xref: /linux/drivers/gpu/drm/bridge/ti-sn65dsi86.c (revision c8ed9b5c02a5ceb3d8244f3862a7e64cf0b5648e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2018, The Linux Foundation. All rights reserved.
4  * datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf
5  */
6 
7 #include <linux/atomic.h>
8 #include <linux/auxiliary_bus.h>
9 #include <linux/bitfield.h>
10 #include <linux/bits.h>
11 #include <linux/clk.h>
12 #include <linux/debugfs.h>
13 #include <linux/gpio/consumer.h>
14 #include <linux/gpio/driver.h>
15 #include <linux/i2c.h>
16 #include <linux/iopoll.h>
17 #include <linux/module.h>
18 #include <linux/of_graph.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/pwm.h>
21 #include <linux/regmap.h>
22 #include <linux/regulator/consumer.h>
23 
24 #include <linux/unaligned.h>
25 
26 #include <drm/display/drm_dp_aux_bus.h>
27 #include <drm/display/drm_dp_helper.h>
28 #include <drm/drm_atomic.h>
29 #include <drm/drm_atomic_helper.h>
30 #include <drm/drm_bridge.h>
31 #include <drm/drm_bridge_connector.h>
32 #include <drm/drm_edid.h>
33 #include <drm/drm_mipi_dsi.h>
34 #include <drm/drm_of.h>
35 #include <drm/drm_print.h>
36 #include <drm/drm_probe_helper.h>
37 
38 #define SN_DEVICE_ID_REGS			0x00	/* up to 0x07 */
39 #define SN_DEVICE_REV_REG			0x08
40 #define SN_DPPLL_SRC_REG			0x0A
41 #define  DPPLL_CLK_SRC_DSICLK			BIT(0)
42 #define  REFCLK_FREQ_MASK			GENMASK(3, 1)
43 #define  REFCLK_FREQ(x)				((x) << 1)
44 #define  DPPLL_SRC_DP_PLL_LOCK			BIT(7)
45 #define SN_PLL_ENABLE_REG			0x0D
46 #define SN_DSI_LANES_REG			0x10
47 #define  CHA_DSI_LANES_MASK			GENMASK(4, 3)
48 #define  CHA_DSI_LANES(x)			((x) << 3)
49 #define SN_DSIA_CLK_FREQ_REG			0x12
50 #define SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG	0x20
51 #define SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG	0x24
52 #define SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG	0x2C
53 #define SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG	0x2D
54 #define  CHA_HSYNC_POLARITY			BIT(7)
55 #define SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG	0x30
56 #define SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG	0x31
57 #define  CHA_VSYNC_POLARITY			BIT(7)
58 #define SN_CHA_HORIZONTAL_BACK_PORCH_REG	0x34
59 #define SN_CHA_VERTICAL_BACK_PORCH_REG		0x36
60 #define SN_CHA_HORIZONTAL_FRONT_PORCH_REG	0x38
61 #define SN_CHA_VERTICAL_FRONT_PORCH_REG		0x3A
62 #define SN_LN_ASSIGN_REG			0x59
63 #define  LN_ASSIGN_WIDTH			2
64 #define SN_ENH_FRAME_REG			0x5A
65 #define  VSTREAM_ENABLE				BIT(3)
66 #define  LN_POLRS_OFFSET			4
67 #define  LN_POLRS_MASK				0xf0
68 #define SN_DATA_FORMAT_REG			0x5B
69 #define  BPP_18_RGB				BIT(0)
70 #define SN_HPD_DISABLE_REG			0x5C
71 #define  HPD_DISABLE				BIT(0)
72 #define  HPD_DEBOUNCED_STATE			BIT(4)
73 #define SN_GPIO_IO_REG				0x5E
74 #define  SN_GPIO_INPUT_SHIFT			4
75 #define  SN_GPIO_OUTPUT_SHIFT			0
76 #define SN_GPIO_CTRL_REG			0x5F
77 #define  SN_GPIO_MUX_INPUT			0
78 #define  SN_GPIO_MUX_OUTPUT			1
79 #define  SN_GPIO_MUX_SPECIAL			2
80 #define  SN_GPIO_MUX_MASK			0x3
81 #define SN_AUX_WDATA_REG(x)			(0x64 + (x))
82 #define SN_AUX_ADDR_19_16_REG			0x74
83 #define SN_AUX_ADDR_15_8_REG			0x75
84 #define SN_AUX_ADDR_7_0_REG			0x76
85 #define SN_AUX_ADDR_MASK			GENMASK(19, 0)
86 #define SN_AUX_LENGTH_REG			0x77
87 #define SN_AUX_CMD_REG				0x78
88 #define  AUX_CMD_SEND				BIT(0)
89 #define  AUX_CMD_REQ(x)				((x) << 4)
90 #define SN_AUX_RDATA_REG(x)			(0x79 + (x))
91 #define SN_SSC_CONFIG_REG			0x93
92 #define  DP_NUM_LANES_MASK			GENMASK(5, 4)
93 #define  DP_NUM_LANES(x)			((x) << 4)
94 #define SN_DATARATE_CONFIG_REG			0x94
95 #define  DP_DATARATE_MASK			GENMASK(7, 5)
96 #define  DP_DATARATE(x)				((x) << 5)
97 #define SN_TRAINING_SETTING_REG			0x95
98 #define  SCRAMBLE_DISABLE			BIT(4)
99 #define SN_ML_TX_MODE_REG			0x96
100 #define  ML_TX_MAIN_LINK_OFF			0
101 #define  ML_TX_NORMAL_MODE			BIT(0)
102 #define SN_PWM_PRE_DIV_REG			0xA0
103 #define SN_BACKLIGHT_SCALE_REG			0xA1
104 #define  BACKLIGHT_SCALE_MAX			0xFFFF
105 #define SN_BACKLIGHT_REG			0xA3
106 #define SN_PWM_EN_INV_REG			0xA5
107 #define  SN_PWM_INV_MASK			BIT(0)
108 #define  SN_PWM_EN_MASK				BIT(1)
109 #define SN_AUX_CMD_STATUS_REG			0xF4
110 #define  AUX_IRQ_STATUS_AUX_RPLY_TOUT		BIT(3)
111 #define  AUX_IRQ_STATUS_AUX_SHORT		BIT(5)
112 #define  AUX_IRQ_STATUS_NAT_I2C_FAIL		BIT(6)
113 
114 #define MIN_DSI_CLK_FREQ_MHZ	40
115 
116 /* fudge factor required to account for 8b/10b encoding */
117 #define DP_CLK_FUDGE_NUM	10
118 #define DP_CLK_FUDGE_DEN	8
119 
120 /* Matches DP_AUX_MAX_PAYLOAD_BYTES (for now) */
121 #define SN_AUX_MAX_PAYLOAD_BYTES	16
122 
123 #define SN_REGULATOR_SUPPLY_NUM		4
124 
125 #define SN_MAX_DP_LANES			4
126 #define SN_NUM_GPIOS			4
127 #define SN_GPIO_PHYSICAL_OFFSET		1
128 
129 #define SN_LINK_TRAINING_TRIES		10
130 
131 #define SN_PWM_GPIO_IDX			3 /* 4th GPIO */
132 
133 /**
134  * struct ti_sn65dsi86 - Platform data for ti-sn65dsi86 driver.
135  * @bridge_aux:   AUX-bus sub device for MIPI-to-eDP bridge functionality.
136  * @gpio_aux:     AUX-bus sub device for GPIO controller functionality.
137  * @aux_aux:      AUX-bus sub device for eDP AUX channel functionality.
138  * @pwm_aux:      AUX-bus sub device for PWM controller functionality.
139  *
140  * @dev:          Pointer to the top level (i2c) device.
141  * @regmap:       Regmap for accessing i2c.
142  * @aux:          Our aux channel.
143  * @bridge:       Our bridge.
144  * @connector:    Our connector.
145  * @host_node:    Remote DSI node.
146  * @dsi:          Our MIPI DSI source.
147  * @refclk:       Our reference clock.
148  * @next_bridge:  The bridge on the eDP side.
149  * @enable_gpio:  The GPIO we toggle to enable the bridge.
150  * @supplies:     Data for bulk enabling/disabling our regulators.
151  * @dp_lanes:     Count of dp_lanes we're using.
152  * @ln_assign:    Value to program to the LN_ASSIGN register.
153  * @ln_polrs:     Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG.
154  * @comms_enabled: If true then communication over the aux channel is enabled.
155  * @comms_mutex:   Protects modification of comms_enabled.
156  *
157  * @gchip:        If we expose our GPIOs, this is used.
158  * @gchip_output: A cache of whether we've set GPIOs to output.  This
159  *                serves double-duty of keeping track of the direction and
160  *                also keeping track of whether we've incremented the
161  *                pm_runtime reference count for this pin, which we do
162  *                whenever a pin is configured as an output.  This is a
163  *                bitmap so we can do atomic ops on it without an extra
164  *                lock so concurrent users of our 4 GPIOs don't stomp on
165  *                each other's read-modify-write.
166  *
167  * @pchip:        pwm_chip if the PWM is exposed.
168  * @pwm_enabled:  Used to track if the PWM signal is currently enabled.
169  * @pwm_pin_busy: Track if GPIO4 is currently requested for GPIO or PWM.
170  * @pwm_refclk_freq: Cache for the reference clock input to the PWM.
