xref: /linux/fs/smb/client/smbdirect.c (revision a9401710a5f5681abd2a6f21f9e76bc9f2e81891)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *   Copyright (C) 2017, Microsoft Corporation.
4  *
5  *   Author(s): Long Li <longli@microsoft.com>
6  */
7 #include <linux/module.h>
8 #include <linux/highmem.h>
9 #include <linux/folio_queue.h>
10 #include "../common/smbdirect/smbdirect_pdu.h"
11 #include "smbdirect.h"
12 #include "cifs_debug.h"
13 #include "cifsproto.h"
14 #include "smb2proto.h"
15 
smbd_get_parameters(struct smbd_connection * conn)16 const struct smbdirect_socket_parameters *smbd_get_parameters(struct smbd_connection *conn)
17 {
18 	struct smbdirect_socket *sc = &conn->socket;
19 
20 	return &sc->parameters;
21 }
22 
23 static struct smbdirect_recv_io *get_receive_buffer(
24 		struct smbdirect_socket *sc);
25 static void put_receive_buffer(
26 		struct smbdirect_socket *sc,
27 		struct smbdirect_recv_io *response);
28 static int allocate_receive_buffers(struct smbdirect_socket *sc, int num_buf);
29 static void destroy_receive_buffers(struct smbdirect_socket *sc);
30 
31 static void enqueue_reassembly(
32 		struct smbdirect_socket *sc,
33 		struct smbdirect_recv_io *response, int data_length);
34 static struct smbdirect_recv_io *_get_first_reassembly(
35 		struct smbdirect_socket *sc);
36 
37 static int smbd_post_recv(
38 		struct smbdirect_socket *sc,
39 		struct smbdirect_recv_io *response);
40 
41 static int smbd_post_send_empty(struct smbdirect_socket *sc);
42 
43 static void destroy_mr_list(struct smbdirect_socket *sc);
44 static int allocate_mr_list(struct smbdirect_socket *sc);
45 
46 struct smb_extract_to_rdma {
47 	struct ib_sge		*sge;
48 	unsigned int		nr_sge;
49 	unsigned int		max_sge;
50 	struct ib_device	*device;
51 	u32			local_dma_lkey;
52 	enum dma_data_direction	direction;
53 };
54 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len,
55 					struct smb_extract_to_rdma *rdma);
56 
57 /* Port numbers for SMBD transport */
58 #define SMB_PORT	445
59 #define SMBD_PORT	5445
60 
61 /* Address lookup and resolve timeout in ms */
62 #define RDMA_RESOLVE_TIMEOUT	5000
63 
64 /* SMBD negotiation timeout in seconds */
65 #define SMBD_NEGOTIATE_TIMEOUT	120
66 
67 /* The timeout to wait for a keepalive message from peer in seconds */
68 #define KEEPALIVE_RECV_TIMEOUT 5
69 
70 /* SMBD minimum receive size and fragmented sized defined in [MS-SMBD] */
71 #define SMBD_MIN_RECEIVE_SIZE		128
72 #define SMBD_MIN_FRAGMENTED_SIZE	131072
73 
74 /*
75  * Default maximum number of RDMA read/write outstanding on this connection
76  * This value is possibly decreased during QP creation on hardware limit
77  */
78 #define SMBD_CM_RESPONDER_RESOURCES	32
79 
80 /* Maximum number of retries on data transfer operations */
81 #define SMBD_CM_RETRY			6
82 /* No need to retry on Receiver Not Ready since SMBD manages credits */
83 #define SMBD_CM_RNR_RETRY		0
84 
85 /*
86  * User configurable initial values per SMBD transport connection
87  * as defined in [MS-SMBD] 3.1.1.1
88  * Those may change after a SMBD negotiation
89  */
90 /* The local peer's maximum number of credits to grant to the peer */
91 int smbd_receive_credit_max = 255;
92 
93 /* The remote peer's credit request of local peer */
94 int smbd_send_credit_target = 255;
95 
96 /* The maximum single message size can be sent to remote peer */
97 int smbd_max_send_size = 1364;
98 
99 /*  The maximum fragmented upper-layer payload receive size supported */
100 int smbd_max_fragmented_recv_size = 1024 * 1024;
101 
102 /*  The maximum single-message size which can be received */
103 int smbd_max_receive_size = 1364;
104 
105 /* The timeout to initiate send of a keepalive message on idle */
106 int smbd_keep_alive_interval = 120;
107 
108 /*
109  * User configurable initial values for RDMA transport
110  * The actual values used may be lower and are limited to hardware capabilities
111  */
112 /* Default maximum number of pages in a single RDMA write/read */
113 int smbd_max_frmr_depth = 2048;
114 
115 /* If payload is less than this byte, use RDMA send/recv not read/write */
116 int rdma_readwrite_threshold = 4096;
117 
118 /* Transport logging functions
119  * Logging are defined as classes. They can be OR'ed to define the actual
120  * logging level via module parameter smbd_logging_class
121  * e.g. cifs.smbd_logging_class=0xa0 will log all log_rdma_recv() and
122  * log_rdma_event()
123  */
124 #define LOG_OUTGOING			0x1
125 #define LOG_INCOMING			0x2
126 #define LOG_READ			0x4
127 #define LOG_WRITE			0x8
128 #define LOG_RDMA_SEND			0x10
129 #define LOG_RDMA_RECV			0x20
130 #define LOG_KEEP_ALIVE			0x40
131 #define LOG_RDMA_EVENT			0x80
132 #define LOG_RDMA_MR			0x100
133 static unsigned int smbd_logging_class;
134 module_param(smbd_logging_class, uint, 0644);
135 MODULE_PARM_DESC(smbd_logging_class,
136 	"Logging class for SMBD transport 0x0 to 0x100");
137 
138 #define ERR		0x0
139 #define INFO		0x1
140 static unsigned int smbd_logging_level = ERR;
141 module_param(smbd_logging_level, uint, 0644);
142 MODULE_PARM_DESC(smbd_logging_level,
143 	"Logging level for SMBD transport, 0 (default): error, 1: info");
144 
145 #define log_rdma(level, class, fmt, args...)				\
146 do {									\
147 	if (level <= smbd_logging_level || class & smbd_logging_class)	\
148 		cifs_dbg(VFS, "%s:%d " fmt, __func__, __LINE__, ##args);\
149 } while (0)
150 
151 #define log_outgoing(level, fmt, args...) \
152 		log_rdma(level, LOG_OUTGOING, fmt, ##args)
153 #define log_incoming(level, fmt, args...) \
154 		log_rdma(level, LOG_INCOMING, fmt, ##args)
155 #define log_read(level, fmt, args...)	log_rdma(level, LOG_READ, fmt, ##args)
156 #define log_write(level, fmt, args...)	log_rdma(level, LOG_WRITE, fmt, ##args)
157 #define log_rdma_send(level, fmt, args...) \
158 		log_rdma(level, LOG_RDMA_SEND, fmt, ##args)
159 #define log_rdma_recv(level, fmt, args...) \
160 		log_rdma(level, LOG_RDMA_RECV, fmt, ##args)
161 #define log_keep_alive(level, fmt, args...) \
162 		log_rdma(level, LOG_KEEP_ALIVE, fmt, ##args)
163 #define log_rdma_event(level, fmt, args...) \
164 		log_rdma(level, LOG_RDMA_EVENT, fmt, ##args)
165 #define log_rdma_mr(level, fmt, args...) \
166 		log_rdma(level, LOG_RDMA_MR, fmt, ##args)
167 
smbd_disconnect_wake_up_all(struct smbdirect_socket * sc)168 static void smbd_disconnect_wake_up_all(struct smbdirect_socket *sc)
169 {
170 	/*
171 	 * Wake up all waiters in all wait queues
172 	 * in order to notice the broken connection.
173 	 */
174 	wake_up_all(&sc->status_wait);
175 	wake_up_all(&sc->send_io.credits.wait_queue);
176 	wake_up_all(&sc->send_io.pending.dec_wait_queue);
177 	wake_up_all(&sc->send_io.pending.zero_wait_queue);
178 	wake_up_all(&sc->recv_io.reassembly.wait_queue);
179 	wake_up_all(&sc->mr_io.ready.wait_queue);
180 	wake_up_all(&sc->mr_io.cleanup.wait_queue);
181 }
182 
smbd_disconnect_rdma_work(struct work_struct * work)183 static void smbd_disconnect_rdma_work(struct work_struct *work)
184 {
185 	struct smbdirect_socket *sc =
186 		container_of(work, struct smbdirect_socket, disconnect_work);
187 
188 	/*
189 	 * make sure this and other work is not queued again
190 	 * but here we don't block and avoid
191 	 * disable[_delayed]_work_sync()
192 	 */
193 	disable_work(&sc->disconnect_work);
194 	disable_work(&sc->recv_io.posted.refill_work);
195 	disable_work(&sc->mr_io.recovery_work);
196 	disable_work(&sc->idle.immediate_work);
197 	disable_delayed_work(&sc->idle.timer_work);
198 
199 	if (sc->first_error == 0)
200 		sc->first_error = -ECONNABORTED;
201 
202 	switch (sc->status) {
203 	case SMBDIRECT_SOCKET_NEGOTIATE_NEEDED:
204 	case SMBDIRECT_SOCKET_NEGOTIATE_RUNNING:
205 	case SMBDIRECT_SOCKET_NEGOTIATE_FAILED:
206 	case SMBDIRECT_SOCKET_CONNECTED:
207 	case SMBDIRECT_SOCKET_ERROR:
208 		sc->status = SMBDIRECT_SOCKET_DISCONNECTING;
209 		rdma_disconnect(sc->rdma.cm_id);
210 		break;
211 
212 	case SMBDIRECT_SOCKET_CREATED:
213 	case SMBDIRECT_SOCKET_RESOLVE_ADDR_NEEDED:
214 	case SMBDIRECT_SOCKET_RESOLVE_ADDR_RUNNING:
215 	case SMBDIRECT_SOCKET_RESOLVE_ADDR_FAILED:
216 	case SMBDIRECT_SOCKET_RESOLVE_ROUTE_NEEDED:
217 	case SMBDIRECT_SOCKET_RESOLVE_ROUTE_RUNNING:
218 	case SMBDIRECT_SOCKET_RESOLVE_ROUTE_FAILED:
219 	case SMBDIRECT_SOCKET_RDMA_CONNECT_NEEDED:
220 	case SMBDIRECT_SOCKET_RDMA_CONNECT_RUNNING:
221 	case SMBDIRECT_SOCKET_RDMA_CONNECT_FAILED:
222 		/*
223 		 * rdma_connect() never reached
224 		 * RDMA_CM_EVENT_ESTABLISHED
225 		 */
226 		sc->status = SMBDIRECT_SOCKET_DISCONNECTED;
227 		break;
228 
229 	case SMBDIRECT_SOCKET_DISCONNECTING:
230 	case SMBDIRECT_SOCKET_DISCONNECTED:
231 	case SMBDIRECT_SOCKET_DESTROYED:
232 		break;
233 	}
234 
235 	/*
236 	 * Wake up all waiters in all wait queues
237 	 * in order to notice the broken connection.
238 	 */
239 	smbd_disconnect_wake_up_all(sc);
240 }
241 
smbd_disconnect_rdma_connection(struct smbdirect_socket * sc)242 static void smbd_disconnect_rdma_connection(struct smbdirect_socket *sc)
243 {
244 	/*
245 	 * make sure other work (than disconnect_work) is
246 	 * not queued again but here we don't block and avoid
247 	 * disable[_delayed]_work_sync()
248 	 */
249 	disable_work(&sc->recv_io.posted.refill_work);
250 	disable_work(&sc->mr_io.recovery_work);
251 	disable_work(&sc->idle.immediate_work);
252 	disable_delayed_work(&sc->idle.timer_work);
253 
254 	if (sc->first_error == 0)
255 		sc->first_error = -ECONNABORTED;
256 
257 	switch (sc->status) {
258 	case SMBDIRECT_SOCKET_RESOLVE_ADDR_FAILED:
259 	case SMBDIRECT_SOCKET_RESOLVE_ROUTE_FAILED:
260 	case SMBDIRECT_SOCKET_RDMA_CONNECT_FAILED:
261 	case SMBDIRECT_SOCKET_NEGOTIATE_FAILED:
262 	case SMBDIRECT_SOCKET_ERROR:
263 	case SMBDIRECT_SOCKET_DISCONNECTING:
264 	case SMBDIRECT_SOCKET_DISCONNECTED:
265 	case SMBDIRECT_SOCKET_DESTROYED:
266 		/*
267 		 * Keep the current error status
268 		 */
269 		break;
270 
271 	case SMBDIRECT_SOCKET_RESOLVE_ADDR_NEEDED:
272 	case SMBDIRECT_SOCKET_RESOLVE_ADDR_RUNNING:
273 		sc->status = SMBDIRECT_SOCKET_RESOLVE_ADDR_FAILED;
274 		break;
275 
276 	case SMBDIRECT_SOCKET_RESOLVE_ROUTE_NEEDED:
277 	case SMBDIRECT_SOCKET_RESOLVE_ROUTE_RUNNING:
278 		sc->status = SMBDIRECT_SOCKET_RESOLVE_ROUTE_FAILED;
279 		break;
280 
281 	case SMBDIRECT_SOCKET_RDMA_CONNECT_NEEDED:
282 	case SMBDIRECT_SOCKET_RDMA_CONNECT_RUNNING:
283 		sc->status = SMBDIRECT_SOCKET_RDMA_CONNECT_FAILED;
284 		break;
285 
286 	case SMBDIRECT_SOCKET_NEGOTIATE_NEEDED:
287 	case SMBDIRECT_SOCKET_NEGOTIATE_RUNNING:
288 		sc->status = SMBDIRECT_SOCKET_NEGOTIATE_FAILED;
289 		break;
290 
291 	case SMBDIRECT_SOCKET_CREATED:
292 	case SMBDIRECT_SOCKET_CONNECTED:
293 		sc->status = SMBDIRECT_SOCKET_ERROR;
294 		break;
295 	}
296 
297 	/*
298 	 * Wake up all waiters in all wait queues
299 	 * in order to notice the broken connection.
300 	 */
301 	smbd_disconnect_wake_up_all(sc);
302 
303 	queue_work(sc->workqueue, &sc->disconnect_work);
304 }
305 
306 /* Upcall from RDMA CM */
smbd_conn_upcall(struct rdma_cm_id * id,struct rdma_cm_event * event)307 static int smbd_conn_upcall(
308 		struct rdma_cm_id *id, struct rdma_cm_event *event)
309 {
310 	struct smbdirect_socket *sc = id->context;
311 	struct smbdirect_socket_parameters *sp = &sc->parameters;
312 	const char *event_name = rdma_event_msg(event->event);
313 	u8 peer_initiator_depth;
314 	u8 peer_responder_resources;
315 
316 	log_rdma_event(INFO, "event=%s status=%d\n",
317 		event_name, event->status);
318 
319 	switch (event->event) {
320 	case RDMA_CM_EVENT_ADDR_RESOLVED:
321 		WARN_ON_ONCE(sc->status != SMBDIRECT_SOCKET_RESOLVE_ADDR_RUNNING);
322 		sc->status = SMBDIRECT_SOCKET_RESOLVE_ROUTE_NEEDED;
323 		wake_up(&sc->status_wait);
324 		break;
325 
326 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
327 		WARN_ON_ONCE(sc->status != SMBDIRECT_SOCKET_RESOLVE_ROUTE_RUNNING);
328 		sc->status = SMBDIRECT_SOCKET_RDMA_CONNECT_NEEDED;
329 		wake_up(&sc->status_wait);
330 		break;
331 
332 	case RDMA_CM_EVENT_ADDR_ERROR:
333 		log_rdma_event(ERR, "connecting failed event=%s\n", event_name);
334 		WARN_ON_ONCE(sc->status != SMBDIRECT_SOCKET_RESOLVE_ADDR_RUNNING);
335 		sc->status = SMBDIRECT_SOCKET_RESOLVE_ADDR_FAILED;
336 		smbd_disconnect_rdma_work(&sc->disconnect_work);
337 		break;
338 
339 	case RDMA_CM_EVENT_ROUTE_ERROR:
340 		log_rdma_event(ERR, "connecting failed event=%s\n", event_name);
341 		WARN_ON_ONCE(sc->status != SMBDIRECT_SOCKET_RESOLVE_ROUTE_RUNNING);
342 		sc->status = SMBDIRECT_SOCKET_RESOLVE_ROUTE_FAILED;
343 		smbd_disconnect_rdma_work(&sc->disconnect_work);
344 		break;
345 
346 	case RDMA_CM_EVENT_ESTABLISHED:
347 		log_rdma_event(INFO, "connected event=%s\n", event_name);
348 
349 		/*
350 		 * Here we work around an inconsistency between
351 		 * iWarp and other devices (at least rxe and irdma using RoCEv2)
352 		 */
353 		if (rdma_protocol_iwarp(id->device, id->port_num)) {
354 			/*
355 			 * iWarp devices report the peer's values
356 			 * with the perspective of the peer here.
