xref: /linux/drivers/gpu/drm/i915/display/i9xx_wm.c (revision 2c1ed907520c50326b8f604907a8478b27881a2e)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2023 Intel Corporation
4  */
5 
6 #include "i915_drv.h"
7 #include "i915_reg.h"
8 #include "i9xx_wm.h"
9 #include "i9xx_wm_regs.h"
10 #include "intel_atomic.h"
11 #include "intel_bo.h"
12 #include "intel_display.h"
13 #include "intel_display_trace.h"
14 #include "intel_fb.h"
15 #include "intel_mchbar_regs.h"
16 #include "intel_wm.h"
17 #include "skl_watermark.h"
18 #include "vlv_sideband.h"
19 
20 struct intel_watermark_params {
21 	u16 fifo_size;
22 	u16 max_wm;
23 	u8 default_wm;
24 	u8 guard_size;
25 	u8 cacheline_size;
26 };
27 
28 /* used in computing the new watermarks state */
29 struct intel_wm_config {
30 	unsigned int num_pipes_active;
31 	bool sprites_enabled;
32 	bool sprites_scaled;
33 };
34 
35 struct cxsr_latency {
36 	bool is_desktop : 1;
37 	bool is_ddr3 : 1;
38 	u16 fsb_freq;
39 	u16 mem_freq;
40 	u16 display_sr;
41 	u16 display_hpll_disable;
42 	u16 cursor_sr;
43 	u16 cursor_hpll_disable;
44 };
45 
46 static const struct cxsr_latency cxsr_latency_table[] = {
47 	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
48 	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
49 	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
50 	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
51 	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
52 
53 	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
54 	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
55 	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
56 	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
57 	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
58 
59 	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
60 	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
61 	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
62 	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
63 	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
64 
65 	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
66 	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
67 	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
68 	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
69 	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
70 
71 	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
72 	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
73 	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
74 	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
75 	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
76 
77 	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
78 	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
79 	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
80 	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
81 	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
82 };
83 
pnv_get_cxsr_latency(struct drm_i915_private * i915)84 static const struct cxsr_latency *pnv_get_cxsr_latency(struct drm_i915_private *i915)
85 {
86 	int i;
87 
88 	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
89 		const struct cxsr_latency *latency = &cxsr_latency_table[i];
90 		bool is_desktop = !IS_MOBILE(i915);
91 
92 		if (is_desktop == latency->is_desktop &&
93 		    i915->is_ddr3 == latency->is_ddr3 &&
94 		    DIV_ROUND_CLOSEST(i915->fsb_freq, 1000) == latency->fsb_freq &&
95 		    DIV_ROUND_CLOSEST(i915->mem_freq, 1000) == latency->mem_freq)
96 			return latency;
97 	}
98 
99 	drm_dbg_kms(&i915->drm,
100 		    "Could not find CxSR latency for DDR%s, FSB %u kHz, MEM %u kHz\n",
101 		    i915->is_ddr3 ? "3" : "2", i915->fsb_freq, i915->mem_freq);
102 
103 	return NULL;
104 }
105 
chv_set_memory_dvfs(struct drm_i915_private * dev_priv,bool enable)106 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
107 {
108 	u32 val;
109 
110 	vlv_punit_get(dev_priv);
111 
112 	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
113 	if (enable)
114 		val &= ~FORCE_DDR_HIGH_FREQ;
115 	else
116 		val |= FORCE_DDR_HIGH_FREQ;
117 	val &= ~FORCE_DDR_LOW_FREQ;
118 	val |= FORCE_DDR_FREQ_REQ_ACK;
119 	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
120 
121 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
122 		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
123 		drm_err(&dev_priv->drm,
124 			"timed out waiting for Punit DDR DVFS request\n");
125 
126 	vlv_punit_put(dev_priv);
127 }
128 
chv_set_memory_pm5(struct drm_i915_private * dev_priv,bool enable)129 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
130 {
131 	u32 val;
132 
133 	vlv_punit_get(dev_priv);
134 
135 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
136 	if (enable)
137 		val |= DSP_MAXFIFO_PM5_ENABLE;
138 	else
139 		val &= ~DSP_MAXFIFO_PM5_ENABLE;
140 	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
141 
142 	vlv_punit_put(dev_priv);
143 }
144 
145 #define FW_WM(value, plane) \
146 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
147 
_intel_set_memory_cxsr(struct drm_i915_private * dev_priv,bool enable)148 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
149 {
150 	struct intel_display *display = &dev_priv->display;
151 	bool was_enabled;
152 	u32 val;
153 
154 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
155 		was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
156 		intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
157 		intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF_VLV);
158 	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
159 		was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
160 		intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
161 		intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF);
162 	} else if (IS_PINEVIEW(dev_priv)) {
163 		val = intel_uncore_read(&dev_priv->uncore, DSPFW3(dev_priv));
164 		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
165 		if (enable)
166 			val |= PINEVIEW_SELF_REFRESH_EN;
167 		else
168 			val &= ~PINEVIEW_SELF_REFRESH_EN;
169 		intel_uncore_write(&dev_priv->uncore, DSPFW3(dev_priv), val);
170 		intel_uncore_posting_read(&dev_priv->uncore, DSPFW3(dev_priv));
171 	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
172 		was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
173 		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
174 			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
175 		intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, val);
176 		intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF);
177 	} else if (IS_I915GM(dev_priv)) {
178 		/*
179 		 * FIXME can't find a bit like this for 915G, and
180 		 * yet it does have the related watermark in
181 		 * FW_BLC_SELF. What's going on?
182 		 */
183 		was_enabled = intel_uncore_read(&dev_priv->uncore, INSTPM) & INSTPM_SELF_EN;
184 		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
185 			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
186 		intel_uncore_write(&dev_priv->uncore, INSTPM, val);
187 		intel_uncore_posting_read(&dev_priv->uncore, INSTPM);
188 	} else {
189 		return false;
190 	}
191 
192 	trace_intel_memory_cxsr(display, was_enabled, enable);
193 
194 	drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n",
195 		    str_enabled_disabled(enable),
196 		    str_enabled_disabled(was_enabled));
197 
198 	return was_enabled;
199 }
200 
201 /**
202  * intel_set_memory_cxsr - Configure CxSR state
203  * @dev_priv: i915 device
204  * @enable: Allow vs. disallow CxSR
205  *
206  * Allow or disallow the system to enter a special CxSR
207  * (C-state self refresh) state. What typically happens in CxSR mode
208  * is that several display FIFOs may get combined into a single larger
209  * FIFO for a particular plane (so called max FIFO mode) to allow the
210  * system to defer memory fetches longer, and the memory will enter
211  * self refresh.
212  *
213  * Note that enabling CxSR does not guarantee that the system enter
214  * this special mode, nor does it guarantee that the system stays
215  * in that mode once entered. So this just allows/disallows the system
216  * to autonomously utilize the CxSR mode. Other factors such as core
217  * C-states will affect when/if the system actually enters/exits the
218  * CxSR mode.
219  *
220  * Note that on VLV/CHV this actually only controls the max FIFO mode,
221  * and the system is free to enter/exit memory self refresh at any time
222  * even when the use of CxSR has been disallowed.
223  *
224  * While the system is actually in the CxSR/max FIFO mode, some plane
225  * control registers will not get latched on vblank. Thus in order to
226  * guarantee the system will respond to changes in the plane registers
227  * we must always disallow CxSR prior to making changes to those registers.
228  * Unfortunately the system will re-evaluate the CxSR conditions at
229  * frame start which happens after vblank start (which is when the plane
230  * registers would get latched), so we can't proceed with the plane update
231  * during the same frame where we disallowed CxSR.
232  *
233  * Certain platforms also have a deeper HPLL SR mode. Fortunately the
234  * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
235  * the hardware w.r.t. HPLL SR when writing to plane registers.
236  * Disallowing just CxSR is sufficient.
237  */
intel_set_memory_cxsr(struct drm_i915_private * dev_priv,bool enable)238 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
239 {
240 	bool ret;
241 
242 	mutex_lock(&dev_priv->display.wm.wm_mutex);
243 	ret = _intel_set_memory_cxsr(dev_priv, enable);
244 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
245 		dev_priv->display.wm.vlv.cxsr = enable;
246 	else if (IS_G4X(dev_priv))
247 		dev_priv->display.wm.g4x.cxsr = enable;
248 	mutex_unlock(&dev_priv->display.wm.wm_mutex);
249 
250 	return ret;
251 }
252 
253 /*
254  * Latency for FIFO fetches is dependent on several factors:
255  *   - memory configuration (speed, channels)
256  *   - chipset
257  *   - current MCH state
258  * It can be fairly high in some situations, so here we assume a fairly
259  * pessimal value.  It's a tradeoff between extra memory fetches (if we
260  * set this value too high, the FIFO will fetch frequently to stay full)
261  * and power consumption (set it too low to save power and we might see
262  * FIFO underruns and display "flicker").
263  *
264  * A value of 5us seems to be a good balance; safe for very low end
265  * platforms but not overly aggressive on lower latency configs.
266  */
267 static const int pessimal_latency_ns = 5000;
268 
269 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
270 	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
271 
vlv_get_fifo_size(struct intel_crtc_state * crtc_state)272 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
273 {
274 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
275 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
276 	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
277 	enum pipe pipe = crtc->pipe;
278 	int sprite0_start, sprite1_start;
279 	u32 dsparb, dsparb2, dsparb3;
280 
281 	switch (pipe) {
282 	case PIPE_A:
283 		dsparb = intel_uncore_read(&dev_priv->uncore,
284 					   DSPARB(dev_priv));
285 		dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
286 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
287 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
288 		break;
289 	case PIPE_B:
290 		dsparb = intel_uncore_read(&dev_priv->uncore,
291 					   DSPARB(dev_priv));
292 		dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
293 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
294 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
295 		break;
296 	case PIPE_C:
297 		dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
298 		dsparb3 = intel_uncore_read(&dev_priv->uncore, DSPARB3);
299 		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
300 		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
301 		break;
302 	default:
303 		MISSING_CASE(pipe);
304 		return;
305 	}
306 
307 	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
308 	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
309 	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
310 	fifo_state->plane[PLANE_CURSOR] = 63;
311 }
312 
i9xx_get_fifo_size(struct drm_i915_private * dev_priv,enum i9xx_plane_id i9xx_plane)313 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
314 			      enum i9xx_plane_id i9xx_plane)
315 {
316 	u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB(dev_priv));
317 	int size;
318 
319 	size = dsparb & 0x7f;
320 	if (i9xx_plane == PLANE_B)
321 		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
322 
323 	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
324 		    dsparb, plane_name(i9xx_plane), size);
325 
326 	return size;
327 }
328 
i830_get_fifo_size(struct drm_i915_private * dev_priv,enum i9xx_plane_id i9xx_plane)329 static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
330 			      enum i9xx_plane_id i9xx_plane)
331 {
332 	u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB(dev_priv));
333 	int size;
334 
335 	size = dsparb & 0x1ff;
336 	if (i9xx_plane == PLANE_B)
337 		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
338 	size >>= 1; /* Convert to cachelines */
339 
340 	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
341 		    dsparb, plane_name(i9xx_plane), size);
342 
343 	return size;
344 }
345 
i845_get_fifo_size(struct drm_i915_private * dev_priv,enum i9xx_plane_id i9xx_plane)346 static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
347 			      enum i9xx_plane_id i9xx_plane)
348 {
349 	u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB(dev_priv));
350 	int size;
351 
352 	size = dsparb & 0x7f;
353 	size >>= 2; /* Convert to cachelines */
354 
355 	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
356 		    dsparb, plane_name(i9xx_plane), size);
357 
358 	return size;
359 }
360 
361 /* Pineview has different values for various configs */
362 static const struct intel_watermark_params pnv_display_wm = {
363 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
364 	.max_wm = PINEVIEW_MAX_WM,
365 	.default_wm = PINEVIEW_DFT_WM,
366 	.guard_size = PINEVIEW_GUARD_WM,
367 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
368 };
369 
370 static const struct intel_watermark_params pnv_display_hplloff_wm = {
371 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
372 	.max_wm = PINEVIEW_MAX_WM,
373 	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
374 	.guard_size = PINEVIEW_GUARD_WM,
375 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
376 };
377 
378 static const struct intel_watermark_params pnv_cursor_wm = {
379 	.fifo_size = PINEVIEW_CURSOR_FIFO,
380 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
381 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
382 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
383 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
384 };
385 
386 static const struct intel_watermark_params pnv_cursor_hplloff_wm = {
387 	.fifo_size = PINEVIEW_CURSOR_FIFO,
388 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
389 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
390 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
391 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
392 };
393 
394 static const struct intel_watermark_params i965_cursor_wm_info = {
395 	.fifo_size = I965_CURSOR_FIFO,
396 	.max_wm = I965_CURSOR_MAX_WM,
397 	.default_wm = I965_CURSOR_DFT_WM,
398 	.guard_size = 2,
399 	.cacheline_size = I915_FIFO_LINE_SIZE,
400 };
401 
402 static const struct intel_watermark_params i945_wm_info = {
403 	.fifo_size = I945_FIFO_SIZE,
404 	.max_wm = I915_MAX_WM,
405 	.default_wm = 1,
406 	.guard_size = 2,
407 	.cacheline_size = I915_FIFO_LINE_SIZE,
408 };
409 
410 static const struct intel_watermark_params i915_wm_info = {
411 	.fifo_size = I915_FIFO_SIZE,
412 	.max_wm = I915_MAX_WM,
413 	.default_wm = 1,
414 	.guard_size = 2,
415 	.cacheline_size = I915_FIFO_LINE_SIZE,
416 };
417 
418 static const struct intel_watermark_params i830_a_wm_info = {
419 	.fifo_size = I855GM_FIFO_SIZE,
420 	.max_wm = I915_MAX_WM,
421 	.default_wm = 1,
422 	.guard_size = 2,
423 	.cacheline_size = I830_FIFO_LINE_SIZE,
424 };
425 
426 static const struct intel_watermark_params i830_bc_wm_info = {
427 	.fifo_size = I855GM_FIFO_SIZE,
428 	.max_wm = I915_MAX_WM / 2,
429 	.default_wm = 1,
430 	.guard_size = 2,
431 	.cacheline_size = I830_FIFO_LINE_SIZE,
432 };
433 
434 static const struct intel_watermark_params i845_wm_info = {
435 	.fifo_size = I830_FIFO_SIZE,
436 	.max_wm = I915_MAX_WM,
437 	.default_wm = 1,
438 	.guard_size = 2,
439 	.cacheline_size = I830_FIFO_LINE_SIZE,
440 };
441 
442 /**
443  * intel_wm_method1 - Method 1 / "small buffer" watermark formula
444  * @pixel_rate: Pipe pixel rate in kHz
445  * @cpp: Plane bytes per pixel
446  * @latency: Memory wakeup latency in 0.1us units
447  *
448  * Compute the watermark using the method 1 or "small buffer"
449  * formula. The caller may additonally add extra cachelines
450  * to account for TLB misses and clock crossings.
451  *
452  * This method is concerned with the short term drain rate
453  * of the FIFO, ie. it does not account for blanking periods
454  * which would effectively reduce the average drain rate across
455  * a longer period. The name "small" refers to the fact the
456  * FIFO is relatively small compared to the amount of data
457  * fetched.
458  *
459  * The FIFO level vs. time graph might look something like:
460  *
461  *   |\   |\
462  *   | \  | \
463  * __---__---__ (- plane active, _ blanking)
464  * -> time
465  *
466  * or perhaps like this:
467  *
468  *   |\|\  |\|\
469  * __----__----__ (- plane active, _ blanking)
470  * -> time
471  *
472  * Returns:
473  * The watermark in bytes
474  */
intel_wm_method1(unsigned int pixel_rate,unsigned int cpp,unsigned int latency)475 static unsigned int intel_wm_method1(unsigned int pixel_rate,
476 				     unsigned int cpp,
477 				     unsigned int latency)
478 {
479 	u64 ret;
480 
481 	ret = mul_u32_u32(pixel_rate, cpp * latency);
482 	ret = DIV_ROUND_UP_ULL(ret, 10000);
483 
484 	return ret;
485 }
486 
487 /**
488  * intel_wm_method2 - Method 2 / "large buffer" watermark formula
489  * @pixel_rate: Pipe pixel rate in kHz
490  * @htotal: Pipe horizontal total
491  * @width: Plane width in pixels
492  * @cpp: Plane bytes per pixel
493  * @latency: Memory wakeup latency in 0.1us units
494  *
495  * Compute the watermark using the method 2 or "large buffer"
496  * formula. The caller may additonally add extra cachelines
497  * to account for TLB misses and clock crossings.
498  *
499  * This method is concerned with the long term drain rate
500  * of the FIFO, ie. it does account for blanking periods
501  * which effectively reduce the average drain rate across
502  * a longer period. The name "large" refers to the fact the
503  * FIFO is relatively large compared to the amount of data
504  * fetched.
505  *
506  * The FIFO level vs. time graph might look something like:
507  *
508  *    |\___       |\___
509  *    |    \___   |    \___
510  *    |        \  |        \
511  * __ --__--__--__--__--__--__ (- plane active, _ blanking)
512  * -> time
513  *
514  * Returns:
515  * The watermark in bytes
516  */
intel_wm_method2(unsigned int pixel_rate,unsigned int htotal,unsigned int width,unsigned int cpp,unsigned int latency)517 static unsigned int intel_wm_method2(unsigned int pixel_rate,
518 				     unsigned int htotal,
519 				     unsigned int width,
520 				     unsigned int cpp,
521 				     unsigned int latency)
522 {
523 	unsigned int ret;
524 
525 	/*
526 	 * FIXME remove once all users are computing
527 	 * watermarks in the correct place.
528 	 */
529 	if (WARN_ON_ONCE(htotal == 0))
530 		htotal = 1;
531 
532 	ret = (latency * pixel_rate) / (htotal * 10000);
533 	ret = (ret + 1) * width * cpp;
534 
535 	return ret;
536 }
537 
538 /**
539  * intel_calculate_wm - calculate watermark level
540  * @i915: the device
541  * @pixel_rate: pixel clock
542  * @wm: chip FIFO params
543  * @fifo_size: size of the FIFO buffer
544  * @cpp: bytes per pixel
545  * @latency_ns: memory latency for the platform
546  *
547  * Calculate the watermark level (the level at which the display plane will
548  * start fetching from memory again).  Each chip has a different display
549  * FIFO size and allocation, so the caller needs to figure that out and pass
550  * in the correct intel_watermark_params structure.
551  *
552  * As the pixel clock runs, the FIFO will be drained at a rate that depends
553  * on the pixel size.  When it reaches the watermark level, it'll start
554  * fetching FIFO line sized based chunks from memory until the FIFO fills
555  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
556  * will occur, and a display engine hang could result.
557  */
intel_calculate_wm(struct drm_i915_private * i915,int pixel_rate,const struct intel_watermark_params * wm,int fifo_size,int cpp,unsigned int latency_ns)558 static unsigned int intel_calculate_wm(struct drm_i915_private *i915,
559 				       int pixel_rate,
560 				       const struct intel_watermark_params *wm,
561 				       int fifo_size, int cpp,
562 				       unsigned int latency_ns)
563 {
564 	int entries, wm_size;
565 
566 	/*
567 	 * Note: we need to make sure we don't overflow for various clock &
568 	 * latency values.
569 	 * clocks go from a few thousand to several hundred thousand.
570 	 * latency is usually a few thousand
571 	 */
572 	entries = intel_wm_method1(pixel_rate, cpp,
573 				   latency_ns / 100);
574 	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
575 		wm->guard_size;
576 	drm_dbg_kms(&i915->drm, "FIFO entries required for mode: %d\n", entries);
577 
578 	wm_size = fifo_size - entries;
579 	drm_dbg_kms(&i915->drm, "FIFO watermark level: %d\n", wm_size);
580 
581 	/* Don't promote wm_size to unsigned... */
582 	if (wm_size > wm->max_wm)
583 		wm_size = wm->max_wm;
584 	if (wm_size <= 0)
585 		wm_size = wm->default_wm;
586 
587 	/*
588 	 * Bspec seems to indicate that the value shouldn't be lower than
589 	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
590 	 * Lets go for 8 which is the burst size since certain platforms
591 	 * already use a hardcoded 8 (which is what the spec says should be
592 	 * done).
