xref: /linux/fs/smb/client/smbdirect.c (revision 95baf63fe81e5fc91d194019f5aec8ecd9c50bb6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *   Copyright (C) 2017, Microsoft Corporation.
4  *
5  *   Author(s): Long Li <longli@microsoft.com>
6  */
7 #include <linux/module.h>
8 #include <linux/highmem.h>
9 #include <linux/folio_queue.h>
10 #include "../common/smbdirect/smbdirect_pdu.h"
11 #include "smbdirect.h"
12 #include "cifs_debug.h"
13 #include "cifsproto.h"
14 #include "smb2proto.h"
15 
smbd_get_parameters(struct smbd_connection * conn)16 const struct smbdirect_socket_parameters *smbd_get_parameters(struct smbd_connection *conn)
17 {
18 	struct smbdirect_socket *sc = &conn->socket;
19 
20 	return &sc->parameters;
21 }
22 
23 static struct smbdirect_recv_io *get_receive_buffer(
24 		struct smbdirect_socket *sc);
25 static void put_receive_buffer(
26 		struct smbdirect_socket *sc,
27 		struct smbdirect_recv_io *response);
28 static int allocate_receive_buffers(struct smbdirect_socket *sc, int num_buf);
29 static void destroy_receive_buffers(struct smbdirect_socket *sc);
30 
31 static void enqueue_reassembly(
32 		struct smbdirect_socket *sc,
33 		struct smbdirect_recv_io *response, int data_length);
34 static struct smbdirect_recv_io *_get_first_reassembly(
35 		struct smbdirect_socket *sc);
36 
37 static int smbd_post_recv(
38 		struct smbdirect_socket *sc,
39 		struct smbdirect_recv_io *response);
40 
41 static int smbd_post_send_empty(struct smbdirect_socket *sc);
42 
43 static void destroy_mr_list(struct smbdirect_socket *sc);
44 static int allocate_mr_list(struct smbdirect_socket *sc);
45 
46 struct smb_extract_to_rdma {
47 	struct ib_sge		*sge;
48 	unsigned int		nr_sge;
49 	unsigned int		max_sge;
50 	struct ib_device	*device;
51 	u32			local_dma_lkey;
52 	enum dma_data_direction	direction;
53 };
54 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len,
55 					struct smb_extract_to_rdma *rdma);
56 
57 /* Port numbers for SMBD transport */
58 #define SMB_PORT	445
59 #define SMBD_PORT	5445
60 
61 /* Address lookup and resolve timeout in ms */
62 #define RDMA_RESOLVE_TIMEOUT	5000
63 
64 /* SMBD negotiation timeout in seconds */
65 #define SMBD_NEGOTIATE_TIMEOUT	120
66 
67 /* The timeout to wait for a keepalive message from peer in seconds */
68 #define KEEPALIVE_RECV_TIMEOUT 5
69 
70 /* SMBD minimum receive size and fragmented sized defined in [MS-SMBD] */
71 #define SMBD_MIN_RECEIVE_SIZE		128
72 #define SMBD_MIN_FRAGMENTED_SIZE	131072
73 
74 /*
75  * Default maximum number of RDMA read/write outstanding on this connection
76  * This value is possibly decreased during QP creation on hardware limit
77  */
78 #define SMBD_CM_RESPONDER_RESOURCES	32
79 
80 /* Maximum number of retries on data transfer operations */
81 #define SMBD_CM_RETRY			6
82 /* No need to retry on Receiver Not Ready since SMBD manages credits */
83 #define SMBD_CM_RNR_RETRY		0
84 
85 /*
86  * User configurable initial values per SMBD transport connection
87  * as defined in [MS-SMBD] 3.1.1.1
88  * Those may change after a SMBD negotiation
89  */
90 /* The local peer's maximum number of credits to grant to the peer */
91 int smbd_receive_credit_max = 255;
92 
93 /* The remote peer's credit request of local peer */
94 int smbd_send_credit_target = 255;
95 
96 /* The maximum single message size can be sent to remote peer */
97 int smbd_max_send_size = 1364;
98 
99 /*  The maximum fragmented upper-layer payload receive size supported */
100 int smbd_max_fragmented_recv_size = 1024 * 1024;
101 
102 /*  The maximum single-message size which can be received */
103 int smbd_max_receive_size = 1364;
104 
105 /* The timeout to initiate send of a keepalive message on idle */
106 int smbd_keep_alive_interval = 120;
107 
108 /*
109  * User configurable initial values for RDMA transport
110  * The actual values used may be lower and are limited to hardware capabilities
111  */
112 /* Default maximum number of pages in a single RDMA write/read */
113 int smbd_max_frmr_depth = 2048;
114 
115 /* If payload is less than this byte, use RDMA send/recv not read/write */
116 int rdma_readwrite_threshold = 4096;
117 
118 /* Transport logging functions
119  * Logging are defined as classes. They can be OR'ed to define the actual
120  * logging level via module parameter smbd_logging_class
121  * e.g. cifs.smbd_logging_class=0xa0 will log all log_rdma_recv() and
122  * log_rdma_event()
123  */
124 #define LOG_OUTGOING			0x1
125 #define LOG_INCOMING			0x2
126 #define LOG_READ			0x4
127 #define LOG_WRITE			0x8
128 #define LOG_RDMA_SEND			0x10
129 #define LOG_RDMA_RECV			0x20
130 #define LOG_KEEP_ALIVE			0x40
131 #define LOG_RDMA_EVENT			0x80
132 #define LOG_RDMA_MR			0x100
133 static unsigned int smbd_logging_class;
134 module_param(smbd_logging_class, uint, 0644);
135 MODULE_PARM_DESC(smbd_logging_class,
136 	"Logging class for SMBD transport 0x0 to 0x100");
137 
138 #define ERR		0x0
139 #define INFO		0x1
140 static unsigned int smbd_logging_level = ERR;
141 module_param(smbd_logging_level, uint, 0644);
142 MODULE_PARM_DESC(smbd_logging_level,
143 	"Logging level for SMBD transport, 0 (default): error, 1: info");
144 
145 #define log_rdma(level, class, fmt, args...)				\
146 do {									\
147 	if (level <= smbd_logging_level || class & smbd_logging_class)	\
148 		cifs_dbg(VFS, "%s:%d " fmt, __func__, __LINE__, ##args);\
149 } while (0)
150 
151 #define log_outgoing(level, fmt, args...) \
152 		log_rdma(level, LOG_OUTGOING, fmt, ##args)
153 #define log_incoming(level, fmt, args...) \
154 		log_rdma(level, LOG_INCOMING, fmt, ##args)
155 #define log_read(level, fmt, args...)	log_rdma(level, LOG_READ, fmt, ##args)
156 #define log_write(level, fmt, args...)	log_rdma(level, LOG_WRITE, fmt, ##args)
157 #define log_rdma_send(level, fmt, args...) \
158 		log_rdma(level, LOG_RDMA_SEND, fmt, ##args)
159 #define log_rdma_recv(level, fmt, args...) \
160 		log_rdma(level, LOG_RDMA_RECV, fmt, ##args)
161 #define log_keep_alive(level, fmt, args...) \
162 		log_rdma(level, LOG_KEEP_ALIVE, fmt, ##args)
163 #define log_rdma_event(level, fmt, args...) \
164 		log_rdma(level, LOG_RDMA_EVENT, fmt, ##args)
165 #define log_rdma_mr(level, fmt, args...) \
166 		log_rdma(level, LOG_RDMA_MR, fmt, ##args)
167 
smbd_disconnect_wake_up_all(struct smbdirect_socket * sc)168 static void smbd_disconnect_wake_up_all(struct smbdirect_socket *sc)
169 {
170 	/*
171 	 * Wake up all waiters in all wait queues
172 	 * in order to notice the broken connection.
173 	 */
174 	wake_up_all(&sc->status_wait);
175 	wake_up_all(&sc->send_io.lcredits.wait_queue);
176 	wake_up_all(&sc->send_io.credits.wait_queue);
177 	wake_up_all(&sc->send_io.pending.dec_wait_queue);
178 	wake_up_all(&sc->send_io.pending.zero_wait_queue);
179 	wake_up_all(&sc->recv_io.reassembly.wait_queue);
180 	wake_up_all(&sc->mr_io.ready.wait_queue);
181 	wake_up_all(&sc->mr_io.cleanup.wait_queue);
182 }
183 
smbd_disconnect_rdma_work(struct work_struct * work)184 static void smbd_disconnect_rdma_work(struct work_struct *work)
185 {
186 	struct smbdirect_socket *sc =
187 		container_of(work, struct smbdirect_socket, disconnect_work);
188 
189 	/*
190 	 * make sure this and other work is not queued again
191 	 * but here we don't block and avoid
192 	 * disable[_delayed]_work_sync()
193 	 */
194 	disable_work(&sc->disconnect_work);
195 	disable_work(&sc->recv_io.posted.refill_work);
196 	disable_work(&sc->mr_io.recovery_work);
197 	disable_work(&sc->idle.immediate_work);
198 	disable_delayed_work(&sc->idle.timer_work);
199 
200 	if (sc->first_error == 0)
201 		sc->first_error = -ECONNABORTED;
202 
203 	switch (sc->status) {
204 	case SMBDIRECT_SOCKET_NEGOTIATE_NEEDED:
205 	case SMBDIRECT_SOCKET_NEGOTIATE_RUNNING:
206 	case SMBDIRECT_SOCKET_NEGOTIATE_FAILED:
207 	case SMBDIRECT_SOCKET_CONNECTED:
208 	case SMBDIRECT_SOCKET_ERROR:
209 		sc->status = SMBDIRECT_SOCKET_DISCONNECTING;
210 		rdma_disconnect(sc->rdma.cm_id);
211 		break;
212 
213 	case SMBDIRECT_SOCKET_CREATED:
214 	case SMBDIRECT_SOCKET_RESOLVE_ADDR_NEEDED:
215 	case SMBDIRECT_SOCKET_RESOLVE_ADDR_RUNNING:
216 	case SMBDIRECT_SOCKET_RESOLVE_ADDR_FAILED:
217 	case SMBDIRECT_SOCKET_RESOLVE_ROUTE_NEEDED:
218 	case SMBDIRECT_SOCKET_RESOLVE_ROUTE_RUNNING:
219 	case SMBDIRECT_SOCKET_RESOLVE_ROUTE_FAILED:
220 	case SMBDIRECT_SOCKET_RDMA_CONNECT_NEEDED:
221 	case SMBDIRECT_SOCKET_RDMA_CONNECT_RUNNING:
222 	case SMBDIRECT_SOCKET_RDMA_CONNECT_FAILED:
223 		/*
224 		 * rdma_connect() never reached
225 		 * RDMA_CM_EVENT_ESTABLISHED
226 		 */
227 		sc->status = SMBDIRECT_SOCKET_DISCONNECTED;
228 		break;
229 
230 	case SMBDIRECT_SOCKET_DISCONNECTING:
231 	case SMBDIRECT_SOCKET_DISCONNECTED:
232 	case SMBDIRECT_SOCKET_DESTROYED:
233 		break;
234 	}
235 
236 	/*
237 	 * Wake up all waiters in all wait queues
238 	 * in order to notice the broken connection.
239 	 */
240 	smbd_disconnect_wake_up_all(sc);
241 }
242 
smbd_disconnect_rdma_connection(struct smbdirect_socket * sc)243 static void smbd_disconnect_rdma_connection(struct smbdirect_socket *sc)
244 {
245 	/*
246 	 * make sure other work (than disconnect_work) is
247 	 * not queued again but here we don't block and avoid
248 	 * disable[_delayed]_work_sync()
249 	 */
250 	disable_work(&sc->recv_io.posted.refill_work);
251 	disable_work(&sc->mr_io.recovery_work);
252 	disable_work(&sc->idle.immediate_work);
253 	disable_delayed_work(&sc->idle.timer_work);
254 
255 	if (sc->first_error == 0)
256 		sc->first_error = -ECONNABORTED;
257 
258 	switch (sc->status) {
259 	case SMBDIRECT_SOCKET_RESOLVE_ADDR_FAILED:
260 	case SMBDIRECT_SOCKET_RESOLVE_ROUTE_FAILED:
261 	case SMBDIRECT_SOCKET_RDMA_CONNECT_FAILED:
262 	case SMBDIRECT_SOCKET_NEGOTIATE_FAILED:
263 	case SMBDIRECT_SOCKET_ERROR:
264 	case SMBDIRECT_SOCKET_DISCONNECTING:
265 	case SMBDIRECT_SOCKET_DISCONNECTED:
266 	case SMBDIRECT_SOCKET_DESTROYED:
267 		/*
268 		 * Keep the current error status
269 		 */
270 		break;
271 
272 	case SMBDIRECT_SOCKET_RESOLVE_ADDR_NEEDED:
273 	case SMBDIRECT_SOCKET_RESOLVE_ADDR_RUNNING:
274 		sc->status = SMBDIRECT_SOCKET_RESOLVE_ADDR_FAILED;
275 		break;
276 
277 	case SMBDIRECT_SOCKET_RESOLVE_ROUTE_NEEDED:
278 	case SMBDIRECT_SOCKET_RESOLVE_ROUTE_RUNNING:
279 		sc->status = SMBDIRECT_SOCKET_RESOLVE_ROUTE_FAILED;
280 		break;
281 
282 	case SMBDIRECT_SOCKET_RDMA_CONNECT_NEEDED:
283 	case SMBDIRECT_SOCKET_RDMA_CONNECT_RUNNING:
284 		sc->status = SMBDIRECT_SOCKET_RDMA_CONNECT_FAILED;
285 		break;
286 
287 	case SMBDIRECT_SOCKET_NEGOTIATE_NEEDED:
288 	case SMBDIRECT_SOCKET_NEGOTIATE_RUNNING:
289 		sc->status = SMBDIRECT_SOCKET_NEGOTIATE_FAILED;
290 		break;
291 
292 	case SMBDIRECT_SOCKET_CREATED:
293 		sc->status = SMBDIRECT_SOCKET_DISCONNECTED;
294 		break;
295 
296 	case SMBDIRECT_SOCKET_CONNECTED:
297 		sc->status = SMBDIRECT_SOCKET_ERROR;
298 		break;
299 	}
300 
301 	/*
302 	 * Wake up all waiters in all wait queues
303 	 * in order to notice the broken connection.
304 	 */
305 	smbd_disconnect_wake_up_all(sc);
306 
307 	queue_work(sc->workqueue, &sc->disconnect_work);
308 }
309 
310 /* Upcall from RDMA CM */
smbd_conn_upcall(struct rdma_cm_id * id,struct rdma_cm_event * event)311 static int smbd_conn_upcall(
312 		struct rdma_cm_id *id, struct rdma_cm_event *event)
313 {
314 	struct smbdirect_socket *sc = id->context;
315 	struct smbdirect_socket_parameters *sp = &sc->parameters;
316 	const char *event_name = rdma_event_msg(event->event);
317 	u8 peer_initiator_depth;
318 	u8 peer_responder_resources;
319 
320 	log_rdma_event(INFO, "event=%s status=%d\n",
321 		event_name, event->status);
322 
323 	switch (event->event) {
324 	case RDMA_CM_EVENT_ADDR_RESOLVED:
325 		WARN_ON_ONCE(sc->status != SMBDIRECT_SOCKET_RESOLVE_ADDR_RUNNING);
326 		sc->status = SMBDIRECT_SOCKET_RESOLVE_ROUTE_NEEDED;
327 		wake_up(&sc->status_wait);
328 		break;
329 
330 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
331 		WARN_ON_ONCE(sc->status != SMBDIRECT_SOCKET_RESOLVE_ROUTE_RUNNING);
332 		sc->status = SMBDIRECT_SOCKET_RDMA_CONNECT_NEEDED;
333 		wake_up(&sc->status_wait);
334 		break;
335 
336 	case RDMA_CM_EVENT_ADDR_ERROR:
337 		log_rdma_event(ERR, "connecting failed event=%s\n", event_name);
338 		WARN_ON_ONCE(sc->status != SMBDIRECT_SOCKET_RESOLVE_ADDR_RUNNING);
339 		sc->status = SMBDIRECT_SOCKET_RESOLVE_ADDR_FAILED;
340 		smbd_disconnect_rdma_work(&sc->disconnect_work);
341 		break;
342 
343 	case RDMA_CM_EVENT_ROUTE_ERROR:
344 		log_rdma_event(ERR, "connecting failed event=%s\n", event_name);
345 		WARN_ON_ONCE(sc->status != SMBDIRECT_SOCKET_RESOLVE_ROUTE_RUNNING);
346 		sc->status = SMBDIRECT_SOCKET_RESOLVE_ROUTE_FAILED;
347 		smbd_disconnect_rdma_work(&sc->disconnect_work);
348 		break;
349 
350 	case RDMA_CM_EVENT_ESTABLISHED:
351 		log_rdma_event(INFO, "connected event=%s\n", event_name);
352 
353 		/*
354 		 * Here we work around an inconsistency between
355 		 * iWarp and other devices (at least rxe and irdma using RoCEv2)
356 		 */
357 		if (rdma_protocol_iwarp(id->device, id->port_num)) {
358 			/*
359 			 * iWarp devices report the peer's values
360 			 * with the perspective of the peer here.
