1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * f_fs.c -- user mode file system API for USB composite function controllers
4 *
5 * Copyright (C) 2010 Samsung Electronics
6 * Author: Michal Nazarewicz <mina86@mina86.com>
7 *
8 * Based on inode.c (GadgetFS) which was:
9 * Copyright (C) 2003-2004 David Brownell
10 * Copyright (C) 2003 Agilent Technologies
11 */
12
13
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16
17 #include <linux/blkdev.h>
18 #include <linux/dma-buf.h>
19 #include <linux/dma-fence.h>
20 #include <linux/dma-resv.h>
21 #include <linux/pagemap.h>
22 #include <linux/export.h>
23 #include <linux/fs_parser.h>
24 #include <linux/hid.h>
25 #include <linux/mm.h>
26 #include <linux/module.h>
27 #include <linux/scatterlist.h>
28 #include <linux/sched/signal.h>
29 #include <linux/uio.h>
30 #include <linux/vmalloc.h>
31 #include <linux/unaligned.h>
32
33 #include <linux/usb/ccid.h>
34 #include <linux/usb/composite.h>
35 #include <linux/usb/functionfs.h>
36 #include <linux/usb/func_utils.h>
37
38 #include <linux/aio.h>
39 #include <linux/kthread.h>
40 #include <linux/poll.h>
41 #include <linux/eventfd.h>
42
43 #include "u_fs.h"
44 #include "u_os_desc.h"
45 #include "configfs.h"
46
47 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */
48 #define MAX_ALT_SETTINGS 2 /* Allow up to 2 alt settings to be set. */
49
50 #define DMABUF_ENQUEUE_TIMEOUT_MS 5000
51
52 MODULE_IMPORT_NS("DMA_BUF");
53
54 /* Reference counter handling */
55 static void ffs_data_get(struct ffs_data *ffs);
56 static void ffs_data_put(struct ffs_data *ffs);
57 /* Creates new ffs_data object. */
58 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
59 __attribute__((malloc));
60
61 /* Opened counter handling. */
62 static void ffs_data_opened(struct ffs_data *ffs);
63 static void ffs_data_closed(struct ffs_data *ffs);
64
65 /* Called with ffs->mutex held; take over ownership of data. */
66 static int __must_check
67 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
68 static int __must_check
69 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
70
71
72 /* The function structure ***************************************************/
73
74 struct ffs_ep;
75
76 struct ffs_function {
77 struct usb_configuration *conf;
78 struct usb_gadget *gadget;
79 struct ffs_data *ffs;
80
81 struct ffs_ep *eps;
82 u8 eps_revmap[16];
83 short *interfaces_nums;
84
85 struct usb_function function;
86 int cur_alt[MAX_CONFIG_INTERFACES];
87 };
88
89
ffs_func_from_usb(struct usb_function * f)90 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
91 {
92 return container_of(f, struct ffs_function, function);
93 }
94
95
96 static inline enum ffs_setup_state
ffs_setup_state_clear_cancelled(struct ffs_data * ffs)97 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
98 {
99 return (enum ffs_setup_state)
100 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
101 }
102
103
104 static void ffs_func_eps_disable(struct ffs_function *func);
105 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
106
107 static int ffs_func_bind(struct usb_configuration *,
108 struct usb_function *);
109 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
110 static int ffs_func_get_alt(struct usb_function *f, unsigned int intf);
111 static void ffs_func_disable(struct usb_function *);
112 static int ffs_func_setup(struct usb_function *,
113 const struct usb_ctrlrequest *);
114 static bool ffs_func_req_match(struct usb_function *,
115 const struct usb_ctrlrequest *,
116 bool config0);
117 static void ffs_func_suspend(struct usb_function *);
118 static void ffs_func_resume(struct usb_function *);
119
120
121 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
122 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
123
124
125 /* The endpoints structures *************************************************/
126
127 struct ffs_ep {
128 struct usb_ep *ep; /* P: ffs->eps_lock */
129 struct usb_request *req; /* P: epfile->mutex */
130
131 /* [0]: full speed, [1]: high speed, [2]: super speed */
132 struct usb_endpoint_descriptor *descs[3];
133
134 u8 num;
135 };
136
137 struct ffs_dmabuf_priv {
138 struct list_head entry;
139 struct kref ref;
140 struct ffs_data *ffs;
141 struct dma_buf_attachment *attach;
142 struct sg_table *sgt;
143 enum dma_data_direction dir;
144 spinlock_t lock;
145 u64 context;
146 struct usb_request *req; /* P: ffs->eps_lock */
147 struct usb_ep *ep; /* P: ffs->eps_lock */
148 };
149
150 struct ffs_dma_fence {
151 struct dma_fence base;
152 struct ffs_dmabuf_priv *priv;
153 struct work_struct work;
154 };
155
156 struct ffs_epfile {
157 /* Protects ep->ep and ep->req. */
158 struct mutex mutex;
159
160 struct ffs_data *ffs;
161 struct ffs_ep *ep; /* P: ffs->eps_lock */
162
163 struct dentry *dentry;
164
165 /*
166 * Buffer for holding data from partial reads which may happen since
167 * we’re rounding user read requests to a multiple of a max packet size.
168 *
169 * The pointer is initialised with NULL value and may be set by
170 * __ffs_epfile_read_data function to point to a temporary buffer.
171 *
172 * In normal operation, calls to __ffs_epfile_read_buffered will consume
173 * data from said buffer and eventually free it. Importantly, while the
174 * function is using the buffer, it sets the pointer to NULL. This is
175 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
176 * can never run concurrently (they are synchronised by epfile->mutex)
177 * so the latter will not assign a new value to the pointer.
178 *
179 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
180 * valid) and sets the pointer to READ_BUFFER_DROP value. This special
181 * value is crux of the synchronisation between ffs_func_eps_disable and
182 * __ffs_epfile_read_data.
183 *
184 * Once __ffs_epfile_read_data is about to finish it will try to set the
185 * pointer back to its old value (as described above), but seeing as the
186 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
187 * the buffer.
188 *
189 * == State transitions ==
190 *
191 * • ptr == NULL: (initial state)
192 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
193 * ◦ __ffs_epfile_read_buffered: nop
194 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
195 * ◦ reading finishes: n/a, not in ‘and reading’ state
196 * • ptr == DROP:
197 * ◦ __ffs_epfile_read_buffer_free: nop
198 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL
199 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
200 * ◦ reading finishes: n/a, not in ‘and reading’ state
201 * • ptr == buf:
202 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
203 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading
204 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered
205 * is always called first
206 * ◦ reading finishes: n/a, not in ‘and reading’ state
207 * • ptr == NULL and reading:
208 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
209 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
210 * ◦ __ffs_epfile_read_data: n/a, mutex is held
211 * ◦ reading finishes and …
212 * … all data read: free buf, go to ptr == NULL
213 * … otherwise: go to ptr == buf and reading
214 * • ptr == DROP and reading:
215 * ◦ __ffs_epfile_read_buffer_free: nop
216 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
217 * ◦ __ffs_epfile_read_data: n/a, mutex is held
218 * ◦ reading finishes: free buf, go to ptr == DROP
219 */
220 struct ffs_buffer *read_buffer;
221 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
222
223 char name[5];
224
225 unsigned char in; /* P: ffs->eps_lock */
226 unsigned char isoc; /* P: ffs->eps_lock */
227
228 unsigned char _pad;
229
230 /* Protects dmabufs */
231 struct mutex dmabufs_mutex;
232 struct list_head dmabufs; /* P: dmabufs_mutex */
233 atomic_t seqno;
234 };
235
236 struct ffs_buffer {
237 size_t length;
238 char *data;
239 char storage[] __counted_by(length);
240 };
241
242 /* ffs_io_data structure ***************************************************/
243
244 struct ffs_io_data {
245 bool aio;
246 bool read;
247
248 struct kiocb *kiocb;
249 struct iov_iter data;
250 const void *to_free;
251 char *buf;
252
253 struct mm_struct *mm;
254 struct work_struct work;
255
256 struct usb_ep *ep;
257 struct usb_request *req;
258 struct sg_table sgt;
259 bool use_sg;
260
261 struct ffs_data *ffs;
262
263 int status;
264 struct completion done;
265 };
266
267 struct ffs_desc_helper {
268 struct ffs_data *ffs;
269 unsigned interfaces_count;
270 unsigned eps_count;
271 };
272
273 static int __must_check ffs_epfiles_create(struct ffs_data *ffs);
274 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
275
276 static struct dentry *
277 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
278 const struct file_operations *fops);
279
280 /* Devices management *******************************************************/
281
282 DEFINE_MUTEX(ffs_lock);
283 EXPORT_SYMBOL_GPL(ffs_lock);
284
285 static struct ffs_dev *_ffs_find_dev(const char *name);
286 static struct ffs_dev *_ffs_alloc_dev(void);
287 static void _ffs_free_dev(struct ffs_dev *dev);
288 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data);
289 static void ffs_release_dev(struct ffs_dev *ffs_dev);
290 static int ffs_ready(struct ffs_data *ffs);
291 static void ffs_closed(struct ffs_data *ffs);
292
293 /* Misc helper functions ****************************************************/
294
295 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
296 __attribute__((warn_unused_result, nonnull));
297 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
298 __attribute__((warn_unused_result, nonnull));
299
300
301 /* Control file aka ep0 *****************************************************/
302
ffs_ep0_complete(struct usb_ep * ep,struct usb_request * req)303 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
304 {
305 struct ffs_data *ffs = req->context;
306
307 complete(&ffs->ep0req_completion);
308 }
309
__ffs_ep0_queue_wait(struct ffs_data * ffs,char * data,size_t len)310 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
311 __releases(&ffs->ev.waitq.lock)
312 {
313 struct usb_request *req = ffs->ep0req;
314 int ret;
315
316 if (!req) {
317 spin_unlock_irq(&ffs->ev.waitq.lock);
318 return -EINVAL;
319 }
320
321 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength);
322
323 spin_unlock_irq(&ffs->ev.waitq.lock);
324
325 req->buf = data;
326 req->length = len;
327
328 /*
329 * UDC layer requires to provide a buffer even for ZLP, but should
330 * not use it at all. Let's provide some poisoned pointer to catch
331 * possible bug in the driver.
332 */
333 if (req->buf == NULL)
334 req->buf = (void *)0xDEADBABE;
335
336 reinit_completion(&ffs->ep0req_completion);
337
338 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
339 if (ret < 0)
340 return ret;
341
342 ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
343 if (ret) {
344 usb_ep_dequeue(ffs->gadget->ep0, req);
345 return -EINTR;
346 }
347
348 ffs->setup_state = FFS_NO_SETUP;
349 return req->status ? req->status : req->actual;
350 }
351
__ffs_ep0_stall(struct ffs_data * ffs)352 static int __ffs_ep0_stall(struct ffs_data *ffs)
353 {
354 if (ffs->ev.can_stall) {
355 pr_vdebug("ep0 stall\n");
356 usb_ep_set_halt(ffs->gadget->ep0);
357 ffs->setup_state = FFS_NO_SETUP;
358 return -EL2HLT;
359 } else {
360 pr_debug("bogus ep0 stall!\n");
361 return -ESRCH;
362 }
363 }
364
ffs_ep0_write(struct file * file,const char __user * buf,size_t len,loff_t * ptr)365 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
366 size_t len, loff_t *ptr)
367 {
368 struct ffs_data *ffs = file->private_data;
369 ssize_t ret;
370 char *data;
371
372 /* Fast check if setup was canceled */
373 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
374 return -EIDRM;
375
376 /* Acquire mutex */
377 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
378 if (ret < 0)
379 return ret;
380
381 /* Check state */
382 switch (ffs->state) {
383 case FFS_READ_DESCRIPTORS:
384 case FFS_READ_STRINGS:
385 /* Copy data */
386 if (len < 16) {
387 ret = -EINVAL;
388 break;
389 }
390
391 data = ffs_prepare_buffer(buf, len);
392 if (IS_ERR(data)) {
393 ret = PTR_ERR(data);
394 break;
395 }
396
397 /* Handle data */
398 if (ffs->state == FFS_READ_DESCRIPTORS) {
399 pr_info("read descriptors\n");
400 ret = __ffs_data_got_descs(ffs, data, len);
401 if (ret < 0)
402 break;
403
404 ffs->state = FFS_READ_STRINGS;
405 ret = len;
406 } else {
407 pr_info("read strings\n");
408 ret = __ffs_data_got_strings(ffs, data, len);
409 if (ret < 0)
410 break;
411
412 ret = ffs_epfiles_create(ffs);
413 if (ret) {
414 ffs->state = FFS_CLOSING;
415 break;
416 }
417
418 ffs->state = FFS_ACTIVE;
419 mutex_unlock(&ffs->mutex);
420
421 ret = ffs_ready(ffs);
422 if (ret < 0) {
423 ffs->state = FFS_CLOSING;
424 return ret;
425 }
426
427 return len;
428 }
429 break;
430
431 case FFS_ACTIVE:
432 data = NULL;
433 /*
434 * We're called from user space, we can use _irq
435 * rather then _irqsave
436 */
437 spin_lock_irq(&ffs->ev.waitq.lock);
438 switch (ffs_setup_state_clear_cancelled(ffs)) {
439 case FFS_SETUP_CANCELLED:
440 ret = -EIDRM;
441 goto done_spin;
442
443 case FFS_NO_SETUP:
444 ret = -ESRCH;
445 goto done_spin;
446
447 case FFS_SETUP_PENDING:
448 break;
449 }
450
451 /* FFS_SETUP_PENDING */
452 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
453 spin_unlock_irq(&ffs->ev.waitq.lock);
454 ret = __ffs_ep0_stall(ffs);
455 break;
456 }
457
458 /* FFS_SETUP_PENDING and not stall */
459 len = min_t(size_t, len, le16_to_cpu(ffs->ev.setup.wLength));
460
461 spin_unlock_irq(&ffs->ev.waitq.lock);
462
463 data = ffs_prepare_buffer(buf, len);
464 if (IS_ERR(data)) {
465 ret = PTR_ERR(data);
466 break;
467 }
468
469 spin_lock_irq(&ffs->ev.waitq.lock);
470
471 /*
472 * We are guaranteed to be still in FFS_ACTIVE state
473 * but the state of setup could have changed from
474 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
475 * to check for that. If that happened we copied data
476 * from user space in vain but it's unlikely.
477 *
478 * For sure we are not in FFS_NO_SETUP since this is
479 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
480 * transition can be performed and it's protected by
481 * mutex.
482 */
483 if (ffs_setup_state_clear_cancelled(ffs) ==
484 FFS_SETUP_CANCELLED) {
485 ret = -EIDRM;
486 done_spin:
487 spin_unlock_irq(&ffs->ev.waitq.lock);
488 } else {
489 /* unlocks spinlock */
490 ret = __ffs_ep0_queue_wait(ffs, data, len);
491 }
492 kfree(data);
493 break;
494
495 default:
496 ret = -EBADFD;
497 break;
498 }
499
500 mutex_unlock(&ffs->mutex);
501 return ret;
502 }
503
504 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
__ffs_ep0_read_events(struct ffs_data * ffs,char __user * buf,size_t n)505 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
506 size_t n)
507 __releases(&ffs->ev.waitq.lock)
508 {
509 /*
510 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
511 * size of ffs->ev.types array (which is four) so that's how much space
512 * we reserve.
