xref: /linux/drivers/net/ethernet/freescale/fec_main.c (revision ca1bb3fedf26a08ed31974131bc0064d4fe33649)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/bitops.h>
26 #include <linux/bpf.h>
27 #include <linux/bpf_trace.h>
28 #include <linux/cacheflush.h>
29 #include <linux/clk.h>
30 #include <linux/crc32.h>
31 #include <linux/delay.h>
32 #include <linux/errno.h>
33 #include <linux/etherdevice.h>
34 #include <linux/fec.h>
35 #include <linux/filter.h>
36 #include <linux/gpio/consumer.h>
37 #include <linux/icmp.h>
38 #include <linux/if_vlan.h>
39 #include <linux/in.h>
40 #include <linux/interrupt.h>
41 #include <linux/io.h>
42 #include <linux/ioport.h>
43 #include <linux/ip.h>
44 #include <linux/irq.h>
45 #include <linux/kernel.h>
46 #include <linux/mdio.h>
47 #include <linux/mfd/syscon.h>
48 #include <linux/module.h>
49 #include <linux/netdevice.h>
50 #include <linux/of.h>
51 #include <linux/of_mdio.h>
52 #include <linux/of_net.h>
53 #include <linux/phy.h>
54 #include <linux/pinctrl/consumer.h>
55 #include <linux/phy_fixed.h>
56 #include <linux/platform_device.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/prefetch.h>
59 #include <linux/property.h>
60 #include <linux/ptrace.h>
61 #include <linux/regmap.h>
62 #include <linux/regulator/consumer.h>
63 #include <linux/skbuff.h>
64 #include <linux/slab.h>
65 #include <linux/spinlock.h>
66 #include <linux/string.h>
67 #include <linux/tcp.h>
68 #include <linux/udp.h>
69 #include <linux/workqueue.h>
70 #include <net/ip.h>
71 #include <net/page_pool/helpers.h>
72 #include <net/selftests.h>
73 #include <net/tso.h>
74 #include <soc/imx/cpuidle.h>
75 
76 #include "fec.h"
77 
78 static void set_multicast_list(struct net_device *ndev);
79 static void fec_enet_itr_coal_set(struct net_device *ndev);
80 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
81 				int cpu, struct xdp_buff *xdp,
82 				u32 dma_sync_len);
83 
84 #define DRIVER_NAME	"fec"
85 
86 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
87 
88 #define FEC_ENET_RSEM_V	0x84
89 #define FEC_ENET_RSFL_V	16
90 #define FEC_ENET_RAEM_V	0x8
91 #define FEC_ENET_RAFL_V	0x8
92 #define FEC_ENET_OPD_V	0xFFF0
93 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
94 
95 #define FEC_ENET_XDP_PASS          0
96 #define FEC_ENET_XDP_CONSUMED      BIT(0)
97 #define FEC_ENET_XDP_TX            BIT(1)
98 #define FEC_ENET_XDP_REDIR         BIT(2)
99 
100 struct fec_devinfo {
101 	u32 quirks;
102 };
103 
104 static const struct fec_devinfo fec_imx25_info = {
105 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
106 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
107 };
108 
109 static const struct fec_devinfo fec_imx27_info = {
110 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
111 		  FEC_QUIRK_HAS_MDIO_C45,
112 };
113 
114 static const struct fec_devinfo fec_imx28_info = {
115 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
116 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
117 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
118 		  FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
119 };
120 
121 static const struct fec_devinfo fec_imx6q_info = {
122 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
123 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
124 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
125 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
126 		  FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
127 };
128 
129 static const struct fec_devinfo fec_mvf600_info = {
130 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
131 		  FEC_QUIRK_HAS_MDIO_C45,
132 };
133 
134 static const struct fec_devinfo fec_imx6sx_info = {
135 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
136 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
137 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
138 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
139 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
140 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
141 		  FEC_QUIRK_HAS_MDIO_C45,
142 };
143 
144 static const struct fec_devinfo fec_imx6ul_info = {
145 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
146 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
147 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
148 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
149 		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
150 		  FEC_QUIRK_HAS_MDIO_C45,
151 };
152 
153 static const struct fec_devinfo fec_imx8mq_info = {
154 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
155 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
156 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
157 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
158 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
159 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
160 		  FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
161 		  FEC_QUIRK_HAS_MDIO_C45,
162 };
163 
164 static const struct fec_devinfo fec_imx8qm_info = {
165 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
166 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
167 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
168 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
169 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
170 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
171 		  FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45 |
172 		  FEC_QUIRK_JUMBO_FRAME,
173 };
174 
175 static const struct fec_devinfo fec_s32v234_info = {
176 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
177 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
178 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
179 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
180 		  FEC_QUIRK_HAS_MDIO_C45,
181 };
182 
183 static struct platform_device_id fec_devtype[] = {
184 	{
185 		/* keep it for coldfire */
186 		.name = DRIVER_NAME,
187 		.driver_data = 0,
188 	}, {
189 		/* sentinel */
190 	}
191 };
192 MODULE_DEVICE_TABLE(platform, fec_devtype);
193 
194 static const struct of_device_id fec_dt_ids[] = {
195 	{ .compatible = "fsl,imx25-fec", .data = &fec_imx25_info, },
196 	{ .compatible = "fsl,imx27-fec", .data = &fec_imx27_info, },
197 	{ .compatible = "fsl,imx28-fec", .data = &fec_imx28_info, },
198 	{ .compatible = "fsl,imx6q-fec", .data = &fec_imx6q_info, },
199 	{ .compatible = "fsl,mvf600-fec", .data = &fec_mvf600_info, },
200 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_imx6sx_info, },
201 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_imx6ul_info, },
202 	{ .compatible = "fsl,imx8mq-fec", .data = &fec_imx8mq_info, },
203 	{ .compatible = "fsl,imx8qm-fec", .data = &fec_imx8qm_info, },
204 	{ .compatible = "fsl,s32v234-fec", .data = &fec_s32v234_info, },
205 	{ /* sentinel */ }
206 };
207 MODULE_DEVICE_TABLE(of, fec_dt_ids);
208 
209 static unsigned char macaddr[ETH_ALEN];
210 module_param_array(macaddr, byte, NULL, 0);
211 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
212 
213 #if defined(CONFIG_M5272)
214 /*
215  * Some hardware gets it MAC address out of local flash memory.
216  * if this is non-zero then assume it is the address to get MAC from.
217  */
218 #if defined(CONFIG_NETtel)
219 #define	FEC_FLASHMAC	0xf0006006
220 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
221 #define	FEC_FLASHMAC	0xf0006000
222 #elif defined(CONFIG_CANCam)
223 #define	FEC_FLASHMAC	0xf0020000
224 #elif defined (CONFIG_M5272C3)
225 #define	FEC_FLASHMAC	(0xffe04000 + 4)
226 #elif defined(CONFIG_MOD5272)
227 #define FEC_FLASHMAC	0xffc0406b
228 #else
229 #define	FEC_FLASHMAC	0
230 #endif
231 #endif /* CONFIG_M5272 */
232 
233 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
234  *
235  * 2048 byte skbufs are allocated. However, alignment requirements
236  * varies between FEC variants. Worst case is 64, so round down by 64.
237  */
238 #define MAX_JUMBO_BUF_SIZE	(round_down(16384 - FEC_DRV_RESERVE_SPACE - 64, 64))
239 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
240 #define PKT_MINBUF_SIZE		64
241 
242 /* FEC receive acceleration */
243 #define FEC_RACC_IPDIS		BIT(1)
244 #define FEC_RACC_PRODIS		BIT(2)
245 #define FEC_RACC_SHIFT16	BIT(7)
246 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
247 
248 /* MIB Control Register */
249 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
250 
251 /*
252  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
253  * size bits. Other FEC hardware does not, so we need to take that into
254  * account when setting it.
255  */
256 #ifndef CONFIG_M5272
257 #define	OPT_ARCH_HAS_MAX_FL	1
258 #else
259 #define	OPT_ARCH_HAS_MAX_FL	0
260 #endif
261 
262 /* FEC MII MMFR bits definition */
263 #define FEC_MMFR_ST		(1 << 30)
264 #define FEC_MMFR_ST_C45		(0)
265 #define FEC_MMFR_OP_READ	(2 << 28)
266 #define FEC_MMFR_OP_READ_C45	(3 << 28)
267 #define FEC_MMFR_OP_WRITE	(1 << 28)
268 #define FEC_MMFR_OP_ADDR_WRITE	(0)
269 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
270 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
271 #define FEC_MMFR_TA		(2 << 16)
272 #define FEC_MMFR_DATA(v)	(v & 0xffff)
273 /* FEC ECR bits definition */
274 #define FEC_ECR_RESET           BIT(0)
275 #define FEC_ECR_ETHEREN         BIT(1)
276 #define FEC_ECR_MAGICEN         BIT(2)
277 #define FEC_ECR_SLEEP           BIT(3)
278 #define FEC_ECR_EN1588          BIT(4)
279 #define FEC_ECR_SPEED           BIT(5)
280 #define FEC_ECR_BYTESWP         BIT(8)
281 /* FEC RCR bits definition */
282 #define FEC_RCR_LOOP            BIT(0)
283 #define FEC_RCR_DRT		BIT(1)
284 #define FEC_RCR_MII             BIT(2)
285 #define FEC_RCR_PROMISC         BIT(3)
286 #define FEC_RCR_BC_REJ          BIT(4)
287 #define FEC_RCR_FLOWCTL         BIT(5)
288 #define FEC_RCR_RGMII		BIT(6)
289 #define FEC_RCR_RMII            BIT(8)
290 #define FEC_RCR_10BASET         BIT(9)
291 #define FEC_RCR_NLC		BIT(30)
292 /* TX WMARK bits */
293 #define FEC_TXWMRK_STRFWD       BIT(8)
294 
295 #define FEC_MII_TIMEOUT		30000 /* us */
296 
297 /* Transmitter timeout */
298 #define TX_TIMEOUT (2 * HZ)
299 
300 #define FEC_PAUSE_FLAG_AUTONEG	0x1
301 #define FEC_PAUSE_FLAG_ENABLE	0x2
302 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
303 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
304 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
305 
306 /* Max number of allowed TCP segments for software TSO */
307 #define FEC_MAX_TSO_SEGS	100
308 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
309 
310 #define IS_TSO_HEADER(txq, addr) \
311 	((addr >= txq->tso_hdrs_dma) && \
312 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
313 
314 static int mii_cnt;
315 
316 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
317 					     struct bufdesc_prop *bd)
318 {
319 	return (bdp >= bd->last) ? bd->base
320 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
321 }
322 
323 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
324 					     struct bufdesc_prop *bd)
325 {
326 	return (bdp <= bd->base) ? bd->last
327 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
328 }
329 
330 static int fec_enet_get_bd_index(struct bufdesc *bdp,
331 				 struct bufdesc_prop *bd)
332 {
333 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
334 }
335 
336 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
337 {
338 	int entries;
339 
340 	entries = (((const char *)txq->dirty_tx -
341 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
342 
343 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
344 }
345 
346 static void swap_buffer(void *bufaddr, int len)
347 {
348 	int i;
349 	unsigned int *buf = bufaddr;
350 
351 	for (i = 0; i < len; i += 4, buf++)
352 		swab32s(buf);
353 }
354 
355 static void fec_dump(struct net_device *ndev)
356 {
357 	struct fec_enet_private *fep = netdev_priv(ndev);
358 	struct bufdesc *bdp;
359 	struct fec_enet_priv_tx_q *txq;
360 	int index = 0;
361 
362 	netdev_info(ndev, "TX ring dump\n");
363 	pr_info("Nr     SC     addr       len  SKB\n");
364 
365 	txq = fep->tx_queue[0];
366 	bdp = txq->bd.base;
367 
368 	do {
369 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
370 			index,
371 			bdp == txq->bd.cur ? 'S' : ' ',
372 			bdp == txq->dirty_tx ? 'H' : ' ',
373 			fec16_to_cpu(bdp->cbd_sc),
374 			fec32_to_cpu(bdp->cbd_bufaddr),
375 			fec16_to_cpu(bdp->cbd_datlen),
376 			txq->tx_buf[index].buf_p);
377 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
378 		index++;
379 	} while (bdp != txq->bd.base);
380 }
381 
382 /*
383  * Coldfire does not support DMA coherent allocations, and has historically used
384  * a band-aid with a manual flush in fec_enet_rx_queue.
385  */
386 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
387 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
388 		gfp_t gfp)
389 {
390 	return dma_alloc_noncoherent(dev, size, handle, DMA_BIDIRECTIONAL, gfp);
391 }
392 
393 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
394 		dma_addr_t handle)
395 {
396 	dma_free_noncoherent(dev, size, cpu_addr, handle, DMA_BIDIRECTIONAL);
397 }
398 #else /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
399 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
400 		gfp_t gfp)
401 {
402 	return dma_alloc_coherent(dev, size, handle, gfp);
403 }
404 
405 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
406 		dma_addr_t handle)
407 {
408 	dma_free_coherent(dev, size, cpu_addr, handle);
409 }
410 #endif /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
411 
412 struct fec_dma_devres {
413 	size_t		size;
414 	void		*vaddr;
415 	dma_addr_t	dma_handle;
416 };
417 
418 static void fec_dmam_release(struct device *dev, void *res)
419 {
420 	struct fec_dma_devres *this = res;
421 
422 	fec_dma_free(dev, this->size, this->vaddr, this->dma_handle);
423 }
424 
425 static void *fec_dmam_alloc(struct device *dev, size_t size, dma_addr_t *handle,
426 		gfp_t gfp)
427 {
428 	struct fec_dma_devres *dr;
429 	void *vaddr;
430 
431 	dr = devres_alloc(fec_dmam_release, sizeof(*dr), gfp);
432 	if (!dr)
433 		return NULL;
434 	vaddr = fec_dma_alloc(dev, size, handle, gfp);
435 	if (!vaddr) {
436 		devres_free(dr);
437 		return NULL;
438 	}
439 	dr->vaddr = vaddr;
440 	dr->dma_handle = *handle;
441 	dr->size = size;
442 	devres_add(dev, dr);
443 	return vaddr;
444 }
445 
446 static inline bool is_ipv4_pkt(struct sk_buff *skb)
447 {
448 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
449 }
450 
451 static int
452 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
453 {
454 	/* Only run for packets requiring a checksum. */
455 	if (skb->ip_summed != CHECKSUM_PARTIAL)
456 		return 0;
457 
458 	if (unlikely(skb_cow_head(skb, 0)))
459 		return -1;
460 
461 	if (is_ipv4_pkt(skb))
462 		ip_hdr(skb)->check = 0;
463 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
464 
465 	return 0;
466 }
467 
468 static int
469 fec_enet_create_page_pool(struct fec_enet_private *fep,
470 			  struct fec_enet_priv_rx_q *rxq, int size)
471 {
472 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
473 	struct page_pool_params pp_params = {
474 		.order = fep->pagepool_order,
475 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
476 		.pool_size = size,
477 		.nid = dev_to_node(&fep->pdev->dev),
478 		.dev = &fep->pdev->dev,
479 		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
480 		.offset = FEC_ENET_XDP_HEADROOM,
481 		.max_len = fep->rx_frame_size,
482 	};
483 	int err;
484 
485 	rxq->page_pool = page_pool_create(&pp_params);
486 	if (IS_ERR(rxq->page_pool)) {
487 		err = PTR_ERR(rxq->page_pool);
488 		rxq->page_pool = NULL;
489 		return err;
490 	}
491 
492 	err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
493 	if (err < 0)
494 		goto err_free_pp;
495 
496 	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
497 					 rxq->page_pool);
498 	if (err)
499 		goto err_unregister_rxq;
500 
501 	return 0;
502 
503 err_unregister_rxq:
504 	xdp_rxq_info_unreg(&rxq->xdp_rxq);
505 err_free_pp:
506 	page_pool_destroy(rxq->page_pool);
507 	rxq->page_pool = NULL;
508 	return err;
509 }
510 
511 static struct bufdesc *
512 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
513 			     struct sk_buff *skb,
514 			     struct net_device *ndev)
515 {
516 	struct fec_enet_private *fep = netdev_priv(ndev);
517 	struct bufdesc *bdp = txq->bd.cur;
518 	struct bufdesc_ex *ebdp;
519 	int nr_frags = skb_shinfo(skb)->nr_frags;
520 	int frag, frag_len;
521 	unsigned short status;
522 	unsigned int estatus = 0;
523 	skb_frag_t *this_frag;
524 	unsigned int index;
525 	void *bufaddr;
526 	dma_addr_t addr;
527 	int i;
528 
529 	for (frag = 0; frag < nr_frags; frag++) {
530 		this_frag = &skb_shinfo(skb)->frags[frag];
531 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
532 		ebdp = (struct bufdesc_ex *)bdp;
533 
534 		status = fec16_to_cpu(bdp->cbd_sc);
535 		status &= ~BD_ENET_TX_STATS;
536 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
537 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
538 
539 		/* Handle the last BD specially */
540 		if (frag == nr_frags - 1) {
541 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
542 			if (fep->bufdesc_ex) {
543 				estatus |= BD_ENET_TX_INT;
544 				if (unlikely(skb_shinfo(skb)->tx_flags &
545 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
546 					estatus |= BD_ENET_TX_TS;
547 			}
548 		}
549 
550 		if (fep->bufdesc_ex) {
551 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
552 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
553 			if (skb->ip_summed == CHECKSUM_PARTIAL)
554 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
555 
556 			ebdp->cbd_bdu = 0;
557 			ebdp->cbd_esc = cpu_to_fec32(estatus);
558 		}
559 
560 		bufaddr = skb_frag_address(this_frag);
561 
562 		index = fec_enet_get_bd_index(bdp, &txq->bd);
563 		if (((unsigned long) bufaddr) & fep->tx_align ||
564 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
565 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
566 			bufaddr = txq->tx_bounce[index];
567 
568 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
569 				swap_buffer(bufaddr, frag_len);
570 		}
571 
572 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
573 				      DMA_TO_DEVICE);
574 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
575 			if (net_ratelimit())
576 				netdev_err(ndev, "Tx DMA memory map failed\n");
577 			goto dma_mapping_error;
578 		}
579 
580 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
581 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
582 		/* Make sure the updates to rest of the descriptor are
583 		 * performed before transferring ownership.
