xref: /linux/drivers/usb/gadget/function/f_fs.c (revision 4eee1520ea845a6d6d82e85498d9412419560871)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * f_fs.c -- user mode file system API for USB composite function controllers
4  *
5  * Copyright (C) 2010 Samsung Electronics
6  * Author: Michal Nazarewicz <mina86@mina86.com>
7  *
8  * Based on inode.c (GadgetFS) which was:
9  * Copyright (C) 2003-2004 David Brownell
10  * Copyright (C) 2003 Agilent Technologies
11  */
12 
13 
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16 
17 #include <linux/blkdev.h>
18 #include <linux/dma-buf.h>
19 #include <linux/dma-fence.h>
20 #include <linux/dma-resv.h>
21 #include <linux/pagemap.h>
22 #include <linux/export.h>
23 #include <linux/fs_parser.h>
24 #include <linux/hid.h>
25 #include <linux/mm.h>
26 #include <linux/module.h>
27 #include <linux/scatterlist.h>
28 #include <linux/sched/signal.h>
29 #include <linux/uio.h>
30 #include <linux/vmalloc.h>
31 #include <linux/unaligned.h>
32 
33 #include <linux/usb/ccid.h>
34 #include <linux/usb/composite.h>
35 #include <linux/usb/functionfs.h>
36 #include <linux/usb/func_utils.h>
37 
38 #include <linux/aio.h>
39 #include <linux/kthread.h>
40 #include <linux/poll.h>
41 #include <linux/eventfd.h>
42 
43 #include "u_fs.h"
44 #include "u_os_desc.h"
45 #include "configfs.h"
46 
47 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
48 #define MAX_ALT_SETTINGS	2		  /* Allow up to 2 alt settings to be set. */
49 
50 #define DMABUF_ENQUEUE_TIMEOUT_MS 5000
51 
52 MODULE_IMPORT_NS("DMA_BUF");
53 
54 /* Reference counter handling */
55 static void ffs_data_get(struct ffs_data *ffs);
56 static void ffs_data_put(struct ffs_data *ffs);
57 /* Creates new ffs_data object. */
58 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
59 	__attribute__((malloc));
60 
61 /* Opened counter handling. */
62 static void ffs_data_opened(struct ffs_data *ffs);
63 static void ffs_data_closed(struct ffs_data *ffs);
64 
65 /* Called with ffs->mutex held; take over ownership of data. */
66 static int __must_check
67 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
68 static int __must_check
69 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
70 
71 
72 /* The function structure ***************************************************/
73 
74 struct ffs_ep;
75 
76 struct ffs_function {
77 	struct usb_configuration	*conf;
78 	struct usb_gadget		*gadget;
79 	struct ffs_data			*ffs;
80 
81 	struct ffs_ep			*eps;
82 	u8				eps_revmap[16];
83 	short				*interfaces_nums;
84 
85 	struct usb_function		function;
86 	int				cur_alt[MAX_CONFIG_INTERFACES];
87 };
88 
89 
ffs_func_from_usb(struct usb_function * f)90 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
91 {
92 	return container_of(f, struct ffs_function, function);
93 }
94 
95 
96 static inline enum ffs_setup_state
ffs_setup_state_clear_cancelled(struct ffs_data * ffs)97 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
98 {
99 	return (enum ffs_setup_state)
100 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
101 }
102 
103 
104 static void ffs_func_eps_disable(struct ffs_function *func);
105 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
106 
107 static int ffs_func_bind(struct usb_configuration *,
108 			 struct usb_function *);
109 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
110 static int ffs_func_get_alt(struct usb_function *f, unsigned int intf);
111 static void ffs_func_disable(struct usb_function *);
112 static int ffs_func_setup(struct usb_function *,
113 			  const struct usb_ctrlrequest *);
114 static bool ffs_func_req_match(struct usb_function *,
115 			       const struct usb_ctrlrequest *,
116 			       bool config0);
117 static void ffs_func_suspend(struct usb_function *);
118 static void ffs_func_resume(struct usb_function *);
119 
120 
121 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
122 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
123 
124 
125 /* The endpoints structures *************************************************/
126 
127 struct ffs_ep {
128 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
129 	struct usb_request		*req;	/* P: epfile->mutex */
130 
131 	/* [0]: full speed, [1]: high speed, [2]: super speed */
132 	struct usb_endpoint_descriptor	*descs[3];
133 
134 	u8				num;
135 };
136 
137 struct ffs_dmabuf_priv {
138 	struct list_head entry;
139 	struct kref ref;
140 	struct ffs_data *ffs;
141 	struct dma_buf_attachment *attach;
142 	struct sg_table *sgt;
143 	enum dma_data_direction dir;
144 	spinlock_t lock;
145 	u64 context;
146 	struct usb_request *req;	/* P: ffs->eps_lock */
147 	struct usb_ep *ep;		/* P: ffs->eps_lock */
148 };
149 
150 struct ffs_dma_fence {
151 	struct dma_fence base;
152 	struct ffs_dmabuf_priv *priv;
153 	struct work_struct work;
154 };
155 
156 struct ffs_epfile {
157 	/* Protects ep->ep and ep->req. */
158 	struct mutex			mutex;
159 
160 	struct ffs_data			*ffs;
161 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
162 
163 	struct dentry			*dentry;
164 
165 	/*
166 	 * Buffer for holding data from partial reads which may happen since
167 	 * we’re rounding user read requests to a multiple of a max packet size.
168 	 *
169 	 * The pointer is initialised with NULL value and may be set by
170 	 * __ffs_epfile_read_data function to point to a temporary buffer.
171 	 *
172 	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
173 	 * data from said buffer and eventually free it.  Importantly, while the
174 	 * function is using the buffer, it sets the pointer to NULL.  This is
175 	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
176 	 * can never run concurrently (they are synchronised by epfile->mutex)
177 	 * so the latter will not assign a new value to the pointer.
178 	 *
179 	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
180 	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
181 	 * value is crux of the synchronisation between ffs_func_eps_disable and
182 	 * __ffs_epfile_read_data.
183 	 *
184 	 * Once __ffs_epfile_read_data is about to finish it will try to set the
185 	 * pointer back to its old value (as described above), but seeing as the
186 	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
187 	 * the buffer.
188 	 *
189 	 * == State transitions ==
190 	 *
191 	 * • ptr == NULL:  (initial state)
192 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
193 	 *   ◦ __ffs_epfile_read_buffered:    nop
194 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
195 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
196 	 * • ptr == DROP:
197 	 *   ◦ __ffs_epfile_read_buffer_free: nop
198 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
199 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
200 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
201 	 * • ptr == buf:
202 	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
203 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
204 	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
205 	 *                                    is always called first
206 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
207 	 * • ptr == NULL and reading:
208 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
209 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
210 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
211 	 *   ◦ reading finishes and …
212 	 *     … all data read:               free buf, go to ptr == NULL
213 	 *     … otherwise:                   go to ptr == buf and reading
214 	 * • ptr == DROP and reading:
215 	 *   ◦ __ffs_epfile_read_buffer_free: nop
216 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
217 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
218 	 *   ◦ reading finishes:              free buf, go to ptr == DROP
219 	 */
220 	struct ffs_buffer		*read_buffer;
221 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
222 
223 	char				name[5];
224 
225 	unsigned char			in;	/* P: ffs->eps_lock */
226 	unsigned char			isoc;	/* P: ffs->eps_lock */
227 
228 	unsigned char			_pad;
229 
230 	/* Protects dmabufs */
231 	struct mutex			dmabufs_mutex;
232 	struct list_head		dmabufs; /* P: dmabufs_mutex */
233 	atomic_t			seqno;
234 };
235 
236 struct ffs_buffer {
237 	size_t length;
238 	char *data;
239 	char storage[] __counted_by(length);
240 };
241 
242 /*  ffs_io_data structure ***************************************************/
243 
244 struct ffs_io_data {
245 	bool aio;
246 	bool read;
247 
248 	struct kiocb *kiocb;
249 	struct iov_iter data;
250 	const void *to_free;
251 	char *buf;
252 
253 	struct mm_struct *mm;
254 	struct work_struct work;
255 
256 	struct usb_ep *ep;
257 	struct usb_request *req;
258 	struct sg_table sgt;
259 	bool use_sg;
260 
261 	struct ffs_data *ffs;
262 
263 	int status;
264 	struct completion done;
265 };
266 
267 struct ffs_desc_helper {
268 	struct ffs_data *ffs;
269 	unsigned interfaces_count;
270 	unsigned eps_count;
271 };
272 
273 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
274 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
275 
276 static struct dentry *
277 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
278 		   const struct file_operations *fops);
279 
280 /* Devices management *******************************************************/
281 
282 DEFINE_MUTEX(ffs_lock);
283 EXPORT_SYMBOL_GPL(ffs_lock);
284 
285 static struct ffs_dev *_ffs_find_dev(const char *name);
286 static struct ffs_dev *_ffs_alloc_dev(void);
287 static void _ffs_free_dev(struct ffs_dev *dev);
288 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data);
289 static void ffs_release_dev(struct ffs_dev *ffs_dev);
290 static int ffs_ready(struct ffs_data *ffs);
291 static void ffs_closed(struct ffs_data *ffs);
292 
293 /* Misc helper functions ****************************************************/
294 
295 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
296 	__attribute__((warn_unused_result, nonnull));
297 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
298 	__attribute__((warn_unused_result, nonnull));
299 
300 
301 /* Control file aka ep0 *****************************************************/
302 
ffs_ep0_complete(struct usb_ep * ep,struct usb_request * req)303 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
304 {
305 	struct ffs_data *ffs = req->context;
306 
307 	complete(&ffs->ep0req_completion);
308 }
309 
__ffs_ep0_queue_wait(struct ffs_data * ffs,char * data,size_t len)310 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
311 	__releases(&ffs->ev.waitq.lock)
312 {
313 	struct usb_request *req = ffs->ep0req;
314 	int ret;
315 
316 	if (!req) {
317 		spin_unlock_irq(&ffs->ev.waitq.lock);
318 		return -EINVAL;
319 	}
320 
321 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
322 
323 	spin_unlock_irq(&ffs->ev.waitq.lock);
324 
325 	req->buf      = data;
326 	req->length   = len;
327 
328 	/*
329 	 * UDC layer requires to provide a buffer even for ZLP, but should
330 	 * not use it at all. Let's provide some poisoned pointer to catch
331 	 * possible bug in the driver.
332 	 */
333 	if (req->buf == NULL)
334 		req->buf = (void *)0xDEADBABE;
335 
336 	reinit_completion(&ffs->ep0req_completion);
337 
338 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
339 	if (ret < 0)
340 		return ret;
341 
342 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
343 	if (ret) {
344 		usb_ep_dequeue(ffs->gadget->ep0, req);
345 		return -EINTR;
346 	}
347 
348 	ffs->setup_state = FFS_NO_SETUP;
349 	return req->status ? req->status : req->actual;
350 }
351 
__ffs_ep0_stall(struct ffs_data * ffs)352 static int __ffs_ep0_stall(struct ffs_data *ffs)
353 {
354 	if (ffs->ev.can_stall) {
355 		pr_vdebug("ep0 stall\n");
356 		usb_ep_set_halt(ffs->gadget->ep0);
357 		ffs->setup_state = FFS_NO_SETUP;
358 		return -EL2HLT;
359 	} else {
360 		pr_debug("bogus ep0 stall!\n");
361 		return -ESRCH;
362 	}
363 }
364 
ffs_ep0_write(struct file * file,const char __user * buf,size_t len,loff_t * ptr)365 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
366 			     size_t len, loff_t *ptr)
367 {
368 	struct ffs_data *ffs = file->private_data;
369 	ssize_t ret;
370 	char *data;
371 
372 	/* Fast check if setup was canceled */
373 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
374 		return -EIDRM;
375 
376 	/* Acquire mutex */
377 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
378 	if (ret < 0)
379 		return ret;
380 
381 	/* Check state */
382 	switch (ffs->state) {
383 	case FFS_READ_DESCRIPTORS:
384 	case FFS_READ_STRINGS:
385 		/* Copy data */
386 		if (len < 16) {
387 			ret = -EINVAL;
388 			break;
389 		}
390 
391 		data = ffs_prepare_buffer(buf, len);
392 		if (IS_ERR(data)) {
393 			ret = PTR_ERR(data);
394 			break;
395 		}
396 
397 		/* Handle data */
398 		if (ffs->state == FFS_READ_DESCRIPTORS) {
399 			pr_info("read descriptors\n");
400 			ret = __ffs_data_got_descs(ffs, data, len);
401 			if (ret < 0)
402 				break;
403 
404 			ffs->state = FFS_READ_STRINGS;
405 			ret = len;
406 		} else {
407 			pr_info("read strings\n");
408 			ret = __ffs_data_got_strings(ffs, data, len);
409 			if (ret < 0)
410 				break;
411 
412 			ret = ffs_epfiles_create(ffs);
413 			if (ret) {
414 				ffs->state = FFS_CLOSING;
415 				break;
416 			}
417 
418 			ffs->state = FFS_ACTIVE;
419 			mutex_unlock(&ffs->mutex);
420 
421 			ret = ffs_ready(ffs);
422 			if (ret < 0) {
423 				ffs->state = FFS_CLOSING;
424 				return ret;
425 			}
426 
427 			return len;
428 		}
429 		break;
430 
431 	case FFS_ACTIVE:
432 		data = NULL;
433 		/*
434 		 * We're called from user space, we can use _irq
435 		 * rather then _irqsave
436 		 */
437 		spin_lock_irq(&ffs->ev.waitq.lock);
438 		switch (ffs_setup_state_clear_cancelled(ffs)) {
439 		case FFS_SETUP_CANCELLED:
440 			ret = -EIDRM;
441 			goto done_spin;
442 
443 		case FFS_NO_SETUP:
444 			ret = -ESRCH;
445 			goto done_spin;
446 
447 		case FFS_SETUP_PENDING:
448 			break;
449 		}
450 
451 		/* FFS_SETUP_PENDING */
452 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
453 			spin_unlock_irq(&ffs->ev.waitq.lock);
454 			ret = __ffs_ep0_stall(ffs);
455 			break;
456 		}
457 
458 		/* FFS_SETUP_PENDING and not stall */
459 		len = min_t(size_t, len, le16_to_cpu(ffs->ev.setup.wLength));
460 
461 		spin_unlock_irq(&ffs->ev.waitq.lock);
462 
463 		data = ffs_prepare_buffer(buf, len);
464 		if (IS_ERR(data)) {
465 			ret = PTR_ERR(data);
466 			break;
467 		}
468 
469 		spin_lock_irq(&ffs->ev.waitq.lock);
470 
471 		/*
472 		 * We are guaranteed to be still in FFS_ACTIVE state
473 		 * but the state of setup could have changed from
474 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
475 		 * to check for that.  If that happened we copied data
476 		 * from user space in vain but it's unlikely.