171  */
172 struct ti_sn65dsi86 {
173 	struct auxiliary_device		*bridge_aux;
174 	struct auxiliary_device		*gpio_aux;
175 	struct auxiliary_device		*aux_aux;
176 	struct auxiliary_device		*pwm_aux;
177 
178 	struct device			*dev;
179 	struct regmap			*regmap;
180 	struct drm_dp_aux		aux;
181 	struct drm_bridge		bridge;
182 	struct drm_connector		*connector;
183 	struct device_node		*host_node;
184 	struct mipi_dsi_device		*dsi;
185 	struct clk			*refclk;
186 	struct drm_bridge		*next_bridge;
187 	struct gpio_desc		*enable_gpio;
188 	struct regulator_bulk_data	supplies[SN_REGULATOR_SUPPLY_NUM];
189 	int				dp_lanes;
190 	u8				ln_assign;
191 	u8				ln_polrs;
192 	bool				comms_enabled;
193 	struct mutex			comms_mutex;
194 
195 #if defined(CONFIG_OF_GPIO)
196 	struct gpio_chip		gchip;
197 	DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS);
198 #endif
199 #if IS_REACHABLE(CONFIG_PWM)
200 	struct pwm_chip			*pchip;
201 	bool				pwm_enabled;
202 	atomic_t			pwm_pin_busy;
203 #endif
204 	unsigned int			pwm_refclk_freq;
205 };
206 
207 static const struct regmap_range ti_sn65dsi86_volatile_ranges[] = {
208 	{ .range_min = 0, .range_max = 0xFF },
209 };
210 
211 static const struct regmap_access_table ti_sn_bridge_volatile_table = {
212 	.yes_ranges = ti_sn65dsi86_volatile_ranges,
213 	.n_yes_ranges = ARRAY_SIZE(ti_sn65dsi86_volatile_ranges),
214 };
215 
216 static const struct regmap_config ti_sn65dsi86_regmap_config = {
217 	.reg_bits = 8,
218 	.val_bits = 8,
219 	.volatile_table = &ti_sn_bridge_volatile_table,
220 	.cache_type = REGCACHE_NONE,
221 	.max_register = 0xFF,
222 };
223 
ti_sn65dsi86_read_u16(struct ti_sn65dsi86 * pdata,unsigned int reg,u16 * val)224 static int __maybe_unused ti_sn65dsi86_read_u16(struct ti_sn65dsi86 *pdata,
225 						unsigned int reg, u16 *val)
226 {
227 	u8 buf[2];
228 	int ret;
229 
230 	ret = regmap_bulk_read(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
231 	if (ret)
232 		return ret;
233 
234 	*val = buf[0] | (buf[1] << 8);
235 
236 	return 0;
237 }
238 
ti_sn65dsi86_write_u16(struct ti_sn65dsi86 * pdata,unsigned int reg,u16 val)239 static void ti_sn65dsi86_write_u16(struct ti_sn65dsi86 *pdata,
240 				   unsigned int reg, u16 val)
241 {
242 	u8 buf[2] = { val & 0xff, val >> 8 };
243 
244 	regmap_bulk_write(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
245 }
246 
247 static struct drm_display_mode *
get_new_adjusted_display_mode(struct drm_bridge * bridge,struct drm_atomic_state * state)248 get_new_adjusted_display_mode(struct drm_bridge *bridge,
249 			      struct drm_atomic_state *state)
250 {
251 	struct drm_connector *connector =
252 		drm_atomic_get_new_connector_for_encoder(state, bridge->encoder);
253 	struct drm_connector_state *conn_state =
254 		drm_atomic_get_new_connector_state(state, connector);
255 	struct drm_crtc_state *crtc_state =
256 		drm_atomic_get_new_crtc_state(state, conn_state->crtc);
257 
258 	return &crtc_state->adjusted_mode;
259 }
260 
ti_sn_bridge_get_dsi_freq(struct ti_sn65dsi86 * pdata,struct drm_atomic_state * state)261 static u32 ti_sn_bridge_get_dsi_freq(struct ti_sn65dsi86 *pdata,
262 				     struct drm_atomic_state *state)
263 {
264 	u32 bit_rate_khz, clk_freq_khz;
265 	struct drm_display_mode *mode =
266 		get_new_adjusted_display_mode(&pdata->bridge, state);
267 
268 	bit_rate_khz = mode->clock *
269 			mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
270 	clk_freq_khz = bit_rate_khz / (pdata->dsi->lanes * 2);
271 
272 	return clk_freq_khz;
273 }
274 
275 /* clk frequencies supported by bridge in Hz in case derived from REFCLK pin */
276 static const u32 ti_sn_bridge_refclk_lut[] = {
277 	12000000,
278 	19200000,
279 	26000000,
280 	27000000,
281 	38400000,
282 };
283 
284 /* clk frequencies supported by bridge in Hz in case derived from DACP/N pin */
285 static const u32 ti_sn_bridge_dsiclk_lut[] = {
286 	468000000,
287 	384000000,
288 	416000000,
289 	486000000,
290 	460800000,
291 };
292 
ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 * pdata,struct drm_atomic_state * state)293 static void ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 *pdata,
294 					 struct drm_atomic_state *state)
295 {
296 	int i;
297 	u32 refclk_rate;
298 	const u32 *refclk_lut;
299 	size_t refclk_lut_size;
300 
301 	if (pdata->refclk) {
302 		refclk_rate = clk_get_rate(pdata->refclk);
303 		refclk_lut = ti_sn_bridge_refclk_lut;
304 		refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_refclk_lut);
305 		clk_prepare_enable(pdata->refclk);
306 	} else {
307 		refclk_rate = ti_sn_bridge_get_dsi_freq(pdata, state) * 1000;
308 		refclk_lut = ti_sn_bridge_dsiclk_lut;
309 		refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_dsiclk_lut);
310 	}
311 
312 	/* for i equals to refclk_lut_size means default frequency */
313 	for (i = 0; i < refclk_lut_size; i++)
314 		if (refclk_lut[i] == refclk_rate)
315 			break;
316 
317 	/* avoid buffer overflow and "1" is the default rate in the datasheet. */
318 	if (i >= refclk_lut_size)
319 		i = 1;
320 
321 	regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK,
322 			   REFCLK_FREQ(i));
323 
324 	/*
325 	 * The PWM refclk is based on the value written to SN_DPPLL_SRC_REG,
326 	 * regardless of its actual sourcing.
327 	 */
328 	pdata->pwm_refclk_freq = ti_sn_bridge_refclk_lut[i];
329 }
330 
ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 * pdata,struct drm_atomic_state * state)331 static void ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 *pdata,
332 				      struct drm_atomic_state *state)
333 {
334 	mutex_lock(&pdata->comms_mutex);
335 
336 	/* configure bridge ref_clk */
337 	ti_sn_bridge_set_refclk_freq(pdata, state);
338 
339 	/*
340 	 * HPD on this bridge chip is a bit useless.  This is an eDP bridge
341 	 * so the HPD is an internal signal that's only there to signal that
342 	 * the panel is done powering up.  ...but the bridge chip debounces
343 	 * this signal by between 100 ms and 400 ms (depending on process,
344 	 * voltage, and temperate--I measured it at about 200 ms).  One
345 	 * particular panel asserted HPD 84 ms after it was powered on meaning
346 	 * that we saw HPD 284 ms after power on.  ...but the same panel said
347 	 * that instead of looking at HPD you could just hardcode a delay of
348 	 * 200 ms.  We'll assume that the panel driver will have the hardcoded
349 	 * delay in its prepare and always disable HPD.
350 	 *
351 	 * For DisplayPort bridge type, we need HPD. So we use the bridge type
352 	 * to conditionally disable HPD.
353 	 * NOTE: The bridge type is set in ti_sn_bridge_probe() but enable_comms()
354 	 * can be called before. So for DisplayPort, HPD will be enabled once
355 	 * bridge type is set. We are using bridge type instead of "no-hpd"
356 	 * property because it is not used properly in devicetree description
357 	 * and hence is unreliable.
358 	 */
359 
360 	if (pdata->bridge.type != DRM_MODE_CONNECTOR_DisplayPort)
361 		regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG, HPD_DISABLE,
362 				   HPD_DISABLE);
363 
364 	pdata->comms_enabled = true;
365 
366 	mutex_unlock(&pdata->comms_mutex);
367 }
368 
ti_sn65dsi86_disable_comms(struct ti_sn65dsi86 * pdata)369 static void ti_sn65dsi86_disable_comms(struct ti_sn65dsi86 *pdata)
370 {
371 	mutex_lock(&pdata->comms_mutex);
372 
373 	pdata->comms_enabled = false;
374 	clk_disable_unprepare(pdata->refclk);
375 
376 	mutex_unlock(&pdata->comms_mutex);
377 }
378 
ti_sn65dsi86_resume(struct device * dev)379 static int __maybe_unused ti_sn65dsi86_resume(struct device *dev)
380 {
381 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
382 	int ret;
383 
384 	ret = regulator_bulk_enable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
385 	if (ret) {
386 		DRM_ERROR("failed to enable supplies %d\n", ret);
387 		return ret;
388 	}
389 
390 	/* td2: min 100 us after regulators before enabling the GPIO */
391 	usleep_range(100, 110);
392 
393 	gpiod_set_value_cansleep(pdata->enable_gpio, 1);
394 
395 	/*
396 	 * After EN is deasserted and an external clock is detected, the bridge
397 	 * will sample GPIO3:1 to determine its frequency. The driver will
398 	 * overwrite this setting in ti_sn_bridge_set_refclk_freq(). But this is
399 	 * racy. Thus we have to wait a couple of us. According to the datasheet
400 	 * the GPIO lines has to be stable at least 5 us (td5) but it seems that
401 	 * is not enough and the refclk frequency value is still lost or
402 	 * overwritten by the bridge itself. Waiting for 20us seems to work.
403 	 */
404 	usleep_range(20, 30);
405 
406 	/*
407 	 * If we have a reference clock we can enable communication w/ the
408 	 * panel (including the aux channel) w/out any need for an input clock
409 	 * so we can do it in resume which lets us read the EDID before
410 	 * pre_enable(). Without a reference clock we need the MIPI reference
411 	 * clock so reading early doesn't work.
412 	 */
413 	if (pdata->refclk)
414 		ti_sn65dsi86_enable_comms(pdata, NULL);
415 
416 	return ret;
417 }
418 
ti_sn65dsi86_suspend(struct device * dev)419 static int __maybe_unused ti_sn65dsi86_suspend(struct device *dev)
420 {
421 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
422 	int ret;
423 
424 	if (pdata->refclk)
425 		ti_sn65dsi86_disable_comms(pdata);
426 
427 	gpiod_set_value_cansleep(pdata->enable_gpio, 0);
428 
429 	ret = regulator_bulk_disable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
430 	if (ret)
431 		DRM_ERROR("failed to disable supplies %d\n", ret);
432 
433 	return ret;
434 }
435 
436 static const struct dev_pm_ops ti_sn65dsi86_pm_ops = {
437 	SET_RUNTIME_PM_OPS(ti_sn65dsi86_suspend, ti_sn65dsi86_resume, NULL)
438 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
439 				pm_runtime_force_resume)
440 };
441 
status_show(struct seq_file * s,void * data)442 static int status_show(struct seq_file *s, void *data)
443 {
444 	struct ti_sn65dsi86 *pdata = s->private;
445 	unsigned int reg, val;
446 
447 	seq_puts(s, "STATUS REGISTERS:\n");
448 
449 	pm_runtime_get_sync(pdata->dev);
450 
451 	/* IRQ Status Registers, see Table 31 in datasheet */
452 	for (reg = 0xf0; reg <= 0xf8; reg++) {
453 		regmap_read(pdata->regmap, reg, &val);
454 		seq_printf(s, "[0x%02x] = 0x%08x\n", reg, val);
455 	}
456 
457 	pm_runtime_put_autosuspend(pdata->dev);
458 
459 	return 0;
460 }
461 DEFINE_SHOW_ATTRIBUTE(status);
462 
463 /* -----------------------------------------------------------------------------
464  * Auxiliary Devices (*not* AUX)
465  */
466 
ti_sn65dsi86_add_aux_device(struct ti_sn65dsi86 * pdata,struct auxiliary_device ** aux_out,const char * name)467 static int ti_sn65dsi86_add_aux_device(struct ti_sn65dsi86 *pdata,
468 				       struct auxiliary_device **aux_out,
469 				       const char *name)
470 {
471 	struct device *dev = pdata->dev;
472 	const struct i2c_client *client = to_i2c_client(dev);
473 	struct auxiliary_device *aux;
474 	int id;
475 
476 	id = (client->adapter->nr << 10) | client->addr;
477 	aux = __devm_auxiliary_device_create(dev, KBUILD_MODNAME, name,
478 					     NULL, id);
479 	if (!aux)
480 		return -ENODEV;
481 
482 	*aux_out = aux;
483 	return 0;
484 }
485 
486 /* -----------------------------------------------------------------------------
487  * AUX Adapter
488  */
489 
aux_to_ti_sn65dsi86(struct drm_dp_aux * aux)490 static struct ti_sn65dsi86 *aux_to_ti_sn65dsi86(struct drm_dp_aux *aux)
491 {
492 	return container_of(aux, struct ti_sn65dsi86, aux);
493 }
494 
ti_sn_aux_transfer(struct drm_dp_aux * aux,struct drm_dp_aux_msg * msg)495 static ssize_t ti_sn_aux_transfer(struct drm_dp_aux *aux,
496 				  struct drm_dp_aux_msg *msg)
497 {
498 	struct ti_sn65dsi86 *pdata = aux_to_ti_sn65dsi86(aux);
499 	u32 request = msg->request & ~(DP_AUX_I2C_MOT | DP_AUX_I2C_WRITE_STATUS_UPDATE);
500 	u32 request_val = AUX_CMD_REQ(msg->request);
501 	u8 *buf = msg->buffer;
502 	unsigned int len = msg->size;
503 	unsigned int short_len;
504 	unsigned int val;
505 	int ret;
506 	u8 addr_len[SN_AUX_LENGTH_REG + 1 - SN_AUX_ADDR_19_16_REG];
507 
508 	if (len > SN_AUX_MAX_PAYLOAD_BYTES)
509 		return -EINVAL;
510 
511 	pm_runtime_get_sync(pdata->dev);
512 	mutex_lock(&pdata->comms_mutex);
513 
514 	/*
515 	 * If someone tries to do a DDC over AUX transaction before pre_enable()
516 	 * on a device without a dedicated reference clock then we just can't
517 	 * do it. Fail right away. This prevents non-refclk users from reading
518 	 * the EDID before enabling the panel but such is life.