357 			 * Tested with siw and irdma (in iwarp mode)
358 			 * We need to change to our perspective here,
359 			 * so we need to switch the values.
360 			 */
361 			peer_initiator_depth = event->param.conn.responder_resources;
362 			peer_responder_resources = event->param.conn.initiator_depth;
363 		} else {
364 			/*
365 			 * Non iWarp devices report the peer's values
366 			 * already changed to our perspective here.
367 			 * Tested with rxe and irdma (in roce mode).
368 			 */
369 			peer_initiator_depth = event->param.conn.initiator_depth;
370 			peer_responder_resources = event->param.conn.responder_resources;
371 		}
372 		if (rdma_protocol_iwarp(id->device, id->port_num) &&
373 		    event->param.conn.private_data_len == 8) {
374 			/*
375 			 * Legacy clients with only iWarp MPA v1 support
376 			 * need a private blob in order to negotiate
377 			 * the IRD/ORD values.
378 			 */
379 			const __be32 *ird_ord_hdr = event->param.conn.private_data;
380 			u32 ird32 = be32_to_cpu(ird_ord_hdr[0]);
381 			u32 ord32 = be32_to_cpu(ird_ord_hdr[1]);
382 
383 			/*
384 			 * cifs.ko sends the legacy IRD/ORD negotiation
385 			 * event if iWarp MPA v2 was used.
386 			 *
387 			 * Here we check that the values match and only
388 			 * mark the client as legacy if they don't match.
389 			 */
390 			if ((u32)event->param.conn.initiator_depth != ird32 ||
391 			    (u32)event->param.conn.responder_resources != ord32) {
392 				/*
393 				 * There are broken clients (old cifs.ko)
394 				 * using little endian and also
395 				 * struct rdma_conn_param only uses u8
396 				 * for initiator_depth and responder_resources,
397 				 * so we truncate the value to U8_MAX.
398 				 *
399 				 * smb_direct_accept_client() will then
400 				 * do the real negotiation in order to
401 				 * select the minimum between client and
402 				 * server.
403 				 */
404 				ird32 = min_t(u32, ird32, U8_MAX);
405 				ord32 = min_t(u32, ord32, U8_MAX);
406 
407 				sc->rdma.legacy_iwarp = true;
408 				peer_initiator_depth = (u8)ird32;
409 				peer_responder_resources = (u8)ord32;
410 			}
411 		}
412 
413 		/*
414 		 * negotiate the value by using the minimum
415 		 * between client and server if the client provided
416 		 * non 0 values.
417 		 */
418 		if (peer_initiator_depth != 0)
419 			sp->initiator_depth =
420 					min_t(u8, sp->initiator_depth,
421 					      peer_initiator_depth);
422 		if (peer_responder_resources != 0)
423 			sp->responder_resources =
424 					min_t(u8, sp->responder_resources,
425 					      peer_responder_resources);
426 
427 		WARN_ON_ONCE(sc->status != SMBDIRECT_SOCKET_RDMA_CONNECT_RUNNING);
428 		sc->status = SMBDIRECT_SOCKET_NEGOTIATE_NEEDED;
429 		wake_up(&sc->status_wait);
430 		break;
431 
432 	case RDMA_CM_EVENT_CONNECT_ERROR:
433 	case RDMA_CM_EVENT_UNREACHABLE:
434 	case RDMA_CM_EVENT_REJECTED:
435 		log_rdma_event(ERR, "connecting failed event=%s\n", event_name);
436 		WARN_ON_ONCE(sc->status != SMBDIRECT_SOCKET_RDMA_CONNECT_RUNNING);
437 		sc->status = SMBDIRECT_SOCKET_RDMA_CONNECT_FAILED;
438 		smbd_disconnect_rdma_work(&sc->disconnect_work);
439 		break;
440 
441 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
442 	case RDMA_CM_EVENT_DISCONNECTED:
443 		/* This happens when we fail the negotiation */
444 		if (sc->status == SMBDIRECT_SOCKET_NEGOTIATE_FAILED) {
445 			log_rdma_event(ERR, "event=%s during negotiation\n", event_name);
446 		}
447 
448 		sc->status = SMBDIRECT_SOCKET_DISCONNECTED;
449 		smbd_disconnect_rdma_work(&sc->disconnect_work);
450 		break;
451 
452 	default:
453 		log_rdma_event(ERR, "unexpected event=%s status=%d\n",
454 			       event_name, event->status);
455 		break;
456 	}
457 
458 	return 0;
459 }
460 
461 /* Upcall from RDMA QP */
462 static void
smbd_qp_async_error_upcall(struct ib_event * event,void * context)463 smbd_qp_async_error_upcall(struct ib_event *event, void *context)
464 {
465 	struct smbdirect_socket *sc = context;
466 
467 	log_rdma_event(ERR, "%s on device %s socket %p\n",
468 		ib_event_msg(event->event), event->device->name, sc);
469 
470 	switch (event->event) {
471 	case IB_EVENT_CQ_ERR:
472 	case IB_EVENT_QP_FATAL:
473 		smbd_disconnect_rdma_connection(sc);
474 		break;
475 
476 	default:
477 		break;
478 	}
479 }
480 
smbdirect_send_io_payload(struct smbdirect_send_io * request)481 static inline void *smbdirect_send_io_payload(struct smbdirect_send_io *request)
482 {
483 	return (void *)request->packet;
484 }
485 
smbdirect_recv_io_payload(struct smbdirect_recv_io * response)486 static inline void *smbdirect_recv_io_payload(struct smbdirect_recv_io *response)
487 {
488 	return (void *)response->packet;
489 }
490 
491 /* Called when a RDMA send is done */
send_done(struct ib_cq * cq,struct ib_wc * wc)492 static void send_done(struct ib_cq *cq, struct ib_wc *wc)
493 {
494 	int i;
495 	struct smbdirect_send_io *request =
496 		container_of(wc->wr_cqe, struct smbdirect_send_io, cqe);
497 	struct smbdirect_socket *sc = request->socket;
498 
499 	log_rdma_send(INFO, "smbdirect_send_io 0x%p completed wc->status=%s\n",
500 		request, ib_wc_status_msg(wc->status));
501 
502 	for (i = 0; i < request->num_sge; i++)
503 		ib_dma_unmap_single(sc->ib.dev,
504 			request->sge[i].addr,
505 			request->sge[i].length,
506 			DMA_TO_DEVICE);
507 
508 	if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_SEND) {
509 		if (wc->status != IB_WC_WR_FLUSH_ERR)
510 			log_rdma_send(ERR, "wc->status=%s wc->opcode=%d\n",
511 				ib_wc_status_msg(wc->status), wc->opcode);
512 		mempool_free(request, sc->send_io.mem.pool);
513 		smbd_disconnect_rdma_connection(sc);
514 		return;
515 	}
516 
517 	if (atomic_dec_and_test(&sc->send_io.pending.count))
518 		wake_up(&sc->send_io.pending.zero_wait_queue);
519 
520 	wake_up(&sc->send_io.pending.dec_wait_queue);
521 
522 	mempool_free(request, sc->send_io.mem.pool);
523 }
524 
dump_smbdirect_negotiate_resp(struct smbdirect_negotiate_resp * resp)525 static void dump_smbdirect_negotiate_resp(struct smbdirect_negotiate_resp *resp)
526 {
527 	log_rdma_event(INFO, "resp message min_version %u max_version %u negotiated_version %u credits_requested %u credits_granted %u status %u max_readwrite_size %u preferred_send_size %u max_receive_size %u max_fragmented_size %u\n",
528 		       resp->min_version, resp->max_version,
529 		       resp->negotiated_version, resp->credits_requested,
530 		       resp->credits_granted, resp->status,
531 		       resp->max_readwrite_size, resp->preferred_send_size,
532 		       resp->max_receive_size, resp->max_fragmented_size);
533 }
534 
535 /*
536  * Process a negotiation response message, according to [MS-SMBD]3.1.5.7
537  * response, packet_length: the negotiation response message
538  * return value: true if negotiation is a success, false if failed
539  */
process_negotiation_response(struct smbdirect_recv_io * response,int packet_length)540 static bool process_negotiation_response(
541 		struct smbdirect_recv_io *response, int packet_length)
542 {
543 	struct smbdirect_socket *sc = response->socket;
544 	struct smbdirect_socket_parameters *sp = &sc->parameters;
545 	struct smbdirect_negotiate_resp *packet = smbdirect_recv_io_payload(response);
546 
547 	if (packet_length < sizeof(struct smbdirect_negotiate_resp)) {
548 		log_rdma_event(ERR,
549 			"error: packet_length=%d\n", packet_length);
550 		return false;
551 	}
552 
553 	if (le16_to_cpu(packet->negotiated_version) != SMBDIRECT_V1) {
554 		log_rdma_event(ERR, "error: negotiated_version=%x\n",
555 			le16_to_cpu(packet->negotiated_version));
556 		return false;
557 	}
558 
559 	if (packet->credits_requested == 0) {
560 		log_rdma_event(ERR, "error: credits_requested==0\n");
561 		return false;
562 	}
563 	sc->recv_io.credits.target = le16_to_cpu(packet->credits_requested);
564 	sc->recv_io.credits.target = min_t(u16, sc->recv_io.credits.target, sp->recv_credit_max);
565 
566 	if (packet->credits_granted == 0) {
567 		log_rdma_event(ERR, "error: credits_granted==0\n");
568 		return false;
569 	}
570 	atomic_set(&sc->send_io.credits.count, le16_to_cpu(packet->credits_granted));
571 
572 	if (le32_to_cpu(packet->preferred_send_size) > sp->max_recv_size) {
573 		log_rdma_event(ERR, "error: preferred_send_size=%d\n",
574 			le32_to_cpu(packet->preferred_send_size));
575 		return false;
576 	}
577 	sp->max_recv_size = le32_to_cpu(packet->preferred_send_size);
578 
579 	if (le32_to_cpu(packet->max_receive_size) < SMBD_MIN_RECEIVE_SIZE) {
580 		log_rdma_event(ERR, "error: max_receive_size=%d\n",
581 			le32_to_cpu(packet->max_receive_size));
582 		return false;
583 	}
584 	sp->max_send_size = min_t(u32, sp->max_send_size,
585 				  le32_to_cpu(packet->max_receive_size));
586 
587 	if (le32_to_cpu(packet->max_fragmented_size) <
588 			SMBD_MIN_FRAGMENTED_SIZE) {
589 		log_rdma_event(ERR, "error: max_fragmented_size=%d\n",
590 			le32_to_cpu(packet->max_fragmented_size));
591 		return false;
592 	}
593 	sp->max_fragmented_send_size =
594 		le32_to_cpu(packet->max_fragmented_size);
595 
596 
597 	sp->max_read_write_size = min_t(u32,
598 			le32_to_cpu(packet->max_readwrite_size),
599 			sp->max_frmr_depth * PAGE_SIZE);
600 	sp->max_frmr_depth = sp->max_read_write_size / PAGE_SIZE;
601 
602 	sc->recv_io.expected = SMBDIRECT_EXPECT_DATA_TRANSFER;
603 	return true;
604 }
605 
smbd_post_send_credits(struct work_struct * work)606 static void smbd_post_send_credits(struct work_struct *work)
607 {
608 	int rc;
609 	struct smbdirect_recv_io *response;
610 	struct smbdirect_socket *sc =
611 		container_of(work, struct smbdirect_socket, recv_io.posted.refill_work);
612 
613 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
614 		return;
615 	}
616 
617 	if (sc->recv_io.credits.target >
618 		atomic_read(&sc->recv_io.credits.count)) {
619 		while (true) {
620 			response = get_receive_buffer(sc);
621 			if (!response)
622 				break;
623 
624 			response->first_segment = false;
625 			rc = smbd_post_recv(sc, response);
626 			if (rc) {
627 				log_rdma_recv(ERR,
628 					"post_recv failed rc=%d\n", rc);
629 				put_receive_buffer(sc, response);
630 				break;
631 			}
632 
633 			atomic_inc(&sc->recv_io.posted.count);
634 		}
635 	}
636 
637 	/* Promptly send an immediate packet as defined in [MS-SMBD] 3.1.1.1 */
638 	if (atomic_read(&sc->recv_io.credits.count) <
639 		sc->recv_io.credits.target - 1) {
640 		log_keep_alive(INFO, "schedule send of an empty message\n");
641 		queue_work(sc->workqueue, &sc->idle.immediate_work);
642 	}
643 }
644 
645 /* Called from softirq, when recv is done */
recv_done(struct ib_cq * cq,struct ib_wc * wc)646 static void recv_done(struct ib_cq *cq, struct ib_wc *wc)
647 {
648 	struct smbdirect_data_transfer *data_transfer;
649 	struct smbdirect_recv_io *response =
650 		container_of(wc->wr_cqe, struct smbdirect_recv_io, cqe);
651 	struct smbdirect_socket *sc = response->socket;
652 	struct smbdirect_socket_parameters *sp = &sc->parameters;
653 	u16 old_recv_credit_target;
654 	u32 data_offset = 0;
655 	u32 data_length = 0;
656 	u32 remaining_data_length = 0;
657 	bool negotiate_done = false;
658 
659 	log_rdma_recv(INFO,
660 		      "response=0x%p type=%d wc status=%s wc opcode %d byte_len=%d pkey_index=%u\n",
661 		      response, sc->recv_io.expected,
662 		      ib_wc_status_msg(wc->status), wc->opcode,
663 		      wc->byte_len, wc->pkey_index);
664 
665 	if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_RECV) {
666 		if (wc->status != IB_WC_WR_FLUSH_ERR)
667 			log_rdma_recv(ERR, "wc->status=%s opcode=%d\n",
668 				ib_wc_status_msg(wc->status), wc->opcode);
669 		goto error;
670 	}
671 
672 	ib_dma_sync_single_for_cpu(
673 		wc->qp->device,
674 		response->sge.addr,
675 		response->sge.length,
676 		DMA_FROM_DEVICE);
677 
678 	/*
679 	 * Reset timer to the keepalive interval in
680 	 * order to trigger our next keepalive message.
