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg);
1821 u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg);
1822
1823 if (netif_msg_tx_err(pf))
1824 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1825 event, queue, pf_num, vf_num);
1826 ice_report_mdd_event(pf, ICE_MDD_SRC_TX_PQM, pf_num, vf_num,
1827 event, queue);
1828 wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1829 }
1830
1831 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw));
1832 if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1833 u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg);
1834 u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg);
1835 u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg);
1836 u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg);
1837
1838 if (netif_msg_tx_err(pf))
1839 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1840 event, queue, pf_num, vf_num);
1841 ice_report_mdd_event(pf, ICE_MDD_SRC_TX_TCLAN, pf_num, vf_num,
1842 event, queue);
1843 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX);
1844 }
1845
1846 reg = rd32(hw, GL_MDET_RX);
1847 if (reg & GL_MDET_RX_VALID_M) {
1848 u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg);
1849 u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg);
1850 u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg);
1851 u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg);
1852
1853 if (netif_msg_rx_err(pf))
1854 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1855 event, queue, pf_num, vf_num);
1856 ice_report_mdd_event(pf, ICE_MDD_SRC_RX, pf_num, vf_num, event,
1857 queue);
1858 wr32(hw, GL_MDET_RX, 0xffffffff);
1859 }
1860
1861 /* check to see if this PF caused an MDD event */
1862 reg = rd32(hw, PF_MDET_TX_PQM);
1863 if (reg & PF_MDET_TX_PQM_VALID_M) {
1864 wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1865 if (netif_msg_tx_err(pf))
1866 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1867 }
1868
1869 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw));
1870 if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1871 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff);
1872 if (netif_msg_tx_err(pf))
1873 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1874 }
1875
1876 reg = rd32(hw, PF_MDET_RX);
1877 if (reg & PF_MDET_RX_VALID_M) {
1878 wr32(hw, PF_MDET_RX, 0xFFFF);
1879 if (netif_msg_rx_err(pf))
1880 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1881 }
1882
1883 /* Check to see if one of the VFs caused an MDD event, and then
1884 * increment counters and set print pending
1885 */
1886 mutex_lock(&pf->vfs.table_lock);
1887 ice_for_each_vf(pf, bkt, vf) {
1888 bool reset_vf_tx = false, reset_vf_rx = false;
1889
1890 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1891 if (reg & VP_MDET_TX_PQM_VALID_M) {
1892 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1893 vf->mdd_tx_events.count++;
1894 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1895 if (netif_msg_tx_err(pf))
1896 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1897 vf->vf_id);
1898
1899 reset_vf_tx = true;
1900 }
1901
1902 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1903 if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1904 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1905 vf->mdd_tx_events.count++;
1906 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1907 if (netif_msg_tx_err(pf))
1908 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1909 vf->vf_id);
1910
1911 reset_vf_tx = true;
1912 }
1913
1914 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1915 if (reg & VP_MDET_TX_TDPU_VALID_M) {
1916 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1917 vf->mdd_tx_events.count++;
1918 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1919 if (netif_msg_tx_err(pf))
1920 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1921 vf->vf_id);
1922
1923 reset_vf_tx = true;
1924 }
1925
1926 reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1927 if (reg & VP_MDET_RX_VALID_M) {
1928 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1929 vf->mdd_rx_events.count++;
1930 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1931 if (netif_msg_rx_err(pf))
1932 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1933 vf->vf_id);
1934
1935 reset_vf_rx = true;
1936 }
1937
1938 if (reset_vf_tx || reset_vf_rx)
1939 ice_mdd_maybe_reset_vf(pf, vf, reset_vf_tx,
1940 reset_vf_rx);
1941 }
1942 mutex_unlock(&pf->vfs.table_lock);
1943
1944 ice_print_vfs_mdd_events(pf);
1945 }
1946
1947 /**
1948 * ice_force_phys_link_state - Force the physical link state
1949 * @vsi: VSI to force the physical link state to up/down
1950 * @link_up: true/false indicates to set the physical link to up/down
1951 *
1952 * Force the physical link state by getting the current PHY capabilities from
1953 * hardware and setting the PHY config based on the determined capabilities. If
1954 * link changes a link event will be triggered because both the Enable Automatic
1955 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1956 *
1957 * Returns 0 on success, negative on failure
1958 */
ice_force_phys_link_state(struct ice_vsi * vsi,bool link_up)1959 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1960 {
1961 struct ice_aqc_get_phy_caps_data *pcaps;
1962 struct ice_aqc_set_phy_cfg_data *cfg;
1963 struct ice_port_info *pi;
1964 struct device *dev;
1965 int retcode;
1966
1967 if (!vsi || !vsi->port_info || !vsi->back)
1968 return -EINVAL;
1969 if (vsi->type != ICE_VSI_PF)
1970 return 0;
1971
1972 dev = ice_pf_to_dev(vsi->back);
1973
1974 pi = vsi->port_info;
1975
1976 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1977 if (!pcaps)
1978 return -ENOMEM;
1979
1980 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1981 NULL);
1982 if (retcode) {
1983 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1984 vsi->vsi_num, retcode);
1985 retcode = -EIO;
1986 goto out;
1987 }
1988
1989 /* No change in link */
1990 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1991 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1992 goto out;
1993
1994 /* Use the current user PHY configuration. The current user PHY
1995 * configuration is initialized during probe from PHY capabilities
1996 * software mode, and updated on set PHY configuration.
1997 */
1998 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1999 if (!cfg) {
2000 retcode = -ENOMEM;
2001 goto out;
2002 }
2003
2004 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2005 if (link_up)
2006 cfg->caps |= ICE_AQ_PHY_ENA_LINK;
2007 else
2008 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
2009
2010 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
2011 if (retcode) {
2012 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2013 vsi->vsi_num, retcode);
2014 retcode = -EIO;
2015 }
2016
2017 kfree(cfg);
2018 out:
2019 kfree(pcaps);
2020 return retcode;
2021 }
2022
2023 /**
2024 * ice_init_nvm_phy_type - Initialize the NVM PHY type
2025 * @pi: port info structure
2026 *
2027 * Initialize nvm_phy_type_[low|high] for link lenient mode support
2028 */
ice_init_nvm_phy_type(struct ice_port_info * pi)2029 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
2030 {
2031 struct ice_aqc_get_phy_caps_data *pcaps;
2032 struct ice_pf *pf = pi->hw->back;
2033 int err;
2034
2035 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2036 if (!pcaps)
2037 return -ENOMEM;
2038
2039 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
2040 pcaps, NULL);
2041
2042 if (err) {
2043 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2044 goto out;
2045 }
2046
2047 pf->nvm_phy_type_hi = pcaps->phy_type_high;
2048 pf->nvm_phy_type_lo = pcaps->phy_type_low;
2049
2050 out:
2051 kfree(pcaps);
2052 return err;
2053 }
2054
2055 /**
2056 * ice_init_link_dflt_override - Initialize link default override
2057 * @pi: port info structure
2058 *
2059 * Initialize link default override and PHY total port shutdown during probe
2060 */
ice_init_link_dflt_override(struct ice_port_info * pi)2061 static void ice_init_link_dflt_override(struct ice_port_info *pi)
2062 {
2063 struct ice_link_default_override_tlv *ldo;
2064 struct ice_pf *pf = pi->hw->back;
2065
2066 ldo = &pf->link_dflt_override;
2067 if (ice_get_link_default_override(ldo, pi))
2068 return;
2069
2070 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
2071 return;
2072
2073 /* Enable Total Port Shutdown (override/replace link-down-on-close
2074 * ethtool private flag) for ports with Port Disable bit set.
2075 */
2076 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
2077 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
2078 }
2079
2080 /**
2081 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
2082 * @pi: port info structure
2083 *
2084 * If default override is enabled, initialize the user PHY cfg speed and FEC
2085 * settings using the default override mask from the NVM.
2086 *
2087 * The PHY should only be configured with the default override settings the
2088 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
2089 * is used to indicate that the user PHY cfg default override is initialized
2090 * and the PHY has not been configured with the default override settings. The
2091 * state is set here, and cleared in ice_configure_phy the first time the PHY is
2092 * configured.
2093 *
2094 * This function should be called only if the FW doesn't support default
2095 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
2096 */
ice_init_phy_cfg_dflt_override(struct ice_port_info * pi)2097 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
2098 {
2099 struct ice_link_default_override_tlv *ldo;
2100 struct ice_aqc_set_phy_cfg_data *cfg;
2101 struct ice_phy_info *phy = &pi->phy;
2102 struct ice_pf *pf = pi->hw->back;
2103
2104 ldo = &pf->link_dflt_override;
2105
2106 /* If link default override is enabled, use to mask NVM PHY capabilities
2107 * for speed and FEC default configuration.
2108 */
2109 cfg = &phy->curr_user_phy_cfg;
2110
2111 if (ldo->phy_type_low || ldo->phy_type_high) {
2112 cfg->phy_type_low = pf->nvm_phy_type_lo &
2113 cpu_to_le64(ldo->phy_type_low);
2114 cfg->phy_type_high = pf->nvm_phy_type_hi &
2115 cpu_to_le64(ldo->phy_type_high);
2116 }
2117 cfg->link_fec_opt = ldo->fec_options;
2118 phy->curr_user_fec_req = ICE_FEC_AUTO;
2119
2120 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2121 }
2122
2123 /**
2124 * ice_init_phy_user_cfg - Initialize the PHY user configuration
2125 * @pi: port info structure
2126 *
2127 * Initialize the current user PHY configuration, speed, FEC, and FC requested
2128 * mode to default. The PHY defaults are from get PHY capabilities topology
2129 * with media so call when media is first available. An error is returned if
2130 * called when media is not available. The PHY initialization completed state is
2131 * set here.
2132 *
2133 * These configurations are used when setting PHY
2134 * configuration. The user PHY configuration is updated on set PHY
2135 * configuration. Returns 0 on success, negative on failure
2136 */
ice_init_phy_user_cfg(struct ice_port_info * pi)2137 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2138 {
2139 struct ice_aqc_get_phy_caps_data *pcaps;
2140 struct ice_phy_info *phy = &pi->phy;
2141 struct ice_pf *pf = pi->hw->back;
2142 int err;
2143
2144 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2145 return -EIO;
2146
2147 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2148 if (!pcaps)
2149 return -ENOMEM;
2150
2151 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2152 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2153 pcaps, NULL);
2154 else
2155 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2156 pcaps, NULL);
2157 if (err) {
2158 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2159 goto err_out;
2160 }
2161
2162 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2163
2164 /* check if lenient mode is supported and enabled */
2165 if (ice_fw_supports_link_override(pi->hw) &&
2166 !(pcaps->module_compliance_enforcement &
2167 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2168 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2169
2170 /* if the FW supports default PHY configuration mode, then the driver
2171 * does not have to apply link override settings. If not,
2172 * initialize user PHY configuration with link override values
2173 */
2174 if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2175 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2176 ice_init_phy_cfg_dflt_override(pi);
2177 goto out;
2178 }
2179 }
2180
2181 /* if link default override is not enabled, set user flow control and
2182 * FEC settings based on what get_phy_caps returned
2183 */
2184 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2185 pcaps->link_fec_options);
2186 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2187
2188 out:
2189 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2190 set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2191 err_out:
2192 kfree(pcaps);
2193 return err;
2194 }
2195
2196 /**
2197 * ice_configure_phy - configure PHY
2198 * @vsi: VSI of PHY
2199 *
2200 * Set the PHY configuration. If the current PHY configuration is the same as
2201 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2202 * configure the based get PHY capabilities for topology with media.
2203 */
ice_configure_phy(struct ice_vsi * vsi)2204 static int ice_configure_phy(struct ice_vsi *vsi)
2205 {
2206 struct device *dev = ice_pf_to_dev(vsi->back);
2207 struct ice_port_info *pi = vsi->port_info;
2208 struct ice_aqc_get_phy_caps_data *pcaps;
2209 struct ice_aqc_set_phy_cfg_data *cfg;
2210 struct ice_phy_info *phy = &pi->phy;
2211 struct ice_pf *pf = vsi->back;
2212 int err;
2213
2214 /* Ensure we have media as we cannot configure a medialess port */
2215 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2216 return -ENOMEDIUM;
2217
2218 ice_print_topo_conflict(vsi);
2219
2220 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2221 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2222 return -EPERM;
2223
2224 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2225 return ice_force_phys_link_state(vsi, true);
2226
2227 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2228 if (!pcaps)
2229 return -ENOMEM;
2230
2231 /* Get current PHY config */
2232 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2233 NULL);
2234 if (err) {
2235 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2236 vsi->vsi_num, err);
2237 goto done;
2238 }
2239
2240 /* If PHY enable link is configured and configuration has not changed,
2241 * there's nothing to do
2242 */
2243 if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2244 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2245 goto done;
2246
2247 /* Use PHY topology as baseline for configuration */
2248 memset(pcaps, 0, sizeof(*pcaps));
2249 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2250 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2251 pcaps, NULL);
2252 else
2253 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2254 pcaps, NULL);
2255 if (err) {
2256 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2257 vsi->vsi_num, err);
2258 goto done;
2259 }
2260
2261 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2262 if (!cfg) {
2263 err = -ENOMEM;
2264 goto done;
2265 }
2266
2267 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2268
2269 /* Speed - If default override pending, use curr_user_phy_cfg set in
2270 * ice_init_phy_user_cfg_ldo.
2271 */
2272 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2273 vsi->back->state)) {
2274 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2275 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2276 } else {
2277 u64 phy_low = 0, phy_high = 0;
2278
2279 ice_update_phy_type(&phy_low, &phy_high,
2280 pi->phy.curr_user_speed_req);
2281 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2282 cfg->phy_type_high = pcaps->phy_type_high &
2283 cpu_to_le64(phy_high);
2284 }
2285
2286 /* Can't provide what was requested; use PHY capabilities */
2287 if (!cfg->phy_type_low && !cfg->phy_type_high) {
2288 cfg->phy_type_low = pcaps->phy_type_low;
2289 cfg->phy_type_high = pcaps->phy_type_high;
2290 }
2291
2292 /* FEC */
2293 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2294
2295 /* Can't provide what was requested; use PHY capabilities */
2296 if (cfg->link_fec_opt !=
2297 (cfg->link_fec_opt & pcaps->link_fec_options)) {
2298 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2299 cfg->link_fec_opt = pcaps->link_fec_options;
2300 }
2301
2302 /* Flow Control - always supported; no need to check against
2303 * capabilities
2304 */
2305 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2306
2307 /* Enable link and link update */
2308 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2309
2310 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2311 if (err)
2312 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2313 vsi->vsi_num, err);
2314
2315 kfree(cfg);
2316 done:
2317 kfree(pcaps);
2318 return err;
2319 }
2320
2321 /**
2322 * ice_check_media_subtask - Check for media
2323 * @pf: pointer to PF struct
2324 *
2325 * If media is available, then initialize PHY user configuration if it is not
2326 * been, and configure the PHY if the interface is up.
2327 */
ice_check_media_subtask(struct ice_pf * pf)2328 static void ice_check_media_subtask(struct ice_pf *pf)
2329 {
2330 struct ice_port_info *pi;
2331 struct ice_vsi *vsi;
2332 int err;
2333
2334 /* No need to check for media if it's already present */
2335 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2336 return;
2337
2338 vsi = ice_get_main_vsi(pf);
2339 if (!vsi)
2340 return;
2341
2342 /* Refresh link info and check if media is present */
2343 pi = vsi->port_info;
2344 err = ice_update_link_info(pi);
2345 if (err)
2346 return;
2347
2348 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2349
2350 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2351 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2352 ice_init_phy_user_cfg(pi);
2353
2354 /* PHY settings are reset on media insertion, reconfigure
2355 * PHY to preserve settings.
2356 */
2357 if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2358 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2359 return;
2360
2361 err = ice_configure_phy(vsi);
2362 if (!err)
2363 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2364
2365 /* A Link Status Event will be generated; the event handler
2366 * will complete bringing the interface up
2367 */
2368 }
2369 }
2370
ice_service_task_recovery_mode(struct work_struct * work)2371 static void ice_service_task_recovery_mode(struct work_struct *work)
2372 {
2373 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2374
2375 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
2376 ice_clean_adminq_subtask(pf);
2377
2378 ice_service_task_complete(pf);
2379
2380 mod_timer(&pf->serv_tmr, jiffies + msecs_to_jiffies(100));
2381 }
2382
2383 /**
2384 * ice_service_task - manage and run subtasks
2385 * @work: pointer to work_struct contained by the PF struct
2386 */
ice_service_task(struct work_struct * work)2387 static void ice_service_task(struct work_struct *work)
2388 {
2389 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2390 unsigned long start_time = jiffies;
2391
2392 if (pf->health_reporters.tx_hang_buf.tx_ring) {
2393 ice_report_tx_hang(pf);
2394 pf->health_reporters.tx_hang_buf.tx_ring = NULL;
2395 }
2396
2397 ice_reset_subtask(pf);
2398
2399 /* bail if a reset/recovery cycle is pending or rebuild failed */
2400 if (ice_is_reset_in_progress(pf->state) ||
2401 test_bit(ICE_SUSPENDED, pf->state) ||
2402 test_bit(ICE_NEEDS_RESTART, pf->state)) {
2403 ice_service_task_complete(pf);
2404 return;
2405 }
2406
2407 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2408 struct iidc_rdma_event *event;
2409
2410 event = kzalloc(sizeof(*event), GFP_KERNEL);
2411 if (event) {
2412 set_bit(IIDC_RDMA_EVENT_CRIT_ERR, event->type);
2413 /* report the entire OICR value to AUX driver */
2414 swap(event->reg, pf->oicr_err_reg);
2415 ice_send_event_to_aux(pf, event);
2416 kfree(event);
2417 }
2418 }
2419
2420 /* unplug aux dev per request, if an unplug request came in
2421 * while processing a plug request, this will handle it
2422 */
2423 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags))
2424 ice_unplug_aux_dev(pf);
2425
2426 /* Plug aux device per request */
2427 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2428 ice_plug_aux_dev(pf);
2429
2430 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2431 struct iidc_rdma_event *event;
2432
2433 event = kzalloc(sizeof(*event), GFP_KERNEL);
2434 if (event) {
2435 set_bit(IIDC_RDMA_EVENT_AFTER_MTU_CHANGE, event->type);
2436 ice_send_event_to_aux(pf, event);
2437 kfree(event);
2438 }
2439 }
2440
2441 ice_clean_adminq_subtask(pf);
2442 ice_check_media_subtask(pf);
2443 ice_check_for_hang_subtask(pf);
2444 ice_sync_fltr_subtask(pf);
2445 ice_handle_mdd_event(pf);
2446 ice_watchdog_subtask(pf);
2447
2448 if (ice_is_safe_mode(pf)) {
2449 ice_service_task_complete(pf);
2450 return;
2451 }
2452
2453 ice_process_vflr_event(pf);
2454 ice_clean_mailboxq_subtask(pf);
2455 ice_clean_sbq_subtask(pf);
2456 ice_sync_arfs_fltrs(pf);
2457 ice_flush_fdir_ctx(pf);
2458
2459 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2460 ice_service_task_complete(pf);
2461
2462 /* If the tasks have taken longer than one service timer period
2463 * or there is more work to be done, reset the service timer to
2464 * schedule the service task now.
2465 */
2466 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2467 test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2468 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2469 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2470 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2471 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2472 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2473 mod_timer(&pf->serv_tmr, jiffies);
2474 }
2475
2476 /**
2477 * ice_set_ctrlq_len - helper function to set controlq length
2478 * @hw: pointer to the HW instance
2479 */
ice_set_ctrlq_len(struct ice_hw * hw)2480 static void ice_set_ctrlq_len(struct ice_hw *hw)
2481 {
2482 hw->adminq.num_rq_entries = ICE_AQ_LEN;
2483 hw->adminq.num_sq_entries = ICE_AQ_LEN;
2484 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2485 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2486 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2487 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2488 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2489 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2490 hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2491 hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2492 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2493 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2494 }
2495
2496 /**
2497 * ice_schedule_reset - schedule a reset
2498 * @pf: board private structure
2499 * @reset: reset being requested
2500 */
ice_schedule_reset(struct ice_pf * pf,enum ice_reset_req reset)2501 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2502 {
2503 struct device *dev = ice_pf_to_dev(pf);
2504
2505 /* bail out if earlier reset has failed */
2506 if (test_bit(ICE_RESET_FAILED, pf->state)) {
2507 dev_dbg(dev, "earlier reset has failed\n");
2508 return -EIO;
2509 }
2510 /* bail if reset/recovery already in progress */
2511 if (ice_is_reset_in_progress(pf->state)) {
2512 dev_dbg(dev, "Reset already in progress\n");
2513 return -EBUSY;
2514 }
2515
2516 switch (reset) {
2517 case ICE_RESET_PFR:
2518 set_bit(ICE_PFR_REQ, pf->state);
2519 break;
2520 case ICE_RESET_CORER:
2521 set_bit(ICE_CORER_REQ, pf->state);
2522 break;
2523 case ICE_RESET_GLOBR:
2524 set_bit(ICE_GLOBR_REQ, pf->state);
2525 break;
2526 default:
2527 return -EINVAL;
2528 }
2529
2530 ice_service_task_schedule(pf);
2531 return 0;
2532 }
2533
2534 /**
2535 * ice_vsi_ena_irq - Enable IRQ for the given VSI
2536 * @vsi: the VSI being configured
2537 */
ice_vsi_ena_irq(struct ice_vsi * vsi)2538 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2539 {
2540 struct ice_hw *hw = &vsi->back->hw;
2541 int i;
2542
2543 ice_for_each_q_vector(vsi, i)
2544 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2545
2546 ice_flush(hw);
2547 return 0;
2548 }
2549
2550 /**
2551 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2552 * @vsi: the VSI being configured
2553 * @basename: name for the vector
2554 */
ice_vsi_req_irq_msix(struct ice_vsi * vsi,char * basename)2555 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2556 {
2557 int q_vectors = vsi->num_q_vectors;
2558 struct ice_pf *pf = vsi->back;
2559 struct device *dev;
2560 int rx_int_idx = 0;
2561 int tx_int_idx = 0;
2562 int vector, err;
2563 int irq_num;
2564
2565 dev = ice_pf_to_dev(pf);
2566 for (vector = 0; vector < q_vectors; vector++) {
2567 struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2568
2569 irq_num = q_vector->irq.virq;
2570
2571 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2572 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2573 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2574 tx_int_idx++;
2575 } else if (q_vector->rx.rx_ring) {
2576 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2577 "%s-%s-%d", basename, "rx", rx_int_idx++);
2578 } else if (q_vector->tx.tx_ring) {
2579 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2580 "%s-%s-%d", basename, "tx", tx_int_idx++);
2581 } else {
2582 /* skip this unused q_vector */
2583 continue;
2584 }
2585 if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2586 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2587 IRQF_SHARED, q_vector->name,
2588 q_vector);
2589 else
2590 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2591 0, q_vector->name, q_vector);
2592 if (err) {
2593 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2594 err);
2595 goto free_q_irqs;
2596 }
2597 }
2598
2599 err = ice_set_cpu_rx_rmap(vsi);
2600 if (err) {
2601 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2602 vsi->vsi_num, ERR_PTR(err));
2603 goto free_q_irqs;
2604 }
2605
2606 vsi->irqs_ready = true;
2607 return 0;
2608
2609 free_q_irqs:
2610 while (vector--) {
2611 irq_num = vsi->q_vectors[vector]->irq.virq;
2612 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2613 }
2614 return err;
2615 }
2616
2617 /**
2618 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2619 * @vsi: VSI to setup Tx rings used by XDP
2620 *
2621 * Return 0 on success and negative value on error
2622 */
ice_xdp_alloc_setup_rings(struct ice_vsi * vsi)2623 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2624 {
2625 struct device *dev = ice_pf_to_dev(vsi->back);
2626 struct ice_tx_desc *tx_desc;
2627 int i, j;
2628
2629 ice_for_each_xdp_txq(vsi, i) {
2630 u16 xdp_q_idx = vsi->alloc_txq + i;
2631 struct ice_ring_stats *ring_stats;
2632 struct ice_tx_ring *xdp_ring;
2633
2634 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2635 if (!xdp_ring)
2636 goto free_xdp_rings;
2637
2638 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
2639 if (!ring_stats) {
2640 ice_free_tx_ring(xdp_ring);
2641 goto free_xdp_rings;
2642 }
2643
2644 xdp_ring->ring_stats = ring_stats;
2645 xdp_ring->q_index = xdp_q_idx;
2646 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2647 xdp_ring->vsi = vsi;
2648 xdp_ring->netdev = NULL;
2649 xdp_ring->dev = dev;
2650 xdp_ring->count = vsi->num_tx_desc;
2651 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2652 if (ice_setup_tx_ring(xdp_ring))
2653 goto free_xdp_rings;
2654 ice_set_ring_xdp(xdp_ring);
2655 spin_lock_init(&xdp_ring->tx_lock);
2656 for (j = 0; j < xdp_ring->count; j++) {
2657 tx_desc = ICE_TX_DESC(xdp_ring, j);
2658 tx_desc->cmd_type_offset_bsz = 0;
2659 }
2660 }
2661
2662 return 0;
2663
2664 free_xdp_rings:
2665 for (; i >= 0; i--) {
2666 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) {
2667 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2668 vsi->xdp_rings[i]->ring_stats = NULL;
2669 ice_free_tx_ring(vsi->xdp_rings[i]);
2670 }
2671 }
2672 return -ENOMEM;
2673 }
2674
2675 /**
2676 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2677 * @vsi: VSI to set the bpf prog on
2678 * @prog: the bpf prog pointer
2679 */
ice_vsi_assign_bpf_prog(struct ice_vsi * vsi,struct bpf_prog * prog)2680 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2681 {
2682 struct bpf_prog *old_prog;
2683 int i;
2684
2685 old_prog = xchg(&vsi->xdp_prog, prog);
2686 ice_for_each_rxq(vsi, i)
2687 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2688
2689 if (old_prog)
2690 bpf_prog_put(old_prog);
2691 }
2692
ice_xdp_ring_from_qid(struct ice_vsi * vsi,int qid)2693 static struct ice_tx_ring *ice_xdp_ring_from_qid(struct ice_vsi *vsi, int qid)
2694 {
2695 struct ice_q_vector *q_vector;
2696 struct ice_tx_ring *ring;
2697
2698 if (static_key_enabled(&ice_xdp_locking_key))
2699 return vsi->xdp_rings[qid % vsi->num_xdp_txq];
2700
2701 q_vector = vsi->rx_rings[qid]->q_vector;
2702 ice_for_each_tx_ring(ring, q_vector->tx)
2703 if (ice_ring_is_xdp(ring))
2704 return ring;
2705
2706 return NULL;
2707 }
2708
2709 /**
2710 * ice_map_xdp_rings - Map XDP rings to interrupt vectors
2711 * @vsi: the VSI with XDP rings being configured
2712 *
2713 * Map XDP rings to interrupt vectors and perform the configuration steps
2714 * dependent on the mapping.