513 */
514 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
515 const size_t size = n * sizeof *events;
516 unsigned i = 0;
517
518 memset(events, 0, size);
519
520 do {
521 events[i].type = ffs->ev.types[i];
522 if (events[i].type == FUNCTIONFS_SETUP) {
523 events[i].u.setup = ffs->ev.setup;
524 ffs->setup_state = FFS_SETUP_PENDING;
525 }
526 } while (++i < n);
527
528 ffs->ev.count -= n;
529 if (ffs->ev.count)
530 memmove(ffs->ev.types, ffs->ev.types + n,
531 ffs->ev.count * sizeof *ffs->ev.types);
532
533 spin_unlock_irq(&ffs->ev.waitq.lock);
534 mutex_unlock(&ffs->mutex);
535
536 return copy_to_user(buf, events, size) ? -EFAULT : size;
537 }
538
ffs_ep0_read(struct file * file,char __user * buf,size_t len,loff_t * ptr)539 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
540 size_t len, loff_t *ptr)
541 {
542 struct ffs_data *ffs = file->private_data;
543 char *data = NULL;
544 size_t n;
545 int ret;
546
547 /* Fast check if setup was canceled */
548 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
549 return -EIDRM;
550
551 /* Acquire mutex */
552 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
553 if (ret < 0)
554 return ret;
555
556 /* Check state */
557 if (ffs->state != FFS_ACTIVE) {
558 ret = -EBADFD;
559 goto done_mutex;
560 }
561
562 /*
563 * We're called from user space, we can use _irq rather then
564 * _irqsave
565 */
566 spin_lock_irq(&ffs->ev.waitq.lock);
567
568 switch (ffs_setup_state_clear_cancelled(ffs)) {
569 case FFS_SETUP_CANCELLED:
570 ret = -EIDRM;
571 break;
572
573 case FFS_NO_SETUP:
574 n = len / sizeof(struct usb_functionfs_event);
575 if (!n) {
576 ret = -EINVAL;
577 break;
578 }
579
580 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
581 ret = -EAGAIN;
582 break;
583 }
584
585 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
586 ffs->ev.count)) {
587 ret = -EINTR;
588 break;
589 }
590
591 /* unlocks spinlock */
592 return __ffs_ep0_read_events(ffs, buf,
593 min_t(size_t, n, ffs->ev.count));
594
595 case FFS_SETUP_PENDING:
596 if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
597 spin_unlock_irq(&ffs->ev.waitq.lock);
598 ret = __ffs_ep0_stall(ffs);
599 goto done_mutex;
600 }
601
602 len = min_t(size_t, len, le16_to_cpu(ffs->ev.setup.wLength));
603
604 spin_unlock_irq(&ffs->ev.waitq.lock);
605
606 if (len) {
607 data = kmalloc(len, GFP_KERNEL);
608 if (!data) {
609 ret = -ENOMEM;
610 goto done_mutex;
611 }
612 }
613
614 spin_lock_irq(&ffs->ev.waitq.lock);
615
616 /* See ffs_ep0_write() */
617 if (ffs_setup_state_clear_cancelled(ffs) ==
618 FFS_SETUP_CANCELLED) {
619 ret = -EIDRM;
620 break;
621 }
622
623 /* unlocks spinlock */
624 ret = __ffs_ep0_queue_wait(ffs, data, len);
625 if ((ret > 0) && (copy_to_user(buf, data, len)))
626 ret = -EFAULT;
627 goto done_mutex;
628
629 default:
630 ret = -EBADFD;
631 break;
632 }
633
634 spin_unlock_irq(&ffs->ev.waitq.lock);
635 done_mutex:
636 mutex_unlock(&ffs->mutex);
637 kfree(data);
638 return ret;
639 }
640
ffs_ep0_open(struct inode * inode,struct file * file)641 static int ffs_ep0_open(struct inode *inode, struct file *file)
642 {
643 struct ffs_data *ffs = inode->i_private;
644
645 if (ffs->state == FFS_CLOSING)
646 return -EBUSY;
647
648 file->private_data = ffs;
649 ffs_data_opened(ffs);
650
651 return stream_open(inode, file);
652 }
653
ffs_ep0_release(struct inode * inode,struct file * file)654 static int ffs_ep0_release(struct inode *inode, struct file *file)
655 {
656 struct ffs_data *ffs = file->private_data;
657
658 ffs_data_closed(ffs);
659
660 return 0;
661 }
662
ffs_ep0_ioctl(struct file * file,unsigned code,unsigned long value)663 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
664 {
665 struct ffs_data *ffs = file->private_data;
666 struct usb_gadget *gadget = ffs->gadget;
667 long ret;
668
669 if (code == FUNCTIONFS_INTERFACE_REVMAP) {
670 struct ffs_function *func = ffs->func;
671 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
672 } else if (gadget && gadget->ops->ioctl) {
673 ret = gadget->ops->ioctl(gadget, code, value);
674 } else {
675 ret = -ENOTTY;
676 }
677
678 return ret;
679 }
680
ffs_ep0_poll(struct file * file,poll_table * wait)681 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
682 {
683 struct ffs_data *ffs = file->private_data;
684 __poll_t mask = EPOLLWRNORM;
685 int ret;
686
687 poll_wait(file, &ffs->ev.waitq, wait);
688
689 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
690 if (ret < 0)
691 return mask;
692
693 switch (ffs->state) {
694 case FFS_READ_DESCRIPTORS:
695 case FFS_READ_STRINGS:
696 mask |= EPOLLOUT;
697 break;
698
699 case FFS_ACTIVE:
700 switch (ffs->setup_state) {
701 case FFS_NO_SETUP:
702 if (ffs->ev.count)
703 mask |= EPOLLIN;
704 break;
705
706 case FFS_SETUP_PENDING:
707 case FFS_SETUP_CANCELLED:
708 mask |= (EPOLLIN | EPOLLOUT);
709 break;
710 }
711 break;
712
713 case FFS_CLOSING:
714 break;
715 case FFS_DEACTIVATED:
716 break;
717 }
718
719 mutex_unlock(&ffs->mutex);
720
721 return mask;
722 }
723
724 static const struct file_operations ffs_ep0_operations = {
725
726 .open = ffs_ep0_open,
727 .write = ffs_ep0_write,
728 .read = ffs_ep0_read,
729 .release = ffs_ep0_release,
730 .unlocked_ioctl = ffs_ep0_ioctl,
731 .poll = ffs_ep0_poll,
732 };
733
734
735 /* "Normal" endpoints operations ********************************************/
736
ffs_epfile_io_complete(struct usb_ep * _ep,struct usb_request * req)737 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
738 {
739 struct ffs_io_data *io_data = req->context;
740
741 if (req->status)
742 io_data->status = req->status;
743 else
744 io_data->status = req->actual;
745
746 complete(&io_data->done);
747 }
748
ffs_copy_to_iter(void * data,int data_len,struct iov_iter * iter)749 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
750 {
751 ssize_t ret = copy_to_iter(data, data_len, iter);
752 if (ret == data_len)
753 return ret;
754
755 if (iov_iter_count(iter))
756 return -EFAULT;
757
758 /*
759 * Dear user space developer!
760 *
761 * TL;DR: To stop getting below error message in your kernel log, change
762 * user space code using functionfs to align read buffers to a max
763 * packet size.
764 *
765 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
766 * packet size. When unaligned buffer is passed to functionfs, it
767 * internally uses a larger, aligned buffer so that such UDCs are happy.
768 *
769 * Unfortunately, this means that host may send more data than was
770 * requested in read(2) system call. f_fs doesn’t know what to do with
771 * that excess data so it simply drops it.
772 *
773 * Was the buffer aligned in the first place, no such problem would
774 * happen.
775 *
776 * Data may be dropped only in AIO reads. Synchronous reads are handled
777 * by splitting a request into multiple parts. This splitting may still
778 * be a problem though so it’s likely best to align the buffer
779 * regardless of it being AIO or not..
780 *
781 * This only affects OUT endpoints, i.e. reading data with a read(2),
782 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not
783 * affected.
784 */
785 pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
786 "Align read buffer size to max packet size to avoid the problem.\n",
787 data_len, ret);
788
789 return ret;
790 }
791
792 /*
793 * allocate a virtually contiguous buffer and create a scatterlist describing it
794 * @sg_table - pointer to a place to be filled with sg_table contents
795 * @size - required buffer size
796 */
ffs_build_sg_list(struct sg_table * sgt,size_t sz)797 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
798 {
799 struct page **pages;
800 void *vaddr, *ptr;
801 unsigned int n_pages;
802 int i;
803
804 vaddr = vmalloc(sz);
805 if (!vaddr)
806 return NULL;
807
808 n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
809 pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
810 if (!pages) {
811 vfree(vaddr);
812
813 return NULL;
814 }
815 for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
816 pages[i] = vmalloc_to_page(ptr);
817
818 if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
819 kvfree(pages);
820 vfree(vaddr);
821
822 return NULL;
823 }
824 kvfree(pages);
825
826 return vaddr;
827 }
828
ffs_alloc_buffer(struct ffs_io_data * io_data,size_t data_len)829 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
830 size_t data_len)
831 {
832 if (io_data->use_sg)
833 return ffs_build_sg_list(&io_data->sgt, data_len);
834
835 return kmalloc(data_len, GFP_KERNEL);
836 }
837
ffs_free_buffer(struct ffs_io_data * io_data)838 static inline void ffs_free_buffer(struct ffs_io_data *io_data)
839 {
840 if (!io_data->buf)
841 return;
842
843 if (io_data->use_sg) {
844 sg_free_table(&io_data->sgt);
845 vfree(io_data->buf);
846 } else {
847 kfree(io_data->buf);
848 }
849 }
850
ffs_user_copy_worker(struct work_struct * work)851 static void ffs_user_copy_worker(struct work_struct *work)
852 {
853 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
854 work);
855 int ret = io_data->status;
856 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
857
858 if (io_data->read && ret > 0) {
859 kthread_use_mm(io_data->mm);
860 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
861 kthread_unuse_mm(io_data->mm);
862 }
863
864 io_data->kiocb->ki_complete(io_data->kiocb, ret);
865
866 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
867 eventfd_signal(io_data->ffs->ffs_eventfd);
868
869 usb_ep_free_request(io_data->ep, io_data->req);
870
871 if (io_data->read)
872 kfree(io_data->to_free);
873 ffs_free_buffer(io_data);
874 kfree(io_data);
875 }
876
ffs_epfile_async_io_complete(struct usb_ep * _ep,struct usb_request * req)877 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
878 struct usb_request *req)
879 {
880 struct ffs_io_data *io_data = req->context;
881 struct ffs_data *ffs = io_data->ffs;
882
883 io_data->status = req->status ? req->status : req->actual;
884
885 INIT_WORK(&io_data->work, ffs_user_copy_worker);
886 queue_work(ffs->io_completion_wq, &io_data->work);
887 }
888
__ffs_epfile_read_buffer_free(struct ffs_epfile * epfile)889 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
890 {
891 /*
892 * See comment in struct ffs_epfile for full read_buffer pointer
893 * synchronisation story.
894 */
895 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
896 if (buf && buf != READ_BUFFER_DROP)
897 kfree(buf);
898 }
899
900 /* Assumes epfile->mutex is held. */
__ffs_epfile_read_buffered(struct ffs_epfile * epfile,struct iov_iter * iter)901 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
902 struct iov_iter *iter)
903 {
904 /*
905 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
906 * the buffer while we are using it. See comment in struct ffs_epfile
907 * for full read_buffer pointer synchronisation story.
908 */
909 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
910 ssize_t ret;
911 if (!buf || buf == READ_BUFFER_DROP)
912 return 0;
913
914 ret = copy_to_iter(buf->data, buf->length, iter);
915 if (buf->length == ret) {
916 kfree(buf);
917 return ret;
918 }
919
920 if (iov_iter_count(iter)) {
921 ret = -EFAULT;
922 } else {
923 buf->length -= ret;
924 buf->data += ret;
925 }
926
927 if (cmpxchg(&epfile->read_buffer, NULL, buf))
928 kfree(buf);
929
930 return ret;
931 }
932
933 /* Assumes epfile->mutex is held. */
__ffs_epfile_read_data(struct ffs_epfile * epfile,void * data,int data_len,struct iov_iter * iter)934 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
935 void *data, int data_len,
936 struct iov_iter *iter)
937 {
938 struct ffs_buffer *buf;
939
940 ssize_t ret = copy_to_iter(data, data_len, iter);
941 if (data_len == ret)
942 return ret;
943
944 if (iov_iter_count(iter))
945 return -EFAULT;
946
947 /* See ffs_copy_to_iter for more context. */
948 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
949 data_len, ret);
950
951 data_len -= ret;
952 buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL);
953 if (!buf)
954 return -ENOMEM;
955 buf->length = data_len;
956 buf->data = buf->storage;
957 memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len));
958
959 /*
960 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
961 * ffs_func_eps_disable has been called in the meanwhile). See comment
962 * in struct ffs_epfile for full read_buffer pointer synchronisation
963 * story.
964 */
965 if (cmpxchg(&epfile->read_buffer, NULL, buf))
966 kfree(buf);
967
968 return ret;
969 }
970
ffs_epfile_wait_ep(struct file * file)971 static struct ffs_ep *ffs_epfile_wait_ep(struct file *file)
972 {
973 struct ffs_epfile *epfile = file->private_data;
974 struct ffs_ep *ep;
975 int ret;
976
977 /* Wait for endpoint to be enabled */
978 ep = epfile->ep;
979 if (!ep) {
980 if (file->f_flags & O_NONBLOCK)
981 return ERR_PTR(-EAGAIN);
982
983 ret = wait_event_interruptible(
984 epfile->ffs->wait, (ep = epfile->ep));
985 if (ret)
986 return ERR_PTR(-EINTR);
987 }
988
989 return ep;
990 }
991
ffs_epfile_io(struct file * file,struct ffs_io_data * io_data)992 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
993 {
994 struct ffs_epfile *epfile = file->private_data;
995 struct usb_request *req;
996 struct ffs_ep *ep;
997 char *data = NULL;
998 ssize_t ret, data_len = -EINVAL;
999 int halt;
1000
1001 /* Are we still active? */
1002 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1003 return -ENODEV;
1004
1005 ep = ffs_epfile_wait_ep(file);
1006 if (IS_ERR(ep))
1007 return PTR_ERR(ep);
1008
1009 /* Do we halt? */
1010 halt = (!io_data->read == !epfile->in);
1011 if (halt && epfile->isoc)
1012 return -EINVAL;
1013
1014 /* We will be using request and read_buffer */
1015 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
1016 if (ret)
1017 goto error;
1018
1019 /* Allocate & copy */
1020 if (!halt) {
1021 struct usb_gadget *gadget;
1022
1023 /*
1024 * Do we have buffered data from previous partial read? Check
1025 * that for synchronous case only because we do not have
1026 * facility to ‘wake up’ a pending asynchronous read and push
1027 * buffered data to it which we would need to make things behave
1028 * consistently.
1029 */
1030 if (!io_data->aio && io_data->read) {
1031 ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
1032 if (ret)
1033 goto error_mutex;
1034 }
1035
1036 /*
1037 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
1038 * before the waiting completes, so do not assign to 'gadget'
1039 * earlier
1040 */
1041 gadget = epfile->ffs->gadget;
1042
1043 spin_lock_irq(&epfile->ffs->eps_lock);
1044 /* In the meantime, endpoint got disabled or changed. */
1045 if (epfile->ep != ep) {
1046 ret = -ESHUTDOWN;
1047 goto error_lock;
1048 }
1049 data_len = iov_iter_count(&io_data->data);
1050 /*
1051 * Controller may require buffer size to be aligned to
1052 * maxpacketsize of an out endpoint.
1053 */
1054 if (io_data->read)
1055 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1056
1057 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1058 spin_unlock_irq(&epfile->ffs->eps_lock);
1059
1060 data = ffs_alloc_buffer(io_data, data_len);
1061 if (!data) {
1062 ret = -ENOMEM;
1063 goto error_mutex;
1064 }
1065 if (!io_data->read &&
1066 !copy_from_iter_full(data, data_len, &io_data->data)) {
1067 ret = -EFAULT;
1068 goto error_mutex;
1069 }
1070 }
1071
1072 spin_lock_irq(&epfile->ffs->eps_lock);
1073
1074 if (epfile->ep != ep) {
1075 /* In the meantime, endpoint got disabled or changed. */
1076 ret = -ESHUTDOWN;
1077 } else if (halt) {
1078 ret = usb_ep_set_halt(ep->ep);
1079 if (!ret)
1080 ret = -EBADMSG;
1081 } else if (data_len == -EINVAL) {
1082 /*
1083 * Sanity Check: even though data_len can't be used
1084 * uninitialized at the time I write this comment, some
1085 * compilers complain about this situation.
1086 * In order to keep the code clean from warnings, data_len is
1087 * being initialized to -EINVAL during its declaration, which
1088 * means we can't rely on compiler anymore to warn no future
1089 * changes won't result in data_len being used uninitialized.
1090 * For such reason, we're adding this redundant sanity check
1091 * here.
1092 */
1093 WARN(1, "%s: data_len == -EINVAL\n", __func__);
1094 ret = -EINVAL;
1095 } else if (!io_data->aio) {
1096 bool interrupted = false;
1097
1098 req = ep->req;
1099 if (io_data->use_sg) {
1100 req->buf = NULL;
1101 req->sg = io_data->sgt.sgl;
1102 req->num_sgs = io_data->sgt.nents;
1103 } else {
1104 req->buf = data;
1105 req->num_sgs = 0;
1106 }
1107 req->length = data_len;
1108
1109 io_data->buf = data;
1110
1111 init_completion(&io_data->done);
1112 req->context = io_data;
1113 req->complete = ffs_epfile_io_complete;
1114
1115 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1116 if (ret < 0)
1117 goto error_lock;
1118
1119 spin_unlock_irq(&epfile->ffs->eps_lock);
1120
1121 if (wait_for_completion_interruptible(&io_data->done)) {
1122 spin_lock_irq(&epfile->ffs->eps_lock);
1123 if (epfile->ep != ep) {
1124 ret = -ESHUTDOWN;
1125 goto error_lock;
1126 }
1127 /*
1128 * To avoid race condition with ffs_epfile_io_complete,
1129 * dequeue the request first then check
1130 * status. usb_ep_dequeue API should guarantee no race
1131 * condition with req->complete callback.
1132 */
1133 usb_ep_dequeue(ep->ep, req);
1134 spin_unlock_irq(&epfile->ffs->eps_lock);
1135 wait_for_completion(&io_data->done);
1136 interrupted = io_data->status < 0;
1137 }
1138
1139 if (interrupted)
1140 ret = -EINTR;
1141 else if (io_data->read && io_data->status > 0)
1142 ret = __ffs_epfile_read_data(epfile, data, io_data->status,
1143 &io_data->data);
1144 else
1145 ret = io_data->status;
1146 goto error_mutex;
1147 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1148 ret = -ENOMEM;
1149 } else {
1150 if (io_data->use_sg) {
1151 req->buf = NULL;
1152 req->sg = io_data->sgt.sgl;
1153 req->num_sgs = io_data->sgt.nents;
1154 } else {
1155 req->buf = data;
1156 req->num_sgs = 0;
1157 }
1158 req->length = data_len;
1159
1160 io_data->buf = data;
1161 io_data->ep = ep->ep;
1162 io_data->req = req;
1163 io_data->ffs = epfile->ffs;
1164
1165 req->context = io_data;
1166 req->complete = ffs_epfile_async_io_complete;
1167
1168 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1169 if (ret) {
1170 io_data->req = NULL;
1171 usb_ep_free_request(ep->ep, req);
1172 goto error_lock;
1173 }
1174
1175 ret = -EIOCBQUEUED;
1176 /*
1177 * Do not kfree the buffer in this function. It will be freed
1178 * by ffs_user_copy_worker.