361 			 * Tested with siw and irdma (in iwarp mode)
362 			 * We need to change to our perspective here,
363 			 * so we need to switch the values.
364 			 */
365 			peer_initiator_depth = event->param.conn.responder_resources;
366 			peer_responder_resources = event->param.conn.initiator_depth;
367 		} else {
368 			/*
369 			 * Non iWarp devices report the peer's values
370 			 * already changed to our perspective here.
371 			 * Tested with rxe and irdma (in roce mode).
372 			 */
373 			peer_initiator_depth = event->param.conn.initiator_depth;
374 			peer_responder_resources = event->param.conn.responder_resources;
375 		}
376 		if (rdma_protocol_iwarp(id->device, id->port_num) &&
377 		    event->param.conn.private_data_len == 8) {
378 			/*
379 			 * Legacy clients with only iWarp MPA v1 support
380 			 * need a private blob in order to negotiate
381 			 * the IRD/ORD values.
382 			 */
383 			const __be32 *ird_ord_hdr = event->param.conn.private_data;
384 			u32 ird32 = be32_to_cpu(ird_ord_hdr[0]);
385 			u32 ord32 = be32_to_cpu(ird_ord_hdr[1]);
386 
387 			/*
388 			 * cifs.ko sends the legacy IRD/ORD negotiation
389 			 * event if iWarp MPA v2 was used.
390 			 *
391 			 * Here we check that the values match and only
392 			 * mark the client as legacy if they don't match.
393 			 */
394 			if ((u32)event->param.conn.initiator_depth != ird32 ||
395 			    (u32)event->param.conn.responder_resources != ord32) {
396 				/*
397 				 * There are broken clients (old cifs.ko)
398 				 * using little endian and also
399 				 * struct rdma_conn_param only uses u8
400 				 * for initiator_depth and responder_resources,
401 				 * so we truncate the value to U8_MAX.
402 				 *
403 				 * smb_direct_accept_client() will then
404 				 * do the real negotiation in order to
405 				 * select the minimum between client and
406 				 * server.
407 				 */
408 				ird32 = min_t(u32, ird32, U8_MAX);
409 				ord32 = min_t(u32, ord32, U8_MAX);
410 
411 				sc->rdma.legacy_iwarp = true;
412 				peer_initiator_depth = (u8)ird32;
413 				peer_responder_resources = (u8)ord32;
414 			}
415 		}
416 
417 		/*
418 		 * negotiate the value by using the minimum
419 		 * between client and server if the client provided
420 		 * non 0 values.
421 		 */
422 		if (peer_initiator_depth != 0)
423 			sp->initiator_depth =
424 					min_t(u8, sp->initiator_depth,
425 					      peer_initiator_depth);
426 		if (peer_responder_resources != 0)
427 			sp->responder_resources =
428 					min_t(u8, sp->responder_resources,
429 					      peer_responder_resources);
430 
431 		WARN_ON_ONCE(sc->status != SMBDIRECT_SOCKET_RDMA_CONNECT_RUNNING);
432 		sc->status = SMBDIRECT_SOCKET_NEGOTIATE_NEEDED;
433 		wake_up(&sc->status_wait);
434 		break;
435 
436 	case RDMA_CM_EVENT_CONNECT_ERROR:
437 	case RDMA_CM_EVENT_UNREACHABLE:
438 	case RDMA_CM_EVENT_REJECTED:
439 		log_rdma_event(ERR, "connecting failed event=%s\n", event_name);
440 		WARN_ON_ONCE(sc->status != SMBDIRECT_SOCKET_RDMA_CONNECT_RUNNING);
441 		sc->status = SMBDIRECT_SOCKET_RDMA_CONNECT_FAILED;
442 		smbd_disconnect_rdma_work(&sc->disconnect_work);
443 		break;
444 
445 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
446 	case RDMA_CM_EVENT_DISCONNECTED:
447 		/* This happens when we fail the negotiation */
448 		if (sc->status == SMBDIRECT_SOCKET_NEGOTIATE_FAILED) {
449 			log_rdma_event(ERR, "event=%s during negotiation\n", event_name);
450 		}
451 
452 		sc->status = SMBDIRECT_SOCKET_DISCONNECTED;
453 		smbd_disconnect_rdma_work(&sc->disconnect_work);
454 		break;
455 
456 	default:
457 		log_rdma_event(ERR, "unexpected event=%s status=%d\n",
458 			       event_name, event->status);
459 		break;
460 	}
461 
462 	return 0;
463 }
464 
465 /* Upcall from RDMA QP */
466 static void
smbd_qp_async_error_upcall(struct ib_event * event,void * context)467 smbd_qp_async_error_upcall(struct ib_event *event, void *context)
468 {
469 	struct smbdirect_socket *sc = context;
470 
471 	log_rdma_event(ERR, "%s on device %s socket %p\n",
472 		ib_event_msg(event->event), event->device->name, sc);
473 
474 	switch (event->event) {
475 	case IB_EVENT_CQ_ERR:
476 	case IB_EVENT_QP_FATAL:
477 		smbd_disconnect_rdma_connection(sc);
478 		break;
479 
480 	default:
481 		break;
482 	}
483 }
484 
smbdirect_send_io_payload(struct smbdirect_send_io * request)485 static inline void *smbdirect_send_io_payload(struct smbdirect_send_io *request)
486 {
487 	return (void *)request->packet;
488 }
489 
smbdirect_recv_io_payload(struct smbdirect_recv_io * response)490 static inline void *smbdirect_recv_io_payload(struct smbdirect_recv_io *response)
491 {
492 	return (void *)response->packet;
493 }
494 
495 /* Called when a RDMA send is done */
send_done(struct ib_cq * cq,struct ib_wc * wc)496 static void send_done(struct ib_cq *cq, struct ib_wc *wc)
497 {
498 	int i;
499 	struct smbdirect_send_io *request =
500 		container_of(wc->wr_cqe, struct smbdirect_send_io, cqe);
501 	struct smbdirect_socket *sc = request->socket;
502 	int lcredits = 0;
503 
504 	log_rdma_send(INFO, "smbdirect_send_io 0x%p completed wc->status=%s\n",
505 		request, ib_wc_status_msg(wc->status));
506 
507 	for (i = 0; i < request->num_sge; i++)
508 		ib_dma_unmap_single(sc->ib.dev,
509 			request->sge[i].addr,
510 			request->sge[i].length,
511 			DMA_TO_DEVICE);
512 	mempool_free(request, sc->send_io.mem.pool);
513 	lcredits += 1;
514 
515 	if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_SEND) {
516 		if (wc->status != IB_WC_WR_FLUSH_ERR)
517 			log_rdma_send(ERR, "wc->status=%s wc->opcode=%d\n",
518 				ib_wc_status_msg(wc->status), wc->opcode);
519 		smbd_disconnect_rdma_connection(sc);
520 		return;
521 	}
522 
523 	atomic_add(lcredits, &sc->send_io.lcredits.count);
524 	wake_up(&sc->send_io.lcredits.wait_queue);
525 
526 	if (atomic_dec_and_test(&sc->send_io.pending.count))
527 		wake_up(&sc->send_io.pending.zero_wait_queue);
528 
529 	wake_up(&sc->send_io.pending.dec_wait_queue);
530 }
531 
dump_smbdirect_negotiate_resp(struct smbdirect_negotiate_resp * resp)532 static void dump_smbdirect_negotiate_resp(struct smbdirect_negotiate_resp *resp)
533 {
534 	log_rdma_event(INFO, "resp message min_version %u max_version %u negotiated_version %u credits_requested %u credits_granted %u status %u max_readwrite_size %u preferred_send_size %u max_receive_size %u max_fragmented_size %u\n",
535 		       resp->min_version, resp->max_version,
536 		       resp->negotiated_version, resp->credits_requested,
537 		       resp->credits_granted, resp->status,
538 		       resp->max_readwrite_size, resp->preferred_send_size,
539 		       resp->max_receive_size, resp->max_fragmented_size);
540 }
541 
542 /*
543  * Process a negotiation response message, according to [MS-SMBD]3.1.5.7
544  * response, packet_length: the negotiation response message
545  * return value: true if negotiation is a success, false if failed
546  */
process_negotiation_response(struct smbdirect_recv_io * response,int packet_length)547 static bool process_negotiation_response(
548 		struct smbdirect_recv_io *response, int packet_length)
549 {
550 	struct smbdirect_socket *sc = response->socket;
551 	struct smbdirect_socket_parameters *sp = &sc->parameters;
552 	struct smbdirect_negotiate_resp *packet = smbdirect_recv_io_payload(response);
553 
554 	if (packet_length < sizeof(struct smbdirect_negotiate_resp)) {
555 		log_rdma_event(ERR,
556 			"error: packet_length=%d\n", packet_length);
557 		return false;
558 	}
559 
560 	if (le16_to_cpu(packet->negotiated_version) != SMBDIRECT_V1) {
561 		log_rdma_event(ERR, "error: negotiated_version=%x\n",
562 			le16_to_cpu(packet->negotiated_version));
563 		return false;
564 	}
565 
566 	if (packet->credits_requested == 0) {
567 		log_rdma_event(ERR, "error: credits_requested==0\n");
568 		return false;
569 	}
570 	sc->recv_io.credits.target = le16_to_cpu(packet->credits_requested);
571 	sc->recv_io.credits.target = min_t(u16, sc->recv_io.credits.target, sp->recv_credit_max);
572 
573 	if (packet->credits_granted == 0) {
574 		log_rdma_event(ERR, "error: credits_granted==0\n");
575 		return false;
576 	}
577 	atomic_set(&sc->send_io.lcredits.count, sp->send_credit_target);
578 	atomic_set(&sc->send_io.credits.count, le16_to_cpu(packet->credits_granted));
579 
580 	if (le32_to_cpu(packet->preferred_send_size) > sp->max_recv_size) {
581 		log_rdma_event(ERR, "error: preferred_send_size=%d\n",
582 			le32_to_cpu(packet->preferred_send_size));
583 		return false;
584 	}
585 	sp->max_recv_size = le32_to_cpu(packet->preferred_send_size);
586 
587 	if (le32_to_cpu(packet->max_receive_size) < SMBD_MIN_RECEIVE_SIZE) {
588 		log_rdma_event(ERR, "error: max_receive_size=%d\n",
589 			le32_to_cpu(packet->max_receive_size));
590 		return false;
591 	}
592 	sp->max_send_size = min_t(u32, sp->max_send_size,
593 				  le32_to_cpu(packet->max_receive_size));
594 
595 	if (le32_to_cpu(packet->max_fragmented_size) <
596 			SMBD_MIN_FRAGMENTED_SIZE) {
597 		log_rdma_event(ERR, "error: max_fragmented_size=%d\n",
598 			le32_to_cpu(packet->max_fragmented_size));
599 		return false;
600 	}
601 	sp->max_fragmented_send_size =
602 		le32_to_cpu(packet->max_fragmented_size);
603 
604 
605 	sp->max_read_write_size = min_t(u32,
606 			le32_to_cpu(packet->max_readwrite_size),
607 			sp->max_frmr_depth * PAGE_SIZE);
608 	sp->max_frmr_depth = sp->max_read_write_size / PAGE_SIZE;
609 
610 	sc->recv_io.expected = SMBDIRECT_EXPECT_DATA_TRANSFER;
611 	return true;
612 }
613 
smbd_post_send_credits(struct work_struct * work)614 static void smbd_post_send_credits(struct work_struct *work)
615 {
616 	int rc;
617 	struct smbdirect_recv_io *response;
618 	struct smbdirect_socket *sc =
619 		container_of(work, struct smbdirect_socket, recv_io.posted.refill_work);
620 
621 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
622 		return;
623 	}
624 
625 	if (sc->recv_io.credits.target >
626 		atomic_read(&sc->recv_io.credits.count)) {
627 		while (true) {
628 			response = get_receive_buffer(sc);
629 			if (!response)
630 				break;
631 
632 			response->first_segment = false;
633 			rc = smbd_post_recv(sc, response);
634 			if (rc) {
635 				log_rdma_recv(ERR,
636 					"post_recv failed rc=%d\n", rc);
637 				put_receive_buffer(sc, response);
638 				break;
639 			}
640 
641 			atomic_inc(&sc->recv_io.posted.count);
642 		}
643 	}
644 
645 	/* Promptly send an immediate packet as defined in [MS-SMBD] 3.1.1.1 */
646 	if (atomic_read(&sc->recv_io.credits.count) <
647 		sc->recv_io.credits.target - 1) {
648 		log_keep_alive(INFO, "schedule send of an empty message\n");
649 		queue_work(sc->workqueue, &sc->idle.immediate_work);
650 	}
651 }
652 
653 /* Called from softirq, when recv is done */
recv_done(struct ib_cq * cq,struct ib_wc * wc)654 static void recv_done(struct ib_cq *cq, struct ib_wc *wc)
655 {
656 	struct smbdirect_data_transfer *data_transfer;
657 	struct smbdirect_recv_io *response =
658 		container_of(wc->wr_cqe, struct smbdirect_recv_io, cqe);
659 	struct smbdirect_socket *sc = response->socket;
660 	struct smbdirect_socket_parameters *sp = &sc->parameters;
661 	u16 old_recv_credit_target;
662 	u32 data_offset = 0;
663 	u32 data_length = 0;
664 	u32 remaining_data_length = 0;
665 	bool negotiate_done = false;
666 
667 	log_rdma_recv(INFO,
668 		      "response=0x%p type=%d wc status=%s wc opcode %d byte_len=%d pkey_index=%u\n",
669 		      response, sc->recv_io.expected,
670 		      ib_wc_status_msg(wc->status), wc->opcode,
671 		      wc->byte_len, wc->pkey_index);
672 
673 	if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_RECV) {
674 		if (wc->status != IB_WC_WR_FLUSH_ERR)
675 			log_rdma_recv(ERR, "wc->status=%s opcode=%d\n",
676 				ib_wc_status_msg(wc->status), wc->opcode);
677 		goto error;
678 	}
679 
680 	ib_dma_sync_single_for_cpu(
681 		wc->qp->device,
682 		response->sge.addr,
683 		response->sge.length,
684 		DMA_FROM_DEVICE);
685 
686 	/*
687 	 * Reset timer to the keepalive interval in
688 	 * order to trigger our next keepalive message.