584 		 */
585 		wmb();
586 		bdp->cbd_sc = cpu_to_fec16(status);
587 	}
588 
589 	return bdp;
590 dma_mapping_error:
591 	bdp = txq->bd.cur;
592 	for (i = 0; i < frag; i++) {
593 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
594 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
595 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
596 	}
597 	return ERR_PTR(-ENOMEM);
598 }
599 
600 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
601 				   struct sk_buff *skb, struct net_device *ndev)
602 {
603 	struct fec_enet_private *fep = netdev_priv(ndev);
604 	int nr_frags = skb_shinfo(skb)->nr_frags;
605 	struct bufdesc *bdp, *last_bdp;
606 	void *bufaddr;
607 	dma_addr_t addr;
608 	unsigned short status;
609 	unsigned short buflen;
610 	unsigned int estatus = 0;
611 	unsigned int index;
612 	int entries_free;
613 
614 	entries_free = fec_enet_get_free_txdesc_num(txq);
615 	if (entries_free < MAX_SKB_FRAGS + 1) {
616 		dev_kfree_skb_any(skb);
617 		if (net_ratelimit())
618 			netdev_err(ndev, "NOT enough BD for SG!\n");
619 		return NETDEV_TX_OK;
620 	}
621 
622 	/* Protocol checksum off-load for TCP and UDP. */
623 	if (fec_enet_clear_csum(skb, ndev)) {
624 		dev_kfree_skb_any(skb);
625 		return NETDEV_TX_OK;
626 	}
627 
628 	/* Fill in a Tx ring entry */
629 	bdp = txq->bd.cur;
630 	last_bdp = bdp;
631 	status = fec16_to_cpu(bdp->cbd_sc);
632 	status &= ~BD_ENET_TX_STATS;
633 
634 	/* Set buffer length and buffer pointer */
635 	bufaddr = skb->data;
636 	buflen = skb_headlen(skb);
637 
638 	index = fec_enet_get_bd_index(bdp, &txq->bd);
639 	if (((unsigned long) bufaddr) & fep->tx_align ||
640 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
641 		memcpy(txq->tx_bounce[index], skb->data, buflen);
642 		bufaddr = txq->tx_bounce[index];
643 
644 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
645 			swap_buffer(bufaddr, buflen);
646 	}
647 
648 	/* Push the data cache so the CPM does not get stale memory data. */
649 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
650 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
651 		dev_kfree_skb_any(skb);
652 		if (net_ratelimit())
653 			netdev_err(ndev, "Tx DMA memory map failed\n");
654 		return NETDEV_TX_OK;
655 	}
656 
657 	if (nr_frags) {
658 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
659 		if (IS_ERR(last_bdp)) {
660 			dma_unmap_single(&fep->pdev->dev, addr,
661 					 buflen, DMA_TO_DEVICE);
662 			dev_kfree_skb_any(skb);
663 			return NETDEV_TX_OK;
664 		}
665 	} else {
666 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
667 		if (fep->bufdesc_ex) {
668 			estatus = BD_ENET_TX_INT;
669 			if (unlikely(skb_shinfo(skb)->tx_flags &
670 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
671 				estatus |= BD_ENET_TX_TS;
672 		}
673 	}
674 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
675 	bdp->cbd_datlen = cpu_to_fec16(buflen);
676 
677 	if (fep->bufdesc_ex) {
678 
679 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
680 
681 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
682 			fep->hwts_tx_en))
683 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
684 
685 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
686 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
687 
688 		if (skb->ip_summed == CHECKSUM_PARTIAL)
689 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
690 
691 		ebdp->cbd_bdu = 0;
692 		ebdp->cbd_esc = cpu_to_fec32(estatus);
693 	}
694 
695 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
696 	/* Save skb pointer */
697 	txq->tx_buf[index].buf_p = skb;
698 
699 	/* Make sure the updates to rest of the descriptor are performed before
700 	 * transferring ownership.
701 	 */
702 	wmb();
703 
704 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
705 	 * it's the last BD of the frame, and to put the CRC on the end.
706 	 */
707 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
708 	bdp->cbd_sc = cpu_to_fec16(status);
709 
710 	/* If this was the last BD in the ring, start at the beginning again. */
711 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
712 
713 	skb_tx_timestamp(skb);
714 
715 	/* Make sure the update to bdp is performed before txq->bd.cur. */
716 	wmb();
717 	txq->bd.cur = bdp;
718 
719 	/* Trigger transmission start */
720 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
721 	    !readl(txq->bd.reg_desc_active) ||
722 	    !readl(txq->bd.reg_desc_active) ||
723 	    !readl(txq->bd.reg_desc_active) ||
724 	    !readl(txq->bd.reg_desc_active))
725 		writel(0, txq->bd.reg_desc_active);
726 
727 	return 0;
728 }
729 
730 static int
731 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
732 			  struct net_device *ndev,
733 			  struct bufdesc *bdp, int index, char *data,
734 			  int size, bool last_tcp, bool is_last)
735 {
736 	struct fec_enet_private *fep = netdev_priv(ndev);
737 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
738 	unsigned short status;
739 	unsigned int estatus = 0;
740 	dma_addr_t addr;
741 
742 	status = fec16_to_cpu(bdp->cbd_sc);
743 	status &= ~BD_ENET_TX_STATS;
744 
745 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
746 
747 	if (((unsigned long) data) & fep->tx_align ||
748 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
749 		memcpy(txq->tx_bounce[index], data, size);
750 		data = txq->tx_bounce[index];
751 
752 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
753 			swap_buffer(data, size);
754 	}
755 
756 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
757 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
758 		dev_kfree_skb_any(skb);
759 		if (net_ratelimit())
760 			netdev_err(ndev, "Tx DMA memory map failed\n");
761 		return NETDEV_TX_OK;
762 	}
763 
764 	bdp->cbd_datlen = cpu_to_fec16(size);
765 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
766 
767 	if (fep->bufdesc_ex) {
768 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
769 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
770 		if (skb->ip_summed == CHECKSUM_PARTIAL)
771 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
772 		ebdp->cbd_bdu = 0;
773 		ebdp->cbd_esc = cpu_to_fec32(estatus);
774 	}
775 
776 	/* Handle the last BD specially */
777 	if (last_tcp)
778 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
779 	if (is_last) {
780 		status |= BD_ENET_TX_INTR;
781 		if (fep->bufdesc_ex)
782 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
783 	}
784 
785 	bdp->cbd_sc = cpu_to_fec16(status);
786 
787 	return 0;
788 }
789 
790 static int
791 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
792 			 struct sk_buff *skb, struct net_device *ndev,
793 			 struct bufdesc *bdp, int index)
794 {
795 	struct fec_enet_private *fep = netdev_priv(ndev);
796 	int hdr_len = skb_tcp_all_headers(skb);
797 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
798 	void *bufaddr;
799 	unsigned long dmabuf;
800 	unsigned short status;
801 	unsigned int estatus = 0;
802 
803 	status = fec16_to_cpu(bdp->cbd_sc);
804 	status &= ~BD_ENET_TX_STATS;
805 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
806 
807 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
808 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
809 	if (((unsigned long)bufaddr) & fep->tx_align ||
810 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
811 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
812 		bufaddr = txq->tx_bounce[index];
813 
814 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
815 			swap_buffer(bufaddr, hdr_len);
816 
817 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
818 					hdr_len, DMA_TO_DEVICE);
819 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
820 			dev_kfree_skb_any(skb);
821 			if (net_ratelimit())
822 				netdev_err(ndev, "Tx DMA memory map failed\n");
823 			return NETDEV_TX_OK;
824 		}
825 	}
826 
827 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
828 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
829 
830 	if (fep->bufdesc_ex) {
831 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
832 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
833 		if (skb->ip_summed == CHECKSUM_PARTIAL)
834 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
835 		ebdp->cbd_bdu = 0;
836 		ebdp->cbd_esc = cpu_to_fec32(estatus);
837 	}
838 
839 	bdp->cbd_sc = cpu_to_fec16(status);
840 
841 	return 0;
842 }
843 
844 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
845 				   struct sk_buff *skb,
846 				   struct net_device *ndev)
847 {
848 	struct fec_enet_private *fep = netdev_priv(ndev);
849 	int hdr_len, total_len, data_left;
850 	struct bufdesc *bdp = txq->bd.cur;
851 	struct bufdesc *tmp_bdp;
852 	struct bufdesc_ex *ebdp;
853 	struct tso_t tso;
854 	unsigned int index = 0;
855 	int ret;
856 
857 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
858 		dev_kfree_skb_any(skb);
859 		if (net_ratelimit())
860 			netdev_err(ndev, "NOT enough BD for TSO!\n");
861 		return NETDEV_TX_OK;
862 	}
863 
864 	/* Protocol checksum off-load for TCP and UDP. */
865 	if (fec_enet_clear_csum(skb, ndev)) {
866 		dev_kfree_skb_any(skb);
867 		return NETDEV_TX_OK;
868 	}
869 
870 	/* Initialize the TSO handler, and prepare the first payload */
871 	hdr_len = tso_start(skb, &tso);
872 
873 	total_len = skb->len - hdr_len;
874 	while (total_len > 0) {
875 		char *hdr;
876 
877 		index = fec_enet_get_bd_index(bdp, &txq->bd);
878 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
879 		total_len -= data_left;
880 
881 		/* prepare packet headers: MAC + IP + TCP */
882 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
883 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
884 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
885 		if (ret)
886 			goto err_release;
887 
888 		while (data_left > 0) {
889 			int size;
890 
891 			size = min_t(int, tso.size, data_left);
892 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
893 			index = fec_enet_get_bd_index(bdp, &txq->bd);
894 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
895 							bdp, index,
896 							tso.data, size,
897 							size == data_left,
898 							total_len == 0);
899 			if (ret)
900 				goto err_release;
901 
902 			data_left -= size;
903 			tso_build_data(skb, &tso, size);
904 		}
905 
906 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
907 	}
908 
909 	/* Save skb pointer */
910 	txq->tx_buf[index].buf_p = skb;
911 
912 	skb_tx_timestamp(skb);
913 	txq->bd.cur = bdp;
914 
915 	/* Trigger transmission start */
916 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
917 	    !readl(txq->bd.reg_desc_active) ||
918 	    !readl(txq->bd.reg_desc_active) ||
919 	    !readl(txq->bd.reg_desc_active) ||
920 	    !readl(txq->bd.reg_desc_active))
921 		writel(0, txq->bd.reg_desc_active);
922 
923 	return 0;
924 
925 err_release:
926 	/* Release all used data descriptors for TSO */
927 	tmp_bdp = txq->bd.cur;
928 
929 	while (tmp_bdp != bdp) {
930 		/* Unmap data buffers */
931 		if (tmp_bdp->cbd_bufaddr &&
932 		    !IS_TSO_HEADER(txq, fec32_to_cpu(tmp_bdp->cbd_bufaddr)))
933 			dma_unmap_single(&fep->pdev->dev,
934 					 fec32_to_cpu(tmp_bdp->cbd_bufaddr),
935 					 fec16_to_cpu(tmp_bdp->cbd_datlen),
936 					 DMA_TO_DEVICE);
937 
938 		/* Clear standard buffer descriptor fields */
939 		tmp_bdp->cbd_sc = 0;
940 		tmp_bdp->cbd_datlen = 0;
941 		tmp_bdp->cbd_bufaddr = 0;
942 
943 		/* Handle extended descriptor if enabled */
944 		if (fep->bufdesc_ex) {
945 			ebdp = (struct bufdesc_ex *)tmp_bdp;
946 			ebdp->cbd_esc = 0;
947 		}
948 
949 		tmp_bdp = fec_enet_get_nextdesc(tmp_bdp, &txq->bd);
950 	}
951 
952 	dev_kfree_skb_any(skb);
953 
954 	return ret;
955 }
956 
957 static netdev_tx_t
958 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
959 {
960 	struct fec_enet_private *fep = netdev_priv(ndev);
961 	int entries_free;
962 	unsigned short queue;
963 	struct fec_enet_priv_tx_q *txq;
964 	struct netdev_queue *nq;
965 	int ret;
966 
967 	queue = skb_get_queue_mapping(skb);
968 	txq = fep->tx_queue[queue];
969 	nq = netdev_get_tx_queue(ndev, queue);
970 
971 	if (skb_is_gso(skb))
972 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
973 	else
974 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
975 	if (ret)
976 		return ret;
977 
978 	entries_free = fec_enet_get_free_txdesc_num(txq);
979 	if (entries_free <= txq->tx_stop_threshold)
980 		netif_tx_stop_queue(nq);
981 
982 	return NETDEV_TX_OK;
983 }
984 
985 /* Init RX & TX buffer descriptors
986  */
987 static void fec_enet_bd_init(struct net_device *dev)
988 {
989 	struct fec_enet_private *fep = netdev_priv(dev);
990 	struct fec_enet_priv_tx_q *txq;
991 	struct fec_enet_priv_rx_q *rxq;
992 	struct bufdesc *bdp;
993 	unsigned int i;
994 	unsigned int q;
995 
996 	for (q = 0; q < fep->num_rx_queues; q++) {
997 		/* Initialize the receive buffer descriptors. */
998 		rxq = fep->rx_queue[q];
999 		bdp = rxq->bd.base;
1000 
1001 		for (i = 0; i < rxq->bd.ring_size; i++) {
1002 
1003 			/* Initialize the BD for every fragment in the page. */
1004 			if (bdp->cbd_bufaddr)
1005 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
1006 			else
1007 				bdp->cbd_sc = cpu_to_fec16(0);
1008 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1009 		}
1010 
1011 		/* Set the last buffer to wrap */
1012 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
1013 		bdp->cbd_sc |= cpu_to_fec16(BD_ENET_RX_WRAP);
1014 
1015 		rxq->bd.cur = rxq->bd.base;
1016 	}
1017 
1018 	for (q = 0; q < fep->num_tx_queues; q++) {
1019 		/* ...and the same for transmit */
1020 		txq = fep->tx_queue[q];
1021 		bdp = txq->bd.base;
1022 		txq->bd.cur = bdp;
1023 
1024 		for (i = 0; i < txq->bd.ring_size; i++) {
1025 			/* Initialize the BD for every fragment in the page. */
1026 			bdp->cbd_sc = cpu_to_fec16(0);
1027 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
1028 				if (bdp->cbd_bufaddr &&
1029 				    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1030 					dma_unmap_single(&fep->pdev->dev,
1031 							 fec32_to_cpu(bdp->cbd_bufaddr),
1032 							 fec16_to_cpu(bdp->cbd_datlen),
1033 							 DMA_TO_DEVICE);
1034 				if (txq->tx_buf[i].buf_p)
1035 					dev_kfree_skb_any(txq->tx_buf[i].buf_p);
1036 			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
1037 				if (bdp->cbd_bufaddr)
1038 					dma_unmap_single(&fep->pdev->dev,
1039 							 fec32_to_cpu(bdp->cbd_bufaddr),
1040 							 fec16_to_cpu(bdp->cbd_datlen),
1041 							 DMA_TO_DEVICE);
1042 
1043 				if (txq->tx_buf[i].buf_p)
1044 					xdp_return_frame(txq->tx_buf[i].buf_p);
1045 			} else {
1046 				struct page *page = txq->tx_buf[i].buf_p;
1047 
1048 				if (page)
1049 					page_pool_put_page(pp_page_to_nmdesc(page)->pp,
1050 							   page, 0,
1051 							   false);
1052 			}
1053 
1054 			txq->tx_buf[i].buf_p = NULL;
1055 			/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1056 			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
1057 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1058 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1059 		}
1060 
1061 		/* Set the last buffer to wrap */
1062 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
1063 		bdp->cbd_sc |= cpu_to_fec16(BD_ENET_TX_WRAP);
1064 		txq->dirty_tx = bdp;
1065 	}
1066 }
1067 
1068 static void fec_enet_active_rxring(struct net_device *ndev)
1069 {
1070 	struct fec_enet_private *fep = netdev_priv(ndev);
1071 	int i;
1072 
1073 	for (i = 0; i < fep->num_rx_queues; i++)
1074 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
1075 }
1076 
1077 static void fec_enet_enable_ring(struct net_device *ndev)
1078 {
1079 	struct fec_enet_private *fep = netdev_priv(ndev);
1080 	struct fec_enet_priv_tx_q *txq;
1081 	struct fec_enet_priv_rx_q *rxq;
1082 	int i;
1083 
1084 	for (i = 0; i < fep->num_rx_queues; i++) {
1085 		rxq = fep->rx_queue[i];
1086 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
1087 		writel(fep->max_buf_size, fep->hwp + FEC_R_BUFF_SIZE(i));
1088 
1089 		/* enable DMA1/2 */
1090 		if (i)
1091 			writel(RCMR_MATCHEN | RCMR_CMP(i),
1092 			       fep->hwp + FEC_RCMR(i));
1093 	}
1094 
1095 	for (i = 0; i < fep->num_tx_queues; i++) {
1096 		txq = fep->tx_queue[i];
1097 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1098 
1099 		/* enable DMA1/2 */
1100 		if (i)
1101 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1102 			       fep->hwp + FEC_DMA_CFG(i));
1103 	}
1104 }
1105 
1106 /* Whack a reset.  We should wait for this.
1107  * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1108  * instead of reset MAC itself.
1109  */
1110 static void fec_ctrl_reset(struct fec_enet_private *fep, bool allow_wol)
1111 {
1112 	u32 val;
1113 
1114 	if (!allow_wol || !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1115 		if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1116 		    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1117 			writel(0, fep->hwp + FEC_ECNTRL);
1118 		} else {
1119 			writel(FEC_ECR_RESET, fep->hwp + FEC_ECNTRL);
1120 			udelay(10);
1121 		}
1122 	} else {
1123 		val = readl(fep->hwp + FEC_ECNTRL);
1124 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1125 		writel(val, fep->hwp + FEC_ECNTRL);
1126 	}
1127 }
1128 
1129 static void fec_set_hw_mac_addr(struct net_device *ndev)
1130 {
1131 	struct fec_enet_private *fep = netdev_priv(ndev);
1132 
1133 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
1134 	       (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
1135 	       fep->hwp + FEC_ADDR_LOW);
1136 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
1137 	       fep->hwp + FEC_ADDR_HIGH);
1138 }
1139 
1140 /*
1141  * This function is called to start or restart the FEC during a link
1142  * change, transmit timeout, or to reconfigure the FEC.  The network
1143  * packet processing for this device must be stopped before this call.
1144  */
1145 static void
1146 fec_restart(struct net_device *ndev)
1147 {
1148 	struct fec_enet_private *fep = netdev_priv(ndev);
1149 	u32 ecntl = FEC_ECR_ETHEREN;
1150 	u32 rcntl = FEC_RCR_MII;
1151 
1152 	if (OPT_ARCH_HAS_MAX_FL)
1153 		rcntl |= (fep->netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN) << 16;
1154 
1155 	if (fep->bufdesc_ex)
1156 		fec_ptp_save_state(fep);
1157 
1158 	fec_ctrl_reset(fep, false);
1159 
1160 	/*
1161 	 * enet-mac reset will reset mac address registers too,
1162 	 * so need to reconfigure it.
1163 	 */
1164 	fec_set_hw_mac_addr(ndev);
1165 
1166 	/* Clear any outstanding interrupt, except MDIO. */
1167 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1168 
1169 	fec_enet_bd_init(ndev);
1170 
1171 	fec_enet_enable_ring(ndev);
1172 
1173 	/* Enable MII mode */
1174 	if (fep->full_duplex == DUPLEX_FULL) {
1175 		/* FD enable */
1176 		writel(0x04, fep->hwp + FEC_X_CNTRL);
1177 	} else {
1178 		/* No Rcv on Xmit */
1179 		rcntl |= FEC_RCR_DRT;
1180 		writel(0x0, fep->hwp + FEC_X_CNTRL);
1181 	}
1182 
1183 	/* Set MII speed */
1184 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1185 
1186 #if !defined(CONFIG_M5272)
1187 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1188 		u32 val = readl(fep->hwp + FEC_RACC);
1189 
1190 		/* align IP header */
1191 		val |= FEC_RACC_SHIFT16;
1192 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1193 			/* set RX checksum */
1194 			val |= FEC_RACC_OPTIONS;
1195 		else
1196 			val &= ~FEC_RACC_OPTIONS;
1197 		writel(val, fep->hwp + FEC_RACC);
1198 		writel(min(fep->rx_frame_size, fep->max_buf_size), fep->hwp + FEC_FTRL);
1199 	}
1200 #endif
1201 
1202 	/*
1203 	 * The phy interface and speed need to get configured
1204 	 * differently on enet-mac.
