1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2023 Intel Corporation
4 */
5
6 #include "i915_drv.h"
7 #include "i915_reg.h"
8 #include "i9xx_wm.h"
9 #include "i9xx_wm_regs.h"
10 #include "intel_atomic.h"
11 #include "intel_bo.h"
12 #include "intel_display.h"
13 #include "intel_display_trace.h"
14 #include "intel_fb.h"
15 #include "intel_mchbar_regs.h"
16 #include "intel_wm.h"
17 #include "skl_watermark.h"
18 #include "vlv_sideband.h"
19
20 struct intel_watermark_params {
21 u16 fifo_size;
22 u16 max_wm;
23 u8 default_wm;
24 u8 guard_size;
25 u8 cacheline_size;
26 };
27
28 /* used in computing the new watermarks state */
29 struct intel_wm_config {
30 unsigned int num_pipes_active;
31 bool sprites_enabled;
32 bool sprites_scaled;
33 };
34
35 struct cxsr_latency {
36 bool is_desktop : 1;
37 bool is_ddr3 : 1;
38 u16 fsb_freq;
39 u16 mem_freq;
40 u16 display_sr;
41 u16 display_hpll_disable;
42 u16 cursor_sr;
43 u16 cursor_hpll_disable;
44 };
45
46 static const struct cxsr_latency cxsr_latency_table[] = {
47 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
48 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
49 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
50 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
51 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
52
53 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
54 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
55 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
56 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
57 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
58
59 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
60 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
61 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
62 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
63 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
64
65 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
66 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
67 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
68 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
69 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
70
71 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
72 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
73 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
74 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
75 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
76
77 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
78 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
79 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
80 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
81 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
82 };
83
pnv_get_cxsr_latency(struct drm_i915_private * i915)84 static const struct cxsr_latency *pnv_get_cxsr_latency(struct drm_i915_private *i915)
85 {
86 int i;
87
88 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
89 const struct cxsr_latency *latency = &cxsr_latency_table[i];
90 bool is_desktop = !IS_MOBILE(i915);
91
92 if (is_desktop == latency->is_desktop &&
93 i915->is_ddr3 == latency->is_ddr3 &&
94 DIV_ROUND_CLOSEST(i915->fsb_freq, 1000) == latency->fsb_freq &&
95 DIV_ROUND_CLOSEST(i915->mem_freq, 1000) == latency->mem_freq)
96 return latency;
97 }
98
99 drm_dbg_kms(&i915->drm,
100 "Could not find CxSR latency for DDR%s, FSB %u kHz, MEM %u kHz\n",
101 i915->is_ddr3 ? "3" : "2", i915->fsb_freq, i915->mem_freq);
102
103 return NULL;
104 }
105
chv_set_memory_dvfs(struct drm_i915_private * dev_priv,bool enable)106 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
107 {
108 u32 val;
109
110 vlv_punit_get(dev_priv);
111
112 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
113 if (enable)
114 val &= ~FORCE_DDR_HIGH_FREQ;
115 else
116 val |= FORCE_DDR_HIGH_FREQ;
117 val &= ~FORCE_DDR_LOW_FREQ;
118 val |= FORCE_DDR_FREQ_REQ_ACK;
119 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
120
121 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
122 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
123 drm_err(&dev_priv->drm,
124 "timed out waiting for Punit DDR DVFS request\n");
125
126 vlv_punit_put(dev_priv);
127 }
128
chv_set_memory_pm5(struct drm_i915_private * dev_priv,bool enable)129 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
130 {
131 u32 val;
132
133 vlv_punit_get(dev_priv);
134
135 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
136 if (enable)
137 val |= DSP_MAXFIFO_PM5_ENABLE;
138 else
139 val &= ~DSP_MAXFIFO_PM5_ENABLE;
140 vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
141
142 vlv_punit_put(dev_priv);
143 }
144
145 #define FW_WM(value, plane) \
146 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
147
_intel_set_memory_cxsr(struct drm_i915_private * dev_priv,bool enable)148 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
149 {
150 struct intel_display *display = &dev_priv->display;
151 bool was_enabled;
152 u32 val;
153
154 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
155 was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
156 intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
157 intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF_VLV);
158 } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
159 was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
160 intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
161 intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF);
162 } else if (IS_PINEVIEW(dev_priv)) {
163 val = intel_uncore_read(&dev_priv->uncore, DSPFW3(dev_priv));
164 was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
165 if (enable)
166 val |= PINEVIEW_SELF_REFRESH_EN;
167 else
168 val &= ~PINEVIEW_SELF_REFRESH_EN;
169 intel_uncore_write(&dev_priv->uncore, DSPFW3(dev_priv), val);
170 intel_uncore_posting_read(&dev_priv->uncore, DSPFW3(dev_priv));
171 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
172 was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
173 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
174 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
175 intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, val);
176 intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF);
177 } else if (IS_I915GM(dev_priv)) {
178 /*
179 * FIXME can't find a bit like this for 915G, and
180 * yet it does have the related watermark in
181 * FW_BLC_SELF. What's going on?
182 */
183 was_enabled = intel_uncore_read(&dev_priv->uncore, INSTPM) & INSTPM_SELF_EN;
184 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
185 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
186 intel_uncore_write(&dev_priv->uncore, INSTPM, val);
187 intel_uncore_posting_read(&dev_priv->uncore, INSTPM);
188 } else {
189 return false;
190 }
191
192 trace_intel_memory_cxsr(display, was_enabled, enable);
193
194 drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n",
195 str_enabled_disabled(enable),
196 str_enabled_disabled(was_enabled));
197
198 return was_enabled;
199 }
200
201 /**
202 * intel_set_memory_cxsr - Configure CxSR state
203 * @dev_priv: i915 device
204 * @enable: Allow vs. disallow CxSR
205 *
206 * Allow or disallow the system to enter a special CxSR
207 * (C-state self refresh) state. What typically happens in CxSR mode
208 * is that several display FIFOs may get combined into a single larger
209 * FIFO for a particular plane (so called max FIFO mode) to allow the
210 * system to defer memory fetches longer, and the memory will enter
211 * self refresh.
212 *
213 * Note that enabling CxSR does not guarantee that the system enter
214 * this special mode, nor does it guarantee that the system stays
215 * in that mode once entered. So this just allows/disallows the system
216 * to autonomously utilize the CxSR mode. Other factors such as core
217 * C-states will affect when/if the system actually enters/exits the
218 * CxSR mode.
219 *
220 * Note that on VLV/CHV this actually only controls the max FIFO mode,
221 * and the system is free to enter/exit memory self refresh at any time
222 * even when the use of CxSR has been disallowed.
223 *
224 * While the system is actually in the CxSR/max FIFO mode, some plane
225 * control registers will not get latched on vblank. Thus in order to
226 * guarantee the system will respond to changes in the plane registers
227 * we must always disallow CxSR prior to making changes to those registers.
228 * Unfortunately the system will re-evaluate the CxSR conditions at
229 * frame start which happens after vblank start (which is when the plane
230 * registers would get latched), so we can't proceed with the plane update
231 * during the same frame where we disallowed CxSR.
232 *
233 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
234 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
235 * the hardware w.r.t. HPLL SR when writing to plane registers.
236 * Disallowing just CxSR is sufficient.
237 */
intel_set_memory_cxsr(struct drm_i915_private * dev_priv,bool enable)238 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
239 {
240 bool ret;
241
242 mutex_lock(&dev_priv->display.wm.wm_mutex);
243 ret = _intel_set_memory_cxsr(dev_priv, enable);
244 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
245 dev_priv->display.wm.vlv.cxsr = enable;
246 else if (IS_G4X(dev_priv))
247 dev_priv->display.wm.g4x.cxsr = enable;
248 mutex_unlock(&dev_priv->display.wm.wm_mutex);
249
250 return ret;
251 }
252
253 /*
254 * Latency for FIFO fetches is dependent on several factors:
255 * - memory configuration (speed, channels)
256 * - chipset
257 * - current MCH state
258 * It can be fairly high in some situations, so here we assume a fairly
259 * pessimal value. It's a tradeoff between extra memory fetches (if we
260 * set this value too high, the FIFO will fetch frequently to stay full)
261 * and power consumption (set it too low to save power and we might see
262 * FIFO underruns and display "flicker").
263 *
264 * A value of 5us seems to be a good balance; safe for very low end
265 * platforms but not overly aggressive on lower latency configs.
266 */
267 static const int pessimal_latency_ns = 5000;
268
269 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
270 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
271
vlv_get_fifo_size(struct intel_crtc_state * crtc_state)272 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
273 {
274 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
275 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
276 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
277 enum pipe pipe = crtc->pipe;
278 int sprite0_start, sprite1_start;
279 u32 dsparb, dsparb2, dsparb3;
280
281 switch (pipe) {
282 case PIPE_A:
283 dsparb = intel_uncore_read(&dev_priv->uncore,
284 DSPARB(dev_priv));
285 dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
286 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
287 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
288 break;
289 case PIPE_B:
290 dsparb = intel_uncore_read(&dev_priv->uncore,
291 DSPARB(dev_priv));
292 dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
293 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
294 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
295 break;
296 case PIPE_C:
297 dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
298 dsparb3 = intel_uncore_read(&dev_priv->uncore, DSPARB3);
299 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
300 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
301 break;
302 default:
303 MISSING_CASE(pipe);
304 return;
305 }
306
307 fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
308 fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
309 fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
310 fifo_state->plane[PLANE_CURSOR] = 63;
311 }
312
i9xx_get_fifo_size(struct drm_i915_private * dev_priv,enum i9xx_plane_id i9xx_plane)313 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
314 enum i9xx_plane_id i9xx_plane)
315 {
316 u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB(dev_priv));
317 int size;
318
319 size = dsparb & 0x7f;
320 if (i9xx_plane == PLANE_B)
321 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
322
323 drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
324 dsparb, plane_name(i9xx_plane), size);
325
326 return size;
327 }
328
i830_get_fifo_size(struct drm_i915_private * dev_priv,enum i9xx_plane_id i9xx_plane)329 static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
330 enum i9xx_plane_id i9xx_plane)
331 {
332 u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB(dev_priv));
333 int size;
334
335 size = dsparb & 0x1ff;
336 if (i9xx_plane == PLANE_B)
337 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
338 size >>= 1; /* Convert to cachelines */
339
340 drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
341 dsparb, plane_name(i9xx_plane), size);
342
343 return size;
344 }
345
i845_get_fifo_size(struct drm_i915_private * dev_priv,enum i9xx_plane_id i9xx_plane)346 static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
347 enum i9xx_plane_id i9xx_plane)
348 {
349 u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB(dev_priv));
350 int size;
351
352 size = dsparb & 0x7f;
353 size >>= 2; /* Convert to cachelines */
354
355 drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
356 dsparb, plane_name(i9xx_plane), size);
357
358 return size;
359 }
360
361 /* Pineview has different values for various configs */
362 static const struct intel_watermark_params pnv_display_wm = {
363 .fifo_size = PINEVIEW_DISPLAY_FIFO,
364 .max_wm = PINEVIEW_MAX_WM,
365 .default_wm = PINEVIEW_DFT_WM,
366 .guard_size = PINEVIEW_GUARD_WM,
367 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
368 };
369
370 static const struct intel_watermark_params pnv_display_hplloff_wm = {
371 .fifo_size = PINEVIEW_DISPLAY_FIFO,
372 .max_wm = PINEVIEW_MAX_WM,
373 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
374 .guard_size = PINEVIEW_GUARD_WM,
375 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
376 };
377
378 static const struct intel_watermark_params pnv_cursor_wm = {
379 .fifo_size = PINEVIEW_CURSOR_FIFO,
380 .max_wm = PINEVIEW_CURSOR_MAX_WM,
381 .default_wm = PINEVIEW_CURSOR_DFT_WM,
382 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
383 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
384 };
385
386 static const struct intel_watermark_params pnv_cursor_hplloff_wm = {
387 .fifo_size = PINEVIEW_CURSOR_FIFO,
388 .max_wm = PINEVIEW_CURSOR_MAX_WM,
389 .default_wm = PINEVIEW_CURSOR_DFT_WM,
390 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
391 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
392 };
393
394 static const struct intel_watermark_params i965_cursor_wm_info = {
395 .fifo_size = I965_CURSOR_FIFO,
396 .max_wm = I965_CURSOR_MAX_WM,
397 .default_wm = I965_CURSOR_DFT_WM,
398 .guard_size = 2,
399 .cacheline_size = I915_FIFO_LINE_SIZE,
400 };
401
402 static const struct intel_watermark_params i945_wm_info = {
403 .fifo_size = I945_FIFO_SIZE,
404 .max_wm = I915_MAX_WM,
405 .default_wm = 1,
406 .guard_size = 2,
407 .cacheline_size = I915_FIFO_LINE_SIZE,
408 };
409
410 static const struct intel_watermark_params i915_wm_info = {
411 .fifo_size = I915_FIFO_SIZE,
412 .max_wm = I915_MAX_WM,
413 .default_wm = 1,
414 .guard_size = 2,
415 .cacheline_size = I915_FIFO_LINE_SIZE,
416 };
417
418 static const struct intel_watermark_params i830_a_wm_info = {
419 .fifo_size = I855GM_FIFO_SIZE,
420 .max_wm = I915_MAX_WM,
421 .default_wm = 1,
422 .guard_size = 2,
423 .cacheline_size = I830_FIFO_LINE_SIZE,
424 };
425
426 static const struct intel_watermark_params i830_bc_wm_info = {
427 .fifo_size = I855GM_FIFO_SIZE,
428 .max_wm = I915_MAX_WM / 2,
429 .default_wm = 1,
430 .guard_size = 2,
431 .cacheline_size = I830_FIFO_LINE_SIZE,
432 };
433
434 static const struct intel_watermark_params i845_wm_info = {
435 .fifo_size = I830_FIFO_SIZE,
436 .max_wm = I915_MAX_WM,
437 .default_wm = 1,
438 .guard_size = 2,
439 .cacheline_size = I830_FIFO_LINE_SIZE,
440 };
441
442 /**
443 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
444 * @pixel_rate: Pipe pixel rate in kHz
445 * @cpp: Plane bytes per pixel
446 * @latency: Memory wakeup latency in 0.1us units
447 *
448 * Compute the watermark using the method 1 or "small buffer"
449 * formula. The caller may additonally add extra cachelines
450 * to account for TLB misses and clock crossings.
451 *
452 * This method is concerned with the short term drain rate
453 * of the FIFO, ie. it does not account for blanking periods
454 * which would effectively reduce the average drain rate across
455 * a longer period. The name "small" refers to the fact the
456 * FIFO is relatively small compared to the amount of data
457 * fetched.
458 *
459 * The FIFO level vs. time graph might look something like:
460 *
461 * |\ |\
462 * | \ | \
463 * __---__---__ (- plane active, _ blanking)
464 * -> time
465 *
466 * or perhaps like this:
467 *
468 * |\|\ |\|\
469 * __----__----__ (- plane active, _ blanking)
470 * -> time
471 *
472 * Returns:
473 * The watermark in bytes
474 */
intel_wm_method1(unsigned int pixel_rate,unsigned int cpp,unsigned int latency)475 static unsigned int intel_wm_method1(unsigned int pixel_rate,
476 unsigned int cpp,
477 unsigned int latency)
478 {
479 u64 ret;
480
481 ret = mul_u32_u32(pixel_rate, cpp * latency);
482 ret = DIV_ROUND_UP_ULL(ret, 10000);
483
484 return ret;
485 }
486
487 /**
488 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
489 * @pixel_rate: Pipe pixel rate in kHz
490 * @htotal: Pipe horizontal total
491 * @width: Plane width in pixels
492 * @cpp: Plane bytes per pixel
493 * @latency: Memory wakeup latency in 0.1us units
494 *
495 * Compute the watermark using the method 2 or "large buffer"
496 * formula. The caller may additonally add extra cachelines
497 * to account for TLB misses and clock crossings.
498 *
499 * This method is concerned with the long term drain rate
500 * of the FIFO, ie. it does account for blanking periods
501 * which effectively reduce the average drain rate across
502 * a longer period. The name "large" refers to the fact the
503 * FIFO is relatively large compared to the amount of data
504 * fetched.
505 *
506 * The FIFO level vs. time graph might look something like:
507 *
508 * |\___ |\___
509 * | \___ | \___
510 * | \ | \
511 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
512 * -> time
513 *
514 * Returns:
515 * The watermark in bytes
516 */
intel_wm_method2(unsigned int pixel_rate,unsigned int htotal,unsigned int width,unsigned int cpp,unsigned int latency)517 static unsigned int intel_wm_method2(unsigned int pixel_rate,
518 unsigned int htotal,
519 unsigned int width,
520 unsigned int cpp,
521 unsigned int latency)
522 {
523 unsigned int ret;
524
525 /*
526 * FIXME remove once all users are computing
527 * watermarks in the correct place.
528 */
529 if (WARN_ON_ONCE(htotal == 0))
530 htotal = 1;
531
532 ret = (latency * pixel_rate) / (htotal * 10000);
533 ret = (ret + 1) * width * cpp;
534
535 return ret;
536 }
537
538 /**
539 * intel_calculate_wm - calculate watermark level
540 * @i915: the device
541 * @pixel_rate: pixel clock
542 * @wm: chip FIFO params
543 * @fifo_size: size of the FIFO buffer
544 * @cpp: bytes per pixel
545 * @latency_ns: memory latency for the platform
546 *
547 * Calculate the watermark level (the level at which the display plane will
548 * start fetching from memory again). Each chip has a different display
549 * FIFO size and allocation, so the caller needs to figure that out and pass
550 * in the correct intel_watermark_params structure.
551 *
552 * As the pixel clock runs, the FIFO will be drained at a rate that depends
553 * on the pixel size. When it reaches the watermark level, it'll start
554 * fetching FIFO line sized based chunks from memory until the FIFO fills
555 * past the watermark point. If the FIFO drains completely, a FIFO underrun
556 * will occur, and a display engine hang could result.
557 */
intel_calculate_wm(struct drm_i915_private * i915,int pixel_rate,const struct intel_watermark_params * wm,int fifo_size,int cpp,unsigned int latency_ns)558 static unsigned int intel_calculate_wm(struct drm_i915_private *i915,
559 int pixel_rate,
560 const struct intel_watermark_params *wm,
561 int fifo_size, int cpp,
562 unsigned int latency_ns)
563 {
564 int entries, wm_size;
565
566 /*
567 * Note: we need to make sure we don't overflow for various clock &
568 * latency values.
569 * clocks go from a few thousand to several hundred thousand.
