1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Generic pwmlib implementation
4 *
5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6 * Copyright (C) 2011-2012 Avionic Design GmbH
7 */
8
9 #define DEFAULT_SYMBOL_NAMESPACE "PWM"
10
11 #include <linux/acpi.h>
12 #include <linux/module.h>
13 #include <linux/idr.h>
14 #include <linux/of.h>
15 #include <linux/pwm.h>
16 #include <linux/list.h>
17 #include <linux/mutex.h>
18 #include <linux/err.h>
19 #include <linux/slab.h>
20 #include <linux/device.h>
21 #include <linux/debugfs.h>
22 #include <linux/seq_file.h>
23
24 #include <dt-bindings/pwm/pwm.h>
25
26 #include <uapi/linux/pwm.h>
27
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/pwm.h>
30
31 #define PWM_MINOR_COUNT 256
32
33 /* protects access to pwm_chips */
34 static DEFINE_MUTEX(pwm_lock);
35
36 static DEFINE_IDR(pwm_chips);
37
pwmchip_lock(struct pwm_chip * chip)38 static void pwmchip_lock(struct pwm_chip *chip)
39 {
40 if (chip->atomic)
41 spin_lock(&chip->atomic_lock);
42 else
43 mutex_lock(&chip->nonatomic_lock);
44 }
45
pwmchip_unlock(struct pwm_chip * chip)46 static void pwmchip_unlock(struct pwm_chip *chip)
47 {
48 if (chip->atomic)
49 spin_unlock(&chip->atomic_lock);
50 else
51 mutex_unlock(&chip->nonatomic_lock);
52 }
53
DEFINE_GUARD(pwmchip,struct pwm_chip *,pwmchip_lock (_T),pwmchip_unlock (_T))54 DEFINE_GUARD(pwmchip, struct pwm_chip *, pwmchip_lock(_T), pwmchip_unlock(_T))
55
56 static bool pwm_wf_valid(const struct pwm_waveform *wf)
57 {
58 /*
59 * For now restrict waveforms to period_length_ns <= S64_MAX to provide
60 * some space for future extensions. One possibility is to simplify
61 * representing waveforms with inverted polarity using negative values
62 * somehow.
63 */
64 if (wf->period_length_ns > S64_MAX)
65 return false;
66
67 if (wf->duty_length_ns > wf->period_length_ns)
68 return false;
69
70 /*
71 * .duty_offset_ns is supposed to be smaller than .period_length_ns, apart
72 * from the corner case .duty_offset_ns == 0 && .period_length_ns == 0.
73 */
74 if (wf->duty_offset_ns && wf->duty_offset_ns >= wf->period_length_ns)
75 return false;
76
77 return true;
78 }
79
pwm_wf2state(const struct pwm_waveform * wf,struct pwm_state * state)80 static void pwm_wf2state(const struct pwm_waveform *wf, struct pwm_state *state)
81 {
82 if (wf->period_length_ns) {
83 if (wf->duty_length_ns + wf->duty_offset_ns < wf->period_length_ns)
84 *state = (struct pwm_state){
85 .enabled = true,
86 .polarity = PWM_POLARITY_NORMAL,
87 .period = wf->period_length_ns,
88 .duty_cycle = wf->duty_length_ns,
89 };
90 else
91 *state = (struct pwm_state){
92 .enabled = true,
93 .polarity = PWM_POLARITY_INVERSED,
94 .period = wf->period_length_ns,
95 .duty_cycle = wf->period_length_ns - wf->duty_length_ns,
96 };
97 } else {
98 *state = (struct pwm_state){
99 .enabled = false,
100 };
101 }
102 }
103
pwm_state2wf(const struct pwm_state * state,struct pwm_waveform * wf)104 static void pwm_state2wf(const struct pwm_state *state, struct pwm_waveform *wf)
105 {
106 if (state->enabled) {
107 if (state->polarity == PWM_POLARITY_NORMAL)
108 *wf = (struct pwm_waveform){
109 .period_length_ns = state->period,
110 .duty_length_ns = state->duty_cycle,
111 .duty_offset_ns = 0,
112 };
113 else
114 *wf = (struct pwm_waveform){
115 .period_length_ns = state->period,
116 .duty_length_ns = state->period - state->duty_cycle,
117 .duty_offset_ns = state->duty_cycle,
118 };
119 } else {
120 *wf = (struct pwm_waveform){
121 .period_length_ns = 0,
122 };
123 }
124 }
125
pwmwfcmp(const struct pwm_waveform * a,const struct pwm_waveform * b)126 static int pwmwfcmp(const struct pwm_waveform *a, const struct pwm_waveform *b)
127 {
128 if (a->period_length_ns > b->period_length_ns)
129 return 1;
130
131 if (a->period_length_ns < b->period_length_ns)
132 return -1;
133
134 if (a->duty_length_ns > b->duty_length_ns)
135 return 1;
136
137 if (a->duty_length_ns < b->duty_length_ns)
138 return -1;
139
140 if (a->duty_offset_ns > b->duty_offset_ns)
141 return 1;
142
143 if (a->duty_offset_ns < b->duty_offset_ns)
144 return -1;
145
146 return 0;
147 }
148
pwm_check_rounding(const struct pwm_waveform * wf,const struct pwm_waveform * wf_rounded)149 static bool pwm_check_rounding(const struct pwm_waveform *wf,
150 const struct pwm_waveform *wf_rounded)
151 {
152 if (!wf->period_length_ns)
153 return true;
154
155 if (wf->period_length_ns < wf_rounded->period_length_ns)
156 return false;
157
158 if (wf->duty_length_ns < wf_rounded->duty_length_ns)
159 return false;
160
161 if (wf->duty_offset_ns < wf_rounded->duty_offset_ns)
162 return false;
163
164 return true;
165 }
166
__pwm_round_waveform_tohw(struct pwm_chip * chip,struct pwm_device * pwm,const struct pwm_waveform * wf,void * wfhw)167 static int __pwm_round_waveform_tohw(struct pwm_chip *chip, struct pwm_device *pwm,
168 const struct pwm_waveform *wf, void *wfhw)
169 {
170 const struct pwm_ops *ops = chip->ops;
171 int ret;
172
173 ret = ops->round_waveform_tohw(chip, pwm, wf, wfhw);
174 trace_pwm_round_waveform_tohw(pwm, wf, wfhw, ret);
175
176 return ret;
177 }
178
__pwm_round_waveform_fromhw(struct pwm_chip * chip,struct pwm_device * pwm,const void * wfhw,struct pwm_waveform * wf)179 static int __pwm_round_waveform_fromhw(struct pwm_chip *chip, struct pwm_device *pwm,
180 const void *wfhw, struct pwm_waveform *wf)
181 {
182 const struct pwm_ops *ops = chip->ops;
183 int ret;
184
185 ret = ops->round_waveform_fromhw(chip, pwm, wfhw, wf);
186 trace_pwm_round_waveform_fromhw(pwm, wfhw, wf, ret);
187
188 return ret;
189 }
190
__pwm_read_waveform(struct pwm_chip * chip,struct pwm_device * pwm,void * wfhw)191 static int __pwm_read_waveform(struct pwm_chip *chip, struct pwm_device *pwm, void *wfhw)
192 {
193 const struct pwm_ops *ops = chip->ops;
194 int ret;
195
196 ret = ops->read_waveform(chip, pwm, wfhw);
197 trace_pwm_read_waveform(pwm, wfhw, ret);
198
199 return ret;
200 }
201
__pwm_write_waveform(struct pwm_chip * chip,struct pwm_device * pwm,const void * wfhw)202 static int __pwm_write_waveform(struct pwm_chip *chip, struct pwm_device *pwm, const void *wfhw)
203 {
204 const struct pwm_ops *ops = chip->ops;
205 int ret;
206
207 ret = ops->write_waveform(chip, pwm, wfhw);
208 trace_pwm_write_waveform(pwm, wfhw, ret);
209
210 return ret;
211 }
212
213 /**
214 * pwm_round_waveform_might_sleep - Query hardware capabilities
215 * Cannot be used in atomic context.
216 * @pwm: PWM device
217 * @wf: waveform to round and output parameter
218 *
219 * Typically a given waveform cannot be implemented exactly by hardware, e.g.
220 * because hardware only supports coarse period resolution or no duty_offset.
221 * This function returns the actually implemented waveform if you pass @wf to
222 * pwm_set_waveform_might_sleep() now.
223 *
224 * Note however that the world doesn't stop turning when you call it, so when
225 * doing::
226 *
227 * pwm_round_waveform_might_sleep(mypwm, &wf);
228 * pwm_set_waveform_might_sleep(mypwm, &wf, true);
229 *
230 * the latter might fail, e.g. because an input clock changed its rate between
231 * these two calls and the waveform determined by
232 * pwm_round_waveform_might_sleep() cannot be implemented any more.
233 *
234 * Usually all values passed in @wf are rounded down to the nearest possible
235 * value (in the order period_length_ns, duty_length_ns and then
236 * duty_offset_ns). Only if this isn't possible, a value might grow. See the
237 * documentation for pwm_set_waveform_might_sleep() for a more formal
238 * description.
239 *
240 * Returns: 0 on success, 1 if at least one value had to be rounded up or a
241 * negative errno.
242 * Context: May sleep.
243 */
pwm_round_waveform_might_sleep(struct pwm_device * pwm,struct pwm_waveform * wf)244 int pwm_round_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf)
245 {
246 struct pwm_chip *chip = pwm->chip;
247 const struct pwm_ops *ops = chip->ops;
248 struct pwm_waveform wf_req = *wf;
249 char wfhw[PWM_WFHWSIZE];
250 int ret_tohw, ret_fromhw;
251
252 BUG_ON(PWM_WFHWSIZE < ops->sizeof_wfhw);
253
254 if (!pwmchip_supports_waveform(chip))
255 return -EOPNOTSUPP;
256
257 if (!pwm_wf_valid(wf))
258 return -EINVAL;
259
260 guard(pwmchip)(chip);
261
262 if (!chip->operational)
263 return -ENODEV;
264
265 ret_tohw = __pwm_round_waveform_tohw(chip, pwm, wf, wfhw);
266 if (ret_tohw < 0)
267 return ret_tohw;
268
269 if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_tohw > 1)
270 dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_tohw: requested %llu/%llu [+%llu], return value %d\n",
271 wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_tohw);
272
273 ret_fromhw = __pwm_round_waveform_fromhw(chip, pwm, wfhw, wf);
274 if (ret_fromhw < 0)
275 return ret_fromhw;
276
277 if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_fromhw > 0)
278 dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_fromhw: requested %llu/%llu [+%llu], return value %d\n",
279 wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_fromhw);
280
281 if (IS_ENABLED(CONFIG_PWM_DEBUG) &&
282 (ret_tohw == 0) != pwm_check_rounding(&wf_req, wf))
283 dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu], ret: %d\n",
284 wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns,
285 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns, ret_tohw);
286
287 return ret_tohw;
288 }
289 EXPORT_SYMBOL_GPL(pwm_round_waveform_might_sleep);
290
291 /**
292 * pwm_get_waveform_might_sleep - Query hardware about current configuration
293 * Cannot be used in atomic context.
294 * @pwm: PWM device
295 * @wf: output parameter
296 *
297 * Stores the current configuration of the PWM in @wf. Note this is the
298 * equivalent of pwm_get_state_hw() (and not pwm_get_state()) for pwm_waveform.
299 *
300 * Returns: 0 on success or a negative errno
301 * Context: May sleep.