1205 	 */
1206 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1207 		/* Enable flow control and length check */
1208 		rcntl |= FEC_RCR_NLC | FEC_RCR_FLOWCTL;
1209 
1210 		/* RGMII, RMII or MII */
1211 		if (phy_interface_mode_is_rgmii(fep->phy_interface))
1212 			rcntl |= FEC_RCR_RGMII;
1213 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1214 			rcntl |= FEC_RCR_RMII;
1215 		else
1216 			rcntl &= ~FEC_RCR_RMII;
1217 
1218 		/* 1G, 100M or 10M */
1219 		if (ndev->phydev) {
1220 			if (ndev->phydev->speed == SPEED_1000)
1221 				ecntl |= FEC_ECR_SPEED;
1222 			else if (ndev->phydev->speed == SPEED_100)
1223 				rcntl &= ~FEC_RCR_10BASET;
1224 			else
1225 				rcntl |= FEC_RCR_10BASET;
1226 		}
1227 	} else {
1228 #ifdef FEC_MIIGSK_ENR
1229 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1230 			u32 cfgr;
1231 			/* disable the gasket and wait */
1232 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1233 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1234 				udelay(1);
1235 
1236 			/*
1237 			 * configure the gasket:
1238 			 *   RMII, 50 MHz, no loopback, no echo
1239 			 *   MII, 25 MHz, no loopback, no echo
1240 			 */
1241 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1242 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1243 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1244 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1245 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1246 
1247 			/* re-enable the gasket */
1248 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1249 		}
1250 #endif
1251 	}
1252 
1253 #if !defined(CONFIG_M5272)
1254 	/* enable pause frame*/
1255 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1256 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1257 	     ndev->phydev && ndev->phydev->pause)) {
1258 		rcntl |= FEC_RCR_FLOWCTL;
1259 
1260 		/* set FIFO threshold parameter to reduce overrun */
1261 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1262 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1263 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1264 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1265 
1266 		/* OPD */
1267 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1268 	} else {
1269 		rcntl &= ~FEC_RCR_FLOWCTL;
1270 	}
1271 #endif /* !defined(CONFIG_M5272) */
1272 
1273 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1274 
1275 	/* Setup multicast filter. */
1276 	set_multicast_list(ndev);
1277 #ifndef CONFIG_M5272
1278 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1279 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1280 #endif
1281 
1282 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1283 		/* enable ENET endian swap */
1284 		ecntl |= FEC_ECR_BYTESWP;
1285 
1286 		/* When Jumbo Frame is enabled, the FIFO may not be large enough
1287 		 * to hold an entire frame. In such cases, if the MTU exceeds
1288 		 * (PKT_MAXBUF_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN), configure
1289 		 * the interface to operate in cut-through mode, triggered by
1290 		 * the FIFO threshold.
1291 		 * Otherwise, enable the ENET store-and-forward mode.
1292 		 */
1293 		if ((fep->quirks & FEC_QUIRK_JUMBO_FRAME) &&
1294 		    (ndev->mtu > (PKT_MAXBUF_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN)))
1295 			writel(0xF, fep->hwp + FEC_X_WMRK);
1296 		else
1297 			writel(FEC_TXWMRK_STRFWD, fep->hwp + FEC_X_WMRK);
1298 	}
1299 
1300 	if (fep->bufdesc_ex)
1301 		ecntl |= FEC_ECR_EN1588;
1302 
1303 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1304 	    fep->rgmii_txc_dly)
1305 		ecntl |= FEC_ENET_TXC_DLY;
1306 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1307 	    fep->rgmii_rxc_dly)
1308 		ecntl |= FEC_ENET_RXC_DLY;
1309 
1310 #ifndef CONFIG_M5272
1311 	/* Enable the MIB statistic event counters */
1312 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1313 #endif
1314 
1315 	/* And last, enable the transmit and receive processing */
1316 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1317 	fec_enet_active_rxring(ndev);
1318 
1319 	if (fep->bufdesc_ex) {
1320 		fec_ptp_start_cyclecounter(ndev);
1321 		fec_ptp_restore_state(fep);
1322 	}
1323 
1324 	/* Enable interrupts we wish to service */
1325 	if (fep->link)
1326 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1327 	else
1328 		writel(0, fep->hwp + FEC_IMASK);
1329 
1330 	/* Init the interrupt coalescing */
1331 	if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1332 		fec_enet_itr_coal_set(ndev);
1333 }
1334 
1335 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1336 {
1337 	if (!(of_machine_is_compatible("fsl,imx8qm") ||
1338 	      of_machine_is_compatible("fsl,imx8qxp") ||
1339 	      of_machine_is_compatible("fsl,imx8dxl")))
1340 		return 0;
1341 
1342 	return imx_scu_get_handle(&fep->ipc_handle);
1343 }
1344 
1345 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1346 {
1347 	struct device_node *np = fep->pdev->dev.of_node;
1348 	u32 rsrc_id, val;
1349 	int idx;
1350 
1351 	if (!np || !fep->ipc_handle)
1352 		return;
1353 
1354 	idx = of_alias_get_id(np, "ethernet");
1355 	if (idx < 0)
1356 		idx = 0;
1357 	rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1358 
1359 	val = enabled ? 1 : 0;
1360 	imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1361 }
1362 
1363 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1364 {
1365 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1366 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1367 
1368 	if (stop_gpr->gpr) {
1369 		if (enabled)
1370 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1371 					   BIT(stop_gpr->bit),
1372 					   BIT(stop_gpr->bit));
1373 		else
1374 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1375 					   BIT(stop_gpr->bit), 0);
1376 	} else if (pdata && pdata->sleep_mode_enable) {
1377 		pdata->sleep_mode_enable(enabled);
1378 	} else {
1379 		fec_enet_ipg_stop_set(fep, enabled);
1380 	}
1381 }
1382 
1383 static void fec_irqs_disable(struct net_device *ndev)
1384 {
1385 	struct fec_enet_private *fep = netdev_priv(ndev);
1386 
1387 	writel(0, fep->hwp + FEC_IMASK);
1388 }
1389 
1390 static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1391 {
1392 	struct fec_enet_private *fep = netdev_priv(ndev);
1393 
1394 	writel(0, fep->hwp + FEC_IMASK);
1395 	writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1396 }
1397 
1398 static void
1399 fec_stop(struct net_device *ndev)
1400 {
1401 	struct fec_enet_private *fep = netdev_priv(ndev);
1402 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & FEC_RCR_RMII;
1403 	u32 val;
1404 
1405 	/* We cannot expect a graceful transmit stop without link !!! */
1406 	if (fep->link) {
1407 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1408 		udelay(10);
1409 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1410 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1411 	}
1412 
1413 	if (fep->bufdesc_ex)
1414 		fec_ptp_save_state(fep);
1415 
1416 	fec_ctrl_reset(fep, true);
1417 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1418 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1419 
1420 	/* We have to keep ENET enabled to have MII interrupt stay working */
1421 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1422 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1423 		writel(FEC_ECR_ETHEREN, fep->hwp + FEC_ECNTRL);
1424 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1425 	}
1426 
1427 	if (fep->bufdesc_ex) {
1428 		val = readl(fep->hwp + FEC_ECNTRL);
1429 		val |= FEC_ECR_EN1588;
1430 		writel(val, fep->hwp + FEC_ECNTRL);
1431 
1432 		fec_ptp_start_cyclecounter(ndev);
1433 		fec_ptp_restore_state(fep);
1434 	}
1435 }
1436 
1437 static void
1438 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1439 {
1440 	struct fec_enet_private *fep = netdev_priv(ndev);
1441 
1442 	fec_dump(ndev);
1443 
1444 	ndev->stats.tx_errors++;
1445 
1446 	schedule_work(&fep->tx_timeout_work);
1447 }
1448 
1449 static void fec_enet_timeout_work(struct work_struct *work)
1450 {
1451 	struct fec_enet_private *fep =
1452 		container_of(work, struct fec_enet_private, tx_timeout_work);
1453 	struct net_device *ndev = fep->netdev;
1454 
1455 	rtnl_lock();
1456 	if (netif_device_present(ndev) || netif_running(ndev)) {
1457 		napi_disable(&fep->napi);
1458 		netif_tx_lock_bh(ndev);
1459 		fec_restart(ndev);
1460 		netif_tx_wake_all_queues(ndev);
1461 		netif_tx_unlock_bh(ndev);
1462 		napi_enable(&fep->napi);
1463 	}
1464 	rtnl_unlock();
1465 }
1466 
1467 static void
1468 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1469 	struct skb_shared_hwtstamps *hwtstamps)
1470 {
1471 	unsigned long flags;
1472 	u64 ns;
1473 
1474 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1475 	ns = timecounter_cyc2time(&fep->tc, ts);
1476 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1477 
1478 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1479 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1480 }
1481 
1482 static void
1483 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget)
1484 {
1485 	struct	fec_enet_private *fep;
1486 	struct xdp_frame *xdpf;
1487 	struct bufdesc *bdp;
1488 	unsigned short status;
1489 	struct	sk_buff	*skb;
1490 	struct fec_enet_priv_tx_q *txq;
1491 	struct netdev_queue *nq;
1492 	int	index = 0;
1493 	int	entries_free;
1494 	struct page *page;
1495 	int frame_len;
1496 
1497 	fep = netdev_priv(ndev);
1498 
1499 	txq = fep->tx_queue[queue_id];
1500 	/* get next bdp of dirty_tx */
1501 	nq = netdev_get_tx_queue(ndev, queue_id);
1502 	bdp = txq->dirty_tx;
1503 
1504 	/* get next bdp of dirty_tx */
1505 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1506 
1507 	while (bdp != READ_ONCE(txq->bd.cur)) {
1508 		/* Order the load of bd.cur and cbd_sc */
1509 		rmb();
1510 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1511 		if (status & BD_ENET_TX_READY)
1512 			break;
1513 
1514 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1515 
1516 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1517 			skb = txq->tx_buf[index].buf_p;
1518 			if (bdp->cbd_bufaddr &&
1519 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1520 				dma_unmap_single(&fep->pdev->dev,
1521 						 fec32_to_cpu(bdp->cbd_bufaddr),
1522 						 fec16_to_cpu(bdp->cbd_datlen),
1523 						 DMA_TO_DEVICE);
1524 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1525 			if (!skb)
1526 				goto tx_buf_done;
1527 		} else {
1528 			/* Tx processing cannot call any XDP (or page pool) APIs if
1529 			 * the "budget" is 0. Because NAPI is called with budget of
1530 			 * 0 (such as netpoll) indicates we may be in an IRQ context,
1531 			 * however, we can't use the page pool from IRQ context.
1532 			 */
1533 			if (unlikely(!budget))
1534 				break;
1535 
1536 			if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1537 				xdpf = txq->tx_buf[index].buf_p;
1538 				if (bdp->cbd_bufaddr)
1539 					dma_unmap_single(&fep->pdev->dev,
1540 							 fec32_to_cpu(bdp->cbd_bufaddr),
1541 							 fec16_to_cpu(bdp->cbd_datlen),
1542 							 DMA_TO_DEVICE);
1543 			} else {
1544 				page = txq->tx_buf[index].buf_p;
1545 			}
1546 
1547 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1548 			if (unlikely(!txq->tx_buf[index].buf_p)) {
1549 				txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1550 				goto tx_buf_done;
1551 			}
1552 
1553 			frame_len = fec16_to_cpu(bdp->cbd_datlen);
1554 		}
1555 
1556 		/* Check for errors. */
1557 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1558 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1559 				   BD_ENET_TX_CSL)) {
1560 			ndev->stats.tx_errors++;
1561 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1562 				ndev->stats.tx_heartbeat_errors++;
1563 			if (status & BD_ENET_TX_LC)  /* Late collision */
1564 				ndev->stats.tx_window_errors++;
1565 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1566 				ndev->stats.tx_aborted_errors++;
1567 			if (status & BD_ENET_TX_UN)  /* Underrun */
1568 				ndev->stats.tx_fifo_errors++;
1569 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1570 				ndev->stats.tx_carrier_errors++;
1571 		} else {
1572 			ndev->stats.tx_packets++;
1573 
1574 			if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1575 				ndev->stats.tx_bytes += skb->len;
1576 			else
1577 				ndev->stats.tx_bytes += frame_len;
1578 		}
1579 
1580 		/* Deferred means some collisions occurred during transmit,
1581 		 * but we eventually sent the packet OK.
1582 		 */
1583 		if (status & BD_ENET_TX_DEF)
1584 			ndev->stats.collisions++;
1585 
1586 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1587 			/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1588 			 * are to time stamp the packet, so we still need to check time
1589 			 * stamping enabled flag.
1590 			 */
1591 			if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1592 				     fep->hwts_tx_en) && fep->bufdesc_ex) {
1593 				struct skb_shared_hwtstamps shhwtstamps;
1594 				struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1595 
1596 				fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1597 				skb_tstamp_tx(skb, &shhwtstamps);
1598 			}
1599 
1600 			/* Free the sk buffer associated with this last transmit */
1601 			napi_consume_skb(skb, budget);
1602 		} else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1603 			xdp_return_frame_rx_napi(xdpf);
1604 		} else { /* recycle pages of XDP_TX frames */
1605 			/* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */
1606 			page_pool_put_page(pp_page_to_nmdesc(page)->pp, page,
1607 					   0, true);
1608 		}
1609 
1610 		txq->tx_buf[index].buf_p = NULL;
1611 		/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1612 		txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1613 
1614 tx_buf_done:
1615 		/* Make sure the update to bdp and tx_buf are performed
1616 		 * before dirty_tx
1617 		 */
1618 		wmb();
1619 		txq->dirty_tx = bdp;
1620 
1621 		/* Update pointer to next buffer descriptor to be transmitted */
1622 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1623 
1624 		/* Since we have freed up a buffer, the ring is no longer full
1625 		 */
1626 		if (netif_tx_queue_stopped(nq)) {
1627 			entries_free = fec_enet_get_free_txdesc_num(txq);
1628 			if (entries_free >= txq->tx_wake_threshold)
1629 				netif_tx_wake_queue(nq);
1630 		}
1631 	}
1632 
1633 	/* ERR006358: Keep the transmitter going */
1634 	if (bdp != txq->bd.cur &&
1635 	    readl(txq->bd.reg_desc_active) == 0)
1636 		writel(0, txq->bd.reg_desc_active);
1637 }
1638 
1639 static void fec_enet_tx(struct net_device *ndev, int budget)
1640 {
1641 	struct fec_enet_private *fep = netdev_priv(ndev);
1642 	int i;
1643 
1644 	/* Make sure that AVB queues are processed first. */
1645 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1646 		fec_enet_tx_queue(ndev, i, budget);
1647 }
1648 
1649 static int fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1650 				struct bufdesc *bdp, int index)
1651 {
1652 	struct page *new_page;
1653 	dma_addr_t phys_addr;
1654 
1655 	new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1656 	if (unlikely(!new_page))
1657 		return -ENOMEM;
1658 
1659 	rxq->rx_buf[index] = new_page;
1660 	phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1661 	bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1662 
1663 	return 0;
1664 }
1665 
1666 static u32
1667 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1668 		 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu)
1669 {
1670 	unsigned int sync, len = xdp->data_end - xdp->data;
1671 	u32 ret = FEC_ENET_XDP_PASS;
1672 	struct page *page;
1673 	int err;
1674 	u32 act;
1675 
1676 	act = bpf_prog_run_xdp(prog, xdp);
1677 
1678 	/* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover
1679 	 * max len CPU touch
1680 	 */
1681 	sync = xdp->data_end - xdp->data;
1682 	sync = max(sync, len);
1683 
1684 	switch (act) {
1685 	case XDP_PASS:
1686 		rxq->stats[RX_XDP_PASS]++;
1687 		ret = FEC_ENET_XDP_PASS;
1688 		break;
1689 
1690 	case XDP_REDIRECT:
1691 		rxq->stats[RX_XDP_REDIRECT]++;
1692 		err = xdp_do_redirect(fep->netdev, xdp, prog);
1693 		if (unlikely(err))
1694 			goto xdp_err;
1695 
1696 		ret = FEC_ENET_XDP_REDIR;
1697 		break;
1698 
1699 	case XDP_TX:
1700 		rxq->stats[RX_XDP_TX]++;
1701 		err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync);
1702 		if (unlikely(err)) {
1703 			rxq->stats[RX_XDP_TX_ERRORS]++;
1704 			goto xdp_err;
1705 		}
1706 
1707 		ret = FEC_ENET_XDP_TX;
1708 		break;
1709 
1710 	default:
1711 		bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1712 		fallthrough;
1713 
1714 	case XDP_ABORTED:
1715 		fallthrough;    /* handle aborts by dropping packet */
1716 
1717 	case XDP_DROP:
1718 		rxq->stats[RX_XDP_DROP]++;
1719 xdp_err:
1720 		ret = FEC_ENET_XDP_CONSUMED;
1721 		page = virt_to_head_page(xdp->data);
1722 		page_pool_put_page(rxq->page_pool, page, sync, true);
1723 		if (act != XDP_DROP)
1724 			trace_xdp_exception(fep->netdev, prog, act);
1725 		break;
1726 	}
1727 
1728 	return ret;
1729 }
1730 
1731 static void fec_enet_rx_vlan(const struct net_device *ndev, struct sk_buff *skb)
1732 {
1733 	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
1734 		const struct vlan_ethhdr *vlan_header = skb_vlan_eth_hdr(skb);
1735 		const u16 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1736 
1737 		/* Push and remove the vlan tag */
1738 
1739 		memmove(skb->data + VLAN_HLEN, skb->data, ETH_ALEN * 2);
1740 		skb_pull(skb, VLAN_HLEN);
1741 		__vlan_hwaccel_put_tag(skb,
1742 				       htons(ETH_P_8021Q),
1743 				       vlan_tag);
1744 	}
1745 }
1746 
1747 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1748  * When we update through the ring, if the next incoming buffer has
1749  * not been given to the system, we just set the empty indicator,
1750  * effectively tossing the packet.
1751  */
1752 static int
1753 fec_enet_rx_queue(struct net_device *ndev, u16 queue_id, int budget)
1754 {
1755 	struct fec_enet_private *fep = netdev_priv(ndev);
1756 	struct fec_enet_priv_rx_q *rxq;
1757 	struct bufdesc *bdp;
1758 	unsigned short status;
1759 	struct  sk_buff *skb;
1760 	ushort	pkt_len;
1761 	int	pkt_received = 0;
1762 	struct	bufdesc_ex *ebdp = NULL;
1763 	int	index = 0;
1764 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1765 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1766 	u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1767 	u32 data_start = FEC_ENET_XDP_HEADROOM;
1768 	int cpu = smp_processor_id();
1769 	struct xdp_buff xdp;
1770 	struct page *page;
1771 	__fec32 cbd_bufaddr;
1772 	u32 sub_len = 4;
1773 
1774 	/*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1775 	 * FEC_RACC_SHIFT16 is set by default in the probe function.
1776 	 */
1777 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1778 		data_start += 2;
1779 		sub_len += 2;
1780 	}
1781 
1782 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
1783 	/*
1784 	 * Hacky flush of all caches instead of using the DMA API for the TSO
1785 	 * headers.
1786 	 */
1787 	flush_cache_all();
1788 #endif
1789 	rxq = fep->rx_queue[queue_id];
1790 
1791 	/* First, grab all of the stats for the incoming packet.
1792 	 * These get messed up if we get called due to a busy condition.