570 * latency is usually a few thousand
571 */
572 entries = intel_wm_method1(pixel_rate, cpp,
573 latency_ns / 100);
574 entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
575 wm->guard_size;
576 drm_dbg_kms(&i915->drm, "FIFO entries required for mode: %d\n", entries);
577
578 wm_size = fifo_size - entries;
579 drm_dbg_kms(&i915->drm, "FIFO watermark level: %d\n", wm_size);
580
581 /* Don't promote wm_size to unsigned... */
582 if (wm_size > wm->max_wm)
583 wm_size = wm->max_wm;
584 if (wm_size <= 0)
585 wm_size = wm->default_wm;
586
587 /*
588 * Bspec seems to indicate that the value shouldn't be lower than
589 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
590 * Lets go for 8 which is the burst size since certain platforms
591 * already use a hardcoded 8 (which is what the spec says should be
592 * done).
593 */
594 if (wm_size <= 8)
595 wm_size = 8;
596
597 return wm_size;
598 }
599
is_disabling(int old,int new,int threshold)600 static bool is_disabling(int old, int new, int threshold)
601 {
602 return old >= threshold && new < threshold;
603 }
604
is_enabling(int old,int new,int threshold)605 static bool is_enabling(int old, int new, int threshold)
606 {
607 return old < threshold && new >= threshold;
608 }
609
intel_crtc_active(struct intel_crtc * crtc)610 static bool intel_crtc_active(struct intel_crtc *crtc)
611 {
612 /* Be paranoid as we can arrive here with only partial
613 * state retrieved from the hardware during setup.
614 *
615 * We can ditch the adjusted_mode.crtc_clock check as soon
616 * as Haswell has gained clock readout/fastboot support.
617 *
618 * We can ditch the crtc->primary->state->fb check as soon as we can
619 * properly reconstruct framebuffers.
620 *
621 * FIXME: The intel_crtc->active here should be switched to
622 * crtc->state->active once we have proper CRTC states wired up
623 * for atomic.
624 */
625 return crtc->active && crtc->base.primary->state->fb &&
626 crtc->config->hw.adjusted_mode.crtc_clock;
627 }
628
single_enabled_crtc(struct drm_i915_private * dev_priv)629 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
630 {
631 struct intel_crtc *crtc, *enabled = NULL;
632
633 for_each_intel_crtc(&dev_priv->drm, crtc) {
634 if (intel_crtc_active(crtc)) {
635 if (enabled)
636 return NULL;
637 enabled = crtc;
638 }
639 }
640
641 return enabled;
642 }
643
pnv_update_wm(struct drm_i915_private * dev_priv)644 static void pnv_update_wm(struct drm_i915_private *dev_priv)
645 {
646 struct intel_crtc *crtc;
647 const struct cxsr_latency *latency;
648 u32 reg;
649 unsigned int wm;
650
651 latency = pnv_get_cxsr_latency(dev_priv);
652 if (!latency) {
653 drm_dbg_kms(&dev_priv->drm, "Unknown FSB/MEM, disabling CxSR\n");
654 intel_set_memory_cxsr(dev_priv, false);
655 return;
656 }
657
658 crtc = single_enabled_crtc(dev_priv);
659 if (crtc) {
660 const struct drm_framebuffer *fb =
661 crtc->base.primary->state->fb;
662 int pixel_rate = crtc->config->pixel_rate;
663 int cpp = fb->format->cpp[0];
664
665 /* Display SR */
666 wm = intel_calculate_wm(dev_priv, pixel_rate,
667 &pnv_display_wm,
668 pnv_display_wm.fifo_size,
669 cpp, latency->display_sr);
670 reg = intel_uncore_read(&dev_priv->uncore, DSPFW1(dev_priv));
671 reg &= ~DSPFW_SR_MASK;
672 reg |= FW_WM(wm, SR);
673 intel_uncore_write(&dev_priv->uncore, DSPFW1(dev_priv), reg);
674 drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg);
675
676 /* cursor SR */
677 wm = intel_calculate_wm(dev_priv, pixel_rate,
678 &pnv_cursor_wm,
679 pnv_display_wm.fifo_size,
680 4, latency->cursor_sr);
681 intel_uncore_rmw(&dev_priv->uncore, DSPFW3(dev_priv),
682 DSPFW_CURSOR_SR_MASK,
683 FW_WM(wm, CURSOR_SR));
684
685 /* Display HPLL off SR */
686 wm = intel_calculate_wm(dev_priv, pixel_rate,
687 &pnv_display_hplloff_wm,
688 pnv_display_hplloff_wm.fifo_size,
689 cpp, latency->display_hpll_disable);
690 intel_uncore_rmw(&dev_priv->uncore, DSPFW3(dev_priv),
691 DSPFW_HPLL_SR_MASK, FW_WM(wm, HPLL_SR));
692
693 /* cursor HPLL off SR */
694 wm = intel_calculate_wm(dev_priv, pixel_rate,
695 &pnv_cursor_hplloff_wm,
696 pnv_display_hplloff_wm.fifo_size,
697 4, latency->cursor_hpll_disable);
698 reg = intel_uncore_read(&dev_priv->uncore, DSPFW3(dev_priv));
699 reg &= ~DSPFW_HPLL_CURSOR_MASK;
700 reg |= FW_WM(wm, HPLL_CURSOR);
701 intel_uncore_write(&dev_priv->uncore, DSPFW3(dev_priv), reg);
702 drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg);
703
704 intel_set_memory_cxsr(dev_priv, true);
705 } else {
706 intel_set_memory_cxsr(dev_priv, false);
707 }
708 }
709
i9xx_wm_need_update(const struct intel_plane_state * old_plane_state,const struct intel_plane_state * new_plane_state)710 static bool i9xx_wm_need_update(const struct intel_plane_state *old_plane_state,
711 const struct intel_plane_state *new_plane_state)
712 {
713 /* Update watermarks on tiling or size changes. */
714 if (old_plane_state->uapi.visible != new_plane_state->uapi.visible)
715 return true;
716
717 if (!old_plane_state->hw.fb || !new_plane_state->hw.fb)
718 return false;
719
720 if (old_plane_state->hw.fb->modifier != new_plane_state->hw.fb->modifier ||
721 old_plane_state->hw.rotation != new_plane_state->hw.rotation ||
722 drm_rect_width(&old_plane_state->uapi.src) != drm_rect_width(&new_plane_state->uapi.src) ||
723 drm_rect_height(&old_plane_state->uapi.src) != drm_rect_height(&new_plane_state->uapi.src) ||
724 drm_rect_width(&old_plane_state->uapi.dst) != drm_rect_width(&new_plane_state->uapi.dst) ||
725 drm_rect_height(&old_plane_state->uapi.dst) != drm_rect_height(&new_plane_state->uapi.dst))
726 return true;
727
728 return false;
729 }
730
i9xx_wm_compute(struct intel_crtc_state * new_crtc_state,const struct intel_plane_state * old_plane_state,const struct intel_plane_state * new_plane_state)731 static void i9xx_wm_compute(struct intel_crtc_state *new_crtc_state,
732 const struct intel_plane_state *old_plane_state,
733 const struct intel_plane_state *new_plane_state)
734 {
735 bool turn_off, turn_on, visible, was_visible, mode_changed;
736
737 mode_changed = intel_crtc_needs_modeset(new_crtc_state);
738 was_visible = old_plane_state->uapi.visible;
739 visible = new_plane_state->uapi.visible;
740
741 if (!was_visible && !visible)
742 return;
743
744 turn_off = was_visible && (!visible || mode_changed);
745 turn_on = visible && (!was_visible || mode_changed);
746
747 /* FIXME nuke when all wm code is atomic */
748 if (turn_on) {
749 new_crtc_state->update_wm_pre = true;
750 } else if (turn_off) {
751 new_crtc_state->update_wm_post = true;
752 } else if (i9xx_wm_need_update(old_plane_state, new_plane_state)) {
753 /* FIXME bollocks */
754 new_crtc_state->update_wm_pre = true;
755 new_crtc_state->update_wm_post = true;
756 }
757 }
758
i9xx_compute_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)759 static int i9xx_compute_watermarks(struct intel_atomic_state *state,
760 struct intel_crtc *crtc)
761 {
762 struct intel_crtc_state *new_crtc_state =
763 intel_atomic_get_new_crtc_state(state, crtc);
764 const struct intel_plane_state *old_plane_state;
765 const struct intel_plane_state *new_plane_state;
766 struct intel_plane *plane;
767 int i;
768
769 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
770 new_plane_state, i) {
771 if (plane->pipe != crtc->pipe)
772 continue;
773
774 i9xx_wm_compute(new_crtc_state, old_plane_state, new_plane_state);
775 }
776
777 return 0;
778 }
779
780 /*
781 * Documentation says:
782 * "If the line size is small, the TLB fetches can get in the way of the
783 * data fetches, causing some lag in the pixel data return which is not
784 * accounted for in the above formulas. The following adjustment only
785 * needs to be applied if eight whole lines fit in the buffer at once.
786 * The WM is adjusted upwards by the difference between the FIFO size
787 * and the size of 8 whole lines. This adjustment is always performed
788 * in the actual pixel depth regardless of whether FBC is enabled or not."
789 */
g4x_tlb_miss_wa(int fifo_size,int width,int cpp)790 static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
791 {
792 int tlb_miss = fifo_size * 64 - width * cpp * 8;
793
794 return max(0, tlb_miss);
795 }
796
g4x_write_wm_values(struct drm_i915_private * dev_priv,const struct g4x_wm_values * wm)797 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
798 const struct g4x_wm_values *wm)
799 {
800 struct intel_display *display = &dev_priv->display;
801 enum pipe pipe;
802
803 for_each_pipe(dev_priv, pipe)
804 trace_g4x_wm(intel_crtc_for_pipe(display, pipe), wm);
805
806 intel_uncore_write(&dev_priv->uncore, DSPFW1(dev_priv),
807 FW_WM(wm->sr.plane, SR) |
808 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
809 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
810 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
811 intel_uncore_write(&dev_priv->uncore, DSPFW2(dev_priv),
812 (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
813 FW_WM(wm->sr.fbc, FBC_SR) |
814 FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
815 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
816 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
817 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
818 intel_uncore_write(&dev_priv->uncore, DSPFW3(dev_priv),
819 (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
820 FW_WM(wm->sr.cursor, CURSOR_SR) |
821 FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
822 FW_WM(wm->hpll.plane, HPLL_SR));
823
824 intel_uncore_posting_read(&dev_priv->uncore, DSPFW1(dev_priv));
825 }
826
827 #define FW_WM_VLV(value, plane) \
828 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
829
vlv_write_wm_values(struct drm_i915_private * dev_priv,const struct vlv_wm_values * wm)830 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
831 const struct vlv_wm_values *wm)
832 {
833 struct intel_display *display = &dev_priv->display;
834 enum pipe pipe;
835
836 for_each_pipe(dev_priv, pipe) {
837 trace_vlv_wm(intel_crtc_for_pipe(display, pipe), wm);
838
839 intel_uncore_write(&dev_priv->uncore, VLV_DDL(pipe),
840 (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
841 (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
842 (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
843 (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
844 }
845
846 /*
847 * Zero the (unused) WM1 watermarks, and also clear all the
848 * high order bits so that there are no out of bounds values
849 * present in the registers during the reprogramming.
850 */
851 intel_uncore_write(&dev_priv->uncore, DSPHOWM, 0);
852 intel_uncore_write(&dev_priv->uncore, DSPHOWM1, 0);
853 intel_uncore_write(&dev_priv->uncore, DSPFW4, 0);
854 intel_uncore_write(&dev_priv->uncore, DSPFW5, 0);
855 intel_uncore_write(&dev_priv->uncore, DSPFW6, 0);
856
857 intel_uncore_write(&dev_priv->uncore, DSPFW1(dev_priv),
858 FW_WM(wm->sr.plane, SR) |
859 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
860 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
861 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
862 intel_uncore_write(&dev_priv->uncore, DSPFW2(dev_priv),
863 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
864 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
865 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
866 intel_uncore_write(&dev_priv->uncore, DSPFW3(dev_priv),
867 FW_WM(wm->sr.cursor, CURSOR_SR));
868
869 if (IS_CHERRYVIEW(dev_priv)) {
870 intel_uncore_write(&dev_priv->uncore, DSPFW7_CHV,
871 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
872 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
873 intel_uncore_write(&dev_priv->uncore, DSPFW8_CHV,
874 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
875 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
876 intel_uncore_write(&dev_priv->uncore, DSPFW9_CHV,
877 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
878 FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
879 intel_uncore_write(&dev_priv->uncore, DSPHOWM,
880 FW_WM(wm->sr.plane >> 9, SR_HI) |
881 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
882 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
883 FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
884 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
885 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
886 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
887 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
888 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
889 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
890 } else {
891 intel_uncore_write(&dev_priv->uncore, DSPFW7,
892 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
893 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
894 intel_uncore_write(&dev_priv->uncore, DSPHOWM,
895 FW_WM(wm->sr.plane >> 9, SR_HI) |
896 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
897 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
898 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
899 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
900 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
901 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
902 }
903
904 intel_uncore_posting_read(&dev_priv->uncore, DSPFW1(dev_priv));
905 }
906
907 #undef FW_WM_VLV
908
g4x_setup_wm_latency(struct drm_i915_private * dev_priv)909 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
910 {
911 /* all latencies in usec */
912 dev_priv->display.wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
913 dev_priv->display.wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
914 dev_priv->display.wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
915
916 dev_priv->display.wm.num_levels = G4X_WM_LEVEL_HPLL + 1;
917 }
918
g4x_plane_fifo_size(enum plane_id plane_id,int level)919 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
920 {
921 /*
922 * DSPCNTR[13] supposedly controls whether the
923 * primary plane can use the FIFO space otherwise
924 * reserved for the sprite plane. It's not 100% clear
925 * what the actual FIFO size is, but it looks like we
926 * can happily set both primary and sprite watermarks
927 * up to 127 cachelines. So that would seem to mean
928 * that either DSPCNTR[13] doesn't do anything, or that
929 * the total FIFO is >= 256 cachelines in size. Either
930 * way, we don't seem to have to worry about this
931 * repartitioning as the maximum watermark value the
932 * register can hold for each plane is lower than the
933 * minimum FIFO size.
934 */
935 switch (plane_id) {
936 case PLANE_CURSOR:
937 return 63;
938 case PLANE_PRIMARY:
939 return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
940 case PLANE_SPRITE0:
941 return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
942 default:
943 MISSING_CASE(plane_id);
944 return 0;
945 }
946 }
947
g4x_fbc_fifo_size(int level)948 static int g4x_fbc_fifo_size(int level)
949 {
950 switch (level) {
951 case G4X_WM_LEVEL_SR:
952 return 7;
953 case G4X_WM_LEVEL_HPLL:
954 return 15;
955 default:
956 MISSING_CASE(level);
957 return 0;
958 }
959 }
960
g4x_compute_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,int level)961 static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
962 const struct intel_plane_state *plane_state,
963 int level)
964 {
965 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
966 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
967 const struct drm_display_mode *pipe_mode =
968 &crtc_state->hw.pipe_mode;
969 unsigned int latency = dev_priv->display.wm.pri_latency[level] * 10;
970 unsigned int pixel_rate, htotal, cpp, width, wm;
971
972 if (latency == 0)
973 return USHRT_MAX;
974
975 if (!intel_wm_plane_visible(crtc_state, plane_state))
976 return 0;
977
978 cpp = plane_state->hw.fb->format->cpp[0];
979
980 /*
981 * WaUse32BppForSRWM:ctg,elk
982 *
983 * The spec fails to list this restriction for the
984 * HPLL watermark, which seems a little strange.
985 * Let's use 32bpp for the HPLL watermark as well.
986 */
987 if (plane->id == PLANE_PRIMARY &&
988 level != G4X_WM_LEVEL_NORMAL)
989 cpp = max(cpp, 4u);
990
991 pixel_rate = crtc_state->pixel_rate;
992 htotal = pipe_mode->crtc_htotal;
993 width = drm_rect_width(&plane_state->uapi.src) >> 16;
994
995 if (plane->id == PLANE_CURSOR) {
996 wm = intel_wm_method2(pixel_rate, htotal, width, cpp, latency);
997 } else if (plane->id == PLANE_PRIMARY &&
998 level == G4X_WM_LEVEL_NORMAL) {
999 wm = intel_wm_method1(pixel_rate, cpp, latency);
1000 } else {
1001 unsigned int small, large;
1002
1003 small = intel_wm_method1(pixel_rate, cpp, latency);
1004 large = intel_wm_method2(pixel_rate, htotal, width, cpp, latency);
1005
1006 wm = min(small, large);
1007 }
1008
1009 wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1010 width, cpp);
1011
1012 wm = DIV_ROUND_UP(wm, 64) + 2;
1013
1014 return min_t(unsigned int, wm, USHRT_MAX);
1015 }
1016
g4x_raw_plane_wm_set(struct intel_crtc_state * crtc_state,int level,enum plane_id plane_id,u16 value)1017 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1018 int level, enum plane_id plane_id, u16 value)
1019 {
1020 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1021 bool dirty = false;
1022
1023 for (; level < dev_priv->display.wm.num_levels; level++) {
1024 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1025
1026 dirty |= raw->plane[plane_id] != value;
1027 raw->plane[plane_id] = value;
1028 }
1029
1030 return dirty;
1031 }
1032
g4x_raw_fbc_wm_set(struct intel_crtc_state * crtc_state,int level,u16 value)1033 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1034 int level, u16 value)
1035 {
1036 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1037 bool dirty = false;
1038
1039 /* NORMAL level doesn't have an FBC watermark */
1040 level = max(level, G4X_WM_LEVEL_SR);
1041
1042 for (; level < dev_priv->display.wm.num_levels; level++) {
1043 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1044
1045 dirty |= raw->fbc != value;
1046 raw->fbc = value;
1047 }
1048
1049 return dirty;
1050 }
1051
1052 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
1053 const struct intel_plane_state *plane_state,
1054 u32 pri_val);
1055
g4x_raw_plane_wm_compute(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)1056 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1057 const struct intel_plane_state *plane_state)
1058 {
1059 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1060 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1061 enum plane_id plane_id = plane->id;
1062 bool dirty = false;
1063 int level;
1064
1065 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1066 dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1067 if (plane_id == PLANE_PRIMARY)
1068 dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1069 goto out;
1070 }
1071
1072 for (level = 0; level < dev_priv->display.wm.num_levels; level++) {
1073 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1074 int wm, max_wm;
1075
1076 wm = g4x_compute_wm(crtc_state, plane_state, level);
1077 max_wm = g4x_plane_fifo_size(plane_id, level);
1078
1079 if (wm > max_wm)
1080 break;
1081
1082 dirty |= raw->plane[plane_id] != wm;
1083 raw->plane[plane_id] = wm;
1084
1085 if (plane_id != PLANE_PRIMARY ||
1086 level == G4X_WM_LEVEL_NORMAL)
1087 continue;
1088
1089 wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1090 raw->plane[plane_id]);
1091 max_wm = g4x_fbc_fifo_size(level);
1092
1093 /*
1094 * FBC wm is not mandatory as we
1095 * can always just disable its use.
