xref: /linux/net/ipv4/inet_connection_sock.c (revision 8be4d31cb8aaeea27bde4b7ddb26e28a89062ebf)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Support for INET connection oriented protocols.
8  *
9  * Authors:	See the TCP sources
10  */
11 
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14 
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25 
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_sk*_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses
28  *				if IPv6 only, and any IPv4 addresses
29  *				if not IPv6 only
30  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31  *				IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32  *				and 0.0.0.0 equals to 0.0.0.0 only
33  */
ipv6_rcv_saddr_equal(const struct in6_addr * sk1_rcv_saddr6,const struct in6_addr * sk2_rcv_saddr6,__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk1_ipv6only,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35 				 const struct in6_addr *sk2_rcv_saddr6,
36 				 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37 				 bool sk1_ipv6only, bool sk2_ipv6only,
38 				 bool match_sk1_wildcard,
39 				 bool match_sk2_wildcard)
40 {
41 	int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42 	int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43 
44 	/* if both are mapped, treat as IPv4 */
45 	if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46 		if (!sk2_ipv6only) {
47 			if (sk1_rcv_saddr == sk2_rcv_saddr)
48 				return true;
49 			return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50 				(match_sk2_wildcard && !sk2_rcv_saddr);
51 		}
52 		return false;
53 	}
54 
55 	if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56 		return true;
57 
58 	if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59 	    !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60 		return true;
61 
62 	if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63 	    !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64 		return true;
65 
66 	if (sk2_rcv_saddr6 &&
67 	    ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68 		return true;
69 
70 	return false;
71 }
72 #endif
73 
74 /* match_sk*_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
75  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76  *				0.0.0.0 only equals to 0.0.0.0
77  */
ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79 				 bool sk2_ipv6only, bool match_sk1_wildcard,
80 				 bool match_sk2_wildcard)
81 {
82 	if (!sk2_ipv6only) {
83 		if (sk1_rcv_saddr == sk2_rcv_saddr)
84 			return true;
85 		return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86 			(match_sk2_wildcard && !sk2_rcv_saddr);
87 	}
88 	return false;
89 }
90 
inet_rcv_saddr_equal(const struct sock * sk,const struct sock * sk2,bool match_wildcard)91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92 			  bool match_wildcard)
93 {
94 #if IS_ENABLED(CONFIG_IPV6)
95 	if (sk->sk_family == AF_INET6)
96 		return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97 					    inet6_rcv_saddr(sk2),
98 					    sk->sk_rcv_saddr,
99 					    sk2->sk_rcv_saddr,
100 					    ipv6_only_sock(sk),
101 					    ipv6_only_sock(sk2),
102 					    match_wildcard,
103 					    match_wildcard);
104 #endif
105 	return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106 				    ipv6_only_sock(sk2), match_wildcard,
107 				    match_wildcard);
108 }
109 EXPORT_SYMBOL(inet_rcv_saddr_equal);
110 
inet_rcv_saddr_any(const struct sock * sk)111 bool inet_rcv_saddr_any(const struct sock *sk)
112 {
113 #if IS_ENABLED(CONFIG_IPV6)
114 	if (sk->sk_family == AF_INET6)
115 		return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116 #endif
117 	return !sk->sk_rcv_saddr;
118 }
119 
120 /**
121  *	inet_sk_get_local_port_range - fetch ephemeral ports range
122  *	@sk: socket
123  *	@low: pointer to low port
124  *	@high: pointer to high port
125  *
126  *	Fetch netns port range (/proc/sys/net/ipv4/ip_local_port_range)
127  *	Range can be overridden if socket got IP_LOCAL_PORT_RANGE option.
128  *	Returns true if IP_LOCAL_PORT_RANGE was set on this socket.
129  */
inet_sk_get_local_port_range(const struct sock * sk,int * low,int * high)130 bool inet_sk_get_local_port_range(const struct sock *sk, int *low, int *high)
131 {
132 	int lo, hi, sk_lo, sk_hi;
133 	bool local_range = false;
134 	u32 sk_range;
135 
136 	inet_get_local_port_range(sock_net(sk), &lo, &hi);
137 
138 	sk_range = READ_ONCE(inet_sk(sk)->local_port_range);
139 	if (unlikely(sk_range)) {
140 		sk_lo = sk_range & 0xffff;
141 		sk_hi = sk_range >> 16;
142 
143 		if (lo <= sk_lo && sk_lo <= hi)
144 			lo = sk_lo;
145 		if (lo <= sk_hi && sk_hi <= hi)
146 			hi = sk_hi;
147 		local_range = true;
148 	}
149 
150 	*low = lo;
151 	*high = hi;
152 	return local_range;
153 }
154 EXPORT_SYMBOL(inet_sk_get_local_port_range);
155 
inet_use_bhash2_on_bind(const struct sock * sk)156 static bool inet_use_bhash2_on_bind(const struct sock *sk)
157 {
158 #if IS_ENABLED(CONFIG_IPV6)
159 	if (sk->sk_family == AF_INET6) {
160 		if (ipv6_addr_any(&sk->sk_v6_rcv_saddr))
161 			return false;
162 
163 		if (!ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
164 			return true;
165 	}
166 #endif
167 	return sk->sk_rcv_saddr != htonl(INADDR_ANY);
168 }
169 
inet_bind_conflict(const struct sock * sk,struct sock * sk2,kuid_t uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)170 static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2,
171 			       kuid_t uid, bool relax,
172 			       bool reuseport_cb_ok, bool reuseport_ok)
173 {
174 	int bound_dev_if2;
175 
176 	if (sk == sk2)
177 		return false;
178 
179 	bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
180 
181 	if (!sk->sk_bound_dev_if || !bound_dev_if2 ||
182 	    sk->sk_bound_dev_if == bound_dev_if2) {
183 		if (sk->sk_reuse && sk2->sk_reuse &&
184 		    sk2->sk_state != TCP_LISTEN) {
185 			if (!relax || (!reuseport_ok && sk->sk_reuseport &&
186 				       sk2->sk_reuseport && reuseport_cb_ok &&
187 				       (sk2->sk_state == TCP_TIME_WAIT ||
188 					uid_eq(uid, sk_uid(sk2)))))
189 				return true;
190 		} else if (!reuseport_ok || !sk->sk_reuseport ||
191 			   !sk2->sk_reuseport || !reuseport_cb_ok ||
192 			   (sk2->sk_state != TCP_TIME_WAIT &&
193 			    !uid_eq(uid, sk_uid(sk2)))) {
194 			return true;
195 		}
196 	}
197 	return false;
198 }
199 
__inet_bhash2_conflict(const struct sock * sk,struct sock * sk2,kuid_t uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)200 static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2,
201 				   kuid_t uid, bool relax,
202 				   bool reuseport_cb_ok, bool reuseport_ok)
203 {
204 	if (ipv6_only_sock(sk2)) {
205 		if (sk->sk_family == AF_INET)
206 			return false;
207 
208 #if IS_ENABLED(CONFIG_IPV6)
209 		if (ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
210 			return false;
211 #endif
212 	}
213 
214 	return inet_bind_conflict(sk, sk2, uid, relax,
215 				  reuseport_cb_ok, reuseport_ok);
216 }
217 
inet_bhash2_conflict(const struct sock * sk,const struct inet_bind2_bucket * tb2,kuid_t uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)218 static bool inet_bhash2_conflict(const struct sock *sk,
219 				 const struct inet_bind2_bucket *tb2,
220 				 kuid_t uid,
221 				 bool relax, bool reuseport_cb_ok,
222 				 bool reuseport_ok)
223 {
224 	struct sock *sk2;
225 