302 */
pwm_get_waveform_might_sleep(struct pwm_device * pwm,struct pwm_waveform * wf)303 int pwm_get_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf)
304 {
305 struct pwm_chip *chip = pwm->chip;
306 const struct pwm_ops *ops = chip->ops;
307 char wfhw[PWM_WFHWSIZE];
308 int err;
309
310 BUG_ON(PWM_WFHWSIZE < ops->sizeof_wfhw);
311
312 if (!pwmchip_supports_waveform(chip) || !ops->read_waveform)
313 return -EOPNOTSUPP;
314
315 guard(pwmchip)(chip);
316
317 if (!chip->operational)
318 return -ENODEV;
319
320 err = __pwm_read_waveform(chip, pwm, &wfhw);
321 if (err)
322 return err;
323
324 return __pwm_round_waveform_fromhw(chip, pwm, &wfhw, wf);
325 }
326 EXPORT_SYMBOL_GPL(pwm_get_waveform_might_sleep);
327
328 /* Called with the pwmchip lock held */
__pwm_set_waveform(struct pwm_device * pwm,const struct pwm_waveform * wf,bool exact)329 static int __pwm_set_waveform(struct pwm_device *pwm,
330 const struct pwm_waveform *wf,
331 bool exact)
332 {
333 struct pwm_chip *chip = pwm->chip;
334 const struct pwm_ops *ops = chip->ops;
335 char wfhw[PWM_WFHWSIZE];
336 struct pwm_waveform wf_rounded;
337 int err, ret_tohw;
338
339 BUG_ON(PWM_WFHWSIZE < ops->sizeof_wfhw);
340
341 if (!pwmchip_supports_waveform(chip))
342 return -EOPNOTSUPP;
343
344 if (!pwm_wf_valid(wf))
345 return -EINVAL;
346
347 ret_tohw = __pwm_round_waveform_tohw(chip, pwm, wf, &wfhw);
348 if (ret_tohw < 0)
349 return ret_tohw;
350
351 if ((IS_ENABLED(CONFIG_PWM_DEBUG) || exact) && wf->period_length_ns) {
352 err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded);
353 if (err)
354 return err;
355
356 if (IS_ENABLED(CONFIG_PWM_DEBUG) && (ret_tohw == 0) != pwm_check_rounding(wf, &wf_rounded))
357 dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu], ret: %d\n",
358 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
359 wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns, ret_tohw);
360
361 if (exact && pwmwfcmp(wf, &wf_rounded)) {
362 dev_dbg(&chip->dev, "Requested no rounding, but %llu/%llu [+%llu] -> %llu/%llu [+%llu]\n",
363 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
364 wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns);
365
366 return 1;
367 }
368 }
369
370 err = __pwm_write_waveform(chip, pwm, &wfhw);
371 if (err)
372 return err;
373
374 /* update .state */
375 pwm_wf2state(wf, &pwm->state);
376
377 if (IS_ENABLED(CONFIG_PWM_DEBUG) && ops->read_waveform && wf->period_length_ns) {
378 struct pwm_waveform wf_set;
379
380 err = __pwm_read_waveform(chip, pwm, &wfhw);
381 if (err)
382 /* maybe ignore? */
383 return err;
384
385 err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_set);
386 if (err)
387 /* maybe ignore? */
388 return err;
389
390 if (pwmwfcmp(&wf_set, &wf_rounded) != 0)
391 dev_err(&chip->dev,
392 "Unexpected setting: requested %llu/%llu [+%llu], expected %llu/%llu [+%llu], set %llu/%llu [+%llu]\n",
393 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
394 wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns,
395 wf_set.duty_length_ns, wf_set.period_length_ns, wf_set.duty_offset_ns);
396 }
397
398 return ret_tohw;
399 }
400
401 /**
402 * pwm_set_waveform_might_sleep - Apply a new waveform
403 * Cannot be used in atomic context.
404 * @pwm: PWM device
405 * @wf: The waveform to apply
406 * @exact: If true no rounding is allowed
407 *
408 * Typically a requested waveform cannot be implemented exactly, e.g. because
409 * you requested .period_length_ns = 100 ns, but the hardware can only set
410 * periods that are a multiple of 8.5 ns. With that hardware passing @exact =
411 * true results in pwm_set_waveform_might_sleep() failing and returning -EDOM.
412 * If @exact = false you get a period of 93.5 ns (i.e. the biggest period not
413 * bigger than the requested value).
414 * Note that even with @exact = true, some rounding by less than 1 ns is
415 * possible/needed. In the above example requesting .period_length_ns = 94 and
416 * @exact = true, you get the hardware configured with period = 93.5 ns.
417 *
418 * Let C be the set of possible hardware configurations for a given PWM device,
419 * consisting of tuples (p, d, o) where p is the period length, d is the duty
420 * length and o the duty offset.
421 *
422 * The following algorithm is implemented to pick the hardware setting
423 * (p, d, o) ∈ C for a given request (p', d', o') with @exact = false::
424 *
425 * p = max( { ṗ | ∃ ḋ, ȯ : (ṗ, ḋ, ȯ) ∈ C ∧ ṗ ≤ p' } ∪ { min({ ṗ | ∃ ḋ, ȯ : (ṗ, ḋ, ȯ) ∈ C }) })
426 * d = max( { ḋ | ∃ ȯ : (p, ḋ, ȯ) ∈ C ∧ ḋ ≤ d' } ∪ { min({ ḋ | ∃ ȯ : (p, ḋ, ȯ) ∈ C }) })
427 * o = max( { ȯ | (p, d, ȯ) ∈ C ∧ ȯ ≤ o' } ∪ { min({ ȯ | (p, d, ȯ) ∈ C }) })
428 *
429 * In words: The chosen period length is the maximal possible period length not
430 * bigger than the requested period length and if that doesn't exist, the
431 * minimal period length. The chosen duty length is the maximal possible duty
432 * length that is compatible with the chosen period length and isn't bigger than
433 * the requested duty length. Again if such a value doesn't exist, the minimal
434 * duty length compatible with the chosen period is picked. After that the duty
435 * offset compatible with the chosen period and duty length is chosen in the
436 * same way.
437 *
438 * Returns: 0 on success, -EDOM if setting failed due to the exact waveform not
439 * being possible (if @exact), or a different negative errno on failure.
440 * Context: May sleep.
441 */
pwm_set_waveform_might_sleep(struct pwm_device * pwm,const struct pwm_waveform * wf,bool exact)442 int pwm_set_waveform_might_sleep(struct pwm_device *pwm,
443 const struct pwm_waveform *wf, bool exact)
444 {
445 struct pwm_chip *chip = pwm->chip;
446 int err;
447
448 might_sleep();
449
450 guard(pwmchip)(chip);
451
452 if (!chip->operational)
453 return -ENODEV;
454
455 if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) {
456 /*
457 * Catch any drivers that have been marked as atomic but
458 * that will sleep anyway.
459 */
460 non_block_start();
461 err = __pwm_set_waveform(pwm, wf, exact);
462 non_block_end();
463 } else {
464 err = __pwm_set_waveform(pwm, wf, exact);
465 }
466
467 /*
468 * map err == 1 to -EDOM for exact requests and 0 for !exact ones. Also
469 * make sure that -EDOM is only returned in exactly that case. Note that
470 * __pwm_set_waveform() should never return -EDOM which justifies the
471 * unlikely().
472 */
473 if (unlikely(err == -EDOM))
474 err = -EINVAL;
475 else if (exact && err == 1)
476 err = -EDOM;
477 else if (err == 1)
478 err = 0;
479
480 return err;
481 }
482 EXPORT_SYMBOL_GPL(pwm_set_waveform_might_sleep);
483
pwm_apply_debug(struct pwm_device * pwm,const struct pwm_state * state)484 static void pwm_apply_debug(struct pwm_device *pwm,
485 const struct pwm_state *state)
486 {
487 struct pwm_state *last = &pwm->last;
488 struct pwm_chip *chip = pwm->chip;
489 struct pwm_state s1 = { 0 }, s2 = { 0 };
490 int err;
491
492 if (!IS_ENABLED(CONFIG_PWM_DEBUG))
493 return;
494
495 /* No reasonable diagnosis possible without .get_state() */
496 if (!chip->ops->get_state)
497 return;
498
499 /*
500 * If a disabled PWM was requested the result is unspecified, so nothing
501 * to check.
502 */
503 if (!state->enabled)
504 return;
505
506 /*
507 * *state was just applied. Read out the hardware state and do some
508 * checks.
509 */
510
511 err = chip->ops->get_state(chip, pwm, &s1);
512 trace_pwm_get(pwm, &s1, err);
513 if (err)
514 /* If that failed there isn't much to debug */
515 return;
516
517 /*
518 * If the PWM was disabled that's maybe strange but there is nothing
519 * that can be sensibly checked then. So return early.
520 */
521 if (!s1.enabled)
522 return;
523
524 /*
525 * The lowlevel driver either ignored .polarity (which is a bug) or as
526 * best effort inverted .polarity and fixed .duty_cycle respectively.
527 * Undo this inversion and fixup for further tests.
528 */
529 if (s1.polarity != state->polarity) {
530 s2.polarity = state->polarity;
531 s2.duty_cycle = s1.period - s1.duty_cycle;
532 s2.period = s1.period;
533 s2.enabled = true;
534 } else {
535 s2 = s1;
536 }
537
538 if (s2.polarity != state->polarity &&
539 s2.duty_cycle < s2.period)
540 dev_warn(pwmchip_parent(chip), ".apply ignored .polarity\n");
541
542 if (last->polarity == state->polarity &&
543 last->period > s2.period &&
544 last->period <= state->period)
545 dev_warn(pwmchip_parent(chip),
546 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
547 state->period, s2.period, last->period);
548
549 /*
550 * Rounding period up is fine only if duty_cycle is 0 then, because a
551 * flat line doesn't have a characteristic period.
552 */
553 if (state->period < s2.period && s2.duty_cycle)
554 dev_warn(pwmchip_parent(chip),
555 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
556 state->period, s2.period);
557
558 if (last->polarity == state->polarity &&
559 last->period == s2.period &&
560 last->duty_cycle > s2.duty_cycle &&
561 last->duty_cycle <= state->duty_cycle)
562 dev_warn(pwmchip_parent(chip),
563 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
564 state->duty_cycle, state->period,
565 s2.duty_cycle, s2.period,
566 last->duty_cycle, last->period);
567
568 if (state->duty_cycle < s2.duty_cycle)
569 dev_warn(pwmchip_parent(chip),
570 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
571 state->duty_cycle, state->period,
572 s2.duty_cycle, s2.period);
573
574 /* reapply the state that the driver reported being configured. */
575 err = chip->ops->apply(chip, pwm, &s1);
576 trace_pwm_apply(pwm, &s1, err);
577 if (err) {
578 *last = s1;
579 dev_err(pwmchip_parent(chip), "failed to reapply current setting\n");
580 return;
581 }
582
583 *last = (struct pwm_state){ 0 };
584 err = chip->ops->get_state(chip, pwm, last);
585 trace_pwm_get(pwm, last, err);
586 if (err)
587 return;
588
589 /* reapplication of the current state should give an exact match */
590 if (s1.enabled != last->enabled ||
591 s1.polarity != last->polarity ||
592 (s1.enabled && s1.period != last->period) ||
593 (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
594 dev_err(pwmchip_parent(chip),
595 ".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
596 s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
597 last->enabled, last->polarity, last->duty_cycle,
598 last->period);
599 }
600 }
601
pwm_state_valid(const struct pwm_state * state)602 static bool pwm_state_valid(const struct pwm_state *state)
603 {
604 /*
605 * For a disabled state all other state description is irrelevant and
606 * and supposed to be ignored. So also ignore any strange values and
607 * consider the state ok.
608 */
609 if (!state->enabled)
610 return true;
611
612 if (!state->period)
613 return false;
614
615 if (state->duty_cycle > state->period)
616 return false;
617
618 return true;
619 }
620
__pwm_apply(struct pwm_device * pwm,const struct pwm_state * state)621 static int __pwm_apply(struct pwm_device *pwm, const struct pwm_state *state)
622 {
623 struct pwm_chip *chip;
624 const struct pwm_ops *ops;
625 int err;
626
627 if (!pwm || !state)
628 return -EINVAL;
629
630 if (!pwm_state_valid(state)) {
631 /*
632 * Allow to transition from one invalid state to another.
633 * This ensures that you can e.g. change the polarity while
634 * the period is zero. (This happens on stm32 when the hardware
635 * is in its poweron default state.) This greatly simplifies
636 * working with the sysfs API where you can only change one
637 * parameter at a time.