1096 */
1097 if (wm > max_wm)
1098 wm = USHRT_MAX;
1099
1100 dirty |= raw->fbc != wm;
1101 raw->fbc = wm;
1102 }
1103
1104 /* mark watermarks as invalid */
1105 dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1106
1107 if (plane_id == PLANE_PRIMARY)
1108 dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1109
1110 out:
1111 if (dirty) {
1112 drm_dbg_kms(&dev_priv->drm,
1113 "%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1114 plane->base.name,
1115 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1116 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1117 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1118
1119 if (plane_id == PLANE_PRIMARY)
1120 drm_dbg_kms(&dev_priv->drm,
1121 "FBC watermarks: SR=%d, HPLL=%d\n",
1122 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1123 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1124 }
1125
1126 return dirty;
1127 }
1128
g4x_raw_plane_wm_is_valid(const struct intel_crtc_state * crtc_state,enum plane_id plane_id,int level)1129 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1130 enum plane_id plane_id, int level)
1131 {
1132 const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1133
1134 return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1135 }
1136
g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state * crtc_state,int level)1137 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1138 int level)
1139 {
1140 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1141
1142 if (level >= dev_priv->display.wm.num_levels)
1143 return false;
1144
1145 return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1146 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1147 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1148 }
1149
1150 /* mark all levels starting from 'level' as invalid */
g4x_invalidate_wms(struct intel_crtc * crtc,struct g4x_wm_state * wm_state,int level)1151 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1152 struct g4x_wm_state *wm_state, int level)
1153 {
1154 if (level <= G4X_WM_LEVEL_NORMAL) {
1155 enum plane_id plane_id;
1156
1157 for_each_plane_id_on_crtc(crtc, plane_id)
1158 wm_state->wm.plane[plane_id] = USHRT_MAX;
1159 }
1160
1161 if (level <= G4X_WM_LEVEL_SR) {
1162 wm_state->cxsr = false;
1163 wm_state->sr.cursor = USHRT_MAX;
1164 wm_state->sr.plane = USHRT_MAX;
1165 wm_state->sr.fbc = USHRT_MAX;
1166 }
1167
1168 if (level <= G4X_WM_LEVEL_HPLL) {
1169 wm_state->hpll_en = false;
1170 wm_state->hpll.cursor = USHRT_MAX;
1171 wm_state->hpll.plane = USHRT_MAX;
1172 wm_state->hpll.fbc = USHRT_MAX;
1173 }
1174 }
1175
g4x_compute_fbc_en(const struct g4x_wm_state * wm_state,int level)1176 static bool g4x_compute_fbc_en(const struct g4x_wm_state *wm_state,
1177 int level)
1178 {
1179 if (level < G4X_WM_LEVEL_SR)
1180 return false;
1181
1182 if (level >= G4X_WM_LEVEL_SR &&
1183 wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1184 return false;
1185
1186 if (level >= G4X_WM_LEVEL_HPLL &&
1187 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1188 return false;
1189
1190 return true;
1191 }
1192
_g4x_compute_pipe_wm(struct intel_crtc_state * crtc_state)1193 static int _g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1194 {
1195 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1196 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1197 u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1198 const struct g4x_pipe_wm *raw;
1199 enum plane_id plane_id;
1200 int level;
1201
1202 level = G4X_WM_LEVEL_NORMAL;
1203 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1204 goto out;
1205
1206 raw = &crtc_state->wm.g4x.raw[level];
1207 for_each_plane_id_on_crtc(crtc, plane_id)
1208 wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1209
1210 level = G4X_WM_LEVEL_SR;
1211 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1212 goto out;
1213
1214 raw = &crtc_state->wm.g4x.raw[level];
1215 wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1216 wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1217 wm_state->sr.fbc = raw->fbc;
1218
1219 wm_state->cxsr = active_planes == BIT(PLANE_PRIMARY);
1220
1221 level = G4X_WM_LEVEL_HPLL;
1222 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1223 goto out;
1224
1225 raw = &crtc_state->wm.g4x.raw[level];
1226 wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1227 wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1228 wm_state->hpll.fbc = raw->fbc;
1229
1230 wm_state->hpll_en = wm_state->cxsr;
1231
1232 level++;
1233
1234 out:
1235 if (level == G4X_WM_LEVEL_NORMAL)
1236 return -EINVAL;
1237
1238 /* invalidate the higher levels */
1239 g4x_invalidate_wms(crtc, wm_state, level);
1240
1241 /*
1242 * Determine if the FBC watermark(s) can be used. IF
1243 * this isn't the case we prefer to disable the FBC
1244 * watermark(s) rather than disable the SR/HPLL
1245 * level(s) entirely. 'level-1' is the highest valid
1246 * level here.
1247 */
1248 wm_state->fbc_en = g4x_compute_fbc_en(wm_state, level - 1);
1249
1250 return 0;
1251 }
1252
g4x_compute_pipe_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)1253 static int g4x_compute_pipe_wm(struct intel_atomic_state *state,
1254 struct intel_crtc *crtc)
1255 {
1256 struct intel_crtc_state *crtc_state =
1257 intel_atomic_get_new_crtc_state(state, crtc);
1258 const struct intel_plane_state *old_plane_state;
1259 const struct intel_plane_state *new_plane_state;
1260 struct intel_plane *plane;
1261 unsigned int dirty = 0;
1262 int i;
1263
1264 for_each_oldnew_intel_plane_in_state(state, plane,
1265 old_plane_state,
1266 new_plane_state, i) {
1267 if (new_plane_state->hw.crtc != &crtc->base &&
1268 old_plane_state->hw.crtc != &crtc->base)
1269 continue;
1270
1271 if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1272 dirty |= BIT(plane->id);
1273 }
1274
1275 if (!dirty)
1276 return 0;
1277
1278 return _g4x_compute_pipe_wm(crtc_state);
1279 }
1280
g4x_compute_intermediate_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)1281 static int g4x_compute_intermediate_wm(struct intel_atomic_state *state,
1282 struct intel_crtc *crtc)
1283 {
1284 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1285 struct intel_crtc_state *new_crtc_state =
1286 intel_atomic_get_new_crtc_state(state, crtc);
1287 const struct intel_crtc_state *old_crtc_state =
1288 intel_atomic_get_old_crtc_state(state, crtc);
1289 struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
1290 const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
1291 const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1292 enum plane_id plane_id;
1293
1294 if (!new_crtc_state->hw.active ||
1295 intel_crtc_needs_modeset(new_crtc_state)) {
1296 *intermediate = *optimal;
1297
1298 intermediate->cxsr = false;
1299 intermediate->hpll_en = false;
1300 goto out;
1301 }
1302
1303 intermediate->cxsr = optimal->cxsr && active->cxsr &&
1304 !new_crtc_state->disable_cxsr;
1305 intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1306 !new_crtc_state->disable_cxsr;
1307 intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1308
1309 for_each_plane_id_on_crtc(crtc, plane_id) {
1310 intermediate->wm.plane[plane_id] =
1311 max(optimal->wm.plane[plane_id],
1312 active->wm.plane[plane_id]);
1313
1314 drm_WARN_ON(&dev_priv->drm, intermediate->wm.plane[plane_id] >
1315 g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1316 }
1317
1318 intermediate->sr.plane = max(optimal->sr.plane,
1319 active->sr.plane);
1320 intermediate->sr.cursor = max(optimal->sr.cursor,
1321 active->sr.cursor);
1322 intermediate->sr.fbc = max(optimal->sr.fbc,
1323 active->sr.fbc);
1324
1325 intermediate->hpll.plane = max(optimal->hpll.plane,
1326 active->hpll.plane);
1327 intermediate->hpll.cursor = max(optimal->hpll.cursor,
1328 active->hpll.cursor);
1329 intermediate->hpll.fbc = max(optimal->hpll.fbc,
1330 active->hpll.fbc);
1331
1332 drm_WARN_ON(&dev_priv->drm,
1333 (intermediate->sr.plane >
1334 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1335 intermediate->sr.cursor >
1336 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1337 intermediate->cxsr);
1338 drm_WARN_ON(&dev_priv->drm,
1339 (intermediate->sr.plane >
1340 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1341 intermediate->sr.cursor >
1342 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1343 intermediate->hpll_en);
1344
1345 drm_WARN_ON(&dev_priv->drm,
1346 intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1347 intermediate->fbc_en && intermediate->cxsr);
1348 drm_WARN_ON(&dev_priv->drm,
1349 intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1350 intermediate->fbc_en && intermediate->hpll_en);
1351
1352 out:
1353 /*
1354 * If our intermediate WM are identical to the final WM, then we can
1355 * omit the post-vblank programming; only update if it's different.
1356 */
1357 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1358 new_crtc_state->wm.need_postvbl_update = true;
1359
1360 return 0;
1361 }
1362
g4x_compute_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)1363 static int g4x_compute_watermarks(struct intel_atomic_state *state,
1364 struct intel_crtc *crtc)
1365 {
1366 int ret;
1367
1368 ret = g4x_compute_pipe_wm(state, crtc);
1369 if (ret)
1370 return ret;
1371
1372 ret = g4x_compute_intermediate_wm(state, crtc);
1373 if (ret)
1374 return ret;
1375
1376 return 0;
1377 }
1378
g4x_merge_wm(struct drm_i915_private * dev_priv,struct g4x_wm_values * wm)1379 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1380 struct g4x_wm_values *wm)
1381 {
1382 struct intel_crtc *crtc;
1383 int num_active_pipes = 0;
1384
1385 wm->cxsr = true;
1386 wm->hpll_en = true;
1387 wm->fbc_en = true;
1388
1389 for_each_intel_crtc(&dev_priv->drm, crtc) {
1390 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1391
1392 if (!crtc->active)
1393 continue;
1394
1395 if (!wm_state->cxsr)
1396 wm->cxsr = false;
1397 if (!wm_state->hpll_en)
1398 wm->hpll_en = false;
1399 if (!wm_state->fbc_en)
1400 wm->fbc_en = false;
1401
1402 num_active_pipes++;
1403 }
1404
1405 if (num_active_pipes != 1) {
1406 wm->cxsr = false;
1407 wm->hpll_en = false;
1408 wm->fbc_en = false;
1409 }
1410
1411 for_each_intel_crtc(&dev_priv->drm, crtc) {
1412 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1413 enum pipe pipe = crtc->pipe;
1414
1415 wm->pipe[pipe] = wm_state->wm;
1416 if (crtc->active && wm->cxsr)
1417 wm->sr = wm_state->sr;
1418 if (crtc->active && wm->hpll_en)
1419 wm->hpll = wm_state->hpll;
1420 }
1421 }
1422
g4x_program_watermarks(struct drm_i915_private * dev_priv)1423 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1424 {
1425 struct g4x_wm_values *old_wm = &dev_priv->display.wm.g4x;
1426 struct g4x_wm_values new_wm = {};
1427
1428 g4x_merge_wm(dev_priv, &new_wm);
1429
1430 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1431 return;
1432
1433 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1434 _intel_set_memory_cxsr(dev_priv, false);
1435
1436 g4x_write_wm_values(dev_priv, &new_wm);
1437
1438 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1439 _intel_set_memory_cxsr(dev_priv, true);
1440
1441 *old_wm = new_wm;
1442 }
1443
g4x_initial_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)1444 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1445 struct intel_crtc *crtc)
1446 {
1447 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1448 const struct intel_crtc_state *crtc_state =
1449 intel_atomic_get_new_crtc_state(state, crtc);
1450
1451 mutex_lock(&dev_priv->display.wm.wm_mutex);
1452 crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1453 g4x_program_watermarks(dev_priv);
1454 mutex_unlock(&dev_priv->display.wm.wm_mutex);
1455 }
1456
g4x_optimize_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)1457 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1458 struct intel_crtc *crtc)
1459 {
1460 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1461 const struct intel_crtc_state *crtc_state =
1462 intel_atomic_get_new_crtc_state(state, crtc);
1463
1464 if (!crtc_state->wm.need_postvbl_update)
1465 return;
1466
1467 mutex_lock(&dev_priv->display.wm.wm_mutex);
1468 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1469 g4x_program_watermarks(dev_priv);
1470 mutex_unlock(&dev_priv->display.wm.wm_mutex);
1471 }
1472
1473 /* latency must be in 0.1us units. */
vlv_wm_method2(unsigned int pixel_rate,unsigned int htotal,unsigned int width,unsigned int cpp,unsigned int latency)1474 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1475 unsigned int htotal,
1476 unsigned int width,
1477 unsigned int cpp,
1478 unsigned int latency)
1479 {
1480 unsigned int ret;
1481
1482 ret = intel_wm_method2(pixel_rate, htotal,
1483 width, cpp, latency);
1484 ret = DIV_ROUND_UP(ret, 64);
1485
1486 return ret;
1487 }
1488
vlv_setup_wm_latency(struct drm_i915_private * dev_priv)1489 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1490 {
1491 /* all latencies in usec */
1492 dev_priv->display.wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1493
1494 dev_priv->display.wm.num_levels = VLV_WM_LEVEL_PM2 + 1;
1495
1496 if (IS_CHERRYVIEW(dev_priv)) {
1497 dev_priv->display.wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1498 dev_priv->display.wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1499
1500 dev_priv->display.wm.num_levels = VLV_WM_LEVEL_DDR_DVFS + 1;
1501 }
1502 }
1503
vlv_compute_wm_level(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,int level)1504 static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1505 const struct intel_plane_state *plane_state,
1506 int level)
1507 {
1508 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1509 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1510 const struct drm_display_mode *pipe_mode =
1511 &crtc_state->hw.pipe_mode;
1512 unsigned int pixel_rate, htotal, cpp, width, wm;
1513
1514 if (dev_priv->display.wm.pri_latency[level] == 0)
1515 return USHRT_MAX;
1516
1517 if (!intel_wm_plane_visible(crtc_state, plane_state))
1518 return 0;
1519
1520 cpp = plane_state->hw.fb->format->cpp[0];
1521 pixel_rate = crtc_state->pixel_rate;
1522 htotal = pipe_mode->crtc_htotal;
1523 width = drm_rect_width(&plane_state->uapi.src) >> 16;
1524
1525 if (plane->id == PLANE_CURSOR) {
1526 /*
1527 * FIXME the formula gives values that are
1528 * too big for the cursor FIFO, and hence we
1529 * would never be able to use cursors. For
1530 * now just hardcode the watermark.
1531 */
1532 wm = 63;
1533 } else {
1534 wm = vlv_wm_method2(pixel_rate, htotal, width, cpp,
1535 dev_priv->display.wm.pri_latency[level] * 10);
1536 }
1537
1538 return min_t(unsigned int, wm, USHRT_MAX);
1539 }
1540
vlv_need_sprite0_fifo_workaround(unsigned int active_planes)1541 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1542 {
1543 return (active_planes & (BIT(PLANE_SPRITE0) |
1544 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1545 }
1546
vlv_compute_fifo(struct intel_crtc_state * crtc_state)1547 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1548 {
1549 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1550 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1551 const struct g4x_pipe_wm *raw =
1552 &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1553 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1554 u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1555 int num_active_planes = hweight8(active_planes);
1556 const int fifo_size = 511;
1557 int fifo_extra, fifo_left = fifo_size;
1558 int sprite0_fifo_extra = 0;
1559 unsigned int total_rate;
1560 enum plane_id plane_id;
1561
1562 /*
1563 * When enabling sprite0 after sprite1 has already been enabled
1564 * we tend to get an underrun unless sprite0 already has some
1565 * FIFO space allcoated. Hence we always allocate at least one
1566 * cacheline for sprite0 whenever sprite1 is enabled.
1567 *
1568 * All other plane enable sequences appear immune to this problem.
1569 */
1570 if (vlv_need_sprite0_fifo_workaround(active_planes))
1571 sprite0_fifo_extra = 1;
1572
1573 total_rate = raw->plane[PLANE_PRIMARY] +
1574 raw->plane[PLANE_SPRITE0] +
1575 raw->plane[PLANE_SPRITE1] +
1576 sprite0_fifo_extra;
1577
1578 if (total_rate > fifo_size)
1579 return -EINVAL;
1580
1581 if (total_rate == 0)
1582 total_rate = 1;
1583
1584 for_each_plane_id_on_crtc(crtc, plane_id) {
1585 unsigned int rate;
1586
1587 if ((active_planes & BIT(plane_id)) == 0) {
1588 fifo_state->plane[plane_id] = 0;
1589 continue;
1590 }
1591
1592 rate = raw->plane[plane_id];
1593 fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1594 fifo_left -= fifo_state->plane[plane_id];
1595 }
1596
1597 fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1598 fifo_left -= sprite0_fifo_extra;
1599
1600 fifo_state->plane[PLANE_CURSOR] = 63;
1601
1602 fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1603
1604 /* spread the remainder evenly */
1605 for_each_plane_id_on_crtc(crtc, plane_id) {
1606 int plane_extra;
1607
1608 if (fifo_left == 0)
1609 break;
1610
1611 if ((active_planes & BIT(plane_id)) == 0)
1612 continue;
1613
1614 plane_extra = min(fifo_extra, fifo_left);
1615 fifo_state->plane[plane_id] += plane_extra;
1616 fifo_left -= plane_extra;
1617 }
1618
1619 drm_WARN_ON(&dev_priv->drm, active_planes != 0 && fifo_left != 0);
1620
1621 /* give it all to the first plane if none are active */
1622 if (active_planes == 0) {
1623 drm_WARN_ON(&dev_priv->drm, fifo_left != fifo_size);
1624 fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1625 }
1626
1627 return 0;
1628 }
1629
1630 /* mark all levels starting from 'level' as invalid */
vlv_invalidate_wms(struct intel_crtc * crtc,struct vlv_wm_state * wm_state,int level)1631 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1632 struct vlv_wm_state *wm_state, int level)
1633 {
1634 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1635
1636 for (; level < dev_priv->display.wm.num_levels; level++) {
1637 enum plane_id plane_id;
1638
1639 for_each_plane_id_on_crtc(crtc, plane_id)
1640 wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1641
1642 wm_state->sr[level].cursor = USHRT_MAX;
1643 wm_state->sr[level].plane = USHRT_MAX;
1644 }
1645 }
1646
vlv_invert_wm_value(u16 wm,u16 fifo_size)1647 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1648 {
1649 if (wm > fifo_size)
1650 return USHRT_MAX;
1651 else
1652 return fifo_size - wm;
1653 }
1654
1655 /*
1656 * Starting from 'level' set all higher
1657 * levels to 'value' in the "raw" watermarks.