226 	sk_for_each_bound(sk2, &tb2->owners) {
227 		if (__inet_bhash2_conflict(sk, sk2, uid, relax,
228 					   reuseport_cb_ok, reuseport_ok))
229 			return true;
230 	}
231 
232 	return false;
233 }
234 
235 #define sk_for_each_bound_bhash(__sk, __tb2, __tb)			\
236 	hlist_for_each_entry(__tb2, &(__tb)->bhash2, bhash_node)	\
237 		sk_for_each_bound((__sk), &(__tb2)->owners)
238 
239 /* This should be called only when the tb and tb2 hashbuckets' locks are held */
inet_csk_bind_conflict(const struct sock * sk,const struct inet_bind_bucket * tb,const struct inet_bind2_bucket * tb2,bool relax,bool reuseport_ok)240 static int inet_csk_bind_conflict(const struct sock *sk,
241 				  const struct inet_bind_bucket *tb,
242 				  const struct inet_bind2_bucket *tb2, /* may be null */
243 				  bool relax, bool reuseport_ok)
244 {
245 	struct sock_reuseport *reuseport_cb;
246 	kuid_t uid = sk_uid(sk);
247 	bool reuseport_cb_ok;
248 	struct sock *sk2;
249 
250 	rcu_read_lock();
251 	reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
252 	/* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
253 	reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
254 	rcu_read_unlock();
255 
256 	/* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if
257 	 * ipv4) should have been checked already. We need to do these two
258 	 * checks separately because their spinlocks have to be acquired/released
259 	 * independently of each other, to prevent possible deadlocks
260 	 */
261 	if (inet_use_bhash2_on_bind(sk))
262 		return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax,
263 						   reuseport_cb_ok, reuseport_ok);
264 
265 	/* Unlike other sk lookup places we do not check
266 	 * for sk_net here, since _all_ the socks listed
267 	 * in tb->owners and tb2->owners list belong
268 	 * to the same net - the one this bucket belongs to.
269 	 */
270 	sk_for_each_bound_bhash(sk2, tb2, tb) {
271 		if (!inet_bind_conflict(sk, sk2, uid, relax, reuseport_cb_ok, reuseport_ok))
272 			continue;
273 
274 		if (inet_rcv_saddr_equal(sk, sk2, true))
275 			return true;
276 	}
277 
278 	return false;
279 }
280 
281 /* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or
282  * INADDR_ANY (if ipv4) socket.
283  *
284  * Caller must hold bhash hashbucket lock with local bh disabled, to protect
285  * against concurrent binds on the port for addr any
286  */
inet_bhash2_addr_any_conflict(const struct sock * sk,int port,int l3mdev,bool relax,bool reuseport_ok)287 static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev,
288 					  bool relax, bool reuseport_ok)
289 {
290 	const struct net *net = sock_net(sk);
291 	struct sock_reuseport *reuseport_cb;
292 	struct inet_bind_hashbucket *head2;
293 	struct inet_bind2_bucket *tb2;
294 	kuid_t uid = sk_uid(sk);
295 	bool conflict = false;
296 	bool reuseport_cb_ok;
297 
298 	rcu_read_lock();
299 	reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
300 	/* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
301 	reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
302 	rcu_read_unlock();
303 
304 	head2 = inet_bhash2_addr_any_hashbucket(sk, net, port);
305 
306 	spin_lock(&head2->lock);
307 
308 	inet_bind_bucket_for_each(tb2, &head2->chain) {
309 		if (!inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk))
310 			continue;
311 
312 		if (!inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok,	reuseport_ok))
313 			continue;
314 
315 		conflict = true;
316 		break;
317 	}
318 
319 	spin_unlock(&head2->lock);
320 
321 	return conflict;
322 }
323 
324 /*
325  * Find an open port number for the socket.  Returns with the
326  * inet_bind_hashbucket locks held if successful.
327  */
328 static struct inet_bind_hashbucket *
inet_csk_find_open_port(const struct sock * sk,struct inet_bind_bucket ** tb_ret,struct inet_bind2_bucket ** tb2_ret,struct inet_bind_hashbucket ** head2_ret,int * port_ret)329 inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret,
330 			struct inet_bind2_bucket **tb2_ret,
331 			struct inet_bind_hashbucket **head2_ret, int *port_ret)
332 {
333 	struct inet_hashinfo *hinfo = tcp_get_hashinfo(sk);
334 	int i, low, high, attempt_half, port, l3mdev;
335 	struct inet_bind_hashbucket *head, *head2;
336 	struct net *net = sock_net(sk);
337 	struct inet_bind2_bucket *tb2;
338 	struct inet_bind_bucket *tb;
339 	u32 remaining, offset;
340 	bool relax = false;
341 
342 	l3mdev = inet_sk_bound_l3mdev(sk);
343 ports_exhausted:
344 	attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
345 other_half_scan:
346 	inet_sk_get_local_port_range(sk, &low, &high);
347 	high++; /* [32768, 60999] -> [32768, 61000[ */
348 	if (high - low < 4)
349 		attempt_half = 0;
350 	if (attempt_half) {
351 		int half = low + (((high - low) >> 2) << 1);
352 
353 		if (attempt_half == 1)
354 			high = half;
355 		else
356 			low = half;
357 	}
358 	remaining = high - low;
359 	if (likely(remaining > 1))
360 		remaining &= ~1U;
361 
362 	offset = get_random_u32_below(remaining);
363 	/* __inet_hash_connect() favors ports having @low parity
364 	 * We do the opposite to not pollute connect() users.
365 	 */
366 	offset |= 1U;
367 
368 other_parity_scan:
369 	port = low + offset;
370 	for (i = 0; i < remaining; i += 2, port += 2) {
371 		if (unlikely(port >= high))
372 			port -= remaining;
373 		if (inet_is_local_reserved_port(net, port))
374 			continue;
375 		head = &hinfo->bhash[inet_bhashfn(net, port,
376 						  hinfo->bhash_size)];
377 		spin_lock_bh(&head->lock);
378 		if (inet_use_bhash2_on_bind(sk)) {
379 			if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false))
380 				goto next_port;
381 		}
382 
383 		head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
384 		spin_lock(&head2->lock);
385 		tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
386 		inet_bind_bucket_for_each(tb, &head->chain)
387 			if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
388 				if (!inet_csk_bind_conflict(sk, tb, tb2,
389 							    relax, false))
390 					goto success;
391 				spin_unlock(&head2->lock);
392 				goto next_port;
393 			}
394 		tb = NULL;
395 		goto success;
396 next_port:
397 		spin_unlock_bh(&head->lock);
398 		cond_resched();
399 	}
400 
401 	offset--;
402 	if (!(offset & 1))
403 		goto other_parity_scan;
404 
405 	if (attempt_half == 1) {
406 		/* OK we now try the upper half of the range */
407 		attempt_half = 2;
408 		goto other_half_scan;
409 	}
410 
411 	if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
412 		/* We still have a chance to connect to different destinations */
413 		relax = true;
414 		goto ports_exhausted;
415 	}
416 	return NULL;
417 success:
418 	*port_ret = port;
419 	*tb_ret = tb;
420 	*tb2_ret = tb2;
421 	*head2_ret = head2;
422 	return head;
423 }
424 
sk_reuseport_match(struct inet_bind_bucket * tb,struct sock * sk)425 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
426 				     struct sock *sk)
427 {
428 	if (tb->fastreuseport <= 0)
429 		return 0;
430 	if (!sk->sk_reuseport)
431 		return 0;
432 	if (rcu_access_pointer(sk->sk_reuseport_cb))
433 		return 0;
434 	if (!uid_eq(tb->fastuid, sk_uid(sk)))
435 		return 0;
436 	/* We only need to check the rcv_saddr if this tb was once marked
437 	 * without fastreuseport and then was reset, as we can only know that
438 	 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
439 	 * owners list.