2715 */
ice_map_xdp_rings(struct ice_vsi * vsi)2716 void ice_map_xdp_rings(struct ice_vsi *vsi)
2717 {
2718 int xdp_rings_rem = vsi->num_xdp_txq;
2719 int v_idx, q_idx;
2720
2721 /* follow the logic from ice_vsi_map_rings_to_vectors */
2722 ice_for_each_q_vector(vsi, v_idx) {
2723 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2724 int xdp_rings_per_v, q_id, q_base;
2725
2726 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2727 vsi->num_q_vectors - v_idx);
2728 q_base = vsi->num_xdp_txq - xdp_rings_rem;
2729
2730 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2731 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2732
2733 xdp_ring->q_vector = q_vector;
2734 xdp_ring->next = q_vector->tx.tx_ring;
2735 q_vector->tx.tx_ring = xdp_ring;
2736 }
2737 xdp_rings_rem -= xdp_rings_per_v;
2738 }
2739
2740 ice_for_each_rxq(vsi, q_idx) {
2741 vsi->rx_rings[q_idx]->xdp_ring = ice_xdp_ring_from_qid(vsi,
2742 q_idx);
2743 ice_tx_xsk_pool(vsi, q_idx);
2744 }
2745 }
2746
2747 /**
2748 * ice_unmap_xdp_rings - Unmap XDP rings from interrupt vectors
2749 * @vsi: the VSI with XDP rings being unmapped
2750 */
ice_unmap_xdp_rings(struct ice_vsi * vsi)2751 static void ice_unmap_xdp_rings(struct ice_vsi *vsi)
2752 {
2753 int v_idx;
2754
2755 ice_for_each_q_vector(vsi, v_idx) {
2756 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2757 struct ice_tx_ring *ring;
2758
2759 ice_for_each_tx_ring(ring, q_vector->tx)
2760 if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2761 break;
2762
2763 /* restore the value of last node prior to XDP setup */
2764 q_vector->tx.tx_ring = ring;
2765 }
2766 }
2767
2768 /**
2769 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2770 * @vsi: VSI to bring up Tx rings used by XDP
2771 * @prog: bpf program that will be assigned to VSI
2772 * @cfg_type: create from scratch or restore the existing configuration
2773 *
2774 * Return 0 on success and negative value on error
2775 */
ice_prepare_xdp_rings(struct ice_vsi * vsi,struct bpf_prog * prog,enum ice_xdp_cfg cfg_type)2776 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog,
2777 enum ice_xdp_cfg cfg_type)
2778 {
2779 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2780 struct ice_pf *pf = vsi->back;
2781 struct ice_qs_cfg xdp_qs_cfg = {
2782 .qs_mutex = &pf->avail_q_mutex,
2783 .pf_map = pf->avail_txqs,
2784 .pf_map_size = pf->max_pf_txqs,
2785 .q_count = vsi->num_xdp_txq,
2786 .scatter_count = ICE_MAX_SCATTER_TXQS,
2787 .vsi_map = vsi->txq_map,
2788 .vsi_map_offset = vsi->alloc_txq,
2789 .mapping_mode = ICE_VSI_MAP_CONTIG
2790 };
2791 struct device *dev;
2792 int status, i;
2793
2794 dev = ice_pf_to_dev(pf);
2795 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2796 sizeof(*vsi->xdp_rings), GFP_KERNEL);
2797 if (!vsi->xdp_rings)
2798 return -ENOMEM;
2799
2800 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2801 if (__ice_vsi_get_qs(&xdp_qs_cfg))
2802 goto err_map_xdp;
2803
2804 if (static_key_enabled(&ice_xdp_locking_key))
2805 netdev_warn(vsi->netdev,
2806 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2807
2808 if (ice_xdp_alloc_setup_rings(vsi))
2809 goto clear_xdp_rings;
2810
2811 /* omit the scheduler update if in reset path; XDP queues will be
2812 * taken into account at the end of ice_vsi_rebuild, where
2813 * ice_cfg_vsi_lan is being called
2814 */
2815 if (cfg_type == ICE_XDP_CFG_PART)
2816 return 0;
2817
2818 ice_map_xdp_rings(vsi);
2819
2820 /* tell the Tx scheduler that right now we have
2821 * additional queues
2822 */
2823 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2824 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2825
2826 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2827 max_txqs);
2828 if (status) {
2829 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2830 status);
2831 goto unmap_xdp_rings;
2832 }
2833
2834 /* assign the prog only when it's not already present on VSI;
2835 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2836 * VSI rebuild that happens under ethtool -L can expose us to
2837 * the bpf_prog refcount issues as we would be swapping same
2838 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2839 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2840 * this is not harmful as dev_xdp_install bumps the refcount
2841 * before calling the op exposed by the driver;
2842 */
2843 if (!ice_is_xdp_ena_vsi(vsi))
2844 ice_vsi_assign_bpf_prog(vsi, prog);
2845
2846 return 0;
2847 unmap_xdp_rings:
2848 ice_unmap_xdp_rings(vsi);
2849 clear_xdp_rings:
2850 ice_for_each_xdp_txq(vsi, i)
2851 if (vsi->xdp_rings[i]) {
2852 kfree_rcu(vsi->xdp_rings[i], rcu);
2853 vsi->xdp_rings[i] = NULL;
2854 }
2855
2856 err_map_xdp:
2857 mutex_lock(&pf->avail_q_mutex);
2858 ice_for_each_xdp_txq(vsi, i) {
2859 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2860 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2861 }
2862 mutex_unlock(&pf->avail_q_mutex);
2863
2864 devm_kfree(dev, vsi->xdp_rings);
2865 vsi->xdp_rings = NULL;
2866
2867 return -ENOMEM;
2868 }
2869
2870 /**
2871 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2872 * @vsi: VSI to remove XDP rings
2873 * @cfg_type: disable XDP permanently or allow it to be restored later
2874 *
2875 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2876 * resources
2877 */
ice_destroy_xdp_rings(struct ice_vsi * vsi,enum ice_xdp_cfg cfg_type)2878 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type)
2879 {
2880 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2881 struct ice_pf *pf = vsi->back;
2882 int i;
2883
2884 /* q_vectors are freed in reset path so there's no point in detaching
2885 * rings
2886 */
2887 if (cfg_type == ICE_XDP_CFG_PART)
2888 goto free_qmap;
2889
2890 ice_unmap_xdp_rings(vsi);
2891
2892 free_qmap:
2893 mutex_lock(&pf->avail_q_mutex);
2894 ice_for_each_xdp_txq(vsi, i) {
2895 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2896 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2897 }
2898 mutex_unlock(&pf->avail_q_mutex);
2899
2900 ice_for_each_xdp_txq(vsi, i)
2901 if (vsi->xdp_rings[i]) {
2902 if (vsi->xdp_rings[i]->desc) {
2903 synchronize_rcu();
2904 ice_free_tx_ring(vsi->xdp_rings[i]);
2905 }
2906 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2907 vsi->xdp_rings[i]->ring_stats = NULL;
2908 kfree_rcu(vsi->xdp_rings[i], rcu);
2909 vsi->xdp_rings[i] = NULL;
2910 }
2911
2912 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2913 vsi->xdp_rings = NULL;
2914
2915 if (static_key_enabled(&ice_xdp_locking_key))
2916 static_branch_dec(&ice_xdp_locking_key);
2917
2918 if (cfg_type == ICE_XDP_CFG_PART)
2919 return 0;
2920
2921 ice_vsi_assign_bpf_prog(vsi, NULL);
2922
2923 /* notify Tx scheduler that we destroyed XDP queues and bring
2924 * back the old number of child nodes
2925 */
2926 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2927 max_txqs[i] = vsi->num_txq;
2928
2929 /* change number of XDP Tx queues to 0 */
2930 vsi->num_xdp_txq = 0;
2931
2932 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2933 max_txqs);
2934 }
2935
2936 /**
2937 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2938 * @vsi: VSI to schedule napi on
2939 */
ice_vsi_rx_napi_schedule(struct ice_vsi * vsi)2940 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2941 {
2942 int i;
2943
2944 ice_for_each_rxq(vsi, i) {
2945 struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2946
2947 if (READ_ONCE(rx_ring->xsk_pool))
2948 napi_schedule(&rx_ring->q_vector->napi);
2949 }
2950 }
2951
2952 /**
2953 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2954 * @vsi: VSI to determine the count of XDP Tx qs
2955 *
2956 * returns 0 if Tx qs count is higher than at least half of CPU count,
2957 * -ENOMEM otherwise
2958 */
ice_vsi_determine_xdp_res(struct ice_vsi * vsi)2959 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2960 {
2961 u16 avail = ice_get_avail_txq_count(vsi->back);
2962 u16 cpus = num_possible_cpus();
2963
2964 if (avail < cpus / 2)
2965 return -ENOMEM;
2966
2967 if (vsi->type == ICE_VSI_SF)
2968 avail = vsi->alloc_txq;
2969
2970 vsi->num_xdp_txq = min_t(u16, avail, cpus);
2971
2972 if (vsi->num_xdp_txq < cpus)
2973 static_branch_inc(&ice_xdp_locking_key);
2974
2975 return 0;
2976 }
2977
2978 /**
2979 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
2980 * @vsi: Pointer to VSI structure
2981 */
ice_max_xdp_frame_size(struct ice_vsi * vsi)2982 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
2983 {
2984 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
2985 return ICE_RXBUF_1664;
2986 else
2987 return ICE_RXBUF_3072;
2988 }
2989
2990 /**
2991 * ice_xdp_setup_prog - Add or remove XDP eBPF program
2992 * @vsi: VSI to setup XDP for
2993 * @prog: XDP program
2994 * @extack: netlink extended ack
2995 */
2996 static int
ice_xdp_setup_prog(struct ice_vsi * vsi,struct bpf_prog * prog,struct netlink_ext_ack * extack)2997 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2998 struct netlink_ext_ack *extack)
2999 {
3000 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
3001 int ret = 0, xdp_ring_err = 0;
3002 bool if_running;
3003
3004 if (prog && !prog->aux->xdp_has_frags) {
3005 if (frame_size > ice_max_xdp_frame_size(vsi)) {
3006 NL_SET_ERR_MSG_MOD(extack,
3007 "MTU is too large for linear frames and XDP prog does not support frags");
3008 return -EOPNOTSUPP;
3009 }
3010 }
3011
3012 /* hot swap progs and avoid toggling link */
3013 if (ice_is_xdp_ena_vsi(vsi) == !!prog ||
3014 test_bit(ICE_VSI_REBUILD_PENDING, vsi->state)) {
3015 ice_vsi_assign_bpf_prog(vsi, prog);
3016 return 0;
3017 }
3018
3019 if_running = netif_running(vsi->netdev) &&
3020 !test_and_set_bit(ICE_VSI_DOWN, vsi->state);
3021
3022 /* need to stop netdev while setting up the program for Rx rings */
3023 if (if_running) {
3024 ret = ice_down(vsi);
3025 if (ret) {
3026 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
3027 return ret;
3028 }
3029 }
3030
3031 if (!ice_is_xdp_ena_vsi(vsi) && prog) {
3032 xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
3033 if (xdp_ring_err) {
3034 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
3035 goto resume_if;
3036 } else {
3037 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog,
3038 ICE_XDP_CFG_FULL);
3039 if (xdp_ring_err) {
3040 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
3041 goto resume_if;
3042 }
3043 }
3044 xdp_features_set_redirect_target(vsi->netdev, true);
3045 /* reallocate Rx queues that are used for zero-copy */
3046 xdp_ring_err = ice_realloc_zc_buf(vsi, true);
3047 if (xdp_ring_err)
3048 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed");
3049 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
3050 xdp_features_clear_redirect_target(vsi->netdev);
3051 xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL);
3052 if (xdp_ring_err)
3053 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
3054 /* reallocate Rx queues that were used for zero-copy */
3055 xdp_ring_err = ice_realloc_zc_buf(vsi, false);
3056 if (xdp_ring_err)
3057 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed");
3058 }
3059
3060 resume_if:
3061 if (if_running)
3062 ret = ice_up(vsi);
3063
3064 if (!ret && prog)
3065 ice_vsi_rx_napi_schedule(vsi);
3066
3067 return (ret || xdp_ring_err) ? -ENOMEM : 0;
3068 }
3069
3070 /**
3071 * ice_xdp_safe_mode - XDP handler for safe mode
3072 * @dev: netdevice
3073 * @xdp: XDP command
3074 */
ice_xdp_safe_mode(struct net_device __always_unused * dev,struct netdev_bpf * xdp)3075 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
3076 struct netdev_bpf *xdp)
3077 {
3078 NL_SET_ERR_MSG_MOD(xdp->extack,
3079 "Please provide working DDP firmware package in order to use XDP\n"
3080 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
3081 return -EOPNOTSUPP;
3082 }
3083
3084 /**
3085 * ice_xdp - implements XDP handler
3086 * @dev: netdevice
3087 * @xdp: XDP command
3088 */
ice_xdp(struct net_device * dev,struct netdev_bpf * xdp)3089 int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
3090 {
3091 struct ice_netdev_priv *np = netdev_priv(dev);
3092 struct ice_vsi *vsi = np->vsi;
3093 int ret;
3094
3095 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_SF) {
3096 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF or SF VSI");
3097 return -EINVAL;
3098 }
3099
3100 mutex_lock(&vsi->xdp_state_lock);
3101
3102 switch (xdp->command) {
3103 case XDP_SETUP_PROG:
3104 ret = ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
3105 break;
3106 case XDP_SETUP_XSK_POOL:
3107 ret = ice_xsk_pool_setup(vsi, xdp->xsk.pool, xdp->xsk.queue_id);
3108 break;
3109 default:
3110 ret = -EINVAL;
3111 }
3112
3113 mutex_unlock(&vsi->xdp_state_lock);
3114 return ret;
3115 }
3116
3117 /**
3118 * ice_ena_misc_vector - enable the non-queue interrupts
3119 * @pf: board private structure
3120 */
ice_ena_misc_vector(struct ice_pf * pf)3121 static void ice_ena_misc_vector(struct ice_pf *pf)
3122 {
3123 struct ice_hw *hw = &pf->hw;
3124 u32 pf_intr_start_offset;
3125 u32 val;
3126
3127 /* Disable anti-spoof detection interrupt to prevent spurious event
3128 * interrupts during a function reset. Anti-spoof functionally is
3129 * still supported.
3130 */
3131 val = rd32(hw, GL_MDCK_TX_TDPU);
3132 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
3133 wr32(hw, GL_MDCK_TX_TDPU, val);
3134
3135 /* clear things first */
3136 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */
3137 rd32(hw, PFINT_OICR); /* read to clear */
3138
3139 val = (PFINT_OICR_ECC_ERR_M |
3140 PFINT_OICR_MAL_DETECT_M |
3141 PFINT_OICR_GRST_M |
3142 PFINT_OICR_PCI_EXCEPTION_M |
3143 PFINT_OICR_VFLR_M |
3144 PFINT_OICR_HMC_ERR_M |
3145 PFINT_OICR_PE_PUSH_M |
3146 PFINT_OICR_PE_CRITERR_M);
3147
3148 wr32(hw, PFINT_OICR_ENA, val);
3149
3150 /* SW_ITR_IDX = 0, but don't change INTENA */
3151 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
3152 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3153
3154 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3155 return;
3156 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3157 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
3158 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3159 }
3160
3161 /**
3162 * ice_ll_ts_intr - ll_ts interrupt handler
3163 * @irq: interrupt number
3164 * @data: pointer to a q_vector
3165 */
ice_ll_ts_intr(int __always_unused irq,void * data)3166 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data)
3167 {
3168 struct ice_pf *pf = data;
3169 u32 pf_intr_start_offset;
3170 struct ice_ptp_tx *tx;
3171 unsigned long flags;
3172 struct ice_hw *hw;
3173 u32 val;
3174 u8 idx;
3175
3176 hw = &pf->hw;
3177 tx = &pf->ptp.port.tx;
3178 spin_lock_irqsave(&tx->lock, flags);
3179 if (tx->init) {
3180 ice_ptp_complete_tx_single_tstamp(tx);
3181
3182 idx = find_next_bit_wrap(tx->in_use, tx->len,
3183 tx->last_ll_ts_idx_read + 1);
3184 if (idx != tx->len)
3185 ice_ptp_req_tx_single_tstamp(tx, idx);
3186 }
3187 spin_unlock_irqrestore(&tx->lock, flags);
3188
3189 val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
3190 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
3191 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3192 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
3193 val);
3194
3195 return IRQ_HANDLED;
3196 }
3197
3198 /**
3199 * ice_misc_intr - misc interrupt handler
3200 * @irq: interrupt number
3201 * @data: pointer to a q_vector
3202 */
ice_misc_intr(int __always_unused irq,void * data)3203 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
3204 {
3205 struct ice_pf *pf = (struct ice_pf *)data;
3206 irqreturn_t ret = IRQ_HANDLED;
3207 struct ice_hw *hw = &pf->hw;
3208 struct device *dev;
3209 u32 oicr, ena_mask;
3210
3211 dev = ice_pf_to_dev(pf);
3212 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3213 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3214 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3215
3216 oicr = rd32(hw, PFINT_OICR);
3217 ena_mask = rd32(hw, PFINT_OICR_ENA);
3218
3219 if (oicr & PFINT_OICR_SWINT_M) {
3220 ena_mask &= ~PFINT_OICR_SWINT_M;
3221 pf->sw_int_count++;
3222 }
3223
3224 if (oicr & PFINT_OICR_MAL_DETECT_M) {
3225 ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3226 set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3227 }
3228 if (oicr & PFINT_OICR_VFLR_M) {
3229 /* disable any further VFLR event notifications */
3230 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3231 u32 reg = rd32(hw, PFINT_OICR_ENA);
3232
3233 reg &= ~PFINT_OICR_VFLR_M;
3234 wr32(hw, PFINT_OICR_ENA, reg);
3235 } else {
3236 ena_mask &= ~PFINT_OICR_VFLR_M;
3237 set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3238 }
3239 }
3240
3241 if (oicr & PFINT_OICR_GRST_M) {
3242 u32 reset;
3243
3244 /* we have a reset warning */
3245 ena_mask &= ~PFINT_OICR_GRST_M;
3246 reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M,
3247 rd32(hw, GLGEN_RSTAT));
3248
3249 if (reset == ICE_RESET_CORER)
3250 pf->corer_count++;
3251 else if (reset == ICE_RESET_GLOBR)
3252 pf->globr_count++;
3253 else if (reset == ICE_RESET_EMPR)
3254 pf->empr_count++;
3255 else
3256 dev_dbg(dev, "Invalid reset type %d\n", reset);
3257
3258 /* If a reset cycle isn't already in progress, we set a bit in
3259 * pf->state so that the service task can start a reset/rebuild.
3260 */
3261 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3262 if (reset == ICE_RESET_CORER)
3263 set_bit(ICE_CORER_RECV, pf->state);
3264 else if (reset == ICE_RESET_GLOBR)
3265 set_bit(ICE_GLOBR_RECV, pf->state);
3266 else
3267 set_bit(ICE_EMPR_RECV, pf->state);
3268
3269 /* There are couple of different bits at play here.
3270 * hw->reset_ongoing indicates whether the hardware is
3271 * in reset. This is set to true when a reset interrupt
3272 * is received and set back to false after the driver
3273 * has determined that the hardware is out of reset.
3274 *
3275 * ICE_RESET_OICR_RECV in pf->state indicates
3276 * that a post reset rebuild is required before the
3277 * driver is operational again. This is set above.
3278 *
3279 * As this is the start of the reset/rebuild cycle, set
3280 * both to indicate that.
3281 */
3282 hw->reset_ongoing = true;
3283 }
3284 }
3285
3286 if (oicr & PFINT_OICR_TSYN_TX_M) {
3287 ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3288
3289 ret = ice_ptp_ts_irq(pf);
3290 }
3291
3292 if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3293 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3294 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3295
3296 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3297
3298 if (ice_pf_src_tmr_owned(pf)) {
3299 /* Save EVENTs from GLTSYN register */
3300 pf->ptp.ext_ts_irq |= gltsyn_stat &
3301 (GLTSYN_STAT_EVENT0_M |
3302 GLTSYN_STAT_EVENT1_M |
3303 GLTSYN_STAT_EVENT2_M);
3304
3305 ice_ptp_extts_event(pf);
3306 }
3307 }
3308
3309 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3310 if (oicr & ICE_AUX_CRIT_ERR) {
3311 pf->oicr_err_reg |= oicr;
3312 set_bit(ICE_AUX_ERR_PENDING, pf->state);
3313 ena_mask &= ~ICE_AUX_CRIT_ERR;
3314 }
3315
3316 /* Report any remaining unexpected interrupts */
3317 oicr &= ena_mask;
3318 if (oicr) {
3319 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3320 /* If a critical error is pending there is no choice but to
3321 * reset the device.
3322 */
3323 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3324 PFINT_OICR_ECC_ERR_M)) {
3325 set_bit(ICE_PFR_REQ, pf->state);
3326 }
3327 }
3328 ice_service_task_schedule(pf);
3329 if (ret == IRQ_HANDLED)
3330 ice_irq_dynamic_ena(hw, NULL, NULL);
3331
3332 return ret;
3333 }
3334
3335 /**
3336 * ice_misc_intr_thread_fn - misc interrupt thread function
3337 * @irq: interrupt number
3338 * @data: pointer to a q_vector
3339 */
ice_misc_intr_thread_fn(int __always_unused irq,void * data)3340 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data)
3341 {
3342 struct ice_pf *pf = data;
3343 struct ice_hw *hw;
3344
3345 hw = &pf->hw;
3346
3347 if (ice_is_reset_in_progress(pf->state))
3348 goto skip_irq;
3349
3350 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) {
3351 /* Process outstanding Tx timestamps. If there is more work,
3352 * re-arm the interrupt to trigger again.
3353 */
3354 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) {
3355 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
3356 ice_flush(hw);
3357 }
3358 }
3359
3360 skip_irq:
3361 ice_irq_dynamic_ena(hw, NULL, NULL);
3362
3363 return IRQ_HANDLED;
3364 }
3365
3366 /**
3367 * ice_dis_ctrlq_interrupts - disable control queue interrupts
3368 * @hw: pointer to HW structure
3369 */
ice_dis_ctrlq_interrupts(struct ice_hw * hw)3370 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3371 {
3372 /* disable Admin queue Interrupt causes */
3373 wr32(hw, PFINT_FW_CTL,
3374 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3375
3376 /* disable Mailbox queue Interrupt causes */
3377 wr32(hw, PFINT_MBX_CTL,
3378 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3379
3380 wr32(hw, PFINT_SB_CTL,
3381 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3382
3383 /* disable Control queue Interrupt causes */
3384 wr32(hw, PFINT_OICR_CTL,
3385 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3386
3387 ice_flush(hw);
3388 }
3389
3390 /**
3391 * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup
3392 * @pf: board private structure
3393 */
ice_free_irq_msix_ll_ts(struct ice_pf * pf)3394 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf)
3395 {
3396 int irq_num = pf->ll_ts_irq.virq;
3397
3398 synchronize_irq(irq_num);
3399 devm_free_irq(ice_pf_to_dev(pf), irq_num, pf);
3400
3401 ice_free_irq(pf, pf->ll_ts_irq);
3402 }
3403
3404 /**
3405 * ice_free_irq_msix_misc - Unroll misc vector setup
3406 * @pf: board private structure
3407 */
ice_free_irq_msix_misc(struct ice_pf * pf)3408 static void ice_free_irq_msix_misc(struct ice_pf *pf)
3409 {
3410 int misc_irq_num = pf->oicr_irq.virq;
3411 struct ice_hw *hw = &pf->hw;
3412
3413 ice_dis_ctrlq_interrupts(hw);
3414
3415 /* disable OICR interrupt */
3416 wr32(hw, PFINT_OICR_ENA, 0);
3417 ice_flush(hw);
3418
3419 synchronize_irq(misc_irq_num);
3420 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf);
3421
3422 ice_free_irq(pf, pf->oicr_irq);
3423 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3424 ice_free_irq_msix_ll_ts(pf);
3425 }
3426
3427 /**
3428 * ice_ena_ctrlq_interrupts - enable control queue interrupts
3429 * @hw: pointer to HW structure
3430 * @reg_idx: HW vector index to associate the control queue interrupts with
3431 */
ice_ena_ctrlq_interrupts(struct ice_hw * hw,u16 reg_idx)3432 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3433 {
3434 u32 val;
3435
3436 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3437 PFINT_OICR_CTL_CAUSE_ENA_M);
3438 wr32(hw, PFINT_OICR_CTL, val);
3439
3440 /* enable Admin queue Interrupt causes */
3441 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3442 PFINT_FW_CTL_CAUSE_ENA_M);
3443 wr32(hw, PFINT_FW_CTL, val);
3444
3445 /* enable Mailbox queue Interrupt causes */
3446 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3447 PFINT_MBX_CTL_CAUSE_ENA_M);
3448 wr32(hw, PFINT_MBX_CTL, val);
3449
3450 if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) {
3451 /* enable Sideband queue Interrupt causes */
3452 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3453 PFINT_SB_CTL_CAUSE_ENA_M);
3454 wr32(hw, PFINT_SB_CTL, val);
3455 }
3456
3457 ice_flush(hw);
3458 }
3459
3460 /**
3461 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3462 * @pf: board private structure
3463 *
3464 * This sets up the handler for MSIX 0, which is used to manage the
3465 * non-queue interrupts, e.g. AdminQ and errors. This is not used
3466 * when in MSI or Legacy interrupt mode.
3467 */
ice_req_irq_msix_misc(struct ice_pf * pf)3468 static int ice_req_irq_msix_misc(struct ice_pf *pf)
3469 {
3470 struct device *dev = ice_pf_to_dev(pf);
3471 struct ice_hw *hw = &pf->hw;
3472 u32 pf_intr_start_offset;
3473 struct msi_map irq;
3474 int err = 0;
3475
3476 if (!pf->int_name[0])
3477 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3478 dev_driver_string(dev), dev_name(dev));
3479
3480 if (!pf->int_name_ll_ts[0])
3481 snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1,
3482 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev));
3483 /* Do not request IRQ but do enable OICR interrupt since settings are
3484 * lost during reset. Note that this function is called only during
3485 * rebuild path and not while reset is in progress.
3486 */
3487 if (ice_is_reset_in_progress(pf->state))
3488 goto skip_req_irq;
3489
3490 /* reserve one vector in irq_tracker for misc interrupts */
3491 irq = ice_alloc_irq(pf, false);
3492 if (irq.index < 0)
3493 return irq.index;
3494
3495 pf->oicr_irq = irq;
3496 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr,
3497 ice_misc_intr_thread_fn, 0,
3498 pf->int_name, pf);
3499 if (err) {
3500 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n",
3501 pf->int_name, err);
3502 ice_free_irq(pf, pf->oicr_irq);
3503 return err;
3504 }
3505
3506 /* reserve one vector in irq_tracker for ll_ts interrupt */
3507 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3508 goto skip_req_irq;
3509
3510 irq = ice_alloc_irq(pf, false);
3511 if (irq.index < 0)
3512 return irq.index;
3513
3514 pf->ll_ts_irq = irq;
3515 err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0,
3516 pf->int_name_ll_ts, pf);
3517 if (err) {
3518 dev_err(dev, "devm_request_irq for %s failed: %d\n",
3519 pf->int_name_ll_ts, err);
3520 ice_free_irq(pf, pf->ll_ts_irq);
3521 return err;
3522 }
3523
3524 skip_req_irq:
3525 ice_ena_misc_vector(pf);
3526
3527 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index);
3528 /* This enables LL TS interrupt */
3529 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3530 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3531 wr32(hw, PFINT_SB_CTL,
3532 ((pf->ll_ts_irq.index + pf_intr_start_offset) &
3533 PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M);
3534 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index),
3535 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3536
3537 ice_flush(hw);
3538 ice_irq_dynamic_ena(hw, NULL, NULL);
3539
3540 return 0;
3541 }
3542
3543 /**
3544 * ice_set_ops - set netdev and ethtools ops for the given netdev
3545 * @vsi: the VSI associated with the new netdev
3546 */
ice_set_ops(struct ice_vsi * vsi)3547 static void ice_set_ops(struct ice_vsi *vsi)
3548 {
3549 struct net_device *netdev = vsi->netdev;
3550 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3551
3552 if (ice_is_safe_mode(pf)) {
3553 netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3554 ice_set_ethtool_safe_mode_ops(netdev);
3555 return;
3556 }
3557
3558 netdev->netdev_ops = &ice_netdev_ops;
3559 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3560 netdev->xdp_metadata_ops = &ice_xdp_md_ops;
3561 ice_set_ethtool_ops(netdev);
3562
3563 if (vsi->type != ICE_VSI_PF)
3564 return;
3565
3566 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
3567 NETDEV_XDP_ACT_XSK_ZEROCOPY |
3568 NETDEV_XDP_ACT_RX_SG;
3569 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD;
3570 }
3571
3572 /**
3573 * ice_set_netdev_features - set features for the given netdev
3574 * @netdev: netdev instance
3575 */
ice_set_netdev_features(struct net_device * netdev)3576 void ice_set_netdev_features(struct net_device *netdev)
3577 {
3578 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3579 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3580 netdev_features_t csumo_features;
3581 netdev_features_t vlano_features;
3582 netdev_features_t dflt_features;
3583 netdev_features_t tso_features;
3584
3585 if (ice_is_safe_mode(pf)) {
3586 /* safe mode */
3587 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3588 netdev->hw_features = netdev->features;
3589 return;
3590 }
3591
3592 dflt_features = NETIF_F_SG |
3593 NETIF_F_HIGHDMA |
3594 NETIF_F_NTUPLE |
3595 NETIF_F_RXHASH;
3596
3597 csumo_features = NETIF_F_RXCSUM |
3598 NETIF_F_IP_CSUM |
3599 NETIF_F_SCTP_CRC |
3600 NETIF_F_IPV6_CSUM;
3601
3602 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3603 NETIF_F_HW_VLAN_CTAG_TX |
3604 NETIF_F_HW_VLAN_CTAG_RX;
3605
3606 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3607 if (is_dvm_ena)
3608 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3609
3610 tso_features = NETIF_F_TSO |
3611 NETIF_F_TSO_ECN |
3612 NETIF_F_TSO6 |
3613 NETIF_F_GSO_GRE |
3614 NETIF_F_GSO_UDP_TUNNEL |
3615 NETIF_F_GSO_GRE_CSUM |
3616 NETIF_F_GSO_UDP_TUNNEL_CSUM |
3617 NETIF_F_GSO_PARTIAL |
3618 NETIF_F_GSO_IPXIP4 |
3619 NETIF_F_GSO_IPXIP6 |
3620 NETIF_F_GSO_UDP_L4;
3621
3622 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3623 NETIF_F_GSO_GRE_CSUM;
3624 /* set features that user can change */
3625 netdev->hw_features = dflt_features | csumo_features |
3626 vlano_features | tso_features;
3627
3628 /* add support for HW_CSUM on packets with MPLS header */
3629 netdev->mpls_features = NETIF_F_HW_CSUM |
3630 NETIF_F_TSO |
3631 NETIF_F_TSO6;
3632
3633 /* enable features */
3634 netdev->features |= netdev->hw_features;
3635
3636 netdev->hw_features |= NETIF_F_HW_TC;
3637 netdev->hw_features |= NETIF_F_LOOPBACK;
3638
3639 /* encap and VLAN devices inherit default, csumo and tso features */
3640 netdev->hw_enc_features |= dflt_features | csumo_features |
3641 tso_features;
3642 netdev->vlan_features |= dflt_features | csumo_features |
3643 tso_features;
3644
3645 /* advertise support but don't enable by default since only one type of
3646 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3647 * type turns on the other has to be turned off. This is enforced by the
3648 * ice_fix_features() ndo callback.
3649 */
3650 if (is_dvm_ena)
3651 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3652 NETIF_F_HW_VLAN_STAG_TX;
3653
3654 /* Leave CRC / FCS stripping enabled by default, but allow the value to
3655 * be changed at runtime
3656 */
3657 netdev->hw_features |= NETIF_F_RXFCS;
3658
3659 /* Allow core to manage IRQs affinity */
3660 netif_set_affinity_auto(netdev);
3661
3662 /* Mutual exclusivity for TSO and GCS is enforced by the set features
3663 * ndo callback.
3664 */
3665 if (ice_is_feature_supported(pf, ICE_F_GCS))
3666 netdev->hw_features |= NETIF_F_HW_CSUM;
3667
3668 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE);
3669 }
3670
3671 /**
3672 * ice_fill_rss_lut - Fill the RSS lookup table with default values
3673 * @lut: Lookup table
3674 * @rss_table_size: Lookup table size
3675 * @rss_size: Range of queue number for hashing
3676 */
ice_fill_rss_lut(u8 * lut,u16 rss_table_size,u16 rss_size)3677 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3678 {
3679 u16 i;
3680
3681 for (i = 0; i < rss_table_size; i++)
3682 lut[i] = i % rss_size;
3683 }
3684
3685 /**
3686 * ice_pf_vsi_setup - Set up a PF VSI
3687 * @pf: board private structure
3688 * @pi: pointer to the port_info instance
3689 *
3690 * Returns pointer to the successfully allocated VSI software struct
3691 * on success, otherwise returns NULL on failure.
3692 */
3693 static struct ice_vsi *
ice_pf_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3694 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3695 {
3696 struct ice_vsi_cfg_params params = {};
3697
3698 params.type = ICE_VSI_PF;
3699 params.port_info = pi;
3700 params.flags = ICE_VSI_FLAG_INIT;
3701
3702 return ice_vsi_setup(pf, ¶ms);
3703 }
3704
3705 static struct ice_vsi *
ice_chnl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi,struct ice_channel * ch)3706 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3707 struct ice_channel *ch)
3708 {
3709 struct ice_vsi_cfg_params params = {};
3710
3711 params.type = ICE_VSI_CHNL;
3712 params.port_info = pi;
3713 params.ch = ch;
3714 params.flags = ICE_VSI_FLAG_INIT;
3715
3716 return ice_vsi_setup(pf, ¶ms);
3717 }
3718
3719 /**
3720 * ice_ctrl_vsi_setup - Set up a control VSI
3721 * @pf: board private structure
3722 * @pi: pointer to the port_info instance
3723 *
3724 * Returns pointer to the successfully allocated VSI software struct
3725 * on success, otherwise returns NULL on failure.
3726 */
3727 static struct ice_vsi *
ice_ctrl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3728 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3729 {
3730 struct ice_vsi_cfg_params params = {};
3731
3732 params.type = ICE_VSI_CTRL;
3733 params.port_info = pi;
3734 params.flags = ICE_VSI_FLAG_INIT;
3735
3736 return ice_vsi_setup(pf, ¶ms);
3737 }
3738
3739 /**
3740 * ice_lb_vsi_setup - Set up a loopback VSI
3741 * @pf: board private structure
3742 * @pi: pointer to the port_info instance
3743 *
3744 * Returns pointer to the successfully allocated VSI software struct
3745 * on success, otherwise returns NULL on failure.
3746 */
3747 struct ice_vsi *
ice_lb_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3748 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3749 {
3750 struct ice_vsi_cfg_params params = {};
3751
3752 params.type = ICE_VSI_LB;
3753 params.port_info = pi;
3754 params.flags = ICE_VSI_FLAG_INIT;
3755
3756 return ice_vsi_setup(pf, ¶ms);
3757 }
3758
3759 /**
3760 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3761 * @netdev: network interface to be adjusted
3762 * @proto: VLAN TPID
3763 * @vid: VLAN ID to be added
3764 *
3765 * net_device_ops implementation for adding VLAN IDs
3766 */
ice_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)3767 int ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3768 {
3769 struct ice_netdev_priv *np = netdev_priv(netdev);
3770 struct ice_vsi_vlan_ops *vlan_ops;
3771 struct ice_vsi *vsi = np->vsi;
3772 struct ice_vlan vlan;
3773 int ret;
3774
3775 /* VLAN 0 is added by default during load/reset */
3776 if (!vid)
3777 return 0;
3778
3779 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3780 usleep_range(1000, 2000);
3781
3782 /* Add multicast promisc rule for the VLAN ID to be added if
3783 * all-multicast is currently enabled.