1793 	 */
1794 	bdp = rxq->bd.cur;
1795 	xdp_init_buff(&xdp, PAGE_SIZE << fep->pagepool_order, &rxq->xdp_rxq);
1796 
1797 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1798 
1799 		if (pkt_received >= budget)
1800 			break;
1801 		pkt_received++;
1802 
1803 		writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1804 
1805 		/* Check for errors. */
1806 		status ^= BD_ENET_RX_LAST;
1807 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1808 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1809 			   BD_ENET_RX_CL)) {
1810 			ndev->stats.rx_errors++;
1811 			if (status & BD_ENET_RX_OV) {
1812 				/* FIFO overrun */
1813 				ndev->stats.rx_fifo_errors++;
1814 				goto rx_processing_done;
1815 			}
1816 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1817 						| BD_ENET_RX_LAST)) {
1818 				/* Frame too long or too short. */
1819 				ndev->stats.rx_length_errors++;
1820 				if (status & BD_ENET_RX_LAST)
1821 					netdev_err(ndev, "rcv is not +last\n");
1822 			}
1823 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1824 				ndev->stats.rx_crc_errors++;
1825 			/* Report late collisions as a frame error. */
1826 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1827 				ndev->stats.rx_frame_errors++;
1828 			goto rx_processing_done;
1829 		}
1830 
1831 		/* Process the incoming frame. */
1832 		ndev->stats.rx_packets++;
1833 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1834 		ndev->stats.rx_bytes += pkt_len;
1835 		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1836 			ndev->stats.rx_bytes -= 2;
1837 
1838 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1839 		page = rxq->rx_buf[index];
1840 		cbd_bufaddr = bdp->cbd_bufaddr;
1841 		if (fec_enet_update_cbd(rxq, bdp, index)) {
1842 			ndev->stats.rx_dropped++;
1843 			goto rx_processing_done;
1844 		}
1845 
1846 		dma_sync_single_for_cpu(&fep->pdev->dev,
1847 					fec32_to_cpu(cbd_bufaddr),
1848 					pkt_len,
1849 					DMA_FROM_DEVICE);
1850 		prefetch(page_address(page));
1851 
1852 		if (xdp_prog) {
1853 			xdp_buff_clear_frags_flag(&xdp);
1854 			/* subtract 16bit shift and FCS */
1855 			xdp_prepare_buff(&xdp, page_address(page),
1856 					 data_start, pkt_len - sub_len, false);
1857 			ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu);
1858 			xdp_result |= ret;
1859 			if (ret != FEC_ENET_XDP_PASS)
1860 				goto rx_processing_done;
1861 		}
1862 
1863 		/* The packet length includes FCS, but we don't want to
1864 		 * include that when passing upstream as it messes up
1865 		 * bridging applications.
1866 		 */
1867 		skb = build_skb(page_address(page),
1868 				PAGE_SIZE << fep->pagepool_order);
1869 		if (unlikely(!skb)) {
1870 			page_pool_recycle_direct(rxq->page_pool, page);
1871 			ndev->stats.rx_dropped++;
1872 
1873 			netdev_err_once(ndev, "build_skb failed!\n");
1874 			goto rx_processing_done;
1875 		}
1876 
1877 		skb_reserve(skb, data_start);
1878 		skb_put(skb, pkt_len - sub_len);
1879 		skb_mark_for_recycle(skb);
1880 
1881 		if (unlikely(need_swap)) {
1882 			u8 *data;
1883 
1884 			data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1885 			swap_buffer(data, pkt_len);
1886 		}
1887 
1888 		/* Extract the enhanced buffer descriptor */
1889 		ebdp = NULL;
1890 		if (fep->bufdesc_ex)
1891 			ebdp = (struct bufdesc_ex *)bdp;
1892 
1893 		/* If this is a VLAN packet remove the VLAN Tag */
1894 		if (fep->bufdesc_ex &&
1895 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN)))
1896 			fec_enet_rx_vlan(ndev, skb);
1897 
1898 		skb->protocol = eth_type_trans(skb, ndev);
1899 
1900 		/* Get receive timestamp from the skb */
1901 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1902 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1903 					  skb_hwtstamps(skb));
1904 
1905 		if (fep->bufdesc_ex &&
1906 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1907 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1908 				/* don't check it */
1909 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1910 			} else {
1911 				skb_checksum_none_assert(skb);
1912 			}
1913 		}
1914 
1915 		skb_record_rx_queue(skb, queue_id);
1916 		napi_gro_receive(&fep->napi, skb);
1917 
1918 rx_processing_done:
1919 		/* Clear the status flags for this buffer */
1920 		status &= ~BD_ENET_RX_STATS;
1921 
1922 		/* Mark the buffer empty */
1923 		status |= BD_ENET_RX_EMPTY;
1924 
1925 		if (fep->bufdesc_ex) {
1926 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1927 
1928 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1929 			ebdp->cbd_prot = 0;
1930 			ebdp->cbd_bdu = 0;
1931 		}
1932 		/* Make sure the updates to rest of the descriptor are
1933 		 * performed before transferring ownership.
1934 		 */
1935 		wmb();
1936 		bdp->cbd_sc = cpu_to_fec16(status);
1937 
1938 		/* Update BD pointer to next entry */
1939 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1940 
1941 		/* Doing this here will keep the FEC running while we process
1942 		 * incoming frames.  On a heavily loaded network, we should be
1943 		 * able to keep up at the expense of system resources.
1944 		 */
1945 		writel(0, rxq->bd.reg_desc_active);
1946 	}
1947 	rxq->bd.cur = bdp;
1948 
1949 	if (xdp_result & FEC_ENET_XDP_REDIR)
1950 		xdp_do_flush();
1951 
1952 	return pkt_received;
1953 }
1954 
1955 static int fec_enet_rx(struct net_device *ndev, int budget)
1956 {
1957 	struct fec_enet_private *fep = netdev_priv(ndev);
1958 	int i, done = 0;
1959 
1960 	/* Make sure that AVB queues are processed first. */
1961 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1962 		done += fec_enet_rx_queue(ndev, i, budget - done);
1963 
1964 	return done;
1965 }
1966 
1967 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1968 {
1969 	uint int_events;
1970 
1971 	int_events = readl(fep->hwp + FEC_IEVENT);
1972 
1973 	/* Don't clear MDIO events, we poll for those */
1974 	int_events &= ~FEC_ENET_MII;
1975 
1976 	writel(int_events, fep->hwp + FEC_IEVENT);
1977 
1978 	return int_events != 0;
1979 }
1980 
1981 static irqreturn_t
1982 fec_enet_interrupt(int irq, void *dev_id)
1983 {
1984 	struct net_device *ndev = dev_id;
1985 	struct fec_enet_private *fep = netdev_priv(ndev);
1986 	irqreturn_t ret = IRQ_NONE;
1987 
1988 	if (fec_enet_collect_events(fep) && fep->link) {
1989 		ret = IRQ_HANDLED;
1990 
1991 		if (napi_schedule_prep(&fep->napi)) {
1992 			/* Disable interrupts */
1993 			writel(0, fep->hwp + FEC_IMASK);
1994 			__napi_schedule(&fep->napi);
1995 		}
1996 	}
1997 
1998 	return ret;
1999 }
2000 
2001 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
2002 {
2003 	struct net_device *ndev = napi->dev;
2004 	struct fec_enet_private *fep = netdev_priv(ndev);
2005 	int done = 0;
2006 
2007 	do {
2008 		done += fec_enet_rx(ndev, budget - done);
2009 		fec_enet_tx(ndev, budget);
2010 	} while ((done < budget) && fec_enet_collect_events(fep));
2011 
2012 	if (done < budget) {
2013 		napi_complete_done(napi, done);
2014 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
2015 	}
2016 
2017 	return done;
2018 }
2019 
2020 /* ------------------------------------------------------------------------- */
2021 static int fec_get_mac(struct net_device *ndev)
2022 {
2023 	struct fec_enet_private *fep = netdev_priv(ndev);
2024 	unsigned char *iap, tmpaddr[ETH_ALEN];
2025 	int ret;
2026 
2027 	/*
2028 	 * try to get mac address in following order:
2029 	 *
2030 	 * 1) module parameter via kernel command line in form
2031 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
2032 	 */
2033 	iap = macaddr;
2034 
2035 	/*
2036 	 * 2) from device tree data
2037 	 */
2038 	if (!is_valid_ether_addr(iap)) {
2039 		struct device_node *np = fep->pdev->dev.of_node;
2040 		if (np) {
2041 			ret = of_get_mac_address(np, tmpaddr);
2042 			if (!ret)
2043 				iap = tmpaddr;
2044 			else if (ret == -EPROBE_DEFER)
2045 				return ret;
2046 		}
2047 	}
2048 
2049 	/*
2050 	 * 3) from flash or fuse (via platform data)
2051 	 */
2052 	if (!is_valid_ether_addr(iap)) {
2053 #ifdef CONFIG_M5272
2054 		if (FEC_FLASHMAC)
2055 			iap = (unsigned char *)FEC_FLASHMAC;
2056 #else
2057 		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
2058 
2059 		if (pdata)
2060 			iap = (unsigned char *)&pdata->mac;
2061 #endif
2062 	}
2063 
2064 	/*
2065 	 * 4) FEC mac registers set by bootloader
2066 	 */
2067 	if (!is_valid_ether_addr(iap)) {
2068 		*((__be32 *) &tmpaddr[0]) =
2069 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
2070 		*((__be16 *) &tmpaddr[4]) =
2071 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
2072 		iap = &tmpaddr[0];
2073 	}
2074 
2075 	/*
2076 	 * 5) random mac address
2077 	 */
2078 	if (!is_valid_ether_addr(iap)) {
2079 		/* Report it and use a random ethernet address instead */
2080 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
2081 		eth_hw_addr_random(ndev);
2082 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
2083 			 ndev->dev_addr);
2084 		return 0;
2085 	}
2086 
2087 	/* Adjust MAC if using macaddr */
2088 	eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
2089 
2090 	return 0;
2091 }
2092 
2093 /* ------------------------------------------------------------------------- */
2094 
2095 /*
2096  * Phy section
2097  */
2098 
2099 /* LPI Sleep Ts count base on tx clk (clk_ref).
2100  * The lpi sleep cnt value = X us / (cycle_ns).
2101  */
2102 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
2103 {
2104 	struct fec_enet_private *fep = netdev_priv(ndev);
2105 
2106 	return us * (fep->clk_ref_rate / 1000) / 1000;
2107 }
2108 
2109 static int fec_enet_eee_mode_set(struct net_device *ndev, u32 lpi_timer,
2110 				 bool enable)
2111 {
2112 	struct fec_enet_private *fep = netdev_priv(ndev);
2113 	unsigned int sleep_cycle, wake_cycle;
2114 
2115 	if (enable) {
2116 		sleep_cycle = fec_enet_us_to_tx_cycle(ndev, lpi_timer);
2117 		wake_cycle = sleep_cycle;
2118 	} else {
2119 		sleep_cycle = 0;
2120 		wake_cycle = 0;
2121 	}
2122 
2123 	writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
2124 	writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
2125 
2126 	return 0;
2127 }
2128 
2129 static void fec_enet_adjust_link(struct net_device *ndev)
2130 {
2131 	struct fec_enet_private *fep = netdev_priv(ndev);
2132 	struct phy_device *phy_dev = ndev->phydev;
2133 	int status_change = 0;
2134 
2135 	/*
2136 	 * If the netdev is down, or is going down, we're not interested
2137 	 * in link state events, so just mark our idea of the link as down
2138 	 * and ignore the event.
2139 	 */
2140 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
2141 		fep->link = 0;
2142 	} else if (phy_dev->link) {
2143 		if (!fep->link) {
2144 			fep->link = phy_dev->link;
2145 			status_change = 1;
2146 		}
2147 
2148 		if (fep->full_duplex != phy_dev->duplex) {
2149 			fep->full_duplex = phy_dev->duplex;
2150 			status_change = 1;
2151 		}
2152 
2153 		if (phy_dev->speed != fep->speed) {
2154 			fep->speed = phy_dev->speed;
2155 			status_change = 1;
2156 		}
2157 
2158 		/* if any of the above changed restart the FEC */
2159 		if (status_change) {
2160 			netif_stop_queue(ndev);
2161 			napi_disable(&fep->napi);
2162 			netif_tx_lock_bh(ndev);
2163 			fec_restart(ndev);
2164 			netif_tx_wake_all_queues(ndev);
2165 			netif_tx_unlock_bh(ndev);
2166 			napi_enable(&fep->napi);
2167 		}
2168 		if (fep->quirks & FEC_QUIRK_HAS_EEE)
2169 			fec_enet_eee_mode_set(ndev,
2170 					      phy_dev->eee_cfg.tx_lpi_timer,
2171 					      phy_dev->enable_tx_lpi);
2172 	} else {
2173 		if (fep->link) {
2174 			netif_stop_queue(ndev);
2175 			napi_disable(&fep->napi);
2176 			netif_tx_lock_bh(ndev);
2177 			fec_stop(ndev);
2178 			netif_tx_unlock_bh(ndev);
2179 			napi_enable(&fep->napi);
2180 			fep->link = phy_dev->link;
2181 			status_change = 1;
2182 		}
2183 	}
2184 
2185 	if (status_change)
2186 		phy_print_status(phy_dev);
2187 }
2188 
2189 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2190 {
2191 	uint ievent;
2192 	int ret;
2193 
2194 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2195 					ievent & FEC_ENET_MII, 2, 30000);
2196 
2197 	if (!ret)
2198 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2199 
2200 	return ret;
2201 }
2202 
2203 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2204 {
2205 	struct fec_enet_private *fep = bus->priv;
2206 	struct device *dev = &fep->pdev->dev;
2207 	int ret = 0, frame_start, frame_addr, frame_op;
2208 
2209 	ret = pm_runtime_resume_and_get(dev);
2210 	if (ret < 0)
2211 		return ret;
2212 
2213 	/* C22 read */
2214 	frame_op = FEC_MMFR_OP_READ;
2215 	frame_start = FEC_MMFR_ST;
2216 	frame_addr = regnum;
2217 
2218 	/* start a read op */
2219 	writel(frame_start | frame_op |
2220 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2221 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2222 
2223 	/* wait for end of transfer */
2224 	ret = fec_enet_mdio_wait(fep);
2225 	if (ret) {
2226 		netdev_err(fep->netdev, "MDIO read timeout\n");
2227 		goto out;
2228 	}
2229 
2230 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2231 
2232 out:
2233 	pm_runtime_put_autosuspend(dev);
2234 
2235 	return ret;
2236 }
2237 
2238 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2239 				  int devad, int regnum)
2240 {
2241 	struct fec_enet_private *fep = bus->priv;
2242 	struct device *dev = &fep->pdev->dev;
2243 	int ret = 0, frame_start, frame_op;
2244 
2245 	ret = pm_runtime_resume_and_get(dev);
2246 	if (ret < 0)
2247 		return ret;
2248 
2249 	frame_start = FEC_MMFR_ST_C45;
2250 
2251 	/* write address */
2252 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2253 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2254 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2255 	       fep->hwp + FEC_MII_DATA);
2256 
2257 	/* wait for end of transfer */
2258 	ret = fec_enet_mdio_wait(fep);
2259 	if (ret) {
2260 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2261 		goto out;
2262 	}
2263 
2264 	frame_op = FEC_MMFR_OP_READ_C45;
2265 
2266 	/* start a read op */
2267 	writel(frame_start | frame_op |
2268 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2269 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2270 
2271 	/* wait for end of transfer */
2272 	ret = fec_enet_mdio_wait(fep);
2273 	if (ret) {
2274 		netdev_err(fep->netdev, "MDIO read timeout\n");
2275 		goto out;
2276 	}
2277 
2278 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2279 
2280 out:
2281 	pm_runtime_put_autosuspend(dev);
2282 
2283 	return ret;
2284 }
2285 
2286 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2287 				   u16 value)
2288 {
2289 	struct fec_enet_private *fep = bus->priv;
2290 	struct device *dev = &fep->pdev->dev;
2291 	int ret, frame_start, frame_addr;
2292 
2293 	ret = pm_runtime_resume_and_get(dev);
2294 	if (ret < 0)
2295 		return ret;
2296 
2297 	/* C22 write */
2298 	frame_start = FEC_MMFR_ST;
2299 	frame_addr = regnum;
2300 
2301 	/* start a write op */
2302 	writel(frame_start | FEC_MMFR_OP_WRITE |
2303 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2304 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2305 	       fep->hwp + FEC_MII_DATA);
2306 
2307 	/* wait for end of transfer */
2308 	ret = fec_enet_mdio_wait(fep);
2309 	if (ret)
2310 		netdev_err(fep->netdev, "MDIO write timeout\n");
2311 
2312 	pm_runtime_put_autosuspend(dev);
2313 
2314 	return ret;
2315 }
2316 
2317 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2318 				   int devad, int regnum, u16 value)
2319 {
2320 	struct fec_enet_private *fep = bus->priv;
2321 	struct device *dev = &fep->pdev->dev;
2322 	int ret, frame_start;
2323 
2324 	ret = pm_runtime_resume_and_get(dev);
2325 	if (ret < 0)
2326 		return ret;
2327 
2328 	frame_start = FEC_MMFR_ST_C45;
2329 
2330 	/* write address */
2331 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2332 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2333 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2334 	       fep->hwp + FEC_MII_DATA);
2335 
2336 	/* wait for end of transfer */
2337 	ret = fec_enet_mdio_wait(fep);
2338 	if (ret) {
2339 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2340 		goto out;
2341 	}
2342 
2343 	/* start a write op */
2344 	writel(frame_start | FEC_MMFR_OP_WRITE |
2345 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2346 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2347 	       fep->hwp + FEC_MII_DATA);
2348 
2349 	/* wait for end of transfer */
2350 	ret = fec_enet_mdio_wait(fep);
2351 	if (ret)
2352 		netdev_err(fep->netdev, "MDIO write timeout\n");
2353 
2354 out:
2355 	pm_runtime_put_autosuspend(dev);
2356 
2357 	return ret;
2358 }
2359 
2360 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2361 {
2362 	struct fec_enet_private *fep = netdev_priv(ndev);
2363 	struct phy_device *phy_dev = ndev->phydev;
2364 
2365 	if (phy_dev) {
2366 		phy_reset_after_clk_enable(phy_dev);
2367 	} else if (fep->phy_node) {
2368 		/*
2369 		 * If the PHY still is not bound to the MAC, but there is
2370 		 * OF PHY node and a matching PHY device instance already,
2371 		 * use the OF PHY node to obtain the PHY device instance,
2372 		 * and then use that PHY device instance when triggering
2373 		 * the PHY reset.