681 	 */
682 	sc->idle.keepalive = SMBDIRECT_KEEPALIVE_NONE;
683 	mod_delayed_work(sc->workqueue, &sc->idle.timer_work,
684 			 msecs_to_jiffies(sp->keepalive_interval_msec));
685 
686 	switch (sc->recv_io.expected) {
687 	/* SMBD negotiation response */
688 	case SMBDIRECT_EXPECT_NEGOTIATE_REP:
689 		dump_smbdirect_negotiate_resp(smbdirect_recv_io_payload(response));
690 		sc->recv_io.reassembly.full_packet_received = true;
691 		negotiate_done =
692 			process_negotiation_response(response, wc->byte_len);
693 		put_receive_buffer(sc, response);
694 		WARN_ON_ONCE(sc->status != SMBDIRECT_SOCKET_NEGOTIATE_RUNNING);
695 		if (!negotiate_done) {
696 			sc->status = SMBDIRECT_SOCKET_NEGOTIATE_FAILED;
697 			smbd_disconnect_rdma_connection(sc);
698 		} else {
699 			sc->status = SMBDIRECT_SOCKET_CONNECTED;
700 			wake_up(&sc->status_wait);
701 		}
702 
703 		return;
704 
705 	/* SMBD data transfer packet */
706 	case SMBDIRECT_EXPECT_DATA_TRANSFER:
707 		data_transfer = smbdirect_recv_io_payload(response);
708 
709 		if (wc->byte_len <
710 		    offsetof(struct smbdirect_data_transfer, padding))
711 			goto error;
712 
713 		remaining_data_length = le32_to_cpu(data_transfer->remaining_data_length);
714 		data_offset = le32_to_cpu(data_transfer->data_offset);
715 		data_length = le32_to_cpu(data_transfer->data_length);
716 		if (wc->byte_len < data_offset ||
717 		    (u64)wc->byte_len < (u64)data_offset + data_length)
718 			goto error;
719 
720 		if (remaining_data_length > sp->max_fragmented_recv_size ||
721 		    data_length > sp->max_fragmented_recv_size ||
722 		    (u64)remaining_data_length + (u64)data_length > (u64)sp->max_fragmented_recv_size)
723 			goto error;
724 
725 		if (data_length) {
726 			if (sc->recv_io.reassembly.full_packet_received)
727 				response->first_segment = true;
728 
729 			if (le32_to_cpu(data_transfer->remaining_data_length))
730 				sc->recv_io.reassembly.full_packet_received = false;
731 			else
732 				sc->recv_io.reassembly.full_packet_received = true;
733 		}
734 
735 		atomic_dec(&sc->recv_io.posted.count);
736 		atomic_dec(&sc->recv_io.credits.count);
737 		old_recv_credit_target = sc->recv_io.credits.target;
738 		sc->recv_io.credits.target =
739 			le16_to_cpu(data_transfer->credits_requested);
740 		sc->recv_io.credits.target =
741 			min_t(u16, sc->recv_io.credits.target, sp->recv_credit_max);
742 		sc->recv_io.credits.target =
743 			max_t(u16, sc->recv_io.credits.target, 1);
744 		if (le16_to_cpu(data_transfer->credits_granted)) {
745 			atomic_add(le16_to_cpu(data_transfer->credits_granted),
746 				&sc->send_io.credits.count);
747 			/*
748 			 * We have new send credits granted from remote peer
749 			 * If any sender is waiting for credits, unblock it
750 			 */
751 			wake_up(&sc->send_io.credits.wait_queue);
752 		}
753 
754 		log_incoming(INFO, "data flags %d data_offset %d data_length %d remaining_data_length %d\n",
755 			     le16_to_cpu(data_transfer->flags),
756 			     le32_to_cpu(data_transfer->data_offset),
757 			     le32_to_cpu(data_transfer->data_length),
758 			     le32_to_cpu(data_transfer->remaining_data_length));
759 
760 		/* Send an immediate response right away if requested */
761 		if (le16_to_cpu(data_transfer->flags) &
762 				SMBDIRECT_FLAG_RESPONSE_REQUESTED) {
763 			log_keep_alive(INFO, "schedule send of immediate response\n");
764 			queue_work(sc->workqueue, &sc->idle.immediate_work);
765 		}
766 
767 		/*
768 		 * If this is a packet with data playload place the data in
769 		 * reassembly queue and wake up the reading thread
770 		 */
771 		if (data_length) {
772 			if (sc->recv_io.credits.target > old_recv_credit_target)
773 				queue_work(sc->workqueue, &sc->recv_io.posted.refill_work);
774 
775 			enqueue_reassembly(sc, response, data_length);
776 			wake_up(&sc->recv_io.reassembly.wait_queue);
777 		} else
778 			put_receive_buffer(sc, response);
779 
780 		return;
781 
782 	case SMBDIRECT_EXPECT_NEGOTIATE_REQ:
783 		/* Only server... */
784 		break;
785 	}
786 
787 	/*
788 	 * This is an internal error!
789 	 */
790 	log_rdma_recv(ERR, "unexpected response type=%d\n", sc->recv_io.expected);
791 	WARN_ON_ONCE(sc->recv_io.expected != SMBDIRECT_EXPECT_DATA_TRANSFER);
792 error:
793 	put_receive_buffer(sc, response);
794 	smbd_disconnect_rdma_connection(sc);
795 }
796 
smbd_create_id(struct smbdirect_socket * sc,struct sockaddr * dstaddr,int port)797 static struct rdma_cm_id *smbd_create_id(
798 		struct smbdirect_socket *sc,
799 		struct sockaddr *dstaddr, int port)
800 {
801 	struct smbdirect_socket_parameters *sp = &sc->parameters;
802 	struct rdma_cm_id *id;
803 	int rc;
804 	__be16 *sport;
805 
806 	id = rdma_create_id(&init_net, smbd_conn_upcall, sc,
807 		RDMA_PS_TCP, IB_QPT_RC);
808 	if (IS_ERR(id)) {
809 		rc = PTR_ERR(id);
810 		log_rdma_event(ERR, "rdma_create_id() failed %i\n", rc);
811 		return id;
812 	}
813 
814 	if (dstaddr->sa_family == AF_INET6)
815 		sport = &((struct sockaddr_in6 *)dstaddr)->sin6_port;
816 	else
817 		sport = &((struct sockaddr_in *)dstaddr)->sin_port;
818 
819 	*sport = htons(port);
820 
821 	WARN_ON_ONCE(sc->status != SMBDIRECT_SOCKET_RESOLVE_ADDR_NEEDED);
822 	sc->status = SMBDIRECT_SOCKET_RESOLVE_ADDR_RUNNING;
823 	rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)dstaddr,
824 		sp->resolve_addr_timeout_msec);
825 	if (rc) {
826 		log_rdma_event(ERR, "rdma_resolve_addr() failed %i\n", rc);
827 		goto out;
828 	}
829 	rc = wait_event_interruptible_timeout(
830 		sc->status_wait,
831 		sc->status != SMBDIRECT_SOCKET_RESOLVE_ADDR_RUNNING,
832 		msecs_to_jiffies(sp->resolve_addr_timeout_msec));
833 	/* e.g. if interrupted returns -ERESTARTSYS */
834 	if (rc < 0) {
835 		log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
836 		goto out;
837 	}
838 	if (sc->status == SMBDIRECT_SOCKET_RESOLVE_ADDR_RUNNING) {
839 		rc = -ETIMEDOUT;
840 		log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc);
841 		goto out;
842 	}
843 	if (sc->status != SMBDIRECT_SOCKET_RESOLVE_ROUTE_NEEDED) {
844 		rc = -EHOSTUNREACH;
845 		log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc);
846 		goto out;
847 	}
848 
849 	WARN_ON_ONCE(sc->status != SMBDIRECT_SOCKET_RESOLVE_ROUTE_NEEDED);
850 	sc->status = SMBDIRECT_SOCKET_RESOLVE_ROUTE_RUNNING;
851 	rc = rdma_resolve_route(id, sp->resolve_route_timeout_msec);
852 	if (rc) {
853 		log_rdma_event(ERR, "rdma_resolve_route() failed %i\n", rc);
854 		goto out;
855 	}
856 	rc = wait_event_interruptible_timeout(
857 		sc->status_wait,
858 		sc->status != SMBDIRECT_SOCKET_RESOLVE_ROUTE_RUNNING,
859 		msecs_to_jiffies(sp->resolve_route_timeout_msec));
860 	/* e.g. if interrupted returns -ERESTARTSYS */
861 	if (rc < 0)  {
862 		log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
863 		goto out;
864 	}
865 	if (sc->status == SMBDIRECT_SOCKET_RESOLVE_ROUTE_RUNNING) {
866 		rc = -ETIMEDOUT;
867 		log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc);
868 		goto out;
869 	}
870 	if (sc->status != SMBDIRECT_SOCKET_RDMA_CONNECT_NEEDED) {
871 		rc = -ENETUNREACH;
872 		log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc);
873 		goto out;
874 	}
875 
876 	return id;
877 
878 out:
879 	rdma_destroy_id(id);
880 	return ERR_PTR(rc);
881 }
882 
883 /*
884  * Test if FRWR (Fast Registration Work Requests) is supported on the device
885  * This implementation requires FRWR on RDMA read/write
886  * return value: true if it is supported
887  */
frwr_is_supported(struct ib_device_attr * attrs)888 static bool frwr_is_supported(struct ib_device_attr *attrs)
889 {
890 	if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
891 		return false;
892 	if (attrs->max_fast_reg_page_list_len == 0)
893 		return false;
894 	return true;
895 }
896 
smbd_ia_open(struct smbdirect_socket * sc,struct sockaddr * dstaddr,int port)897 static int smbd_ia_open(
898 		struct smbdirect_socket *sc,
899 		struct sockaddr *dstaddr, int port)
900 {
901 	struct smbdirect_socket_parameters *sp = &sc->parameters;
902 	int rc;
903 
904 	WARN_ON_ONCE(sc->status != SMBDIRECT_SOCKET_CREATED);
905 	sc->status = SMBDIRECT_SOCKET_RESOLVE_ADDR_NEEDED;
906 
907 	sc->rdma.cm_id = smbd_create_id(sc, dstaddr, port);
908 	if (IS_ERR(sc->rdma.cm_id)) {
909 		rc = PTR_ERR(sc->rdma.cm_id);
910 		goto out1;
911 	}
912 	sc->ib.dev = sc->rdma.cm_id->device;
913 
914 	if (!frwr_is_supported(&sc->ib.dev->attrs)) {
915 		log_rdma_event(ERR, "Fast Registration Work Requests (FRWR) is not supported\n");
916 		log_rdma_event(ERR, "Device capability flags = %llx max_fast_reg_page_list_len = %u\n",
917 			       sc->ib.dev->attrs.device_cap_flags,
918 			       sc->ib.dev->attrs.max_fast_reg_page_list_len);
919 		rc = -EPROTONOSUPPORT;
920 		goto out2;
921 	}
922 	sp->max_frmr_depth = min_t(u32,
923 		sp->max_frmr_depth,
924 		sc->ib.dev->attrs.max_fast_reg_page_list_len);
925 	sc->mr_io.type = IB_MR_TYPE_MEM_REG;
926 	if (sc->ib.dev->attrs.kernel_cap_flags & IBK_SG_GAPS_REG)
927 		sc->mr_io.type = IB_MR_TYPE_SG_GAPS;
928 
929 	return 0;
930 
931 out2:
932 	rdma_destroy_id(sc->rdma.cm_id);
933 	sc->rdma.cm_id = NULL;
934 
935 out1:
936 	return rc;
937 }
938 
939 /*
940  * Send a negotiation request message to the peer
941  * The negotiation procedure is in [MS-SMBD] 3.1.5.2 and 3.1.5.3
942  * After negotiation, the transport is connected and ready for
943  * carrying upper layer SMB payload
944  */
smbd_post_send_negotiate_req(struct smbdirect_socket * sc)945 static int smbd_post_send_negotiate_req(struct smbdirect_socket *sc)
946 {
947 	struct smbdirect_socket_parameters *sp = &sc->parameters;
948 	struct ib_send_wr send_wr;
949 	int rc = -ENOMEM;
950 	struct smbdirect_send_io *request;
951 	struct smbdirect_negotiate_req *packet;
952 
953 	request = mempool_alloc(sc->send_io.mem.pool, GFP_KERNEL);
954 	if (!request)
955 		return rc;
956 
957 	request->socket = sc;
958 
959 	packet = smbdirect_send_io_payload(request);
960 	packet->min_version = cpu_to_le16(SMBDIRECT_V1);
961 	packet->max_version = cpu_to_le16(SMBDIRECT_V1);
962 	packet->reserved = 0;
963 	packet->credits_requested = cpu_to_le16(sp->send_credit_target);
964 	packet->preferred_send_size = cpu_to_le32(sp->max_send_size);
965 	packet->max_receive_size = cpu_to_le32(sp->max_recv_size);
966 	packet->max_fragmented_size =
967 		cpu_to_le32(sp->max_fragmented_recv_size);
968 
969 	request->num_sge = 1;
970 	request->sge[0].addr = ib_dma_map_single(
971 				sc->ib.dev, (void *)packet,
972 				sizeof(*packet), DMA_TO_DEVICE);
973 	if (ib_dma_mapping_error(sc->ib.dev, request->sge[0].addr)) {
974 		rc = -EIO;
975 		goto dma_mapping_failed;
976 	}
977 
978 	request->sge[0].length = sizeof(*packet);
979 	request->sge[0].lkey = sc->ib.pd->local_dma_lkey;
980 
981 	ib_dma_sync_single_for_device(
982 		sc->ib.dev, request->sge[0].addr,
983 		request->sge[0].length, DMA_TO_DEVICE);
984 
985 	request->cqe.done = send_done;
986 
987 	send_wr.next = NULL;
988 	send_wr.wr_cqe = &request->cqe;
989 	send_wr.sg_list = request->sge;
990 	send_wr.num_sge = request->num_sge;
991 	send_wr.opcode = IB_WR_SEND;
992 	send_wr.send_flags = IB_SEND_SIGNALED;
993 
994 	log_rdma_send(INFO, "sge addr=0x%llx length=%u lkey=0x%x\n",
995 		request->sge[0].addr,
996 		request->sge[0].length, request->sge[0].lkey);
997 
998 	atomic_inc(&sc->send_io.pending.count);
999 	rc = ib_post_send(sc->ib.qp, &send_wr, NULL);
1000 	if (!rc)
1001 		return 0;
1002 
1003 	/* if we reach here, post send failed */
1004 	log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
1005 	atomic_dec(&sc->send_io.pending.count);
1006 	ib_dma_unmap_single(sc->ib.dev, request->sge[0].addr,
1007 		request->sge[0].length, DMA_TO_DEVICE);
1008 
1009 	smbd_disconnect_rdma_connection(sc);
1010 
1011 dma_mapping_failed:
1012 	mempool_free(request, sc->send_io.mem.pool);
1013 	return rc;
1014 }
1015 
1016 /*
1017  * Extend the credits to remote peer
1018  * This implements [MS-SMBD] 3.1.5.9
1019  * The idea is that we should extend credits to remote peer as quickly as
1020  * it's allowed, to maintain data flow. We allocate as much receive
1021  * buffer as possible, and extend the receive credits to remote peer
1022  * return value: the new credtis being granted.
1023  */
manage_credits_prior_sending(struct smbdirect_socket * sc)1024 static int manage_credits_prior_sending(struct smbdirect_socket *sc)
1025 {
1026 	int new_credits;
1027 
1028 	if (atomic_read(&sc->recv_io.credits.count) >= sc->recv_io.credits.target)
1029 		return 0;
1030 
1031 	new_credits = atomic_read(&sc->recv_io.posted.count);
1032 	if (new_credits == 0)
1033 		return 0;
1034 
1035 	new_credits -= atomic_read(&sc->recv_io.credits.count);
1036 	if (new_credits <= 0)
1037 		return 0;
1038 
1039 	return new_credits;
1040 }
1041 
1042 /*
1043  * Check if we need to send a KEEP_ALIVE message
1044  * The idle connection timer triggers a KEEP_ALIVE message when expires
1045  * SMBDIRECT_FLAG_RESPONSE_REQUESTED is set in the message flag to have peer send
1046  * back a response.