519 	 */
520 	if (!pdata->comms_enabled) {
521 		ret = -EIO;
522 		goto exit;
523 	}
524 
525 	switch (request) {
526 	case DP_AUX_NATIVE_WRITE:
527 	case DP_AUX_I2C_WRITE:
528 	case DP_AUX_NATIVE_READ:
529 	case DP_AUX_I2C_READ:
530 		regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val);
531 		/* Assume it's good */
532 		msg->reply = 0;
533 		break;
534 	default:
535 		ret = -EINVAL;
536 		goto exit;
537 	}
538 
539 	BUILD_BUG_ON(sizeof(addr_len) != sizeof(__be32));
540 	put_unaligned_be32((msg->address & SN_AUX_ADDR_MASK) << 8 | len,
541 			   addr_len);
542 	regmap_bulk_write(pdata->regmap, SN_AUX_ADDR_19_16_REG, addr_len,
543 			  ARRAY_SIZE(addr_len));
544 
545 	if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE)
546 		regmap_bulk_write(pdata->regmap, SN_AUX_WDATA_REG(0), buf, len);
547 
548 	/* Clear old status bits before start so we don't get confused */
549 	regmap_write(pdata->regmap, SN_AUX_CMD_STATUS_REG,
550 		     AUX_IRQ_STATUS_NAT_I2C_FAIL |
551 		     AUX_IRQ_STATUS_AUX_RPLY_TOUT |
552 		     AUX_IRQ_STATUS_AUX_SHORT);
553 
554 	regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val | AUX_CMD_SEND);
555 
556 	/* Zero delay loop because i2c transactions are slow already */
557 	ret = regmap_read_poll_timeout(pdata->regmap, SN_AUX_CMD_REG, val,
558 				       !(val & AUX_CMD_SEND), 0, 50 * 1000);
559 	if (ret)
560 		goto exit;
561 
562 	ret = regmap_read(pdata->regmap, SN_AUX_CMD_STATUS_REG, &val);
563 	if (ret)
564 		goto exit;
565 
566 	if (val & AUX_IRQ_STATUS_AUX_RPLY_TOUT) {
567 		/*
568 		 * The hardware tried the message seven times per the DP spec
569 		 * but it hit a timeout. We ignore defers here because they're
570 		 * handled in hardware.
571 		 */
572 		ret = -ETIMEDOUT;
573 		goto exit;
574 	}
575 
576 	if (val & AUX_IRQ_STATUS_AUX_SHORT) {
577 		ret = regmap_read(pdata->regmap, SN_AUX_LENGTH_REG, &short_len);
578 		len = min(len, short_len);
579 		if (ret)
580 			goto exit;
581 	} else if (val & AUX_IRQ_STATUS_NAT_I2C_FAIL) {
582 		switch (request) {
583 		case DP_AUX_I2C_WRITE:
584 		case DP_AUX_I2C_READ:
585 			msg->reply |= DP_AUX_I2C_REPLY_NACK;
586 			break;
587 		case DP_AUX_NATIVE_READ:
588 		case DP_AUX_NATIVE_WRITE:
589 			msg->reply |= DP_AUX_NATIVE_REPLY_NACK;
590 			break;
591 		}
592 		len = 0;
593 		goto exit;
594 	}
595 
596 	if (request != DP_AUX_NATIVE_WRITE && request != DP_AUX_I2C_WRITE && len != 0)
597 		ret = regmap_bulk_read(pdata->regmap, SN_AUX_RDATA_REG(0), buf, len);
598 
599 exit:
600 	mutex_unlock(&pdata->comms_mutex);
601 	pm_runtime_mark_last_busy(pdata->dev);
602 	pm_runtime_put_autosuspend(pdata->dev);
603 
604 	if (ret)
605 		return ret;
606 	return len;
607 }
608 
ti_sn_aux_wait_hpd_asserted(struct drm_dp_aux * aux,unsigned long wait_us)609 static int ti_sn_aux_wait_hpd_asserted(struct drm_dp_aux *aux, unsigned long wait_us)
610 {
611 	/*
612 	 * The HPD in this chip is a bit useless (See comment in
613 	 * ti_sn65dsi86_enable_comms) so if our driver is expected to wait
614 	 * for HPD, we just assume it's asserted after the wait_us delay.
615 	 *
616 	 * In case we are asked to wait forever (wait_us=0) take conservative
617 	 * 500ms delay.
618 	 */
619 	if (wait_us == 0)
620 		wait_us = 500000;
621 
622 	usleep_range(wait_us, wait_us + 1000);
623 
624 	return 0;
625 }
626 
ti_sn_aux_probe(struct auxiliary_device * adev,const struct auxiliary_device_id * id)627 static int ti_sn_aux_probe(struct auxiliary_device *adev,
628 			   const struct auxiliary_device_id *id)
629 {
630 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
631 	int ret;
632 
633 	pdata->aux.name = "ti-sn65dsi86-aux";
634 	pdata->aux.dev = &adev->dev;
635 	pdata->aux.transfer = ti_sn_aux_transfer;
636 	pdata->aux.wait_hpd_asserted = ti_sn_aux_wait_hpd_asserted;
637 	drm_dp_aux_init(&pdata->aux);
638 
639 	ret = devm_of_dp_aux_populate_ep_devices(&pdata->aux);
640 	if (ret)
641 		return ret;
642 
643 	/*
644 	 * The eDP to MIPI bridge parts don't work until the AUX channel is
645 	 * setup so we don't add it in the main driver probe, we add it now.
646 	 */
647 	return ti_sn65dsi86_add_aux_device(pdata, &pdata->bridge_aux, "bridge");
648 }
649 
650 static const struct auxiliary_device_id ti_sn_aux_id_table[] = {
651 	{ .name = "ti_sn65dsi86.aux", },
652 	{},
653 };
654 
655 static struct auxiliary_driver ti_sn_aux_driver = {
656 	.name = "aux",
657 	.probe = ti_sn_aux_probe,
658 	.id_table = ti_sn_aux_id_table,
659 };
660 
661 /*------------------------------------------------------------------------------
662  * DRM Bridge
663  */
664 
bridge_to_ti_sn65dsi86(struct drm_bridge * bridge)665 static struct ti_sn65dsi86 *bridge_to_ti_sn65dsi86(struct drm_bridge *bridge)
666 {
667 	return container_of(bridge, struct ti_sn65dsi86, bridge);
668 }
669 
ti_sn_attach_host(struct auxiliary_device * adev,struct ti_sn65dsi86 * pdata)670 static int ti_sn_attach_host(struct auxiliary_device *adev, struct ti_sn65dsi86 *pdata)
671 {
672 	int val;
673 	struct mipi_dsi_host *host;
674 	struct mipi_dsi_device *dsi;
675 	struct device *dev = pdata->dev;
676 	const struct mipi_dsi_device_info info = { .type = "ti_sn_bridge",
677 						   .channel = 0,
678 						   .node = NULL,
679 	};
680 
681 	host = of_find_mipi_dsi_host_by_node(pdata->host_node);
682 	if (!host)
683 		return -EPROBE_DEFER;
684 
685 	dsi = devm_mipi_dsi_device_register_full(&adev->dev, host, &info);
686 	if (IS_ERR(dsi))
687 		return PTR_ERR(dsi);
688 
689 	/* TODO: setting to 4 MIPI lanes always for now */
690 	dsi->lanes = 4;
691 	dsi->format = MIPI_DSI_FMT_RGB888;
692 	dsi->mode_flags = MIPI_DSI_MODE_VIDEO;
693 
694 	/* check if continuous dsi clock is required or not */
695 	pm_runtime_get_sync(dev);
696 	regmap_read(pdata->regmap, SN_DPPLL_SRC_REG, &val);
697 	pm_runtime_put_autosuspend(dev);
698 	if (!(val & DPPLL_CLK_SRC_DSICLK))
699 		dsi->mode_flags |= MIPI_DSI_CLOCK_NON_CONTINUOUS;
700 
701 	pdata->dsi = dsi;
702 
703 	return devm_mipi_dsi_attach(&adev->dev, dsi);
704 }
705 
ti_sn_bridge_attach(struct drm_bridge * bridge,struct drm_encoder * encoder,enum drm_bridge_attach_flags flags)706 static int ti_sn_bridge_attach(struct drm_bridge *bridge,
707 			       struct drm_encoder *encoder,
708 			       enum drm_bridge_attach_flags flags)
709 {
710 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
711 	int ret;
712 
713 	pdata->aux.drm_dev = bridge->dev;
714 	ret = drm_dp_aux_register(&pdata->aux);
715 	if (ret < 0) {
716 		drm_err(bridge->dev, "Failed to register DP AUX channel: %d\n", ret);
717 		return ret;
718 	}
719 
720 	/*
721 	 * Attach the next bridge.
722 	 * We never want the next bridge to *also* create a connector.
723 	 */
724 	ret = drm_bridge_attach(encoder, pdata->next_bridge,
725 				&pdata->bridge, flags | DRM_BRIDGE_ATTACH_NO_CONNECTOR);
726 	if (ret < 0)
727 		goto err_initted_aux;
728 
729 	if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)
730 		return 0;
731 
732 	pdata->connector = drm_bridge_connector_init(pdata->bridge.dev,
733 						     pdata->bridge.encoder);
734 	if (IS_ERR(pdata->connector)) {
735 		ret = PTR_ERR(pdata->connector);
736 		goto err_initted_aux;
737 	}
738 
739 	drm_connector_attach_encoder(pdata->connector, pdata->bridge.encoder);
740 
741 	return 0;
742 
743 err_initted_aux:
744 	drm_dp_aux_unregister(&pdata->aux);
745 	return ret;
746 }
747 
ti_sn_bridge_detach(struct drm_bridge * bridge)748 static void ti_sn_bridge_detach(struct drm_bridge *bridge)
749 {
750 	drm_dp_aux_unregister(&bridge_to_ti_sn65dsi86(bridge)->aux);
751 }
752 
753 static enum drm_mode_status
ti_sn_bridge_mode_valid(struct drm_bridge * bridge,const struct drm_display_info * info,const struct drm_display_mode * mode)754 ti_sn_bridge_mode_valid(struct drm_bridge *bridge,
755 			const struct drm_display_info *info,
756 			const struct drm_display_mode *mode)
757 {
758 	/* maximum supported resolution is 4K at 60 fps */
759 	if (mode->clock > 594000)
760 		return MODE_CLOCK_HIGH;
761 
762 	/*
763 	 * The front and back porch registers are 8 bits, and pulse width
764 	 * registers are 15 bits, so reject any modes with larger periods.
