1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Support for INET connection oriented protocols.
8 *
9 * Authors: See the TCP sources
10 */
11
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_sk*_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses
28 * if IPv6 only, and any IPv4 addresses
29 * if not IPv6 only
30 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32 * and 0.0.0.0 equals to 0.0.0.0 only
33 */
ipv6_rcv_saddr_equal(const struct in6_addr * sk1_rcv_saddr6,const struct in6_addr * sk2_rcv_saddr6,__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk1_ipv6only,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35 const struct in6_addr *sk2_rcv_saddr6,
36 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37 bool sk1_ipv6only, bool sk2_ipv6only,
38 bool match_sk1_wildcard,
39 bool match_sk2_wildcard)
40 {
41 int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43
44 /* if both are mapped, treat as IPv4 */
45 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46 if (!sk2_ipv6only) {
47 if (sk1_rcv_saddr == sk2_rcv_saddr)
48 return true;
49 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50 (match_sk2_wildcard && !sk2_rcv_saddr);
51 }
52 return false;
53 }
54
55 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56 return true;
57
58 if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60 return true;
61
62 if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64 return true;
65
66 if (sk2_rcv_saddr6 &&
67 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68 return true;
69
70 return false;
71 }
72 #endif
73
74 /* match_sk*_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
75 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76 * 0.0.0.0 only equals to 0.0.0.0
77 */
ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79 bool sk2_ipv6only, bool match_sk1_wildcard,
80 bool match_sk2_wildcard)
81 {
82 if (!sk2_ipv6only) {
83 if (sk1_rcv_saddr == sk2_rcv_saddr)
84 return true;
85 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86 (match_sk2_wildcard && !sk2_rcv_saddr);
87 }
88 return false;
89 }
90
inet_rcv_saddr_equal(const struct sock * sk,const struct sock * sk2,bool match_wildcard)91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92 bool match_wildcard)
93 {
94 #if IS_ENABLED(CONFIG_IPV6)
95 if (sk->sk_family == AF_INET6)
96 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97 inet6_rcv_saddr(sk2),
98 sk->sk_rcv_saddr,
99 sk2->sk_rcv_saddr,
100 ipv6_only_sock(sk),
101 ipv6_only_sock(sk2),
102 match_wildcard,
103 match_wildcard);
104 #endif
105 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106 ipv6_only_sock(sk2), match_wildcard,
107 match_wildcard);
108 }
109 EXPORT_SYMBOL(inet_rcv_saddr_equal);
110
inet_rcv_saddr_any(const struct sock * sk)111 bool inet_rcv_saddr_any(const struct sock *sk)
112 {
113 #if IS_ENABLED(CONFIG_IPV6)
114 if (sk->sk_family == AF_INET6)
115 return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116 #endif
117 return !sk->sk_rcv_saddr;
118 }
119
120 /**
121 * inet_sk_get_local_port_range - fetch ephemeral ports range
122 * @sk: socket
123 * @low: pointer to low port
124 * @high: pointer to high port
125 *
126 * Fetch netns port range (/proc/sys/net/ipv4/ip_local_port_range)
127 * Range can be overridden if socket got IP_LOCAL_PORT_RANGE option.
128 * Returns true if IP_LOCAL_PORT_RANGE was set on this socket.
129 */
inet_sk_get_local_port_range(const struct sock * sk,int * low,int * high)130 bool inet_sk_get_local_port_range(const struct sock *sk, int *low, int *high)
131 {
132 int lo, hi, sk_lo, sk_hi;
133 bool local_range = false;
134 u32 sk_range;
135
136 inet_get_local_port_range(sock_net(sk), &lo, &hi);
137
138 sk_range = READ_ONCE(inet_sk(sk)->local_port_range);
139 if (unlikely(sk_range)) {
140 sk_lo = sk_range & 0xffff;
141 sk_hi = sk_range >> 16;
142
143 if (lo <= sk_lo && sk_lo <= hi)
144 lo = sk_lo;
145 if (lo <= sk_hi && sk_hi <= hi)
146 hi = sk_hi;
147 local_range = true;
148 }
149
150 *low = lo;
151 *high = hi;
152 return local_range;
153 }
154 EXPORT_SYMBOL(inet_sk_get_local_port_range);
155
inet_use_bhash2_on_bind(const struct sock * sk)156 static bool inet_use_bhash2_on_bind(const struct sock *sk)
157 {
158 #if IS_ENABLED(CONFIG_IPV6)
159 if (sk->sk_family == AF_INET6) {
160 if (ipv6_addr_any(&sk->sk_v6_rcv_saddr))
161 return false;
162
163 if (!ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
164 return true;
165 }
166 #endif
167 return sk->sk_rcv_saddr != htonl(INADDR_ANY);
168 }
169
inet_bind_conflict(const struct sock * sk,struct sock * sk2,kuid_t uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)170 static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2,
171 kuid_t uid, bool relax,
172 bool reuseport_cb_ok, bool reuseport_ok)
173 {
174 int bound_dev_if2;
175
176 if (sk == sk2)
177 return false;
178
179 bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
180
181 if (!sk->sk_bound_dev_if || !bound_dev_if2 ||
182 sk->sk_bound_dev_if == bound_dev_if2) {
183 if (sk->sk_reuse && sk2->sk_reuse &&
184 sk2->sk_state != TCP_LISTEN) {
185 if (!relax || (!reuseport_ok && sk->sk_reuseport &&
186 sk2->sk_reuseport && reuseport_cb_ok &&
187 (sk2->sk_state == TCP_TIME_WAIT ||
188 uid_eq(uid, sk_uid(sk2)))))
189 return true;
190 } else if (!reuseport_ok || !sk->sk_reuseport ||
191 !sk2->sk_reuseport || !reuseport_cb_ok ||
192 (sk2->sk_state != TCP_TIME_WAIT &&
193 !uid_eq(uid, sk_uid(sk2)))) {
194 return true;
195 }
196 }
197 return false;
198 }
199
__inet_bhash2_conflict(const struct sock * sk,struct sock * sk2,kuid_t uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)200 static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2,
201 kuid_t uid, bool relax,
202 bool reuseport_cb_ok, bool reuseport_ok)
203 {
204 if (ipv6_only_sock(sk2)) {
205 if (sk->sk_family == AF_INET)
206 return false;
207
208 #if IS_ENABLED(CONFIG_IPV6)
209 if (ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
210 return false;
211 #endif
212 }
213
214 return inet_bind_conflict(sk, sk2, uid, relax,
215 reuseport_cb_ok, reuseport_ok);
216 }
217
inet_bhash2_conflict(const struct sock * sk,const struct inet_bind2_bucket * tb2,kuid_t uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)218 static bool inet_bhash2_conflict(const struct sock *sk,
219 const struct inet_bind2_bucket *tb2,
220 kuid_t uid,
221 bool relax, bool reuseport_cb_ok,
222 bool reuseport_ok)
223 {
224 struct sock *sk2;
225
226 sk_for_each_bound(sk2, &tb2->owners) {
227 if (__inet_bhash2_conflict(sk, sk2, uid, relax,
228 reuseport_cb_ok, reuseport_ok))
229 return true;
230 }
231
232 return false;
233 }
234
235 #define sk_for_each_bound_bhash(__sk, __tb2, __tb) \
236 hlist_for_each_entry(__tb2, &(__tb)->bhash2, bhash_node) \
237 sk_for_each_bound((__sk), &(__tb2)->owners)
238
239 /* This should be called only when the tb and tb2 hashbuckets' locks are held */
inet_csk_bind_conflict(const struct sock * sk,const struct inet_bind_bucket * tb,const struct inet_bind2_bucket * tb2,bool relax,bool reuseport_ok)240 static int inet_csk_bind_conflict(const struct sock *sk,
241 const struct inet_bind_bucket *tb,
242 const struct inet_bind2_bucket *tb2, /* may be null */
243 bool relax, bool reuseport_ok)
244 {
245 struct sock_reuseport *reuseport_cb;
246 kuid_t uid = sk_uid(sk);
247 bool reuseport_cb_ok;
248 struct sock *sk2;
249
250 rcu_read_lock();
251 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
252 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
253 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
254 rcu_read_unlock();
255
256 /* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if
257 * ipv4) should have been checked already. We need to do these two
258 * checks separately because their spinlocks have to be acquired/released
259 * independently of each other, to prevent possible deadlocks
260 */
261 if (inet_use_bhash2_on_bind(sk))
262 return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax,
263 reuseport_cb_ok, reuseport_ok);
264
265 /* Unlike other sk lookup places we do not check
266 * for sk_net here, since _all_ the socks listed
267 * in tb->owners and tb2->owners list belong
268 * to the same net - the one this bucket belongs to.