1658 */
vlv_raw_plane_wm_set(struct intel_crtc_state * crtc_state,int level,enum plane_id plane_id,u16 value)1659 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1660 int level, enum plane_id plane_id, u16 value)
1661 {
1662 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1663 bool dirty = false;
1664
1665 for (; level < dev_priv->display.wm.num_levels; level++) {
1666 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1667
1668 dirty |= raw->plane[plane_id] != value;
1669 raw->plane[plane_id] = value;
1670 }
1671
1672 return dirty;
1673 }
1674
vlv_raw_plane_wm_compute(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)1675 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1676 const struct intel_plane_state *plane_state)
1677 {
1678 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1679 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1680 enum plane_id plane_id = plane->id;
1681 int level;
1682 bool dirty = false;
1683
1684 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1685 dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1686 goto out;
1687 }
1688
1689 for (level = 0; level < dev_priv->display.wm.num_levels; level++) {
1690 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1691 int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1692 int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1693
1694 if (wm > max_wm)
1695 break;
1696
1697 dirty |= raw->plane[plane_id] != wm;
1698 raw->plane[plane_id] = wm;
1699 }
1700
1701 /* mark all higher levels as invalid */
1702 dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1703
1704 out:
1705 if (dirty)
1706 drm_dbg_kms(&dev_priv->drm,
1707 "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1708 plane->base.name,
1709 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1710 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1711 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1712
1713 return dirty;
1714 }
1715
vlv_raw_plane_wm_is_valid(const struct intel_crtc_state * crtc_state,enum plane_id plane_id,int level)1716 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1717 enum plane_id plane_id, int level)
1718 {
1719 const struct g4x_pipe_wm *raw =
1720 &crtc_state->wm.vlv.raw[level];
1721 const struct vlv_fifo_state *fifo_state =
1722 &crtc_state->wm.vlv.fifo_state;
1723
1724 return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1725 }
1726
vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state * crtc_state,int level)1727 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1728 {
1729 return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1730 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1731 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1732 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1733 }
1734
_vlv_compute_pipe_wm(struct intel_crtc_state * crtc_state)1735 static int _vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1736 {
1737 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1738 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1739 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1740 const struct vlv_fifo_state *fifo_state =
1741 &crtc_state->wm.vlv.fifo_state;
1742 u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1743 int num_active_planes = hweight8(active_planes);
1744 enum plane_id plane_id;
1745 int level;
1746
1747 /* initially allow all levels */
1748 wm_state->num_levels = dev_priv->display.wm.num_levels;
1749 /*
1750 * Note that enabling cxsr with no primary/sprite planes
1751 * enabled can wedge the pipe. Hence we only allow cxsr
1752 * with exactly one enabled primary/sprite plane.
1753 */
1754 wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1755
1756 for (level = 0; level < wm_state->num_levels; level++) {
1757 const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1758 const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
1759
1760 if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1761 break;
1762
1763 for_each_plane_id_on_crtc(crtc, plane_id) {
1764 wm_state->wm[level].plane[plane_id] =
1765 vlv_invert_wm_value(raw->plane[plane_id],
1766 fifo_state->plane[plane_id]);
1767 }
1768
1769 wm_state->sr[level].plane =
1770 vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1771 raw->plane[PLANE_SPRITE0],
1772 raw->plane[PLANE_SPRITE1]),
1773 sr_fifo_size);
1774
1775 wm_state->sr[level].cursor =
1776 vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1777 63);
1778 }
1779
1780 if (level == 0)
1781 return -EINVAL;
1782
1783 /* limit to only levels we can actually handle */
1784 wm_state->num_levels = level;
1785
1786 /* invalidate the higher levels */
1787 vlv_invalidate_wms(crtc, wm_state, level);
1788
1789 return 0;
1790 }
1791
vlv_compute_pipe_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)1792 static int vlv_compute_pipe_wm(struct intel_atomic_state *state,
1793 struct intel_crtc *crtc)
1794 {
1795 struct intel_crtc_state *crtc_state =
1796 intel_atomic_get_new_crtc_state(state, crtc);
1797 const struct intel_plane_state *old_plane_state;
1798 const struct intel_plane_state *new_plane_state;
1799 struct intel_plane *plane;
1800 unsigned int dirty = 0;
1801 int i;
1802
1803 for_each_oldnew_intel_plane_in_state(state, plane,
1804 old_plane_state,
1805 new_plane_state, i) {
1806 if (new_plane_state->hw.crtc != &crtc->base &&
1807 old_plane_state->hw.crtc != &crtc->base)
1808 continue;
1809
1810 if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1811 dirty |= BIT(plane->id);
1812 }
1813
1814 /*
1815 * DSPARB registers may have been reset due to the
1816 * power well being turned off. Make sure we restore
1817 * them to a consistent state even if no primary/sprite
1818 * planes are initially active. We also force a FIFO
1819 * recomputation so that we are sure to sanitize the
1820 * FIFO setting we took over from the BIOS even if there
1821 * are no active planes on the crtc.
1822 */
1823 if (intel_crtc_needs_modeset(crtc_state))
1824 dirty = ~0;
1825
1826 if (!dirty)
1827 return 0;
1828
1829 /* cursor changes don't warrant a FIFO recompute */
1830 if (dirty & ~BIT(PLANE_CURSOR)) {
1831 const struct intel_crtc_state *old_crtc_state =
1832 intel_atomic_get_old_crtc_state(state, crtc);
1833 const struct vlv_fifo_state *old_fifo_state =
1834 &old_crtc_state->wm.vlv.fifo_state;
1835 const struct vlv_fifo_state *new_fifo_state =
1836 &crtc_state->wm.vlv.fifo_state;
1837 int ret;
1838
1839 ret = vlv_compute_fifo(crtc_state);
1840 if (ret)
1841 return ret;
1842
1843 if (intel_crtc_needs_modeset(crtc_state) ||
1844 memcmp(old_fifo_state, new_fifo_state,
1845 sizeof(*new_fifo_state)) != 0)
1846 crtc_state->fifo_changed = true;
1847 }
1848
1849 return _vlv_compute_pipe_wm(crtc_state);
1850 }
1851
1852 #define VLV_FIFO(plane, value) \
1853 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1854
vlv_atomic_update_fifo(struct intel_atomic_state * state,struct intel_crtc * crtc)1855 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1856 struct intel_crtc *crtc)
1857 {
1858 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1859 struct intel_uncore *uncore = &dev_priv->uncore;
1860 const struct intel_crtc_state *crtc_state =
1861 intel_atomic_get_new_crtc_state(state, crtc);
1862 const struct vlv_fifo_state *fifo_state =
1863 &crtc_state->wm.vlv.fifo_state;
1864 int sprite0_start, sprite1_start, fifo_size;
1865 u32 dsparb, dsparb2, dsparb3;
1866
1867 if (!crtc_state->fifo_changed)
1868 return;
1869
1870 sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1871 sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1872 fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1873
1874 drm_WARN_ON(&dev_priv->drm, fifo_state->plane[PLANE_CURSOR] != 63);
1875 drm_WARN_ON(&dev_priv->drm, fifo_size != 511);
1876
1877 trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1878
1879 /*
1880 * uncore.lock serves a double purpose here. It allows us to
1881 * use the less expensive I915_{READ,WRITE}_FW() functions, and
1882 * it protects the DSPARB registers from getting clobbered by
1883 * parallel updates from multiple pipes.
1884 *
1885 * intel_pipe_update_start() has already disabled interrupts
1886 * for us, so a plain spin_lock() is sufficient here.
1887 */
1888 spin_lock(&uncore->lock);
1889
1890 switch (crtc->pipe) {
1891 case PIPE_A:
1892 dsparb = intel_uncore_read_fw(uncore, DSPARB(dev_priv));
1893 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1894
1895 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1896 VLV_FIFO(SPRITEB, 0xff));
1897 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1898 VLV_FIFO(SPRITEB, sprite1_start));
1899
1900 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1901 VLV_FIFO(SPRITEB_HI, 0x1));
1902 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1903 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1904
1905 intel_uncore_write_fw(uncore, DSPARB(dev_priv), dsparb);
1906 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
1907 break;
1908 case PIPE_B:
1909 dsparb = intel_uncore_read_fw(uncore, DSPARB(dev_priv));
1910 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1911
1912 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1913 VLV_FIFO(SPRITED, 0xff));
1914 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1915 VLV_FIFO(SPRITED, sprite1_start));
1916
1917 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1918 VLV_FIFO(SPRITED_HI, 0xff));
1919 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1920 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1921
1922 intel_uncore_write_fw(uncore, DSPARB(dev_priv), dsparb);
1923 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
1924 break;
1925 case PIPE_C:
1926 dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
1927 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1928
1929 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1930 VLV_FIFO(SPRITEF, 0xff));
1931 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1932 VLV_FIFO(SPRITEF, sprite1_start));
1933
1934 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1935 VLV_FIFO(SPRITEF_HI, 0xff));
1936 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1937 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1938
1939 intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
1940 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
1941 break;
1942 default:
1943 break;
1944 }
1945
1946 intel_uncore_posting_read_fw(uncore, DSPARB(dev_priv));
1947
1948 spin_unlock(&uncore->lock);
1949 }
1950
1951 #undef VLV_FIFO
1952
vlv_compute_intermediate_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)1953 static int vlv_compute_intermediate_wm(struct intel_atomic_state *state,
1954 struct intel_crtc *crtc)
1955 {
1956 struct intel_crtc_state *new_crtc_state =
1957 intel_atomic_get_new_crtc_state(state, crtc);
1958 const struct intel_crtc_state *old_crtc_state =
1959 intel_atomic_get_old_crtc_state(state, crtc);
1960 struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
1961 const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
1962 const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
1963 int level;
1964
1965 if (!new_crtc_state->hw.active ||
1966 intel_crtc_needs_modeset(new_crtc_state)) {
1967 *intermediate = *optimal;
1968
1969 intermediate->cxsr = false;
1970 goto out;
1971 }
1972
1973 intermediate->num_levels = min(optimal->num_levels, active->num_levels);
1974 intermediate->cxsr = optimal->cxsr && active->cxsr &&
1975 !new_crtc_state->disable_cxsr;
1976
1977 for (level = 0; level < intermediate->num_levels; level++) {
1978 enum plane_id plane_id;
1979
1980 for_each_plane_id_on_crtc(crtc, plane_id) {
1981 intermediate->wm[level].plane[plane_id] =
1982 min(optimal->wm[level].plane[plane_id],
1983 active->wm[level].plane[plane_id]);
1984 }
1985
1986 intermediate->sr[level].plane = min(optimal->sr[level].plane,
1987 active->sr[level].plane);
1988 intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
1989 active->sr[level].cursor);
1990 }
1991
1992 vlv_invalidate_wms(crtc, intermediate, level);
1993
1994 out:
1995 /*
1996 * If our intermediate WM are identical to the final WM, then we can
1997 * omit the post-vblank programming; only update if it's different.
1998 */
1999 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2000 new_crtc_state->wm.need_postvbl_update = true;
2001
2002 return 0;
2003 }
2004
vlv_compute_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)2005 static int vlv_compute_watermarks(struct intel_atomic_state *state,
2006 struct intel_crtc *crtc)
2007 {
2008 int ret;
2009
2010 ret = vlv_compute_pipe_wm(state, crtc);
2011 if (ret)
2012 return ret;
2013
2014 ret = vlv_compute_intermediate_wm(state, crtc);
2015 if (ret)
2016 return ret;
2017
2018 return 0;
2019 }
2020
vlv_merge_wm(struct drm_i915_private * dev_priv,struct vlv_wm_values * wm)2021 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2022 struct vlv_wm_values *wm)
2023 {
2024 struct intel_crtc *crtc;
2025 int num_active_pipes = 0;
2026
2027 wm->level = dev_priv->display.wm.num_levels - 1;
2028 wm->cxsr = true;
2029
2030 for_each_intel_crtc(&dev_priv->drm, crtc) {
2031 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2032
2033 if (!crtc->active)
2034 continue;
2035
2036 if (!wm_state->cxsr)
2037 wm->cxsr = false;
2038
2039 num_active_pipes++;
2040 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2041 }
2042
2043 if (num_active_pipes != 1)
2044 wm->cxsr = false;
2045
2046 if (num_active_pipes > 1)
2047 wm->level = VLV_WM_LEVEL_PM2;
2048
2049 for_each_intel_crtc(&dev_priv->drm, crtc) {
2050 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2051 enum pipe pipe = crtc->pipe;
2052
2053 wm->pipe[pipe] = wm_state->wm[wm->level];
2054 if (crtc->active && wm->cxsr)
2055 wm->sr = wm_state->sr[wm->level];
2056
2057 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2058 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2059 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2060 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2061 }
2062 }
2063
vlv_program_watermarks(struct drm_i915_private * dev_priv)2064 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2065 {
2066 struct vlv_wm_values *old_wm = &dev_priv->display.wm.vlv;
2067 struct vlv_wm_values new_wm = {};
2068
2069 vlv_merge_wm(dev_priv, &new_wm);
2070
2071 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2072 return;
2073
2074 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2075 chv_set_memory_dvfs(dev_priv, false);
2076
2077 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2078 chv_set_memory_pm5(dev_priv, false);
2079
2080 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2081 _intel_set_memory_cxsr(dev_priv, false);
2082
2083 vlv_write_wm_values(dev_priv, &new_wm);
2084
2085 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2086 _intel_set_memory_cxsr(dev_priv, true);
2087
2088 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2089 chv_set_memory_pm5(dev_priv, true);
2090
2091 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2092 chv_set_memory_dvfs(dev_priv, true);
2093
2094 *old_wm = new_wm;
2095 }
2096
vlv_initial_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)2097 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2098 struct intel_crtc *crtc)
2099 {
2100 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2101 const struct intel_crtc_state *crtc_state =
2102 intel_atomic_get_new_crtc_state(state, crtc);
2103
2104 mutex_lock(&dev_priv->display.wm.wm_mutex);
2105 crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2106 vlv_program_watermarks(dev_priv);
2107 mutex_unlock(&dev_priv->display.wm.wm_mutex);
2108 }
2109
vlv_optimize_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)2110 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2111 struct intel_crtc *crtc)
2112 {
2113 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2114 const struct intel_crtc_state *crtc_state =
2115 intel_atomic_get_new_crtc_state(state, crtc);
2116
2117 if (!crtc_state->wm.need_postvbl_update)
2118 return;
2119
2120 mutex_lock(&dev_priv->display.wm.wm_mutex);
2121 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2122 vlv_program_watermarks(dev_priv);
2123 mutex_unlock(&dev_priv->display.wm.wm_mutex);
2124 }
2125
i965_update_wm(struct drm_i915_private * dev_priv)2126 static void i965_update_wm(struct drm_i915_private *dev_priv)
2127 {
2128 struct intel_crtc *crtc;
2129 int srwm = 1;
2130 int cursor_sr = 16;
2131 bool cxsr_enabled;
2132
2133 /* Calc sr entries for one plane configs */
2134 crtc = single_enabled_crtc(dev_priv);
2135 if (crtc) {
2136 /* self-refresh has much higher latency */
2137 static const int sr_latency_ns = 12000;
2138 const struct drm_display_mode *pipe_mode =
2139 &crtc->config->hw.pipe_mode;
2140 const struct drm_framebuffer *fb =
2141 crtc->base.primary->state->fb;
2142 int pixel_rate = crtc->config->pixel_rate;
2143 int htotal = pipe_mode->crtc_htotal;
2144 int width = drm_rect_width(&crtc->base.primary->state->src) >> 16;
2145 int cpp = fb->format->cpp[0];
2146 int entries;
2147
2148 entries = intel_wm_method2(pixel_rate, htotal,
2149 width, cpp, sr_latency_ns / 100);
2150 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2151 srwm = I965_FIFO_SIZE - entries;
2152 if (srwm < 0)
2153 srwm = 1;
2154 srwm &= 0x1ff;
2155 drm_dbg_kms(&dev_priv->drm,
2156 "self-refresh entries: %d, wm: %d\n",
2157 entries, srwm);
2158
2159 entries = intel_wm_method2(pixel_rate, htotal,
2160 crtc->base.cursor->state->crtc_w, 4,
2161 sr_latency_ns / 100);
2162 entries = DIV_ROUND_UP(entries,
2163 i965_cursor_wm_info.cacheline_size) +
2164 i965_cursor_wm_info.guard_size;
2165
2166 cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2167 if (cursor_sr > i965_cursor_wm_info.max_wm)
2168 cursor_sr = i965_cursor_wm_info.max_wm;
2169
2170 drm_dbg_kms(&dev_priv->drm,
2171 "self-refresh watermark: display plane %d "
2172 "cursor %d\n", srwm, cursor_sr);
2173
2174 cxsr_enabled = true;
2175 } else {
2176 cxsr_enabled = false;
2177 /* Turn off self refresh if both pipes are enabled */
2178 intel_set_memory_cxsr(dev_priv, false);
2179 }
2180
2181 drm_dbg_kms(&dev_priv->drm,
2182 "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2183 srwm);
2184
2185 /* 965 has limitations... */
2186 intel_uncore_write(&dev_priv->uncore, DSPFW1(dev_priv),
2187 FW_WM(srwm, SR) |
2188 FW_WM(8, CURSORB) |
2189 FW_WM(8, PLANEB) |
2190 FW_WM(8, PLANEA));
2191 intel_uncore_write(&dev_priv->uncore, DSPFW2(dev_priv),
2192 FW_WM(8, CURSORA) |
2193 FW_WM(8, PLANEC_OLD));
2194 /* update cursor SR watermark */
2195 intel_uncore_write(&dev_priv->uncore, DSPFW3(dev_priv),
2196 FW_WM(cursor_sr, CURSOR_SR));
2197
2198 if (cxsr_enabled)
2199 intel_set_memory_cxsr(dev_priv, true);
2200 }
2201
2202 #undef FW_WM
2203
intel_crtc_for_plane(struct drm_i915_private * i915,enum i9xx_plane_id i9xx_plane)2204 static struct intel_crtc *intel_crtc_for_plane(struct drm_i915_private *i915,
2205 enum i9xx_plane_id i9xx_plane)
2206 {
2207 struct intel_display *display = &i915->display;
2208 struct intel_plane *plane;
2209
2210 for_each_intel_plane(&i915->drm, plane) {
2211 if (plane->id == PLANE_PRIMARY &&
2212 plane->i9xx_plane == i9xx_plane)
2213 return intel_crtc_for_pipe(display, plane->pipe);
2214 }
2215
2216 return NULL;
2217 }
2218
i9xx_update_wm(struct drm_i915_private * dev_priv)2219 static void i9xx_update_wm(struct drm_i915_private *dev_priv)
2220 {
2221 const struct intel_watermark_params *wm_info;
2222 u32 fwater_lo;
2223 u32 fwater_hi;
2224 int cwm, srwm = 1;
2225 int fifo_size;
2226 int planea_wm, planeb_wm;
2227 struct intel_crtc *crtc;
2228
2229 if (IS_I945GM(dev_priv))
2230 wm_info = &i945_wm_info;
2231 else if (DISPLAY_VER(dev_priv) != 2)
2232 wm_info = &i915_wm_info;
2233 else
2234 wm_info = &i830_a_wm_info;
2235
2236 if (DISPLAY_VER(dev_priv) == 2)
2237 fifo_size = i830_get_fifo_size(dev_priv, PLANE_A);
2238 else
2239 fifo_size = i9xx_get_fifo_size(dev_priv, PLANE_A);
2240 crtc = intel_crtc_for_plane(dev_priv, PLANE_A);
2241 if (intel_crtc_active(crtc)) {
2242 const struct drm_framebuffer *fb =
2243 crtc->base.primary->state->fb;
2244 int cpp;
2245
2246 if (DISPLAY_VER(dev_priv) == 2)
2247 cpp = 4;
2248 else
2249 cpp = fb->format->cpp[0];
2250
2251 planea_wm = intel_calculate_wm(dev_priv, crtc->config->pixel_rate,
2252 wm_info, fifo_size, cpp,
2253 pessimal_latency_ns);
2254 } else {
2255 planea_wm = fifo_size - wm_info->guard_size;
2256 if (planea_wm > (long)wm_info->max_wm)
2257 planea_wm = wm_info->max_wm;
2258 }
2259
2260 if (DISPLAY_VER(dev_priv) == 2)
2261 wm_info = &i830_bc_wm_info;
2262
2263 if (DISPLAY_VER(dev_priv) == 2)
2264 fifo_size = i830_get_fifo_size(dev_priv, PLANE_B);
2265 else
2266 fifo_size = i9xx_get_fifo_size(dev_priv, PLANE_B);
2267 crtc = intel_crtc_for_plane(dev_priv, PLANE_B);
2268 if (intel_crtc_active(crtc)) {
2269 const struct drm_framebuffer *fb =
2270 crtc->base.primary->state->fb;
2271 int cpp;
2272
2273 if (DISPLAY_VER(dev_priv) == 2)
2274 cpp = 4;
2275 else
2276 cpp = fb->format->cpp[0];
2277
2278 planeb_wm = intel_calculate_wm(dev_priv, crtc->config->pixel_rate,
2279 wm_info, fifo_size, cpp,
2280 pessimal_latency_ns);
2281 } else {
2282 planeb_wm = fifo_size - wm_info->guard_size;
2283 if (planeb_wm > (long)wm_info->max_wm)
2284 planeb_wm = wm_info->max_wm;
2285 }
2286
2287 drm_dbg_kms(&dev_priv->drm,
2288 "FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2289
2290 crtc = single_enabled_crtc(dev_priv);
2291 if (IS_I915GM(dev_priv) && crtc) {
2292 struct drm_gem_object *obj;
2293
2294 obj = intel_fb_bo(crtc->base.primary->state->fb);
2295
2296 /* self-refresh seems busted with untiled */
2297 if (!intel_bo_is_tiled(obj))
2298 crtc = NULL;
2299 }
2300
2301 /*
2302 * Overlay gets an aggressive default since video jitter is bad.