1047  * return value:
1048  * 1 if SMBDIRECT_FLAG_RESPONSE_REQUESTED needs to be set
1049  * 0: otherwise
1050  */
manage_keep_alive_before_sending(struct smbdirect_socket * sc)1051 static int manage_keep_alive_before_sending(struct smbdirect_socket *sc)
1052 {
1053 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1054 
1055 	if (sc->idle.keepalive == SMBDIRECT_KEEPALIVE_PENDING) {
1056 		sc->idle.keepalive = SMBDIRECT_KEEPALIVE_SENT;
1057 		/*
1058 		 * Now use the keepalive timeout (instead of keepalive interval)
1059 		 * in order to wait for a response
1060 		 */
1061 		mod_delayed_work(sc->workqueue, &sc->idle.timer_work,
1062 				 msecs_to_jiffies(sp->keepalive_timeout_msec));
1063 		return 1;
1064 	}
1065 	return 0;
1066 }
1067 
1068 /* Post the send request */
smbd_post_send(struct smbdirect_socket * sc,struct smbdirect_send_io * request)1069 static int smbd_post_send(struct smbdirect_socket *sc,
1070 		struct smbdirect_send_io *request)
1071 {
1072 	struct ib_send_wr send_wr;
1073 	int rc, i;
1074 
1075 	for (i = 0; i < request->num_sge; i++) {
1076 		log_rdma_send(INFO,
1077 			"rdma_request sge[%d] addr=0x%llx length=%u\n",
1078 			i, request->sge[i].addr, request->sge[i].length);
1079 		ib_dma_sync_single_for_device(
1080 			sc->ib.dev,
1081 			request->sge[i].addr,
1082 			request->sge[i].length,
1083 			DMA_TO_DEVICE);
1084 	}
1085 
1086 	request->cqe.done = send_done;
1087 
1088 	send_wr.next = NULL;
1089 	send_wr.wr_cqe = &request->cqe;
1090 	send_wr.sg_list = request->sge;
1091 	send_wr.num_sge = request->num_sge;
1092 	send_wr.opcode = IB_WR_SEND;
1093 	send_wr.send_flags = IB_SEND_SIGNALED;
1094 
1095 	rc = ib_post_send(sc->ib.qp, &send_wr, NULL);
1096 	if (rc) {
1097 		log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
1098 		smbd_disconnect_rdma_connection(sc);
1099 		rc = -EAGAIN;
1100 	}
1101 
1102 	return rc;
1103 }
1104 
smbd_post_send_iter(struct smbdirect_socket * sc,struct iov_iter * iter,int * _remaining_data_length)1105 static int smbd_post_send_iter(struct smbdirect_socket *sc,
1106 			       struct iov_iter *iter,
1107 			       int *_remaining_data_length)
1108 {
1109 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1110 	int i, rc;
1111 	int header_length;
1112 	int data_length;
1113 	struct smbdirect_send_io *request;
1114 	struct smbdirect_data_transfer *packet;
1115 	int new_credits = 0;
1116 
1117 wait_credit:
1118 	/* Wait for send credits. A SMBD packet needs one credit */
1119 	rc = wait_event_interruptible(sc->send_io.credits.wait_queue,
1120 		atomic_read(&sc->send_io.credits.count) > 0 ||
1121 		sc->status != SMBDIRECT_SOCKET_CONNECTED);
1122 	if (rc)
1123 		goto err_wait_credit;
1124 
1125 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
1126 		log_outgoing(ERR, "disconnected not sending on wait_credit\n");
1127 		rc = -EAGAIN;
1128 		goto err_wait_credit;
1129 	}
1130 	if (unlikely(atomic_dec_return(&sc->send_io.credits.count) < 0)) {
1131 		atomic_inc(&sc->send_io.credits.count);
1132 		goto wait_credit;
1133 	}
1134 
1135 wait_send_queue:
1136 	wait_event(sc->send_io.pending.dec_wait_queue,
1137 		atomic_read(&sc->send_io.pending.count) < sp->send_credit_target ||
1138 		sc->status != SMBDIRECT_SOCKET_CONNECTED);
1139 
1140 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
1141 		log_outgoing(ERR, "disconnected not sending on wait_send_queue\n");
1142 		rc = -EAGAIN;
1143 		goto err_wait_send_queue;
1144 	}
1145 
1146 	if (unlikely(atomic_inc_return(&sc->send_io.pending.count) >
1147 				sp->send_credit_target)) {
1148 		atomic_dec(&sc->send_io.pending.count);
1149 		goto wait_send_queue;
1150 	}
1151 
1152 	request = mempool_alloc(sc->send_io.mem.pool, GFP_KERNEL);
1153 	if (!request) {
1154 		rc = -ENOMEM;
1155 		goto err_alloc;
1156 	}
1157 
1158 	request->socket = sc;
1159 	memset(request->sge, 0, sizeof(request->sge));
1160 
1161 	/* Map the packet to DMA */
1162 	header_length = sizeof(struct smbdirect_data_transfer);
1163 	/* If this is a packet without payload, don't send padding */
1164 	if (!iter)
1165 		header_length = offsetof(struct smbdirect_data_transfer, padding);
1166 
1167 	packet = smbdirect_send_io_payload(request);
1168 	request->sge[0].addr = ib_dma_map_single(sc->ib.dev,
1169 						 (void *)packet,
1170 						 header_length,
1171 						 DMA_TO_DEVICE);
1172 	if (ib_dma_mapping_error(sc->ib.dev, request->sge[0].addr)) {
1173 		rc = -EIO;
1174 		goto err_dma;
1175 	}
1176 
1177 	request->sge[0].length = header_length;
1178 	request->sge[0].lkey = sc->ib.pd->local_dma_lkey;
1179 	request->num_sge = 1;
1180 
1181 	/* Fill in the data payload to find out how much data we can add */
1182 	if (iter) {
1183 		struct smb_extract_to_rdma extract = {
1184 			.nr_sge		= request->num_sge,
1185 			.max_sge	= SMBDIRECT_SEND_IO_MAX_SGE,
1186 			.sge		= request->sge,
1187 			.device		= sc->ib.dev,
1188 			.local_dma_lkey	= sc->ib.pd->local_dma_lkey,
1189 			.direction	= DMA_TO_DEVICE,
1190 		};
1191 		size_t payload_len = umin(*_remaining_data_length,
1192 					  sp->max_send_size - sizeof(*packet));
1193 
1194 		rc = smb_extract_iter_to_rdma(iter, payload_len,
1195 					      &extract);
1196 		if (rc < 0)
1197 			goto err_dma;
1198 		data_length = rc;
1199 		request->num_sge = extract.nr_sge;
1200 		*_remaining_data_length -= data_length;
1201 	} else {
1202 		data_length = 0;
1203 	}
1204 
1205 	/* Fill in the packet header */
1206 	packet->credits_requested = cpu_to_le16(sp->send_credit_target);
1207 
1208 	new_credits = manage_credits_prior_sending(sc);
1209 	atomic_add(new_credits, &sc->recv_io.credits.count);
1210 	packet->credits_granted = cpu_to_le16(new_credits);
1211 
1212 	packet->flags = 0;
1213 	if (manage_keep_alive_before_sending(sc))
1214 		packet->flags |= cpu_to_le16(SMBDIRECT_FLAG_RESPONSE_REQUESTED);
1215 
1216 	packet->reserved = 0;
1217 	if (!data_length)
1218 		packet->data_offset = 0;
1219 	else
1220 		packet->data_offset = cpu_to_le32(24);
1221 	packet->data_length = cpu_to_le32(data_length);
1222 	packet->remaining_data_length = cpu_to_le32(*_remaining_data_length);
1223 	packet->padding = 0;
1224 
1225 	log_outgoing(INFO, "credits_requested=%d credits_granted=%d data_offset=%d data_length=%d remaining_data_length=%d\n",
1226 		     le16_to_cpu(packet->credits_requested),
1227 		     le16_to_cpu(packet->credits_granted),
1228 		     le32_to_cpu(packet->data_offset),
1229 		     le32_to_cpu(packet->data_length),
1230 		     le32_to_cpu(packet->remaining_data_length));
1231 
1232 	rc = smbd_post_send(sc, request);
1233 	if (!rc)
1234 		return 0;
1235 
1236 err_dma:
1237 	for (i = 0; i < request->num_sge; i++)
1238 		if (request->sge[i].addr)
1239 			ib_dma_unmap_single(sc->ib.dev,
1240 					    request->sge[i].addr,
1241 					    request->sge[i].length,
1242 					    DMA_TO_DEVICE);
1243 	mempool_free(request, sc->send_io.mem.pool);
1244 
1245 	/* roll back the granted receive credits */
1246 	atomic_sub(new_credits, &sc->recv_io.credits.count);
1247 
1248 err_alloc:
1249 	if (atomic_dec_and_test(&sc->send_io.pending.count))
1250 		wake_up(&sc->send_io.pending.zero_wait_queue);
1251 
1252 err_wait_send_queue:
1253 	/* roll back send credits and pending */
1254 	atomic_inc(&sc->send_io.credits.count);
1255 
1256 err_wait_credit:
1257 	return rc;
1258 }
1259 
1260 /*
1261  * Send an empty message
1262  * Empty message is used to extend credits to peer to for keep live
1263  * while there is no upper layer payload to send at the time
1264  */
smbd_post_send_empty(struct smbdirect_socket * sc)1265 static int smbd_post_send_empty(struct smbdirect_socket *sc)
1266 {
1267 	int remaining_data_length = 0;
1268 
1269 	sc->statistics.send_empty++;
1270 	return smbd_post_send_iter(sc, NULL, &remaining_data_length);
1271 }
1272 
smbd_post_send_full_iter(struct smbdirect_socket * sc,struct iov_iter * iter,int * _remaining_data_length)1273 static int smbd_post_send_full_iter(struct smbdirect_socket *sc,
1274 				    struct iov_iter *iter,
1275 				    int *_remaining_data_length)
1276 {
1277 	int rc = 0;
1278 
1279 	/*
1280 	 * smbd_post_send_iter() respects the
1281 	 * negotiated max_send_size, so we need to
1282 	 * loop until the full iter is posted
1283 	 */
1284 
1285 	while (iov_iter_count(iter) > 0) {
1286 		rc = smbd_post_send_iter(sc, iter, _remaining_data_length);
1287 		if (rc < 0)
1288 			break;
1289 	}
1290 
1291 	return rc;
1292 }
1293 
1294 /*
1295  * Post a receive request to the transport
1296  * The remote peer can only send data when a receive request is posted
1297  * The interaction is controlled by send/receive credit system
1298  */
smbd_post_recv(struct smbdirect_socket * sc,struct smbdirect_recv_io * response)1299 static int smbd_post_recv(
1300 		struct smbdirect_socket *sc, struct smbdirect_recv_io *response)
1301 {
1302 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1303 	struct ib_recv_wr recv_wr;
1304 	int rc = -EIO;
1305 
1306 	response->sge.addr = ib_dma_map_single(
1307 				sc->ib.dev, response->packet,
1308 				sp->max_recv_size, DMA_FROM_DEVICE);
1309 	if (ib_dma_mapping_error(sc->ib.dev, response->sge.addr))
1310 		return rc;
1311 
1312 	response->sge.length = sp->max_recv_size;
1313 	response->sge.lkey = sc->ib.pd->local_dma_lkey;
1314 
1315 	response->cqe.done = recv_done;
1316 
1317 	recv_wr.wr_cqe = &response->cqe;
1318 	recv_wr.next = NULL;
1319 	recv_wr.sg_list = &response->sge;
1320 	recv_wr.num_sge = 1;
1321 
1322 	rc = ib_post_recv(sc->ib.qp, &recv_wr, NULL);
1323 	if (rc) {
1324 		ib_dma_unmap_single(sc->ib.dev, response->sge.addr,
1325 				    response->sge.length, DMA_FROM_DEVICE);
1326 		response->sge.length = 0;
1327 		smbd_disconnect_rdma_connection(sc);
1328 		log_rdma_recv(ERR, "ib_post_recv failed rc=%d\n", rc);
1329 	}
1330 
1331 	return rc;
1332 }
1333 
1334 /* Perform SMBD negotiate according to [MS-SMBD] 3.1.5.2 */
smbd_negotiate(struct smbdirect_socket * sc)1335 static int smbd_negotiate(struct smbdirect_socket *sc)
1336 {
1337 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1338 	int rc;
1339 	struct smbdirect_recv_io *response = get_receive_buffer(sc);
1340 
1341 	WARN_ON_ONCE(sc->status != SMBDIRECT_SOCKET_NEGOTIATE_NEEDED);
1342 	sc->status = SMBDIRECT_SOCKET_NEGOTIATE_RUNNING;
1343 
1344 	sc->recv_io.expected = SMBDIRECT_EXPECT_NEGOTIATE_REP;
1345 	rc = smbd_post_recv(sc, response);
1346 	log_rdma_event(INFO, "smbd_post_recv rc=%d iov.addr=0x%llx iov.length=%u iov.lkey=0x%x\n",
1347 		       rc, response->sge.addr,
1348 		       response->sge.length, response->sge.lkey);
1349 	if (rc) {
1350 		put_receive_buffer(sc, response);
1351 		return rc;
1352 	}
1353 
1354 	rc = smbd_post_send_negotiate_req(sc);
1355 	if (rc)
1356 		return rc;
1357 
1358 	rc = wait_event_interruptible_timeout(
1359 		sc->status_wait,
1360 		sc->status != SMBDIRECT_SOCKET_NEGOTIATE_RUNNING,
1361 		msecs_to_jiffies(sp->negotiate_timeout_msec));
1362 	log_rdma_event(INFO, "wait_event_interruptible_timeout rc=%d\n", rc);
1363 
1364 	if (sc->status == SMBDIRECT_SOCKET_CONNECTED)
1365 		return 0;
1366 
1367 	if (rc == 0)
1368 		rc = -ETIMEDOUT;
1369 	else if (rc == -ERESTARTSYS)
1370 		rc = -EINTR;
1371 	else
1372 		rc = -ENOTCONN;
1373 
1374 	return rc;
1375 }
1376 
1377 /*
1378  * Implement Connection.FragmentReassemblyBuffer defined in [MS-SMBD] 3.1.1.1
1379  * This is a queue for reassembling upper layer payload and present to upper
1380  * layer. All the inncoming payload go to the reassembly queue, regardless of
1381  * if reassembly is required. The uuper layer code reads from the queue for all
1382  * incoming payloads.
1383  * Put a received packet to the reassembly queue
1384  * response: the packet received
1385  * data_length: the size of payload in this packet
1386  */
enqueue_reassembly(struct smbdirect_socket * sc,struct smbdirect_recv_io * response,int data_length)1387 static void enqueue_reassembly(
1388 	struct smbdirect_socket *sc,
1389 	struct smbdirect_recv_io *response,
1390 	int data_length)
1391 {
1392 	unsigned long flags;
1393 
1394 	spin_lock_irqsave(&sc->recv_io.reassembly.lock, flags);
1395 	list_add_tail(&response->list, &sc->recv_io.reassembly.list);
1396 	sc->recv_io.reassembly.queue_length++;
1397 	/*
1398 	 * Make sure reassembly_data_length is updated after list and
1399 	 * reassembly_queue_length are updated. On the dequeue side
1400 	 * reassembly_data_length is checked without a lock to determine
1401 	 * if reassembly_queue_length and list is up to date
1402 	 */
1403 	virt_wmb();
1404 	sc->recv_io.reassembly.data_length += data_length;
1405 	spin_unlock_irqrestore(&sc->recv_io.reassembly.lock, flags);
1406 	sc->statistics.enqueue_reassembly_queue++;
1407 }
1408 
1409 /*
1410  * Get the first entry at the front of reassembly queue
1411  * Caller is responsible for locking
1412  * return value: the first entry if any, NULL if queue is empty
1413  */
_get_first_reassembly(struct smbdirect_socket * sc)1414 static struct smbdirect_recv_io *_get_first_reassembly(struct smbdirect_socket *sc)
1415 {
1416 	struct smbdirect_recv_io *ret = NULL;
1417 
1418 	if (!list_empty(&sc->recv_io.reassembly.list)) {
1419 		ret = list_first_entry(
1420 			&sc->recv_io.reassembly.list,
1421 			struct smbdirect_recv_io, list);
1422 	}
1423 	return ret;
1424 }
1425 
1426 /*
1427  * Get a receive buffer
1428  * For each remote send, we need to post a receive. The receive buffers are
1429  * pre-allocated in advance.
1430  * return value: the receive buffer, NULL if none is available
1431  */
get_receive_buffer(struct smbdirect_socket * sc)1432 static struct smbdirect_recv_io *get_receive_buffer(struct smbdirect_socket *sc)
1433 {
1434 	struct smbdirect_recv_io *ret = NULL;
1435 	unsigned long flags;
1436 
1437 	spin_lock_irqsave(&sc->recv_io.free.lock, flags);
1438 	if (!list_empty(&sc->recv_io.free.list)) {
1439 		ret = list_first_entry(
1440 			&sc->recv_io.free.list,
1441 			struct smbdirect_recv_io, list);
1442 		list_del(&ret->list);
1443 		sc->statistics.get_receive_buffer++;
1444 	}
1445 	spin_unlock_irqrestore(&sc->recv_io.free.lock, flags);
1446 
1447 	return ret;
1448 }
1449 
1450 /*
1451  * Return a receive buffer
1452  * Upon returning of a receive buffer, we can post new receive and extend
1453  * more receive credits to remote peer. This is done immediately after a
1454  * receive buffer is returned.