689 	 */
690 	sc->idle.keepalive = SMBDIRECT_KEEPALIVE_NONE;
691 	mod_delayed_work(sc->workqueue, &sc->idle.timer_work,
692 			 msecs_to_jiffies(sp->keepalive_interval_msec));
693 
694 	switch (sc->recv_io.expected) {
695 	/* SMBD negotiation response */
696 	case SMBDIRECT_EXPECT_NEGOTIATE_REP:
697 		dump_smbdirect_negotiate_resp(smbdirect_recv_io_payload(response));
698 		sc->recv_io.reassembly.full_packet_received = true;
699 		negotiate_done =
700 			process_negotiation_response(response, wc->byte_len);
701 		put_receive_buffer(sc, response);
702 		WARN_ON_ONCE(sc->status != SMBDIRECT_SOCKET_NEGOTIATE_RUNNING);
703 		if (!negotiate_done) {
704 			sc->status = SMBDIRECT_SOCKET_NEGOTIATE_FAILED;
705 			smbd_disconnect_rdma_connection(sc);
706 		} else {
707 			sc->status = SMBDIRECT_SOCKET_CONNECTED;
708 			wake_up(&sc->status_wait);
709 		}
710 
711 		return;
712 
713 	/* SMBD data transfer packet */
714 	case SMBDIRECT_EXPECT_DATA_TRANSFER:
715 		data_transfer = smbdirect_recv_io_payload(response);
716 
717 		if (wc->byte_len <
718 		    offsetof(struct smbdirect_data_transfer, padding))
719 			goto error;
720 
721 		remaining_data_length = le32_to_cpu(data_transfer->remaining_data_length);
722 		data_offset = le32_to_cpu(data_transfer->data_offset);
723 		data_length = le32_to_cpu(data_transfer->data_length);
724 		if (wc->byte_len < data_offset ||
725 		    (u64)wc->byte_len < (u64)data_offset + data_length)
726 			goto error;
727 
728 		if (remaining_data_length > sp->max_fragmented_recv_size ||
729 		    data_length > sp->max_fragmented_recv_size ||
730 		    (u64)remaining_data_length + (u64)data_length > (u64)sp->max_fragmented_recv_size)
731 			goto error;
732 
733 		if (data_length) {
734 			if (sc->recv_io.reassembly.full_packet_received)
735 				response->first_segment = true;
736 
737 			if (le32_to_cpu(data_transfer->remaining_data_length))
738 				sc->recv_io.reassembly.full_packet_received = false;
739 			else
740 				sc->recv_io.reassembly.full_packet_received = true;
741 		}
742 
743 		atomic_dec(&sc->recv_io.posted.count);
744 		atomic_dec(&sc->recv_io.credits.count);
745 		old_recv_credit_target = sc->recv_io.credits.target;
746 		sc->recv_io.credits.target =
747 			le16_to_cpu(data_transfer->credits_requested);
748 		sc->recv_io.credits.target =
749 			min_t(u16, sc->recv_io.credits.target, sp->recv_credit_max);
750 		sc->recv_io.credits.target =
751 			max_t(u16, sc->recv_io.credits.target, 1);
752 		if (le16_to_cpu(data_transfer->credits_granted)) {
753 			atomic_add(le16_to_cpu(data_transfer->credits_granted),
754 				&sc->send_io.credits.count);
755 			/*
756 			 * We have new send credits granted from remote peer
757 			 * If any sender is waiting for credits, unblock it
758 			 */
759 			wake_up(&sc->send_io.credits.wait_queue);
760 		}
761 
762 		log_incoming(INFO, "data flags %d data_offset %d data_length %d remaining_data_length %d\n",
763 			     le16_to_cpu(data_transfer->flags),
764 			     le32_to_cpu(data_transfer->data_offset),
765 			     le32_to_cpu(data_transfer->data_length),
766 			     le32_to_cpu(data_transfer->remaining_data_length));
767 
768 		/* Send an immediate response right away if requested */
769 		if (le16_to_cpu(data_transfer->flags) &
770 				SMBDIRECT_FLAG_RESPONSE_REQUESTED) {
771 			log_keep_alive(INFO, "schedule send of immediate response\n");
772 			queue_work(sc->workqueue, &sc->idle.immediate_work);
773 		}
774 
775 		/*
776 		 * If this is a packet with data playload place the data in
777 		 * reassembly queue and wake up the reading thread
778 		 */
779 		if (data_length) {
780 			if (sc->recv_io.credits.target > old_recv_credit_target)
781 				queue_work(sc->workqueue, &sc->recv_io.posted.refill_work);
782 
783 			enqueue_reassembly(sc, response, data_length);
784 			wake_up(&sc->recv_io.reassembly.wait_queue);
785 		} else
786 			put_receive_buffer(sc, response);
787 
788 		return;
789 
790 	case SMBDIRECT_EXPECT_NEGOTIATE_REQ:
791 		/* Only server... */
792 		break;
793 	}
794 
795 	/*
796 	 * This is an internal error!
797 	 */
798 	log_rdma_recv(ERR, "unexpected response type=%d\n", sc->recv_io.expected);
799 	WARN_ON_ONCE(sc->recv_io.expected != SMBDIRECT_EXPECT_DATA_TRANSFER);
800 error:
801 	put_receive_buffer(sc, response);
802 	smbd_disconnect_rdma_connection(sc);
803 }
804 
smbd_create_id(struct smbdirect_socket * sc,struct sockaddr * dstaddr,int port)805 static struct rdma_cm_id *smbd_create_id(
806 		struct smbdirect_socket *sc,
807 		struct sockaddr *dstaddr, int port)
808 {
809 	struct smbdirect_socket_parameters *sp = &sc->parameters;
810 	struct rdma_cm_id *id;
811 	int rc;
812 	__be16 *sport;
813 
814 	id = rdma_create_id(&init_net, smbd_conn_upcall, sc,
815 		RDMA_PS_TCP, IB_QPT_RC);
816 	if (IS_ERR(id)) {
817 		rc = PTR_ERR(id);
818 		log_rdma_event(ERR, "rdma_create_id() failed %i\n", rc);
819 		return id;
820 	}
821 
822 	if (dstaddr->sa_family == AF_INET6)
823 		sport = &((struct sockaddr_in6 *)dstaddr)->sin6_port;
824 	else
825 		sport = &((struct sockaddr_in *)dstaddr)->sin_port;
826 
827 	*sport = htons(port);
828 
829 	WARN_ON_ONCE(sc->status != SMBDIRECT_SOCKET_RESOLVE_ADDR_NEEDED);
830 	sc->status = SMBDIRECT_SOCKET_RESOLVE_ADDR_RUNNING;
831 	rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)dstaddr,
832 		sp->resolve_addr_timeout_msec);
833 	if (rc) {
834 		log_rdma_event(ERR, "rdma_resolve_addr() failed %i\n", rc);
835 		goto out;
836 	}
837 	rc = wait_event_interruptible_timeout(
838 		sc->status_wait,
839 		sc->status != SMBDIRECT_SOCKET_RESOLVE_ADDR_RUNNING,
840 		msecs_to_jiffies(sp->resolve_addr_timeout_msec));
841 	/* e.g. if interrupted returns -ERESTARTSYS */
842 	if (rc < 0) {
843 		log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
844 		goto out;
845 	}
846 	if (sc->status == SMBDIRECT_SOCKET_RESOLVE_ADDR_RUNNING) {
847 		rc = -ETIMEDOUT;
848 		log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc);
849 		goto out;
850 	}
851 	if (sc->status != SMBDIRECT_SOCKET_RESOLVE_ROUTE_NEEDED) {
852 		rc = -EHOSTUNREACH;
853 		log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc);
854 		goto out;
855 	}
856 
857 	WARN_ON_ONCE(sc->status != SMBDIRECT_SOCKET_RESOLVE_ROUTE_NEEDED);
858 	sc->status = SMBDIRECT_SOCKET_RESOLVE_ROUTE_RUNNING;
859 	rc = rdma_resolve_route(id, sp->resolve_route_timeout_msec);
860 	if (rc) {
861 		log_rdma_event(ERR, "rdma_resolve_route() failed %i\n", rc);
862 		goto out;
863 	}
864 	rc = wait_event_interruptible_timeout(
865 		sc->status_wait,
866 		sc->status != SMBDIRECT_SOCKET_RESOLVE_ROUTE_RUNNING,
867 		msecs_to_jiffies(sp->resolve_route_timeout_msec));
868 	/* e.g. if interrupted returns -ERESTARTSYS */
869 	if (rc < 0)  {
870 		log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
871 		goto out;
872 	}
873 	if (sc->status == SMBDIRECT_SOCKET_RESOLVE_ROUTE_RUNNING) {
874 		rc = -ETIMEDOUT;
875 		log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc);
876 		goto out;
877 	}
878 	if (sc->status != SMBDIRECT_SOCKET_RDMA_CONNECT_NEEDED) {
879 		rc = -ENETUNREACH;
880 		log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc);
881 		goto out;
882 	}
883 
884 	return id;
885 
886 out:
887 	rdma_destroy_id(id);
888 	return ERR_PTR(rc);
889 }
890 
891 /*
892  * Test if FRWR (Fast Registration Work Requests) is supported on the device
893  * This implementation requires FRWR on RDMA read/write
894  * return value: true if it is supported
895  */
frwr_is_supported(struct ib_device_attr * attrs)896 static bool frwr_is_supported(struct ib_device_attr *attrs)
897 {
898 	if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
899 		return false;
900 	if (attrs->max_fast_reg_page_list_len == 0)
901 		return false;
902 	return true;
903 }
904 
smbd_ia_open(struct smbdirect_socket * sc,struct sockaddr * dstaddr,int port)905 static int smbd_ia_open(
906 		struct smbdirect_socket *sc,
907 		struct sockaddr *dstaddr, int port)
908 {
909 	struct smbdirect_socket_parameters *sp = &sc->parameters;
910 	int rc;
911 
912 	WARN_ON_ONCE(sc->status != SMBDIRECT_SOCKET_CREATED);
913 	sc->status = SMBDIRECT_SOCKET_RESOLVE_ADDR_NEEDED;
914 
915 	sc->rdma.cm_id = smbd_create_id(sc, dstaddr, port);
916 	if (IS_ERR(sc->rdma.cm_id)) {
917 		rc = PTR_ERR(sc->rdma.cm_id);
918 		goto out1;
919 	}
920 	sc->ib.dev = sc->rdma.cm_id->device;
921 
922 	if (!frwr_is_supported(&sc->ib.dev->attrs)) {
923 		log_rdma_event(ERR, "Fast Registration Work Requests (FRWR) is not supported\n");
924 		log_rdma_event(ERR, "Device capability flags = %llx max_fast_reg_page_list_len = %u\n",
925 			       sc->ib.dev->attrs.device_cap_flags,
926 			       sc->ib.dev->attrs.max_fast_reg_page_list_len);
927 		rc = -EPROTONOSUPPORT;
928 		goto out2;
929 	}
930 	sp->max_frmr_depth = min_t(u32,
931 		sp->max_frmr_depth,
932 		sc->ib.dev->attrs.max_fast_reg_page_list_len);
933 	sc->mr_io.type = IB_MR_TYPE_MEM_REG;
934 	if (sc->ib.dev->attrs.kernel_cap_flags & IBK_SG_GAPS_REG)
935 		sc->mr_io.type = IB_MR_TYPE_SG_GAPS;
936 
937 	return 0;
938 
939 out2:
940 	rdma_destroy_id(sc->rdma.cm_id);
941 	sc->rdma.cm_id = NULL;
942 
943 out1:
944 	return rc;
945 }
946 
947 /*
948  * Send a negotiation request message to the peer
949  * The negotiation procedure is in [MS-SMBD] 3.1.5.2 and 3.1.5.3
950  * After negotiation, the transport is connected and ready for
951  * carrying upper layer SMB payload
952  */
smbd_post_send_negotiate_req(struct smbdirect_socket * sc)953 static int smbd_post_send_negotiate_req(struct smbdirect_socket *sc)
954 {
955 	struct smbdirect_socket_parameters *sp = &sc->parameters;
956 	struct ib_send_wr send_wr;
957 	int rc = -ENOMEM;
958 	struct smbdirect_send_io *request;
959 	struct smbdirect_negotiate_req *packet;
960 
961 	request = mempool_alloc(sc->send_io.mem.pool, GFP_KERNEL);
962 	if (!request)
963 		return rc;
964 
965 	request->socket = sc;
966 
967 	packet = smbdirect_send_io_payload(request);
968 	packet->min_version = cpu_to_le16(SMBDIRECT_V1);
969 	packet->max_version = cpu_to_le16(SMBDIRECT_V1);
970 	packet->reserved = 0;
971 	packet->credits_requested = cpu_to_le16(sp->send_credit_target);
972 	packet->preferred_send_size = cpu_to_le32(sp->max_send_size);
973 	packet->max_receive_size = cpu_to_le32(sp->max_recv_size);
974 	packet->max_fragmented_size =
975 		cpu_to_le32(sp->max_fragmented_recv_size);
976 
977 	request->num_sge = 1;
978 	request->sge[0].addr = ib_dma_map_single(
979 				sc->ib.dev, (void *)packet,
980 				sizeof(*packet), DMA_TO_DEVICE);
981 	if (ib_dma_mapping_error(sc->ib.dev, request->sge[0].addr)) {
982 		rc = -EIO;
983 		goto dma_mapping_failed;
984 	}
985 
986 	request->sge[0].length = sizeof(*packet);
987 	request->sge[0].lkey = sc->ib.pd->local_dma_lkey;
988 
989 	ib_dma_sync_single_for_device(
990 		sc->ib.dev, request->sge[0].addr,
991 		request->sge[0].length, DMA_TO_DEVICE);
992 
993 	request->cqe.done = send_done;
994 
995 	send_wr.next = NULL;
996 	send_wr.wr_cqe = &request->cqe;
997 	send_wr.sg_list = request->sge;
998 	send_wr.num_sge = request->num_sge;
999 	send_wr.opcode = IB_WR_SEND;
1000 	send_wr.send_flags = IB_SEND_SIGNALED;
1001 
1002 	log_rdma_send(INFO, "sge addr=0x%llx length=%u lkey=0x%x\n",
1003 		request->sge[0].addr,
1004 		request->sge[0].length, request->sge[0].lkey);
1005 
1006 	atomic_inc(&sc->send_io.pending.count);
1007 	rc = ib_post_send(sc->ib.qp, &send_wr, NULL);
1008 	if (!rc)
1009 		return 0;
1010 
1011 	/* if we reach here, post send failed */
1012 	log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
1013 	atomic_dec(&sc->send_io.pending.count);
1014 	ib_dma_unmap_single(sc->ib.dev, request->sge[0].addr,
1015 		request->sge[0].length, DMA_TO_DEVICE);
1016 
1017 	smbd_disconnect_rdma_connection(sc);
1018 
1019 dma_mapping_failed:
1020 	mempool_free(request, sc->send_io.mem.pool);
1021 	return rc;
1022 }
1023 
1024 /*
1025  * Extend the credits to remote peer
1026  * This implements [MS-SMBD] 3.1.5.9
1027  * The idea is that we should extend credits to remote peer as quickly as
1028  * it's allowed, to maintain data flow. We allocate as much receive
1029  * buffer as possible, and extend the receive credits to remote peer
1030  * return value: the new credtis being granted.
1031  */
manage_credits_prior_sending(struct smbdirect_socket * sc)1032 static int manage_credits_prior_sending(struct smbdirect_socket *sc)
1033 {
1034 	int new_credits;
1035 
1036 	if (atomic_read(&sc->recv_io.credits.count) >= sc->recv_io.credits.target)
1037 		return 0;
1038 
1039 	new_credits = atomic_read(&sc->recv_io.posted.count);
1040 	if (new_credits == 0)
1041 		return 0;
1042 
1043 	new_credits -= atomic_read(&sc->recv_io.credits.count);
1044 	if (new_credits <= 0)
1045 		return 0;
1046 
1047 	return new_credits;
1048 }
1049 
1050 /*
1051  * Check if we need to send a KEEP_ALIVE message
1052  * The idle connection timer triggers a KEEP_ALIVE message when expires
1053  * SMBDIRECT_FLAG_RESPONSE_REQUESTED is set in the message flag to have peer send
1054  * back a response.