1179 */
1180 data = NULL;
1181 }
1182
1183 error_lock:
1184 spin_unlock_irq(&epfile->ffs->eps_lock);
1185 error_mutex:
1186 mutex_unlock(&epfile->mutex);
1187 error:
1188 if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1189 ffs_free_buffer(io_data);
1190 return ret;
1191 }
1192
1193 static int
ffs_epfile_open(struct inode * inode,struct file * file)1194 ffs_epfile_open(struct inode *inode, struct file *file)
1195 {
1196 struct ffs_epfile *epfile = inode->i_private;
1197
1198 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1199 return -ENODEV;
1200
1201 file->private_data = epfile;
1202 ffs_data_opened(epfile->ffs);
1203
1204 return stream_open(inode, file);
1205 }
1206
ffs_aio_cancel(struct kiocb * kiocb)1207 static int ffs_aio_cancel(struct kiocb *kiocb)
1208 {
1209 struct ffs_io_data *io_data = kiocb->private;
1210 int value;
1211
1212 if (io_data && io_data->ep && io_data->req)
1213 value = usb_ep_dequeue(io_data->ep, io_data->req);
1214 else
1215 value = -EINVAL;
1216
1217 return value;
1218 }
1219
ffs_epfile_write_iter(struct kiocb * kiocb,struct iov_iter * from)1220 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1221 {
1222 struct ffs_io_data io_data, *p = &io_data;
1223 ssize_t res;
1224
1225 if (!is_sync_kiocb(kiocb)) {
1226 p = kzalloc(sizeof(io_data), GFP_KERNEL);
1227 if (!p)
1228 return -ENOMEM;
1229 p->aio = true;
1230 } else {
1231 memset(p, 0, sizeof(*p));
1232 p->aio = false;
1233 }
1234
1235 p->read = false;
1236 p->kiocb = kiocb;
1237 p->data = *from;
1238 p->mm = current->mm;
1239
1240 kiocb->private = p;
1241
1242 if (p->aio)
1243 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1244
1245 res = ffs_epfile_io(kiocb->ki_filp, p);
1246 if (res == -EIOCBQUEUED)
1247 return res;
1248 if (p->aio)
1249 kfree(p);
1250 else
1251 *from = p->data;
1252 return res;
1253 }
1254
ffs_epfile_read_iter(struct kiocb * kiocb,struct iov_iter * to)1255 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1256 {
1257 struct ffs_io_data io_data, *p = &io_data;
1258 ssize_t res;
1259
1260 if (!is_sync_kiocb(kiocb)) {
1261 p = kzalloc(sizeof(io_data), GFP_KERNEL);
1262 if (!p)
1263 return -ENOMEM;
1264 p->aio = true;
1265 } else {
1266 memset(p, 0, sizeof(*p));
1267 p->aio = false;
1268 }
1269
1270 p->read = true;
1271 p->kiocb = kiocb;
1272 if (p->aio) {
1273 p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1274 if (!iter_is_ubuf(&p->data) && !p->to_free) {
1275 kfree(p);
1276 return -ENOMEM;
1277 }
1278 } else {
1279 p->data = *to;
1280 p->to_free = NULL;
1281 }
1282 p->mm = current->mm;
1283
1284 kiocb->private = p;
1285
1286 if (p->aio)
1287 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1288
1289 res = ffs_epfile_io(kiocb->ki_filp, p);
1290 if (res == -EIOCBQUEUED)
1291 return res;
1292
1293 if (p->aio) {
1294 kfree(p->to_free);
1295 kfree(p);
1296 } else {
1297 *to = p->data;
1298 }
1299 return res;
1300 }
1301
ffs_dmabuf_release(struct kref * ref)1302 static void ffs_dmabuf_release(struct kref *ref)
1303 {
1304 struct ffs_dmabuf_priv *priv = container_of(ref, struct ffs_dmabuf_priv, ref);
1305 struct dma_buf_attachment *attach = priv->attach;
1306 struct dma_buf *dmabuf = attach->dmabuf;
1307
1308 pr_vdebug("FFS DMABUF release\n");
1309 dma_resv_lock(dmabuf->resv, NULL);
1310 dma_buf_unmap_attachment(attach, priv->sgt, priv->dir);
1311 dma_resv_unlock(dmabuf->resv);
1312
1313 dma_buf_detach(attach->dmabuf, attach);
1314 dma_buf_put(dmabuf);
1315 kfree(priv);
1316 }
1317
ffs_dmabuf_get(struct dma_buf_attachment * attach)1318 static void ffs_dmabuf_get(struct dma_buf_attachment *attach)
1319 {
1320 struct ffs_dmabuf_priv *priv = attach->importer_priv;
1321
1322 kref_get(&priv->ref);
1323 }
1324
ffs_dmabuf_put(struct dma_buf_attachment * attach)1325 static void ffs_dmabuf_put(struct dma_buf_attachment *attach)
1326 {
1327 struct ffs_dmabuf_priv *priv = attach->importer_priv;
1328
1329 kref_put(&priv->ref, ffs_dmabuf_release);
1330 }
1331
1332 static int
ffs_epfile_release(struct inode * inode,struct file * file)1333 ffs_epfile_release(struct inode *inode, struct file *file)
1334 {
1335 struct ffs_epfile *epfile = inode->i_private;
1336 struct ffs_dmabuf_priv *priv, *tmp;
1337 struct ffs_data *ffs = epfile->ffs;
1338
1339 mutex_lock(&epfile->dmabufs_mutex);
1340
1341 /* Close all attached DMABUFs */
1342 list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1343 /* Cancel any pending transfer */
1344 spin_lock_irq(&ffs->eps_lock);
1345 if (priv->ep && priv->req)
1346 usb_ep_dequeue(priv->ep, priv->req);
1347 spin_unlock_irq(&ffs->eps_lock);
1348
1349 list_del(&priv->entry);
1350 ffs_dmabuf_put(priv->attach);
1351 }
1352
1353 mutex_unlock(&epfile->dmabufs_mutex);
1354
1355 __ffs_epfile_read_buffer_free(epfile);
1356 ffs_data_closed(epfile->ffs);
1357
1358 return 0;
1359 }
1360
ffs_dmabuf_cleanup(struct work_struct * work)1361 static void ffs_dmabuf_cleanup(struct work_struct *work)
1362 {
1363 struct ffs_dma_fence *dma_fence =
1364 container_of(work, struct ffs_dma_fence, work);
1365 struct ffs_dmabuf_priv *priv = dma_fence->priv;
1366 struct dma_buf_attachment *attach = priv->attach;
1367 struct dma_fence *fence = &dma_fence->base;
1368
1369 ffs_dmabuf_put(attach);
1370 dma_fence_put(fence);
1371 }
1372
ffs_dmabuf_signal_done(struct ffs_dma_fence * dma_fence,int ret)1373 static void ffs_dmabuf_signal_done(struct ffs_dma_fence *dma_fence, int ret)
1374 {
1375 struct ffs_dmabuf_priv *priv = dma_fence->priv;
1376 struct dma_fence *fence = &dma_fence->base;
1377 bool cookie = dma_fence_begin_signalling();
1378
1379 dma_fence_get(fence);
1380 fence->error = ret;
1381 dma_fence_signal(fence);
1382 dma_fence_end_signalling(cookie);
1383
1384 /*
1385 * The fence will be unref'd in ffs_dmabuf_cleanup.
1386 * It can't be done here, as the unref functions might try to lock
1387 * the resv object, which would deadlock.
1388 */
1389 INIT_WORK(&dma_fence->work, ffs_dmabuf_cleanup);
1390 queue_work(priv->ffs->io_completion_wq, &dma_fence->work);
1391 }
1392
ffs_epfile_dmabuf_io_complete(struct usb_ep * ep,struct usb_request * req)1393 static void ffs_epfile_dmabuf_io_complete(struct usb_ep *ep,
1394 struct usb_request *req)
1395 {
1396 pr_vdebug("FFS: DMABUF transfer complete, status=%d\n", req->status);
1397 ffs_dmabuf_signal_done(req->context, req->status);
1398 usb_ep_free_request(ep, req);
1399 }
1400
ffs_dmabuf_get_driver_name(struct dma_fence * fence)1401 static const char *ffs_dmabuf_get_driver_name(struct dma_fence *fence)
1402 {
1403 return "functionfs";
1404 }
1405
ffs_dmabuf_get_timeline_name(struct dma_fence * fence)1406 static const char *ffs_dmabuf_get_timeline_name(struct dma_fence *fence)
1407 {
1408 return "";
1409 }
1410
ffs_dmabuf_fence_release(struct dma_fence * fence)1411 static void ffs_dmabuf_fence_release(struct dma_fence *fence)
1412 {
1413 struct ffs_dma_fence *dma_fence =
1414 container_of(fence, struct ffs_dma_fence, base);
1415
1416 kfree(dma_fence);
1417 }
1418
1419 static const struct dma_fence_ops ffs_dmabuf_fence_ops = {
1420 .get_driver_name = ffs_dmabuf_get_driver_name,
1421 .get_timeline_name = ffs_dmabuf_get_timeline_name,
1422 .release = ffs_dmabuf_fence_release,
1423 };
1424
ffs_dma_resv_lock(struct dma_buf * dmabuf,bool nonblock)1425 static int ffs_dma_resv_lock(struct dma_buf *dmabuf, bool nonblock)
1426 {
1427 if (!nonblock)
1428 return dma_resv_lock_interruptible(dmabuf->resv, NULL);
1429
1430 if (!dma_resv_trylock(dmabuf->resv))
1431 return -EBUSY;
1432
1433 return 0;
1434 }
1435
1436 static struct dma_buf_attachment *
ffs_dmabuf_find_attachment(struct ffs_epfile * epfile,struct dma_buf * dmabuf)1437 ffs_dmabuf_find_attachment(struct ffs_epfile *epfile, struct dma_buf *dmabuf)
1438 {
1439 struct device *dev = epfile->ffs->gadget->dev.parent;
1440 struct dma_buf_attachment *attach = NULL;
1441 struct ffs_dmabuf_priv *priv;
1442
1443 mutex_lock(&epfile->dmabufs_mutex);
1444
1445 list_for_each_entry(priv, &epfile->dmabufs, entry) {
1446 if (priv->attach->dev == dev
1447 && priv->attach->dmabuf == dmabuf) {
1448 attach = priv->attach;
1449 break;
1450 }
1451 }
1452
1453 if (attach)
1454 ffs_dmabuf_get(attach);
1455
1456 mutex_unlock(&epfile->dmabufs_mutex);
1457
1458 return attach ?: ERR_PTR(-EPERM);
1459 }
1460
ffs_dmabuf_attach(struct file * file,int fd)1461 static int ffs_dmabuf_attach(struct file *file, int fd)
1462 {
1463 bool nonblock = file->f_flags & O_NONBLOCK;
1464 struct ffs_epfile *epfile = file->private_data;
1465 struct usb_gadget *gadget = epfile->ffs->gadget;
1466 struct dma_buf_attachment *attach;
1467 struct ffs_dmabuf_priv *priv;
1468 enum dma_data_direction dir;
1469 struct sg_table *sg_table;
1470 struct dma_buf *dmabuf;
1471 int err;
1472
1473 if (!gadget || !gadget->sg_supported)
1474 return -EPERM;
1475
1476 dmabuf = dma_buf_get(fd);
1477 if (IS_ERR(dmabuf))
1478 return PTR_ERR(dmabuf);
1479
1480 attach = dma_buf_attach(dmabuf, gadget->dev.parent);
1481 if (IS_ERR(attach)) {
1482 err = PTR_ERR(attach);
1483 goto err_dmabuf_put;
1484 }
1485
1486 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1487 if (!priv) {
1488 err = -ENOMEM;
1489 goto err_dmabuf_detach;
1490 }
1491
1492 dir = epfile->in ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1493
1494 err = ffs_dma_resv_lock(dmabuf, nonblock);
1495 if (err)
1496 goto err_free_priv;
1497
1498 sg_table = dma_buf_map_attachment(attach, dir);
1499 dma_resv_unlock(dmabuf->resv);
1500
1501 if (IS_ERR(sg_table)) {
1502 err = PTR_ERR(sg_table);
1503 goto err_free_priv;
1504 }
1505
1506 attach->importer_priv = priv;
1507
1508 priv->sgt = sg_table;
1509 priv->dir = dir;
1510 priv->ffs = epfile->ffs;
1511 priv->attach = attach;
1512 spin_lock_init(&priv->lock);
1513 kref_init(&priv->ref);
1514 priv->context = dma_fence_context_alloc(1);
1515
1516 mutex_lock(&epfile->dmabufs_mutex);
1517 list_add(&priv->entry, &epfile->dmabufs);
1518 mutex_unlock(&epfile->dmabufs_mutex);
1519
1520 return 0;
1521
1522 err_free_priv:
1523 kfree(priv);
1524 err_dmabuf_detach:
1525 dma_buf_detach(dmabuf, attach);
1526 err_dmabuf_put:
1527 dma_buf_put(dmabuf);
1528
1529 return err;
1530 }
1531
ffs_dmabuf_detach(struct file * file,int fd)1532 static int ffs_dmabuf_detach(struct file *file, int fd)
1533 {
1534 struct ffs_epfile *epfile = file->private_data;
1535 struct ffs_data *ffs = epfile->ffs;
1536 struct device *dev = ffs->gadget->dev.parent;
1537 struct ffs_dmabuf_priv *priv, *tmp;
1538 struct dma_buf *dmabuf;
1539 int ret = -EPERM;
1540
1541 dmabuf = dma_buf_get(fd);
1542 if (IS_ERR(dmabuf))
1543 return PTR_ERR(dmabuf);
1544
1545 mutex_lock(&epfile->dmabufs_mutex);
1546
1547 list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1548 if (priv->attach->dev == dev
1549 && priv->attach->dmabuf == dmabuf) {
1550 /* Cancel any pending transfer */
1551 spin_lock_irq(&ffs->eps_lock);
1552 if (priv->ep && priv->req)
1553 usb_ep_dequeue(priv->ep, priv->req);
1554 spin_unlock_irq(&ffs->eps_lock);
1555
1556 list_del(&priv->entry);
1557
1558 /* Unref the reference from ffs_dmabuf_attach() */
1559 ffs_dmabuf_put(priv->attach);
1560 ret = 0;
1561 break;
1562 }
1563 }
1564
1565 mutex_unlock(&epfile->dmabufs_mutex);
1566 dma_buf_put(dmabuf);
1567
1568 return ret;
1569 }
1570
ffs_dmabuf_transfer(struct file * file,const struct usb_ffs_dmabuf_transfer_req * req)1571 static int ffs_dmabuf_transfer(struct file *file,
1572 const struct usb_ffs_dmabuf_transfer_req *req)
1573 {
1574 bool nonblock = file->f_flags & O_NONBLOCK;
1575 struct ffs_epfile *epfile = file->private_data;
1576 struct dma_buf_attachment *attach;
1577 struct ffs_dmabuf_priv *priv;
1578 struct ffs_dma_fence *fence;
1579 struct usb_request *usb_req;
1580 enum dma_resv_usage resv_dir;
1581 struct dma_buf *dmabuf;
1582 unsigned long timeout;
1583 struct ffs_ep *ep;
1584 bool cookie;
1585 u32 seqno;
1586 long retl;
1587 int ret;
1588
1589 if (req->flags & ~USB_FFS_DMABUF_TRANSFER_MASK)
1590 return -EINVAL;
1591
1592 dmabuf = dma_buf_get(req->fd);
1593 if (IS_ERR(dmabuf))
1594 return PTR_ERR(dmabuf);
1595
1596 if (req->length > dmabuf->size || req->length == 0) {
1597 ret = -EINVAL;
1598 goto err_dmabuf_put;
1599 }
1600
1601 attach = ffs_dmabuf_find_attachment(epfile, dmabuf);
1602 if (IS_ERR(attach)) {
1603 ret = PTR_ERR(attach);
1604 goto err_dmabuf_put;
1605 }
1606
1607 priv = attach->importer_priv;
1608
1609 ep = ffs_epfile_wait_ep(file);
1610 if (IS_ERR(ep)) {
1611 ret = PTR_ERR(ep);
1612 goto err_attachment_put;
1613 }
1614
1615 ret = ffs_dma_resv_lock(dmabuf, nonblock);
1616 if (ret)
1617 goto err_attachment_put;
1618
1619 /* Make sure we don't have writers */
1620 timeout = nonblock ? 0 : msecs_to_jiffies(DMABUF_ENQUEUE_TIMEOUT_MS);
1621 retl = dma_resv_wait_timeout(dmabuf->resv,
1622 dma_resv_usage_rw(epfile->in),
1623 true, timeout);
1624 if (retl == 0)
1625 retl = -EBUSY;
1626 if (retl < 0) {
1627 ret = (int)retl;
1628 goto err_resv_unlock;
1629 }
1630
1631 ret = dma_resv_reserve_fences(dmabuf->resv, 1);
1632 if (ret)
1633 goto err_resv_unlock;
1634
1635 fence = kmalloc(sizeof(*fence), GFP_KERNEL);
1636 if (!fence) {
1637 ret = -ENOMEM;
1638 goto err_resv_unlock;
1639 }
1640
1641 fence->priv = priv;
1642
1643 spin_lock_irq(&epfile->ffs->eps_lock);
1644
1645 /* In the meantime, endpoint got disabled or changed. */
1646 if (epfile->ep != ep) {
1647 ret = -ESHUTDOWN;
1648 goto err_fence_put;
1649 }
1650
1651 usb_req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC);
1652 if (!usb_req) {
1653 ret = -ENOMEM;
1654 goto err_fence_put;
1655 }
1656
1657 /*
1658 * usb_ep_queue() guarantees that all transfers are processed in the
1659 * order they are enqueued, so we can use a simple incrementing
1660 * sequence number for the dma_fence.