2303 */
2304 cwm = 2;
2305
2306 /* Play safe and disable self-refresh before adjusting watermarks. */
2307 intel_set_memory_cxsr(dev_priv, false);
2308
2309 /* Calc sr entries for one plane configs */
2310 if (HAS_FW_BLC(dev_priv) && crtc) {
2311 /* self-refresh has much higher latency */
2312 static const int sr_latency_ns = 6000;
2313 const struct drm_display_mode *pipe_mode =
2314 &crtc->config->hw.pipe_mode;
2315 const struct drm_framebuffer *fb =
2316 crtc->base.primary->state->fb;
2317 int pixel_rate = crtc->config->pixel_rate;
2318 int htotal = pipe_mode->crtc_htotal;
2319 int width = drm_rect_width(&crtc->base.primary->state->src) >> 16;
2320 int cpp;
2321 int entries;
2322
2323 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2324 cpp = 4;
2325 else
2326 cpp = fb->format->cpp[0];
2327
2328 entries = intel_wm_method2(pixel_rate, htotal, width, cpp,
2329 sr_latency_ns / 100);
2330 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2331 drm_dbg_kms(&dev_priv->drm,
2332 "self-refresh entries: %d\n", entries);
2333 srwm = wm_info->fifo_size - entries;
2334 if (srwm < 0)
2335 srwm = 1;
2336
2337 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2338 intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF,
2339 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2340 else
2341 intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, srwm & 0x3f);
2342 }
2343
2344 drm_dbg_kms(&dev_priv->drm,
2345 "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2346 planea_wm, planeb_wm, cwm, srwm);
2347
2348 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2349 fwater_hi = (cwm & 0x1f);
2350
2351 /* Set request length to 8 cachelines per fetch */
2352 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2353 fwater_hi = fwater_hi | (1 << 8);
2354
2355 intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo);
2356 intel_uncore_write(&dev_priv->uncore, FW_BLC2, fwater_hi);
2357
2358 if (crtc)
2359 intel_set_memory_cxsr(dev_priv, true);
2360 }
2361
i845_update_wm(struct drm_i915_private * dev_priv)2362 static void i845_update_wm(struct drm_i915_private *dev_priv)
2363 {
2364 struct intel_crtc *crtc;
2365 u32 fwater_lo;
2366 int planea_wm;
2367
2368 crtc = single_enabled_crtc(dev_priv);
2369 if (crtc == NULL)
2370 return;
2371
2372 planea_wm = intel_calculate_wm(dev_priv, crtc->config->pixel_rate,
2373 &i845_wm_info,
2374 i845_get_fifo_size(dev_priv, PLANE_A),
2375 4, pessimal_latency_ns);
2376 fwater_lo = intel_uncore_read(&dev_priv->uncore, FW_BLC) & ~0xfff;
2377 fwater_lo |= (3<<8) | planea_wm;
2378
2379 drm_dbg_kms(&dev_priv->drm,
2380 "Setting FIFO watermarks - A: %d\n", planea_wm);
2381
2382 intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo);
2383 }
2384
2385 /* latency must be in 0.1us units. */
ilk_wm_method1(unsigned int pixel_rate,unsigned int cpp,unsigned int latency)2386 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2387 unsigned int cpp,
2388 unsigned int latency)
2389 {
2390 unsigned int ret;
2391
2392 ret = intel_wm_method1(pixel_rate, cpp, latency);
2393 ret = DIV_ROUND_UP(ret, 64) + 2;
2394
2395 return ret;
2396 }
2397
2398 /* latency must be in 0.1us units. */
ilk_wm_method2(unsigned int pixel_rate,unsigned int htotal,unsigned int width,unsigned int cpp,unsigned int latency)2399 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2400 unsigned int htotal,
2401 unsigned int width,
2402 unsigned int cpp,
2403 unsigned int latency)
2404 {
2405 unsigned int ret;
2406
2407 ret = intel_wm_method2(pixel_rate, htotal,
2408 width, cpp, latency);
2409 ret = DIV_ROUND_UP(ret, 64) + 2;
2410
2411 return ret;
2412 }
2413
ilk_wm_fbc(u32 pri_val,u32 horiz_pixels,u8 cpp)2414 static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2415 {
2416 /*
2417 * Neither of these should be possible since this function shouldn't be
2418 * called if the CRTC is off or the plane is invisible. But let's be
2419 * extra paranoid to avoid a potential divide-by-zero if we screw up
2420 * elsewhere in the driver.
2421 */
2422 if (WARN_ON(!cpp))
2423 return 0;
2424 if (WARN_ON(!horiz_pixels))
2425 return 0;
2426
2427 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2428 }
2429
2430 struct ilk_wm_maximums {
2431 u16 pri;
2432 u16 spr;
2433 u16 cur;
2434 u16 fbc;
2435 };
2436
2437 /*
2438 * For both WM_PIPE and WM_LP.
2439 * mem_value must be in 0.1us units.
2440 */
ilk_compute_pri_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,u32 mem_value,bool is_lp)2441 static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
2442 const struct intel_plane_state *plane_state,
2443 u32 mem_value, bool is_lp)
2444 {
2445 u32 method1, method2;
2446 int cpp;
2447
2448 if (mem_value == 0)
2449 return U32_MAX;
2450
2451 if (!intel_wm_plane_visible(crtc_state, plane_state))
2452 return 0;
2453
2454 cpp = plane_state->hw.fb->format->cpp[0];
2455
2456 method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2457
2458 if (!is_lp)
2459 return method1;
2460
2461 method2 = ilk_wm_method2(crtc_state->pixel_rate,
2462 crtc_state->hw.pipe_mode.crtc_htotal,
2463 drm_rect_width(&plane_state->uapi.src) >> 16,
2464 cpp, mem_value);
2465
2466 return min(method1, method2);
2467 }
2468
2469 /*
2470 * For both WM_PIPE and WM_LP.
2471 * mem_value must be in 0.1us units.
2472 */
ilk_compute_spr_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,u32 mem_value)2473 static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
2474 const struct intel_plane_state *plane_state,
2475 u32 mem_value)
2476 {
2477 u32 method1, method2;
2478 int cpp;
2479
2480 if (mem_value == 0)
2481 return U32_MAX;
2482
2483 if (!intel_wm_plane_visible(crtc_state, plane_state))
2484 return 0;
2485
2486 cpp = plane_state->hw.fb->format->cpp[0];
2487
2488 method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2489 method2 = ilk_wm_method2(crtc_state->pixel_rate,
2490 crtc_state->hw.pipe_mode.crtc_htotal,
2491 drm_rect_width(&plane_state->uapi.src) >> 16,
2492 cpp, mem_value);
2493 return min(method1, method2);
2494 }
2495
2496 /*
2497 * For both WM_PIPE and WM_LP.
2498 * mem_value must be in 0.1us units.
2499 */
ilk_compute_cur_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,u32 mem_value)2500 static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
2501 const struct intel_plane_state *plane_state,
2502 u32 mem_value)
2503 {
2504 int cpp;
2505
2506 if (mem_value == 0)
2507 return U32_MAX;
2508
2509 if (!intel_wm_plane_visible(crtc_state, plane_state))
2510 return 0;
2511
2512 cpp = plane_state->hw.fb->format->cpp[0];
2513
2514 return ilk_wm_method2(crtc_state->pixel_rate,
2515 crtc_state->hw.pipe_mode.crtc_htotal,
2516 drm_rect_width(&plane_state->uapi.src) >> 16,
2517 cpp, mem_value);
2518 }
2519
2520 /* Only for WM_LP. */
ilk_compute_fbc_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,u32 pri_val)2521 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
2522 const struct intel_plane_state *plane_state,
2523 u32 pri_val)
2524 {
2525 int cpp;
2526
2527 if (!intel_wm_plane_visible(crtc_state, plane_state))
2528 return 0;
2529
2530 cpp = plane_state->hw.fb->format->cpp[0];
2531
2532 return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.src) >> 16,
2533 cpp);
2534 }
2535
2536 static unsigned int
ilk_display_fifo_size(const struct drm_i915_private * dev_priv)2537 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2538 {
2539 if (DISPLAY_VER(dev_priv) >= 8)
2540 return 3072;
2541 else if (DISPLAY_VER(dev_priv) >= 7)
2542 return 768;
2543 else
2544 return 512;
2545 }
2546
2547 static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private * dev_priv,int level,bool is_sprite)2548 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2549 int level, bool is_sprite)
2550 {
2551 if (DISPLAY_VER(dev_priv) >= 8)
2552 /* BDW primary/sprite plane watermarks */
2553 return level == 0 ? 255 : 2047;
2554 else if (DISPLAY_VER(dev_priv) >= 7)
2555 /* IVB/HSW primary/sprite plane watermarks */
2556 return level == 0 ? 127 : 1023;
2557 else if (!is_sprite)
2558 /* ILK/SNB primary plane watermarks */
2559 return level == 0 ? 127 : 511;
2560 else
2561 /* ILK/SNB sprite plane watermarks */
2562 return level == 0 ? 63 : 255;
2563 }
2564
2565 static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private * dev_priv,int level)2566 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2567 {
2568 if (DISPLAY_VER(dev_priv) >= 7)
2569 return level == 0 ? 63 : 255;
2570 else
2571 return level == 0 ? 31 : 63;
2572 }
2573
ilk_fbc_wm_reg_max(const struct drm_i915_private * dev_priv)2574 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2575 {
2576 if (DISPLAY_VER(dev_priv) >= 8)
2577 return 31;
2578 else
2579 return 15;
2580 }
2581
2582 /* Calculate the maximum primary/sprite plane watermark */
ilk_plane_wm_max(const struct drm_i915_private * dev_priv,int level,const struct intel_wm_config * config,enum intel_ddb_partitioning ddb_partitioning,bool is_sprite)2583 static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2584 int level,
2585 const struct intel_wm_config *config,
2586 enum intel_ddb_partitioning ddb_partitioning,
2587 bool is_sprite)
2588 {
2589 unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2590
2591 /* if sprites aren't enabled, sprites get nothing */
2592 if (is_sprite && !config->sprites_enabled)
2593 return 0;
2594
2595 /* HSW allows LP1+ watermarks even with multiple pipes */
2596 if (level == 0 || config->num_pipes_active > 1) {
2597 fifo_size /= INTEL_NUM_PIPES(dev_priv);
2598
2599 /*
2600 * For some reason the non self refresh
2601 * FIFO size is only half of the self
2602 * refresh FIFO size on ILK/SNB.
2603 */
2604 if (DISPLAY_VER(dev_priv) < 7)
2605 fifo_size /= 2;
2606 }
2607
2608 if (config->sprites_enabled) {
2609 /* level 0 is always calculated with 1:1 split */
2610 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2611 if (is_sprite)
2612 fifo_size *= 5;
2613 fifo_size /= 6;
2614 } else {
2615 fifo_size /= 2;
2616 }
2617 }
2618
2619 /* clamp to max that the registers can hold */
2620 return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2621 }
2622
2623 /* Calculate the maximum cursor plane watermark */
ilk_cursor_wm_max(const struct drm_i915_private * dev_priv,int level,const struct intel_wm_config * config)2624 static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2625 int level,
2626 const struct intel_wm_config *config)
2627 {
2628 /* HSW LP1+ watermarks w/ multiple pipes */
2629 if (level > 0 && config->num_pipes_active > 1)
2630 return 64;
2631
2632 /* otherwise just report max that registers can hold */
2633 return ilk_cursor_wm_reg_max(dev_priv, level);
2634 }
2635
ilk_compute_wm_maximums(const struct drm_i915_private * dev_priv,int level,const struct intel_wm_config * config,enum intel_ddb_partitioning ddb_partitioning,struct ilk_wm_maximums * max)2636 static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2637 int level,
2638 const struct intel_wm_config *config,
2639 enum intel_ddb_partitioning ddb_partitioning,
2640 struct ilk_wm_maximums *max)
2641 {
2642 max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
2643 max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
2644 max->cur = ilk_cursor_wm_max(dev_priv, level, config);
2645 max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2646 }
2647
ilk_compute_wm_reg_maximums(const struct drm_i915_private * dev_priv,int level,struct ilk_wm_maximums * max)2648 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2649 int level,
2650 struct ilk_wm_maximums *max)
2651 {
2652 max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2653 max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2654 max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2655 max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2656 }
2657
ilk_validate_wm_level(struct drm_i915_private * i915,int level,const struct ilk_wm_maximums * max,struct intel_wm_level * result)2658 static bool ilk_validate_wm_level(struct drm_i915_private *i915,
2659 int level,
2660 const struct ilk_wm_maximums *max,
2661 struct intel_wm_level *result)
2662 {
2663 bool ret;
2664
2665 /* already determined to be invalid? */
2666 if (!result->enable)
2667 return false;
2668
2669 result->enable = result->pri_val <= max->pri &&
2670 result->spr_val <= max->spr &&
2671 result->cur_val <= max->cur;
2672
2673 ret = result->enable;
2674
2675 /*
2676 * HACK until we can pre-compute everything,
2677 * and thus fail gracefully if LP0 watermarks
2678 * are exceeded...