1055  * return value:
1056  * 1 if SMBDIRECT_FLAG_RESPONSE_REQUESTED needs to be set
1057  * 0: otherwise
1058  */
manage_keep_alive_before_sending(struct smbdirect_socket * sc)1059 static int manage_keep_alive_before_sending(struct smbdirect_socket *sc)
1060 {
1061 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1062 
1063 	if (sc->idle.keepalive == SMBDIRECT_KEEPALIVE_PENDING) {
1064 		sc->idle.keepalive = SMBDIRECT_KEEPALIVE_SENT;
1065 		/*
1066 		 * Now use the keepalive timeout (instead of keepalive interval)
1067 		 * in order to wait for a response
1068 		 */
1069 		mod_delayed_work(sc->workqueue, &sc->idle.timer_work,
1070 				 msecs_to_jiffies(sp->keepalive_timeout_msec));
1071 		return 1;
1072 	}
1073 	return 0;
1074 }
1075 
1076 /* Post the send request */
smbd_post_send(struct smbdirect_socket * sc,struct smbdirect_send_io * request)1077 static int smbd_post_send(struct smbdirect_socket *sc,
1078 		struct smbdirect_send_io *request)
1079 {
1080 	struct ib_send_wr send_wr;
1081 	int rc, i;
1082 
1083 	for (i = 0; i < request->num_sge; i++) {
1084 		log_rdma_send(INFO,
1085 			"rdma_request sge[%d] addr=0x%llx length=%u\n",
1086 			i, request->sge[i].addr, request->sge[i].length);
1087 		ib_dma_sync_single_for_device(
1088 			sc->ib.dev,
1089 			request->sge[i].addr,
1090 			request->sge[i].length,
1091 			DMA_TO_DEVICE);
1092 	}
1093 
1094 	request->cqe.done = send_done;
1095 
1096 	send_wr.next = NULL;
1097 	send_wr.wr_cqe = &request->cqe;
1098 	send_wr.sg_list = request->sge;
1099 	send_wr.num_sge = request->num_sge;
1100 	send_wr.opcode = IB_WR_SEND;
1101 	send_wr.send_flags = IB_SEND_SIGNALED;
1102 
1103 	rc = ib_post_send(sc->ib.qp, &send_wr, NULL);
1104 	if (rc) {
1105 		log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
1106 		smbd_disconnect_rdma_connection(sc);
1107 		rc = -EAGAIN;
1108 	}
1109 
1110 	return rc;
1111 }
1112 
smbd_post_send_iter(struct smbdirect_socket * sc,struct iov_iter * iter,int * _remaining_data_length)1113 static int smbd_post_send_iter(struct smbdirect_socket *sc,
1114 			       struct iov_iter *iter,
1115 			       int *_remaining_data_length)
1116 {
1117 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1118 	int i, rc;
1119 	int header_length;
1120 	int data_length;
1121 	struct smbdirect_send_io *request;
1122 	struct smbdirect_data_transfer *packet;
1123 	int new_credits = 0;
1124 
1125 wait_lcredit:
1126 	/* Wait for local send credits */
1127 	rc = wait_event_interruptible(sc->send_io.lcredits.wait_queue,
1128 		atomic_read(&sc->send_io.lcredits.count) > 0 ||
1129 		sc->status != SMBDIRECT_SOCKET_CONNECTED);
1130 	if (rc)
1131 		goto err_wait_lcredit;
1132 
1133 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
1134 		log_outgoing(ERR, "disconnected not sending on wait_credit\n");
1135 		rc = -EAGAIN;
1136 		goto err_wait_lcredit;
1137 	}
1138 	if (unlikely(atomic_dec_return(&sc->send_io.lcredits.count) < 0)) {
1139 		atomic_inc(&sc->send_io.lcredits.count);
1140 		goto wait_lcredit;
1141 	}
1142 
1143 wait_credit:
1144 	/* Wait for send credits. A SMBD packet needs one credit */
1145 	rc = wait_event_interruptible(sc->send_io.credits.wait_queue,
1146 		atomic_read(&sc->send_io.credits.count) > 0 ||
1147 		sc->status != SMBDIRECT_SOCKET_CONNECTED);
1148 	if (rc)
1149 		goto err_wait_credit;
1150 
1151 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
1152 		log_outgoing(ERR, "disconnected not sending on wait_credit\n");
1153 		rc = -EAGAIN;
1154 		goto err_wait_credit;
1155 	}
1156 	if (unlikely(atomic_dec_return(&sc->send_io.credits.count) < 0)) {
1157 		atomic_inc(&sc->send_io.credits.count);
1158 		goto wait_credit;
1159 	}
1160 
1161 	request = mempool_alloc(sc->send_io.mem.pool, GFP_KERNEL);
1162 	if (!request) {
1163 		rc = -ENOMEM;
1164 		goto err_alloc;
1165 	}
1166 
1167 	request->socket = sc;
1168 	memset(request->sge, 0, sizeof(request->sge));
1169 
1170 	/* Map the packet to DMA */
1171 	header_length = sizeof(struct smbdirect_data_transfer);
1172 	/* If this is a packet without payload, don't send padding */
1173 	if (!iter)
1174 		header_length = offsetof(struct smbdirect_data_transfer, padding);
1175 
1176 	packet = smbdirect_send_io_payload(request);
1177 	request->sge[0].addr = ib_dma_map_single(sc->ib.dev,
1178 						 (void *)packet,
1179 						 header_length,
1180 						 DMA_TO_DEVICE);
1181 	if (ib_dma_mapping_error(sc->ib.dev, request->sge[0].addr)) {
1182 		rc = -EIO;
1183 		goto err_dma;
1184 	}
1185 
1186 	request->sge[0].length = header_length;
1187 	request->sge[0].lkey = sc->ib.pd->local_dma_lkey;
1188 	request->num_sge = 1;
1189 
1190 	/* Fill in the data payload to find out how much data we can add */
1191 	if (iter) {
1192 		struct smb_extract_to_rdma extract = {
1193 			.nr_sge		= request->num_sge,
1194 			.max_sge	= SMBDIRECT_SEND_IO_MAX_SGE,
1195 			.sge		= request->sge,
1196 			.device		= sc->ib.dev,
1197 			.local_dma_lkey	= sc->ib.pd->local_dma_lkey,
1198 			.direction	= DMA_TO_DEVICE,
1199 		};
1200 		size_t payload_len = umin(*_remaining_data_length,
1201 					  sp->max_send_size - sizeof(*packet));
1202 
1203 		rc = smb_extract_iter_to_rdma(iter, payload_len,
1204 					      &extract);
1205 		if (rc < 0)
1206 			goto err_dma;
1207 		data_length = rc;
1208 		request->num_sge = extract.nr_sge;
1209 		*_remaining_data_length -= data_length;
1210 	} else {
1211 		data_length = 0;
1212 	}
1213 
1214 	/* Fill in the packet header */
1215 	packet->credits_requested = cpu_to_le16(sp->send_credit_target);
1216 
1217 	new_credits = manage_credits_prior_sending(sc);
1218 	atomic_add(new_credits, &sc->recv_io.credits.count);
1219 	packet->credits_granted = cpu_to_le16(new_credits);
1220 
1221 	packet->flags = 0;
1222 	if (manage_keep_alive_before_sending(sc))
1223 		packet->flags |= cpu_to_le16(SMBDIRECT_FLAG_RESPONSE_REQUESTED);
1224 
1225 	packet->reserved = 0;
1226 	if (!data_length)
1227 		packet->data_offset = 0;
1228 	else
1229 		packet->data_offset = cpu_to_le32(24);
1230 	packet->data_length = cpu_to_le32(data_length);
1231 	packet->remaining_data_length = cpu_to_le32(*_remaining_data_length);
1232 	packet->padding = 0;
1233 
1234 	log_outgoing(INFO, "credits_requested=%d credits_granted=%d data_offset=%d data_length=%d remaining_data_length=%d\n",
1235 		     le16_to_cpu(packet->credits_requested),
1236 		     le16_to_cpu(packet->credits_granted),
1237 		     le32_to_cpu(packet->data_offset),
1238 		     le32_to_cpu(packet->data_length),
1239 		     le32_to_cpu(packet->remaining_data_length));
1240 
1241 	/*
1242 	 * Now that we got a local and a remote credit
1243 	 * we add us as pending
1244 	 */
1245 	atomic_inc(&sc->send_io.pending.count);
1246 
1247 	rc = smbd_post_send(sc, request);
1248 	if (!rc)
1249 		return 0;
1250 
1251 	if (atomic_dec_and_test(&sc->send_io.pending.count))
1252 		wake_up(&sc->send_io.pending.zero_wait_queue);
1253 
1254 	wake_up(&sc->send_io.pending.dec_wait_queue);
1255 
1256 err_dma:
1257 	for (i = 0; i < request->num_sge; i++)
1258 		if (request->sge[i].addr)
1259 			ib_dma_unmap_single(sc->ib.dev,
1260 					    request->sge[i].addr,
1261 					    request->sge[i].length,
1262 					    DMA_TO_DEVICE);
1263 	mempool_free(request, sc->send_io.mem.pool);
1264 
1265 	/* roll back the granted receive credits */
1266 	atomic_sub(new_credits, &sc->recv_io.credits.count);
1267 
1268 err_alloc:
1269 	atomic_inc(&sc->send_io.credits.count);
1270 	wake_up(&sc->send_io.credits.wait_queue);
1271 
1272 err_wait_credit:
1273 	atomic_inc(&sc->send_io.lcredits.count);
1274 	wake_up(&sc->send_io.lcredits.wait_queue);
1275 
1276 err_wait_lcredit:
1277 	return rc;
1278 }
1279 
1280 /*
1281  * Send an empty message
1282  * Empty message is used to extend credits to peer to for keep live
1283  * while there is no upper layer payload to send at the time
1284  */
smbd_post_send_empty(struct smbdirect_socket * sc)1285 static int smbd_post_send_empty(struct smbdirect_socket *sc)
1286 {
1287 	int remaining_data_length = 0;
1288 
1289 	sc->statistics.send_empty++;
1290 	return smbd_post_send_iter(sc, NULL, &remaining_data_length);
1291 }
1292 
smbd_post_send_full_iter(struct smbdirect_socket * sc,struct iov_iter * iter,int * _remaining_data_length)1293 static int smbd_post_send_full_iter(struct smbdirect_socket *sc,
1294 				    struct iov_iter *iter,
1295 				    int *_remaining_data_length)
1296 {
1297 	int rc = 0;
1298 
1299 	/*
1300 	 * smbd_post_send_iter() respects the
1301 	 * negotiated max_send_size, so we need to
1302 	 * loop until the full iter is posted
1303 	 */
1304 
1305 	while (iov_iter_count(iter) > 0) {
1306 		rc = smbd_post_send_iter(sc, iter, _remaining_data_length);
1307 		if (rc < 0)
1308 			break;
1309 	}
1310 
1311 	return rc;
1312 }
1313 
1314 /*
1315  * Post a receive request to the transport
1316  * The remote peer can only send data when a receive request is posted
1317  * The interaction is controlled by send/receive credit system
1318  */
smbd_post_recv(struct smbdirect_socket * sc,struct smbdirect_recv_io * response)1319 static int smbd_post_recv(
1320 		struct smbdirect_socket *sc, struct smbdirect_recv_io *response)
1321 {
1322 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1323 	struct ib_recv_wr recv_wr;
1324 	int rc = -EIO;
1325 
1326 	response->sge.addr = ib_dma_map_single(
1327 				sc->ib.dev, response->packet,
1328 				sp->max_recv_size, DMA_FROM_DEVICE);
1329 	if (ib_dma_mapping_error(sc->ib.dev, response->sge.addr))
1330 		return rc;
1331 
1332 	response->sge.length = sp->max_recv_size;
1333 	response->sge.lkey = sc->ib.pd->local_dma_lkey;
1334 
1335 	response->cqe.done = recv_done;
1336 
1337 	recv_wr.wr_cqe = &response->cqe;
1338 	recv_wr.next = NULL;
1339 	recv_wr.sg_list = &response->sge;
1340 	recv_wr.num_sge = 1;
1341 
1342 	rc = ib_post_recv(sc->ib.qp, &recv_wr, NULL);
1343 	if (rc) {
1344 		ib_dma_unmap_single(sc->ib.dev, response->sge.addr,
1345 				    response->sge.length, DMA_FROM_DEVICE);
1346 		response->sge.length = 0;
1347 		smbd_disconnect_rdma_connection(sc);
1348 		log_rdma_recv(ERR, "ib_post_recv failed rc=%d\n", rc);
1349 	}
1350 
1351 	return rc;
1352 }
1353 
1354 /* Perform SMBD negotiate according to [MS-SMBD] 3.1.5.2 */
smbd_negotiate(struct smbdirect_socket * sc)1355 static int smbd_negotiate(struct smbdirect_socket *sc)
1356 {
1357 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1358 	int rc;
1359 	struct smbdirect_recv_io *response = get_receive_buffer(sc);
1360 
1361 	WARN_ON_ONCE(sc->status != SMBDIRECT_SOCKET_NEGOTIATE_NEEDED);
1362 	sc->status = SMBDIRECT_SOCKET_NEGOTIATE_RUNNING;
1363 
1364 	sc->recv_io.expected = SMBDIRECT_EXPECT_NEGOTIATE_REP;
1365 	rc = smbd_post_recv(sc, response);
1366 	log_rdma_event(INFO, "smbd_post_recv rc=%d iov.addr=0x%llx iov.length=%u iov.lkey=0x%x\n",
1367 		       rc, response->sge.addr,
1368 		       response->sge.length, response->sge.lkey);
1369 	if (rc) {
1370 		put_receive_buffer(sc, response);
1371 		return rc;
1372 	}
1373 
1374 	rc = smbd_post_send_negotiate_req(sc);
1375 	if (rc)
1376 		return rc;
1377 
1378 	rc = wait_event_interruptible_timeout(
1379 		sc->status_wait,
1380 		sc->status != SMBDIRECT_SOCKET_NEGOTIATE_RUNNING,
1381 		msecs_to_jiffies(sp->negotiate_timeout_msec));
1382 	log_rdma_event(INFO, "wait_event_interruptible_timeout rc=%d\n", rc);
1383 
1384 	if (sc->status == SMBDIRECT_SOCKET_CONNECTED)
1385 		return 0;
1386 
1387 	if (rc == 0)
1388 		rc = -ETIMEDOUT;
1389 	else if (rc == -ERESTARTSYS)
1390 		rc = -EINTR;
1391 	else
1392 		rc = -ENOTCONN;
1393 
1394 	return rc;
1395 }
1396 
1397 /*
1398  * Implement Connection.FragmentReassemblyBuffer defined in [MS-SMBD] 3.1.1.1
1399  * This is a queue for reassembling upper layer payload and present to upper
1400  * layer. All the inncoming payload go to the reassembly queue, regardless of
1401  * if reassembly is required. The uuper layer code reads from the queue for all
1402  * incoming payloads.
1403  * Put a received packet to the reassembly queue
1404  * response: the packet received
1405  * data_length: the size of payload in this packet
1406  */
enqueue_reassembly(struct smbdirect_socket * sc,struct smbdirect_recv_io * response,int data_length)1407 static void enqueue_reassembly(
1408 	struct smbdirect_socket *sc,
1409 	struct smbdirect_recv_io *response,
1410 	int data_length)
1411 {
1412 	unsigned long flags;
1413 
1414 	spin_lock_irqsave(&sc->recv_io.reassembly.lock, flags);
1415 	list_add_tail(&response->list, &sc->recv_io.reassembly.list);
1416 	sc->recv_io.reassembly.queue_length++;
1417 	/*
1418 	 * Make sure reassembly_data_length is updated after list and
1419 	 * reassembly_queue_length are updated. On the dequeue side
1420 	 * reassembly_data_length is checked without a lock to determine
1421 	 * if reassembly_queue_length and list is up to date
1422 	 */
1423 	virt_wmb();
1424 	sc->recv_io.reassembly.data_length += data_length;
1425 	spin_unlock_irqrestore(&sc->recv_io.reassembly.lock, flags);
1426 	sc->statistics.enqueue_reassembly_queue++;
1427 }
1428 
1429 /*
1430  * Get the first entry at the front of reassembly queue
1431  * Caller is responsible for locking
1432  * return value: the first entry if any, NULL if queue is empty
1433  */
_get_first_reassembly(struct smbdirect_socket * sc)1434 static struct smbdirect_recv_io *_get_first_reassembly(struct smbdirect_socket *sc)
1435 {
1436 	struct smbdirect_recv_io *ret = NULL;
1437 
1438 	if (!list_empty(&sc->recv_io.reassembly.list)) {
1439 		ret = list_first_entry(
1440 			&sc->recv_io.reassembly.list,
1441 			struct smbdirect_recv_io, list);
1442 	}
1443 	return ret;
1444 }
1445 
1446 /*
1447  * Get a receive buffer
1448  * For each remote send, we need to post a receive. The receive buffers are
1449  * pre-allocated in advance.
1450  * return value: the receive buffer, NULL if none is available
1451  */
get_receive_buffer(struct smbdirect_socket * sc)1452 static struct smbdirect_recv_io *get_receive_buffer(struct smbdirect_socket *sc)
1453 {
1454 	struct smbdirect_recv_io *ret = NULL;
1455 	unsigned long flags;
1456 
1457 	spin_lock_irqsave(&sc->recv_io.free.lock, flags);
1458 	if (!list_empty(&sc->recv_io.free.list)) {
1459 		ret = list_first_entry(
1460 			&sc->recv_io.free.list,
1461 			struct smbdirect_recv_io, list);
1462 		list_del(&ret->list);
1463 		sc->statistics.get_receive_buffer++;
1464 	}
1465 	spin_unlock_irqrestore(&sc->recv_io.free.lock, flags);
1466 
1467 	return ret;
1468 }
1469 
1470 /*
1471  * Return a receive buffer
1472  * Upon returning of a receive buffer, we can post new receive and extend
1473  * more receive credits to remote peer. This is done immediately after a
1474  * receive buffer is returned.