2374 		 */
2375 		phy_dev = of_phy_find_device(fep->phy_node);
2376 		phy_reset_after_clk_enable(phy_dev);
2377 		if (phy_dev)
2378 			put_device(&phy_dev->mdio.dev);
2379 	}
2380 }
2381 
2382 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2383 {
2384 	struct fec_enet_private *fep = netdev_priv(ndev);
2385 	int ret;
2386 
2387 	if (enable) {
2388 		ret = clk_prepare_enable(fep->clk_enet_out);
2389 		if (ret)
2390 			return ret;
2391 
2392 		if (fep->clk_ptp) {
2393 			mutex_lock(&fep->ptp_clk_mutex);
2394 			ret = clk_prepare_enable(fep->clk_ptp);
2395 			if (ret) {
2396 				mutex_unlock(&fep->ptp_clk_mutex);
2397 				goto failed_clk_ptp;
2398 			} else {
2399 				fep->ptp_clk_on = true;
2400 			}
2401 			mutex_unlock(&fep->ptp_clk_mutex);
2402 		}
2403 
2404 		ret = clk_prepare_enable(fep->clk_ref);
2405 		if (ret)
2406 			goto failed_clk_ref;
2407 
2408 		ret = clk_prepare_enable(fep->clk_2x_txclk);
2409 		if (ret)
2410 			goto failed_clk_2x_txclk;
2411 
2412 		fec_enet_phy_reset_after_clk_enable(ndev);
2413 	} else {
2414 		clk_disable_unprepare(fep->clk_enet_out);
2415 		if (fep->clk_ptp) {
2416 			mutex_lock(&fep->ptp_clk_mutex);
2417 			clk_disable_unprepare(fep->clk_ptp);
2418 			fep->ptp_clk_on = false;
2419 			mutex_unlock(&fep->ptp_clk_mutex);
2420 		}
2421 		clk_disable_unprepare(fep->clk_ref);
2422 		clk_disable_unprepare(fep->clk_2x_txclk);
2423 	}
2424 
2425 	return 0;
2426 
2427 failed_clk_2x_txclk:
2428 	if (fep->clk_ref)
2429 		clk_disable_unprepare(fep->clk_ref);
2430 failed_clk_ref:
2431 	if (fep->clk_ptp) {
2432 		mutex_lock(&fep->ptp_clk_mutex);
2433 		clk_disable_unprepare(fep->clk_ptp);
2434 		fep->ptp_clk_on = false;
2435 		mutex_unlock(&fep->ptp_clk_mutex);
2436 	}
2437 failed_clk_ptp:
2438 	clk_disable_unprepare(fep->clk_enet_out);
2439 
2440 	return ret;
2441 }
2442 
2443 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2444 				      struct device_node *np)
2445 {
2446 	u32 rgmii_tx_delay, rgmii_rx_delay;
2447 
2448 	/* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2449 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2450 		if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2451 			dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2452 			return -EINVAL;
2453 		} else if (rgmii_tx_delay == 2000) {
2454 			fep->rgmii_txc_dly = true;
2455 		}
2456 	}
2457 
2458 	/* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2459 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2460 		if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2461 			dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2462 			return -EINVAL;
2463 		} else if (rgmii_rx_delay == 2000) {
2464 			fep->rgmii_rxc_dly = true;
2465 		}
2466 	}
2467 
2468 	return 0;
2469 }
2470 
2471 static int fec_enet_mii_probe(struct net_device *ndev)
2472 {
2473 	struct fec_enet_private *fep = netdev_priv(ndev);
2474 	struct phy_device *phy_dev;
2475 	int ret;
2476 
2477 	if (fep->phy_node) {
2478 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2479 					 &fec_enet_adjust_link, 0,
2480 					 fep->phy_interface);
2481 		if (!phy_dev) {
2482 			netdev_err(ndev, "Unable to connect to phy\n");
2483 			return -ENODEV;
2484 		}
2485 	} else {
2486 		/* check for attached phy */
2487 		phy_dev = phy_find_first(fep->mii_bus);
2488 		if (fep->dev_id && phy_dev)
2489 			phy_dev = phy_find_next(fep->mii_bus, phy_dev);
2490 
2491 		if (!phy_dev) {
2492 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2493 			phy_dev = fixed_phy_register_100fd();
2494 			if (IS_ERR(phy_dev)) {
2495 				netdev_err(ndev, "could not register fixed PHY\n");
2496 				return PTR_ERR(phy_dev);
2497 			}
2498 		}
2499 
2500 		ret = phy_connect_direct(ndev, phy_dev, &fec_enet_adjust_link,
2501 					 fep->phy_interface);
2502 		if (ret) {
2503 			if (phy_is_pseudo_fixed_link(phy_dev))
2504 				fixed_phy_unregister(phy_dev);
2505 			netdev_err(ndev, "could not attach to PHY\n");
2506 			return ret;
2507 		}
2508 
2509 	}
2510 
2511 	/* mask with MAC supported features */
2512 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2513 		phy_set_max_speed(phy_dev, 1000);
2514 		phy_remove_link_mode(phy_dev,
2515 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2516 		phy_support_sym_pause(phy_dev);
2517 	}
2518 	else
2519 		phy_set_max_speed(phy_dev, 100);
2520 
2521 	if (fep->quirks & FEC_QUIRK_HAS_EEE)
2522 		phy_support_eee(phy_dev);
2523 
2524 	fep->link = 0;
2525 	fep->full_duplex = 0;
2526 
2527 	phy_attached_info(phy_dev);
2528 
2529 	return 0;
2530 }
2531 
2532 static int fec_enet_mii_init(struct platform_device *pdev)
2533 {
2534 	static struct mii_bus *fec0_mii_bus;
2535 	struct net_device *ndev = platform_get_drvdata(pdev);
2536 	struct fec_enet_private *fep = netdev_priv(ndev);
2537 	bool suppress_preamble = false;
2538 	struct phy_device *phydev;
2539 	struct device_node *node;
2540 	int err = -ENXIO;
2541 	u32 mii_speed, holdtime;
2542 	u32 bus_freq;
2543 
2544 	/*
2545 	 * The i.MX28 dual fec interfaces are not equal.
2546 	 * Here are the differences:
2547 	 *
2548 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2549 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2550 	 *  - external phys can only be configured by fec0
2551 	 *
2552 	 * That is to say fec1 can not work independently. It only works
2553 	 * when fec0 is working. The reason behind this design is that the
2554 	 * second interface is added primarily for Switch mode.
2555 	 *
2556 	 * Because of the last point above, both phys are attached on fec0
2557 	 * mdio interface in board design, and need to be configured by
2558 	 * fec0 mii_bus.
2559 	 */
2560 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2561 		/* fec1 uses fec0 mii_bus */
2562 		if (mii_cnt && fec0_mii_bus) {
2563 			fep->mii_bus = fec0_mii_bus;
2564 			mii_cnt++;
2565 			return 0;
2566 		}
2567 		return -ENOENT;
2568 	}
2569 
2570 	bus_freq = 2500000; /* 2.5MHz by default */
2571 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2572 	if (node) {
2573 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2574 		suppress_preamble = of_property_read_bool(node,
2575 							  "suppress-preamble");
2576 	}
2577 
2578 	/*
2579 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2580 	 *
2581 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2582 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2583 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2584 	 * document.
2585 	 */
2586 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2587 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2588 		mii_speed--;
2589 	if (mii_speed > 63) {
2590 		dev_err(&pdev->dev,
2591 			"fec clock (%lu) too fast to get right mii speed\n",
2592 			clk_get_rate(fep->clk_ipg));
2593 		err = -EINVAL;
2594 		goto err_out;
2595 	}
2596 
2597 	/*
2598 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2599 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2600 	 * versions are RAZ there, so just ignore the difference and write the
2601 	 * register always.
2602 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2603 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2604 	 * output.
2605 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2606 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2607 	 * holdtime cannot result in a value greater than 3.
2608 	 */
2609 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2610 
2611 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2612 
2613 	if (suppress_preamble)
2614 		fep->phy_speed |= BIT(7);
2615 
2616 	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2617 		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2618 		 * MII event generation condition:
2619 		 * - writing MSCR:
2620 		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2621 		 *	  mscr_reg_data_in[7:0] != 0
2622 		 * - writing MMFR:
2623 		 *	- mscr[7:0]_not_zero
2624 		 */
2625 		writel(0, fep->hwp + FEC_MII_DATA);
2626 	}
2627 
2628 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2629 
2630 	/* Clear any pending transaction complete indication */
2631 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2632 
2633 	fep->mii_bus = mdiobus_alloc();
2634 	if (fep->mii_bus == NULL) {
2635 		err = -ENOMEM;
2636 		goto err_out;
2637 	}
2638 
2639 	fep->mii_bus->name = "fec_enet_mii_bus";
2640 	fep->mii_bus->read = fec_enet_mdio_read_c22;
2641 	fep->mii_bus->write = fec_enet_mdio_write_c22;
2642 	if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2643 		fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2644 		fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2645 	}
2646 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2647 		pdev->name, fep->dev_id + 1);
2648 	fep->mii_bus->priv = fep;
2649 	fep->mii_bus->parent = &pdev->dev;
2650 
2651 	err = of_mdiobus_register(fep->mii_bus, node);
2652 	if (err)
2653 		goto err_out_free_mdiobus;
2654 	of_node_put(node);
2655 
2656 	/* find all the PHY devices on the bus and set mac_managed_pm to true */
2657 	mdiobus_for_each_phy(fep->mii_bus, phydev)
2658 		phydev->mac_managed_pm = true;
2659 
2660 	mii_cnt++;
2661 
2662 	/* save fec0 mii_bus */
2663 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2664 		fec0_mii_bus = fep->mii_bus;
2665 
2666 	return 0;
2667 
2668 err_out_free_mdiobus:
2669 	mdiobus_free(fep->mii_bus);
2670 err_out:
2671 	of_node_put(node);
2672 	return err;
2673 }
2674 
2675 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2676 {
2677 	if (--mii_cnt == 0) {
2678 		mdiobus_unregister(fep->mii_bus);
2679 		mdiobus_free(fep->mii_bus);
2680 	}
2681 }
2682 
2683 static void fec_enet_get_drvinfo(struct net_device *ndev,
2684 				 struct ethtool_drvinfo *info)
2685 {
2686 	struct fec_enet_private *fep = netdev_priv(ndev);
2687 
2688 	strscpy(info->driver, fep->pdev->dev.driver->name,
2689 		sizeof(info->driver));
2690 	strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2691 }
2692 
2693 static int fec_enet_get_regs_len(struct net_device *ndev)
2694 {
2695 	struct fec_enet_private *fep = netdev_priv(ndev);
2696 	struct resource *r;
2697 	int s = 0;
2698 
2699 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2700 	if (r)
2701 		s = resource_size(r);
2702 
2703 	return s;
2704 }
2705 
2706 /* List of registers that can be safety be read to dump them with ethtool */
2707 #if !defined(CONFIG_M5272) || defined(CONFIG_COMPILE_TEST)
2708 static __u32 fec_enet_register_version = 2;
2709 static u32 fec_enet_register_offset[] = {
2710 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2711 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2712 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2713 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2714 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2715 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2716 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2717 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2718 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2719 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2720 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2721 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2722 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2723 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2724 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2725 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2726 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2727 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2728 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2729 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2730 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2731 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2732 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2733 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2734 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2735 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2736 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2737 };
2738 /* for i.MX6ul */
2739 static u32 fec_enet_register_offset_6ul[] = {
2740 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2741 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2742 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2743 	FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2744 	FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2745 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2746 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2747 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2748 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2749 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2750 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2751 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2752 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2753 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2754 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2755 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2756 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2757 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2758 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2759 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2760 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2761 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2762 };
2763 #else
2764 static __u32 fec_enet_register_version = 1;
2765 static u32 fec_enet_register_offset[] = {
2766 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2767 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2768 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2769 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2770 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2771 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2772 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2773 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2774 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2775 };
2776 #endif
2777 
2778 static void fec_enet_get_regs(struct net_device *ndev,
2779 			      struct ethtool_regs *regs, void *regbuf)
2780 {
2781 	u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2782 	struct fec_enet_private *fep = netdev_priv(ndev);
2783 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2784 	u32 *reg_list = fec_enet_register_offset;
2785 	struct device *dev = &fep->pdev->dev;
2786 	u32 *buf = (u32 *)regbuf;
2787 	u32 i, off;
2788 	int ret;
2789 
2790 #if !defined(CONFIG_M5272) || defined(CONFIG_COMPILE_TEST)
2791 	if (of_machine_is_compatible("fsl,imx6ul")) {
2792 		reg_list = fec_enet_register_offset_6ul;
2793 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2794 	}
2795 #endif
2796 
2797 	ret = pm_runtime_resume_and_get(dev);
2798 	if (ret < 0)
2799 		return;
2800 
2801 	regs->version = fec_enet_register_version;
2802 
2803 	memset(buf, 0, regs->len);
2804 
2805 	for (i = 0; i < reg_cnt; i++) {
2806 		off = reg_list[i];
2807 
2808 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2809 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2810 			continue;
2811 
2812 		off >>= 2;
2813 		buf[off] = readl(&theregs[off]);
2814 	}
2815 
2816 	pm_runtime_put_autosuspend(dev);
2817 }
2818 
2819 static int fec_enet_get_ts_info(struct net_device *ndev,
2820 				struct kernel_ethtool_ts_info *info)
2821 {
2822 	struct fec_enet_private *fep = netdev_priv(ndev);
2823 
2824 	if (fep->bufdesc_ex) {
2825 
2826 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2827 					SOF_TIMESTAMPING_TX_HARDWARE |
2828 					SOF_TIMESTAMPING_RX_HARDWARE |
2829 					SOF_TIMESTAMPING_RAW_HARDWARE;
2830 		if (fep->ptp_clock)
2831 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2832 
2833 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2834 				 (1 << HWTSTAMP_TX_ON);
2835 
2836 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2837 				   (1 << HWTSTAMP_FILTER_ALL);
2838 		return 0;
2839 	} else {
2840 		return ethtool_op_get_ts_info(ndev, info);
2841 	}
2842 }
2843 
2844 #if !defined(CONFIG_M5272)
2845 
2846 static void fec_enet_get_pauseparam(struct net_device *ndev,
2847 				    struct ethtool_pauseparam *pause)
2848 {
2849 	struct fec_enet_private *fep = netdev_priv(ndev);
2850 
2851 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2852 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2853 	pause->rx_pause = pause->tx_pause;
2854 }
2855 
2856 static int fec_enet_set_pauseparam(struct net_device *ndev,
2857 				   struct ethtool_pauseparam *pause)
2858 {
2859 	struct fec_enet_private *fep = netdev_priv(ndev);
2860 
2861 	if (!ndev->phydev)
2862 		return -ENODEV;
2863 
2864 	if (pause->tx_pause != pause->rx_pause) {
2865 		netdev_info(ndev,
2866 			"hardware only support enable/disable both tx and rx");
2867 		return -EINVAL;
2868 	}
2869 
2870 	fep->pause_flag = 0;
2871 
2872 	/* tx pause must be same as rx pause */
2873 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2874 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2875 
2876 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2877 			  pause->autoneg);
2878 
2879 	if (pause->autoneg) {
2880 		if (netif_running(ndev))
2881 			fec_stop(ndev);
2882 		phy_start_aneg(ndev->phydev);
2883 	}
2884 	if (netif_running(ndev)) {
2885 		napi_disable(&fep->napi);
2886 		netif_tx_lock_bh(ndev);
2887 		fec_restart(ndev);
2888 		netif_tx_wake_all_queues(ndev);
2889 		netif_tx_unlock_bh(ndev);
2890 		napi_enable(&fep->napi);
2891 	}
2892 
2893 	return 0;
2894 }
2895 
2896 static const struct fec_stat {
2897 	char name[ETH_GSTRING_LEN];
2898 	u16 offset;
2899 } fec_stats[] = {
2900 	/* RMON TX */
2901 	{ "tx_dropped", RMON_T_DROP },
2902 	{ "tx_packets", RMON_T_PACKETS },
2903 	{ "tx_broadcast", RMON_T_BC_PKT },
2904 	{ "tx_multicast", RMON_T_MC_PKT },
2905 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2906 	{ "tx_undersize", RMON_T_UNDERSIZE },
2907 	{ "tx_oversize", RMON_T_OVERSIZE },
2908 	{ "tx_fragment", RMON_T_FRAG },
2909 	{ "tx_jabber", RMON_T_JAB },
2910 	{ "tx_collision", RMON_T_COL },
2911 	{ "tx_64byte", RMON_T_P64 },
2912 	{ "tx_65to127byte", RMON_T_P65TO127 },
2913 	{ "tx_128to255byte", RMON_T_P128TO255 },
2914 	{ "tx_256to511byte", RMON_T_P256TO511 },
2915 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2916 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2917 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2918 	{ "tx_octets", RMON_T_OCTETS },
2919 
2920 	/* IEEE TX */
2921 	{ "IEEE_tx_drop", IEEE_T_DROP },
2922 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2923 	{ "IEEE_tx_1col", IEEE_T_1COL },
2924 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2925 	{ "IEEE_tx_def", IEEE_T_DEF },
2926 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2927 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2928 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2929 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2930 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2931 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2932 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2933 
2934 	/* RMON RX */
2935 	{ "rx_packets", RMON_R_PACKETS },
2936 	{ "rx_broadcast", RMON_R_BC_PKT },
2937 	{ "rx_multicast", RMON_R_MC_PKT },
2938 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2939 	{ "rx_undersize", RMON_R_UNDERSIZE },
2940 	{ "rx_oversize", RMON_R_OVERSIZE },
2941 	{ "rx_fragment", RMON_R_FRAG },
2942 	{ "rx_jabber", RMON_R_JAB },
2943 	{ "rx_64byte", RMON_R_P64 },
2944 	{ "rx_65to127byte", RMON_R_P65TO127 },
2945 	{ "rx_128to255byte", RMON_R_P128TO255 },
2946 	{ "rx_256to511byte", RMON_R_P256TO511 },
2947 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2948 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2949 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2950 	{ "rx_octets", RMON_R_OCTETS },
2951 
2952 	/* IEEE RX */
2953 	{ "IEEE_rx_drop", IEEE_R_DROP },
2954 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2955 	{ "IEEE_rx_crc", IEEE_R_CRC },
2956 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2957 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2958 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2959 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2960 };
2961 
2962 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2963 
2964 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2965 	"rx_xdp_redirect",           /* RX_XDP_REDIRECT = 0, */
2966 	"rx_xdp_pass",               /* RX_XDP_PASS, */
2967 	"rx_xdp_drop",               /* RX_XDP_DROP, */
2968 	"rx_xdp_tx",                 /* RX_XDP_TX, */
2969 	"rx_xdp_tx_errors",          /* RX_XDP_TX_ERRORS, */
2970 	"tx_xdp_xmit",               /* TX_XDP_XMIT, */
2971 	"tx_xdp_xmit_errors",        /* TX_XDP_XMIT_ERRORS, */
2972 };
2973 
2974 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2975 {
2976 	struct fec_enet_private *fep = netdev_priv(dev);
2977 	int i;
2978 
2979 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2980 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2981 }
2982 
2983 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2984 {
2985 	u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2986 	struct fec_enet_priv_rx_q *rxq;
2987 	int i, j;
2988 
2989 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2990 		rxq = fep->rx_queue[i];
2991 
2992 		for (j = 0; j < XDP_STATS_TOTAL; j++)
2993 			xdp_stats[j] += rxq->stats[j];
2994 	}
2995 
2996 	memcpy(data, xdp_stats, sizeof(xdp_stats));
2997 }
2998 
2999 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
3000 {
3001 #ifdef CONFIG_PAGE_POOL_STATS
3002 	struct page_pool_stats stats = {};
3003 	struct fec_enet_priv_rx_q *rxq;
3004 	int i;
3005 
3006 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3007 		rxq = fep->rx_queue[i];
3008 
3009 		if (!rxq->page_pool)
3010 			continue;
3011 
3012 		page_pool_get_stats(rxq->page_pool, &stats);
3013 	}
3014 
3015 	page_pool_ethtool_stats_get(data, &stats);
3016 #endif
3017 }
3018 
3019 static void fec_enet_get_ethtool_stats(struct net_device *dev,
3020 				       struct ethtool_stats *stats, u64 *data)
3021 {
3022 	struct fec_enet_private *fep = netdev_priv(dev);
3023 
3024 	if (netif_running(dev))
3025 		fec_enet_update_ethtool_stats(dev);
3026 
3027 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
3028 	data += FEC_STATS_SIZE / sizeof(u64);
3029 
3030 	fec_enet_get_xdp_stats(fep, data);
3031 	data += XDP_STATS_TOTAL;
3032 
3033 	fec_enet_page_pool_stats(fep, data);
3034 }
3035 
3036 static void fec_enet_get_strings(struct net_device *netdev,
3037 	u32 stringset, u8 *data)
3038 {
3039 	int i;
3040 	switch (stringset) {
3041 	case ETH_SS_STATS:
3042 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
3043 			ethtool_puts(&data, fec_stats[i].name);
3044 		}
3045 		for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
3046 			ethtool_puts(&data, fec_xdp_stat_strs[i]);
3047 		}
3048 		page_pool_ethtool_stats_get_strings(data);
3049 
3050 		break;
3051 	case ETH_SS_TEST:
3052 		net_selftest_get_strings(data);
3053 		break;
3054 	}
3055 }
3056 
3057 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
3058 {
3059 	int count;
3060 
3061 	switch (sset) {
3062 	case ETH_SS_STATS:
3063 		count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
3064 		count += page_pool_ethtool_stats_get_count();
3065 		return count;
3066 
3067 	case ETH_SS_TEST:
3068 		return net_selftest_get_count();
3069 	default:
3070 		return -EOPNOTSUPP;
3071 	}
3072 }
3073 
3074 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
3075 {
3076 	struct fec_enet_private *fep = netdev_priv(dev);
3077 	struct fec_enet_priv_rx_q *rxq;
3078 	int i, j;
3079 
3080 	/* Disable MIB statistics counters */
3081 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
3082 
3083 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
3084 		writel(0, fep->hwp + fec_stats[i].offset);
3085 
3086 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3087 		rxq = fep->rx_queue[i];
3088 		for (j = 0; j < XDP_STATS_TOTAL; j++)
3089 			rxq->stats[j] = 0;
3090 	}
3091 
3092 	/* Don't disable MIB statistics counters */
3093 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
3094 }
3095 
3096 #else	/* !defined(CONFIG_M5272) */
3097 #define FEC_STATS_SIZE	0
3098 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
3099 {
3100 }
3101 
3102 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
3103 {
3104 }
3105 #endif /* !defined(CONFIG_M5272) */
3106 
3107 /* ITR clock source is enet system clock (clk_ahb).