440 	 */
441 	if (tb->fastreuseport == FASTREUSEPORT_ANY)
442 		return 1;
443 #if IS_ENABLED(CONFIG_IPV6)
444 	if (tb->fast_sk_family == AF_INET6)
445 		return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
446 					    inet6_rcv_saddr(sk),
447 					    tb->fast_rcv_saddr,
448 					    sk->sk_rcv_saddr,
449 					    tb->fast_ipv6_only,
450 					    ipv6_only_sock(sk), true, false);
451 #endif
452 	return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
453 				    ipv6_only_sock(sk), true, false);
454 }
455 
inet_csk_update_fastreuse(struct inet_bind_bucket * tb,struct sock * sk)456 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
457 			       struct sock *sk)
458 {
459 	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
460 
461 	if (hlist_empty(&tb->bhash2)) {
462 		tb->fastreuse = reuse;
463 		if (sk->sk_reuseport) {
464 			tb->fastreuseport = FASTREUSEPORT_ANY;
465 			tb->fastuid = sk_uid(sk);
466 			tb->fast_rcv_saddr = sk->sk_rcv_saddr;
467 			tb->fast_ipv6_only = ipv6_only_sock(sk);
468 			tb->fast_sk_family = sk->sk_family;
469 #if IS_ENABLED(CONFIG_IPV6)
470 			tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
471 #endif
472 		} else {
473 			tb->fastreuseport = 0;
474 		}
475 	} else {
476 		if (!reuse)
477 			tb->fastreuse = 0;
478 		if (sk->sk_reuseport) {
479 			/* We didn't match or we don't have fastreuseport set on
480 			 * the tb, but we have sk_reuseport set on this socket
481 			 * and we know that there are no bind conflicts with
482 			 * this socket in this tb, so reset our tb's reuseport
483 			 * settings so that any subsequent sockets that match
484 			 * our current socket will be put on the fast path.
485 			 *
486 			 * If we reset we need to set FASTREUSEPORT_STRICT so we
487 			 * do extra checking for all subsequent sk_reuseport
488 			 * socks.
489 			 */
490 			if (!sk_reuseport_match(tb, sk)) {
491 				tb->fastreuseport = FASTREUSEPORT_STRICT;
492 				tb->fastuid = sk_uid(sk);
493 				tb->fast_rcv_saddr = sk->sk_rcv_saddr;
494 				tb->fast_ipv6_only = ipv6_only_sock(sk);
495 				tb->fast_sk_family = sk->sk_family;
496 #if IS_ENABLED(CONFIG_IPV6)
497 				tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
498 #endif
499 			}
500 		} else {
501 			tb->fastreuseport = 0;
502 		}
503 	}
504 }
505 
506 /* Obtain a reference to a local port for the given sock,
507  * if snum is zero it means select any available local port.
508  * We try to allocate an odd port (and leave even ports for connect())
509  */
inet_csk_get_port(struct sock * sk,unsigned short snum)510 int inet_csk_get_port(struct sock *sk, unsigned short snum)
511 {
512 	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
513 	bool found_port = false, check_bind_conflict = true;
514 	bool bhash_created = false, bhash2_created = false;
515 	struct inet_hashinfo *hinfo = tcp_get_hashinfo(sk);
516 	int ret = -EADDRINUSE, port = snum, l3mdev;
517 	struct inet_bind_hashbucket *head, *head2;
518 	struct inet_bind2_bucket *tb2 = NULL;
519 	struct inet_bind_bucket *tb = NULL;
520 	bool head2_lock_acquired = false;
521 	struct net *net = sock_net(sk);
522 
523 	l3mdev = inet_sk_bound_l3mdev(sk);
524 
525 	if (!port) {
526 		head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port);
527 		if (!head)
528 			return ret;
529 
530 		head2_lock_acquired = true;
531 
532 		if (tb && tb2)
533 			goto success;
534 		found_port = true;
535 	} else {
536 		head = &hinfo->bhash[inet_bhashfn(net, port,
537 						  hinfo->bhash_size)];
538 		spin_lock_bh(&head->lock);
539 		inet_bind_bucket_for_each(tb, &head->chain)
540 			if (inet_bind_bucket_match(tb, net, port, l3mdev))
541 				break;
542 	}
543 
544 	if (!tb) {
545 		tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net,
546 					     head, port, l3mdev);
547 		if (!tb)
548 			goto fail_unlock;
549 		bhash_created = true;
550 	}
551 
552 	if (!found_port) {
553 		if (!hlist_empty(&tb->bhash2)) {
554 			if (sk->sk_reuse == SK_FORCE_REUSE ||
555 			    (tb->fastreuse > 0 && reuse) ||
556 			    sk_reuseport_match(tb, sk))
557 				check_bind_conflict = false;
558 		}
559 
560 		if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) {
561 			if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true))
562 				goto fail_unlock;
563 		}
564 
565 		head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
566 		spin_lock(&head2->lock);
567 		head2_lock_acquired = true;
568 		tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
569 	}
570 
571 	if (!tb2) {
572 		tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep,
573 					       net, head2, tb, sk);
574 		if (!tb2)
575 			goto fail_unlock;
576 		bhash2_created = true;
577 	}
578 
579 	if (!found_port && check_bind_conflict) {
580 		if (inet_csk_bind_conflict(sk, tb, tb2, true, true))
581 			goto fail_unlock;
582 	}
583 
584 success:
585 	inet_csk_update_fastreuse(tb, sk);
586 
587 	if (!inet_csk(sk)->icsk_bind_hash)
588 		inet_bind_hash(sk, tb, tb2, port);
589 	WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
590 	WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2);
591 	ret = 0;
592 
593 fail_unlock:
594 	if (ret) {
595 		if (bhash2_created)
596 			inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep, tb2);
597 		if (bhash_created)
598 			inet_bind_bucket_destroy(tb);
599 	}
600 	if (head2_lock_acquired)
601 		spin_unlock(&head2->lock);
602 	spin_unlock_bh(&head->lock);
603 	return ret;
604 }
605 EXPORT_SYMBOL_GPL(inet_csk_get_port);
606 
607 /*
608  * Wait for an incoming connection, avoid race conditions. This must be called
609  * with the socket locked.
610  */
inet_csk_wait_for_connect(struct sock * sk,long timeo)611 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
612 {
613 	struct inet_connection_sock *icsk = inet_csk(sk);
614 	DEFINE_WAIT(wait);
615 	int err;
616 
617 	/*
618 	 * True wake-one mechanism for incoming connections: only
619 	 * one process gets woken up, not the 'whole herd'.