1475  */
put_receive_buffer(struct smbdirect_socket * sc,struct smbdirect_recv_io * response)1476 static void put_receive_buffer(
1477 	struct smbdirect_socket *sc, struct smbdirect_recv_io *response)
1478 {
1479 	unsigned long flags;
1480 
1481 	if (likely(response->sge.length != 0)) {
1482 		ib_dma_unmap_single(sc->ib.dev,
1483 				    response->sge.addr,
1484 				    response->sge.length,
1485 				    DMA_FROM_DEVICE);
1486 		response->sge.length = 0;
1487 	}
1488 
1489 	spin_lock_irqsave(&sc->recv_io.free.lock, flags);
1490 	list_add_tail(&response->list, &sc->recv_io.free.list);
1491 	sc->statistics.put_receive_buffer++;
1492 	spin_unlock_irqrestore(&sc->recv_io.free.lock, flags);
1493 
1494 	queue_work(sc->workqueue, &sc->recv_io.posted.refill_work);
1495 }
1496 
1497 /* Preallocate all receive buffer on transport establishment */
allocate_receive_buffers(struct smbdirect_socket * sc,int num_buf)1498 static int allocate_receive_buffers(struct smbdirect_socket *sc, int num_buf)
1499 {
1500 	struct smbdirect_recv_io *response;
1501 	int i;
1502 
1503 	for (i = 0; i < num_buf; i++) {
1504 		response = mempool_alloc(sc->recv_io.mem.pool, GFP_KERNEL);
1505 		if (!response)
1506 			goto allocate_failed;
1507 
1508 		response->socket = sc;
1509 		response->sge.length = 0;
1510 		list_add_tail(&response->list, &sc->recv_io.free.list);
1511 	}
1512 
1513 	return 0;
1514 
1515 allocate_failed:
1516 	while (!list_empty(&sc->recv_io.free.list)) {
1517 		response = list_first_entry(
1518 				&sc->recv_io.free.list,
1519 				struct smbdirect_recv_io, list);
1520 		list_del(&response->list);
1521 
1522 		mempool_free(response, sc->recv_io.mem.pool);
1523 	}
1524 	return -ENOMEM;
1525 }
1526 
destroy_receive_buffers(struct smbdirect_socket * sc)1527 static void destroy_receive_buffers(struct smbdirect_socket *sc)
1528 {
1529 	struct smbdirect_recv_io *response;
1530 
1531 	while ((response = get_receive_buffer(sc)))
1532 		mempool_free(response, sc->recv_io.mem.pool);
1533 }
1534 
send_immediate_empty_message(struct work_struct * work)1535 static void send_immediate_empty_message(struct work_struct *work)
1536 {
1537 	struct smbdirect_socket *sc =
1538 		container_of(work, struct smbdirect_socket, idle.immediate_work);
1539 
1540 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED)
1541 		return;
1542 
1543 	log_keep_alive(INFO, "send an empty message\n");
1544 	smbd_post_send_empty(sc);
1545 }
1546 
1547 /* Implement idle connection timer [MS-SMBD] 3.1.6.2 */
idle_connection_timer(struct work_struct * work)1548 static void idle_connection_timer(struct work_struct *work)
1549 {
1550 	struct smbdirect_socket *sc =
1551 		container_of(work, struct smbdirect_socket, idle.timer_work.work);
1552 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1553 
1554 	if (sc->idle.keepalive != SMBDIRECT_KEEPALIVE_NONE) {
1555 		log_keep_alive(ERR,
1556 			"error status sc->idle.keepalive=%d\n",
1557 			sc->idle.keepalive);
1558 		smbd_disconnect_rdma_connection(sc);
1559 		return;
1560 	}
1561 
1562 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED)
1563 		return;
1564 
1565 	/*
1566 	 * Now use the keepalive timeout (instead of keepalive interval)
1567 	 * in order to wait for a response
1568 	 */
1569 	sc->idle.keepalive = SMBDIRECT_KEEPALIVE_PENDING;
1570 	mod_delayed_work(sc->workqueue, &sc->idle.timer_work,
1571 			 msecs_to_jiffies(sp->keepalive_timeout_msec));
1572 	log_keep_alive(INFO, "schedule send of empty idle message\n");
1573 	queue_work(sc->workqueue, &sc->idle.immediate_work);
1574 }
1575 
1576 /*
1577  * Destroy the transport and related RDMA and memory resources
1578  * Need to go through all the pending counters and make sure on one is using
1579  * the transport while it is destroyed
1580  */
smbd_destroy(struct TCP_Server_Info * server)1581 void smbd_destroy(struct TCP_Server_Info *server)
1582 {
1583 	struct smbd_connection *info = server->smbd_conn;
1584 	struct smbdirect_socket *sc;
1585 	struct smbdirect_recv_io *response;
1586 	unsigned long flags;
1587 
1588 	if (!info) {
1589 		log_rdma_event(INFO, "rdma session already destroyed\n");
1590 		return;
1591 	}
1592 	sc = &info->socket;
1593 
1594 	log_rdma_event(INFO, "cancelling and disable disconnect_work\n");
1595 	disable_work_sync(&sc->disconnect_work);
1596 
1597 	log_rdma_event(INFO, "destroying rdma session\n");
1598 	if (sc->status < SMBDIRECT_SOCKET_DISCONNECTING)
1599 		smbd_disconnect_rdma_work(&sc->disconnect_work);
1600 	if (sc->status < SMBDIRECT_SOCKET_DISCONNECTED) {
1601 		log_rdma_event(INFO, "wait for transport being disconnected\n");
1602 		wait_event(sc->status_wait, sc->status == SMBDIRECT_SOCKET_DISCONNECTED);
1603 		log_rdma_event(INFO, "waited for transport being disconnected\n");
1604 	}
1605 
1606 	/*
1607 	 * Wake up all waiters in all wait queues
1608 	 * in order to notice the broken connection.
1609 	 *
1610 	 * Most likely this was already called via
1611 	 * smbd_disconnect_rdma_work(), but call it again...
1612 	 */
1613 	smbd_disconnect_wake_up_all(sc);
1614 
1615 	log_rdma_event(INFO, "cancelling recv_io.posted.refill_work\n");
1616 	disable_work_sync(&sc->recv_io.posted.refill_work);
1617 
1618 	log_rdma_event(INFO, "destroying qp\n");
1619 	ib_drain_qp(sc->ib.qp);
1620 	rdma_destroy_qp(sc->rdma.cm_id);
1621 	sc->ib.qp = NULL;
1622 
1623 	log_rdma_event(INFO, "cancelling idle timer\n");
1624 	disable_delayed_work_sync(&sc->idle.timer_work);
1625 	log_rdma_event(INFO, "cancelling send immediate work\n");
1626 	disable_work_sync(&sc->idle.immediate_work);
1627 
1628 	/* It's not possible for upper layer to get to reassembly */
1629 	log_rdma_event(INFO, "drain the reassembly queue\n");
1630 	do {
1631 		spin_lock_irqsave(&sc->recv_io.reassembly.lock, flags);
1632 		response = _get_first_reassembly(sc);
1633 		if (response) {
1634 			list_del(&response->list);
1635 			spin_unlock_irqrestore(
1636 				&sc->recv_io.reassembly.lock, flags);
1637 			put_receive_buffer(sc, response);
1638 		} else
1639 			spin_unlock_irqrestore(
1640 				&sc->recv_io.reassembly.lock, flags);
1641 	} while (response);
1642 	sc->recv_io.reassembly.data_length = 0;
1643 
1644 	log_rdma_event(INFO, "free receive buffers\n");
1645 	destroy_receive_buffers(sc);
1646 
1647 	log_rdma_event(INFO, "freeing mr list\n");
1648 	destroy_mr_list(sc);
1649 
1650 	ib_free_cq(sc->ib.send_cq);
1651 	ib_free_cq(sc->ib.recv_cq);
1652 	ib_dealloc_pd(sc->ib.pd);
1653 	rdma_destroy_id(sc->rdma.cm_id);
1654 
1655 	/* free mempools */
1656 	mempool_destroy(sc->send_io.mem.pool);
1657 	kmem_cache_destroy(sc->send_io.mem.cache);
1658 
1659 	mempool_destroy(sc->recv_io.mem.pool);
1660 	kmem_cache_destroy(sc->recv_io.mem.cache);
1661 
1662 	sc->status = SMBDIRECT_SOCKET_DESTROYED;
1663 
1664 	destroy_workqueue(sc->workqueue);
1665 	log_rdma_event(INFO,  "rdma session destroyed\n");
1666 	kfree(info);
1667 	server->smbd_conn = NULL;
1668 }
1669 
1670 /*
1671  * Reconnect this SMBD connection, called from upper layer
1672  * return value: 0 on success, or actual error code
1673  */
smbd_reconnect(struct TCP_Server_Info * server)1674 int smbd_reconnect(struct TCP_Server_Info *server)
1675 {
1676 	log_rdma_event(INFO, "reconnecting rdma session\n");
1677 
1678 	if (!server->smbd_conn) {
1679 		log_rdma_event(INFO, "rdma session already destroyed\n");
1680 		goto create_conn;
1681 	}
1682 
1683 	/*
1684 	 * This is possible if transport is disconnected and we haven't received
1685 	 * notification from RDMA, but upper layer has detected timeout
1686 	 */
1687 	if (server->smbd_conn->socket.status == SMBDIRECT_SOCKET_CONNECTED) {
1688 		log_rdma_event(INFO, "disconnecting transport\n");
1689 		smbd_destroy(server);
1690 	}
1691 
1692 create_conn:
1693 	log_rdma_event(INFO, "creating rdma session\n");
1694 	server->smbd_conn = smbd_get_connection(
1695 		server, (struct sockaddr *) &server->dstaddr);
1696 
1697 	if (server->smbd_conn) {
1698 		cifs_dbg(VFS, "RDMA transport re-established\n");
1699 		trace_smb3_smbd_connect_done(server->hostname, server->conn_id, &server->dstaddr);
1700 		return 0;
1701 	}
1702 	trace_smb3_smbd_connect_err(server->hostname, server->conn_id, &server->dstaddr);
1703 	return -ENOENT;
1704 }
1705 
destroy_caches(struct smbdirect_socket * sc)1706 static void destroy_caches(struct smbdirect_socket *sc)
1707 {
1708 	destroy_receive_buffers(sc);
1709 	mempool_destroy(sc->recv_io.mem.pool);
1710 	kmem_cache_destroy(sc->recv_io.mem.cache);
1711 	mempool_destroy(sc->send_io.mem.pool);
1712 	kmem_cache_destroy(sc->send_io.mem.cache);
1713 }
1714 
1715 #define MAX_NAME_LEN	80
allocate_caches(struct smbdirect_socket * sc)1716 static int allocate_caches(struct smbdirect_socket *sc)
1717 {
1718 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1719 	char name[MAX_NAME_LEN];
1720 	int rc;
1721 
1722 	if (WARN_ON_ONCE(sp->max_recv_size < sizeof(struct smbdirect_data_transfer)))
1723 		return -ENOMEM;
1724 
1725 	scnprintf(name, MAX_NAME_LEN, "smbdirect_send_io_%p", sc);
1726 	sc->send_io.mem.cache =
1727 		kmem_cache_create(
1728 			name,
1729 			sizeof(struct smbdirect_send_io) +
1730 				sizeof(struct smbdirect_data_transfer),
1731 			0, SLAB_HWCACHE_ALIGN, NULL);
1732 	if (!sc->send_io.mem.cache)
1733 		return -ENOMEM;
1734 
1735 	sc->send_io.mem.pool =
1736 		mempool_create(sp->send_credit_target, mempool_alloc_slab,
1737 			mempool_free_slab, sc->send_io.mem.cache);
1738 	if (!sc->send_io.mem.pool)
1739 		goto out1;
1740 
1741 	scnprintf(name, MAX_NAME_LEN, "smbdirect_recv_io_%p", sc);
1742 
1743 	struct kmem_cache_args response_args = {
1744 		.align		= __alignof__(struct smbdirect_recv_io),
1745 		.useroffset	= (offsetof(struct smbdirect_recv_io, packet) +
1746 				   sizeof(struct smbdirect_data_transfer)),
1747 		.usersize	= sp->max_recv_size - sizeof(struct smbdirect_data_transfer),
1748 	};
1749 	sc->recv_io.mem.cache =
1750 		kmem_cache_create(name,
1751 				  sizeof(struct smbdirect_recv_io) + sp->max_recv_size,
1752 				  &response_args, SLAB_HWCACHE_ALIGN);
1753 	if (!sc->recv_io.mem.cache)
1754 		goto out2;
1755 
1756 	sc->recv_io.mem.pool =
1757 		mempool_create(sp->recv_credit_max, mempool_alloc_slab,
1758 		       mempool_free_slab, sc->recv_io.mem.cache);
1759 	if (!sc->recv_io.mem.pool)
1760 		goto out3;
1761 
1762 	rc = allocate_receive_buffers(sc, sp->recv_credit_max);
1763 	if (rc) {
1764 		log_rdma_event(ERR, "failed to allocate receive buffers\n");
1765 		goto out4;
1766 	}
1767 
1768 	return 0;
1769 
1770 out4:
1771 	mempool_destroy(sc->recv_io.mem.pool);
1772 out3:
1773 	kmem_cache_destroy(sc->recv_io.mem.cache);
1774 out2:
1775 	mempool_destroy(sc->send_io.mem.pool);
1776 out1:
1777 	kmem_cache_destroy(sc->send_io.mem.cache);
1778 	return -ENOMEM;
1779 }
1780 
1781 /* Create a SMBD connection, called by upper layer */
_smbd_get_connection(struct TCP_Server_Info * server,struct sockaddr * dstaddr,int port)1782 static struct smbd_connection *_smbd_get_connection(
1783 	struct TCP_Server_Info *server, struct sockaddr *dstaddr, int port)
1784 {
1785 	int rc;
1786 	struct smbd_connection *info;
1787 	struct smbdirect_socket *sc;
1788 	struct smbdirect_socket_parameters *sp;
1789 	struct rdma_conn_param conn_param;
1790 	struct ib_qp_cap qp_cap;
1791 	struct ib_qp_init_attr qp_attr;
1792 	struct sockaddr_in *addr_in = (struct sockaddr_in *) dstaddr;
1793 	struct ib_port_immutable port_immutable;
1794 	__be32 ird_ord_hdr[2];
1795 	char wq_name[80];
1796 	struct workqueue_struct *workqueue;
1797 
1798 	info = kzalloc(sizeof(struct smbd_connection), GFP_KERNEL);
1799 	if (!info)
1800 		return NULL;
1801 	sc = &info->socket;
1802 	scnprintf(wq_name, ARRAY_SIZE(wq_name), "smbd_%p", sc);
1803 	workqueue = create_workqueue(wq_name);
1804 	if (!workqueue)
1805 		goto create_wq_failed;
1806 	smbdirect_socket_init(sc);
1807 	sc->workqueue = workqueue;
1808 	sp = &sc->parameters;
1809 
1810 	INIT_WORK(&sc->disconnect_work, smbd_disconnect_rdma_work);
1811 
1812 	sp->resolve_addr_timeout_msec = RDMA_RESOLVE_TIMEOUT;
1813 	sp->resolve_route_timeout_msec = RDMA_RESOLVE_TIMEOUT;
1814 	sp->rdma_connect_timeout_msec = RDMA_RESOLVE_TIMEOUT;
1815 	sp->negotiate_timeout_msec = SMBD_NEGOTIATE_TIMEOUT * 1000;
1816 	sp->initiator_depth = 1;
1817 	sp->responder_resources = SMBD_CM_RESPONDER_RESOURCES;
1818 	sp->recv_credit_max = smbd_receive_credit_max;
1819 	sp->send_credit_target = smbd_send_credit_target;
1820 	sp->max_send_size = smbd_max_send_size;
1821 	sp->max_fragmented_recv_size = smbd_max_fragmented_recv_size;
1822 	sp->max_recv_size = smbd_max_receive_size;
1823 	sp->max_frmr_depth = smbd_max_frmr_depth;
1824 	sp->keepalive_interval_msec = smbd_keep_alive_interval * 1000;
1825 	sp->keepalive_timeout_msec = KEEPALIVE_RECV_TIMEOUT * 1000;
1826 
1827 	rc = smbd_ia_open(sc, dstaddr, port);
1828 	if (rc) {
1829 		log_rdma_event(INFO, "smbd_ia_open rc=%d\n", rc);
1830 		goto create_id_failed;
1831 	}
1832 
1833 	if (sp->send_credit_target > sc->ib.dev->attrs.max_cqe ||
1834 	    sp->send_credit_target > sc->ib.dev->attrs.max_qp_wr) {
1835 		log_rdma_event(ERR, "consider lowering send_credit_target = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n",
1836 			       sp->send_credit_target,
1837 			       sc->ib.dev->attrs.max_cqe,
1838 			       sc->ib.dev->attrs.max_qp_wr);
1839 		goto config_failed;
1840 	}
1841 
1842 	if (sp->recv_credit_max > sc->ib.dev->attrs.max_cqe ||
1843 	    sp->recv_credit_max > sc->ib.dev->attrs.max_qp_wr) {
1844 		log_rdma_event(ERR, "consider lowering receive_credit_max = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n",
1845 			       sp->recv_credit_max,
1846 			       sc->ib.dev->attrs.max_cqe,
1847 			       sc->ib.dev->attrs.max_qp_wr);
1848 		goto config_failed;
1849 	}
1850 
1851 	if (sc->ib.dev->attrs.max_send_sge < SMBDIRECT_SEND_IO_MAX_SGE ||
1852 	    sc->ib.dev->attrs.max_recv_sge < SMBDIRECT_RECV_IO_MAX_SGE) {
1853 		log_rdma_event(ERR,
1854 			"device %.*s max_send_sge/max_recv_sge = %d/%d too small\n",
1855 			IB_DEVICE_NAME_MAX,
1856 			sc->ib.dev->name,
1857 			sc->ib.dev->attrs.max_send_sge,
1858 			sc->ib.dev->attrs.max_recv_sge);
1859 		goto config_failed;
1860 	}
1861 
1862 	sp->responder_resources =
1863 		min_t(u8, sp->responder_resources,
1864 		      sc->ib.dev->attrs.max_qp_rd_atom);
1865 	log_rdma_mr(INFO, "responder_resources=%d\n",
1866 		sp->responder_resources);
1867 
1868 	/*
1869 	 * We use allocate sp->responder_resources * 2 MRs
1870 	 * and each MR needs WRs for REG and INV, so
1871 	 * we use '* 4'.