1455  */
put_receive_buffer(struct smbdirect_socket * sc,struct smbdirect_recv_io * response)1456 static void put_receive_buffer(
1457 	struct smbdirect_socket *sc, struct smbdirect_recv_io *response)
1458 {
1459 	unsigned long flags;
1460 
1461 	if (likely(response->sge.length != 0)) {
1462 		ib_dma_unmap_single(sc->ib.dev,
1463 				    response->sge.addr,
1464 				    response->sge.length,
1465 				    DMA_FROM_DEVICE);
1466 		response->sge.length = 0;
1467 	}
1468 
1469 	spin_lock_irqsave(&sc->recv_io.free.lock, flags);
1470 	list_add_tail(&response->list, &sc->recv_io.free.list);
1471 	sc->statistics.put_receive_buffer++;
1472 	spin_unlock_irqrestore(&sc->recv_io.free.lock, flags);
1473 
1474 	queue_work(sc->workqueue, &sc->recv_io.posted.refill_work);
1475 }
1476 
1477 /* Preallocate all receive buffer on transport establishment */
allocate_receive_buffers(struct smbdirect_socket * sc,int num_buf)1478 static int allocate_receive_buffers(struct smbdirect_socket *sc, int num_buf)
1479 {
1480 	struct smbdirect_recv_io *response;
1481 	int i;
1482 
1483 	for (i = 0; i < num_buf; i++) {
1484 		response = mempool_alloc(sc->recv_io.mem.pool, GFP_KERNEL);
1485 		if (!response)
1486 			goto allocate_failed;
1487 
1488 		response->socket = sc;
1489 		response->sge.length = 0;
1490 		list_add_tail(&response->list, &sc->recv_io.free.list);
1491 	}
1492 
1493 	return 0;
1494 
1495 allocate_failed:
1496 	while (!list_empty(&sc->recv_io.free.list)) {
1497 		response = list_first_entry(
1498 				&sc->recv_io.free.list,
1499 				struct smbdirect_recv_io, list);
1500 		list_del(&response->list);
1501 
1502 		mempool_free(response, sc->recv_io.mem.pool);
1503 	}
1504 	return -ENOMEM;
1505 }
1506 
destroy_receive_buffers(struct smbdirect_socket * sc)1507 static void destroy_receive_buffers(struct smbdirect_socket *sc)
1508 {
1509 	struct smbdirect_recv_io *response;
1510 
1511 	while ((response = get_receive_buffer(sc)))
1512 		mempool_free(response, sc->recv_io.mem.pool);
1513 }
1514 
send_immediate_empty_message(struct work_struct * work)1515 static void send_immediate_empty_message(struct work_struct *work)
1516 {
1517 	struct smbdirect_socket *sc =
1518 		container_of(work, struct smbdirect_socket, idle.immediate_work);
1519 
1520 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED)
1521 		return;
1522 
1523 	log_keep_alive(INFO, "send an empty message\n");
1524 	smbd_post_send_empty(sc);
1525 }
1526 
1527 /* Implement idle connection timer [MS-SMBD] 3.1.6.2 */
idle_connection_timer(struct work_struct * work)1528 static void idle_connection_timer(struct work_struct *work)
1529 {
1530 	struct smbdirect_socket *sc =
1531 		container_of(work, struct smbdirect_socket, idle.timer_work.work);
1532 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1533 
1534 	if (sc->idle.keepalive != SMBDIRECT_KEEPALIVE_NONE) {
1535 		log_keep_alive(ERR,
1536 			"error status sc->idle.keepalive=%d\n",
1537 			sc->idle.keepalive);
1538 		smbd_disconnect_rdma_connection(sc);
1539 		return;
1540 	}
1541 
1542 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED)
1543 		return;
1544 
1545 	/*
1546 	 * Now use the keepalive timeout (instead of keepalive interval)
1547 	 * in order to wait for a response
1548 	 */
1549 	sc->idle.keepalive = SMBDIRECT_KEEPALIVE_PENDING;
1550 	mod_delayed_work(sc->workqueue, &sc->idle.timer_work,
1551 			 msecs_to_jiffies(sp->keepalive_timeout_msec));
1552 	log_keep_alive(INFO, "schedule send of empty idle message\n");
1553 	queue_work(sc->workqueue, &sc->idle.immediate_work);
1554 }
1555 
1556 /*
1557  * Destroy the transport and related RDMA and memory resources
1558  * Need to go through all the pending counters and make sure on one is using
1559  * the transport while it is destroyed
1560  */
smbd_destroy(struct TCP_Server_Info * server)1561 void smbd_destroy(struct TCP_Server_Info *server)
1562 {
1563 	struct smbd_connection *info = server->smbd_conn;
1564 	struct smbdirect_socket *sc;
1565 	struct smbdirect_recv_io *response;
1566 	unsigned long flags;
1567 
1568 	if (!info) {
1569 		log_rdma_event(INFO, "rdma session already destroyed\n");
1570 		return;
1571 	}
1572 	sc = &info->socket;
1573 
1574 	log_rdma_event(INFO, "cancelling and disable disconnect_work\n");
1575 	disable_work_sync(&sc->disconnect_work);
1576 
1577 	log_rdma_event(INFO, "destroying rdma session\n");
1578 	if (sc->status < SMBDIRECT_SOCKET_DISCONNECTING) {
1579 		smbd_disconnect_rdma_work(&sc->disconnect_work);
1580 		log_rdma_event(INFO, "wait for transport being disconnected\n");
1581 		wait_event_interruptible(
1582 			sc->status_wait,
1583 			sc->status == SMBDIRECT_SOCKET_DISCONNECTED);
1584 	}
1585 
1586 	/*
1587 	 * Wake up all waiters in all wait queues
1588 	 * in order to notice the broken connection.
1589 	 *
1590 	 * Most likely this was already called via
1591 	 * smbd_disconnect_rdma_work(), but call it again...
1592 	 */
1593 	smbd_disconnect_wake_up_all(sc);
1594 
1595 	log_rdma_event(INFO, "cancelling recv_io.posted.refill_work\n");
1596 	disable_work_sync(&sc->recv_io.posted.refill_work);
1597 
1598 	log_rdma_event(INFO, "destroying qp\n");
1599 	ib_drain_qp(sc->ib.qp);
1600 	rdma_destroy_qp(sc->rdma.cm_id);
1601 	sc->ib.qp = NULL;
1602 
1603 	log_rdma_event(INFO, "cancelling idle timer\n");
1604 	disable_delayed_work_sync(&sc->idle.timer_work);
1605 	log_rdma_event(INFO, "cancelling send immediate work\n");
1606 	disable_work_sync(&sc->idle.immediate_work);
1607 
1608 	/* It's not possible for upper layer to get to reassembly */
1609 	log_rdma_event(INFO, "drain the reassembly queue\n");
1610 	do {
1611 		spin_lock_irqsave(&sc->recv_io.reassembly.lock, flags);
1612 		response = _get_first_reassembly(sc);
1613 		if (response) {
1614 			list_del(&response->list);
1615 			spin_unlock_irqrestore(
1616 				&sc->recv_io.reassembly.lock, flags);
1617 			put_receive_buffer(sc, response);
1618 		} else
1619 			spin_unlock_irqrestore(
1620 				&sc->recv_io.reassembly.lock, flags);
1621 	} while (response);
1622 	sc->recv_io.reassembly.data_length = 0;
1623 
1624 	log_rdma_event(INFO, "free receive buffers\n");
1625 	destroy_receive_buffers(sc);
1626 
1627 	/*
1628 	 * For performance reasons, memory registration and deregistration
1629 	 * are not locked by srv_mutex. It is possible some processes are
1630 	 * blocked on transport srv_mutex while holding memory registration.
1631 	 * Release the transport srv_mutex to allow them to hit the failure
1632 	 * path when sending data, and then release memory registrations.
1633 	 */
1634 	log_rdma_event(INFO, "freeing mr list\n");
1635 	while (atomic_read(&sc->mr_io.used.count)) {
1636 		cifs_server_unlock(server);
1637 		msleep(1000);
1638 		cifs_server_lock(server);
1639 	}
1640 	destroy_mr_list(sc);
1641 
1642 	ib_free_cq(sc->ib.send_cq);
1643 	ib_free_cq(sc->ib.recv_cq);
1644 	ib_dealloc_pd(sc->ib.pd);
1645 	rdma_destroy_id(sc->rdma.cm_id);
1646 
1647 	/* free mempools */
1648 	mempool_destroy(sc->send_io.mem.pool);
1649 	kmem_cache_destroy(sc->send_io.mem.cache);
1650 
1651 	mempool_destroy(sc->recv_io.mem.pool);
1652 	kmem_cache_destroy(sc->recv_io.mem.cache);
1653 
1654 	sc->status = SMBDIRECT_SOCKET_DESTROYED;
1655 
1656 	destroy_workqueue(sc->workqueue);
1657 	log_rdma_event(INFO,  "rdma session destroyed\n");
1658 	kfree(info);
1659 	server->smbd_conn = NULL;
1660 }
1661 
1662 /*
1663  * Reconnect this SMBD connection, called from upper layer
1664  * return value: 0 on success, or actual error code
1665  */
smbd_reconnect(struct TCP_Server_Info * server)1666 int smbd_reconnect(struct TCP_Server_Info *server)
1667 {
1668 	log_rdma_event(INFO, "reconnecting rdma session\n");
1669 
1670 	if (!server->smbd_conn) {
1671 		log_rdma_event(INFO, "rdma session already destroyed\n");
1672 		goto create_conn;
1673 	}
1674 
1675 	/*
1676 	 * This is possible if transport is disconnected and we haven't received
1677 	 * notification from RDMA, but upper layer has detected timeout
1678 	 */
1679 	if (server->smbd_conn->socket.status == SMBDIRECT_SOCKET_CONNECTED) {
1680 		log_rdma_event(INFO, "disconnecting transport\n");
1681 		smbd_destroy(server);
1682 	}
1683 
1684 create_conn:
1685 	log_rdma_event(INFO, "creating rdma session\n");
1686 	server->smbd_conn = smbd_get_connection(
1687 		server, (struct sockaddr *) &server->dstaddr);
1688 
1689 	if (server->smbd_conn) {
1690 		cifs_dbg(VFS, "RDMA transport re-established\n");
1691 		trace_smb3_smbd_connect_done(server->hostname, server->conn_id, &server->dstaddr);
1692 		return 0;
1693 	}
1694 	trace_smb3_smbd_connect_err(server->hostname, server->conn_id, &server->dstaddr);
1695 	return -ENOENT;
1696 }
1697 
destroy_caches(struct smbdirect_socket * sc)1698 static void destroy_caches(struct smbdirect_socket *sc)
1699 {
1700 	destroy_receive_buffers(sc);
1701 	mempool_destroy(sc->recv_io.mem.pool);
1702 	kmem_cache_destroy(sc->recv_io.mem.cache);
1703 	mempool_destroy(sc->send_io.mem.pool);
1704 	kmem_cache_destroy(sc->send_io.mem.cache);
1705 }
1706 
1707 #define MAX_NAME_LEN	80
allocate_caches(struct smbdirect_socket * sc)1708 static int allocate_caches(struct smbdirect_socket *sc)
1709 {
1710 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1711 	char name[MAX_NAME_LEN];
1712 	int rc;
1713 
1714 	if (WARN_ON_ONCE(sp->max_recv_size < sizeof(struct smbdirect_data_transfer)))
1715 		return -ENOMEM;
1716 
1717 	scnprintf(name, MAX_NAME_LEN, "smbdirect_send_io_%p", sc);
1718 	sc->send_io.mem.cache =
1719 		kmem_cache_create(
1720 			name,
1721 			sizeof(struct smbdirect_send_io) +
1722 				sizeof(struct smbdirect_data_transfer),
1723 			0, SLAB_HWCACHE_ALIGN, NULL);
1724 	if (!sc->send_io.mem.cache)
1725 		return -ENOMEM;
1726 
1727 	sc->send_io.mem.pool =
1728 		mempool_create(sp->send_credit_target, mempool_alloc_slab,
1729 			mempool_free_slab, sc->send_io.mem.cache);
1730 	if (!sc->send_io.mem.pool)
1731 		goto out1;
1732 
1733 	scnprintf(name, MAX_NAME_LEN, "smbdirect_recv_io_%p", sc);
1734 
1735 	struct kmem_cache_args response_args = {
1736 		.align		= __alignof__(struct smbdirect_recv_io),
1737 		.useroffset	= (offsetof(struct smbdirect_recv_io, packet) +
1738 				   sizeof(struct smbdirect_data_transfer)),
1739 		.usersize	= sp->max_recv_size - sizeof(struct smbdirect_data_transfer),
1740 	};
1741 	sc->recv_io.mem.cache =
1742 		kmem_cache_create(name,
1743 				  sizeof(struct smbdirect_recv_io) + sp->max_recv_size,
1744 				  &response_args, SLAB_HWCACHE_ALIGN);
1745 	if (!sc->recv_io.mem.cache)
1746 		goto out2;
1747 
1748 	sc->recv_io.mem.pool =
1749 		mempool_create(sp->recv_credit_max, mempool_alloc_slab,
1750 		       mempool_free_slab, sc->recv_io.mem.cache);
1751 	if (!sc->recv_io.mem.pool)
1752 		goto out3;
1753 
1754 	rc = allocate_receive_buffers(sc, sp->recv_credit_max);
1755 	if (rc) {
1756 		log_rdma_event(ERR, "failed to allocate receive buffers\n");