765 	 */
766 
767 	if ((mode->hsync_start - mode->hdisplay) > 0xff)
768 		return MODE_HBLANK_WIDE;
769 
770 	if ((mode->vsync_start - mode->vdisplay) > 0xff)
771 		return MODE_VBLANK_WIDE;
772 
773 	if ((mode->hsync_end - mode->hsync_start) > 0x7fff)
774 		return MODE_HSYNC_WIDE;
775 
776 	if ((mode->vsync_end - mode->vsync_start) > 0x7fff)
777 		return MODE_VSYNC_WIDE;
778 
779 	if ((mode->htotal - mode->hsync_end) > 0xff)
780 		return MODE_HBLANK_WIDE;
781 
782 	if ((mode->vtotal - mode->vsync_end) > 0xff)
783 		return MODE_VBLANK_WIDE;
784 
785 	return MODE_OK;
786 }
787 
ti_sn_bridge_atomic_disable(struct drm_bridge * bridge,struct drm_atomic_state * state)788 static void ti_sn_bridge_atomic_disable(struct drm_bridge *bridge,
789 					struct drm_atomic_state *state)
790 {
791 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
792 
793 	/* disable video stream */
794 	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 0);
795 }
796 
ti_sn_bridge_set_dsi_rate(struct ti_sn65dsi86 * pdata,struct drm_atomic_state * state)797 static void ti_sn_bridge_set_dsi_rate(struct ti_sn65dsi86 *pdata,
798 				      struct drm_atomic_state *state)
799 {
800 	unsigned int bit_rate_mhz, clk_freq_mhz;
801 	unsigned int val;
802 	struct drm_display_mode *mode =
803 		get_new_adjusted_display_mode(&pdata->bridge, state);
804 
805 	/* set DSIA clk frequency */
806 	bit_rate_mhz = (mode->clock / 1000) *
807 			mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
808 	clk_freq_mhz = bit_rate_mhz / (pdata->dsi->lanes * 2);
809 
810 	/* for each increment in val, frequency increases by 5MHz */
811 	val = (MIN_DSI_CLK_FREQ_MHZ / 5) +
812 		(((clk_freq_mhz - MIN_DSI_CLK_FREQ_MHZ) / 5) & 0xFF);
813 	regmap_write(pdata->regmap, SN_DSIA_CLK_FREQ_REG, val);
814 }
815 
ti_sn_bridge_get_bpp(struct drm_connector * connector)816 static unsigned int ti_sn_bridge_get_bpp(struct drm_connector *connector)
817 {
818 	if (connector->display_info.bpc <= 6)
819 		return 18;
820 	else
821 		return 24;
822 }
823 
824 /*
825  * LUT index corresponds to register value and
826  * LUT values corresponds to dp data rate supported
827  * by the bridge in Mbps unit.
828  */
829 static const unsigned int ti_sn_bridge_dp_rate_lut[] = {
830 	0, 1620, 2160, 2430, 2700, 3240, 4320, 5400
831 };
832 
ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn65dsi86 * pdata,struct drm_atomic_state * state,unsigned int bpp)833 static int ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn65dsi86 *pdata,
834 					     struct drm_atomic_state *state,
835 					     unsigned int bpp)
836 {
837 	unsigned int bit_rate_khz, dp_rate_mhz;
838 	unsigned int i;
839 	struct drm_display_mode *mode =
840 		get_new_adjusted_display_mode(&pdata->bridge, state);
841 
842 	/* Calculate minimum bit rate based on our pixel clock. */
843 	bit_rate_khz = mode->clock * bpp;
844 
845 	/* Calculate minimum DP data rate, taking 80% as per DP spec */
846 	dp_rate_mhz = DIV_ROUND_UP(bit_rate_khz * DP_CLK_FUDGE_NUM,
847 				   1000 * pdata->dp_lanes * DP_CLK_FUDGE_DEN);
848 
849 	for (i = 1; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut) - 1; i++)
850 		if (ti_sn_bridge_dp_rate_lut[i] >= dp_rate_mhz)
851 			break;
852 
853 	return i;
854 }
855 
ti_sn_bridge_read_valid_rates(struct ti_sn65dsi86 * pdata)856 static unsigned int ti_sn_bridge_read_valid_rates(struct ti_sn65dsi86 *pdata)
857 {
858 	unsigned int valid_rates = 0;
859 	unsigned int rate_per_200khz;
860 	unsigned int rate_mhz;
861 	u8 dpcd_val;
862 	int ret;
863 	int i, j;
864 
865 	ret = drm_dp_dpcd_readb(&pdata->aux, DP_EDP_DPCD_REV, &dpcd_val);
866 	if (ret != 1) {
867 		DRM_DEV_ERROR(pdata->dev,
868 			      "Can't read eDP rev (%d), assuming 1.1\n", ret);
869 		dpcd_val = DP_EDP_11;
870 	}
871 
872 	if (dpcd_val >= DP_EDP_14) {
873 		/* eDP 1.4 devices must provide a custom table */
874 		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
875 
876 		ret = drm_dp_dpcd_read(&pdata->aux, DP_SUPPORTED_LINK_RATES,
877 				       sink_rates, sizeof(sink_rates));
878 
879 		if (ret != sizeof(sink_rates)) {
880 			DRM_DEV_ERROR(pdata->dev,
881 				"Can't read supported rate table (%d)\n", ret);
882 
883 			/* By zeroing we'll fall back to DP_MAX_LINK_RATE. */
884 			memset(sink_rates, 0, sizeof(sink_rates));
885 		}
886 
887 		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
888 			rate_per_200khz = le16_to_cpu(sink_rates[i]);
889 
890 			if (!rate_per_200khz)
891 				break;
892 
893 			rate_mhz = rate_per_200khz * 200 / 1000;
894 			for (j = 0;
895 			     j < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
896 			     j++) {
897 				if (ti_sn_bridge_dp_rate_lut[j] == rate_mhz)
898 					valid_rates |= BIT(j);
899 			}
900 		}
901 
902 		for (i = 0; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); i++) {
903 			if (valid_rates & BIT(i))
904 				return valid_rates;
905 		}
906 		DRM_DEV_ERROR(pdata->dev,
907 			      "No matching eDP rates in table; falling back\n");
908 	}
909 
910 	/* On older versions best we can do is use DP_MAX_LINK_RATE */
911 	ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LINK_RATE, &dpcd_val);
912 	if (ret != 1) {
913 		DRM_DEV_ERROR(pdata->dev,
914 			      "Can't read max rate (%d); assuming 5.4 GHz\n",
915 			      ret);
916 		dpcd_val = DP_LINK_BW_5_4;
917 	}
918 
919 	switch (dpcd_val) {
920 	default:
921 		DRM_DEV_ERROR(pdata->dev,
922 			      "Unexpected max rate (%#x); assuming 5.4 GHz\n",
923 			      (int)dpcd_val);
924 		fallthrough;
925 	case DP_LINK_BW_5_4:
926 		valid_rates |= BIT(7);
927 		fallthrough;
928 	case DP_LINK_BW_2_7:
929 		valid_rates |= BIT(4);
930 		fallthrough;
931 	case DP_LINK_BW_1_62:
932 		valid_rates |= BIT(1);
933 		break;
934 	}
935 
936 	return valid_rates;
937 }
938 
ti_sn_bridge_set_video_timings(struct ti_sn65dsi86 * pdata,struct drm_atomic_state * state)939 static void ti_sn_bridge_set_video_timings(struct ti_sn65dsi86 *pdata,
940 					   struct drm_atomic_state *state)
941 {
942 	struct drm_display_mode *mode =
943 		get_new_adjusted_display_mode(&pdata->bridge, state);
944 	u8 hsync_polarity = 0, vsync_polarity = 0;
945 
946 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
947 		hsync_polarity = CHA_HSYNC_POLARITY;
948 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
949 		vsync_polarity = CHA_VSYNC_POLARITY;
950 
951 	ti_sn65dsi86_write_u16(pdata, SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG,
952 			       mode->hdisplay);
953 	ti_sn65dsi86_write_u16(pdata, SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG,
954 			       mode->vdisplay);
955 	regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG,
956 		     (mode->hsync_end - mode->hsync_start) & 0xFF);
957 	regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG,
958 		     (((mode->hsync_end - mode->hsync_start) >> 8) & 0x7F) |
959 		     hsync_polarity);
960 	regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG,
961 		     (mode->vsync_end - mode->vsync_start) & 0xFF);
962 	regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG,
963 		     (((mode->vsync_end - mode->vsync_start) >> 8) & 0x7F) |
964 		     vsync_polarity);
965 
966 	regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_BACK_PORCH_REG,
967 		     (mode->htotal - mode->hsync_end) & 0xFF);
968 	regmap_write(pdata->regmap, SN_CHA_VERTICAL_BACK_PORCH_REG,
969 		     (mode->vtotal - mode->vsync_end) & 0xFF);
970 
971 	regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_FRONT_PORCH_REG,
972 		     (mode->hsync_start - mode->hdisplay) & 0xFF);
973 	regmap_write(pdata->regmap, SN_CHA_VERTICAL_FRONT_PORCH_REG,
974 		     (mode->vsync_start - mode->vdisplay) & 0xFF);
975 
976 	usleep_range(10000, 10500); /* 10ms delay recommended by spec */
977 }
978 
ti_sn_get_max_lanes(struct ti_sn65dsi86 * pdata)979 static unsigned int ti_sn_get_max_lanes(struct ti_sn65dsi86 *pdata)
980 {
981 	u8 data;
982 	int ret;
983 
984 	ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LANE_COUNT, &data);
985 	if (ret != 1) {
986 		DRM_DEV_ERROR(pdata->dev,
987 			      "Can't read lane count (%d); assuming 4\n", ret);
988 		return 4;
989 	}
990 
991 	return data & DP_LANE_COUNT_MASK;
992 }
993 
ti_sn_link_training(struct ti_sn65dsi86 * pdata,int dp_rate_idx,const char ** last_err_str)994 static int ti_sn_link_training(struct ti_sn65dsi86 *pdata, int dp_rate_idx,
995 			       const char **last_err_str)
996 {
997 	unsigned int val;
998 	int ret;
999 	int i;
1000 
1001 	/* set dp clk frequency value */
1002 	regmap_update_bits(pdata->regmap, SN_DATARATE_CONFIG_REG,
1003 			   DP_DATARATE_MASK, DP_DATARATE(dp_rate_idx));
1004 
1005 	/* enable DP PLL */
1006 	regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 1);
1007 
1008 	ret = regmap_read_poll_timeout(pdata->regmap, SN_DPPLL_SRC_REG, val,
1009 				       val & DPPLL_SRC_DP_PLL_LOCK, 1000,
1010 				       50 * 1000);
1011 	if (ret) {
1012 		*last_err_str = "DP_PLL_LOCK polling failed";
1013 		goto exit;
1014 	}
1015 
1016 	/*
1017 	 * We'll try to link train several times.  As part of link training
1018 	 * the bridge chip will write DP_SET_POWER_D0 to DP_SET_POWER.  If
1019 	 * the panel isn't ready quite it might respond NAK here which means
1020 	 * we need to try again.