269 */
270 sk_for_each_bound_bhash(sk2, tb2, tb) {
271 if (!inet_bind_conflict(sk, sk2, uid, relax, reuseport_cb_ok, reuseport_ok))
272 continue;
273
274 if (inet_rcv_saddr_equal(sk, sk2, true))
275 return true;
276 }
277
278 return false;
279 }
280
281 /* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or
282 * INADDR_ANY (if ipv4) socket.
283 *
284 * Caller must hold bhash hashbucket lock with local bh disabled, to protect
285 * against concurrent binds on the port for addr any
286 */
inet_bhash2_addr_any_conflict(const struct sock * sk,int port,int l3mdev,bool relax,bool reuseport_ok)287 static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev,
288 bool relax, bool reuseport_ok)
289 {
290 const struct net *net = sock_net(sk);
291 struct sock_reuseport *reuseport_cb;
292 struct inet_bind_hashbucket *head2;
293 struct inet_bind2_bucket *tb2;
294 kuid_t uid = sk_uid(sk);
295 bool conflict = false;
296 bool reuseport_cb_ok;
297
298 rcu_read_lock();
299 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
300 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
301 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
302 rcu_read_unlock();
303
304 head2 = inet_bhash2_addr_any_hashbucket(sk, net, port);
305
306 spin_lock(&head2->lock);
307
308 inet_bind_bucket_for_each(tb2, &head2->chain) {
309 if (!inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk))
310 continue;
311
312 if (!inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok, reuseport_ok))
313 continue;
314
315 conflict = true;
316 break;
317 }
318
319 spin_unlock(&head2->lock);
320
321 return conflict;
322 }
323
324 /*
325 * Find an open port number for the socket. Returns with the
326 * inet_bind_hashbucket locks held if successful.
327 */
328 static struct inet_bind_hashbucket *
inet_csk_find_open_port(const struct sock * sk,struct inet_bind_bucket ** tb_ret,struct inet_bind2_bucket ** tb2_ret,struct inet_bind_hashbucket ** head2_ret,int * port_ret)329 inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret,
330 struct inet_bind2_bucket **tb2_ret,
331 struct inet_bind_hashbucket **head2_ret, int *port_ret)
332 {
333 struct inet_hashinfo *hinfo = tcp_get_hashinfo(sk);
334 int i, low, high, attempt_half, port, l3mdev;
335 struct inet_bind_hashbucket *head, *head2;
336 struct net *net = sock_net(sk);
337 struct inet_bind2_bucket *tb2;
338 struct inet_bind_bucket *tb;
339 u32 remaining, offset;
340 bool relax = false;
341
342 l3mdev = inet_sk_bound_l3mdev(sk);
343 ports_exhausted:
344 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
345 other_half_scan:
346 inet_sk_get_local_port_range(sk, &low, &high);
347 high++; /* [32768, 60999] -> [32768, 61000[ */
348 if (high - low < 4)
349 attempt_half = 0;
350 if (attempt_half) {
351 int half = low + (((high - low) >> 2) << 1);
352
353 if (attempt_half == 1)
354 high = half;
355 else
356 low = half;
357 }
358 remaining = high - low;
359 if (likely(remaining > 1))
360 remaining &= ~1U;
361
362 offset = get_random_u32_below(remaining);
363 /* __inet_hash_connect() favors ports having @low parity
364 * We do the opposite to not pollute connect() users.
365 */
366 offset |= 1U;
367
368 other_parity_scan:
369 port = low + offset;
370 for (i = 0; i < remaining; i += 2, port += 2) {
371 if (unlikely(port >= high))
372 port -= remaining;
373 if (inet_is_local_reserved_port(net, port))
374 continue;
375 head = &hinfo->bhash[inet_bhashfn(net, port,
376 hinfo->bhash_size)];
377 spin_lock_bh(&head->lock);
378 if (inet_use_bhash2_on_bind(sk)) {
379 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false))
380 goto next_port;
381 }
382
383 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
384 spin_lock(&head2->lock);
385 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
386 inet_bind_bucket_for_each(tb, &head->chain)
387 if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
388 if (!inet_csk_bind_conflict(sk, tb, tb2,
389 relax, false))
390 goto success;
391 spin_unlock(&head2->lock);
392 goto next_port;
393 }
394 tb = NULL;
395 goto success;
396 next_port:
397 spin_unlock_bh(&head->lock);
398 cond_resched();
399 }
400
401 offset--;
402 if (!(offset & 1))
403 goto other_parity_scan;
404
405 if (attempt_half == 1) {
406 /* OK we now try the upper half of the range */
407 attempt_half = 2;
408 goto other_half_scan;
409 }
410
411 if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
412 /* We still have a chance to connect to different destinations */
413 relax = true;
414 goto ports_exhausted;
415 }
416 return NULL;
417 success:
418 *port_ret = port;
419 *tb_ret = tb;
420 *tb2_ret = tb2;
421 *head2_ret = head2;
422 return head;
423 }
424
sk_reuseport_match(struct inet_bind_bucket * tb,struct sock * sk)425 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
426 struct sock *sk)
427 {
428 if (tb->fastreuseport <= 0)
429 return 0;
430 if (!sk->sk_reuseport)
431 return 0;
432 if (rcu_access_pointer(sk->sk_reuseport_cb))
433 return 0;
434 if (!uid_eq(tb->fastuid, sk_uid(sk)))
435 return 0;
436 /* We only need to check the rcv_saddr if this tb was once marked
437 * without fastreuseport and then was reset, as we can only know that
438 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
439 * owners list.