3784 */
3785 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3786 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3787 ICE_MCAST_VLAN_PROMISC_BITS,
3788 vid);
3789 if (ret)
3790 goto finish;
3791 }
3792
3793 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3794
3795 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3796 * packets aren't pruned by the device's internal switch on Rx
3797 */
3798 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3799 ret = vlan_ops->add_vlan(vsi, &vlan);
3800 if (ret)
3801 goto finish;
3802
3803 /* If all-multicast is currently enabled and this VLAN ID is only one
3804 * besides VLAN-0 we have to update look-up type of multicast promisc
3805 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3806 */
3807 if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3808 ice_vsi_num_non_zero_vlans(vsi) == 1) {
3809 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3810 ICE_MCAST_PROMISC_BITS, 0);
3811 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3812 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3813 }
3814
3815 finish:
3816 clear_bit(ICE_CFG_BUSY, vsi->state);
3817
3818 return ret;
3819 }
3820
3821 /**
3822 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3823 * @netdev: network interface to be adjusted
3824 * @proto: VLAN TPID
3825 * @vid: VLAN ID to be removed
3826 *
3827 * net_device_ops implementation for removing VLAN IDs
3828 */
ice_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)3829 int ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3830 {
3831 struct ice_netdev_priv *np = netdev_priv(netdev);
3832 struct ice_vsi_vlan_ops *vlan_ops;
3833 struct ice_vsi *vsi = np->vsi;
3834 struct ice_vlan vlan;
3835 int ret;
3836
3837 /* don't allow removal of VLAN 0 */
3838 if (!vid)
3839 return 0;
3840
3841 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3842 usleep_range(1000, 2000);
3843
3844 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3845 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3846 if (ret) {
3847 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n",
3848 vsi->vsi_num);
3849 vsi->current_netdev_flags |= IFF_ALLMULTI;
3850 }
3851
3852 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3853
3854 /* Make sure VLAN delete is successful before updating VLAN
3855 * information
3856 */
3857 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3858 ret = vlan_ops->del_vlan(vsi, &vlan);
3859 if (ret)
3860 goto finish;
3861
3862 /* Remove multicast promisc rule for the removed VLAN ID if
3863 * all-multicast is enabled.
3864 */
3865 if (vsi->current_netdev_flags & IFF_ALLMULTI)
3866 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3867 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3868
3869 if (!ice_vsi_has_non_zero_vlans(vsi)) {
3870 /* Update look-up type of multicast promisc rule for VLAN 0
3871 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3872 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3873 */
3874 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3875 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3876 ICE_MCAST_VLAN_PROMISC_BITS,
3877 0);
3878 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3879 ICE_MCAST_PROMISC_BITS, 0);
3880 }
3881 }
3882
3883 finish:
3884 clear_bit(ICE_CFG_BUSY, vsi->state);
3885
3886 return ret;
3887 }
3888
3889 /**
3890 * ice_rep_indr_tc_block_unbind
3891 * @cb_priv: indirection block private data
3892 */
ice_rep_indr_tc_block_unbind(void * cb_priv)3893 static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3894 {
3895 struct ice_indr_block_priv *indr_priv = cb_priv;
3896
3897 list_del(&indr_priv->list);
3898 kfree(indr_priv);
3899 }
3900
3901 /**
3902 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3903 * @vsi: VSI struct which has the netdev
3904 */
ice_tc_indir_block_unregister(struct ice_vsi * vsi)3905 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3906 {
3907 struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3908
3909 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3910 ice_rep_indr_tc_block_unbind);
3911 }
3912
3913 /**
3914 * ice_tc_indir_block_register - Register TC indirect block notifications
3915 * @vsi: VSI struct which has the netdev
3916 *
3917 * Returns 0 on success, negative value on failure
3918 */
ice_tc_indir_block_register(struct ice_vsi * vsi)3919 static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3920 {
3921 struct ice_netdev_priv *np;
3922
3923 if (!vsi || !vsi->netdev)
3924 return -EINVAL;
3925
3926 np = netdev_priv(vsi->netdev);
3927
3928 INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3929 return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3930 }
3931
3932 /**
3933 * ice_get_avail_q_count - Get count of queues in use
3934 * @pf_qmap: bitmap to get queue use count from
3935 * @lock: pointer to a mutex that protects access to pf_qmap
3936 * @size: size of the bitmap
3937 */
3938 static u16
ice_get_avail_q_count(unsigned long * pf_qmap,struct mutex * lock,u16 size)3939 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3940 {
3941 unsigned long bit;
3942 u16 count = 0;
3943
3944 mutex_lock(lock);
3945 for_each_clear_bit(bit, pf_qmap, size)
3946 count++;
3947 mutex_unlock(lock);
3948
3949 return count;
3950 }
3951
3952 /**
3953 * ice_get_avail_txq_count - Get count of Tx queues in use
3954 * @pf: pointer to an ice_pf instance
3955 */
ice_get_avail_txq_count(struct ice_pf * pf)3956 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3957 {
3958 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3959 pf->max_pf_txqs);
3960 }
3961
3962 /**
3963 * ice_get_avail_rxq_count - Get count of Rx queues in use
3964 * @pf: pointer to an ice_pf instance
3965 */
ice_get_avail_rxq_count(struct ice_pf * pf)3966 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3967 {
3968 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3969 pf->max_pf_rxqs);
3970 }
3971
3972 /**
3973 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3974 * @pf: board private structure to initialize
3975 */
ice_deinit_pf(struct ice_pf * pf)3976 static void ice_deinit_pf(struct ice_pf *pf)
3977 {
3978 ice_service_task_stop(pf);
3979 mutex_destroy(&pf->lag_mutex);
3980 mutex_destroy(&pf->adev_mutex);
3981 mutex_destroy(&pf->sw_mutex);
3982 mutex_destroy(&pf->tc_mutex);
3983 mutex_destroy(&pf->avail_q_mutex);
3984 mutex_destroy(&pf->vfs.table_lock);
3985
3986 if (pf->avail_txqs) {
3987 bitmap_free(pf->avail_txqs);
3988 pf->avail_txqs = NULL;
3989 }
3990
3991 if (pf->avail_rxqs) {
3992 bitmap_free(pf->avail_rxqs);
3993 pf->avail_rxqs = NULL;
3994 }
3995
3996 if (pf->ptp.clock)
3997 ptp_clock_unregister(pf->ptp.clock);
3998
3999 xa_destroy(&pf->dyn_ports);
4000 xa_destroy(&pf->sf_nums);
4001 }
4002
4003 /**
4004 * ice_set_pf_caps - set PFs capability flags
4005 * @pf: pointer to the PF instance
4006 */
ice_set_pf_caps(struct ice_pf * pf)4007 static void ice_set_pf_caps(struct ice_pf *pf)
4008 {
4009 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
4010
4011 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
4012 if (func_caps->common_cap.rdma)
4013 set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
4014 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4015 if (func_caps->common_cap.dcb)
4016 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4017 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
4018 if (func_caps->common_cap.sr_iov_1_1) {
4019 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
4020 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
4021 ICE_MAX_SRIOV_VFS);
4022 }
4023 clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
4024 if (func_caps->common_cap.rss_table_size)
4025 set_bit(ICE_FLAG_RSS_ENA, pf->flags);
4026
4027 clear_bit(ICE_FLAG_FD_ENA, pf->flags);
4028 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
4029 u16 unused;
4030
4031 /* ctrl_vsi_idx will be set to a valid value when flow director
4032 * is setup by ice_init_fdir
4033 */
4034 pf->ctrl_vsi_idx = ICE_NO_VSI;
4035 set_bit(ICE_FLAG_FD_ENA, pf->flags);
4036 /* force guaranteed filter pool for PF */
4037 ice_alloc_fd_guar_item(&pf->hw, &unused,
4038 func_caps->fd_fltr_guar);
4039 /* force shared filter pool for PF */
4040 ice_alloc_fd_shrd_item(&pf->hw, &unused,
4041 func_caps->fd_fltr_best_effort);
4042 }
4043
4044 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
4045 if (func_caps->common_cap.ieee_1588)
4046 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
4047
4048 pf->max_pf_txqs = func_caps->common_cap.num_txq;
4049 pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
4050 }
4051
4052 /**
4053 * ice_init_pf - Initialize general software structures (struct ice_pf)
4054 * @pf: board private structure to initialize
4055 */
ice_init_pf(struct ice_pf * pf)4056 static int ice_init_pf(struct ice_pf *pf)
4057 {
4058 ice_set_pf_caps(pf);
4059
4060 mutex_init(&pf->sw_mutex);
4061 mutex_init(&pf->tc_mutex);
4062 mutex_init(&pf->adev_mutex);
4063 mutex_init(&pf->lag_mutex);
4064
4065 INIT_HLIST_HEAD(&pf->aq_wait_list);
4066 spin_lock_init(&pf->aq_wait_lock);
4067 init_waitqueue_head(&pf->aq_wait_queue);
4068
4069 init_waitqueue_head(&pf->reset_wait_queue);
4070
4071 /* setup service timer and periodic service task */
4072 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
4073 pf->serv_tmr_period = HZ;
4074 INIT_WORK(&pf->serv_task, ice_service_task);
4075 clear_bit(ICE_SERVICE_SCHED, pf->state);
4076
4077 mutex_init(&pf->avail_q_mutex);
4078 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
4079 if (!pf->avail_txqs)
4080 return -ENOMEM;
4081
4082 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
4083 if (!pf->avail_rxqs) {
4084 bitmap_free(pf->avail_txqs);
4085 pf->avail_txqs = NULL;
4086 return -ENOMEM;
4087 }
4088
4089 mutex_init(&pf->vfs.table_lock);
4090 hash_init(pf->vfs.table);
4091 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT))
4092 wr32(&pf->hw, E830_MBX_PF_IN_FLIGHT_VF_MSGS_THRESH,
4093 ICE_MBX_OVERFLOW_WATERMARK);
4094 else
4095 ice_mbx_init_snapshot(&pf->hw);
4096
4097 xa_init(&pf->dyn_ports);
4098 xa_init(&pf->sf_nums);
4099
4100 return 0;
4101 }
4102
4103 /**
4104 * ice_is_wol_supported - check if WoL is supported
4105 * @hw: pointer to hardware info
4106 *
4107 * Check if WoL is supported based on the HW configuration.
4108 * Returns true if NVM supports and enables WoL for this port, false otherwise
4109 */
ice_is_wol_supported(struct ice_hw * hw)4110 bool ice_is_wol_supported(struct ice_hw *hw)
4111 {
4112 u16 wol_ctrl;
4113
4114 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
4115 * word) indicates WoL is not supported on the corresponding PF ID.
4116 */
4117 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
4118 return false;
4119
4120 return !(BIT(hw->port_info->lport) & wol_ctrl);
4121 }
4122
4123 /**
4124 * ice_vsi_recfg_qs - Change the number of queues on a VSI
4125 * @vsi: VSI being changed
4126 * @new_rx: new number of Rx queues
4127 * @new_tx: new number of Tx queues
4128 * @locked: is adev device_lock held
4129 *
4130 * Only change the number of queues if new_tx, or new_rx is non-0.
4131 *
4132 * Returns 0 on success.
4133 */
ice_vsi_recfg_qs(struct ice_vsi * vsi,int new_rx,int new_tx,bool locked)4134 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked)
4135 {
4136 struct ice_pf *pf = vsi->back;
4137 int i, err = 0, timeout = 50;
4138
4139 if (!new_rx && !new_tx)
4140 return -EINVAL;
4141
4142 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
4143 timeout--;
4144 if (!timeout)
4145 return -EBUSY;
4146 usleep_range(1000, 2000);
4147 }
4148
4149 if (new_tx)
4150 vsi->req_txq = (u16)new_tx;
4151 if (new_rx)
4152 vsi->req_rxq = (u16)new_rx;
4153
4154 /* set for the next time the netdev is started */
4155 if (!netif_running(vsi->netdev)) {
4156 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4157 if (err)
4158 goto rebuild_err;
4159 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
4160 goto done;
4161 }
4162
4163 ice_vsi_close(vsi);
4164 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4165 if (err)
4166 goto rebuild_err;
4167
4168 ice_for_each_traffic_class(i) {
4169 if (vsi->tc_cfg.ena_tc & BIT(i))
4170 netdev_set_tc_queue(vsi->netdev,
4171 vsi->tc_cfg.tc_info[i].netdev_tc,
4172 vsi->tc_cfg.tc_info[i].qcount_tx,
4173 vsi->tc_cfg.tc_info[i].qoffset);
4174 }
4175 ice_pf_dcb_recfg(pf, locked);
4176 ice_vsi_open(vsi);
4177 goto done;
4178
4179 rebuild_err:
4180 dev_err(ice_pf_to_dev(pf), "Error during VSI rebuild: %d. Unload and reload the driver.\n",
4181 err);
4182 done:
4183 clear_bit(ICE_CFG_BUSY, pf->state);
4184 return err;
4185 }
4186
4187 /**
4188 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4189 * @pf: PF to configure
4190 *
4191 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4192 * VSI can still Tx/Rx VLAN tagged packets.
4193 */
ice_set_safe_mode_vlan_cfg(struct ice_pf * pf)4194 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4195 {
4196 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4197 struct ice_vsi_ctx *ctxt;
4198 struct ice_hw *hw;
4199 int status;
4200
4201 if (!vsi)
4202 return;
4203
4204 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4205 if (!ctxt)
4206 return;
4207
4208 hw = &pf->hw;
4209 ctxt->info = vsi->info;
4210
4211 ctxt->info.valid_sections =
4212 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4213 ICE_AQ_VSI_PROP_SECURITY_VALID |
4214 ICE_AQ_VSI_PROP_SW_VALID);
4215
4216 /* disable VLAN anti-spoof */
4217 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4218 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4219
4220 /* disable VLAN pruning and keep all other settings */
4221 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4222
4223 /* allow all VLANs on Tx and don't strip on Rx */
4224 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4225 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4226
4227 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4228 if (status) {
4229 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4230 status, libie_aq_str(hw->adminq.sq_last_status));
4231 } else {
4232 vsi->info.sec_flags = ctxt->info.sec_flags;
4233 vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4234 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4235 }
4236
4237 kfree(ctxt);
4238 }
4239
4240 /**
4241 * ice_log_pkg_init - log result of DDP package load
4242 * @hw: pointer to hardware info
4243 * @state: state of package load
4244 */
ice_log_pkg_init(struct ice_hw * hw,enum ice_ddp_state state)4245 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4246 {
4247 struct ice_pf *pf = hw->back;
4248 struct device *dev;
4249
4250 dev = ice_pf_to_dev(pf);
4251
4252 switch (state) {
4253 case ICE_DDP_PKG_SUCCESS:
4254 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4255 hw->active_pkg_name,
4256 hw->active_pkg_ver.major,
4257 hw->active_pkg_ver.minor,
4258 hw->active_pkg_ver.update,
4259 hw->active_pkg_ver.draft);
4260 break;
4261 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4262 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4263 hw->active_pkg_name,
4264 hw->active_pkg_ver.major,
4265 hw->active_pkg_ver.minor,
4266 hw->active_pkg_ver.update,
4267 hw->active_pkg_ver.draft);
4268 break;
4269 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4270 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
4271 hw->active_pkg_name,
4272 hw->active_pkg_ver.major,
4273 hw->active_pkg_ver.minor,
4274 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4275 break;
4276 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4277 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4278 hw->active_pkg_name,
4279 hw->active_pkg_ver.major,
4280 hw->active_pkg_ver.minor,
4281 hw->active_pkg_ver.update,
4282 hw->active_pkg_ver.draft,
4283 hw->pkg_name,
4284 hw->pkg_ver.major,
4285 hw->pkg_ver.minor,
4286 hw->pkg_ver.update,
4287 hw->pkg_ver.draft);
4288 break;
4289 case ICE_DDP_PKG_FW_MISMATCH:
4290 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n");
4291 break;
4292 case ICE_DDP_PKG_INVALID_FILE:
4293 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4294 break;
4295 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4296 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n");
4297 break;
4298 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4299 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n",
4300 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4301 break;
4302 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4303 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n");
4304 break;
4305 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4306 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n");
4307 break;
4308 case ICE_DDP_PKG_LOAD_ERROR:
4309 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n");
4310 /* poll for reset to complete */
4311 if (ice_check_reset(hw))
4312 dev_err(dev, "Error resetting device. Please reload the driver\n");
4313 break;
4314 case ICE_DDP_PKG_ERR:
4315 default:
4316 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n");
4317 break;
4318 }
4319 }
4320
4321 /**
4322 * ice_load_pkg - load/reload the DDP Package file
4323 * @firmware: firmware structure when firmware requested or NULL for reload
4324 * @pf: pointer to the PF instance
4325 *
4326 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4327 * initialize HW tables.
4328 */
4329 static void
ice_load_pkg(const struct firmware * firmware,struct ice_pf * pf)4330 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4331 {
4332 enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4333 struct device *dev = ice_pf_to_dev(pf);
4334 struct ice_hw *hw = &pf->hw;
4335
4336 /* Load DDP Package */
4337 if (firmware && !hw->pkg_copy) {
4338 state = ice_copy_and_init_pkg(hw, firmware->data,
4339 firmware->size);
4340 ice_log_pkg_init(hw, state);
4341 } else if (!firmware && hw->pkg_copy) {
4342 /* Reload package during rebuild after CORER/GLOBR reset */
4343 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4344 ice_log_pkg_init(hw, state);
4345 } else {
4346 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4347 }
4348
4349 if (!ice_is_init_pkg_successful(state)) {
4350 /* Safe Mode */
4351 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4352 return;
4353 }
4354
4355 /* Successful download package is the precondition for advanced
4356 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4357 */
4358 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4359 }
4360
4361 /**
4362 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4363 * @pf: pointer to the PF structure
4364 *
4365 * There is no error returned here because the driver should be able to handle
4366 * 128 Byte cache lines, so we only print a warning in case issues are seen,
4367 * specifically with Tx.
4368 */
ice_verify_cacheline_size(struct ice_pf * pf)4369 static void ice_verify_cacheline_size(struct ice_pf *pf)
4370 {
4371 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4372 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4373 ICE_CACHE_LINE_BYTES);
4374 }
4375
4376 /**
4377 * ice_send_version - update firmware with driver version
4378 * @pf: PF struct
4379 *
4380 * Returns 0 on success, else error code
4381 */
ice_send_version(struct ice_pf * pf)4382 static int ice_send_version(struct ice_pf *pf)
4383 {
4384 struct ice_driver_ver dv;
4385
4386 dv.major_ver = 0xff;
4387 dv.minor_ver = 0xff;
4388 dv.build_ver = 0xff;
4389 dv.subbuild_ver = 0;
4390 strscpy((char *)dv.driver_string, UTS_RELEASE,
4391 sizeof(dv.driver_string));
4392 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4393 }
4394
4395 /**
4396 * ice_init_fdir - Initialize flow director VSI and configuration
4397 * @pf: pointer to the PF instance
4398 *
4399 * returns 0 on success, negative on error
4400 */
ice_init_fdir(struct ice_pf * pf)4401 static int ice_init_fdir(struct ice_pf *pf)
4402 {
4403 struct device *dev = ice_pf_to_dev(pf);
4404 struct ice_vsi *ctrl_vsi;
4405 int err;
4406
4407 /* Side Band Flow Director needs to have a control VSI.
4408 * Allocate it and store it in the PF.
4409 */
4410 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4411 if (!ctrl_vsi) {
4412 dev_dbg(dev, "could not create control VSI\n");
4413 return -ENOMEM;
4414 }
4415
4416 err = ice_vsi_open_ctrl(ctrl_vsi);
4417 if (err) {
4418 dev_dbg(dev, "could not open control VSI\n");
4419 goto err_vsi_open;
4420 }
4421
4422 mutex_init(&pf->hw.fdir_fltr_lock);
4423
4424 err = ice_fdir_create_dflt_rules(pf);
4425 if (err)
4426 goto err_fdir_rule;
4427
4428 return 0;
4429
4430 err_fdir_rule:
4431 ice_fdir_release_flows(&pf->hw);
4432 ice_vsi_close(ctrl_vsi);
4433 err_vsi_open:
4434 ice_vsi_release(ctrl_vsi);
4435 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4436 pf->vsi[pf->ctrl_vsi_idx] = NULL;
4437 pf->ctrl_vsi_idx = ICE_NO_VSI;
4438 }
4439 return err;
4440 }
4441
ice_deinit_fdir(struct ice_pf * pf)4442 static void ice_deinit_fdir(struct ice_pf *pf)
4443 {
4444 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf);
4445
4446 if (!vsi)
4447 return;
4448
4449 ice_vsi_manage_fdir(vsi, false);
4450 ice_vsi_release(vsi);
4451 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4452 pf->vsi[pf->ctrl_vsi_idx] = NULL;
4453 pf->ctrl_vsi_idx = ICE_NO_VSI;
4454 }
4455
4456 mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4457 }
4458
4459 /**
4460 * ice_get_opt_fw_name - return optional firmware file name or NULL
4461 * @pf: pointer to the PF instance
4462 */
ice_get_opt_fw_name(struct ice_pf * pf)4463 static char *ice_get_opt_fw_name(struct ice_pf *pf)
4464 {
4465 /* Optional firmware name same as default with additional dash
4466 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4467 */
4468 struct pci_dev *pdev = pf->pdev;
4469 char *opt_fw_filename;
4470 u64 dsn;
4471
4472 /* Determine the name of the optional file using the DSN (two
4473 * dwords following the start of the DSN Capability).
4474 */
4475 dsn = pci_get_dsn(pdev);
4476 if (!dsn)
4477 return NULL;
4478
4479 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4480 if (!opt_fw_filename)
4481 return NULL;
4482
4483 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4484 ICE_DDP_PKG_PATH, dsn);
4485
4486 return opt_fw_filename;
4487 }
4488
4489 /**
4490 * ice_request_fw - Device initialization routine
4491 * @pf: pointer to the PF instance
4492 * @firmware: double pointer to firmware struct
4493 *
4494 * Return: zero when successful, negative values otherwise.
4495 */
ice_request_fw(struct ice_pf * pf,const struct firmware ** firmware)4496 static int ice_request_fw(struct ice_pf *pf, const struct firmware **firmware)
4497 {
4498 char *opt_fw_filename = ice_get_opt_fw_name(pf);
4499 struct device *dev = ice_pf_to_dev(pf);
4500 int err = 0;
4501
4502 /* optional device-specific DDP (if present) overrides the default DDP
4503 * package file. kernel logs a debug message if the file doesn't exist,
4504 * and warning messages for other errors.
4505 */
4506 if (opt_fw_filename) {
4507 err = firmware_request_nowarn(firmware, opt_fw_filename, dev);
4508 kfree(opt_fw_filename);
4509 if (!err)
4510 return err;
4511 }
4512 err = request_firmware(firmware, ICE_DDP_PKG_FILE, dev);
4513 if (err)
4514 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4515
4516 return err;
4517 }
4518
4519 /**
4520 * ice_init_tx_topology - performs Tx topology initialization
4521 * @hw: pointer to the hardware structure
4522 * @firmware: pointer to firmware structure
4523 *
4524 * Return: zero when init was successful, negative values otherwise.
4525 */
4526 static int
ice_init_tx_topology(struct ice_hw * hw,const struct firmware * firmware)4527 ice_init_tx_topology(struct ice_hw *hw, const struct firmware *firmware)
4528 {
4529 u8 num_tx_sched_layers = hw->num_tx_sched_layers;
4530 struct ice_pf *pf = hw->back;
4531 struct device *dev;
4532 int err;
4533
4534 dev = ice_pf_to_dev(pf);
4535 err = ice_cfg_tx_topo(hw, firmware->data, firmware->size);
4536 if (!err) {
4537 if (hw->num_tx_sched_layers > num_tx_sched_layers)
4538 dev_info(dev, "Tx scheduling layers switching feature disabled\n");
4539 else
4540 dev_info(dev, "Tx scheduling layers switching feature enabled\n");
4541 return 0;
4542 } else if (err == -ENODEV) {
4543 /* If we failed to re-initialize the device, we can no longer
4544 * continue loading.
4545 */
4546 dev_warn(dev, "Failed to initialize hardware after applying Tx scheduling configuration.\n");
4547 return err;
4548 } else if (err == -EIO) {
4549 dev_info(dev, "DDP package does not support Tx scheduling layers switching feature - please update to the latest DDP package and try again\n");
4550 return 0;
4551 } else if (err == -EEXIST) {
4552 return 0;
4553 }
4554
4555 /* Do not treat this as a fatal error. */
4556 dev_info(dev, "Failed to apply Tx scheduling configuration, err %pe\n",
4557 ERR_PTR(err));
4558 return 0;
4559 }
4560
4561 /**
4562 * ice_init_supported_rxdids - Initialize supported Rx descriptor IDs
4563 * @hw: pointer to the hardware structure
4564 * @pf: pointer to pf structure
4565 *
4566 * The pf->supported_rxdids bitmap is used to indicate to VFs which descriptor
4567 * formats the PF hardware supports. The exact list of supported RXDIDs
4568 * depends on the loaded DDP package. The IDs can be determined by reading the
4569 * GLFLXP_RXDID_FLAGS register after the DDP package is loaded.
4570 *
4571 * Note that the legacy 32-byte RXDID 0 is always supported but is not listed
4572 * in the DDP package. The 16-byte legacy descriptor is never supported by
4573 * VFs.
4574 */
ice_init_supported_rxdids(struct ice_hw * hw,struct ice_pf * pf)4575 static void ice_init_supported_rxdids(struct ice_hw *hw, struct ice_pf *pf)
4576 {
4577 pf->supported_rxdids = BIT(ICE_RXDID_LEGACY_1);
4578
4579 for (int i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
4580 u32 regval;
4581
4582 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0));
4583 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
4584 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
4585 pf->supported_rxdids |= BIT(i);
4586 }
4587 }
4588
4589 /**
4590 * ice_init_ddp_config - DDP related configuration
4591 * @hw: pointer to the hardware structure
4592 * @pf: pointer to pf structure
4593 *
4594 * This function loads DDP file from the disk, then initializes Tx
4595 * topology. At the end DDP package is loaded on the card.
4596 *
4597 * Return: zero when init was successful, negative values otherwise.
4598 */
ice_init_ddp_config(struct ice_hw * hw,struct ice_pf * pf)4599 static int ice_init_ddp_config(struct ice_hw *hw, struct ice_pf *pf)
4600 {
4601 struct device *dev = ice_pf_to_dev(pf);
4602 const struct firmware *firmware = NULL;
4603 int err;
4604
4605 err = ice_request_fw(pf, &firmware);
4606 if (err) {
4607 dev_err(dev, "Fail during requesting FW: %d\n", err);
4608 return err;
4609 }
4610
4611 err = ice_init_tx_topology(hw, firmware);
4612 if (err) {
4613 dev_err(dev, "Fail during initialization of Tx topology: %d\n",
4614 err);
4615 release_firmware(firmware);
4616 return err;
4617 }
4618
4619 /* Download firmware to device */
4620 ice_load_pkg(firmware, pf);
4621 release_firmware(firmware);
4622
4623 /* Initialize the supported Rx descriptor IDs after loading DDP */
4624 ice_init_supported_rxdids(hw, pf);
4625
4626 return 0;
4627 }
4628
4629 /**
4630 * ice_print_wake_reason - show the wake up cause in the log
4631 * @pf: pointer to the PF struct
4632 */
ice_print_wake_reason(struct ice_pf * pf)4633 static void ice_print_wake_reason(struct ice_pf *pf)
4634 {
4635 u32 wus = pf->wakeup_reason;
4636 const char *wake_str;
4637
4638 /* if no wake event, nothing to print */
4639 if (!wus)
4640 return;
4641
4642 if (wus & PFPM_WUS_LNKC_M)
4643 wake_str = "Link\n";
4644 else if (wus & PFPM_WUS_MAG_M)
4645 wake_str = "Magic Packet\n";
4646 else if (wus & PFPM_WUS_MNG_M)
4647 wake_str = "Management\n";
4648 else if (wus & PFPM_WUS_FW_RST_WK_M)
4649 wake_str = "Firmware Reset\n";
4650 else
4651 wake_str = "Unknown\n";
4652
4653 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4654 }
4655
4656 /**
4657 * ice_pf_fwlog_update_module - update 1 module
4658 * @pf: pointer to the PF struct
4659 * @log_level: log_level to use for the @module
4660 * @module: module to update
4661 */
ice_pf_fwlog_update_module(struct ice_pf * pf,int log_level,int module)4662 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module)
4663 {
4664 struct ice_hw *hw = &pf->hw;
4665
4666 hw->fwlog_cfg.module_entries[module].log_level = log_level;
4667 }
4668
4669 /**
4670 * ice_register_netdev - register netdev
4671 * @vsi: pointer to the VSI struct
4672 */
ice_register_netdev(struct ice_vsi * vsi)4673 static int ice_register_netdev(struct ice_vsi *vsi)
4674 {
4675 int err;
4676
4677 if (!vsi || !vsi->netdev)
4678 return -EIO;
4679
4680 err = register_netdev(vsi->netdev);
4681 if (err)
4682 return err;
4683
4684 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4685 netif_carrier_off(vsi->netdev);
4686 netif_tx_stop_all_queues(vsi->netdev);
4687
4688 return 0;
4689 }
4690
ice_unregister_netdev(struct ice_vsi * vsi)4691 static void ice_unregister_netdev(struct ice_vsi *vsi)
4692 {
4693 if (!vsi || !vsi->netdev)
4694 return;
4695
4696 unregister_netdev(vsi->netdev);
4697 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4698 }
4699
4700 /**
4701 * ice_cfg_netdev - Allocate, configure and register a netdev
4702 * @vsi: the VSI associated with the new netdev
4703 *
4704 * Returns 0 on success, negative value on failure
4705 */
ice_cfg_netdev(struct ice_vsi * vsi)4706 static int ice_cfg_netdev(struct ice_vsi *vsi)
4707 {
4708 struct ice_netdev_priv *np;
4709 struct net_device *netdev;
4710 u8 mac_addr[ETH_ALEN];
4711
4712 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
4713 vsi->alloc_rxq);
4714 if (!netdev)
4715 return -ENOMEM;
4716
4717 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4718 vsi->netdev = netdev;
4719 np = netdev_priv(netdev);
4720 np->vsi = vsi;
4721
4722 ice_set_netdev_features(netdev);
4723 ice_set_ops(vsi);
4724
4725 if (vsi->type == ICE_VSI_PF) {
4726 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
4727 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4728 eth_hw_addr_set(netdev, mac_addr);
4729 }
4730
4731 netdev->priv_flags |= IFF_UNICAST_FLT;
4732
4733 /* Setup netdev TC information */
4734 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
4735
4736 netdev->max_mtu = ICE_MAX_MTU;
4737
4738 return 0;
4739 }
4740
ice_decfg_netdev(struct ice_vsi * vsi)4741 static void ice_decfg_netdev(struct ice_vsi *vsi)
4742 {
4743 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4744 free_netdev(vsi->netdev);
4745 vsi->netdev = NULL;
4746 }
4747
ice_init_dev(struct ice_pf * pf)4748 int ice_init_dev(struct ice_pf *pf)
4749 {
4750 struct device *dev = ice_pf_to_dev(pf);
4751 struct ice_hw *hw = &pf->hw;
4752 int err;
4753
4754 ice_init_feature_support(pf);
4755
4756 err = ice_init_ddp_config(hw, pf);
4757
4758 /* if ice_init_ddp_config fails, ICE_FLAG_ADV_FEATURES bit won't be
4759 * set in pf->state, which will cause ice_is_safe_mode to return
4760 * true
4761 */
4762 if (err || ice_is_safe_mode(pf)) {
4763 /* we already got function/device capabilities but these don't
4764 * reflect what the driver needs to do in safe mode. Instead of
4765 * adding conditional logic everywhere to ignore these
4766 * device/function capabilities, override them.
4767 */
4768 ice_set_safe_mode_caps(hw);
4769 }
4770
4771 err = ice_init_pf(pf);
4772 if (err) {
4773 dev_err(dev, "ice_init_pf failed: %d\n", err);
4774 return err;
4775 }
4776
4777 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4778 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4779 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4780 if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4781 pf->hw.udp_tunnel_nic.tables[0].n_entries =
4782 pf->hw.tnl.valid_count[TNL_VXLAN];
4783 pf->hw.udp_tunnel_nic.tables[0].tunnel_types =
4784 UDP_TUNNEL_TYPE_VXLAN;
4785 }
4786 if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4787 pf->hw.udp_tunnel_nic.tables[1].n_entries =
4788 pf->hw.tnl.valid_count[TNL_GENEVE];
4789 pf->hw.udp_tunnel_nic.tables[1].tunnel_types =
4790 UDP_TUNNEL_TYPE_GENEVE;
4791 }
4792
4793 err = ice_init_interrupt_scheme(pf);
4794 if (err) {
4795 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4796 err = -EIO;
4797 goto unroll_pf_init;
4798 }
4799
4800 /* In case of MSIX we are going to setup the misc vector right here
4801 * to handle admin queue events etc. In case of legacy and MSI
4802 * the misc functionality and queue processing is combined in
4803 * the same vector and that gets setup at open.