1021 	 */
1022 	for (i = 0; i < SN_LINK_TRAINING_TRIES; i++) {
1023 		/* Semi auto link training mode */
1024 		regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0x0A);
1025 		ret = regmap_read_poll_timeout(pdata->regmap, SN_ML_TX_MODE_REG, val,
1026 					       val == ML_TX_MAIN_LINK_OFF ||
1027 					       val == ML_TX_NORMAL_MODE, 1000,
1028 					       500 * 1000);
1029 		if (ret) {
1030 			*last_err_str = "Training complete polling failed";
1031 		} else if (val == ML_TX_MAIN_LINK_OFF) {
1032 			*last_err_str = "Link training failed, link is off";
1033 			ret = -EIO;
1034 			continue;
1035 		}
1036 
1037 		break;
1038 	}
1039 
1040 	/* If we saw quite a few retries, add a note about it */
1041 	if (!ret && i > SN_LINK_TRAINING_TRIES / 2)
1042 		DRM_DEV_INFO(pdata->dev, "Link training needed %d retries\n", i);
1043 
1044 exit:
1045 	/* Disable the PLL if we failed */
1046 	if (ret)
1047 		regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1048 
1049 	return ret;
1050 }
1051 
ti_sn_bridge_atomic_enable(struct drm_bridge * bridge,struct drm_atomic_state * state)1052 static void ti_sn_bridge_atomic_enable(struct drm_bridge *bridge,
1053 				       struct drm_atomic_state *state)
1054 {
1055 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1056 	struct drm_connector *connector;
1057 	const char *last_err_str = "No supported DP rate";
1058 	unsigned int valid_rates;
1059 	int dp_rate_idx;
1060 	unsigned int val;
1061 	int ret = -EINVAL;
1062 	int max_dp_lanes;
1063 	unsigned int bpp;
1064 
1065 	connector = drm_atomic_get_new_connector_for_encoder(state,
1066 							     bridge->encoder);
1067 	if (!connector) {
1068 		dev_err_ratelimited(pdata->dev, "Could not get the connector\n");
1069 		return;
1070 	}
1071 
1072 	max_dp_lanes = ti_sn_get_max_lanes(pdata);
1073 	pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes);
1074 
1075 	/* DSI_A lane config */
1076 	val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes);
1077 	regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG,
1078 			   CHA_DSI_LANES_MASK, val);
1079 
1080 	regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign);
1081 	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK,
1082 			   pdata->ln_polrs << LN_POLRS_OFFSET);
1083 
1084 	/* set dsi clk frequency value */
1085 	ti_sn_bridge_set_dsi_rate(pdata, state);
1086 
1087 	/*
1088 	 * The SN65DSI86 only supports ASSR Display Authentication method and
1089 	 * this method is enabled for eDP panels. An eDP panel must support this
1090 	 * authentication method. We need to enable this method in the eDP panel
1091 	 * at DisplayPort address 0x0010A prior to link training.
1092 	 *
1093 	 * As only ASSR is supported by SN65DSI86, for full DisplayPort displays
1094 	 * we need to disable the scrambler.
1095 	 */
1096 	if (pdata->bridge.type == DRM_MODE_CONNECTOR_eDP) {
1097 		drm_dp_dpcd_writeb(&pdata->aux, DP_EDP_CONFIGURATION_SET,
1098 				   DP_ALTERNATE_SCRAMBLER_RESET_ENABLE);
1099 
1100 		regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG,
1101 				   SCRAMBLE_DISABLE, 0);
1102 	} else {
1103 		regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG,
1104 				   SCRAMBLE_DISABLE, SCRAMBLE_DISABLE);
1105 	}
1106 
1107 	bpp = ti_sn_bridge_get_bpp(connector);
1108 	/* Set the DP output format (18 bpp or 24 bpp) */
1109 	val = bpp == 18 ? BPP_18_RGB : 0;
1110 	regmap_update_bits(pdata->regmap, SN_DATA_FORMAT_REG, BPP_18_RGB, val);
1111 
1112 	/* DP lane config */
1113 	val = DP_NUM_LANES(min(pdata->dp_lanes, 3));
1114 	regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK,
1115 			   val);
1116 
1117 	valid_rates = ti_sn_bridge_read_valid_rates(pdata);
1118 
1119 	/* Train until we run out of rates */
1120 	for (dp_rate_idx = ti_sn_bridge_calc_min_dp_rate_idx(pdata, state, bpp);
1121 	     dp_rate_idx < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
1122 	     dp_rate_idx++) {
1123 		if (!(valid_rates & BIT(dp_rate_idx)))
1124 			continue;
1125 
1126 		ret = ti_sn_link_training(pdata, dp_rate_idx, &last_err_str);
1127 		if (!ret)
1128 			break;
1129 	}
1130 	if (ret) {
1131 		DRM_DEV_ERROR(pdata->dev, "%s (%d)\n", last_err_str, ret);
1132 		return;
1133 	}
1134 
1135 	/* config video parameters */
1136 	ti_sn_bridge_set_video_timings(pdata, state);
1137 
1138 	/* enable video stream */
1139 	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE,
1140 			   VSTREAM_ENABLE);
1141 }
1142 
ti_sn_bridge_atomic_pre_enable(struct drm_bridge * bridge,struct drm_atomic_state * state)1143 static void ti_sn_bridge_atomic_pre_enable(struct drm_bridge *bridge,
1144 					   struct drm_atomic_state *state)
1145 {
1146 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1147 
1148 	pm_runtime_get_sync(pdata->dev);
1149 
1150 	if (!pdata->refclk)
1151 		ti_sn65dsi86_enable_comms(pdata, state);
1152 
1153 	/* td7: min 100 us after enable before DSI data */
1154 	usleep_range(100, 110);
1155 }
1156 
ti_sn_bridge_atomic_post_disable(struct drm_bridge * bridge,struct drm_atomic_state * state)1157 static void ti_sn_bridge_atomic_post_disable(struct drm_bridge *bridge,
1158 					     struct drm_atomic_state *state)
1159 {
1160 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1161 
1162 	/* semi auto link training mode OFF */
1163 	regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0);
1164 	/* Num lanes to 0 as per power sequencing in data sheet */
1165 	regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK, 0);
1166 	/* disable DP PLL */
1167 	regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1168 
1169 	if (!pdata->refclk)
1170 		ti_sn65dsi86_disable_comms(pdata);
1171 
1172 	pm_runtime_put_sync(pdata->dev);
1173 }
1174 
1175 static enum drm_connector_status
ti_sn_bridge_detect(struct drm_bridge * bridge,struct drm_connector * connector)1176 ti_sn_bridge_detect(struct drm_bridge *bridge, struct drm_connector *connector)
1177 {
1178 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1179 	int val = 0;
1180 
1181 	/*
1182 	 * Runtime reference is grabbed in ti_sn_bridge_hpd_enable()
1183 	 * as the chip won't report HPD just after being powered on.
1184 	 * HPD_DEBOUNCED_STATE reflects correct state only after the
1185 	 * debounce time (~100-400 ms).
1186 	 */
1187 
1188 	regmap_read(pdata->regmap, SN_HPD_DISABLE_REG, &val);
1189 
1190 	return val & HPD_DEBOUNCED_STATE ? connector_status_connected
1191 					 : connector_status_disconnected;
1192 }
1193 
ti_sn_bridge_edid_read(struct drm_bridge * bridge,struct drm_connector * connector)1194 static const struct drm_edid *ti_sn_bridge_edid_read(struct drm_bridge *bridge,
1195 						     struct drm_connector *connector)
1196 {
1197 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1198 
1199 	return drm_edid_read_ddc(connector, &pdata->aux.ddc);
1200 }
1201 
ti_sn65dsi86_debugfs_init(struct drm_bridge * bridge,struct dentry * root)1202 static void ti_sn65dsi86_debugfs_init(struct drm_bridge *bridge, struct dentry *root)
1203 {
1204 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1205 	struct dentry *debugfs;
1206 
1207 	debugfs = debugfs_create_dir(dev_name(pdata->dev), root);
1208 	debugfs_create_file("status", 0600, debugfs, pdata, &status_fops);
1209 }
1210 
ti_sn_bridge_hpd_enable(struct drm_bridge * bridge)1211 static void ti_sn_bridge_hpd_enable(struct drm_bridge *bridge)
1212 {
1213 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1214 
1215 	/*
1216 	 * Device needs to be powered on before reading the HPD state
1217 	 * for reliable hpd detection in ti_sn_bridge_detect() due to
1218 	 * the high debounce time.
1219 	 */
1220 
1221 	pm_runtime_get_sync(pdata->dev);
1222 }
1223 
ti_sn_bridge_hpd_disable(struct drm_bridge * bridge)1224 static void ti_sn_bridge_hpd_disable(struct drm_bridge *bridge)
1225 {
1226 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1227 
1228 	pm_runtime_put_autosuspend(pdata->dev);
1229 }
1230 
1231 static const struct drm_bridge_funcs ti_sn_bridge_funcs = {
1232 	.attach = ti_sn_bridge_attach,
1233 	.detach = ti_sn_bridge_detach,
1234 	.mode_valid = ti_sn_bridge_mode_valid,
1235 	.edid_read = ti_sn_bridge_edid_read,
1236 	.detect = ti_sn_bridge_detect,
1237 	.atomic_pre_enable = ti_sn_bridge_atomic_pre_enable,
1238 	.atomic_enable = ti_sn_bridge_atomic_enable,
1239 	.atomic_disable = ti_sn_bridge_atomic_disable,
1240 	.atomic_post_disable = ti_sn_bridge_atomic_post_disable,
1241 	.atomic_reset = drm_atomic_helper_bridge_reset,
1242 	.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
1243 	.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
1244 	.debugfs_init = ti_sn65dsi86_debugfs_init,
1245 	.hpd_enable = ti_sn_bridge_hpd_enable,
1246 	.hpd_disable = ti_sn_bridge_hpd_disable,
1247 };
1248 
ti_sn_bridge_parse_lanes(struct ti_sn65dsi86 * pdata,struct device_node * np)1249 static void ti_sn_bridge_parse_lanes(struct ti_sn65dsi86 *pdata,
1250 				     struct device_node *np)
1251 {
1252 	u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 };
1253 	u32 lane_polarities[SN_MAX_DP_LANES] = { };
1254 	struct device_node *endpoint;
1255 	u8 ln_assign = 0;
1256 	u8 ln_polrs = 0;
1257 	int dp_lanes;
1258 	int i;
1259 
1260 	/*
1261 	 * Read config from the device tree about lane remapping and lane
1262 	 * polarities.  These are optional and we assume identity map and
1263 	 * normal polarity if nothing is specified.  It's OK to specify just
1264 	 * data-lanes but not lane-polarities but not vice versa.
1265 	 *
1266 	 * Error checking is light (we just make sure we don't crash or
1267 	 * buffer overrun) and we assume dts is well formed and specifying
1268 	 * mappings that the hardware supports.
1269 	 */
1270 	endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
1271 	dp_lanes = drm_of_get_data_lanes_count(endpoint, 1, SN_MAX_DP_LANES);
1272 	if (dp_lanes > 0) {
1273 		of_property_read_u32_array(endpoint, "data-lanes",
1274 					   lane_assignments, dp_lanes);
1275 		of_property_read_u32_array(endpoint, "lane-polarities",
1276 					   lane_polarities, dp_lanes);
1277 	} else {
1278 		dp_lanes = SN_MAX_DP_LANES;
1279 	}
1280 	of_node_put(endpoint);
1281 
1282 	/*
1283 	 * Convert into register format.  Loop over all lanes even if
1284 	 * data-lanes had fewer elements so that we nicely initialize
1285 	 * the LN_ASSIGN register.