1661 */
1662 seqno = atomic_add_return(1, &epfile->seqno);
1663
1664 dma_fence_init(&fence->base, &ffs_dmabuf_fence_ops,
1665 &priv->lock, priv->context, seqno);
1666
1667 resv_dir = epfile->in ? DMA_RESV_USAGE_WRITE : DMA_RESV_USAGE_READ;
1668
1669 dma_resv_add_fence(dmabuf->resv, &fence->base, resv_dir);
1670 dma_resv_unlock(dmabuf->resv);
1671
1672 /* Now that the dma_fence is in place, queue the transfer. */
1673
1674 usb_req->length = req->length;
1675 usb_req->buf = NULL;
1676 usb_req->sg = priv->sgt->sgl;
1677 usb_req->num_sgs = sg_nents_for_len(priv->sgt->sgl, req->length);
1678 usb_req->sg_was_mapped = true;
1679 usb_req->context = fence;
1680 usb_req->complete = ffs_epfile_dmabuf_io_complete;
1681
1682 cookie = dma_fence_begin_signalling();
1683 ret = usb_ep_queue(ep->ep, usb_req, GFP_ATOMIC);
1684 dma_fence_end_signalling(cookie);
1685 if (!ret) {
1686 priv->req = usb_req;
1687 priv->ep = ep->ep;
1688 } else {
1689 pr_warn("FFS: Failed to queue DMABUF: %d\n", ret);
1690 ffs_dmabuf_signal_done(fence, ret);
1691 usb_ep_free_request(ep->ep, usb_req);
1692 }
1693
1694 spin_unlock_irq(&epfile->ffs->eps_lock);
1695 dma_buf_put(dmabuf);
1696
1697 return ret;
1698
1699 err_fence_put:
1700 spin_unlock_irq(&epfile->ffs->eps_lock);
1701 dma_fence_put(&fence->base);
1702 err_resv_unlock:
1703 dma_resv_unlock(dmabuf->resv);
1704 err_attachment_put:
1705 ffs_dmabuf_put(attach);
1706 err_dmabuf_put:
1707 dma_buf_put(dmabuf);
1708
1709 return ret;
1710 }
1711
ffs_epfile_ioctl(struct file * file,unsigned code,unsigned long value)1712 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1713 unsigned long value)
1714 {
1715 struct ffs_epfile *epfile = file->private_data;
1716 struct ffs_ep *ep;
1717 int ret;
1718
1719 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1720 return -ENODEV;
1721
1722 switch (code) {
1723 case FUNCTIONFS_DMABUF_ATTACH:
1724 {
1725 int fd;
1726
1727 if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) {
1728 ret = -EFAULT;
1729 break;
1730 }
1731
1732 return ffs_dmabuf_attach(file, fd);
1733 }
1734 case FUNCTIONFS_DMABUF_DETACH:
1735 {
1736 int fd;
1737
1738 if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) {
1739 ret = -EFAULT;
1740 break;
1741 }
1742
1743 return ffs_dmabuf_detach(file, fd);
1744 }
1745 case FUNCTIONFS_DMABUF_TRANSFER:
1746 {
1747 struct usb_ffs_dmabuf_transfer_req req;
1748
1749 if (copy_from_user(&req, (void __user *)value, sizeof(req))) {
1750 ret = -EFAULT;
1751 break;
1752 }
1753
1754 return ffs_dmabuf_transfer(file, &req);
1755 }
1756 default:
1757 break;
1758 }
1759
1760 /* Wait for endpoint to be enabled */
1761 ep = ffs_epfile_wait_ep(file);
1762 if (IS_ERR(ep))
1763 return PTR_ERR(ep);
1764
1765 spin_lock_irq(&epfile->ffs->eps_lock);
1766
1767 /* In the meantime, endpoint got disabled or changed. */
1768 if (epfile->ep != ep) {
1769 spin_unlock_irq(&epfile->ffs->eps_lock);
1770 return -ESHUTDOWN;
1771 }
1772
1773 switch (code) {
1774 case FUNCTIONFS_FIFO_STATUS:
1775 ret = usb_ep_fifo_status(epfile->ep->ep);
1776 break;
1777 case FUNCTIONFS_FIFO_FLUSH:
1778 usb_ep_fifo_flush(epfile->ep->ep);
1779 ret = 0;
1780 break;
1781 case FUNCTIONFS_CLEAR_HALT:
1782 ret = usb_ep_clear_halt(epfile->ep->ep);
1783 break;
1784 case FUNCTIONFS_ENDPOINT_REVMAP:
1785 ret = epfile->ep->num;
1786 break;
1787 case FUNCTIONFS_ENDPOINT_DESC:
1788 {
1789 int desc_idx;
1790 struct usb_endpoint_descriptor desc1, *desc;
1791
1792 switch (epfile->ffs->gadget->speed) {
1793 case USB_SPEED_SUPER:
1794 case USB_SPEED_SUPER_PLUS:
1795 desc_idx = 2;
1796 break;
1797 case USB_SPEED_HIGH:
1798 desc_idx = 1;
1799 break;
1800 default:
1801 desc_idx = 0;
1802 }
1803
1804 desc = epfile->ep->descs[desc_idx];
1805 memcpy(&desc1, desc, desc->bLength);
1806
1807 spin_unlock_irq(&epfile->ffs->eps_lock);
1808 ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1809 if (ret)
1810 ret = -EFAULT;
1811 return ret;
1812 }
1813 default:
1814 ret = -ENOTTY;
1815 }
1816 spin_unlock_irq(&epfile->ffs->eps_lock);
1817
1818 return ret;
1819 }
1820
1821 static const struct file_operations ffs_epfile_operations = {
1822
1823 .open = ffs_epfile_open,
1824 .write_iter = ffs_epfile_write_iter,
1825 .read_iter = ffs_epfile_read_iter,
1826 .release = ffs_epfile_release,
1827 .unlocked_ioctl = ffs_epfile_ioctl,
1828 .compat_ioctl = compat_ptr_ioctl,
1829 };
1830
1831
1832 /* File system and super block operations ***********************************/
1833
1834 /*
1835 * Mounting the file system creates a controller file, used first for
1836 * function configuration then later for event monitoring.
1837 */
1838
1839 static struct inode *__must_check
ffs_sb_make_inode(struct super_block * sb,void * data,const struct file_operations * fops,const struct inode_operations * iops,struct ffs_file_perms * perms)1840 ffs_sb_make_inode(struct super_block *sb, void *data,
1841 const struct file_operations *fops,
1842 const struct inode_operations *iops,
1843 struct ffs_file_perms *perms)
1844 {
1845 struct inode *inode;
1846
1847 inode = new_inode(sb);
1848
1849 if (inode) {
1850 struct timespec64 ts = inode_set_ctime_current(inode);
1851
1852 inode->i_ino = get_next_ino();
1853 inode->i_mode = perms->mode;
1854 inode->i_uid = perms->uid;
1855 inode->i_gid = perms->gid;
1856 inode_set_atime_to_ts(inode, ts);
1857 inode_set_mtime_to_ts(inode, ts);
1858 inode->i_private = data;
1859 if (fops)
1860 inode->i_fop = fops;
1861 if (iops)
1862 inode->i_op = iops;
1863 }
1864
1865 return inode;
1866 }
1867
1868 /* Create "regular" file */
ffs_sb_create_file(struct super_block * sb,const char * name,void * data,const struct file_operations * fops)1869 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1870 const char *name, void *data,
1871 const struct file_operations *fops)
1872 {
1873 struct ffs_data *ffs = sb->s_fs_info;
1874 struct dentry *dentry;
1875 struct inode *inode;
1876
1877 dentry = d_alloc_name(sb->s_root, name);
1878 if (!dentry)
1879 return NULL;
1880
1881 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1882 if (!inode) {
1883 dput(dentry);
1884 return NULL;
1885 }
1886
1887 d_add(dentry, inode);
1888 return dentry;
1889 }
1890
1891 /* Super block */
1892 static const struct super_operations ffs_sb_operations = {
1893 .statfs = simple_statfs,
1894 .drop_inode = generic_delete_inode,
1895 };
1896
1897 struct ffs_sb_fill_data {
1898 struct ffs_file_perms perms;
1899 umode_t root_mode;
1900 const char *dev_name;
1901 bool no_disconnect;
1902 struct ffs_data *ffs_data;
1903 };
1904
ffs_sb_fill(struct super_block * sb,struct fs_context * fc)1905 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1906 {
1907 struct ffs_sb_fill_data *data = fc->fs_private;
1908 struct inode *inode;
1909 struct ffs_data *ffs = data->ffs_data;
1910
1911 ffs->sb = sb;
1912 data->ffs_data = NULL;
1913 sb->s_fs_info = ffs;
1914 sb->s_blocksize = PAGE_SIZE;
1915 sb->s_blocksize_bits = PAGE_SHIFT;
1916 sb->s_magic = FUNCTIONFS_MAGIC;
1917 sb->s_op = &ffs_sb_operations;
1918 sb->s_time_gran = 1;
1919
1920 /* Root inode */
1921 data->perms.mode = data->root_mode;
1922 inode = ffs_sb_make_inode(sb, NULL,
1923 &simple_dir_operations,
1924 &simple_dir_inode_operations,
1925 &data->perms);
1926 sb->s_root = d_make_root(inode);
1927 if (!sb->s_root)
1928 return -ENOMEM;
1929
1930 /* EP0 file */
1931 if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations))
1932 return -ENOMEM;
1933
1934 return 0;
1935 }
1936
1937 enum {
1938 Opt_no_disconnect,
1939 Opt_rmode,
1940 Opt_fmode,
1941 Opt_mode,
1942 Opt_uid,
1943 Opt_gid,
1944 };
1945
1946 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1947 fsparam_bool ("no_disconnect", Opt_no_disconnect),
1948 fsparam_u32 ("rmode", Opt_rmode),
1949 fsparam_u32 ("fmode", Opt_fmode),
1950 fsparam_u32 ("mode", Opt_mode),
1951 fsparam_u32 ("uid", Opt_uid),
1952 fsparam_u32 ("gid", Opt_gid),
1953 {}
1954 };
1955
ffs_fs_parse_param(struct fs_context * fc,struct fs_parameter * param)1956 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1957 {
1958 struct ffs_sb_fill_data *data = fc->fs_private;
1959 struct fs_parse_result result;
1960 int opt;
1961
1962 opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1963 if (opt < 0)
1964 return opt;
1965
1966 switch (opt) {
1967 case Opt_no_disconnect:
1968 data->no_disconnect = result.boolean;
1969 break;
1970 case Opt_rmode:
1971 data->root_mode = (result.uint_32 & 0555) | S_IFDIR;
1972 break;
1973 case Opt_fmode:
1974 data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1975 break;
1976 case Opt_mode:
1977 data->root_mode = (result.uint_32 & 0555) | S_IFDIR;
1978 data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1979 break;
1980
1981 case Opt_uid:
1982 data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1983 if (!uid_valid(data->perms.uid))
1984 goto unmapped_value;
1985 break;
1986 case Opt_gid:
1987 data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1988 if (!gid_valid(data->perms.gid))
1989 goto unmapped_value;
1990 break;
1991
1992 default:
1993 return -ENOPARAM;
1994 }
1995
1996 return 0;
1997
1998 unmapped_value:
1999 return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
2000 }
2001
2002 /*
2003 * Set up the superblock for a mount.
2004 */
ffs_fs_get_tree(struct fs_context * fc)2005 static int ffs_fs_get_tree(struct fs_context *fc)
2006 {
2007 struct ffs_sb_fill_data *ctx = fc->fs_private;
2008 struct ffs_data *ffs;
2009 int ret;
2010
2011 if (!fc->source)
2012 return invalf(fc, "No source specified");
2013
2014 ffs = ffs_data_new(fc->source);
2015 if (!ffs)
2016 return -ENOMEM;
2017 ffs->file_perms = ctx->perms;
2018 ffs->no_disconnect = ctx->no_disconnect;
2019
2020 ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
2021 if (!ffs->dev_name) {
2022 ffs_data_put(ffs);
2023 return -ENOMEM;
2024 }
2025
2026 ret = ffs_acquire_dev(ffs->dev_name, ffs);
2027 if (ret) {
2028 ffs_data_put(ffs);
2029 return ret;
2030 }
2031
2032 ctx->ffs_data = ffs;
2033 return get_tree_nodev(fc, ffs_sb_fill);
2034 }
2035
ffs_fs_free_fc(struct fs_context * fc)2036 static void ffs_fs_free_fc(struct fs_context *fc)
2037 {
2038 struct ffs_sb_fill_data *ctx = fc->fs_private;
2039
2040 if (ctx) {
2041 if (ctx->ffs_data) {
2042 ffs_data_put(ctx->ffs_data);
2043 }
2044
2045 kfree(ctx);
2046 }
2047 }
2048
2049 static const struct fs_context_operations ffs_fs_context_ops = {
2050 .free = ffs_fs_free_fc,
2051 .parse_param = ffs_fs_parse_param,
2052 .get_tree = ffs_fs_get_tree,
2053 };
2054
ffs_fs_init_fs_context(struct fs_context * fc)2055 static int ffs_fs_init_fs_context(struct fs_context *fc)
2056 {
2057 struct ffs_sb_fill_data *ctx;
2058
2059 ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
2060 if (!ctx)
2061 return -ENOMEM;
2062
2063 ctx->perms.mode = S_IFREG | 0600;
2064 ctx->perms.uid = GLOBAL_ROOT_UID;
2065 ctx->perms.gid = GLOBAL_ROOT_GID;
2066 ctx->root_mode = S_IFDIR | 0500;
2067 ctx->no_disconnect = false;
2068
2069 fc->fs_private = ctx;
2070 fc->ops = &ffs_fs_context_ops;
2071 return 0;
2072 }
2073
2074 static void
ffs_fs_kill_sb(struct super_block * sb)2075 ffs_fs_kill_sb(struct super_block *sb)
2076 {
2077 kill_litter_super(sb);
2078 if (sb->s_fs_info)
2079 ffs_data_closed(sb->s_fs_info);
2080 }
2081
2082 static struct file_system_type ffs_fs_type = {
2083 .owner = THIS_MODULE,
2084 .name = "functionfs",
2085 .init_fs_context = ffs_fs_init_fs_context,
2086 .parameters = ffs_fs_fs_parameters,
2087 .kill_sb = ffs_fs_kill_sb,
2088 };
2089 MODULE_ALIAS_FS("functionfs");
2090
2091
2092 /* Driver's main init/cleanup functions *************************************/
2093
functionfs_init(void)2094 static int functionfs_init(void)
2095 {
2096 int ret;
2097
2098 ret = register_filesystem(&ffs_fs_type);
2099 if (!ret)
2100 pr_info("file system registered\n");
2101 else
2102 pr_err("failed registering file system (%d)\n", ret);
2103
2104 return ret;
2105 }
2106
functionfs_cleanup(void)2107 static void functionfs_cleanup(void)
2108 {
2109 pr_info("unloading\n");
2110 unregister_filesystem(&ffs_fs_type);
2111 }
2112
2113
2114 /* ffs_data and ffs_function construction and destruction code **************/
2115
2116 static void ffs_data_clear(struct ffs_data *ffs);
2117 static void ffs_data_reset(struct ffs_data *ffs);
2118
ffs_data_get(struct ffs_data * ffs)2119 static void ffs_data_get(struct ffs_data *ffs)
2120 {
2121 refcount_inc(&ffs->ref);
2122 }
2123
ffs_data_opened(struct ffs_data * ffs)2124 static void ffs_data_opened(struct ffs_data *ffs)
2125 {
2126 refcount_inc(&ffs->ref);
2127 if (atomic_add_return(1, &ffs->opened) == 1 &&
2128 ffs->state == FFS_DEACTIVATED) {
2129 ffs->state = FFS_CLOSING;
2130 ffs_data_reset(ffs);
2131 }
2132 }
2133
ffs_data_put(struct ffs_data * ffs)2134 static void ffs_data_put(struct ffs_data *ffs)
2135 {
2136 if (refcount_dec_and_test(&ffs->ref)) {
2137 pr_info("%s(): freeing\n", __func__);
2138 ffs_data_clear(ffs);
2139 ffs_release_dev(ffs->private_data);
2140 BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
2141 swait_active(&ffs->ep0req_completion.wait) ||
2142 waitqueue_active(&ffs->wait));
2143 destroy_workqueue(ffs->io_completion_wq);
2144 kfree(ffs->dev_name);
2145 kfree(ffs);
2146 }
2147 }
2148
ffs_data_closed(struct ffs_data * ffs)2149 static void ffs_data_closed(struct ffs_data *ffs)
2150 {
2151 struct ffs_epfile *epfiles;
2152 unsigned long flags;
2153
2154 if (atomic_dec_and_test(&ffs->opened)) {
2155 if (ffs->no_disconnect) {
2156 ffs->state = FFS_DEACTIVATED;
2157 spin_lock_irqsave(&ffs->eps_lock, flags);
2158 epfiles = ffs->epfiles;
2159 ffs->epfiles = NULL;
2160 spin_unlock_irqrestore(&ffs->eps_lock,
2161 flags);
2162
2163 if (epfiles)
2164 ffs_epfiles_destroy(epfiles,
2165 ffs->eps_count);
2166
2167 if (ffs->setup_state == FFS_SETUP_PENDING)
2168 __ffs_ep0_stall(ffs);
2169 } else {
2170 ffs->state = FFS_CLOSING;
2171 ffs_data_reset(ffs);
2172 }
2173 }
2174 if (atomic_read(&ffs->opened) < 0) {
2175 ffs->state = FFS_CLOSING;
2176 ffs_data_reset(ffs);
2177 }
2178
2179 ffs_data_put(ffs);
2180 }
2181
ffs_data_new(const char * dev_name)2182 static struct ffs_data *ffs_data_new(const char *dev_name)
2183 {
2184 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
2185 if (!ffs)
2186 return NULL;
2187
2188 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
2189 if (!ffs->io_completion_wq) {
2190 kfree(ffs);
2191 return NULL;
2192 }
2193
2194 refcount_set(&ffs->ref, 1);
2195 atomic_set(&ffs->opened, 0);
2196 ffs->state = FFS_READ_DESCRIPTORS;
2197 mutex_init(&ffs->mutex);
2198 spin_lock_init(&ffs->eps_lock);
2199 init_waitqueue_head(&ffs->ev.waitq);
2200 init_waitqueue_head(&ffs->wait);
2201 init_completion(&ffs->ep0req_completion);
2202
2203 /* XXX REVISIT need to update it in some places, or do we? */
2204 ffs->ev.can_stall = 1;
2205
2206 return ffs;
2207 }
2208
ffs_data_clear(struct ffs_data * ffs)2209 static void ffs_data_clear(struct ffs_data *ffs)
2210 {
2211 struct ffs_epfile *epfiles;
2212 unsigned long flags;
2213
2214 ffs_closed(ffs);
2215
2216 BUG_ON(ffs->gadget);
2217
2218 spin_lock_irqsave(&ffs->eps_lock, flags);
2219 epfiles = ffs->epfiles;
2220 ffs->epfiles = NULL;
2221 spin_unlock_irqrestore(&ffs->eps_lock, flags);
2222
2223 /*
2224 * potential race possible between ffs_func_eps_disable
2225 * & ffs_epfile_release therefore maintaining a local
2226 * copy of epfile will save us from use-after-free.