440 */
441 if (tb->fastreuseport == FASTREUSEPORT_ANY)
442 return 1;
443 #if IS_ENABLED(CONFIG_IPV6)
444 if (tb->fast_sk_family == AF_INET6)
445 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
446 inet6_rcv_saddr(sk),
447 tb->fast_rcv_saddr,
448 sk->sk_rcv_saddr,
449 tb->fast_ipv6_only,
450 ipv6_only_sock(sk), true, false);
451 #endif
452 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
453 ipv6_only_sock(sk), true, false);
454 }
455
inet_csk_update_fastreuse(struct inet_bind_bucket * tb,struct sock * sk)456 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
457 struct sock *sk)
458 {
459 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
460
461 if (hlist_empty(&tb->bhash2)) {
462 tb->fastreuse = reuse;
463 if (sk->sk_reuseport) {
464 tb->fastreuseport = FASTREUSEPORT_ANY;
465 tb->fastuid = sk_uid(sk);
466 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
467 tb->fast_ipv6_only = ipv6_only_sock(sk);
468 tb->fast_sk_family = sk->sk_family;
469 #if IS_ENABLED(CONFIG_IPV6)
470 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
471 #endif
472 } else {
473 tb->fastreuseport = 0;
474 }
475 } else {
476 if (!reuse)
477 tb->fastreuse = 0;
478 if (sk->sk_reuseport) {
479 /* We didn't match or we don't have fastreuseport set on
480 * the tb, but we have sk_reuseport set on this socket
481 * and we know that there are no bind conflicts with
482 * this socket in this tb, so reset our tb's reuseport
483 * settings so that any subsequent sockets that match
484 * our current socket will be put on the fast path.
485 *
486 * If we reset we need to set FASTREUSEPORT_STRICT so we
487 * do extra checking for all subsequent sk_reuseport
488 * socks.
489 */
490 if (!sk_reuseport_match(tb, sk)) {
491 tb->fastreuseport = FASTREUSEPORT_STRICT;
492 tb->fastuid = sk_uid(sk);
493 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
494 tb->fast_ipv6_only = ipv6_only_sock(sk);
495 tb->fast_sk_family = sk->sk_family;
496 #if IS_ENABLED(CONFIG_IPV6)
497 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
498 #endif
499 }
500 } else {
501 tb->fastreuseport = 0;
502 }
503 }
504 }
505
506 /* Obtain a reference to a local port for the given sock,
507 * if snum is zero it means select any available local port.
508 * We try to allocate an odd port (and leave even ports for connect())
509 */
inet_csk_get_port(struct sock * sk,unsigned short snum)510 int inet_csk_get_port(struct sock *sk, unsigned short snum)
511 {
512 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
513 bool found_port = false, check_bind_conflict = true;
514 bool bhash_created = false, bhash2_created = false;
515 struct inet_hashinfo *hinfo = tcp_get_hashinfo(sk);
516 int ret = -EADDRINUSE, port = snum, l3mdev;
517 struct inet_bind_hashbucket *head, *head2;
518 struct inet_bind2_bucket *tb2 = NULL;
519 struct inet_bind_bucket *tb = NULL;
520 bool head2_lock_acquired = false;
521 struct net *net = sock_net(sk);
522
523 l3mdev = inet_sk_bound_l3mdev(sk);
524
525 if (!port) {
526 head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port);
527 if (!head)
528 return ret;
529
530 head2_lock_acquired = true;
531
532 if (tb && tb2)
533 goto success;
534 found_port = true;
535 } else {
536 head = &hinfo->bhash[inet_bhashfn(net, port,
537 hinfo->bhash_size)];
538 spin_lock_bh(&head->lock);
539 inet_bind_bucket_for_each(tb, &head->chain)
540 if (inet_bind_bucket_match(tb, net, port, l3mdev))
541 break;
542 }
543
544 if (!tb) {
545 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net,
546 head, port, l3mdev);
547 if (!tb)
548 goto fail_unlock;
549 bhash_created = true;
550 }
551
552 if (!found_port) {
553 if (!hlist_empty(&tb->bhash2)) {
554 if (sk->sk_reuse == SK_FORCE_REUSE ||
555 (tb->fastreuse > 0 && reuse) ||
556 sk_reuseport_match(tb, sk))
557 check_bind_conflict = false;
558 }
559
560 if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) {
561 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true))
562 goto fail_unlock;
563 }
564
565 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
566 spin_lock(&head2->lock);
567 head2_lock_acquired = true;
568 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
569 }
570
571 if (!tb2) {
572 tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep,
573 net, head2, tb, sk);
574 if (!tb2)
575 goto fail_unlock;
576 bhash2_created = true;
577 }
578
579 if (!found_port && check_bind_conflict) {
580 if (inet_csk_bind_conflict(sk, tb, tb2, true, true))
581 goto fail_unlock;
582 }
583
584 success:
585 inet_csk_update_fastreuse(tb, sk);
586
587 if (!inet_csk(sk)->icsk_bind_hash)
588 inet_bind_hash(sk, tb, tb2, port);
589 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
590 WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2);
591 ret = 0;
592
593 fail_unlock:
594 if (ret) {
595 if (bhash2_created)
596 inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep, tb2);
597 if (bhash_created)
598 inet_bind_bucket_destroy(tb);
599 }
600 if (head2_lock_acquired)
601 spin_unlock(&head2->lock);
602 spin_unlock_bh(&head->lock);
603 return ret;
604 }
605 EXPORT_SYMBOL_GPL(inet_csk_get_port);
606
607 /*
608 * Wait for an incoming connection, avoid race conditions. This must be called
609 * with the socket locked.
610 */
inet_csk_wait_for_connect(struct sock * sk,long timeo)611 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
612 {
613 struct inet_connection_sock *icsk = inet_csk(sk);
614 DEFINE_WAIT(wait);
615 int err;
616
617 /*
618 * True wake-one mechanism for incoming connections: only
619 * one process gets woken up, not the 'whole herd'.
620 * Since we do not 'race & poll' for established sockets
621 * anymore, the common case will execute the loop only once.