2679 */
2680 if (level == 0 && !result->enable) {
2681 if (result->pri_val > max->pri)
2682 drm_dbg_kms(&i915->drm,
2683 "Primary WM%d too large %u (max %u)\n",
2684 level, result->pri_val, max->pri);
2685 if (result->spr_val > max->spr)
2686 drm_dbg_kms(&i915->drm,
2687 "Sprite WM%d too large %u (max %u)\n",
2688 level, result->spr_val, max->spr);
2689 if (result->cur_val > max->cur)
2690 drm_dbg_kms(&i915->drm,
2691 "Cursor WM%d too large %u (max %u)\n",
2692 level, result->cur_val, max->cur);
2693
2694 result->pri_val = min_t(u32, result->pri_val, max->pri);
2695 result->spr_val = min_t(u32, result->spr_val, max->spr);
2696 result->cur_val = min_t(u32, result->cur_val, max->cur);
2697 result->enable = true;
2698 }
2699
2700 return ret;
2701 }
2702
ilk_compute_wm_level(const struct drm_i915_private * dev_priv,const struct intel_crtc * crtc,int level,struct intel_crtc_state * crtc_state,const struct intel_plane_state * pristate,const struct intel_plane_state * sprstate,const struct intel_plane_state * curstate,struct intel_wm_level * result)2703 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2704 const struct intel_crtc *crtc,
2705 int level,
2706 struct intel_crtc_state *crtc_state,
2707 const struct intel_plane_state *pristate,
2708 const struct intel_plane_state *sprstate,
2709 const struct intel_plane_state *curstate,
2710 struct intel_wm_level *result)
2711 {
2712 u16 pri_latency = dev_priv->display.wm.pri_latency[level];
2713 u16 spr_latency = dev_priv->display.wm.spr_latency[level];
2714 u16 cur_latency = dev_priv->display.wm.cur_latency[level];
2715
2716 /* WM1+ latency values stored in 0.5us units */
2717 if (level > 0) {
2718 pri_latency *= 5;
2719 spr_latency *= 5;
2720 cur_latency *= 5;
2721 }
2722
2723 if (pristate) {
2724 result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2725 pri_latency, level);
2726 result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2727 }
2728
2729 if (sprstate)
2730 result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2731
2732 if (curstate)
2733 result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2734
2735 result->enable = true;
2736 }
2737
hsw_read_wm_latency(struct drm_i915_private * i915,u16 wm[])2738 static void hsw_read_wm_latency(struct drm_i915_private *i915, u16 wm[])
2739 {
2740 u64 sskpd;
2741
2742 i915->display.wm.num_levels = 5;
2743
2744 sskpd = intel_uncore_read64(&i915->uncore, MCH_SSKPD);
2745
2746 wm[0] = REG_FIELD_GET64(SSKPD_NEW_WM0_MASK_HSW, sskpd);
2747 if (wm[0] == 0)
2748 wm[0] = REG_FIELD_GET64(SSKPD_OLD_WM0_MASK_HSW, sskpd);
2749 wm[1] = REG_FIELD_GET64(SSKPD_WM1_MASK_HSW, sskpd);
2750 wm[2] = REG_FIELD_GET64(SSKPD_WM2_MASK_HSW, sskpd);
2751 wm[3] = REG_FIELD_GET64(SSKPD_WM3_MASK_HSW, sskpd);
2752 wm[4] = REG_FIELD_GET64(SSKPD_WM4_MASK_HSW, sskpd);
2753 }
2754
snb_read_wm_latency(struct drm_i915_private * i915,u16 wm[])2755 static void snb_read_wm_latency(struct drm_i915_private *i915, u16 wm[])
2756 {
2757 u32 sskpd;
2758
2759 i915->display.wm.num_levels = 4;
2760
2761 sskpd = intel_uncore_read(&i915->uncore, MCH_SSKPD);
2762
2763 wm[0] = REG_FIELD_GET(SSKPD_WM0_MASK_SNB, sskpd);
2764 wm[1] = REG_FIELD_GET(SSKPD_WM1_MASK_SNB, sskpd);
2765 wm[2] = REG_FIELD_GET(SSKPD_WM2_MASK_SNB, sskpd);
2766 wm[3] = REG_FIELD_GET(SSKPD_WM3_MASK_SNB, sskpd);
2767 }
2768
ilk_read_wm_latency(struct drm_i915_private * i915,u16 wm[])2769 static void ilk_read_wm_latency(struct drm_i915_private *i915, u16 wm[])
2770 {
2771 u32 mltr;
2772
2773 i915->display.wm.num_levels = 3;
2774
2775 mltr = intel_uncore_read(&i915->uncore, MLTR_ILK);
2776
2777 /* ILK primary LP0 latency is 700 ns */
2778 wm[0] = 7;
2779 wm[1] = REG_FIELD_GET(MLTR_WM1_MASK, mltr);
2780 wm[2] = REG_FIELD_GET(MLTR_WM2_MASK, mltr);
2781 }
2782
intel_fixup_spr_wm_latency(struct drm_i915_private * dev_priv,u16 wm[5])2783 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2784 u16 wm[5])
2785 {
2786 /* ILK sprite LP0 latency is 1300 ns */
2787 if (DISPLAY_VER(dev_priv) == 5)
2788 wm[0] = 13;
2789 }
2790
intel_fixup_cur_wm_latency(struct drm_i915_private * dev_priv,u16 wm[5])2791 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2792 u16 wm[5])
2793 {
2794 /* ILK cursor LP0 latency is 1300 ns */
2795 if (DISPLAY_VER(dev_priv) == 5)
2796 wm[0] = 13;
2797 }
2798
ilk_increase_wm_latency(struct drm_i915_private * dev_priv,u16 wm[5],u16 min)2799 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2800 u16 wm[5], u16 min)
2801 {
2802 int level;
2803
2804 if (wm[0] >= min)
2805 return false;
2806
2807 wm[0] = max(wm[0], min);
2808 for (level = 1; level < dev_priv->display.wm.num_levels; level++)
2809 wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
2810
2811 return true;
2812 }
2813
snb_wm_latency_quirk(struct drm_i915_private * dev_priv)2814 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2815 {
2816 bool changed;
2817
2818 /*
2819 * The BIOS provided WM memory latency values are often
2820 * inadequate for high resolution displays. Adjust them.
2821 */
2822 changed = ilk_increase_wm_latency(dev_priv, dev_priv->display.wm.pri_latency, 12);
2823 changed |= ilk_increase_wm_latency(dev_priv, dev_priv->display.wm.spr_latency, 12);
2824 changed |= ilk_increase_wm_latency(dev_priv, dev_priv->display.wm.cur_latency, 12);
2825
2826 if (!changed)
2827 return;
2828
2829 drm_dbg_kms(&dev_priv->drm,
2830 "WM latency values increased to avoid potential underruns\n");
2831 intel_print_wm_latency(dev_priv, "Primary", dev_priv->display.wm.pri_latency);
2832 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->display.wm.spr_latency);
2833 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->display.wm.cur_latency);
2834 }
2835
snb_wm_lp3_irq_quirk(struct drm_i915_private * dev_priv)2836 static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
2837 {
2838 /*
2839 * On some SNB machines (Thinkpad X220 Tablet at least)
2840 * LP3 usage can cause vblank interrupts to be lost.
2841 * The DEIIR bit will go high but it looks like the CPU
2842 * never gets interrupted.
2843 *
2844 * It's not clear whether other interrupt source could
2845 * be affected or if this is somehow limited to vblank
2846 * interrupts only. To play it safe we disable LP3
2847 * watermarks entirely.
2848 */
2849 if (dev_priv->display.wm.pri_latency[3] == 0 &&
2850 dev_priv->display.wm.spr_latency[3] == 0 &&
2851 dev_priv->display.wm.cur_latency[3] == 0)
2852 return;
2853
2854 dev_priv->display.wm.pri_latency[3] = 0;
2855 dev_priv->display.wm.spr_latency[3] = 0;
2856 dev_priv->display.wm.cur_latency[3] = 0;
2857
2858 drm_dbg_kms(&dev_priv->drm,
2859 "LP3 watermarks disabled due to potential for lost interrupts\n");
2860 intel_print_wm_latency(dev_priv, "Primary", dev_priv->display.wm.pri_latency);
2861 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->display.wm.spr_latency);
2862 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->display.wm.cur_latency);
2863 }
2864
ilk_setup_wm_latency(struct drm_i915_private * dev_priv)2865 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2866 {
2867 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
2868 hsw_read_wm_latency(dev_priv, dev_priv->display.wm.pri_latency);
2869 else if (DISPLAY_VER(dev_priv) >= 6)
2870 snb_read_wm_latency(dev_priv, dev_priv->display.wm.pri_latency);
2871 else
2872 ilk_read_wm_latency(dev_priv, dev_priv->display.wm.pri_latency);
2873
2874 memcpy(dev_priv->display.wm.spr_latency, dev_priv->display.wm.pri_latency,
2875 sizeof(dev_priv->display.wm.pri_latency));
2876 memcpy(dev_priv->display.wm.cur_latency, dev_priv->display.wm.pri_latency,
2877 sizeof(dev_priv->display.wm.pri_latency));
2878
2879 intel_fixup_spr_wm_latency(dev_priv, dev_priv->display.wm.spr_latency);
2880 intel_fixup_cur_wm_latency(dev_priv, dev_priv->display.wm.cur_latency);
2881
2882 intel_print_wm_latency(dev_priv, "Primary", dev_priv->display.wm.pri_latency);
2883 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->display.wm.spr_latency);
2884 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->display.wm.cur_latency);
2885
2886 if (DISPLAY_VER(dev_priv) == 6) {
2887 snb_wm_latency_quirk(dev_priv);
2888 snb_wm_lp3_irq_quirk(dev_priv);
2889 }
2890 }
2891
ilk_validate_pipe_wm(struct drm_i915_private * dev_priv,struct intel_pipe_wm * pipe_wm)2892 static bool ilk_validate_pipe_wm(struct drm_i915_private *dev_priv,
2893 struct intel_pipe_wm *pipe_wm)
2894 {
2895 /* LP0 watermark maximums depend on this pipe alone */
2896 const struct intel_wm_config config = {
2897 .num_pipes_active = 1,
2898 .sprites_enabled = pipe_wm->sprites_enabled,
2899 .sprites_scaled = pipe_wm->sprites_scaled,
2900 };
2901 struct ilk_wm_maximums max;
2902
2903 /* LP0 watermarks always use 1/2 DDB partitioning */
2904 ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
2905
2906 /* At least LP0 must be valid */
2907 if (!ilk_validate_wm_level(dev_priv, 0, &max, &pipe_wm->wm[0])) {
2908 drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n");
2909 return false;
2910 }
2911
2912 return true;
2913 }
2914
2915 /* Compute new watermarks for the pipe */
ilk_compute_pipe_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)2916 static int ilk_compute_pipe_wm(struct intel_atomic_state *state,
2917 struct intel_crtc *crtc)
2918 {
2919 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2920 struct intel_crtc_state *crtc_state =
2921 intel_atomic_get_new_crtc_state(state, crtc);
2922 struct intel_pipe_wm *pipe_wm;
2923 struct intel_plane *plane;
2924 const struct intel_plane_state *plane_state;
2925 const struct intel_plane_state *pristate = NULL;
2926 const struct intel_plane_state *sprstate = NULL;
2927 const struct intel_plane_state *curstate = NULL;
2928 struct ilk_wm_maximums max;
2929 int level, usable_level;
2930
2931 pipe_wm = &crtc_state->wm.ilk.optimal;
2932
2933 intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
2934 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2935 pristate = plane_state;
2936 else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2937 sprstate = plane_state;
2938 else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
2939 curstate = plane_state;
2940 }
2941
2942 pipe_wm->pipe_enabled = crtc_state->hw.active;
2943 pipe_wm->sprites_enabled = crtc_state->active_planes & BIT(PLANE_SPRITE0);
2944 pipe_wm->sprites_scaled = crtc_state->scaled_planes & BIT(PLANE_SPRITE0);
2945
2946 usable_level = dev_priv->display.wm.num_levels - 1;
2947
2948 /* ILK/SNB: LP2+ watermarks only w/o sprites */
2949 if (DISPLAY_VER(dev_priv) < 7 && pipe_wm->sprites_enabled)
2950 usable_level = 1;
2951
2952 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2953 if (pipe_wm->sprites_scaled)
2954 usable_level = 0;
2955
2956 memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
2957 ilk_compute_wm_level(dev_priv, crtc, 0, crtc_state,
2958 pristate, sprstate, curstate, &pipe_wm->wm[0]);
2959
2960 if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
2961 return -EINVAL;
2962
2963 ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
2964
2965 for (level = 1; level <= usable_level; level++) {
2966 struct intel_wm_level *wm = &pipe_wm->wm[level];
2967
2968 ilk_compute_wm_level(dev_priv, crtc, level, crtc_state,
2969 pristate, sprstate, curstate, wm);
2970
2971 /*
2972 * Disable any watermark level that exceeds the
2973 * register maximums since such watermarks are
2974 * always invalid.
2975 */
2976 if (!ilk_validate_wm_level(dev_priv, level, &max, wm)) {
2977 memset(wm, 0, sizeof(*wm));
2978 break;
2979 }
2980 }
2981
2982 return 0;
2983 }
2984
2985 /*
2986 * Build a set of 'intermediate' watermark values that satisfy both the old
2987 * state and the new state. These can be programmed to the hardware
2988 * immediately.
2989 */
ilk_compute_intermediate_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)2990 static int ilk_compute_intermediate_wm(struct intel_atomic_state *state,
2991 struct intel_crtc *crtc)
2992 {
2993 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2994 struct intel_crtc_state *new_crtc_state =
2995 intel_atomic_get_new_crtc_state(state, crtc);
2996 const struct intel_crtc_state *old_crtc_state =
2997 intel_atomic_get_old_crtc_state(state, crtc);
2998 struct intel_pipe_wm *intermediate = &new_crtc_state->wm.ilk.intermediate;
2999 const struct intel_pipe_wm *optimal = &new_crtc_state->wm.ilk.optimal;
3000 const struct intel_pipe_wm *active = &old_crtc_state->wm.ilk.optimal;
3001 int level;
3002
3003 /*
3004 * Start with the final, target watermarks, then combine with the
3005 * currently active watermarks to get values that are safe both before
3006 * and after the vblank.
3007 */
3008 *intermediate = *optimal;
3009 if (!new_crtc_state->hw.active ||
3010 intel_crtc_needs_modeset(new_crtc_state) ||
3011 state->skip_intermediate_wm)
3012 return 0;
3013
3014 intermediate->pipe_enabled |= active->pipe_enabled;
3015 intermediate->sprites_enabled |= active->sprites_enabled;
3016 intermediate->sprites_scaled |= active->sprites_scaled;
3017
3018 for (level = 0; level < dev_priv->display.wm.num_levels; level++) {
3019 struct intel_wm_level *intermediate_wm = &intermediate->wm[level];
3020 const struct intel_wm_level *active_wm = &active->wm[level];
3021
3022 intermediate_wm->enable &= active_wm->enable;
3023 intermediate_wm->pri_val = max(intermediate_wm->pri_val,
3024 active_wm->pri_val);
3025 intermediate_wm->spr_val = max(intermediate_wm->spr_val,
3026 active_wm->spr_val);
3027 intermediate_wm->cur_val = max(intermediate_wm->cur_val,
3028 active_wm->cur_val);
3029 intermediate_wm->fbc_val = max(intermediate_wm->fbc_val,
3030 active_wm->fbc_val);
3031 }
3032
3033 /*
3034 * We need to make sure that these merged watermark values are
3035 * actually a valid configuration themselves. If they're not,
3036 * there's no safe way to transition from the old state to
3037 * the new state, so we need to fail the atomic transaction.
3038 */
3039 if (!ilk_validate_pipe_wm(dev_priv, intermediate))
3040 return -EINVAL;
3041
3042 /*
3043 * If our intermediate WM are identical to the final WM, then we can
3044 * omit the post-vblank programming; only update if it's different.
3045 */
3046 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
3047 new_crtc_state->wm.need_postvbl_update = true;
3048
3049 return 0;
3050 }
3051
ilk_compute_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)3052 static int ilk_compute_watermarks(struct intel_atomic_state *state,
3053 struct intel_crtc *crtc)
3054 {
3055 int ret;
3056
3057 ret = ilk_compute_pipe_wm(state, crtc);
3058 if (ret)
3059 return ret;
3060
3061 ret = ilk_compute_intermediate_wm(state, crtc);
3062 if (ret)
3063 return ret;
3064
3065 return 0;
3066 }
3067
3068 /*
3069 * Merge the watermarks from all active pipes for a specific level.
3070 */
ilk_merge_wm_level(struct drm_i915_private * dev_priv,int level,struct intel_wm_level * ret_wm)3071 static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3072 int level,
3073 struct intel_wm_level *ret_wm)
3074 {
3075 const struct intel_crtc *crtc;
3076
3077 ret_wm->enable = true;
3078
3079 for_each_intel_crtc(&dev_priv->drm, crtc) {
3080 const struct intel_pipe_wm *active = &crtc->wm.active.ilk;
3081 const struct intel_wm_level *wm = &active->wm[level];
3082
3083 if (!active->pipe_enabled)
3084 continue;
3085
3086 /*
3087 * The watermark values may have been used in the past,
3088 * so we must maintain them in the registers for some
3089 * time even if the level is now disabled.
3090 */
3091 if (!wm->enable)
3092 ret_wm->enable = false;
3093
3094 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3095 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3096 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3097 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3098 }
3099 }
3100
3101 /*
3102 * Merge all low power watermarks for all active pipes.
3103 */
ilk_wm_merge(struct drm_i915_private * dev_priv,const struct intel_wm_config * config,const struct ilk_wm_maximums * max,struct intel_pipe_wm * merged)3104 static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3105 const struct intel_wm_config *config,
3106 const struct ilk_wm_maximums *max,
3107 struct intel_pipe_wm *merged)
3108 {
3109 int level, num_levels = dev_priv->display.wm.num_levels;
3110 int last_enabled_level = num_levels - 1;
3111
3112 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3113 if ((DISPLAY_VER(dev_priv) < 7 || IS_IVYBRIDGE(dev_priv)) &&
3114 config->num_pipes_active > 1)
3115 last_enabled_level = 0;
3116
3117 /* ILK: FBC WM must be disabled always */
3118 merged->fbc_wm_enabled = DISPLAY_VER(dev_priv) >= 6;
3119
3120 /* merge each WM1+ level */
3121 for (level = 1; level < num_levels; level++) {
3122 struct intel_wm_level *wm = &merged->wm[level];
3123
3124 ilk_merge_wm_level(dev_priv, level, wm);
3125
3126 if (level > last_enabled_level)
3127 wm->enable = false;
3128 else if (!ilk_validate_wm_level(dev_priv, level, max, wm))
3129 /* make sure all following levels get disabled */
3130 last_enabled_level = level - 1;
3131
3132 /*
3133 * The spec says it is preferred to disable
3134 * FBC WMs instead of disabling a WM level.
3135 */
3136 if (wm->fbc_val > max->fbc) {
3137 if (wm->enable)
3138 merged->fbc_wm_enabled = false;
3139 wm->fbc_val = 0;
3140 }
3141 }
3142
3143 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3144 if (DISPLAY_VER(dev_priv) == 5 && HAS_FBC(dev_priv) &&
3145 dev_priv->display.params.enable_fbc && !merged->fbc_wm_enabled) {
3146 for (level = 2; level < num_levels; level++) {
3147 struct intel_wm_level *wm = &merged->wm[level];
3148
3149 wm->enable = false;
3150 }
3151 }
3152 }
3153
ilk_wm_lp_to_level(int wm_lp,const struct intel_pipe_wm * pipe_wm)3154 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3155 {
3156 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3157 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3158 }
3159
3160 /* The value we need to program into the WM_LPx latency field */
ilk_wm_lp_latency(struct drm_i915_private * dev_priv,int level)3161 static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
3162 int level)
3163 {
3164 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3165 return 2 * level;
3166 else
3167 return dev_priv->display.wm.pri_latency[level];
3168 }
3169
ilk_compute_wm_results(struct drm_i915_private * dev_priv,const struct intel_pipe_wm * merged,enum intel_ddb_partitioning partitioning,struct ilk_wm_values * results)3170 static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3171 const struct intel_pipe_wm *merged,
3172 enum intel_ddb_partitioning partitioning,
3173 struct ilk_wm_values *results)
3174 {
3175 struct intel_crtc *crtc;
3176 int level, wm_lp;
3177
3178 results->enable_fbc_wm = merged->fbc_wm_enabled;
3179 results->partitioning = partitioning;
3180
3181 /* LP1+ register values */
3182 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3183 const struct intel_wm_level *r;
3184
3185 level = ilk_wm_lp_to_level(wm_lp, merged);
3186
3187 r = &merged->wm[level];
3188
3189 /*
3190 * Maintain the watermark values even if the level is
3191 * disabled. Doing otherwise could cause underruns.
3192 */
3193 results->wm_lp[wm_lp - 1] =
3194 WM_LP_LATENCY(ilk_wm_lp_latency(dev_priv, level)) |
3195 WM_LP_PRIMARY(r->pri_val) |
3196 WM_LP_CURSOR(r->cur_val);
3197
3198 if (r->enable)
3199 results->wm_lp[wm_lp - 1] |= WM_LP_ENABLE;
3200
3201 if (DISPLAY_VER(dev_priv) >= 8)
3202 results->wm_lp[wm_lp - 1] |= WM_LP_FBC_BDW(r->fbc_val);
3203 else
3204 results->wm_lp[wm_lp - 1] |= WM_LP_FBC_ILK(r->fbc_val);
3205
3206 results->wm_lp_spr[wm_lp - 1] = WM_LP_SPRITE(r->spr_val);
3207
3208 /*
3209 * Always set WM_LP_SPRITE_EN when spr_val != 0, even if the
3210 * level is disabled. Doing otherwise could cause underruns.