2227 */
2228 if (epfiles) {
2229 ffs_epfiles_destroy(epfiles, ffs->eps_count);
2230 ffs->epfiles = NULL;
2231 }
2232
2233 if (ffs->ffs_eventfd) {
2234 eventfd_ctx_put(ffs->ffs_eventfd);
2235 ffs->ffs_eventfd = NULL;
2236 }
2237
2238 kfree(ffs->raw_descs_data);
2239 kfree(ffs->raw_strings);
2240 kfree(ffs->stringtabs);
2241 }
2242
ffs_data_reset(struct ffs_data * ffs)2243 static void ffs_data_reset(struct ffs_data *ffs)
2244 {
2245 ffs_data_clear(ffs);
2246
2247 ffs->raw_descs_data = NULL;
2248 ffs->raw_descs = NULL;
2249 ffs->raw_strings = NULL;
2250 ffs->stringtabs = NULL;
2251
2252 ffs->raw_descs_length = 0;
2253 ffs->fs_descs_count = 0;
2254 ffs->hs_descs_count = 0;
2255 ffs->ss_descs_count = 0;
2256
2257 ffs->strings_count = 0;
2258 ffs->interfaces_count = 0;
2259 ffs->eps_count = 0;
2260
2261 ffs->ev.count = 0;
2262
2263 ffs->state = FFS_READ_DESCRIPTORS;
2264 ffs->setup_state = FFS_NO_SETUP;
2265 ffs->flags = 0;
2266
2267 ffs->ms_os_descs_ext_prop_count = 0;
2268 ffs->ms_os_descs_ext_prop_name_len = 0;
2269 ffs->ms_os_descs_ext_prop_data_len = 0;
2270 }
2271
2272
functionfs_bind(struct ffs_data * ffs,struct usb_composite_dev * cdev)2273 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
2274 {
2275 struct usb_gadget_strings **lang;
2276 int first_id;
2277
2278 if ((ffs->state != FFS_ACTIVE
2279 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
2280 return -EBADFD;
2281
2282 first_id = usb_string_ids_n(cdev, ffs->strings_count);
2283 if (first_id < 0)
2284 return first_id;
2285
2286 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
2287 if (!ffs->ep0req)
2288 return -ENOMEM;
2289 ffs->ep0req->complete = ffs_ep0_complete;
2290 ffs->ep0req->context = ffs;
2291
2292 lang = ffs->stringtabs;
2293 if (lang) {
2294 for (; *lang; ++lang) {
2295 struct usb_string *str = (*lang)->strings;
2296 int id = first_id;
2297 for (; str->s; ++id, ++str)
2298 str->id = id;
2299 }
2300 }
2301
2302 ffs->gadget = cdev->gadget;
2303 ffs_data_get(ffs);
2304 return 0;
2305 }
2306
functionfs_unbind(struct ffs_data * ffs)2307 static void functionfs_unbind(struct ffs_data *ffs)
2308 {
2309 if (!WARN_ON(!ffs->gadget)) {
2310 /* dequeue before freeing ep0req */
2311 usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req);
2312 mutex_lock(&ffs->mutex);
2313 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
2314 ffs->ep0req = NULL;
2315 ffs->gadget = NULL;
2316 clear_bit(FFS_FL_BOUND, &ffs->flags);
2317 mutex_unlock(&ffs->mutex);
2318 ffs_data_put(ffs);
2319 }
2320 }
2321
ffs_epfiles_create(struct ffs_data * ffs)2322 static int ffs_epfiles_create(struct ffs_data *ffs)
2323 {
2324 struct ffs_epfile *epfile, *epfiles;
2325 unsigned i, count;
2326
2327 count = ffs->eps_count;
2328 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
2329 if (!epfiles)
2330 return -ENOMEM;
2331
2332 epfile = epfiles;
2333 for (i = 1; i <= count; ++i, ++epfile) {
2334 epfile->ffs = ffs;
2335 mutex_init(&epfile->mutex);
2336 mutex_init(&epfile->dmabufs_mutex);
2337 INIT_LIST_HEAD(&epfile->dmabufs);
2338 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2339 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
2340 else
2341 sprintf(epfile->name, "ep%u", i);
2342 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
2343 epfile,
2344 &ffs_epfile_operations);
2345 if (!epfile->dentry) {
2346 ffs_epfiles_destroy(epfiles, i - 1);
2347 return -ENOMEM;
2348 }
2349 }
2350
2351 ffs->epfiles = epfiles;
2352 return 0;
2353 }
2354
ffs_epfiles_destroy(struct ffs_epfile * epfiles,unsigned count)2355 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
2356 {
2357 struct ffs_epfile *epfile = epfiles;
2358
2359 for (; count; --count, ++epfile) {
2360 BUG_ON(mutex_is_locked(&epfile->mutex));
2361 if (epfile->dentry) {
2362 simple_recursive_removal(epfile->dentry, NULL);
2363 epfile->dentry = NULL;
2364 }
2365 }
2366
2367 kfree(epfiles);
2368 }
2369
ffs_func_eps_disable(struct ffs_function * func)2370 static void ffs_func_eps_disable(struct ffs_function *func)
2371 {
2372 struct ffs_ep *ep;
2373 struct ffs_epfile *epfile;
2374 unsigned short count;
2375 unsigned long flags;
2376
2377 spin_lock_irqsave(&func->ffs->eps_lock, flags);
2378 count = func->ffs->eps_count;
2379 epfile = func->ffs->epfiles;
2380 ep = func->eps;
2381 while (count--) {
2382 /* pending requests get nuked */
2383 if (ep->ep)
2384 usb_ep_disable(ep->ep);
2385 ++ep;
2386
2387 if (epfile) {
2388 epfile->ep = NULL;
2389 __ffs_epfile_read_buffer_free(epfile);
2390 ++epfile;
2391 }
2392 }
2393 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2394 }
2395
ffs_func_eps_enable(struct ffs_function * func)2396 static int ffs_func_eps_enable(struct ffs_function *func)
2397 {
2398 struct ffs_data *ffs;
2399 struct ffs_ep *ep;
2400 struct ffs_epfile *epfile;
2401 unsigned short count;
2402 unsigned long flags;
2403 int ret = 0;
2404
2405 spin_lock_irqsave(&func->ffs->eps_lock, flags);
2406 ffs = func->ffs;
2407 ep = func->eps;
2408 epfile = ffs->epfiles;
2409 count = ffs->eps_count;
2410 while(count--) {
2411 ep->ep->driver_data = ep;
2412
2413 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
2414 if (ret) {
2415 pr_err("%s: config_ep_by_speed(%s) returned %d\n",
2416 __func__, ep->ep->name, ret);
2417 break;
2418 }
2419
2420 ret = usb_ep_enable(ep->ep);
2421 if (!ret) {
2422 epfile->ep = ep;
2423 epfile->in = usb_endpoint_dir_in(ep->ep->desc);
2424 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
2425 } else {
2426 break;
2427 }
2428
2429 ++ep;
2430 ++epfile;
2431 }
2432
2433 wake_up_interruptible(&ffs->wait);
2434 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2435
2436 return ret;
2437 }
2438
2439
2440 /* Parsing and building descriptors and strings *****************************/
2441
2442 /*
2443 * This validates if data pointed by data is a valid USB descriptor as
2444 * well as record how many interfaces, endpoints and strings are
2445 * required by given configuration. Returns address after the
2446 * descriptor or NULL if data is invalid.
2447 */
2448
2449 enum ffs_entity_type {
2450 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
2451 };
2452
2453 enum ffs_os_desc_type {
2454 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
2455 };
2456
2457 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2458 u8 *valuep,
2459 struct usb_descriptor_header *desc,
2460 void *priv);
2461
2462 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2463 struct usb_os_desc_header *h, void *data,
2464 unsigned len, void *priv);
2465
ffs_do_single_desc(char * data,unsigned len,ffs_entity_callback entity,void * priv,int * current_class,int * current_subclass)2466 static int __must_check ffs_do_single_desc(char *data, unsigned len,
2467 ffs_entity_callback entity,
2468 void *priv, int *current_class, int *current_subclass)
2469 {
2470 struct usb_descriptor_header *_ds = (void *)data;
2471 u8 length;
2472 int ret;
2473
2474 /* At least two bytes are required: length and type */
2475 if (len < 2) {
2476 pr_vdebug("descriptor too short\n");
2477 return -EINVAL;
2478 }
2479
2480 /* If we have at least as many bytes as the descriptor takes? */
2481 length = _ds->bLength;
2482 if (len < length) {
2483 pr_vdebug("descriptor longer then available data\n");
2484 return -EINVAL;
2485 }
2486
2487 #define __entity_check_INTERFACE(val) 1
2488 #define __entity_check_STRING(val) (val)
2489 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK)
2490 #define __entity(type, val) do { \
2491 pr_vdebug("entity " #type "(%02x)\n", (val)); \
2492 if (!__entity_check_ ##type(val)) { \
2493 pr_vdebug("invalid entity's value\n"); \
2494 return -EINVAL; \
2495 } \
2496 ret = entity(FFS_ ##type, &val, _ds, priv); \
2497 if (ret < 0) { \
2498 pr_debug("entity " #type "(%02x); ret = %d\n", \
2499 (val), ret); \
2500 return ret; \
2501 } \
2502 } while (0)
2503
2504 /* Parse descriptor depending on type. */
2505 switch (_ds->bDescriptorType) {
2506 case USB_DT_DEVICE:
2507 case USB_DT_CONFIG:
2508 case USB_DT_STRING:
2509 case USB_DT_DEVICE_QUALIFIER:
2510 /* function can't have any of those */
2511 pr_vdebug("descriptor reserved for gadget: %d\n",
2512 _ds->bDescriptorType);
2513 return -EINVAL;
2514
2515 case USB_DT_INTERFACE: {
2516 struct usb_interface_descriptor *ds = (void *)_ds;
2517 pr_vdebug("interface descriptor\n");
2518 if (length != sizeof *ds)
2519 goto inv_length;
2520
2521 __entity(INTERFACE, ds->bInterfaceNumber);
2522 if (ds->iInterface)
2523 __entity(STRING, ds->iInterface);
2524 *current_class = ds->bInterfaceClass;
2525 *current_subclass = ds->bInterfaceSubClass;
2526 }
2527 break;
2528
2529 case USB_DT_ENDPOINT: {
2530 struct usb_endpoint_descriptor *ds = (void *)_ds;
2531 pr_vdebug("endpoint descriptor\n");
2532 if (length != USB_DT_ENDPOINT_SIZE &&
2533 length != USB_DT_ENDPOINT_AUDIO_SIZE)
2534 goto inv_length;
2535 __entity(ENDPOINT, ds->bEndpointAddress);
2536 }
2537 break;
2538
2539 case USB_TYPE_CLASS | 0x01:
2540 if (*current_class == USB_INTERFACE_CLASS_HID) {
2541 pr_vdebug("hid descriptor\n");
2542 if (length != sizeof(struct hid_descriptor))
2543 goto inv_length;
2544 break;
2545 } else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2546 pr_vdebug("ccid descriptor\n");
2547 if (length != sizeof(struct ccid_descriptor))
2548 goto inv_length;
2549 break;
2550 } else if (*current_class == USB_CLASS_APP_SPEC &&
2551 *current_subclass == USB_SUBCLASS_DFU) {
2552 pr_vdebug("dfu functional descriptor\n");
2553 if (length != sizeof(struct usb_dfu_functional_descriptor))
2554 goto inv_length;
2555 break;
2556 } else {
2557 pr_vdebug("unknown descriptor: %d for class %d\n",
2558 _ds->bDescriptorType, *current_class);
2559 return -EINVAL;
2560 }
2561
2562 case USB_DT_OTG:
2563 if (length != sizeof(struct usb_otg_descriptor))
2564 goto inv_length;
2565 break;
2566
2567 case USB_DT_INTERFACE_ASSOCIATION: {
2568 struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2569 pr_vdebug("interface association descriptor\n");
2570 if (length != sizeof *ds)
2571 goto inv_length;
2572 if (ds->iFunction)
2573 __entity(STRING, ds->iFunction);
2574 }
2575 break;
2576
2577 case USB_DT_SS_ENDPOINT_COMP:
2578 pr_vdebug("EP SS companion descriptor\n");
2579 if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2580 goto inv_length;
2581 break;
2582
2583 case USB_DT_OTHER_SPEED_CONFIG:
2584 case USB_DT_INTERFACE_POWER:
2585 case USB_DT_DEBUG:
2586 case USB_DT_SECURITY:
2587 case USB_DT_CS_RADIO_CONTROL:
2588 /* TODO */
2589 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2590 return -EINVAL;
2591
2592 default:
2593 /* We should never be here */
2594 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2595 return -EINVAL;
2596
2597 inv_length:
2598 pr_vdebug("invalid length: %d (descriptor %d)\n",
2599 _ds->bLength, _ds->bDescriptorType);
2600 return -EINVAL;
2601 }
2602
2603 #undef __entity
2604 #undef __entity_check_DESCRIPTOR
2605 #undef __entity_check_INTERFACE
2606 #undef __entity_check_STRING
2607 #undef __entity_check_ENDPOINT
2608
2609 return length;
2610 }
2611
ffs_do_descs(unsigned count,char * data,unsigned len,ffs_entity_callback entity,void * priv)2612 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2613 ffs_entity_callback entity, void *priv)
2614 {
2615 const unsigned _len = len;
2616 unsigned long num = 0;
2617 int current_class = -1;
2618 int current_subclass = -1;
2619
2620 for (;;) {
2621 int ret;
2622
2623 if (num == count)
2624 data = NULL;
2625
2626 /* Record "descriptor" entity */
2627 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2628 if (ret < 0) {
2629 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2630 num, ret);
2631 return ret;
2632 }
2633
2634 if (!data)
2635 return _len - len;
2636
2637 ret = ffs_do_single_desc(data, len, entity, priv,
2638 ¤t_class, ¤t_subclass);
2639 if (ret < 0) {
2640 pr_debug("%s returns %d\n", __func__, ret);
2641 return ret;
2642 }
2643
2644 len -= ret;
2645 data += ret;
2646 ++num;
2647 }
2648 }
2649
__ffs_data_do_entity(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2650 static int __ffs_data_do_entity(enum ffs_entity_type type,
2651 u8 *valuep, struct usb_descriptor_header *desc,
2652 void *priv)
2653 {
2654 struct ffs_desc_helper *helper = priv;
2655 struct usb_endpoint_descriptor *d;
2656
2657 switch (type) {
2658 case FFS_DESCRIPTOR:
2659 break;
2660
2661 case FFS_INTERFACE:
2662 /*
2663 * Interfaces are indexed from zero so if we
2664 * encountered interface "n" then there are at least
2665 * "n+1" interfaces.