620 	 * Since we do not 'race & poll' for established sockets
621 	 * anymore, the common case will execute the loop only once.
622 	 *
623 	 * Subtle issue: "add_wait_queue_exclusive()" will be added
624 	 * after any current non-exclusive waiters, and we know that
625 	 * it will always _stay_ after any new non-exclusive waiters
626 	 * because all non-exclusive waiters are added at the
627 	 * beginning of the wait-queue. As such, it's ok to "drop"
628 	 * our exclusiveness temporarily when we get woken up without
629 	 * having to remove and re-insert us on the wait queue.
630 	 */
631 	for (;;) {
632 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
633 					  TASK_INTERRUPTIBLE);
634 		release_sock(sk);
635 		if (reqsk_queue_empty(&icsk->icsk_accept_queue))
636 			timeo = schedule_timeout(timeo);
637 		sched_annotate_sleep();
638 		lock_sock(sk);
639 		err = 0;
640 		if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
641 			break;
642 		err = -EINVAL;
643 		if (sk->sk_state != TCP_LISTEN)
644 			break;
645 		err = sock_intr_errno(timeo);
646 		if (signal_pending(current))
647 			break;
648 		err = -EAGAIN;
649 		if (!timeo)
650 			break;
651 	}
652 	finish_wait(sk_sleep(sk), &wait);
653 	return err;
654 }
655 
656 /*
657  * This will accept the next outstanding connection.
658  */
inet_csk_accept(struct sock * sk,struct proto_accept_arg * arg)659 struct sock *inet_csk_accept(struct sock *sk, struct proto_accept_arg *arg)
660 {
661 	struct inet_connection_sock *icsk = inet_csk(sk);
662 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
663 	struct request_sock *req;
664 	struct sock *newsk;
665 	int error;
666 
667 	lock_sock(sk);
668 
669 	/* We need to make sure that this socket is listening,
670 	 * and that it has something pending.
671 	 */
672 	error = -EINVAL;
673 	if (sk->sk_state != TCP_LISTEN)
674 		goto out_err;
675 
676 	/* Find already established connection */
677 	if (reqsk_queue_empty(queue)) {
678 		long timeo = sock_rcvtimeo(sk, arg->flags & O_NONBLOCK);
679 
680 		/* If this is a non blocking socket don't sleep */
681 		error = -EAGAIN;
682 		if (!timeo)
683 			goto out_err;
684 
685 		error = inet_csk_wait_for_connect(sk, timeo);
686 		if (error)
687 			goto out_err;
688 	}
689 	req = reqsk_queue_remove(queue, sk);
690 	arg->is_empty = reqsk_queue_empty(queue);
691 	newsk = req->sk;
692 
693 	if (sk->sk_protocol == IPPROTO_TCP &&
694 	    tcp_rsk(req)->tfo_listener) {
695 		spin_lock_bh(&queue->fastopenq.lock);
696 		if (tcp_rsk(req)->tfo_listener) {
697 			/* We are still waiting for the final ACK from 3WHS
698 			 * so can't free req now. Instead, we set req->sk to
699 			 * NULL to signify that the child socket is taken
700 			 * so reqsk_fastopen_remove() will free the req
701 			 * when 3WHS finishes (or is aborted).
702 			 */
703 			req->sk = NULL;
704 			req = NULL;
705 		}
706 		spin_unlock_bh(&queue->fastopenq.lock);
707 	}
708 
709 out:
710 	release_sock(sk);
711 	if (newsk && mem_cgroup_sockets_enabled) {
712 		gfp_t gfp = GFP_KERNEL | __GFP_NOFAIL;
713 		int amt = 0;
714 
715 		/* atomically get the memory usage, set and charge the
716 		 * newsk->sk_memcg.
717 		 */
718 		lock_sock(newsk);
719 
720 		mem_cgroup_sk_alloc(newsk);
721 		if (newsk->sk_memcg) {
722 			/* The socket has not been accepted yet, no need
723 			 * to look at newsk->sk_wmem_queued.
724 			 */
725 			amt = sk_mem_pages(newsk->sk_forward_alloc +
726 					   atomic_read(&newsk->sk_rmem_alloc));
727 		}
728 
729 		if (amt)
730 			mem_cgroup_charge_skmem(newsk->sk_memcg, amt, gfp);
731 		kmem_cache_charge(newsk, gfp);
732 
733 		release_sock(newsk);
734 	}
735 	if (req)
736 		reqsk_put(req);
737 
738 	if (newsk)
739 		inet_init_csk_locks(newsk);
740 
741 	return newsk;
742 out_err:
743 	newsk = NULL;
744 	req = NULL;
745 	arg->err = error;
746 	goto out;
747 }
748 EXPORT_SYMBOL(inet_csk_accept);
749 
750 /*
751  * Using different timers for retransmit, delayed acks and probes
752  * We may wish use just one timer maintaining a list of expire jiffies
753  * to optimize.
754  */
inet_csk_init_xmit_timers(struct sock * sk,void (* retransmit_handler)(struct timer_list * t),void (* delack_handler)(struct timer_list * t),void (* keepalive_handler)(struct timer_list * t))755 void inet_csk_init_xmit_timers(struct sock *sk,
756 			       void (*retransmit_handler)(struct timer_list *t),
757 			       void (*delack_handler)(struct timer_list *t),
758 			       void (*keepalive_handler)(struct timer_list *t))
759 {
760 	struct inet_connection_sock *icsk = inet_csk(sk);
761 
762 	timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
763 	timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
764 	timer_setup(&sk->sk_timer, keepalive_handler, 0);
765 	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
766 }
767 
inet_csk_clear_xmit_timers(struct sock * sk)768 void inet_csk_clear_xmit_timers(struct sock *sk)
769 {
770 	struct inet_connection_sock *icsk = inet_csk(sk);
771 
772 	smp_store_release(&icsk->icsk_pending, 0);
773 	smp_store_release(&icsk->icsk_ack.pending, 0);
774 
775 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
776 	sk_stop_timer(sk, &icsk->icsk_delack_timer);
777 	sk_stop_timer(sk, &sk->sk_timer);
778 }
779 
inet_csk_clear_xmit_timers_sync(struct sock * sk)780 void inet_csk_clear_xmit_timers_sync(struct sock *sk)
781 {
782 	struct inet_connection_sock *icsk = inet_csk(sk);
783 
784 	/* ongoing timer handlers need to acquire socket lock. */
785 	sock_not_owned_by_me(sk);
786 
787 	smp_store_release(&icsk->icsk_pending, 0);
788 	smp_store_release(&icsk->icsk_ack.pending, 0);
789 
790 	sk_stop_timer_sync(sk, &icsk->icsk_retransmit_timer);
791 	sk_stop_timer_sync(sk, &icsk->icsk_delack_timer);
792 	sk_stop_timer_sync(sk, &sk->sk_timer);
793 }
794 
inet_csk_route_req(const struct sock * sk,struct flowi4 * fl4,const struct request_sock * req)795 struct dst_entry *inet_csk_route_req(const struct sock *sk,
796 				     struct flowi4 *fl4,
797 				     const struct request_sock *req)
798 {
799 	const struct inet_request_sock *ireq = inet_rsk(req);
800 	struct net *net = read_pnet(&ireq->ireq_net);
801 	struct ip_options_rcu *opt;
802 	struct rtable *rt;
803 
804 	rcu_read_lock();