1757 		goto out4;
1758 	}
1759 
1760 	return 0;
1761 
1762 out4:
1763 	mempool_destroy(sc->recv_io.mem.pool);
1764 out3:
1765 	kmem_cache_destroy(sc->recv_io.mem.cache);
1766 out2:
1767 	mempool_destroy(sc->send_io.mem.pool);
1768 out1:
1769 	kmem_cache_destroy(sc->send_io.mem.cache);
1770 	return -ENOMEM;
1771 }
1772 
1773 /* Create a SMBD connection, called by upper layer */
_smbd_get_connection(struct TCP_Server_Info * server,struct sockaddr * dstaddr,int port)1774 static struct smbd_connection *_smbd_get_connection(
1775 	struct TCP_Server_Info *server, struct sockaddr *dstaddr, int port)
1776 {
1777 	int rc;
1778 	struct smbd_connection *info;
1779 	struct smbdirect_socket *sc;
1780 	struct smbdirect_socket_parameters *sp;
1781 	struct rdma_conn_param conn_param;
1782 	struct ib_qp_init_attr qp_attr;
1783 	struct sockaddr_in *addr_in = (struct sockaddr_in *) dstaddr;
1784 	struct ib_port_immutable port_immutable;
1785 	__be32 ird_ord_hdr[2];
1786 	char wq_name[80];
1787 	struct workqueue_struct *workqueue;
1788 
1789 	info = kzalloc(sizeof(struct smbd_connection), GFP_KERNEL);
1790 	if (!info)
1791 		return NULL;
1792 	sc = &info->socket;
1793 	scnprintf(wq_name, ARRAY_SIZE(wq_name), "smbd_%p", sc);
1794 	workqueue = create_workqueue(wq_name);
1795 	if (!workqueue)
1796 		goto create_wq_failed;
1797 	smbdirect_socket_init(sc);
1798 	sc->workqueue = workqueue;
1799 	sp = &sc->parameters;
1800 
1801 	INIT_WORK(&sc->disconnect_work, smbd_disconnect_rdma_work);
1802 
1803 	sp->resolve_addr_timeout_msec = RDMA_RESOLVE_TIMEOUT;
1804 	sp->resolve_route_timeout_msec = RDMA_RESOLVE_TIMEOUT;
1805 	sp->rdma_connect_timeout_msec = RDMA_RESOLVE_TIMEOUT;
1806 	sp->negotiate_timeout_msec = SMBD_NEGOTIATE_TIMEOUT * 1000;
1807 	sp->initiator_depth = 1;
1808 	sp->responder_resources = SMBD_CM_RESPONDER_RESOURCES;
1809 	sp->recv_credit_max = smbd_receive_credit_max;
1810 	sp->send_credit_target = smbd_send_credit_target;
1811 	sp->max_send_size = smbd_max_send_size;
1812 	sp->max_fragmented_recv_size = smbd_max_fragmented_recv_size;
1813 	sp->max_recv_size = smbd_max_receive_size;
1814 	sp->max_frmr_depth = smbd_max_frmr_depth;
1815 	sp->keepalive_interval_msec = smbd_keep_alive_interval * 1000;
1816 	sp->keepalive_timeout_msec = KEEPALIVE_RECV_TIMEOUT * 1000;
1817 
1818 	rc = smbd_ia_open(sc, dstaddr, port);
1819 	if (rc) {
1820 		log_rdma_event(INFO, "smbd_ia_open rc=%d\n", rc);
1821 		goto create_id_failed;
1822 	}
1823 
1824 	if (sp->send_credit_target > sc->ib.dev->attrs.max_cqe ||
1825 	    sp->send_credit_target > sc->ib.dev->attrs.max_qp_wr) {
1826 		log_rdma_event(ERR, "consider lowering send_credit_target = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n",
1827 			       sp->send_credit_target,
1828 			       sc->ib.dev->attrs.max_cqe,
1829 			       sc->ib.dev->attrs.max_qp_wr);
1830 		goto config_failed;
1831 	}
1832 
1833 	if (sp->recv_credit_max > sc->ib.dev->attrs.max_cqe ||
1834 	    sp->recv_credit_max > sc->ib.dev->attrs.max_qp_wr) {
1835 		log_rdma_event(ERR, "consider lowering receive_credit_max = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n",
1836 			       sp->recv_credit_max,
1837 			       sc->ib.dev->attrs.max_cqe,
1838 			       sc->ib.dev->attrs.max_qp_wr);
1839 		goto config_failed;
1840 	}
1841 
1842 	if (sc->ib.dev->attrs.max_send_sge < SMBDIRECT_SEND_IO_MAX_SGE ||
1843 	    sc->ib.dev->attrs.max_recv_sge < SMBDIRECT_RECV_IO_MAX_SGE) {
1844 		log_rdma_event(ERR,
1845 			"device %.*s max_send_sge/max_recv_sge = %d/%d too small\n",
1846 			IB_DEVICE_NAME_MAX,
1847 			sc->ib.dev->name,
1848 			sc->ib.dev->attrs.max_send_sge,
1849 			sc->ib.dev->attrs.max_recv_sge);
1850 		goto config_failed;
1851 	}
1852 
1853 	sc->ib.pd = ib_alloc_pd(sc->ib.dev, 0);
1854 	if (IS_ERR(sc->ib.pd)) {
1855 		rc = PTR_ERR(sc->ib.pd);
1856 		sc->ib.pd = NULL;
1857 		log_rdma_event(ERR, "ib_alloc_pd() returned %d\n", rc);
1858 		goto alloc_pd_failed;
1859 	}
1860 
1861 	sc->ib.send_cq =
1862 		ib_alloc_cq_any(sc->ib.dev, sc,
1863 				sp->send_credit_target, IB_POLL_SOFTIRQ);
1864 	if (IS_ERR(sc->ib.send_cq)) {
1865 		sc->ib.send_cq = NULL;
1866 		goto alloc_cq_failed;
1867 	}
1868 
1869 	sc->ib.recv_cq =
1870 		ib_alloc_cq_any(sc->ib.dev, sc,
1871 				sp->recv_credit_max, IB_POLL_SOFTIRQ);
1872 	if (IS_ERR(sc->ib.recv_cq)) {
1873 		sc->ib.recv_cq = NULL;
1874 		goto alloc_cq_failed;
1875 	}
1876 
1877 	memset(&qp_attr, 0, sizeof(qp_attr));
1878 	qp_attr.event_handler = smbd_qp_async_error_upcall;
1879 	qp_attr.qp_context = sc;
1880 	qp_attr.cap.max_send_wr = sp->send_credit_target;
1881 	qp_attr.cap.max_recv_wr = sp->recv_credit_max;
1882 	qp_attr.cap.max_send_sge = SMBDIRECT_SEND_IO_MAX_SGE;
1883 	qp_attr.cap.max_recv_sge = SMBDIRECT_RECV_IO_MAX_SGE;
1884 	qp_attr.cap.max_inline_data = 0;
1885 	qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1886 	qp_attr.qp_type = IB_QPT_RC;
1887 	qp_attr.send_cq = sc->ib.send_cq;
1888 	qp_attr.recv_cq = sc->ib.recv_cq;
1889 	qp_attr.port_num = ~0;
1890 
1891 	rc = rdma_create_qp(sc->rdma.cm_id, sc->ib.pd, &qp_attr);
1892 	if (rc) {
1893 		log_rdma_event(ERR, "rdma_create_qp failed %i\n", rc);
1894 		goto create_qp_failed;
1895 	}
1896 	sc->ib.qp = sc->rdma.cm_id->qp;
1897 
1898 	sp->responder_resources =
1899 		min_t(u8, sp->responder_resources,
1900 		      sc->ib.dev->attrs.max_qp_rd_atom);
1901 	log_rdma_mr(INFO, "responder_resources=%d\n",
1902 		sp->responder_resources);
1903 
1904 	memset(&conn_param, 0, sizeof(conn_param));
1905 	conn_param.initiator_depth = sp->initiator_depth;
1906 	conn_param.responder_resources = sp->responder_resources;
1907 
1908 	/* Need to send IRD/ORD in private data for iWARP */
1909 	sc->ib.dev->ops.get_port_immutable(
1910 		sc->ib.dev, sc->rdma.cm_id->port_num, &port_immutable);
1911 	if (port_immutable.core_cap_flags & RDMA_CORE_PORT_IWARP) {
1912 		ird_ord_hdr[0] = cpu_to_be32(conn_param.responder_resources);
1913 		ird_ord_hdr[1] = cpu_to_be32(conn_param.initiator_depth);
1914 		conn_param.private_data = ird_ord_hdr;
1915 		conn_param.private_data_len = sizeof(ird_ord_hdr);
1916 	} else {
1917 		conn_param.private_data = NULL;
1918 		conn_param.private_data_len = 0;
1919 	}
1920 
1921 	conn_param.retry_count = SMBD_CM_RETRY;
1922 	conn_param.rnr_retry_count = SMBD_CM_RNR_RETRY;
1923 	conn_param.flow_control = 0;
1924 
1925 	log_rdma_event(INFO, "connecting to IP %pI4 port %d\n",
1926 		&addr_in->sin_addr, port);
1927 
1928 	WARN_ON_ONCE(sc->status != SMBDIRECT_SOCKET_RDMA_CONNECT_NEEDED);
1929 	sc->status = SMBDIRECT_SOCKET_RDMA_CONNECT_RUNNING;
1930 	rc = rdma_connect(sc->rdma.cm_id, &conn_param);
1931 	if (rc) {
1932 		log_rdma_event(ERR, "rdma_connect() failed with %i\n", rc);
1933 		goto rdma_connect_failed;
1934 	}
1935 
1936 	wait_event_interruptible_timeout(
1937 		sc->status_wait,
1938 		sc->status != SMBDIRECT_SOCKET_RDMA_CONNECT_RUNNING,
1939 		msecs_to_jiffies(sp->rdma_connect_timeout_msec));
1940 
1941 	if (sc->status != SMBDIRECT_SOCKET_NEGOTIATE_NEEDED) {
1942 		log_rdma_event(ERR, "rdma_connect failed port=%d\n", port);
1943 		goto rdma_connect_failed;
1944 	}
1945 
1946 	log_rdma_event(INFO, "rdma_connect connected\n");
1947 
1948 	rc = allocate_caches(sc);
1949 	if (rc) {
1950 		log_rdma_event(ERR, "cache allocation failed\n");
1951 		goto allocate_cache_failed;
1952 	}
1953 
1954 	INIT_WORK(&sc->idle.immediate_work, send_immediate_empty_message);
1955 	INIT_DELAYED_WORK(&sc->idle.timer_work, idle_connection_timer);
1956 	/*
1957 	 * start with the negotiate timeout and SMBDIRECT_KEEPALIVE_PENDING
1958 	 * so that the timer will cause a disconnect.
1959 	 */
1960 	sc->idle.keepalive = SMBDIRECT_KEEPALIVE_PENDING;
1961 	mod_delayed_work(sc->workqueue, &sc->idle.timer_work,
1962 			 msecs_to_jiffies(sp->negotiate_timeout_msec));
1963 
1964 	INIT_WORK(&sc->recv_io.posted.refill_work, smbd_post_send_credits);
1965 
1966 	rc = smbd_negotiate(sc);
1967 	if (rc) {
1968 		log_rdma_event(ERR, "smbd_negotiate rc=%d\n", rc);
1969 		goto negotiation_failed;
1970 	}
1971 
1972 	rc = allocate_mr_list(sc);
1973 	if (rc) {
1974 		log_rdma_mr(ERR, "memory registration allocation failed\n");
1975 		goto allocate_mr_failed;
1976 	}
1977 
1978 	return info;
1979 
1980 allocate_mr_failed:
1981 	/* At this point, need to a full transport shutdown */
1982 	server->smbd_conn = info;
1983 	smbd_destroy(server);
1984 	return NULL;
1985 
1986 negotiation_failed:
1987 	disable_delayed_work_sync(&sc->idle.timer_work);
1988 	destroy_caches(sc);
1989 	sc->status = SMBDIRECT_SOCKET_NEGOTIATE_FAILED;
1990 	rdma_disconnect(sc->rdma.cm_id);
1991 	wait_event(sc->status_wait,
1992 		sc->status == SMBDIRECT_SOCKET_DISCONNECTED);
1993 
1994 allocate_cache_failed:
1995 rdma_connect_failed:
1996 	rdma_destroy_qp(sc->rdma.cm_id);
1997 
1998 create_qp_failed:
1999 alloc_cq_failed:
2000 	if (sc->ib.send_cq)
2001 		ib_free_cq(sc->ib.send_cq);
2002 	if (sc->ib.recv_cq)
2003 		ib_free_cq(sc->ib.recv_cq);
2004 
2005 	ib_dealloc_pd(sc->ib.pd);
2006 
2007 alloc_pd_failed:
2008 config_failed:
2009 	rdma_destroy_id(sc->rdma.cm_id);
2010 
2011 create_id_failed:
2012 	destroy_workqueue(sc->workqueue);
2013 create_wq_failed:
2014 	kfree(info);
2015 	return NULL;
2016 }
2017 
smbd_get_connection(struct TCP_Server_Info * server,struct sockaddr * dstaddr)2018 struct smbd_connection *smbd_get_connection(
2019 	struct TCP_Server_Info *server, struct sockaddr *dstaddr)
2020 {
2021 	struct smbd_connection *ret;
2022 	const struct smbdirect_socket_parameters *sp;
2023 	int port = SMBD_PORT;
2024 
2025 try_again:
2026 	ret = _smbd_get_connection(server, dstaddr, port);
2027 
2028 	/* Try SMB_PORT if SMBD_PORT doesn't work */
2029 	if (!ret && port == SMBD_PORT) {
2030 		port = SMB_PORT;
2031 		goto try_again;
2032 	}
2033 	if (!ret)
2034 		return NULL;
2035 
2036 	sp = &ret->socket.parameters;
2037 
2038 	server->rdma_readwrite_threshold =
2039 		rdma_readwrite_threshold > sp->max_fragmented_send_size ?
2040 		sp->max_fragmented_send_size :
2041 		rdma_readwrite_threshold;
2042 
2043 	return ret;
2044 }
2045 
2046 /*
2047  * Receive data from the transport's receive reassembly queue
2048  * All the incoming data packets are placed in reassembly queue
2049  * iter: the buffer to read data into
2050  * size: the length of data to read
2051  * return value: actual data read
2052  *
2053  * Note: this implementation copies the data from reassembly queue to receive
2054  * buffers used by upper layer. This is not the optimal code path. A better way
2055  * to do it is to not have upper layer allocate its receive buffers but rather
2056  * borrow the buffer from reassembly queue, and return it after data is
2057  * consumed. But this will require more changes to upper layer code, and also
2058  * need to consider packet boundaries while they still being reassembled.