477 		 *
478 		 * For sure we are not in FFS_NO_SETUP since this is
479 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
480 		 * transition can be performed and it's protected by
481 		 * mutex.
482 		 */
483 		if (ffs_setup_state_clear_cancelled(ffs) ==
484 		    FFS_SETUP_CANCELLED) {
485 			ret = -EIDRM;
486 done_spin:
487 			spin_unlock_irq(&ffs->ev.waitq.lock);
488 		} else {
489 			/* unlocks spinlock */
490 			ret = __ffs_ep0_queue_wait(ffs, data, len);
491 		}
492 		kfree(data);
493 		break;
494 
495 	default:
496 		ret = -EBADFD;
497 		break;
498 	}
499 
500 	mutex_unlock(&ffs->mutex);
501 	return ret;
502 }
503 
504 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
__ffs_ep0_read_events(struct ffs_data * ffs,char __user * buf,size_t n)505 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
506 				     size_t n)
507 	__releases(&ffs->ev.waitq.lock)
508 {
509 	/*
510 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
511 	 * size of ffs->ev.types array (which is four) so that's how much space
512 	 * we reserve.
513 	 */
514 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
515 	const size_t size = n * sizeof *events;
516 	unsigned i = 0;
517 
518 	memset(events, 0, size);
519 
520 	do {
521 		events[i].type = ffs->ev.types[i];
522 		if (events[i].type == FUNCTIONFS_SETUP) {
523 			events[i].u.setup = ffs->ev.setup;
524 			ffs->setup_state = FFS_SETUP_PENDING;
525 		}
526 	} while (++i < n);
527 
528 	ffs->ev.count -= n;
529 	if (ffs->ev.count)
530 		memmove(ffs->ev.types, ffs->ev.types + n,
531 			ffs->ev.count * sizeof *ffs->ev.types);
532 
533 	spin_unlock_irq(&ffs->ev.waitq.lock);
534 	mutex_unlock(&ffs->mutex);
535 
536 	return copy_to_user(buf, events, size) ? -EFAULT : size;
537 }
538 
ffs_ep0_read(struct file * file,char __user * buf,size_t len,loff_t * ptr)539 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
540 			    size_t len, loff_t *ptr)
541 {
542 	struct ffs_data *ffs = file->private_data;
543 	char *data = NULL;
544 	size_t n;
545 	int ret;
546 
547 	/* Fast check if setup was canceled */
548 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
549 		return -EIDRM;
550 
551 	/* Acquire mutex */
552 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
553 	if (ret < 0)
554 		return ret;
555 
556 	/* Check state */
557 	if (ffs->state != FFS_ACTIVE) {
558 		ret = -EBADFD;
559 		goto done_mutex;
560 	}
561 
562 	/*
563 	 * We're called from user space, we can use _irq rather then
564 	 * _irqsave
565 	 */
566 	spin_lock_irq(&ffs->ev.waitq.lock);
567 
568 	switch (ffs_setup_state_clear_cancelled(ffs)) {
569 	case FFS_SETUP_CANCELLED:
570 		ret = -EIDRM;
571 		break;
572 
573 	case FFS_NO_SETUP:
574 		n = len / sizeof(struct usb_functionfs_event);
575 		if (!n) {
576 			ret = -EINVAL;
577 			break;
578 		}
579 
580 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
581 			ret = -EAGAIN;
582 			break;
583 		}
584 
585 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
586 							ffs->ev.count)) {
587 			ret = -EINTR;
588 			break;
589 		}
590 
591 		/* unlocks spinlock */
592 		return __ffs_ep0_read_events(ffs, buf,
593 					     min_t(size_t, n, ffs->ev.count));
594 
595 	case FFS_SETUP_PENDING:
596 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
597 			spin_unlock_irq(&ffs->ev.waitq.lock);
598 			ret = __ffs_ep0_stall(ffs);
599 			goto done_mutex;
600 		}
601 
602 		len = min_t(size_t, len, le16_to_cpu(ffs->ev.setup.wLength));
603 
604 		spin_unlock_irq(&ffs->ev.waitq.lock);
605 
606 		if (len) {
607 			data = kmalloc(len, GFP_KERNEL);
608 			if (!data) {
609 				ret = -ENOMEM;
610 				goto done_mutex;
611 			}
612 		}
613 
614 		spin_lock_irq(&ffs->ev.waitq.lock);
615 
616 		/* See ffs_ep0_write() */
617 		if (ffs_setup_state_clear_cancelled(ffs) ==
618 		    FFS_SETUP_CANCELLED) {
619 			ret = -EIDRM;
620 			break;
621 		}
622 
623 		/* unlocks spinlock */
624 		ret = __ffs_ep0_queue_wait(ffs, data, len);
625 		if ((ret > 0) && (copy_to_user(buf, data, len)))
626 			ret = -EFAULT;
627 		goto done_mutex;
628 
629 	default:
630 		ret = -EBADFD;
631 		break;
632 	}
633 
634 	spin_unlock_irq(&ffs->ev.waitq.lock);
635 done_mutex:
636 	mutex_unlock(&ffs->mutex);
637 	kfree(data);
638 	return ret;
639 }
640 
ffs_ep0_open(struct inode * inode,struct file * file)641 static int ffs_ep0_open(struct inode *inode, struct file *file)
642 {
643 	struct ffs_data *ffs = inode->i_private;
644 
645 	if (ffs->state == FFS_CLOSING)
646 		return -EBUSY;
647 
648 	file->private_data = ffs;
649 	ffs_data_opened(ffs);
650 
651 	return stream_open(inode, file);
652 }
653 
ffs_ep0_release(struct inode * inode,struct file * file)654 static int ffs_ep0_release(struct inode *inode, struct file *file)
655 {
656 	struct ffs_data *ffs = file->private_data;
657 
658 	ffs_data_closed(ffs);
659 
660 	return 0;
661 }
662 
ffs_ep0_ioctl(struct file * file,unsigned code,unsigned long value)663 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
664 {
665 	struct ffs_data *ffs = file->private_data;
666 	struct usb_gadget *gadget = ffs->gadget;
667 	long ret;
668 
669 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
670 		struct ffs_function *func = ffs->func;
671 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
672 	} else if (gadget && gadget->ops->ioctl) {
673 		ret = gadget->ops->ioctl(gadget, code, value);
674 	} else {
675 		ret = -ENOTTY;
676 	}
677 
678 	return ret;
679 }
680 
ffs_ep0_poll(struct file * file,poll_table * wait)681 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
682 {
683 	struct ffs_data *ffs = file->private_data;
684 	__poll_t mask = EPOLLWRNORM;
685 	int ret;
686 
687 	poll_wait(file, &ffs->ev.waitq, wait);
688 
689 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
690 	if (ret < 0)
691 		return mask;
692 
693 	switch (ffs->state) {
694 	case FFS_READ_DESCRIPTORS:
695 	case FFS_READ_STRINGS:
696 		mask |= EPOLLOUT;
697 		break;
698 
699 	case FFS_ACTIVE:
700 		switch (ffs->setup_state) {
701 		case FFS_NO_SETUP:
702 			if (ffs->ev.count)
703 				mask |= EPOLLIN;
704 			break;
705 
706 		case FFS_SETUP_PENDING:
707 		case FFS_SETUP_CANCELLED:
708 			mask |= (EPOLLIN | EPOLLOUT);
709 			break;
710 		}
711 		break;
712 
713 	case FFS_CLOSING:
714 		break;
715 	case FFS_DEACTIVATED:
716 		break;
717 	}
718 
719 	mutex_unlock(&ffs->mutex);
720 
721 	return mask;
722 }
723 
724 static const struct file_operations ffs_ep0_operations = {
725 
726 	.open =		ffs_ep0_open,
727 	.write =	ffs_ep0_write,
728 	.read =		ffs_ep0_read,
729 	.release =	ffs_ep0_release,
730 	.unlocked_ioctl =	ffs_ep0_ioctl,
731 	.poll =		ffs_ep0_poll,
732 };
733 
734 
735 /* "Normal" endpoints operations ********************************************/
736 
ffs_epfile_io_complete(struct usb_ep * _ep,struct usb_request * req)737 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
738 {
739 	struct ffs_io_data *io_data = req->context;
740 
741 	if (req->status)
742 		io_data->status = req->status;
743 	else
744 		io_data->status = req->actual;
745 
746 	complete(&io_data->done);
747 }
748 
ffs_copy_to_iter(void * data,int data_len,struct iov_iter * iter)749 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
750 {
751 	ssize_t ret = copy_to_iter(data, data_len, iter);
752 	if (ret == data_len)
753 		return ret;
754 
755 	if (iov_iter_count(iter))
756 		return -EFAULT;
757 
758 	/*
759 	 * Dear user space developer!
760 	 *
761 	 * TL;DR: To stop getting below error message in your kernel log, change
762 	 * user space code using functionfs to align read buffers to a max
763 	 * packet size.
764 	 *
765 	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
766 	 * packet size.  When unaligned buffer is passed to functionfs, it
767 	 * internally uses a larger, aligned buffer so that such UDCs are happy.
768 	 *
769 	 * Unfortunately, this means that host may send more data than was
770 	 * requested in read(2) system call.  f_fs doesn’t know what to do with
771 	 * that excess data so it simply drops it.
772 	 *
773 	 * Was the buffer aligned in the first place, no such problem would
774 	 * happen.
775 	 *
776 	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
777 	 * by splitting a request into multiple parts.  This splitting may still
778 	 * be a problem though so it’s likely best to align the buffer
779 	 * regardless of it being AIO or not..
780 	 *
781 	 * This only affects OUT endpoints, i.e. reading data with a read(2),
782 	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
783 	 * affected.
784 	 */
785 	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
786 	       "Align read buffer size to max packet size to avoid the problem.\n",
787 	       data_len, ret);
788 
789 	return ret;
790 }
791 
792 /*
793  * allocate a virtually contiguous buffer and create a scatterlist describing it
794  * @sg_table	- pointer to a place to be filled with sg_table contents
795  * @size	- required buffer size
796  */
ffs_build_sg_list(struct sg_table * sgt,size_t sz)797 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
798 {
799 	struct page **pages;
800 	void *vaddr, *ptr;
801 	unsigned int n_pages;
802 	int i;
803 
804 	vaddr = vmalloc(sz);
805 	if (!vaddr)
806 		return NULL;
807 
808 	n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
809 	pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
810 	if (!pages) {
811 		vfree(vaddr);
812 
813 		return NULL;
814 	}
815 	for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
816 		pages[i] = vmalloc_to_page(ptr);
817 
818 	if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
819 		kvfree(pages);
820 		vfree(vaddr);
821 
822 		return NULL;
823 	}
824 	kvfree(pages);
825 
826 	return vaddr;
827 }
828 
ffs_alloc_buffer(struct ffs_io_data * io_data,size_t data_len)829 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
830 	size_t data_len)
831 {
832 	if (io_data->use_sg)
833 		return ffs_build_sg_list(&io_data->sgt, data_len);
834 
835 	return kmalloc(data_len, GFP_KERNEL);
836 }
837 
ffs_free_buffer(struct ffs_io_data * io_data)838 static inline void ffs_free_buffer(struct ffs_io_data *io_data)
839 {
840 	if (!io_data->buf)
841 		return;
842 
843 	if (io_data->use_sg) {
844 		sg_free_table(&io_data->sgt);
845 		vfree(io_data->buf);
846 	} else {
847 		kfree(io_data->buf);
848 	}
849 }
850 
ffs_user_copy_worker(struct work_struct * work)851 static void ffs_user_copy_worker(struct work_struct *work)
852 {
853 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
854 						   work);
855 	int ret = io_data->status;
856 	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
857 
858 	if (io_data->read && ret > 0) {
859 		kthread_use_mm(io_data->mm);
860 		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
861 		kthread_unuse_mm(io_data->mm);
862 	}
863 
864 	io_data->kiocb->ki_complete(io_data->kiocb, ret);
865 
866 	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
867 		eventfd_signal(io_data->ffs->ffs_eventfd);
868 
869 	usb_ep_free_request(io_data->ep, io_data->req);
870 
871 	if (io_data->read)
872 		kfree(io_data->to_free);
873 	ffs_free_buffer(io_data);
874 	kfree(io_data);
875 }
876 
ffs_epfile_async_io_complete(struct usb_ep * _ep,struct usb_request * req)877 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
878 					 struct usb_request *req)
879 {
880 	struct ffs_io_data *io_data = req->context;
881 	struct ffs_data *ffs = io_data->ffs;
882 
883 	io_data->status = req->status ? req->status : req->actual;
884 
885 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
886 	queue_work(ffs->io_completion_wq, &io_data->work);
887 }
888 
__ffs_epfile_read_buffer_free(struct ffs_epfile * epfile)889 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
890 {
891 	/*
892 	 * See comment in struct ffs_epfile for full read_buffer pointer
893 	 * synchronisation story.
894 	 */
895 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
896 	if (buf && buf != READ_BUFFER_DROP)
897 		kfree(buf);
898 }
899 
900 /* Assumes epfile->mutex is held. */
__ffs_epfile_read_buffered(struct ffs_epfile * epfile,struct iov_iter * iter)901 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
902 					  struct iov_iter *iter)
903 {
904 	/*
905 	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
906 	 * the buffer while we are using it.  See comment in struct ffs_epfile
907 	 * for full read_buffer pointer synchronisation story.
908 	 */
909 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
910 	ssize_t ret;
911 	if (!buf || buf == READ_BUFFER_DROP)
912 		return 0;
913 
914 	ret = copy_to_iter(buf->data, buf->length, iter);
915 	if (buf->length == ret) {
916 		kfree(buf);
917 		return ret;
918 	}
919 
920 	if (iov_iter_count(iter)) {
921 		ret = -EFAULT;
922 	} else {
923 		buf->length -= ret;
924 		buf->data += ret;
925 	}
926 
927 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
928 		kfree(buf);
929 
930 	return ret;
931 }
932 
933 /* Assumes epfile->mutex is held. */
__ffs_epfile_read_data(struct ffs_epfile * epfile,void * data,int data_len,struct iov_iter * iter)934 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
935 				      void *data, int data_len,
936 				      struct iov_iter *iter)
937 {
938 	struct ffs_buffer *buf;
939 
940 	ssize_t ret = copy_to_iter(data, data_len, iter);
941 	if (data_len == ret)
942 		return ret;
943 
944 	if (iov_iter_count(iter))
945 		return -EFAULT;
946 
947 	/* See ffs_copy_to_iter for more context. */
948 	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
949 		data_len, ret);
950 
951 	data_len -= ret;
952 	buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL);
953 	if (!buf)
954 		return -ENOMEM;
955 	buf->length = data_len;
956 	buf->data = buf->storage;
957 	memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len));
958 
959 	/*
960 	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
961 	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
962 	 * in struct ffs_epfile for full read_buffer pointer synchronisation
963 	 * story.