638 */
639 if (!pwm_state_valid(&pwm->state)) {
640 pwm->state = *state;
641 return 0;
642 }
643
644 return -EINVAL;
645 }
646
647 chip = pwm->chip;
648 ops = chip->ops;
649
650 if (state->period == pwm->state.period &&
651 state->duty_cycle == pwm->state.duty_cycle &&
652 state->polarity == pwm->state.polarity &&
653 state->enabled == pwm->state.enabled &&
654 state->usage_power == pwm->state.usage_power)
655 return 0;
656
657 if (pwmchip_supports_waveform(chip)) {
658 struct pwm_waveform wf;
659 char wfhw[PWM_WFHWSIZE];
660
661 BUG_ON(PWM_WFHWSIZE < ops->sizeof_wfhw);
662
663 pwm_state2wf(state, &wf);
664
665 /*
666 * The rounding is wrong here for states with inverted polarity.
667 * While .apply() rounds down duty_cycle (which represents the
668 * time from the start of the period to the inner edge),
669 * .round_waveform_tohw() rounds down the time the PWM is high.
670 * Can be fixed if the need arises, until reported otherwise
671 * let's assume that consumers don't care.
672 */
673
674 err = __pwm_round_waveform_tohw(chip, pwm, &wf, &wfhw);
675 if (err) {
676 if (err > 0)
677 /*
678 * This signals an invalid request, typically
679 * the requested period (or duty_offset) is
680 * smaller than possible with the hardware.
681 */
682 return -EINVAL;
683
684 return err;
685 }
686
687 if (IS_ENABLED(CONFIG_PWM_DEBUG)) {
688 struct pwm_waveform wf_rounded;
689
690 err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded);
691 if (err)
692 return err;
693
694 if (!pwm_check_rounding(&wf, &wf_rounded))
695 dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n",
696 wf.duty_length_ns, wf.period_length_ns, wf.duty_offset_ns,
697 wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns);
698 }
699
700 err = __pwm_write_waveform(chip, pwm, &wfhw);
701 if (err)
702 return err;
703
704 pwm->state = *state;
705
706 } else {
707 err = ops->apply(chip, pwm, state);
708 trace_pwm_apply(pwm, state, err);
709 if (err)
710 return err;
711
712 pwm->state = *state;
713
714 /*
715 * only do this after pwm->state was applied as some
716 * implementations of .get_state() depend on this
717 */
718 pwm_apply_debug(pwm, state);
719 }
720
721 return 0;
722 }
723
724 /**
725 * pwm_apply_might_sleep() - atomically apply a new state to a PWM device
726 * Cannot be used in atomic context.
727 * @pwm: PWM device
728 * @state: new state to apply
729 *
730 * Returns: 0 on success, or a negative errno
731 * Context: May sleep.
732 */
pwm_apply_might_sleep(struct pwm_device * pwm,const struct pwm_state * state)733 int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state)
734 {
735 int err;
736 struct pwm_chip *chip = pwm->chip;
737
738 /*
739 * Some lowlevel driver's implementations of .apply() make use of
740 * mutexes, also with some drivers only returning when the new
741 * configuration is active calling pwm_apply_might_sleep() from atomic context
742 * is a bad idea. So make it explicit that calling this function might
743 * sleep.
744 */
745 might_sleep();
746
747 guard(pwmchip)(chip);
748
749 if (!chip->operational)
750 return -ENODEV;
751
752 if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) {
753 /*
754 * Catch any drivers that have been marked as atomic but
755 * that will sleep anyway.
756 */
757 non_block_start();
758 err = __pwm_apply(pwm, state);
759 non_block_end();
760 } else {
761 err = __pwm_apply(pwm, state);
762 }
763
764 return err;
765 }
766 EXPORT_SYMBOL_GPL(pwm_apply_might_sleep);
767
768 /**
769 * pwm_apply_atomic() - apply a new state to a PWM device from atomic context
770 * Not all PWM devices support this function, check with pwm_might_sleep().
771 * @pwm: PWM device
772 * @state: new state to apply
773 *
774 * Returns: 0 on success, or a negative errno
775 * Context: Any
776 */
pwm_apply_atomic(struct pwm_device * pwm,const struct pwm_state * state)777 int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state)
778 {
779 struct pwm_chip *chip = pwm->chip;
780
781 WARN_ONCE(!chip->atomic,
782 "sleeping PWM driver used in atomic context\n");
783
784 guard(pwmchip)(chip);
785
786 if (!chip->operational)
787 return -ENODEV;
788
789 return __pwm_apply(pwm, state);
790 }
791 EXPORT_SYMBOL_GPL(pwm_apply_atomic);
792
793 /**
794 * pwm_get_state_hw() - get the current PWM state from hardware
795 * @pwm: PWM device
796 * @state: state to fill with the current PWM state
797 *
798 * Similar to pwm_get_state() but reads the current PWM state from hardware
799 * instead of the requested state.
800 *
801 * Returns: 0 on success or a negative error code on failure.
802 * Context: May sleep.
803 */
pwm_get_state_hw(struct pwm_device * pwm,struct pwm_state * state)804 int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state)
805 {
806 struct pwm_chip *chip = pwm->chip;
807 const struct pwm_ops *ops = chip->ops;
808 int ret = -EOPNOTSUPP;
809
810 might_sleep();
811
812 guard(pwmchip)(chip);
813
814 if (!chip->operational)
815 return -ENODEV;
816
817 if (pwmchip_supports_waveform(chip) && ops->read_waveform) {
818 char wfhw[PWM_WFHWSIZE];
819 struct pwm_waveform wf;
820
821 BUG_ON(PWM_WFHWSIZE < ops->sizeof_wfhw);
822
823 ret = __pwm_read_waveform(chip, pwm, &wfhw);
824 if (ret)
825 return ret;
826
827 ret = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf);
828 if (ret)
829 return ret;
830
831 pwm_wf2state(&wf, state);
832
833 } else if (ops->get_state) {
834 ret = ops->get_state(chip, pwm, state);
835 trace_pwm_get(pwm, state, ret);
836 }
837
838 return ret;
839 }
840 EXPORT_SYMBOL_GPL(pwm_get_state_hw);
841
842 /**
843 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
844 * @pwm: PWM device
845 *
846 * This function will adjust the PWM config to the PWM arguments provided
847 * by the DT or PWM lookup table. This is particularly useful to adapt
848 * the bootloader config to the Linux one.
849 *
850 * Returns: 0 on success or a negative error code on failure.
851 * Context: May sleep.
852 */
pwm_adjust_config(struct pwm_device * pwm)853 int pwm_adjust_config(struct pwm_device *pwm)
854 {
855 struct pwm_state state;
856 struct pwm_args pargs;
857
858 pwm_get_args(pwm, &pargs);
859 pwm_get_state(pwm, &state);
860
861 /*
862 * If the current period is zero it means that either the PWM driver
863 * does not support initial state retrieval or the PWM has not yet
864 * been configured.
865 *
866 * In either case, we setup the new period and polarity, and assign a
867 * duty cycle of 0.
868 */
869 if (!state.period) {
870 state.duty_cycle = 0;
871 state.period = pargs.period;
872 state.polarity = pargs.polarity;
873
874 return pwm_apply_might_sleep(pwm, &state);
875 }
876
877 /*
878 * Adjust the PWM duty cycle/period based on the period value provided
879 * in PWM args.
880 */
881 if (pargs.period != state.period) {
882 u64 dutycycle = (u64)state.duty_cycle * pargs.period;
883
884 do_div(dutycycle, state.period);
885 state.duty_cycle = dutycycle;
886 state.period = pargs.period;
887 }
888
889 /*
890 * If the polarity changed, we should also change the duty cycle.
891 */
892 if (pargs.polarity != state.polarity) {
893 state.polarity = pargs.polarity;
894 state.duty_cycle = state.period - state.duty_cycle;
895 }
896
897 return pwm_apply_might_sleep(pwm, &state);
898 }
899 EXPORT_SYMBOL_GPL(pwm_adjust_config);
900
901 /**
902 * pwm_capture() - capture and report a PWM signal
903 * @pwm: PWM device
904 * @result: structure to fill with capture result
905 * @timeout: time to wait, in milliseconds, before giving up on capture
906 *
907 * Returns: 0 on success or a negative error code on failure.
908 */
pwm_capture(struct pwm_device * pwm,struct pwm_capture * result,unsigned long timeout)909 static int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
910 unsigned long timeout)
911 {
912 struct pwm_chip *chip = pwm->chip;
913 const struct pwm_ops *ops = chip->ops;
914
915 if (!ops->capture)
916 return -ENOSYS;
917
918 /*
919 * Holding the pwm_lock is probably not needed. If you use pwm_capture()
920 * and you're interested to speed it up, please convince yourself it's
921 * really not needed, test and then suggest a patch on the mailing list.
922 */
923 guard(mutex)(&pwm_lock);
924
925 guard(pwmchip)(chip);
926
927 if (!chip->operational)
928 return -ENODEV;
929
930 return ops->capture(chip, pwm, result, timeout);
931 }
932
pwmchip_find_by_name(const char * name)933 static struct pwm_chip *pwmchip_find_by_name(const char *name)
934 {
935 struct pwm_chip *chip;
936 unsigned long id, tmp;
937
938 if (!name)
939 return NULL;
940
941 guard(mutex)(&pwm_lock);
942
943 idr_for_each_entry_ul(&pwm_chips, chip, tmp, id) {
944 if (device_match_name(pwmchip_parent(chip), name))
945 return chip;
946 }
947
948 return NULL;
949 }
950
pwm_device_request(struct pwm_device * pwm,const char * label)951 static int pwm_device_request(struct pwm_device *pwm, const char *label)
952 {
953 int err;
954 struct pwm_chip *chip = pwm->chip;
955 const struct pwm_ops *ops = chip->ops;
956
957 if (test_bit(PWMF_REQUESTED, &pwm->flags))
958 return -EBUSY;
959
960 /*
961 * This function is called while holding pwm_lock. As .operational only
962 * changes while holding this lock, checking it here without holding the
963 * chip lock is fine.
964 */
965 if (!chip->operational)
966 return -ENODEV;
967
968 if (!try_module_get(chip->owner))
969 return -ENODEV;
970
971 if (!get_device(&chip->dev)) {
972 err = -ENODEV;
973 goto err_get_device;
974 }
975
976 if (ops->request) {
977 err = ops->request(chip, pwm);
978 if (err) {
979 put_device(&chip->dev);
980 err_get_device:
981 module_put(chip->owner);
982 return err;
983 }
984 }
985
986 if (ops->read_waveform || ops->get_state) {
987 /*
988 * Zero-initialize state because most drivers are unaware of
989 * .usage_power. The other members of state are supposed to be
990 * set by lowlevel drivers. We still initialize the whole
991 * structure for simplicity even though this might paper over
992 * faulty implementations of .get_state().
993 */
994 struct pwm_state state = { 0, };
995
996 err = pwm_get_state_hw(pwm, &state);
997 if (!err)
998 pwm->state = state;
999
1000 if (IS_ENABLED(CONFIG_PWM_DEBUG))
1001 pwm->last = pwm->state;
1002 }
1003
1004 set_bit(PWMF_REQUESTED, &pwm->flags);
1005 pwm->label = label;
1006
1007 return 0;
1008 }
1009
1010 /**
1011 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
1012 * @chip: PWM chip
1013 * @index: per-chip index of the PWM to request
1014 * @label: a literal description string of this PWM
1015 *
1016 * Returns: A pointer to the PWM device at the given index of the given PWM
1017 * chip. A negative error code is returned if the index is not valid for the
1018 * specified PWM chip or if the PWM device cannot be requested.