2059  */
smbd_recv(struct smbd_connection * info,struct msghdr * msg)2060 int smbd_recv(struct smbd_connection *info, struct msghdr *msg)
2061 {
2062 	struct smbdirect_socket *sc = &info->socket;
2063 	struct smbdirect_recv_io *response;
2064 	struct smbdirect_data_transfer *data_transfer;
2065 	size_t size = iov_iter_count(&msg->msg_iter);
2066 	int to_copy, to_read, data_read, offset;
2067 	u32 data_length, remaining_data_length, data_offset;
2068 	int rc;
2069 
2070 	if (WARN_ON_ONCE(iov_iter_rw(&msg->msg_iter) == WRITE))
2071 		return -EINVAL; /* It's a bug in upper layer to get there */
2072 
2073 again:
2074 	/*
2075 	 * No need to hold the reassembly queue lock all the time as we are
2076 	 * the only one reading from the front of the queue. The transport
2077 	 * may add more entries to the back of the queue at the same time
2078 	 */
2079 	log_read(INFO, "size=%zd sc->recv_io.reassembly.data_length=%d\n", size,
2080 		sc->recv_io.reassembly.data_length);
2081 	if (sc->recv_io.reassembly.data_length >= size) {
2082 		int queue_length;
2083 		int queue_removed = 0;
2084 		unsigned long flags;
2085 
2086 		/*
2087 		 * Need to make sure reassembly_data_length is read before
2088 		 * reading reassembly_queue_length and calling
2089 		 * _get_first_reassembly. This call is lock free
2090 		 * as we never read at the end of the queue which are being
2091 		 * updated in SOFTIRQ as more data is received
2092 		 */
2093 		virt_rmb();
2094 		queue_length = sc->recv_io.reassembly.queue_length;
2095 		data_read = 0;
2096 		to_read = size;
2097 		offset = sc->recv_io.reassembly.first_entry_offset;
2098 		while (data_read < size) {
2099 			response = _get_first_reassembly(sc);
2100 			data_transfer = smbdirect_recv_io_payload(response);
2101 			data_length = le32_to_cpu(data_transfer->data_length);
2102 			remaining_data_length =
2103 				le32_to_cpu(
2104 					data_transfer->remaining_data_length);
2105 			data_offset = le32_to_cpu(data_transfer->data_offset);
2106 
2107 			/*
2108 			 * The upper layer expects RFC1002 length at the
2109 			 * beginning of the payload. Return it to indicate
2110 			 * the total length of the packet. This minimize the
2111 			 * change to upper layer packet processing logic. This
2112 			 * will be eventually remove when an intermediate
2113 			 * transport layer is added
2114 			 */
2115 			if (response->first_segment && size == 4) {
2116 				unsigned int rfc1002_len =
2117 					data_length + remaining_data_length;
2118 				__be32 rfc1002_hdr = cpu_to_be32(rfc1002_len);
2119 				if (copy_to_iter(&rfc1002_hdr, sizeof(rfc1002_hdr),
2120 						 &msg->msg_iter) != sizeof(rfc1002_hdr))
2121 					return -EFAULT;
2122 				data_read = 4;
2123 				response->first_segment = false;
2124 				log_read(INFO, "returning rfc1002 length %d\n",
2125 					rfc1002_len);
2126 				goto read_rfc1002_done;
2127 			}
2128 
2129 			to_copy = min_t(int, data_length - offset, to_read);
2130 			if (copy_to_iter((char *)data_transfer + data_offset + offset,
2131 					 to_copy, &msg->msg_iter) != to_copy)
2132 				return -EFAULT;
2133 
2134 			/* move on to the next buffer? */
2135 			if (to_copy == data_length - offset) {
2136 				queue_length--;
2137 				/*
2138 				 * No need to lock if we are not at the
2139 				 * end of the queue
2140 				 */
2141 				if (queue_length)
2142 					list_del(&response->list);
2143 				else {
2144 					spin_lock_irqsave(
2145 						&sc->recv_io.reassembly.lock, flags);
2146 					list_del(&response->list);
2147 					spin_unlock_irqrestore(
2148 						&sc->recv_io.reassembly.lock, flags);
2149 				}
2150 				queue_removed++;
2151 				sc->statistics.dequeue_reassembly_queue++;
2152 				put_receive_buffer(sc, response);
2153 				offset = 0;
2154 				log_read(INFO, "put_receive_buffer offset=0\n");
2155 			} else
2156 				offset += to_copy;
2157 
2158 			to_read -= to_copy;
2159 			data_read += to_copy;
2160 
2161 			log_read(INFO, "_get_first_reassembly memcpy %d bytes data_transfer_length-offset=%d after that to_read=%d data_read=%d offset=%d\n",
2162 				 to_copy, data_length - offset,
2163 				 to_read, data_read, offset);
2164 		}
2165 
2166 		spin_lock_irqsave(&sc->recv_io.reassembly.lock, flags);
2167 		sc->recv_io.reassembly.data_length -= data_read;
2168 		sc->recv_io.reassembly.queue_length -= queue_removed;
2169 		spin_unlock_irqrestore(&sc->recv_io.reassembly.lock, flags);
2170 
2171 		sc->recv_io.reassembly.first_entry_offset = offset;
2172 		log_read(INFO, "returning to thread data_read=%d reassembly_data_length=%d first_entry_offset=%d\n",
2173 			 data_read, sc->recv_io.reassembly.data_length,
2174 			 sc->recv_io.reassembly.first_entry_offset);
2175 read_rfc1002_done:
2176 		return data_read;
2177 	}
2178 
2179 	log_read(INFO, "wait_event on more data\n");
2180 	rc = wait_event_interruptible(
2181 		sc->recv_io.reassembly.wait_queue,
2182 		sc->recv_io.reassembly.data_length >= size ||
2183 			sc->status != SMBDIRECT_SOCKET_CONNECTED);
2184 	/* Don't return any data if interrupted */
2185 	if (rc)
2186 		return rc;
2187 
2188 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
2189 		log_read(ERR, "disconnected\n");
2190 		return -ECONNABORTED;
2191 	}
2192 
2193 	goto again;
2194 }
2195 
2196 /*
2197  * Send data to transport
2198  * Each rqst is transported as a SMBDirect payload
2199  * rqst: the data to write
2200  * return value: 0 if successfully write, otherwise error code
2201  */
smbd_send(struct TCP_Server_Info * server,int num_rqst,struct smb_rqst * rqst_array)2202 int smbd_send(struct TCP_Server_Info *server,
2203 	int num_rqst, struct smb_rqst *rqst_array)
2204 {
2205 	struct smbd_connection *info = server->smbd_conn;
2206 	struct smbdirect_socket *sc = &info->socket;
2207 	struct smbdirect_socket_parameters *sp = &sc->parameters;
2208 	struct smb_rqst *rqst;
2209 	struct iov_iter iter;
2210 	unsigned int remaining_data_length, klen;
2211 	int rc, i, rqst_idx;
2212 
2213 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED)
2214 		return -EAGAIN;
2215 
2216 	/*
2217 	 * Add in the page array if there is one. The caller needs to set
2218 	 * rq_tailsz to PAGE_SIZE when the buffer has multiple pages and
2219 	 * ends at page boundary
2220 	 */
2221 	remaining_data_length = 0;
2222 	for (i = 0; i < num_rqst; i++)
2223 		remaining_data_length += smb_rqst_len(server, &rqst_array[i]);
2224 
2225 	if (unlikely(remaining_data_length > sp->max_fragmented_send_size)) {
2226 		/* assertion: payload never exceeds negotiated maximum */
2227 		log_write(ERR, "payload size %d > max size %d\n",
2228 			remaining_data_length, sp->max_fragmented_send_size);
2229 		return -EINVAL;
2230 	}
2231 
2232 	log_write(INFO, "num_rqst=%d total length=%u\n",
2233 			num_rqst, remaining_data_length);
2234 
2235 	rqst_idx = 0;
2236 	do {
2237 		rqst = &rqst_array[rqst_idx];
2238 
2239 		cifs_dbg(FYI, "Sending smb (RDMA): idx=%d smb_len=%lu\n",
2240 			 rqst_idx, smb_rqst_len(server, rqst));
2241 		for (i = 0; i < rqst->rq_nvec; i++)
2242 			dump_smb(rqst->rq_iov[i].iov_base, rqst->rq_iov[i].iov_len);
2243 
2244 		log_write(INFO, "RDMA-WR[%u] nvec=%d len=%u iter=%zu rqlen=%lu\n",
2245 			  rqst_idx, rqst->rq_nvec, remaining_data_length,
2246 			  iov_iter_count(&rqst->rq_iter), smb_rqst_len(server, rqst));
2247 
2248 		/* Send the metadata pages. */
2249 		klen = 0;
2250 		for (i = 0; i < rqst->rq_nvec; i++)
2251 			klen += rqst->rq_iov[i].iov_len;
2252 		iov_iter_kvec(&iter, ITER_SOURCE, rqst->rq_iov, rqst->rq_nvec, klen);
2253 
2254 		rc = smbd_post_send_full_iter(sc, &iter, &remaining_data_length);
2255 		if (rc < 0)
2256 			break;
2257 
2258 		if (iov_iter_count(&rqst->rq_iter) > 0) {
2259 			/* And then the data pages if there are any */
2260 			rc = smbd_post_send_full_iter(sc, &rqst->rq_iter,
2261 						      &remaining_data_length);
2262 			if (rc < 0)
2263 				break;
2264 		}
2265 
2266 	} while (++rqst_idx < num_rqst);
2267 
2268 	/*
2269 	 * As an optimization, we don't wait for individual I/O to finish
2270 	 * before sending the next one.
2271 	 * Send them all and wait for pending send count to get to 0
2272 	 * that means all the I/Os have been out and we are good to return
2273 	 */
2274 
2275 	wait_event(sc->send_io.pending.zero_wait_queue,
2276 		atomic_read(&sc->send_io.pending.count) == 0 ||
2277 		sc->status != SMBDIRECT_SOCKET_CONNECTED);
2278 
2279 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED && rc == 0)
2280 		rc = -EAGAIN;
2281 
2282 	return rc;
2283 }
2284 
register_mr_done(struct ib_cq * cq,struct ib_wc * wc)2285 static void register_mr_done(struct ib_cq *cq, struct ib_wc *wc)
2286 {
2287 	struct smbdirect_mr_io *mr =
2288 		container_of(wc->wr_cqe, struct smbdirect_mr_io, cqe);
2289 	struct smbdirect_socket *sc = mr->socket;
2290 
2291 	if (wc->status) {
2292 		log_rdma_mr(ERR, "status=%d\n", wc->status);
2293 		smbd_disconnect_rdma_connection(sc);
2294 	}
2295 }
2296 
2297 /*
2298  * The work queue function that recovers MRs
2299  * We need to call ib_dereg_mr() and ib_alloc_mr() before this MR can be used
2300  * again. Both calls are slow, so finish them in a workqueue. This will not
2301  * block I/O path.
2302  * There is one workqueue that recovers MRs, there is no need to lock as the
2303  * I/O requests calling smbd_register_mr will never update the links in the
2304  * mr_list.
2305  */
smbd_mr_recovery_work(struct work_struct * work)2306 static void smbd_mr_recovery_work(struct work_struct *work)
2307 {
2308 	struct smbdirect_socket *sc =
2309 		container_of(work, struct smbdirect_socket, mr_io.recovery_work);
2310 	struct smbdirect_socket_parameters *sp = &sc->parameters;
2311 	struct smbdirect_mr_io *smbdirect_mr;
2312 	int rc;
2313 
2314 	list_for_each_entry(smbdirect_mr, &sc->mr_io.all.list, list) {
2315 		if (smbdirect_mr->state == SMBDIRECT_MR_ERROR) {
2316 
2317 			/* recover this MR entry */
2318 			rc = ib_dereg_mr(smbdirect_mr->mr);
2319 			if (rc) {
2320 				log_rdma_mr(ERR,
2321 					"ib_dereg_mr failed rc=%x\n",
2322 					rc);
2323 				smbd_disconnect_rdma_connection(sc);
2324 				continue;
2325 			}
2326 
2327 			smbdirect_mr->mr = ib_alloc_mr(
2328 				sc->ib.pd, sc->mr_io.type,
2329 				sp->max_frmr_depth);
2330 			if (IS_ERR(smbdirect_mr->mr)) {
2331 				log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2332 					    sc->mr_io.type,
2333 					    sp->max_frmr_depth);
2334 				smbd_disconnect_rdma_connection(sc);
2335 				continue;
2336 			}
2337 		} else
2338 			/* This MR is being used, don't recover it */
2339 			continue;
2340 
2341 		smbdirect_mr->state = SMBDIRECT_MR_READY;
2342 
2343 		/* smbdirect_mr->state is updated by this function
2344 		 * and is read and updated by I/O issuing CPUs trying
2345 		 * to get a MR, the call to atomic_inc_return
2346 		 * implicates a memory barrier and guarantees this
2347 		 * value is updated before waking up any calls to
2348 		 * get_mr() from the I/O issuing CPUs
2349 		 */
2350 		if (atomic_inc_return(&sc->mr_io.ready.count) == 1)
2351 			wake_up(&sc->mr_io.ready.wait_queue);
2352 	}
2353 }
2354 
destroy_mr_list(struct smbdirect_socket * sc)2355 static void destroy_mr_list(struct smbdirect_socket *sc)
2356 {
2357 	struct smbdirect_mr_io *mr, *tmp;
2358 
2359 	disable_work_sync(&sc->mr_io.recovery_work);
2360 	list_for_each_entry_safe(mr, tmp, &sc->mr_io.all.list, list) {
2361 		if (mr->state == SMBDIRECT_MR_INVALIDATED)
2362 			ib_dma_unmap_sg(sc->ib.dev, mr->sgt.sgl,
2363 				mr->sgt.nents, mr->dir);
2364 		ib_dereg_mr(mr->mr);
2365 		kfree(mr->sgt.sgl);
2366 		kfree(mr);
2367 	}
2368 }
2369 
2370 /*
2371  * Allocate MRs used for RDMA read/write
2372  * The number of MRs will not exceed hardware capability in responder_resources
2373  * All MRs are kept in mr_list. The MR can be recovered after it's used
2374  * Recovery is done in smbd_mr_recovery_work. The content of list entry changes
2375  * as MRs are used and recovered for I/O, but the list links will not change
2376  */
allocate_mr_list(struct smbdirect_socket * sc)2377 static int allocate_mr_list(struct smbdirect_socket *sc)
2378 {
2379 	struct smbdirect_socket_parameters *sp = &sc->parameters;
2380 	int i;
2381 	struct smbdirect_mr_io *smbdirect_mr, *tmp;
2382 
2383 	INIT_WORK(&sc->mr_io.recovery_work, smbd_mr_recovery_work);
2384 
2385 	if (sp->responder_resources == 0) {
2386 		log_rdma_mr(ERR, "responder_resources negotiated as 0\n");
2387 		return -EINVAL;
2388 	}
2389 
2390 	/* Allocate more MRs (2x) than hardware responder_resources */
2391 	for (i = 0; i < sp->responder_resources * 2; i++) {
2392 		smbdirect_mr = kzalloc(sizeof(*smbdirect_mr), GFP_KERNEL);
2393 		if (!smbdirect_mr)
2394 			goto cleanup_entries;
2395 		smbdirect_mr->mr = ib_alloc_mr(sc->ib.pd, sc->mr_io.type,
2396 					sp->max_frmr_depth);
2397 		if (IS_ERR(smbdirect_mr->mr)) {
2398 			log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2399 				    sc->mr_io.type, sp->max_frmr_depth);
2400 			goto out;
2401 		}
2402 		smbdirect_mr->sgt.sgl = kcalloc(sp->max_frmr_depth,
2403 						sizeof(struct scatterlist),
2404 						GFP_KERNEL);
2405 		if (!smbdirect_mr->sgt.sgl) {
2406 			log_rdma_mr(ERR, "failed to allocate sgl\n");
2407 			ib_dereg_mr(smbdirect_mr->mr);
2408 			goto out;
2409 		}
2410 		smbdirect_mr->state = SMBDIRECT_MR_READY;
2411 		smbdirect_mr->socket = sc;
2412 
2413 		list_add_tail(&smbdirect_mr->list, &sc->mr_io.all.list);
2414 		atomic_inc(&sc->mr_io.ready.count);
2415 	}
2416 	return 0;
2417 
2418 out:
2419 	kfree(smbdirect_mr);
2420 cleanup_entries:
2421 	list_for_each_entry_safe(smbdirect_mr, tmp, &sc->mr_io.all.list, list) {
2422 		list_del(&smbdirect_mr->list);
2423 		ib_dereg_mr(smbdirect_mr->mr);
2424 		kfree(smbdirect_mr->sgt.sgl);
2425 		kfree(smbdirect_mr);
2426 	}
2427 	return -ENOMEM;
2428 }
2429 
2430 /*
2431  * Get a MR from mr_list. This function waits until there is at least one
2432  * MR available in the list. It may access the list while the
2433  * smbd_mr_recovery_work is recovering the MR list. This doesn't need a lock
2434  * as they never modify the same places. However, there may be several CPUs
2435  * issuing I/O trying to get MR at the same time, mr_list_lock is used to
2436  * protect this situation.
2437  */
get_mr(struct smbdirect_socket * sc)2438 static struct smbdirect_mr_io *get_mr(struct smbdirect_socket *sc)
2439 {
2440 	struct smbdirect_mr_io *ret;
2441 	unsigned long flags;
2442 	int rc;
2443 again:
2444 	rc = wait_event_interruptible(sc->mr_io.ready.wait_queue,
2445 		atomic_read(&sc->mr_io.ready.count) ||
2446 		sc->status != SMBDIRECT_SOCKET_CONNECTED);
2447 	if (rc) {
2448 		log_rdma_mr(ERR, "wait_event_interruptible rc=%x\n", rc);
2449 		return NULL;
2450 	}
2451 
2452 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
2453 		log_rdma_mr(ERR, "sc->status=%x\n", sc->status);
2454 		return NULL;
2455 	}
2456 
2457 	spin_lock_irqsave(&sc->mr_io.all.lock, flags);
2458 	list_for_each_entry(ret, &sc->mr_io.all.list, list) {
2459 		if (ret->state == SMBDIRECT_MR_READY) {
2460 			ret->state = SMBDIRECT_MR_REGISTERED;
2461 			spin_unlock_irqrestore(&sc->mr_io.all.lock, flags);
2462 			atomic_dec(&sc->mr_io.ready.count);
2463 			atomic_inc(&sc->mr_io.used.count);
2464 			return ret;
2465 		}
2466 	}
2467 
2468 	spin_unlock_irqrestore(&sc->mr_io.all.lock, flags);
2469 	/*
2470 	 * It is possible that we could fail to get MR because other processes may
2471 	 * try to acquire a MR at the same time. If this is the case, retry it.
2472 	 */
2473 	goto again;
2474 }
2475 
2476 /*
2477  * Transcribe the pages from an iterator into an MR scatterlist.
2478  */
smbd_iter_to_mr(struct iov_iter * iter,struct sg_table * sgt,unsigned int max_sg)2479 static int smbd_iter_to_mr(struct iov_iter *iter,
2480 			   struct sg_table *sgt,
2481 			   unsigned int max_sg)
2482 {
2483 	int ret;
2484 
2485 	memset(sgt->sgl, 0, max_sg * sizeof(struct scatterlist));
2486 
2487 	ret = extract_iter_to_sg(iter, iov_iter_count(iter), sgt, max_sg, 0);
2488 	WARN_ON(ret < 0);
2489 	if (sgt->nents > 0)
2490 		sg_mark_end(&sgt->sgl[sgt->nents - 1]);
2491 	return ret;
2492 }
2493 
2494 /*
2495  * Register memory for RDMA read/write
2496  * iter: the buffer to register memory with
2497  * writing: true if this is a RDMA write (SMB read), false for RDMA read
2498  * need_invalidate: true if this MR needs to be locally invalidated after I/O
2499  * return value: the MR registered, NULL if failed.