964 	 */
965 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
966 		kfree(buf);
967 
968 	return ret;
969 }
970 
ffs_epfile_wait_ep(struct file * file)971 static struct ffs_ep *ffs_epfile_wait_ep(struct file *file)
972 {
973 	struct ffs_epfile *epfile = file->private_data;
974 	struct ffs_ep *ep;
975 	int ret;
976 
977 	/* Wait for endpoint to be enabled */
978 	ep = epfile->ep;
979 	if (!ep) {
980 		if (file->f_flags & O_NONBLOCK)
981 			return ERR_PTR(-EAGAIN);
982 
983 		ret = wait_event_interruptible(
984 				epfile->ffs->wait, (ep = epfile->ep));
985 		if (ret)
986 			return ERR_PTR(-EINTR);
987 	}
988 
989 	return ep;
990 }
991 
ffs_epfile_io(struct file * file,struct ffs_io_data * io_data)992 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
993 {
994 	struct ffs_epfile *epfile = file->private_data;
995 	struct usb_request *req;
996 	struct ffs_ep *ep;
997 	char *data = NULL;
998 	ssize_t ret, data_len = -EINVAL;
999 	int halt;
1000 
1001 	/* Are we still active? */
1002 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1003 		return -ENODEV;
1004 
1005 	ep = ffs_epfile_wait_ep(file);
1006 	if (IS_ERR(ep))
1007 		return PTR_ERR(ep);
1008 
1009 	/* Do we halt? */
1010 	halt = (!io_data->read == !epfile->in);
1011 	if (halt && epfile->isoc)
1012 		return -EINVAL;
1013 
1014 	/* We will be using request and read_buffer */
1015 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
1016 	if (ret)
1017 		goto error;
1018 
1019 	/* Allocate & copy */
1020 	if (!halt) {
1021 		struct usb_gadget *gadget;
1022 
1023 		/*
1024 		 * Do we have buffered data from previous partial read?  Check
1025 		 * that for synchronous case only because we do not have
1026 		 * facility to ‘wake up’ a pending asynchronous read and push
1027 		 * buffered data to it which we would need to make things behave
1028 		 * consistently.
1029 		 */
1030 		if (!io_data->aio && io_data->read) {
1031 			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
1032 			if (ret)
1033 				goto error_mutex;
1034 		}
1035 
1036 		/*
1037 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
1038 		 * before the waiting completes, so do not assign to 'gadget'
1039 		 * earlier
1040 		 */
1041 		gadget = epfile->ffs->gadget;
1042 
1043 		spin_lock_irq(&epfile->ffs->eps_lock);
1044 		/* In the meantime, endpoint got disabled or changed. */
1045 		if (epfile->ep != ep) {
1046 			ret = -ESHUTDOWN;
1047 			goto error_lock;
1048 		}
1049 		data_len = iov_iter_count(&io_data->data);
1050 		/*
1051 		 * Controller may require buffer size to be aligned to
1052 		 * maxpacketsize of an out endpoint.
1053 		 */
1054 		if (io_data->read)
1055 			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1056 
1057 		io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1058 		spin_unlock_irq(&epfile->ffs->eps_lock);
1059 
1060 		data = ffs_alloc_buffer(io_data, data_len);
1061 		if (!data) {
1062 			ret = -ENOMEM;
1063 			goto error_mutex;
1064 		}
1065 		if (!io_data->read &&
1066 		    !copy_from_iter_full(data, data_len, &io_data->data)) {
1067 			ret = -EFAULT;
1068 			goto error_mutex;
1069 		}
1070 	}
1071 
1072 	spin_lock_irq(&epfile->ffs->eps_lock);
1073 
1074 	if (epfile->ep != ep) {
1075 		/* In the meantime, endpoint got disabled or changed. */
1076 		ret = -ESHUTDOWN;
1077 	} else if (halt) {
1078 		ret = usb_ep_set_halt(ep->ep);
1079 		if (!ret)
1080 			ret = -EBADMSG;
1081 	} else if (data_len == -EINVAL) {
1082 		/*
1083 		 * Sanity Check: even though data_len can't be used
1084 		 * uninitialized at the time I write this comment, some
1085 		 * compilers complain about this situation.
1086 		 * In order to keep the code clean from warnings, data_len is
1087 		 * being initialized to -EINVAL during its declaration, which
1088 		 * means we can't rely on compiler anymore to warn no future
1089 		 * changes won't result in data_len being used uninitialized.
1090 		 * For such reason, we're adding this redundant sanity check
1091 		 * here.
1092 		 */
1093 		WARN(1, "%s: data_len == -EINVAL\n", __func__);
1094 		ret = -EINVAL;
1095 	} else if (!io_data->aio) {
1096 		bool interrupted = false;
1097 
1098 		req = ep->req;
1099 		if (io_data->use_sg) {
1100 			req->buf = NULL;
1101 			req->sg	= io_data->sgt.sgl;
1102 			req->num_sgs = io_data->sgt.nents;
1103 		} else {
1104 			req->buf = data;
1105 			req->num_sgs = 0;
1106 		}
1107 		req->length = data_len;
1108 
1109 		io_data->buf = data;
1110 
1111 		init_completion(&io_data->done);
1112 		req->context  = io_data;
1113 		req->complete = ffs_epfile_io_complete;
1114 
1115 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1116 		if (ret < 0)
1117 			goto error_lock;
1118 
1119 		spin_unlock_irq(&epfile->ffs->eps_lock);
1120 
1121 		if (wait_for_completion_interruptible(&io_data->done)) {
1122 			spin_lock_irq(&epfile->ffs->eps_lock);
1123 			if (epfile->ep != ep) {
1124 				ret = -ESHUTDOWN;
1125 				goto error_lock;
1126 			}
1127 			/*
1128 			 * To avoid race condition with ffs_epfile_io_complete,
1129 			 * dequeue the request first then check
1130 			 * status. usb_ep_dequeue API should guarantee no race
1131 			 * condition with req->complete callback.
1132 			 */
1133 			usb_ep_dequeue(ep->ep, req);
1134 			spin_unlock_irq(&epfile->ffs->eps_lock);
1135 			wait_for_completion(&io_data->done);
1136 			interrupted = io_data->status < 0;
1137 		}
1138 
1139 		if (interrupted)
1140 			ret = -EINTR;
1141 		else if (io_data->read && io_data->status > 0)
1142 			ret = __ffs_epfile_read_data(epfile, data, io_data->status,
1143 						     &io_data->data);
1144 		else
1145 			ret = io_data->status;
1146 		goto error_mutex;
1147 	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1148 		ret = -ENOMEM;
1149 	} else {
1150 		if (io_data->use_sg) {
1151 			req->buf = NULL;
1152 			req->sg	= io_data->sgt.sgl;
1153 			req->num_sgs = io_data->sgt.nents;
1154 		} else {
1155 			req->buf = data;
1156 			req->num_sgs = 0;
1157 		}
1158 		req->length = data_len;
1159 
1160 		io_data->buf = data;
1161 		io_data->ep = ep->ep;
1162 		io_data->req = req;
1163 		io_data->ffs = epfile->ffs;
1164 
1165 		req->context  = io_data;
1166 		req->complete = ffs_epfile_async_io_complete;
1167 
1168 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1169 		if (ret) {
1170 			io_data->req = NULL;
1171 			usb_ep_free_request(ep->ep, req);
1172 			goto error_lock;
1173 		}
1174 
1175 		ret = -EIOCBQUEUED;
1176 		/*
1177 		 * Do not kfree the buffer in this function.  It will be freed
1178 		 * by ffs_user_copy_worker.
1179 		 */
1180 		data = NULL;
1181 	}
1182 
1183 error_lock:
1184 	spin_unlock_irq(&epfile->ffs->eps_lock);
1185 error_mutex:
1186 	mutex_unlock(&epfile->mutex);
1187 error:
1188 	if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1189 		ffs_free_buffer(io_data);
1190 	return ret;
1191 }
1192 
1193 static int
ffs_epfile_open(struct inode * inode,struct file * file)1194 ffs_epfile_open(struct inode *inode, struct file *file)
1195 {
1196 	struct ffs_epfile *epfile = inode->i_private;
1197 
1198 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1199 		return -ENODEV;
1200 
1201 	file->private_data = epfile;
1202 	ffs_data_opened(epfile->ffs);
1203 
1204 	return stream_open(inode, file);
1205 }
1206 
ffs_aio_cancel(struct kiocb * kiocb)1207 static int ffs_aio_cancel(struct kiocb *kiocb)
1208 {
1209 	struct ffs_io_data *io_data = kiocb->private;
1210 	int value;
1211 
1212 	if (io_data && io_data->ep && io_data->req)
1213 		value = usb_ep_dequeue(io_data->ep, io_data->req);
1214 	else
1215 		value = -EINVAL;
1216 
1217 	return value;
1218 }
1219 
ffs_epfile_write_iter(struct kiocb * kiocb,struct iov_iter * from)1220 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1221 {
1222 	struct ffs_io_data io_data, *p = &io_data;
1223 	ssize_t res;
1224 
1225 	if (!is_sync_kiocb(kiocb)) {
1226 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1227 		if (!p)
1228 			return -ENOMEM;
1229 		p->aio = true;
1230 	} else {
1231 		memset(p, 0, sizeof(*p));
1232 		p->aio = false;
1233 	}
1234 
1235 	p->read = false;
1236 	p->kiocb = kiocb;
1237 	p->data = *from;
1238 	p->mm = current->mm;
1239 
1240 	kiocb->private = p;
1241 
1242 	if (p->aio)
1243 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1244 
1245 	res = ffs_epfile_io(kiocb->ki_filp, p);
1246 	if (res == -EIOCBQUEUED)
1247 		return res;
1248 	if (p->aio)
1249 		kfree(p);
1250 	else
1251 		*from = p->data;
1252 	return res;
1253 }
1254 
ffs_epfile_read_iter(struct kiocb * kiocb,struct iov_iter * to)1255 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1256 {
1257 	struct ffs_io_data io_data, *p = &io_data;
1258 	ssize_t res;
1259 
1260 	if (!is_sync_kiocb(kiocb)) {
1261 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1262 		if (!p)
1263 			return -ENOMEM;
1264 		p->aio = true;
1265 	} else {
1266 		memset(p, 0, sizeof(*p));
1267 		p->aio = false;
1268 	}
1269 
1270 	p->read = true;
1271 	p->kiocb = kiocb;
1272 	if (p->aio) {
1273 		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1274 		if (!iter_is_ubuf(&p->data) && !p->to_free) {
1275 			kfree(p);
1276 			return -ENOMEM;
1277 		}
1278 	} else {
1279 		p->data = *to;
1280 		p->to_free = NULL;
1281 	}
1282 	p->mm = current->mm;
1283 
1284 	kiocb->private = p;
1285 
1286 	if (p->aio)
1287 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1288 
1289 	res = ffs_epfile_io(kiocb->ki_filp, p);
1290 	if (res == -EIOCBQUEUED)
1291 		return res;
1292 
1293 	if (p->aio) {
1294 		kfree(p->to_free);
1295 		kfree(p);
1296 	} else {
1297 		*to = p->data;
1298 	}
1299 	return res;
1300 }
1301 
ffs_dmabuf_release(struct kref * ref)1302 static void ffs_dmabuf_release(struct kref *ref)
1303 {
1304 	struct ffs_dmabuf_priv *priv = container_of(ref, struct ffs_dmabuf_priv, ref);
1305 	struct dma_buf_attachment *attach = priv->attach;
1306 	struct dma_buf *dmabuf = attach->dmabuf;
1307 
1308 	pr_vdebug("FFS DMABUF release\n");
1309 	dma_resv_lock(dmabuf->resv, NULL);
1310 	dma_buf_unmap_attachment(attach, priv->sgt, priv->dir);
1311 	dma_resv_unlock(dmabuf->resv);
1312 
1313 	dma_buf_detach(attach->dmabuf, attach);
1314 	dma_buf_put(dmabuf);
1315 	kfree(priv);
1316 }
1317 
ffs_dmabuf_get(struct dma_buf_attachment * attach)1318 static void ffs_dmabuf_get(struct dma_buf_attachment *attach)
1319 {
1320 	struct ffs_dmabuf_priv *priv = attach->importer_priv;
1321 
1322 	kref_get(&priv->ref);
1323 }
1324 
ffs_dmabuf_put(struct dma_buf_attachment * attach)1325 static void ffs_dmabuf_put(struct dma_buf_attachment *attach)
1326 {
1327 	struct ffs_dmabuf_priv *priv = attach->importer_priv;
1328 
1329 	kref_put(&priv->ref, ffs_dmabuf_release);
1330 }
1331 
1332 static int
ffs_epfile_release(struct inode * inode,struct file * file)1333 ffs_epfile_release(struct inode *inode, struct file *file)
1334 {
1335 	struct ffs_epfile *epfile = inode->i_private;
1336 	struct ffs_dmabuf_priv *priv, *tmp;
1337 	struct ffs_data *ffs = epfile->ffs;
1338 
1339 	mutex_lock(&epfile->dmabufs_mutex);
1340 
1341 	/* Close all attached DMABUFs */
1342 	list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1343 		/* Cancel any pending transfer */
1344 		spin_lock_irq(&ffs->eps_lock);
1345 		if (priv->ep && priv->req)
1346 			usb_ep_dequeue(priv->ep, priv->req);
1347 		spin_unlock_irq(&ffs->eps_lock);
1348 
1349 		list_del(&priv->entry);
1350 		ffs_dmabuf_put(priv->attach);
1351 	}
1352 
1353 	mutex_unlock(&epfile->dmabufs_mutex);
1354 
1355 	__ffs_epfile_read_buffer_free(epfile);
1356 	ffs_data_closed(epfile->ffs);
1357 
1358 	return 0;
1359 }
1360 
ffs_dmabuf_cleanup(struct work_struct * work)1361 static void ffs_dmabuf_cleanup(struct work_struct *work)
1362 {
1363 	struct ffs_dma_fence *dma_fence =
1364 		container_of(work, struct ffs_dma_fence, work);
1365 	struct ffs_dmabuf_priv *priv = dma_fence->priv;
1366 	struct dma_buf_attachment *attach = priv->attach;
1367 	struct dma_fence *fence = &dma_fence->base;
1368 
1369 	ffs_dmabuf_put(attach);
1370 	dma_fence_put(fence);
1371 }
1372 
ffs_dmabuf_signal_done(struct ffs_dma_fence * dma_fence,int ret)1373 static void ffs_dmabuf_signal_done(struct ffs_dma_fence *dma_fence, int ret)
1374 {
1375 	struct ffs_dmabuf_priv *priv = dma_fence->priv;
1376 	struct dma_fence *fence = &dma_fence->base;
1377 	bool cookie = dma_fence_begin_signalling();
1378 
1379 	dma_fence_get(fence);
1380 	fence->error = ret;
1381 	dma_fence_signal(fence);
1382 	dma_fence_end_signalling(cookie);
1383 
1384 	/*
1385 	 * The fence will be unref'd in ffs_dmabuf_cleanup.