593 	 */
594 	if (wm_size <= 8)
595 		wm_size = 8;
596 
597 	return wm_size;
598 }
599 
is_disabling(int old,int new,int threshold)600 static bool is_disabling(int old, int new, int threshold)
601 {
602 	return old >= threshold && new < threshold;
603 }
604 
is_enabling(int old,int new,int threshold)605 static bool is_enabling(int old, int new, int threshold)
606 {
607 	return old < threshold && new >= threshold;
608 }
609 
intel_crtc_active(struct intel_crtc * crtc)610 static bool intel_crtc_active(struct intel_crtc *crtc)
611 {
612 	/* Be paranoid as we can arrive here with only partial
613 	 * state retrieved from the hardware during setup.
614 	 *
615 	 * We can ditch the adjusted_mode.crtc_clock check as soon
616 	 * as Haswell has gained clock readout/fastboot support.
617 	 *
618 	 * We can ditch the crtc->primary->state->fb check as soon as we can
619 	 * properly reconstruct framebuffers.
620 	 *
621 	 * FIXME: The intel_crtc->active here should be switched to
622 	 * crtc->state->active once we have proper CRTC states wired up
623 	 * for atomic.
624 	 */
625 	return crtc->active && crtc->base.primary->state->fb &&
626 		crtc->config->hw.adjusted_mode.crtc_clock;
627 }
628 
single_enabled_crtc(struct drm_i915_private * dev_priv)629 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
630 {
631 	struct intel_crtc *crtc, *enabled = NULL;
632 
633 	for_each_intel_crtc(&dev_priv->drm, crtc) {
634 		if (intel_crtc_active(crtc)) {
635 			if (enabled)
636 				return NULL;
637 			enabled = crtc;
638 		}
639 	}
640 
641 	return enabled;
642 }
643 
pnv_update_wm(struct drm_i915_private * dev_priv)644 static void pnv_update_wm(struct drm_i915_private *dev_priv)
645 {
646 	struct intel_crtc *crtc;
647 	const struct cxsr_latency *latency;
648 	u32 reg;
649 	unsigned int wm;
650 
651 	latency = pnv_get_cxsr_latency(dev_priv);
652 	if (!latency) {
653 		drm_dbg_kms(&dev_priv->drm, "Unknown FSB/MEM, disabling CxSR\n");
654 		intel_set_memory_cxsr(dev_priv, false);
655 		return;
656 	}
657 
658 	crtc = single_enabled_crtc(dev_priv);
659 	if (crtc) {
660 		const struct drm_framebuffer *fb =
661 			crtc->base.primary->state->fb;
662 		int pixel_rate = crtc->config->pixel_rate;
663 		int cpp = fb->format->cpp[0];
664 
665 		/* Display SR */
666 		wm = intel_calculate_wm(dev_priv, pixel_rate,
667 					&pnv_display_wm,
668 					pnv_display_wm.fifo_size,
669 					cpp, latency->display_sr);
670 		reg = intel_uncore_read(&dev_priv->uncore, DSPFW1(dev_priv));
671 		reg &= ~DSPFW_SR_MASK;
672 		reg |= FW_WM(wm, SR);
673 		intel_uncore_write(&dev_priv->uncore, DSPFW1(dev_priv), reg);
674 		drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg);
675 
676 		/* cursor SR */
677 		wm = intel_calculate_wm(dev_priv, pixel_rate,
678 					&pnv_cursor_wm,
679 					pnv_display_wm.fifo_size,
680 					4, latency->cursor_sr);
681 		intel_uncore_rmw(&dev_priv->uncore, DSPFW3(dev_priv),
682 				 DSPFW_CURSOR_SR_MASK,
683 				 FW_WM(wm, CURSOR_SR));
684 
685 		/* Display HPLL off SR */
686 		wm = intel_calculate_wm(dev_priv, pixel_rate,
687 					&pnv_display_hplloff_wm,
688 					pnv_display_hplloff_wm.fifo_size,
689 					cpp, latency->display_hpll_disable);
690 		intel_uncore_rmw(&dev_priv->uncore, DSPFW3(dev_priv),
691 				 DSPFW_HPLL_SR_MASK, FW_WM(wm, HPLL_SR));
692 
693 		/* cursor HPLL off SR */
694 		wm = intel_calculate_wm(dev_priv, pixel_rate,
695 					&pnv_cursor_hplloff_wm,
696 					pnv_display_hplloff_wm.fifo_size,
697 					4, latency->cursor_hpll_disable);
698 		reg = intel_uncore_read(&dev_priv->uncore, DSPFW3(dev_priv));
699 		reg &= ~DSPFW_HPLL_CURSOR_MASK;
700 		reg |= FW_WM(wm, HPLL_CURSOR);
701 		intel_uncore_write(&dev_priv->uncore, DSPFW3(dev_priv), reg);
702 		drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg);
703 
704 		intel_set_memory_cxsr(dev_priv, true);
705 	} else {
706 		intel_set_memory_cxsr(dev_priv, false);
707 	}
708 }
709 
i9xx_wm_need_update(const struct intel_plane_state * old_plane_state,const struct intel_plane_state * new_plane_state)710 static bool i9xx_wm_need_update(const struct intel_plane_state *old_plane_state,
711 				const struct intel_plane_state *new_plane_state)
712 {
713 	/* Update watermarks on tiling or size changes. */
714 	if (old_plane_state->uapi.visible != new_plane_state->uapi.visible)
715 		return true;
716 
717 	if (!old_plane_state->hw.fb || !new_plane_state->hw.fb)
718 		return false;
719 
720 	if (old_plane_state->hw.fb->modifier != new_plane_state->hw.fb->modifier ||
721 	    old_plane_state->hw.rotation != new_plane_state->hw.rotation ||
722 	    drm_rect_width(&old_plane_state->uapi.src) != drm_rect_width(&new_plane_state->uapi.src) ||
723 	    drm_rect_height(&old_plane_state->uapi.src) != drm_rect_height(&new_plane_state->uapi.src) ||
724 	    drm_rect_width(&old_plane_state->uapi.dst) != drm_rect_width(&new_plane_state->uapi.dst) ||
725 	    drm_rect_height(&old_plane_state->uapi.dst) != drm_rect_height(&new_plane_state->uapi.dst))
726 		return true;
727 
728 	return false;
729 }
730 
i9xx_wm_compute(struct intel_crtc_state * new_crtc_state,const struct intel_plane_state * old_plane_state,const struct intel_plane_state * new_plane_state)731 static void i9xx_wm_compute(struct intel_crtc_state *new_crtc_state,
732 			    const struct intel_plane_state *old_plane_state,
733 			    const struct intel_plane_state *new_plane_state)
734 {
735 	bool turn_off, turn_on, visible, was_visible, mode_changed;
736 
737 	mode_changed = intel_crtc_needs_modeset(new_crtc_state);
738 	was_visible = old_plane_state->uapi.visible;
739 	visible = new_plane_state->uapi.visible;
740 
741 	if (!was_visible && !visible)
742 		return;
743 
744 	turn_off = was_visible && (!visible || mode_changed);
745 	turn_on = visible && (!was_visible || mode_changed);
746 
747 	/* FIXME nuke when all wm code is atomic */
748 	if (turn_on) {
749 		new_crtc_state->update_wm_pre = true;
750 	} else if (turn_off) {
751 		new_crtc_state->update_wm_post = true;
752 	} else if (i9xx_wm_need_update(old_plane_state, new_plane_state)) {
753 		/* FIXME bollocks */
754 		new_crtc_state->update_wm_pre = true;
755 		new_crtc_state->update_wm_post = true;
756 	}
757 }
758 
i9xx_compute_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)759 static int i9xx_compute_watermarks(struct intel_atomic_state *state,
760 				   struct intel_crtc *crtc)
761 {
762 	struct intel_crtc_state *new_crtc_state =
763 		intel_atomic_get_new_crtc_state(state, crtc);
764 	const struct intel_plane_state *old_plane_state;
765 	const struct intel_plane_state *new_plane_state;
766 	struct intel_plane *plane;
767 	int i;
768 
769 	for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
770 					     new_plane_state, i) {
771 		if (plane->pipe != crtc->pipe)
772 			continue;
773 
774 		i9xx_wm_compute(new_crtc_state, old_plane_state, new_plane_state);
775 	}
776 
777 	return 0;
778 }
779 
780 /*
781  * Documentation says:
782  * "If the line size is small, the TLB fetches can get in the way of the
783  *  data fetches, causing some lag in the pixel data return which is not
784  *  accounted for in the above formulas. The following adjustment only
785  *  needs to be applied if eight whole lines fit in the buffer at once.
786  *  The WM is adjusted upwards by the difference between the FIFO size
787  *  and the size of 8 whole lines. This adjustment is always performed
788  *  in the actual pixel depth regardless of whether FBC is enabled or not."
789  */
g4x_tlb_miss_wa(int fifo_size,int width,int cpp)790 static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
791 {
792 	int tlb_miss = fifo_size * 64 - width * cpp * 8;
793 
794 	return max(0, tlb_miss);
795 }
796 
g4x_write_wm_values(struct drm_i915_private * dev_priv,const struct g4x_wm_values * wm)797 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
798 				const struct g4x_wm_values *wm)
799 {
800 	struct intel_display *display = &dev_priv->display;
801 	enum pipe pipe;
802 
803 	for_each_pipe(dev_priv, pipe)
804 		trace_g4x_wm(intel_crtc_for_pipe(display, pipe), wm);
805 
806 	intel_uncore_write(&dev_priv->uncore, DSPFW1(dev_priv),
807 			   FW_WM(wm->sr.plane, SR) |
808 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
809 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
810 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
811 	intel_uncore_write(&dev_priv->uncore, DSPFW2(dev_priv),
812 			   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
813 			   FW_WM(wm->sr.fbc, FBC_SR) |
814 			   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
815 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
816 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
817 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
818 	intel_uncore_write(&dev_priv->uncore, DSPFW3(dev_priv),
819 			   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
820 			   FW_WM(wm->sr.cursor, CURSOR_SR) |
821 			   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
822 			   FW_WM(wm->hpll.plane, HPLL_SR));
823 
824 	intel_uncore_posting_read(&dev_priv->uncore, DSPFW1(dev_priv));
825 }
826 
827 #define FW_WM_VLV(value, plane) \
828 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
829 
vlv_write_wm_values(struct drm_i915_private * dev_priv,const struct vlv_wm_values * wm)830 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
831 				const struct vlv_wm_values *wm)
832 {
833 	struct intel_display *display = &dev_priv->display;
834 	enum pipe pipe;
835 
836 	for_each_pipe(dev_priv, pipe) {
837 		trace_vlv_wm(intel_crtc_for_pipe(display, pipe), wm);
838 
839 		intel_uncore_write(&dev_priv->uncore, VLV_DDL(pipe),
840 				   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
841 				   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
842 				   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
843 				   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
844 	}
845 
846 	/*
847 	 * Zero the (unused) WM1 watermarks, and also clear all the
848 	 * high order bits so that there are no out of bounds values
849 	 * present in the registers during the reprogramming.
850 	 */
851 	intel_uncore_write(&dev_priv->uncore, DSPHOWM, 0);
852 	intel_uncore_write(&dev_priv->uncore, DSPHOWM1, 0);
853 	intel_uncore_write(&dev_priv->uncore, DSPFW4, 0);
854 	intel_uncore_write(&dev_priv->uncore, DSPFW5, 0);
855 	intel_uncore_write(&dev_priv->uncore, DSPFW6, 0);
856 
857 	intel_uncore_write(&dev_priv->uncore, DSPFW1(dev_priv),
858 			   FW_WM(wm->sr.plane, SR) |
859 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
860 			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
861 			   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
862 	intel_uncore_write(&dev_priv->uncore, DSPFW2(dev_priv),
863 			   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
864 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
865 			   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
866 	intel_uncore_write(&dev_priv->uncore, DSPFW3(dev_priv),
867 			   FW_WM(wm->sr.cursor, CURSOR_SR));
868 
869 	if (IS_CHERRYVIEW(dev_priv)) {
870 		intel_uncore_write(&dev_priv->uncore, DSPFW7_CHV,
871 				   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
872 				   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
873 		intel_uncore_write(&dev_priv->uncore, DSPFW8_CHV,
874 				   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
875 				   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
876 		intel_uncore_write(&dev_priv->uncore, DSPFW9_CHV,
877 				   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
878 				   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
879 		intel_uncore_write(&dev_priv->uncore, DSPHOWM,
880 				   FW_WM(wm->sr.plane >> 9, SR_HI) |
881 				   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
882 				   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
883 				   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
884 				   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
885 				   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
886 				   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
887 				   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
888 				   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
889 				   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
890 	} else {
891 		intel_uncore_write(&dev_priv->uncore, DSPFW7,
892 				   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
893 				   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
894 		intel_uncore_write(&dev_priv->uncore, DSPHOWM,
895 				   FW_WM(wm->sr.plane >> 9, SR_HI) |
896 				   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
897 				   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
898 				   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
899 				   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
900 				   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
901 				   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
902 	}
903 
904 	intel_uncore_posting_read(&dev_priv->uncore, DSPFW1(dev_priv));
905 }
906 
907 #undef FW_WM_VLV
908 
g4x_setup_wm_latency(struct drm_i915_private * dev_priv)909 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
910 {
911 	/* all latencies in usec */
912 	dev_priv->display.wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
913 	dev_priv->display.wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
914 	dev_priv->display.wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
915 
916 	dev_priv->display.wm.num_levels = G4X_WM_LEVEL_HPLL + 1;
917 }
918 
g4x_plane_fifo_size(enum plane_id plane_id,int level)919 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
920 {
921 	/*
922 	 * DSPCNTR[13] supposedly controls whether the
923 	 * primary plane can use the FIFO space otherwise
924 	 * reserved for the sprite plane. It's not 100% clear
925 	 * what the actual FIFO size is, but it looks like we
926 	 * can happily set both primary and sprite watermarks
927 	 * up to 127 cachelines. So that would seem to mean
928 	 * that either DSPCNTR[13] doesn't do anything, or that
929 	 * the total FIFO is >= 256 cachelines in size. Either
930 	 * way, we don't seem to have to worry about this
931 	 * repartitioning as the maximum watermark value the
932 	 * register can hold for each plane is lower than the
933 	 * minimum FIFO size.
934 	 */
935 	switch (plane_id) {
936 	case PLANE_CURSOR:
937 		return 63;
938 	case PLANE_PRIMARY:
939 		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
940 	case PLANE_SPRITE0:
941 		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
942 	default:
943 		MISSING_CASE(plane_id);
944 		return 0;
945 	}
946 }
947 
g4x_fbc_fifo_size(int level)948 static int g4x_fbc_fifo_size(int level)
949 {
950 	switch (level) {
951 	case G4X_WM_LEVEL_SR:
952 		return 7;
953 	case G4X_WM_LEVEL_HPLL:
954 		return 15;
955 	default:
956 		MISSING_CASE(level);
957 		return 0;
958 	}
959 }
960 
g4x_compute_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,int level)961 static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
962 			  const struct intel_plane_state *plane_state,
963 			  int level)
964 {
965 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
966 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
967 	const struct drm_display_mode *pipe_mode =
968 		&crtc_state->hw.pipe_mode;
969 	unsigned int latency = dev_priv->display.wm.pri_latency[level] * 10;
970 	unsigned int pixel_rate, htotal, cpp, width, wm;
971 
972 	if (latency == 0)
973 		return USHRT_MAX;
974 
975 	if (!intel_wm_plane_visible(crtc_state, plane_state))
976 		return 0;
977 
978 	cpp = plane_state->hw.fb->format->cpp[0];
979 
980 	/*
981 	 * WaUse32BppForSRWM:ctg,elk
982 	 *
983 	 * The spec fails to list this restriction for the
984 	 * HPLL watermark, which seems a little strange.
985 	 * Let's use 32bpp for the HPLL watermark as well.
986 	 */
987 	if (plane->id == PLANE_PRIMARY &&
988 	    level != G4X_WM_LEVEL_NORMAL)
989 		cpp = max(cpp, 4u);
990 
991 	pixel_rate = crtc_state->pixel_rate;
992 	htotal = pipe_mode->crtc_htotal;
993 	width = drm_rect_width(&plane_state->uapi.src) >> 16;
994 
995 	if (plane->id == PLANE_CURSOR) {
996 		wm = intel_wm_method2(pixel_rate, htotal, width, cpp, latency);
997 	} else if (plane->id == PLANE_PRIMARY &&
998 		   level == G4X_WM_LEVEL_NORMAL) {
999 		wm = intel_wm_method1(pixel_rate, cpp, latency);
1000 	} else {
1001 		unsigned int small, large;
1002 
1003 		small = intel_wm_method1(pixel_rate, cpp, latency);
1004 		large = intel_wm_method2(pixel_rate, htotal, width, cpp, latency);
1005 
1006 		wm = min(small, large);
1007 	}
1008 
1009 	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1010 			      width, cpp);
1011 
1012 	wm = DIV_ROUND_UP(wm, 64) + 2;
1013 
1014 	return min_t(unsigned int, wm, USHRT_MAX);
1015 }
1016 
g4x_raw_plane_wm_set(struct intel_crtc_state * crtc_state,int level,enum plane_id plane_id,u16 value)1017 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1018 				 int level, enum plane_id plane_id, u16 value)
1019 {
1020 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1021 	bool dirty = false;
1022 
1023 	for (; level < dev_priv->display.wm.num_levels; level++) {
1024 		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1025 
1026 		dirty |= raw->plane[plane_id] != value;
1027 		raw->plane[plane_id] = value;
1028 	}
1029 
1030 	return dirty;
1031 }
1032 
g4x_raw_fbc_wm_set(struct intel_crtc_state * crtc_state,int level,u16 value)1033 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1034 			       int level, u16 value)
1035 {
1036 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1037 	bool dirty = false;
1038 
1039 	/* NORMAL level doesn't have an FBC watermark */
1040 	level = max(level, G4X_WM_LEVEL_SR);
1041 
1042 	for (; level < dev_priv->display.wm.num_levels; level++) {
1043 		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1044 
1045 		dirty |= raw->fbc != value;
1046 		raw->fbc = value;
1047 	}
1048 
1049 	return dirty;
1050 }
1051 
1052 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
1053 			      const struct intel_plane_state *plane_state,
1054 			      u32 pri_val);
1055 
g4x_raw_plane_wm_compute(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)1056 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1057 				     const struct intel_plane_state *plane_state)
1058 {
1059 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1060 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1061 	enum plane_id plane_id = plane->id;
1062 	bool dirty = false;
1063 	int level;
1064 
1065 	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1066 		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1067 		if (plane_id == PLANE_PRIMARY)
1068 			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1069 		goto out;
1070 	}
1071 
1072 	for (level = 0; level < dev_priv->display.wm.num_levels; level++) {
1073 		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1074 		int wm, max_wm;
1075 
1076 		wm = g4x_compute_wm(crtc_state, plane_state, level);
1077 		max_wm = g4x_plane_fifo_size(plane_id, level);
1078 
1079 		if (wm > max_wm)
1080 			break;
1081 
1082 		dirty |= raw->plane[plane_id] != wm;
1083 		raw->plane[plane_id] = wm;
1084 
1085 		if (plane_id != PLANE_PRIMARY ||
1086 		    level == G4X_WM_LEVEL_NORMAL)
1087 			continue;
1088 
1089 		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1090 					raw->plane[plane_id]);
1091 		max_wm = g4x_fbc_fifo_size(level);
1092 
1093 		/*
1094 		 * FBC wm is not mandatory as we
1095 		 * can always just disable its use.