805 	opt = rcu_dereference(ireq->ireq_opt);
806 
807 	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
808 			   ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
809 			   sk->sk_protocol, inet_sk_flowi_flags(sk),
810 			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
811 			   ireq->ir_loc_addr, ireq->ir_rmt_port,
812 			   htons(ireq->ir_num), sk_uid(sk));
813 	security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
814 	rt = ip_route_output_flow(net, fl4, sk);
815 	if (IS_ERR(rt))
816 		goto no_route;
817 	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
818 		goto route_err;
819 	rcu_read_unlock();
820 	return &rt->dst;
821 
822 route_err:
823 	ip_rt_put(rt);
824 no_route:
825 	rcu_read_unlock();
826 	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
827 	return NULL;
828 }
829 
inet_csk_route_child_sock(const struct sock * sk,struct sock * newsk,const struct request_sock * req)830 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
831 					    struct sock *newsk,
832 					    const struct request_sock *req)
833 {
834 	const struct inet_request_sock *ireq = inet_rsk(req);
835 	struct net *net = read_pnet(&ireq->ireq_net);
836 	struct inet_sock *newinet = inet_sk(newsk);
837 	struct ip_options_rcu *opt;
838 	struct flowi4 *fl4;
839 	struct rtable *rt;
840 
841 	opt = rcu_dereference(ireq->ireq_opt);
842 	fl4 = &newinet->cork.fl.u.ip4;
843 
844 	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
845 			   ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
846 			   sk->sk_protocol, inet_sk_flowi_flags(sk),
847 			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
848 			   ireq->ir_loc_addr, ireq->ir_rmt_port,
849 			   htons(ireq->ir_num), sk_uid(sk));
850 	security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
851 	rt = ip_route_output_flow(net, fl4, sk);
852 	if (IS_ERR(rt))
853 		goto no_route;
854 	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
855 		goto route_err;
856 	return &rt->dst;
857 
858 route_err:
859 	ip_rt_put(rt);
860 no_route:
861 	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
862 	return NULL;
863 }
864 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
865 
866 /* Decide when to expire the request and when to resend SYN-ACK */
syn_ack_recalc(struct request_sock * req,const int max_syn_ack_retries,const u8 rskq_defer_accept,int * expire,int * resend)867 static void syn_ack_recalc(struct request_sock *req,
868 			   const int max_syn_ack_retries,
869 			   const u8 rskq_defer_accept,
870 			   int *expire, int *resend)
871 {
872 	if (!rskq_defer_accept) {
873 		*expire = req->num_timeout >= max_syn_ack_retries;
874 		*resend = 1;
875 		return;
876 	}
877 	*expire = req->num_timeout >= max_syn_ack_retries &&
878 		  (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
879 	/* Do not resend while waiting for data after ACK,
880 	 * start to resend on end of deferring period to give
881 	 * last chance for data or ACK to create established socket.
882 	 */
883 	*resend = !inet_rsk(req)->acked ||
884 		  req->num_timeout >= rskq_defer_accept - 1;
885 }
886 
887 static struct request_sock *
reqsk_alloc_noprof(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)888 reqsk_alloc_noprof(const struct request_sock_ops *ops, struct sock *sk_listener,
889 		   bool attach_listener)
890 {
891 	struct request_sock *req;
892 
893 	req = kmem_cache_alloc_noprof(ops->slab, GFP_ATOMIC | __GFP_NOWARN);
894 	if (!req)
895 		return NULL;
896 	req->rsk_listener = NULL;
897 	if (attach_listener) {
898 		if (unlikely(!refcount_inc_not_zero(&sk_listener->sk_refcnt))) {
899 			kmem_cache_free(ops->slab, req);
900 			return NULL;
901 		}
902 		req->rsk_listener = sk_listener;
903 	}
904 	req->rsk_ops = ops;
905 	req_to_sk(req)->sk_prot = sk_listener->sk_prot;
906 	sk_node_init(&req_to_sk(req)->sk_node);
907 	sk_tx_queue_clear(req_to_sk(req));
908 	req->saved_syn = NULL;
909 	req->syncookie = 0;
910 	req->timeout = 0;
911 	req->num_timeout = 0;
912 	req->num_retrans = 0;
913 	req->sk = NULL;
914 	refcount_set(&req->rsk_refcnt, 0);
915 
916 	return req;
917 }
918 #define reqsk_alloc(...)	alloc_hooks(reqsk_alloc_noprof(__VA_ARGS__))
919 
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)920 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
921 				      struct sock *sk_listener,
922 				      bool attach_listener)
923 {
924 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
925 					       attach_listener);
926 
927 	if (req) {
928 		struct inet_request_sock *ireq = inet_rsk(req);
929 
930 		ireq->ireq_opt = NULL;
931 #if IS_ENABLED(CONFIG_IPV6)
932 		ireq->pktopts = NULL;
933 #endif
934 		atomic64_set(&ireq->ir_cookie, 0);
935 		ireq->ireq_state = TCP_NEW_SYN_RECV;
936 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
937 		ireq->ireq_family = sk_listener->sk_family;
938 		req->timeout = TCP_TIMEOUT_INIT;
939 	}
940 
941 	return req;
942 }
943 EXPORT_SYMBOL(inet_reqsk_alloc);
944 
inet_reqsk_clone(struct request_sock * req,struct sock * sk)945 static struct request_sock *inet_reqsk_clone(struct request_sock *req,
946 					     struct sock *sk)
947 {
948 	struct sock *req_sk, *nreq_sk;
949 	struct request_sock *nreq;
950 
951 	nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
952 	if (!nreq) {
953 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
954 
955 		/* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
956 		sock_put(sk);
957 		return NULL;
958 	}
959 
960 	req_sk = req_to_sk(req);
961 	nreq_sk = req_to_sk(nreq);
962 
963 	memcpy(nreq_sk, req_sk,
964 	       offsetof(struct sock, sk_dontcopy_begin));
965 	unsafe_memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
966 		      req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end),
967 		      /* alloc is larger than struct, see above */);
968 
969 	sk_node_init(&nreq_sk->sk_node);
970 	nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
971 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
972 	nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
973 #endif
974 	nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
975 
976 	nreq->rsk_listener = sk;
977 
978 	/* We need not acquire fastopenq->lock
979 	 * because the child socket is locked in inet_csk_listen_stop().