1386 	 * It can't be done here, as the unref functions might try to lock
1387 	 * the resv object, which would deadlock.
1388 	 */
1389 	INIT_WORK(&dma_fence->work, ffs_dmabuf_cleanup);
1390 	queue_work(priv->ffs->io_completion_wq, &dma_fence->work);
1391 }
1392 
ffs_epfile_dmabuf_io_complete(struct usb_ep * ep,struct usb_request * req)1393 static void ffs_epfile_dmabuf_io_complete(struct usb_ep *ep,
1394 					  struct usb_request *req)
1395 {
1396 	pr_vdebug("FFS: DMABUF transfer complete, status=%d\n", req->status);
1397 	ffs_dmabuf_signal_done(req->context, req->status);
1398 	usb_ep_free_request(ep, req);
1399 }
1400 
ffs_dmabuf_get_driver_name(struct dma_fence * fence)1401 static const char *ffs_dmabuf_get_driver_name(struct dma_fence *fence)
1402 {
1403 	return "functionfs";
1404 }
1405 
ffs_dmabuf_get_timeline_name(struct dma_fence * fence)1406 static const char *ffs_dmabuf_get_timeline_name(struct dma_fence *fence)
1407 {
1408 	return "";
1409 }
1410 
ffs_dmabuf_fence_release(struct dma_fence * fence)1411 static void ffs_dmabuf_fence_release(struct dma_fence *fence)
1412 {
1413 	struct ffs_dma_fence *dma_fence =
1414 		container_of(fence, struct ffs_dma_fence, base);
1415 
1416 	kfree(dma_fence);
1417 }
1418 
1419 static const struct dma_fence_ops ffs_dmabuf_fence_ops = {
1420 	.get_driver_name	= ffs_dmabuf_get_driver_name,
1421 	.get_timeline_name	= ffs_dmabuf_get_timeline_name,
1422 	.release		= ffs_dmabuf_fence_release,
1423 };
1424 
ffs_dma_resv_lock(struct dma_buf * dmabuf,bool nonblock)1425 static int ffs_dma_resv_lock(struct dma_buf *dmabuf, bool nonblock)
1426 {
1427 	if (!nonblock)
1428 		return dma_resv_lock_interruptible(dmabuf->resv, NULL);
1429 
1430 	if (!dma_resv_trylock(dmabuf->resv))
1431 		return -EBUSY;
1432 
1433 	return 0;
1434 }
1435 
1436 static struct dma_buf_attachment *
ffs_dmabuf_find_attachment(struct ffs_epfile * epfile,struct dma_buf * dmabuf)1437 ffs_dmabuf_find_attachment(struct ffs_epfile *epfile, struct dma_buf *dmabuf)
1438 {
1439 	struct device *dev = epfile->ffs->gadget->dev.parent;
1440 	struct dma_buf_attachment *attach = NULL;
1441 	struct ffs_dmabuf_priv *priv;
1442 
1443 	mutex_lock(&epfile->dmabufs_mutex);
1444 
1445 	list_for_each_entry(priv, &epfile->dmabufs, entry) {
1446 		if (priv->attach->dev == dev
1447 		    && priv->attach->dmabuf == dmabuf) {
1448 			attach = priv->attach;
1449 			break;
1450 		}
1451 	}
1452 
1453 	if (attach)
1454 		ffs_dmabuf_get(attach);
1455 
1456 	mutex_unlock(&epfile->dmabufs_mutex);
1457 
1458 	return attach ?: ERR_PTR(-EPERM);
1459 }
1460 
ffs_dmabuf_attach(struct file * file,int fd)1461 static int ffs_dmabuf_attach(struct file *file, int fd)
1462 {
1463 	bool nonblock = file->f_flags & O_NONBLOCK;
1464 	struct ffs_epfile *epfile = file->private_data;
1465 	struct usb_gadget *gadget = epfile->ffs->gadget;
1466 	struct dma_buf_attachment *attach;
1467 	struct ffs_dmabuf_priv *priv;
1468 	enum dma_data_direction dir;
1469 	struct sg_table *sg_table;
1470 	struct dma_buf *dmabuf;
1471 	int err;
1472 
1473 	if (!gadget || !gadget->sg_supported)
1474 		return -EPERM;
1475 
1476 	dmabuf = dma_buf_get(fd);
1477 	if (IS_ERR(dmabuf))
1478 		return PTR_ERR(dmabuf);
1479 
1480 	attach = dma_buf_attach(dmabuf, gadget->dev.parent);
1481 	if (IS_ERR(attach)) {
1482 		err = PTR_ERR(attach);
1483 		goto err_dmabuf_put;
1484 	}
1485 
1486 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1487 	if (!priv) {
1488 		err = -ENOMEM;
1489 		goto err_dmabuf_detach;
1490 	}
1491 
1492 	dir = epfile->in ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1493 
1494 	err = ffs_dma_resv_lock(dmabuf, nonblock);
1495 	if (err)
1496 		goto err_free_priv;
1497 
1498 	sg_table = dma_buf_map_attachment(attach, dir);
1499 	dma_resv_unlock(dmabuf->resv);
1500 
1501 	if (IS_ERR(sg_table)) {
1502 		err = PTR_ERR(sg_table);
1503 		goto err_free_priv;
1504 	}
1505 
1506 	attach->importer_priv = priv;
1507 
1508 	priv->sgt = sg_table;
1509 	priv->dir = dir;
1510 	priv->ffs = epfile->ffs;
1511 	priv->attach = attach;
1512 	spin_lock_init(&priv->lock);
1513 	kref_init(&priv->ref);
1514 	priv->context = dma_fence_context_alloc(1);
1515 
1516 	mutex_lock(&epfile->dmabufs_mutex);
1517 	list_add(&priv->entry, &epfile->dmabufs);
1518 	mutex_unlock(&epfile->dmabufs_mutex);
1519 
1520 	return 0;
1521 
1522 err_free_priv:
1523 	kfree(priv);
1524 err_dmabuf_detach:
1525 	dma_buf_detach(dmabuf, attach);
1526 err_dmabuf_put:
1527 	dma_buf_put(dmabuf);
1528 
1529 	return err;
1530 }
1531 
ffs_dmabuf_detach(struct file * file,int fd)1532 static int ffs_dmabuf_detach(struct file *file, int fd)
1533 {
1534 	struct ffs_epfile *epfile = file->private_data;
1535 	struct ffs_data *ffs = epfile->ffs;
1536 	struct device *dev = ffs->gadget->dev.parent;
1537 	struct ffs_dmabuf_priv *priv, *tmp;
1538 	struct dma_buf *dmabuf;
1539 	int ret = -EPERM;
1540 
1541 	dmabuf = dma_buf_get(fd);
1542 	if (IS_ERR(dmabuf))
1543 		return PTR_ERR(dmabuf);
1544 
1545 	mutex_lock(&epfile->dmabufs_mutex);
1546 
1547 	list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1548 		if (priv->attach->dev == dev
1549 		    && priv->attach->dmabuf == dmabuf) {
1550 			/* Cancel any pending transfer */
1551 			spin_lock_irq(&ffs->eps_lock);
1552 			if (priv->ep && priv->req)
1553 				usb_ep_dequeue(priv->ep, priv->req);
1554 			spin_unlock_irq(&ffs->eps_lock);
1555 
1556 			list_del(&priv->entry);
1557 
1558 			/* Unref the reference from ffs_dmabuf_attach() */
1559 			ffs_dmabuf_put(priv->attach);
1560 			ret = 0;
1561 			break;
1562 		}
1563 	}
1564 
1565 	mutex_unlock(&epfile->dmabufs_mutex);
1566 	dma_buf_put(dmabuf);
1567 
1568 	return ret;
1569 }
1570 
ffs_dmabuf_transfer(struct file * file,const struct usb_ffs_dmabuf_transfer_req * req)1571 static int ffs_dmabuf_transfer(struct file *file,
1572 			       const struct usb_ffs_dmabuf_transfer_req *req)
1573 {
1574 	bool nonblock = file->f_flags & O_NONBLOCK;
1575 	struct ffs_epfile *epfile = file->private_data;
1576 	struct dma_buf_attachment *attach;
1577 	struct ffs_dmabuf_priv *priv;
1578 	struct ffs_dma_fence *fence;
1579 	struct usb_request *usb_req;
1580 	enum dma_resv_usage resv_dir;
1581 	struct dma_buf *dmabuf;
1582 	unsigned long timeout;
1583 	struct ffs_ep *ep;
1584 	bool cookie;
1585 	u32 seqno;
1586 	long retl;
1587 	int ret;
1588 
1589 	if (req->flags & ~USB_FFS_DMABUF_TRANSFER_MASK)
1590 		return -EINVAL;
1591 
1592 	dmabuf = dma_buf_get(req->fd);
1593 	if (IS_ERR(dmabuf))
1594 		return PTR_ERR(dmabuf);
1595 
1596 	if (req->length > dmabuf->size || req->length == 0) {
1597 		ret = -EINVAL;
1598 		goto err_dmabuf_put;
1599 	}
1600 
1601 	attach = ffs_dmabuf_find_attachment(epfile, dmabuf);
1602 	if (IS_ERR(attach)) {
1603 		ret = PTR_ERR(attach);
1604 		goto err_dmabuf_put;
1605 	}
1606 
1607 	priv = attach->importer_priv;
1608 
1609 	ep = ffs_epfile_wait_ep(file);
1610 	if (IS_ERR(ep)) {
1611 		ret = PTR_ERR(ep);
1612 		goto err_attachment_put;
1613 	}
1614 
1615 	ret = ffs_dma_resv_lock(dmabuf, nonblock);
1616 	if (ret)
1617 		goto err_attachment_put;
1618 
1619 	/* Make sure we don't have writers */
1620 	timeout = nonblock ? 0 : msecs_to_jiffies(DMABUF_ENQUEUE_TIMEOUT_MS);
1621 	retl = dma_resv_wait_timeout(dmabuf->resv,
1622 				     dma_resv_usage_rw(epfile->in),
1623 				     true, timeout);
1624 	if (retl == 0)
1625 		retl = -EBUSY;
1626 	if (retl < 0) {
1627 		ret = (int)retl;
1628 		goto err_resv_unlock;
1629 	}
1630 
1631 	ret = dma_resv_reserve_fences(dmabuf->resv, 1);
1632 	if (ret)
1633 		goto err_resv_unlock;
1634 
1635 	fence = kmalloc(sizeof(*fence), GFP_KERNEL);
1636 	if (!fence) {
1637 		ret = -ENOMEM;
1638 		goto err_resv_unlock;
1639 	}
1640 
1641 	fence->priv = priv;
1642 
1643 	spin_lock_irq(&epfile->ffs->eps_lock);
1644 
1645 	/* In the meantime, endpoint got disabled or changed. */
1646 	if (epfile->ep != ep) {
1647 		ret = -ESHUTDOWN;
1648 		goto err_fence_put;
1649 	}
1650 
1651 	usb_req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC);
1652 	if (!usb_req) {
1653 		ret = -ENOMEM;
1654 		goto err_fence_put;
1655 	}
1656 
1657 	/*
1658 	 * usb_ep_queue() guarantees that all transfers are processed in the
1659 	 * order they are enqueued, so we can use a simple incrementing
1660 	 * sequence number for the dma_fence.