1872 	 *
1873 	 * +1 for ib_drain_qp()
1874 	 */
1875 	memset(&qp_cap, 0, sizeof(qp_cap));
1876 	qp_cap.max_send_wr = sp->send_credit_target + sp->responder_resources * 4 + 1;
1877 	qp_cap.max_recv_wr = sp->recv_credit_max + 1;
1878 	qp_cap.max_send_sge = SMBDIRECT_SEND_IO_MAX_SGE;
1879 	qp_cap.max_recv_sge = SMBDIRECT_RECV_IO_MAX_SGE;
1880 
1881 	sc->ib.pd = ib_alloc_pd(sc->ib.dev, 0);
1882 	if (IS_ERR(sc->ib.pd)) {
1883 		rc = PTR_ERR(sc->ib.pd);
1884 		sc->ib.pd = NULL;
1885 		log_rdma_event(ERR, "ib_alloc_pd() returned %d\n", rc);
1886 		goto alloc_pd_failed;
1887 	}
1888 
1889 	sc->ib.send_cq =
1890 		ib_alloc_cq_any(sc->ib.dev, sc,
1891 				qp_cap.max_send_wr, IB_POLL_SOFTIRQ);
1892 	if (IS_ERR(sc->ib.send_cq)) {
1893 		sc->ib.send_cq = NULL;
1894 		goto alloc_cq_failed;
1895 	}
1896 
1897 	sc->ib.recv_cq =
1898 		ib_alloc_cq_any(sc->ib.dev, sc,
1899 				qp_cap.max_recv_wr, IB_POLL_SOFTIRQ);
1900 	if (IS_ERR(sc->ib.recv_cq)) {
1901 		sc->ib.recv_cq = NULL;
1902 		goto alloc_cq_failed;
1903 	}
1904 
1905 	memset(&qp_attr, 0, sizeof(qp_attr));
1906 	qp_attr.event_handler = smbd_qp_async_error_upcall;
1907 	qp_attr.qp_context = sc;
1908 	qp_attr.cap = qp_cap;
1909 	qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1910 	qp_attr.qp_type = IB_QPT_RC;
1911 	qp_attr.send_cq = sc->ib.send_cq;
1912 	qp_attr.recv_cq = sc->ib.recv_cq;
1913 	qp_attr.port_num = ~0;
1914 
1915 	rc = rdma_create_qp(sc->rdma.cm_id, sc->ib.pd, &qp_attr);
1916 	if (rc) {
1917 		log_rdma_event(ERR, "rdma_create_qp failed %i\n", rc);
1918 		goto create_qp_failed;
1919 	}
1920 	sc->ib.qp = sc->rdma.cm_id->qp;
1921 
1922 	memset(&conn_param, 0, sizeof(conn_param));
1923 	conn_param.initiator_depth = sp->initiator_depth;
1924 	conn_param.responder_resources = sp->responder_resources;
1925 
1926 	/* Need to send IRD/ORD in private data for iWARP */
1927 	sc->ib.dev->ops.get_port_immutable(
1928 		sc->ib.dev, sc->rdma.cm_id->port_num, &port_immutable);
1929 	if (port_immutable.core_cap_flags & RDMA_CORE_PORT_IWARP) {
1930 		ird_ord_hdr[0] = cpu_to_be32(conn_param.responder_resources);
1931 		ird_ord_hdr[1] = cpu_to_be32(conn_param.initiator_depth);
1932 		conn_param.private_data = ird_ord_hdr;
1933 		conn_param.private_data_len = sizeof(ird_ord_hdr);
1934 	} else {
1935 		conn_param.private_data = NULL;
1936 		conn_param.private_data_len = 0;
1937 	}
1938 
1939 	conn_param.retry_count = SMBD_CM_RETRY;
1940 	conn_param.rnr_retry_count = SMBD_CM_RNR_RETRY;
1941 	conn_param.flow_control = 0;
1942 
1943 	log_rdma_event(INFO, "connecting to IP %pI4 port %d\n",
1944 		&addr_in->sin_addr, port);
1945 
1946 	WARN_ON_ONCE(sc->status != SMBDIRECT_SOCKET_RDMA_CONNECT_NEEDED);
1947 	sc->status = SMBDIRECT_SOCKET_RDMA_CONNECT_RUNNING;
1948 	rc = rdma_connect(sc->rdma.cm_id, &conn_param);
1949 	if (rc) {
1950 		log_rdma_event(ERR, "rdma_connect() failed with %i\n", rc);
1951 		goto rdma_connect_failed;
1952 	}
1953 
1954 	wait_event_interruptible_timeout(
1955 		sc->status_wait,
1956 		sc->status != SMBDIRECT_SOCKET_RDMA_CONNECT_RUNNING,
1957 		msecs_to_jiffies(sp->rdma_connect_timeout_msec));
1958 
1959 	if (sc->status != SMBDIRECT_SOCKET_NEGOTIATE_NEEDED) {
1960 		log_rdma_event(ERR, "rdma_connect failed port=%d\n", port);
1961 		goto rdma_connect_failed;
1962 	}
1963 
1964 	log_rdma_event(INFO, "rdma_connect connected\n");
1965 
1966 	rc = allocate_caches(sc);
1967 	if (rc) {
1968 		log_rdma_event(ERR, "cache allocation failed\n");
1969 		goto allocate_cache_failed;
1970 	}
1971 
1972 	INIT_WORK(&sc->idle.immediate_work, send_immediate_empty_message);
1973 	INIT_DELAYED_WORK(&sc->idle.timer_work, idle_connection_timer);
1974 	/*
1975 	 * start with the negotiate timeout and SMBDIRECT_KEEPALIVE_PENDING
1976 	 * so that the timer will cause a disconnect.
1977 	 */
1978 	sc->idle.keepalive = SMBDIRECT_KEEPALIVE_PENDING;
1979 	mod_delayed_work(sc->workqueue, &sc->idle.timer_work,
1980 			 msecs_to_jiffies(sp->negotiate_timeout_msec));
1981 
1982 	INIT_WORK(&sc->recv_io.posted.refill_work, smbd_post_send_credits);
1983 
1984 	rc = smbd_negotiate(sc);
1985 	if (rc) {
1986 		log_rdma_event(ERR, "smbd_negotiate rc=%d\n", rc);
1987 		goto negotiation_failed;
1988 	}
1989 
1990 	rc = allocate_mr_list(sc);
1991 	if (rc) {
1992 		log_rdma_mr(ERR, "memory registration allocation failed\n");
1993 		goto allocate_mr_failed;
1994 	}
1995 
1996 	return info;
1997 
1998 allocate_mr_failed:
1999 	/* At this point, need to a full transport shutdown */
2000 	server->smbd_conn = info;
2001 	smbd_destroy(server);
2002 	return NULL;
2003 
2004 negotiation_failed:
2005 	disable_delayed_work_sync(&sc->idle.timer_work);
2006 	destroy_caches(sc);
2007 	sc->status = SMBDIRECT_SOCKET_NEGOTIATE_FAILED;
2008 	rdma_disconnect(sc->rdma.cm_id);
2009 	wait_event(sc->status_wait,
2010 		sc->status == SMBDIRECT_SOCKET_DISCONNECTED);
2011 
2012 allocate_cache_failed:
2013 rdma_connect_failed:
2014 	rdma_destroy_qp(sc->rdma.cm_id);
2015 
2016 create_qp_failed:
2017 alloc_cq_failed:
2018 	if (sc->ib.send_cq)
2019 		ib_free_cq(sc->ib.send_cq);
2020 	if (sc->ib.recv_cq)
2021 		ib_free_cq(sc->ib.recv_cq);
2022 
2023 	ib_dealloc_pd(sc->ib.pd);
2024 
2025 alloc_pd_failed:
2026 config_failed:
2027 	rdma_destroy_id(sc->rdma.cm_id);
2028 
2029 create_id_failed:
2030 	destroy_workqueue(sc->workqueue);
2031 create_wq_failed:
2032 	kfree(info);
2033 	return NULL;
2034 }
2035 
smbd_get_connection(struct TCP_Server_Info * server,struct sockaddr * dstaddr)2036 struct smbd_connection *smbd_get_connection(
2037 	struct TCP_Server_Info *server, struct sockaddr *dstaddr)
2038 {
2039 	struct smbd_connection *ret;
2040 	const struct smbdirect_socket_parameters *sp;
2041 	int port = SMBD_PORT;
2042 
2043 try_again:
2044 	ret = _smbd_get_connection(server, dstaddr, port);
2045 
2046 	/* Try SMB_PORT if SMBD_PORT doesn't work */
2047 	if (!ret && port == SMBD_PORT) {
2048 		port = SMB_PORT;
2049 		goto try_again;
2050 	}
2051 	if (!ret)
2052 		return NULL;
2053 
2054 	sp = &ret->socket.parameters;
2055 
2056 	server->rdma_readwrite_threshold =
2057 		rdma_readwrite_threshold > sp->max_fragmented_send_size ?
2058 		sp->max_fragmented_send_size :
2059 		rdma_readwrite_threshold;
2060 
2061 	return ret;
2062 }
2063 
2064 /*
2065  * Receive data from the transport's receive reassembly queue
2066  * All the incoming data packets are placed in reassembly queue
2067  * iter: the buffer to read data into
2068  * size: the length of data to read
2069  * return value: actual data read
2070  *
2071  * Note: this implementation copies the data from reassembly queue to receive
2072  * buffers used by upper layer. This is not the optimal code path. A better way
2073  * to do it is to not have upper layer allocate its receive buffers but rather
2074  * borrow the buffer from reassembly queue, and return it after data is
2075  * consumed. But this will require more changes to upper layer code, and also
2076  * need to consider packet boundaries while they still being reassembled.
2077  */
smbd_recv(struct smbd_connection * info,struct msghdr * msg)2078 int smbd_recv(struct smbd_connection *info, struct msghdr *msg)
2079 {
2080 	struct smbdirect_socket *sc = &info->socket;
2081 	struct smbdirect_recv_io *response;
2082 	struct smbdirect_data_transfer *data_transfer;
2083 	size_t size = iov_iter_count(&msg->msg_iter);
2084 	int to_copy, to_read, data_read, offset;
2085 	u32 data_length, remaining_data_length, data_offset;
2086 	int rc;
2087 
2088 	if (WARN_ON_ONCE(iov_iter_rw(&msg->msg_iter) == WRITE))
2089 		return -EINVAL; /* It's a bug in upper layer to get there */
2090 
2091 again:
2092 	/*
2093 	 * No need to hold the reassembly queue lock all the time as we are
2094 	 * the only one reading from the front of the queue. The transport
2095 	 * may add more entries to the back of the queue at the same time
2096 	 */
2097 	log_read(INFO, "size=%zd sc->recv_io.reassembly.data_length=%d\n", size,
2098 		sc->recv_io.reassembly.data_length);
2099 	if (sc->recv_io.reassembly.data_length >= size) {
2100 		int queue_length;
2101 		int queue_removed = 0;
2102 		unsigned long flags;
2103 
2104 		/*
2105 		 * Need to make sure reassembly_data_length is read before
2106 		 * reading reassembly_queue_length and calling
2107 		 * _get_first_reassembly. This call is lock free
2108 		 * as we never read at the end of the queue which are being
2109 		 * updated in SOFTIRQ as more data is received
2110 		 */
2111 		virt_rmb();
2112 		queue_length = sc->recv_io.reassembly.queue_length;
2113 		data_read = 0;
2114 		to_read = size;
2115 		offset = sc->recv_io.reassembly.first_entry_offset;
2116 		while (data_read < size) {
2117 			response = _get_first_reassembly(sc);
2118 			data_transfer = smbdirect_recv_io_payload(response);
2119 			data_length = le32_to_cpu(data_transfer->data_length);
2120 			remaining_data_length =
2121 				le32_to_cpu(
2122 					data_transfer->remaining_data_length);
2123 			data_offset = le32_to_cpu(data_transfer->data_offset);
2124 
2125 			/*
2126 			 * The upper layer expects RFC1002 length at the
2127 			 * beginning of the payload. Return it to indicate
2128 			 * the total length of the packet. This minimize the
2129 			 * change to upper layer packet processing logic. This
2130 			 * will be eventually remove when an intermediate
2131 			 * transport layer is added
2132 			 */
2133 			if (response->first_segment && size == 4) {
2134 				unsigned int rfc1002_len =
2135 					data_length + remaining_data_length;
2136 				__be32 rfc1002_hdr = cpu_to_be32(rfc1002_len);
2137 				if (copy_to_iter(&rfc1002_hdr, sizeof(rfc1002_hdr),
2138 						 &msg->msg_iter) != sizeof(rfc1002_hdr))
2139 					return -EFAULT;
2140 				data_read = 4;
2141 				response->first_segment = false;
2142 				log_read(INFO, "returning rfc1002 length %d\n",
2143 					rfc1002_len);
2144 				goto read_rfc1002_done;
2145 			}
2146 
2147 			to_copy = min_t(int, data_length - offset, to_read);
2148 			if (copy_to_iter((char *)data_transfer + data_offset + offset,
2149 					 to_copy, &msg->msg_iter) != to_copy)
2150 				return -EFAULT;
2151 
2152 			/* move on to the next buffer? */
2153 			if (to_copy == data_length - offset) {
2154 				queue_length--;
2155 				/*
2156 				 * No need to lock if we are not at the
2157 				 * end of the queue
2158 				 */
2159 				if (queue_length)
2160 					list_del(&response->list);
2161 				else {
2162 					spin_lock_irqsave(
2163 						&sc->recv_io.reassembly.lock, flags);
2164 					list_del(&response->list);
2165 					spin_unlock_irqrestore(
2166 						&sc->recv_io.reassembly.lock, flags);
2167 				}
2168 				queue_removed++;
2169 				sc->statistics.dequeue_reassembly_queue++;
2170 				put_receive_buffer(sc, response);
2171 				offset = 0;
2172 				log_read(INFO, "put_receive_buffer offset=0\n");
2173 			} else
2174 				offset += to_copy;
2175 
2176 			to_read -= to_copy;
2177 			data_read += to_copy;
2178 
2179 			log_read(INFO, "_get_first_reassembly memcpy %d bytes data_transfer_length-offset=%d after that to_read=%d data_read=%d offset=%d\n",
2180 				 to_copy, data_length - offset,
2181 				 to_read, data_read, offset);
2182 		}
2183 
2184 		spin_lock_irqsave(&sc->recv_io.reassembly.lock, flags);
2185 		sc->recv_io.reassembly.data_length -= data_read;
2186 		sc->recv_io.reassembly.queue_length -= queue_removed;
2187 		spin_unlock_irqrestore(&sc->recv_io.reassembly.lock, flags);
2188 
2189 		sc->recv_io.reassembly.first_entry_offset = offset;
2190 		log_read(INFO, "returning to thread data_read=%d reassembly_data_length=%d first_entry_offset=%d\n",
2191 			 data_read, sc->recv_io.reassembly.data_length,
2192 			 sc->recv_io.reassembly.first_entry_offset);
2193 read_rfc1002_done:
2194 		return data_read;
2195 	}
2196 
2197 	log_read(INFO, "wait_event on more data\n");
2198 	rc = wait_event_interruptible(
2199 		sc->recv_io.reassembly.wait_queue,
2200 		sc->recv_io.reassembly.data_length >= size ||
2201 			sc->status != SMBDIRECT_SOCKET_CONNECTED);
2202 	/* Don't return any data if interrupted */
2203 	if (rc)
2204 		return rc;
2205 
2206 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
2207 		log_read(ERR, "disconnected\n");
2208 		return -ECONNABORTED;
2209 	}
2210 
2211 	goto again;
2212 }
2213 
2214 /*
2215  * Send data to transport
2216  * Each rqst is transported as a SMBDirect payload
2217  * rqst: the data to write
2218  * return value: 0 if successfully write, otherwise error code
2219  */
smbd_send(struct TCP_Server_Info * server,int num_rqst,struct smb_rqst * rqst_array)2220 int smbd_send(struct TCP_Server_Info *server,
2221 	int num_rqst, struct smb_rqst *rqst_array)
2222 {
2223 	struct smbd_connection *info = server->smbd_conn;
2224 	struct smbdirect_socket *sc = &info->socket;
2225 	struct smbdirect_socket_parameters *sp = &sc->parameters;
2226 	struct smb_rqst *rqst;
2227 	struct iov_iter iter;
2228 	unsigned int remaining_data_length, klen;
2229 	int rc, i, rqst_idx;
2230 
2231 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED)
2232 		return -EAGAIN;
2233 
2234 	/*
2235 	 * Add in the page array if there is one. The caller needs to set
2236 	 * rq_tailsz to PAGE_SIZE when the buffer has multiple pages and
2237 	 * ends at page boundary
2238 	 */
2239 	remaining_data_length = 0;
2240 	for (i = 0; i < num_rqst; i++)
2241 		remaining_data_length += smb_rqst_len(server, &rqst_array[i]);
2242 
2243 	if (unlikely(remaining_data_length > sp->max_fragmented_send_size)) {
2244 		/* assertion: payload never exceeds negotiated maximum */
2245 		log_write(ERR, "payload size %d > max size %d\n",
2246 			remaining_data_length, sp->max_fragmented_send_size);
2247 		return -EINVAL;
2248 	}
2249 
2250 	log_write(INFO, "num_rqst=%d total length=%u\n",
2251 			num_rqst, remaining_data_length);
2252 
2253 	rqst_idx = 0;
2254 	do {
2255 		rqst = &rqst_array[rqst_idx];
2256 
2257 		cifs_dbg(FYI, "Sending smb (RDMA): idx=%d smb_len=%lu\n",
2258 			 rqst_idx, smb_rqst_len(server, rqst));
2259 		for (i = 0; i < rqst->rq_nvec; i++)
2260 			dump_smb(rqst->rq_iov[i].iov_base, rqst->rq_iov[i].iov_len);
2261 
2262 		log_write(INFO, "RDMA-WR[%u] nvec=%d len=%u iter=%zu rqlen=%lu\n",
2263 			  rqst_idx, rqst->rq_nvec, remaining_data_length,
2264 			  iov_iter_count(&rqst->rq_iter), smb_rqst_len(server, rqst));
2265 
2266 		/* Send the metadata pages. */
2267 		klen = 0;
2268 		for (i = 0; i < rqst->rq_nvec; i++)
2269 			klen += rqst->rq_iov[i].iov_len;
2270 		iov_iter_kvec(&iter, ITER_SOURCE, rqst->rq_iov, rqst->rq_nvec, klen);
2271 
2272 		rc = smbd_post_send_full_iter(sc, &iter, &remaining_data_length);
2273 		if (rc < 0)
2274 			break;
2275 
2276 		if (iov_iter_count(&rqst->rq_iter) > 0) {
2277 			/* And then the data pages if there are any */
2278 			rc = smbd_post_send_full_iter(sc, &rqst->rq_iter,
2279 						      &remaining_data_length);
2280 			if (rc < 0)
2281 				break;
2282 		}
2283 
2284 	} while (++rqst_idx < num_rqst);
2285 
2286 	/*
2287 	 * As an optimization, we don't wait for individual I/O to finish
2288 	 * before sending the next one.