980 	 */
981 	if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
982 		rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
983 
984 	return nreq;
985 }
986 
reqsk_queue_migrated(struct request_sock_queue * queue,const struct request_sock * req)987 static void reqsk_queue_migrated(struct request_sock_queue *queue,
988 				 const struct request_sock *req)
989 {
990 	if (req->num_timeout == 0)
991 		atomic_inc(&queue->young);
992 	atomic_inc(&queue->qlen);
993 }
994 
reqsk_migrate_reset(struct request_sock * req)995 static void reqsk_migrate_reset(struct request_sock *req)
996 {
997 	req->saved_syn = NULL;
998 #if IS_ENABLED(CONFIG_IPV6)
999 	inet_rsk(req)->ipv6_opt = NULL;
1000 	inet_rsk(req)->pktopts = NULL;
1001 #else
1002 	inet_rsk(req)->ireq_opt = NULL;
1003 #endif
1004 }
1005 
1006 /* return true if req was found in the ehash table */
reqsk_queue_unlink(struct request_sock * req)1007 static bool reqsk_queue_unlink(struct request_sock *req)
1008 {
1009 	struct sock *sk = req_to_sk(req);
1010 	bool found = false;
1011 
1012 	if (sk_hashed(sk)) {
1013 		struct inet_hashinfo *hashinfo = tcp_get_hashinfo(sk);
1014 		spinlock_t *lock;
1015 
1016 		lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
1017 		spin_lock(lock);
1018 		found = __sk_nulls_del_node_init_rcu(sk);
1019 		spin_unlock(lock);
1020 	}
1021 
1022 	return found;
1023 }
1024 
__inet_csk_reqsk_queue_drop(struct sock * sk,struct request_sock * req,bool from_timer)1025 static bool __inet_csk_reqsk_queue_drop(struct sock *sk,
1026 					struct request_sock *req,
1027 					bool from_timer)
1028 {
1029 	bool unlinked = reqsk_queue_unlink(req);
1030 
1031 	if (!from_timer && timer_delete_sync(&req->rsk_timer))
1032 		reqsk_put(req);
1033 
1034 	if (unlinked) {
1035 		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
1036 		reqsk_put(req);
1037 	}
1038 
1039 	return unlinked;
1040 }
1041 
inet_csk_reqsk_queue_drop(struct sock * sk,struct request_sock * req)1042 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
1043 {
1044 	return __inet_csk_reqsk_queue_drop(sk, req, false);
1045 }
1046 
inet_csk_reqsk_queue_drop_and_put(struct sock * sk,struct request_sock * req)1047 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
1048 {
1049 	inet_csk_reqsk_queue_drop(sk, req);
1050 	reqsk_put(req);
1051 }
1052 EXPORT_IPV6_MOD(inet_csk_reqsk_queue_drop_and_put);
1053 
reqsk_timer_handler(struct timer_list * t)1054 static void reqsk_timer_handler(struct timer_list *t)
1055 {
1056 	struct request_sock *req = timer_container_of(req, t, rsk_timer);
1057 	struct request_sock *nreq = NULL, *oreq = req;
1058 	struct sock *sk_listener = req->rsk_listener;
1059 	struct inet_connection_sock *icsk;
1060 	struct request_sock_queue *queue;
1061 	struct net *net;
1062 	int max_syn_ack_retries, qlen, expire = 0, resend = 0;
1063 
1064 	if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
1065 		struct sock *nsk;
1066 
1067 		nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
1068 		if (!nsk)
1069 			goto drop;
1070 
1071 		nreq = inet_reqsk_clone(req, nsk);
1072 		if (!nreq)
1073 			goto drop;
1074 
1075 		/* The new timer for the cloned req can decrease the 2
1076 		 * by calling inet_csk_reqsk_queue_drop_and_put(), so
1077 		 * hold another count to prevent use-after-free and
1078 		 * call reqsk_put() just before return.
1079 		 */
1080 		refcount_set(&nreq->rsk_refcnt, 2 + 1);
1081 		timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1082 		reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
1083 
1084 		req = nreq;
1085 		sk_listener = nsk;
1086 	}
1087 
1088 	icsk = inet_csk(sk_listener);
1089 	net = sock_net(sk_listener);
1090 	max_syn_ack_retries = READ_ONCE(icsk->icsk_syn_retries) ? :
1091 		READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
1092 	/* Normally all the openreqs are young and become mature
1093 	 * (i.e. converted to established socket) for first timeout.
1094 	 * If synack was not acknowledged for 1 second, it means
1095 	 * one of the following things: synack was lost, ack was lost,
1096 	 * rtt is high or nobody planned to ack (i.e. synflood).
1097 	 * When server is a bit loaded, queue is populated with old
1098 	 * open requests, reducing effective size of queue.
1099 	 * When server is well loaded, queue size reduces to zero
1100 	 * after several minutes of work. It is not synflood,
1101 	 * it is normal operation. The solution is pruning
1102 	 * too old entries overriding normal timeout, when
1103 	 * situation becomes dangerous.
1104 	 *
1105 	 * Essentially, we reserve half of room for young
1106 	 * embrions; and abort old ones without pity, if old
1107 	 * ones are about to clog our table.
1108 	 */
1109 	queue = &icsk->icsk_accept_queue;
1110 	qlen = reqsk_queue_len(queue);
1111 	if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
1112 		int young = reqsk_queue_len_young(queue) << 1;
1113 
1114 		while (max_syn_ack_retries > 2) {
1115 			if (qlen < young)
1116 				break;
1117 			max_syn_ack_retries--;
1118 			young <<= 1;
1119 		}
1120 	}
1121 	syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
1122 		       &expire, &resend);
1123 	req->rsk_ops->syn_ack_timeout(req);
1124 	if (!expire &&
1125 	    (!resend ||
1126 	     !tcp_rtx_synack(sk_listener, req) ||
1127 	     inet_rsk(req)->acked)) {
1128 		if (req->num_timeout++ == 0)
1129 			atomic_dec(&queue->young);
1130 		mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX));
1131 
1132 		if (!nreq)
1133 			return;
1134 
1135 		if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
1136 			/* delete timer */
1137 			__inet_csk_reqsk_queue_drop(sk_listener, nreq, true);
1138 			goto no_ownership;
1139 		}
1140 
1141 		__NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
1142 		reqsk_migrate_reset(oreq);
1143 		reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
1144 		reqsk_put(oreq);
1145 
1146 		reqsk_put(nreq);
1147 		return;
1148 	}
1149 
1150 	/* Even if we can clone the req, we may need not retransmit any more
1151 	 * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
1152 	 * CPU may win the "own_req" race so that inet_ehash_insert() fails.
1153 	 */
1154 	if (nreq) {
1155 		__NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
1156 no_ownership:
1157 		reqsk_migrate_reset(nreq);
1158 		reqsk_queue_removed(queue, nreq);
1159 		__reqsk_free(nreq);
1160 	}
1161 
1162 drop:
1163 	__inet_csk_reqsk_queue_drop(sk_listener, oreq, true);
1164 	reqsk_put(oreq);
1165 }
1166 
reqsk_queue_hash_req(struct request_sock * req,unsigned long timeout)1167 static bool reqsk_queue_hash_req(struct request_sock *req,
1168 				 unsigned long timeout)
1169 {
1170 	bool found_dup_sk = false;
1171 
1172 	if (!inet_ehash_insert(req_to_sk(req), NULL, &found_dup_sk))
1173 		return false;
1174 
1175 	/* The timer needs to be setup after a successful insertion. */
1176 	timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1177 	mod_timer(&req->rsk_timer, jiffies + timeout);
1178 
1179 	/* before letting lookups find us, make sure all req fields
1180 	 * are committed to memory and refcnt initialized.