1019 */
pwm_request_from_chip(struct pwm_chip * chip,unsigned int index,const char * label)1020 static struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
1021 unsigned int index,
1022 const char *label)
1023 {
1024 struct pwm_device *pwm;
1025 int err;
1026
1027 if (!chip || index >= chip->npwm)
1028 return ERR_PTR(-EINVAL);
1029
1030 guard(mutex)(&pwm_lock);
1031
1032 pwm = &chip->pwms[index];
1033
1034 err = pwm_device_request(pwm, label);
1035 if (err < 0)
1036 return ERR_PTR(err);
1037
1038 return pwm;
1039 }
1040
1041 struct pwm_device *
of_pwm_xlate_with_flags(struct pwm_chip * chip,const struct of_phandle_args * args)1042 of_pwm_xlate_with_flags(struct pwm_chip *chip, const struct of_phandle_args *args)
1043 {
1044 struct pwm_device *pwm;
1045
1046 /* period in the second cell and flags in the third cell are optional */
1047 if (args->args_count < 1)
1048 return ERR_PTR(-EINVAL);
1049
1050 pwm = pwm_request_from_chip(chip, args->args[0], NULL);
1051 if (IS_ERR(pwm))
1052 return pwm;
1053
1054 if (args->args_count > 1)
1055 pwm->args.period = args->args[1];
1056
1057 pwm->args.polarity = PWM_POLARITY_NORMAL;
1058 if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
1059 pwm->args.polarity = PWM_POLARITY_INVERSED;
1060
1061 return pwm;
1062 }
1063 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
1064
1065 /*
1066 * This callback is used for PXA PWM chips that only have a single PWM line.
1067 * For such chips you could argue that passing the line number (i.e. the first
1068 * parameter in the common case) is useless as it's always zero. So compared to
1069 * the default xlate function of_pwm_xlate_with_flags() the first parameter is
1070 * the default period and the second are flags.
1071 *
1072 * Note that if #pwm-cells = <3>, the semantic is the same as for
1073 * of_pwm_xlate_with_flags() to allow converting the affected driver to
1074 * #pwm-cells = <3> without breaking the legacy binding.
1075 *
1076 * Don't use for new drivers.
1077 */
1078 struct pwm_device *
of_pwm_single_xlate(struct pwm_chip * chip,const struct of_phandle_args * args)1079 of_pwm_single_xlate(struct pwm_chip *chip, const struct of_phandle_args *args)
1080 {
1081 struct pwm_device *pwm;
1082
1083 if (args->args_count >= 3)
1084 return of_pwm_xlate_with_flags(chip, args);
1085
1086 pwm = pwm_request_from_chip(chip, 0, NULL);
1087 if (IS_ERR(pwm))
1088 return pwm;
1089
1090 if (args->args_count > 0)
1091 pwm->args.period = args->args[0];
1092
1093 pwm->args.polarity = PWM_POLARITY_NORMAL;
1094 if (args->args_count > 1 && args->args[1] & PWM_POLARITY_INVERTED)
1095 pwm->args.polarity = PWM_POLARITY_INVERSED;
1096
1097 return pwm;
1098 }
1099 EXPORT_SYMBOL_GPL(of_pwm_single_xlate);
1100
1101 struct pwm_export {
1102 struct device pwm_dev;
1103 struct pwm_device *pwm;
1104 struct mutex lock;
1105 struct pwm_state suspend;
1106 };
1107
pwmchip_from_dev(struct device * pwmchip_dev)1108 static inline struct pwm_chip *pwmchip_from_dev(struct device *pwmchip_dev)
1109 {
1110 return container_of(pwmchip_dev, struct pwm_chip, dev);
1111 }
1112
pwmexport_from_dev(struct device * pwm_dev)1113 static inline struct pwm_export *pwmexport_from_dev(struct device *pwm_dev)
1114 {
1115 return container_of(pwm_dev, struct pwm_export, pwm_dev);
1116 }
1117
pwm_from_dev(struct device * pwm_dev)1118 static inline struct pwm_device *pwm_from_dev(struct device *pwm_dev)
1119 {
1120 struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1121
1122 return export->pwm;
1123 }
1124
period_show(struct device * pwm_dev,struct device_attribute * attr,char * buf)1125 static ssize_t period_show(struct device *pwm_dev,
1126 struct device_attribute *attr,
1127 char *buf)
1128 {
1129 const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1130 struct pwm_state state;
1131
1132 pwm_get_state(pwm, &state);
1133
1134 return sysfs_emit(buf, "%llu\n", state.period);
1135 }
1136
period_store(struct device * pwm_dev,struct device_attribute * attr,const char * buf,size_t size)1137 static ssize_t period_store(struct device *pwm_dev,
1138 struct device_attribute *attr,
1139 const char *buf, size_t size)
1140 {
1141 struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1142 struct pwm_device *pwm = export->pwm;
1143 struct pwm_state state;
1144 u64 val;
1145 int ret;
1146
1147 ret = kstrtou64(buf, 0, &val);
1148 if (ret)
1149 return ret;
1150
1151 guard(mutex)(&export->lock);
1152
1153 pwm_get_state(pwm, &state);
1154 state.period = val;
1155 ret = pwm_apply_might_sleep(pwm, &state);
1156
1157 return ret ? : size;
1158 }
1159
duty_cycle_show(struct device * pwm_dev,struct device_attribute * attr,char * buf)1160 static ssize_t duty_cycle_show(struct device *pwm_dev,
1161 struct device_attribute *attr,
1162 char *buf)
1163 {
1164 const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1165 struct pwm_state state;
1166
1167 pwm_get_state(pwm, &state);
1168
1169 return sysfs_emit(buf, "%llu\n", state.duty_cycle);
1170 }
1171
duty_cycle_store(struct device * pwm_dev,struct device_attribute * attr,const char * buf,size_t size)1172 static ssize_t duty_cycle_store(struct device *pwm_dev,
1173 struct device_attribute *attr,
1174 const char *buf, size_t size)
1175 {
1176 struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1177 struct pwm_device *pwm = export->pwm;
1178 struct pwm_state state;
1179 u64 val;
1180 int ret;
1181
1182 ret = kstrtou64(buf, 0, &val);
1183 if (ret)
1184 return ret;
1185
1186 guard(mutex)(&export->lock);
1187
1188 pwm_get_state(pwm, &state);
1189 state.duty_cycle = val;
1190 ret = pwm_apply_might_sleep(pwm, &state);
1191
1192 return ret ? : size;
1193 }
1194
enable_show(struct device * pwm_dev,struct device_attribute * attr,char * buf)1195 static ssize_t enable_show(struct device *pwm_dev,
1196 struct device_attribute *attr,
1197 char *buf)
1198 {
1199 const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1200 struct pwm_state state;
1201
1202 pwm_get_state(pwm, &state);
1203
1204 return sysfs_emit(buf, "%d\n", state.enabled);
1205 }
1206
enable_store(struct device * pwm_dev,struct device_attribute * attr,const char * buf,size_t size)1207 static ssize_t enable_store(struct device *pwm_dev,
1208 struct device_attribute *attr,
1209 const char *buf, size_t size)
1210 {
1211 struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1212 struct pwm_device *pwm = export->pwm;
1213 struct pwm_state state;
1214 int val, ret;
1215
1216 ret = kstrtoint(buf, 0, &val);
1217 if (ret)
1218 return ret;
1219
1220 guard(mutex)(&export->lock);
1221
1222 pwm_get_state(pwm, &state);
1223
1224 switch (val) {
1225 case 0:
1226 state.enabled = false;
1227 break;
1228 case 1:
1229 state.enabled = true;
1230 break;
1231 default:
1232 return -EINVAL;
1233 }
1234
1235 ret = pwm_apply_might_sleep(pwm, &state);
1236
1237 return ret ? : size;
1238 }
1239
polarity_show(struct device * pwm_dev,struct device_attribute * attr,char * buf)1240 static ssize_t polarity_show(struct device *pwm_dev,
1241 struct device_attribute *attr,
1242 char *buf)
1243 {
1244 const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1245 const char *polarity = "unknown";
1246 struct pwm_state state;
1247
1248 pwm_get_state(pwm, &state);
1249
1250 switch (state.polarity) {
1251 case PWM_POLARITY_NORMAL:
1252 polarity = "normal";
1253 break;
1254
1255 case PWM_POLARITY_INVERSED:
1256 polarity = "inversed";
1257 break;
1258 }
1259
1260 return sysfs_emit(buf, "%s\n", polarity);
1261 }
1262
polarity_store(struct device * pwm_dev,struct device_attribute * attr,const char * buf,size_t size)1263 static ssize_t polarity_store(struct device *pwm_dev,
1264 struct device_attribute *attr,
1265 const char *buf, size_t size)
1266 {
1267 struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1268 struct pwm_device *pwm = export->pwm;
1269 enum pwm_polarity polarity;
1270 struct pwm_state state;
1271 int ret;
1272
1273 if (sysfs_streq(buf, "normal"))
1274 polarity = PWM_POLARITY_NORMAL;
1275 else if (sysfs_streq(buf, "inversed"))
1276 polarity = PWM_POLARITY_INVERSED;
1277 else
1278 return -EINVAL;
1279
1280 guard(mutex)(&export->lock);
1281
1282 pwm_get_state(pwm, &state);
1283 state.polarity = polarity;
1284 ret = pwm_apply_might_sleep(pwm, &state);
1285
1286 return ret ? : size;
1287 }
1288
capture_show(struct device * pwm_dev,struct device_attribute * attr,char * buf)1289 static ssize_t capture_show(struct device *pwm_dev,
1290 struct device_attribute *attr,
1291 char *buf)
1292 {
1293 struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1294 struct pwm_capture result;
1295 int ret;
1296
1297 ret = pwm_capture(pwm, &result, jiffies_to_msecs(HZ));
1298 if (ret)
1299 return ret;
1300
1301 return sysfs_emit(buf, "%u %u\n", result.period, result.duty_cycle);
1302 }
1303
1304 static DEVICE_ATTR_RW(period);
1305 static DEVICE_ATTR_RW(duty_cycle);
1306 static DEVICE_ATTR_RW(enable);
1307 static DEVICE_ATTR_RW(polarity);
1308 static DEVICE_ATTR_RO(capture);
1309
1310 static struct attribute *pwm_attrs[] = {
1311 &dev_attr_period.attr,
1312 &dev_attr_duty_cycle.attr,
1313 &dev_attr_enable.attr,
1314 &dev_attr_polarity.attr,
1315 &dev_attr_capture.attr,
1316 NULL
1317 };
1318 ATTRIBUTE_GROUPS(pwm);
1319
pwm_export_release(struct device * pwm_dev)1320 static void pwm_export_release(struct device *pwm_dev)
1321 {
1322 struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1323
1324 kfree(export);
1325 }
1326
pwm_export_child(struct device * pwmchip_dev,struct pwm_device * pwm)1327 static int pwm_export_child(struct device *pwmchip_dev, struct pwm_device *pwm)
1328 {
1329 struct pwm_export *export;
1330 char *pwm_prop[2];
1331 int ret;
1332
1333 if (test_and_set_bit(PWMF_EXPORTED, &pwm->flags))
1334 return -EBUSY;
1335
1336 export = kzalloc(sizeof(*export), GFP_KERNEL);
1337 if (!export) {
1338 clear_bit(PWMF_EXPORTED, &pwm->flags);
1339 return -ENOMEM;
1340 }
1341
1342 export->pwm = pwm;
1343 mutex_init(&export->lock);
1344
1345 export->pwm_dev.release = pwm_export_release;
1346 export->pwm_dev.parent = pwmchip_dev;
1347 export->pwm_dev.devt = MKDEV(0, 0);
1348 export->pwm_dev.groups = pwm_groups;
1349 dev_set_name(&export->pwm_dev, "pwm%u", pwm->hwpwm);
1350
1351 ret = device_register(&export->pwm_dev);
1352 if (ret) {
1353 clear_bit(PWMF_EXPORTED, &pwm->flags);
1354 put_device(&export->pwm_dev);
1355 export = NULL;
1356 return ret;
1357 }
1358 pwm_prop[0] = kasprintf(GFP_KERNEL, "EXPORT=pwm%u", pwm->hwpwm);
1359 pwm_prop[1] = NULL;
1360 kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop);
1361 kfree(pwm_prop[0]);
1362
1363 return 0;
1364 }
1365
pwm_unexport_match(struct device * pwm_dev,const void * data)1366 static int pwm_unexport_match(struct device *pwm_dev, const void *data)
1367 {