1096 		 */
1097 		if (wm > max_wm)
1098 			wm = USHRT_MAX;
1099 
1100 		dirty |= raw->fbc != wm;
1101 		raw->fbc = wm;
1102 	}
1103 
1104 	/* mark watermarks as invalid */
1105 	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1106 
1107 	if (plane_id == PLANE_PRIMARY)
1108 		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1109 
1110  out:
1111 	if (dirty) {
1112 		drm_dbg_kms(&dev_priv->drm,
1113 			    "%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1114 			    plane->base.name,
1115 			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1116 			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1117 			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1118 
1119 		if (plane_id == PLANE_PRIMARY)
1120 			drm_dbg_kms(&dev_priv->drm,
1121 				    "FBC watermarks: SR=%d, HPLL=%d\n",
1122 				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1123 				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1124 	}
1125 
1126 	return dirty;
1127 }
1128 
g4x_raw_plane_wm_is_valid(const struct intel_crtc_state * crtc_state,enum plane_id plane_id,int level)1129 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1130 				      enum plane_id plane_id, int level)
1131 {
1132 	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1133 
1134 	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1135 }
1136 
g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state * crtc_state,int level)1137 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1138 				     int level)
1139 {
1140 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1141 
1142 	if (level >= dev_priv->display.wm.num_levels)
1143 		return false;
1144 
1145 	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1146 		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1147 		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1148 }
1149 
1150 /* mark all levels starting from 'level' as invalid */
g4x_invalidate_wms(struct intel_crtc * crtc,struct g4x_wm_state * wm_state,int level)1151 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1152 			       struct g4x_wm_state *wm_state, int level)
1153 {
1154 	if (level <= G4X_WM_LEVEL_NORMAL) {
1155 		enum plane_id plane_id;
1156 
1157 		for_each_plane_id_on_crtc(crtc, plane_id)
1158 			wm_state->wm.plane[plane_id] = USHRT_MAX;
1159 	}
1160 
1161 	if (level <= G4X_WM_LEVEL_SR) {
1162 		wm_state->cxsr = false;
1163 		wm_state->sr.cursor = USHRT_MAX;
1164 		wm_state->sr.plane = USHRT_MAX;
1165 		wm_state->sr.fbc = USHRT_MAX;
1166 	}
1167 
1168 	if (level <= G4X_WM_LEVEL_HPLL) {
1169 		wm_state->hpll_en = false;
1170 		wm_state->hpll.cursor = USHRT_MAX;
1171 		wm_state->hpll.plane = USHRT_MAX;
1172 		wm_state->hpll.fbc = USHRT_MAX;
1173 	}
1174 }
1175 
g4x_compute_fbc_en(const struct g4x_wm_state * wm_state,int level)1176 static bool g4x_compute_fbc_en(const struct g4x_wm_state *wm_state,
1177 			       int level)
1178 {
1179 	if (level < G4X_WM_LEVEL_SR)
1180 		return false;
1181 
1182 	if (level >= G4X_WM_LEVEL_SR &&
1183 	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1184 		return false;
1185 
1186 	if (level >= G4X_WM_LEVEL_HPLL &&
1187 	    wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1188 		return false;
1189 
1190 	return true;
1191 }
1192 
_g4x_compute_pipe_wm(struct intel_crtc_state * crtc_state)1193 static int _g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1194 {
1195 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1196 	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1197 	u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1198 	const struct g4x_pipe_wm *raw;
1199 	enum plane_id plane_id;
1200 	int level;
1201 
1202 	level = G4X_WM_LEVEL_NORMAL;
1203 	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1204 		goto out;
1205 
1206 	raw = &crtc_state->wm.g4x.raw[level];
1207 	for_each_plane_id_on_crtc(crtc, plane_id)
1208 		wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1209 
1210 	level = G4X_WM_LEVEL_SR;
1211 	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1212 		goto out;
1213 
1214 	raw = &crtc_state->wm.g4x.raw[level];
1215 	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1216 	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1217 	wm_state->sr.fbc = raw->fbc;
1218 
1219 	wm_state->cxsr = active_planes == BIT(PLANE_PRIMARY);
1220 
1221 	level = G4X_WM_LEVEL_HPLL;
1222 	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1223 		goto out;
1224 
1225 	raw = &crtc_state->wm.g4x.raw[level];
1226 	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1227 	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1228 	wm_state->hpll.fbc = raw->fbc;
1229 
1230 	wm_state->hpll_en = wm_state->cxsr;
1231 
1232 	level++;
1233 
1234  out:
1235 	if (level == G4X_WM_LEVEL_NORMAL)
1236 		return -EINVAL;
1237 
1238 	/* invalidate the higher levels */
1239 	g4x_invalidate_wms(crtc, wm_state, level);
1240 
1241 	/*
1242 	 * Determine if the FBC watermark(s) can be used. IF
1243 	 * this isn't the case we prefer to disable the FBC
1244 	 * watermark(s) rather than disable the SR/HPLL
1245 	 * level(s) entirely. 'level-1' is the highest valid
1246 	 * level here.
1247 	 */
1248 	wm_state->fbc_en = g4x_compute_fbc_en(wm_state, level - 1);
1249 
1250 	return 0;
1251 }
1252 
g4x_compute_pipe_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)1253 static int g4x_compute_pipe_wm(struct intel_atomic_state *state,
1254 			       struct intel_crtc *crtc)
1255 {
1256 	struct intel_crtc_state *crtc_state =
1257 		intel_atomic_get_new_crtc_state(state, crtc);
1258 	const struct intel_plane_state *old_plane_state;
1259 	const struct intel_plane_state *new_plane_state;
1260 	struct intel_plane *plane;
1261 	unsigned int dirty = 0;
1262 	int i;
1263 
1264 	for_each_oldnew_intel_plane_in_state(state, plane,
1265 					     old_plane_state,
1266 					     new_plane_state, i) {
1267 		if (new_plane_state->hw.crtc != &crtc->base &&
1268 		    old_plane_state->hw.crtc != &crtc->base)
1269 			continue;
1270 
1271 		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1272 			dirty |= BIT(plane->id);
1273 	}
1274 
1275 	if (!dirty)
1276 		return 0;
1277 
1278 	return _g4x_compute_pipe_wm(crtc_state);
1279 }
1280 
g4x_compute_intermediate_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)1281 static int g4x_compute_intermediate_wm(struct intel_atomic_state *state,
1282 				       struct intel_crtc *crtc)
1283 {
1284 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1285 	struct intel_crtc_state *new_crtc_state =
1286 		intel_atomic_get_new_crtc_state(state, crtc);
1287 	const struct intel_crtc_state *old_crtc_state =
1288 		intel_atomic_get_old_crtc_state(state, crtc);
1289 	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
1290 	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
1291 	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1292 	enum plane_id plane_id;
1293 
1294 	if (!new_crtc_state->hw.active ||
1295 	    intel_crtc_needs_modeset(new_crtc_state)) {
1296 		*intermediate = *optimal;
1297 
1298 		intermediate->cxsr = false;
1299 		intermediate->hpll_en = false;
1300 		goto out;
1301 	}
1302 
1303 	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1304 		!new_crtc_state->disable_cxsr;
1305 	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1306 		!new_crtc_state->disable_cxsr;
1307 	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1308 
1309 	for_each_plane_id_on_crtc(crtc, plane_id) {
1310 		intermediate->wm.plane[plane_id] =
1311 			max(optimal->wm.plane[plane_id],
1312 			    active->wm.plane[plane_id]);
1313 
1314 		drm_WARN_ON(&dev_priv->drm, intermediate->wm.plane[plane_id] >
1315 			    g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1316 	}
1317 
1318 	intermediate->sr.plane = max(optimal->sr.plane,
1319 				     active->sr.plane);
1320 	intermediate->sr.cursor = max(optimal->sr.cursor,
1321 				      active->sr.cursor);
1322 	intermediate->sr.fbc = max(optimal->sr.fbc,
1323 				   active->sr.fbc);
1324 
1325 	intermediate->hpll.plane = max(optimal->hpll.plane,
1326 				       active->hpll.plane);
1327 	intermediate->hpll.cursor = max(optimal->hpll.cursor,
1328 					active->hpll.cursor);
1329 	intermediate->hpll.fbc = max(optimal->hpll.fbc,
1330 				     active->hpll.fbc);
1331 
1332 	drm_WARN_ON(&dev_priv->drm,
1333 		    (intermediate->sr.plane >
1334 		     g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1335 		     intermediate->sr.cursor >
1336 		     g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1337 		    intermediate->cxsr);
1338 	drm_WARN_ON(&dev_priv->drm,
1339 		    (intermediate->sr.plane >
1340 		     g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1341 		     intermediate->sr.cursor >
1342 		     g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1343 		    intermediate->hpll_en);
1344 
1345 	drm_WARN_ON(&dev_priv->drm,
1346 		    intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1347 		    intermediate->fbc_en && intermediate->cxsr);
1348 	drm_WARN_ON(&dev_priv->drm,
1349 		    intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1350 		    intermediate->fbc_en && intermediate->hpll_en);
1351 
1352 out:
1353 	/*
1354 	 * If our intermediate WM are identical to the final WM, then we can
1355 	 * omit the post-vblank programming; only update if it's different.
1356 	 */
1357 	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1358 		new_crtc_state->wm.need_postvbl_update = true;
1359 
1360 	return 0;
1361 }
1362 
g4x_compute_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)1363 static int g4x_compute_watermarks(struct intel_atomic_state *state,
1364 				  struct intel_crtc *crtc)
1365 {
1366 	int ret;
1367 
1368 	ret = g4x_compute_pipe_wm(state, crtc);
1369 	if (ret)
1370 		return ret;
1371 
1372 	ret = g4x_compute_intermediate_wm(state, crtc);
1373 	if (ret)
1374 		return ret;
1375 
1376 	return 0;
1377 }
1378 
g4x_merge_wm(struct drm_i915_private * dev_priv,struct g4x_wm_values * wm)1379 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1380 			 struct g4x_wm_values *wm)
1381 {
1382 	struct intel_crtc *crtc;
1383 	int num_active_pipes = 0;
1384 
1385 	wm->cxsr = true;
1386 	wm->hpll_en = true;
1387 	wm->fbc_en = true;
1388 
1389 	for_each_intel_crtc(&dev_priv->drm, crtc) {
1390 		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1391 
1392 		if (!crtc->active)
1393 			continue;
1394 
1395 		if (!wm_state->cxsr)
1396 			wm->cxsr = false;
1397 		if (!wm_state->hpll_en)
1398 			wm->hpll_en = false;
1399 		if (!wm_state->fbc_en)
1400 			wm->fbc_en = false;
1401 
1402 		num_active_pipes++;
1403 	}
1404 
1405 	if (num_active_pipes != 1) {
1406 		wm->cxsr = false;
1407 		wm->hpll_en = false;
1408 		wm->fbc_en = false;
1409 	}
1410 
1411 	for_each_intel_crtc(&dev_priv->drm, crtc) {
1412 		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1413 		enum pipe pipe = crtc->pipe;
1414 
1415 		wm->pipe[pipe] = wm_state->wm;
1416 		if (crtc->active && wm->cxsr)
1417 			wm->sr = wm_state->sr;
1418 		if (crtc->active && wm->hpll_en)
1419 			wm->hpll = wm_state->hpll;
1420 	}
1421 }
1422 
g4x_program_watermarks(struct drm_i915_private * dev_priv)1423 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1424 {
1425 	struct g4x_wm_values *old_wm = &dev_priv->display.wm.g4x;
1426 	struct g4x_wm_values new_wm = {};
1427 
1428 	g4x_merge_wm(dev_priv, &new_wm);
1429 
1430 	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1431 		return;
1432 
1433 	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1434 		_intel_set_memory_cxsr(dev_priv, false);
1435 
1436 	g4x_write_wm_values(dev_priv, &new_wm);
1437 
1438 	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1439 		_intel_set_memory_cxsr(dev_priv, true);
1440 
1441 	*old_wm = new_wm;
1442 }
1443 
g4x_initial_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)1444 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1445 				   struct intel_crtc *crtc)
1446 {
1447 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1448 	const struct intel_crtc_state *crtc_state =
1449 		intel_atomic_get_new_crtc_state(state, crtc);
1450 
1451 	mutex_lock(&dev_priv->display.wm.wm_mutex);
1452 	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1453 	g4x_program_watermarks(dev_priv);
1454 	mutex_unlock(&dev_priv->display.wm.wm_mutex);
1455 }
1456 
g4x_optimize_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)1457 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1458 				    struct intel_crtc *crtc)
1459 {
1460 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1461 	const struct intel_crtc_state *crtc_state =
1462 		intel_atomic_get_new_crtc_state(state, crtc);
1463 
1464 	if (!crtc_state->wm.need_postvbl_update)
1465 		return;
1466 
1467 	mutex_lock(&dev_priv->display.wm.wm_mutex);
1468 	crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1469 	g4x_program_watermarks(dev_priv);
1470 	mutex_unlock(&dev_priv->display.wm.wm_mutex);
1471 }
1472 
1473 /* latency must be in 0.1us units. */
vlv_wm_method2(unsigned int pixel_rate,unsigned int htotal,unsigned int width,unsigned int cpp,unsigned int latency)1474 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1475 				   unsigned int htotal,
1476 				   unsigned int width,
1477 				   unsigned int cpp,
1478 				   unsigned int latency)
1479 {
1480 	unsigned int ret;
1481 
1482 	ret = intel_wm_method2(pixel_rate, htotal,
1483 			       width, cpp, latency);
1484 	ret = DIV_ROUND_UP(ret, 64);
1485 
1486 	return ret;
1487 }
1488 
vlv_setup_wm_latency(struct drm_i915_private * dev_priv)1489 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1490 {
1491 	/* all latencies in usec */
1492 	dev_priv->display.wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1493 
1494 	dev_priv->display.wm.num_levels = VLV_WM_LEVEL_PM2 + 1;
1495 
1496 	if (IS_CHERRYVIEW(dev_priv)) {
1497 		dev_priv->display.wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1498 		dev_priv->display.wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1499 
1500 		dev_priv->display.wm.num_levels = VLV_WM_LEVEL_DDR_DVFS + 1;
1501 	}
1502 }
1503 
vlv_compute_wm_level(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,int level)1504 static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1505 				const struct intel_plane_state *plane_state,
1506 				int level)
1507 {
1508 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1509 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1510 	const struct drm_display_mode *pipe_mode =
1511 		&crtc_state->hw.pipe_mode;
1512 	unsigned int pixel_rate, htotal, cpp, width, wm;
1513 
1514 	if (dev_priv->display.wm.pri_latency[level] == 0)
1515 		return USHRT_MAX;
1516 
1517 	if (!intel_wm_plane_visible(crtc_state, plane_state))
1518 		return 0;
1519 
1520 	cpp = plane_state->hw.fb->format->cpp[0];
1521 	pixel_rate = crtc_state->pixel_rate;
1522 	htotal = pipe_mode->crtc_htotal;
1523 	width = drm_rect_width(&plane_state->uapi.src) >> 16;
1524 
1525 	if (plane->id == PLANE_CURSOR) {
1526 		/*
1527 		 * FIXME the formula gives values that are
1528 		 * too big for the cursor FIFO, and hence we
1529 		 * would never be able to use cursors. For
1530 		 * now just hardcode the watermark.
1531 		 */
1532 		wm = 63;
1533 	} else {
1534 		wm = vlv_wm_method2(pixel_rate, htotal, width, cpp,
1535 				    dev_priv->display.wm.pri_latency[level] * 10);
1536 	}
1537 
1538 	return min_t(unsigned int, wm, USHRT_MAX);
1539 }
1540 
vlv_need_sprite0_fifo_workaround(unsigned int active_planes)1541 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1542 {
1543 	return (active_planes & (BIT(PLANE_SPRITE0) |
1544 				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1545 }
1546 
vlv_compute_fifo(struct intel_crtc_state * crtc_state)1547 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1548 {
1549 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1550 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1551 	const struct g4x_pipe_wm *raw =
1552 		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1553 	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1554 	u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1555 	int num_active_planes = hweight8(active_planes);
1556 	const int fifo_size = 511;
1557 	int fifo_extra, fifo_left = fifo_size;
1558 	int sprite0_fifo_extra = 0;
1559 	unsigned int total_rate;
1560 	enum plane_id plane_id;
1561 
1562 	/*
1563 	 * When enabling sprite0 after sprite1 has already been enabled
1564 	 * we tend to get an underrun unless sprite0 already has some
1565 	 * FIFO space allcoated. Hence we always allocate at least one
1566 	 * cacheline for sprite0 whenever sprite1 is enabled.
1567 	 *
1568 	 * All other plane enable sequences appear immune to this problem.
1569 	 */
1570 	if (vlv_need_sprite0_fifo_workaround(active_planes))
1571 		sprite0_fifo_extra = 1;
1572 
1573 	total_rate = raw->plane[PLANE_PRIMARY] +
1574 		raw->plane[PLANE_SPRITE0] +
1575 		raw->plane[PLANE_SPRITE1] +
1576 		sprite0_fifo_extra;
1577 
1578 	if (total_rate > fifo_size)
1579 		return -EINVAL;
1580 
1581 	if (total_rate == 0)
1582 		total_rate = 1;
1583 
1584 	for_each_plane_id_on_crtc(crtc, plane_id) {
1585 		unsigned int rate;
1586 
1587 		if ((active_planes & BIT(plane_id)) == 0) {
1588 			fifo_state->plane[plane_id] = 0;
1589 			continue;
1590 		}
1591 
1592 		rate = raw->plane[plane_id];
1593 		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1594 		fifo_left -= fifo_state->plane[plane_id];
1595 	}
1596 
1597 	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1598 	fifo_left -= sprite0_fifo_extra;
1599 
1600 	fifo_state->plane[PLANE_CURSOR] = 63;
1601 
1602 	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1603 
1604 	/* spread the remainder evenly */
1605 	for_each_plane_id_on_crtc(crtc, plane_id) {
1606 		int plane_extra;
1607 
1608 		if (fifo_left == 0)
1609 			break;
1610 
1611 		if ((active_planes & BIT(plane_id)) == 0)
1612 			continue;
1613 
1614 		plane_extra = min(fifo_extra, fifo_left);
1615 		fifo_state->plane[plane_id] += plane_extra;
1616 		fifo_left -= plane_extra;
1617 	}
1618 
1619 	drm_WARN_ON(&dev_priv->drm, active_planes != 0 && fifo_left != 0);
1620 
1621 	/* give it all to the first plane if none are active */
1622 	if (active_planes == 0) {
1623 		drm_WARN_ON(&dev_priv->drm, fifo_left != fifo_size);
1624 		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1625 	}
1626 
1627 	return 0;
1628 }
1629 
1630 /* mark all levels starting from 'level' as invalid */
vlv_invalidate_wms(struct intel_crtc * crtc,struct vlv_wm_state * wm_state,int level)1631 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1632 			       struct vlv_wm_state *wm_state, int level)
1633 {
1634 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1635 
1636 	for (; level < dev_priv->display.wm.num_levels; level++) {
1637 		enum plane_id plane_id;
1638 
1639 		for_each_plane_id_on_crtc(crtc, plane_id)
1640 			wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1641 
1642 		wm_state->sr[level].cursor = USHRT_MAX;
1643 		wm_state->sr[level].plane = USHRT_MAX;
1644 	}
1645 }
1646 
vlv_invert_wm_value(u16 wm,u16 fifo_size)1647 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1648 {
1649 	if (wm > fifo_size)
1650 		return USHRT_MAX;
1651 	else
1652 		return fifo_size - wm;
1653 }
1654 
1655 /*
1656  * Starting from 'level' set all higher
1657  * levels to 'value' in the "raw" watermarks.