3108  * TCTT unit is cycle_ns * 64 cycle
3109  * So, the ICTT value = X us / (cycle_ns * 64)
3110  */
3111 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
3112 {
3113 	struct fec_enet_private *fep = netdev_priv(ndev);
3114 
3115 	return us * (fep->itr_clk_rate / 64000) / 1000;
3116 }
3117 
3118 /* Set threshold for interrupt coalescing */
3119 static void fec_enet_itr_coal_set(struct net_device *ndev)
3120 {
3121 	struct fec_enet_private *fep = netdev_priv(ndev);
3122 	u32 rx_itr = 0, tx_itr = 0;
3123 	int rx_ictt, tx_ictt;
3124 
3125 	rx_ictt = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
3126 	tx_ictt = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
3127 
3128 	if (rx_ictt > 0 && fep->rx_pkts_itr > 1) {
3129 		/* Enable with enet system clock as Interrupt Coalescing timer Clock Source */
3130 		rx_itr = FEC_ITR_EN | FEC_ITR_CLK_SEL;
3131 		rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
3132 		rx_itr |= FEC_ITR_ICTT(rx_ictt);
3133 	}
3134 
3135 	if (tx_ictt > 0 && fep->tx_pkts_itr > 1) {
3136 		/* Enable with enet system clock as Interrupt Coalescing timer Clock Source */
3137 		tx_itr = FEC_ITR_EN | FEC_ITR_CLK_SEL;
3138 		tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
3139 		tx_itr |= FEC_ITR_ICTT(tx_ictt);
3140 	}
3141 
3142 	writel(tx_itr, fep->hwp + FEC_TXIC0);
3143 	writel(rx_itr, fep->hwp + FEC_RXIC0);
3144 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3145 		writel(tx_itr, fep->hwp + FEC_TXIC1);
3146 		writel(rx_itr, fep->hwp + FEC_RXIC1);
3147 		writel(tx_itr, fep->hwp + FEC_TXIC2);
3148 		writel(rx_itr, fep->hwp + FEC_RXIC2);
3149 	}
3150 }
3151 
3152 static int fec_enet_get_coalesce(struct net_device *ndev,
3153 				 struct ethtool_coalesce *ec,
3154 				 struct kernel_ethtool_coalesce *kernel_coal,
3155 				 struct netlink_ext_ack *extack)
3156 {
3157 	struct fec_enet_private *fep = netdev_priv(ndev);
3158 
3159 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3160 		return -EOPNOTSUPP;
3161 
3162 	ec->rx_coalesce_usecs = fep->rx_time_itr;
3163 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3164 
3165 	ec->tx_coalesce_usecs = fep->tx_time_itr;
3166 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3167 
3168 	return 0;
3169 }
3170 
3171 static int fec_enet_set_coalesce(struct net_device *ndev,
3172 				 struct ethtool_coalesce *ec,
3173 				 struct kernel_ethtool_coalesce *kernel_coal,
3174 				 struct netlink_ext_ack *extack)
3175 {
3176 	struct fec_enet_private *fep = netdev_priv(ndev);
3177 	struct device *dev = &fep->pdev->dev;
3178 	unsigned int cycle;
3179 
3180 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3181 		return -EOPNOTSUPP;
3182 
3183 	if (ec->rx_max_coalesced_frames > 255) {
3184 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3185 		return -EINVAL;
3186 	}
3187 
3188 	if (ec->tx_max_coalesced_frames > 255) {
3189 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3190 		return -EINVAL;
3191 	}
3192 
3193 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
3194 	if (cycle > 0xFFFF) {
3195 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3196 		return -EINVAL;
3197 	}
3198 
3199 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
3200 	if (cycle > 0xFFFF) {
3201 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3202 		return -EINVAL;
3203 	}
3204 
3205 	fep->rx_time_itr = ec->rx_coalesce_usecs;
3206 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3207 
3208 	fep->tx_time_itr = ec->tx_coalesce_usecs;
3209 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3210 
3211 	fec_enet_itr_coal_set(ndev);
3212 
3213 	return 0;
3214 }
3215 
3216 static int
3217 fec_enet_get_eee(struct net_device *ndev, struct ethtool_keee *edata)
3218 {
3219 	struct fec_enet_private *fep = netdev_priv(ndev);
3220 
3221 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3222 		return -EOPNOTSUPP;
3223 
3224 	if (!netif_running(ndev))
3225 		return -ENETDOWN;
3226 
3227 	return phy_ethtool_get_eee(ndev->phydev, edata);
3228 }
3229 
3230 static int
3231 fec_enet_set_eee(struct net_device *ndev, struct ethtool_keee *edata)
3232 {
3233 	struct fec_enet_private *fep = netdev_priv(ndev);
3234 
3235 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3236 		return -EOPNOTSUPP;
3237 
3238 	if (!netif_running(ndev))
3239 		return -ENETDOWN;
3240 
3241 	return phy_ethtool_set_eee(ndev->phydev, edata);
3242 }
3243 
3244 static void
3245 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3246 {
3247 	struct fec_enet_private *fep = netdev_priv(ndev);
3248 
3249 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3250 		wol->supported = WAKE_MAGIC;
3251 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3252 	} else {
3253 		wol->supported = wol->wolopts = 0;
3254 	}
3255 }
3256 
3257 static int
3258 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3259 {
3260 	struct fec_enet_private *fep = netdev_priv(ndev);
3261 
3262 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3263 		return -EINVAL;
3264 
3265 	if (wol->wolopts & ~WAKE_MAGIC)
3266 		return -EINVAL;
3267 
3268 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3269 	if (device_may_wakeup(&ndev->dev))
3270 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3271 	else
3272 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3273 
3274 	return 0;
3275 }
3276 
3277 static const struct ethtool_ops fec_enet_ethtool_ops = {
3278 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3279 				     ETHTOOL_COALESCE_MAX_FRAMES,
3280 	.get_drvinfo		= fec_enet_get_drvinfo,
3281 	.get_regs_len		= fec_enet_get_regs_len,
3282 	.get_regs		= fec_enet_get_regs,
3283 	.nway_reset		= phy_ethtool_nway_reset,
3284 	.get_link		= ethtool_op_get_link,
3285 	.get_coalesce		= fec_enet_get_coalesce,
3286 	.set_coalesce		= fec_enet_set_coalesce,
3287 #ifndef CONFIG_M5272
3288 	.get_pauseparam		= fec_enet_get_pauseparam,
3289 	.set_pauseparam		= fec_enet_set_pauseparam,
3290 	.get_strings		= fec_enet_get_strings,
3291 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
3292 	.get_sset_count		= fec_enet_get_sset_count,
3293 #endif
3294 	.get_ts_info		= fec_enet_get_ts_info,
3295 	.get_wol		= fec_enet_get_wol,
3296 	.set_wol		= fec_enet_set_wol,
3297 	.get_eee		= fec_enet_get_eee,
3298 	.set_eee		= fec_enet_set_eee,
3299 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
3300 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
3301 	.self_test		= net_selftest,
3302 };
3303 
3304 static void fec_enet_free_buffers(struct net_device *ndev)
3305 {
3306 	struct fec_enet_private *fep = netdev_priv(ndev);
3307 	unsigned int i;
3308 	struct fec_enet_priv_tx_q *txq;
3309 	struct fec_enet_priv_rx_q *rxq;
3310 	unsigned int q;
3311 
3312 	for (q = 0; q < fep->num_rx_queues; q++) {
3313 		rxq = fep->rx_queue[q];
3314 		for (i = 0; i < rxq->bd.ring_size; i++)
3315 			page_pool_put_full_page(rxq->page_pool, rxq->rx_buf[i],
3316 						false);
3317 
3318 		for (i = 0; i < XDP_STATS_TOTAL; i++)
3319 			rxq->stats[i] = 0;
3320 
3321 		if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3322 			xdp_rxq_info_unreg(&rxq->xdp_rxq);
3323 		page_pool_destroy(rxq->page_pool);
3324 		rxq->page_pool = NULL;
3325 	}
3326 
3327 	for (q = 0; q < fep->num_tx_queues; q++) {
3328 		txq = fep->tx_queue[q];
3329 		for (i = 0; i < txq->bd.ring_size; i++) {
3330 			kfree(txq->tx_bounce[i]);
3331 			txq->tx_bounce[i] = NULL;
3332 
3333 			if (!txq->tx_buf[i].buf_p) {
3334 				txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3335 				continue;
3336 			}
3337 
3338 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3339 				dev_kfree_skb(txq->tx_buf[i].buf_p);
3340 			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
3341 				xdp_return_frame(txq->tx_buf[i].buf_p);
3342 			} else {
3343 				struct page *page = txq->tx_buf[i].buf_p;
3344 
3345 				page_pool_put_page(pp_page_to_nmdesc(page)->pp,
3346 						   page, 0, false);
3347 			}
3348 
3349 			txq->tx_buf[i].buf_p = NULL;
3350 			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3351 		}
3352 	}
3353 }
3354 
3355 static void fec_enet_free_queue(struct net_device *ndev)
3356 {
3357 	struct fec_enet_private *fep = netdev_priv(ndev);
3358 	int i;
3359 	struct fec_enet_priv_tx_q *txq;
3360 
3361 	for (i = 0; i < fep->num_tx_queues; i++)
3362 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3363 			txq = fep->tx_queue[i];
3364 			fec_dma_free(&fep->pdev->dev,
3365 				     txq->bd.ring_size * TSO_HEADER_SIZE,
3366 				     txq->tso_hdrs, txq->tso_hdrs_dma);
3367 		}
3368 
3369 	for (i = 0; i < fep->num_rx_queues; i++)
3370 		kfree(fep->rx_queue[i]);
3371 	for (i = 0; i < fep->num_tx_queues; i++)
3372 		kfree(fep->tx_queue[i]);
3373 }
3374 
3375 static int fec_enet_alloc_queue(struct net_device *ndev)
3376 {
3377 	struct fec_enet_private *fep = netdev_priv(ndev);
3378 	int i;
3379 	int ret = 0;
3380 	struct fec_enet_priv_tx_q *txq;
3381 
3382 	for (i = 0; i < fep->num_tx_queues; i++) {
3383 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3384 		if (!txq) {
3385 			ret = -ENOMEM;
3386 			goto alloc_failed;
3387 		}
3388 
3389 		fep->tx_queue[i] = txq;
3390 		txq->bd.ring_size = TX_RING_SIZE;
3391 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3392 
3393 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3394 		txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
3395 
3396 		txq->tso_hdrs = fec_dma_alloc(&fep->pdev->dev,
3397 					txq->bd.ring_size * TSO_HEADER_SIZE,
3398 					&txq->tso_hdrs_dma, GFP_KERNEL);
3399 		if (!txq->tso_hdrs) {
3400 			ret = -ENOMEM;
3401 			goto alloc_failed;
3402 		}
3403 	}
3404 
3405 	for (i = 0; i < fep->num_rx_queues; i++) {
3406 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3407 					   GFP_KERNEL);
3408 		if (!fep->rx_queue[i]) {
3409 			ret = -ENOMEM;
3410 			goto alloc_failed;
3411 		}
3412 
3413 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3414 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3415 	}
3416 	return ret;
3417 
3418 alloc_failed:
3419 	fec_enet_free_queue(ndev);
3420 	return ret;
3421 }
3422 
3423 static int
3424 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3425 {
3426 	struct fec_enet_private *fep = netdev_priv(ndev);
3427 	struct fec_enet_priv_rx_q *rxq;
3428 	dma_addr_t phys_addr;
3429 	struct bufdesc	*bdp;
3430 	struct page *page;
3431 	int i, err;
3432 
3433 	rxq = fep->rx_queue[queue];
3434 	bdp = rxq->bd.base;
3435 
3436 	err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3437 	if (err < 0) {
3438 		netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3439 		return err;
3440 	}
3441 
3442 	/* Some platforms require the RX buffer must be 64 bytes alignment.
3443 	 * Some platforms require 16 bytes alignment. And some platforms
3444 	 * require 4 bytes alignment. But since the page pool have been
3445 	 * introduced into the driver, the address of RX buffer is always
3446 	 * the page address plus FEC_ENET_XDP_HEADROOM, and
3447 	 * FEC_ENET_XDP_HEADROOM is 256 bytes. Therefore, this address can
3448 	 * satisfy all platforms. To prevent future modifications to
3449 	 * FEC_ENET_XDP_HEADROOM from ignoring this hardware limitation, a
3450 	 * BUILD_BUG_ON() test has been added, which ensures that
3451 	 * FEC_ENET_XDP_HEADROOM provides the required alignment.
3452 	 */
3453 	BUILD_BUG_ON(FEC_ENET_XDP_HEADROOM & 0x3f);
3454 
3455 	for (i = 0; i < rxq->bd.ring_size; i++) {
3456 		page = page_pool_dev_alloc_pages(rxq->page_pool);
3457 		if (!page)
3458 			goto err_alloc;
3459 
3460 		phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3461 		bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3462 
3463 		rxq->rx_buf[i] = page;
3464 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3465 
3466 		if (fep->bufdesc_ex) {
3467 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3468 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3469 		}
3470 
3471 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3472 	}
3473 
3474 	/* Set the last buffer to wrap. */
3475 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3476 	bdp->cbd_sc |= cpu_to_fec16(BD_ENET_RX_WRAP);
3477 	return 0;
3478 
3479  err_alloc:
3480 	fec_enet_free_buffers(ndev);
3481 	return -ENOMEM;
3482 }
3483 
3484 static int
3485 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3486 {
3487 	struct fec_enet_private *fep = netdev_priv(ndev);
3488 	unsigned int i;
3489 	struct bufdesc  *bdp;
3490 	struct fec_enet_priv_tx_q *txq;
3491 
3492 	txq = fep->tx_queue[queue];
3493 	bdp = txq->bd.base;
3494 	for (i = 0; i < txq->bd.ring_size; i++) {
3495 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3496 		if (!txq->tx_bounce[i])
3497 			goto err_alloc;
3498 
3499 		bdp->cbd_sc = cpu_to_fec16(0);
3500 		bdp->cbd_bufaddr = cpu_to_fec32(0);
3501 
3502 		if (fep->bufdesc_ex) {
3503 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3504 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3505 		}
3506 
3507 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3508 	}
3509 
3510 	/* Set the last buffer to wrap. */
3511 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3512 	bdp->cbd_sc |= cpu_to_fec16(BD_ENET_TX_WRAP);
3513 
3514 	return 0;
3515 
3516  err_alloc:
3517 	fec_enet_free_buffers(ndev);
3518 	return -ENOMEM;
3519 }
3520 
3521 static int fec_enet_alloc_buffers(struct net_device *ndev)
3522 {
3523 	struct fec_enet_private *fep = netdev_priv(ndev);
3524 	unsigned int i;
3525 
3526 	for (i = 0; i < fep->num_rx_queues; i++)
3527 		if (fec_enet_alloc_rxq_buffers(ndev, i))
3528 			return -ENOMEM;
3529 
3530 	for (i = 0; i < fep->num_tx_queues; i++)
3531 		if (fec_enet_alloc_txq_buffers(ndev, i))
3532 			return -ENOMEM;
3533 	return 0;
3534 }
3535 
3536 static int
3537 fec_enet_open(struct net_device *ndev)
3538 {
3539 	struct fec_enet_private *fep = netdev_priv(ndev);
3540 	int ret;
3541 	bool reset_again;
3542 
3543 	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3544 	if (ret < 0)
3545 		return ret;
3546 
3547 	pinctrl_pm_select_default_state(&fep->pdev->dev);
3548 	ret = fec_enet_clk_enable(ndev, true);
3549 	if (ret)
3550 		goto clk_enable;
3551 
3552 	/* During the first fec_enet_open call the PHY isn't probed at this
3553 	 * point. Therefore the phy_reset_after_clk_enable() call within
3554 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3555 	 * sure the PHY is working correctly we check if we need to reset again
3556 	 * later when the PHY is probed
3557 	 */
3558 	if (ndev->phydev && ndev->phydev->drv)
3559 		reset_again = false;
3560 	else
3561 		reset_again = true;
3562 
3563 	/* I should reset the ring buffers here, but I don't yet know
3564 	 * a simple way to do that.
3565 	 */
3566 
3567 	ret = fec_enet_alloc_buffers(ndev);
3568 	if (ret)
3569 		goto err_enet_alloc;
3570 
3571 	/* Init MAC prior to mii bus probe */
3572 	fec_restart(ndev);
3573 
3574 	/* Call phy_reset_after_clk_enable() again if it failed during
3575 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3576 	 */
3577 	if (reset_again)
3578 		fec_enet_phy_reset_after_clk_enable(ndev);
3579 
3580 	/* Probe and connect to PHY when open the interface */
3581 	ret = fec_enet_mii_probe(ndev);
3582 	if (ret)
3583 		goto err_enet_mii_probe;
3584 
3585 	if (fep->quirks & FEC_QUIRK_ERR006687)
3586 		imx6q_cpuidle_fec_irqs_used();
3587 
3588 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3589 		cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3590 
3591 	napi_enable(&fep->napi);
3592 	phy_start(ndev->phydev);
3593 	netif_tx_start_all_queues(ndev);
3594 
3595 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3596 				 FEC_WOL_FLAG_ENABLE);
3597 
3598 	return 0;
3599 
3600 err_enet_mii_probe:
3601 	fec_enet_free_buffers(ndev);
3602 err_enet_alloc:
3603 	fec_enet_clk_enable(ndev, false);
3604 clk_enable:
3605 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3606 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3607 	return ret;
3608 }
3609 
3610 static int
3611 fec_enet_close(struct net_device *ndev)
3612 {
3613 	struct fec_enet_private *fep = netdev_priv(ndev);
3614 	struct phy_device *phy_dev = ndev->phydev;
3615 
3616 	phy_stop(phy_dev);
3617 
3618 	if (netif_device_present(ndev)) {
3619 		napi_disable(&fep->napi);
3620 		netif_tx_disable(ndev);
3621 		fec_stop(ndev);
3622 	}
3623 
3624 	phy_disconnect(phy_dev);
3625 
3626 	if (!fep->phy_node && phy_is_pseudo_fixed_link(phy_dev))
3627 		fixed_phy_unregister(phy_dev);
3628 
3629 	if (fep->quirks & FEC_QUIRK_ERR006687)
3630 		imx6q_cpuidle_fec_irqs_unused();
3631 
3632 	fec_enet_update_ethtool_stats(ndev);
3633 
3634 	fec_enet_clk_enable(ndev, false);
3635 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3636 		cpu_latency_qos_remove_request(&fep->pm_qos_req);
3637 
3638 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3639 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3640 
3641 	fec_enet_free_buffers(ndev);
3642 
3643 	return 0;
3644 }
3645 
3646 /* Set or clear the multicast filter for this adaptor.