2666 */
2667 if (*valuep >= helper->interfaces_count)
2668 helper->interfaces_count = *valuep + 1;
2669 break;
2670
2671 case FFS_STRING:
2672 /*
2673 * Strings are indexed from 1 (0 is reserved
2674 * for languages list)
2675 */
2676 if (*valuep > helper->ffs->strings_count)
2677 helper->ffs->strings_count = *valuep;
2678 break;
2679
2680 case FFS_ENDPOINT:
2681 d = (void *)desc;
2682 helper->eps_count++;
2683 if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2684 return -EINVAL;
2685 /* Check if descriptors for any speed were already parsed */
2686 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2687 helper->ffs->eps_addrmap[helper->eps_count] =
2688 d->bEndpointAddress;
2689 else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2690 d->bEndpointAddress)
2691 return -EINVAL;
2692 break;
2693 }
2694
2695 return 0;
2696 }
2697
__ffs_do_os_desc_header(enum ffs_os_desc_type * next_type,struct usb_os_desc_header * desc)2698 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2699 struct usb_os_desc_header *desc)
2700 {
2701 u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2702 u16 w_index = le16_to_cpu(desc->wIndex);
2703
2704 if (bcd_version == 0x1) {
2705 pr_warn("bcdVersion must be 0x0100, stored in Little Endian order. "
2706 "Userspace driver should be fixed, accepting 0x0001 for compatibility.\n");
2707 } else if (bcd_version != 0x100) {
2708 pr_vdebug("unsupported os descriptors version: 0x%x\n",
2709 bcd_version);
2710 return -EINVAL;
2711 }
2712 switch (w_index) {
2713 case 0x4:
2714 *next_type = FFS_OS_DESC_EXT_COMPAT;
2715 break;
2716 case 0x5:
2717 *next_type = FFS_OS_DESC_EXT_PROP;
2718 break;
2719 default:
2720 pr_vdebug("unsupported os descriptor type: %d", w_index);
2721 return -EINVAL;
2722 }
2723
2724 return sizeof(*desc);
2725 }
2726
2727 /*
2728 * Process all extended compatibility/extended property descriptors
2729 * of a feature descriptor
2730 */
ffs_do_single_os_desc(char * data,unsigned len,enum ffs_os_desc_type type,u16 feature_count,ffs_os_desc_callback entity,void * priv,struct usb_os_desc_header * h)2731 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2732 enum ffs_os_desc_type type,
2733 u16 feature_count,
2734 ffs_os_desc_callback entity,
2735 void *priv,
2736 struct usb_os_desc_header *h)
2737 {
2738 int ret;
2739 const unsigned _len = len;
2740
2741 /* loop over all ext compat/ext prop descriptors */
2742 while (feature_count--) {
2743 ret = entity(type, h, data, len, priv);
2744 if (ret < 0) {
2745 pr_debug("bad OS descriptor, type: %d\n", type);
2746 return ret;
2747 }
2748 data += ret;
2749 len -= ret;
2750 }
2751 return _len - len;
2752 }
2753
2754 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
ffs_do_os_descs(unsigned count,char * data,unsigned len,ffs_os_desc_callback entity,void * priv)2755 static int __must_check ffs_do_os_descs(unsigned count,
2756 char *data, unsigned len,
2757 ffs_os_desc_callback entity, void *priv)
2758 {
2759 const unsigned _len = len;
2760 unsigned long num = 0;
2761
2762 for (num = 0; num < count; ++num) {
2763 int ret;
2764 enum ffs_os_desc_type type;
2765 u16 feature_count;
2766 struct usb_os_desc_header *desc = (void *)data;
2767
2768 if (len < sizeof(*desc))
2769 return -EINVAL;
2770
2771 /*
2772 * Record "descriptor" entity.
2773 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2774 * Move the data pointer to the beginning of extended
2775 * compatibilities proper or extended properties proper
2776 * portions of the data
2777 */
2778 if (le32_to_cpu(desc->dwLength) > len)
2779 return -EINVAL;
2780
2781 ret = __ffs_do_os_desc_header(&type, desc);
2782 if (ret < 0) {
2783 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2784 num, ret);
2785 return ret;
2786 }
2787 /*
2788 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2789 */
2790 feature_count = le16_to_cpu(desc->wCount);
2791 if (type == FFS_OS_DESC_EXT_COMPAT &&
2792 (feature_count > 255 || desc->Reserved))
2793 return -EINVAL;
2794 len -= ret;
2795 data += ret;
2796
2797 /*
2798 * Process all function/property descriptors
2799 * of this Feature Descriptor
2800 */
2801 ret = ffs_do_single_os_desc(data, len, type,
2802 feature_count, entity, priv, desc);
2803 if (ret < 0) {
2804 pr_debug("%s returns %d\n", __func__, ret);
2805 return ret;
2806 }
2807
2808 len -= ret;
2809 data += ret;
2810 }
2811 return _len - len;
2812 }
2813
2814 /*
2815 * Validate contents of the buffer from userspace related to OS descriptors.
2816 */
__ffs_data_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)2817 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2818 struct usb_os_desc_header *h, void *data,
2819 unsigned len, void *priv)
2820 {
2821 struct ffs_data *ffs = priv;
2822 u8 length;
2823
2824 switch (type) {
2825 case FFS_OS_DESC_EXT_COMPAT: {
2826 struct usb_ext_compat_desc *d = data;
2827 int i;
2828
2829 if (len < sizeof(*d) ||
2830 d->bFirstInterfaceNumber >= ffs->interfaces_count)
2831 return -EINVAL;
2832 if (d->Reserved1 != 1) {
2833 /*
2834 * According to the spec, Reserved1 must be set to 1
2835 * but older kernels incorrectly rejected non-zero
2836 * values. We fix it here to avoid returning EINVAL
2837 * in response to values we used to accept.
2838 */
2839 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2840 d->Reserved1 = 1;
2841 }
2842 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2843 if (d->Reserved2[i])
2844 return -EINVAL;
2845
2846 length = sizeof(struct usb_ext_compat_desc);
2847 }
2848 break;
2849 case FFS_OS_DESC_EXT_PROP: {
2850 struct usb_ext_prop_desc *d = data;
2851 u32 type, pdl;
2852 u16 pnl;
2853
2854 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2855 return -EINVAL;
2856 length = le32_to_cpu(d->dwSize);
2857 if (len < length)
2858 return -EINVAL;
2859 type = le32_to_cpu(d->dwPropertyDataType);
2860 if (type < USB_EXT_PROP_UNICODE ||
2861 type > USB_EXT_PROP_UNICODE_MULTI) {
2862 pr_vdebug("unsupported os descriptor property type: %d",
2863 type);
2864 return -EINVAL;
2865 }
2866 pnl = le16_to_cpu(d->wPropertyNameLength);
2867 if (length < 14 + pnl) {
2868 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2869 length, pnl, type);
2870 return -EINVAL;
2871 }
2872 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2873 if (length != 14 + pnl + pdl) {
2874 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2875 length, pnl, pdl, type);
2876 return -EINVAL;
2877 }
2878 ++ffs->ms_os_descs_ext_prop_count;
2879 /* property name reported to the host as "WCHAR"s */
2880 ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2881 ffs->ms_os_descs_ext_prop_data_len += pdl;
2882 }
2883 break;
2884 default:
2885 pr_vdebug("unknown descriptor: %d\n", type);
2886 return -EINVAL;
2887 }
2888 return length;
2889 }
2890
__ffs_data_got_descs(struct ffs_data * ffs,char * const _data,size_t len)2891 static int __ffs_data_got_descs(struct ffs_data *ffs,
2892 char *const _data, size_t len)
2893 {
2894 char *data = _data, *raw_descs;
2895 unsigned os_descs_count = 0, counts[3], flags;
2896 int ret = -EINVAL, i;
2897 struct ffs_desc_helper helper;
2898
2899 if (get_unaligned_le32(data + 4) != len)
2900 goto error;
2901
2902 switch (get_unaligned_le32(data)) {
2903 case FUNCTIONFS_DESCRIPTORS_MAGIC:
2904 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2905 data += 8;
2906 len -= 8;
2907 break;
2908 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2909 flags = get_unaligned_le32(data + 8);
2910 ffs->user_flags = flags;
2911 if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2912 FUNCTIONFS_HAS_HS_DESC |
2913 FUNCTIONFS_HAS_SS_DESC |
2914 FUNCTIONFS_HAS_MS_OS_DESC |
2915 FUNCTIONFS_VIRTUAL_ADDR |
2916 FUNCTIONFS_EVENTFD |
2917 FUNCTIONFS_ALL_CTRL_RECIP |
2918 FUNCTIONFS_CONFIG0_SETUP)) {
2919 ret = -ENOSYS;
2920 goto error;
2921 }
2922 data += 12;
2923 len -= 12;
2924 break;
2925 default:
2926 goto error;
2927 }
2928
2929 if (flags & FUNCTIONFS_EVENTFD) {
2930 if (len < 4)
2931 goto error;
2932 ffs->ffs_eventfd =
2933 eventfd_ctx_fdget((int)get_unaligned_le32(data));
2934 if (IS_ERR(ffs->ffs_eventfd)) {
2935 ret = PTR_ERR(ffs->ffs_eventfd);
2936 ffs->ffs_eventfd = NULL;
2937 goto error;
2938 }
2939 data += 4;
2940 len -= 4;
2941 }
2942
2943 /* Read fs_count, hs_count and ss_count (if present) */
2944 for (i = 0; i < 3; ++i) {
2945 if (!(flags & (1 << i))) {
2946 counts[i] = 0;
2947 } else if (len < 4) {
2948 goto error;
2949 } else {
2950 counts[i] = get_unaligned_le32(data);
2951 data += 4;
2952 len -= 4;
2953 }
2954 }
2955 if (flags & (1 << i)) {
2956 if (len < 4) {
2957 goto error;
2958 }
2959 os_descs_count = get_unaligned_le32(data);
2960 data += 4;
2961 len -= 4;
2962 }
2963
2964 /* Read descriptors */
2965 raw_descs = data;
2966 helper.ffs = ffs;
2967 for (i = 0; i < 3; ++i) {
2968 if (!counts[i])
2969 continue;
2970 helper.interfaces_count = 0;
2971 helper.eps_count = 0;
2972 ret = ffs_do_descs(counts[i], data, len,
2973 __ffs_data_do_entity, &helper);
2974 if (ret < 0)
2975 goto error;
2976 if (!ffs->eps_count && !ffs->interfaces_count) {
2977 ffs->eps_count = helper.eps_count;
2978 ffs->interfaces_count = helper.interfaces_count;
2979 } else {
2980 if (ffs->eps_count != helper.eps_count) {
2981 ret = -EINVAL;
2982 goto error;
2983 }
2984 if (ffs->interfaces_count != helper.interfaces_count) {
2985 ret = -EINVAL;
2986 goto error;
2987 }
2988 }
2989 data += ret;
2990 len -= ret;
2991 }
2992 if (os_descs_count) {
2993 ret = ffs_do_os_descs(os_descs_count, data, len,
2994 __ffs_data_do_os_desc, ffs);
2995 if (ret < 0)
2996 goto error;
2997 data += ret;
2998 len -= ret;
2999 }
3000
3001 if (raw_descs == data || len) {
3002 ret = -EINVAL;
3003 goto error;
3004 }
3005
3006 ffs->raw_descs_data = _data;
3007 ffs->raw_descs = raw_descs;
3008 ffs->raw_descs_length = data - raw_descs;
3009 ffs->fs_descs_count = counts[0];
3010 ffs->hs_descs_count = counts[1];
3011 ffs->ss_descs_count = counts[2];
3012 ffs->ms_os_descs_count = os_descs_count;
3013
3014 return 0;
3015
3016 error:
3017 kfree(_data);
3018 return ret;
3019 }
3020
__ffs_data_got_strings(struct ffs_data * ffs,char * const _data,size_t len)3021 static int __ffs_data_got_strings(struct ffs_data *ffs,
3022 char *const _data, size_t len)
3023 {
3024 u32 str_count, needed_count, lang_count;
3025 struct usb_gadget_strings **stringtabs, *t;
3026 const char *data = _data;
3027 struct usb_string *s;
3028
3029 if (len < 16 ||
3030 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
3031 get_unaligned_le32(data + 4) != len)
3032 goto error;
3033 str_count = get_unaligned_le32(data + 8);
3034 lang_count = get_unaligned_le32(data + 12);
3035
3036 /* if one is zero the other must be zero */
3037 if (!str_count != !lang_count)
3038 goto error;
3039
3040 /* Do we have at least as many strings as descriptors need? */
3041 needed_count = ffs->strings_count;
3042 if (str_count < needed_count)
3043 goto error;
3044
3045 /*
3046 * If we don't need any strings just return and free all
3047 * memory.
3048 */
3049 if (!needed_count) {
3050 kfree(_data);
3051 return 0;
3052 }
3053
3054 /* Allocate everything in one chunk so there's less maintenance. */
3055 {
3056 unsigned i = 0;
3057 vla_group(d);
3058 vla_item(d, struct usb_gadget_strings *, stringtabs,
3059 size_add(lang_count, 1));
3060 vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
3061 vla_item(d, struct usb_string, strings,
3062 size_mul(lang_count, (needed_count + 1)));
3063
3064 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
3065
3066 if (!vlabuf) {
3067 kfree(_data);
3068 return -ENOMEM;
3069 }
3070
3071 /* Initialize the VLA pointers */
3072 stringtabs = vla_ptr(vlabuf, d, stringtabs);
3073 t = vla_ptr(vlabuf, d, stringtab);
3074 i = lang_count;
3075 do {
3076 *stringtabs++ = t++;
3077 } while (--i);
3078 *stringtabs = NULL;
3079
3080 /* stringtabs = vlabuf = d_stringtabs for later kfree */
3081 stringtabs = vla_ptr(vlabuf, d, stringtabs);
3082 t = vla_ptr(vlabuf, d, stringtab);
3083 s = vla_ptr(vlabuf, d, strings);
3084 }
3085
3086 /* For each language */
3087 data += 16;
3088 len -= 16;
3089
3090 do { /* lang_count > 0 so we can use do-while */
3091 unsigned needed = needed_count;
3092 u32 str_per_lang = str_count;
3093
3094 if (len < 3)
3095 goto error_free;
3096 t->language = get_unaligned_le16(data);
3097 t->strings = s;
3098 ++t;
3099
3100 data += 2;
3101 len -= 2;
3102
3103 /* For each string */
3104 do { /* str_count > 0 so we can use do-while */
3105 size_t length = strnlen(data, len);
3106
3107 if (length == len)
3108 goto error_free;
3109
3110 /*
3111 * User may provide more strings then we need,
3112 * if that's the case we simply ignore the
3113 * rest
3114 */
3115 if (needed) {
3116 /*
3117 * s->id will be set while adding
3118 * function to configuration so for
3119 * now just leave garbage here.
3120 */
3121 s->s = data;
3122 --needed;
3123 ++s;
3124 }
3125
3126 data += length + 1;
3127 len -= length + 1;
3128 } while (--str_per_lang);
3129
3130 s->id = 0; /* terminator */
3131 s->s = NULL;
3132 ++s;
3133
3134 } while (--lang_count);
3135
3136 /* Some garbage left? */
3137 if (len)
3138 goto error_free;
3139
3140 /* Done! */
3141 ffs->stringtabs = stringtabs;
3142 ffs->raw_strings = _data;
3143
3144 return 0;
3145
3146 error_free:
3147 kfree(stringtabs);
3148 error:
3149 kfree(_data);
3150 return -EINVAL;
3151 }
3152
3153
3154 /* Events handling and management *******************************************/
3155
__ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)3156 static void __ffs_event_add(struct ffs_data *ffs,
3157 enum usb_functionfs_event_type type)
3158 {
3159 enum usb_functionfs_event_type rem_type1, rem_type2 = type;
3160 int neg = 0;
3161
3162 /*
3163 * Abort any unhandled setup
3164 *
3165 * We do not need to worry about some cmpxchg() changing value
3166 * of ffs->setup_state without holding the lock because when
3167 * state is FFS_SETUP_PENDING cmpxchg() in several places in
3168 * the source does nothing.
3169 */
3170 if (ffs->setup_state == FFS_SETUP_PENDING)
3171 ffs->setup_state = FFS_SETUP_CANCELLED;
3172
3173 /*
3174 * Logic of this function guarantees that there are at most four pending
3175 * evens on ffs->ev.types queue. This is important because the queue
3176 * has space for four elements only and __ffs_ep0_read_events function
3177 * depends on that limit as well. If more event types are added, those
3178 * limits have to be revisited or guaranteed to still hold.
3179 */
3180 switch (type) {
3181 case FUNCTIONFS_RESUME:
3182 rem_type2 = FUNCTIONFS_SUSPEND;
3183 fallthrough;
3184 case FUNCTIONFS_SUSPEND:
3185 case FUNCTIONFS_SETUP:
3186 rem_type1 = type;
3187 /* Discard all similar events */
3188 break;
3189
3190 case FUNCTIONFS_BIND:
3191 case FUNCTIONFS_UNBIND:
3192 case FUNCTIONFS_DISABLE:
3193 case FUNCTIONFS_ENABLE:
3194 /* Discard everything other then power management. */
3195 rem_type1 = FUNCTIONFS_SUSPEND;
3196 rem_type2 = FUNCTIONFS_RESUME;
3197 neg = 1;
3198 break;
3199
3200 default:
3201 WARN(1, "%d: unknown event, this should not happen\n", type);
3202 return;
3203 }
3204
3205 {
3206 u8 *ev = ffs->ev.types, *out = ev;
3207 unsigned n = ffs->ev.count;
3208 for (; n; --n, ++ev)
3209 if ((*ev == rem_type1 || *ev == rem_type2) == neg)
3210 *out++ = *ev;
3211 else
3212 pr_vdebug("purging event %d\n", *ev);
3213 ffs->ev.count = out - ffs->ev.types;
3214 }
3215
3216 pr_vdebug("adding event %d\n", type);
3217 ffs->ev.types[ffs->ev.count++] = type;
3218 wake_up_locked(&ffs->ev.waitq);
3219 if (ffs->ffs_eventfd)
3220 eventfd_signal(ffs->ffs_eventfd);
3221 }
3222
ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)3223 static void ffs_event_add(struct ffs_data *ffs,
3224 enum usb_functionfs_event_type type)
3225 {
3226 unsigned long flags;
3227 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3228 __ffs_event_add(ffs, type);
3229 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3230 }
3231
3232 /* Bind/unbind USB function hooks *******************************************/
3233
ffs_ep_addr2idx(struct ffs_data * ffs,u8 endpoint_address)3234 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
3235 {
3236 int i;
3237
3238 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
3239 if (ffs->eps_addrmap[i] == endpoint_address)
3240 return i;
3241 return -ENOENT;
3242 }
3243
__ffs_func_bind_do_descs(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)3244 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
3245 struct usb_descriptor_header *desc,
3246 void *priv)
3247 {
3248 struct usb_endpoint_descriptor *ds = (void *)desc;
3249 struct ffs_function *func = priv;
3250 struct ffs_ep *ffs_ep;
3251 unsigned ep_desc_id;
3252 int idx;
3253 static const char *speed_names[] = { "full", "high", "super" };
3254
3255 if (type != FFS_DESCRIPTOR)
3256 return 0;
3257
3258 /*
3259 * If ss_descriptors is not NULL, we are reading super speed
3260 * descriptors; if hs_descriptors is not NULL, we are reading high
3261 * speed descriptors; otherwise, we are reading full speed
3262 * descriptors.