1368 return pwm_from_dev(pwm_dev) == data;
1369 }
1370
pwm_unexport_child(struct device * pwmchip_dev,struct pwm_device * pwm)1371 static int pwm_unexport_child(struct device *pwmchip_dev, struct pwm_device *pwm)
1372 {
1373 struct device *pwm_dev;
1374 char *pwm_prop[2];
1375
1376 if (!test_and_clear_bit(PWMF_EXPORTED, &pwm->flags))
1377 return -ENODEV;
1378
1379 pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match);
1380 if (!pwm_dev)
1381 return -ENODEV;
1382
1383 pwm_prop[0] = kasprintf(GFP_KERNEL, "UNEXPORT=pwm%u", pwm->hwpwm);
1384 pwm_prop[1] = NULL;
1385 kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop);
1386 kfree(pwm_prop[0]);
1387
1388 /* for device_find_child() */
1389 put_device(pwm_dev);
1390 device_unregister(pwm_dev);
1391 pwm_put(pwm);
1392
1393 return 0;
1394 }
1395
export_store(struct device * pwmchip_dev,struct device_attribute * attr,const char * buf,size_t len)1396 static ssize_t export_store(struct device *pwmchip_dev,
1397 struct device_attribute *attr,
1398 const char *buf, size_t len)
1399 {
1400 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1401 struct pwm_device *pwm;
1402 unsigned int hwpwm;
1403 int ret;
1404
1405 ret = kstrtouint(buf, 0, &hwpwm);
1406 if (ret < 0)
1407 return ret;
1408
1409 if (hwpwm >= chip->npwm)
1410 return -ENODEV;
1411
1412 pwm = pwm_request_from_chip(chip, hwpwm, "sysfs");
1413 if (IS_ERR(pwm))
1414 return PTR_ERR(pwm);
1415
1416 ret = pwm_export_child(pwmchip_dev, pwm);
1417 if (ret < 0)
1418 pwm_put(pwm);
1419
1420 return ret ? : len;
1421 }
1422 static DEVICE_ATTR_WO(export);
1423
unexport_store(struct device * pwmchip_dev,struct device_attribute * attr,const char * buf,size_t len)1424 static ssize_t unexport_store(struct device *pwmchip_dev,
1425 struct device_attribute *attr,
1426 const char *buf, size_t len)
1427 {
1428 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1429 unsigned int hwpwm;
1430 int ret;
1431
1432 ret = kstrtouint(buf, 0, &hwpwm);
1433 if (ret < 0)
1434 return ret;
1435
1436 if (hwpwm >= chip->npwm)
1437 return -ENODEV;
1438
1439 ret = pwm_unexport_child(pwmchip_dev, &chip->pwms[hwpwm]);
1440
1441 return ret ? : len;
1442 }
1443 static DEVICE_ATTR_WO(unexport);
1444
npwm_show(struct device * pwmchip_dev,struct device_attribute * attr,char * buf)1445 static ssize_t npwm_show(struct device *pwmchip_dev, struct device_attribute *attr,
1446 char *buf)
1447 {
1448 const struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1449
1450 return sysfs_emit(buf, "%u\n", chip->npwm);
1451 }
1452 static DEVICE_ATTR_RO(npwm);
1453
1454 static struct attribute *pwm_chip_attrs[] = {
1455 &dev_attr_export.attr,
1456 &dev_attr_unexport.attr,
1457 &dev_attr_npwm.attr,
1458 NULL,
1459 };
1460 ATTRIBUTE_GROUPS(pwm_chip);
1461
1462 /* takes export->lock on success */
pwm_class_get_state(struct device * pwmchip_dev,struct pwm_device * pwm,struct pwm_state * state)1463 static struct pwm_export *pwm_class_get_state(struct device *pwmchip_dev,
1464 struct pwm_device *pwm,
1465 struct pwm_state *state)
1466 {
1467 struct device *pwm_dev;
1468 struct pwm_export *export;
1469
1470 if (!test_bit(PWMF_EXPORTED, &pwm->flags))
1471 return NULL;
1472
1473 pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match);
1474 if (!pwm_dev)
1475 return NULL;
1476
1477 export = pwmexport_from_dev(pwm_dev);
1478 put_device(pwm_dev); /* for device_find_child() */
1479
1480 mutex_lock(&export->lock);
1481 pwm_get_state(pwm, state);
1482
1483 return export;
1484 }
1485
pwm_class_apply_state(struct pwm_export * export,struct pwm_device * pwm,struct pwm_state * state)1486 static int pwm_class_apply_state(struct pwm_export *export,
1487 struct pwm_device *pwm,
1488 struct pwm_state *state)
1489 {
1490 int ret = pwm_apply_might_sleep(pwm, state);
1491
1492 /* release lock taken in pwm_class_get_state */
1493 mutex_unlock(&export->lock);
1494
1495 return ret;
1496 }
1497
pwm_class_resume_npwm(struct device * pwmchip_dev,unsigned int npwm)1498 static int pwm_class_resume_npwm(struct device *pwmchip_dev, unsigned int npwm)
1499 {
1500 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1501 unsigned int i;
1502 int ret = 0;
1503
1504 for (i = 0; i < npwm; i++) {
1505 struct pwm_device *pwm = &chip->pwms[i];
1506 struct pwm_state state;
1507 struct pwm_export *export;
1508
1509 export = pwm_class_get_state(pwmchip_dev, pwm, &state);
1510 if (!export)
1511 continue;
1512
1513 /* If pwmchip was not enabled before suspend, do nothing. */
1514 if (!export->suspend.enabled) {
1515 /* release lock taken in pwm_class_get_state */
1516 mutex_unlock(&export->lock);
1517 continue;
1518 }
1519
1520 state.enabled = export->suspend.enabled;
1521 ret = pwm_class_apply_state(export, pwm, &state);
1522 if (ret < 0)
1523 break;
1524 }
1525
1526 return ret;
1527 }
1528
pwm_class_suspend(struct device * pwmchip_dev)1529 static int pwm_class_suspend(struct device *pwmchip_dev)
1530 {
1531 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1532 unsigned int i;
1533 int ret = 0;
1534
1535 for (i = 0; i < chip->npwm; i++) {
1536 struct pwm_device *pwm = &chip->pwms[i];
1537 struct pwm_state state;
1538 struct pwm_export *export;
1539
1540 export = pwm_class_get_state(pwmchip_dev, pwm, &state);
1541 if (!export)
1542 continue;
1543
1544 /*
1545 * If pwmchip was not enabled before suspend, save
1546 * state for resume time and do nothing else.
1547 */
1548 export->suspend = state;
1549 if (!state.enabled) {
1550 /* release lock taken in pwm_class_get_state */
1551 mutex_unlock(&export->lock);
1552 continue;
1553 }
1554
1555 state.enabled = false;
1556 ret = pwm_class_apply_state(export, pwm, &state);
1557 if (ret < 0) {
1558 /*
1559 * roll back the PWM devices that were disabled by
1560 * this suspend function.
1561 */
1562 pwm_class_resume_npwm(pwmchip_dev, i);
1563 break;
1564 }
1565 }
1566
1567 return ret;
1568 }
1569
pwm_class_resume(struct device * pwmchip_dev)1570 static int pwm_class_resume(struct device *pwmchip_dev)
1571 {
1572 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1573
1574 return pwm_class_resume_npwm(pwmchip_dev, chip->npwm);
1575 }
1576
1577 static DEFINE_SIMPLE_DEV_PM_OPS(pwm_class_pm_ops, pwm_class_suspend, pwm_class_resume);
1578
1579 static struct class pwm_class = {
1580 .name = "pwm",
1581 .dev_groups = pwm_chip_groups,
1582 .pm = pm_sleep_ptr(&pwm_class_pm_ops),
1583 };
1584
pwmchip_sysfs_unexport(struct pwm_chip * chip)1585 static void pwmchip_sysfs_unexport(struct pwm_chip *chip)
1586 {
1587 unsigned int i;
1588
1589 for (i = 0; i < chip->npwm; i++) {
1590 struct pwm_device *pwm = &chip->pwms[i];
1591
1592 if (test_bit(PWMF_EXPORTED, &pwm->flags))
1593 pwm_unexport_child(&chip->dev, pwm);
1594 }
1595 }
1596
1597 #define PWMCHIP_ALIGN ARCH_DMA_MINALIGN
1598
pwmchip_priv(struct pwm_chip * chip)1599 static void *pwmchip_priv(struct pwm_chip *chip)
1600 {
1601 return (void *)chip + ALIGN(struct_size(chip, pwms, chip->npwm), PWMCHIP_ALIGN);
1602 }
1603
1604 /* This is the counterpart to pwmchip_alloc() */
pwmchip_put(struct pwm_chip * chip)1605 void pwmchip_put(struct pwm_chip *chip)
1606 {
1607 put_device(&chip->dev);
1608 }
1609 EXPORT_SYMBOL_GPL(pwmchip_put);
1610
pwmchip_release(struct device * pwmchip_dev)1611 void pwmchip_release(struct device *pwmchip_dev)
1612 {
1613 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1614
1615 kfree(chip);
1616 }
1617 EXPORT_SYMBOL_GPL(pwmchip_release);
1618
pwmchip_alloc(struct device * parent,unsigned int npwm,size_t sizeof_priv)1619 struct pwm_chip *pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv)
1620 {
1621 struct pwm_chip *chip;
1622 struct device *pwmchip_dev;
1623 size_t alloc_size;
1624 unsigned int i;
1625
1626 alloc_size = size_add(ALIGN(struct_size(chip, pwms, npwm), PWMCHIP_ALIGN),
1627 sizeof_priv);
1628
1629 chip = kzalloc(alloc_size, GFP_KERNEL);
1630 if (!chip)
1631 return ERR_PTR(-ENOMEM);
1632
1633 chip->npwm = npwm;
1634 chip->uses_pwmchip_alloc = true;
1635 chip->operational = false;
1636
1637 pwmchip_dev = &chip->dev;
1638 device_initialize(pwmchip_dev);
1639 pwmchip_dev->class = &pwm_class;
1640 pwmchip_dev->parent = parent;
1641 pwmchip_dev->release = pwmchip_release;
1642
1643 pwmchip_set_drvdata(chip, pwmchip_priv(chip));
1644
1645 for (i = 0; i < chip->npwm; i++) {
1646 struct pwm_device *pwm = &chip->pwms[i];
1647 pwm->chip = chip;
1648 pwm->hwpwm = i;
1649 }
1650
1651 return chip;
1652 }
1653 EXPORT_SYMBOL_GPL(pwmchip_alloc);
1654
devm_pwmchip_put(void * data)1655 static void devm_pwmchip_put(void *data)
1656 {
1657 struct pwm_chip *chip = data;
1658
1659 pwmchip_put(chip);
1660 }
1661
devm_pwmchip_alloc(struct device * parent,unsigned int npwm,size_t sizeof_priv)1662 struct pwm_chip *devm_pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv)
1663 {
1664 struct pwm_chip *chip;
1665 int ret;
1666
1667 chip = pwmchip_alloc(parent, npwm, sizeof_priv);
1668 if (IS_ERR(chip))
1669 return chip;
1670
1671 ret = devm_add_action_or_reset(parent, devm_pwmchip_put, chip);
1672 if (ret)
1673 return ERR_PTR(ret);
1674
1675 return chip;
1676 }
1677 EXPORT_SYMBOL_GPL(devm_pwmchip_alloc);
1678
of_pwmchip_add(struct pwm_chip * chip)1679 static void of_pwmchip_add(struct pwm_chip *chip)
1680 {
1681 if (!pwmchip_parent(chip) || !pwmchip_parent(chip)->of_node)
1682 return;
1683
1684 if (!chip->of_xlate)
1685 chip->of_xlate = of_pwm_xlate_with_flags;
1686
1687 of_node_get(pwmchip_parent(chip)->of_node);
1688 }
1689
of_pwmchip_remove(struct pwm_chip * chip)1690 static void of_pwmchip_remove(struct pwm_chip *chip)
1691 {
1692 if (pwmchip_parent(chip))
1693 of_node_put(pwmchip_parent(chip)->of_node);
1694 }
1695
pwm_ops_check(const struct pwm_chip * chip)1696 static bool pwm_ops_check(const struct pwm_chip *chip)
1697 {
1698 const struct pwm_ops *ops = chip->ops;
1699
1700 if (ops->write_waveform) {
1701 if (!ops->round_waveform_tohw ||
1702 !ops->round_waveform_fromhw ||
1703 !ops->write_waveform)
1704 return false;
1705
1706 if (PWM_WFHWSIZE < ops->sizeof_wfhw) {
1707 dev_warn(pwmchip_parent(chip), "PWM_WFHWSIZE < %zu\n", ops->sizeof_wfhw);
1708 return false;
1709 }
1710 } else {
1711 if (!ops->apply)
1712 return false;
1713
1714 if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
1715 dev_warn(pwmchip_parent(chip),
1716 "Please implement the .get_state() callback\n");
1717 }
1718
1719 return true;
1720 }
1721
pwm_device_link_add(struct device * dev,struct pwm_device * pwm)1722 static struct device_link *pwm_device_link_add(struct device *dev,
1723 struct pwm_device *pwm)
1724 {
1725 struct device_link *dl;
1726
1727 if (!dev) {
1728 /*
1729 * No device for the PWM consumer has been provided. It may
1730 * impact the PM sequence ordering: the PWM supplier may get
1731 * suspended before the consumer.