622 *
623 * Subtle issue: "add_wait_queue_exclusive()" will be added
624 * after any current non-exclusive waiters, and we know that
625 * it will always _stay_ after any new non-exclusive waiters
626 * because all non-exclusive waiters are added at the
627 * beginning of the wait-queue. As such, it's ok to "drop"
628 * our exclusiveness temporarily when we get woken up without
629 * having to remove and re-insert us on the wait queue.
630 */
631 for (;;) {
632 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
633 TASK_INTERRUPTIBLE);
634 release_sock(sk);
635 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
636 timeo = schedule_timeout(timeo);
637 sched_annotate_sleep();
638 lock_sock(sk);
639 err = 0;
640 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
641 break;
642 err = -EINVAL;
643 if (sk->sk_state != TCP_LISTEN)
644 break;
645 err = sock_intr_errno(timeo);
646 if (signal_pending(current))
647 break;
648 err = -EAGAIN;
649 if (!timeo)
650 break;
651 }
652 finish_wait(sk_sleep(sk), &wait);
653 return err;
654 }
655
656 /*
657 * This will accept the next outstanding connection.
658 */
inet_csk_accept(struct sock * sk,struct proto_accept_arg * arg)659 struct sock *inet_csk_accept(struct sock *sk, struct proto_accept_arg *arg)
660 {
661 struct inet_connection_sock *icsk = inet_csk(sk);
662 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
663 struct request_sock *req;
664 struct sock *newsk;
665 int error;
666
667 lock_sock(sk);
668
669 /* We need to make sure that this socket is listening,
670 * and that it has something pending.
671 */
672 error = -EINVAL;
673 if (sk->sk_state != TCP_LISTEN)
674 goto out_err;
675
676 /* Find already established connection */
677 if (reqsk_queue_empty(queue)) {
678 long timeo = sock_rcvtimeo(sk, arg->flags & O_NONBLOCK);
679
680 /* If this is a non blocking socket don't sleep */
681 error = -EAGAIN;
682 if (!timeo)
683 goto out_err;
684
685 error = inet_csk_wait_for_connect(sk, timeo);
686 if (error)
687 goto out_err;
688 }
689 req = reqsk_queue_remove(queue, sk);
690 arg->is_empty = reqsk_queue_empty(queue);
691 newsk = req->sk;
692
693 if (sk->sk_protocol == IPPROTO_TCP &&
694 tcp_rsk(req)->tfo_listener) {
695 spin_lock_bh(&queue->fastopenq.lock);
696 if (tcp_rsk(req)->tfo_listener) {
697 /* We are still waiting for the final ACK from 3WHS
698 * so can't free req now. Instead, we set req->sk to
699 * NULL to signify that the child socket is taken
700 * so reqsk_fastopen_remove() will free the req
701 * when 3WHS finishes (or is aborted).
702 */
703 req->sk = NULL;
704 req = NULL;
705 }
706 spin_unlock_bh(&queue->fastopenq.lock);
707 }
708
709 out:
710 release_sock(sk);
711 if (newsk && mem_cgroup_sockets_enabled) {
712 gfp_t gfp = GFP_KERNEL | __GFP_NOFAIL;
713 int amt = 0;
714
715 /* atomically get the memory usage, set and charge the
716 * newsk->sk_memcg.
717 */
718 lock_sock(newsk);
719
720 mem_cgroup_sk_alloc(newsk);
721 if (newsk->sk_memcg) {
722 /* The socket has not been accepted yet, no need
723 * to look at newsk->sk_wmem_queued.
724 */
725 amt = sk_mem_pages(newsk->sk_forward_alloc +
726 atomic_read(&newsk->sk_rmem_alloc));
727 }
728
729 if (amt)
730 mem_cgroup_charge_skmem(newsk->sk_memcg, amt, gfp);
731 kmem_cache_charge(newsk, gfp);
732
733 release_sock(newsk);
734 }
735 if (req)
736 reqsk_put(req);
737
738 if (newsk)
739 inet_init_csk_locks(newsk);
740
741 return newsk;
742 out_err:
743 newsk = NULL;
744 req = NULL;
745 arg->err = error;
746 goto out;
747 }
748 EXPORT_SYMBOL(inet_csk_accept);
749
750 /*
751 * Using different timers for retransmit, delayed acks and probes
752 * We may wish use just one timer maintaining a list of expire jiffies
753 * to optimize.
754 */
inet_csk_init_xmit_timers(struct sock * sk,void (* retransmit_handler)(struct timer_list * t),void (* delack_handler)(struct timer_list * t),void (* keepalive_handler)(struct timer_list * t))755 void inet_csk_init_xmit_timers(struct sock *sk,
756 void (*retransmit_handler)(struct timer_list *t),
757 void (*delack_handler)(struct timer_list *t),
758 void (*keepalive_handler)(struct timer_list *t))
759 {
760 struct inet_connection_sock *icsk = inet_csk(sk);
761
762 timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
763 timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
764 timer_setup(&sk->sk_timer, keepalive_handler, 0);
765 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
766 }
767
inet_csk_clear_xmit_timers(struct sock * sk)768 void inet_csk_clear_xmit_timers(struct sock *sk)
769 {
770 struct inet_connection_sock *icsk = inet_csk(sk);
771
772 smp_store_release(&icsk->icsk_pending, 0);
773 smp_store_release(&icsk->icsk_ack.pending, 0);
774
775 sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
776 sk_stop_timer(sk, &icsk->icsk_delack_timer);
777 sk_stop_timer(sk, &sk->sk_timer);
778 }
779
inet_csk_clear_xmit_timers_sync(struct sock * sk)780 void inet_csk_clear_xmit_timers_sync(struct sock *sk)
781 {
782 struct inet_connection_sock *icsk = inet_csk(sk);
783
784 /* ongoing timer handlers need to acquire socket lock. */
785 sock_not_owned_by_me(sk);
786
787 smp_store_release(&icsk->icsk_pending, 0);
788 smp_store_release(&icsk->icsk_ack.pending, 0);
789
790 sk_stop_timer_sync(sk, &icsk->icsk_retransmit_timer);
791 sk_stop_timer_sync(sk, &icsk->icsk_delack_timer);
792 sk_stop_timer_sync(sk, &sk->sk_timer);
793 }
794
inet_csk_route_req(const struct sock * sk,struct flowi4 * fl4,const struct request_sock * req)795 struct dst_entry *inet_csk_route_req(const struct sock *sk,
796 struct flowi4 *fl4,
797 const struct request_sock *req)
798 {
799 const struct inet_request_sock *ireq = inet_rsk(req);
800 struct net *net = read_pnet(&ireq->ireq_net);
801 struct ip_options_rcu *opt;
802 struct rtable *rt;
803
804 rcu_read_lock();
805 opt = rcu_dereference(ireq->ireq_opt);
806