2500  */
smbd_register_mr(struct smbd_connection * info,struct iov_iter * iter,bool writing,bool need_invalidate)2501 struct smbdirect_mr_io *smbd_register_mr(struct smbd_connection *info,
2502 				 struct iov_iter *iter,
2503 				 bool writing, bool need_invalidate)
2504 {
2505 	struct smbdirect_socket *sc = &info->socket;
2506 	struct smbdirect_socket_parameters *sp = &sc->parameters;
2507 	struct smbdirect_mr_io *smbdirect_mr;
2508 	int rc, num_pages;
2509 	enum dma_data_direction dir;
2510 	struct ib_reg_wr *reg_wr;
2511 
2512 	num_pages = iov_iter_npages(iter, sp->max_frmr_depth + 1);
2513 	if (num_pages > sp->max_frmr_depth) {
2514 		log_rdma_mr(ERR, "num_pages=%d max_frmr_depth=%d\n",
2515 			num_pages, sp->max_frmr_depth);
2516 		WARN_ON_ONCE(1);
2517 		return NULL;
2518 	}
2519 
2520 	smbdirect_mr = get_mr(sc);
2521 	if (!smbdirect_mr) {
2522 		log_rdma_mr(ERR, "get_mr returning NULL\n");
2523 		return NULL;
2524 	}
2525 
2526 	dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2527 	smbdirect_mr->dir = dir;
2528 	smbdirect_mr->need_invalidate = need_invalidate;
2529 	smbdirect_mr->sgt.nents = 0;
2530 	smbdirect_mr->sgt.orig_nents = 0;
2531 
2532 	log_rdma_mr(INFO, "num_pages=0x%x count=0x%zx depth=%u\n",
2533 		    num_pages, iov_iter_count(iter), sp->max_frmr_depth);
2534 	smbd_iter_to_mr(iter, &smbdirect_mr->sgt, sp->max_frmr_depth);
2535 
2536 	rc = ib_dma_map_sg(sc->ib.dev, smbdirect_mr->sgt.sgl,
2537 			   smbdirect_mr->sgt.nents, dir);
2538 	if (!rc) {
2539 		log_rdma_mr(ERR, "ib_dma_map_sg num_pages=%x dir=%x rc=%x\n",
2540 			num_pages, dir, rc);
2541 		goto dma_map_error;
2542 	}
2543 
2544 	rc = ib_map_mr_sg(smbdirect_mr->mr, smbdirect_mr->sgt.sgl,
2545 			  smbdirect_mr->sgt.nents, NULL, PAGE_SIZE);
2546 	if (rc != smbdirect_mr->sgt.nents) {
2547 		log_rdma_mr(ERR,
2548 			"ib_map_mr_sg failed rc = %d nents = %x\n",
2549 			rc, smbdirect_mr->sgt.nents);
2550 		goto map_mr_error;
2551 	}
2552 
2553 	ib_update_fast_reg_key(smbdirect_mr->mr,
2554 		ib_inc_rkey(smbdirect_mr->mr->rkey));
2555 	reg_wr = &smbdirect_mr->wr;
2556 	reg_wr->wr.opcode = IB_WR_REG_MR;
2557 	smbdirect_mr->cqe.done = register_mr_done;
2558 	reg_wr->wr.wr_cqe = &smbdirect_mr->cqe;
2559 	reg_wr->wr.num_sge = 0;
2560 	reg_wr->wr.send_flags = IB_SEND_SIGNALED;
2561 	reg_wr->mr = smbdirect_mr->mr;
2562 	reg_wr->key = smbdirect_mr->mr->rkey;
2563 	reg_wr->access = writing ?
2564 			IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
2565 			IB_ACCESS_REMOTE_READ;
2566 
2567 	/*
2568 	 * There is no need for waiting for complemtion on ib_post_send
2569 	 * on IB_WR_REG_MR. Hardware enforces a barrier and order of execution
2570 	 * on the next ib_post_send when we actually send I/O to remote peer
2571 	 */
2572 	rc = ib_post_send(sc->ib.qp, &reg_wr->wr, NULL);
2573 	if (!rc)
2574 		return smbdirect_mr;
2575 
2576 	log_rdma_mr(ERR, "ib_post_send failed rc=%x reg_wr->key=%x\n",
2577 		rc, reg_wr->key);
2578 
2579 	/* If all failed, attempt to recover this MR by setting it SMBDIRECT_MR_ERROR*/
2580 map_mr_error:
2581 	ib_dma_unmap_sg(sc->ib.dev, smbdirect_mr->sgt.sgl,
2582 			smbdirect_mr->sgt.nents, smbdirect_mr->dir);
2583 
2584 dma_map_error:
2585 	smbdirect_mr->state = SMBDIRECT_MR_ERROR;
2586 	if (atomic_dec_and_test(&sc->mr_io.used.count))
2587 		wake_up(&sc->mr_io.cleanup.wait_queue);
2588 
2589 	smbd_disconnect_rdma_connection(sc);
2590 
2591 	return NULL;
2592 }
2593 
local_inv_done(struct ib_cq * cq,struct ib_wc * wc)2594 static void local_inv_done(struct ib_cq *cq, struct ib_wc *wc)
2595 {
2596 	struct smbdirect_mr_io *smbdirect_mr;
2597 	struct ib_cqe *cqe;
2598 
2599 	cqe = wc->wr_cqe;
2600 	smbdirect_mr = container_of(cqe, struct smbdirect_mr_io, cqe);
2601 	smbdirect_mr->state = SMBDIRECT_MR_INVALIDATED;
2602 	if (wc->status != IB_WC_SUCCESS) {
2603 		log_rdma_mr(ERR, "invalidate failed status=%x\n", wc->status);
2604 		smbdirect_mr->state = SMBDIRECT_MR_ERROR;
2605 	}
2606 	complete(&smbdirect_mr->invalidate_done);
2607 }
2608 
2609 /*
2610  * Deregister a MR after I/O is done
2611  * This function may wait if remote invalidation is not used
2612  * and we have to locally invalidate the buffer to prevent data is being
2613  * modified by remote peer after upper layer consumes it
2614  */
smbd_deregister_mr(struct smbdirect_mr_io * smbdirect_mr)2615 int smbd_deregister_mr(struct smbdirect_mr_io *smbdirect_mr)
2616 {
2617 	struct ib_send_wr *wr;
2618 	struct smbdirect_socket *sc = smbdirect_mr->socket;
2619 	int rc = 0;
2620 
2621 	if (smbdirect_mr->need_invalidate) {
2622 		/* Need to finish local invalidation before returning */
2623 		wr = &smbdirect_mr->inv_wr;
2624 		wr->opcode = IB_WR_LOCAL_INV;
2625 		smbdirect_mr->cqe.done = local_inv_done;
2626 		wr->wr_cqe = &smbdirect_mr->cqe;
2627 		wr->num_sge = 0;
2628 		wr->ex.invalidate_rkey = smbdirect_mr->mr->rkey;
2629 		wr->send_flags = IB_SEND_SIGNALED;
2630 
2631 		init_completion(&smbdirect_mr->invalidate_done);
2632 		rc = ib_post_send(sc->ib.qp, wr, NULL);
2633 		if (rc) {
2634 			log_rdma_mr(ERR, "ib_post_send failed rc=%x\n", rc);
2635 			smbd_disconnect_rdma_connection(sc);
2636 			goto done;
2637 		}
2638 		wait_for_completion(&smbdirect_mr->invalidate_done);
2639 		smbdirect_mr->need_invalidate = false;
2640 	} else
2641 		/*
2642 		 * For remote invalidation, just set it to SMBDIRECT_MR_INVALIDATED
2643 		 * and defer to mr_recovery_work to recover the MR for next use
2644 		 */
2645 		smbdirect_mr->state = SMBDIRECT_MR_INVALIDATED;
2646 
2647 	if (smbdirect_mr->state == SMBDIRECT_MR_INVALIDATED) {
2648 		ib_dma_unmap_sg(
2649 			sc->ib.dev, smbdirect_mr->sgt.sgl,
2650 			smbdirect_mr->sgt.nents,
2651 			smbdirect_mr->dir);
2652 		smbdirect_mr->state = SMBDIRECT_MR_READY;
2653 		if (atomic_inc_return(&sc->mr_io.ready.count) == 1)
2654 			wake_up(&sc->mr_io.ready.wait_queue);
2655 	} else
2656 		/*
2657 		 * Schedule the work to do MR recovery for future I/Os MR
2658 		 * recovery is slow and don't want it to block current I/O
2659 		 */
2660 		queue_work(sc->workqueue, &sc->mr_io.recovery_work);
2661 
2662 done:
2663 	if (atomic_dec_and_test(&sc->mr_io.used.count))
2664 		wake_up(&sc->mr_io.cleanup.wait_queue);
2665 
2666 	return rc;
2667 }
2668 
smb_set_sge(struct smb_extract_to_rdma * rdma,struct page * lowest_page,size_t off,size_t len)2669 static bool smb_set_sge(struct smb_extract_to_rdma *rdma,
2670 			struct page *lowest_page, size_t off, size_t len)
2671 {
2672 	struct ib_sge *sge = &rdma->sge[rdma->nr_sge];
2673 	u64 addr;
2674 
2675 	addr = ib_dma_map_page(rdma->device, lowest_page,
2676 			       off, len, rdma->direction);
2677 	if (ib_dma_mapping_error(rdma->device, addr))
2678 		return false;
2679 
2680 	sge->addr   = addr;
2681 	sge->length = len;
2682 	sge->lkey   = rdma->local_dma_lkey;
2683 	rdma->nr_sge++;
2684 	return true;
2685 }
2686 
2687 /*
2688  * Extract page fragments from a BVEC-class iterator and add them to an RDMA
2689  * element list.  The pages are not pinned.
2690  */
smb_extract_bvec_to_rdma(struct iov_iter * iter,struct smb_extract_to_rdma * rdma,ssize_t maxsize)2691 static ssize_t smb_extract_bvec_to_rdma(struct iov_iter *iter,
2692 					struct smb_extract_to_rdma *rdma,
2693 					ssize_t maxsize)
2694 {
2695 	const struct bio_vec *bv = iter->bvec;
2696 	unsigned long start = iter->iov_offset;
2697 	unsigned int i;
2698 	ssize_t ret = 0;
2699 
2700 	for (i = 0; i < iter->nr_segs; i++) {
2701 		size_t off, len;
2702 
2703 		len = bv[i].bv_len;
2704 		if (start >= len) {
2705 			start -= len;
2706 			continue;
2707 		}
2708 
2709 		len = min_t(size_t, maxsize, len - start);
2710 		off = bv[i].bv_offset + start;
2711 
2712 		if (!smb_set_sge(rdma, bv[i].bv_page, off, len))
2713 			return -EIO;
2714 
2715 		ret += len;
2716 		maxsize -= len;
2717 		if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0)
2718 			break;
2719 		start = 0;
2720 	}
2721 
2722 	if (ret > 0)
2723 		iov_iter_advance(iter, ret);
2724 	return ret;
2725 }
2726 
2727 /*
2728  * Extract fragments from a KVEC-class iterator and add them to an RDMA list.
2729  * This can deal with vmalloc'd buffers as well as kmalloc'd or static buffers.
2730  * The pages are not pinned.
2731  */
smb_extract_kvec_to_rdma(struct iov_iter * iter,struct smb_extract_to_rdma * rdma,ssize_t maxsize)2732 static ssize_t smb_extract_kvec_to_rdma(struct iov_iter *iter,
2733 					struct smb_extract_to_rdma *rdma,
2734 					ssize_t maxsize)
2735 {
2736 	const struct kvec *kv = iter->kvec;
2737 	unsigned long start = iter->iov_offset;
2738 	unsigned int i;
2739 	ssize_t ret = 0;
2740 
2741 	for (i = 0; i < iter->nr_segs; i++) {
2742 		struct page *page;
2743 		unsigned long kaddr;
2744 		size_t off, len, seg;
2745 
2746 		len = kv[i].iov_len;
2747 		if (start >= len) {
2748 			start -= len;
2749 			continue;
2750 		}
2751 
2752 		kaddr = (unsigned long)kv[i].iov_base + start;
2753 		off = kaddr & ~PAGE_MASK;
2754 		len = min_t(size_t, maxsize, len - start);
2755 		kaddr &= PAGE_MASK;
2756 
2757 		maxsize -= len;
2758 		do {
2759 			seg = min_t(size_t, len, PAGE_SIZE - off);
2760 
2761 			if (is_vmalloc_or_module_addr((void *)kaddr))
2762 				page = vmalloc_to_page((void *)kaddr);
2763 			else
2764 				page = virt_to_page((void *)kaddr);
2765 
2766 			if (!smb_set_sge(rdma, page, off, seg))
2767 				return -EIO;
2768 
2769 			ret += seg;
2770 			len -= seg;
2771 			kaddr += PAGE_SIZE;
2772 			off = 0;
2773 		} while (len > 0 && rdma->nr_sge < rdma->max_sge);
2774 
2775 		if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0)
2776 			break;
2777 		start = 0;
2778 	}
2779 
2780 	if (ret > 0)
2781 		iov_iter_advance(iter, ret);
2782 	return ret;
2783 }
2784 
2785 /*
2786  * Extract folio fragments from a FOLIOQ-class iterator and add them to an RDMA
2787  * list.  The folios are not pinned.
2788  */
smb_extract_folioq_to_rdma(struct iov_iter * iter,struct smb_extract_to_rdma * rdma,ssize_t maxsize)2789 static ssize_t smb_extract_folioq_to_rdma(struct iov_iter *iter,
2790 					  struct smb_extract_to_rdma *rdma,
2791 					  ssize_t maxsize)
2792 {
2793 	const struct folio_queue *folioq = iter->folioq;
2794 	unsigned int slot = iter->folioq_slot;
2795 	ssize_t ret = 0;
2796 	size_t offset = iter->iov_offset;
2797 
2798 	BUG_ON(!folioq);
2799 
2800 	if (slot >= folioq_nr_slots(folioq)) {
2801 		folioq = folioq->next;
2802 		if (WARN_ON_ONCE(!folioq))
2803 			return -EIO;
2804 		slot = 0;
2805 	}
2806 
2807 	do {
2808 		struct folio *folio = folioq_folio(folioq, slot);
2809 		size_t fsize = folioq_folio_size(folioq, slot);
2810 
2811 		if (offset < fsize) {
2812 			size_t part = umin(maxsize, fsize - offset);
2813 
2814 			if (!smb_set_sge(rdma, folio_page(folio, 0), offset, part))
2815 				return -EIO;
2816 
2817 			offset += part;
2818 			ret += part;
2819 			maxsize -= part;
2820 		}
2821 
2822 		if (offset >= fsize) {
2823 			offset = 0;
2824 			slot++;
2825 			if (slot >= folioq_nr_slots(folioq)) {
2826 				if (!folioq->next) {
2827 					WARN_ON_ONCE(ret < iter->count);
2828 					break;
2829 				}
2830 				folioq = folioq->next;
2831 				slot = 0;
2832 			}
2833 		}
2834 	} while (rdma->nr_sge < rdma->max_sge && maxsize > 0);
2835 
2836 	iter->folioq = folioq;
2837 	iter->folioq_slot = slot;
2838 	iter->iov_offset = offset;
2839 	iter->count -= ret;
2840 	return ret;
2841 }
2842 
2843 /*
2844  * Extract page fragments from up to the given amount of the source iterator
2845  * and build up an RDMA list that refers to all of those bits.  The RDMA list
2846  * is appended to, up to the maximum number of elements set in the parameter
2847  * block.
2848  *
2849  * The extracted page fragments are not pinned or ref'd in any way; if an
2850  * IOVEC/UBUF-type iterator is to be used, it should be converted to a
2851  * BVEC-type iterator and the pages pinned, ref'd or otherwise held in some
2852  * way.
2853  */
smb_extract_iter_to_rdma(struct iov_iter * iter,size_t len,struct smb_extract_to_rdma * rdma)2854 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len,
2855 					struct smb_extract_to_rdma *rdma)
2856 {
2857 	ssize_t ret;
2858 	int before = rdma->nr_sge;
2859 
2860 	switch (iov_iter_type(iter)) {
2861 	case ITER_BVEC:
2862 		ret = smb_extract_bvec_to_rdma(iter, rdma, len);
2863 		break;
2864 	case ITER_KVEC:
2865 		ret = smb_extract_kvec_to_rdma(iter, rdma, len);
2866 		break;
2867 	case ITER_FOLIOQ:
2868 		ret = smb_extract_folioq_to_rdma(iter, rdma, len);
2869 		break;
2870 	default:
2871 		WARN_ON_ONCE(1);
2872 		return -EIO;
2873 	}
2874 
2875 	if (ret < 0) {
2876 		while (rdma->nr_sge > before) {
2877 			struct ib_sge *sge = &rdma->sge[rdma->nr_sge--];
2878 
2879 			ib_dma_unmap_single(rdma->device, sge->addr, sge->length,
2880 					    rdma->direction);
2881 			sge->addr = 0;
2882 		}
2883 	}
2884 
2885 	return ret;
2886 }
2887