3647  * Skeleton taken from sunlance driver.
3648  * The CPM Ethernet implementation allows Multicast as well as individual
3649  * MAC address filtering.  Some of the drivers check to make sure it is
3650  * a group multicast address, and discard those that are not.  I guess I
3651  * will do the same for now, but just remove the test if you want
3652  * individual filtering as well (do the upper net layers want or support
3653  * this kind of feature?).
3654  */
3655 
3656 #define FEC_HASH_BITS	6		/* #bits in hash */
3657 
3658 static void set_multicast_list(struct net_device *ndev)
3659 {
3660 	struct fec_enet_private *fep = netdev_priv(ndev);
3661 	struct netdev_hw_addr *ha;
3662 	unsigned int crc, tmp;
3663 	unsigned char hash;
3664 	unsigned int hash_high = 0, hash_low = 0;
3665 
3666 	if (ndev->flags & IFF_PROMISC) {
3667 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3668 		tmp |= 0x8;
3669 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3670 		return;
3671 	}
3672 
3673 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3674 	tmp &= ~0x8;
3675 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3676 
3677 	if (ndev->flags & IFF_ALLMULTI) {
3678 		/* Catch all multicast addresses, so set the
3679 		 * filter to all 1's
3680 		 */
3681 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3682 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3683 
3684 		return;
3685 	}
3686 
3687 	/* Add the addresses in hash register */
3688 	netdev_for_each_mc_addr(ha, ndev) {
3689 		/* calculate crc32 value of mac address */
3690 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3691 
3692 		/* only upper 6 bits (FEC_HASH_BITS) are used
3693 		 * which point to specific bit in the hash registers
3694 		 */
3695 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3696 
3697 		if (hash > 31)
3698 			hash_high |= 1 << (hash - 32);
3699 		else
3700 			hash_low |= 1 << hash;
3701 	}
3702 
3703 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3704 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3705 }
3706 
3707 /* Set a MAC change in hardware. */
3708 static int
3709 fec_set_mac_address(struct net_device *ndev, void *p)
3710 {
3711 	struct sockaddr *addr = p;
3712 
3713 	if (addr) {
3714 		if (!is_valid_ether_addr(addr->sa_data))
3715 			return -EADDRNOTAVAIL;
3716 		eth_hw_addr_set(ndev, addr->sa_data);
3717 	}
3718 
3719 	/* Add netif status check here to avoid system hang in below case:
3720 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3721 	 * After ethx down, fec all clocks are gated off and then register
3722 	 * access causes system hang.
3723 	 */
3724 	if (!netif_running(ndev))
3725 		return 0;
3726 
3727 	fec_set_hw_mac_addr(ndev);
3728 
3729 	return 0;
3730 }
3731 
3732 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3733 	netdev_features_t features)
3734 {
3735 	struct fec_enet_private *fep = netdev_priv(netdev);
3736 	netdev_features_t changed = features ^ netdev->features;
3737 
3738 	netdev->features = features;
3739 
3740 	/* Receive checksum has been changed */
3741 	if (changed & NETIF_F_RXCSUM) {
3742 		if (features & NETIF_F_RXCSUM)
3743 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3744 		else
3745 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3746 	}
3747 }
3748 
3749 static int fec_set_features(struct net_device *netdev,
3750 	netdev_features_t features)
3751 {
3752 	struct fec_enet_private *fep = netdev_priv(netdev);
3753 	netdev_features_t changed = features ^ netdev->features;
3754 
3755 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3756 		napi_disable(&fep->napi);
3757 		netif_tx_lock_bh(netdev);
3758 		fec_stop(netdev);
3759 		fec_enet_set_netdev_features(netdev, features);
3760 		fec_restart(netdev);
3761 		netif_tx_wake_all_queues(netdev);
3762 		netif_tx_unlock_bh(netdev);
3763 		napi_enable(&fep->napi);
3764 	} else {
3765 		fec_enet_set_netdev_features(netdev, features);
3766 	}
3767 
3768 	return 0;
3769 }
3770 
3771 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3772 				 struct net_device *sb_dev)
3773 {
3774 	struct fec_enet_private *fep = netdev_priv(ndev);
3775 	u16 vlan_tag = 0;
3776 
3777 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3778 		return netdev_pick_tx(ndev, skb, NULL);
3779 
3780 	/* VLAN is present in the payload.*/
3781 	if (eth_type_vlan(skb->protocol)) {
3782 		struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3783 
3784 		vlan_tag = ntohs(vhdr->h_vlan_TCI);
3785 	/*  VLAN is present in the skb but not yet pushed in the payload.*/
3786 	} else if (skb_vlan_tag_present(skb)) {
3787 		vlan_tag = skb->vlan_tci;
3788 	} else {
3789 		return vlan_tag;
3790 	}
3791 
3792 	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3793 }
3794 
3795 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3796 {
3797 	struct fec_enet_private *fep = netdev_priv(dev);
3798 	bool is_run = netif_running(dev);
3799 	struct bpf_prog *old_prog;
3800 
3801 	switch (bpf->command) {
3802 	case XDP_SETUP_PROG:
3803 		/* No need to support the SoCs that require to
3804 		 * do the frame swap because the performance wouldn't be
3805 		 * better than the skb mode.
3806 		 */
3807 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3808 			return -EOPNOTSUPP;
3809 
3810 		if (!bpf->prog)
3811 			xdp_features_clear_redirect_target(dev);
3812 
3813 		if (is_run) {
3814 			napi_disable(&fep->napi);
3815 			netif_tx_disable(dev);
3816 		}
3817 
3818 		old_prog = xchg(&fep->xdp_prog, bpf->prog);
3819 		if (old_prog)
3820 			bpf_prog_put(old_prog);
3821 
3822 		fec_restart(dev);
3823 
3824 		if (is_run) {
3825 			napi_enable(&fep->napi);
3826 			netif_tx_start_all_queues(dev);
3827 		}
3828 
3829 		if (bpf->prog)
3830 			xdp_features_set_redirect_target(dev, false);
3831 
3832 		return 0;
3833 
3834 	case XDP_SETUP_XSK_POOL:
3835 		return -EOPNOTSUPP;
3836 
3837 	default:
3838 		return -EOPNOTSUPP;
3839 	}
3840 }
3841 
3842 static int
3843 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3844 {
3845 	if (unlikely(index < 0))
3846 		return 0;
3847 
3848 	return (index % fep->num_tx_queues);
3849 }
3850 
3851 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3852 				   struct fec_enet_priv_tx_q *txq,
3853 				   void *frame, u32 dma_sync_len,
3854 				   bool ndo_xmit)
3855 {
3856 	unsigned int index, status, estatus;
3857 	struct bufdesc *bdp;
3858 	dma_addr_t dma_addr;
3859 	int entries_free;
3860 	u16 frame_len;
3861 
3862 	entries_free = fec_enet_get_free_txdesc_num(txq);
3863 	if (entries_free < MAX_SKB_FRAGS + 1) {
3864 		netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3865 		return -EBUSY;
3866 	}
3867 
3868 	/* Fill in a Tx ring entry */
3869 	bdp = txq->bd.cur;
3870 	status = fec16_to_cpu(bdp->cbd_sc);
3871 	status &= ~BD_ENET_TX_STATS;
3872 
3873 	index = fec_enet_get_bd_index(bdp, &txq->bd);
3874 
3875 	if (ndo_xmit) {
3876 		struct xdp_frame *xdpf = frame;
3877 
3878 		dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data,
3879 					  xdpf->len, DMA_TO_DEVICE);
3880 		if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3881 			return -ENOMEM;
3882 
3883 		frame_len = xdpf->len;
3884 		txq->tx_buf[index].buf_p = xdpf;
3885 		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3886 	} else {
3887 		struct xdp_buff *xdpb = frame;
3888 		struct page *page;
3889 
3890 		page = virt_to_page(xdpb->data);
3891 		dma_addr = page_pool_get_dma_addr(page) +
3892 			   (xdpb->data - xdpb->data_hard_start);
3893 		dma_sync_single_for_device(&fep->pdev->dev, dma_addr,
3894 					   dma_sync_len, DMA_BIDIRECTIONAL);
3895 		frame_len = xdpb->data_end - xdpb->data;
3896 		txq->tx_buf[index].buf_p = page;
3897 		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX;
3898 	}
3899 
3900 	status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3901 	if (fep->bufdesc_ex)
3902 		estatus = BD_ENET_TX_INT;
3903 
3904 	bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3905 	bdp->cbd_datlen = cpu_to_fec16(frame_len);
3906 
3907 	if (fep->bufdesc_ex) {
3908 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3909 
3910 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
3911 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3912 
3913 		ebdp->cbd_bdu = 0;
3914 		ebdp->cbd_esc = cpu_to_fec32(estatus);
3915 	}
3916 
3917 	/* Make sure the updates to rest of the descriptor are performed before
3918 	 * transferring ownership.
3919 	 */
3920 	dma_wmb();
3921 
3922 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
3923 	 * it's the last BD of the frame, and to put the CRC on the end.
3924 	 */
3925 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3926 	bdp->cbd_sc = cpu_to_fec16(status);
3927 
3928 	/* If this was the last BD in the ring, start at the beginning again. */
3929 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3930 
3931 	/* Make sure the update to bdp are performed before txq->bd.cur. */
3932 	dma_wmb();
3933 
3934 	txq->bd.cur = bdp;
3935 
3936 	/* Trigger transmission start */
3937 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
3938 	    !readl(txq->bd.reg_desc_active) ||
3939 	    !readl(txq->bd.reg_desc_active) ||
3940 	    !readl(txq->bd.reg_desc_active) ||
3941 	    !readl(txq->bd.reg_desc_active))
3942 		writel(0, txq->bd.reg_desc_active);
3943 
3944 	return 0;
3945 }
3946 
3947 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
3948 				int cpu, struct xdp_buff *xdp,
3949 				u32 dma_sync_len)
3950 {
3951 	struct fec_enet_priv_tx_q *txq;
3952 	struct netdev_queue *nq;
3953 	int queue, ret;
3954 
3955 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3956 	txq = fep->tx_queue[queue];
3957 	nq = netdev_get_tx_queue(fep->netdev, queue);
3958 
3959 	__netif_tx_lock(nq, cpu);
3960 
3961 	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3962 	txq_trans_cond_update(nq);
3963 	ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false);
3964 
3965 	__netif_tx_unlock(nq);
3966 
3967 	return ret;
3968 }
3969 
3970 static int fec_enet_xdp_xmit(struct net_device *dev,
3971 			     int num_frames,
3972 			     struct xdp_frame **frames,
3973 			     u32 flags)
3974 {
3975 	struct fec_enet_private *fep = netdev_priv(dev);
3976 	struct fec_enet_priv_tx_q *txq;
3977 	int cpu = smp_processor_id();
3978 	unsigned int sent_frames = 0;
3979 	struct netdev_queue *nq;
3980 	unsigned int queue;
3981 	int i;
3982 
3983 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3984 	txq = fep->tx_queue[queue];
3985 	nq = netdev_get_tx_queue(fep->netdev, queue);
3986 
3987 	__netif_tx_lock(nq, cpu);
3988 
3989 	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3990 	txq_trans_cond_update(nq);
3991 	for (i = 0; i < num_frames; i++) {
3992 		if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0)
3993 			break;
3994 		sent_frames++;
3995 	}
3996 
3997 	__netif_tx_unlock(nq);
3998 
3999 	return sent_frames;
4000 }
4001 
4002 static int fec_hwtstamp_get(struct net_device *ndev,
4003 			    struct kernel_hwtstamp_config *config)
4004 {
4005 	struct fec_enet_private *fep = netdev_priv(ndev);
4006 
4007 	if (!netif_running(ndev))
4008 		return -EINVAL;
4009 
4010 	if (!fep->bufdesc_ex)
4011 		return -EOPNOTSUPP;
4012 
4013 	fec_ptp_get(ndev, config);
4014 
4015 	return 0;
4016 }
4017 
4018 static int fec_hwtstamp_set(struct net_device *ndev,
4019 			    struct kernel_hwtstamp_config *config,
4020 			    struct netlink_ext_ack *extack)
4021 {
4022 	struct fec_enet_private *fep = netdev_priv(ndev);
4023 
4024 	if (!netif_running(ndev))
4025 		return -EINVAL;
4026 
4027 	if (!fep->bufdesc_ex)
4028 		return -EOPNOTSUPP;
4029 
4030 	return fec_ptp_set(ndev, config, extack);
4031 }
4032 
4033 static int fec_change_mtu(struct net_device *ndev, int new_mtu)
4034 {
4035 	struct fec_enet_private *fep = netdev_priv(ndev);
4036 	int order;
4037 
4038 	if (netif_running(ndev))
4039 		return -EBUSY;
4040 
4041 	order = get_order(new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN
4042 			  + FEC_DRV_RESERVE_SPACE);
4043 	fep->rx_frame_size = (PAGE_SIZE << order) - FEC_DRV_RESERVE_SPACE;
4044 	fep->pagepool_order = order;
4045 	WRITE_ONCE(ndev->mtu, new_mtu);
4046 
4047 	return 0;
4048 }
4049 
4050 static const struct net_device_ops fec_netdev_ops = {
4051 	.ndo_open		= fec_enet_open,
4052 	.ndo_stop		= fec_enet_close,
4053 	.ndo_start_xmit		= fec_enet_start_xmit,
4054 	.ndo_select_queue       = fec_enet_select_queue,
4055 	.ndo_set_rx_mode	= set_multicast_list,
4056 	.ndo_validate_addr	= eth_validate_addr,
4057 	.ndo_tx_timeout		= fec_timeout,
4058 	.ndo_set_mac_address	= fec_set_mac_address,
4059 	.ndo_change_mtu		= fec_change_mtu,
4060 	.ndo_eth_ioctl		= phy_do_ioctl_running,
4061 	.ndo_set_features	= fec_set_features,
4062 	.ndo_bpf		= fec_enet_bpf,
4063 	.ndo_xdp_xmit		= fec_enet_xdp_xmit,
4064 	.ndo_hwtstamp_get	= fec_hwtstamp_get,
4065 	.ndo_hwtstamp_set	= fec_hwtstamp_set,
4066 };
4067 
4068 static const unsigned short offset_des_active_rxq[] = {
4069 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
4070 };
4071 
4072 static const unsigned short offset_des_active_txq[] = {
4073 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
4074 };
4075 
4076  /*
4077   * XXX:  We need to clean up on failure exits here.
4078   *
4079   */
4080 static int fec_enet_init(struct net_device *ndev)
4081 {
4082 	struct fec_enet_private *fep = netdev_priv(ndev);
4083 	struct bufdesc *cbd_base;
4084 	dma_addr_t bd_dma;
4085 	int bd_size;
4086 	unsigned int i;
4087 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
4088 			sizeof(struct bufdesc);
4089 	unsigned dsize_log2 = __fls(dsize);
4090 	int ret;
4091 
4092 	WARN_ON(dsize != (1 << dsize_log2));
4093 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
4094 	fep->tx_align = 0xf;
4095 #else
4096 	fep->tx_align = 0x3;
4097 #endif
4098 	fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4099 	fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4100 	fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
4101 	fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
4102 
4103 	/* Check mask of the streaming and coherent API */
4104 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
4105 	if (ret < 0) {
4106 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
4107 		return ret;
4108 	}
4109 
4110 	ret = fec_enet_alloc_queue(ndev);
4111 	if (ret)
4112 		return ret;
4113 
4114 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
4115 
4116 	/* Allocate memory for buffer descriptors. */
4117 	cbd_base = fec_dmam_alloc(&fep->pdev->dev, bd_size, &bd_dma,
4118 				  GFP_KERNEL);
4119 	if (!cbd_base) {
4120 		ret = -ENOMEM;
4121 		goto free_queue_mem;
4122 	}
4123 
4124 	/* Get the Ethernet address */
4125 	ret = fec_get_mac(ndev);
4126 	if (ret)
4127 		goto free_queue_mem;
4128 
4129 	/* Set receive and transmit descriptor base. */
4130 	for (i = 0; i < fep->num_rx_queues; i++) {
4131 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4132 		unsigned size = dsize * rxq->bd.ring_size;
4133 
4134 		rxq->bd.qid = i;
4135 		rxq->bd.base = cbd_base;
4136 		rxq->bd.cur = cbd_base;
4137 		rxq->bd.dma = bd_dma;
4138 		rxq->bd.dsize = dsize;
4139 		rxq->bd.dsize_log2 = dsize_log2;
4140 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4141 		bd_dma += size;
4142 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4143 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4144 	}
4145 
4146 	for (i = 0; i < fep->num_tx_queues; i++) {
4147 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4148 		unsigned size = dsize * txq->bd.ring_size;
4149 
4150 		txq->bd.qid = i;
4151 		txq->bd.base = cbd_base;
4152 		txq->bd.cur = cbd_base;
4153 		txq->bd.dma = bd_dma;
4154 		txq->bd.dsize = dsize;
4155 		txq->bd.dsize_log2 = dsize_log2;
4156 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4157 		bd_dma += size;
4158 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4159 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4160 	}
4161 
4162 
4163 	/* The FEC Ethernet specific entries in the device structure */
4164 	ndev->watchdog_timeo = TX_TIMEOUT;
4165 	ndev->netdev_ops = &fec_netdev_ops;
4166 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
4167 
4168 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
4169 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
4170 
4171 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4172 		/* enable hw VLAN support */
4173 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4174 
4175 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4176 		netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
4177 
4178 		/* enable hw accelerator */
4179 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4180 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4181 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4182 	}
4183 
4184 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES)
4185 		fep->tx_align = 0;
4186 
4187 	ndev->hw_features = ndev->features;
4188 
4189 	if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4190 		ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4191 				     NETDEV_XDP_ACT_REDIRECT;
4192 
4193 	fec_restart(ndev);
4194 
4195 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4196 		fec_enet_clear_ethtool_stats(ndev);
4197 	else
4198 		fec_enet_update_ethtool_stats(ndev);
4199 
4200 	return 0;
4201 
4202 free_queue_mem:
4203 	fec_enet_free_queue(ndev);
4204 	return ret;
4205 }
4206 
4207 static void fec_enet_deinit(struct net_device *ndev)
4208 {
4209 	struct fec_enet_private *fep = netdev_priv(ndev);
4210 
4211 	netif_napi_del(&fep->napi);
4212 	fec_enet_free_queue(ndev);
4213 }
4214 
4215 #ifdef CONFIG_OF
4216 static int fec_reset_phy(struct platform_device *pdev)
4217 {
4218 	struct gpio_desc *phy_reset;
4219 	int msec = 1, phy_post_delay = 0;
4220 	struct device_node *np = pdev->dev.of_node;
4221 	int err;
4222 
4223 	if (!np)
4224 		return 0;
4225 
4226 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
4227 	/* A sane reset duration should not be longer than 1s */
4228 	if (!err && msec > 1000)
4229 		msec = 1;
4230 
4231 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
4232 	/* valid reset duration should be less than 1s */
4233 	if (!err && phy_post_delay > 1000)
4234 		return -EINVAL;
4235 
4236 	phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset",
4237 					    GPIOD_OUT_HIGH);
4238 	if (IS_ERR(phy_reset))
4239 		return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset),
4240 				     "failed to get phy-reset-gpios\n");
4241 
4242 	if (!phy_reset)
4243 		return 0;
4244 
4245 	if (msec > 20)
4246 		msleep(msec);
4247 	else
4248 		usleep_range(msec * 1000, msec * 1000 + 1000);
4249 
4250 	gpiod_set_value_cansleep(phy_reset, 0);
4251 
4252 	if (!phy_post_delay)
4253 		return 0;
4254 
4255 	if (phy_post_delay > 20)
4256 		msleep(phy_post_delay);
4257 	else
4258 		usleep_range(phy_post_delay * 1000,
4259 			     phy_post_delay * 1000 + 1000);
4260 
4261 	return 0;
4262 }
4263 #else /* CONFIG_OF */
4264 static int fec_reset_phy(struct platform_device *pdev)
4265 {
4266 	/*
4267 	 * In case of platform probe, the reset has been done
4268 	 * by machine code.