807 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
808 ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
809 sk->sk_protocol, inet_sk_flowi_flags(sk),
810 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
811 ireq->ir_loc_addr, ireq->ir_rmt_port,
812 htons(ireq->ir_num), sk_uid(sk));
813 security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
814 rt = ip_route_output_flow(net, fl4, sk);
815 if (IS_ERR(rt))
816 goto no_route;
817 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
818 goto route_err;
819 rcu_read_unlock();
820 return &rt->dst;
821
822 route_err:
823 ip_rt_put(rt);
824 no_route:
825 rcu_read_unlock();
826 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
827 return NULL;
828 }
829
inet_csk_route_child_sock(const struct sock * sk,struct sock * newsk,const struct request_sock * req)830 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
831 struct sock *newsk,
832 const struct request_sock *req)
833 {
834 const struct inet_request_sock *ireq = inet_rsk(req);
835 struct net *net = read_pnet(&ireq->ireq_net);
836 struct inet_sock *newinet = inet_sk(newsk);
837 struct ip_options_rcu *opt;
838 struct flowi4 *fl4;
839 struct rtable *rt;
840
841 opt = rcu_dereference(ireq->ireq_opt);
842 fl4 = &newinet->cork.fl.u.ip4;
843
844 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
845 ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
846 sk->sk_protocol, inet_sk_flowi_flags(sk),
847 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
848 ireq->ir_loc_addr, ireq->ir_rmt_port,
849 htons(ireq->ir_num), sk_uid(sk));
850 security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
851 rt = ip_route_output_flow(net, fl4, sk);
852 if (IS_ERR(rt))
853 goto no_route;
854 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
855 goto route_err;
856 return &rt->dst;
857
858 route_err:
859 ip_rt_put(rt);
860 no_route:
861 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
862 return NULL;
863 }
864 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
865
866 /* Decide when to expire the request and when to resend SYN-ACK */
syn_ack_recalc(struct request_sock * req,const int max_syn_ack_retries,const u8 rskq_defer_accept,int * expire,int * resend)867 static void syn_ack_recalc(struct request_sock *req,
868 const int max_syn_ack_retries,
869 const u8 rskq_defer_accept,
870 int *expire, int *resend)
871 {
872 if (!rskq_defer_accept) {
873 *expire = req->num_timeout >= max_syn_ack_retries;
874 *resend = 1;
875 return;
876 }
877 *expire = req->num_timeout >= max_syn_ack_retries &&
878 (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
879 /* Do not resend while waiting for data after ACK,
880 * start to resend on end of deferring period to give
881 * last chance for data or ACK to create established socket.
882 */
883 *resend = !inet_rsk(req)->acked ||
884 req->num_timeout >= rskq_defer_accept - 1;
885 }
886
887 static struct request_sock *
reqsk_alloc_noprof(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)888 reqsk_alloc_noprof(const struct request_sock_ops *ops, struct sock *sk_listener,
889 bool attach_listener)
890 {
891 struct request_sock *req;
892
893 req = kmem_cache_alloc_noprof(ops->slab, GFP_ATOMIC | __GFP_NOWARN);
894 if (!req)
895 return NULL;
896 req->rsk_listener = NULL;
897 if (attach_listener) {
898 if (unlikely(!refcount_inc_not_zero(&sk_listener->sk_refcnt))) {
899 kmem_cache_free(ops->slab, req);
900 return NULL;
901 }
902 req->rsk_listener = sk_listener;
903 }
904 req->rsk_ops = ops;
905 req_to_sk(req)->sk_prot = sk_listener->sk_prot;
906 sk_node_init(&req_to_sk(req)->sk_node);
907 sk_tx_queue_clear(req_to_sk(req));
908 req->saved_syn = NULL;
909 req->syncookie = 0;
910 req->timeout = 0;
911 req->num_timeout = 0;
912 req->num_retrans = 0;
913 req->sk = NULL;
914 refcount_set(&req->rsk_refcnt, 0);
915
916 return req;
917 }
918 #define reqsk_alloc(...) alloc_hooks(reqsk_alloc_noprof(__VA_ARGS__))
919
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)920 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
921 struct sock *sk_listener,
922 bool attach_listener)
923 {
924 struct request_sock *req = reqsk_alloc(ops, sk_listener,
925 attach_listener);
926
927 if (req) {
928 struct inet_request_sock *ireq = inet_rsk(req);
929
930 ireq->ireq_opt = NULL;
931 #if IS_ENABLED(CONFIG_IPV6)
932 ireq->pktopts = NULL;
933 #endif
934 atomic64_set(&ireq->ir_cookie, 0);
935 ireq->ireq_state = TCP_NEW_SYN_RECV;
936 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
937 ireq->ireq_family = sk_listener->sk_family;
938 req->timeout = TCP_TIMEOUT_INIT;
939 }
940
941 return req;
942 }
943 EXPORT_SYMBOL(inet_reqsk_alloc);
944
inet_reqsk_clone(struct request_sock * req,struct sock * sk)945 static struct request_sock *inet_reqsk_clone(struct request_sock *req,
946 struct sock *sk)
947 {
948 struct sock *req_sk, *nreq_sk;
949 struct request_sock *nreq;
950
951 nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
952 if (!nreq) {
953 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
954
955 /* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
956 sock_put(sk);
957 return NULL;
958 }
959
960 req_sk = req_to_sk(req);
961 nreq_sk = req_to_sk(nreq);
962
963 memcpy(nreq_sk, req_sk,
964 offsetof(struct sock, sk_dontcopy_begin));
965 unsafe_memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
966 req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end),
967 /* alloc is larger than struct, see above */);
968
969 sk_node_init(&nreq_sk->sk_node);
970 nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
971 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
972 nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
973 #endif
974 nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
975
976 nreq->rsk_listener = sk;
977
978 /* We need not acquire fastopenq->lock
979 * because the child socket is locked in inet_csk_listen_stop().