1658  */
vlv_raw_plane_wm_set(struct intel_crtc_state * crtc_state,int level,enum plane_id plane_id,u16 value)1659 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1660 				 int level, enum plane_id plane_id, u16 value)
1661 {
1662 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1663 	bool dirty = false;
1664 
1665 	for (; level < dev_priv->display.wm.num_levels; level++) {
1666 		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1667 
1668 		dirty |= raw->plane[plane_id] != value;
1669 		raw->plane[plane_id] = value;
1670 	}
1671 
1672 	return dirty;
1673 }
1674 
vlv_raw_plane_wm_compute(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)1675 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1676 				     const struct intel_plane_state *plane_state)
1677 {
1678 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1679 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1680 	enum plane_id plane_id = plane->id;
1681 	int level;
1682 	bool dirty = false;
1683 
1684 	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1685 		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1686 		goto out;
1687 	}
1688 
1689 	for (level = 0; level < dev_priv->display.wm.num_levels; level++) {
1690 		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1691 		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1692 		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1693 
1694 		if (wm > max_wm)
1695 			break;
1696 
1697 		dirty |= raw->plane[plane_id] != wm;
1698 		raw->plane[plane_id] = wm;
1699 	}
1700 
1701 	/* mark all higher levels as invalid */
1702 	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1703 
1704 out:
1705 	if (dirty)
1706 		drm_dbg_kms(&dev_priv->drm,
1707 			    "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1708 			    plane->base.name,
1709 			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1710 			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1711 			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1712 
1713 	return dirty;
1714 }
1715 
vlv_raw_plane_wm_is_valid(const struct intel_crtc_state * crtc_state,enum plane_id plane_id,int level)1716 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1717 				      enum plane_id plane_id, int level)
1718 {
1719 	const struct g4x_pipe_wm *raw =
1720 		&crtc_state->wm.vlv.raw[level];
1721 	const struct vlv_fifo_state *fifo_state =
1722 		&crtc_state->wm.vlv.fifo_state;
1723 
1724 	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1725 }
1726 
vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state * crtc_state,int level)1727 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1728 {
1729 	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1730 		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1731 		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1732 		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1733 }
1734 
_vlv_compute_pipe_wm(struct intel_crtc_state * crtc_state)1735 static int _vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1736 {
1737 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1738 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1739 	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1740 	const struct vlv_fifo_state *fifo_state =
1741 		&crtc_state->wm.vlv.fifo_state;
1742 	u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1743 	int num_active_planes = hweight8(active_planes);
1744 	enum plane_id plane_id;
1745 	int level;
1746 
1747 	/* initially allow all levels */
1748 	wm_state->num_levels = dev_priv->display.wm.num_levels;
1749 	/*
1750 	 * Note that enabling cxsr with no primary/sprite planes
1751 	 * enabled can wedge the pipe. Hence we only allow cxsr
1752 	 * with exactly one enabled primary/sprite plane.
1753 	 */
1754 	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1755 
1756 	for (level = 0; level < wm_state->num_levels; level++) {
1757 		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1758 		const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
1759 
1760 		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1761 			break;
1762 
1763 		for_each_plane_id_on_crtc(crtc, plane_id) {
1764 			wm_state->wm[level].plane[plane_id] =
1765 				vlv_invert_wm_value(raw->plane[plane_id],
1766 						    fifo_state->plane[plane_id]);
1767 		}
1768 
1769 		wm_state->sr[level].plane =
1770 			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1771 						 raw->plane[PLANE_SPRITE0],
1772 						 raw->plane[PLANE_SPRITE1]),
1773 					    sr_fifo_size);
1774 
1775 		wm_state->sr[level].cursor =
1776 			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1777 					    63);
1778 	}
1779 
1780 	if (level == 0)
1781 		return -EINVAL;
1782 
1783 	/* limit to only levels we can actually handle */
1784 	wm_state->num_levels = level;
1785 
1786 	/* invalidate the higher levels */
1787 	vlv_invalidate_wms(crtc, wm_state, level);
1788 
1789 	return 0;
1790 }
1791 
vlv_compute_pipe_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)1792 static int vlv_compute_pipe_wm(struct intel_atomic_state *state,
1793 			       struct intel_crtc *crtc)
1794 {
1795 	struct intel_crtc_state *crtc_state =
1796 		intel_atomic_get_new_crtc_state(state, crtc);
1797 	const struct intel_plane_state *old_plane_state;
1798 	const struct intel_plane_state *new_plane_state;
1799 	struct intel_plane *plane;
1800 	unsigned int dirty = 0;
1801 	int i;
1802 
1803 	for_each_oldnew_intel_plane_in_state(state, plane,
1804 					     old_plane_state,
1805 					     new_plane_state, i) {
1806 		if (new_plane_state->hw.crtc != &crtc->base &&
1807 		    old_plane_state->hw.crtc != &crtc->base)
1808 			continue;
1809 
1810 		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1811 			dirty |= BIT(plane->id);
1812 	}
1813 
1814 	/*
1815 	 * DSPARB registers may have been reset due to the
1816 	 * power well being turned off. Make sure we restore
1817 	 * them to a consistent state even if no primary/sprite
1818 	 * planes are initially active. We also force a FIFO
1819 	 * recomputation so that we are sure to sanitize the
1820 	 * FIFO setting we took over from the BIOS even if there
1821 	 * are no active planes on the crtc.
1822 	 */
1823 	if (intel_crtc_needs_modeset(crtc_state))
1824 		dirty = ~0;
1825 
1826 	if (!dirty)
1827 		return 0;
1828 
1829 	/* cursor changes don't warrant a FIFO recompute */
1830 	if (dirty & ~BIT(PLANE_CURSOR)) {
1831 		const struct intel_crtc_state *old_crtc_state =
1832 			intel_atomic_get_old_crtc_state(state, crtc);
1833 		const struct vlv_fifo_state *old_fifo_state =
1834 			&old_crtc_state->wm.vlv.fifo_state;
1835 		const struct vlv_fifo_state *new_fifo_state =
1836 			&crtc_state->wm.vlv.fifo_state;
1837 		int ret;
1838 
1839 		ret = vlv_compute_fifo(crtc_state);
1840 		if (ret)
1841 			return ret;
1842 
1843 		if (intel_crtc_needs_modeset(crtc_state) ||
1844 		    memcmp(old_fifo_state, new_fifo_state,
1845 			   sizeof(*new_fifo_state)) != 0)
1846 			crtc_state->fifo_changed = true;
1847 	}
1848 
1849 	return _vlv_compute_pipe_wm(crtc_state);
1850 }
1851 
1852 #define VLV_FIFO(plane, value) \
1853 	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1854 
vlv_atomic_update_fifo(struct intel_atomic_state * state,struct intel_crtc * crtc)1855 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1856 				   struct intel_crtc *crtc)
1857 {
1858 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1859 	struct intel_uncore *uncore = &dev_priv->uncore;
1860 	const struct intel_crtc_state *crtc_state =
1861 		intel_atomic_get_new_crtc_state(state, crtc);
1862 	const struct vlv_fifo_state *fifo_state =
1863 		&crtc_state->wm.vlv.fifo_state;
1864 	int sprite0_start, sprite1_start, fifo_size;
1865 	u32 dsparb, dsparb2, dsparb3;
1866 
1867 	if (!crtc_state->fifo_changed)
1868 		return;
1869 
1870 	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1871 	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1872 	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1873 
1874 	drm_WARN_ON(&dev_priv->drm, fifo_state->plane[PLANE_CURSOR] != 63);
1875 	drm_WARN_ON(&dev_priv->drm, fifo_size != 511);
1876 
1877 	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1878 
1879 	/*
1880 	 * uncore.lock serves a double purpose here. It allows us to
1881 	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
1882 	 * it protects the DSPARB registers from getting clobbered by
1883 	 * parallel updates from multiple pipes.
1884 	 *
1885 	 * intel_pipe_update_start() has already disabled interrupts
1886 	 * for us, so a plain spin_lock() is sufficient here.
1887 	 */
1888 	spin_lock(&uncore->lock);
1889 
1890 	switch (crtc->pipe) {
1891 	case PIPE_A:
1892 		dsparb = intel_uncore_read_fw(uncore, DSPARB(dev_priv));
1893 		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1894 
1895 		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1896 			    VLV_FIFO(SPRITEB, 0xff));
1897 		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1898 			   VLV_FIFO(SPRITEB, sprite1_start));
1899 
1900 		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1901 			     VLV_FIFO(SPRITEB_HI, 0x1));
1902 		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1903 			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1904 
1905 		intel_uncore_write_fw(uncore, DSPARB(dev_priv), dsparb);
1906 		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
1907 		break;
1908 	case PIPE_B:
1909 		dsparb = intel_uncore_read_fw(uncore, DSPARB(dev_priv));
1910 		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1911 
1912 		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1913 			    VLV_FIFO(SPRITED, 0xff));
1914 		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1915 			   VLV_FIFO(SPRITED, sprite1_start));
1916 
1917 		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1918 			     VLV_FIFO(SPRITED_HI, 0xff));
1919 		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1920 			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1921 
1922 		intel_uncore_write_fw(uncore, DSPARB(dev_priv), dsparb);
1923 		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
1924 		break;
1925 	case PIPE_C:
1926 		dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
1927 		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1928 
1929 		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1930 			     VLV_FIFO(SPRITEF, 0xff));
1931 		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1932 			    VLV_FIFO(SPRITEF, sprite1_start));
1933 
1934 		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1935 			     VLV_FIFO(SPRITEF_HI, 0xff));
1936 		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1937 			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1938 
1939 		intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
1940 		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
1941 		break;
1942 	default:
1943 		break;
1944 	}
1945 
1946 	intel_uncore_posting_read_fw(uncore, DSPARB(dev_priv));
1947 
1948 	spin_unlock(&uncore->lock);
1949 }
1950 
1951 #undef VLV_FIFO
1952 
vlv_compute_intermediate_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)1953 static int vlv_compute_intermediate_wm(struct intel_atomic_state *state,
1954 				       struct intel_crtc *crtc)
1955 {
1956 	struct intel_crtc_state *new_crtc_state =
1957 		intel_atomic_get_new_crtc_state(state, crtc);
1958 	const struct intel_crtc_state *old_crtc_state =
1959 		intel_atomic_get_old_crtc_state(state, crtc);
1960 	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
1961 	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
1962 	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
1963 	int level;
1964 
1965 	if (!new_crtc_state->hw.active ||
1966 	    intel_crtc_needs_modeset(new_crtc_state)) {
1967 		*intermediate = *optimal;
1968 
1969 		intermediate->cxsr = false;
1970 		goto out;
1971 	}
1972 
1973 	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
1974 	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1975 		!new_crtc_state->disable_cxsr;
1976 
1977 	for (level = 0; level < intermediate->num_levels; level++) {
1978 		enum plane_id plane_id;
1979 
1980 		for_each_plane_id_on_crtc(crtc, plane_id) {
1981 			intermediate->wm[level].plane[plane_id] =
1982 				min(optimal->wm[level].plane[plane_id],
1983 				    active->wm[level].plane[plane_id]);
1984 		}
1985 
1986 		intermediate->sr[level].plane = min(optimal->sr[level].plane,
1987 						    active->sr[level].plane);
1988 		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
1989 						     active->sr[level].cursor);
1990 	}
1991 
1992 	vlv_invalidate_wms(crtc, intermediate, level);
1993 
1994 out:
1995 	/*
1996 	 * If our intermediate WM are identical to the final WM, then we can
1997 	 * omit the post-vblank programming; only update if it's different.
1998 	 */
1999 	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2000 		new_crtc_state->wm.need_postvbl_update = true;
2001 
2002 	return 0;
2003 }
2004 
vlv_compute_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)2005 static int vlv_compute_watermarks(struct intel_atomic_state *state,
2006 				  struct intel_crtc *crtc)
2007 {
2008 	int ret;
2009 
2010 	ret = vlv_compute_pipe_wm(state, crtc);
2011 	if (ret)
2012 		return ret;
2013 
2014 	ret = vlv_compute_intermediate_wm(state, crtc);
2015 	if (ret)
2016 		return ret;
2017 
2018 	return 0;
2019 }
2020 
vlv_merge_wm(struct drm_i915_private * dev_priv,struct vlv_wm_values * wm)2021 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2022 			 struct vlv_wm_values *wm)
2023 {
2024 	struct intel_crtc *crtc;
2025 	int num_active_pipes = 0;
2026 
2027 	wm->level = dev_priv->display.wm.num_levels - 1;
2028 	wm->cxsr = true;
2029 
2030 	for_each_intel_crtc(&dev_priv->drm, crtc) {
2031 		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2032 
2033 		if (!crtc->active)
2034 			continue;
2035 
2036 		if (!wm_state->cxsr)
2037 			wm->cxsr = false;
2038 
2039 		num_active_pipes++;
2040 		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2041 	}
2042 
2043 	if (num_active_pipes != 1)
2044 		wm->cxsr = false;
2045 
2046 	if (num_active_pipes > 1)
2047 		wm->level = VLV_WM_LEVEL_PM2;
2048 
2049 	for_each_intel_crtc(&dev_priv->drm, crtc) {
2050 		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2051 		enum pipe pipe = crtc->pipe;
2052 
2053 		wm->pipe[pipe] = wm_state->wm[wm->level];
2054 		if (crtc->active && wm->cxsr)
2055 			wm->sr = wm_state->sr[wm->level];
2056 
2057 		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2058 		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2059 		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2060 		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2061 	}
2062 }
2063 
vlv_program_watermarks(struct drm_i915_private * dev_priv)2064 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2065 {
2066 	struct vlv_wm_values *old_wm = &dev_priv->display.wm.vlv;
2067 	struct vlv_wm_values new_wm = {};
2068 
2069 	vlv_merge_wm(dev_priv, &new_wm);
2070 
2071 	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2072 		return;
2073 
2074 	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2075 		chv_set_memory_dvfs(dev_priv, false);
2076 
2077 	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2078 		chv_set_memory_pm5(dev_priv, false);
2079 
2080 	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2081 		_intel_set_memory_cxsr(dev_priv, false);
2082 
2083 	vlv_write_wm_values(dev_priv, &new_wm);
2084 
2085 	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2086 		_intel_set_memory_cxsr(dev_priv, true);
2087 
2088 	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2089 		chv_set_memory_pm5(dev_priv, true);
2090 
2091 	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2092 		chv_set_memory_dvfs(dev_priv, true);
2093 
2094 	*old_wm = new_wm;
2095 }
2096 
vlv_initial_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)2097 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2098 				   struct intel_crtc *crtc)
2099 {
2100 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2101 	const struct intel_crtc_state *crtc_state =
2102 		intel_atomic_get_new_crtc_state(state, crtc);
2103 
2104 	mutex_lock(&dev_priv->display.wm.wm_mutex);
2105 	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2106 	vlv_program_watermarks(dev_priv);
2107 	mutex_unlock(&dev_priv->display.wm.wm_mutex);
2108 }
2109 
vlv_optimize_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)2110 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2111 				    struct intel_crtc *crtc)
2112 {
2113 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2114 	const struct intel_crtc_state *crtc_state =
2115 		intel_atomic_get_new_crtc_state(state, crtc);
2116 
2117 	if (!crtc_state->wm.need_postvbl_update)
2118 		return;
2119 
2120 	mutex_lock(&dev_priv->display.wm.wm_mutex);
2121 	crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2122 	vlv_program_watermarks(dev_priv);
2123 	mutex_unlock(&dev_priv->display.wm.wm_mutex);
2124 }
2125 
i965_update_wm(struct drm_i915_private * dev_priv)2126 static void i965_update_wm(struct drm_i915_private *dev_priv)
2127 {
2128 	struct intel_crtc *crtc;
2129 	int srwm = 1;
2130 	int cursor_sr = 16;
2131 	bool cxsr_enabled;
2132 
2133 	/* Calc sr entries for one plane configs */
2134 	crtc = single_enabled_crtc(dev_priv);
2135 	if (crtc) {
2136 		/* self-refresh has much higher latency */
2137 		static const int sr_latency_ns = 12000;
2138 		const struct drm_display_mode *pipe_mode =
2139 			&crtc->config->hw.pipe_mode;
2140 		const struct drm_framebuffer *fb =
2141 			crtc->base.primary->state->fb;
2142 		int pixel_rate = crtc->config->pixel_rate;
2143 		int htotal = pipe_mode->crtc_htotal;
2144 		int width = drm_rect_width(&crtc->base.primary->state->src) >> 16;
2145 		int cpp = fb->format->cpp[0];
2146 		int entries;
2147 
2148 		entries = intel_wm_method2(pixel_rate, htotal,
2149 					   width, cpp, sr_latency_ns / 100);
2150 		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2151 		srwm = I965_FIFO_SIZE - entries;
2152 		if (srwm < 0)
2153 			srwm = 1;
2154 		srwm &= 0x1ff;
2155 		drm_dbg_kms(&dev_priv->drm,
2156 			    "self-refresh entries: %d, wm: %d\n",
2157 			    entries, srwm);
2158 
2159 		entries = intel_wm_method2(pixel_rate, htotal,
2160 					   crtc->base.cursor->state->crtc_w, 4,
2161 					   sr_latency_ns / 100);
2162 		entries = DIV_ROUND_UP(entries,
2163 				       i965_cursor_wm_info.cacheline_size) +
2164 			i965_cursor_wm_info.guard_size;
2165 
2166 		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2167 		if (cursor_sr > i965_cursor_wm_info.max_wm)
2168 			cursor_sr = i965_cursor_wm_info.max_wm;
2169 
2170 		drm_dbg_kms(&dev_priv->drm,
2171 			    "self-refresh watermark: display plane %d "
2172 			    "cursor %d\n", srwm, cursor_sr);
2173 
2174 		cxsr_enabled = true;
2175 	} else {
2176 		cxsr_enabled = false;
2177 		/* Turn off self refresh if both pipes are enabled */
2178 		intel_set_memory_cxsr(dev_priv, false);
2179 	}
2180 
2181 	drm_dbg_kms(&dev_priv->drm,
2182 		    "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2183 		    srwm);
2184 
2185 	/* 965 has limitations... */
2186 	intel_uncore_write(&dev_priv->uncore, DSPFW1(dev_priv),
2187 			   FW_WM(srwm, SR) |
2188 			   FW_WM(8, CURSORB) |
2189 			   FW_WM(8, PLANEB) |
2190 			   FW_WM(8, PLANEA));
2191 	intel_uncore_write(&dev_priv->uncore, DSPFW2(dev_priv),
2192 			   FW_WM(8, CURSORA) |
2193 			   FW_WM(8, PLANEC_OLD));
2194 	/* update cursor SR watermark */
2195 	intel_uncore_write(&dev_priv->uncore, DSPFW3(dev_priv),
2196 			   FW_WM(cursor_sr, CURSOR_SR));
2197 
2198 	if (cxsr_enabled)
2199 		intel_set_memory_cxsr(dev_priv, true);
2200 }
2201 
2202 #undef FW_WM
2203 
intel_crtc_for_plane(struct drm_i915_private * i915,enum i9xx_plane_id i9xx_plane)2204 static struct intel_crtc *intel_crtc_for_plane(struct drm_i915_private *i915,
2205 					       enum i9xx_plane_id i9xx_plane)
2206 {
2207 	struct intel_display *display = &i915->display;
2208 	struct intel_plane *plane;
2209 
2210 	for_each_intel_plane(&i915->drm, plane) {
2211 		if (plane->id == PLANE_PRIMARY &&
2212 		    plane->i9xx_plane == i9xx_plane)
2213 			return intel_crtc_for_pipe(display, plane->pipe);
2214 	}
2215 
2216 	return NULL;
2217 }
2218 
i9xx_update_wm(struct drm_i915_private * dev_priv)2219 static void i9xx_update_wm(struct drm_i915_private *dev_priv)
2220 {
2221 	const struct intel_watermark_params *wm_info;
2222 	u32 fwater_lo;
2223 	u32 fwater_hi;
2224 	int cwm, srwm = 1;
2225 	int fifo_size;
2226 	int planea_wm, planeb_wm;
2227 	struct intel_crtc *crtc;
2228 
2229 	if (IS_I945GM(dev_priv))
2230 		wm_info = &i945_wm_info;
2231 	else if (DISPLAY_VER(dev_priv) != 2)
2232 		wm_info = &i915_wm_info;
2233 	else
2234 		wm_info = &i830_a_wm_info;
2235 
2236 	if (DISPLAY_VER(dev_priv) == 2)
2237 		fifo_size = i830_get_fifo_size(dev_priv, PLANE_A);
2238 	else
2239 		fifo_size = i9xx_get_fifo_size(dev_priv, PLANE_A);
2240 	crtc = intel_crtc_for_plane(dev_priv, PLANE_A);
2241 	if (intel_crtc_active(crtc)) {
2242 		const struct drm_framebuffer *fb =
2243 			crtc->base.primary->state->fb;
2244 		int cpp;
2245 
2246 		if (DISPLAY_VER(dev_priv) == 2)
2247 			cpp = 4;
2248 		else
2249 			cpp = fb->format->cpp[0];
2250 
2251 		planea_wm = intel_calculate_wm(dev_priv, crtc->config->pixel_rate,
2252 					       wm_info, fifo_size, cpp,
2253 					       pessimal_latency_ns);
2254 	} else {
2255 		planea_wm = fifo_size - wm_info->guard_size;
2256 		if (planea_wm > (long)wm_info->max_wm)
2257 			planea_wm = wm_info->max_wm;
2258 	}
2259 
2260 	if (DISPLAY_VER(dev_priv) == 2)
2261 		wm_info = &i830_bc_wm_info;
2262 
2263 	if (DISPLAY_VER(dev_priv) == 2)
2264 		fifo_size = i830_get_fifo_size(dev_priv, PLANE_B);
2265 	else
2266 		fifo_size = i9xx_get_fifo_size(dev_priv, PLANE_B);
2267 	crtc = intel_crtc_for_plane(dev_priv, PLANE_B);
2268 	if (intel_crtc_active(crtc)) {
2269 		const struct drm_framebuffer *fb =
2270 			crtc->base.primary->state->fb;
2271 		int cpp;
2272 
2273 		if (DISPLAY_VER(dev_priv) == 2)
2274 			cpp = 4;
2275 		else
2276 			cpp = fb->format->cpp[0];
2277 
2278 		planeb_wm = intel_calculate_wm(dev_priv, crtc->config->pixel_rate,
2279 					       wm_info, fifo_size, cpp,
2280 					       pessimal_latency_ns);
2281 	} else {
2282 		planeb_wm = fifo_size - wm_info->guard_size;
2283 		if (planeb_wm > (long)wm_info->max_wm)
2284 			planeb_wm = wm_info->max_wm;
2285 	}
2286 
2287 	drm_dbg_kms(&dev_priv->drm,
2288 		    "FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2289 
2290 	crtc = single_enabled_crtc(dev_priv);
2291 	if (IS_I915GM(dev_priv) && crtc) {
2292 		struct drm_gem_object *obj;
2293 
2294 		obj = intel_fb_bo(crtc->base.primary->state->fb);
2295 
2296 		/* self-refresh seems busted with untiled */
2297 		if (!intel_bo_is_tiled(obj))
2298 			crtc = NULL;
2299 	}
2300 
2301 	/*
2302 	 * Overlay gets an aggressive default since video jitter is bad.