4804 */
4805 err = ice_req_irq_msix_misc(pf);
4806 if (err) {
4807 dev_err(dev, "setup of misc vector failed: %d\n", err);
4808 goto unroll_irq_scheme_init;
4809 }
4810
4811 return 0;
4812
4813 unroll_irq_scheme_init:
4814 ice_clear_interrupt_scheme(pf);
4815 unroll_pf_init:
4816 ice_deinit_pf(pf);
4817 return err;
4818 }
4819
ice_deinit_dev(struct ice_pf * pf)4820 void ice_deinit_dev(struct ice_pf *pf)
4821 {
4822 ice_free_irq_msix_misc(pf);
4823 ice_deinit_pf(pf);
4824 ice_deinit_hw(&pf->hw);
4825
4826 /* Service task is already stopped, so call reset directly. */
4827 ice_reset(&pf->hw, ICE_RESET_PFR);
4828 pci_wait_for_pending_transaction(pf->pdev);
4829 ice_clear_interrupt_scheme(pf);
4830 }
4831
ice_init_features(struct ice_pf * pf)4832 static void ice_init_features(struct ice_pf *pf)
4833 {
4834 struct device *dev = ice_pf_to_dev(pf);
4835
4836 if (ice_is_safe_mode(pf))
4837 return;
4838
4839 /* initialize DDP driven features */
4840 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4841 ice_ptp_init(pf);
4842
4843 if (ice_is_feature_supported(pf, ICE_F_GNSS))
4844 ice_gnss_init(pf);
4845
4846 if (ice_is_feature_supported(pf, ICE_F_CGU) ||
4847 ice_is_feature_supported(pf, ICE_F_PHY_RCLK))
4848 ice_dpll_init(pf);
4849
4850 /* Note: Flow director init failure is non-fatal to load */
4851 if (ice_init_fdir(pf))
4852 dev_err(dev, "could not initialize flow director\n");
4853
4854 /* Note: DCB init failure is non-fatal to load */
4855 if (ice_init_pf_dcb(pf, false)) {
4856 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4857 clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4858 } else {
4859 ice_cfg_lldp_mib_change(&pf->hw, true);
4860 }
4861
4862 if (ice_init_lag(pf))
4863 dev_warn(dev, "Failed to init link aggregation support\n");
4864
4865 ice_hwmon_init(pf);
4866 }
4867
ice_deinit_features(struct ice_pf * pf)4868 static void ice_deinit_features(struct ice_pf *pf)
4869 {
4870 if (ice_is_safe_mode(pf))
4871 return;
4872
4873 ice_deinit_lag(pf);
4874 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags))
4875 ice_cfg_lldp_mib_change(&pf->hw, false);
4876 ice_deinit_fdir(pf);
4877 if (ice_is_feature_supported(pf, ICE_F_GNSS))
4878 ice_gnss_exit(pf);
4879 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4880 ice_ptp_release(pf);
4881 if (test_bit(ICE_FLAG_DPLL, pf->flags))
4882 ice_dpll_deinit(pf);
4883 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV)
4884 xa_destroy(&pf->eswitch.reprs);
4885 }
4886
ice_init_wakeup(struct ice_pf * pf)4887 static void ice_init_wakeup(struct ice_pf *pf)
4888 {
4889 /* Save wakeup reason register for later use */
4890 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS);
4891
4892 /* check for a power management event */
4893 ice_print_wake_reason(pf);
4894
4895 /* clear wake status, all bits */
4896 wr32(&pf->hw, PFPM_WUS, U32_MAX);
4897
4898 /* Disable WoL at init, wait for user to enable */
4899 device_set_wakeup_enable(ice_pf_to_dev(pf), false);
4900 }
4901
ice_init_link(struct ice_pf * pf)4902 static int ice_init_link(struct ice_pf *pf)
4903 {
4904 struct device *dev = ice_pf_to_dev(pf);
4905 int err;
4906
4907 err = ice_init_link_events(pf->hw.port_info);
4908 if (err) {
4909 dev_err(dev, "ice_init_link_events failed: %d\n", err);
4910 return err;
4911 }
4912
4913 /* not a fatal error if this fails */
4914 err = ice_init_nvm_phy_type(pf->hw.port_info);
4915 if (err)
4916 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4917
4918 /* not a fatal error if this fails */
4919 err = ice_update_link_info(pf->hw.port_info);
4920 if (err)
4921 dev_err(dev, "ice_update_link_info failed: %d\n", err);
4922
4923 ice_init_link_dflt_override(pf->hw.port_info);
4924
4925 ice_check_link_cfg_err(pf,
4926 pf->hw.port_info->phy.link_info.link_cfg_err);
4927
4928 /* if media available, initialize PHY settings */
4929 if (pf->hw.port_info->phy.link_info.link_info &
4930 ICE_AQ_MEDIA_AVAILABLE) {
4931 /* not a fatal error if this fails */
4932 err = ice_init_phy_user_cfg(pf->hw.port_info);
4933 if (err)
4934 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4935
4936 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4937 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4938
4939 if (vsi)
4940 ice_configure_phy(vsi);
4941 }
4942 } else {
4943 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4944 }
4945
4946 return err;
4947 }
4948
ice_init_pf_sw(struct ice_pf * pf)4949 static int ice_init_pf_sw(struct ice_pf *pf)
4950 {
4951 bool dvm = ice_is_dvm_ena(&pf->hw);
4952 struct ice_vsi *vsi;
4953 int err;
4954
4955 /* create switch struct for the switch element created by FW on boot */
4956 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL);
4957 if (!pf->first_sw)
4958 return -ENOMEM;
4959
4960 if (pf->hw.evb_veb)
4961 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4962 else
4963 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4964
4965 pf->first_sw->pf = pf;
4966
4967 /* record the sw_id available for later use */
4968 pf->first_sw->sw_id = pf->hw.port_info->sw_id;
4969
4970 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
4971 if (err)
4972 goto err_aq_set_port_params;
4973
4974 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
4975 if (!vsi) {
4976 err = -ENOMEM;
4977 goto err_pf_vsi_setup;
4978 }
4979
4980 return 0;
4981
4982 err_pf_vsi_setup:
4983 err_aq_set_port_params:
4984 kfree(pf->first_sw);
4985 return err;
4986 }
4987
ice_deinit_pf_sw(struct ice_pf * pf)4988 static void ice_deinit_pf_sw(struct ice_pf *pf)
4989 {
4990 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4991
4992 if (!vsi)
4993 return;
4994
4995 ice_vsi_release(vsi);
4996 kfree(pf->first_sw);
4997 }
4998
ice_alloc_vsis(struct ice_pf * pf)4999 static int ice_alloc_vsis(struct ice_pf *pf)
5000 {
5001 struct device *dev = ice_pf_to_dev(pf);
5002
5003 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi;
5004 if (!pf->num_alloc_vsi)
5005 return -EIO;
5006
5007 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
5008 dev_warn(dev,
5009 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
5010 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
5011 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
5012 }
5013
5014 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
5015 GFP_KERNEL);
5016 if (!pf->vsi)
5017 return -ENOMEM;
5018
5019 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi,
5020 sizeof(*pf->vsi_stats), GFP_KERNEL);
5021 if (!pf->vsi_stats) {
5022 devm_kfree(dev, pf->vsi);
5023 return -ENOMEM;
5024 }
5025
5026 return 0;
5027 }
5028
ice_dealloc_vsis(struct ice_pf * pf)5029 static void ice_dealloc_vsis(struct ice_pf *pf)
5030 {
5031 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats);
5032 pf->vsi_stats = NULL;
5033
5034 pf->num_alloc_vsi = 0;
5035 devm_kfree(ice_pf_to_dev(pf), pf->vsi);
5036 pf->vsi = NULL;
5037 }
5038
ice_init_devlink(struct ice_pf * pf)5039 static int ice_init_devlink(struct ice_pf *pf)
5040 {
5041 int err;
5042
5043 err = ice_devlink_register_params(pf);
5044 if (err)
5045 return err;
5046
5047 ice_devlink_init_regions(pf);
5048 ice_devlink_register(pf);
5049 ice_health_init(pf);
5050
5051 return 0;
5052 }
5053
ice_deinit_devlink(struct ice_pf * pf)5054 static void ice_deinit_devlink(struct ice_pf *pf)
5055 {
5056 ice_health_deinit(pf);
5057 ice_devlink_unregister(pf);
5058 ice_devlink_destroy_regions(pf);
5059 ice_devlink_unregister_params(pf);
5060 }
5061
ice_init(struct ice_pf * pf)5062 static int ice_init(struct ice_pf *pf)
5063 {
5064 int err;
5065
5066 err = ice_init_dev(pf);
5067 if (err)
5068 return err;
5069
5070 if (pf->hw.mac_type == ICE_MAC_E830) {
5071 err = pci_enable_ptm(pf->pdev, NULL);
5072 if (err)
5073 dev_dbg(ice_pf_to_dev(pf), "PCIe PTM not supported by PCIe bus/controller\n");
5074 }
5075
5076 err = ice_alloc_vsis(pf);
5077 if (err)
5078 goto err_alloc_vsis;
5079
5080 err = ice_init_pf_sw(pf);
5081 if (err)
5082 goto err_init_pf_sw;
5083
5084 ice_init_wakeup(pf);
5085
5086 err = ice_init_link(pf);
5087 if (err)
5088 goto err_init_link;
5089
5090 err = ice_send_version(pf);
5091 if (err)
5092 goto err_init_link;
5093
5094 ice_verify_cacheline_size(pf);
5095
5096 if (ice_is_safe_mode(pf))
5097 ice_set_safe_mode_vlan_cfg(pf);
5098 else
5099 /* print PCI link speed and width */
5100 pcie_print_link_status(pf->pdev);
5101
5102 /* ready to go, so clear down state bit */
5103 clear_bit(ICE_DOWN, pf->state);
5104 clear_bit(ICE_SERVICE_DIS, pf->state);
5105
5106 /* since everything is good, start the service timer */
5107 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5108
5109 return 0;
5110
5111 err_init_link:
5112 ice_deinit_pf_sw(pf);
5113 err_init_pf_sw:
5114 ice_dealloc_vsis(pf);
5115 err_alloc_vsis:
5116 ice_deinit_dev(pf);
5117 return err;
5118 }
5119
ice_deinit(struct ice_pf * pf)5120 static void ice_deinit(struct ice_pf *pf)
5121 {
5122 set_bit(ICE_SERVICE_DIS, pf->state);
5123 set_bit(ICE_DOWN, pf->state);
5124
5125 ice_deinit_pf_sw(pf);
5126 ice_dealloc_vsis(pf);
5127 ice_deinit_dev(pf);
5128 }
5129
5130 /**
5131 * ice_load - load pf by init hw and starting VSI
5132 * @pf: pointer to the pf instance
5133 *
5134 * This function has to be called under devl_lock.
5135 */
ice_load(struct ice_pf * pf)5136 int ice_load(struct ice_pf *pf)
5137 {
5138 struct ice_vsi *vsi;
5139 int err;
5140
5141 devl_assert_locked(priv_to_devlink(pf));
5142
5143 vsi = ice_get_main_vsi(pf);
5144
5145 /* init channel list */
5146 INIT_LIST_HEAD(&vsi->ch_list);
5147
5148 err = ice_cfg_netdev(vsi);
5149 if (err)
5150 return err;
5151
5152 /* Setup DCB netlink interface */
5153 ice_dcbnl_setup(vsi);
5154
5155 err = ice_init_mac_fltr(pf);
5156 if (err)
5157 goto err_init_mac_fltr;
5158
5159 err = ice_devlink_create_pf_port(pf);
5160 if (err)
5161 goto err_devlink_create_pf_port;
5162
5163 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port);
5164
5165 err = ice_register_netdev(vsi);
5166 if (err)
5167 goto err_register_netdev;
5168
5169 err = ice_tc_indir_block_register(vsi);
5170 if (err)
5171 goto err_tc_indir_block_register;
5172
5173 ice_napi_add(vsi);
5174
5175 ice_init_features(pf);
5176
5177 err = ice_init_rdma(pf);
5178 if (err)
5179 goto err_init_rdma;
5180
5181 ice_service_task_restart(pf);
5182
5183 clear_bit(ICE_DOWN, pf->state);
5184
5185 return 0;
5186
5187 err_init_rdma:
5188 ice_deinit_features(pf);
5189 ice_tc_indir_block_unregister(vsi);
5190 err_tc_indir_block_register:
5191 ice_unregister_netdev(vsi);
5192 err_register_netdev:
5193 ice_devlink_destroy_pf_port(pf);
5194 err_devlink_create_pf_port:
5195 err_init_mac_fltr:
5196 ice_decfg_netdev(vsi);
5197 return err;
5198 }
5199
5200 /**
5201 * ice_unload - unload pf by stopping VSI and deinit hw
5202 * @pf: pointer to the pf instance
5203 *
5204 * This function has to be called under devl_lock.
5205 */
ice_unload(struct ice_pf * pf)5206 void ice_unload(struct ice_pf *pf)
5207 {
5208 struct ice_vsi *vsi = ice_get_main_vsi(pf);
5209
5210 devl_assert_locked(priv_to_devlink(pf));
5211
5212 ice_deinit_rdma(pf);
5213 ice_deinit_features(pf);
5214 ice_tc_indir_block_unregister(vsi);
5215 ice_unregister_netdev(vsi);
5216 ice_devlink_destroy_pf_port(pf);
5217 ice_decfg_netdev(vsi);
5218 }
5219
ice_probe_recovery_mode(struct ice_pf * pf)5220 static int ice_probe_recovery_mode(struct ice_pf *pf)
5221 {
5222 struct device *dev = ice_pf_to_dev(pf);
5223 int err;
5224
5225 dev_err(dev, "Firmware recovery mode detected. Limiting functionality. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode\n");
5226
5227 INIT_HLIST_HEAD(&pf->aq_wait_list);
5228 spin_lock_init(&pf->aq_wait_lock);
5229 init_waitqueue_head(&pf->aq_wait_queue);
5230
5231 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
5232 pf->serv_tmr_period = HZ;
5233 INIT_WORK(&pf->serv_task, ice_service_task_recovery_mode);
5234 clear_bit(ICE_SERVICE_SCHED, pf->state);
5235 err = ice_create_all_ctrlq(&pf->hw);
5236 if (err)
5237 return err;
5238
5239 scoped_guard(devl, priv_to_devlink(pf)) {
5240 err = ice_init_devlink(pf);
5241 if (err)
5242 return err;
5243 }
5244
5245 ice_service_task_restart(pf);
5246
5247 return 0;
5248 }
5249
5250 /**
5251 * ice_probe - Device initialization routine
5252 * @pdev: PCI device information struct
5253 * @ent: entry in ice_pci_tbl
5254 *
5255 * Returns 0 on success, negative on failure
5256 */
5257 static int
ice_probe(struct pci_dev * pdev,const struct pci_device_id __always_unused * ent)5258 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
5259 {
5260 struct device *dev = &pdev->dev;
5261 struct ice_adapter *adapter;
5262 struct ice_pf *pf;
5263 struct ice_hw *hw;
5264 int err;
5265
5266 if (pdev->is_virtfn) {
5267 dev_err(dev, "can't probe a virtual function\n");
5268 return -EINVAL;
5269 }
5270
5271 /* when under a kdump kernel initiate a reset before enabling the
5272 * device in order to clear out any pending DMA transactions. These
5273 * transactions can cause some systems to machine check when doing
5274 * the pcim_enable_device() below.
5275 */
5276 if (is_kdump_kernel()) {
5277 pci_save_state(pdev);
5278 pci_clear_master(pdev);
5279 err = pcie_flr(pdev);
5280 if (err)
5281 return err;
5282 pci_restore_state(pdev);
5283 }
5284
5285 /* this driver uses devres, see
5286 * Documentation/driver-api/driver-model/devres.rst
5287 */
5288 err = pcim_enable_device(pdev);
5289 if (err)
5290 return err;
5291
5292 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
5293 if (err) {
5294 dev_err(dev, "BAR0 I/O map error %d\n", err);
5295 return err;
5296 }
5297
5298 pf = ice_allocate_pf(dev);
5299 if (!pf)
5300 return -ENOMEM;
5301
5302 /* initialize Auxiliary index to invalid value */
5303 pf->aux_idx = -1;
5304
5305 /* set up for high or low DMA */
5306 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5307 if (err) {
5308 dev_err(dev, "DMA configuration failed: 0x%x\n", err);
5309 return err;
5310 }
5311
5312 pci_set_master(pdev);
5313 pf->pdev = pdev;
5314 pci_set_drvdata(pdev, pf);
5315 set_bit(ICE_DOWN, pf->state);
5316 /* Disable service task until DOWN bit is cleared */
5317 set_bit(ICE_SERVICE_DIS, pf->state);
5318
5319 hw = &pf->hw;
5320 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
5321 pci_save_state(pdev);
5322
5323 hw->back = pf;
5324 hw->port_info = NULL;
5325 hw->vendor_id = pdev->vendor;
5326 hw->device_id = pdev->device;
5327 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5328 hw->subsystem_vendor_id = pdev->subsystem_vendor;
5329 hw->subsystem_device_id = pdev->subsystem_device;
5330 hw->bus.device = PCI_SLOT(pdev->devfn);
5331 hw->bus.func = PCI_FUNC(pdev->devfn);
5332 ice_set_ctrlq_len(hw);
5333
5334 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
5335
5336 #ifndef CONFIG_DYNAMIC_DEBUG
5337 if (debug < -1)
5338 hw->debug_mask = debug;
5339 #endif
5340
5341 if (ice_is_recovery_mode(hw))
5342 return ice_probe_recovery_mode(pf);
5343
5344 err = ice_init_hw(hw);
5345 if (err) {
5346 dev_err(dev, "ice_init_hw failed: %d\n", err);
5347 return err;
5348 }
5349
5350 adapter = ice_adapter_get(pdev);
5351 if (IS_ERR(adapter)) {
5352 err = PTR_ERR(adapter);
5353 goto unroll_hw_init;
5354 }
5355 pf->adapter = adapter;
5356
5357 err = ice_init(pf);
5358 if (err)
5359 goto unroll_adapter;
5360
5361 devl_lock(priv_to_devlink(pf));
5362 err = ice_load(pf);
5363 if (err)
5364 goto unroll_init;
5365
5366 err = ice_init_devlink(pf);
5367 if (err)
5368 goto unroll_load;
5369 devl_unlock(priv_to_devlink(pf));
5370
5371 return 0;
5372
5373 unroll_load:
5374 ice_unload(pf);
5375 unroll_init:
5376 devl_unlock(priv_to_devlink(pf));
5377 ice_deinit(pf);
5378 unroll_adapter:
5379 ice_adapter_put(pdev);
5380 unroll_hw_init:
5381 ice_deinit_hw(hw);
5382 return err;
5383 }
5384
5385 /**
5386 * ice_set_wake - enable or disable Wake on LAN
5387 * @pf: pointer to the PF struct
5388 *
5389 * Simple helper for WoL control
5390 */
ice_set_wake(struct ice_pf * pf)5391 static void ice_set_wake(struct ice_pf *pf)
5392 {
5393 struct ice_hw *hw = &pf->hw;
5394 bool wol = pf->wol_ena;
5395
5396 /* clear wake state, otherwise new wake events won't fire */
5397 wr32(hw, PFPM_WUS, U32_MAX);
5398
5399 /* enable / disable APM wake up, no RMW needed */
5400 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
5401
5402 /* set magic packet filter enabled */
5403 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
5404 }
5405
5406 /**
5407 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
5408 * @pf: pointer to the PF struct
5409 *
5410 * Issue firmware command to enable multicast magic wake, making
5411 * sure that any locally administered address (LAA) is used for
5412 * wake, and that PF reset doesn't undo the LAA.
5413 */
ice_setup_mc_magic_wake(struct ice_pf * pf)5414 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
5415 {
5416 struct device *dev = ice_pf_to_dev(pf);
5417 struct ice_hw *hw = &pf->hw;
5418 u8 mac_addr[ETH_ALEN];
5419 struct ice_vsi *vsi;
5420 int status;
5421 u8 flags;
5422
5423 if (!pf->wol_ena)
5424 return;
5425
5426 vsi = ice_get_main_vsi(pf);
5427 if (!vsi)
5428 return;
5429
5430 /* Get current MAC address in case it's an LAA */
5431 if (vsi->netdev)
5432 ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
5433 else
5434 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
5435
5436 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
5437 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
5438 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
5439
5440 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
5441 if (status)
5442 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
5443 status, libie_aq_str(hw->adminq.sq_last_status));
5444 }
5445
5446 /**
5447 * ice_remove - Device removal routine
5448 * @pdev: PCI device information struct
5449 */
ice_remove(struct pci_dev * pdev)5450 static void ice_remove(struct pci_dev *pdev)
5451 {
5452 struct ice_pf *pf = pci_get_drvdata(pdev);
5453 int i;
5454
5455 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
5456 if (!ice_is_reset_in_progress(pf->state))
5457 break;
5458 msleep(100);
5459 }
5460
5461 if (ice_is_recovery_mode(&pf->hw)) {
5462 ice_service_task_stop(pf);
5463 scoped_guard(devl, priv_to_devlink(pf)) {
5464 ice_deinit_devlink(pf);
5465 }
5466 return;
5467 }
5468
5469 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
5470 set_bit(ICE_VF_RESETS_DISABLED, pf->state);
5471 ice_free_vfs(pf);
5472 }
5473
5474 ice_hwmon_exit(pf);
5475
5476 ice_service_task_stop(pf);
5477 ice_aq_cancel_waiting_tasks(pf);
5478 set_bit(ICE_DOWN, pf->state);
5479
5480 if (!ice_is_safe_mode(pf))
5481 ice_remove_arfs(pf);
5482
5483 devl_lock(priv_to_devlink(pf));
5484 ice_dealloc_all_dynamic_ports(pf);
5485 ice_deinit_devlink(pf);
5486
5487 ice_unload(pf);
5488 devl_unlock(priv_to_devlink(pf));
5489
5490 ice_deinit(pf);
5491 ice_vsi_release_all(pf);
5492
5493 ice_setup_mc_magic_wake(pf);
5494 ice_set_wake(pf);
5495
5496 ice_adapter_put(pdev);
5497 }
5498
5499 /**
5500 * ice_shutdown - PCI callback for shutting down device
5501 * @pdev: PCI device information struct
5502 */
ice_shutdown(struct pci_dev * pdev)5503 static void ice_shutdown(struct pci_dev *pdev)
5504 {
5505 struct ice_pf *pf = pci_get_drvdata(pdev);
5506
5507 ice_remove(pdev);
5508
5509 if (system_state == SYSTEM_POWER_OFF) {
5510 pci_wake_from_d3(pdev, pf->wol_ena);
5511 pci_set_power_state(pdev, PCI_D3hot);
5512 }
5513 }
5514
5515 /**
5516 * ice_prepare_for_shutdown - prep for PCI shutdown
5517 * @pf: board private structure
5518 *
5519 * Inform or close all dependent features in prep for PCI device shutdown
5520 */
ice_prepare_for_shutdown(struct ice_pf * pf)5521 static void ice_prepare_for_shutdown(struct ice_pf *pf)
5522 {
5523 struct ice_hw *hw = &pf->hw;
5524 u32 v;
5525
5526 /* Notify VFs of impending reset */
5527 if (ice_check_sq_alive(hw, &hw->mailboxq))
5528 ice_vc_notify_reset(pf);
5529
5530 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5531
5532 /* disable the VSIs and their queues that are not already DOWN */
5533 ice_pf_dis_all_vsi(pf, false);
5534
5535 ice_for_each_vsi(pf, v)
5536 if (pf->vsi[v])
5537 pf->vsi[v]->vsi_num = 0;
5538
5539 ice_shutdown_all_ctrlq(hw, true);
5540 }
5541
5542 /**
5543 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5544 * @pf: board private structure to reinitialize
5545 *
5546 * This routine reinitialize interrupt scheme that was cleared during
5547 * power management suspend callback.
5548 *
5549 * This should be called during resume routine to re-allocate the q_vectors
5550 * and reacquire interrupts.
5551 */
ice_reinit_interrupt_scheme(struct ice_pf * pf)5552 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5553 {
5554 struct device *dev = ice_pf_to_dev(pf);
5555 int ret, v;
5556
5557 /* Since we clear MSIX flag during suspend, we need to
5558 * set it back during resume...
5559 */
5560
5561 ret = ice_init_interrupt_scheme(pf);
5562 if (ret) {
5563 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5564 return ret;
5565 }
5566
5567 /* Remap vectors and rings, after successful re-init interrupts */
5568 ice_for_each_vsi(pf, v) {
5569 if (!pf->vsi[v])
5570 continue;
5571
5572 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5573 if (ret)
5574 goto err_reinit;
5575 ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5576 rtnl_lock();
5577 ice_vsi_set_napi_queues(pf->vsi[v]);
5578 rtnl_unlock();
5579 }
5580
5581 ret = ice_req_irq_msix_misc(pf);
5582 if (ret) {
5583 dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5584 ret);
5585 goto err_reinit;
5586 }
5587
5588 return 0;
5589
5590 err_reinit:
5591 while (v--)
5592 if (pf->vsi[v]) {
5593 rtnl_lock();
5594 ice_vsi_clear_napi_queues(pf->vsi[v]);
5595 rtnl_unlock();
5596 ice_vsi_free_q_vectors(pf->vsi[v]);
5597 }
5598
5599 return ret;
5600 }
5601
5602 /**
5603 * ice_suspend
5604 * @dev: generic device information structure
5605 *
5606 * Power Management callback to quiesce the device and prepare
5607 * for D3 transition.
5608 */
ice_suspend(struct device * dev)5609 static int ice_suspend(struct device *dev)
5610 {
5611 struct pci_dev *pdev = to_pci_dev(dev);
5612 struct ice_pf *pf;
5613 int disabled, v;
5614
5615 pf = pci_get_drvdata(pdev);
5616
5617 if (!ice_pf_state_is_nominal(pf)) {
5618 dev_err(dev, "Device is not ready, no need to suspend it\n");
5619 return -EBUSY;
5620 }
5621
5622 /* Stop watchdog tasks until resume completion.
5623 * Even though it is most likely that the service task is
5624 * disabled if the device is suspended or down, the service task's
5625 * state is controlled by a different state bit, and we should
5626 * store and honor whatever state that bit is in at this point.
5627 */
5628 disabled = ice_service_task_stop(pf);
5629
5630 ice_deinit_rdma(pf);
5631
5632 /* Already suspended?, then there is nothing to do */
5633 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5634 if (!disabled)
5635 ice_service_task_restart(pf);
5636 return 0;
5637 }
5638
5639 if (test_bit(ICE_DOWN, pf->state) ||
5640 ice_is_reset_in_progress(pf->state)) {
5641 dev_err(dev, "can't suspend device in reset or already down\n");
5642 if (!disabled)
5643 ice_service_task_restart(pf);
5644 return 0;
5645 }
5646
5647 ice_setup_mc_magic_wake(pf);
5648
5649 ice_prepare_for_shutdown(pf);
5650
5651 ice_set_wake(pf);
5652
5653 /* Free vectors, clear the interrupt scheme and release IRQs
5654 * for proper hibernation, especially with large number of CPUs.
5655 * Otherwise hibernation might fail when mapping all the vectors back
5656 * to CPU0.
5657 */
5658 ice_free_irq_msix_misc(pf);
5659 ice_for_each_vsi(pf, v) {
5660 if (!pf->vsi[v])
5661 continue;
5662 rtnl_lock();
5663 ice_vsi_clear_napi_queues(pf->vsi[v]);
5664 rtnl_unlock();
5665 ice_vsi_free_q_vectors(pf->vsi[v]);
5666 }
5667 ice_clear_interrupt_scheme(pf);
5668
5669 pci_save_state(pdev);
5670 pci_wake_from_d3(pdev, pf->wol_ena);
5671 pci_set_power_state(pdev, PCI_D3hot);
5672 return 0;
5673 }
5674
5675 /**
5676 * ice_resume - PM callback for waking up from D3
5677 * @dev: generic device information structure
5678 */
ice_resume(struct device * dev)5679 static int ice_resume(struct device *dev)
5680 {
5681 struct pci_dev *pdev = to_pci_dev(dev);
5682 enum ice_reset_req reset_type;
5683 struct ice_pf *pf;
5684 struct ice_hw *hw;
5685 int ret;
5686
5687 pci_set_power_state(pdev, PCI_D0);
5688 pci_restore_state(pdev);
5689 pci_save_state(pdev);
5690
5691 if (!pci_device_is_present(pdev))
5692 return -ENODEV;
5693
5694 ret = pci_enable_device_mem(pdev);
5695 if (ret) {
5696 dev_err(dev, "Cannot enable device after suspend\n");
5697 return ret;
5698 }
5699
5700 pf = pci_get_drvdata(pdev);
5701 hw = &pf->hw;
5702
5703 pf->wakeup_reason = rd32(hw, PFPM_WUS);
5704 ice_print_wake_reason(pf);
5705
5706 /* We cleared the interrupt scheme when we suspended, so we need to
5707 * restore it now to resume device functionality.
5708 */
5709 ret = ice_reinit_interrupt_scheme(pf);
5710 if (ret)
5711 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5712
5713 ret = ice_init_rdma(pf);
5714 if (ret)
5715 dev_err(dev, "Reinitialize RDMA during resume failed: %d\n",
5716 ret);
5717
5718 clear_bit(ICE_DOWN, pf->state);
5719 /* Now perform PF reset and rebuild */
5720 reset_type = ICE_RESET_PFR;
5721 /* re-enable service task for reset, but allow reset to schedule it */
5722 clear_bit(ICE_SERVICE_DIS, pf->state);
5723
5724 if (ice_schedule_reset(pf, reset_type))
5725 dev_err(dev, "Reset during resume failed.\n");
5726
5727 clear_bit(ICE_SUSPENDED, pf->state);
5728 ice_service_task_restart(pf);
5729
5730 /* Restart the service task */
5731 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5732
5733 return 0;
5734 }
5735
5736 /**
5737 * ice_pci_err_detected - warning that PCI error has been detected
5738 * @pdev: PCI device information struct
5739 * @err: the type of PCI error
5740 *
5741 * Called to warn that something happened on the PCI bus and the error handling
5742 * is in progress. Allows the driver to gracefully prepare/handle PCI errors.
5743 */
5744 static pci_ers_result_t
ice_pci_err_detected(struct pci_dev * pdev,pci_channel_state_t err)5745 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5746 {
5747 struct ice_pf *pf = pci_get_drvdata(pdev);
5748
5749 if (!pf) {
5750 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5751 __func__, err);
5752 return PCI_ERS_RESULT_DISCONNECT;
5753 }
5754
5755 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5756 ice_service_task_stop(pf);
5757
5758 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5759 set_bit(ICE_PFR_REQ, pf->state);
5760 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5761 }
5762 }
5763
5764 return PCI_ERS_RESULT_NEED_RESET;
5765 }
5766
5767 /**
5768 * ice_pci_err_slot_reset - a PCI slot reset has just happened
5769 * @pdev: PCI device information struct
5770 *
5771 * Called to determine if the driver can recover from the PCI slot reset by
5772 * using a register read to determine if the device is recoverable.