3263 */
3264 if (func->function.ss_descriptors) {
3265 ep_desc_id = 2;
3266 func->function.ss_descriptors[(long)valuep] = desc;
3267 } else if (func->function.hs_descriptors) {
3268 ep_desc_id = 1;
3269 func->function.hs_descriptors[(long)valuep] = desc;
3270 } else {
3271 ep_desc_id = 0;
3272 func->function.fs_descriptors[(long)valuep] = desc;
3273 }
3274
3275 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
3276 return 0;
3277
3278 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
3279 if (idx < 0)
3280 return idx;
3281
3282 ffs_ep = func->eps + idx;
3283
3284 if (ffs_ep->descs[ep_desc_id]) {
3285 pr_err("two %sspeed descriptors for EP %d\n",
3286 speed_names[ep_desc_id],
3287 usb_endpoint_num(ds));
3288 return -EINVAL;
3289 }
3290 ffs_ep->descs[ep_desc_id] = ds;
3291
3292 ffs_dump_mem(": Original ep desc", ds, ds->bLength);
3293 if (ffs_ep->ep) {
3294 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
3295 if (!ds->wMaxPacketSize)
3296 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
3297 } else {
3298 struct usb_request *req;
3299 struct usb_ep *ep;
3300 u8 bEndpointAddress;
3301 u16 wMaxPacketSize;
3302
3303 /*
3304 * We back up bEndpointAddress because autoconfig overwrites
3305 * it with physical endpoint address.
3306 */
3307 bEndpointAddress = ds->bEndpointAddress;
3308 /*
3309 * We back up wMaxPacketSize because autoconfig treats
3310 * endpoint descriptors as if they were full speed.
3311 */
3312 wMaxPacketSize = ds->wMaxPacketSize;
3313 pr_vdebug("autoconfig\n");
3314 ep = usb_ep_autoconfig(func->gadget, ds);
3315 if (!ep)
3316 return -ENOTSUPP;
3317 ep->driver_data = func->eps + idx;
3318
3319 req = usb_ep_alloc_request(ep, GFP_KERNEL);
3320 if (!req)
3321 return -ENOMEM;
3322
3323 ffs_ep->ep = ep;
3324 ffs_ep->req = req;
3325 func->eps_revmap[ds->bEndpointAddress &
3326 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
3327 /*
3328 * If we use virtual address mapping, we restore
3329 * original bEndpointAddress value.
3330 */
3331 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3332 ds->bEndpointAddress = bEndpointAddress;
3333 /*
3334 * Restore wMaxPacketSize which was potentially
3335 * overwritten by autoconfig.
3336 */
3337 ds->wMaxPacketSize = wMaxPacketSize;
3338 }
3339 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
3340
3341 return 0;
3342 }
3343
__ffs_func_bind_do_nums(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)3344 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
3345 struct usb_descriptor_header *desc,
3346 void *priv)
3347 {
3348 struct ffs_function *func = priv;
3349 unsigned idx;
3350 u8 newValue;
3351
3352 switch (type) {
3353 default:
3354 case FFS_DESCRIPTOR:
3355 /* Handled in previous pass by __ffs_func_bind_do_descs() */
3356 return 0;
3357
3358 case FFS_INTERFACE:
3359 idx = *valuep;
3360 if (func->interfaces_nums[idx] < 0) {
3361 int id = usb_interface_id(func->conf, &func->function);
3362 if (id < 0)
3363 return id;
3364 func->interfaces_nums[idx] = id;
3365 }
3366 newValue = func->interfaces_nums[idx];
3367 break;
3368
3369 case FFS_STRING:
3370 /* String' IDs are allocated when fsf_data is bound to cdev */
3371 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
3372 break;
3373
3374 case FFS_ENDPOINT:
3375 /*
3376 * USB_DT_ENDPOINT are handled in
3377 * __ffs_func_bind_do_descs().
3378 */
3379 if (desc->bDescriptorType == USB_DT_ENDPOINT)
3380 return 0;
3381
3382 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
3383 if (!func->eps[idx].ep)
3384 return -EINVAL;
3385
3386 {
3387 struct usb_endpoint_descriptor **descs;
3388 descs = func->eps[idx].descs;
3389 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
3390 }
3391 break;
3392 }
3393
3394 pr_vdebug("%02x -> %02x\n", *valuep, newValue);
3395 *valuep = newValue;
3396 return 0;
3397 }
3398
__ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)3399 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
3400 struct usb_os_desc_header *h, void *data,
3401 unsigned len, void *priv)
3402 {
3403 struct ffs_function *func = priv;
3404 u8 length = 0;
3405
3406 switch (type) {
3407 case FFS_OS_DESC_EXT_COMPAT: {
3408 struct usb_ext_compat_desc *desc = data;
3409 struct usb_os_desc_table *t;
3410
3411 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
3412 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
3413 memcpy(t->os_desc->ext_compat_id, &desc->IDs,
3414 sizeof_field(struct usb_ext_compat_desc, IDs));
3415 length = sizeof(*desc);
3416 }
3417 break;
3418 case FFS_OS_DESC_EXT_PROP: {
3419 struct usb_ext_prop_desc *desc = data;
3420 struct usb_os_desc_table *t;
3421 struct usb_os_desc_ext_prop *ext_prop;
3422 char *ext_prop_name;
3423 char *ext_prop_data;
3424
3425 t = &func->function.os_desc_table[h->interface];
3426 t->if_id = func->interfaces_nums[h->interface];
3427
3428 ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
3429 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
3430
3431 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
3432 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
3433 ext_prop->data_len = le32_to_cpu(*(__le32 *)
3434 usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
3435 length = ext_prop->name_len + ext_prop->data_len + 14;
3436
3437 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
3438 func->ffs->ms_os_descs_ext_prop_name_avail +=
3439 ext_prop->name_len;
3440
3441 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
3442 func->ffs->ms_os_descs_ext_prop_data_avail +=
3443 ext_prop->data_len;
3444 memcpy(ext_prop_data,
3445 usb_ext_prop_data_ptr(data, ext_prop->name_len),
3446 ext_prop->data_len);
3447 /* unicode data reported to the host as "WCHAR"s */
3448 switch (ext_prop->type) {
3449 case USB_EXT_PROP_UNICODE:
3450 case USB_EXT_PROP_UNICODE_ENV:
3451 case USB_EXT_PROP_UNICODE_LINK:
3452 case USB_EXT_PROP_UNICODE_MULTI:
3453 ext_prop->data_len *= 2;
3454 break;
3455 }
3456 ext_prop->data = ext_prop_data;
3457
3458 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3459 ext_prop->name_len);
3460 /* property name reported to the host as "WCHAR"s */
3461 ext_prop->name_len *= 2;
3462 ext_prop->name = ext_prop_name;
3463
3464 t->os_desc->ext_prop_len +=
3465 ext_prop->name_len + ext_prop->data_len + 14;
3466 ++t->os_desc->ext_prop_count;
3467 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3468 }
3469 break;
3470 default:
3471 pr_vdebug("unknown descriptor: %d\n", type);
3472 }
3473
3474 return length;
3475 }
3476
ffs_do_functionfs_bind(struct usb_function * f,struct usb_configuration * c)3477 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3478 struct usb_configuration *c)
3479 {
3480 struct ffs_function *func = ffs_func_from_usb(f);
3481 struct f_fs_opts *ffs_opts =
3482 container_of(f->fi, struct f_fs_opts, func_inst);
3483 struct ffs_data *ffs_data;
3484 int ret;
3485
3486 /*
3487 * Legacy gadget triggers binding in functionfs_ready_callback,
3488 * which already uses locking; taking the same lock here would
3489 * cause a deadlock.
3490 *
3491 * Configfs-enabled gadgets however do need ffs_dev_lock.
3492 */
3493 if (!ffs_opts->no_configfs)
3494 ffs_dev_lock();
3495 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3496 ffs_data = ffs_opts->dev->ffs_data;
3497 if (!ffs_opts->no_configfs)
3498 ffs_dev_unlock();
3499 if (ret)
3500 return ERR_PTR(ret);
3501
3502 func->ffs = ffs_data;
3503 func->conf = c;
3504 func->gadget = c->cdev->gadget;
3505
3506 /*
3507 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3508 * configurations are bound in sequence with list_for_each_entry,
3509 * in each configuration its functions are bound in sequence
3510 * with list_for_each_entry, so we assume no race condition
3511 * with regard to ffs_opts->bound access
3512 */
3513 if (!ffs_opts->refcnt) {
3514 ret = functionfs_bind(func->ffs, c->cdev);
3515 if (ret)
3516 return ERR_PTR(ret);
3517 }
3518 ffs_opts->refcnt++;
3519 func->function.strings = func->ffs->stringtabs;
3520
3521 return ffs_opts;
3522 }
3523
_ffs_func_bind(struct usb_configuration * c,struct usb_function * f)3524 static int _ffs_func_bind(struct usb_configuration *c,
3525 struct usb_function *f)
3526 {
3527 struct ffs_function *func = ffs_func_from_usb(f);
3528 struct ffs_data *ffs = func->ffs;
3529
3530 const int full = !!func->ffs->fs_descs_count;
3531 const int high = !!func->ffs->hs_descs_count;
3532 const int super = !!func->ffs->ss_descs_count;
3533
3534 int fs_len, hs_len, ss_len, ret, i;
3535 struct ffs_ep *eps_ptr;
3536
3537 /* Make it a single chunk, less management later on */
3538 vla_group(d);
3539 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3540 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3541 full ? ffs->fs_descs_count + 1 : 0);
3542 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3543 high ? ffs->hs_descs_count + 1 : 0);
3544 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3545 super ? ffs->ss_descs_count + 1 : 0);
3546 vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3547 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3548 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3549 vla_item_with_sz(d, char[16], ext_compat,
3550 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3551 vla_item_with_sz(d, struct usb_os_desc, os_desc,
3552 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3553 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3554 ffs->ms_os_descs_ext_prop_count);
3555 vla_item_with_sz(d, char, ext_prop_name,
3556 ffs->ms_os_descs_ext_prop_name_len);
3557 vla_item_with_sz(d, char, ext_prop_data,
3558 ffs->ms_os_descs_ext_prop_data_len);
3559 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3560 char *vlabuf;
3561
3562 /* Has descriptors only for speeds gadget does not support */
3563 if (!(full | high | super))
3564 return -ENOTSUPP;
3565
3566 /* Allocate a single chunk, less management later on */
3567 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3568 if (!vlabuf)
3569 return -ENOMEM;
3570
3571 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3572 ffs->ms_os_descs_ext_prop_name_avail =
3573 vla_ptr(vlabuf, d, ext_prop_name);
3574 ffs->ms_os_descs_ext_prop_data_avail =
3575 vla_ptr(vlabuf, d, ext_prop_data);
3576
3577 /* Copy descriptors */
3578 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3579 ffs->raw_descs_length);
3580
3581 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3582 eps_ptr = vla_ptr(vlabuf, d, eps);
3583 for (i = 0; i < ffs->eps_count; i++)
3584 eps_ptr[i].num = -1;
3585
3586 /* Save pointers
3587 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3588 */
3589 func->eps = vla_ptr(vlabuf, d, eps);
3590 func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3591
3592 /*
3593 * Go through all the endpoint descriptors and allocate
3594 * endpoints first, so that later we can rewrite the endpoint
3595 * numbers without worrying that it may be described later on.
3596 */
3597 if (full) {
3598 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3599 fs_len = ffs_do_descs(ffs->fs_descs_count,
3600 vla_ptr(vlabuf, d, raw_descs),
3601 d_raw_descs__sz,
3602 __ffs_func_bind_do_descs, func);
3603 if (fs_len < 0) {
3604 ret = fs_len;
3605 goto error;
3606 }
3607 } else {
3608 fs_len = 0;
3609 }
3610
3611 if (high) {
3612 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3613 hs_len = ffs_do_descs(ffs->hs_descs_count,
3614 vla_ptr(vlabuf, d, raw_descs) + fs_len,
3615 d_raw_descs__sz - fs_len,
3616 __ffs_func_bind_do_descs, func);
3617 if (hs_len < 0) {
3618 ret = hs_len;
3619 goto error;
3620 }
3621 } else {
3622 hs_len = 0;
3623 }
3624
3625 if (super) {
3626 func->function.ss_descriptors = func->function.ssp_descriptors =
3627 vla_ptr(vlabuf, d, ss_descs);
3628 ss_len = ffs_do_descs(ffs->ss_descs_count,
3629 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3630 d_raw_descs__sz - fs_len - hs_len,
3631 __ffs_func_bind_do_descs, func);
3632 if (ss_len < 0) {
3633 ret = ss_len;
3634 goto error;
3635 }
3636 } else {
3637 ss_len = 0;
3638 }
3639
3640 /*
3641 * Now handle interface numbers allocation and interface and
3642 * endpoint numbers rewriting. We can do that in one go
3643 * now.
3644 */
3645 ret = ffs_do_descs(ffs->fs_descs_count +
3646 (high ? ffs->hs_descs_count : 0) +
3647 (super ? ffs->ss_descs_count : 0),
3648 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3649 __ffs_func_bind_do_nums, func);
3650 if (ret < 0)
3651 goto error;
3652
3653 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3654 if (c->cdev->use_os_string) {
3655 for (i = 0; i < ffs->interfaces_count; ++i) {
3656 struct usb_os_desc *desc;
3657
3658 desc = func->function.os_desc_table[i].os_desc =
3659 vla_ptr(vlabuf, d, os_desc) +
3660 i * sizeof(struct usb_os_desc);
3661 desc->ext_compat_id =
3662 vla_ptr(vlabuf, d, ext_compat) + i * 16;
3663 INIT_LIST_HEAD(&desc->ext_prop);
3664 }
3665 ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3666 vla_ptr(vlabuf, d, raw_descs) +
3667 fs_len + hs_len + ss_len,
3668 d_raw_descs__sz - fs_len - hs_len -
3669 ss_len,
3670 __ffs_func_bind_do_os_desc, func);
3671 if (ret < 0)
3672 goto error;
3673 }
3674 func->function.os_desc_n =
3675 c->cdev->use_os_string ? ffs->interfaces_count : 0;
3676
3677 /* And we're done */
3678 ffs_event_add(ffs, FUNCTIONFS_BIND);
3679 return 0;
3680
3681 error:
3682 /* XXX Do we need to release all claimed endpoints here? */
3683 return ret;
3684 }
3685
ffs_func_bind(struct usb_configuration * c,struct usb_function * f)3686 static int ffs_func_bind(struct usb_configuration *c,
3687 struct usb_function *f)
3688 {
3689 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3690 struct ffs_function *func = ffs_func_from_usb(f);
3691 int ret;
3692
3693 if (IS_ERR(ffs_opts))
3694 return PTR_ERR(ffs_opts);
3695
3696 ret = _ffs_func_bind(c, f);
3697 if (ret && !--ffs_opts->refcnt)
3698 functionfs_unbind(func->ffs);
3699
3700 return ret;
3701 }
3702
3703
3704 /* Other USB function hooks *************************************************/
3705
ffs_reset_work(struct work_struct * work)3706 static void ffs_reset_work(struct work_struct *work)
3707 {
3708 struct ffs_data *ffs = container_of(work,
3709 struct ffs_data, reset_work);
3710 ffs_data_reset(ffs);
3711 }
3712
ffs_func_get_alt(struct usb_function * f,unsigned int interface)3713 static int ffs_func_get_alt(struct usb_function *f,
3714 unsigned int interface)
3715 {
3716 struct ffs_function *func = ffs_func_from_usb(f);
3717 int intf = ffs_func_revmap_intf(func, interface);
3718
3719 return (intf < 0) ? intf : func->cur_alt[interface];
3720 }
3721
ffs_func_set_alt(struct usb_function * f,unsigned interface,unsigned alt)3722 static int ffs_func_set_alt(struct usb_function *f,
3723 unsigned interface, unsigned alt)
3724 {
3725 struct ffs_function *func = ffs_func_from_usb(f);
3726 struct ffs_data *ffs = func->ffs;
3727 int ret = 0, intf;
3728
3729 if (alt > MAX_ALT_SETTINGS)
3730 return -EINVAL;
3731
3732 intf = ffs_func_revmap_intf(func, interface);
3733 if (intf < 0)
3734 return intf;
3735
3736 if (ffs->func)
3737 ffs_func_eps_disable(ffs->func);
3738
3739 if (ffs->state == FFS_DEACTIVATED) {
3740 ffs->state = FFS_CLOSING;
3741 INIT_WORK(&ffs->reset_work, ffs_reset_work);
3742 schedule_work(&ffs->reset_work);
3743 return -ENODEV;
3744 }
3745
3746 if (ffs->state != FFS_ACTIVE)
3747 return -ENODEV;
3748
3749 ffs->func = func;
3750 ret = ffs_func_eps_enable(func);
3751 if (ret >= 0) {
3752 ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3753 func->cur_alt[interface] = alt;
3754 }
3755 return ret;
3756 }
3757
ffs_func_disable(struct usb_function * f)3758 static void ffs_func_disable(struct usb_function *f)
3759 {
3760 struct ffs_function *func = ffs_func_from_usb(f);
3761 struct ffs_data *ffs = func->ffs;
3762
3763 if (ffs->func)
3764 ffs_func_eps_disable(ffs->func);
3765
3766 if (ffs->state == FFS_DEACTIVATED) {
3767 ffs->state = FFS_CLOSING;
3768 INIT_WORK(&ffs->reset_work, ffs_reset_work);
3769 schedule_work(&ffs->reset_work);
3770 return;
3771 }
3772
3773 if (ffs->state == FFS_ACTIVE) {
3774 ffs->func = NULL;
3775 ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3776 }
3777 }
3778
ffs_func_setup(struct usb_function * f,const struct usb_ctrlrequest * creq)3779 static int ffs_func_setup(struct usb_function *f,
3780 const struct usb_ctrlrequest *creq)
3781 {
3782 struct ffs_function *func = ffs_func_from_usb(f);
3783 struct ffs_data *ffs = func->ffs;
3784 unsigned long flags;
3785 int ret;
3786
3787 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3788 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest);
3789 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue));
3790 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex));
3791 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength));
3792
3793 /*
3794 * Most requests directed to interface go through here
3795 * (notable exceptions are set/get interface) so we need to
3796 * handle them. All other either handled by composite or
3797 * passed to usb_configuration->setup() (if one is set). No
3798 * matter, we will handle requests directed to endpoint here
3799 * as well (as it's straightforward). Other request recipient
3800 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3801 * is being used.