4269 	 */
4270 	return 0;
4271 }
4272 #endif /* CONFIG_OF */
4273 
4274 static void
4275 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4276 {
4277 	struct device_node *np = pdev->dev.of_node;
4278 
4279 	*num_tx = *num_rx = 1;
4280 
4281 	if (!np || !of_device_is_available(np))
4282 		return;
4283 
4284 	/* parse the num of tx and rx queues */
4285 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4286 
4287 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4288 
4289 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4290 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4291 			 *num_tx);
4292 		*num_tx = 1;
4293 		return;
4294 	}
4295 
4296 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4297 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4298 			 *num_rx);
4299 		*num_rx = 1;
4300 		return;
4301 	}
4302 
4303 }
4304 
4305 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4306 {
4307 	int irq_cnt = platform_irq_count(pdev);
4308 
4309 	if (irq_cnt > FEC_IRQ_NUM)
4310 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
4311 	else if (irq_cnt == 2)
4312 		irq_cnt = 1;	/* last for pps */
4313 	else if (irq_cnt <= 0)
4314 		irq_cnt = 1;	/* At least 1 irq is needed */
4315 	return irq_cnt;
4316 }
4317 
4318 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4319 {
4320 	struct net_device *ndev = platform_get_drvdata(pdev);
4321 	struct fec_enet_private *fep = netdev_priv(ndev);
4322 
4323 	if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4324 		fep->wake_irq = fep->irq[2];
4325 	else
4326 		fep->wake_irq = fep->irq[0];
4327 }
4328 
4329 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4330 				   struct device_node *np)
4331 {
4332 	struct device_node *gpr_np;
4333 	u32 out_val[3];
4334 	int ret = 0;
4335 
4336 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4337 	if (!gpr_np)
4338 		return 0;
4339 
4340 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4341 					 ARRAY_SIZE(out_val));
4342 	if (ret) {
4343 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4344 		goto out;
4345 	}
4346 
4347 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4348 	if (IS_ERR(fep->stop_gpr.gpr)) {
4349 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4350 		ret = PTR_ERR(fep->stop_gpr.gpr);
4351 		fep->stop_gpr.gpr = NULL;
4352 		goto out;
4353 	}
4354 
4355 	fep->stop_gpr.reg = out_val[1];
4356 	fep->stop_gpr.bit = out_val[2];
4357 
4358 out:
4359 	of_node_put(gpr_np);
4360 
4361 	return ret;
4362 }
4363 
4364 static int
4365 fec_probe(struct platform_device *pdev)
4366 {
4367 	struct fec_enet_private *fep;
4368 	struct fec_platform_data *pdata;
4369 	phy_interface_t interface;
4370 	struct net_device *ndev;
4371 	int i, irq, ret = 0;
4372 	static int dev_id;
4373 	struct device_node *np = pdev->dev.of_node, *phy_node;
4374 	int num_tx_qs;
4375 	int num_rx_qs;
4376 	char irq_name[8];
4377 	int irq_cnt;
4378 	const struct fec_devinfo *dev_info;
4379 
4380 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4381 
4382 	/* Init network device */
4383 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4384 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4385 	if (!ndev)
4386 		return -ENOMEM;
4387 
4388 	SET_NETDEV_DEV(ndev, &pdev->dev);
4389 
4390 	/* setup board info structure */
4391 	fep = netdev_priv(ndev);
4392 
4393 	dev_info = device_get_match_data(&pdev->dev);
4394 	if (!dev_info)
4395 		dev_info = (const struct fec_devinfo *)pdev->id_entry->driver_data;
4396 	if (dev_info)
4397 		fep->quirks = dev_info->quirks;
4398 
4399 	fep->netdev = ndev;
4400 	fep->num_rx_queues = num_rx_qs;
4401 	fep->num_tx_queues = num_tx_qs;
4402 
4403 	/* default enable pause frame auto negotiation */
4404 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4405 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4406 
4407 	/* Select default pin state */
4408 	pinctrl_pm_select_default_state(&pdev->dev);
4409 
4410 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
4411 	if (IS_ERR(fep->hwp)) {
4412 		ret = PTR_ERR(fep->hwp);
4413 		goto failed_ioremap;
4414 	}
4415 
4416 	fep->pdev = pdev;
4417 	fep->dev_id = dev_id++;
4418 
4419 	platform_set_drvdata(pdev, ndev);
4420 
4421 	if ((of_machine_is_compatible("fsl,imx6q") ||
4422 	     of_machine_is_compatible("fsl,imx6dl")) &&
4423 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4424 		fep->quirks |= FEC_QUIRK_ERR006687;
4425 
4426 	ret = fec_enet_ipc_handle_init(fep);
4427 	if (ret)
4428 		goto failed_ipc_init;
4429 
4430 	if (of_property_read_bool(np, "fsl,magic-packet"))
4431 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4432 
4433 	ret = fec_enet_init_stop_mode(fep, np);
4434 	if (ret)
4435 		goto failed_stop_mode;
4436 
4437 	phy_node = of_parse_phandle(np, "phy-handle", 0);
4438 	if (!phy_node && of_phy_is_fixed_link(np)) {
4439 		ret = of_phy_register_fixed_link(np);
4440 		if (ret < 0) {
4441 			dev_err(&pdev->dev,
4442 				"broken fixed-link specification\n");
4443 			goto failed_phy;
4444 		}
4445 		phy_node = of_node_get(np);
4446 	}
4447 	fep->phy_node = phy_node;
4448 
4449 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4450 	if (ret) {
4451 		pdata = dev_get_platdata(&pdev->dev);
4452 		if (pdata)
4453 			fep->phy_interface = pdata->phy;
4454 		else
4455 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
4456 	} else {
4457 		fep->phy_interface = interface;
4458 	}
4459 
4460 	ret = fec_enet_parse_rgmii_delay(fep, np);
4461 	if (ret)
4462 		goto failed_rgmii_delay;
4463 
4464 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4465 	if (IS_ERR(fep->clk_ipg)) {
4466 		ret = PTR_ERR(fep->clk_ipg);
4467 		goto failed_clk;
4468 	}
4469 
4470 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4471 	if (IS_ERR(fep->clk_ahb)) {
4472 		ret = PTR_ERR(fep->clk_ahb);
4473 		goto failed_clk;
4474 	}
4475 
4476 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4477 
4478 	/* enet_out is optional, depends on board */
4479 	fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4480 	if (IS_ERR(fep->clk_enet_out)) {
4481 		ret = PTR_ERR(fep->clk_enet_out);
4482 		goto failed_clk;
4483 	}
4484 
4485 	fep->ptp_clk_on = false;
4486 	mutex_init(&fep->ptp_clk_mutex);
4487 
4488 	/* clk_ref is optional, depends on board */
4489 	fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4490 	if (IS_ERR(fep->clk_ref)) {
4491 		ret = PTR_ERR(fep->clk_ref);
4492 		goto failed_clk;
4493 	}
4494 	fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4495 
4496 	/* clk_2x_txclk is optional, depends on board */
4497 	if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4498 		fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4499 		if (IS_ERR(fep->clk_2x_txclk))
4500 			fep->clk_2x_txclk = NULL;
4501 	}
4502 
4503 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4504 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4505 	if (IS_ERR(fep->clk_ptp)) {
4506 		fep->clk_ptp = NULL;
4507 		fep->bufdesc_ex = false;
4508 	}
4509 
4510 	ret = fec_enet_clk_enable(ndev, true);
4511 	if (ret)
4512 		goto failed_clk;
4513 
4514 	ret = clk_prepare_enable(fep->clk_ipg);
4515 	if (ret)
4516 		goto failed_clk_ipg;
4517 	ret = clk_prepare_enable(fep->clk_ahb);
4518 	if (ret)
4519 		goto failed_clk_ahb;
4520 
4521 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4522 	if (!IS_ERR(fep->reg_phy)) {
4523 		ret = regulator_enable(fep->reg_phy);
4524 		if (ret) {
4525 			dev_err(&pdev->dev,
4526 				"Failed to enable phy regulator: %d\n", ret);
4527 			goto failed_regulator;
4528 		}
4529 	} else {
4530 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4531 			ret = -EPROBE_DEFER;
4532 			goto failed_regulator;
4533 		}
4534 		fep->reg_phy = NULL;
4535 	}
4536 
4537 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4538 	pm_runtime_use_autosuspend(&pdev->dev);
4539 	pm_runtime_get_noresume(&pdev->dev);
4540 	pm_runtime_set_active(&pdev->dev);
4541 	pm_runtime_enable(&pdev->dev);
4542 
4543 	ret = fec_reset_phy(pdev);
4544 	if (ret)
4545 		goto failed_reset;
4546 
4547 	irq_cnt = fec_enet_get_irq_cnt(pdev);
4548 	if (fep->bufdesc_ex)
4549 		fec_ptp_init(pdev, irq_cnt);
4550 
4551 	ret = fec_enet_init(ndev);
4552 	if (ret)
4553 		goto failed_init;
4554 
4555 	for (i = 0; i < irq_cnt; i++) {
4556 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
4557 		irq = platform_get_irq_byname_optional(pdev, irq_name);
4558 		if (irq < 0)
4559 			irq = platform_get_irq(pdev, i);
4560 		if (irq < 0) {
4561 			ret = irq;
4562 			goto failed_irq;
4563 		}
4564 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4565 				       0, pdev->name, ndev);
4566 		if (ret)
4567 			goto failed_irq;
4568 
4569 		fep->irq[i] = irq;
4570 	}
4571 
4572 	/* Decide which interrupt line is wakeup capable */
4573 	fec_enet_get_wakeup_irq(pdev);
4574 
4575 	ret = fec_enet_mii_init(pdev);
4576 	if (ret)
4577 		goto failed_mii_init;
4578 
4579 	/* Carrier starts down, phylib will bring it up */
4580 	netif_carrier_off(ndev);
4581 	fec_enet_clk_enable(ndev, false);
4582 	pinctrl_pm_select_sleep_state(&pdev->dev);
4583 
4584 	fep->pagepool_order = 0;
4585 	fep->rx_frame_size = FEC_ENET_RX_FRSIZE;
4586 
4587 	if (fep->quirks & FEC_QUIRK_JUMBO_FRAME)
4588 		fep->max_buf_size = MAX_JUMBO_BUF_SIZE;
4589 	else
4590 		fep->max_buf_size = PKT_MAXBUF_SIZE;
4591 
4592 	ndev->max_mtu = fep->max_buf_size - VLAN_ETH_HLEN - ETH_FCS_LEN;
4593 
4594 	ret = register_netdev(ndev);
4595 	if (ret)
4596 		goto failed_register;
4597 
4598 	device_init_wakeup(&ndev->dev, fep->wol_flag &
4599 			   FEC_WOL_HAS_MAGIC_PACKET);
4600 
4601 	if (fep->bufdesc_ex && fep->ptp_clock)
4602 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4603 
4604 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4605 
4606 	pm_runtime_put_autosuspend(&pdev->dev);
4607 
4608 	return 0;
4609 
4610 failed_register:
4611 	fec_enet_mii_remove(fep);
4612 failed_mii_init:
4613 failed_irq:
4614 	fec_enet_deinit(ndev);
4615 failed_init:
4616 	fec_ptp_stop(pdev);
4617 failed_reset:
4618 	pm_runtime_put_noidle(&pdev->dev);
4619 	pm_runtime_disable(&pdev->dev);
4620 	if (fep->reg_phy)
4621 		regulator_disable(fep->reg_phy);
4622 failed_regulator:
4623 	clk_disable_unprepare(fep->clk_ahb);
4624 failed_clk_ahb:
4625 	clk_disable_unprepare(fep->clk_ipg);
4626 failed_clk_ipg:
4627 	fec_enet_clk_enable(ndev, false);
4628 failed_clk:
4629 failed_rgmii_delay:
4630 	if (of_phy_is_fixed_link(np))
4631 		of_phy_deregister_fixed_link(np);
4632 	of_node_put(phy_node);
4633 failed_stop_mode:
4634 failed_ipc_init:
4635 failed_phy:
4636 	dev_id--;
4637 failed_ioremap:
4638 	free_netdev(ndev);
4639 
4640 	return ret;
4641 }
4642 
4643 static void
4644 fec_drv_remove(struct platform_device *pdev)
4645 {
4646 	struct net_device *ndev = platform_get_drvdata(pdev);
4647 	struct fec_enet_private *fep = netdev_priv(ndev);
4648 	struct device_node *np = pdev->dev.of_node;
4649 	int ret;
4650 
4651 	ret = pm_runtime_get_sync(&pdev->dev);
4652 	if (ret < 0)
4653 		dev_err(&pdev->dev,
4654 			"Failed to resume device in remove callback (%pe)\n",
4655 			ERR_PTR(ret));
4656 
4657 	cancel_work_sync(&fep->tx_timeout_work);
4658 	fec_ptp_stop(pdev);
4659 	unregister_netdev(ndev);
4660 	fec_enet_mii_remove(fep);
4661 	if (fep->reg_phy)
4662 		regulator_disable(fep->reg_phy);
4663 
4664 	if (of_phy_is_fixed_link(np))
4665 		of_phy_deregister_fixed_link(np);
4666 	of_node_put(fep->phy_node);
4667 
4668 	/* After pm_runtime_get_sync() failed, the clks are still off, so skip
4669 	 * disabling them again.
4670 	 */
4671 	if (ret >= 0) {
4672 		clk_disable_unprepare(fep->clk_ahb);
4673 		clk_disable_unprepare(fep->clk_ipg);
4674 	}
4675 	pm_runtime_put_noidle(&pdev->dev);
4676 	pm_runtime_disable(&pdev->dev);
4677 
4678 	fec_enet_deinit(ndev);
4679 	free_netdev(ndev);
4680 }
4681 
4682 static int fec_suspend(struct device *dev)
4683 {
4684 	struct net_device *ndev = dev_get_drvdata(dev);
4685 	struct fec_enet_private *fep = netdev_priv(ndev);
4686 	int ret;
4687 
4688 	rtnl_lock();
4689 	if (netif_running(ndev)) {
4690 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4691 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4692 		phy_stop(ndev->phydev);
4693 		napi_disable(&fep->napi);
4694 		netif_tx_lock_bh(ndev);
4695 		netif_device_detach(ndev);
4696 		netif_tx_unlock_bh(ndev);
4697 		fec_stop(ndev);
4698 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4699 			fec_irqs_disable(ndev);
4700 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4701 		} else {
4702 			fec_irqs_disable_except_wakeup(ndev);
4703 			if (fep->wake_irq > 0) {
4704 				disable_irq(fep->wake_irq);
4705 				enable_irq_wake(fep->wake_irq);
4706 			}
4707 			fec_enet_stop_mode(fep, true);
4708 		}
4709 		/* It's safe to disable clocks since interrupts are masked */
4710 		fec_enet_clk_enable(ndev, false);
4711 
4712 		fep->rpm_active = !pm_runtime_status_suspended(dev);
4713 		if (fep->rpm_active) {
4714 			ret = pm_runtime_force_suspend(dev);
4715 			if (ret < 0) {
4716 				rtnl_unlock();
4717 				return ret;
4718 			}
4719 		}
4720 	}
4721 	rtnl_unlock();
4722 
4723 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4724 		regulator_disable(fep->reg_phy);
4725 
4726 	/* SOC supply clock to phy, when clock is disabled, phy link down
4727 	 * SOC control phy regulator, when regulator is disabled, phy link down
4728 	 */
4729 	if (fep->clk_enet_out || fep->reg_phy)
4730 		fep->link = 0;
4731 
4732 	return 0;
4733 }
4734 
4735 static int fec_resume(struct device *dev)
4736 {
4737 	struct net_device *ndev = dev_get_drvdata(dev);
4738 	struct fec_enet_private *fep = netdev_priv(ndev);
4739 	int ret;
4740 	int val;
4741 
4742 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4743 		ret = regulator_enable(fep->reg_phy);
4744 		if (ret)
4745 			return ret;
4746 	}
4747 
4748 	rtnl_lock();
4749 	if (netif_running(ndev)) {
4750 		if (fep->rpm_active)
4751 			pm_runtime_force_resume(dev);
4752 
4753 		ret = fec_enet_clk_enable(ndev, true);
4754 		if (ret) {
4755 			rtnl_unlock();
4756 			goto failed_clk;
4757 		}
4758 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4759 			fec_enet_stop_mode(fep, false);
4760 			if (fep->wake_irq) {
4761 				disable_irq_wake(fep->wake_irq);
4762 				enable_irq(fep->wake_irq);
4763 			}
4764 
4765 			val = readl(fep->hwp + FEC_ECNTRL);
4766 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4767 			writel(val, fep->hwp + FEC_ECNTRL);
4768 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4769 		} else {
4770 			pinctrl_pm_select_default_state(&fep->pdev->dev);
4771 		}
4772 		fec_restart(ndev);
4773 		netif_tx_lock_bh(ndev);
4774 		netif_device_attach(ndev);
4775 		netif_tx_unlock_bh(ndev);
4776 		napi_enable(&fep->napi);
4777 		phy_init_hw(ndev->phydev);
4778 		phy_start(ndev->phydev);
4779 	}
4780 	rtnl_unlock();
4781 
4782 	return 0;
4783 
4784 failed_clk:
4785 	if (fep->reg_phy)
4786 		regulator_disable(fep->reg_phy);
4787 	return ret;
4788 }
4789 
4790 static int fec_runtime_suspend(struct device *dev)
4791 {
4792 	struct net_device *ndev = dev_get_drvdata(dev);
4793 	struct fec_enet_private *fep = netdev_priv(ndev);
4794 
4795 	clk_disable_unprepare(fep->clk_ahb);
4796 	clk_disable_unprepare(fep->clk_ipg);
4797 
4798 	return 0;
4799 }
4800 
4801 static int fec_runtime_resume(struct device *dev)
4802 {
4803 	struct net_device *ndev = dev_get_drvdata(dev);
4804 	struct fec_enet_private *fep = netdev_priv(ndev);
4805 	int ret;
4806 
4807 	ret = clk_prepare_enable(fep->clk_ahb);
4808 	if (ret)
4809 		return ret;
4810 	ret = clk_prepare_enable(fep->clk_ipg);
4811 	if (ret)
4812 		goto failed_clk_ipg;
4813 
4814 	return 0;
4815 
4816 failed_clk_ipg:
4817 	clk_disable_unprepare(fep->clk_ahb);
4818 	return ret;
4819 }
4820 
4821 static const struct dev_pm_ops fec_pm_ops = {
4822 	SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4823 	RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4824 };
4825 
4826 static struct platform_driver fec_driver = {
4827 	.driver	= {
4828 		.name	= DRIVER_NAME,
4829 		.pm	= pm_ptr(&fec_pm_ops),
4830 		.of_match_table = fec_dt_ids,
4831 		.suppress_bind_attrs = true,
4832 	},
4833 	.id_table = fec_devtype,
4834 	.probe	= fec_probe,
4835 	.remove = fec_drv_remove,
4836 };
4837 
4838 module_platform_driver(fec_driver);
4839 
4840 MODULE_DESCRIPTION("NXP Fast Ethernet Controller (FEC) driver");
4841 MODULE_LICENSE("GPL");
4842