1732 */
1733 dev_warn(pwmchip_parent(pwm->chip),
1734 "No consumer device specified to create a link to\n");
1735 return NULL;
1736 }
1737
1738 dl = device_link_add(dev, pwmchip_parent(pwm->chip), DL_FLAG_AUTOREMOVE_CONSUMER);
1739 if (!dl) {
1740 dev_err(dev, "failed to create device link to %s\n",
1741 dev_name(pwmchip_parent(pwm->chip)));
1742 return ERR_PTR(-EINVAL);
1743 }
1744
1745 return dl;
1746 }
1747
fwnode_to_pwmchip(struct fwnode_handle * fwnode)1748 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
1749 {
1750 struct pwm_chip *chip;
1751 unsigned long id, tmp;
1752
1753 guard(mutex)(&pwm_lock);
1754
1755 idr_for_each_entry_ul(&pwm_chips, chip, tmp, id)
1756 if (pwmchip_parent(chip) && device_match_fwnode(pwmchip_parent(chip), fwnode))
1757 return chip;
1758
1759 return ERR_PTR(-EPROBE_DEFER);
1760 }
1761
1762 /**
1763 * of_pwm_get() - request a PWM via the PWM framework
1764 * @dev: device for PWM consumer
1765 * @np: device node to get the PWM from
1766 * @con_id: consumer name
1767 *
1768 * Returns the PWM device parsed from the phandle and index specified in the
1769 * "pwms" property of a device tree node or a negative error-code on failure.
1770 * Values parsed from the device tree are stored in the returned PWM device
1771 * object.
1772 *
1773 * If con_id is NULL, the first PWM device listed in the "pwms" property will
1774 * be requested. Otherwise the "pwm-names" property is used to do a reverse
1775 * lookup of the PWM index. This also means that the "pwm-names" property
1776 * becomes mandatory for devices that look up the PWM device via the con_id
1777 * parameter.
1778 *
1779 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1780 * error code on failure.
1781 */
of_pwm_get(struct device * dev,struct device_node * np,const char * con_id)1782 static struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
1783 const char *con_id)
1784 {
1785 struct pwm_device *pwm = NULL;
1786 struct of_phandle_args args;
1787 struct device_link *dl;
1788 struct pwm_chip *chip;
1789 int index = 0;
1790 int err;
1791
1792 if (con_id) {
1793 index = of_property_match_string(np, "pwm-names", con_id);
1794 if (index < 0)
1795 return ERR_PTR(index);
1796 }
1797
1798 err = of_parse_phandle_with_args_map(np, "pwms", "pwm", index, &args);
1799 if (err) {
1800 pr_err("%s(): can't parse \"pwms\" property\n", __func__);
1801 return ERR_PTR(err);
1802 }
1803
1804 chip = fwnode_to_pwmchip(of_fwnode_handle(args.np));
1805 if (IS_ERR(chip)) {
1806 if (PTR_ERR(chip) != -EPROBE_DEFER)
1807 pr_err("%s(): PWM chip not found\n", __func__);
1808
1809 pwm = ERR_CAST(chip);
1810 goto put;
1811 }
1812
1813 pwm = chip->of_xlate(chip, &args);
1814 if (IS_ERR(pwm))
1815 goto put;
1816
1817 dl = pwm_device_link_add(dev, pwm);
1818 if (IS_ERR(dl)) {
1819 /* of_xlate ended up calling pwm_request_from_chip() */
1820 pwm_put(pwm);
1821 pwm = ERR_CAST(dl);
1822 goto put;
1823 }
1824
1825 /*
1826 * If a consumer name was not given, try to look it up from the
1827 * "pwm-names" property if it exists. Otherwise use the name of
1828 * the user device node.
1829 */
1830 if (!con_id) {
1831 err = of_property_read_string_index(np, "pwm-names", index,
1832 &con_id);
1833 if (err < 0)
1834 con_id = np->name;
1835 }
1836
1837 pwm->label = con_id;
1838
1839 put:
1840 of_node_put(args.np);
1841
1842 return pwm;
1843 }
1844
1845 /**
1846 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
1847 * @fwnode: firmware node to get the "pwms" property from
1848 *
1849 * Returns the PWM device parsed from the fwnode and index specified in the
1850 * "pwms" property or a negative error-code on failure.
1851 * Values parsed from the device tree are stored in the returned PWM device
1852 * object.
1853 *
1854 * This is analogous to of_pwm_get() except con_id is not yet supported.
1855 * ACPI entries must look like
1856 * Package () {"pwms", Package ()
1857 * { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
1858 *
1859 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1860 * error code on failure.
1861 */
acpi_pwm_get(const struct fwnode_handle * fwnode)1862 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
1863 {
1864 struct pwm_device *pwm;
1865 struct fwnode_reference_args args;
1866 struct pwm_chip *chip;
1867 int ret;
1868
1869 memset(&args, 0, sizeof(args));
1870
1871 ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
1872 if (ret < 0)
1873 return ERR_PTR(ret);
1874
1875 if (args.nargs < 2)
1876 return ERR_PTR(-EPROTO);
1877
1878 chip = fwnode_to_pwmchip(args.fwnode);
1879 if (IS_ERR(chip))
1880 return ERR_CAST(chip);
1881
1882 pwm = pwm_request_from_chip(chip, args.args[0], NULL);
1883 if (IS_ERR(pwm))
1884 return pwm;
1885
1886 pwm->args.period = args.args[1];
1887 pwm->args.polarity = PWM_POLARITY_NORMAL;
1888
1889 if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
1890 pwm->args.polarity = PWM_POLARITY_INVERSED;
1891
1892 return pwm;
1893 }
1894
1895 static DEFINE_MUTEX(pwm_lookup_lock);
1896 static LIST_HEAD(pwm_lookup_list);
1897
1898 /**
1899 * pwm_get() - look up and request a PWM device
1900 * @dev: device for PWM consumer
1901 * @con_id: consumer name
1902 *
1903 * Lookup is first attempted using DT. If the device was not instantiated from
1904 * a device tree, a PWM chip and a relative index is looked up via a table
1905 * supplied by board setup code (see pwm_add_table()).
1906 *
1907 * Once a PWM chip has been found the specified PWM device will be requested
1908 * and is ready to be used.
1909 *
1910 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1911 * error code on failure.
1912 */
pwm_get(struct device * dev,const char * con_id)1913 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
1914 {
1915 const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
1916 const char *dev_id = dev ? dev_name(dev) : NULL;
1917 struct pwm_device *pwm;
1918 struct pwm_chip *chip;
1919 struct device_link *dl;
1920 unsigned int best = 0;
1921 struct pwm_lookup *p, *chosen = NULL;
1922 unsigned int match;
1923 int err;
1924
1925 /* look up via DT first */
1926 if (is_of_node(fwnode))
1927 return of_pwm_get(dev, to_of_node(fwnode), con_id);
1928
1929 /* then lookup via ACPI */
1930 if (is_acpi_node(fwnode)) {
1931 pwm = acpi_pwm_get(fwnode);
1932 if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
1933 return pwm;
1934 }
1935
1936 /*
1937 * We look up the provider in the static table typically provided by
1938 * board setup code. We first try to lookup the consumer device by
1939 * name. If the consumer device was passed in as NULL or if no match
1940 * was found, we try to find the consumer by directly looking it up
1941 * by name.
1942 *
1943 * If a match is found, the provider PWM chip is looked up by name
1944 * and a PWM device is requested using the PWM device per-chip index.
1945 *
1946 * The lookup algorithm was shamelessly taken from the clock
1947 * framework:
1948 *
1949 * We do slightly fuzzy matching here:
1950 * An entry with a NULL ID is assumed to be a wildcard.
1951 * If an entry has a device ID, it must match
1952 * If an entry has a connection ID, it must match
1953 * Then we take the most specific entry - with the following order
1954 * of precedence: dev+con > dev only > con only.
1955 */
1956 scoped_guard(mutex, &pwm_lookup_lock)
1957 list_for_each_entry(p, &pwm_lookup_list, list) {
1958 match = 0;
1959
1960 if (p->dev_id) {
1961 if (!dev_id || strcmp(p->dev_id, dev_id))
1962 continue;
1963
1964 match += 2;
1965 }
1966
1967 if (p->con_id) {
1968 if (!con_id || strcmp(p->con_id, con_id))
1969 continue;
1970
1971 match += 1;
1972 }
1973
1974 if (match > best) {
1975 chosen = p;
1976
1977 if (match != 3)
1978 best = match;
1979 else
1980 break;
1981 }
1982 }
1983
1984 if (!chosen)
1985 return ERR_PTR(-ENODEV);
1986
1987 chip = pwmchip_find_by_name(chosen->provider);
1988
1989 /*
1990 * If the lookup entry specifies a module, load the module and retry
1991 * the PWM chip lookup. This can be used to work around driver load
1992 * ordering issues if driver's can't be made to properly support the
1993 * deferred probe mechanism.
1994 */
1995 if (!chip && chosen->module) {
1996 err = request_module(chosen->module);
1997 if (err == 0)
1998 chip = pwmchip_find_by_name(chosen->provider);
1999 }
2000
2001 if (!chip)
2002 return ERR_PTR(-EPROBE_DEFER);
2003
2004 pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
2005 if (IS_ERR(pwm))
2006 return pwm;
2007
2008 dl = pwm_device_link_add(dev, pwm);
2009 if (IS_ERR(dl)) {
2010 pwm_put(pwm);
2011 return ERR_CAST(dl);
2012 }
2013
2014 pwm->args.period = chosen->period;
2015 pwm->args.polarity = chosen->polarity;
2016
2017 return pwm;
2018 }
2019 EXPORT_SYMBOL_GPL(pwm_get);
2020
__pwm_put(struct pwm_device * pwm)2021 static void __pwm_put(struct pwm_device *pwm)
2022 {
2023 struct pwm_chip *chip = pwm->chip;
2024
2025 /*
2026 * Trigger a warning if a consumer called pwm_put() twice.
2027 * If the chip isn't operational, PWMF_REQUESTED was already cleared in
2028 * pwmchip_remove(). So don't warn in this case.