1286 	 */
1287 	for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) {
1288 		ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i];
1289 		ln_polrs = ln_polrs << 1 | lane_polarities[i];
1290 	}
1291 
1292 	/* Stash in our struct for when we power on */
1293 	pdata->dp_lanes = dp_lanes;
1294 	pdata->ln_assign = ln_assign;
1295 	pdata->ln_polrs = ln_polrs;
1296 }
1297 
ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 * pdata)1298 static int ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 *pdata)
1299 {
1300 	struct device_node *np = pdata->dev->of_node;
1301 
1302 	pdata->host_node = of_graph_get_remote_node(np, 0, 0);
1303 
1304 	if (!pdata->host_node) {
1305 		DRM_ERROR("remote dsi host node not found\n");
1306 		return -ENODEV;
1307 	}
1308 
1309 	return 0;
1310 }
1311 
ti_sn_bridge_probe(struct auxiliary_device * adev,const struct auxiliary_device_id * id)1312 static int ti_sn_bridge_probe(struct auxiliary_device *adev,
1313 			      const struct auxiliary_device_id *id)
1314 {
1315 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1316 	struct device_node *np = pdata->dev->of_node;
1317 	int ret;
1318 
1319 	pdata->next_bridge = devm_drm_of_get_bridge(&adev->dev, np, 1, 0);
1320 	if (IS_ERR(pdata->next_bridge))
1321 		return dev_err_probe(&adev->dev, PTR_ERR(pdata->next_bridge),
1322 				     "failed to create panel bridge\n");
1323 
1324 	ti_sn_bridge_parse_lanes(pdata, np);
1325 
1326 	ret = ti_sn_bridge_parse_dsi_host(pdata);
1327 	if (ret)
1328 		return ret;
1329 
1330 	pdata->bridge.of_node = np;
1331 	pdata->bridge.type = pdata->next_bridge->type == DRM_MODE_CONNECTOR_DisplayPort
1332 			   ? DRM_MODE_CONNECTOR_DisplayPort : DRM_MODE_CONNECTOR_eDP;
1333 
1334 	if (pdata->bridge.type == DRM_MODE_CONNECTOR_DisplayPort) {
1335 		pdata->bridge.ops = DRM_BRIDGE_OP_EDID | DRM_BRIDGE_OP_DETECT |
1336 				    DRM_BRIDGE_OP_HPD;
1337 		/*
1338 		 * If comms were already enabled they would have been enabled
1339 		 * with the wrong value of HPD_DISABLE. Update it now. Comms
1340 		 * could be enabled if anyone is holding a pm_runtime reference
1341 		 * (like if a GPIO is in use). Note that in most cases nobody
1342 		 * is doing AUX channel xfers before the bridge is added so
1343 		 * HPD doesn't _really_ matter then. The only exception is in
1344 		 * the eDP case where the panel wants to read the EDID before
1345 		 * the bridge is added. We always consistently have HPD disabled
1346 		 * for eDP.
1347 		 */
1348 		mutex_lock(&pdata->comms_mutex);
1349 		if (pdata->comms_enabled)
1350 			regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG,
1351 					   HPD_DISABLE, 0);
1352 		mutex_unlock(&pdata->comms_mutex);
1353 	}
1354 
1355 	drm_bridge_add(&pdata->bridge);
1356 
1357 	ret = ti_sn_attach_host(adev, pdata);
1358 	if (ret) {
1359 		dev_err_probe(&adev->dev, ret, "failed to attach dsi host\n");
1360 		goto err_remove_bridge;
1361 	}
1362 
1363 	return 0;
1364 
1365 err_remove_bridge:
1366 	drm_bridge_remove(&pdata->bridge);
1367 	return ret;
1368 }
1369 
ti_sn_bridge_remove(struct auxiliary_device * adev)1370 static void ti_sn_bridge_remove(struct auxiliary_device *adev)
1371 {
1372 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1373 
1374 	if (!pdata)
1375 		return;
1376 
1377 	drm_bridge_remove(&pdata->bridge);
1378 
1379 	of_node_put(pdata->host_node);
1380 }
1381 
1382 static const struct auxiliary_device_id ti_sn_bridge_id_table[] = {
1383 	{ .name = "ti_sn65dsi86.bridge", },
1384 	{},
1385 };
1386 
1387 static struct auxiliary_driver ti_sn_bridge_driver = {
1388 	.name = "bridge",
1389 	.probe = ti_sn_bridge_probe,
1390 	.remove = ti_sn_bridge_remove,
1391 	.id_table = ti_sn_bridge_id_table,
1392 };
1393 
1394 /* -----------------------------------------------------------------------------
1395  * PWM Controller
1396  */
1397 #if IS_REACHABLE(CONFIG_PWM)
ti_sn_pwm_pin_request(struct ti_sn65dsi86 * pdata)1398 static int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata)
1399 {
1400 	return atomic_xchg(&pdata->pwm_pin_busy, 1) ? -EBUSY : 0;
1401 }
1402 
ti_sn_pwm_pin_release(struct ti_sn65dsi86 * pdata)1403 static void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata)
1404 {
1405 	atomic_set(&pdata->pwm_pin_busy, 0);
1406 }
1407 
pwm_chip_to_ti_sn_bridge(struct pwm_chip * chip)1408 static struct ti_sn65dsi86 *pwm_chip_to_ti_sn_bridge(struct pwm_chip *chip)
1409 {
1410 	return pwmchip_get_drvdata(chip);
1411 }
1412 
ti_sn_pwm_request(struct pwm_chip * chip,struct pwm_device * pwm)1413 static int ti_sn_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
1414 {
1415 	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1416 
1417 	return ti_sn_pwm_pin_request(pdata);
1418 }
1419 
ti_sn_pwm_free(struct pwm_chip * chip,struct pwm_device * pwm)1420 static void ti_sn_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
1421 {
1422 	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1423 
1424 	ti_sn_pwm_pin_release(pdata);
1425 }
1426 
1427 /*
1428  * Limitations:
1429  * - The PWM signal is not driven when the chip is powered down, or in its
1430  *   reset state and the driver does not implement the "suspend state"
1431  *   described in the documentation. In order to save power, state->enabled is
1432  *   interpreted as denoting if the signal is expected to be valid, and is used
1433  *   to determine if the chip needs to be kept powered.
1434  * - Changing both period and duty_cycle is not done atomically, neither is the
1435  *   multi-byte register updates, so the output might briefly be undefined
1436  *   during update.
1437  */
ti_sn_pwm_apply(struct pwm_chip * chip,struct pwm_device * pwm,const struct pwm_state * state)1438 static int ti_sn_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
1439 			   const struct pwm_state *state)
1440 {
1441 	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1442 	unsigned int pwm_en_inv;
1443 	unsigned int backlight;
1444 	unsigned int pre_div;
1445 	unsigned int scale;
1446 	u64 period_max;
1447 	u64 period;
1448 	int ret;
1449 
1450 	if (!pdata->pwm_enabled) {
1451 		ret = pm_runtime_resume_and_get(pwmchip_parent(chip));
1452 		if (ret < 0)
1453 			return ret;
1454 	}
1455 
1456 	if (state->enabled) {
1457 		if (!pdata->pwm_enabled) {
1458 			/*
1459 			 * The chip might have been powered down while we
1460 			 * didn't hold a PM runtime reference, so mux in the
1461 			 * PWM function on the GPIO pin again.
1462 			 */
1463 			ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1464 						 SN_GPIO_MUX_MASK << (2 * SN_PWM_GPIO_IDX),
1465 						 SN_GPIO_MUX_SPECIAL << (2 * SN_PWM_GPIO_IDX));
1466 			if (ret) {
1467 				dev_err(pwmchip_parent(chip), "failed to mux in PWM function\n");
1468 				goto out;
1469 			}
1470 		}
1471 
1472 		/*
1473 		 * Per the datasheet the PWM frequency is given by:
1474 		 *
1475 		 *                          REFCLK_FREQ
1476 		 *   PWM_FREQ = -----------------------------------
1477 		 *               PWM_PRE_DIV * BACKLIGHT_SCALE + 1
1478 		 *
1479 		 * However, after careful review the author is convinced that
1480 		 * the documentation has lost some parenthesis around
1481 		 * "BACKLIGHT_SCALE + 1".
1482 		 *
1483 		 * With the period T_pwm = 1/PWM_FREQ this can be written:
1484 		 *
1485 		 *   T_pwm * REFCLK_FREQ = PWM_PRE_DIV * (BACKLIGHT_SCALE + 1)
1486 		 *
1487 		 * In order to keep BACKLIGHT_SCALE within its 16 bits,
1488 		 * PWM_PRE_DIV must be:
1489 		 *
1490 		 *                     T_pwm * REFCLK_FREQ
1491 		 *   PWM_PRE_DIV >= -------------------------
1492 		 *                   BACKLIGHT_SCALE_MAX + 1
1493 		 *
1494 		 * To simplify the search and to favour higher resolution of
1495 		 * the duty cycle over accuracy of the period, the lowest
1496 		 * possible PWM_PRE_DIV is used. Finally the scale is
1497 		 * calculated as:
1498 		 *
1499 		 *                      T_pwm * REFCLK_FREQ
1500 		 *   BACKLIGHT_SCALE = ---------------------- - 1
1501 		 *                          PWM_PRE_DIV
1502 		 *
1503 		 * Here T_pwm is represented in seconds, so appropriate scaling
1504 		 * to nanoseconds is necessary.