980 */
981 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
982 rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
983
984 return nreq;
985 }
986
reqsk_queue_migrated(struct request_sock_queue * queue,const struct request_sock * req)987 static void reqsk_queue_migrated(struct request_sock_queue *queue,
988 const struct request_sock *req)
989 {
990 if (req->num_timeout == 0)
991 atomic_inc(&queue->young);
992 atomic_inc(&queue->qlen);
993 }
994
reqsk_migrate_reset(struct request_sock * req)995 static void reqsk_migrate_reset(struct request_sock *req)
996 {
997 req->saved_syn = NULL;
998 #if IS_ENABLED(CONFIG_IPV6)
999 inet_rsk(req)->ipv6_opt = NULL;
1000 inet_rsk(req)->pktopts = NULL;
1001 #else
1002 inet_rsk(req)->ireq_opt = NULL;
1003 #endif
1004 }
1005
1006 /* return true if req was found in the ehash table */
reqsk_queue_unlink(struct request_sock * req)1007 static bool reqsk_queue_unlink(struct request_sock *req)
1008 {
1009 struct sock *sk = req_to_sk(req);
1010 bool found = false;
1011
1012 if (sk_hashed(sk)) {
1013 struct inet_hashinfo *hashinfo = tcp_get_hashinfo(sk);
1014 spinlock_t *lock;
1015
1016 lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
1017 spin_lock(lock);
1018 found = __sk_nulls_del_node_init_rcu(sk);
1019 spin_unlock(lock);
1020 }
1021
1022 return found;
1023 }
1024
__inet_csk_reqsk_queue_drop(struct sock * sk,struct request_sock * req,bool from_timer)1025 static bool __inet_csk_reqsk_queue_drop(struct sock *sk,
1026 struct request_sock *req,
1027 bool from_timer)
1028 {
1029 bool unlinked = reqsk_queue_unlink(req);
1030
1031 if (!from_timer && timer_delete_sync(&req->rsk_timer))
1032 reqsk_put(req);
1033
1034 if (unlinked) {
1035 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
1036 reqsk_put(req);
1037 }
1038
1039 return unlinked;
1040 }
1041
inet_csk_reqsk_queue_drop(struct sock * sk,struct request_sock * req)1042 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
1043 {
1044 return __inet_csk_reqsk_queue_drop(sk, req, false);
1045 }
1046
inet_csk_reqsk_queue_drop_and_put(struct sock * sk,struct request_sock * req)1047 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
1048 {
1049 inet_csk_reqsk_queue_drop(sk, req);
1050 reqsk_put(req);
1051 }
1052 EXPORT_IPV6_MOD(inet_csk_reqsk_queue_drop_and_put);
1053
reqsk_timer_handler(struct timer_list * t)1054 static void reqsk_timer_handler(struct timer_list *t)
1055 {
1056 struct request_sock *req = timer_container_of(req, t, rsk_timer);
1057 struct request_sock *nreq = NULL, *oreq = req;
1058 struct sock *sk_listener = req->rsk_listener;
1059 struct inet_connection_sock *icsk;
1060 struct request_sock_queue *queue;
1061 struct net *net;
1062 int max_syn_ack_retries, qlen, expire = 0, resend = 0;
1063
1064 if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
1065 struct sock *nsk;
1066
1067 nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
1068 if (!nsk)
1069 goto drop;
1070
1071 nreq = inet_reqsk_clone(req, nsk);
1072 if (!nreq)
1073 goto drop;
1074
1075 /* The new timer for the cloned req can decrease the 2
1076 * by calling inet_csk_reqsk_queue_drop_and_put(), so
1077 * hold another count to prevent use-after-free and
1078 * call reqsk_put() just before return.
1079 */
1080 refcount_set(&nreq->rsk_refcnt, 2 + 1);
1081 timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1082 reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
1083
1084 req = nreq;
1085 sk_listener = nsk;
1086 }
1087
1088 icsk = inet_csk(sk_listener);
1089 net = sock_net(sk_listener);
1090 max_syn_ack_retries = READ_ONCE(icsk->icsk_syn_retries) ? :
1091 READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
1092 /* Normally all the openreqs are young and become mature
1093 * (i.e. converted to established socket) for first timeout.
1094 * If synack was not acknowledged for 1 second, it means
1095 * one of the following things: synack was lost, ack was lost,
1096 * rtt is high or nobody planned to ack (i.e. synflood).
1097 * When server is a bit loaded, queue is populated with old
1098 * open requests, reducing effective size of queue.
1099 * When server is well loaded, queue size reduces to zero
1100 * after several minutes of work. It is not synflood,
1101 * it is normal operation. The solution is pruning
1102 * too old entries overriding normal timeout, when
1103 * situation becomes dangerous.
1104 *
1105 * Essentially, we reserve half of room for young
1106 * embrions; and abort old ones without pity, if old
1107 * ones are about to clog our table.
1108 */
1109 queue = &icsk->icsk_accept_queue;
1110 qlen = reqsk_queue_len(queue);
1111 if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
1112 int young = reqsk_queue_len_young(queue) << 1;
1113
1114 while (max_syn_ack_retries > 2) {
1115 if (qlen < young)
1116 break;
1117 max_syn_ack_retries--;
1118 young <<= 1;
1119 }
1120 }
1121 syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
1122 &expire, &resend);
1123 req->rsk_ops->syn_ack_timeout(req);
1124 if (!expire &&
1125 (!resend ||
1126 !tcp_rtx_synack(sk_listener, req) ||
1127 inet_rsk(req)->acked)) {
1128 if (req->num_timeout++ == 0)
1129 atomic_dec(&queue->young);
1130 mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX));
1131
1132 if (!nreq)
1133 return;
1134
1135 if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
1136 /* delete timer */
1137 __inet_csk_reqsk_queue_drop(sk_listener, nreq, true);
1138 goto no_ownership;
1139 }
1140
1141 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
1142 reqsk_migrate_reset(oreq);
1143 reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
1144 reqsk_put(oreq);
1145
1146 reqsk_put(nreq);
1147 return;
1148 }
1149
1150 /* Even if we can clone the req, we may need not retransmit any more
1151 * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
1152 * CPU may win the "own_req" race so that inet_ehash_insert() fails.
1153 */
1154 if (nreq) {
1155 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
1156 no_ownership:
1157 reqsk_migrate_reset(nreq);
1158 reqsk_queue_removed(queue, nreq);
1159 __reqsk_free(nreq);
1160 }
1161
1162 drop:
1163 __inet_csk_reqsk_queue_drop(sk_listener, oreq, true);
1164 reqsk_put(oreq);
1165 }
1166
reqsk_queue_hash_req(struct request_sock * req,unsigned long timeout)1167 static bool reqsk_queue_hash_req(struct request_sock *req,
1168 unsigned long timeout)
1169 {
1170 bool found_dup_sk = false;
1171
1172 if (!inet_ehash_insert(req_to_sk(req), NULL, &found_dup_sk))
1173 return false;
1174
1175 /* The timer needs to be setup after a successful insertion. */
1176 timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1177 mod_timer(&req->rsk_timer, jiffies + timeout);
1178
1179 /* before letting lookups find us, make sure all req fields
1180 * are committed to memory and refcnt initialized.