2303 	 */
2304 	cwm = 2;
2305 
2306 	/* Play safe and disable self-refresh before adjusting watermarks. */
2307 	intel_set_memory_cxsr(dev_priv, false);
2308 
2309 	/* Calc sr entries for one plane configs */
2310 	if (HAS_FW_BLC(dev_priv) && crtc) {
2311 		/* self-refresh has much higher latency */
2312 		static const int sr_latency_ns = 6000;
2313 		const struct drm_display_mode *pipe_mode =
2314 			&crtc->config->hw.pipe_mode;
2315 		const struct drm_framebuffer *fb =
2316 			crtc->base.primary->state->fb;
2317 		int pixel_rate = crtc->config->pixel_rate;
2318 		int htotal = pipe_mode->crtc_htotal;
2319 		int width = drm_rect_width(&crtc->base.primary->state->src) >> 16;
2320 		int cpp;
2321 		int entries;
2322 
2323 		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2324 			cpp = 4;
2325 		else
2326 			cpp = fb->format->cpp[0];
2327 
2328 		entries = intel_wm_method2(pixel_rate, htotal, width, cpp,
2329 					   sr_latency_ns / 100);
2330 		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2331 		drm_dbg_kms(&dev_priv->drm,
2332 			    "self-refresh entries: %d\n", entries);
2333 		srwm = wm_info->fifo_size - entries;
2334 		if (srwm < 0)
2335 			srwm = 1;
2336 
2337 		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2338 			intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF,
2339 				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2340 		else
2341 			intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, srwm & 0x3f);
2342 	}
2343 
2344 	drm_dbg_kms(&dev_priv->drm,
2345 		    "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2346 		     planea_wm, planeb_wm, cwm, srwm);
2347 
2348 	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2349 	fwater_hi = (cwm & 0x1f);
2350 
2351 	/* Set request length to 8 cachelines per fetch */
2352 	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2353 	fwater_hi = fwater_hi | (1 << 8);
2354 
2355 	intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo);
2356 	intel_uncore_write(&dev_priv->uncore, FW_BLC2, fwater_hi);
2357 
2358 	if (crtc)
2359 		intel_set_memory_cxsr(dev_priv, true);
2360 }
2361 
i845_update_wm(struct drm_i915_private * dev_priv)2362 static void i845_update_wm(struct drm_i915_private *dev_priv)
2363 {
2364 	struct intel_crtc *crtc;
2365 	u32 fwater_lo;
2366 	int planea_wm;
2367 
2368 	crtc = single_enabled_crtc(dev_priv);
2369 	if (crtc == NULL)
2370 		return;
2371 
2372 	planea_wm = intel_calculate_wm(dev_priv, crtc->config->pixel_rate,
2373 				       &i845_wm_info,
2374 				       i845_get_fifo_size(dev_priv, PLANE_A),
2375 				       4, pessimal_latency_ns);
2376 	fwater_lo = intel_uncore_read(&dev_priv->uncore, FW_BLC) & ~0xfff;
2377 	fwater_lo |= (3<<8) | planea_wm;
2378 
2379 	drm_dbg_kms(&dev_priv->drm,
2380 		    "Setting FIFO watermarks - A: %d\n", planea_wm);
2381 
2382 	intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo);
2383 }
2384 
2385 /* latency must be in 0.1us units. */
ilk_wm_method1(unsigned int pixel_rate,unsigned int cpp,unsigned int latency)2386 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2387 				   unsigned int cpp,
2388 				   unsigned int latency)
2389 {
2390 	unsigned int ret;
2391 
2392 	ret = intel_wm_method1(pixel_rate, cpp, latency);
2393 	ret = DIV_ROUND_UP(ret, 64) + 2;
2394 
2395 	return ret;
2396 }
2397 
2398 /* latency must be in 0.1us units. */
ilk_wm_method2(unsigned int pixel_rate,unsigned int htotal,unsigned int width,unsigned int cpp,unsigned int latency)2399 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2400 				   unsigned int htotal,
2401 				   unsigned int width,
2402 				   unsigned int cpp,
2403 				   unsigned int latency)
2404 {
2405 	unsigned int ret;
2406 
2407 	ret = intel_wm_method2(pixel_rate, htotal,
2408 			       width, cpp, latency);
2409 	ret = DIV_ROUND_UP(ret, 64) + 2;
2410 
2411 	return ret;
2412 }
2413 
ilk_wm_fbc(u32 pri_val,u32 horiz_pixels,u8 cpp)2414 static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2415 {
2416 	/*
2417 	 * Neither of these should be possible since this function shouldn't be
2418 	 * called if the CRTC is off or the plane is invisible.  But let's be
2419 	 * extra paranoid to avoid a potential divide-by-zero if we screw up
2420 	 * elsewhere in the driver.
2421 	 */
2422 	if (WARN_ON(!cpp))
2423 		return 0;
2424 	if (WARN_ON(!horiz_pixels))
2425 		return 0;
2426 
2427 	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2428 }
2429 
2430 struct ilk_wm_maximums {
2431 	u16 pri;
2432 	u16 spr;
2433 	u16 cur;
2434 	u16 fbc;
2435 };
2436 
2437 /*
2438  * For both WM_PIPE and WM_LP.
2439  * mem_value must be in 0.1us units.
2440  */
ilk_compute_pri_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,u32 mem_value,bool is_lp)2441 static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
2442 			      const struct intel_plane_state *plane_state,
2443 			      u32 mem_value, bool is_lp)
2444 {
2445 	u32 method1, method2;
2446 	int cpp;
2447 
2448 	if (mem_value == 0)
2449 		return U32_MAX;
2450 
2451 	if (!intel_wm_plane_visible(crtc_state, plane_state))
2452 		return 0;
2453 
2454 	cpp = plane_state->hw.fb->format->cpp[0];
2455 
2456 	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2457 
2458 	if (!is_lp)
2459 		return method1;
2460 
2461 	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2462 				 crtc_state->hw.pipe_mode.crtc_htotal,
2463 				 drm_rect_width(&plane_state->uapi.src) >> 16,
2464 				 cpp, mem_value);
2465 
2466 	return min(method1, method2);
2467 }
2468 
2469 /*
2470  * For both WM_PIPE and WM_LP.
2471  * mem_value must be in 0.1us units.
2472  */
ilk_compute_spr_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,u32 mem_value)2473 static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
2474 			      const struct intel_plane_state *plane_state,
2475 			      u32 mem_value)
2476 {
2477 	u32 method1, method2;
2478 	int cpp;
2479 
2480 	if (mem_value == 0)
2481 		return U32_MAX;
2482 
2483 	if (!intel_wm_plane_visible(crtc_state, plane_state))
2484 		return 0;
2485 
2486 	cpp = plane_state->hw.fb->format->cpp[0];
2487 
2488 	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2489 	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2490 				 crtc_state->hw.pipe_mode.crtc_htotal,
2491 				 drm_rect_width(&plane_state->uapi.src) >> 16,
2492 				 cpp, mem_value);
2493 	return min(method1, method2);
2494 }
2495 
2496 /*
2497  * For both WM_PIPE and WM_LP.
2498  * mem_value must be in 0.1us units.
2499  */
ilk_compute_cur_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,u32 mem_value)2500 static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
2501 			      const struct intel_plane_state *plane_state,
2502 			      u32 mem_value)
2503 {
2504 	int cpp;
2505 
2506 	if (mem_value == 0)
2507 		return U32_MAX;
2508 
2509 	if (!intel_wm_plane_visible(crtc_state, plane_state))
2510 		return 0;
2511 
2512 	cpp = plane_state->hw.fb->format->cpp[0];
2513 
2514 	return ilk_wm_method2(crtc_state->pixel_rate,
2515 			      crtc_state->hw.pipe_mode.crtc_htotal,
2516 			      drm_rect_width(&plane_state->uapi.src) >> 16,
2517 			      cpp, mem_value);
2518 }
2519 
2520 /* Only for WM_LP. */
ilk_compute_fbc_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,u32 pri_val)2521 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
2522 			      const struct intel_plane_state *plane_state,
2523 			      u32 pri_val)
2524 {
2525 	int cpp;
2526 
2527 	if (!intel_wm_plane_visible(crtc_state, plane_state))
2528 		return 0;
2529 
2530 	cpp = plane_state->hw.fb->format->cpp[0];
2531 
2532 	return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.src) >> 16,
2533 			  cpp);
2534 }
2535 
2536 static unsigned int
ilk_display_fifo_size(const struct drm_i915_private * dev_priv)2537 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2538 {
2539 	if (DISPLAY_VER(dev_priv) >= 8)
2540 		return 3072;
2541 	else if (DISPLAY_VER(dev_priv) >= 7)
2542 		return 768;
2543 	else
2544 		return 512;
2545 }
2546 
2547 static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private * dev_priv,int level,bool is_sprite)2548 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2549 		     int level, bool is_sprite)
2550 {
2551 	if (DISPLAY_VER(dev_priv) >= 8)
2552 		/* BDW primary/sprite plane watermarks */
2553 		return level == 0 ? 255 : 2047;
2554 	else if (DISPLAY_VER(dev_priv) >= 7)
2555 		/* IVB/HSW primary/sprite plane watermarks */
2556 		return level == 0 ? 127 : 1023;
2557 	else if (!is_sprite)
2558 		/* ILK/SNB primary plane watermarks */
2559 		return level == 0 ? 127 : 511;
2560 	else
2561 		/* ILK/SNB sprite plane watermarks */
2562 		return level == 0 ? 63 : 255;
2563 }
2564 
2565 static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private * dev_priv,int level)2566 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2567 {
2568 	if (DISPLAY_VER(dev_priv) >= 7)
2569 		return level == 0 ? 63 : 255;
2570 	else
2571 		return level == 0 ? 31 : 63;
2572 }
2573 
ilk_fbc_wm_reg_max(const struct drm_i915_private * dev_priv)2574 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2575 {
2576 	if (DISPLAY_VER(dev_priv) >= 8)
2577 		return 31;
2578 	else
2579 		return 15;
2580 }
2581 
2582 /* Calculate the maximum primary/sprite plane watermark */
ilk_plane_wm_max(const struct drm_i915_private * dev_priv,int level,const struct intel_wm_config * config,enum intel_ddb_partitioning ddb_partitioning,bool is_sprite)2583 static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2584 				     int level,
2585 				     const struct intel_wm_config *config,
2586 				     enum intel_ddb_partitioning ddb_partitioning,
2587 				     bool is_sprite)
2588 {
2589 	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2590 
2591 	/* if sprites aren't enabled, sprites get nothing */
2592 	if (is_sprite && !config->sprites_enabled)
2593 		return 0;
2594 
2595 	/* HSW allows LP1+ watermarks even with multiple pipes */
2596 	if (level == 0 || config->num_pipes_active > 1) {
2597 		fifo_size /= INTEL_NUM_PIPES(dev_priv);
2598 
2599 		/*
2600 		 * For some reason the non self refresh
2601 		 * FIFO size is only half of the self
2602 		 * refresh FIFO size on ILK/SNB.
2603 		 */
2604 		if (DISPLAY_VER(dev_priv) < 7)
2605 			fifo_size /= 2;
2606 	}
2607 
2608 	if (config->sprites_enabled) {
2609 		/* level 0 is always calculated with 1:1 split */
2610 		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2611 			if (is_sprite)
2612 				fifo_size *= 5;
2613 			fifo_size /= 6;
2614 		} else {
2615 			fifo_size /= 2;
2616 		}
2617 	}
2618 
2619 	/* clamp to max that the registers can hold */
2620 	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2621 }
2622 
2623 /* Calculate the maximum cursor plane watermark */
ilk_cursor_wm_max(const struct drm_i915_private * dev_priv,int level,const struct intel_wm_config * config)2624 static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2625 				      int level,
2626 				      const struct intel_wm_config *config)
2627 {
2628 	/* HSW LP1+ watermarks w/ multiple pipes */
2629 	if (level > 0 && config->num_pipes_active > 1)
2630 		return 64;
2631 
2632 	/* otherwise just report max that registers can hold */
2633 	return ilk_cursor_wm_reg_max(dev_priv, level);
2634 }
2635 
ilk_compute_wm_maximums(const struct drm_i915_private * dev_priv,int level,const struct intel_wm_config * config,enum intel_ddb_partitioning ddb_partitioning,struct ilk_wm_maximums * max)2636 static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2637 				    int level,
2638 				    const struct intel_wm_config *config,
2639 				    enum intel_ddb_partitioning ddb_partitioning,
2640 				    struct ilk_wm_maximums *max)
2641 {
2642 	max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
2643 	max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
2644 	max->cur = ilk_cursor_wm_max(dev_priv, level, config);
2645 	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2646 }
2647 
ilk_compute_wm_reg_maximums(const struct drm_i915_private * dev_priv,int level,struct ilk_wm_maximums * max)2648 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2649 					int level,
2650 					struct ilk_wm_maximums *max)
2651 {
2652 	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2653 	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2654 	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2655 	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2656 }
2657 
ilk_validate_wm_level(struct drm_i915_private * i915,int level,const struct ilk_wm_maximums * max,struct intel_wm_level * result)2658 static bool ilk_validate_wm_level(struct drm_i915_private *i915,
2659 				  int level,
2660 				  const struct ilk_wm_maximums *max,
2661 				  struct intel_wm_level *result)
2662 {
2663 	bool ret;
2664 
2665 	/* already determined to be invalid? */
2666 	if (!result->enable)
2667 		return false;
2668 
2669 	result->enable = result->pri_val <= max->pri &&
2670 			 result->spr_val <= max->spr &&
2671 			 result->cur_val <= max->cur;
2672 
2673 	ret = result->enable;
2674 
2675 	/*
2676 	 * HACK until we can pre-compute everything,
2677 	 * and thus fail gracefully if LP0 watermarks
2678 	 * are exceeded...