3211 */
3212 if (DISPLAY_VER(dev_priv) < 7 && r->spr_val) {
3213 drm_WARN_ON(&dev_priv->drm, wm_lp != 1);
3214 results->wm_lp_spr[wm_lp - 1] |= WM_LP_SPRITE_ENABLE;
3215 }
3216 }
3217
3218 /* LP0 register values */
3219 for_each_intel_crtc(&dev_priv->drm, crtc) {
3220 enum pipe pipe = crtc->pipe;
3221 const struct intel_pipe_wm *pipe_wm = &crtc->wm.active.ilk;
3222 const struct intel_wm_level *r = &pipe_wm->wm[0];
3223
3224 if (drm_WARN_ON(&dev_priv->drm, !r->enable))
3225 continue;
3226
3227 results->wm_pipe[pipe] =
3228 WM0_PIPE_PRIMARY(r->pri_val) |
3229 WM0_PIPE_SPRITE(r->spr_val) |
3230 WM0_PIPE_CURSOR(r->cur_val);
3231 }
3232 }
3233
3234 /*
3235 * Find the result with the highest level enabled. Check for enable_fbc_wm in
3236 * case both are at the same level. Prefer r1 in case they're the same.
3237 */
3238 static struct intel_pipe_wm *
ilk_find_best_result(struct drm_i915_private * dev_priv,struct intel_pipe_wm * r1,struct intel_pipe_wm * r2)3239 ilk_find_best_result(struct drm_i915_private *dev_priv,
3240 struct intel_pipe_wm *r1,
3241 struct intel_pipe_wm *r2)
3242 {
3243 int level, level1 = 0, level2 = 0;
3244
3245 for (level = 1; level < dev_priv->display.wm.num_levels; level++) {
3246 if (r1->wm[level].enable)
3247 level1 = level;
3248 if (r2->wm[level].enable)
3249 level2 = level;
3250 }
3251
3252 if (level1 == level2) {
3253 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3254 return r2;
3255 else
3256 return r1;
3257 } else if (level1 > level2) {
3258 return r1;
3259 } else {
3260 return r2;
3261 }
3262 }
3263
3264 /* dirty bits used to track which watermarks need changes */
3265 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3266 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3267 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3268 #define WM_DIRTY_FBC (1 << 24)
3269 #define WM_DIRTY_DDB (1 << 25)
3270
ilk_compute_wm_dirty(struct drm_i915_private * dev_priv,const struct ilk_wm_values * old,const struct ilk_wm_values * new)3271 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3272 const struct ilk_wm_values *old,
3273 const struct ilk_wm_values *new)
3274 {
3275 unsigned int dirty = 0;
3276 enum pipe pipe;
3277 int wm_lp;
3278
3279 for_each_pipe(dev_priv, pipe) {
3280 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3281 dirty |= WM_DIRTY_PIPE(pipe);
3282 /* Must disable LP1+ watermarks too */
3283 dirty |= WM_DIRTY_LP_ALL;
3284 }
3285 }
3286
3287 if (old->enable_fbc_wm != new->enable_fbc_wm) {
3288 dirty |= WM_DIRTY_FBC;
3289 /* Must disable LP1+ watermarks too */
3290 dirty |= WM_DIRTY_LP_ALL;
3291 }
3292
3293 if (old->partitioning != new->partitioning) {
3294 dirty |= WM_DIRTY_DDB;
3295 /* Must disable LP1+ watermarks too */
3296 dirty |= WM_DIRTY_LP_ALL;
3297 }
3298
3299 /* LP1+ watermarks already deemed dirty, no need to continue */
3300 if (dirty & WM_DIRTY_LP_ALL)
3301 return dirty;
3302
3303 /* Find the lowest numbered LP1+ watermark in need of an update... */
3304 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3305 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3306 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3307 break;
3308 }
3309
3310 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3311 for (; wm_lp <= 3; wm_lp++)
3312 dirty |= WM_DIRTY_LP(wm_lp);
3313
3314 return dirty;
3315 }
3316
_ilk_disable_lp_wm(struct drm_i915_private * dev_priv,unsigned int dirty)3317 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3318 unsigned int dirty)
3319 {
3320 struct ilk_wm_values *previous = &dev_priv->display.wm.hw;
3321 bool changed = false;
3322
3323 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM_LP_ENABLE) {
3324 previous->wm_lp[2] &= ~WM_LP_ENABLE;
3325 intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, previous->wm_lp[2]);
3326 changed = true;
3327 }
3328 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM_LP_ENABLE) {
3329 previous->wm_lp[1] &= ~WM_LP_ENABLE;
3330 intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, previous->wm_lp[1]);
3331 changed = true;
3332 }
3333 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM_LP_ENABLE) {
3334 previous->wm_lp[0] &= ~WM_LP_ENABLE;
3335 intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, previous->wm_lp[0]);
3336 changed = true;
3337 }
3338
3339 /*
3340 * Don't touch WM_LP_SPRITE_ENABLE here.
3341 * Doing so could cause underruns.
3342 */
3343
3344 return changed;
3345 }
3346
3347 /*
3348 * The spec says we shouldn't write when we don't need, because every write
3349 * causes WMs to be re-evaluated, expending some power.
3350 */
ilk_write_wm_values(struct drm_i915_private * dev_priv,struct ilk_wm_values * results)3351 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3352 struct ilk_wm_values *results)
3353 {
3354 struct ilk_wm_values *previous = &dev_priv->display.wm.hw;
3355 unsigned int dirty;
3356
3357 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3358 if (!dirty)
3359 return;
3360
3361 _ilk_disable_lp_wm(dev_priv, dirty);
3362
3363 if (dirty & WM_DIRTY_PIPE(PIPE_A))
3364 intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_A), results->wm_pipe[0]);
3365 if (dirty & WM_DIRTY_PIPE(PIPE_B))
3366 intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_B), results->wm_pipe[1]);
3367 if (dirty & WM_DIRTY_PIPE(PIPE_C))
3368 intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_C), results->wm_pipe[2]);
3369
3370 if (dirty & WM_DIRTY_DDB) {
3371 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3372 intel_uncore_rmw(&dev_priv->uncore, WM_MISC, WM_MISC_DATA_PARTITION_5_6,
3373 results->partitioning == INTEL_DDB_PART_1_2 ? 0 :
3374 WM_MISC_DATA_PARTITION_5_6);
3375 else
3376 intel_uncore_rmw(&dev_priv->uncore, DISP_ARB_CTL2, DISP_DATA_PARTITION_5_6,
3377 results->partitioning == INTEL_DDB_PART_1_2 ? 0 :
3378 DISP_DATA_PARTITION_5_6);
3379 }
3380
3381 if (dirty & WM_DIRTY_FBC)
3382 intel_uncore_rmw(&dev_priv->uncore, DISP_ARB_CTL, DISP_FBC_WM_DIS,
3383 results->enable_fbc_wm ? 0 : DISP_FBC_WM_DIS);
3384
3385 if (dirty & WM_DIRTY_LP(1) &&
3386 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3387 intel_uncore_write(&dev_priv->uncore, WM1S_LP_ILK, results->wm_lp_spr[0]);
3388
3389 if (DISPLAY_VER(dev_priv) >= 7) {
3390 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3391 intel_uncore_write(&dev_priv->uncore, WM2S_LP_IVB, results->wm_lp_spr[1]);
3392 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3393 intel_uncore_write(&dev_priv->uncore, WM3S_LP_IVB, results->wm_lp_spr[2]);
3394 }
3395
3396 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3397 intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, results->wm_lp[0]);
3398 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3399 intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, results->wm_lp[1]);
3400 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3401 intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, results->wm_lp[2]);
3402
3403 dev_priv->display.wm.hw = *results;
3404 }
3405
ilk_disable_cxsr(struct drm_i915_private * dev_priv)3406 bool ilk_disable_cxsr(struct drm_i915_private *dev_priv)
3407 {
3408 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3409 }
3410
ilk_compute_wm_config(struct drm_i915_private * dev_priv,struct intel_wm_config * config)3411 static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
3412 struct intel_wm_config *config)
3413 {
3414 struct intel_crtc *crtc;
3415
3416 /* Compute the currently _active_ config */
3417 for_each_intel_crtc(&dev_priv->drm, crtc) {
3418 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
3419
3420 if (!wm->pipe_enabled)
3421 continue;
3422
3423 config->sprites_enabled |= wm->sprites_enabled;
3424 config->sprites_scaled |= wm->sprites_scaled;
3425 config->num_pipes_active++;
3426 }
3427 }
3428
ilk_program_watermarks(struct drm_i915_private * dev_priv)3429 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
3430 {
3431 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3432 struct ilk_wm_maximums max;
3433 struct intel_wm_config config = {};
3434 struct ilk_wm_values results = {};
3435 enum intel_ddb_partitioning partitioning;
3436
3437 ilk_compute_wm_config(dev_priv, &config);
3438
3439 ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
3440 ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
3441
3442 /* 5/6 split only in single pipe config on IVB+ */
3443 if (DISPLAY_VER(dev_priv) >= 7 &&
3444 config.num_pipes_active == 1 && config.sprites_enabled) {
3445 ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
3446 ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
3447
3448 best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
3449 } else {
3450 best_lp_wm = &lp_wm_1_2;
3451 }
3452
3453 partitioning = (best_lp_wm == &lp_wm_1_2) ?
3454 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3455
3456 ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
3457
3458 ilk_write_wm_values(dev_priv, &results);
3459 }
3460
ilk_initial_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)3461 static void ilk_initial_watermarks(struct intel_atomic_state *state,
3462 struct intel_crtc *crtc)
3463 {
3464 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3465 const struct intel_crtc_state *crtc_state =
3466 intel_atomic_get_new_crtc_state(state, crtc);
3467
3468 mutex_lock(&dev_priv->display.wm.wm_mutex);
3469 crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
3470 ilk_program_watermarks(dev_priv);
3471 mutex_unlock(&dev_priv->display.wm.wm_mutex);
3472 }
3473
ilk_optimize_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)3474 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
3475 struct intel_crtc *crtc)
3476 {
3477 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3478 const struct intel_crtc_state *crtc_state =
3479 intel_atomic_get_new_crtc_state(state, crtc);
3480
3481 if (!crtc_state->wm.need_postvbl_update)
3482 return;
3483
3484 mutex_lock(&dev_priv->display.wm.wm_mutex);
3485 crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
3486 ilk_program_watermarks(dev_priv);
3487 mutex_unlock(&dev_priv->display.wm.wm_mutex);
3488 }
3489
ilk_pipe_wm_get_hw_state(struct intel_crtc * crtc)3490 static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
3491 {
3492 struct drm_device *dev = crtc->base.dev;
3493 struct drm_i915_private *dev_priv = to_i915(dev);
3494 struct ilk_wm_values *hw = &dev_priv->display.wm.hw;
3495 struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
3496 struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
3497 enum pipe pipe = crtc->pipe;
3498
3499 hw->wm_pipe[pipe] = intel_uncore_read(&dev_priv->uncore, WM0_PIPE_ILK(pipe));
3500
3501 memset(active, 0, sizeof(*active));
3502
3503 active->pipe_enabled = crtc->active;
3504
3505 if (active->pipe_enabled) {
3506 u32 tmp = hw->wm_pipe[pipe];
3507
3508 /*
3509 * For active pipes LP0 watermark is marked as
3510 * enabled, and LP1+ watermaks as disabled since
3511 * we can't really reverse compute them in case
3512 * multiple pipes are active.
3513 */
3514 active->wm[0].enable = true;
3515 active->wm[0].pri_val = REG_FIELD_GET(WM0_PIPE_PRIMARY_MASK, tmp);
3516 active->wm[0].spr_val = REG_FIELD_GET(WM0_PIPE_SPRITE_MASK, tmp);
3517 active->wm[0].cur_val = REG_FIELD_GET(WM0_PIPE_CURSOR_MASK, tmp);
3518 } else {
3519 int level;
3520
3521 /*
3522 * For inactive pipes, all watermark levels
3523 * should be marked as enabled but zeroed,
3524 * which is what we'd compute them to.
3525 */
3526 for (level = 0; level < dev_priv->display.wm.num_levels; level++)
3527 active->wm[level].enable = true;
3528 }
3529
3530 crtc->wm.active.ilk = *active;
3531 }
3532
ilk_sanitize_watermarks_add_affected(struct drm_atomic_state * state)3533 static int ilk_sanitize_watermarks_add_affected(struct drm_atomic_state *state)
3534 {
3535 struct drm_plane *plane;
3536 struct intel_crtc *crtc;
3537
3538 for_each_intel_crtc(state->dev, crtc) {
3539 struct intel_crtc_state *crtc_state;
3540
3541 crtc_state = intel_atomic_get_crtc_state(state, crtc);
3542 if (IS_ERR(crtc_state))
3543 return PTR_ERR(crtc_state);
3544
3545 if (crtc_state->hw.active) {
3546 /*
3547 * Preserve the inherited flag to avoid
3548 * taking the full modeset path.
3549 */
3550 crtc_state->inherited = true;
3551 }
3552 }
3553
3554 drm_for_each_plane(plane, state->dev) {
3555 struct drm_plane_state *plane_state;
3556
3557 plane_state = drm_atomic_get_plane_state(state, plane);
3558 if (IS_ERR(plane_state))
3559 return PTR_ERR(plane_state);
3560 }
3561
3562 return 0;
3563 }
3564
3565 /*
3566 * Calculate what we think the watermarks should be for the state we've read
3567 * out of the hardware and then immediately program those watermarks so that
3568 * we ensure the hardware settings match our internal state.
3569 *
3570 * We can calculate what we think WM's should be by creating a duplicate of the
3571 * current state (which was constructed during hardware readout) and running it
3572 * through the atomic check code to calculate new watermark values in the
3573 * state object.
3574 */
ilk_wm_sanitize(struct drm_i915_private * dev_priv)3575 void ilk_wm_sanitize(struct drm_i915_private *dev_priv)
3576 {
3577 struct drm_atomic_state *state;
3578 struct intel_atomic_state *intel_state;
3579 struct intel_crtc *crtc;
3580 struct intel_crtc_state *crtc_state;
3581 struct drm_modeset_acquire_ctx ctx;
3582 int ret;
3583 int i;
3584
3585 /* Only supported on platforms that use atomic watermark design */
3586 if (!dev_priv->display.funcs.wm->optimize_watermarks)
3587 return;
3588
3589 if (drm_WARN_ON(&dev_priv->drm, DISPLAY_VER(dev_priv) >= 9))
3590 return;
3591
3592 state = drm_atomic_state_alloc(&dev_priv->drm);
3593 if (drm_WARN_ON(&dev_priv->drm, !state))
3594 return;
3595
3596 intel_state = to_intel_atomic_state(state);
3597
3598 drm_modeset_acquire_init(&ctx, 0);
3599
3600 state->acquire_ctx = &ctx;
3601 to_intel_atomic_state(state)->internal = true;
3602
3603 retry:
3604 /*
3605 * Hardware readout is the only time we don't want to calculate
3606 * intermediate watermarks (since we don't trust the current
3607 * watermarks).
3608 */
3609 if (!HAS_GMCH(dev_priv))
3610 intel_state->skip_intermediate_wm = true;
3611
3612 ret = ilk_sanitize_watermarks_add_affected(state);
3613 if (ret)
3614 goto fail;
3615
3616 ret = intel_atomic_check(&dev_priv->drm, state);
3617 if (ret)
3618 goto fail;
3619
3620 /* Write calculated watermark values back */
3621 for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
3622 crtc_state->wm.need_postvbl_update = true;
3623 intel_optimize_watermarks(intel_state, crtc);
3624
3625 to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm;
3626 }
3627
3628 fail:
3629 if (ret == -EDEADLK) {
3630 drm_atomic_state_clear(state);
3631 drm_modeset_backoff(&ctx);
3632 goto retry;
3633 }
3634
3635 /*
3636 * If we fail here, it means that the hardware appears to be
3637 * programmed in a way that shouldn't be possible, given our
3638 * understanding of watermark requirements. This might mean a
3639 * mistake in the hardware readout code or a mistake in the
3640 * watermark calculations for a given platform. Raise a WARN
3641 * so that this is noticeable.
3642 *
3643 * If this actually happens, we'll have to just leave the
3644 * BIOS-programmed watermarks untouched and hope for the best.