1181 */
1182 smp_wmb();
1183 refcount_set(&req->rsk_refcnt, 2 + 1);
1184 return true;
1185 }
1186
inet_csk_reqsk_queue_hash_add(struct sock * sk,struct request_sock * req,unsigned long timeout)1187 bool inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
1188 unsigned long timeout)
1189 {
1190 if (!reqsk_queue_hash_req(req, timeout))
1191 return false;
1192
1193 inet_csk_reqsk_queue_added(sk);
1194 return true;
1195 }
1196
inet_clone_ulp(const struct request_sock * req,struct sock * newsk,const gfp_t priority)1197 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
1198 const gfp_t priority)
1199 {
1200 struct inet_connection_sock *icsk = inet_csk(newsk);
1201
1202 if (!icsk->icsk_ulp_ops)
1203 return;
1204
1205 icsk->icsk_ulp_ops->clone(req, newsk, priority);
1206 }
1207
1208 /**
1209 * inet_csk_clone_lock - clone an inet socket, and lock its clone
1210 * @sk: the socket to clone
1211 * @req: request_sock
1212 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1213 *
1214 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1215 */
inet_csk_clone_lock(const struct sock * sk,const struct request_sock * req,const gfp_t priority)1216 struct sock *inet_csk_clone_lock(const struct sock *sk,
1217 const struct request_sock *req,
1218 const gfp_t priority)
1219 {
1220 struct sock *newsk = sk_clone_lock(sk, priority);
1221 struct inet_connection_sock *newicsk;
1222 struct inet_request_sock *ireq;
1223 struct inet_sock *newinet;
1224
1225 if (!newsk)
1226 return NULL;
1227
1228 newicsk = inet_csk(newsk);
1229 newinet = inet_sk(newsk);
1230 ireq = inet_rsk(req);
1231
1232 newicsk->icsk_bind_hash = NULL;
1233 newicsk->icsk_bind2_hash = NULL;
1234
1235 newinet->inet_dport = ireq->ir_rmt_port;
1236 newinet->inet_num = ireq->ir_num;
1237 newinet->inet_sport = htons(ireq->ir_num);
1238
1239 newsk->sk_bound_dev_if = ireq->ir_iif;
1240
1241 newsk->sk_daddr = ireq->ir_rmt_addr;
1242 newsk->sk_rcv_saddr = ireq->ir_loc_addr;
1243 newinet->inet_saddr = ireq->ir_loc_addr;
1244
1245 #if IS_ENABLED(CONFIG_IPV6)
1246 newsk->sk_v6_daddr = ireq->ir_v6_rmt_addr;
1247 newsk->sk_v6_rcv_saddr = ireq->ir_v6_loc_addr;
1248 #endif
1249
1250 /* listeners have SOCK_RCU_FREE, not the children */
1251 sock_reset_flag(newsk, SOCK_RCU_FREE);
1252
1253 inet_sk(newsk)->mc_list = NULL;
1254
1255 newsk->sk_mark = inet_rsk(req)->ir_mark;
1256 atomic64_set(&newsk->sk_cookie,
1257 atomic64_read(&inet_rsk(req)->ir_cookie));
1258
1259 newicsk->icsk_retransmits = 0;
1260 newicsk->icsk_backoff = 0;
1261 newicsk->icsk_probes_out = 0;
1262 newicsk->icsk_probes_tstamp = 0;
1263
1264 /* Deinitialize accept_queue to trap illegal accesses. */
1265 memset(&newicsk->icsk_accept_queue, 0,
1266 sizeof(newicsk->icsk_accept_queue));
1267
1268 inet_sk_set_state(newsk, TCP_SYN_RECV);
1269
1270 inet_clone_ulp(req, newsk, priority);
1271
1272 security_inet_csk_clone(newsk, req);
1273
1274 return newsk;
1275 }
1276
1277 /*
1278 * At this point, there should be no process reference to this
1279 * socket, and thus no user references at all. Therefore we
1280 * can assume the socket waitqueue is inactive and nobody will
1281 * try to jump onto it.
1282 */
inet_csk_destroy_sock(struct sock * sk)1283 void inet_csk_destroy_sock(struct sock *sk)
1284 {
1285 WARN_ON(sk->sk_state != TCP_CLOSE);
1286 WARN_ON(!sock_flag(sk, SOCK_DEAD));
1287
1288 /* It cannot be in hash table! */
1289 WARN_ON(!sk_unhashed(sk));
1290
1291 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
1292 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
1293
1294 sk->sk_prot->destroy(sk);
1295
1296 sk_stream_kill_queues(sk);
1297
1298 xfrm_sk_free_policy(sk);
1299
1300 this_cpu_dec(*sk->sk_prot->orphan_count);
1301
1302 sock_put(sk);
1303 }
1304 EXPORT_SYMBOL(inet_csk_destroy_sock);
1305
1306 /* This function allows to force a closure of a socket after the call to
1307 * tcp_create_openreq_child().
1308 */
inet_csk_prepare_forced_close(struct sock * sk)1309 void inet_csk_prepare_forced_close(struct sock *sk)
1310 __releases(&sk->sk_lock.slock)
1311 {
1312 /* sk_clone_lock locked the socket and set refcnt to 2 */
1313 bh_unlock_sock(sk);
1314 sock_put(sk);
1315 inet_csk_prepare_for_destroy_sock(sk);
1316 inet_sk(sk)->inet_num = 0;
1317 }
1318 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
1319
inet_ulp_can_listen(const struct sock * sk)1320 static int inet_ulp_can_listen(const struct sock *sk)
1321 {
1322 const struct inet_connection_sock *icsk = inet_csk(sk);
1323
1324 if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone)
1325 return -EINVAL;
1326
1327 return 0;
1328 }
1329
inet_csk_listen_start(struct sock * sk)1330 int inet_csk_listen_start(struct sock *sk)
1331 {
1332 struct inet_connection_sock *icsk = inet_csk(sk);
1333 struct inet_sock *inet = inet_sk(sk);
1334 int err;
1335
1336 err = inet_ulp_can_listen(sk);
1337 if (unlikely(err))
1338 return err;
1339
1340 reqsk_queue_alloc(&icsk->icsk_accept_queue);
1341
1342 sk->sk_ack_backlog = 0;
1343 inet_csk_delack_init(sk);
1344
1345 /* There is race window here: we announce ourselves listening,
1346 * but this transition is still not validated by get_port().
1347 * It is OK, because this socket enters to hash table only
1348 * after validation is complete.
1349 */
1350 inet_sk_state_store(sk, TCP_LISTEN);
1351 err = sk->sk_prot->get_port(sk, inet->inet_num);
1352 if (!err) {
1353 inet->inet_sport = htons(inet->inet_num);
1354
1355 sk_dst_reset(sk);
1356 err = sk->sk_prot->hash(sk);
1357
1358 if (likely(!err))
1359 return 0;
1360 }
1361
1362 inet_sk_set_state(sk, TCP_CLOSE);
1363 return err;
1364 }
1365
inet_child_forget(struct sock * sk,struct request_sock * req,struct sock * child)1366 static void inet_child_forget(struct sock *sk, struct request_sock *req,
1367 struct sock *child)
1368 {
1369 sk->sk_prot->disconnect(child, O_NONBLOCK);
1370
1371 sock_orphan(child);
1372
1373 this_cpu_inc(*sk->sk_prot->orphan_count);
1374
1375 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1376 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1377 BUG_ON(sk != req->rsk_listener);
1378
1379 /* Paranoid, to prevent race condition if
1380 * an inbound pkt destined for child is
1381 * blocked by sock lock in tcp_v4_rcv().