1661 	 */
1662 	seqno = atomic_add_return(1, &epfile->seqno);
1663 
1664 	dma_fence_init(&fence->base, &ffs_dmabuf_fence_ops,
1665 		       &priv->lock, priv->context, seqno);
1666 
1667 	resv_dir = epfile->in ? DMA_RESV_USAGE_WRITE : DMA_RESV_USAGE_READ;
1668 
1669 	dma_resv_add_fence(dmabuf->resv, &fence->base, resv_dir);
1670 	dma_resv_unlock(dmabuf->resv);
1671 
1672 	/* Now that the dma_fence is in place, queue the transfer. */
1673 
1674 	usb_req->length = req->length;
1675 	usb_req->buf = NULL;
1676 	usb_req->sg = priv->sgt->sgl;
1677 	usb_req->num_sgs = sg_nents_for_len(priv->sgt->sgl, req->length);
1678 	usb_req->sg_was_mapped = true;
1679 	usb_req->context  = fence;
1680 	usb_req->complete = ffs_epfile_dmabuf_io_complete;
1681 
1682 	cookie = dma_fence_begin_signalling();
1683 	ret = usb_ep_queue(ep->ep, usb_req, GFP_ATOMIC);
1684 	dma_fence_end_signalling(cookie);
1685 	if (!ret) {
1686 		priv->req = usb_req;
1687 		priv->ep = ep->ep;
1688 	} else {
1689 		pr_warn("FFS: Failed to queue DMABUF: %d\n", ret);
1690 		ffs_dmabuf_signal_done(fence, ret);
1691 		usb_ep_free_request(ep->ep, usb_req);
1692 	}
1693 
1694 	spin_unlock_irq(&epfile->ffs->eps_lock);
1695 	dma_buf_put(dmabuf);
1696 
1697 	return ret;
1698 
1699 err_fence_put:
1700 	spin_unlock_irq(&epfile->ffs->eps_lock);
1701 	dma_fence_put(&fence->base);
1702 err_resv_unlock:
1703 	dma_resv_unlock(dmabuf->resv);
1704 err_attachment_put:
1705 	ffs_dmabuf_put(attach);
1706 err_dmabuf_put:
1707 	dma_buf_put(dmabuf);
1708 
1709 	return ret;
1710 }
1711 
ffs_epfile_ioctl(struct file * file,unsigned code,unsigned long value)1712 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1713 			     unsigned long value)
1714 {
1715 	struct ffs_epfile *epfile = file->private_data;
1716 	struct ffs_ep *ep;
1717 	int ret;
1718 
1719 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1720 		return -ENODEV;
1721 
1722 	switch (code) {
1723 	case FUNCTIONFS_DMABUF_ATTACH:
1724 	{
1725 		int fd;
1726 
1727 		if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) {
1728 			ret = -EFAULT;
1729 			break;
1730 		}
1731 
1732 		return ffs_dmabuf_attach(file, fd);
1733 	}
1734 	case FUNCTIONFS_DMABUF_DETACH:
1735 	{
1736 		int fd;
1737 
1738 		if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) {
1739 			ret = -EFAULT;
1740 			break;
1741 		}
1742 
1743 		return ffs_dmabuf_detach(file, fd);
1744 	}
1745 	case FUNCTIONFS_DMABUF_TRANSFER:
1746 	{
1747 		struct usb_ffs_dmabuf_transfer_req req;
1748 
1749 		if (copy_from_user(&req, (void __user *)value, sizeof(req))) {
1750 			ret = -EFAULT;
1751 			break;
1752 		}
1753 
1754 		return ffs_dmabuf_transfer(file, &req);
1755 	}
1756 	default:
1757 		break;
1758 	}
1759 
1760 	/* Wait for endpoint to be enabled */
1761 	ep = ffs_epfile_wait_ep(file);
1762 	if (IS_ERR(ep))
1763 		return PTR_ERR(ep);
1764 
1765 	spin_lock_irq(&epfile->ffs->eps_lock);
1766 
1767 	/* In the meantime, endpoint got disabled or changed. */
1768 	if (epfile->ep != ep) {
1769 		spin_unlock_irq(&epfile->ffs->eps_lock);
1770 		return -ESHUTDOWN;
1771 	}
1772 
1773 	switch (code) {
1774 	case FUNCTIONFS_FIFO_STATUS:
1775 		ret = usb_ep_fifo_status(epfile->ep->ep);
1776 		break;
1777 	case FUNCTIONFS_FIFO_FLUSH:
1778 		usb_ep_fifo_flush(epfile->ep->ep);
1779 		ret = 0;
1780 		break;
1781 	case FUNCTIONFS_CLEAR_HALT:
1782 		ret = usb_ep_clear_halt(epfile->ep->ep);
1783 		break;
1784 	case FUNCTIONFS_ENDPOINT_REVMAP:
1785 		ret = epfile->ep->num;
1786 		break;
1787 	case FUNCTIONFS_ENDPOINT_DESC:
1788 	{
1789 		int desc_idx;
1790 		struct usb_endpoint_descriptor desc1, *desc;
1791 
1792 		switch (epfile->ffs->gadget->speed) {
1793 		case USB_SPEED_SUPER:
1794 		case USB_SPEED_SUPER_PLUS:
1795 			desc_idx = 2;
1796 			break;
1797 		case USB_SPEED_HIGH:
1798 			desc_idx = 1;
1799 			break;
1800 		default:
1801 			desc_idx = 0;
1802 		}
1803 
1804 		desc = epfile->ep->descs[desc_idx];
1805 		memcpy(&desc1, desc, desc->bLength);
1806 
1807 		spin_unlock_irq(&epfile->ffs->eps_lock);
1808 		ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1809 		if (ret)
1810 			ret = -EFAULT;
1811 		return ret;
1812 	}
1813 	default:
1814 		ret = -ENOTTY;
1815 	}
1816 	spin_unlock_irq(&epfile->ffs->eps_lock);
1817 
1818 	return ret;
1819 }
1820 
1821 static const struct file_operations ffs_epfile_operations = {
1822 
1823 	.open =		ffs_epfile_open,
1824 	.write_iter =	ffs_epfile_write_iter,
1825 	.read_iter =	ffs_epfile_read_iter,
1826 	.release =	ffs_epfile_release,
1827 	.unlocked_ioctl =	ffs_epfile_ioctl,
1828 	.compat_ioctl = compat_ptr_ioctl,
1829 };
1830 
1831 
1832 /* File system and super block operations ***********************************/
1833 
1834 /*
1835  * Mounting the file system creates a controller file, used first for
1836  * function configuration then later for event monitoring.
1837  */
1838 
1839 static struct inode *__must_check
ffs_sb_make_inode(struct super_block * sb,void * data,const struct file_operations * fops,const struct inode_operations * iops,struct ffs_file_perms * perms)1840 ffs_sb_make_inode(struct super_block *sb, void *data,
1841 		  const struct file_operations *fops,
1842 		  const struct inode_operations *iops,
1843 		  struct ffs_file_perms *perms)
1844 {
1845 	struct inode *inode;
1846 
1847 	inode = new_inode(sb);
1848 
1849 	if (inode) {
1850 		struct timespec64 ts = inode_set_ctime_current(inode);
1851 
1852 		inode->i_ino	 = get_next_ino();
1853 		inode->i_mode    = perms->mode;
1854 		inode->i_uid     = perms->uid;
1855 		inode->i_gid     = perms->gid;
1856 		inode_set_atime_to_ts(inode, ts);
1857 		inode_set_mtime_to_ts(inode, ts);
1858 		inode->i_private = data;
1859 		if (fops)
1860 			inode->i_fop = fops;
1861 		if (iops)
1862 			inode->i_op  = iops;
1863 	}
1864 
1865 	return inode;
1866 }
1867 
1868 /* Create "regular" file */
ffs_sb_create_file(struct super_block * sb,const char * name,void * data,const struct file_operations * fops)1869 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1870 					const char *name, void *data,
1871 					const struct file_operations *fops)
1872 {
1873 	struct ffs_data	*ffs = sb->s_fs_info;
1874 	struct dentry	*dentry;
1875 	struct inode	*inode;
1876 
1877 	dentry = d_alloc_name(sb->s_root, name);
1878 	if (!dentry)
1879 		return NULL;
1880 
1881 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1882 	if (!inode) {
1883 		dput(dentry);
1884 		return NULL;
1885 	}
1886 
1887 	d_add(dentry, inode);
1888 	return dentry;
1889 }
1890 
1891 /* Super block */
1892 static const struct super_operations ffs_sb_operations = {
1893 	.statfs =	simple_statfs,
1894 	.drop_inode =	generic_delete_inode,
1895 };
1896 
1897 struct ffs_sb_fill_data {
1898 	struct ffs_file_perms perms;
1899 	umode_t root_mode;
1900 	const char *dev_name;
1901 	bool no_disconnect;
1902 	struct ffs_data *ffs_data;
1903 };
1904 
ffs_sb_fill(struct super_block * sb,struct fs_context * fc)1905 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1906 {
1907 	struct ffs_sb_fill_data *data = fc->fs_private;
1908 	struct inode	*inode;
1909 	struct ffs_data	*ffs = data->ffs_data;
1910 
1911 	ffs->sb              = sb;
1912 	data->ffs_data       = NULL;
1913 	sb->s_fs_info        = ffs;
1914 	sb->s_blocksize      = PAGE_SIZE;
1915 	sb->s_blocksize_bits = PAGE_SHIFT;
1916 	sb->s_magic          = FUNCTIONFS_MAGIC;
1917 	sb->s_op             = &ffs_sb_operations;
1918 	sb->s_time_gran      = 1;
1919 
1920 	/* Root inode */
1921 	data->perms.mode = data->root_mode;
1922 	inode = ffs_sb_make_inode(sb, NULL,
1923 				  &simple_dir_operations,
1924 				  &simple_dir_inode_operations,
1925 				  &data->perms);
1926 	sb->s_root = d_make_root(inode);
1927 	if (!sb->s_root)
1928 		return -ENOMEM;
1929 
1930 	/* EP0 file */
1931 	if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations))
1932 		return -ENOMEM;
1933 
1934 	return 0;
1935 }
1936 
1937 enum {
1938 	Opt_no_disconnect,
1939 	Opt_rmode,
1940 	Opt_fmode,
1941 	Opt_mode,
1942 	Opt_uid,
1943 	Opt_gid,
1944 };
1945 
1946 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1947 	fsparam_bool	("no_disconnect",	Opt_no_disconnect),
1948 	fsparam_u32	("rmode",		Opt_rmode),
1949 	fsparam_u32	("fmode",		Opt_fmode),
1950 	fsparam_u32	("mode",		Opt_mode),
1951 	fsparam_u32	("uid",			Opt_uid),
1952 	fsparam_u32	("gid",			Opt_gid),
1953 	{}
1954 };
1955 
ffs_fs_parse_param(struct fs_context * fc,struct fs_parameter * param)1956 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1957 {
1958 	struct ffs_sb_fill_data *data = fc->fs_private;
1959 	struct fs_parse_result result;
1960 	int opt;
1961 
1962 	opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1963 	if (opt < 0)
1964 		return opt;
1965 
1966 	switch (opt) {
1967 	case Opt_no_disconnect:
1968 		data->no_disconnect = result.boolean;
1969 		break;
1970 	case Opt_rmode:
1971 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1972 		break;
1973 	case Opt_fmode:
1974 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1975 		break;
1976 	case Opt_mode:
1977 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1978 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1979 		break;
1980 
1981 	case Opt_uid:
1982 		data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1983 		if (!uid_valid(data->perms.uid))
1984 			goto unmapped_value;
1985 		break;
1986 	case Opt_gid:
1987 		data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1988 		if (!gid_valid(data->perms.gid))
1989 			goto unmapped_value;
1990 		break;
1991 
1992 	default:
1993 		return -ENOPARAM;
1994 	}
1995 
1996 	return 0;
1997 
1998 unmapped_value:
1999 	return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
2000 }
2001 
2002 /*
2003  * Set up the superblock for a mount.
2004  */
ffs_fs_get_tree(struct fs_context * fc)2005 static int ffs_fs_get_tree(struct fs_context *fc)
2006 {
2007 	struct ffs_sb_fill_data *ctx = fc->fs_private;
2008 	struct ffs_data	*ffs;
2009 	int ret;
2010 
2011 	if (!fc->source)
2012 		return invalf(fc, "No source specified");
2013 
2014 	ffs = ffs_data_new(fc->source);
2015 	if (!ffs)
2016 		return -ENOMEM;
2017 	ffs->file_perms = ctx->perms;
2018 	ffs->no_disconnect = ctx->no_disconnect;
2019 
2020 	ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
2021 	if (!ffs->dev_name) {
2022 		ffs_data_put(ffs);
2023 		return -ENOMEM;
2024 	}
2025 
2026 	ret = ffs_acquire_dev(ffs->dev_name, ffs);
2027 	if (ret) {
2028 		ffs_data_put(ffs);
2029 		return ret;
2030 	}
2031 
2032 	ctx->ffs_data = ffs;
2033 	return get_tree_nodev(fc, ffs_sb_fill);
2034 }
2035 
ffs_fs_free_fc(struct fs_context * fc)2036 static void ffs_fs_free_fc(struct fs_context *fc)
2037 {
2038 	struct ffs_sb_fill_data *ctx = fc->fs_private;
2039 
2040 	if (ctx) {
2041 		if (ctx->ffs_data) {
2042 			ffs_data_put(ctx->ffs_data);
2043 		}
2044 
2045 		kfree(ctx);
2046 	}
2047 }
2048 
2049 static const struct fs_context_operations ffs_fs_context_ops = {
2050 	.free		= ffs_fs_free_fc,
2051 	.parse_param	= ffs_fs_parse_param,
2052 	.get_tree	= ffs_fs_get_tree,
2053 };
2054 
ffs_fs_init_fs_context(struct fs_context * fc)2055 static int ffs_fs_init_fs_context(struct fs_context *fc)
2056 {
2057 	struct ffs_sb_fill_data *ctx;
2058 
2059 	ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
2060 	if (!ctx)
2061 		return -ENOMEM;
2062 
2063 	ctx->perms.mode = S_IFREG | 0600;
2064 	ctx->perms.uid = GLOBAL_ROOT_UID;
2065 	ctx->perms.gid = GLOBAL_ROOT_GID;
2066 	ctx->root_mode = S_IFDIR | 0500;
2067 	ctx->no_disconnect = false;
2068 
2069 	fc->fs_private = ctx;
2070 	fc->ops = &ffs_fs_context_ops;
2071 	return 0;
2072 }
2073 
2074 static void
ffs_fs_kill_sb(struct super_block * sb)2075 ffs_fs_kill_sb(struct super_block *sb)
2076 {
2077 	kill_litter_super(sb);
2078 	if (sb->s_fs_info)
2079 		ffs_data_closed(sb->s_fs_info);
2080 }
2081 
2082 static struct file_system_type ffs_fs_type = {
2083 	.owner		= THIS_MODULE,
2084 	.name		= "functionfs",
2085 	.init_fs_context = ffs_fs_init_fs_context,
2086 	.parameters	= ffs_fs_fs_parameters,
2087 	.kill_sb	= ffs_fs_kill_sb,
2088 };
2089 MODULE_ALIAS_FS("functionfs");
2090 
2091 
2092 /* Driver's main init/cleanup functions *************************************/
2093 
functionfs_init(void)2094 static int functionfs_init(void)
2095 {
2096 	int ret;
2097 
2098 	ret = register_filesystem(&ffs_fs_type);
2099 	if (!ret)
2100 		pr_info("file system registered\n");
2101 	else
2102 		pr_err("failed registering file system (%d)\n", ret);
2103 
2104 	return ret;
2105 }
2106 
functionfs_cleanup(void)2107 static void functionfs_cleanup(void)
2108 {
2109 	pr_info("unloading\n");
2110 	unregister_filesystem(&ffs_fs_type);
2111 }
2112 
2113 
2114 /* ffs_data and ffs_function construction and destruction code **************/
2115 
2116 static void ffs_data_clear(struct ffs_data *ffs);
2117 static void ffs_data_reset(struct ffs_data *ffs);
2118 
ffs_data_get(struct ffs_data * ffs)2119 static void ffs_data_get(struct ffs_data *ffs)
2120 {
2121 	refcount_inc(&ffs->ref);
2122 }
2123 
ffs_data_opened(struct ffs_data * ffs)2124 static void ffs_data_opened(struct ffs_data *ffs)
2125 {
2126 	refcount_inc(&ffs->ref);
2127 	if (atomic_add_return(1, &ffs->opened) == 1 &&
2128 			ffs->state == FFS_DEACTIVATED) {
2129 		ffs->state = FFS_CLOSING;
2130 		ffs_data_reset(ffs);
2131 	}
2132 }
2133 
ffs_data_put(struct ffs_data * ffs)2134 static void ffs_data_put(struct ffs_data *ffs)
2135 {
2136 	if (refcount_dec_and_test(&ffs->ref)) {
2137 		pr_info("%s(): freeing\n", __func__);
2138 		ffs_data_clear(ffs);
2139 		ffs_release_dev(ffs->private_data);
2140 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
2141 		       swait_active(&ffs->ep0req_completion.wait) ||
2142 		       waitqueue_active(&ffs->wait));
2143 		destroy_workqueue(ffs->io_completion_wq);
2144 		kfree(ffs->dev_name);
2145 		kfree(ffs);
2146 	}
2147 }
2148 
ffs_data_closed(struct ffs_data * ffs)2149 static void ffs_data_closed(struct ffs_data *ffs)
2150 {
2151 	struct ffs_epfile *epfiles;
2152 	unsigned long flags;
2153 
2154 	if (atomic_dec_and_test(&ffs->opened)) {
2155 		if (ffs->no_disconnect) {
2156 			ffs->state = FFS_DEACTIVATED;
2157 			spin_lock_irqsave(&ffs->eps_lock, flags);
2158 			epfiles = ffs->epfiles;
2159 			ffs->epfiles = NULL;
2160 			spin_unlock_irqrestore(&ffs->eps_lock,
2161 							flags);
2162 
2163 			if (epfiles)
2164 				ffs_epfiles_destroy(epfiles,
2165 						 ffs->eps_count);
2166 
2167 			if (ffs->setup_state == FFS_SETUP_PENDING)
2168 				__ffs_ep0_stall(ffs);
2169 		} else {
2170 			ffs->state = FFS_CLOSING;
2171 			ffs_data_reset(ffs);
2172 		}
2173 	}
2174 	if (atomic_read(&ffs->opened) < 0) {
2175 		ffs->state = FFS_CLOSING;
2176 		ffs_data_reset(ffs);
2177 	}
2178 
2179 	ffs_data_put(ffs);
2180 }
2181 
ffs_data_new(const char * dev_name)2182 static struct ffs_data *ffs_data_new(const char *dev_name)
2183 {
2184 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
2185 	if (!ffs)
2186 		return NULL;
2187 
2188 	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
2189 	if (!ffs->io_completion_wq) {
2190 		kfree(ffs);
2191 		return NULL;
2192 	}
2193 
2194 	refcount_set(&ffs->ref, 1);
2195 	atomic_set(&ffs->opened, 0);
2196 	ffs->state = FFS_READ_DESCRIPTORS;
2197 	mutex_init(&ffs->mutex);
2198 	spin_lock_init(&ffs->eps_lock);
2199 	init_waitqueue_head(&ffs->ev.waitq);
2200 	init_waitqueue_head(&ffs->wait);
2201 	init_completion(&ffs->ep0req_completion);
2202 
2203 	/* XXX REVISIT need to update it in some places, or do we? */
2204 	ffs->ev.can_stall = 1;
2205 
2206 	return ffs;
2207 }
2208 
ffs_data_clear(struct ffs_data * ffs)2209 static void ffs_data_clear(struct ffs_data *ffs)
2210 {
2211 	struct ffs_epfile *epfiles;
2212 	unsigned long flags;
2213 
2214 	ffs_closed(ffs);
2215 
2216 	BUG_ON(ffs->gadget);
2217 
2218 	spin_lock_irqsave(&ffs->eps_lock, flags);
2219 	epfiles = ffs->epfiles;
2220 	ffs->epfiles = NULL;
2221 	spin_unlock_irqrestore(&ffs->eps_lock, flags);
2222 
2223 	/*
2224 	 * potential race possible between ffs_func_eps_disable
2225 	 * & ffs_epfile_release therefore maintaining a local
2226 	 * copy of epfile will save us from use-after-free.