3802 */
3803 if (ffs->state != FFS_ACTIVE)
3804 return -ENODEV;
3805
3806 switch (creq->bRequestType & USB_RECIP_MASK) {
3807 case USB_RECIP_INTERFACE:
3808 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3809 if (ret < 0)
3810 return ret;
3811 break;
3812
3813 case USB_RECIP_ENDPOINT:
3814 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3815 if (ret < 0)
3816 return ret;
3817 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3818 ret = func->ffs->eps_addrmap[ret];
3819 break;
3820
3821 default:
3822 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3823 ret = le16_to_cpu(creq->wIndex);
3824 else
3825 return -EOPNOTSUPP;
3826 }
3827
3828 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3829 ffs->ev.setup = *creq;
3830 ffs->ev.setup.wIndex = cpu_to_le16(ret);
3831 __ffs_event_add(ffs, FUNCTIONFS_SETUP);
3832 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3833
3834 return ffs->ev.setup.wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3835 }
3836
ffs_func_req_match(struct usb_function * f,const struct usb_ctrlrequest * creq,bool config0)3837 static bool ffs_func_req_match(struct usb_function *f,
3838 const struct usb_ctrlrequest *creq,
3839 bool config0)
3840 {
3841 struct ffs_function *func = ffs_func_from_usb(f);
3842
3843 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3844 return false;
3845
3846 switch (creq->bRequestType & USB_RECIP_MASK) {
3847 case USB_RECIP_INTERFACE:
3848 return (ffs_func_revmap_intf(func,
3849 le16_to_cpu(creq->wIndex)) >= 0);
3850 case USB_RECIP_ENDPOINT:
3851 return (ffs_func_revmap_ep(func,
3852 le16_to_cpu(creq->wIndex)) >= 0);
3853 default:
3854 return (bool) (func->ffs->user_flags &
3855 FUNCTIONFS_ALL_CTRL_RECIP);
3856 }
3857 }
3858
ffs_func_suspend(struct usb_function * f)3859 static void ffs_func_suspend(struct usb_function *f)
3860 {
3861 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3862 }
3863
ffs_func_resume(struct usb_function * f)3864 static void ffs_func_resume(struct usb_function *f)
3865 {
3866 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3867 }
3868
3869
3870 /* Endpoint and interface numbers reverse mapping ***************************/
3871
ffs_func_revmap_ep(struct ffs_function * func,u8 num)3872 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3873 {
3874 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3875 return num ? num : -EDOM;
3876 }
3877
ffs_func_revmap_intf(struct ffs_function * func,u8 intf)3878 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3879 {
3880 short *nums = func->interfaces_nums;
3881 unsigned count = func->ffs->interfaces_count;
3882
3883 for (; count; --count, ++nums) {
3884 if (*nums >= 0 && *nums == intf)
3885 return nums - func->interfaces_nums;
3886 }
3887
3888 return -EDOM;
3889 }
3890
3891
3892 /* Devices management *******************************************************/
3893
3894 static LIST_HEAD(ffs_devices);
3895
_ffs_do_find_dev(const char * name)3896 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3897 {
3898 struct ffs_dev *dev;
3899
3900 if (!name)
3901 return NULL;
3902
3903 list_for_each_entry(dev, &ffs_devices, entry) {
3904 if (strcmp(dev->name, name) == 0)
3905 return dev;
3906 }
3907
3908 return NULL;
3909 }
3910
3911 /*
3912 * ffs_lock must be taken by the caller of this function
3913 */
_ffs_get_single_dev(void)3914 static struct ffs_dev *_ffs_get_single_dev(void)
3915 {
3916 struct ffs_dev *dev;
3917
3918 if (list_is_singular(&ffs_devices)) {
3919 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3920 if (dev->single)
3921 return dev;
3922 }
3923
3924 return NULL;
3925 }
3926
3927 /*
3928 * ffs_lock must be taken by the caller of this function
3929 */
_ffs_find_dev(const char * name)3930 static struct ffs_dev *_ffs_find_dev(const char *name)
3931 {
3932 struct ffs_dev *dev;
3933
3934 dev = _ffs_get_single_dev();
3935 if (dev)
3936 return dev;
3937
3938 return _ffs_do_find_dev(name);
3939 }
3940
3941 /* Configfs support *********************************************************/
3942
to_ffs_opts(struct config_item * item)3943 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3944 {
3945 return container_of(to_config_group(item), struct f_fs_opts,
3946 func_inst.group);
3947 }
3948
f_fs_opts_ready_show(struct config_item * item,char * page)3949 static ssize_t f_fs_opts_ready_show(struct config_item *item, char *page)
3950 {
3951 struct f_fs_opts *opts = to_ffs_opts(item);
3952 int ready;
3953
3954 ffs_dev_lock();
3955 ready = opts->dev->desc_ready;
3956 ffs_dev_unlock();
3957
3958 return sprintf(page, "%d\n", ready);
3959 }
3960
3961 CONFIGFS_ATTR_RO(f_fs_opts_, ready);
3962
3963 static struct configfs_attribute *ffs_attrs[] = {
3964 &f_fs_opts_attr_ready,
3965 NULL,
3966 };
3967
ffs_attr_release(struct config_item * item)3968 static void ffs_attr_release(struct config_item *item)
3969 {
3970 struct f_fs_opts *opts = to_ffs_opts(item);
3971
3972 usb_put_function_instance(&opts->func_inst);
3973 }
3974
3975 static struct configfs_item_operations ffs_item_ops = {
3976 .release = ffs_attr_release,
3977 };
3978
3979 static const struct config_item_type ffs_func_type = {
3980 .ct_item_ops = &ffs_item_ops,
3981 .ct_attrs = ffs_attrs,
3982 .ct_owner = THIS_MODULE,
3983 };
3984
3985
3986 /* Function registration interface ******************************************/
3987
ffs_free_inst(struct usb_function_instance * f)3988 static void ffs_free_inst(struct usb_function_instance *f)
3989 {
3990 struct f_fs_opts *opts;
3991
3992 opts = to_f_fs_opts(f);
3993 ffs_release_dev(opts->dev);
3994 ffs_dev_lock();
3995 _ffs_free_dev(opts->dev);
3996 ffs_dev_unlock();
3997 kfree(opts);
3998 }
3999
ffs_set_inst_name(struct usb_function_instance * fi,const char * name)4000 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
4001 {
4002 if (strlen(name) >= sizeof_field(struct ffs_dev, name))
4003 return -ENAMETOOLONG;
4004 return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
4005 }
4006
ffs_alloc_inst(void)4007 static struct usb_function_instance *ffs_alloc_inst(void)
4008 {
4009 struct f_fs_opts *opts;
4010 struct ffs_dev *dev;
4011
4012 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
4013 if (!opts)
4014 return ERR_PTR(-ENOMEM);
4015
4016 opts->func_inst.set_inst_name = ffs_set_inst_name;
4017 opts->func_inst.free_func_inst = ffs_free_inst;
4018 ffs_dev_lock();
4019 dev = _ffs_alloc_dev();
4020 ffs_dev_unlock();
4021 if (IS_ERR(dev)) {
4022 kfree(opts);
4023 return ERR_CAST(dev);
4024 }
4025 opts->dev = dev;
4026 dev->opts = opts;
4027
4028 config_group_init_type_name(&opts->func_inst.group, "",
4029 &ffs_func_type);
4030 return &opts->func_inst;
4031 }
4032
ffs_free(struct usb_function * f)4033 static void ffs_free(struct usb_function *f)
4034 {
4035 kfree(ffs_func_from_usb(f));
4036 }
4037
ffs_func_unbind(struct usb_configuration * c,struct usb_function * f)4038 static void ffs_func_unbind(struct usb_configuration *c,
4039 struct usb_function *f)
4040 {
4041 struct ffs_function *func = ffs_func_from_usb(f);
4042 struct ffs_data *ffs = func->ffs;
4043 struct f_fs_opts *opts =
4044 container_of(f->fi, struct f_fs_opts, func_inst);
4045 struct ffs_ep *ep = func->eps;
4046 unsigned count = ffs->eps_count;
4047 unsigned long flags;
4048
4049 if (ffs->func == func) {
4050 ffs_func_eps_disable(func);
4051 ffs->func = NULL;
4052 }
4053
4054 /* Drain any pending AIO completions */
4055 drain_workqueue(ffs->io_completion_wq);
4056
4057 ffs_event_add(ffs, FUNCTIONFS_UNBIND);
4058 if (!--opts->refcnt)
4059 functionfs_unbind(ffs);
4060
4061 /* cleanup after autoconfig */
4062 spin_lock_irqsave(&func->ffs->eps_lock, flags);
4063 while (count--) {
4064 if (ep->ep && ep->req)
4065 usb_ep_free_request(ep->ep, ep->req);
4066 ep->req = NULL;
4067 ++ep;
4068 }
4069 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
4070 kfree(func->eps);
4071 func->eps = NULL;
4072 /*
4073 * eps, descriptors and interfaces_nums are allocated in the
4074 * same chunk so only one free is required.
4075 */
4076 func->function.fs_descriptors = NULL;
4077 func->function.hs_descriptors = NULL;
4078 func->function.ss_descriptors = NULL;
4079 func->function.ssp_descriptors = NULL;
4080 func->interfaces_nums = NULL;
4081
4082 }
4083
ffs_alloc(struct usb_function_instance * fi)4084 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
4085 {
4086 struct ffs_function *func;
4087
4088 func = kzalloc(sizeof(*func), GFP_KERNEL);
4089 if (!func)
4090 return ERR_PTR(-ENOMEM);
4091
4092 func->function.name = "Function FS Gadget";
4093
4094 func->function.bind = ffs_func_bind;
4095 func->function.unbind = ffs_func_unbind;
4096 func->function.set_alt = ffs_func_set_alt;
4097 func->function.get_alt = ffs_func_get_alt;
4098 func->function.disable = ffs_func_disable;
4099 func->function.setup = ffs_func_setup;
4100 func->function.req_match = ffs_func_req_match;
4101 func->function.suspend = ffs_func_suspend;
4102 func->function.resume = ffs_func_resume;
4103 func->function.free_func = ffs_free;
4104
4105 return &func->function;
4106 }
4107
4108 /*
4109 * ffs_lock must be taken by the caller of this function
4110 */
_ffs_alloc_dev(void)4111 static struct ffs_dev *_ffs_alloc_dev(void)
4112 {
4113 struct ffs_dev *dev;
4114 int ret;
4115
4116 if (_ffs_get_single_dev())
4117 return ERR_PTR(-EBUSY);
4118
4119 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4120 if (!dev)
4121 return ERR_PTR(-ENOMEM);
4122
4123 if (list_empty(&ffs_devices)) {
4124 ret = functionfs_init();
4125 if (ret) {
4126 kfree(dev);
4127 return ERR_PTR(ret);
4128 }
4129 }
4130
4131 list_add(&dev->entry, &ffs_devices);
4132
4133 return dev;
4134 }
4135
ffs_name_dev(struct ffs_dev * dev,const char * name)4136 int ffs_name_dev(struct ffs_dev *dev, const char *name)
4137 {
4138 struct ffs_dev *existing;
4139 int ret = 0;
4140
4141 ffs_dev_lock();
4142
4143 existing = _ffs_do_find_dev(name);
4144 if (!existing)
4145 strscpy(dev->name, name, ARRAY_SIZE(dev->name));
4146 else if (existing != dev)
4147 ret = -EBUSY;
4148
4149 ffs_dev_unlock();
4150
4151 return ret;
4152 }
4153 EXPORT_SYMBOL_GPL(ffs_name_dev);
4154
ffs_single_dev(struct ffs_dev * dev)4155 int ffs_single_dev(struct ffs_dev *dev)
4156 {
4157 int ret;
4158
4159 ret = 0;
4160 ffs_dev_lock();
4161
4162 if (!list_is_singular(&ffs_devices))
4163 ret = -EBUSY;
4164 else
4165 dev->single = true;
4166
4167 ffs_dev_unlock();
4168 return ret;
4169 }
4170 EXPORT_SYMBOL_GPL(ffs_single_dev);
4171
4172 /*
4173 * ffs_lock must be taken by the caller of this function
4174 */
_ffs_free_dev(struct ffs_dev * dev)4175 static void _ffs_free_dev(struct ffs_dev *dev)
4176 {
4177 list_del(&dev->entry);
4178
4179 kfree(dev);
4180 if (list_empty(&ffs_devices))
4181 functionfs_cleanup();
4182 }
4183
ffs_acquire_dev(const char * dev_name,struct ffs_data * ffs_data)4184 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data)
4185 {
4186 int ret = 0;
4187 struct ffs_dev *ffs_dev;
4188
4189 ffs_dev_lock();
4190
4191 ffs_dev = _ffs_find_dev(dev_name);
4192 if (!ffs_dev) {
4193 ret = -ENOENT;
4194 } else if (ffs_dev->mounted) {
4195 ret = -EBUSY;
4196 } else if (ffs_dev->ffs_acquire_dev_callback &&
4197 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) {
4198 ret = -ENOENT;
4199 } else {
4200 ffs_dev->mounted = true;
4201 ffs_dev->ffs_data = ffs_data;
4202 ffs_data->private_data = ffs_dev;
4203 }
4204
4205 ffs_dev_unlock();
4206 return ret;
4207 }
4208
ffs_release_dev(struct ffs_dev * ffs_dev)4209 static void ffs_release_dev(struct ffs_dev *ffs_dev)
4210 {
4211 ffs_dev_lock();
4212
4213 if (ffs_dev && ffs_dev->mounted) {
4214 ffs_dev->mounted = false;
4215 if (ffs_dev->ffs_data) {
4216 ffs_dev->ffs_data->private_data = NULL;
4217 ffs_dev->ffs_data = NULL;
4218 }
4219
4220 if (ffs_dev->ffs_release_dev_callback)
4221 ffs_dev->ffs_release_dev_callback(ffs_dev);
4222 }
4223
4224 ffs_dev_unlock();
4225 }
4226
ffs_ready(struct ffs_data * ffs)4227 static int ffs_ready(struct ffs_data *ffs)
4228 {
4229 struct ffs_dev *ffs_obj;
4230 int ret = 0;
4231
4232 ffs_dev_lock();
4233
4234 ffs_obj = ffs->private_data;
4235 if (!ffs_obj) {
4236 ret = -EINVAL;
4237 goto done;
4238 }
4239 if (WARN_ON(ffs_obj->desc_ready)) {
4240 ret = -EBUSY;
4241 goto done;
4242 }
4243
4244 ffs_obj->desc_ready = true;
4245
4246 if (ffs_obj->ffs_ready_callback) {
4247 ret = ffs_obj->ffs_ready_callback(ffs);
4248 if (ret)
4249 goto done;
4250 }
4251
4252 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
4253 done:
4254 ffs_dev_unlock();
4255 return ret;
4256 }
4257
ffs_closed(struct ffs_data * ffs)4258 static void ffs_closed(struct ffs_data *ffs)
4259 {
4260 struct ffs_dev *ffs_obj;
4261 struct f_fs_opts *opts;
4262 struct config_item *ci;
4263
4264 ffs_dev_lock();
4265
4266 ffs_obj = ffs->private_data;
4267 if (!ffs_obj)
4268 goto done;
4269
4270 ffs_obj->desc_ready = false;
4271
4272 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
4273 ffs_obj->ffs_closed_callback)
4274 ffs_obj->ffs_closed_callback(ffs);
4275
4276 if (ffs_obj->opts)
4277 opts = ffs_obj->opts;
4278 else
4279 goto done;
4280
4281 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
4282 || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
4283 goto done;
4284
4285 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
4286 ffs_dev_unlock();
4287
4288 if (test_bit(FFS_FL_BOUND, &ffs->flags))
4289 unregister_gadget_item(ci);
4290 return;
4291 done:
4292 ffs_dev_unlock();
4293 }
4294
4295 /* Misc helper functions ****************************************************/
4296
ffs_mutex_lock(struct mutex * mutex,unsigned nonblock)4297 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
4298 {
4299 return nonblock
4300 ? mutex_trylock(mutex) ? 0 : -EAGAIN
4301 : mutex_lock_interruptible(mutex);
4302 }
4303
ffs_prepare_buffer(const char __user * buf,size_t len)4304 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
4305 {
4306 char *data;
4307
4308 if (!len)
4309 return NULL;
4310
4311 data = memdup_user(buf, len);
4312 if (IS_ERR(data))
4313 return data;
4314
4315 pr_vdebug("Buffer from user space:\n");
4316 ffs_dump_mem("", data, len);
4317
4318 return data;
4319 }
4320
4321 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
4322 MODULE_DESCRIPTION("user mode file system API for USB composite function controllers");
4323 MODULE_LICENSE("GPL");
4324 MODULE_AUTHOR("Michal Nazarewicz");
4325