2289 	 * Send them all and wait for pending send count to get to 0
2290 	 * that means all the I/Os have been out and we are good to return
2291 	 */
2292 
2293 	wait_event(sc->send_io.pending.zero_wait_queue,
2294 		atomic_read(&sc->send_io.pending.count) == 0 ||
2295 		sc->status != SMBDIRECT_SOCKET_CONNECTED);
2296 
2297 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED && rc == 0)
2298 		rc = -EAGAIN;
2299 
2300 	return rc;
2301 }
2302 
register_mr_done(struct ib_cq * cq,struct ib_wc * wc)2303 static void register_mr_done(struct ib_cq *cq, struct ib_wc *wc)
2304 {
2305 	struct smbdirect_mr_io *mr =
2306 		container_of(wc->wr_cqe, struct smbdirect_mr_io, cqe);
2307 	struct smbdirect_socket *sc = mr->socket;
2308 
2309 	if (wc->status) {
2310 		log_rdma_mr(ERR, "status=%d\n", wc->status);
2311 		smbd_disconnect_rdma_connection(sc);
2312 	}
2313 }
2314 
2315 /*
2316  * The work queue function that recovers MRs
2317  * We need to call ib_dereg_mr() and ib_alloc_mr() before this MR can be used
2318  * again. Both calls are slow, so finish them in a workqueue. This will not
2319  * block I/O path.
2320  * There is one workqueue that recovers MRs, there is no need to lock as the
2321  * I/O requests calling smbd_register_mr will never update the links in the
2322  * mr_list.
2323  */
smbd_mr_recovery_work(struct work_struct * work)2324 static void smbd_mr_recovery_work(struct work_struct *work)
2325 {
2326 	struct smbdirect_socket *sc =
2327 		container_of(work, struct smbdirect_socket, mr_io.recovery_work);
2328 	struct smbdirect_socket_parameters *sp = &sc->parameters;
2329 	struct smbdirect_mr_io *smbdirect_mr;
2330 	int rc;
2331 
2332 	list_for_each_entry(smbdirect_mr, &sc->mr_io.all.list, list) {
2333 		if (smbdirect_mr->state == SMBDIRECT_MR_ERROR) {
2334 
2335 			/* recover this MR entry */
2336 			rc = ib_dereg_mr(smbdirect_mr->mr);
2337 			if (rc) {
2338 				log_rdma_mr(ERR,
2339 					"ib_dereg_mr failed rc=%x\n",
2340 					rc);
2341 				smbd_disconnect_rdma_connection(sc);
2342 				continue;
2343 			}
2344 
2345 			smbdirect_mr->mr = ib_alloc_mr(
2346 				sc->ib.pd, sc->mr_io.type,
2347 				sp->max_frmr_depth);
2348 			if (IS_ERR(smbdirect_mr->mr)) {
2349 				log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2350 					    sc->mr_io.type,
2351 					    sp->max_frmr_depth);
2352 				smbd_disconnect_rdma_connection(sc);
2353 				continue;
2354 			}
2355 		} else
2356 			/* This MR is being used, don't recover it */
2357 			continue;
2358 
2359 		smbdirect_mr->state = SMBDIRECT_MR_READY;
2360 
2361 		/* smbdirect_mr->state is updated by this function
2362 		 * and is read and updated by I/O issuing CPUs trying
2363 		 * to get a MR, the call to atomic_inc_return
2364 		 * implicates a memory barrier and guarantees this
2365 		 * value is updated before waking up any calls to
2366 		 * get_mr() from the I/O issuing CPUs
2367 		 */
2368 		if (atomic_inc_return(&sc->mr_io.ready.count) == 1)
2369 			wake_up(&sc->mr_io.ready.wait_queue);
2370 	}
2371 }
2372 
smbd_mr_disable_locked(struct smbdirect_mr_io * mr)2373 static void smbd_mr_disable_locked(struct smbdirect_mr_io *mr)
2374 {
2375 	struct smbdirect_socket *sc = mr->socket;
2376 
2377 	lockdep_assert_held(&mr->mutex);
2378 
2379 	if (mr->state == SMBDIRECT_MR_DISABLED)
2380 		return;
2381 
2382 	if (mr->mr)
2383 		ib_dereg_mr(mr->mr);
2384 	if (mr->sgt.nents)
2385 		ib_dma_unmap_sg(sc->ib.dev, mr->sgt.sgl, mr->sgt.nents, mr->dir);
2386 	kfree(mr->sgt.sgl);
2387 
2388 	mr->mr = NULL;
2389 	mr->sgt.sgl = NULL;
2390 	mr->sgt.nents = 0;
2391 
2392 	mr->state = SMBDIRECT_MR_DISABLED;
2393 }
2394 
smbd_mr_free_locked(struct kref * kref)2395 static void smbd_mr_free_locked(struct kref *kref)
2396 {
2397 	struct smbdirect_mr_io *mr =
2398 		container_of(kref, struct smbdirect_mr_io, kref);
2399 
2400 	lockdep_assert_held(&mr->mutex);
2401 
2402 	/*
2403 	 * smbd_mr_disable_locked() should already be called!
2404 	 */
2405 	if (WARN_ON_ONCE(mr->state != SMBDIRECT_MR_DISABLED))
2406 		smbd_mr_disable_locked(mr);
2407 
2408 	mutex_unlock(&mr->mutex);
2409 	mutex_destroy(&mr->mutex);
2410 	kfree(mr);
2411 }
2412 
destroy_mr_list(struct smbdirect_socket * sc)2413 static void destroy_mr_list(struct smbdirect_socket *sc)
2414 {
2415 	struct smbdirect_mr_io *mr, *tmp;
2416 	LIST_HEAD(all_list);
2417 	unsigned long flags;
2418 
2419 	disable_work_sync(&sc->mr_io.recovery_work);
2420 
2421 	spin_lock_irqsave(&sc->mr_io.all.lock, flags);
2422 	list_splice_tail_init(&sc->mr_io.all.list, &all_list);
2423 	spin_unlock_irqrestore(&sc->mr_io.all.lock, flags);
2424 
2425 	list_for_each_entry_safe(mr, tmp, &all_list, list) {
2426 		mutex_lock(&mr->mutex);
2427 
2428 		smbd_mr_disable_locked(mr);
2429 		list_del(&mr->list);
2430 		mr->socket = NULL;
2431 
2432 		/*
2433 		 * No kref_put_mutex() as it's already locked.
2434 		 *
2435 		 * If smbd_mr_free_locked() is called
2436 		 * and the mutex is unlocked and mr is gone,
2437 		 * in that case kref_put() returned 1.
2438 		 *
2439 		 * If kref_put() returned 0 we know that
2440 		 * smbd_mr_free_locked() didn't
2441 		 * run. Not by us nor by anyone else, as we
2442 		 * still hold the mutex, so we need to unlock.
2443 		 *
2444 		 * If the mr is still registered it will
2445 		 * be dangling (detached from the connection
2446 		 * waiting for smbd_deregister_mr() to be
2447 		 * called in order to free the memory.
2448 		 */
2449 		if (!kref_put(&mr->kref, smbd_mr_free_locked))
2450 			mutex_unlock(&mr->mutex);
2451 	}
2452 }
2453 
2454 /*
2455  * Allocate MRs used for RDMA read/write
2456  * The number of MRs will not exceed hardware capability in responder_resources
2457  * All MRs are kept in mr_list. The MR can be recovered after it's used
2458  * Recovery is done in smbd_mr_recovery_work. The content of list entry changes
2459  * as MRs are used and recovered for I/O, but the list links will not change
2460  */
allocate_mr_list(struct smbdirect_socket * sc)2461 static int allocate_mr_list(struct smbdirect_socket *sc)
2462 {
2463 	struct smbdirect_socket_parameters *sp = &sc->parameters;
2464 	struct smbdirect_mr_io *mr;
2465 	int ret;
2466 	u32 i;
2467 
2468 	if (sp->responder_resources == 0) {
2469 		log_rdma_mr(ERR, "responder_resources negotiated as 0\n");
2470 		return -EINVAL;
2471 	}
2472 
2473 	/* Allocate more MRs (2x) than hardware responder_resources */
2474 	for (i = 0; i < sp->responder_resources * 2; i++) {
2475 		mr = kzalloc(sizeof(*mr), GFP_KERNEL);
2476 		if (!mr) {
2477 			ret = -ENOMEM;
2478 			goto kzalloc_mr_failed;
2479 		}
2480 
2481 		kref_init(&mr->kref);
2482 		mutex_init(&mr->mutex);
2483 
2484 		mr->mr = ib_alloc_mr(sc->ib.pd,
2485 				     sc->mr_io.type,
2486 				     sp->max_frmr_depth);
2487 		if (IS_ERR(mr->mr)) {
2488 			ret = PTR_ERR(mr->mr);
2489 			log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2490 				    sc->mr_io.type, sp->max_frmr_depth);
2491 			goto ib_alloc_mr_failed;
2492 		}
2493 
2494 		mr->sgt.sgl = kcalloc(sp->max_frmr_depth,
2495 				      sizeof(struct scatterlist),
2496 				      GFP_KERNEL);
2497 		if (!mr->sgt.sgl) {
2498 			ret = -ENOMEM;
2499 			log_rdma_mr(ERR, "failed to allocate sgl\n");
2500 			goto kcalloc_sgl_failed;
2501 		}
2502 		mr->state = SMBDIRECT_MR_READY;
2503 		mr->socket = sc;
2504 
2505 		list_add_tail(&mr->list, &sc->mr_io.all.list);
2506 		atomic_inc(&sc->mr_io.ready.count);
2507 	}
2508 
2509 	INIT_WORK(&sc->mr_io.recovery_work, smbd_mr_recovery_work);
2510 
2511 	return 0;
2512 
2513 kcalloc_sgl_failed:
2514 	ib_dereg_mr(mr->mr);
2515 ib_alloc_mr_failed:
2516 	mutex_destroy(&mr->mutex);
2517 	kfree(mr);
2518 kzalloc_mr_failed:
2519 	destroy_mr_list(sc);
2520 	return ret;
2521 }
2522 
2523 /*
2524  * Get a MR from mr_list. This function waits until there is at least one
2525  * MR available in the list. It may access the list while the
2526  * smbd_mr_recovery_work is recovering the MR list. This doesn't need a lock
2527  * as they never modify the same places. However, there may be several CPUs
2528  * issuing I/O trying to get MR at the same time, mr_list_lock is used to
2529  * protect this situation.
2530  */
get_mr(struct smbdirect_socket * sc)2531 static struct smbdirect_mr_io *get_mr(struct smbdirect_socket *sc)
2532 {
2533 	struct smbdirect_mr_io *ret;
2534 	unsigned long flags;
2535 	int rc;
2536 again:
2537 	rc = wait_event_interruptible(sc->mr_io.ready.wait_queue,
2538 		atomic_read(&sc->mr_io.ready.count) ||
2539 		sc->status != SMBDIRECT_SOCKET_CONNECTED);
2540 	if (rc) {
2541 		log_rdma_mr(ERR, "wait_event_interruptible rc=%x\n", rc);
2542 		return NULL;
2543 	}
2544 
2545 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
2546 		log_rdma_mr(ERR, "sc->status=%x\n", sc->status);
2547 		return NULL;
2548 	}
2549 
2550 	spin_lock_irqsave(&sc->mr_io.all.lock, flags);
2551 	list_for_each_entry(ret, &sc->mr_io.all.list, list) {
2552 		if (ret->state == SMBDIRECT_MR_READY) {
2553 			ret->state = SMBDIRECT_MR_REGISTERED;
2554 			kref_get(&ret->kref);
2555 			spin_unlock_irqrestore(&sc->mr_io.all.lock, flags);
2556 			atomic_dec(&sc->mr_io.ready.count);
2557 			atomic_inc(&sc->mr_io.used.count);
2558 			return ret;
2559 		}
2560 	}
2561 
2562 	spin_unlock_irqrestore(&sc->mr_io.all.lock, flags);
2563 	/*
2564 	 * It is possible that we could fail to get MR because other processes may
2565 	 * try to acquire a MR at the same time. If this is the case, retry it.
2566 	 */
2567 	goto again;
2568 }
2569 
2570 /*
2571  * Transcribe the pages from an iterator into an MR scatterlist.
2572  */
smbd_iter_to_mr(struct iov_iter * iter,struct sg_table * sgt,unsigned int max_sg)2573 static int smbd_iter_to_mr(struct iov_iter *iter,
2574 			   struct sg_table *sgt,
2575 			   unsigned int max_sg)
2576 {
2577 	int ret;
2578 
2579 	memset(sgt->sgl, 0, max_sg * sizeof(struct scatterlist));
2580 
2581 	ret = extract_iter_to_sg(iter, iov_iter_count(iter), sgt, max_sg, 0);
2582 	WARN_ON(ret < 0);
2583 	if (sgt->nents > 0)
2584 		sg_mark_end(&sgt->sgl[sgt->nents - 1]);
2585 	return ret;
2586 }
2587 
2588 /*
2589  * Register memory for RDMA read/write
2590  * iter: the buffer to register memory with
2591  * writing: true if this is a RDMA write (SMB read), false for RDMA read
2592  * need_invalidate: true if this MR needs to be locally invalidated after I/O
2593  * return value: the MR registered, NULL if failed.
2594  */
smbd_register_mr(struct smbd_connection * info,struct iov_iter * iter,bool writing,bool need_invalidate)2595 struct smbdirect_mr_io *smbd_register_mr(struct smbd_connection *info,
2596 				 struct iov_iter *iter,
2597 				 bool writing, bool need_invalidate)
2598 {
2599 	struct smbdirect_socket *sc = &info->socket;
2600 	struct smbdirect_socket_parameters *sp = &sc->parameters;
2601 	struct smbdirect_mr_io *mr;
2602 	int rc, num_pages;
2603 	struct ib_reg_wr *reg_wr;
2604 
2605 	num_pages = iov_iter_npages(iter, sp->max_frmr_depth + 1);
2606 	if (num_pages > sp->max_frmr_depth) {
2607 		log_rdma_mr(ERR, "num_pages=%d max_frmr_depth=%d\n",
2608 			num_pages, sp->max_frmr_depth);
2609 		WARN_ON_ONCE(1);
2610 		return NULL;
2611 	}
2612 
2613 	mr = get_mr(sc);
2614 	if (!mr) {
2615 		log_rdma_mr(ERR, "get_mr returning NULL\n");
2616 		return NULL;
2617 	}
2618 
2619 	mutex_lock(&mr->mutex);
2620 
2621 	mr->dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2622 	mr->need_invalidate = need_invalidate;
2623 	mr->sgt.nents = 0;
2624 	mr->sgt.orig_nents = 0;
2625 
2626 	log_rdma_mr(INFO, "num_pages=0x%x count=0x%zx depth=%u\n",
2627 		    num_pages, iov_iter_count(iter), sp->max_frmr_depth);
2628 	smbd_iter_to_mr(iter, &mr->sgt, sp->max_frmr_depth);
2629 
2630 	rc = ib_dma_map_sg(sc->ib.dev, mr->sgt.sgl, mr->sgt.nents, mr->dir);
2631 	if (!rc) {
2632 		log_rdma_mr(ERR, "ib_dma_map_sg num_pages=%x dir=%x rc=%x\n",
2633 			    num_pages, mr->dir, rc);
2634 		goto dma_map_error;
2635 	}
2636 
2637 	rc = ib_map_mr_sg(mr->mr, mr->sgt.sgl, mr->sgt.nents, NULL, PAGE_SIZE);
2638 	if (rc != mr->sgt.nents) {
2639 		log_rdma_mr(ERR,
2640 			    "ib_map_mr_sg failed rc = %d nents = %x\n",
2641 			    rc, mr->sgt.nents);
2642 		goto map_mr_error;
2643 	}
2644 
2645 	ib_update_fast_reg_key(mr->mr, ib_inc_rkey(mr->mr->rkey));
2646 	reg_wr = &mr->wr;
2647 	reg_wr->wr.opcode = IB_WR_REG_MR;
2648 	mr->cqe.done = register_mr_done;
2649 	reg_wr->wr.wr_cqe = &mr->cqe;
2650 	reg_wr->wr.num_sge = 0;
2651 	reg_wr->wr.send_flags = IB_SEND_SIGNALED;
2652 	reg_wr->mr = mr->mr;
2653 	reg_wr->key = mr->mr->rkey;
2654 	reg_wr->access = writing ?