1505 		 */
1506 
1507 		/* Minimum T_pwm is 1 / REFCLK_FREQ */
1508 		if (state->period <= NSEC_PER_SEC / pdata->pwm_refclk_freq) {
1509 			ret = -EINVAL;
1510 			goto out;
1511 		}
1512 
1513 		/*
1514 		 * Maximum T_pwm is 255 * (65535 + 1) / REFCLK_FREQ
1515 		 * Limit period to this to avoid overflows
1516 		 */
1517 		period_max = div_u64((u64)NSEC_PER_SEC * 255 * (65535 + 1),
1518 				     pdata->pwm_refclk_freq);
1519 		period = min(state->period, period_max);
1520 
1521 		pre_div = DIV64_U64_ROUND_UP(period * pdata->pwm_refclk_freq,
1522 					     (u64)NSEC_PER_SEC * (BACKLIGHT_SCALE_MAX + 1));
1523 		scale = div64_u64(period * pdata->pwm_refclk_freq, (u64)NSEC_PER_SEC * pre_div) - 1;
1524 
1525 		/*
1526 		 * The documentation has the duty ratio given as:
1527 		 *
1528 		 *     duty          BACKLIGHT
1529 		 *   ------- = ---------------------
1530 		 *    period    BACKLIGHT_SCALE + 1
1531 		 *
1532 		 * Solve for BACKLIGHT, substituting BACKLIGHT_SCALE according
1533 		 * to definition above and adjusting for nanosecond
1534 		 * representation of duty cycle gives us:
1535 		 */
1536 		backlight = div64_u64(state->duty_cycle * pdata->pwm_refclk_freq,
1537 				      (u64)NSEC_PER_SEC * pre_div);
1538 		if (backlight > scale)
1539 			backlight = scale;
1540 
1541 		ret = regmap_write(pdata->regmap, SN_PWM_PRE_DIV_REG, pre_div);
1542 		if (ret) {
1543 			dev_err(pwmchip_parent(chip), "failed to update PWM_PRE_DIV\n");
1544 			goto out;
1545 		}
1546 
1547 		ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_SCALE_REG, scale);
1548 		ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_REG, backlight);
1549 	}
1550 
1551 	pwm_en_inv = FIELD_PREP(SN_PWM_EN_MASK, state->enabled) |
1552 		     FIELD_PREP(SN_PWM_INV_MASK, state->polarity == PWM_POLARITY_INVERSED);
1553 	ret = regmap_write(pdata->regmap, SN_PWM_EN_INV_REG, pwm_en_inv);
1554 	if (ret) {
1555 		dev_err(pwmchip_parent(chip), "failed to update PWM_EN/PWM_INV\n");
1556 		goto out;
1557 	}
1558 
1559 	pdata->pwm_enabled = state->enabled;
1560 out:
1561 
1562 	if (!pdata->pwm_enabled)
1563 		pm_runtime_put_sync(pwmchip_parent(chip));
1564 
1565 	return ret;
1566 }
1567 
ti_sn_pwm_get_state(struct pwm_chip * chip,struct pwm_device * pwm,struct pwm_state * state)1568 static int ti_sn_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
1569 			       struct pwm_state *state)
1570 {
1571 	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1572 	unsigned int pwm_en_inv;
1573 	unsigned int pre_div;
1574 	u16 backlight;
1575 	u16 scale;
1576 	int ret;
1577 
1578 	ret = regmap_read(pdata->regmap, SN_PWM_EN_INV_REG, &pwm_en_inv);
1579 	if (ret)
1580 		return ret;
1581 
1582 	ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_SCALE_REG, &scale);
1583 	if (ret)
1584 		return ret;
1585 
1586 	ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_REG, &backlight);
1587 	if (ret)
1588 		return ret;
1589 
1590 	ret = regmap_read(pdata->regmap, SN_PWM_PRE_DIV_REG, &pre_div);
1591 	if (ret)
1592 		return ret;
1593 
1594 	state->enabled = FIELD_GET(SN_PWM_EN_MASK, pwm_en_inv);
1595 	if (FIELD_GET(SN_PWM_INV_MASK, pwm_en_inv))
1596 		state->polarity = PWM_POLARITY_INVERSED;
1597 	else
1598 		state->polarity = PWM_POLARITY_NORMAL;
1599 
1600 	state->period = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * (scale + 1),
1601 					 pdata->pwm_refclk_freq);
1602 	state->duty_cycle = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * backlight,
1603 					     pdata->pwm_refclk_freq);
1604 
1605 	if (state->duty_cycle > state->period)
1606 		state->duty_cycle = state->period;
1607 
1608 	return 0;
1609 }
1610 
1611 static const struct pwm_ops ti_sn_pwm_ops = {
1612 	.request = ti_sn_pwm_request,
1613 	.free = ti_sn_pwm_free,
1614 	.apply = ti_sn_pwm_apply,
1615 	.get_state = ti_sn_pwm_get_state,
1616 };
1617 
ti_sn_pwm_probe(struct auxiliary_device * adev,const struct auxiliary_device_id * id)1618 static int ti_sn_pwm_probe(struct auxiliary_device *adev,
1619 			   const struct auxiliary_device_id *id)
1620 {
1621 	struct pwm_chip *chip;
1622 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1623 
1624 	pdata->pchip = chip = devm_pwmchip_alloc(&adev->dev, 1, 0);
1625 	if (IS_ERR(chip))
1626 		return PTR_ERR(chip);
1627 
1628 	pwmchip_set_drvdata(chip, pdata);
1629 
1630 	chip->ops = &ti_sn_pwm_ops;
1631 	chip->of_xlate = of_pwm_single_xlate;
1632 
1633 	devm_pm_runtime_enable(&adev->dev);
1634 
1635 	return pwmchip_add(chip);
1636 }
1637 
ti_sn_pwm_remove(struct auxiliary_device * adev)1638 static void ti_sn_pwm_remove(struct auxiliary_device *adev)
1639 {
1640 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1641 
1642 	pwmchip_remove(pdata->pchip);
1643 
1644 	if (pdata->pwm_enabled)
1645 		pm_runtime_put_sync(&adev->dev);
1646 }
1647 
1648 static const struct auxiliary_device_id ti_sn_pwm_id_table[] = {
1649 	{ .name = "ti_sn65dsi86.pwm", },
1650 	{},
1651 };
1652 
1653 static struct auxiliary_driver ti_sn_pwm_driver = {
1654 	.name = "pwm",
1655 	.probe = ti_sn_pwm_probe,
1656 	.remove = ti_sn_pwm_remove,
1657 	.id_table = ti_sn_pwm_id_table,
1658 };
1659 
ti_sn_pwm_register(void)1660 static int __init ti_sn_pwm_register(void)
1661 {
1662 	return auxiliary_driver_register(&ti_sn_pwm_driver);
1663 }
1664 
ti_sn_pwm_unregister(void)1665 static void ti_sn_pwm_unregister(void)
1666 {
1667 	auxiliary_driver_unregister(&ti_sn_pwm_driver);
1668 }
1669 
1670 #else
ti_sn_pwm_pin_request(struct ti_sn65dsi86 * pdata)1671 static inline int __maybe_unused ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata) { return 0; }
ti_sn_pwm_pin_release(struct ti_sn65dsi86 * pdata)1672 static inline void __maybe_unused ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata) {}
1673 
ti_sn_pwm_register(void)1674 static inline int ti_sn_pwm_register(void) { return 0; }
ti_sn_pwm_unregister(void)1675 static inline void ti_sn_pwm_unregister(void) {}
1676 #endif
1677 
1678 /* -----------------------------------------------------------------------------
1679  * GPIO Controller
1680  */
1681 #if defined(CONFIG_OF_GPIO)
1682 
tn_sn_bridge_of_xlate(struct gpio_chip * chip,const struct of_phandle_args * gpiospec,u32 * flags)1683 static int tn_sn_bridge_of_xlate(struct gpio_chip *chip,
1684 				 const struct of_phandle_args *gpiospec,
1685 				 u32 *flags)
1686 {
1687 	if (WARN_ON(gpiospec->args_count < chip->of_gpio_n_cells))
1688 		return -EINVAL;
1689 
1690 	if (gpiospec->args[0] > chip->ngpio || gpiospec->args[0] < 1)
1691 		return -EINVAL;
1692 
1693 	if (flags)
1694 		*flags = gpiospec->args[1];
1695 
1696 	return gpiospec->args[0] - SN_GPIO_PHYSICAL_OFFSET;
1697 }
1698 
ti_sn_bridge_gpio_get_direction(struct gpio_chip * chip,unsigned int offset)1699 static int ti_sn_bridge_gpio_get_direction(struct gpio_chip *chip,
1700 					   unsigned int offset)
1701 {
1702 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1703 
1704 	/*
1705 	 * We already have to keep track of the direction because we use
1706 	 * that to figure out whether we've powered the device.  We can
1707 	 * just return that rather than (maybe) powering up the device
1708 	 * to ask its direction.
1709 	 */
1710 	return test_bit(offset, pdata->gchip_output) ?
1711 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1712 }
1713 
ti_sn_bridge_gpio_get(struct gpio_chip * chip,unsigned int offset)1714 static int ti_sn_bridge_gpio_get(struct gpio_chip *chip, unsigned int offset)
1715 {
1716 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1717 	unsigned int val;
1718 	int ret;
1719 
1720 	/*
1721 	 * When the pin is an input we don't forcibly keep the bridge
1722 	 * powered--we just power it on to read the pin.  NOTE: part of
1723 	 * the reason this works is that the bridge defaults (when
1724 	 * powered back on) to all 4 GPIOs being configured as GPIO input.
1725 	 * Also note that if something else is keeping the chip powered the
1726 	 * pm_runtime functions are lightweight increments of a refcount.
1727 	 */
1728 	pm_runtime_get_sync(pdata->dev);
1729 	ret = regmap_read(pdata->regmap, SN_GPIO_IO_REG, &val);
1730 	pm_runtime_put_autosuspend(pdata->dev);
1731 
1732 	if (ret)
1733 		return ret;
1734 
1735 	return !!(val & BIT(SN_GPIO_INPUT_SHIFT + offset));
1736 }
1737 
ti_sn_bridge_gpio_set(struct gpio_chip * chip,unsigned int offset,int val)1738 static int ti_sn_bridge_gpio_set(struct gpio_chip *chip, unsigned int offset,
1739 				 int val)
1740 {
1741 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1742 
1743 	val &= 1;
1744 	return regmap_update_bits(pdata->regmap, SN_GPIO_IO_REG,
1745 				  BIT(SN_GPIO_OUTPUT_SHIFT + offset),
1746 				  val << (SN_GPIO_OUTPUT_SHIFT + offset));
1747 }
1748 
ti_sn_bridge_gpio_direction_input(struct gpio_chip * chip,unsigned int offset)1749 static int ti_sn_bridge_gpio_direction_input(struct gpio_chip *chip,
1750 					     unsigned int offset)
1751 {
1752 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1753 	int shift = offset * 2;
1754 	int ret;
1755 
1756 	if (!test_and_clear_bit(offset, pdata->gchip_output))
1757 		return 0;
1758 
1759 	ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1760 				 SN_GPIO_MUX_MASK << shift,
1761 				 SN_GPIO_MUX_INPUT << shift);
1762 	if (ret) {
1763 		set_bit(offset, pdata->gchip_output);
1764 		return ret;
1765 	}
1766 
1767 	/*
1768 	 * NOTE: if nobody else is powering the device this may fully power
1769 	 * it off and when it comes back it will have lost all state, but
1770 	 * that's OK because the default is input and we're now an input.