2227 	 */
2228 	if (epfiles) {
2229 		ffs_epfiles_destroy(epfiles, ffs->eps_count);
2230 		ffs->epfiles = NULL;
2231 	}
2232 
2233 	if (ffs->ffs_eventfd) {
2234 		eventfd_ctx_put(ffs->ffs_eventfd);
2235 		ffs->ffs_eventfd = NULL;
2236 	}
2237 
2238 	kfree(ffs->raw_descs_data);
2239 	kfree(ffs->raw_strings);
2240 	kfree(ffs->stringtabs);
2241 }
2242 
ffs_data_reset(struct ffs_data * ffs)2243 static void ffs_data_reset(struct ffs_data *ffs)
2244 {
2245 	ffs_data_clear(ffs);
2246 
2247 	ffs->raw_descs_data = NULL;
2248 	ffs->raw_descs = NULL;
2249 	ffs->raw_strings = NULL;
2250 	ffs->stringtabs = NULL;
2251 
2252 	ffs->raw_descs_length = 0;
2253 	ffs->fs_descs_count = 0;
2254 	ffs->hs_descs_count = 0;
2255 	ffs->ss_descs_count = 0;
2256 
2257 	ffs->strings_count = 0;
2258 	ffs->interfaces_count = 0;
2259 	ffs->eps_count = 0;
2260 
2261 	ffs->ev.count = 0;
2262 
2263 	ffs->state = FFS_READ_DESCRIPTORS;
2264 	ffs->setup_state = FFS_NO_SETUP;
2265 	ffs->flags = 0;
2266 
2267 	ffs->ms_os_descs_ext_prop_count = 0;
2268 	ffs->ms_os_descs_ext_prop_name_len = 0;
2269 	ffs->ms_os_descs_ext_prop_data_len = 0;
2270 }
2271 
2272 
functionfs_bind(struct ffs_data * ffs,struct usb_composite_dev * cdev)2273 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
2274 {
2275 	struct usb_gadget_strings **lang;
2276 	int first_id;
2277 
2278 	if ((ffs->state != FFS_ACTIVE
2279 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
2280 		return -EBADFD;
2281 
2282 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
2283 	if (first_id < 0)
2284 		return first_id;
2285 
2286 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
2287 	if (!ffs->ep0req)
2288 		return -ENOMEM;
2289 	ffs->ep0req->complete = ffs_ep0_complete;
2290 	ffs->ep0req->context = ffs;
2291 
2292 	lang = ffs->stringtabs;
2293 	if (lang) {
2294 		for (; *lang; ++lang) {
2295 			struct usb_string *str = (*lang)->strings;
2296 			int id = first_id;
2297 			for (; str->s; ++id, ++str)
2298 				str->id = id;
2299 		}
2300 	}
2301 
2302 	ffs->gadget = cdev->gadget;
2303 	ffs_data_get(ffs);
2304 	return 0;
2305 }
2306 
functionfs_unbind(struct ffs_data * ffs)2307 static void functionfs_unbind(struct ffs_data *ffs)
2308 {
2309 	if (!WARN_ON(!ffs->gadget)) {
2310 		/* dequeue before freeing ep0req */
2311 		usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req);
2312 		mutex_lock(&ffs->mutex);
2313 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
2314 		ffs->ep0req = NULL;
2315 		ffs->gadget = NULL;
2316 		clear_bit(FFS_FL_BOUND, &ffs->flags);
2317 		mutex_unlock(&ffs->mutex);
2318 		ffs_data_put(ffs);
2319 	}
2320 }
2321 
ffs_epfiles_create(struct ffs_data * ffs)2322 static int ffs_epfiles_create(struct ffs_data *ffs)
2323 {
2324 	struct ffs_epfile *epfile, *epfiles;
2325 	unsigned i, count;
2326 
2327 	count = ffs->eps_count;
2328 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
2329 	if (!epfiles)
2330 		return -ENOMEM;
2331 
2332 	epfile = epfiles;
2333 	for (i = 1; i <= count; ++i, ++epfile) {
2334 		epfile->ffs = ffs;
2335 		mutex_init(&epfile->mutex);
2336 		mutex_init(&epfile->dmabufs_mutex);
2337 		INIT_LIST_HEAD(&epfile->dmabufs);
2338 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2339 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
2340 		else
2341 			sprintf(epfile->name, "ep%u", i);
2342 		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
2343 						 epfile,
2344 						 &ffs_epfile_operations);
2345 		if (!epfile->dentry) {
2346 			ffs_epfiles_destroy(epfiles, i - 1);
2347 			return -ENOMEM;
2348 		}
2349 	}
2350 
2351 	ffs->epfiles = epfiles;
2352 	return 0;
2353 }
2354 
ffs_epfiles_destroy(struct ffs_epfile * epfiles,unsigned count)2355 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
2356 {
2357 	struct ffs_epfile *epfile = epfiles;
2358 
2359 	for (; count; --count, ++epfile) {
2360 		BUG_ON(mutex_is_locked(&epfile->mutex));
2361 		if (epfile->dentry) {
2362 			simple_recursive_removal(epfile->dentry, NULL);
2363 			epfile->dentry = NULL;
2364 		}
2365 	}
2366 
2367 	kfree(epfiles);
2368 }
2369 
ffs_func_eps_disable(struct ffs_function * func)2370 static void ffs_func_eps_disable(struct ffs_function *func)
2371 {
2372 	struct ffs_ep *ep;
2373 	struct ffs_epfile *epfile;
2374 	unsigned short count;
2375 	unsigned long flags;
2376 
2377 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
2378 	count = func->ffs->eps_count;
2379 	epfile = func->ffs->epfiles;
2380 	ep = func->eps;
2381 	while (count--) {
2382 		/* pending requests get nuked */
2383 		if (ep->ep)
2384 			usb_ep_disable(ep->ep);
2385 		++ep;
2386 
2387 		if (epfile) {
2388 			epfile->ep = NULL;
2389 			__ffs_epfile_read_buffer_free(epfile);
2390 			++epfile;
2391 		}
2392 	}
2393 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2394 }
2395 
ffs_func_eps_enable(struct ffs_function * func)2396 static int ffs_func_eps_enable(struct ffs_function *func)
2397 {
2398 	struct ffs_data *ffs;
2399 	struct ffs_ep *ep;
2400 	struct ffs_epfile *epfile;
2401 	unsigned short count;
2402 	unsigned long flags;
2403 	int ret = 0;
2404 
2405 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
2406 	ffs = func->ffs;
2407 	ep = func->eps;
2408 	epfile = ffs->epfiles;
2409 	count = ffs->eps_count;
2410 	while(count--) {
2411 		ep->ep->driver_data = ep;
2412 
2413 		ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
2414 		if (ret) {
2415 			pr_err("%s: config_ep_by_speed(%s) returned %d\n",
2416 					__func__, ep->ep->name, ret);
2417 			break;
2418 		}
2419 
2420 		ret = usb_ep_enable(ep->ep);
2421 		if (!ret) {
2422 			epfile->ep = ep;
2423 			epfile->in = usb_endpoint_dir_in(ep->ep->desc);
2424 			epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
2425 		} else {
2426 			break;
2427 		}
2428 
2429 		++ep;
2430 		++epfile;
2431 	}
2432 
2433 	wake_up_interruptible(&ffs->wait);
2434 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2435 
2436 	return ret;
2437 }
2438 
2439 
2440 /* Parsing and building descriptors and strings *****************************/
2441 
2442 /*
2443  * This validates if data pointed by data is a valid USB descriptor as
2444  * well as record how many interfaces, endpoints and strings are
2445  * required by given configuration.  Returns address after the
2446  * descriptor or NULL if data is invalid.
2447  */
2448 
2449 enum ffs_entity_type {
2450 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
2451 };
2452 
2453 enum ffs_os_desc_type {
2454 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
2455 };
2456 
2457 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2458 				   u8 *valuep,
2459 				   struct usb_descriptor_header *desc,
2460 				   void *priv);
2461 
2462 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2463 				    struct usb_os_desc_header *h, void *data,
2464 				    unsigned len, void *priv);
2465 
ffs_do_single_desc(char * data,unsigned len,ffs_entity_callback entity,void * priv,int * current_class,int * current_subclass)2466 static int __must_check ffs_do_single_desc(char *data, unsigned len,
2467 					   ffs_entity_callback entity,
2468 					   void *priv, int *current_class, int *current_subclass)
2469 {
2470 	struct usb_descriptor_header *_ds = (void *)data;
2471 	u8 length;
2472 	int ret;
2473 
2474 	/* At least two bytes are required: length and type */
2475 	if (len < 2) {
2476 		pr_vdebug("descriptor too short\n");
2477 		return -EINVAL;
2478 	}
2479 
2480 	/* If we have at least as many bytes as the descriptor takes? */
2481 	length = _ds->bLength;
2482 	if (len < length) {
2483 		pr_vdebug("descriptor longer then available data\n");
2484 		return -EINVAL;
2485 	}
2486 
2487 #define __entity_check_INTERFACE(val)  1
2488 #define __entity_check_STRING(val)     (val)
2489 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
2490 #define __entity(type, val) do {					\
2491 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
2492 		if (!__entity_check_ ##type(val)) {			\
2493 			pr_vdebug("invalid entity's value\n");		\
2494 			return -EINVAL;					\
2495 		}							\
2496 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
2497 		if (ret < 0) {						\
2498 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
2499 				 (val), ret);				\
2500 			return ret;					\
2501 		}							\
2502 	} while (0)
2503 
2504 	/* Parse descriptor depending on type. */
2505 	switch (_ds->bDescriptorType) {
2506 	case USB_DT_DEVICE:
2507 	case USB_DT_CONFIG:
2508 	case USB_DT_STRING:
2509 	case USB_DT_DEVICE_QUALIFIER:
2510 		/* function can't have any of those */
2511 		pr_vdebug("descriptor reserved for gadget: %d\n",
2512 		      _ds->bDescriptorType);
2513 		return -EINVAL;
2514 
2515 	case USB_DT_INTERFACE: {
2516 		struct usb_interface_descriptor *ds = (void *)_ds;
2517 		pr_vdebug("interface descriptor\n");
2518 		if (length != sizeof *ds)
2519 			goto inv_length;
2520 
2521 		__entity(INTERFACE, ds->bInterfaceNumber);
2522 		if (ds->iInterface)
2523 			__entity(STRING, ds->iInterface);
2524 		*current_class = ds->bInterfaceClass;
2525 		*current_subclass = ds->bInterfaceSubClass;
2526 	}
2527 		break;
2528 
2529 	case USB_DT_ENDPOINT: {
2530 		struct usb_endpoint_descriptor *ds = (void *)_ds;
2531 		pr_vdebug("endpoint descriptor\n");
2532 		if (length != USB_DT_ENDPOINT_SIZE &&
2533 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
2534 			goto inv_length;
2535 		__entity(ENDPOINT, ds->bEndpointAddress);
2536 	}
2537 		break;
2538 
2539 	case USB_TYPE_CLASS | 0x01:
2540 		if (*current_class == USB_INTERFACE_CLASS_HID) {
2541 			pr_vdebug("hid descriptor\n");
2542 			if (length != sizeof(struct hid_descriptor))
2543 				goto inv_length;
2544 			break;
2545 		} else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2546 			pr_vdebug("ccid descriptor\n");
2547 			if (length != sizeof(struct ccid_descriptor))
2548 				goto inv_length;
2549 			break;
2550 		} else if (*current_class == USB_CLASS_APP_SPEC &&
2551 			   *current_subclass == USB_SUBCLASS_DFU) {
2552 			pr_vdebug("dfu functional descriptor\n");
2553 			if (length != sizeof(struct usb_dfu_functional_descriptor))
2554 				goto inv_length;
2555 			break;
2556 		} else {
2557 			pr_vdebug("unknown descriptor: %d for class %d\n",
2558 			      _ds->bDescriptorType, *current_class);
2559 			return -EINVAL;
2560 		}
2561 
2562 	case USB_DT_OTG:
2563 		if (length != sizeof(struct usb_otg_descriptor))
2564 			goto inv_length;
2565 		break;
2566 
2567 	case USB_DT_INTERFACE_ASSOCIATION: {
2568 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2569 		pr_vdebug("interface association descriptor\n");
2570 		if (length != sizeof *ds)
2571 			goto inv_length;
2572 		if (ds->iFunction)
2573 			__entity(STRING, ds->iFunction);
2574 	}
2575 		break;
2576 
2577 	case USB_DT_SS_ENDPOINT_COMP:
2578 		pr_vdebug("EP SS companion descriptor\n");
2579 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2580 			goto inv_length;
2581 		break;
2582 
2583 	case USB_DT_OTHER_SPEED_CONFIG:
2584 	case USB_DT_INTERFACE_POWER:
2585 	case USB_DT_DEBUG:
2586 	case USB_DT_SECURITY:
2587 	case USB_DT_CS_RADIO_CONTROL:
2588 		/* TODO */
2589 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2590 		return -EINVAL;
2591 
2592 	default:
2593 		/* We should never be here */
2594 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2595 		return -EINVAL;
2596 
2597 inv_length:
2598 		pr_vdebug("invalid length: %d (descriptor %d)\n",
2599 			  _ds->bLength, _ds->bDescriptorType);
2600 		return -EINVAL;
2601 	}
2602 
2603 #undef __entity
2604 #undef __entity_check_DESCRIPTOR
2605 #undef __entity_check_INTERFACE
2606 #undef __entity_check_STRING
2607 #undef __entity_check_ENDPOINT
2608 
2609 	return length;
2610 }
2611 
ffs_do_descs(unsigned count,char * data,unsigned len,ffs_entity_callback entity,void * priv)2612 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2613 				     ffs_entity_callback entity, void *priv)
2614 {
2615 	const unsigned _len = len;
2616 	unsigned long num = 0;
2617 	int current_class = -1;
2618 	int current_subclass = -1;
2619 
2620 	for (;;) {
2621 		int ret;
2622 
2623 		if (num == count)
2624 			data = NULL;
2625 
2626 		/* Record "descriptor" entity */
2627 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2628 		if (ret < 0) {
2629 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2630 				 num, ret);
2631 			return ret;
2632 		}
2633 
2634 		if (!data)
2635 			return _len - len;
2636 
2637 		ret = ffs_do_single_desc(data, len, entity, priv,
2638 			&current_class, &current_subclass);
2639 		if (ret < 0) {
2640 			pr_debug("%s returns %d\n", __func__, ret);
2641 			return ret;
2642 		}
2643 
2644 		len -= ret;
2645 		data += ret;
2646 		++num;
2647 	}
2648 }
2649 
__ffs_data_do_entity(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2650 static int __ffs_data_do_entity(enum ffs_entity_type type,
2651 				u8 *valuep, struct usb_descriptor_header *desc,
2652 				void *priv)
2653 {
2654 	struct ffs_desc_helper *helper = priv;
2655 	struct usb_endpoint_descriptor *d;
2656 
2657 	switch (type) {
2658 	case FFS_DESCRIPTOR:
2659 		break;
2660 
2661 	case FFS_INTERFACE:
2662 		/*
2663 		 * Interfaces are indexed from zero so if we
2664 		 * encountered interface "n" then there are at least
2665 		 * "n+1" interfaces.