1181 	 */
1182 	smp_wmb();
1183 	refcount_set(&req->rsk_refcnt, 2 + 1);
1184 	return true;
1185 }
1186 
inet_csk_reqsk_queue_hash_add(struct sock * sk,struct request_sock * req,unsigned long timeout)1187 bool inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
1188 				   unsigned long timeout)
1189 {
1190 	if (!reqsk_queue_hash_req(req, timeout))
1191 		return false;
1192 
1193 	inet_csk_reqsk_queue_added(sk);
1194 	return true;
1195 }
1196 
inet_clone_ulp(const struct request_sock * req,struct sock * newsk,const gfp_t priority)1197 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
1198 			   const gfp_t priority)
1199 {
1200 	struct inet_connection_sock *icsk = inet_csk(newsk);
1201 
1202 	if (!icsk->icsk_ulp_ops)
1203 		return;
1204 
1205 	icsk->icsk_ulp_ops->clone(req, newsk, priority);
1206 }
1207 
1208 /**
1209  *	inet_csk_clone_lock - clone an inet socket, and lock its clone
1210  *	@sk: the socket to clone
1211  *	@req: request_sock
1212  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1213  *
1214  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1215  */
inet_csk_clone_lock(const struct sock * sk,const struct request_sock * req,const gfp_t priority)1216 struct sock *inet_csk_clone_lock(const struct sock *sk,
1217 				 const struct request_sock *req,
1218 				 const gfp_t priority)
1219 {
1220 	struct sock *newsk = sk_clone_lock(sk, priority);
1221 	struct inet_connection_sock *newicsk;
1222 	struct inet_request_sock *ireq;
1223 	struct inet_sock *newinet;
1224 
1225 	if (!newsk)
1226 		return NULL;
1227 
1228 	newicsk = inet_csk(newsk);
1229 	newinet = inet_sk(newsk);
1230 	ireq = inet_rsk(req);
1231 
1232 	newicsk->icsk_bind_hash = NULL;
1233 	newicsk->icsk_bind2_hash = NULL;
1234 
1235 	newinet->inet_dport = ireq->ir_rmt_port;
1236 	newinet->inet_num = ireq->ir_num;
1237 	newinet->inet_sport = htons(ireq->ir_num);
1238 
1239 	newsk->sk_bound_dev_if = ireq->ir_iif;
1240 
1241 	newsk->sk_daddr = ireq->ir_rmt_addr;
1242 	newsk->sk_rcv_saddr = ireq->ir_loc_addr;
1243 	newinet->inet_saddr = ireq->ir_loc_addr;
1244 
1245 #if IS_ENABLED(CONFIG_IPV6)
1246 	newsk->sk_v6_daddr = ireq->ir_v6_rmt_addr;
1247 	newsk->sk_v6_rcv_saddr = ireq->ir_v6_loc_addr;
1248 #endif
1249 
1250 	/* listeners have SOCK_RCU_FREE, not the children */
1251 	sock_reset_flag(newsk, SOCK_RCU_FREE);
1252 
1253 	inet_sk(newsk)->mc_list = NULL;
1254 
1255 	newsk->sk_mark = inet_rsk(req)->ir_mark;
1256 	atomic64_set(&newsk->sk_cookie,
1257 		     atomic64_read(&inet_rsk(req)->ir_cookie));
1258 
1259 	newicsk->icsk_retransmits = 0;
1260 	newicsk->icsk_backoff	  = 0;
1261 	newicsk->icsk_probes_out  = 0;
1262 	newicsk->icsk_probes_tstamp = 0;
1263 
1264 	/* Deinitialize accept_queue to trap illegal accesses. */
1265 	memset(&newicsk->icsk_accept_queue, 0,
1266 	       sizeof(newicsk->icsk_accept_queue));
1267 
1268 	inet_sk_set_state(newsk, TCP_SYN_RECV);
1269 
1270 	inet_clone_ulp(req, newsk, priority);
1271 
1272 	security_inet_csk_clone(newsk, req);
1273 
1274 	return newsk;
1275 }
1276 
1277 /*
1278  * At this point, there should be no process reference to this
1279  * socket, and thus no user references at all.  Therefore we
1280  * can assume the socket waitqueue is inactive and nobody will
1281  * try to jump onto it.
1282  */
inet_csk_destroy_sock(struct sock * sk)1283 void inet_csk_destroy_sock(struct sock *sk)
1284 {
1285 	WARN_ON(sk->sk_state != TCP_CLOSE);
1286 	WARN_ON(!sock_flag(sk, SOCK_DEAD));
1287 
1288 	/* It cannot be in hash table! */
1289 	WARN_ON(!sk_unhashed(sk));
1290 
1291 	/* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
1292 	WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
1293 
1294 	sk->sk_prot->destroy(sk);
1295 
1296 	sk_stream_kill_queues(sk);
1297 
1298 	xfrm_sk_free_policy(sk);
1299 
1300 	this_cpu_dec(*sk->sk_prot->orphan_count);
1301 
1302 	sock_put(sk);
1303 }
1304 EXPORT_SYMBOL(inet_csk_destroy_sock);
1305 
1306 /* This function allows to force a closure of a socket after the call to
1307  * tcp_create_openreq_child().
1308  */
inet_csk_prepare_forced_close(struct sock * sk)1309 void inet_csk_prepare_forced_close(struct sock *sk)
1310 	__releases(&sk->sk_lock.slock)
1311 {
1312 	/* sk_clone_lock locked the socket and set refcnt to 2 */
1313 	bh_unlock_sock(sk);
1314 	sock_put(sk);
1315 	inet_csk_prepare_for_destroy_sock(sk);
1316 	inet_sk(sk)->inet_num = 0;
1317 }
1318 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
1319 
inet_ulp_can_listen(const struct sock * sk)1320 static int inet_ulp_can_listen(const struct sock *sk)
1321 {
1322 	const struct inet_connection_sock *icsk = inet_csk(sk);
1323 
1324 	if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone)
1325 		return -EINVAL;
1326 
1327 	return 0;
1328 }
1329 
inet_csk_listen_start(struct sock * sk)1330 int inet_csk_listen_start(struct sock *sk)
1331 {
1332 	struct inet_connection_sock *icsk = inet_csk(sk);
1333 	struct inet_sock *inet = inet_sk(sk);
1334 	int err;
1335 
1336 	err = inet_ulp_can_listen(sk);
1337 	if (unlikely(err))
1338 		return err;
1339 
1340 	reqsk_queue_alloc(&icsk->icsk_accept_queue);
1341 
1342 	sk->sk_ack_backlog = 0;
1343 	inet_csk_delack_init(sk);
1344 
1345 	/* There is race window here: we announce ourselves listening,
1346 	 * but this transition is still not validated by get_port().
1347 	 * It is OK, because this socket enters to hash table only
1348 	 * after validation is complete.
1349 	 */
1350 	inet_sk_state_store(sk, TCP_LISTEN);
1351 	err = sk->sk_prot->get_port(sk, inet->inet_num);
1352 	if (!err) {
1353 		inet->inet_sport = htons(inet->inet_num);
1354 
1355 		sk_dst_reset(sk);
1356 		err = sk->sk_prot->hash(sk);
1357 
1358 		if (likely(!err))
1359 			return 0;
1360 	}
1361 
1362 	inet_sk_set_state(sk, TCP_CLOSE);
1363 	return err;
1364 }
1365 
inet_child_forget(struct sock * sk,struct request_sock * req,struct sock * child)1366 static void inet_child_forget(struct sock *sk, struct request_sock *req,
1367 			      struct sock *child)
1368 {
1369 	sk->sk_prot->disconnect(child, O_NONBLOCK);
1370 
1371 	sock_orphan(child);
1372 
1373 	this_cpu_inc(*sk->sk_prot->orphan_count);
1374 
1375 	if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1376 		BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1377 		BUG_ON(sk != req->rsk_listener);
1378 
1379 		/* Paranoid, to prevent race condition if
1380 		 * an inbound pkt destined for child is
1381 		 * blocked by sock lock in tcp_v4_rcv().