3645 */
3646 drm_WARN(&dev_priv->drm, ret,
3647 "Could not determine valid watermarks for inherited state\n");
3648
3649 drm_atomic_state_put(state);
3650
3651 drm_modeset_drop_locks(&ctx);
3652 drm_modeset_acquire_fini(&ctx);
3653 }
3654
3655 #define _FW_WM(value, plane) \
3656 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3657 #define _FW_WM_VLV(value, plane) \
3658 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3659
g4x_read_wm_values(struct drm_i915_private * dev_priv,struct g4x_wm_values * wm)3660 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
3661 struct g4x_wm_values *wm)
3662 {
3663 u32 tmp;
3664
3665 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1(dev_priv));
3666 wm->sr.plane = _FW_WM(tmp, SR);
3667 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
3668 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
3669 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
3670
3671 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2(dev_priv));
3672 wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
3673 wm->sr.fbc = _FW_WM(tmp, FBC_SR);
3674 wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
3675 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
3676 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
3677 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
3678
3679 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3(dev_priv));
3680 wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
3681 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3682 wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
3683 wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
3684 }
3685
vlv_read_wm_values(struct drm_i915_private * dev_priv,struct vlv_wm_values * wm)3686 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3687 struct vlv_wm_values *wm)
3688 {
3689 enum pipe pipe;
3690 u32 tmp;
3691
3692 for_each_pipe(dev_priv, pipe) {
3693 tmp = intel_uncore_read(&dev_priv->uncore, VLV_DDL(pipe));
3694
3695 wm->ddl[pipe].plane[PLANE_PRIMARY] =
3696 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3697 wm->ddl[pipe].plane[PLANE_CURSOR] =
3698 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3699 wm->ddl[pipe].plane[PLANE_SPRITE0] =
3700 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3701 wm->ddl[pipe].plane[PLANE_SPRITE1] =
3702 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3703 }
3704
3705 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1(dev_priv));
3706 wm->sr.plane = _FW_WM(tmp, SR);
3707 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
3708 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
3709 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
3710
3711 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2(dev_priv));
3712 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
3713 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
3714 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
3715
3716 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3(dev_priv));
3717 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3718
3719 if (IS_CHERRYVIEW(dev_priv)) {
3720 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7_CHV);
3721 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
3722 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
3723
3724 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW8_CHV);
3725 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
3726 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
3727
3728 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW9_CHV);
3729 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
3730 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
3731
3732 tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM);
3733 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3734 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
3735 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
3736 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
3737 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3738 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3739 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
3740 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3741 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3742 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
3743 } else {
3744 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7);
3745 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
3746 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
3747
3748 tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM);
3749 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3750 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3751 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3752 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
3753 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3754 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3755 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
3756 }
3757 }
3758
3759 #undef _FW_WM
3760 #undef _FW_WM_VLV
3761
g4x_wm_get_hw_state(struct drm_i915_private * dev_priv)3762 static void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
3763 {
3764 struct g4x_wm_values *wm = &dev_priv->display.wm.g4x;
3765 struct intel_crtc *crtc;
3766
3767 g4x_read_wm_values(dev_priv, wm);
3768
3769 wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
3770
3771 for_each_intel_crtc(&dev_priv->drm, crtc) {
3772 struct intel_crtc_state *crtc_state =
3773 to_intel_crtc_state(crtc->base.state);
3774 struct g4x_wm_state *active = &crtc->wm.active.g4x;
3775 struct g4x_pipe_wm *raw;
3776 enum pipe pipe = crtc->pipe;
3777 enum plane_id plane_id;
3778 int level, max_level;
3779
3780 active->cxsr = wm->cxsr;
3781 active->hpll_en = wm->hpll_en;
3782 active->fbc_en = wm->fbc_en;
3783
3784 active->sr = wm->sr;
3785 active->hpll = wm->hpll;
3786
3787 for_each_plane_id_on_crtc(crtc, plane_id) {
3788 active->wm.plane[plane_id] =
3789 wm->pipe[pipe].plane[plane_id];
3790 }
3791
3792 if (wm->cxsr && wm->hpll_en)
3793 max_level = G4X_WM_LEVEL_HPLL;
3794 else if (wm->cxsr)
3795 max_level = G4X_WM_LEVEL_SR;
3796 else
3797 max_level = G4X_WM_LEVEL_NORMAL;
3798
3799 level = G4X_WM_LEVEL_NORMAL;
3800 raw = &crtc_state->wm.g4x.raw[level];
3801 for_each_plane_id_on_crtc(crtc, plane_id)
3802 raw->plane[plane_id] = active->wm.plane[plane_id];
3803
3804 level = G4X_WM_LEVEL_SR;
3805 if (level > max_level)
3806 goto out;
3807
3808 raw = &crtc_state->wm.g4x.raw[level];
3809 raw->plane[PLANE_PRIMARY] = active->sr.plane;
3810 raw->plane[PLANE_CURSOR] = active->sr.cursor;
3811 raw->plane[PLANE_SPRITE0] = 0;
3812 raw->fbc = active->sr.fbc;
3813
3814 level = G4X_WM_LEVEL_HPLL;
3815 if (level > max_level)
3816 goto out;
3817
3818 raw = &crtc_state->wm.g4x.raw[level];
3819 raw->plane[PLANE_PRIMARY] = active->hpll.plane;
3820 raw->plane[PLANE_CURSOR] = active->hpll.cursor;
3821 raw->plane[PLANE_SPRITE0] = 0;
3822 raw->fbc = active->hpll.fbc;
3823
3824 level++;
3825 out:
3826 for_each_plane_id_on_crtc(crtc, plane_id)
3827 g4x_raw_plane_wm_set(crtc_state, level,
3828 plane_id, USHRT_MAX);
3829 g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
3830
3831 g4x_invalidate_wms(crtc, active, level);
3832
3833 crtc_state->wm.g4x.optimal = *active;
3834 crtc_state->wm.g4x.intermediate = *active;
3835
3836 drm_dbg_kms(&dev_priv->drm,
3837 "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
3838 pipe_name(pipe),
3839 wm->pipe[pipe].plane[PLANE_PRIMARY],
3840 wm->pipe[pipe].plane[PLANE_CURSOR],
3841 wm->pipe[pipe].plane[PLANE_SPRITE0]);
3842 }
3843
3844 drm_dbg_kms(&dev_priv->drm,
3845 "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
3846 wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
3847 drm_dbg_kms(&dev_priv->drm,
3848 "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
3849 wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
3850 drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n",
3851 str_yes_no(wm->cxsr), str_yes_no(wm->hpll_en),
3852 str_yes_no(wm->fbc_en));
3853 }
3854
g4x_wm_sanitize(struct drm_i915_private * dev_priv)3855 static void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
3856 {
3857 struct intel_display *display = &dev_priv->display;
3858 struct intel_plane *plane;
3859 struct intel_crtc *crtc;
3860
3861 mutex_lock(&dev_priv->display.wm.wm_mutex);
3862
3863 for_each_intel_plane(&dev_priv->drm, plane) {
3864 struct intel_crtc *crtc =
3865 intel_crtc_for_pipe(display, plane->pipe);
3866 struct intel_crtc_state *crtc_state =
3867 to_intel_crtc_state(crtc->base.state);
3868 struct intel_plane_state *plane_state =
3869 to_intel_plane_state(plane->base.state);
3870 enum plane_id plane_id = plane->id;
3871 int level;
3872
3873 if (plane_state->uapi.visible)
3874 continue;
3875
3876 for (level = 0; level < dev_priv->display.wm.num_levels; level++) {
3877 struct g4x_pipe_wm *raw =
3878 &crtc_state->wm.g4x.raw[level];
3879
3880 raw->plane[plane_id] = 0;
3881
3882 if (plane_id == PLANE_PRIMARY)
3883 raw->fbc = 0;
3884 }
3885 }
3886
3887 for_each_intel_crtc(&dev_priv->drm, crtc) {
3888 struct intel_crtc_state *crtc_state =
3889 to_intel_crtc_state(crtc->base.state);
3890 int ret;
3891
3892 ret = _g4x_compute_pipe_wm(crtc_state);
3893 drm_WARN_ON(&dev_priv->drm, ret);
3894
3895 crtc_state->wm.g4x.intermediate =
3896 crtc_state->wm.g4x.optimal;
3897 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
3898 }
3899
3900 g4x_program_watermarks(dev_priv);
3901
3902 mutex_unlock(&dev_priv->display.wm.wm_mutex);
3903 }
3904
g4x_wm_get_hw_state_and_sanitize(struct drm_i915_private * i915)3905 static void g4x_wm_get_hw_state_and_sanitize(struct drm_i915_private *i915)
3906 {
3907 g4x_wm_get_hw_state(i915);
3908 g4x_wm_sanitize(i915);
3909 }
3910
vlv_wm_get_hw_state(struct drm_i915_private * dev_priv)3911 static void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
3912 {
3913 struct vlv_wm_values *wm = &dev_priv->display.wm.vlv;
3914 struct intel_crtc *crtc;
3915 u32 val;
3916
3917 vlv_read_wm_values(dev_priv, wm);
3918
3919 wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
3920 wm->level = VLV_WM_LEVEL_PM2;
3921
3922 if (IS_CHERRYVIEW(dev_priv)) {
3923 vlv_punit_get(dev_priv);
3924
3925 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
3926 if (val & DSP_MAXFIFO_PM5_ENABLE)
3927 wm->level = VLV_WM_LEVEL_PM5;
3928
3929 /*
3930 * If DDR DVFS is disabled in the BIOS, Punit
3931 * will never ack the request. So if that happens
3932 * assume we don't have to enable/disable DDR DVFS
3933 * dynamically. To test that just set the REQ_ACK
3934 * bit to poke the Punit, but don't change the
3935 * HIGH/LOW bits so that we don't actually change
3936 * the current state.
3937 */
3938 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
3939 val |= FORCE_DDR_FREQ_REQ_ACK;
3940 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
3941
3942 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
3943 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
3944 drm_dbg_kms(&dev_priv->drm,
3945 "Punit not acking DDR DVFS request, "
3946 "assuming DDR DVFS is disabled\n");
3947 dev_priv->display.wm.num_levels = VLV_WM_LEVEL_PM5 + 1;
3948 } else {
3949 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
3950 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
3951 wm->level = VLV_WM_LEVEL_DDR_DVFS;
3952 }
3953
3954 vlv_punit_put(dev_priv);
3955 }
3956
3957 for_each_intel_crtc(&dev_priv->drm, crtc) {
3958 struct intel_crtc_state *crtc_state =
3959 to_intel_crtc_state(crtc->base.state);
3960 struct vlv_wm_state *active = &crtc->wm.active.vlv;
3961 const struct vlv_fifo_state *fifo_state =
3962 &crtc_state->wm.vlv.fifo_state;
3963 enum pipe pipe = crtc->pipe;
3964 enum plane_id plane_id;
3965 int level;
3966
3967 vlv_get_fifo_size(crtc_state);
3968
3969 active->num_levels = wm->level + 1;
3970 active->cxsr = wm->cxsr;
3971
3972 for (level = 0; level < active->num_levels; level++) {
3973 struct g4x_pipe_wm *raw =
3974 &crtc_state->wm.vlv.raw[level];
3975
3976 active->sr[level].plane = wm->sr.plane;
3977 active->sr[level].cursor = wm->sr.cursor;
3978
3979 for_each_plane_id_on_crtc(crtc, plane_id) {
3980 active->wm[level].plane[plane_id] =
3981 wm->pipe[pipe].plane[plane_id];
3982
3983 raw->plane[plane_id] =
3984 vlv_invert_wm_value(active->wm[level].plane[plane_id],
3985 fifo_state->plane[plane_id]);
3986 }
3987 }
3988
3989 for_each_plane_id_on_crtc(crtc, plane_id)
3990 vlv_raw_plane_wm_set(crtc_state, level,
3991 plane_id, USHRT_MAX);
3992 vlv_invalidate_wms(crtc, active, level);
3993
3994 crtc_state->wm.vlv.optimal = *active;
3995 crtc_state->wm.vlv.intermediate = *active;
3996
3997 drm_dbg_kms(&dev_priv->drm,
3998 "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
3999 pipe_name(pipe),
4000 wm->pipe[pipe].plane[PLANE_PRIMARY],
4001 wm->pipe[pipe].plane[PLANE_CURSOR],
4002 wm->pipe[pipe].plane[PLANE_SPRITE0],
4003 wm->pipe[pipe].plane[PLANE_SPRITE1]);
4004 }
4005
4006 drm_dbg_kms(&dev_priv->drm,
4007 "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4008 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4009 }
4010
vlv_wm_sanitize(struct drm_i915_private * dev_priv)4011 static void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
4012 {
4013 struct intel_display *display = &dev_priv->display;
4014 struct intel_plane *plane;
4015 struct intel_crtc *crtc;
4016
4017 mutex_lock(&dev_priv->display.wm.wm_mutex);
4018
4019 for_each_intel_plane(&dev_priv->drm, plane) {
4020 struct intel_crtc *crtc =
4021 intel_crtc_for_pipe(display, plane->pipe);
4022 struct intel_crtc_state *crtc_state =
4023 to_intel_crtc_state(crtc->base.state);
4024 struct intel_plane_state *plane_state =
4025 to_intel_plane_state(plane->base.state);
4026 enum plane_id plane_id = plane->id;
4027 int level;
4028
4029 if (plane_state->uapi.visible)
4030 continue;
4031
4032 for (level = 0; level < dev_priv->display.wm.num_levels; level++) {
4033 struct g4x_pipe_wm *raw =
4034 &crtc_state->wm.vlv.raw[level];
4035
4036 raw->plane[plane_id] = 0;
4037 }
4038 }
4039
4040 for_each_intel_crtc(&dev_priv->drm, crtc) {
4041 struct intel_crtc_state *crtc_state =
4042 to_intel_crtc_state(crtc->base.state);
4043 int ret;
4044
4045 ret = _vlv_compute_pipe_wm(crtc_state);
4046 drm_WARN_ON(&dev_priv->drm, ret);
4047
4048 crtc_state->wm.vlv.intermediate =
4049 crtc_state->wm.vlv.optimal;
4050 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
4051 }
4052
4053 vlv_program_watermarks(dev_priv);
4054
4055 mutex_unlock(&dev_priv->display.wm.wm_mutex);
4056 }
4057
vlv_wm_get_hw_state_and_sanitize(struct drm_i915_private * i915)4058 static void vlv_wm_get_hw_state_and_sanitize(struct drm_i915_private *i915)
4059 {
4060 vlv_wm_get_hw_state(i915);
4061 vlv_wm_sanitize(i915);
4062 }
4063
4064 /*
4065 * FIXME should probably kill this and improve
4066 * the real watermark readout/sanitation instead
4067 */
ilk_init_lp_watermarks(struct drm_i915_private * dev_priv)4068 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
4069 {
4070 intel_uncore_rmw(&dev_priv->uncore, WM3_LP_ILK, WM_LP_ENABLE, 0);
4071 intel_uncore_rmw(&dev_priv->uncore, WM2_LP_ILK, WM_LP_ENABLE, 0);
4072 intel_uncore_rmw(&dev_priv->uncore, WM1_LP_ILK, WM_LP_ENABLE, 0);
4073
4074 /*
4075 * Don't touch WM_LP_SPRITE_ENABLE here.
4076 * Doing so could cause underruns.
4077 */
4078 }
4079
ilk_wm_get_hw_state(struct drm_i915_private * dev_priv)4080 static void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
4081 {
4082 struct ilk_wm_values *hw = &dev_priv->display.wm.hw;
4083 struct intel_crtc *crtc;
4084
4085 ilk_init_lp_watermarks(dev_priv);
4086
4087 for_each_intel_crtc(&dev_priv->drm, crtc)
4088 ilk_pipe_wm_get_hw_state(crtc);
4089
4090 hw->wm_lp[0] = intel_uncore_read(&dev_priv->uncore, WM1_LP_ILK);
4091 hw->wm_lp[1] = intel_uncore_read(&dev_priv->uncore, WM2_LP_ILK);
4092 hw->wm_lp[2] = intel_uncore_read(&dev_priv->uncore, WM3_LP_ILK);
4093
4094 hw->wm_lp_spr[0] = intel_uncore_read(&dev_priv->uncore, WM1S_LP_ILK);
4095 if (DISPLAY_VER(dev_priv) >= 7) {
4096 hw->wm_lp_spr[1] = intel_uncore_read(&dev_priv->uncore, WM2S_LP_IVB);
4097 hw->wm_lp_spr[2] = intel_uncore_read(&dev_priv->uncore, WM3S_LP_IVB);
4098 }
4099
4100 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4101 hw->partitioning = (intel_uncore_read(&dev_priv->uncore, WM_MISC) &
4102 WM_MISC_DATA_PARTITION_5_6) ?
4103 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4104 else if (IS_IVYBRIDGE(dev_priv))
4105 hw->partitioning = (intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2) &
4106 DISP_DATA_PARTITION_5_6) ?
4107 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4108
4109 hw->enable_fbc_wm =
4110 !(intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4111 }
4112
4113 static const struct intel_wm_funcs ilk_wm_funcs = {
4114 .compute_watermarks = ilk_compute_watermarks,
4115 .initial_watermarks = ilk_initial_watermarks,
4116 .optimize_watermarks = ilk_optimize_watermarks,
4117 .get_hw_state = ilk_wm_get_hw_state,
4118 };
4119
4120 static const struct intel_wm_funcs vlv_wm_funcs = {
4121 .compute_watermarks = vlv_compute_watermarks,
4122 .initial_watermarks = vlv_initial_watermarks,
4123 .optimize_watermarks = vlv_optimize_watermarks,
4124 .atomic_update_watermarks = vlv_atomic_update_fifo,
4125 .get_hw_state = vlv_wm_get_hw_state_and_sanitize,
4126 };
4127
4128 static const struct intel_wm_funcs g4x_wm_funcs = {
4129 .compute_watermarks = g4x_compute_watermarks,
4130 .initial_watermarks = g4x_initial_watermarks,
4131 .optimize_watermarks = g4x_optimize_watermarks,
4132 .get_hw_state = g4x_wm_get_hw_state_and_sanitize,
4133 };
4134
4135 static const struct intel_wm_funcs pnv_wm_funcs = {
4136 .compute_watermarks = i9xx_compute_watermarks,
4137 .update_wm = pnv_update_wm,
4138 };
4139
4140 static const struct intel_wm_funcs i965_wm_funcs = {
4141 .compute_watermarks = i9xx_compute_watermarks,
4142 .update_wm = i965_update_wm,
4143 };
4144
4145 static const struct intel_wm_funcs i9xx_wm_funcs = {
4146 .compute_watermarks = i9xx_compute_watermarks,
4147 .update_wm = i9xx_update_wm,
4148 };
4149
4150 static const struct intel_wm_funcs i845_wm_funcs = {
4151 .compute_watermarks = i9xx_compute_watermarks,
4152 .update_wm = i845_update_wm,
4153 };
4154
4155 static const struct intel_wm_funcs nop_funcs = {
4156 };
4157
i9xx_wm_init(struct drm_i915_private * dev_priv)4158 void i9xx_wm_init(struct drm_i915_private *dev_priv)
4159 {
4160 /* For FIFO watermark updates */
4161 if (HAS_PCH_SPLIT(dev_priv)) {
4162 ilk_setup_wm_latency(dev_priv);
4163 dev_priv->display.funcs.wm = &ilk_wm_funcs;
4164 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4165 vlv_setup_wm_latency(dev_priv);
4166 dev_priv->display.funcs.wm = &vlv_wm_funcs;
4167 } else if (IS_G4X(dev_priv)) {
4168 g4x_setup_wm_latency(dev_priv);
4169 dev_priv->display.funcs.wm = &g4x_wm_funcs;
4170 } else if (IS_PINEVIEW(dev_priv)) {
4171 if (!pnv_get_cxsr_latency(dev_priv)) {
4172 drm_info(&dev_priv->drm, "Unknown FSB/MEM, disabling CxSR\n");
4173 /* Disable CxSR and never update its watermark again */
4174 intel_set_memory_cxsr(dev_priv, false);
4175 dev_priv->display.funcs.wm = &nop_funcs;
4176 } else {
4177 dev_priv->display.funcs.wm = &pnv_wm_funcs;
4178 }
4179 } else if (DISPLAY_VER(dev_priv) == 4) {
4180 dev_priv->display.funcs.wm = &i965_wm_funcs;
4181 } else if (DISPLAY_VER(dev_priv) == 3) {
4182 dev_priv->display.funcs.wm = &i9xx_wm_funcs;
4183 } else if (DISPLAY_VER(dev_priv) == 2) {
4184 if (INTEL_NUM_PIPES(dev_priv) == 1)
4185 dev_priv->display.funcs.wm = &i845_wm_funcs;
4186 else
4187 dev_priv->display.funcs.wm = &i9xx_wm_funcs;
4188 } else {
4189 drm_err(&dev_priv->drm,
4190 "unexpected fall-through in %s\n", __func__);
4191 dev_priv->display.funcs.wm = &nop_funcs;
4192 }
4193 }
4194