2029 */
2030 if (chip->operational && !test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
2031 pr_warn("PWM device already freed\n");
2032 return;
2033 }
2034
2035 if (chip->operational && chip->ops->free)
2036 pwm->chip->ops->free(pwm->chip, pwm);
2037
2038 pwm->label = NULL;
2039
2040 put_device(&chip->dev);
2041
2042 module_put(chip->owner);
2043 }
2044
2045 /**
2046 * pwm_put() - release a PWM device
2047 * @pwm: PWM device
2048 */
pwm_put(struct pwm_device * pwm)2049 void pwm_put(struct pwm_device *pwm)
2050 {
2051 if (!pwm)
2052 return;
2053
2054 guard(mutex)(&pwm_lock);
2055
2056 __pwm_put(pwm);
2057 }
2058 EXPORT_SYMBOL_GPL(pwm_put);
2059
devm_pwm_release(void * pwm)2060 static void devm_pwm_release(void *pwm)
2061 {
2062 pwm_put(pwm);
2063 }
2064
2065 /**
2066 * devm_pwm_get() - resource managed pwm_get()
2067 * @dev: device for PWM consumer
2068 * @con_id: consumer name
2069 *
2070 * This function performs like pwm_get() but the acquired PWM device will
2071 * automatically be released on driver detach.
2072 *
2073 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
2074 * error code on failure.
2075 */
devm_pwm_get(struct device * dev,const char * con_id)2076 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
2077 {
2078 struct pwm_device *pwm;
2079 int ret;
2080
2081 pwm = pwm_get(dev, con_id);
2082 if (IS_ERR(pwm))
2083 return pwm;
2084
2085 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
2086 if (ret)
2087 return ERR_PTR(ret);
2088
2089 return pwm;
2090 }
2091 EXPORT_SYMBOL_GPL(devm_pwm_get);
2092
2093 /**
2094 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
2095 * @dev: device for PWM consumer
2096 * @fwnode: firmware node to get the PWM from
2097 * @con_id: consumer name
2098 *
2099 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
2100 * acpi_pwm_get() for a detailed description.
2101 *
2102 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
2103 * error code on failure.
2104 */
devm_fwnode_pwm_get(struct device * dev,struct fwnode_handle * fwnode,const char * con_id)2105 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
2106 struct fwnode_handle *fwnode,
2107 const char *con_id)
2108 {
2109 struct pwm_device *pwm = ERR_PTR(-ENODEV);
2110 int ret;
2111
2112 if (is_of_node(fwnode))
2113 pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
2114 else if (is_acpi_node(fwnode))
2115 pwm = acpi_pwm_get(fwnode);
2116 if (IS_ERR(pwm))
2117 return pwm;
2118
2119 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
2120 if (ret)
2121 return ERR_PTR(ret);
2122
2123 return pwm;
2124 }
2125 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
2126
2127 struct pwm_cdev_data {
2128 struct pwm_chip *chip;
2129 struct pwm_device *pwm[];
2130 };
2131
pwm_cdev_open(struct inode * inode,struct file * file)2132 static int pwm_cdev_open(struct inode *inode, struct file *file)
2133 {
2134 struct pwm_chip *chip = container_of(inode->i_cdev, struct pwm_chip, cdev);
2135 struct pwm_cdev_data *cdata;
2136
2137 guard(mutex)(&pwm_lock);
2138
2139 if (!chip->operational)
2140 return -ENXIO;
2141
2142 cdata = kzalloc(struct_size(cdata, pwm, chip->npwm), GFP_KERNEL);
2143 if (!cdata)
2144 return -ENOMEM;
2145
2146 cdata->chip = chip;
2147
2148 file->private_data = cdata;
2149
2150 return nonseekable_open(inode, file);
2151 }
2152
pwm_cdev_release(struct inode * inode,struct file * file)2153 static int pwm_cdev_release(struct inode *inode, struct file *file)
2154 {
2155 struct pwm_cdev_data *cdata = file->private_data;
2156 unsigned int i;
2157
2158 for (i = 0; i < cdata->chip->npwm; ++i) {
2159 struct pwm_device *pwm = cdata->pwm[i];
2160
2161 if (pwm) {
2162 const char *label = pwm->label;
2163
2164 pwm_put(cdata->pwm[i]);
2165 kfree(label);
2166 }
2167 }
2168 kfree(cdata);
2169
2170 return 0;
2171 }
2172
pwm_cdev_request(struct pwm_cdev_data * cdata,unsigned int hwpwm)2173 static int pwm_cdev_request(struct pwm_cdev_data *cdata, unsigned int hwpwm)
2174 {
2175 struct pwm_chip *chip = cdata->chip;
2176
2177 if (hwpwm >= chip->npwm)
2178 return -EINVAL;
2179
2180 if (!cdata->pwm[hwpwm]) {
2181 struct pwm_device *pwm = &chip->pwms[hwpwm];
2182 const char *label;
2183 int ret;
2184
2185 label = kasprintf(GFP_KERNEL, "pwm-cdev (pid=%d)", current->pid);
2186 if (!label)
2187 return -ENOMEM;
2188
2189 ret = pwm_device_request(pwm, label);
2190 if (ret < 0) {
2191 kfree(label);
2192 return ret;
2193 }
2194
2195 cdata->pwm[hwpwm] = pwm;
2196 }
2197
2198 return 0;
2199 }
2200
pwm_cdev_free(struct pwm_cdev_data * cdata,unsigned int hwpwm)2201 static int pwm_cdev_free(struct pwm_cdev_data *cdata, unsigned int hwpwm)
2202 {
2203 struct pwm_chip *chip = cdata->chip;
2204
2205 if (hwpwm >= chip->npwm)
2206 return -EINVAL;
2207
2208 if (cdata->pwm[hwpwm]) {
2209 struct pwm_device *pwm = cdata->pwm[hwpwm];
2210 const char *label = pwm->label;
2211
2212 __pwm_put(pwm);
2213
2214 kfree(label);
2215
2216 cdata->pwm[hwpwm] = NULL;
2217 }
2218
2219 return 0;
2220 }
2221
pwm_cdev_get_requested_pwm(struct pwm_cdev_data * cdata,u32 hwpwm)2222 static struct pwm_device *pwm_cdev_get_requested_pwm(struct pwm_cdev_data *cdata,
2223 u32 hwpwm)
2224 {
2225 struct pwm_chip *chip = cdata->chip;
2226
2227 if (hwpwm >= chip->npwm)
2228 return ERR_PTR(-EINVAL);
2229
2230 if (cdata->pwm[hwpwm])
2231 return cdata->pwm[hwpwm];
2232
2233 return ERR_PTR(-EINVAL);
2234 }
2235
pwm_cdev_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2236 static long pwm_cdev_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2237 {
2238 int ret = 0;
2239 struct pwm_cdev_data *cdata = file->private_data;
2240 struct pwm_chip *chip = cdata->chip;
2241
2242 guard(mutex)(&pwm_lock);
2243
2244 if (!chip->operational)
2245 return -ENODEV;
2246
2247 switch (cmd) {
2248 case PWM_IOCTL_REQUEST:
2249 {
2250 unsigned int hwpwm = arg;
2251
2252 return pwm_cdev_request(cdata, hwpwm);
2253 }
2254
2255 case PWM_IOCTL_FREE:
2256 {
2257 unsigned int hwpwm = arg;
2258
2259 return pwm_cdev_free(cdata, hwpwm);
2260 }
2261
2262 case PWM_IOCTL_ROUNDWF:
2263 {
2264 struct pwmchip_waveform cwf;
2265 struct pwm_waveform wf;
2266 struct pwm_device *pwm;
2267
2268 ret = copy_from_user(&cwf,
2269 (struct pwmchip_waveform __user *)arg,
2270 sizeof(cwf));
2271 if (ret)
2272 return -EFAULT;
2273
2274 if (cwf.__pad != 0)
2275 return -EINVAL;
2276
2277 pwm = pwm_cdev_get_requested_pwm(cdata, cwf.hwpwm);
2278 if (IS_ERR(pwm))
2279 return PTR_ERR(pwm);
2280
2281 wf = (struct pwm_waveform) {
2282 .period_length_ns = cwf.period_length_ns,
2283 .duty_length_ns = cwf.duty_length_ns,
2284 .duty_offset_ns = cwf.duty_offset_ns,
2285 };
2286
2287 ret = pwm_round_waveform_might_sleep(pwm, &wf);
2288 if (ret < 0)
2289 return ret;
2290
2291 cwf = (struct pwmchip_waveform) {
2292 .hwpwm = cwf.hwpwm,
2293 .period_length_ns = wf.period_length_ns,
2294 .duty_length_ns = wf.duty_length_ns,
2295 .duty_offset_ns = wf.duty_offset_ns,
2296 };
2297
2298 ret = copy_to_user((struct pwmchip_waveform __user *)arg,
2299 &cwf, sizeof(cwf));
2300 return ret ? -EFAULT : 0;
2301 }
2302
2303 case PWM_IOCTL_GETWF:
2304 {
2305 struct pwmchip_waveform cwf;
2306 struct pwm_waveform wf;
2307 struct pwm_device *pwm;
2308
2309 ret = copy_from_user(&cwf,
2310 (struct pwmchip_waveform __user *)arg,
2311 sizeof(cwf));
2312 if (ret)
2313 return -EFAULT;
2314
2315 if (cwf.__pad != 0)
2316 return -EINVAL;
2317
2318 pwm = pwm_cdev_get_requested_pwm(cdata, cwf.hwpwm);
2319 if (IS_ERR(pwm))
2320 return PTR_ERR(pwm);
2321
2322 ret = pwm_get_waveform_might_sleep(pwm, &wf);
2323 if (ret)
2324 return ret;
2325
2326 cwf = (struct pwmchip_waveform) {
2327 .hwpwm = cwf.hwpwm,
2328 .period_length_ns = wf.period_length_ns,
2329 .duty_length_ns = wf.duty_length_ns,
2330 .duty_offset_ns = wf.duty_offset_ns,
2331 };
2332
2333 ret = copy_to_user((struct pwmchip_waveform __user *)arg,
2334 &cwf, sizeof(cwf));
2335 return ret ? -EFAULT : 0;
2336 }
2337
2338 case PWM_IOCTL_SETROUNDEDWF:
2339 case PWM_IOCTL_SETEXACTWF:
2340 {
2341 struct pwmchip_waveform cwf;
2342 struct pwm_waveform wf;
2343 struct pwm_device *pwm;
2344
2345 ret = copy_from_user(&cwf,
2346 (struct pwmchip_waveform __user *)arg,
2347 sizeof(cwf));
2348 if (ret)
2349 return -EFAULT;
2350
2351 if (cwf.__pad != 0)
2352 return -EINVAL;
2353
2354 wf = (struct pwm_waveform){
2355 .period_length_ns = cwf.period_length_ns,
2356 .duty_length_ns = cwf.duty_length_ns,
2357 .duty_offset_ns = cwf.duty_offset_ns,
2358 };
2359
2360 if (!pwm_wf_valid(&wf))
2361 return -EINVAL;
2362
2363 pwm = pwm_cdev_get_requested_pwm(cdata, cwf.hwpwm);
2364 if (IS_ERR(pwm))
2365 return PTR_ERR(pwm);
2366
2367 ret = pwm_set_waveform_might_sleep(pwm, &wf,
2368 cmd == PWM_IOCTL_SETEXACTWF);
2369
2370 /*
2371 * If userspace cares about rounding deviations it has
2372 * to check the values anyhow, so simplify handling for
2373 * them and don't signal uprounding. This matches the
2374 * behaviour of PWM_IOCTL_ROUNDWF which also returns 0
2375 * in that case.