2679 	 */
2680 	if (level == 0 && !result->enable) {
2681 		if (result->pri_val > max->pri)
2682 			drm_dbg_kms(&i915->drm,
2683 				    "Primary WM%d too large %u (max %u)\n",
2684 				    level, result->pri_val, max->pri);
2685 		if (result->spr_val > max->spr)
2686 			drm_dbg_kms(&i915->drm,
2687 				    "Sprite WM%d too large %u (max %u)\n",
2688 				    level, result->spr_val, max->spr);
2689 		if (result->cur_val > max->cur)
2690 			drm_dbg_kms(&i915->drm,
2691 				    "Cursor WM%d too large %u (max %u)\n",
2692 				    level, result->cur_val, max->cur);
2693 
2694 		result->pri_val = min_t(u32, result->pri_val, max->pri);
2695 		result->spr_val = min_t(u32, result->spr_val, max->spr);
2696 		result->cur_val = min_t(u32, result->cur_val, max->cur);
2697 		result->enable = true;
2698 	}
2699 
2700 	return ret;
2701 }
2702 
ilk_compute_wm_level(const struct drm_i915_private * dev_priv,const struct intel_crtc * crtc,int level,struct intel_crtc_state * crtc_state,const struct intel_plane_state * pristate,const struct intel_plane_state * sprstate,const struct intel_plane_state * curstate,struct intel_wm_level * result)2703 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2704 				 const struct intel_crtc *crtc,
2705 				 int level,
2706 				 struct intel_crtc_state *crtc_state,
2707 				 const struct intel_plane_state *pristate,
2708 				 const struct intel_plane_state *sprstate,
2709 				 const struct intel_plane_state *curstate,
2710 				 struct intel_wm_level *result)
2711 {
2712 	u16 pri_latency = dev_priv->display.wm.pri_latency[level];
2713 	u16 spr_latency = dev_priv->display.wm.spr_latency[level];
2714 	u16 cur_latency = dev_priv->display.wm.cur_latency[level];
2715 
2716 	/* WM1+ latency values stored in 0.5us units */
2717 	if (level > 0) {
2718 		pri_latency *= 5;
2719 		spr_latency *= 5;
2720 		cur_latency *= 5;
2721 	}
2722 
2723 	if (pristate) {
2724 		result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2725 						     pri_latency, level);
2726 		result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2727 	}
2728 
2729 	if (sprstate)
2730 		result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2731 
2732 	if (curstate)
2733 		result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2734 
2735 	result->enable = true;
2736 }
2737 
hsw_read_wm_latency(struct drm_i915_private * i915,u16 wm[])2738 static void hsw_read_wm_latency(struct drm_i915_private *i915, u16 wm[])
2739 {
2740 	u64 sskpd;
2741 
2742 	i915->display.wm.num_levels = 5;
2743 
2744 	sskpd = intel_uncore_read64(&i915->uncore, MCH_SSKPD);
2745 
2746 	wm[0] = REG_FIELD_GET64(SSKPD_NEW_WM0_MASK_HSW, sskpd);
2747 	if (wm[0] == 0)
2748 		wm[0] = REG_FIELD_GET64(SSKPD_OLD_WM0_MASK_HSW, sskpd);
2749 	wm[1] = REG_FIELD_GET64(SSKPD_WM1_MASK_HSW, sskpd);
2750 	wm[2] = REG_FIELD_GET64(SSKPD_WM2_MASK_HSW, sskpd);
2751 	wm[3] = REG_FIELD_GET64(SSKPD_WM3_MASK_HSW, sskpd);
2752 	wm[4] = REG_FIELD_GET64(SSKPD_WM4_MASK_HSW, sskpd);
2753 }
2754 
snb_read_wm_latency(struct drm_i915_private * i915,u16 wm[])2755 static void snb_read_wm_latency(struct drm_i915_private *i915, u16 wm[])
2756 {
2757 	u32 sskpd;
2758 
2759 	i915->display.wm.num_levels = 4;
2760 
2761 	sskpd = intel_uncore_read(&i915->uncore, MCH_SSKPD);
2762 
2763 	wm[0] = REG_FIELD_GET(SSKPD_WM0_MASK_SNB, sskpd);
2764 	wm[1] = REG_FIELD_GET(SSKPD_WM1_MASK_SNB, sskpd);
2765 	wm[2] = REG_FIELD_GET(SSKPD_WM2_MASK_SNB, sskpd);
2766 	wm[3] = REG_FIELD_GET(SSKPD_WM3_MASK_SNB, sskpd);
2767 }
2768 
ilk_read_wm_latency(struct drm_i915_private * i915,u16 wm[])2769 static void ilk_read_wm_latency(struct drm_i915_private *i915, u16 wm[])
2770 {
2771 	u32 mltr;
2772 
2773 	i915->display.wm.num_levels = 3;
2774 
2775 	mltr = intel_uncore_read(&i915->uncore, MLTR_ILK);
2776 
2777 	/* ILK primary LP0 latency is 700 ns */
2778 	wm[0] = 7;
2779 	wm[1] = REG_FIELD_GET(MLTR_WM1_MASK, mltr);
2780 	wm[2] = REG_FIELD_GET(MLTR_WM2_MASK, mltr);
2781 }
2782 
intel_fixup_spr_wm_latency(struct drm_i915_private * dev_priv,u16 wm[5])2783 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2784 				       u16 wm[5])
2785 {
2786 	/* ILK sprite LP0 latency is 1300 ns */
2787 	if (DISPLAY_VER(dev_priv) == 5)
2788 		wm[0] = 13;
2789 }
2790 
intel_fixup_cur_wm_latency(struct drm_i915_private * dev_priv,u16 wm[5])2791 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2792 				       u16 wm[5])
2793 {
2794 	/* ILK cursor LP0 latency is 1300 ns */
2795 	if (DISPLAY_VER(dev_priv) == 5)
2796 		wm[0] = 13;
2797 }
2798 
ilk_increase_wm_latency(struct drm_i915_private * dev_priv,u16 wm[5],u16 min)2799 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2800 				    u16 wm[5], u16 min)
2801 {
2802 	int level;
2803 
2804 	if (wm[0] >= min)
2805 		return false;
2806 
2807 	wm[0] = max(wm[0], min);
2808 	for (level = 1; level < dev_priv->display.wm.num_levels; level++)
2809 		wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
2810 
2811 	return true;
2812 }
2813 
snb_wm_latency_quirk(struct drm_i915_private * dev_priv)2814 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2815 {
2816 	bool changed;
2817 
2818 	/*
2819 	 * The BIOS provided WM memory latency values are often
2820 	 * inadequate for high resolution displays. Adjust them.
2821 	 */
2822 	changed = ilk_increase_wm_latency(dev_priv, dev_priv->display.wm.pri_latency, 12);
2823 	changed |= ilk_increase_wm_latency(dev_priv, dev_priv->display.wm.spr_latency, 12);
2824 	changed |= ilk_increase_wm_latency(dev_priv, dev_priv->display.wm.cur_latency, 12);
2825 
2826 	if (!changed)
2827 		return;
2828 
2829 	drm_dbg_kms(&dev_priv->drm,
2830 		    "WM latency values increased to avoid potential underruns\n");
2831 	intel_print_wm_latency(dev_priv, "Primary", dev_priv->display.wm.pri_latency);
2832 	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->display.wm.spr_latency);
2833 	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->display.wm.cur_latency);
2834 }
2835 
snb_wm_lp3_irq_quirk(struct drm_i915_private * dev_priv)2836 static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
2837 {
2838 	/*
2839 	 * On some SNB machines (Thinkpad X220 Tablet at least)
2840 	 * LP3 usage can cause vblank interrupts to be lost.
2841 	 * The DEIIR bit will go high but it looks like the CPU
2842 	 * never gets interrupted.
2843 	 *
2844 	 * It's not clear whether other interrupt source could
2845 	 * be affected or if this is somehow limited to vblank
2846 	 * interrupts only. To play it safe we disable LP3
2847 	 * watermarks entirely.
2848 	 */
2849 	if (dev_priv->display.wm.pri_latency[3] == 0 &&
2850 	    dev_priv->display.wm.spr_latency[3] == 0 &&
2851 	    dev_priv->display.wm.cur_latency[3] == 0)
2852 		return;
2853 
2854 	dev_priv->display.wm.pri_latency[3] = 0;
2855 	dev_priv->display.wm.spr_latency[3] = 0;
2856 	dev_priv->display.wm.cur_latency[3] = 0;
2857 
2858 	drm_dbg_kms(&dev_priv->drm,
2859 		    "LP3 watermarks disabled due to potential for lost interrupts\n");
2860 	intel_print_wm_latency(dev_priv, "Primary", dev_priv->display.wm.pri_latency);
2861 	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->display.wm.spr_latency);
2862 	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->display.wm.cur_latency);
2863 }
2864 
ilk_setup_wm_latency(struct drm_i915_private * dev_priv)2865 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2866 {
2867 	if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
2868 		hsw_read_wm_latency(dev_priv, dev_priv->display.wm.pri_latency);
2869 	else if (DISPLAY_VER(dev_priv) >= 6)
2870 		snb_read_wm_latency(dev_priv, dev_priv->display.wm.pri_latency);
2871 	else
2872 		ilk_read_wm_latency(dev_priv, dev_priv->display.wm.pri_latency);
2873 
2874 	memcpy(dev_priv->display.wm.spr_latency, dev_priv->display.wm.pri_latency,
2875 	       sizeof(dev_priv->display.wm.pri_latency));
2876 	memcpy(dev_priv->display.wm.cur_latency, dev_priv->display.wm.pri_latency,
2877 	       sizeof(dev_priv->display.wm.pri_latency));
2878 
2879 	intel_fixup_spr_wm_latency(dev_priv, dev_priv->display.wm.spr_latency);
2880 	intel_fixup_cur_wm_latency(dev_priv, dev_priv->display.wm.cur_latency);
2881 
2882 	intel_print_wm_latency(dev_priv, "Primary", dev_priv->display.wm.pri_latency);
2883 	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->display.wm.spr_latency);
2884 	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->display.wm.cur_latency);
2885 
2886 	if (DISPLAY_VER(dev_priv) == 6) {
2887 		snb_wm_latency_quirk(dev_priv);
2888 		snb_wm_lp3_irq_quirk(dev_priv);
2889 	}
2890 }
2891 
ilk_validate_pipe_wm(struct drm_i915_private * dev_priv,struct intel_pipe_wm * pipe_wm)2892 static bool ilk_validate_pipe_wm(struct drm_i915_private *dev_priv,
2893 				 struct intel_pipe_wm *pipe_wm)
2894 {
2895 	/* LP0 watermark maximums depend on this pipe alone */
2896 	const struct intel_wm_config config = {
2897 		.num_pipes_active = 1,
2898 		.sprites_enabled = pipe_wm->sprites_enabled,
2899 		.sprites_scaled = pipe_wm->sprites_scaled,
2900 	};
2901 	struct ilk_wm_maximums max;
2902 
2903 	/* LP0 watermarks always use 1/2 DDB partitioning */
2904 	ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
2905 
2906 	/* At least LP0 must be valid */
2907 	if (!ilk_validate_wm_level(dev_priv, 0, &max, &pipe_wm->wm[0])) {
2908 		drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n");
2909 		return false;
2910 	}
2911 
2912 	return true;
2913 }
2914 
2915 /* Compute new watermarks for the pipe */
ilk_compute_pipe_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)2916 static int ilk_compute_pipe_wm(struct intel_atomic_state *state,
2917 			       struct intel_crtc *crtc)
2918 {
2919 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2920 	struct intel_crtc_state *crtc_state =
2921 		intel_atomic_get_new_crtc_state(state, crtc);
2922 	struct intel_pipe_wm *pipe_wm;
2923 	struct intel_plane *plane;
2924 	const struct intel_plane_state *plane_state;
2925 	const struct intel_plane_state *pristate = NULL;
2926 	const struct intel_plane_state *sprstate = NULL;
2927 	const struct intel_plane_state *curstate = NULL;
2928 	struct ilk_wm_maximums max;
2929 	int level, usable_level;
2930 
2931 	pipe_wm = &crtc_state->wm.ilk.optimal;
2932 
2933 	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
2934 		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2935 			pristate = plane_state;
2936 		else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2937 			sprstate = plane_state;
2938 		else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
2939 			curstate = plane_state;
2940 	}
2941 
2942 	pipe_wm->pipe_enabled = crtc_state->hw.active;
2943 	pipe_wm->sprites_enabled = crtc_state->active_planes & BIT(PLANE_SPRITE0);
2944 	pipe_wm->sprites_scaled = crtc_state->scaled_planes & BIT(PLANE_SPRITE0);
2945 
2946 	usable_level = dev_priv->display.wm.num_levels - 1;
2947 
2948 	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2949 	if (DISPLAY_VER(dev_priv) < 7 && pipe_wm->sprites_enabled)
2950 		usable_level = 1;
2951 
2952 	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2953 	if (pipe_wm->sprites_scaled)
2954 		usable_level = 0;
2955 
2956 	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
2957 	ilk_compute_wm_level(dev_priv, crtc, 0, crtc_state,
2958 			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
2959 
2960 	if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
2961 		return -EINVAL;
2962 
2963 	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
2964 
2965 	for (level = 1; level <= usable_level; level++) {
2966 		struct intel_wm_level *wm = &pipe_wm->wm[level];
2967 
2968 		ilk_compute_wm_level(dev_priv, crtc, level, crtc_state,
2969 				     pristate, sprstate, curstate, wm);
2970 
2971 		/*
2972 		 * Disable any watermark level that exceeds the
2973 		 * register maximums since such watermarks are
2974 		 * always invalid.
2975 		 */
2976 		if (!ilk_validate_wm_level(dev_priv, level, &max, wm)) {
2977 			memset(wm, 0, sizeof(*wm));
2978 			break;
2979 		}
2980 	}
2981 
2982 	return 0;
2983 }
2984 
2985 /*
2986  * Build a set of 'intermediate' watermark values that satisfy both the old
2987  * state and the new state.  These can be programmed to the hardware
2988  * immediately.
2989  */
ilk_compute_intermediate_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)2990 static int ilk_compute_intermediate_wm(struct intel_atomic_state *state,
2991 				       struct intel_crtc *crtc)
2992 {
2993 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2994 	struct intel_crtc_state *new_crtc_state =
2995 		intel_atomic_get_new_crtc_state(state, crtc);
2996 	const struct intel_crtc_state *old_crtc_state =
2997 		intel_atomic_get_old_crtc_state(state, crtc);
2998 	struct intel_pipe_wm *intermediate = &new_crtc_state->wm.ilk.intermediate;
2999 	const struct intel_pipe_wm *optimal = &new_crtc_state->wm.ilk.optimal;
3000 	const struct intel_pipe_wm *active = &old_crtc_state->wm.ilk.optimal;
3001 	int level;
3002 
3003 	/*
3004 	 * Start with the final, target watermarks, then combine with the
3005 	 * currently active watermarks to get values that are safe both before
3006 	 * and after the vblank.
3007 	 */
3008 	*intermediate = *optimal;
3009 	if (!new_crtc_state->hw.active ||
3010 	    intel_crtc_needs_modeset(new_crtc_state) ||
3011 	    state->skip_intermediate_wm)
3012 		return 0;
3013 
3014 	intermediate->pipe_enabled |= active->pipe_enabled;
3015 	intermediate->sprites_enabled |= active->sprites_enabled;
3016 	intermediate->sprites_scaled |= active->sprites_scaled;
3017 
3018 	for (level = 0; level < dev_priv->display.wm.num_levels; level++) {
3019 		struct intel_wm_level *intermediate_wm = &intermediate->wm[level];
3020 		const struct intel_wm_level *active_wm = &active->wm[level];
3021 
3022 		intermediate_wm->enable &= active_wm->enable;
3023 		intermediate_wm->pri_val = max(intermediate_wm->pri_val,
3024 					       active_wm->pri_val);
3025 		intermediate_wm->spr_val = max(intermediate_wm->spr_val,
3026 					       active_wm->spr_val);
3027 		intermediate_wm->cur_val = max(intermediate_wm->cur_val,
3028 					       active_wm->cur_val);
3029 		intermediate_wm->fbc_val = max(intermediate_wm->fbc_val,
3030 					       active_wm->fbc_val);
3031 	}
3032 
3033 	/*
3034 	 * We need to make sure that these merged watermark values are
3035 	 * actually a valid configuration themselves.  If they're not,
3036 	 * there's no safe way to transition from the old state to
3037 	 * the new state, so we need to fail the atomic transaction.
3038 	 */
3039 	if (!ilk_validate_pipe_wm(dev_priv, intermediate))
3040 		return -EINVAL;
3041 
3042 	/*
3043 	 * If our intermediate WM are identical to the final WM, then we can
3044 	 * omit the post-vblank programming; only update if it's different.
3045 	 */
3046 	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
3047 		new_crtc_state->wm.need_postvbl_update = true;
3048 
3049 	return 0;
3050 }
3051 
ilk_compute_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)3052 static int ilk_compute_watermarks(struct intel_atomic_state *state,
3053 				  struct intel_crtc *crtc)
3054 {
3055 	int ret;
3056 
3057 	ret = ilk_compute_pipe_wm(state, crtc);
3058 	if (ret)
3059 		return ret;
3060 
3061 	ret = ilk_compute_intermediate_wm(state, crtc);
3062 	if (ret)
3063 		return ret;
3064 
3065 	return 0;
3066 }
3067 
3068 /*
3069  * Merge the watermarks from all active pipes for a specific level.
3070  */
ilk_merge_wm_level(struct drm_i915_private * dev_priv,int level,struct intel_wm_level * ret_wm)3071 static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3072 			       int level,
3073 			       struct intel_wm_level *ret_wm)
3074 {
3075 	const struct intel_crtc *crtc;
3076 
3077 	ret_wm->enable = true;
3078 
3079 	for_each_intel_crtc(&dev_priv->drm, crtc) {
3080 		const struct intel_pipe_wm *active = &crtc->wm.active.ilk;
3081 		const struct intel_wm_level *wm = &active->wm[level];
3082 
3083 		if (!active->pipe_enabled)
3084 			continue;
3085 
3086 		/*
3087 		 * The watermark values may have been used in the past,
3088 		 * so we must maintain them in the registers for some
3089 		 * time even if the level is now disabled.
3090 		 */
3091 		if (!wm->enable)
3092 			ret_wm->enable = false;
3093 
3094 		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3095 		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3096 		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3097 		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3098 	}
3099 }
3100 
3101 /*
3102  * Merge all low power watermarks for all active pipes.
3103  */
ilk_wm_merge(struct drm_i915_private * dev_priv,const struct intel_wm_config * config,const struct ilk_wm_maximums * max,struct intel_pipe_wm * merged)3104 static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3105 			 const struct intel_wm_config *config,
3106 			 const struct ilk_wm_maximums *max,
3107 			 struct intel_pipe_wm *merged)
3108 {
3109 	int level, num_levels = dev_priv->display.wm.num_levels;
3110 	int last_enabled_level = num_levels - 1;
3111 
3112 	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3113 	if ((DISPLAY_VER(dev_priv) < 7 || IS_IVYBRIDGE(dev_priv)) &&
3114 	    config->num_pipes_active > 1)
3115 		last_enabled_level = 0;
3116 
3117 	/* ILK: FBC WM must be disabled always */
3118 	merged->fbc_wm_enabled = DISPLAY_VER(dev_priv) >= 6;
3119 
3120 	/* merge each WM1+ level */
3121 	for (level = 1; level < num_levels; level++) {
3122 		struct intel_wm_level *wm = &merged->wm[level];
3123 
3124 		ilk_merge_wm_level(dev_priv, level, wm);
3125 
3126 		if (level > last_enabled_level)
3127 			wm->enable = false;
3128 		else if (!ilk_validate_wm_level(dev_priv, level, max, wm))
3129 			/* make sure all following levels get disabled */
3130 			last_enabled_level = level - 1;
3131 
3132 		/*
3133 		 * The spec says it is preferred to disable
3134 		 * FBC WMs instead of disabling a WM level.
3135 		 */
3136 		if (wm->fbc_val > max->fbc) {
3137 			if (wm->enable)
3138 				merged->fbc_wm_enabled = false;
3139 			wm->fbc_val = 0;
3140 		}
3141 	}
3142 
3143 	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3144 	if (DISPLAY_VER(dev_priv) == 5 && HAS_FBC(dev_priv) &&
3145 	    dev_priv->display.params.enable_fbc && !merged->fbc_wm_enabled) {
3146 		for (level = 2; level < num_levels; level++) {
3147 			struct intel_wm_level *wm = &merged->wm[level];
3148 
3149 			wm->enable = false;
3150 		}
3151 	}
3152 }
3153 
ilk_wm_lp_to_level(int wm_lp,const struct intel_pipe_wm * pipe_wm)3154 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3155 {
3156 	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3157 	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3158 }
3159 
3160 /* The value we need to program into the WM_LPx latency field */
ilk_wm_lp_latency(struct drm_i915_private * dev_priv,int level)3161 static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
3162 				      int level)
3163 {
3164 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3165 		return 2 * level;
3166 	else
3167 		return dev_priv->display.wm.pri_latency[level];
3168 }
3169 
ilk_compute_wm_results(struct drm_i915_private * dev_priv,const struct intel_pipe_wm * merged,enum intel_ddb_partitioning partitioning,struct ilk_wm_values * results)3170 static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3171 				   const struct intel_pipe_wm *merged,
3172 				   enum intel_ddb_partitioning partitioning,
3173 				   struct ilk_wm_values *results)
3174 {
3175 	struct intel_crtc *crtc;
3176 	int level, wm_lp;
3177 
3178 	results->enable_fbc_wm = merged->fbc_wm_enabled;
3179 	results->partitioning = partitioning;
3180 
3181 	/* LP1+ register values */
3182 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3183 		const struct intel_wm_level *r;
3184 
3185 		level = ilk_wm_lp_to_level(wm_lp, merged);
3186 
3187 		r = &merged->wm[level];
3188 
3189 		/*
3190 		 * Maintain the watermark values even if the level is
3191 		 * disabled. Doing otherwise could cause underruns.