1382 		 * Also to satisfy an assertion in
1383 		 * tcp_v4_destroy_sock().
1384 		 */
1385 		RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1386 	}
1387 	inet_csk_destroy_sock(child);
1388 }
1389 
inet_csk_reqsk_queue_add(struct sock * sk,struct request_sock * req,struct sock * child)1390 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1391 				      struct request_sock *req,
1392 				      struct sock *child)
1393 {
1394 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1395 
1396 	spin_lock(&queue->rskq_lock);
1397 	if (unlikely(sk->sk_state != TCP_LISTEN)) {
1398 		inet_child_forget(sk, req, child);
1399 		child = NULL;
1400 	} else {
1401 		req->sk = child;
1402 		req->dl_next = NULL;
1403 		if (queue->rskq_accept_head == NULL)
1404 			WRITE_ONCE(queue->rskq_accept_head, req);
1405 		else
1406 			queue->rskq_accept_tail->dl_next = req;
1407 		queue->rskq_accept_tail = req;
1408 		sk_acceptq_added(sk);
1409 	}
1410 	spin_unlock(&queue->rskq_lock);
1411 	return child;
1412 }
1413 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1414 
inet_csk_complete_hashdance(struct sock * sk,struct sock * child,struct request_sock * req,bool own_req)1415 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1416 					 struct request_sock *req, bool own_req)
1417 {
1418 	if (own_req) {
1419 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
1420 		reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
1421 
1422 		if (sk != req->rsk_listener) {
1423 			/* another listening sk has been selected,
1424 			 * migrate the req to it.
1425 			 */
1426 			struct request_sock *nreq;
1427 
1428 			/* hold a refcnt for the nreq->rsk_listener
1429 			 * which is assigned in inet_reqsk_clone()
1430 			 */
1431 			sock_hold(sk);
1432 			nreq = inet_reqsk_clone(req, sk);
1433 			if (!nreq) {
1434 				inet_child_forget(sk, req, child);
1435 				goto child_put;
1436 			}
1437 
1438 			refcount_set(&nreq->rsk_refcnt, 1);
1439 			if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
1440 				__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
1441 				reqsk_migrate_reset(req);
1442 				reqsk_put(req);
1443 				return child;
1444 			}
1445 
1446 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
1447 			reqsk_migrate_reset(nreq);
1448 			__reqsk_free(nreq);
1449 		} else if (inet_csk_reqsk_queue_add(sk, req, child)) {
1450 			return child;
1451 		}
1452 	}
1453 	/* Too bad, another child took ownership of the request, undo. */
1454 child_put:
1455 	bh_unlock_sock(child);
1456 	sock_put(child);
1457 	return NULL;
1458 }
1459 
1460 /*
1461  *	This routine closes sockets which have been at least partially
1462  *	opened, but not yet accepted.
1463  */
inet_csk_listen_stop(struct sock * sk)1464 void inet_csk_listen_stop(struct sock *sk)
1465 {
1466 	struct inet_connection_sock *icsk = inet_csk(sk);
1467 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1468 	struct request_sock *next, *req;
1469 
1470 	/* Following specs, it would be better either to send FIN
1471 	 * (and enter FIN-WAIT-1, it is normal close)
1472 	 * or to send active reset (abort).
1473 	 * Certainly, it is pretty dangerous while synflood, but it is
1474 	 * bad justification for our negligence 8)
1475 	 * To be honest, we are not able to make either
1476 	 * of the variants now.			--ANK
1477 	 */
1478 	while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1479 		struct sock *child = req->sk, *nsk;
1480 		struct request_sock *nreq;
1481 
1482 		local_bh_disable();
1483 		bh_lock_sock(child);
1484 		WARN_ON(sock_owned_by_user(child));
1485 		sock_hold(child);
1486 
1487 		nsk = reuseport_migrate_sock(sk, child, NULL);
1488 		if (nsk) {
1489 			nreq = inet_reqsk_clone(req, nsk);
1490 			if (nreq) {
1491 				refcount_set(&nreq->rsk_refcnt, 1);
1492 
1493 				if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
1494 					__NET_INC_STATS(sock_net(nsk),
1495 							LINUX_MIB_TCPMIGRATEREQSUCCESS);
1496 					reqsk_migrate_reset(req);
1497 				} else {
1498 					__NET_INC_STATS(sock_net(nsk),
1499 							LINUX_MIB_TCPMIGRATEREQFAILURE);
1500 					reqsk_migrate_reset(nreq);
1501 					__reqsk_free(nreq);
1502 				}
1503 
1504 				/* inet_csk_reqsk_queue_add() has already
1505 				 * called inet_child_forget() on failure case.
1506 				 */
1507 				goto skip_child_forget;
1508 			}
1509 		}
1510 
1511 		inet_child_forget(sk, req, child);
1512 skip_child_forget:
1513 		reqsk_put(req);
1514 		bh_unlock_sock(child);
1515 		local_bh_enable();
1516 		sock_put(child);
1517 
1518 		cond_resched();
1519 	}
1520 	if (queue->fastopenq.rskq_rst_head) {
1521 		/* Free all the reqs queued in rskq_rst_head. */
1522 		spin_lock_bh(&queue->fastopenq.lock);
1523 		req = queue->fastopenq.rskq_rst_head;
1524 		queue->fastopenq.rskq_rst_head = NULL;
1525 		spin_unlock_bh(&queue->fastopenq.lock);
1526 		while (req != NULL) {
1527 			next = req->dl_next;
1528 			reqsk_put(req);
1529 			req = next;
1530 		}
1531 	}
1532 	WARN_ON_ONCE(sk->sk_ack_backlog);
1533 }
1534 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1535 
inet_csk_rebuild_route(struct sock * sk,struct flowi * fl)1536 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1537 {
1538 	const struct inet_sock *inet = inet_sk(sk);
1539 	struct flowi4 *fl4;
1540 	struct rtable *rt;
1541 
1542 	rcu_read_lock();
1543 	fl4 = &fl->u.ip4;
1544 	inet_sk_init_flowi4(inet, fl4);
1545 	rt = ip_route_output_flow(sock_net(sk), fl4, sk);
1546 	if (IS_ERR(rt))
1547 		rt = NULL;
1548 	if (rt)
1549 		sk_setup_caps(sk, &rt->dst);
1550 	rcu_read_unlock();
1551 
1552 	return &rt->dst;
1553 }
1554 
inet_csk_update_pmtu(struct sock * sk,u32 mtu)1555 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1556 {
1557 	struct dst_entry *dst = __sk_dst_check(sk, 0);
1558 	struct inet_sock *inet = inet_sk(sk);
1559 
1560 	if (!dst) {
1561 		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1562 		if (!dst)
1563 			goto out;
1564 	}
1565 	dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1566 
1567 	dst = __sk_dst_check(sk, 0);
1568 	if (!dst)
1569 		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1570 out:
1571 	return dst;
1572 }
1573