2666 		 */
2667 		if (*valuep >= helper->interfaces_count)
2668 			helper->interfaces_count = *valuep + 1;
2669 		break;
2670 
2671 	case FFS_STRING:
2672 		/*
2673 		 * Strings are indexed from 1 (0 is reserved
2674 		 * for languages list)
2675 		 */
2676 		if (*valuep > helper->ffs->strings_count)
2677 			helper->ffs->strings_count = *valuep;
2678 		break;
2679 
2680 	case FFS_ENDPOINT:
2681 		d = (void *)desc;
2682 		helper->eps_count++;
2683 		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2684 			return -EINVAL;
2685 		/* Check if descriptors for any speed were already parsed */
2686 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2687 			helper->ffs->eps_addrmap[helper->eps_count] =
2688 				d->bEndpointAddress;
2689 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2690 				d->bEndpointAddress)
2691 			return -EINVAL;
2692 		break;
2693 	}
2694 
2695 	return 0;
2696 }
2697 
__ffs_do_os_desc_header(enum ffs_os_desc_type * next_type,struct usb_os_desc_header * desc)2698 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2699 				   struct usb_os_desc_header *desc)
2700 {
2701 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2702 	u16 w_index = le16_to_cpu(desc->wIndex);
2703 
2704 	if (bcd_version == 0x1) {
2705 		pr_warn("bcdVersion must be 0x0100, stored in Little Endian order. "
2706 			"Userspace driver should be fixed, accepting 0x0001 for compatibility.\n");
2707 	} else if (bcd_version != 0x100) {
2708 		pr_vdebug("unsupported os descriptors version: 0x%x\n",
2709 			  bcd_version);
2710 		return -EINVAL;
2711 	}
2712 	switch (w_index) {
2713 	case 0x4:
2714 		*next_type = FFS_OS_DESC_EXT_COMPAT;
2715 		break;
2716 	case 0x5:
2717 		*next_type = FFS_OS_DESC_EXT_PROP;
2718 		break;
2719 	default:
2720 		pr_vdebug("unsupported os descriptor type: %d", w_index);
2721 		return -EINVAL;
2722 	}
2723 
2724 	return sizeof(*desc);
2725 }
2726 
2727 /*
2728  * Process all extended compatibility/extended property descriptors
2729  * of a feature descriptor
2730  */
ffs_do_single_os_desc(char * data,unsigned len,enum ffs_os_desc_type type,u16 feature_count,ffs_os_desc_callback entity,void * priv,struct usb_os_desc_header * h)2731 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2732 					      enum ffs_os_desc_type type,
2733 					      u16 feature_count,
2734 					      ffs_os_desc_callback entity,
2735 					      void *priv,
2736 					      struct usb_os_desc_header *h)
2737 {
2738 	int ret;
2739 	const unsigned _len = len;
2740 
2741 	/* loop over all ext compat/ext prop descriptors */
2742 	while (feature_count--) {
2743 		ret = entity(type, h, data, len, priv);
2744 		if (ret < 0) {
2745 			pr_debug("bad OS descriptor, type: %d\n", type);
2746 			return ret;
2747 		}
2748 		data += ret;
2749 		len -= ret;
2750 	}
2751 	return _len - len;
2752 }
2753 
2754 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
ffs_do_os_descs(unsigned count,char * data,unsigned len,ffs_os_desc_callback entity,void * priv)2755 static int __must_check ffs_do_os_descs(unsigned count,
2756 					char *data, unsigned len,
2757 					ffs_os_desc_callback entity, void *priv)
2758 {
2759 	const unsigned _len = len;
2760 	unsigned long num = 0;
2761 
2762 	for (num = 0; num < count; ++num) {
2763 		int ret;
2764 		enum ffs_os_desc_type type;
2765 		u16 feature_count;
2766 		struct usb_os_desc_header *desc = (void *)data;
2767 
2768 		if (len < sizeof(*desc))
2769 			return -EINVAL;
2770 
2771 		/*
2772 		 * Record "descriptor" entity.
2773 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2774 		 * Move the data pointer to the beginning of extended
2775 		 * compatibilities proper or extended properties proper
2776 		 * portions of the data
2777 		 */
2778 		if (le32_to_cpu(desc->dwLength) > len)
2779 			return -EINVAL;
2780 
2781 		ret = __ffs_do_os_desc_header(&type, desc);
2782 		if (ret < 0) {
2783 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2784 				 num, ret);
2785 			return ret;
2786 		}
2787 		/*
2788 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2789 		 */
2790 		feature_count = le16_to_cpu(desc->wCount);
2791 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2792 		    (feature_count > 255 || desc->Reserved))
2793 				return -EINVAL;
2794 		len -= ret;
2795 		data += ret;
2796 
2797 		/*
2798 		 * Process all function/property descriptors
2799 		 * of this Feature Descriptor
2800 		 */
2801 		ret = ffs_do_single_os_desc(data, len, type,
2802 					    feature_count, entity, priv, desc);
2803 		if (ret < 0) {
2804 			pr_debug("%s returns %d\n", __func__, ret);
2805 			return ret;
2806 		}
2807 
2808 		len -= ret;
2809 		data += ret;
2810 	}
2811 	return _len - len;
2812 }
2813 
2814 /*
2815  * Validate contents of the buffer from userspace related to OS descriptors.
2816  */
__ffs_data_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)2817 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2818 				 struct usb_os_desc_header *h, void *data,
2819 				 unsigned len, void *priv)
2820 {
2821 	struct ffs_data *ffs = priv;
2822 	u8 length;
2823 
2824 	switch (type) {
2825 	case FFS_OS_DESC_EXT_COMPAT: {
2826 		struct usb_ext_compat_desc *d = data;
2827 		int i;
2828 
2829 		if (len < sizeof(*d) ||
2830 		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2831 			return -EINVAL;
2832 		if (d->Reserved1 != 1) {
2833 			/*
2834 			 * According to the spec, Reserved1 must be set to 1
2835 			 * but older kernels incorrectly rejected non-zero
2836 			 * values.  We fix it here to avoid returning EINVAL
2837 			 * in response to values we used to accept.
2838 			 */
2839 			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2840 			d->Reserved1 = 1;
2841 		}
2842 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2843 			if (d->Reserved2[i])
2844 				return -EINVAL;
2845 
2846 		length = sizeof(struct usb_ext_compat_desc);
2847 	}
2848 		break;
2849 	case FFS_OS_DESC_EXT_PROP: {
2850 		struct usb_ext_prop_desc *d = data;
2851 		u32 type, pdl;
2852 		u16 pnl;
2853 
2854 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2855 			return -EINVAL;
2856 		length = le32_to_cpu(d->dwSize);
2857 		if (len < length)
2858 			return -EINVAL;
2859 		type = le32_to_cpu(d->dwPropertyDataType);
2860 		if (type < USB_EXT_PROP_UNICODE ||
2861 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2862 			pr_vdebug("unsupported os descriptor property type: %d",
2863 				  type);
2864 			return -EINVAL;
2865 		}
2866 		pnl = le16_to_cpu(d->wPropertyNameLength);
2867 		if (length < 14 + pnl) {
2868 			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2869 				  length, pnl, type);
2870 			return -EINVAL;
2871 		}
2872 		pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2873 		if (length != 14 + pnl + pdl) {
2874 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2875 				  length, pnl, pdl, type);
2876 			return -EINVAL;
2877 		}
2878 		++ffs->ms_os_descs_ext_prop_count;
2879 		/* property name reported to the host as "WCHAR"s */
2880 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2881 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2882 	}
2883 		break;
2884 	default:
2885 		pr_vdebug("unknown descriptor: %d\n", type);
2886 		return -EINVAL;
2887 	}
2888 	return length;
2889 }
2890 
__ffs_data_got_descs(struct ffs_data * ffs,char * const _data,size_t len)2891 static int __ffs_data_got_descs(struct ffs_data *ffs,
2892 				char *const _data, size_t len)
2893 {
2894 	char *data = _data, *raw_descs;
2895 	unsigned os_descs_count = 0, counts[3], flags;
2896 	int ret = -EINVAL, i;
2897 	struct ffs_desc_helper helper;
2898 
2899 	if (get_unaligned_le32(data + 4) != len)
2900 		goto error;
2901 
2902 	switch (get_unaligned_le32(data)) {
2903 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2904 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2905 		data += 8;
2906 		len  -= 8;
2907 		break;
2908 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2909 		flags = get_unaligned_le32(data + 8);
2910 		ffs->user_flags = flags;
2911 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2912 			      FUNCTIONFS_HAS_HS_DESC |
2913 			      FUNCTIONFS_HAS_SS_DESC |
2914 			      FUNCTIONFS_HAS_MS_OS_DESC |
2915 			      FUNCTIONFS_VIRTUAL_ADDR |
2916 			      FUNCTIONFS_EVENTFD |
2917 			      FUNCTIONFS_ALL_CTRL_RECIP |
2918 			      FUNCTIONFS_CONFIG0_SETUP)) {
2919 			ret = -ENOSYS;
2920 			goto error;
2921 		}
2922 		data += 12;
2923 		len  -= 12;
2924 		break;
2925 	default:
2926 		goto error;
2927 	}
2928 
2929 	if (flags & FUNCTIONFS_EVENTFD) {
2930 		if (len < 4)
2931 			goto error;
2932 		ffs->ffs_eventfd =
2933 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2934 		if (IS_ERR(ffs->ffs_eventfd)) {
2935 			ret = PTR_ERR(ffs->ffs_eventfd);
2936 			ffs->ffs_eventfd = NULL;
2937 			goto error;
2938 		}
2939 		data += 4;
2940 		len  -= 4;
2941 	}
2942 
2943 	/* Read fs_count, hs_count and ss_count (if present) */
2944 	for (i = 0; i < 3; ++i) {
2945 		if (!(flags & (1 << i))) {
2946 			counts[i] = 0;
2947 		} else if (len < 4) {
2948 			goto error;
2949 		} else {
2950 			counts[i] = get_unaligned_le32(data);
2951 			data += 4;
2952 			len  -= 4;
2953 		}
2954 	}
2955 	if (flags & (1 << i)) {
2956 		if (len < 4) {
2957 			goto error;
2958 		}
2959 		os_descs_count = get_unaligned_le32(data);
2960 		data += 4;
2961 		len -= 4;
2962 	}
2963 
2964 	/* Read descriptors */
2965 	raw_descs = data;
2966 	helper.ffs = ffs;
2967 	for (i = 0; i < 3; ++i) {
2968 		if (!counts[i])
2969 			continue;
2970 		helper.interfaces_count = 0;
2971 		helper.eps_count = 0;
2972 		ret = ffs_do_descs(counts[i], data, len,
2973 				   __ffs_data_do_entity, &helper);
2974 		if (ret < 0)
2975 			goto error;
2976 		if (!ffs->eps_count && !ffs->interfaces_count) {
2977 			ffs->eps_count = helper.eps_count;
2978 			ffs->interfaces_count = helper.interfaces_count;
2979 		} else {
2980 			if (ffs->eps_count != helper.eps_count) {
2981 				ret = -EINVAL;
2982 				goto error;
2983 			}
2984 			if (ffs->interfaces_count != helper.interfaces_count) {
2985 				ret = -EINVAL;
2986 				goto error;
2987 			}
2988 		}
2989 		data += ret;
2990 		len  -= ret;
2991 	}
2992 	if (os_descs_count) {
2993 		ret = ffs_do_os_descs(os_descs_count, data, len,
2994 				      __ffs_data_do_os_desc, ffs);
2995 		if (ret < 0)
2996 			goto error;
2997 		data += ret;
2998 		len -= ret;
2999 	}
3000 
3001 	if (raw_descs == data || len) {
3002 		ret = -EINVAL;
3003 		goto error;
3004 	}
3005 
3006 	ffs->raw_descs_data	= _data;
3007 	ffs->raw_descs		= raw_descs;
3008 	ffs->raw_descs_length	= data - raw_descs;
3009 	ffs->fs_descs_count	= counts[0];
3010 	ffs->hs_descs_count	= counts[1];
3011 	ffs->ss_descs_count	= counts[2];
3012 	ffs->ms_os_descs_count	= os_descs_count;
3013 
3014 	return 0;
3015 
3016 error:
3017 	kfree(_data);
3018 	return ret;
3019 }
3020 
__ffs_data_got_strings(struct ffs_data * ffs,char * const _data,size_t len)3021 static int __ffs_data_got_strings(struct ffs_data *ffs,
3022 				  char *const _data, size_t len)
3023 {
3024 	u32 str_count, needed_count, lang_count;
3025 	struct usb_gadget_strings **stringtabs, *t;
3026 	const char *data = _data;
3027 	struct usb_string *s;
3028 
3029 	if (len < 16 ||
3030 	    get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
3031 	    get_unaligned_le32(data + 4) != len)
3032 		goto error;
3033 	str_count  = get_unaligned_le32(data + 8);
3034 	lang_count = get_unaligned_le32(data + 12);
3035 
3036 	/* if one is zero the other must be zero */
3037 	if (!str_count != !lang_count)
3038 		goto error;
3039 
3040 	/* Do we have at least as many strings as descriptors need? */
3041 	needed_count = ffs->strings_count;
3042 	if (str_count < needed_count)
3043 		goto error;
3044 
3045 	/*
3046 	 * If we don't need any strings just return and free all
3047 	 * memory.