3192 		 */
3193 		results->wm_lp[wm_lp - 1] =
3194 			WM_LP_LATENCY(ilk_wm_lp_latency(dev_priv, level)) |
3195 			WM_LP_PRIMARY(r->pri_val) |
3196 			WM_LP_CURSOR(r->cur_val);
3197 
3198 		if (r->enable)
3199 			results->wm_lp[wm_lp - 1] |= WM_LP_ENABLE;
3200 
3201 		if (DISPLAY_VER(dev_priv) >= 8)
3202 			results->wm_lp[wm_lp - 1] |= WM_LP_FBC_BDW(r->fbc_val);
3203 		else
3204 			results->wm_lp[wm_lp - 1] |= WM_LP_FBC_ILK(r->fbc_val);
3205 
3206 		results->wm_lp_spr[wm_lp - 1] = WM_LP_SPRITE(r->spr_val);
3207 
3208 		/*
3209 		 * Always set WM_LP_SPRITE_EN when spr_val != 0, even if the
3210 		 * level is disabled. Doing otherwise could cause underruns.
3211 		 */
3212 		if (DISPLAY_VER(dev_priv) < 7 && r->spr_val) {
3213 			drm_WARN_ON(&dev_priv->drm, wm_lp != 1);
3214 			results->wm_lp_spr[wm_lp - 1] |= WM_LP_SPRITE_ENABLE;
3215 		}
3216 	}
3217 
3218 	/* LP0 register values */
3219 	for_each_intel_crtc(&dev_priv->drm, crtc) {
3220 		enum pipe pipe = crtc->pipe;
3221 		const struct intel_pipe_wm *pipe_wm = &crtc->wm.active.ilk;
3222 		const struct intel_wm_level *r = &pipe_wm->wm[0];
3223 
3224 		if (drm_WARN_ON(&dev_priv->drm, !r->enable))
3225 			continue;
3226 
3227 		results->wm_pipe[pipe] =
3228 			WM0_PIPE_PRIMARY(r->pri_val) |
3229 			WM0_PIPE_SPRITE(r->spr_val) |
3230 			WM0_PIPE_CURSOR(r->cur_val);
3231 	}
3232 }
3233 
3234 /*
3235  * Find the result with the highest level enabled. Check for enable_fbc_wm in
3236  * case both are at the same level. Prefer r1 in case they're the same.
3237  */
3238 static struct intel_pipe_wm *
ilk_find_best_result(struct drm_i915_private * dev_priv,struct intel_pipe_wm * r1,struct intel_pipe_wm * r2)3239 ilk_find_best_result(struct drm_i915_private *dev_priv,
3240 		     struct intel_pipe_wm *r1,
3241 		     struct intel_pipe_wm *r2)
3242 {
3243 	int level, level1 = 0, level2 = 0;
3244 
3245 	for (level = 1; level < dev_priv->display.wm.num_levels; level++) {
3246 		if (r1->wm[level].enable)
3247 			level1 = level;
3248 		if (r2->wm[level].enable)
3249 			level2 = level;
3250 	}
3251 
3252 	if (level1 == level2) {
3253 		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3254 			return r2;
3255 		else
3256 			return r1;
3257 	} else if (level1 > level2) {
3258 		return r1;
3259 	} else {
3260 		return r2;
3261 	}
3262 }
3263 
3264 /* dirty bits used to track which watermarks need changes */
3265 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3266 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3267 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3268 #define WM_DIRTY_FBC (1 << 24)
3269 #define WM_DIRTY_DDB (1 << 25)
3270 
ilk_compute_wm_dirty(struct drm_i915_private * dev_priv,const struct ilk_wm_values * old,const struct ilk_wm_values * new)3271 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3272 					 const struct ilk_wm_values *old,
3273 					 const struct ilk_wm_values *new)
3274 {
3275 	unsigned int dirty = 0;
3276 	enum pipe pipe;
3277 	int wm_lp;
3278 
3279 	for_each_pipe(dev_priv, pipe) {
3280 		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3281 			dirty |= WM_DIRTY_PIPE(pipe);
3282 			/* Must disable LP1+ watermarks too */
3283 			dirty |= WM_DIRTY_LP_ALL;
3284 		}
3285 	}
3286 
3287 	if (old->enable_fbc_wm != new->enable_fbc_wm) {
3288 		dirty |= WM_DIRTY_FBC;
3289 		/* Must disable LP1+ watermarks too */
3290 		dirty |= WM_DIRTY_LP_ALL;
3291 	}
3292 
3293 	if (old->partitioning != new->partitioning) {
3294 		dirty |= WM_DIRTY_DDB;
3295 		/* Must disable LP1+ watermarks too */
3296 		dirty |= WM_DIRTY_LP_ALL;
3297 	}
3298 
3299 	/* LP1+ watermarks already deemed dirty, no need to continue */
3300 	if (dirty & WM_DIRTY_LP_ALL)
3301 		return dirty;
3302 
3303 	/* Find the lowest numbered LP1+ watermark in need of an update... */
3304 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3305 		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3306 		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3307 			break;
3308 	}
3309 
3310 	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3311 	for (; wm_lp <= 3; wm_lp++)
3312 		dirty |= WM_DIRTY_LP(wm_lp);
3313 
3314 	return dirty;
3315 }
3316 
_ilk_disable_lp_wm(struct drm_i915_private * dev_priv,unsigned int dirty)3317 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3318 			       unsigned int dirty)
3319 {
3320 	struct ilk_wm_values *previous = &dev_priv->display.wm.hw;
3321 	bool changed = false;
3322 
3323 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM_LP_ENABLE) {
3324 		previous->wm_lp[2] &= ~WM_LP_ENABLE;
3325 		intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, previous->wm_lp[2]);
3326 		changed = true;
3327 	}
3328 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM_LP_ENABLE) {
3329 		previous->wm_lp[1] &= ~WM_LP_ENABLE;
3330 		intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, previous->wm_lp[1]);
3331 		changed = true;
3332 	}
3333 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM_LP_ENABLE) {
3334 		previous->wm_lp[0] &= ~WM_LP_ENABLE;
3335 		intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, previous->wm_lp[0]);
3336 		changed = true;
3337 	}
3338 
3339 	/*
3340 	 * Don't touch WM_LP_SPRITE_ENABLE here.
3341 	 * Doing so could cause underruns.
3342 	 */
3343 
3344 	return changed;
3345 }
3346 
3347 /*
3348  * The spec says we shouldn't write when we don't need, because every write
3349  * causes WMs to be re-evaluated, expending some power.
3350  */
ilk_write_wm_values(struct drm_i915_private * dev_priv,struct ilk_wm_values * results)3351 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3352 				struct ilk_wm_values *results)
3353 {
3354 	struct ilk_wm_values *previous = &dev_priv->display.wm.hw;
3355 	unsigned int dirty;
3356 
3357 	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3358 	if (!dirty)
3359 		return;
3360 
3361 	_ilk_disable_lp_wm(dev_priv, dirty);
3362 
3363 	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3364 		intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_A), results->wm_pipe[0]);
3365 	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3366 		intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_B), results->wm_pipe[1]);
3367 	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3368 		intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_C), results->wm_pipe[2]);
3369 
3370 	if (dirty & WM_DIRTY_DDB) {
3371 		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3372 			intel_uncore_rmw(&dev_priv->uncore, WM_MISC, WM_MISC_DATA_PARTITION_5_6,
3373 					 results->partitioning == INTEL_DDB_PART_1_2 ? 0 :
3374 					 WM_MISC_DATA_PARTITION_5_6);
3375 		else
3376 			intel_uncore_rmw(&dev_priv->uncore, DISP_ARB_CTL2, DISP_DATA_PARTITION_5_6,
3377 					 results->partitioning == INTEL_DDB_PART_1_2 ? 0 :
3378 					 DISP_DATA_PARTITION_5_6);
3379 	}
3380 
3381 	if (dirty & WM_DIRTY_FBC)
3382 		intel_uncore_rmw(&dev_priv->uncore, DISP_ARB_CTL, DISP_FBC_WM_DIS,
3383 				 results->enable_fbc_wm ? 0 : DISP_FBC_WM_DIS);
3384 
3385 	if (dirty & WM_DIRTY_LP(1) &&
3386 	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3387 		intel_uncore_write(&dev_priv->uncore, WM1S_LP_ILK, results->wm_lp_spr[0]);
3388 
3389 	if (DISPLAY_VER(dev_priv) >= 7) {
3390 		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3391 			intel_uncore_write(&dev_priv->uncore, WM2S_LP_IVB, results->wm_lp_spr[1]);
3392 		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3393 			intel_uncore_write(&dev_priv->uncore, WM3S_LP_IVB, results->wm_lp_spr[2]);
3394 	}
3395 
3396 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3397 		intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, results->wm_lp[0]);
3398 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3399 		intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, results->wm_lp[1]);
3400 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3401 		intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, results->wm_lp[2]);
3402 
3403 	dev_priv->display.wm.hw = *results;
3404 }
3405 
ilk_disable_cxsr(struct drm_i915_private * dev_priv)3406 bool ilk_disable_cxsr(struct drm_i915_private *dev_priv)
3407 {
3408 	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3409 }
3410 
ilk_compute_wm_config(struct drm_i915_private * dev_priv,struct intel_wm_config * config)3411 static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
3412 				  struct intel_wm_config *config)
3413 {
3414 	struct intel_crtc *crtc;
3415 
3416 	/* Compute the currently _active_ config */
3417 	for_each_intel_crtc(&dev_priv->drm, crtc) {
3418 		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
3419 
3420 		if (!wm->pipe_enabled)
3421 			continue;
3422 
3423 		config->sprites_enabled |= wm->sprites_enabled;
3424 		config->sprites_scaled |= wm->sprites_scaled;
3425 		config->num_pipes_active++;
3426 	}
3427 }
3428 
ilk_program_watermarks(struct drm_i915_private * dev_priv)3429 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
3430 {
3431 	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3432 	struct ilk_wm_maximums max;
3433 	struct intel_wm_config config = {};
3434 	struct ilk_wm_values results = {};
3435 	enum intel_ddb_partitioning partitioning;
3436 
3437 	ilk_compute_wm_config(dev_priv, &config);
3438 
3439 	ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
3440 	ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
3441 
3442 	/* 5/6 split only in single pipe config on IVB+ */
3443 	if (DISPLAY_VER(dev_priv) >= 7 &&
3444 	    config.num_pipes_active == 1 && config.sprites_enabled) {
3445 		ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
3446 		ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
3447 
3448 		best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
3449 	} else {
3450 		best_lp_wm = &lp_wm_1_2;
3451 	}
3452 
3453 	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3454 		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3455 
3456 	ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
3457 
3458 	ilk_write_wm_values(dev_priv, &results);
3459 }
3460 
ilk_initial_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)3461 static void ilk_initial_watermarks(struct intel_atomic_state *state,
3462 				   struct intel_crtc *crtc)
3463 {
3464 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3465 	const struct intel_crtc_state *crtc_state =
3466 		intel_atomic_get_new_crtc_state(state, crtc);
3467 
3468 	mutex_lock(&dev_priv->display.wm.wm_mutex);
3469 	crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
3470 	ilk_program_watermarks(dev_priv);
3471 	mutex_unlock(&dev_priv->display.wm.wm_mutex);
3472 }
3473 
ilk_optimize_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)3474 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
3475 				    struct intel_crtc *crtc)
3476 {
3477 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3478 	const struct intel_crtc_state *crtc_state =
3479 		intel_atomic_get_new_crtc_state(state, crtc);
3480 
3481 	if (!crtc_state->wm.need_postvbl_update)
3482 		return;
3483 
3484 	mutex_lock(&dev_priv->display.wm.wm_mutex);
3485 	crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
3486 	ilk_program_watermarks(dev_priv);
3487 	mutex_unlock(&dev_priv->display.wm.wm_mutex);
3488 }
3489 
ilk_pipe_wm_get_hw_state(struct intel_crtc * crtc)3490 static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
3491 {
3492 	struct drm_device *dev = crtc->base.dev;
3493 	struct drm_i915_private *dev_priv = to_i915(dev);
3494 	struct ilk_wm_values *hw = &dev_priv->display.wm.hw;
3495 	struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
3496 	struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
3497 	enum pipe pipe = crtc->pipe;
3498 
3499 	hw->wm_pipe[pipe] = intel_uncore_read(&dev_priv->uncore, WM0_PIPE_ILK(pipe));
3500 
3501 	memset(active, 0, sizeof(*active));
3502 
3503 	active->pipe_enabled = crtc->active;
3504 
3505 	if (active->pipe_enabled) {
3506 		u32 tmp = hw->wm_pipe[pipe];
3507 
3508 		/*
3509 		 * For active pipes LP0 watermark is marked as
3510 		 * enabled, and LP1+ watermaks as disabled since
3511 		 * we can't really reverse compute them in case
3512 		 * multiple pipes are active.
3513 		 */
3514 		active->wm[0].enable = true;
3515 		active->wm[0].pri_val = REG_FIELD_GET(WM0_PIPE_PRIMARY_MASK, tmp);
3516 		active->wm[0].spr_val = REG_FIELD_GET(WM0_PIPE_SPRITE_MASK, tmp);
3517 		active->wm[0].cur_val = REG_FIELD_GET(WM0_PIPE_CURSOR_MASK, tmp);
3518 	} else {
3519 		int level;
3520 
3521 		/*
3522 		 * For inactive pipes, all watermark levels
3523 		 * should be marked as enabled but zeroed,
3524 		 * which is what we'd compute them to.
3525 		 */
3526 		for (level = 0; level < dev_priv->display.wm.num_levels; level++)
3527 			active->wm[level].enable = true;
3528 	}
3529 
3530 	crtc->wm.active.ilk = *active;
3531 }
3532 
ilk_sanitize_watermarks_add_affected(struct drm_atomic_state * state)3533 static int ilk_sanitize_watermarks_add_affected(struct drm_atomic_state *state)
3534 {
3535 	struct drm_plane *plane;
3536 	struct intel_crtc *crtc;
3537 
3538 	for_each_intel_crtc(state->dev, crtc) {
3539 		struct intel_crtc_state *crtc_state;
3540 
3541 		crtc_state = intel_atomic_get_crtc_state(state, crtc);
3542 		if (IS_ERR(crtc_state))
3543 			return PTR_ERR(crtc_state);
3544 
3545 		if (crtc_state->hw.active) {
3546 			/*
3547 			 * Preserve the inherited flag to avoid
3548 			 * taking the full modeset path.
3549 			 */
3550 			crtc_state->inherited = true;
3551 		}
3552 	}
3553 
3554 	drm_for_each_plane(plane, state->dev) {
3555 		struct drm_plane_state *plane_state;
3556 
3557 		plane_state = drm_atomic_get_plane_state(state, plane);
3558 		if (IS_ERR(plane_state))
3559 			return PTR_ERR(plane_state);
3560 	}
3561 
3562 	return 0;
3563 }
3564 
3565 /*
3566  * Calculate what we think the watermarks should be for the state we've read
3567  * out of the hardware and then immediately program those watermarks so that
3568  * we ensure the hardware settings match our internal state.
3569  *
3570  * We can calculate what we think WM's should be by creating a duplicate of the
3571  * current state (which was constructed during hardware readout) and running it
3572  * through the atomic check code to calculate new watermark values in the
3573  * state object.
3574  */
ilk_wm_sanitize(struct drm_i915_private * dev_priv)3575 void ilk_wm_sanitize(struct drm_i915_private *dev_priv)
3576 {
3577 	struct drm_atomic_state *state;
3578 	struct intel_atomic_state *intel_state;
3579 	struct intel_crtc *crtc;
3580 	struct intel_crtc_state *crtc_state;
3581 	struct drm_modeset_acquire_ctx ctx;
3582 	int ret;
3583 	int i;
3584 
3585 	/* Only supported on platforms that use atomic watermark design */
3586 	if (!dev_priv->display.funcs.wm->optimize_watermarks)
3587 		return;
3588 
3589 	if (drm_WARN_ON(&dev_priv->drm, DISPLAY_VER(dev_priv) >= 9))
3590 		return;
3591 
3592 	state = drm_atomic_state_alloc(&dev_priv->drm);
3593 	if (drm_WARN_ON(&dev_priv->drm, !state))
3594 		return;
3595 
3596 	intel_state = to_intel_atomic_state(state);
3597 
3598 	drm_modeset_acquire_init(&ctx, 0);
3599 
3600 	state->acquire_ctx = &ctx;
3601 	to_intel_atomic_state(state)->internal = true;
3602 
3603 retry:
3604 	/*
3605 	 * Hardware readout is the only time we don't want to calculate
3606 	 * intermediate watermarks (since we don't trust the current
3607 	 * watermarks).
3608 	 */
3609 	if (!HAS_GMCH(dev_priv))
3610 		intel_state->skip_intermediate_wm = true;
3611 
3612 	ret = ilk_sanitize_watermarks_add_affected(state);
3613 	if (ret)
3614 		goto fail;
3615 
3616 	ret = intel_atomic_check(&dev_priv->drm, state);
3617 	if (ret)
3618 		goto fail;
3619 
3620 	/* Write calculated watermark values back */
3621 	for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
3622 		crtc_state->wm.need_postvbl_update = true;
3623 		intel_optimize_watermarks(intel_state, crtc);
3624 
3625 		to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm;
3626 	}
3627 
3628 fail:
3629 	if (ret == -EDEADLK) {
3630 		drm_atomic_state_clear(state);
3631 		drm_modeset_backoff(&ctx);
3632 		goto retry;
3633 	}
3634 
3635 	/*
3636 	 * If we fail here, it means that the hardware appears to be
3637 	 * programmed in a way that shouldn't be possible, given our
3638 	 * understanding of watermark requirements.  This might mean a
3639 	 * mistake in the hardware readout code or a mistake in the
3640 	 * watermark calculations for a given platform.  Raise a WARN
3641 	 * so that this is noticeable.
3642 	 *
3643 	 * If this actually happens, we'll have to just leave the
3644 	 * BIOS-programmed watermarks untouched and hope for the best.