1771 	 */
1772 	pm_runtime_put_autosuspend(pdata->dev);
1773 
1774 	return 0;
1775 }
1776 
ti_sn_bridge_gpio_direction_output(struct gpio_chip * chip,unsigned int offset,int val)1777 static int ti_sn_bridge_gpio_direction_output(struct gpio_chip *chip,
1778 					      unsigned int offset, int val)
1779 {
1780 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1781 	int shift = offset * 2;
1782 	int ret;
1783 
1784 	if (test_and_set_bit(offset, pdata->gchip_output))
1785 		return 0;
1786 
1787 	pm_runtime_get_sync(pdata->dev);
1788 
1789 	/* Set value first to avoid glitching */
1790 	ti_sn_bridge_gpio_set(chip, offset, val);
1791 
1792 	/* Set direction */
1793 	ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1794 				 SN_GPIO_MUX_MASK << shift,
1795 				 SN_GPIO_MUX_OUTPUT << shift);
1796 	if (ret) {
1797 		clear_bit(offset, pdata->gchip_output);
1798 		pm_runtime_put_autosuspend(pdata->dev);
1799 	}
1800 
1801 	return ret;
1802 }
1803 
ti_sn_bridge_gpio_request(struct gpio_chip * chip,unsigned int offset)1804 static int ti_sn_bridge_gpio_request(struct gpio_chip *chip, unsigned int offset)
1805 {
1806 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1807 
1808 	if (offset == SN_PWM_GPIO_IDX)
1809 		return ti_sn_pwm_pin_request(pdata);
1810 
1811 	return 0;
1812 }
1813 
ti_sn_bridge_gpio_free(struct gpio_chip * chip,unsigned int offset)1814 static void ti_sn_bridge_gpio_free(struct gpio_chip *chip, unsigned int offset)
1815 {
1816 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1817 
1818 	/* We won't keep pm_runtime if we're input, so switch there on free */
1819 	ti_sn_bridge_gpio_direction_input(chip, offset);
1820 
1821 	if (offset == SN_PWM_GPIO_IDX)
1822 		ti_sn_pwm_pin_release(pdata);
1823 }
1824 
1825 static const char * const ti_sn_bridge_gpio_names[SN_NUM_GPIOS] = {
1826 	"GPIO1", "GPIO2", "GPIO3", "GPIO4"
1827 };
1828 
ti_sn_gpio_probe(struct auxiliary_device * adev,const struct auxiliary_device_id * id)1829 static int ti_sn_gpio_probe(struct auxiliary_device *adev,
1830 			    const struct auxiliary_device_id *id)
1831 {
1832 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1833 	int ret;
1834 
1835 	/* Only init if someone is going to use us as a GPIO controller */
1836 	if (!of_property_read_bool(pdata->dev->of_node, "gpio-controller"))
1837 		return 0;
1838 
1839 	pdata->gchip.label = dev_name(pdata->dev);
1840 	pdata->gchip.parent = pdata->dev;
1841 	pdata->gchip.owner = THIS_MODULE;
1842 	pdata->gchip.of_xlate = tn_sn_bridge_of_xlate;
1843 	pdata->gchip.of_gpio_n_cells = 2;
1844 	pdata->gchip.request = ti_sn_bridge_gpio_request;
1845 	pdata->gchip.free = ti_sn_bridge_gpio_free;
1846 	pdata->gchip.get_direction = ti_sn_bridge_gpio_get_direction;
1847 	pdata->gchip.direction_input = ti_sn_bridge_gpio_direction_input;
1848 	pdata->gchip.direction_output = ti_sn_bridge_gpio_direction_output;
1849 	pdata->gchip.get = ti_sn_bridge_gpio_get;
1850 	pdata->gchip.set = ti_sn_bridge_gpio_set;
1851 	pdata->gchip.can_sleep = true;
1852 	pdata->gchip.names = ti_sn_bridge_gpio_names;
1853 	pdata->gchip.ngpio = SN_NUM_GPIOS;
1854 	pdata->gchip.base = -1;
1855 	ret = devm_gpiochip_add_data(&adev->dev, &pdata->gchip, pdata);
1856 	if (ret)
1857 		dev_err(pdata->dev, "can't add gpio chip\n");
1858 
1859 	return ret;
1860 }
1861 
1862 static const struct auxiliary_device_id ti_sn_gpio_id_table[] = {
1863 	{ .name = "ti_sn65dsi86.gpio", },
1864 	{},
1865 };
1866 
1867 MODULE_DEVICE_TABLE(auxiliary, ti_sn_gpio_id_table);
1868 
1869 static struct auxiliary_driver ti_sn_gpio_driver = {
1870 	.name = "gpio",
1871 	.probe = ti_sn_gpio_probe,
1872 	.id_table = ti_sn_gpio_id_table,
1873 };
1874 
ti_sn_gpio_register(void)1875 static int __init ti_sn_gpio_register(void)
1876 {
1877 	return auxiliary_driver_register(&ti_sn_gpio_driver);
1878 }
1879 
ti_sn_gpio_unregister(void)1880 static void ti_sn_gpio_unregister(void)
1881 {
1882 	auxiliary_driver_unregister(&ti_sn_gpio_driver);
1883 }
1884 
1885 #else
1886 
ti_sn_gpio_register(void)1887 static inline int ti_sn_gpio_register(void) { return 0; }
ti_sn_gpio_unregister(void)1888 static inline void ti_sn_gpio_unregister(void) {}
1889 
1890 #endif
1891 
1892 /* -----------------------------------------------------------------------------
1893  * Probe & Remove
1894  */
1895 
ti_sn65dsi86_runtime_disable(void * data)1896 static void ti_sn65dsi86_runtime_disable(void *data)
1897 {
1898 	pm_runtime_dont_use_autosuspend(data);
1899 	pm_runtime_disable(data);
1900 }
1901 
ti_sn65dsi86_parse_regulators(struct ti_sn65dsi86 * pdata)1902 static int ti_sn65dsi86_parse_regulators(struct ti_sn65dsi86 *pdata)
1903 {
1904 	unsigned int i;
1905 	const char * const ti_sn_bridge_supply_names[] = {
1906 		"vcca", "vcc", "vccio", "vpll",
1907 	};
1908 
1909 	for (i = 0; i < SN_REGULATOR_SUPPLY_NUM; i++)
1910 		pdata->supplies[i].supply = ti_sn_bridge_supply_names[i];
1911 
1912 	return devm_regulator_bulk_get(pdata->dev, SN_REGULATOR_SUPPLY_NUM,
1913 				       pdata->supplies);
1914 }
1915 
ti_sn65dsi86_probe(struct i2c_client * client)1916 static int ti_sn65dsi86_probe(struct i2c_client *client)
1917 {
1918 	struct device *dev = &client->dev;
1919 	struct ti_sn65dsi86 *pdata;
1920 	u8 id_buf[8];
1921 	int ret;
1922 
1923 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
1924 		DRM_ERROR("device doesn't support I2C\n");
1925 		return -ENODEV;
1926 	}
1927 
1928 	pdata = devm_drm_bridge_alloc(dev, struct ti_sn65dsi86, bridge, &ti_sn_bridge_funcs);
1929 	if (IS_ERR(pdata))
1930 		return PTR_ERR(pdata);
1931 	dev_set_drvdata(dev, pdata);
1932 	pdata->dev = dev;
1933 
1934 	mutex_init(&pdata->comms_mutex);
1935 
1936 	pdata->regmap = devm_regmap_init_i2c(client,
1937 					     &ti_sn65dsi86_regmap_config);
1938 	if (IS_ERR(pdata->regmap))
1939 		return dev_err_probe(dev, PTR_ERR(pdata->regmap),
1940 				     "regmap i2c init failed\n");
1941 
1942 	pdata->enable_gpio = devm_gpiod_get_optional(dev, "enable",
1943 						     GPIOD_OUT_LOW);
1944 	if (IS_ERR(pdata->enable_gpio))
1945 		return dev_err_probe(dev, PTR_ERR(pdata->enable_gpio),
1946 				     "failed to get enable gpio from DT\n");
1947 
1948 	ret = ti_sn65dsi86_parse_regulators(pdata);
1949 	if (ret)
1950 		return dev_err_probe(dev, ret, "failed to parse regulators\n");
1951 
1952 	pdata->refclk = devm_clk_get_optional(dev, "refclk");
1953 	if (IS_ERR(pdata->refclk))
1954 		return dev_err_probe(dev, PTR_ERR(pdata->refclk),
1955 				     "failed to get reference clock\n");
1956 
1957 	pm_runtime_enable(dev);
1958 	pm_runtime_set_autosuspend_delay(pdata->dev, 500);
1959 	pm_runtime_use_autosuspend(pdata->dev);
1960 	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_runtime_disable, dev);
1961 	if (ret)
1962 		return ret;
1963 
1964 	pm_runtime_get_sync(dev);
1965 	ret = regmap_bulk_read(pdata->regmap, SN_DEVICE_ID_REGS, id_buf, ARRAY_SIZE(id_buf));
1966 	pm_runtime_put_autosuspend(dev);
1967 	if (ret)
1968 		return dev_err_probe(dev, ret, "failed to read device id\n");
1969 
1970 	/* The ID string is stored backwards */
1971 	if (strncmp(id_buf, "68ISD   ", ARRAY_SIZE(id_buf)))
1972 		return dev_err_probe(dev, -EOPNOTSUPP, "unsupported device id\n");
1973 
1974 	/*
1975 	 * Break ourselves up into a collection of aux devices. The only real
1976 	 * motiviation here is to solve the chicken-and-egg problem of probe
1977 	 * ordering. The bridge wants the panel to be there when it probes.
1978 	 * The panel wants its HPD GPIO (provided by sn65dsi86 on some boards)
1979 	 * when it probes. The panel and maybe backlight might want the DDC
1980 	 * bus or the pwm_chip. Having sub-devices allows the some sub devices
1981 	 * to finish probing even if others return -EPROBE_DEFER and gets us
1982 	 * around the problems.
1983 	 */
1984 
1985 	if (IS_ENABLED(CONFIG_OF_GPIO)) {
1986 		ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->gpio_aux, "gpio");
1987 		if (ret)
1988 			return ret;
1989 	}
1990 
1991 	if (IS_REACHABLE(CONFIG_PWM)) {
1992 		ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->pwm_aux, "pwm");
1993 		if (ret)
1994 			return ret;
1995 	}
1996 
1997 	/*
1998 	 * NOTE: At the end of the AUX channel probe we'll add the aux device
1999 	 * for the bridge. This is because the bridge can't be used until the
2000 	 * AUX channel is there and this is a very simple solution to the
2001 	 * dependency problem.
2002 	 */
2003 	return ti_sn65dsi86_add_aux_device(pdata, &pdata->aux_aux, "aux");
2004 }
2005 
2006 static const struct i2c_device_id ti_sn65dsi86_id[] = {
2007 	{ "ti,sn65dsi86" },
2008 	{}
2009 };
2010 MODULE_DEVICE_TABLE(i2c, ti_sn65dsi86_id);
2011 
2012 static const struct of_device_id ti_sn65dsi86_match_table[] = {
2013 	{.compatible = "ti,sn65dsi86"},
2014 	{},
2015 };
2016 MODULE_DEVICE_TABLE(of, ti_sn65dsi86_match_table);
2017 
2018 static struct i2c_driver ti_sn65dsi86_driver = {
2019 	.driver = {
2020 		.name = "ti_sn65dsi86",
2021 		.of_match_table = ti_sn65dsi86_match_table,
2022 		.pm = &ti_sn65dsi86_pm_ops,
2023 	},
2024 	.probe = ti_sn65dsi86_probe,
2025 	.id_table = ti_sn65dsi86_id,
2026 };
2027 
ti_sn65dsi86_init(void)2028 static int __init ti_sn65dsi86_init(void)
2029 {
2030 	int ret;
2031 
2032 	ret = i2c_add_driver(&ti_sn65dsi86_driver);
2033 	if (ret)
2034 		return ret;
2035 
2036 	ret = ti_sn_gpio_register();
2037 	if (ret)
2038 		goto err_main_was_registered;
2039 
2040 	ret = ti_sn_pwm_register();
2041 	if (ret)
2042 		goto err_gpio_was_registered;
2043 
2044 	ret = auxiliary_driver_register(&ti_sn_aux_driver);
2045 	if (ret)
2046 		goto err_pwm_was_registered;
2047 
2048 	ret = auxiliary_driver_register(&ti_sn_bridge_driver);
2049 	if (ret)
2050 		goto err_aux_was_registered;
2051 
2052 	return 0;
2053 
2054 err_aux_was_registered:
2055 	auxiliary_driver_unregister(&ti_sn_aux_driver);
2056 err_pwm_was_registered:
2057 	ti_sn_pwm_unregister();
2058 err_gpio_was_registered:
2059 	ti_sn_gpio_unregister();
2060 err_main_was_registered:
2061 	i2c_del_driver(&ti_sn65dsi86_driver);
2062 
2063 	return ret;
2064 }
2065 module_init(ti_sn65dsi86_init);
2066 
ti_sn65dsi86_exit(void)2067 static void __exit ti_sn65dsi86_exit(void)
2068 {
2069 	auxiliary_driver_unregister(&ti_sn_bridge_driver);
2070 	auxiliary_driver_unregister(&ti_sn_aux_driver);
2071 	ti_sn_pwm_unregister();
2072 	ti_sn_gpio_unregister();
2073 	i2c_del_driver(&ti_sn65dsi86_driver);
2074 }
2075 module_exit(ti_sn65dsi86_exit);
2076 
2077 MODULE_AUTHOR("Sandeep Panda <spanda@codeaurora.org>");
2078 MODULE_DESCRIPTION("sn65dsi86 DSI to eDP bridge driver");
2079 MODULE_LICENSE("GPL v2");
2080