2376 */
2377 if (ret == 1)
2378 ret = 0;
2379
2380 return ret;
2381 }
2382
2383 default:
2384 return -ENOTTY;
2385 }
2386 }
2387
2388 static const struct file_operations pwm_cdev_fileops = {
2389 .open = pwm_cdev_open,
2390 .release = pwm_cdev_release,
2391 .owner = THIS_MODULE,
2392 .unlocked_ioctl = pwm_cdev_ioctl,
2393 };
2394
2395 static dev_t pwm_devt;
2396
pwm_gpio_request(struct gpio_chip * gc,unsigned int offset)2397 static int pwm_gpio_request(struct gpio_chip *gc, unsigned int offset)
2398 {
2399 struct pwm_chip *chip = gpiochip_get_data(gc);
2400 struct pwm_device *pwm;
2401
2402 pwm = pwm_request_from_chip(chip, offset, "pwm-gpio");
2403 if (IS_ERR(pwm))
2404 return PTR_ERR(pwm);
2405
2406 return 0;
2407 }
2408
pwm_gpio_free(struct gpio_chip * gc,unsigned int offset)2409 static void pwm_gpio_free(struct gpio_chip *gc, unsigned int offset)
2410 {
2411 struct pwm_chip *chip = gpiochip_get_data(gc);
2412
2413 pwm_put(&chip->pwms[offset]);
2414 }
2415
pwm_gpio_get_direction(struct gpio_chip * gc,unsigned int offset)2416 static int pwm_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
2417 {
2418 return GPIO_LINE_DIRECTION_OUT;
2419 }
2420
pwm_gpio_set(struct gpio_chip * gc,unsigned int offset,int value)2421 static int pwm_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
2422 {
2423 struct pwm_chip *chip = gpiochip_get_data(gc);
2424 struct pwm_device *pwm = &chip->pwms[offset];
2425 int ret;
2426 struct pwm_waveform wf = {
2427 .period_length_ns = 1,
2428 };
2429
2430 ret = pwm_round_waveform_might_sleep(pwm, &wf);
2431 if (ret < 0)
2432 return ret;
2433
2434 if (value)
2435 wf.duty_length_ns = wf.period_length_ns;
2436 else
2437 wf.duty_length_ns = 0;
2438
2439 return pwm_set_waveform_might_sleep(pwm, &wf, true);
2440 }
2441
2442 /**
2443 * __pwmchip_add() - register a new PWM chip
2444 * @chip: the PWM chip to add
2445 * @owner: reference to the module providing the chip.
2446 *
2447 * Register a new PWM chip. @owner is supposed to be THIS_MODULE, use the
2448 * pwmchip_add wrapper to do this right.
2449 *
2450 * Returns: 0 on success or a negative error code on failure.
2451 */
__pwmchip_add(struct pwm_chip * chip,struct module * owner)2452 int __pwmchip_add(struct pwm_chip *chip, struct module *owner)
2453 {
2454 int ret;
2455
2456 if (!chip || !pwmchip_parent(chip) || !chip->ops || !chip->npwm)
2457 return -EINVAL;
2458
2459 /*
2460 * a struct pwm_chip must be allocated using (devm_)pwmchip_alloc,
2461 * otherwise the embedded struct device might disappear too early
2462 * resulting in memory corruption.
2463 * Catch drivers that were not converted appropriately.
2464 */
2465 if (!chip->uses_pwmchip_alloc)
2466 return -EINVAL;
2467
2468 if (!pwm_ops_check(chip))
2469 return -EINVAL;
2470
2471 chip->owner = owner;
2472
2473 if (chip->atomic)
2474 spin_lock_init(&chip->atomic_lock);
2475 else
2476 mutex_init(&chip->nonatomic_lock);
2477
2478 guard(mutex)(&pwm_lock);
2479
2480 ret = idr_alloc(&pwm_chips, chip, 0, 0, GFP_KERNEL);
2481 if (ret < 0)
2482 return ret;
2483
2484 chip->id = ret;
2485
2486 dev_set_name(&chip->dev, "pwmchip%u", chip->id);
2487
2488 if (IS_ENABLED(CONFIG_OF))
2489 of_pwmchip_add(chip);
2490
2491 scoped_guard(pwmchip, chip)
2492 chip->operational = true;
2493
2494 if (chip->ops->write_waveform) {
2495 if (chip->id < PWM_MINOR_COUNT)
2496 chip->dev.devt = MKDEV(MAJOR(pwm_devt), chip->id);
2497 else
2498 dev_warn(&chip->dev, "chip id too high to create a chardev\n");
2499 }
2500
2501 cdev_init(&chip->cdev, &pwm_cdev_fileops);
2502 chip->cdev.owner = owner;
2503
2504 ret = cdev_device_add(&chip->cdev, &chip->dev);
2505 if (ret)
2506 goto err_device_add;
2507
2508 if (IS_ENABLED(CONFIG_PWM_PROVIDE_GPIO) && chip->ops->write_waveform) {
2509 struct device *parent = pwmchip_parent(chip);
2510
2511 chip->gpio = (typeof(chip->gpio)){
2512 .label = dev_name(parent),
2513 .parent = parent,
2514 .request = pwm_gpio_request,
2515 .free = pwm_gpio_free,
2516 .get_direction = pwm_gpio_get_direction,
2517 .set = pwm_gpio_set,
2518 .base = -1,
2519 .ngpio = chip->npwm,
2520 .can_sleep = true,
2521 };
2522
2523 ret = gpiochip_add_data(&chip->gpio, chip);
2524 if (ret)
2525 goto err_gpiochip_add;
2526 }
2527
2528 return 0;
2529
2530 err_gpiochip_add:
2531
2532 cdev_device_del(&chip->cdev, &chip->dev);
2533 err_device_add:
2534
2535 scoped_guard(pwmchip, chip)
2536 chip->operational = false;
2537
2538 if (IS_ENABLED(CONFIG_OF))
2539 of_pwmchip_remove(chip);
2540
2541 idr_remove(&pwm_chips, chip->id);
2542
2543 return ret;
2544 }
2545 EXPORT_SYMBOL_GPL(__pwmchip_add);
2546
2547 /**
2548 * pwmchip_remove() - remove a PWM chip
2549 * @chip: the PWM chip to remove
2550 *
2551 * Removes a PWM chip.
2552 */
pwmchip_remove(struct pwm_chip * chip)2553 void pwmchip_remove(struct pwm_chip *chip)
2554 {
2555 if (IS_ENABLED(CONFIG_PWM_PROVIDE_GPIO) && chip->ops->write_waveform)
2556 gpiochip_remove(&chip->gpio);
2557
2558 pwmchip_sysfs_unexport(chip);
2559
2560 scoped_guard(mutex, &pwm_lock) {
2561 unsigned int i;
2562
2563 scoped_guard(pwmchip, chip)
2564 chip->operational = false;
2565
2566 for (i = 0; i < chip->npwm; ++i) {
2567 struct pwm_device *pwm = &chip->pwms[i];
2568
2569 if (test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
2570 dev_warn(&chip->dev, "Freeing requested PWM #%u\n", i);
2571 if (pwm->chip->ops->free)
2572 pwm->chip->ops->free(pwm->chip, pwm);
2573 }
2574 }
2575
2576 if (IS_ENABLED(CONFIG_OF))
2577 of_pwmchip_remove(chip);
2578
2579 idr_remove(&pwm_chips, chip->id);
2580 }
2581
2582 cdev_device_del(&chip->cdev, &chip->dev);
2583 }
2584 EXPORT_SYMBOL_GPL(pwmchip_remove);
2585
devm_pwmchip_remove(void * data)2586 static void devm_pwmchip_remove(void *data)
2587 {
2588 struct pwm_chip *chip = data;
2589
2590 pwmchip_remove(chip);
2591 }
2592
__devm_pwmchip_add(struct device * dev,struct pwm_chip * chip,struct module * owner)2593 int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner)
2594 {
2595 int ret;
2596
2597 ret = __pwmchip_add(chip, owner);
2598 if (ret)
2599 return ret;
2600
2601 return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
2602 }
2603 EXPORT_SYMBOL_GPL(__devm_pwmchip_add);
2604
2605 /**
2606 * pwm_add_table() - register PWM device consumers
2607 * @table: array of consumers to register
2608 * @num: number of consumers in table
2609 */
pwm_add_table(struct pwm_lookup * table,size_t num)2610 void pwm_add_table(struct pwm_lookup *table, size_t num)
2611 {
2612 guard(mutex)(&pwm_lookup_lock);
2613
2614 while (num--) {
2615 list_add_tail(&table->list, &pwm_lookup_list);
2616 table++;
2617 }
2618 }
2619
2620 /**
2621 * pwm_remove_table() - unregister PWM device consumers
2622 * @table: array of consumers to unregister
2623 * @num: number of consumers in table
2624 */
pwm_remove_table(struct pwm_lookup * table,size_t num)2625 void pwm_remove_table(struct pwm_lookup *table, size_t num)
2626 {
2627 guard(mutex)(&pwm_lookup_lock);
2628
2629 while (num--) {
2630 list_del(&table->list);
2631 table++;
2632 }
2633 }
2634
pwm_dbg_show(struct pwm_chip * chip,struct seq_file * s)2635 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
2636 {
2637 unsigned int i;
2638
2639 for (i = 0; i < chip->npwm; i++) {
2640 struct pwm_device *pwm = &chip->pwms[i];
2641 struct pwm_state state, hwstate;
2642
2643 pwm_get_state(pwm, &state);
2644 pwm_get_state_hw(pwm, &hwstate);
2645
2646 seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
2647
2648 if (test_bit(PWMF_REQUESTED, &pwm->flags))
2649 seq_puts(s, " requested");
2650
2651 seq_puts(s, "\n");
2652
2653 seq_printf(s, " requested configuration: %3sabled, %llu/%llu ns, %s polarity",
2654 state.enabled ? "en" : "dis", state.duty_cycle, state.period,
2655 state.polarity ? "inverse" : "normal");
2656 if (state.usage_power)
2657 seq_puts(s, ", usage_power");
2658 seq_puts(s, "\n");
2659
2660 seq_printf(s, " actual configuration: %3sabled, %llu/%llu ns, %s polarity",
2661 hwstate.enabled ? "en" : "dis", hwstate.duty_cycle, hwstate.period,
2662 hwstate.polarity ? "inverse" : "normal");
2663
2664 seq_puts(s, "\n");
2665 }
2666 }
2667
pwm_seq_start(struct seq_file * s,loff_t * pos)2668 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
2669 {
2670 unsigned long id = *pos;
2671 void *ret;
2672
2673 mutex_lock(&pwm_lock);
2674 s->private = "";
2675
2676 ret = idr_get_next_ul(&pwm_chips, &id);
2677 *pos = id;
2678 return ret;
2679 }
2680
pwm_seq_next(struct seq_file * s,void * v,loff_t * pos)2681 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
2682 {
2683 unsigned long id = *pos + 1;
2684 void *ret;
2685
2686 s->private = "\n";
2687
2688 ret = idr_get_next_ul(&pwm_chips, &id);
2689 *pos = id;
2690 return ret;
2691 }
2692
pwm_seq_stop(struct seq_file * s,void * v)2693 static void pwm_seq_stop(struct seq_file *s, void *v)
2694 {
2695 mutex_unlock(&pwm_lock);
2696 }
2697
pwm_seq_show(struct seq_file * s,void * v)2698 static int pwm_seq_show(struct seq_file *s, void *v)
2699 {
2700 struct pwm_chip *chip = v;
2701
2702 seq_printf(s, "%s%u: %s/%s, npwm: %u\n",
2703 (char *)s->private, chip->id,
2704 pwmchip_parent(chip)->bus ? pwmchip_parent(chip)->bus->name : "no-bus",
2705 dev_name(pwmchip_parent(chip)), chip->npwm);
2706
2707 pwm_dbg_show(chip, s);
2708
2709 return 0;
2710 }
2711
2712 static const struct seq_operations pwm_debugfs_sops = {
2713 .start = pwm_seq_start,
2714 .next = pwm_seq_next,
2715 .stop = pwm_seq_stop,
2716 .show = pwm_seq_show,
2717 };
2718
2719 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
2720
pwm_init(void)2721 static int __init pwm_init(void)
2722 {
2723 int ret;
2724
2725 ret = alloc_chrdev_region(&pwm_devt, 0, PWM_MINOR_COUNT, "pwm");
2726 if (ret) {
2727 pr_err("Failed to initialize chrdev region for PWM usage\n");
2728 return ret;
2729 }
2730
2731 ret = class_register(&pwm_class);
2732 if (ret) {
2733 pr_err("Failed to initialize PWM class (%pe)\n", ERR_PTR(ret));
2734 unregister_chrdev_region(pwm_devt, 256);
2735 return ret;
2736 }
2737
2738 if (IS_ENABLED(CONFIG_DEBUG_FS))
2739 debugfs_create_file("pwm", 0444, NULL, NULL, &pwm_debugfs_fops);
2740
2741 return 0;
2742 }
2743 subsys_initcall(pwm_init);
2744