3645 	 */
3646 	drm_WARN(&dev_priv->drm, ret,
3647 		 "Could not determine valid watermarks for inherited state\n");
3648 
3649 	drm_atomic_state_put(state);
3650 
3651 	drm_modeset_drop_locks(&ctx);
3652 	drm_modeset_acquire_fini(&ctx);
3653 }
3654 
3655 #define _FW_WM(value, plane) \
3656 	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3657 #define _FW_WM_VLV(value, plane) \
3658 	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3659 
g4x_read_wm_values(struct drm_i915_private * dev_priv,struct g4x_wm_values * wm)3660 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
3661 			       struct g4x_wm_values *wm)
3662 {
3663 	u32 tmp;
3664 
3665 	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1(dev_priv));
3666 	wm->sr.plane = _FW_WM(tmp, SR);
3667 	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
3668 	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
3669 	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
3670 
3671 	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2(dev_priv));
3672 	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
3673 	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
3674 	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
3675 	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
3676 	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
3677 	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
3678 
3679 	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3(dev_priv));
3680 	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
3681 	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3682 	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
3683 	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
3684 }
3685 
vlv_read_wm_values(struct drm_i915_private * dev_priv,struct vlv_wm_values * wm)3686 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3687 			       struct vlv_wm_values *wm)
3688 {
3689 	enum pipe pipe;
3690 	u32 tmp;
3691 
3692 	for_each_pipe(dev_priv, pipe) {
3693 		tmp = intel_uncore_read(&dev_priv->uncore, VLV_DDL(pipe));
3694 
3695 		wm->ddl[pipe].plane[PLANE_PRIMARY] =
3696 			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3697 		wm->ddl[pipe].plane[PLANE_CURSOR] =
3698 			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3699 		wm->ddl[pipe].plane[PLANE_SPRITE0] =
3700 			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3701 		wm->ddl[pipe].plane[PLANE_SPRITE1] =
3702 			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3703 	}
3704 
3705 	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1(dev_priv));
3706 	wm->sr.plane = _FW_WM(tmp, SR);
3707 	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
3708 	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
3709 	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
3710 
3711 	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2(dev_priv));
3712 	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
3713 	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
3714 	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
3715 
3716 	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3(dev_priv));
3717 	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3718 
3719 	if (IS_CHERRYVIEW(dev_priv)) {
3720 		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7_CHV);
3721 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
3722 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
3723 
3724 		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW8_CHV);
3725 		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
3726 		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
3727 
3728 		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW9_CHV);
3729 		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
3730 		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
3731 
3732 		tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM);
3733 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3734 		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
3735 		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
3736 		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
3737 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3738 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3739 		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
3740 		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3741 		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3742 		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
3743 	} else {
3744 		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7);
3745 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
3746 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
3747 
3748 		tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM);
3749 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3750 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3751 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3752 		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
3753 		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3754 		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3755 		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
3756 	}
3757 }
3758 
3759 #undef _FW_WM
3760 #undef _FW_WM_VLV
3761 
g4x_wm_get_hw_state(struct drm_i915_private * dev_priv)3762 static void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
3763 {
3764 	struct g4x_wm_values *wm = &dev_priv->display.wm.g4x;
3765 	struct intel_crtc *crtc;
3766 
3767 	g4x_read_wm_values(dev_priv, wm);
3768 
3769 	wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
3770 
3771 	for_each_intel_crtc(&dev_priv->drm, crtc) {
3772 		struct intel_crtc_state *crtc_state =
3773 			to_intel_crtc_state(crtc->base.state);
3774 		struct g4x_wm_state *active = &crtc->wm.active.g4x;
3775 		struct g4x_pipe_wm *raw;
3776 		enum pipe pipe = crtc->pipe;
3777 		enum plane_id plane_id;
3778 		int level, max_level;
3779 
3780 		active->cxsr = wm->cxsr;
3781 		active->hpll_en = wm->hpll_en;
3782 		active->fbc_en = wm->fbc_en;
3783 
3784 		active->sr = wm->sr;
3785 		active->hpll = wm->hpll;
3786 
3787 		for_each_plane_id_on_crtc(crtc, plane_id) {
3788 			active->wm.plane[plane_id] =
3789 				wm->pipe[pipe].plane[plane_id];
3790 		}
3791 
3792 		if (wm->cxsr && wm->hpll_en)
3793 			max_level = G4X_WM_LEVEL_HPLL;
3794 		else if (wm->cxsr)
3795 			max_level = G4X_WM_LEVEL_SR;
3796 		else
3797 			max_level = G4X_WM_LEVEL_NORMAL;
3798 
3799 		level = G4X_WM_LEVEL_NORMAL;
3800 		raw = &crtc_state->wm.g4x.raw[level];
3801 		for_each_plane_id_on_crtc(crtc, plane_id)
3802 			raw->plane[plane_id] = active->wm.plane[plane_id];
3803 
3804 		level = G4X_WM_LEVEL_SR;
3805 		if (level > max_level)
3806 			goto out;
3807 
3808 		raw = &crtc_state->wm.g4x.raw[level];
3809 		raw->plane[PLANE_PRIMARY] = active->sr.plane;
3810 		raw->plane[PLANE_CURSOR] = active->sr.cursor;
3811 		raw->plane[PLANE_SPRITE0] = 0;
3812 		raw->fbc = active->sr.fbc;
3813 
3814 		level = G4X_WM_LEVEL_HPLL;
3815 		if (level > max_level)
3816 			goto out;
3817 
3818 		raw = &crtc_state->wm.g4x.raw[level];
3819 		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
3820 		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
3821 		raw->plane[PLANE_SPRITE0] = 0;
3822 		raw->fbc = active->hpll.fbc;
3823 
3824 		level++;
3825 	out:
3826 		for_each_plane_id_on_crtc(crtc, plane_id)
3827 			g4x_raw_plane_wm_set(crtc_state, level,
3828 					     plane_id, USHRT_MAX);
3829 		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
3830 
3831 		g4x_invalidate_wms(crtc, active, level);
3832 
3833 		crtc_state->wm.g4x.optimal = *active;
3834 		crtc_state->wm.g4x.intermediate = *active;
3835 
3836 		drm_dbg_kms(&dev_priv->drm,
3837 			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
3838 			    pipe_name(pipe),
3839 			    wm->pipe[pipe].plane[PLANE_PRIMARY],
3840 			    wm->pipe[pipe].plane[PLANE_CURSOR],
3841 			    wm->pipe[pipe].plane[PLANE_SPRITE0]);
3842 	}
3843 
3844 	drm_dbg_kms(&dev_priv->drm,
3845 		    "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
3846 		    wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
3847 	drm_dbg_kms(&dev_priv->drm,
3848 		    "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
3849 		    wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
3850 	drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n",
3851 		    str_yes_no(wm->cxsr), str_yes_no(wm->hpll_en),
3852 		    str_yes_no(wm->fbc_en));
3853 }
3854 
g4x_wm_sanitize(struct drm_i915_private * dev_priv)3855 static void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
3856 {
3857 	struct intel_display *display = &dev_priv->display;
3858 	struct intel_plane *plane;
3859 	struct intel_crtc *crtc;
3860 
3861 	mutex_lock(&dev_priv->display.wm.wm_mutex);
3862 
3863 	for_each_intel_plane(&dev_priv->drm, plane) {
3864 		struct intel_crtc *crtc =
3865 			intel_crtc_for_pipe(display, plane->pipe);
3866 		struct intel_crtc_state *crtc_state =
3867 			to_intel_crtc_state(crtc->base.state);
3868 		struct intel_plane_state *plane_state =
3869 			to_intel_plane_state(plane->base.state);
3870 		enum plane_id plane_id = plane->id;
3871 		int level;
3872 
3873 		if (plane_state->uapi.visible)
3874 			continue;
3875 
3876 		for (level = 0; level < dev_priv->display.wm.num_levels; level++) {
3877 			struct g4x_pipe_wm *raw =
3878 				&crtc_state->wm.g4x.raw[level];
3879 
3880 			raw->plane[plane_id] = 0;
3881 
3882 			if (plane_id == PLANE_PRIMARY)
3883 				raw->fbc = 0;
3884 		}
3885 	}
3886 
3887 	for_each_intel_crtc(&dev_priv->drm, crtc) {
3888 		struct intel_crtc_state *crtc_state =
3889 			to_intel_crtc_state(crtc->base.state);
3890 		int ret;
3891 
3892 		ret = _g4x_compute_pipe_wm(crtc_state);
3893 		drm_WARN_ON(&dev_priv->drm, ret);
3894 
3895 		crtc_state->wm.g4x.intermediate =
3896 			crtc_state->wm.g4x.optimal;
3897 		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
3898 	}
3899 
3900 	g4x_program_watermarks(dev_priv);
3901 
3902 	mutex_unlock(&dev_priv->display.wm.wm_mutex);
3903 }
3904 
g4x_wm_get_hw_state_and_sanitize(struct drm_i915_private * i915)3905 static void g4x_wm_get_hw_state_and_sanitize(struct drm_i915_private *i915)
3906 {
3907 	g4x_wm_get_hw_state(i915);
3908 	g4x_wm_sanitize(i915);
3909 }
3910 
vlv_wm_get_hw_state(struct drm_i915_private * dev_priv)3911 static void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
3912 {
3913 	struct vlv_wm_values *wm = &dev_priv->display.wm.vlv;
3914 	struct intel_crtc *crtc;
3915 	u32 val;
3916 
3917 	vlv_read_wm_values(dev_priv, wm);
3918 
3919 	wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
3920 	wm->level = VLV_WM_LEVEL_PM2;
3921 
3922 	if (IS_CHERRYVIEW(dev_priv)) {
3923 		vlv_punit_get(dev_priv);
3924 
3925 		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
3926 		if (val & DSP_MAXFIFO_PM5_ENABLE)
3927 			wm->level = VLV_WM_LEVEL_PM5;
3928 
3929 		/*
3930 		 * If DDR DVFS is disabled in the BIOS, Punit
3931 		 * will never ack the request. So if that happens
3932 		 * assume we don't have to enable/disable DDR DVFS
3933 		 * dynamically. To test that just set the REQ_ACK
3934 		 * bit to poke the Punit, but don't change the
3935 		 * HIGH/LOW bits so that we don't actually change
3936 		 * the current state.
3937 		 */
3938 		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
3939 		val |= FORCE_DDR_FREQ_REQ_ACK;
3940 		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
3941 
3942 		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
3943 			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
3944 			drm_dbg_kms(&dev_priv->drm,
3945 				    "Punit not acking DDR DVFS request, "
3946 				    "assuming DDR DVFS is disabled\n");
3947 			dev_priv->display.wm.num_levels = VLV_WM_LEVEL_PM5 + 1;
3948 		} else {
3949 			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
3950 			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
3951 				wm->level = VLV_WM_LEVEL_DDR_DVFS;
3952 		}
3953 
3954 		vlv_punit_put(dev_priv);
3955 	}
3956 
3957 	for_each_intel_crtc(&dev_priv->drm, crtc) {
3958 		struct intel_crtc_state *crtc_state =
3959 			to_intel_crtc_state(crtc->base.state);
3960 		struct vlv_wm_state *active = &crtc->wm.active.vlv;
3961 		const struct vlv_fifo_state *fifo_state =
3962 			&crtc_state->wm.vlv.fifo_state;
3963 		enum pipe pipe = crtc->pipe;
3964 		enum plane_id plane_id;
3965 		int level;
3966 
3967 		vlv_get_fifo_size(crtc_state);
3968 
3969 		active->num_levels = wm->level + 1;
3970 		active->cxsr = wm->cxsr;
3971 
3972 		for (level = 0; level < active->num_levels; level++) {
3973 			struct g4x_pipe_wm *raw =
3974 				&crtc_state->wm.vlv.raw[level];
3975 
3976 			active->sr[level].plane = wm->sr.plane;
3977 			active->sr[level].cursor = wm->sr.cursor;
3978 
3979 			for_each_plane_id_on_crtc(crtc, plane_id) {
3980 				active->wm[level].plane[plane_id] =
3981 					wm->pipe[pipe].plane[plane_id];
3982 
3983 				raw->plane[plane_id] =
3984 					vlv_invert_wm_value(active->wm[level].plane[plane_id],
3985 							    fifo_state->plane[plane_id]);
3986 			}
3987 		}
3988 
3989 		for_each_plane_id_on_crtc(crtc, plane_id)
3990 			vlv_raw_plane_wm_set(crtc_state, level,
3991 					     plane_id, USHRT_MAX);
3992 		vlv_invalidate_wms(crtc, active, level);
3993 
3994 		crtc_state->wm.vlv.optimal = *active;
3995 		crtc_state->wm.vlv.intermediate = *active;
3996 
3997 		drm_dbg_kms(&dev_priv->drm,
3998 			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
3999 			    pipe_name(pipe),
4000 			    wm->pipe[pipe].plane[PLANE_PRIMARY],
4001 			    wm->pipe[pipe].plane[PLANE_CURSOR],
4002 			    wm->pipe[pipe].plane[PLANE_SPRITE0],
4003 			    wm->pipe[pipe].plane[PLANE_SPRITE1]);
4004 	}
4005 
4006 	drm_dbg_kms(&dev_priv->drm,
4007 		    "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4008 		    wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4009 }
4010 
vlv_wm_sanitize(struct drm_i915_private * dev_priv)4011 static void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
4012 {
4013 	struct intel_display *display = &dev_priv->display;
4014 	struct intel_plane *plane;
4015 	struct intel_crtc *crtc;
4016 
4017 	mutex_lock(&dev_priv->display.wm.wm_mutex);
4018 
4019 	for_each_intel_plane(&dev_priv->drm, plane) {
4020 		struct intel_crtc *crtc =
4021 			intel_crtc_for_pipe(display, plane->pipe);
4022 		struct intel_crtc_state *crtc_state =
4023 			to_intel_crtc_state(crtc->base.state);
4024 		struct intel_plane_state *plane_state =
4025 			to_intel_plane_state(plane->base.state);
4026 		enum plane_id plane_id = plane->id;
4027 		int level;
4028 
4029 		if (plane_state->uapi.visible)
4030 			continue;
4031 
4032 		for (level = 0; level < dev_priv->display.wm.num_levels; level++) {
4033 			struct g4x_pipe_wm *raw =
4034 				&crtc_state->wm.vlv.raw[level];
4035 
4036 			raw->plane[plane_id] = 0;
4037 		}
4038 	}
4039 
4040 	for_each_intel_crtc(&dev_priv->drm, crtc) {
4041 		struct intel_crtc_state *crtc_state =
4042 			to_intel_crtc_state(crtc->base.state);
4043 		int ret;
4044 
4045 		ret = _vlv_compute_pipe_wm(crtc_state);
4046 		drm_WARN_ON(&dev_priv->drm, ret);
4047 
4048 		crtc_state->wm.vlv.intermediate =
4049 			crtc_state->wm.vlv.optimal;
4050 		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
4051 	}
4052 
4053 	vlv_program_watermarks(dev_priv);
4054 
4055 	mutex_unlock(&dev_priv->display.wm.wm_mutex);
4056 }
4057 
vlv_wm_get_hw_state_and_sanitize(struct drm_i915_private * i915)4058 static void vlv_wm_get_hw_state_and_sanitize(struct drm_i915_private *i915)
4059 {
4060 	vlv_wm_get_hw_state(i915);
4061 	vlv_wm_sanitize(i915);
4062 }
4063 
4064 /*
4065  * FIXME should probably kill this and improve
4066  * the real watermark readout/sanitation instead
4067  */
ilk_init_lp_watermarks(struct drm_i915_private * dev_priv)4068 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
4069 {
4070 	intel_uncore_rmw(&dev_priv->uncore, WM3_LP_ILK, WM_LP_ENABLE, 0);
4071 	intel_uncore_rmw(&dev_priv->uncore, WM2_LP_ILK, WM_LP_ENABLE, 0);
4072 	intel_uncore_rmw(&dev_priv->uncore, WM1_LP_ILK, WM_LP_ENABLE, 0);
4073 
4074 	/*
4075 	 * Don't touch WM_LP_SPRITE_ENABLE here.
4076 	 * Doing so could cause underruns.
4077 	 */
4078 }
4079 
ilk_wm_get_hw_state(struct drm_i915_private * dev_priv)4080 static void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
4081 {
4082 	struct ilk_wm_values *hw = &dev_priv->display.wm.hw;
4083 	struct intel_crtc *crtc;
4084 
4085 	ilk_init_lp_watermarks(dev_priv);
4086 
4087 	for_each_intel_crtc(&dev_priv->drm, crtc)
4088 		ilk_pipe_wm_get_hw_state(crtc);
4089 
4090 	hw->wm_lp[0] = intel_uncore_read(&dev_priv->uncore, WM1_LP_ILK);
4091 	hw->wm_lp[1] = intel_uncore_read(&dev_priv->uncore, WM2_LP_ILK);
4092 	hw->wm_lp[2] = intel_uncore_read(&dev_priv->uncore, WM3_LP_ILK);
4093 
4094 	hw->wm_lp_spr[0] = intel_uncore_read(&dev_priv->uncore, WM1S_LP_ILK);
4095 	if (DISPLAY_VER(dev_priv) >= 7) {
4096 		hw->wm_lp_spr[1] = intel_uncore_read(&dev_priv->uncore, WM2S_LP_IVB);
4097 		hw->wm_lp_spr[2] = intel_uncore_read(&dev_priv->uncore, WM3S_LP_IVB);
4098 	}
4099 
4100 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4101 		hw->partitioning = (intel_uncore_read(&dev_priv->uncore, WM_MISC) &
4102 				    WM_MISC_DATA_PARTITION_5_6) ?
4103 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4104 	else if (IS_IVYBRIDGE(dev_priv))
4105 		hw->partitioning = (intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2) &
4106 				    DISP_DATA_PARTITION_5_6) ?
4107 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4108 
4109 	hw->enable_fbc_wm =
4110 		!(intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4111 }
4112 
4113 static const struct intel_wm_funcs ilk_wm_funcs = {
4114 	.compute_watermarks = ilk_compute_watermarks,
4115 	.initial_watermarks = ilk_initial_watermarks,
4116 	.optimize_watermarks = ilk_optimize_watermarks,
4117 	.get_hw_state = ilk_wm_get_hw_state,
4118 };
4119 
4120 static const struct intel_wm_funcs vlv_wm_funcs = {
4121 	.compute_watermarks = vlv_compute_watermarks,
4122 	.initial_watermarks = vlv_initial_watermarks,
4123 	.optimize_watermarks = vlv_optimize_watermarks,
4124 	.atomic_update_watermarks = vlv_atomic_update_fifo,
4125 	.get_hw_state = vlv_wm_get_hw_state_and_sanitize,
4126 };
4127 
4128 static const struct intel_wm_funcs g4x_wm_funcs = {
4129 	.compute_watermarks = g4x_compute_watermarks,
4130 	.initial_watermarks = g4x_initial_watermarks,
4131 	.optimize_watermarks = g4x_optimize_watermarks,
4132 	.get_hw_state = g4x_wm_get_hw_state_and_sanitize,
4133 };
4134 
4135 static const struct intel_wm_funcs pnv_wm_funcs = {
4136 	.compute_watermarks = i9xx_compute_watermarks,
4137 	.update_wm = pnv_update_wm,
4138 };
4139 
4140 static const struct intel_wm_funcs i965_wm_funcs = {
4141 	.compute_watermarks = i9xx_compute_watermarks,
4142 	.update_wm = i965_update_wm,
4143 };
4144 
4145 static const struct intel_wm_funcs i9xx_wm_funcs = {
4146 	.compute_watermarks = i9xx_compute_watermarks,
4147 	.update_wm = i9xx_update_wm,
4148 };
4149 
4150 static const struct intel_wm_funcs i845_wm_funcs = {
4151 	.compute_watermarks = i9xx_compute_watermarks,
4152 	.update_wm = i845_update_wm,
4153 };
4154 
4155 static const struct intel_wm_funcs nop_funcs = {
4156 };
4157 
i9xx_wm_init(struct drm_i915_private * dev_priv)4158 void i9xx_wm_init(struct drm_i915_private *dev_priv)
4159 {
4160 	/* For FIFO watermark updates */
4161 	if (HAS_PCH_SPLIT(dev_priv)) {
4162 		ilk_setup_wm_latency(dev_priv);
4163 		dev_priv->display.funcs.wm = &ilk_wm_funcs;
4164 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4165 		vlv_setup_wm_latency(dev_priv);
4166 		dev_priv->display.funcs.wm = &vlv_wm_funcs;
4167 	} else if (IS_G4X(dev_priv)) {
4168 		g4x_setup_wm_latency(dev_priv);
4169 		dev_priv->display.funcs.wm = &g4x_wm_funcs;
4170 	} else if (IS_PINEVIEW(dev_priv)) {
4171 		if (!pnv_get_cxsr_latency(dev_priv)) {
4172 			drm_info(&dev_priv->drm, "Unknown FSB/MEM, disabling CxSR\n");
4173 			/* Disable CxSR and never update its watermark again */
4174 			intel_set_memory_cxsr(dev_priv, false);
4175 			dev_priv->display.funcs.wm = &nop_funcs;
4176 		} else {
4177 			dev_priv->display.funcs.wm = &pnv_wm_funcs;
4178 		}
4179 	} else if (DISPLAY_VER(dev_priv) == 4) {
4180 		dev_priv->display.funcs.wm = &i965_wm_funcs;
4181 	} else if (DISPLAY_VER(dev_priv) == 3) {
4182 		dev_priv->display.funcs.wm = &i9xx_wm_funcs;
4183 	} else if (DISPLAY_VER(dev_priv) == 2) {
4184 		if (INTEL_NUM_PIPES(dev_priv) == 1)
4185 			dev_priv->display.funcs.wm = &i845_wm_funcs;
4186 		else
4187 			dev_priv->display.funcs.wm = &i9xx_wm_funcs;
4188 	} else {
4189 		drm_err(&dev_priv->drm,
4190 			"unexpected fall-through in %s\n", __func__);
4191 		dev_priv->display.funcs.wm = &nop_funcs;
4192 	}
4193 }
4194