1382 * Also to satisfy an assertion in
1383 * tcp_v4_destroy_sock().
1384 */
1385 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1386 }
1387 inet_csk_destroy_sock(child);
1388 }
1389
inet_csk_reqsk_queue_add(struct sock * sk,struct request_sock * req,struct sock * child)1390 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1391 struct request_sock *req,
1392 struct sock *child)
1393 {
1394 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1395
1396 spin_lock(&queue->rskq_lock);
1397 if (unlikely(sk->sk_state != TCP_LISTEN)) {
1398 inet_child_forget(sk, req, child);
1399 child = NULL;
1400 } else {
1401 req->sk = child;
1402 req->dl_next = NULL;
1403 if (queue->rskq_accept_head == NULL)
1404 WRITE_ONCE(queue->rskq_accept_head, req);
1405 else
1406 queue->rskq_accept_tail->dl_next = req;
1407 queue->rskq_accept_tail = req;
1408 sk_acceptq_added(sk);
1409 }
1410 spin_unlock(&queue->rskq_lock);
1411 return child;
1412 }
1413 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1414
inet_csk_complete_hashdance(struct sock * sk,struct sock * child,struct request_sock * req,bool own_req)1415 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1416 struct request_sock *req, bool own_req)
1417 {
1418 if (own_req) {
1419 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
1420 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
1421
1422 if (sk != req->rsk_listener) {
1423 /* another listening sk has been selected,
1424 * migrate the req to it.
1425 */
1426 struct request_sock *nreq;
1427
1428 /* hold a refcnt for the nreq->rsk_listener
1429 * which is assigned in inet_reqsk_clone()
1430 */
1431 sock_hold(sk);
1432 nreq = inet_reqsk_clone(req, sk);
1433 if (!nreq) {
1434 inet_child_forget(sk, req, child);
1435 goto child_put;
1436 }
1437
1438 refcount_set(&nreq->rsk_refcnt, 1);
1439 if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
1440 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
1441 reqsk_migrate_reset(req);
1442 reqsk_put(req);
1443 return child;
1444 }
1445
1446 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
1447 reqsk_migrate_reset(nreq);
1448 __reqsk_free(nreq);
1449 } else if (inet_csk_reqsk_queue_add(sk, req, child)) {
1450 return child;
1451 }
1452 }
1453 /* Too bad, another child took ownership of the request, undo. */
1454 child_put:
1455 bh_unlock_sock(child);
1456 sock_put(child);
1457 return NULL;
1458 }
1459
1460 /*
1461 * This routine closes sockets which have been at least partially
1462 * opened, but not yet accepted.
1463 */
inet_csk_listen_stop(struct sock * sk)1464 void inet_csk_listen_stop(struct sock *sk)
1465 {
1466 struct inet_connection_sock *icsk = inet_csk(sk);
1467 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1468 struct request_sock *next, *req;
1469
1470 /* Following specs, it would be better either to send FIN
1471 * (and enter FIN-WAIT-1, it is normal close)
1472 * or to send active reset (abort).
1473 * Certainly, it is pretty dangerous while synflood, but it is
1474 * bad justification for our negligence 8)
1475 * To be honest, we are not able to make either
1476 * of the variants now. --ANK
1477 */
1478 while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1479 struct sock *child = req->sk, *nsk;
1480 struct request_sock *nreq;
1481
1482 local_bh_disable();
1483 bh_lock_sock(child);
1484 WARN_ON(sock_owned_by_user(child));
1485 sock_hold(child);
1486
1487 nsk = reuseport_migrate_sock(sk, child, NULL);
1488 if (nsk) {
1489 nreq = inet_reqsk_clone(req, nsk);
1490 if (nreq) {
1491 refcount_set(&nreq->rsk_refcnt, 1);
1492
1493 if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
1494 __NET_INC_STATS(sock_net(nsk),
1495 LINUX_MIB_TCPMIGRATEREQSUCCESS);
1496 reqsk_migrate_reset(req);
1497 } else {
1498 __NET_INC_STATS(sock_net(nsk),
1499 LINUX_MIB_TCPMIGRATEREQFAILURE);
1500 reqsk_migrate_reset(nreq);
1501 __reqsk_free(nreq);
1502 }
1503
1504 /* inet_csk_reqsk_queue_add() has already
1505 * called inet_child_forget() on failure case.
1506 */
1507 goto skip_child_forget;
1508 }
1509 }
1510
1511 inet_child_forget(sk, req, child);
1512 skip_child_forget:
1513 reqsk_put(req);
1514 bh_unlock_sock(child);
1515 local_bh_enable();
1516 sock_put(child);
1517
1518 cond_resched();
1519 }
1520 if (queue->fastopenq.rskq_rst_head) {
1521 /* Free all the reqs queued in rskq_rst_head. */
1522 spin_lock_bh(&queue->fastopenq.lock);
1523 req = queue->fastopenq.rskq_rst_head;
1524 queue->fastopenq.rskq_rst_head = NULL;
1525 spin_unlock_bh(&queue->fastopenq.lock);
1526 while (req != NULL) {
1527 next = req->dl_next;
1528 reqsk_put(req);
1529 req = next;
1530 }
1531 }
1532 WARN_ON_ONCE(sk->sk_ack_backlog);
1533 }
1534 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1535
inet_csk_rebuild_route(struct sock * sk,struct flowi * fl)1536 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1537 {
1538 const struct inet_sock *inet = inet_sk(sk);
1539 struct flowi4 *fl4;
1540 struct rtable *rt;
1541
1542 rcu_read_lock();
1543 fl4 = &fl->u.ip4;
1544 inet_sk_init_flowi4(inet, fl4);
1545 rt = ip_route_output_flow(sock_net(sk), fl4, sk);
1546 if (IS_ERR(rt))
1547 rt = NULL;
1548 if (rt)
1549 sk_setup_caps(sk, &rt->dst);
1550 rcu_read_unlock();
1551
1552 return &rt->dst;
1553 }
1554
inet_csk_update_pmtu(struct sock * sk,u32 mtu)1555 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1556 {
1557 struct dst_entry *dst = __sk_dst_check(sk, 0);
1558 struct inet_sock *inet = inet_sk(sk);
1559
1560 if (!dst) {
1561 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1562 if (!dst)
1563 goto out;
1564 }
1565 dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1566
1567 dst = __sk_dst_check(sk, 0);
1568 if (!dst)
1569 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1570 out:
1571 return dst;
1572 }
1573