2655 			IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
2656 			IB_ACCESS_REMOTE_READ;
2657 
2658 	/*
2659 	 * There is no need for waiting for complemtion on ib_post_send
2660 	 * on IB_WR_REG_MR. Hardware enforces a barrier and order of execution
2661 	 * on the next ib_post_send when we actually send I/O to remote peer
2662 	 */
2663 	rc = ib_post_send(sc->ib.qp, &reg_wr->wr, NULL);
2664 	if (!rc) {
2665 		/*
2666 		 * get_mr() gave us a reference
2667 		 * via kref_get(&mr->kref), we keep that and let
2668 		 * the caller use smbd_deregister_mr()
2669 		 * to remove it again.
2670 		 */
2671 		mutex_unlock(&mr->mutex);
2672 		return mr;
2673 	}
2674 
2675 	log_rdma_mr(ERR, "ib_post_send failed rc=%x reg_wr->key=%x\n",
2676 		rc, reg_wr->key);
2677 
2678 	/* If all failed, attempt to recover this MR by setting it SMBDIRECT_MR_ERROR*/
2679 map_mr_error:
2680 	ib_dma_unmap_sg(sc->ib.dev, mr->sgt.sgl, mr->sgt.nents, mr->dir);
2681 
2682 dma_map_error:
2683 	mr->sgt.nents = 0;
2684 	mr->state = SMBDIRECT_MR_ERROR;
2685 	if (atomic_dec_and_test(&sc->mr_io.used.count))
2686 		wake_up(&sc->mr_io.cleanup.wait_queue);
2687 
2688 	smbd_disconnect_rdma_connection(sc);
2689 
2690 	/*
2691 	 * get_mr() gave us a reference
2692 	 * via kref_get(&mr->kref), we need to remove it again
2693 	 * on error.
2694 	 *
2695 	 * No kref_put_mutex() as it's already locked.
2696 	 *
2697 	 * If smbd_mr_free_locked() is called
2698 	 * and the mutex is unlocked and mr is gone,
2699 	 * in that case kref_put() returned 1.
2700 	 *
2701 	 * If kref_put() returned 0 we know that
2702 	 * smbd_mr_free_locked() didn't
2703 	 * run. Not by us nor by anyone else, as we
2704 	 * still hold the mutex, so we need to unlock.
2705 	 */
2706 	if (!kref_put(&mr->kref, smbd_mr_free_locked))
2707 		mutex_unlock(&mr->mutex);
2708 
2709 	return NULL;
2710 }
2711 
local_inv_done(struct ib_cq * cq,struct ib_wc * wc)2712 static void local_inv_done(struct ib_cq *cq, struct ib_wc *wc)
2713 {
2714 	struct smbdirect_mr_io *smbdirect_mr;
2715 	struct ib_cqe *cqe;
2716 
2717 	cqe = wc->wr_cqe;
2718 	smbdirect_mr = container_of(cqe, struct smbdirect_mr_io, cqe);
2719 	smbdirect_mr->state = SMBDIRECT_MR_INVALIDATED;
2720 	if (wc->status != IB_WC_SUCCESS) {
2721 		log_rdma_mr(ERR, "invalidate failed status=%x\n", wc->status);
2722 		smbdirect_mr->state = SMBDIRECT_MR_ERROR;
2723 	}
2724 	complete(&smbdirect_mr->invalidate_done);
2725 }
2726 
2727 /*
2728  * Deregister a MR after I/O is done
2729  * This function may wait if remote invalidation is not used
2730  * and we have to locally invalidate the buffer to prevent data is being
2731  * modified by remote peer after upper layer consumes it
2732  */
smbd_deregister_mr(struct smbdirect_mr_io * mr)2733 void smbd_deregister_mr(struct smbdirect_mr_io *mr)
2734 {
2735 	struct smbdirect_socket *sc = mr->socket;
2736 
2737 	mutex_lock(&mr->mutex);
2738 	if (mr->state == SMBDIRECT_MR_DISABLED)
2739 		goto put_kref;
2740 
2741 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
2742 		smbd_mr_disable_locked(mr);
2743 		goto put_kref;
2744 	}
2745 
2746 	if (mr->need_invalidate) {
2747 		struct ib_send_wr *wr = &mr->inv_wr;
2748 		int rc;
2749 
2750 		/* Need to finish local invalidation before returning */
2751 		wr->opcode = IB_WR_LOCAL_INV;
2752 		mr->cqe.done = local_inv_done;
2753 		wr->wr_cqe = &mr->cqe;
2754 		wr->num_sge = 0;
2755 		wr->ex.invalidate_rkey = mr->mr->rkey;
2756 		wr->send_flags = IB_SEND_SIGNALED;
2757 
2758 		init_completion(&mr->invalidate_done);
2759 		rc = ib_post_send(sc->ib.qp, wr, NULL);
2760 		if (rc) {
2761 			log_rdma_mr(ERR, "ib_post_send failed rc=%x\n", rc);
2762 			smbd_mr_disable_locked(mr);
2763 			smbd_disconnect_rdma_connection(sc);
2764 			goto done;
2765 		}
2766 		wait_for_completion(&mr->invalidate_done);
2767 		mr->need_invalidate = false;
2768 	} else
2769 		/*
2770 		 * For remote invalidation, just set it to SMBDIRECT_MR_INVALIDATED
2771 		 * and defer to mr_recovery_work to recover the MR for next use
2772 		 */
2773 		mr->state = SMBDIRECT_MR_INVALIDATED;
2774 
2775 	if (mr->sgt.nents) {
2776 		ib_dma_unmap_sg(sc->ib.dev, mr->sgt.sgl, mr->sgt.nents, mr->dir);
2777 		mr->sgt.nents = 0;
2778 	}
2779 
2780 	if (mr->state == SMBDIRECT_MR_INVALIDATED) {
2781 		mr->state = SMBDIRECT_MR_READY;
2782 		if (atomic_inc_return(&sc->mr_io.ready.count) == 1)
2783 			wake_up(&sc->mr_io.ready.wait_queue);
2784 	} else
2785 		/*
2786 		 * Schedule the work to do MR recovery for future I/Os MR
2787 		 * recovery is slow and don't want it to block current I/O
2788 		 */
2789 		queue_work(sc->workqueue, &sc->mr_io.recovery_work);
2790 
2791 done:
2792 	if (atomic_dec_and_test(&sc->mr_io.used.count))
2793 		wake_up(&sc->mr_io.cleanup.wait_queue);
2794 
2795 put_kref:
2796 	/*
2797 	 * No kref_put_mutex() as it's already locked.
2798 	 *
2799 	 * If smbd_mr_free_locked() is called
2800 	 * and the mutex is unlocked and mr is gone,
2801 	 * in that case kref_put() returned 1.
2802 	 *
2803 	 * If kref_put() returned 0 we know that
2804 	 * smbd_mr_free_locked() didn't
2805 	 * run. Not by us nor by anyone else, as we
2806 	 * still hold the mutex, so we need to unlock
2807 	 * and keep the mr in SMBDIRECT_MR_READY or
2808 	 * SMBDIRECT_MR_ERROR state.
2809 	 */
2810 	if (!kref_put(&mr->kref, smbd_mr_free_locked))
2811 		mutex_unlock(&mr->mutex);
2812 }
2813 
smb_set_sge(struct smb_extract_to_rdma * rdma,struct page * lowest_page,size_t off,size_t len)2814 static bool smb_set_sge(struct smb_extract_to_rdma *rdma,
2815 			struct page *lowest_page, size_t off, size_t len)
2816 {
2817 	struct ib_sge *sge = &rdma->sge[rdma->nr_sge];
2818 	u64 addr;
2819 
2820 	addr = ib_dma_map_page(rdma->device, lowest_page,
2821 			       off, len, rdma->direction);
2822 	if (ib_dma_mapping_error(rdma->device, addr))
2823 		return false;
2824 
2825 	sge->addr   = addr;
2826 	sge->length = len;
2827 	sge->lkey   = rdma->local_dma_lkey;
2828 	rdma->nr_sge++;
2829 	return true;
2830 }
2831 
2832 /*
2833  * Extract page fragments from a BVEC-class iterator and add them to an RDMA
2834  * element list.  The pages are not pinned.
2835  */
smb_extract_bvec_to_rdma(struct iov_iter * iter,struct smb_extract_to_rdma * rdma,ssize_t maxsize)2836 static ssize_t smb_extract_bvec_to_rdma(struct iov_iter *iter,
2837 					struct smb_extract_to_rdma *rdma,
2838 					ssize_t maxsize)
2839 {
2840 	const struct bio_vec *bv = iter->bvec;
2841 	unsigned long start = iter->iov_offset;
2842 	unsigned int i;
2843 	ssize_t ret = 0;
2844 
2845 	for (i = 0; i < iter->nr_segs; i++) {
2846 		size_t off, len;
2847 
2848 		len = bv[i].bv_len;
2849 		if (start >= len) {
2850 			start -= len;
2851 			continue;
2852 		}
2853 
2854 		len = min_t(size_t, maxsize, len - start);
2855 		off = bv[i].bv_offset + start;
2856 
2857 		if (!smb_set_sge(rdma, bv[i].bv_page, off, len))
2858 			return -EIO;
2859 
2860 		ret += len;
2861 		maxsize -= len;
2862 		if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0)
2863 			break;
2864 		start = 0;
2865 	}
2866 
2867 	if (ret > 0)
2868 		iov_iter_advance(iter, ret);
2869 	return ret;
2870 }
2871 
2872 /*
2873  * Extract fragments from a KVEC-class iterator and add them to an RDMA list.
2874  * This can deal with vmalloc'd buffers as well as kmalloc'd or static buffers.
2875  * The pages are not pinned.
2876  */
smb_extract_kvec_to_rdma(struct iov_iter * iter,struct smb_extract_to_rdma * rdma,ssize_t maxsize)2877 static ssize_t smb_extract_kvec_to_rdma(struct iov_iter *iter,
2878 					struct smb_extract_to_rdma *rdma,
2879 					ssize_t maxsize)
2880 {
2881 	const struct kvec *kv = iter->kvec;
2882 	unsigned long start = iter->iov_offset;
2883 	unsigned int i;
2884 	ssize_t ret = 0;
2885 
2886 	for (i = 0; i < iter->nr_segs; i++) {
2887 		struct page *page;
2888 		unsigned long kaddr;
2889 		size_t off, len, seg;
2890 
2891 		len = kv[i].iov_len;
2892 		if (start >= len) {
2893 			start -= len;
2894 			continue;
2895 		}
2896 
2897 		kaddr = (unsigned long)kv[i].iov_base + start;
2898 		off = kaddr & ~PAGE_MASK;
2899 		len = min_t(size_t, maxsize, len - start);
2900 		kaddr &= PAGE_MASK;
2901 
2902 		maxsize -= len;
2903 		do {
2904 			seg = min_t(size_t, len, PAGE_SIZE - off);
2905 
2906 			if (is_vmalloc_or_module_addr((void *)kaddr))
2907 				page = vmalloc_to_page((void *)kaddr);
2908 			else
2909 				page = virt_to_page((void *)kaddr);
2910 
2911 			if (!smb_set_sge(rdma, page, off, seg))
2912 				return -EIO;
2913 
2914 			ret += seg;
2915 			len -= seg;
2916 			kaddr += PAGE_SIZE;
2917 			off = 0;
2918 		} while (len > 0 && rdma->nr_sge < rdma->max_sge);
2919 
2920 		if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0)
2921 			break;
2922 		start = 0;
2923 	}
2924 
2925 	if (ret > 0)
2926 		iov_iter_advance(iter, ret);
2927 	return ret;
2928 }
2929 
2930 /*
2931  * Extract folio fragments from a FOLIOQ-class iterator and add them to an RDMA
2932  * list.  The folios are not pinned.
2933  */
smb_extract_folioq_to_rdma(struct iov_iter * iter,struct smb_extract_to_rdma * rdma,ssize_t maxsize)2934 static ssize_t smb_extract_folioq_to_rdma(struct iov_iter *iter,
2935 					  struct smb_extract_to_rdma *rdma,
2936 					  ssize_t maxsize)
2937 {
2938 	const struct folio_queue *folioq = iter->folioq;
2939 	unsigned int slot = iter->folioq_slot;
2940 	ssize_t ret = 0;
2941 	size_t offset = iter->iov_offset;
2942 
2943 	BUG_ON(!folioq);
2944 
2945 	if (slot >= folioq_nr_slots(folioq)) {
2946 		folioq = folioq->next;
2947 		if (WARN_ON_ONCE(!folioq))
2948 			return -EIO;
2949 		slot = 0;
2950 	}
2951 
2952 	do {
2953 		struct folio *folio = folioq_folio(folioq, slot);
2954 		size_t fsize = folioq_folio_size(folioq, slot);
2955 
2956 		if (offset < fsize) {
2957 			size_t part = umin(maxsize, fsize - offset);
2958 
2959 			if (!smb_set_sge(rdma, folio_page(folio, 0), offset, part))
2960 				return -EIO;
2961 
2962 			offset += part;
2963 			ret += part;
2964 			maxsize -= part;
2965 		}
2966 
2967 		if (offset >= fsize) {
2968 			offset = 0;
2969 			slot++;
2970 			if (slot >= folioq_nr_slots(folioq)) {
2971 				if (!folioq->next) {
2972 					WARN_ON_ONCE(ret < iter->count);
2973 					break;
2974 				}
2975 				folioq = folioq->next;
2976 				slot = 0;
2977 			}
2978 		}
2979 	} while (rdma->nr_sge < rdma->max_sge && maxsize > 0);
2980 
2981 	iter->folioq = folioq;
2982 	iter->folioq_slot = slot;
2983 	iter->iov_offset = offset;
2984 	iter->count -= ret;
2985 	return ret;
2986 }
2987 
2988 /*
2989  * Extract page fragments from up to the given amount of the source iterator
2990  * and build up an RDMA list that refers to all of those bits.  The RDMA list
2991  * is appended to, up to the maximum number of elements set in the parameter
2992  * block.
2993  *
2994  * The extracted page fragments are not pinned or ref'd in any way; if an
2995  * IOVEC/UBUF-type iterator is to be used, it should be converted to a
2996  * BVEC-type iterator and the pages pinned, ref'd or otherwise held in some
2997  * way.
2998  */
smb_extract_iter_to_rdma(struct iov_iter * iter,size_t len,struct smb_extract_to_rdma * rdma)2999 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len,
3000 					struct smb_extract_to_rdma *rdma)
3001 {
3002 	ssize_t ret;
3003 	int before = rdma->nr_sge;
3004 
3005 	switch (iov_iter_type(iter)) {
3006 	case ITER_BVEC:
3007 		ret = smb_extract_bvec_to_rdma(iter, rdma, len);
3008 		break;
3009 	case ITER_KVEC:
3010 		ret = smb_extract_kvec_to_rdma(iter, rdma, len);
3011 		break;
3012 	case ITER_FOLIOQ:
3013 		ret = smb_extract_folioq_to_rdma(iter, rdma, len);
3014 		break;
3015 	default:
3016 		WARN_ON_ONCE(1);
3017 		return -EIO;
3018 	}
3019 
3020 	if (ret < 0) {
3021 		while (rdma->nr_sge > before) {
3022 			struct ib_sge *sge = &rdma->sge[rdma->nr_sge--];
3023 
3024 			ib_dma_unmap_single(rdma->device, sge->addr, sge->length,
3025 					    rdma->direction);
3026 			sge->addr = 0;
3027 		}
3028 	}
3029 
3030 	return ret;
3031 }
3032