5773 */
ice_pci_err_slot_reset(struct pci_dev * pdev)5774 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5775 {
5776 struct ice_pf *pf = pci_get_drvdata(pdev);
5777 pci_ers_result_t result;
5778 int err;
5779 u32 reg;
5780
5781 err = pci_enable_device_mem(pdev);
5782 if (err) {
5783 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5784 err);
5785 result = PCI_ERS_RESULT_DISCONNECT;
5786 } else {
5787 pci_set_master(pdev);
5788 pci_restore_state(pdev);
5789 pci_save_state(pdev);
5790 pci_wake_from_d3(pdev, false);
5791
5792 /* Check for life */
5793 reg = rd32(&pf->hw, GLGEN_RTRIG);
5794 if (!reg)
5795 result = PCI_ERS_RESULT_RECOVERED;
5796 else
5797 result = PCI_ERS_RESULT_DISCONNECT;
5798 }
5799
5800 return result;
5801 }
5802
5803 /**
5804 * ice_pci_err_resume - restart operations after PCI error recovery
5805 * @pdev: PCI device information struct
5806 *
5807 * Called to allow the driver to bring things back up after PCI error and/or
5808 * reset recovery have finished
5809 */
ice_pci_err_resume(struct pci_dev * pdev)5810 static void ice_pci_err_resume(struct pci_dev *pdev)
5811 {
5812 struct ice_pf *pf = pci_get_drvdata(pdev);
5813
5814 if (!pf) {
5815 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5816 __func__);
5817 return;
5818 }
5819
5820 if (test_bit(ICE_SUSPENDED, pf->state)) {
5821 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5822 __func__);
5823 return;
5824 }
5825
5826 ice_restore_all_vfs_msi_state(pf);
5827
5828 ice_do_reset(pf, ICE_RESET_PFR);
5829 ice_service_task_restart(pf);
5830 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5831 }
5832
5833 /**
5834 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5835 * @pdev: PCI device information struct
5836 */
ice_pci_err_reset_prepare(struct pci_dev * pdev)5837 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5838 {
5839 struct ice_pf *pf = pci_get_drvdata(pdev);
5840
5841 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5842 ice_service_task_stop(pf);
5843
5844 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5845 set_bit(ICE_PFR_REQ, pf->state);
5846 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5847 }
5848 }
5849 }
5850
5851 /**
5852 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5853 * @pdev: PCI device information struct
5854 */
ice_pci_err_reset_done(struct pci_dev * pdev)5855 static void ice_pci_err_reset_done(struct pci_dev *pdev)
5856 {
5857 ice_pci_err_resume(pdev);
5858 }
5859
5860 /* ice_pci_tbl - PCI Device ID Table
5861 *
5862 * Wildcard entries (PCI_ANY_ID) should come last
5863 * Last entry must be all 0s
5864 *
5865 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5866 * Class, Class Mask, private data (not used) }
5867 */
5868 static const struct pci_device_id ice_pci_tbl[] = {
5869 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) },
5870 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) },
5871 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) },
5872 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) },
5873 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) },
5874 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) },
5875 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) },
5876 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) },
5877 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) },
5878 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) },
5879 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) },
5880 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) },
5881 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) },
5882 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) },
5883 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) },
5884 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) },
5885 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) },
5886 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) },
5887 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) },
5888 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) },
5889 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) },
5890 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) },
5891 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) },
5892 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) },
5893 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) },
5894 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) },
5895 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), },
5896 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), },
5897 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), },
5898 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), },
5899 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_BACKPLANE) },
5900 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_QSFP56) },
5901 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP) },
5902 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP_DD) },
5903 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_BACKPLANE), },
5904 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_BACKPLANE), },
5905 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_QSFP), },
5906 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_QSFP), },
5907 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_SFP), },
5908 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_SFP), },
5909 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835CC_BACKPLANE), },
5910 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835CC_QSFP56), },
5911 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835CC_SFP), },
5912 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835C_BACKPLANE), },
5913 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835C_QSFP), },
5914 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835C_SFP), },
5915 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835_L_BACKPLANE), },
5916 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835_L_QSFP), },
5917 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835_L_SFP), },
5918 /* required last entry */
5919 {}
5920 };
5921 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5922
5923 static DEFINE_SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5924
5925 static const struct pci_error_handlers ice_pci_err_handler = {
5926 .error_detected = ice_pci_err_detected,
5927 .slot_reset = ice_pci_err_slot_reset,
5928 .reset_prepare = ice_pci_err_reset_prepare,
5929 .reset_done = ice_pci_err_reset_done,
5930 .resume = ice_pci_err_resume
5931 };
5932
5933 static struct pci_driver ice_driver = {
5934 .name = KBUILD_MODNAME,
5935 .id_table = ice_pci_tbl,
5936 .probe = ice_probe,
5937 .remove = ice_remove,
5938 .driver.pm = pm_sleep_ptr(&ice_pm_ops),
5939 .shutdown = ice_shutdown,
5940 .sriov_configure = ice_sriov_configure,
5941 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix,
5942 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count,
5943 .err_handler = &ice_pci_err_handler
5944 };
5945
5946 /**
5947 * ice_module_init - Driver registration routine
5948 *
5949 * ice_module_init is the first routine called when the driver is
5950 * loaded. All it does is register with the PCI subsystem.
5951 */
ice_module_init(void)5952 static int __init ice_module_init(void)
5953 {
5954 int status = -ENOMEM;
5955
5956 pr_info("%s\n", ice_driver_string);
5957 pr_info("%s\n", ice_copyright);
5958
5959 ice_adv_lnk_speed_maps_init();
5960
5961 ice_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, KBUILD_MODNAME);
5962 if (!ice_wq) {
5963 pr_err("Failed to create workqueue\n");
5964 return status;
5965 }
5966
5967 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0);
5968 if (!ice_lag_wq) {
5969 pr_err("Failed to create LAG workqueue\n");
5970 goto err_dest_wq;
5971 }
5972
5973 ice_debugfs_init();
5974
5975 status = pci_register_driver(&ice_driver);
5976 if (status) {
5977 pr_err("failed to register PCI driver, err %d\n", status);
5978 goto err_dest_lag_wq;
5979 }
5980
5981 status = ice_sf_driver_register();
5982 if (status) {
5983 pr_err("Failed to register SF driver, err %d\n", status);
5984 goto err_sf_driver;
5985 }
5986
5987 return 0;
5988
5989 err_sf_driver:
5990 pci_unregister_driver(&ice_driver);
5991 err_dest_lag_wq:
5992 destroy_workqueue(ice_lag_wq);
5993 ice_debugfs_exit();
5994 err_dest_wq:
5995 destroy_workqueue(ice_wq);
5996 return status;
5997 }
5998 module_init(ice_module_init);
5999
6000 /**
6001 * ice_module_exit - Driver exit cleanup routine
6002 *
6003 * ice_module_exit is called just before the driver is removed
6004 * from memory.
6005 */
ice_module_exit(void)6006 static void __exit ice_module_exit(void)
6007 {
6008 ice_sf_driver_unregister();
6009 pci_unregister_driver(&ice_driver);
6010 ice_debugfs_exit();
6011 destroy_workqueue(ice_wq);
6012 destroy_workqueue(ice_lag_wq);
6013 pr_info("module unloaded\n");
6014 }
6015 module_exit(ice_module_exit);
6016
6017 /**
6018 * ice_set_mac_address - NDO callback to set MAC address
6019 * @netdev: network interface device structure
6020 * @pi: pointer to an address structure
6021 *
6022 * Returns 0 on success, negative on failure
6023 */
ice_set_mac_address(struct net_device * netdev,void * pi)6024 static int ice_set_mac_address(struct net_device *netdev, void *pi)
6025 {
6026 struct ice_netdev_priv *np = netdev_priv(netdev);
6027 struct ice_vsi *vsi = np->vsi;
6028 struct ice_pf *pf = vsi->back;
6029 struct ice_hw *hw = &pf->hw;
6030 struct sockaddr *addr = pi;
6031 u8 old_mac[ETH_ALEN];
6032 u8 flags = 0;
6033 u8 *mac;
6034 int err;
6035
6036 mac = (u8 *)addr->sa_data;
6037
6038 if (!is_valid_ether_addr(mac))
6039 return -EADDRNOTAVAIL;
6040
6041 if (test_bit(ICE_DOWN, pf->state) ||
6042 ice_is_reset_in_progress(pf->state)) {
6043 netdev_err(netdev, "can't set mac %pM. device not ready\n",
6044 mac);
6045 return -EBUSY;
6046 }
6047
6048 if (ice_chnl_dmac_fltr_cnt(pf)) {
6049 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
6050 mac);
6051 return -EAGAIN;
6052 }
6053
6054 netif_addr_lock_bh(netdev);
6055 ether_addr_copy(old_mac, netdev->dev_addr);
6056 /* change the netdev's MAC address */
6057 eth_hw_addr_set(netdev, mac);
6058 netif_addr_unlock_bh(netdev);
6059
6060 /* Clean up old MAC filter. Not an error if old filter doesn't exist */
6061 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
6062 if (err && err != -ENOENT) {
6063 err = -EADDRNOTAVAIL;
6064 goto err_update_filters;
6065 }
6066
6067 /* Add filter for new MAC. If filter exists, return success */
6068 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
6069 if (err == -EEXIST) {
6070 /* Although this MAC filter is already present in hardware it's
6071 * possible in some cases (e.g. bonding) that dev_addr was
6072 * modified outside of the driver and needs to be restored back
6073 * to this value.
6074 */
6075 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
6076
6077 return 0;
6078 } else if (err) {
6079 /* error if the new filter addition failed */
6080 err = -EADDRNOTAVAIL;
6081 }
6082
6083 err_update_filters:
6084 if (err) {
6085 netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
6086 mac);
6087 netif_addr_lock_bh(netdev);
6088 eth_hw_addr_set(netdev, old_mac);
6089 netif_addr_unlock_bh(netdev);
6090 return err;
6091 }
6092
6093 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
6094 netdev->dev_addr);
6095
6096 /* write new MAC address to the firmware */
6097 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
6098 err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
6099 if (err) {
6100 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
6101 mac, err);
6102 }
6103 return 0;
6104 }
6105
6106 /**
6107 * ice_set_rx_mode - NDO callback to set the netdev filters
6108 * @netdev: network interface device structure
6109 */
ice_set_rx_mode(struct net_device * netdev)6110 static void ice_set_rx_mode(struct net_device *netdev)
6111 {
6112 struct ice_netdev_priv *np = netdev_priv(netdev);
6113 struct ice_vsi *vsi = np->vsi;
6114
6115 if (!vsi || ice_is_switchdev_running(vsi->back))
6116 return;
6117
6118 /* Set the flags to synchronize filters
6119 * ndo_set_rx_mode may be triggered even without a change in netdev
6120 * flags
6121 */
6122 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
6123 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
6124 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
6125
6126 /* schedule our worker thread which will take care of
6127 * applying the new filter changes
6128 */
6129 ice_service_task_schedule(vsi->back);
6130 }
6131
6132 /**
6133 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
6134 * @netdev: network interface device structure
6135 * @queue_index: Queue ID
6136 * @maxrate: maximum bandwidth in Mbps
6137 */
6138 static int
ice_set_tx_maxrate(struct net_device * netdev,int queue_index,u32 maxrate)6139 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
6140 {
6141 struct ice_netdev_priv *np = netdev_priv(netdev);
6142 struct ice_vsi *vsi = np->vsi;
6143 u16 q_handle;
6144 int status;
6145 u8 tc;
6146
6147 /* Validate maxrate requested is within permitted range */
6148 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
6149 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
6150 maxrate, queue_index);
6151 return -EINVAL;
6152 }
6153
6154 q_handle = vsi->tx_rings[queue_index]->q_handle;
6155 tc = ice_dcb_get_tc(vsi, queue_index);
6156
6157 vsi = ice_locate_vsi_using_queue(vsi, queue_index);
6158 if (!vsi) {
6159 netdev_err(netdev, "Invalid VSI for given queue %d\n",
6160 queue_index);
6161 return -EINVAL;
6162 }
6163
6164 /* Set BW back to default, when user set maxrate to 0 */
6165 if (!maxrate)
6166 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
6167 q_handle, ICE_MAX_BW);
6168 else
6169 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
6170 q_handle, ICE_MAX_BW, maxrate * 1000);
6171 if (status)
6172 netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
6173 status);
6174
6175 return status;
6176 }
6177
6178 /**
6179 * ice_fdb_add - add an entry to the hardware database
6180 * @ndm: the input from the stack
6181 * @tb: pointer to array of nladdr (unused)
6182 * @dev: the net device pointer
6183 * @addr: the MAC address entry being added
6184 * @vid: VLAN ID
6185 * @flags: instructions from stack about fdb operation
6186 * @notified: whether notification was emitted
6187 * @extack: netlink extended ack
6188 */
6189 static int
ice_fdb_add(struct ndmsg * ndm,struct nlattr __always_unused * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,bool * notified,struct netlink_ext_ack __always_unused * extack)6190 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
6191 struct net_device *dev, const unsigned char *addr, u16 vid,
6192 u16 flags, bool *notified,
6193 struct netlink_ext_ack __always_unused *extack)
6194 {
6195 int err;
6196
6197 if (vid) {
6198 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
6199 return -EINVAL;
6200 }
6201 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
6202 netdev_err(dev, "FDB only supports static addresses\n");
6203 return -EINVAL;
6204 }
6205
6206 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
6207 err = dev_uc_add_excl(dev, addr);
6208 else if (is_multicast_ether_addr(addr))
6209 err = dev_mc_add_excl(dev, addr);
6210 else
6211 err = -EINVAL;
6212
6213 /* Only return duplicate errors if NLM_F_EXCL is set */
6214 if (err == -EEXIST && !(flags & NLM_F_EXCL))
6215 err = 0;
6216
6217 return err;
6218 }
6219
6220 /**
6221 * ice_fdb_del - delete an entry from the hardware database
6222 * @ndm: the input from the stack
6223 * @tb: pointer to array of nladdr (unused)
6224 * @dev: the net device pointer
6225 * @addr: the MAC address entry being added
6226 * @vid: VLAN ID
6227 * @notified: whether notification was emitted
6228 * @extack: netlink extended ack
6229 */
6230 static int
ice_fdb_del(struct ndmsg * ndm,__always_unused struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,__always_unused u16 vid,bool * notified,struct netlink_ext_ack * extack)6231 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
6232 struct net_device *dev, const unsigned char *addr,
6233 __always_unused u16 vid, bool *notified,
6234 struct netlink_ext_ack *extack)
6235 {
6236 int err;
6237
6238 if (ndm->ndm_state & NUD_PERMANENT) {
6239 netdev_err(dev, "FDB only supports static addresses\n");
6240 return -EINVAL;
6241 }
6242
6243 if (is_unicast_ether_addr(addr))
6244 err = dev_uc_del(dev, addr);
6245 else if (is_multicast_ether_addr(addr))
6246 err = dev_mc_del(dev, addr);
6247 else
6248 err = -EINVAL;
6249
6250 return err;
6251 }
6252
6253 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
6254 NETIF_F_HW_VLAN_CTAG_TX | \
6255 NETIF_F_HW_VLAN_STAG_RX | \
6256 NETIF_F_HW_VLAN_STAG_TX)
6257
6258 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
6259 NETIF_F_HW_VLAN_STAG_RX)
6260
6261 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \
6262 NETIF_F_HW_VLAN_STAG_FILTER)
6263
6264 /**
6265 * ice_fix_features - fix the netdev features flags based on device limitations
6266 * @netdev: ptr to the netdev that flags are being fixed on
6267 * @features: features that need to be checked and possibly fixed
6268 *
6269 * Make sure any fixups are made to features in this callback. This enables the
6270 * driver to not have to check unsupported configurations throughout the driver
6271 * because that's the responsiblity of this callback.
6272 *
6273 * Single VLAN Mode (SVM) Supported Features:
6274 * NETIF_F_HW_VLAN_CTAG_FILTER
6275 * NETIF_F_HW_VLAN_CTAG_RX
6276 * NETIF_F_HW_VLAN_CTAG_TX
6277 *
6278 * Double VLAN Mode (DVM) Supported Features:
6279 * NETIF_F_HW_VLAN_CTAG_FILTER
6280 * NETIF_F_HW_VLAN_CTAG_RX
6281 * NETIF_F_HW_VLAN_CTAG_TX
6282 *
6283 * NETIF_F_HW_VLAN_STAG_FILTER
6284 * NETIF_HW_VLAN_STAG_RX
6285 * NETIF_HW_VLAN_STAG_TX
6286 *
6287 * Features that need fixing:
6288 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
6289 * These are mutually exlusive as the VSI context cannot support multiple
6290 * VLAN ethertypes simultaneously for stripping and/or insertion. If this
6291 * is not done, then default to clearing the requested STAG offload
6292 * settings.
6293 *
6294 * All supported filtering has to be enabled or disabled together. For
6295 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled
6296 * together. If this is not done, then default to VLAN filtering disabled.
6297 * These are mutually exclusive as there is currently no way to
6298 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN
6299 * prune rules.
6300 */
6301 static netdev_features_t
ice_fix_features(struct net_device * netdev,netdev_features_t features)6302 ice_fix_features(struct net_device *netdev, netdev_features_t features)
6303 {
6304 struct ice_netdev_priv *np = netdev_priv(netdev);
6305 netdev_features_t req_vlan_fltr, cur_vlan_fltr;
6306 bool cur_ctag, cur_stag, req_ctag, req_stag;
6307
6308 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
6309 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6310 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6311
6312 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
6313 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6314 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6315
6316 if (req_vlan_fltr != cur_vlan_fltr) {
6317 if (ice_is_dvm_ena(&np->vsi->back->hw)) {
6318 if (req_ctag && req_stag) {
6319 features |= NETIF_VLAN_FILTERING_FEATURES;
6320 } else if (!req_ctag && !req_stag) {
6321 features &= ~NETIF_VLAN_FILTERING_FEATURES;
6322 } else if ((!cur_ctag && req_ctag && !cur_stag) ||
6323 (!cur_stag && req_stag && !cur_ctag)) {
6324 features |= NETIF_VLAN_FILTERING_FEATURES;
6325 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
6326 } else if ((cur_ctag && !req_ctag && cur_stag) ||
6327 (cur_stag && !req_stag && cur_ctag)) {
6328 features &= ~NETIF_VLAN_FILTERING_FEATURES;
6329 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
6330 }
6331 } else {
6332 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
6333 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
6334
6335 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
6336 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6337 }
6338 }
6339
6340 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
6341 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
6342 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
6343 features &= ~(NETIF_F_HW_VLAN_STAG_RX |
6344 NETIF_F_HW_VLAN_STAG_TX);
6345 }
6346
6347 if (!(netdev->features & NETIF_F_RXFCS) &&
6348 (features & NETIF_F_RXFCS) &&
6349 (features & NETIF_VLAN_STRIPPING_FEATURES) &&
6350 !ice_vsi_has_non_zero_vlans(np->vsi)) {
6351 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
6352 features &= ~NETIF_VLAN_STRIPPING_FEATURES;
6353 }
6354
6355 return features;
6356 }
6357
6358 /**
6359 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto
6360 * @vsi: PF's VSI
6361 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order
6362 *
6363 * Store current stripped VLAN proto in ring packet context,
6364 * so it can be accessed more efficiently by packet processing code.
6365 */
6366 static void
ice_set_rx_rings_vlan_proto(struct ice_vsi * vsi,__be16 vlan_ethertype)6367 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype)
6368 {
6369 u16 i;
6370
6371 ice_for_each_alloc_rxq(vsi, i)
6372 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype;
6373 }
6374
6375 /**
6376 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
6377 * @vsi: PF's VSI
6378 * @features: features used to determine VLAN offload settings
6379 *
6380 * First, determine the vlan_ethertype based on the VLAN offload bits in
6381 * features. Then determine if stripping and insertion should be enabled or
6382 * disabled. Finally enable or disable VLAN stripping and insertion.
6383 */
6384 static int
ice_set_vlan_offload_features(struct ice_vsi * vsi,netdev_features_t features)6385 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
6386 {
6387 bool enable_stripping = true, enable_insertion = true;
6388 struct ice_vsi_vlan_ops *vlan_ops;
6389 int strip_err = 0, insert_err = 0;
6390 u16 vlan_ethertype = 0;
6391
6392 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6393
6394 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
6395 vlan_ethertype = ETH_P_8021AD;
6396 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
6397 vlan_ethertype = ETH_P_8021Q;
6398
6399 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
6400 enable_stripping = false;
6401 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
6402 enable_insertion = false;
6403
6404 if (enable_stripping)
6405 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
6406 else
6407 strip_err = vlan_ops->dis_stripping(vsi);
6408
6409 if (enable_insertion)
6410 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
6411 else
6412 insert_err = vlan_ops->dis_insertion(vsi);
6413
6414 if (strip_err || insert_err)
6415 return -EIO;
6416
6417 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ?
6418 htons(vlan_ethertype) : 0);
6419
6420 return 0;
6421 }
6422
6423 /**
6424 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
6425 * @vsi: PF's VSI
6426 * @features: features used to determine VLAN filtering settings
6427 *
6428 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
6429 * features.
6430 */
6431 static int
ice_set_vlan_filtering_features(struct ice_vsi * vsi,netdev_features_t features)6432 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
6433 {
6434 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6435 int err = 0;
6436
6437 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
6438 * if either bit is set. In switchdev mode Rx filtering should never be
6439 * enabled.
6440 */
6441 if ((features &
6442 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) &&
6443 !ice_is_eswitch_mode_switchdev(vsi->back))
6444 err = vlan_ops->ena_rx_filtering(vsi);
6445 else
6446 err = vlan_ops->dis_rx_filtering(vsi);
6447
6448 return err;
6449 }
6450
6451 /**
6452 * ice_set_vlan_features - set VLAN settings based on suggested feature set
6453 * @netdev: ptr to the netdev being adjusted
6454 * @features: the feature set that the stack is suggesting
6455 *
6456 * Only update VLAN settings if the requested_vlan_features are different than
6457 * the current_vlan_features.
6458 */
6459 static int
ice_set_vlan_features(struct net_device * netdev,netdev_features_t features)6460 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
6461 {
6462 netdev_features_t current_vlan_features, requested_vlan_features;
6463 struct ice_netdev_priv *np = netdev_priv(netdev);
6464 struct ice_vsi *vsi = np->vsi;
6465 int err;
6466
6467 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
6468 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
6469 if (current_vlan_features ^ requested_vlan_features) {
6470 if ((features & NETIF_F_RXFCS) &&
6471 (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6472 dev_err(ice_pf_to_dev(vsi->back),
6473 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n");
6474 return -EIO;
6475 }
6476
6477 err = ice_set_vlan_offload_features(vsi, features);
6478 if (err)
6479 return err;
6480 }
6481
6482 current_vlan_features = netdev->features &
6483 NETIF_VLAN_FILTERING_FEATURES;
6484 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
6485 if (current_vlan_features ^ requested_vlan_features) {
6486 err = ice_set_vlan_filtering_features(vsi, features);
6487 if (err)
6488 return err;
6489 }
6490
6491 return 0;
6492 }
6493
6494 /**
6495 * ice_set_loopback - turn on/off loopback mode on underlying PF
6496 * @vsi: ptr to VSI
6497 * @ena: flag to indicate the on/off setting
6498 */
ice_set_loopback(struct ice_vsi * vsi,bool ena)6499 static int ice_set_loopback(struct ice_vsi *vsi, bool ena)
6500 {
6501 bool if_running = netif_running(vsi->netdev);
6502 int ret;
6503
6504 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6505 ret = ice_down(vsi);
6506 if (ret) {
6507 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n");
6508 return ret;
6509 }
6510 }
6511 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
6512 if (ret)
6513 netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
6514 if (if_running)
6515 ret = ice_up(vsi);
6516
6517 return ret;
6518 }
6519
6520 /**
6521 * ice_set_features - set the netdev feature flags
6522 * @netdev: ptr to the netdev being adjusted
6523 * @features: the feature set that the stack is suggesting
6524 */
6525 static int
ice_set_features(struct net_device * netdev,netdev_features_t features)6526 ice_set_features(struct net_device *netdev, netdev_features_t features)
6527 {
6528 netdev_features_t changed = netdev->features ^ features;
6529 struct ice_netdev_priv *np = netdev_priv(netdev);
6530 struct ice_vsi *vsi = np->vsi;
6531 struct ice_pf *pf = vsi->back;
6532 int ret = 0;
6533
6534 /* Don't set any netdev advanced features with device in Safe Mode */
6535 if (ice_is_safe_mode(pf)) {
6536 dev_err(ice_pf_to_dev(pf),
6537 "Device is in Safe Mode - not enabling advanced netdev features\n");
6538 return ret;
6539 }
6540
6541 /* Do not change setting during reset */
6542 if (ice_is_reset_in_progress(pf->state)) {
6543 dev_err(ice_pf_to_dev(pf),
6544 "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
6545 return -EBUSY;
6546 }
6547
6548 /* Multiple features can be changed in one call so keep features in
6549 * separate if/else statements to guarantee each feature is checked
6550 */
6551 if (changed & NETIF_F_RXHASH)
6552 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH));
6553
6554 ret = ice_set_vlan_features(netdev, features);
6555 if (ret)
6556 return ret;
6557
6558 /* Turn on receive of FCS aka CRC, and after setting this
6559 * flag the packet data will have the 4 byte CRC appended
6560 */
6561 if (changed & NETIF_F_RXFCS) {
6562 if ((features & NETIF_F_RXFCS) &&
6563 (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6564 dev_err(ice_pf_to_dev(vsi->back),
6565 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n");
6566 return -EIO;
6567 }
6568
6569 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS));
6570 ret = ice_down_up(vsi);
6571 if (ret)
6572 return ret;
6573 }
6574
6575 if (changed & NETIF_F_NTUPLE) {
6576 bool ena = !!(features & NETIF_F_NTUPLE);
6577
6578 ice_vsi_manage_fdir(vsi, ena);
6579 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi);
6580 }
6581
6582 /* don't turn off hw_tc_offload when ADQ is already enabled */
6583 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
6584 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
6585 return -EACCES;
6586 }
6587
6588 if (changed & NETIF_F_HW_TC) {
6589 bool ena = !!(features & NETIF_F_HW_TC);
6590
6591 assign_bit(ICE_FLAG_CLS_FLOWER, pf->flags, ena);
6592 }
6593
6594 if (changed & NETIF_F_LOOPBACK)
6595 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
6596
6597 /* Due to E830 hardware limitations, TSO (NETIF_F_ALL_TSO) with GCS
6598 * (NETIF_F_HW_CSUM) is not supported.
6599 */
6600 if (ice_is_feature_supported(pf, ICE_F_GCS) &&
6601 ((features & NETIF_F_HW_CSUM) && (features & NETIF_F_ALL_TSO))) {
6602 if (netdev->features & NETIF_F_HW_CSUM)
6603 dev_err(ice_pf_to_dev(pf), "To enable TSO, you must first disable HW checksum.\n");
6604 else
6605 dev_err(ice_pf_to_dev(pf), "To enable HW checksum, you must first disable TSO.\n");
6606 return -EIO;
6607 }
6608
6609 return ret;
6610 }
6611
6612 /**
6613 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
6614 * @vsi: VSI to setup VLAN properties for
6615 */
ice_vsi_vlan_setup(struct ice_vsi * vsi)6616 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
6617 {
6618 int err;
6619
6620 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
6621 if (err)
6622 return err;
6623
6624 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
6625 if (err)
6626 return err;
6627
6628 return ice_vsi_add_vlan_zero(vsi);
6629 }
6630
6631 /**
6632 * ice_vsi_cfg_lan - Setup the VSI lan related config
6633 * @vsi: the VSI being configured
6634 *
6635 * Return 0 on success and negative value on error
6636 */
ice_vsi_cfg_lan(struct ice_vsi * vsi)6637 int ice_vsi_cfg_lan(struct ice_vsi *vsi)
6638 {
6639 int err;
6640
6641 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6642 ice_set_rx_mode(vsi->netdev);
6643
6644 err = ice_vsi_vlan_setup(vsi);
6645 if (err)
6646 return err;
6647 }
6648 ice_vsi_cfg_dcb_rings(vsi);
6649
6650 err = ice_vsi_cfg_lan_txqs(vsi);
6651 if (!err && ice_is_xdp_ena_vsi(vsi))
6652 err = ice_vsi_cfg_xdp_txqs(vsi);
6653 if (!err)
6654 err = ice_vsi_cfg_rxqs(vsi);
6655
6656 return err;
6657 }
6658
6659 /* THEORY OF MODERATION:
6660 * The ice driver hardware works differently than the hardware that DIMLIB was
6661 * originally made for. ice hardware doesn't have packet count limits that
6662 * can trigger an interrupt, but it *does* have interrupt rate limit support,
6663 * which is hard-coded to a limit of 250,000 ints/second.
6664 * If not using dynamic moderation, the INTRL value can be modified
6665 * by ethtool rx-usecs-high.
6666 */
6667 struct ice_dim {
6668 /* the throttle rate for interrupts, basically worst case delay before
6669 * an initial interrupt fires, value is stored in microseconds.
6670 */
6671 u16 itr;
6672 };
6673
6674 /* Make a different profile for Rx that doesn't allow quite so aggressive
6675 * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6676 * second.
6677 */
6678 static const struct ice_dim rx_profile[] = {
6679 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6680 {8}, /* 125,000 ints/s */
6681 {16}, /* 62,500 ints/s */
6682 {62}, /* 16,129 ints/s */
6683 {126} /* 7,936 ints/s */
6684 };
6685
6686 /* The transmit profile, which has the same sorts of values
6687 * as the previous struct
6688 */
6689 static const struct ice_dim tx_profile[] = {
6690 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6691 {8}, /* 125,000 ints/s */
6692 {40}, /* 16,125 ints/s */
6693 {128}, /* 7,812 ints/s */
6694 {256} /* 3,906 ints/s */
6695 };
6696
ice_tx_dim_work(struct work_struct * work)6697 static void ice_tx_dim_work(struct work_struct *work)
6698 {
6699 struct ice_ring_container *rc;
6700 struct dim *dim;
6701 u16 itr;
6702
6703 dim = container_of(work, struct dim, work);
6704 rc = dim->priv;
6705
6706 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6707
6708 /* look up the values in our local table */
6709 itr = tx_profile[dim->profile_ix].itr;
6710
6711 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6712 ice_write_itr(rc, itr);
6713
6714 dim->state = DIM_START_MEASURE;
6715 }
6716
ice_rx_dim_work(struct work_struct * work)6717 static void ice_rx_dim_work(struct work_struct *work)
6718 {
6719 struct ice_ring_container *rc;
6720 struct dim *dim;
6721 u16 itr;
6722
6723 dim = container_of(work, struct dim, work);
6724 rc = dim->priv;
6725
6726 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6727
6728 /* look up the values in our local table */
6729 itr = rx_profile[dim->profile_ix].itr;
6730
6731 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6732 ice_write_itr(rc, itr);
6733
6734 dim->state = DIM_START_MEASURE;
6735 }
6736
6737 #define ICE_DIM_DEFAULT_PROFILE_IX 1
6738
6739 /**
6740 * ice_init_moderation - set up interrupt moderation
6741 * @q_vector: the vector containing rings to be configured
6742 *
6743 * Set up interrupt moderation registers, with the intent to do the right thing
6744 * when called from reset or from probe, and whether or not dynamic moderation
6745 * is enabled or not. Take special care to write all the registers in both
6746 * dynamic moderation mode or not in order to make sure hardware is in a known
6747 * state.
6748 */
ice_init_moderation(struct ice_q_vector * q_vector)6749 static void ice_init_moderation(struct ice_q_vector *q_vector)
6750 {
6751 struct ice_ring_container *rc;
6752 bool tx_dynamic, rx_dynamic;
6753
6754 rc = &q_vector->tx;
6755 INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6756 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6757 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6758 rc->dim.priv = rc;
6759 tx_dynamic = ITR_IS_DYNAMIC(rc);
6760
6761 /* set the initial TX ITR to match the above */
6762 ice_write_itr(rc, tx_dynamic ?
6763 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6764
6765 rc = &q_vector->rx;
6766 INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6767 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6768 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6769 rc->dim.priv = rc;
6770 rx_dynamic = ITR_IS_DYNAMIC(rc);
6771
6772 /* set the initial RX ITR to match the above */
6773 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6774 rc->itr_setting);
6775
6776 ice_set_q_vector_intrl(q_vector);
6777 }
6778
6779 /**
6780 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6781 * @vsi: the VSI being configured
6782 */
ice_napi_enable_all(struct ice_vsi * vsi)6783 static void ice_napi_enable_all(struct ice_vsi *vsi)
6784 {
6785 int q_idx;
6786
6787 if (!vsi->netdev)
6788 return;
6789
6790 ice_for_each_q_vector(vsi, q_idx) {
6791 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6792
6793 ice_init_moderation(q_vector);
6794
6795 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6796 napi_enable(&q_vector->napi);
6797 }
6798 }
6799
6800 /**
6801 * ice_up_complete - Finish the last steps of bringing up a connection
6802 * @vsi: The VSI being configured
6803 *
6804 * Return 0 on success and negative value on error
6805 */
ice_up_complete(struct ice_vsi * vsi)6806 static int ice_up_complete(struct ice_vsi *vsi)
6807 {
6808 struct ice_pf *pf = vsi->back;
6809 int err;
6810
6811 ice_vsi_cfg_msix(vsi);
6812
6813 /* Enable only Rx rings, Tx rings were enabled by the FW when the
6814 * Tx queue group list was configured and the context bits were
6815 * programmed using ice_vsi_cfg_txqs
6816 */
6817 err = ice_vsi_start_all_rx_rings(vsi);
6818 if (err)
6819 return err;
6820
6821 clear_bit(ICE_VSI_DOWN, vsi->state);
6822 ice_napi_enable_all(vsi);
6823 ice_vsi_ena_irq(vsi);
6824
6825 if (vsi->port_info &&
6826 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6827 ((vsi->netdev && (vsi->type == ICE_VSI_PF ||
6828 vsi->type == ICE_VSI_SF)))) {
6829 ice_print_link_msg(vsi, true);
6830 netif_tx_start_all_queues(vsi->netdev);
6831 netif_carrier_on(vsi->netdev);
6832 ice_ptp_link_change(pf, true);
6833 }
6834
6835 /* Perform an initial read of the statistics registers now to
6836 * set the baseline so counters are ready when interface is up
6837 */
6838 ice_update_eth_stats(vsi);
6839
6840 if (vsi->type == ICE_VSI_PF)
6841 ice_service_task_schedule(pf);
6842
6843 return 0;
6844 }
6845
6846 /**
6847 * ice_up - Bring the connection back up after being down
6848 * @vsi: VSI being configured
6849 */
ice_up(struct ice_vsi * vsi)6850 int ice_up(struct ice_vsi *vsi)
6851 {
6852 int err;
6853
6854 err = ice_vsi_cfg_lan(vsi);
6855 if (!err)
6856 err = ice_up_complete(vsi);
6857
6858 return err;
6859 }
6860
6861 /**
6862 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6863 * @syncp: pointer to u64_stats_sync
6864 * @stats: stats that pkts and bytes count will be taken from
6865 * @pkts: packets stats counter
6866 * @bytes: bytes stats counter
6867 *
6868 * This function fetches stats from the ring considering the atomic operations
6869 * that needs to be performed to read u64 values in 32 bit machine.
6870 */
6871 void
ice_fetch_u64_stats_per_ring(struct u64_stats_sync * syncp,struct ice_q_stats stats,u64 * pkts,u64 * bytes)6872 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6873 struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6874 {
6875 unsigned int start;
6876
6877 do {
6878 start = u64_stats_fetch_begin(syncp);
6879 *pkts = stats.pkts;
6880 *bytes = stats.bytes;
6881 } while (u64_stats_fetch_retry(syncp, start));
6882 }
6883
6884 /**
6885 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6886 * @vsi: the VSI to be updated
6887 * @vsi_stats: the stats struct to be updated
6888 * @rings: rings to work on
6889 * @count: number of rings
6890 */
6891 static void
ice_update_vsi_tx_ring_stats(struct ice_vsi * vsi,struct rtnl_link_stats64 * vsi_stats,struct ice_tx_ring ** rings,u16 count)6892 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6893 struct rtnl_link_stats64 *vsi_stats,
6894 struct ice_tx_ring **rings, u16 count)
6895 {
6896 u16 i;
6897
6898 for (i = 0; i < count; i++) {
6899 struct ice_tx_ring *ring;
6900 u64 pkts = 0, bytes = 0;
6901
6902 ring = READ_ONCE(rings[i]);
6903 if (!ring || !ring->ring_stats)
6904 continue;
6905 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp,
6906 ring->ring_stats->stats, &pkts,
6907 &bytes);
6908 vsi_stats->tx_packets += pkts;
6909 vsi_stats->tx_bytes += bytes;
6910 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q;
6911 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy;
6912 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize;
6913 }
6914 }
6915
6916 /**
6917 * ice_update_vsi_ring_stats - Update VSI stats counters
6918 * @vsi: the VSI to be updated
6919 */
ice_update_vsi_ring_stats(struct ice_vsi * vsi)6920 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6921 {
6922 struct rtnl_link_stats64 *net_stats, *stats_prev;
6923 struct rtnl_link_stats64 *vsi_stats;
6924 struct ice_pf *pf = vsi->back;
6925 u64 pkts, bytes;
6926 int i;
6927
6928 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6929 if (!vsi_stats)
6930 return;
6931
6932 /* reset non-netdev (extended) stats */
6933 vsi->tx_restart = 0;
6934 vsi->tx_busy = 0;
6935 vsi->tx_linearize = 0;
6936 vsi->rx_buf_failed = 0;
6937 vsi->rx_page_failed = 0;
6938
6939 rcu_read_lock();
6940
6941 /* update Tx rings counters */
6942 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6943 vsi->num_txq);
6944
6945 /* update Rx rings counters */
6946 ice_for_each_rxq(vsi, i) {
6947 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6948 struct ice_ring_stats *ring_stats;
6949
6950 ring_stats = ring->ring_stats;
6951 ice_fetch_u64_stats_per_ring(&ring_stats->syncp,
6952 ring_stats->stats, &pkts,
6953 &bytes);
6954 vsi_stats->rx_packets += pkts;
6955 vsi_stats->rx_bytes += bytes;
6956 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed;
6957 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed;
6958 }
6959
6960 /* update XDP Tx rings counters */
6961 if (ice_is_xdp_ena_vsi(vsi))
6962 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6963 vsi->num_xdp_txq);
6964
6965 rcu_read_unlock();
6966
6967 net_stats = &vsi->net_stats;
6968 stats_prev = &vsi->net_stats_prev;
6969
6970 /* Update netdev counters, but keep in mind that values could start at
6971 * random value after PF reset. And as we increase the reported stat by
6972 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not,
6973 * let's skip this round.
6974 */
6975 if (likely(pf->stat_prev_loaded)) {
6976 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets;
6977 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes;
6978 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets;
6979 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes;
6980 }
6981
6982 stats_prev->tx_packets = vsi_stats->tx_packets;
6983 stats_prev->tx_bytes = vsi_stats->tx_bytes;
6984 stats_prev->rx_packets = vsi_stats->rx_packets;
6985 stats_prev->rx_bytes = vsi_stats->rx_bytes;
6986
6987 kfree(vsi_stats);
6988 }
6989
6990 /**
6991 * ice_update_vsi_stats - Update VSI stats counters
6992 * @vsi: the VSI to be updated
6993 */
ice_update_vsi_stats(struct ice_vsi * vsi)6994 void ice_update_vsi_stats(struct ice_vsi *vsi)
6995 {
6996 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6997 struct ice_eth_stats *cur_es = &vsi->eth_stats;
6998 struct ice_pf *pf = vsi->back;
6999
7000 if (test_bit(ICE_VSI_DOWN, vsi->state) ||
7001 test_bit(ICE_CFG_BUSY, pf->state))
7002 return;
7003
7004 /* get stats as recorded by Tx/Rx rings */
7005 ice_update_vsi_ring_stats(vsi);
7006
7007 /* get VSI stats as recorded by the hardware */
7008 ice_update_eth_stats(vsi);
7009
7010 cur_ns->tx_errors = cur_es->tx_errors;
7011 cur_ns->rx_dropped = cur_es->rx_discards;
7012 cur_ns->tx_dropped = cur_es->tx_discards;
7013 cur_ns->multicast = cur_es->rx_multicast;
7014
7015 /* update some more netdev stats if this is main VSI */
7016 if (vsi->type == ICE_VSI_PF) {
7017 cur_ns->rx_crc_errors = pf->stats.crc_errors;
7018 cur_ns->rx_errors = pf->stats.crc_errors +
7019 pf->stats.illegal_bytes +
7020 pf->stats.rx_undersize +
7021 pf->hw_csum_rx_error +
7022 pf->stats.rx_jabber +
7023 pf->stats.rx_fragments +
7024 pf->stats.rx_oversize;
7025 /* record drops from the port level */
7026 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
7027 }
7028 }
7029
7030 /**
7031 * ice_update_pf_stats - Update PF port stats counters
7032 * @pf: PF whose stats needs to be updated
7033 */
ice_update_pf_stats(struct ice_pf * pf)7034 void ice_update_pf_stats(struct ice_pf *pf)
7035 {
7036 struct ice_hw_port_stats *prev_ps, *cur_ps;
7037 struct ice_hw *hw = &pf->hw;
7038 u16 fd_ctr_base;
7039 u8 port;
7040
7041 port = hw->port_info->lport;
7042 prev_ps = &pf->stats_prev;
7043 cur_ps = &pf->stats;
7044
7045 if (ice_is_reset_in_progress(pf->state))
7046 pf->stat_prev_loaded = false;
7047
7048 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
7049 &prev_ps->eth.rx_bytes,
7050 &cur_ps->eth.rx_bytes);
7051
7052 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
7053 &prev_ps->eth.rx_unicast,
7054 &cur_ps->eth.rx_unicast);
7055
7056 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
7057 &prev_ps->eth.rx_multicast,
7058 &cur_ps->eth.rx_multicast);
7059
7060 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
7061 &prev_ps->eth.rx_broadcast,
7062 &cur_ps->eth.rx_broadcast);
7063
7064 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
7065 &prev_ps->eth.rx_discards,
7066 &cur_ps->eth.rx_discards);
7067
7068 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
7069 &prev_ps->eth.tx_bytes,
7070 &cur_ps->eth.tx_bytes);
7071
7072 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
7073 &prev_ps->eth.tx_unicast,
7074 &cur_ps->eth.tx_unicast);
7075
7076 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
7077 &prev_ps->eth.tx_multicast,
7078 &cur_ps->eth.tx_multicast);
7079
7080 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
7081 &prev_ps->eth.tx_broadcast,
7082 &cur_ps->eth.tx_broadcast);
7083
7084 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
7085 &prev_ps->tx_dropped_link_down,
7086 &cur_ps->tx_dropped_link_down);
7087
7088 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
7089 &prev_ps->rx_size_64, &cur_ps->rx_size_64);
7090
7091 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
7092 &prev_ps->rx_size_127, &cur_ps->rx_size_127);
7093
7094 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
7095 &prev_ps->rx_size_255, &cur_ps->rx_size_255);
7096
7097 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
7098 &prev_ps->rx_size_511, &cur_ps->rx_size_511);
7099
7100 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
7101 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
7102
7103 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
7104 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
7105
7106 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
7107 &prev_ps->rx_size_big, &cur_ps->rx_size_big);
7108
7109 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
7110 &prev_ps->tx_size_64, &cur_ps->tx_size_64);
7111
7112 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
7113 &prev_ps->tx_size_127, &cur_ps->tx_size_127);
7114
7115 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
7116 &prev_ps->tx_size_255, &cur_ps->tx_size_255);
7117
7118 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
7119 &prev_ps->tx_size_511, &cur_ps->tx_size_511);
7120
7121 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
7122 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
7123
7124 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
7125 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
7126
7127 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
7128 &prev_ps->tx_size_big, &cur_ps->tx_size_big);
7129
7130 fd_ctr_base = hw->fd_ctr_base;
7131
7132 ice_stat_update40(hw,
7133 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
7134 pf->stat_prev_loaded, &prev_ps->fd_sb_match,
7135 &cur_ps->fd_sb_match);
7136 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
7137 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
7138
7139 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
7140 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
7141
7142 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
7143 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
7144
7145 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
7146 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
7147
7148 ice_update_dcb_stats(pf);
7149
7150 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
7151 &prev_ps->crc_errors, &cur_ps->crc_errors);
7152
7153 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
7154 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
7155
7156 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
7157 &prev_ps->mac_local_faults,
7158 &cur_ps->mac_local_faults);
7159
7160 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
7161 &prev_ps->mac_remote_faults,
7162 &cur_ps->mac_remote_faults);
7163
7164 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
7165 &prev_ps->rx_undersize, &cur_ps->rx_undersize);
7166
7167 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
7168 &prev_ps->rx_fragments, &cur_ps->rx_fragments);
7169
7170 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
7171 &prev_ps->rx_oversize, &cur_ps->rx_oversize);
7172
7173 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
7174 &prev_ps->rx_jabber, &cur_ps->rx_jabber);
7175
7176 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
7177
7178 pf->stat_prev_loaded = true;
7179 }
7180
7181 /**
7182 * ice_get_stats64 - get statistics for network device structure
7183 * @netdev: network interface device structure
7184 * @stats: main device statistics structure
7185 */
ice_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)7186 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
7187 {
7188 struct ice_netdev_priv *np = netdev_priv(netdev);
7189 struct rtnl_link_stats64 *vsi_stats;
7190 struct ice_vsi *vsi = np->vsi;
7191
7192 vsi_stats = &vsi->net_stats;
7193
7194 if (!vsi->num_txq || !vsi->num_rxq)
7195 return;
7196
7197 /* netdev packet/byte stats come from ring counter. These are obtained
7198 * by summing up ring counters (done by ice_update_vsi_ring_stats).
7199 * But, only call the update routine and read the registers if VSI is
7200 * not down.
7201 */
7202 if (!test_bit(ICE_VSI_DOWN, vsi->state))
7203 ice_update_vsi_ring_stats(vsi);
7204 stats->tx_packets = vsi_stats->tx_packets;
7205 stats->tx_bytes = vsi_stats->tx_bytes;
7206 stats->rx_packets = vsi_stats->rx_packets;
7207 stats->rx_bytes = vsi_stats->rx_bytes;
7208
7209 /* The rest of the stats can be read from the hardware but instead we
7210 * just return values that the watchdog task has already obtained from
7211 * the hardware.
7212 */
7213 stats->multicast = vsi_stats->multicast;
7214 stats->tx_errors = vsi_stats->tx_errors;
7215 stats->tx_dropped = vsi_stats->tx_dropped;
7216 stats->rx_errors = vsi_stats->rx_errors;
7217 stats->rx_dropped = vsi_stats->rx_dropped;
7218 stats->rx_crc_errors = vsi_stats->rx_crc_errors;
7219 stats->rx_length_errors = vsi_stats->rx_length_errors;
7220 }
7221
7222 /**
7223 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
7224 * @vsi: VSI having NAPI disabled
7225 */
ice_napi_disable_all(struct ice_vsi * vsi)7226 static void ice_napi_disable_all(struct ice_vsi *vsi)
7227 {
7228 int q_idx;
7229
7230 if (!vsi->netdev)
7231 return;
7232
7233 ice_for_each_q_vector(vsi, q_idx) {
7234 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
7235
7236 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
7237 napi_disable(&q_vector->napi);
7238
7239 cancel_work_sync(&q_vector->tx.dim.work);
7240 cancel_work_sync(&q_vector->rx.dim.work);
7241 }
7242 }
7243
7244 /**
7245 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
7246 * @vsi: the VSI being un-configured
7247 */
ice_vsi_dis_irq(struct ice_vsi * vsi)7248 static void ice_vsi_dis_irq(struct ice_vsi *vsi)
7249 {
7250 struct ice_pf *pf = vsi->back;
7251 struct ice_hw *hw = &pf->hw;
7252 u32 val;
7253 int i;
7254
7255 /* disable interrupt causation from each Rx queue; Tx queues are
7256 * handled in ice_vsi_stop_tx_ring()
7257 */
7258 if (vsi->rx_rings) {
7259 ice_for_each_rxq(vsi, i) {
7260 if (vsi->rx_rings[i]) {
7261 u16 reg;
7262
7263 reg = vsi->rx_rings[i]->reg_idx;
7264 val = rd32(hw, QINT_RQCTL(reg));
7265 val &= ~QINT_RQCTL_CAUSE_ENA_M;
7266 wr32(hw, QINT_RQCTL(reg), val);
7267 }
7268 }
7269 }
7270
7271 /* disable each interrupt */
7272 ice_for_each_q_vector(vsi, i) {
7273 if (!vsi->q_vectors[i])
7274 continue;
7275 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
7276 }
7277
7278 ice_flush(hw);
7279
7280 /* don't call synchronize_irq() for VF's from the host */
7281 if (vsi->type == ICE_VSI_VF)
7282 return;
7283
7284 ice_for_each_q_vector(vsi, i)
7285 synchronize_irq(vsi->q_vectors[i]->irq.virq);
7286 }
7287
7288 /**
7289 * ice_down - Shutdown the connection
7290 * @vsi: The VSI being stopped
7291 *
7292 * Caller of this function is expected to set the vsi->state ICE_DOWN bit
7293 */
ice_down(struct ice_vsi * vsi)7294 int ice_down(struct ice_vsi *vsi)
7295 {
7296 int i, tx_err, rx_err, vlan_err = 0;
7297
7298 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
7299
7300 if (vsi->netdev) {
7301 vlan_err = ice_vsi_del_vlan_zero(vsi);
7302 ice_ptp_link_change(vsi->back, false);
7303 netif_carrier_off(vsi->netdev);
7304 netif_tx_disable(vsi->netdev);
7305 }
7306
7307 ice_vsi_dis_irq(vsi);
7308
7309 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
7310 if (tx_err)
7311 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
7312 vsi->vsi_num, tx_err);
7313 if (!tx_err && vsi->xdp_rings) {
7314 tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
7315 if (tx_err)
7316 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
7317 vsi->vsi_num, tx_err);
7318 }
7319
7320 rx_err = ice_vsi_stop_all_rx_rings(vsi);
7321 if (rx_err)
7322 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
7323 vsi->vsi_num, rx_err);
7324
7325 ice_napi_disable_all(vsi);
7326
7327 ice_for_each_txq(vsi, i)
7328 ice_clean_tx_ring(vsi->tx_rings[i]);
7329
7330 if (vsi->xdp_rings)
7331 ice_for_each_xdp_txq(vsi, i)
7332 ice_clean_tx_ring(vsi->xdp_rings[i]);
7333
7334 ice_for_each_rxq(vsi, i)
7335 ice_clean_rx_ring(vsi->rx_rings[i]);
7336
7337 if (tx_err || rx_err || vlan_err) {
7338 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
7339 vsi->vsi_num, vsi->vsw->sw_id);
7340 return -EIO;
7341 }
7342
7343 return 0;
7344 }
7345
7346 /**
7347 * ice_down_up - shutdown the VSI connection and bring it up
7348 * @vsi: the VSI to be reconnected
7349 */
ice_down_up(struct ice_vsi * vsi)7350 int ice_down_up(struct ice_vsi *vsi)
7351 {
7352 int ret;
7353
7354 /* if DOWN already set, nothing to do */
7355 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state))
7356 return 0;
7357
7358 ret = ice_down(vsi);
7359 if (ret)
7360 return ret;
7361
7362 ret = ice_up(vsi);
7363 if (ret) {
7364 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n");
7365 return ret;
7366 }
7367
7368 return 0;
7369 }
7370
7371 /**
7372 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
7373 * @vsi: VSI having resources allocated
7374 *
7375 * Return 0 on success, negative on failure
7376 */
ice_vsi_setup_tx_rings(struct ice_vsi * vsi)7377 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
7378 {
7379 int i, err = 0;
7380
7381 if (!vsi->num_txq) {
7382 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
7383 vsi->vsi_num);
7384 return -EINVAL;
7385 }
7386
7387 ice_for_each_txq(vsi, i) {
7388 struct ice_tx_ring *ring = vsi->tx_rings[i];
7389
7390 if (!ring)
7391 return -EINVAL;
7392
7393 if (vsi->netdev)
7394 ring->netdev = vsi->netdev;
7395 err = ice_setup_tx_ring(ring);
7396 if (err)
7397 break;
7398 }
7399
7400 return err;
7401 }
7402
7403 /**
7404 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
7405 * @vsi: VSI having resources allocated
7406 *
7407 * Return 0 on success, negative on failure
7408 */
ice_vsi_setup_rx_rings(struct ice_vsi * vsi)7409 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
7410 {
7411 int i, err = 0;
7412
7413 if (!vsi->num_rxq) {
7414 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
7415 vsi->vsi_num);
7416 return -EINVAL;
7417 }
7418
7419 ice_for_each_rxq(vsi, i) {
7420 struct ice_rx_ring *ring = vsi->rx_rings[i];
7421
7422 if (!ring)
7423 return -EINVAL;
7424
7425 if (vsi->netdev)
7426 ring->netdev = vsi->netdev;
7427 err = ice_setup_rx_ring(ring);
7428 if (err)
7429 break;
7430 }
7431
7432 return err;
7433 }
7434
7435 /**
7436 * ice_vsi_open_ctrl - open control VSI for use
7437 * @vsi: the VSI to open
7438 *
7439 * Initialization of the Control VSI
7440 *
7441 * Returns 0 on success, negative value on error
7442 */
ice_vsi_open_ctrl(struct ice_vsi * vsi)7443 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
7444 {
7445 char int_name[ICE_INT_NAME_STR_LEN];
7446 struct ice_pf *pf = vsi->back;
7447 struct device *dev;
7448 int err;
7449
7450 dev = ice_pf_to_dev(pf);
7451 /* allocate descriptors */
7452 err = ice_vsi_setup_tx_rings(vsi);
7453 if (err)
7454 goto err_setup_tx;
7455
7456 err = ice_vsi_setup_rx_rings(vsi);
7457 if (err)
7458 goto err_setup_rx;
7459
7460 err = ice_vsi_cfg_lan(vsi);
7461 if (err)
7462 goto err_setup_rx;
7463
7464 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
7465 dev_driver_string(dev), dev_name(dev));
7466 err = ice_vsi_req_irq_msix(vsi, int_name);
7467 if (err)
7468 goto err_setup_rx;
7469
7470 ice_vsi_cfg_msix(vsi);
7471
7472 err = ice_vsi_start_all_rx_rings(vsi);
7473 if (err)
7474 goto err_up_complete;
7475
7476 clear_bit(ICE_VSI_DOWN, vsi->state);
7477 ice_vsi_ena_irq(vsi);
7478
7479 return 0;
7480
7481 err_up_complete:
7482 ice_down(vsi);
7483 err_setup_rx:
7484 ice_vsi_free_rx_rings(vsi);
7485 err_setup_tx:
7486 ice_vsi_free_tx_rings(vsi);
7487
7488 return err;
7489 }
7490
7491 /**
7492 * ice_vsi_open - Called when a network interface is made active
7493 * @vsi: the VSI to open
7494 *
7495 * Initialization of the VSI
7496 *
7497 * Returns 0 on success, negative value on error
7498 */
ice_vsi_open(struct ice_vsi * vsi)7499 int ice_vsi_open(struct ice_vsi *vsi)
7500 {
7501 char int_name[ICE_INT_NAME_STR_LEN];
7502 struct ice_pf *pf = vsi->back;
7503 int err;
7504
7505 /* allocate descriptors */
7506 err = ice_vsi_setup_tx_rings(vsi);
7507 if (err)
7508 goto err_setup_tx;
7509
7510 err = ice_vsi_setup_rx_rings(vsi);
7511 if (err)
7512 goto err_setup_rx;
7513
7514 err = ice_vsi_cfg_lan(vsi);
7515 if (err)
7516 goto err_setup_rx;
7517
7518 snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
7519 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
7520 err = ice_vsi_req_irq_msix(vsi, int_name);
7521 if (err)
7522 goto err_setup_rx;
7523
7524 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
7525
7526 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_SF) {
7527 /* Notify the stack of the actual queue counts. */
7528 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
7529 if (err)
7530 goto err_set_qs;
7531
7532 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
7533 if (err)
7534 goto err_set_qs;
7535
7536 ice_vsi_set_napi_queues(vsi);
7537 }
7538
7539 err = ice_up_complete(vsi);
7540 if (err)
7541 goto err_up_complete;
7542
7543 return 0;
7544
7545 err_up_complete:
7546 ice_down(vsi);
7547 err_set_qs:
7548 ice_vsi_free_irq(vsi);
7549 err_setup_rx:
7550 ice_vsi_free_rx_rings(vsi);
7551 err_setup_tx:
7552 ice_vsi_free_tx_rings(vsi);
7553
7554 return err;
7555 }
7556
7557 /**
7558 * ice_vsi_release_all - Delete all VSIs
7559 * @pf: PF from which all VSIs are being removed
7560 */
ice_vsi_release_all(struct ice_pf * pf)7561 static void ice_vsi_release_all(struct ice_pf *pf)
7562 {
7563 int err, i;
7564
7565 if (!pf->vsi)
7566 return;
7567
7568 ice_for_each_vsi(pf, i) {
7569 if (!pf->vsi[i])
7570 continue;
7571
7572 if (pf->vsi[i]->type == ICE_VSI_CHNL)
7573 continue;
7574
7575 err = ice_vsi_release(pf->vsi[i]);
7576 if (err)
7577 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
7578 i, err, pf->vsi[i]->vsi_num);
7579 }
7580 }
7581
7582 /**
7583 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
7584 * @pf: pointer to the PF instance
7585 * @type: VSI type to rebuild
7586 *
7587 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
7588 */
ice_vsi_rebuild_by_type(struct ice_pf * pf,enum ice_vsi_type type)7589 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
7590 {
7591 struct device *dev = ice_pf_to_dev(pf);
7592 int i, err;
7593
7594 ice_for_each_vsi(pf, i) {
7595 struct ice_vsi *vsi = pf->vsi[i];
7596
7597 if (!vsi || vsi->type != type)
7598 continue;
7599
7600 /* rebuild the VSI */
7601 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
7602 if (err) {
7603 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
7604 err, vsi->idx, ice_vsi_type_str(type));
7605 return err;
7606 }
7607
7608 /* replay filters for the VSI */
7609 err = ice_replay_vsi(&pf->hw, vsi->idx);
7610 if (err) {
7611 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
7612 err, vsi->idx, ice_vsi_type_str(type));
7613 return err;
7614 }
7615
7616 /* Re-map HW VSI number, using VSI handle that has been
7617 * previously validated in ice_replay_vsi() call above
7618 */
7619 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
7620
7621 /* enable the VSI */
7622 err = ice_ena_vsi(vsi, false);
7623 if (err) {
7624 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
7625 err, vsi->idx, ice_vsi_type_str(type));
7626 return err;
7627 }
7628
7629 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
7630 ice_vsi_type_str(type));
7631 }
7632
7633 return 0;
7634 }
7635
7636 /**
7637 * ice_update_pf_netdev_link - Update PF netdev link status
7638 * @pf: pointer to the PF instance
7639 */
ice_update_pf_netdev_link(struct ice_pf * pf)7640 static void ice_update_pf_netdev_link(struct ice_pf *pf)
7641 {
7642 bool link_up;
7643 int i;
7644
7645 ice_for_each_vsi(pf, i) {
7646 struct ice_vsi *vsi = pf->vsi[i];
7647
7648 if (!vsi || vsi->type != ICE_VSI_PF)
7649 return;
7650
7651 ice_get_link_status(pf->vsi[i]->port_info, &link_up);
7652 if (link_up) {
7653 netif_carrier_on(pf->vsi[i]->netdev);
7654 netif_tx_wake_all_queues(pf->vsi[i]->netdev);
7655 } else {
7656 netif_carrier_off(pf->vsi[i]->netdev);
7657 netif_tx_stop_all_queues(pf->vsi[i]->netdev);
7658 }
7659 }
7660 }
7661
7662 /**
7663 * ice_rebuild - rebuild after reset
7664 * @pf: PF to rebuild
7665 * @reset_type: type of reset
7666 *
7667 * Do not rebuild VF VSI in this flow because that is already handled via
7668 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
7669 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
7670 * to reset/rebuild all the VF VSI twice.
7671 */
ice_rebuild(struct ice_pf * pf,enum ice_reset_req reset_type)7672 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
7673 {
7674 struct ice_vsi *vsi = ice_get_main_vsi(pf);
7675 struct device *dev = ice_pf_to_dev(pf);
7676 struct ice_hw *hw = &pf->hw;
7677 bool dvm;
7678 int err;
7679
7680 if (test_bit(ICE_DOWN, pf->state))
7681 goto clear_recovery;
7682
7683 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
7684
7685 #define ICE_EMP_RESET_SLEEP_MS 5000
7686 if (reset_type == ICE_RESET_EMPR) {
7687 /* If an EMP reset has occurred, any previously pending flash
7688 * update will have completed. We no longer know whether or
7689 * not the NVM update EMP reset is restricted.
7690 */
7691 pf->fw_emp_reset_disabled = false;
7692
7693 msleep(ICE_EMP_RESET_SLEEP_MS);
7694 }
7695
7696 err = ice_init_all_ctrlq(hw);
7697 if (err) {
7698 dev_err(dev, "control queues init failed %d\n", err);
7699 goto err_init_ctrlq;
7700 }
7701
7702 /* if DDP was previously loaded successfully */
7703 if (!ice_is_safe_mode(pf)) {
7704 /* reload the SW DB of filter tables */
7705 if (reset_type == ICE_RESET_PFR)
7706 ice_fill_blk_tbls(hw);
7707 else
7708 /* Reload DDP Package after CORER/GLOBR reset */
7709 ice_load_pkg(NULL, pf);
7710 }
7711
7712 err = ice_clear_pf_cfg(hw);
7713 if (err) {
7714 dev_err(dev, "clear PF configuration failed %d\n", err);
7715 goto err_init_ctrlq;
7716 }
7717
7718 ice_clear_pxe_mode(hw);
7719
7720 err = ice_init_nvm(hw);
7721 if (err) {
7722 dev_err(dev, "ice_init_nvm failed %d\n", err);
7723 goto err_init_ctrlq;
7724 }
7725
7726 err = ice_get_caps(hw);
7727 if (err) {
7728 dev_err(dev, "ice_get_caps failed %d\n", err);
7729 goto err_init_ctrlq;
7730 }
7731
7732 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7733 if (err) {
7734 dev_err(dev, "set_mac_cfg failed %d\n", err);
7735 goto err_init_ctrlq;
7736 }
7737
7738 dvm = ice_is_dvm_ena(hw);
7739
7740 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7741 if (err)
7742 goto err_init_ctrlq;
7743
7744 err = ice_sched_init_port(hw->port_info);
7745 if (err)
7746 goto err_sched_init_port;
7747
7748 /* start misc vector */
7749 err = ice_req_irq_msix_misc(pf);
7750 if (err) {
7751 dev_err(dev, "misc vector setup failed: %d\n", err);
7752 goto err_sched_init_port;
7753 }
7754
7755 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7756 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7757 if (!rd32(hw, PFQF_FD_SIZE)) {
7758 u16 unused, guar, b_effort;
7759
7760 guar = hw->func_caps.fd_fltr_guar;
7761 b_effort = hw->func_caps.fd_fltr_best_effort;
7762
7763 /* force guaranteed filter pool for PF */
7764 ice_alloc_fd_guar_item(hw, &unused, guar);
7765 /* force shared filter pool for PF */
7766 ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7767 }
7768 }
7769
7770 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7771 ice_dcb_rebuild(pf);
7772
7773 /* If the PF previously had enabled PTP, PTP init needs to happen before
7774 * the VSI rebuild. If not, this causes the PTP link status events to
7775 * fail.
7776 */
7777 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7778 ice_ptp_rebuild(pf, reset_type);
7779
7780 if (ice_is_feature_supported(pf, ICE_F_GNSS))
7781 ice_gnss_init(pf);
7782
7783 /* rebuild PF VSI */
7784 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7785 if (err) {
7786 dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7787 goto err_vsi_rebuild;
7788 }
7789
7790 if (reset_type == ICE_RESET_PFR) {
7791 err = ice_rebuild_channels(pf);
7792 if (err) {
7793 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7794 err);
7795 goto err_vsi_rebuild;
7796 }
7797 }
7798
7799 /* If Flow Director is active */
7800 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7801 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7802 if (err) {
7803 dev_err(dev, "control VSI rebuild failed: %d\n", err);
7804 goto err_vsi_rebuild;
7805 }
7806
7807 /* replay HW Flow Director recipes */
7808 if (hw->fdir_prof)
7809 ice_fdir_replay_flows(hw);
7810
7811 /* replay Flow Director filters */
7812 ice_fdir_replay_fltrs(pf);
7813
7814 ice_rebuild_arfs(pf);
7815 }
7816
7817 if (vsi && vsi->netdev)
7818 netif_device_attach(vsi->netdev);
7819
7820 ice_update_pf_netdev_link(pf);
7821
7822 /* tell the firmware we are up */
7823 err = ice_send_version(pf);
7824 if (err) {
7825 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7826 err);
7827 goto err_vsi_rebuild;
7828 }
7829
7830 ice_replay_post(hw);
7831
7832 /* if we get here, reset flow is successful */
7833 clear_bit(ICE_RESET_FAILED, pf->state);
7834
7835 ice_health_clear(pf);
7836
7837 ice_plug_aux_dev(pf);
7838 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG))
7839 ice_lag_rebuild(pf);
7840
7841 /* Restore timestamp mode settings after VSI rebuild */
7842 ice_ptp_restore_timestamp_mode(pf);
7843 return;
7844
7845 err_vsi_rebuild:
7846 err_sched_init_port:
7847 ice_sched_cleanup_all(hw);
7848 err_init_ctrlq:
7849 ice_shutdown_all_ctrlq(hw, false);
7850 set_bit(ICE_RESET_FAILED, pf->state);
7851 clear_recovery:
7852 /* set this bit in PF state to control service task scheduling */
7853 set_bit(ICE_NEEDS_RESTART, pf->state);
7854 dev_err(dev, "Rebuild failed, unload and reload driver\n");
7855 }
7856
7857 /**
7858 * ice_change_mtu - NDO callback to change the MTU
7859 * @netdev: network interface device structure
7860 * @new_mtu: new value for maximum frame size
7861 *
7862 * Returns 0 on success, negative on failure
7863 */
ice_change_mtu(struct net_device * netdev,int new_mtu)7864 int ice_change_mtu(struct net_device *netdev, int new_mtu)
7865 {
7866 struct ice_netdev_priv *np = netdev_priv(netdev);
7867 struct ice_vsi *vsi = np->vsi;
7868 struct ice_pf *pf = vsi->back;
7869 struct bpf_prog *prog;
7870 u8 count = 0;
7871 int err = 0;
7872
7873 if (new_mtu == (int)netdev->mtu) {
7874 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7875 return 0;
7876 }
7877
7878 prog = vsi->xdp_prog;
7879 if (prog && !prog->aux->xdp_has_frags) {
7880 int frame_size = ice_max_xdp_frame_size(vsi);
7881
7882 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7883 netdev_err(netdev, "max MTU for XDP usage is %d\n",
7884 frame_size - ICE_ETH_PKT_HDR_PAD);
7885 return -EINVAL;
7886 }
7887 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) {
7888 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) {
7889 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n",
7890 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD);
7891 return -EINVAL;
7892 }
7893 }
7894
7895 /* if a reset is in progress, wait for some time for it to complete */
7896 do {
7897 if (ice_is_reset_in_progress(pf->state)) {
7898 count++;
7899 usleep_range(1000, 2000);
7900 } else {
7901 break;
7902 }
7903
7904 } while (count < 100);
7905
7906 if (count == 100) {
7907 netdev_err(netdev, "can't change MTU. Device is busy\n");
7908 return -EBUSY;
7909 }
7910
7911 WRITE_ONCE(netdev->mtu, (unsigned int)new_mtu);
7912 err = ice_down_up(vsi);
7913 if (err)
7914 return err;
7915
7916 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7917 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7918
7919 return err;
7920 }
7921
7922 /**
7923 * ice_set_rss_lut - Set RSS LUT
7924 * @vsi: Pointer to VSI structure
7925 * @lut: Lookup table
7926 * @lut_size: Lookup table size
7927 *
7928 * Returns 0 on success, negative on failure
7929 */
ice_set_rss_lut(struct ice_vsi * vsi,u8 * lut,u16 lut_size)7930 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7931 {
7932 struct ice_aq_get_set_rss_lut_params params = {};
7933 struct ice_hw *hw = &vsi->back->hw;
7934 int status;
7935
7936 if (!lut)
7937 return -EINVAL;
7938
7939 params.vsi_handle = vsi->idx;
7940 params.lut_size = lut_size;
7941 params.lut_type = vsi->rss_lut_type;
7942 params.lut = lut;
7943
7944 status = ice_aq_set_rss_lut(hw, ¶ms);
7945 if (status)
7946 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7947 status, libie_aq_str(hw->adminq.sq_last_status));
7948
7949 return status;
7950 }
7951
7952 /**
7953 * ice_set_rss_key - Set RSS key
7954 * @vsi: Pointer to the VSI structure
7955 * @seed: RSS hash seed
7956 *
7957 * Returns 0 on success, negative on failure
7958 */
ice_set_rss_key(struct ice_vsi * vsi,u8 * seed)7959 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7960 {
7961 struct ice_hw *hw = &vsi->back->hw;
7962 int status;
7963
7964 if (!seed)
7965 return -EINVAL;
7966
7967 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7968 if (status)
7969 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7970 status, libie_aq_str(hw->adminq.sq_last_status));
7971
7972 return status;
7973 }
7974
7975 /**
7976 * ice_get_rss_lut - Get RSS LUT
7977 * @vsi: Pointer to VSI structure
7978 * @lut: Buffer to store the lookup table entries
7979 * @lut_size: Size of buffer to store the lookup table entries
7980 *
7981 * Returns 0 on success, negative on failure
7982 */
ice_get_rss_lut(struct ice_vsi * vsi,u8 * lut,u16 lut_size)7983 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7984 {
7985 struct ice_aq_get_set_rss_lut_params params = {};
7986 struct ice_hw *hw = &vsi->back->hw;
7987 int status;
7988
7989 if (!lut)
7990 return -EINVAL;
7991
7992 params.vsi_handle = vsi->idx;
7993 params.lut_size = lut_size;
7994 params.lut_type = vsi->rss_lut_type;
7995 params.lut = lut;
7996
7997 status = ice_aq_get_rss_lut(hw, ¶ms);
7998 if (status)
7999 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
8000 status, libie_aq_str(hw->adminq.sq_last_status));
8001
8002 return status;
8003 }
8004
8005 /**
8006 * ice_get_rss_key - Get RSS key
8007 * @vsi: Pointer to VSI structure
8008 * @seed: Buffer to store the key in
8009 *
8010 * Returns 0 on success, negative on failure
8011 */
ice_get_rss_key(struct ice_vsi * vsi,u8 * seed)8012 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
8013 {
8014 struct ice_hw *hw = &vsi->back->hw;
8015 int status;
8016
8017 if (!seed)
8018 return -EINVAL;
8019
8020 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
8021 if (status)
8022 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
8023 status, libie_aq_str(hw->adminq.sq_last_status));
8024
8025 return status;
8026 }
8027
8028 /**
8029 * ice_set_rss_hfunc - Set RSS HASH function
8030 * @vsi: Pointer to VSI structure
8031 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*)
8032 *
8033 * Returns 0 on success, negative on failure
8034 */
ice_set_rss_hfunc(struct ice_vsi * vsi,u8 hfunc)8035 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc)
8036 {
8037 struct ice_hw *hw = &vsi->back->hw;
8038 struct ice_vsi_ctx *ctx;
8039 bool symm;
8040 int err;
8041
8042 if (hfunc == vsi->rss_hfunc)
8043 return 0;
8044
8045 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ &&
8046 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ)
8047 return -EOPNOTSUPP;
8048
8049 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
8050 if (!ctx)
8051 return -ENOMEM;
8052
8053 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
8054 ctx->info.q_opt_rss = vsi->info.q_opt_rss;
8055 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M;
8056 ctx->info.q_opt_rss |=
8057 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc);
8058 ctx->info.q_opt_tc = vsi->info.q_opt_tc;
8059 ctx->info.q_opt_flags = vsi->info.q_opt_rss;
8060
8061 err = ice_update_vsi(hw, vsi->idx, ctx, NULL);
8062 if (err) {
8063 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n",
8064 vsi->vsi_num, err);
8065 } else {
8066 vsi->info.q_opt_rss = ctx->info.q_opt_rss;
8067 vsi->rss_hfunc = hfunc;
8068 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n",
8069 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ?
8070 "Symmetric " : "");
8071 }
8072 kfree(ctx);
8073 if (err)
8074 return err;
8075
8076 /* Fix the symmetry setting for all existing RSS configurations */
8077 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ);
8078 return ice_set_rss_cfg_symm(hw, vsi, symm);
8079 }
8080
8081 /**
8082 * ice_bridge_getlink - Get the hardware bridge mode
8083 * @skb: skb buff
8084 * @pid: process ID
8085 * @seq: RTNL message seq
8086 * @dev: the netdev being configured
8087 * @filter_mask: filter mask passed in
8088 * @nlflags: netlink flags passed in
8089 *
8090 * Return the bridge mode (VEB/VEPA)
8091 */
8092 static int
ice_bridge_getlink(struct sk_buff * skb,u32 pid,u32 seq,struct net_device * dev,u32 filter_mask,int nlflags)8093 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
8094 struct net_device *dev, u32 filter_mask, int nlflags)
8095 {
8096 struct ice_netdev_priv *np = netdev_priv(dev);
8097 struct ice_vsi *vsi = np->vsi;
8098 struct ice_pf *pf = vsi->back;
8099 u16 bmode;
8100
8101 bmode = pf->first_sw->bridge_mode;
8102
8103 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
8104 filter_mask, NULL);
8105 }
8106
8107 /**
8108 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
8109 * @vsi: Pointer to VSI structure
8110 * @bmode: Hardware bridge mode (VEB/VEPA)
8111 *
8112 * Returns 0 on success, negative on failure
8113 */
ice_vsi_update_bridge_mode(struct ice_vsi * vsi,u16 bmode)8114 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
8115 {
8116 struct ice_aqc_vsi_props *vsi_props;
8117 struct ice_hw *hw = &vsi->back->hw;
8118 struct ice_vsi_ctx *ctxt;
8119 int ret;
8120
8121 vsi_props = &vsi->info;
8122
8123 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
8124 if (!ctxt)
8125 return -ENOMEM;
8126
8127 ctxt->info = vsi->info;
8128
8129 if (bmode == BRIDGE_MODE_VEB)
8130 /* change from VEPA to VEB mode */
8131 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
8132 else
8133 /* change from VEB to VEPA mode */
8134 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
8135 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
8136
8137 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
8138 if (ret) {
8139 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
8140 bmode, ret, libie_aq_str(hw->adminq.sq_last_status));
8141 goto out;
8142 }
8143 /* Update sw flags for book keeping */
8144 vsi_props->sw_flags = ctxt->info.sw_flags;
8145
8146 out:
8147 kfree(ctxt);
8148 return ret;
8149 }
8150
8151 /**
8152 * ice_bridge_setlink - Set the hardware bridge mode
8153 * @dev: the netdev being configured
8154 * @nlh: RTNL message
8155 * @flags: bridge setlink flags
8156 * @extack: netlink extended ack
8157 *
8158 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
8159 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
8160 * not already set for all VSIs connected to this switch. And also update the
8161 * unicast switch filter rules for the corresponding switch of the netdev.
8162 */
8163 static int
ice_bridge_setlink(struct net_device * dev,struct nlmsghdr * nlh,u16 __always_unused flags,struct netlink_ext_ack __always_unused * extack)8164 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
8165 u16 __always_unused flags,
8166 struct netlink_ext_ack __always_unused *extack)
8167 {
8168 struct ice_netdev_priv *np = netdev_priv(dev);
8169 struct ice_pf *pf = np->vsi->back;
8170 struct nlattr *attr, *br_spec;
8171 struct ice_hw *hw = &pf->hw;
8172 struct ice_sw *pf_sw;
8173 int rem, v, err = 0;
8174
8175 pf_sw = pf->first_sw;
8176 /* find the attribute in the netlink message */
8177 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
8178 if (!br_spec)
8179 return -EINVAL;
8180
8181 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) {
8182 __u16 mode = nla_get_u16(attr);
8183
8184 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
8185 return -EINVAL;
8186 /* Continue if bridge mode is not being flipped */
8187 if (mode == pf_sw->bridge_mode)
8188 continue;
8189 /* Iterates through the PF VSI list and update the loopback
8190 * mode of the VSI
8191 */
8192 ice_for_each_vsi(pf, v) {
8193 if (!pf->vsi[v])
8194 continue;
8195 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
8196 if (err)
8197 return err;
8198 }
8199
8200 hw->evb_veb = (mode == BRIDGE_MODE_VEB);
8201 /* Update the unicast switch filter rules for the corresponding
8202 * switch of the netdev
8203 */
8204 err = ice_update_sw_rule_bridge_mode(hw);
8205 if (err) {
8206 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
8207 mode, err,
8208 libie_aq_str(hw->adminq.sq_last_status));
8209 /* revert hw->evb_veb */
8210 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
8211 return err;
8212 }
8213
8214 pf_sw->bridge_mode = mode;
8215 }
8216
8217 return 0;
8218 }
8219
8220 /**
8221 * ice_tx_timeout - Respond to a Tx Hang
8222 * @netdev: network interface device structure
8223 * @txqueue: Tx queue
8224 */
ice_tx_timeout(struct net_device * netdev,unsigned int txqueue)8225 void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
8226 {
8227 struct ice_netdev_priv *np = netdev_priv(netdev);
8228 struct ice_tx_ring *tx_ring = NULL;
8229 struct ice_vsi *vsi = np->vsi;
8230 struct ice_pf *pf = vsi->back;
8231 u32 i;
8232
8233 pf->tx_timeout_count++;
8234
8235 /* Check if PFC is enabled for the TC to which the queue belongs
8236 * to. If yes then Tx timeout is not caused by a hung queue, no
8237 * need to reset and rebuild
8238 */
8239 if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
8240 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
8241 txqueue);
8242 return;
8243 }
8244
8245 /* now that we have an index, find the tx_ring struct */
8246 ice_for_each_txq(vsi, i)
8247 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
8248 if (txqueue == vsi->tx_rings[i]->q_index) {
8249 tx_ring = vsi->tx_rings[i];
8250 break;
8251 }
8252
8253 /* Reset recovery level if enough time has elapsed after last timeout.
8254 * Also ensure no new reset action happens before next timeout period.
8255 */
8256 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
8257 pf->tx_timeout_recovery_level = 1;
8258 else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
8259 netdev->watchdog_timeo)))
8260 return;
8261
8262 if (tx_ring) {
8263 struct ice_hw *hw = &pf->hw;
8264 u32 head, intr = 0;
8265
8266 head = FIELD_GET(QTX_COMM_HEAD_HEAD_M,
8267 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])));
8268 /* Read interrupt register */
8269 intr = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
8270
8271 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
8272 vsi->vsi_num, txqueue, tx_ring->next_to_clean,
8273 head, tx_ring->next_to_use, intr);
8274
8275 ice_prep_tx_hang_report(pf, tx_ring, vsi->vsi_num, head, intr);
8276 }
8277
8278 pf->tx_timeout_last_recovery = jiffies;
8279 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
8280 pf->tx_timeout_recovery_level, txqueue);
8281
8282 switch (pf->tx_timeout_recovery_level) {
8283 case 1:
8284 set_bit(ICE_PFR_REQ, pf->state);
8285 break;
8286 case 2:
8287 set_bit(ICE_CORER_REQ, pf->state);
8288 break;
8289 case 3:
8290 set_bit(ICE_GLOBR_REQ, pf->state);
8291 break;
8292 default:
8293 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
8294 set_bit(ICE_DOWN, pf->state);
8295 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
8296 set_bit(ICE_SERVICE_DIS, pf->state);
8297 break;
8298 }
8299
8300 ice_service_task_schedule(pf);
8301 pf->tx_timeout_recovery_level++;
8302 }
8303
8304 /**
8305 * ice_setup_tc_cls_flower - flower classifier offloads
8306 * @np: net device to configure
8307 * @filter_dev: device on which filter is added
8308 * @cls_flower: offload data
8309 * @ingress: if the rule is added to an ingress block
8310 *
8311 * Return: 0 if the flower was successfully added or deleted,
8312 * negative error code otherwise.
8313 */
8314 static int
ice_setup_tc_cls_flower(struct ice_netdev_priv * np,struct net_device * filter_dev,struct flow_cls_offload * cls_flower,bool ingress)8315 ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
8316 struct net_device *filter_dev,
8317 struct flow_cls_offload *cls_flower,
8318 bool ingress)
8319 {
8320 struct ice_vsi *vsi = np->vsi;
8321
8322 if (cls_flower->common.chain_index)
8323 return -EOPNOTSUPP;
8324
8325 switch (cls_flower->command) {
8326 case FLOW_CLS_REPLACE:
8327 return ice_add_cls_flower(filter_dev, vsi, cls_flower, ingress);
8328 case FLOW_CLS_DESTROY:
8329 return ice_del_cls_flower(vsi, cls_flower);
8330 default:
8331 return -EINVAL;
8332 }
8333 }
8334
8335 /**
8336 * ice_setup_tc_block_cb_ingress - callback handler for ingress TC block
8337 * @type: TC SETUP type
8338 * @type_data: TC flower offload data that contains user input
8339 * @cb_priv: netdev private data
8340 *
8341 * Return: 0 if the setup was successful, negative error code otherwise.
8342 */
8343 static int
ice_setup_tc_block_cb_ingress(enum tc_setup_type type,void * type_data,void * cb_priv)8344 ice_setup_tc_block_cb_ingress(enum tc_setup_type type, void *type_data,
8345 void *cb_priv)
8346 {
8347 struct ice_netdev_priv *np = cb_priv;
8348
8349 switch (type) {
8350 case TC_SETUP_CLSFLOWER:
8351 return ice_setup_tc_cls_flower(np, np->vsi->netdev,
8352 type_data, true);
8353 default:
8354 return -EOPNOTSUPP;
8355 }
8356 }
8357
8358 /**
8359 * ice_setup_tc_block_cb_egress - callback handler for egress TC block
8360 * @type: TC SETUP type
8361 * @type_data: TC flower offload data that contains user input
8362 * @cb_priv: netdev private data
8363 *
8364 * Return: 0 if the setup was successful, negative error code otherwise.
8365 */
8366 static int
ice_setup_tc_block_cb_egress(enum tc_setup_type type,void * type_data,void * cb_priv)8367 ice_setup_tc_block_cb_egress(enum tc_setup_type type, void *type_data,
8368 void *cb_priv)
8369 {
8370 struct ice_netdev_priv *np = cb_priv;
8371
8372 switch (type) {
8373 case TC_SETUP_CLSFLOWER:
8374 return ice_setup_tc_cls_flower(np, np->vsi->netdev,
8375 type_data, false);
8376 default:
8377 return -EOPNOTSUPP;
8378 }
8379 }
8380
8381 /**
8382 * ice_validate_mqprio_qopt - Validate TCF input parameters
8383 * @vsi: Pointer to VSI
8384 * @mqprio_qopt: input parameters for mqprio queue configuration
8385 *
8386 * This function validates MQPRIO params, such as qcount (power of 2 wherever
8387 * needed), and make sure user doesn't specify qcount and BW rate limit
8388 * for TCs, which are more than "num_tc"
8389 */
8390 static int
ice_validate_mqprio_qopt(struct ice_vsi * vsi,struct tc_mqprio_qopt_offload * mqprio_qopt)8391 ice_validate_mqprio_qopt(struct ice_vsi *vsi,
8392 struct tc_mqprio_qopt_offload *mqprio_qopt)
8393 {
8394 int non_power_of_2_qcount = 0;
8395 struct ice_pf *pf = vsi->back;
8396 int max_rss_q_cnt = 0;
8397 u64 sum_min_rate = 0;
8398 struct device *dev;
8399 int i, speed;
8400 u8 num_tc;
8401
8402 if (vsi->type != ICE_VSI_PF)
8403 return -EINVAL;
8404
8405 if (mqprio_qopt->qopt.offset[0] != 0 ||
8406 mqprio_qopt->qopt.num_tc < 1 ||
8407 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
8408 return -EINVAL;
8409
8410 dev = ice_pf_to_dev(pf);
8411 vsi->ch_rss_size = 0;
8412 num_tc = mqprio_qopt->qopt.num_tc;
8413 speed = ice_get_link_speed_kbps(vsi);
8414
8415 for (i = 0; num_tc; i++) {
8416 int qcount = mqprio_qopt->qopt.count[i];
8417 u64 max_rate, min_rate, rem;
8418
8419 if (!qcount)
8420 return -EINVAL;
8421
8422 if (is_power_of_2(qcount)) {
8423 if (non_power_of_2_qcount &&
8424 qcount > non_power_of_2_qcount) {
8425 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
8426 qcount, non_power_of_2_qcount);
8427 return -EINVAL;
8428 }
8429 if (qcount > max_rss_q_cnt)
8430 max_rss_q_cnt = qcount;
8431 } else {
8432 if (non_power_of_2_qcount &&
8433 qcount != non_power_of_2_qcount) {
8434 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
8435 qcount, non_power_of_2_qcount);
8436 return -EINVAL;
8437 }
8438 if (qcount < max_rss_q_cnt) {
8439 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
8440 qcount, max_rss_q_cnt);
8441 return -EINVAL;
8442 }
8443 max_rss_q_cnt = qcount;
8444 non_power_of_2_qcount = qcount;
8445 }
8446
8447 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but
8448 * converts the bandwidth rate limit into Bytes/s when
8449 * passing it down to the driver. So convert input bandwidth
8450 * from Bytes/s to Kbps
8451 */
8452 max_rate = mqprio_qopt->max_rate[i];
8453 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
8454
8455 /* min_rate is minimum guaranteed rate and it can't be zero */
8456 min_rate = mqprio_qopt->min_rate[i];
8457 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
8458 sum_min_rate += min_rate;
8459
8460 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
8461 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
8462 min_rate, ICE_MIN_BW_LIMIT);
8463 return -EINVAL;
8464 }
8465
8466 if (max_rate && max_rate > speed) {
8467 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n",
8468 i, max_rate, speed);
8469 return -EINVAL;
8470 }
8471
8472 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
8473 if (rem) {
8474 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
8475 i, ICE_MIN_BW_LIMIT);
8476 return -EINVAL;
8477 }
8478
8479 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
8480 if (rem) {
8481 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
8482 i, ICE_MIN_BW_LIMIT);
8483 return -EINVAL;
8484 }
8485
8486 /* min_rate can't be more than max_rate, except when max_rate
8487 * is zero (implies max_rate sought is max line rate). In such
8488 * a case min_rate can be more than max.
8489 */
8490 if (max_rate && min_rate > max_rate) {
8491 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
8492 min_rate, max_rate);
8493 return -EINVAL;
8494 }
8495
8496 if (i >= mqprio_qopt->qopt.num_tc - 1)
8497 break;
8498 if (mqprio_qopt->qopt.offset[i + 1] !=
8499 (mqprio_qopt->qopt.offset[i] + qcount))
8500 return -EINVAL;
8501 }
8502 if (vsi->num_rxq <
8503 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8504 return -EINVAL;
8505 if (vsi->num_txq <
8506 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8507 return -EINVAL;
8508
8509 if (sum_min_rate && sum_min_rate > (u64)speed) {
8510 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
8511 sum_min_rate, speed);
8512 return -EINVAL;
8513 }
8514
8515 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
8516 vsi->ch_rss_size = max_rss_q_cnt;
8517
8518 return 0;
8519 }
8520
8521 /**
8522 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
8523 * @pf: ptr to PF device
8524 * @vsi: ptr to VSI
8525 */
ice_add_vsi_to_fdir(struct ice_pf * pf,struct ice_vsi * vsi)8526 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
8527 {
8528 struct device *dev = ice_pf_to_dev(pf);
8529 bool added = false;
8530 struct ice_hw *hw;
8531 int flow;
8532
8533 if (!(vsi->num_gfltr || vsi->num_bfltr))
8534 return -EINVAL;
8535
8536 hw = &pf->hw;
8537 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
8538 struct ice_fd_hw_prof *prof;
8539 int tun, status;
8540 u64 entry_h;
8541
8542 if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
8543 hw->fdir_prof[flow]->cnt))
8544 continue;
8545
8546 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
8547 enum ice_flow_priority prio;
8548
8549 /* add this VSI to FDir profile for this flow */
8550 prio = ICE_FLOW_PRIO_NORMAL;
8551 prof = hw->fdir_prof[flow];
8552 status = ice_flow_add_entry(hw, ICE_BLK_FD,
8553 prof->prof_id[tun],
8554 prof->vsi_h[0], vsi->idx,
8555 prio, prof->fdir_seg[tun],
8556 &entry_h);
8557 if (status) {
8558 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
8559 vsi->idx, flow);
8560 continue;
8561 }
8562
8563 prof->entry_h[prof->cnt][tun] = entry_h;
8564 }
8565
8566 /* store VSI for filter replay and delete */
8567 prof->vsi_h[prof->cnt] = vsi->idx;
8568 prof->cnt++;
8569
8570 added = true;
8571 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
8572 flow);
8573 }
8574
8575 if (!added)
8576 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
8577
8578 return 0;
8579 }
8580
8581 /**
8582 * ice_add_channel - add a channel by adding VSI
8583 * @pf: ptr to PF device
8584 * @sw_id: underlying HW switching element ID
8585 * @ch: ptr to channel structure
8586 *
8587 * Add a channel (VSI) using add_vsi and queue_map
8588 */
ice_add_channel(struct ice_pf * pf,u16 sw_id,struct ice_channel * ch)8589 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
8590 {
8591 struct device *dev = ice_pf_to_dev(pf);
8592 struct ice_vsi *vsi;
8593
8594 if (ch->type != ICE_VSI_CHNL) {
8595 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
8596 return -EINVAL;
8597 }
8598
8599 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
8600 if (!vsi || vsi->type != ICE_VSI_CHNL) {
8601 dev_err(dev, "create chnl VSI failure\n");
8602 return -EINVAL;
8603 }
8604
8605 ice_add_vsi_to_fdir(pf, vsi);
8606
8607 ch->sw_id = sw_id;
8608 ch->vsi_num = vsi->vsi_num;
8609 ch->info.mapping_flags = vsi->info.mapping_flags;
8610 ch->ch_vsi = vsi;
8611 /* set the back pointer of channel for newly created VSI */
8612 vsi->ch = ch;
8613
8614 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
8615 sizeof(vsi->info.q_mapping));
8616 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
8617 sizeof(vsi->info.tc_mapping));
8618
8619 return 0;
8620 }
8621
8622 /**
8623 * ice_chnl_cfg_res
8624 * @vsi: the VSI being setup
8625 * @ch: ptr to channel structure
8626 *
8627 * Configure channel specific resources such as rings, vector.
8628 */
ice_chnl_cfg_res(struct ice_vsi * vsi,struct ice_channel * ch)8629 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
8630 {
8631 int i;
8632
8633 for (i = 0; i < ch->num_txq; i++) {
8634 struct ice_q_vector *tx_q_vector, *rx_q_vector;
8635 struct ice_ring_container *rc;
8636 struct ice_tx_ring *tx_ring;
8637 struct ice_rx_ring *rx_ring;
8638
8639 tx_ring = vsi->tx_rings[ch->base_q + i];
8640 rx_ring = vsi->rx_rings[ch->base_q + i];
8641 if (!tx_ring || !rx_ring)
8642 continue;
8643
8644 /* setup ring being channel enabled */
8645 tx_ring->ch = ch;
8646 rx_ring->ch = ch;
8647
8648 /* following code block sets up vector specific attributes */
8649 tx_q_vector = tx_ring->q_vector;
8650 rx_q_vector = rx_ring->q_vector;
8651 if (!tx_q_vector && !rx_q_vector)
8652 continue;
8653
8654 if (tx_q_vector) {
8655 tx_q_vector->ch = ch;
8656 /* setup Tx and Rx ITR setting if DIM is off */
8657 rc = &tx_q_vector->tx;
8658 if (!ITR_IS_DYNAMIC(rc))
8659 ice_write_itr(rc, rc->itr_setting);
8660 }
8661 if (rx_q_vector) {
8662 rx_q_vector->ch = ch;
8663 /* setup Tx and Rx ITR setting if DIM is off */
8664 rc = &rx_q_vector->rx;
8665 if (!ITR_IS_DYNAMIC(rc))
8666 ice_write_itr(rc, rc->itr_setting);
8667 }
8668 }
8669
8670 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then
8671 * GLINT_ITR register would have written to perform in-context
8672 * update, hence perform flush
8673 */
8674 if (ch->num_txq || ch->num_rxq)
8675 ice_flush(&vsi->back->hw);
8676 }
8677
8678 /**
8679 * ice_cfg_chnl_all_res - configure channel resources
8680 * @vsi: pte to main_vsi
8681 * @ch: ptr to channel structure
8682 *
8683 * This function configures channel specific resources such as flow-director
8684 * counter index, and other resources such as queues, vectors, ITR settings
8685 */
8686 static void
ice_cfg_chnl_all_res(struct ice_vsi * vsi,struct ice_channel * ch)8687 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
8688 {
8689 /* configure channel (aka ADQ) resources such as queues, vectors,
8690 * ITR settings for channel specific vectors and anything else
8691 */
8692 ice_chnl_cfg_res(vsi, ch);
8693 }
8694
8695 /**
8696 * ice_setup_hw_channel - setup new channel
8697 * @pf: ptr to PF device
8698 * @vsi: the VSI being setup
8699 * @ch: ptr to channel structure
8700 * @sw_id: underlying HW switching element ID
8701 * @type: type of channel to be created (VMDq2/VF)
8702 *
8703 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8704 * and configures Tx rings accordingly
8705 */
8706 static int
ice_setup_hw_channel(struct ice_pf * pf,struct ice_vsi * vsi,struct ice_channel * ch,u16 sw_id,u8 type)8707 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8708 struct ice_channel *ch, u16 sw_id, u8 type)
8709 {
8710 struct device *dev = ice_pf_to_dev(pf);
8711 int ret;
8712
8713 ch->base_q = vsi->next_base_q;
8714 ch->type = type;
8715
8716 ret = ice_add_channel(pf, sw_id, ch);
8717 if (ret) {
8718 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
8719 return ret;
8720 }
8721
8722 /* configure/setup ADQ specific resources */
8723 ice_cfg_chnl_all_res(vsi, ch);
8724
8725 /* make sure to update the next_base_q so that subsequent channel's
8726 * (aka ADQ) VSI queue map is correct
8727 */
8728 vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8729 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8730 ch->num_rxq);
8731
8732 return 0;
8733 }
8734
8735 /**
8736 * ice_setup_channel - setup new channel using uplink element
8737 * @pf: ptr to PF device
8738 * @vsi: the VSI being setup
8739 * @ch: ptr to channel structure
8740 *
8741 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8742 * and uplink switching element
8743 */
8744 static bool
ice_setup_channel(struct ice_pf * pf,struct ice_vsi * vsi,struct ice_channel * ch)8745 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8746 struct ice_channel *ch)
8747 {
8748 struct device *dev = ice_pf_to_dev(pf);
8749 u16 sw_id;
8750 int ret;
8751
8752 if (vsi->type != ICE_VSI_PF) {
8753 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8754 return false;
8755 }
8756
8757 sw_id = pf->first_sw->sw_id;
8758
8759 /* create channel (VSI) */
8760 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8761 if (ret) {
8762 dev_err(dev, "failed to setup hw_channel\n");
8763 return false;
8764 }
8765 dev_dbg(dev, "successfully created channel()\n");
8766
8767 return ch->ch_vsi ? true : false;
8768 }
8769
8770 /**
8771 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8772 * @vsi: VSI to be configured
8773 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8774 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8775 */
8776 static int
ice_set_bw_limit(struct ice_vsi * vsi,u64 max_tx_rate,u64 min_tx_rate)8777 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8778 {
8779 int err;
8780
8781 err = ice_set_min_bw_limit(vsi, min_tx_rate);
8782 if (err)
8783 return err;
8784
8785 return ice_set_max_bw_limit(vsi, max_tx_rate);
8786 }
8787
8788 /**
8789 * ice_create_q_channel - function to create channel
8790 * @vsi: VSI to be configured
8791 * @ch: ptr to channel (it contains channel specific params)
8792 *
8793 * This function creates channel (VSI) using num_queues specified by user,
8794 * reconfigs RSS if needed.
8795 */
ice_create_q_channel(struct ice_vsi * vsi,struct ice_channel * ch)8796 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8797 {
8798 struct ice_pf *pf = vsi->back;
8799 struct device *dev;
8800
8801 if (!ch)
8802 return -EINVAL;
8803
8804 dev = ice_pf_to_dev(pf);
8805 if (!ch->num_txq || !ch->num_rxq) {
8806 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8807 return -EINVAL;
8808 }
8809
8810 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8811 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8812 vsi->cnt_q_avail, ch->num_txq);
8813 return -EINVAL;
8814 }
8815
8816 if (!ice_setup_channel(pf, vsi, ch)) {
8817 dev_info(dev, "Failed to setup channel\n");
8818 return -EINVAL;
8819 }
8820 /* configure BW rate limit */
8821 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8822 int ret;
8823
8824 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8825 ch->min_tx_rate);
8826 if (ret)
8827 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8828 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8829 else
8830 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8831 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8832 }
8833
8834 vsi->cnt_q_avail -= ch->num_txq;
8835
8836 return 0;
8837 }
8838
8839 /**
8840 * ice_rem_all_chnl_fltrs - removes all channel filters
8841 * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8842 *
8843 * Remove all advanced switch filters only if they are channel specific
8844 * tc-flower based filter
8845 */
ice_rem_all_chnl_fltrs(struct ice_pf * pf)8846 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8847 {
8848 struct ice_tc_flower_fltr *fltr;
8849 struct hlist_node *node;
8850
8851 /* to remove all channel filters, iterate an ordered list of filters */
8852 hlist_for_each_entry_safe(fltr, node,
8853 &pf->tc_flower_fltr_list,
8854 tc_flower_node) {
8855 struct ice_rule_query_data rule;
8856 int status;
8857
8858 /* for now process only channel specific filters */
8859 if (!ice_is_chnl_fltr(fltr))
8860 continue;
8861
8862 rule.rid = fltr->rid;
8863 rule.rule_id = fltr->rule_id;
8864 rule.vsi_handle = fltr->dest_vsi_handle;
8865 status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8866 if (status) {
8867 if (status == -ENOENT)
8868 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8869 rule.rule_id);
8870 else
8871 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8872 status);
8873 } else if (fltr->dest_vsi) {
8874 /* update advanced switch filter count */
8875 if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8876 u32 flags = fltr->flags;
8877
8878 fltr->dest_vsi->num_chnl_fltr--;
8879 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8880 ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8881 pf->num_dmac_chnl_fltrs--;
8882 }
8883 }
8884
8885 hlist_del(&fltr->tc_flower_node);
8886 kfree(fltr);
8887 }
8888 }
8889
8890 /**
8891 * ice_remove_q_channels - Remove queue channels for the TCs
8892 * @vsi: VSI to be configured
8893 * @rem_fltr: delete advanced switch filter or not
8894 *
8895 * Remove queue channels for the TCs
8896 */
ice_remove_q_channels(struct ice_vsi * vsi,bool rem_fltr)8897 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8898 {
8899 struct ice_channel *ch, *ch_tmp;
8900 struct ice_pf *pf = vsi->back;
8901 int i;
8902
8903 /* remove all tc-flower based filter if they are channel filters only */
8904 if (rem_fltr)
8905 ice_rem_all_chnl_fltrs(pf);
8906
8907 /* remove ntuple filters since queue configuration is being changed */
8908 if (vsi->netdev->features & NETIF_F_NTUPLE) {
8909 struct ice_hw *hw = &pf->hw;
8910
8911 mutex_lock(&hw->fdir_fltr_lock);
8912 ice_fdir_del_all_fltrs(vsi);
8913 mutex_unlock(&hw->fdir_fltr_lock);
8914 }
8915
8916 /* perform cleanup for channels if they exist */
8917 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8918 struct ice_vsi *ch_vsi;
8919
8920 list_del(&ch->list);
8921 ch_vsi = ch->ch_vsi;
8922 if (!ch_vsi) {
8923 kfree(ch);
8924 continue;
8925 }
8926
8927 /* Reset queue contexts */
8928 for (i = 0; i < ch->num_rxq; i++) {
8929 struct ice_tx_ring *tx_ring;
8930 struct ice_rx_ring *rx_ring;
8931
8932 tx_ring = vsi->tx_rings[ch->base_q + i];
8933 rx_ring = vsi->rx_rings[ch->base_q + i];
8934 if (tx_ring) {
8935 tx_ring->ch = NULL;
8936 if (tx_ring->q_vector)
8937 tx_ring->q_vector->ch = NULL;
8938 }
8939 if (rx_ring) {
8940 rx_ring->ch = NULL;
8941 if (rx_ring->q_vector)
8942 rx_ring->q_vector->ch = NULL;
8943 }
8944 }
8945
8946 /* Release FD resources for the channel VSI */
8947 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8948
8949 /* clear the VSI from scheduler tree */
8950 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8951
8952 /* Delete VSI from FW, PF and HW VSI arrays */
8953 ice_vsi_delete(ch->ch_vsi);
8954
8955 /* free the channel */
8956 kfree(ch);
8957 }
8958
8959 /* clear the channel VSI map which is stored in main VSI */
8960 ice_for_each_chnl_tc(i)
8961 vsi->tc_map_vsi[i] = NULL;
8962
8963 /* reset main VSI's all TC information */
8964 vsi->all_enatc = 0;
8965 vsi->all_numtc = 0;
8966 }
8967
8968 /**
8969 * ice_rebuild_channels - rebuild channel
8970 * @pf: ptr to PF
8971 *
8972 * Recreate channel VSIs and replay filters
8973 */
ice_rebuild_channels(struct ice_pf * pf)8974 static int ice_rebuild_channels(struct ice_pf *pf)
8975 {
8976 struct device *dev = ice_pf_to_dev(pf);
8977 struct ice_vsi *main_vsi;
8978 bool rem_adv_fltr = true;
8979 struct ice_channel *ch;
8980 struct ice_vsi *vsi;
8981 int tc_idx = 1;
8982 int i, err;
8983
8984 main_vsi = ice_get_main_vsi(pf);
8985 if (!main_vsi)
8986 return 0;
8987
8988 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
8989 main_vsi->old_numtc == 1)
8990 return 0; /* nothing to be done */
8991
8992 /* reconfigure main VSI based on old value of TC and cached values
8993 * for MQPRIO opts
8994 */
8995 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
8996 if (err) {
8997 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
8998 main_vsi->old_ena_tc, main_vsi->vsi_num);
8999 return err;
9000 }
9001
9002 /* rebuild ADQ VSIs */
9003 ice_for_each_vsi(pf, i) {
9004 enum ice_vsi_type type;
9005
9006 vsi = pf->vsi[i];
9007 if (!vsi || vsi->type != ICE_VSI_CHNL)
9008 continue;
9009
9010 type = vsi->type;
9011
9012 /* rebuild ADQ VSI */
9013 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
9014 if (err) {
9015 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
9016 ice_vsi_type_str(type), vsi->idx, err);
9017 goto cleanup;
9018 }
9019
9020 /* Re-map HW VSI number, using VSI handle that has been
9021 * previously validated in ice_replay_vsi() call above
9022 */
9023 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
9024
9025 /* replay filters for the VSI */
9026 err = ice_replay_vsi(&pf->hw, vsi->idx);
9027 if (err) {
9028 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
9029 ice_vsi_type_str(type), err, vsi->idx);
9030 rem_adv_fltr = false;
9031 goto cleanup;
9032 }
9033 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
9034 ice_vsi_type_str(type), vsi->idx);
9035
9036 /* store ADQ VSI at correct TC index in main VSI's
9037 * map of TC to VSI
9038 */
9039 main_vsi->tc_map_vsi[tc_idx++] = vsi;
9040 }
9041
9042 /* ADQ VSI(s) has been rebuilt successfully, so setup
9043 * channel for main VSI's Tx and Rx rings
9044 */
9045 list_for_each_entry(ch, &main_vsi->ch_list, list) {
9046 struct ice_vsi *ch_vsi;
9047
9048 ch_vsi = ch->ch_vsi;
9049 if (!ch_vsi)
9050 continue;
9051
9052 /* reconfig channel resources */
9053 ice_cfg_chnl_all_res(main_vsi, ch);
9054
9055 /* replay BW rate limit if it is non-zero */
9056 if (!ch->max_tx_rate && !ch->min_tx_rate)
9057 continue;
9058
9059 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
9060 ch->min_tx_rate);
9061 if (err)
9062 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
9063 err, ch->max_tx_rate, ch->min_tx_rate,
9064 ch_vsi->vsi_num);
9065 else
9066 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
9067 ch->max_tx_rate, ch->min_tx_rate,
9068 ch_vsi->vsi_num);
9069 }
9070
9071 /* reconfig RSS for main VSI */
9072 if (main_vsi->ch_rss_size)
9073 ice_vsi_cfg_rss_lut_key(main_vsi);
9074
9075 return 0;
9076
9077 cleanup:
9078 ice_remove_q_channels(main_vsi, rem_adv_fltr);
9079 return err;
9080 }
9081
9082 /**
9083 * ice_create_q_channels - Add queue channel for the given TCs
9084 * @vsi: VSI to be configured
9085 *
9086 * Configures queue channel mapping to the given TCs
9087 */
ice_create_q_channels(struct ice_vsi * vsi)9088 static int ice_create_q_channels(struct ice_vsi *vsi)
9089 {
9090 struct ice_pf *pf = vsi->back;
9091 struct ice_channel *ch;
9092 int ret = 0, i;
9093
9094 ice_for_each_chnl_tc(i) {
9095 if (!(vsi->all_enatc & BIT(i)))
9096 continue;
9097
9098 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
9099 if (!ch) {
9100 ret = -ENOMEM;
9101 goto err_free;
9102 }
9103 INIT_LIST_HEAD(&ch->list);
9104 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
9105 ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
9106 ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
9107 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
9108 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
9109
9110 /* convert to Kbits/s */
9111 if (ch->max_tx_rate)
9112 ch->max_tx_rate = div_u64(ch->max_tx_rate,
9113 ICE_BW_KBPS_DIVISOR);
9114 if (ch->min_tx_rate)
9115 ch->min_tx_rate = div_u64(ch->min_tx_rate,
9116 ICE_BW_KBPS_DIVISOR);
9117
9118 ret = ice_create_q_channel(vsi, ch);
9119 if (ret) {
9120 dev_err(ice_pf_to_dev(pf),
9121 "failed creating channel TC:%d\n", i);
9122 kfree(ch);
9123 goto err_free;
9124 }
9125 list_add_tail(&ch->list, &vsi->ch_list);
9126 vsi->tc_map_vsi[i] = ch->ch_vsi;
9127 dev_dbg(ice_pf_to_dev(pf),
9128 "successfully created channel: VSI %pK\n", ch->ch_vsi);
9129 }
9130 return 0;
9131
9132 err_free:
9133 ice_remove_q_channels(vsi, false);
9134
9135 return ret;
9136 }
9137
9138 /**
9139 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
9140 * @netdev: net device to configure
9141 * @type_data: TC offload data
9142 */
ice_setup_tc_mqprio_qdisc(struct net_device * netdev,void * type_data)9143 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
9144 {
9145 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
9146 struct ice_netdev_priv *np = netdev_priv(netdev);
9147 struct ice_vsi *vsi = np->vsi;
9148 struct ice_pf *pf = vsi->back;
9149 u16 mode, ena_tc_qdisc = 0;
9150 int cur_txq, cur_rxq;
9151 u8 hw = 0, num_tcf;
9152 struct device *dev;
9153 int ret, i;
9154
9155 dev = ice_pf_to_dev(pf);
9156 num_tcf = mqprio_qopt->qopt.num_tc;
9157 hw = mqprio_qopt->qopt.hw;
9158 mode = mqprio_qopt->mode;
9159 if (!hw) {
9160 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
9161 vsi->ch_rss_size = 0;
9162 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
9163 goto config_tcf;
9164 }
9165
9166 /* Generate queue region map for number of TCF requested */
9167 for (i = 0; i < num_tcf; i++)
9168 ena_tc_qdisc |= BIT(i);
9169
9170 switch (mode) {
9171 case TC_MQPRIO_MODE_CHANNEL:
9172
9173 if (pf->hw.port_info->is_custom_tx_enabled) {
9174 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n");
9175 return -EBUSY;
9176 }
9177 ice_tear_down_devlink_rate_tree(pf);
9178
9179 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
9180 if (ret) {
9181 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
9182 ret);
9183 return ret;
9184 }
9185 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
9186 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
9187 /* don't assume state of hw_tc_offload during driver load
9188 * and set the flag for TC flower filter if hw_tc_offload
9189 * already ON
9190 */
9191 if (vsi->netdev->features & NETIF_F_HW_TC)
9192 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
9193 break;
9194 default:
9195 return -EINVAL;
9196 }
9197
9198 config_tcf:
9199
9200 /* Requesting same TCF configuration as already enabled */
9201 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
9202 mode != TC_MQPRIO_MODE_CHANNEL)
9203 return 0;
9204
9205 /* Pause VSI queues */
9206 ice_dis_vsi(vsi, true);
9207
9208 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
9209 ice_remove_q_channels(vsi, true);
9210
9211 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
9212 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
9213 num_online_cpus());
9214 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
9215 num_online_cpus());
9216 } else {
9217 /* logic to rebuild VSI, same like ethtool -L */
9218 u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
9219
9220 for (i = 0; i < num_tcf; i++) {
9221 if (!(ena_tc_qdisc & BIT(i)))
9222 continue;
9223
9224 offset = vsi->mqprio_qopt.qopt.offset[i];
9225 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
9226 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
9227 }
9228 vsi->req_txq = offset + qcount_tx;
9229 vsi->req_rxq = offset + qcount_rx;
9230
9231 /* store away original rss_size info, so that it gets reused
9232 * form ice_vsi_rebuild during tc-qdisc delete stage - to
9233 * determine, what should be the rss_sizefor main VSI
9234 */
9235 vsi->orig_rss_size = vsi->rss_size;
9236 }
9237
9238 /* save current values of Tx and Rx queues before calling VSI rebuild
9239 * for fallback option
9240 */
9241 cur_txq = vsi->num_txq;
9242 cur_rxq = vsi->num_rxq;
9243
9244 /* proceed with rebuild main VSI using correct number of queues */
9245 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
9246 if (ret) {
9247 /* fallback to current number of queues */
9248 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
9249 vsi->req_txq = cur_txq;
9250 vsi->req_rxq = cur_rxq;
9251 clear_bit(ICE_RESET_FAILED, pf->state);
9252 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) {
9253 dev_err(dev, "Rebuild of main VSI failed again\n");
9254 return ret;
9255 }
9256 }
9257
9258 vsi->all_numtc = num_tcf;
9259 vsi->all_enatc = ena_tc_qdisc;
9260 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
9261 if (ret) {
9262 netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
9263 vsi->vsi_num);
9264 goto exit;
9265 }
9266
9267 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
9268 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
9269 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
9270
9271 /* set TC0 rate limit if specified */
9272 if (max_tx_rate || min_tx_rate) {
9273 /* convert to Kbits/s */
9274 if (max_tx_rate)
9275 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
9276 if (min_tx_rate)
9277 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
9278
9279 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
9280 if (!ret) {
9281 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
9282 max_tx_rate, min_tx_rate, vsi->vsi_num);
9283 } else {
9284 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
9285 max_tx_rate, min_tx_rate, vsi->vsi_num);
9286 goto exit;
9287 }
9288 }
9289 ret = ice_create_q_channels(vsi);
9290 if (ret) {
9291 netdev_err(netdev, "failed configuring queue channels\n");
9292 goto exit;
9293 } else {
9294 netdev_dbg(netdev, "successfully configured channels\n");
9295 }
9296 }
9297
9298 if (vsi->ch_rss_size)
9299 ice_vsi_cfg_rss_lut_key(vsi);
9300
9301 exit:
9302 /* if error, reset the all_numtc and all_enatc */
9303 if (ret) {
9304 vsi->all_numtc = 0;
9305 vsi->all_enatc = 0;
9306 }
9307 /* resume VSI */
9308 ice_ena_vsi(vsi, true);
9309
9310 return ret;
9311 }
9312
9313 static LIST_HEAD(ice_block_cb_list);
9314
9315 static int
ice_setup_tc(struct net_device * netdev,enum tc_setup_type type,void * type_data)9316 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
9317 void *type_data)
9318 {
9319 struct ice_netdev_priv *np = netdev_priv(netdev);
9320 enum flow_block_binder_type binder_type;
9321 struct iidc_rdma_core_dev_info *cdev;
9322 struct ice_pf *pf = np->vsi->back;
9323 flow_setup_cb_t *flower_handler;
9324 bool locked = false;
9325 int err;
9326
9327 switch (type) {
9328 case TC_SETUP_BLOCK:
9329 binder_type =
9330 ((struct flow_block_offload *)type_data)->binder_type;
9331
9332 switch (binder_type) {
9333 case FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS:
9334 flower_handler = ice_setup_tc_block_cb_ingress;
9335 break;
9336 case FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS:
9337 flower_handler = ice_setup_tc_block_cb_egress;
9338 break;
9339 default:
9340 return -EOPNOTSUPP;
9341 }
9342
9343 return flow_block_cb_setup_simple(type_data,
9344 &ice_block_cb_list,
9345 flower_handler,
9346 np, np, false);
9347 case TC_SETUP_QDISC_MQPRIO:
9348 if (ice_is_eswitch_mode_switchdev(pf)) {
9349 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n");
9350 return -EOPNOTSUPP;
9351 }
9352
9353 cdev = pf->cdev_info;
9354 if (cdev && cdev->adev) {
9355 mutex_lock(&pf->adev_mutex);
9356 device_lock(&cdev->adev->dev);
9357 locked = true;
9358 if (cdev->adev->dev.driver) {
9359 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n");
9360 err = -EBUSY;
9361 goto adev_unlock;
9362 }
9363 }
9364
9365 /* setup traffic classifier for receive side */
9366 mutex_lock(&pf->tc_mutex);
9367 err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
9368 mutex_unlock(&pf->tc_mutex);
9369
9370 adev_unlock:
9371 if (locked) {
9372 device_unlock(&cdev->adev->dev);
9373 mutex_unlock(&pf->adev_mutex);
9374 }
9375 return err;
9376 default:
9377 return -EOPNOTSUPP;
9378 }
9379 return -EOPNOTSUPP;
9380 }
9381
9382 static struct ice_indr_block_priv *
ice_indr_block_priv_lookup(struct ice_netdev_priv * np,struct net_device * netdev)9383 ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
9384 struct net_device *netdev)
9385 {
9386 struct ice_indr_block_priv *cb_priv;
9387
9388 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
9389 if (!cb_priv->netdev)
9390 return NULL;
9391 if (cb_priv->netdev == netdev)
9392 return cb_priv;
9393 }
9394 return NULL;
9395 }
9396
9397 static int
ice_indr_setup_block_cb(enum tc_setup_type type,void * type_data,void * indr_priv)9398 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
9399 void *indr_priv)
9400 {
9401 struct ice_indr_block_priv *priv = indr_priv;
9402 struct ice_netdev_priv *np = priv->np;
9403
9404 switch (type) {
9405 case TC_SETUP_CLSFLOWER:
9406 return ice_setup_tc_cls_flower(np, priv->netdev,
9407 (struct flow_cls_offload *)
9408 type_data, false);
9409 default:
9410 return -EOPNOTSUPP;
9411 }
9412 }
9413
9414 static int
ice_indr_setup_tc_block(struct net_device * netdev,struct Qdisc * sch,struct ice_netdev_priv * np,struct flow_block_offload * f,void * data,void (* cleanup)(struct flow_block_cb * block_cb))9415 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
9416 struct ice_netdev_priv *np,
9417 struct flow_block_offload *f, void *data,
9418 void (*cleanup)(struct flow_block_cb *block_cb))
9419 {
9420 struct ice_indr_block_priv *indr_priv;
9421 struct flow_block_cb *block_cb;
9422
9423 if (!ice_is_tunnel_supported(netdev) &&
9424 !(is_vlan_dev(netdev) &&
9425 vlan_dev_real_dev(netdev) == np->vsi->netdev))
9426 return -EOPNOTSUPP;
9427
9428 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
9429 return -EOPNOTSUPP;
9430
9431 switch (f->command) {
9432 case FLOW_BLOCK_BIND:
9433 indr_priv = ice_indr_block_priv_lookup(np, netdev);
9434 if (indr_priv)
9435 return -EEXIST;
9436
9437 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
9438 if (!indr_priv)
9439 return -ENOMEM;
9440
9441 indr_priv->netdev = netdev;
9442 indr_priv->np = np;
9443 list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
9444
9445 block_cb =
9446 flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
9447 indr_priv, indr_priv,
9448 ice_rep_indr_tc_block_unbind,
9449 f, netdev, sch, data, np,
9450 cleanup);
9451
9452 if (IS_ERR(block_cb)) {
9453 list_del(&indr_priv->list);
9454 kfree(indr_priv);
9455 return PTR_ERR(block_cb);
9456 }
9457 flow_block_cb_add(block_cb, f);
9458 list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
9459 break;
9460 case FLOW_BLOCK_UNBIND:
9461 indr_priv = ice_indr_block_priv_lookup(np, netdev);
9462 if (!indr_priv)
9463 return -ENOENT;
9464
9465 block_cb = flow_block_cb_lookup(f->block,
9466 ice_indr_setup_block_cb,
9467 indr_priv);
9468 if (!block_cb)
9469 return -ENOENT;
9470
9471 flow_indr_block_cb_remove(block_cb, f);
9472
9473 list_del(&block_cb->driver_list);
9474 break;
9475 default:
9476 return -EOPNOTSUPP;
9477 }
9478 return 0;
9479 }
9480
9481 static int
ice_indr_setup_tc_cb(struct net_device * netdev,struct Qdisc * sch,void * cb_priv,enum tc_setup_type type,void * type_data,void * data,void (* cleanup)(struct flow_block_cb * block_cb))9482 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
9483 void *cb_priv, enum tc_setup_type type, void *type_data,
9484 void *data,
9485 void (*cleanup)(struct flow_block_cb *block_cb))
9486 {
9487 switch (type) {
9488 case TC_SETUP_BLOCK:
9489 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
9490 data, cleanup);
9491
9492 default:
9493 return -EOPNOTSUPP;
9494 }
9495 }
9496
9497 /**
9498 * ice_open - Called when a network interface becomes active
9499 * @netdev: network interface device structure
9500 *
9501 * The open entry point is called when a network interface is made
9502 * active by the system (IFF_UP). At this point all resources needed
9503 * for transmit and receive operations are allocated, the interrupt
9504 * handler is registered with the OS, the netdev watchdog is enabled,
9505 * and the stack is notified that the interface is ready.
9506 *
9507 * Returns 0 on success, negative value on failure
9508 */
ice_open(struct net_device * netdev)9509 int ice_open(struct net_device *netdev)
9510 {
9511 struct ice_netdev_priv *np = netdev_priv(netdev);
9512 struct ice_pf *pf = np->vsi->back;
9513
9514 if (ice_is_reset_in_progress(pf->state)) {
9515 netdev_err(netdev, "can't open net device while reset is in progress");
9516 return -EBUSY;
9517 }
9518
9519 return ice_open_internal(netdev);
9520 }
9521
9522 /**
9523 * ice_open_internal - Called when a network interface becomes active
9524 * @netdev: network interface device structure
9525 *
9526 * Internal ice_open implementation. Should not be used directly except for ice_open and reset
9527 * handling routine
9528 *
9529 * Returns 0 on success, negative value on failure
9530 */
ice_open_internal(struct net_device * netdev)9531 int ice_open_internal(struct net_device *netdev)
9532 {
9533 struct ice_netdev_priv *np = netdev_priv(netdev);
9534 struct ice_vsi *vsi = np->vsi;
9535 struct ice_pf *pf = vsi->back;
9536 struct ice_port_info *pi;
9537 int err;
9538
9539 if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
9540 netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
9541 return -EIO;
9542 }
9543
9544 netif_carrier_off(netdev);
9545
9546 pi = vsi->port_info;
9547 err = ice_update_link_info(pi);
9548 if (err) {
9549 netdev_err(netdev, "Failed to get link info, error %d\n", err);
9550 return err;
9551 }
9552
9553 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
9554
9555 /* Set PHY if there is media, otherwise, turn off PHY */
9556 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
9557 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9558 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
9559 err = ice_init_phy_user_cfg(pi);
9560 if (err) {
9561 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
9562 err);
9563 return err;
9564 }
9565 }
9566
9567 err = ice_configure_phy(vsi);
9568 if (err) {
9569 netdev_err(netdev, "Failed to set physical link up, error %d\n",
9570 err);
9571 return err;
9572 }
9573 } else {
9574 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9575 ice_set_link(vsi, false);
9576 }
9577
9578 err = ice_vsi_open(vsi);
9579 if (err)
9580 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
9581 vsi->vsi_num, vsi->vsw->sw_id);
9582
9583 /* Update existing tunnels information */
9584 udp_tunnel_get_rx_info(netdev);
9585
9586 return err;
9587 }
9588
9589 /**
9590 * ice_stop - Disables a network interface
9591 * @netdev: network interface device structure
9592 *
9593 * The stop entry point is called when an interface is de-activated by the OS,
9594 * and the netdevice enters the DOWN state. The hardware is still under the
9595 * driver's control, but the netdev interface is disabled.
9596 *
9597 * Returns success only - not allowed to fail
9598 */
ice_stop(struct net_device * netdev)9599 int ice_stop(struct net_device *netdev)
9600 {
9601 struct ice_netdev_priv *np = netdev_priv(netdev);
9602 struct ice_vsi *vsi = np->vsi;
9603 struct ice_pf *pf = vsi->back;
9604
9605 if (ice_is_reset_in_progress(pf->state)) {
9606 netdev_err(netdev, "can't stop net device while reset is in progress");
9607 return -EBUSY;
9608 }
9609
9610 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
9611 int link_err = ice_force_phys_link_state(vsi, false);
9612
9613 if (link_err) {
9614 if (link_err == -ENOMEDIUM)
9615 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n",
9616 vsi->vsi_num);
9617 else
9618 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
9619 vsi->vsi_num, link_err);
9620
9621 ice_vsi_close(vsi);
9622 return -EIO;
9623 }
9624 }
9625
9626 ice_vsi_close(vsi);
9627
9628 return 0;
9629 }
9630
9631 /**
9632 * ice_features_check - Validate encapsulated packet conforms to limits
9633 * @skb: skb buffer
9634 * @netdev: This port's netdev
9635 * @features: Offload features that the stack believes apply
9636 */
9637 static netdev_features_t
ice_features_check(struct sk_buff * skb,struct net_device __always_unused * netdev,netdev_features_t features)9638 ice_features_check(struct sk_buff *skb,
9639 struct net_device __always_unused *netdev,
9640 netdev_features_t features)
9641 {
9642 bool gso = skb_is_gso(skb);
9643 size_t len;
9644
9645 /* No point in doing any of this if neither checksum nor GSO are
9646 * being requested for this frame. We can rule out both by just
9647 * checking for CHECKSUM_PARTIAL
9648 */
9649 if (skb->ip_summed != CHECKSUM_PARTIAL)
9650 return features;
9651
9652 /* We cannot support GSO if the MSS is going to be less than
9653 * 64 bytes. If it is then we need to drop support for GSO.
9654 */
9655 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
9656 features &= ~NETIF_F_GSO_MASK;
9657
9658 len = skb_network_offset(skb);
9659 if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
9660 goto out_rm_features;
9661
9662 len = skb_network_header_len(skb);
9663 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9664 goto out_rm_features;
9665
9666 if (skb->encapsulation) {
9667 /* this must work for VXLAN frames AND IPIP/SIT frames, and in
9668 * the case of IPIP frames, the transport header pointer is
9669 * after the inner header! So check to make sure that this
9670 * is a GRE or UDP_TUNNEL frame before doing that math.
9671 */
9672 if (gso && (skb_shinfo(skb)->gso_type &
9673 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
9674 len = skb_inner_network_header(skb) -
9675 skb_transport_header(skb);
9676 if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
9677 goto out_rm_features;
9678 }
9679
9680 len = skb_inner_network_header_len(skb);
9681 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9682 goto out_rm_features;
9683 }
9684
9685 return features;
9686 out_rm_features:
9687 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
9688 }
9689
9690 static const struct net_device_ops ice_netdev_safe_mode_ops = {
9691 .ndo_open = ice_open,
9692 .ndo_stop = ice_stop,
9693 .ndo_start_xmit = ice_start_xmit,
9694 .ndo_set_mac_address = ice_set_mac_address,
9695 .ndo_validate_addr = eth_validate_addr,
9696 .ndo_change_mtu = ice_change_mtu,
9697 .ndo_get_stats64 = ice_get_stats64,
9698 .ndo_tx_timeout = ice_tx_timeout,
9699 .ndo_bpf = ice_xdp_safe_mode,
9700 };
9701
9702 static const struct net_device_ops ice_netdev_ops = {
9703 .ndo_open = ice_open,
9704 .ndo_stop = ice_stop,
9705 .ndo_start_xmit = ice_start_xmit,
9706 .ndo_select_queue = ice_select_queue,
9707 .ndo_features_check = ice_features_check,
9708 .ndo_fix_features = ice_fix_features,
9709 .ndo_set_rx_mode = ice_set_rx_mode,
9710 .ndo_set_mac_address = ice_set_mac_address,
9711 .ndo_validate_addr = eth_validate_addr,
9712 .ndo_change_mtu = ice_change_mtu,
9713 .ndo_get_stats64 = ice_get_stats64,
9714 .ndo_set_tx_maxrate = ice_set_tx_maxrate,
9715 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
9716 .ndo_set_vf_mac = ice_set_vf_mac,
9717 .ndo_get_vf_config = ice_get_vf_cfg,
9718 .ndo_set_vf_trust = ice_set_vf_trust,
9719 .ndo_set_vf_vlan = ice_set_vf_port_vlan,
9720 .ndo_set_vf_link_state = ice_set_vf_link_state,
9721 .ndo_get_vf_stats = ice_get_vf_stats,
9722 .ndo_set_vf_rate = ice_set_vf_bw,
9723 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
9724 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
9725 .ndo_setup_tc = ice_setup_tc,
9726 .ndo_set_features = ice_set_features,
9727 .ndo_bridge_getlink = ice_bridge_getlink,
9728 .ndo_bridge_setlink = ice_bridge_setlink,
9729 .ndo_fdb_add = ice_fdb_add,
9730 .ndo_fdb_del = ice_fdb_del,
9731 #ifdef CONFIG_RFS_ACCEL
9732 .ndo_rx_flow_steer = ice_rx_flow_steer,
9733 #endif
9734 .ndo_tx_timeout = ice_tx_timeout,
9735 .ndo_bpf = ice_xdp,
9736 .ndo_xdp_xmit = ice_xdp_xmit,
9737 .ndo_xsk_wakeup = ice_xsk_wakeup,
9738 .ndo_hwtstamp_get = ice_ptp_hwtstamp_get,
9739 .ndo_hwtstamp_set = ice_ptp_hwtstamp_set,
9740 };
9741