3048 	 */
3049 	if (!needed_count) {
3050 		kfree(_data);
3051 		return 0;
3052 	}
3053 
3054 	/* Allocate everything in one chunk so there's less maintenance. */
3055 	{
3056 		unsigned i = 0;
3057 		vla_group(d);
3058 		vla_item(d, struct usb_gadget_strings *, stringtabs,
3059 			size_add(lang_count, 1));
3060 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
3061 		vla_item(d, struct usb_string, strings,
3062 			size_mul(lang_count, (needed_count + 1)));
3063 
3064 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
3065 
3066 		if (!vlabuf) {
3067 			kfree(_data);
3068 			return -ENOMEM;
3069 		}
3070 
3071 		/* Initialize the VLA pointers */
3072 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
3073 		t = vla_ptr(vlabuf, d, stringtab);
3074 		i = lang_count;
3075 		do {
3076 			*stringtabs++ = t++;
3077 		} while (--i);
3078 		*stringtabs = NULL;
3079 
3080 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
3081 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
3082 		t = vla_ptr(vlabuf, d, stringtab);
3083 		s = vla_ptr(vlabuf, d, strings);
3084 	}
3085 
3086 	/* For each language */
3087 	data += 16;
3088 	len -= 16;
3089 
3090 	do { /* lang_count > 0 so we can use do-while */
3091 		unsigned needed = needed_count;
3092 		u32 str_per_lang = str_count;
3093 
3094 		if (len < 3)
3095 			goto error_free;
3096 		t->language = get_unaligned_le16(data);
3097 		t->strings  = s;
3098 		++t;
3099 
3100 		data += 2;
3101 		len -= 2;
3102 
3103 		/* For each string */
3104 		do { /* str_count > 0 so we can use do-while */
3105 			size_t length = strnlen(data, len);
3106 
3107 			if (length == len)
3108 				goto error_free;
3109 
3110 			/*
3111 			 * User may provide more strings then we need,
3112 			 * if that's the case we simply ignore the
3113 			 * rest
3114 			 */
3115 			if (needed) {
3116 				/*
3117 				 * s->id will be set while adding
3118 				 * function to configuration so for
3119 				 * now just leave garbage here.
3120 				 */
3121 				s->s = data;
3122 				--needed;
3123 				++s;
3124 			}
3125 
3126 			data += length + 1;
3127 			len -= length + 1;
3128 		} while (--str_per_lang);
3129 
3130 		s->id = 0;   /* terminator */
3131 		s->s = NULL;
3132 		++s;
3133 
3134 	} while (--lang_count);
3135 
3136 	/* Some garbage left? */
3137 	if (len)
3138 		goto error_free;
3139 
3140 	/* Done! */
3141 	ffs->stringtabs = stringtabs;
3142 	ffs->raw_strings = _data;
3143 
3144 	return 0;
3145 
3146 error_free:
3147 	kfree(stringtabs);
3148 error:
3149 	kfree(_data);
3150 	return -EINVAL;
3151 }
3152 
3153 
3154 /* Events handling and management *******************************************/
3155 
__ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)3156 static void __ffs_event_add(struct ffs_data *ffs,
3157 			    enum usb_functionfs_event_type type)
3158 {
3159 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
3160 	int neg = 0;
3161 
3162 	/*
3163 	 * Abort any unhandled setup
3164 	 *
3165 	 * We do not need to worry about some cmpxchg() changing value
3166 	 * of ffs->setup_state without holding the lock because when
3167 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
3168 	 * the source does nothing.
3169 	 */
3170 	if (ffs->setup_state == FFS_SETUP_PENDING)
3171 		ffs->setup_state = FFS_SETUP_CANCELLED;
3172 
3173 	/*
3174 	 * Logic of this function guarantees that there are at most four pending
3175 	 * evens on ffs->ev.types queue.  This is important because the queue
3176 	 * has space for four elements only and __ffs_ep0_read_events function
3177 	 * depends on that limit as well.  If more event types are added, those
3178 	 * limits have to be revisited or guaranteed to still hold.
3179 	 */
3180 	switch (type) {
3181 	case FUNCTIONFS_RESUME:
3182 		rem_type2 = FUNCTIONFS_SUSPEND;
3183 		fallthrough;
3184 	case FUNCTIONFS_SUSPEND:
3185 	case FUNCTIONFS_SETUP:
3186 		rem_type1 = type;
3187 		/* Discard all similar events */
3188 		break;
3189 
3190 	case FUNCTIONFS_BIND:
3191 	case FUNCTIONFS_UNBIND:
3192 	case FUNCTIONFS_DISABLE:
3193 	case FUNCTIONFS_ENABLE:
3194 		/* Discard everything other then power management. */
3195 		rem_type1 = FUNCTIONFS_SUSPEND;
3196 		rem_type2 = FUNCTIONFS_RESUME;
3197 		neg = 1;
3198 		break;
3199 
3200 	default:
3201 		WARN(1, "%d: unknown event, this should not happen\n", type);
3202 		return;
3203 	}
3204 
3205 	{
3206 		u8 *ev  = ffs->ev.types, *out = ev;
3207 		unsigned n = ffs->ev.count;
3208 		for (; n; --n, ++ev)
3209 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
3210 				*out++ = *ev;
3211 			else
3212 				pr_vdebug("purging event %d\n", *ev);
3213 		ffs->ev.count = out - ffs->ev.types;
3214 	}
3215 
3216 	pr_vdebug("adding event %d\n", type);
3217 	ffs->ev.types[ffs->ev.count++] = type;
3218 	wake_up_locked(&ffs->ev.waitq);
3219 	if (ffs->ffs_eventfd)
3220 		eventfd_signal(ffs->ffs_eventfd);
3221 }
3222 
ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)3223 static void ffs_event_add(struct ffs_data *ffs,
3224 			  enum usb_functionfs_event_type type)
3225 {
3226 	unsigned long flags;
3227 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3228 	__ffs_event_add(ffs, type);
3229 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3230 }
3231 
3232 /* Bind/unbind USB function hooks *******************************************/
3233 
ffs_ep_addr2idx(struct ffs_data * ffs,u8 endpoint_address)3234 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
3235 {
3236 	int i;
3237 
3238 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
3239 		if (ffs->eps_addrmap[i] == endpoint_address)
3240 			return i;
3241 	return -ENOENT;
3242 }
3243 
__ffs_func_bind_do_descs(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)3244 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
3245 				    struct usb_descriptor_header *desc,
3246 				    void *priv)
3247 {
3248 	struct usb_endpoint_descriptor *ds = (void *)desc;
3249 	struct ffs_function *func = priv;
3250 	struct ffs_ep *ffs_ep;
3251 	unsigned ep_desc_id;
3252 	int idx;
3253 	static const char *speed_names[] = { "full", "high", "super" };
3254 
3255 	if (type != FFS_DESCRIPTOR)
3256 		return 0;
3257 
3258 	/*
3259 	 * If ss_descriptors is not NULL, we are reading super speed
3260 	 * descriptors; if hs_descriptors is not NULL, we are reading high
3261 	 * speed descriptors; otherwise, we are reading full speed
3262 	 * descriptors.
3263 	 */
3264 	if (func->function.ss_descriptors) {
3265 		ep_desc_id = 2;
3266 		func->function.ss_descriptors[(long)valuep] = desc;
3267 	} else if (func->function.hs_descriptors) {
3268 		ep_desc_id = 1;
3269 		func->function.hs_descriptors[(long)valuep] = desc;
3270 	} else {
3271 		ep_desc_id = 0;
3272 		func->function.fs_descriptors[(long)valuep]    = desc;
3273 	}
3274 
3275 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
3276 		return 0;
3277 
3278 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
3279 	if (idx < 0)
3280 		return idx;
3281 
3282 	ffs_ep = func->eps + idx;
3283 
3284 	if (ffs_ep->descs[ep_desc_id]) {
3285 		pr_err("two %sspeed descriptors for EP %d\n",
3286 			  speed_names[ep_desc_id],
3287 			  usb_endpoint_num(ds));
3288 		return -EINVAL;
3289 	}
3290 	ffs_ep->descs[ep_desc_id] = ds;
3291 
3292 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
3293 	if (ffs_ep->ep) {
3294 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
3295 		if (!ds->wMaxPacketSize)
3296 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
3297 	} else {
3298 		struct usb_request *req;
3299 		struct usb_ep *ep;
3300 		u8 bEndpointAddress;
3301 		u16 wMaxPacketSize;
3302 
3303 		/*
3304 		 * We back up bEndpointAddress because autoconfig overwrites
3305 		 * it with physical endpoint address.
3306 		 */
3307 		bEndpointAddress = ds->bEndpointAddress;
3308 		/*
3309 		 * We back up wMaxPacketSize because autoconfig treats
3310 		 * endpoint descriptors as if they were full speed.
3311 		 */
3312 		wMaxPacketSize = ds->wMaxPacketSize;
3313 		pr_vdebug("autoconfig\n");
3314 		ep = usb_ep_autoconfig(func->gadget, ds);
3315 		if (!ep)
3316 			return -ENOTSUPP;
3317 		ep->driver_data = func->eps + idx;
3318 
3319 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
3320 		if (!req)
3321 			return -ENOMEM;
3322 
3323 		ffs_ep->ep  = ep;
3324 		ffs_ep->req = req;
3325 		func->eps_revmap[ds->bEndpointAddress &
3326 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
3327 		/*
3328 		 * If we use virtual address mapping, we restore
3329 		 * original bEndpointAddress value.
3330 		 */
3331 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3332 			ds->bEndpointAddress = bEndpointAddress;
3333 		/*
3334 		 * Restore wMaxPacketSize which was potentially
3335 		 * overwritten by autoconfig.
3336 		 */
3337 		ds->wMaxPacketSize = wMaxPacketSize;
3338 	}
3339 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
3340 
3341 	return 0;
3342 }
3343 
__ffs_func_bind_do_nums(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)3344 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
3345 				   struct usb_descriptor_header *desc,
3346 				   void *priv)
3347 {
3348 	struct ffs_function *func = priv;
3349 	unsigned idx;
3350 	u8 newValue;
3351 
3352 	switch (type) {
3353 	default:
3354 	case FFS_DESCRIPTOR:
3355 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
3356 		return 0;
3357 
3358 	case FFS_INTERFACE:
3359 		idx = *valuep;
3360 		if (func->interfaces_nums[idx] < 0) {
3361 			int id = usb_interface_id(func->conf, &func->function);
3362 			if (id < 0)
3363 				return id;
3364 			func->interfaces_nums[idx] = id;
3365 		}
3366 		newValue = func->interfaces_nums[idx];
3367 		break;
3368 
3369 	case FFS_STRING:
3370 		/* String' IDs are allocated when fsf_data is bound to cdev */
3371 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
3372 		break;
3373 
3374 	case FFS_ENDPOINT:
3375 		/*
3376 		 * USB_DT_ENDPOINT are handled in
3377 		 * __ffs_func_bind_do_descs().
3378 		 */
3379 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
3380 			return 0;
3381 
3382 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
3383 		if (!func->eps[idx].ep)
3384 			return -EINVAL;
3385 
3386 		{
3387 			struct usb_endpoint_descriptor **descs;
3388 			descs = func->eps[idx].descs;
3389 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
3390 		}
3391 		break;
3392 	}
3393 
3394 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
3395 	*valuep = newValue;
3396 	return 0;
3397 }
3398 
__ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)3399 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
3400 				      struct usb_os_desc_header *h, void *data,
3401 				      unsigned len, void *priv)
3402 {
3403 	struct ffs_function *func = priv;
3404 	u8 length = 0;
3405 
3406 	switch (type) {
3407 	case FFS_OS_DESC_EXT_COMPAT: {
3408 		struct usb_ext_compat_desc *desc = data;
3409 		struct usb_os_desc_table *t;
3410 
3411 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
3412 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
3413 		memcpy(t->os_desc->ext_compat_id, &desc->IDs,
3414 		       sizeof_field(struct usb_ext_compat_desc, IDs));
3415 		length = sizeof(*desc);
3416 	}
3417 		break;
3418 	case FFS_OS_DESC_EXT_PROP: {
3419 		struct usb_ext_prop_desc *desc = data;
3420 		struct usb_os_desc_table *t;
3421 		struct usb_os_desc_ext_prop *ext_prop;
3422 		char *ext_prop_name;
3423 		char *ext_prop_data;
3424 
3425 		t = &func->function.os_desc_table[h->interface];
3426 		t->if_id = func->interfaces_nums[h->interface];
3427 
3428 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
3429 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
3430 
3431 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
3432 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
3433 		ext_prop->data_len = le32_to_cpu(*(__le32 *)
3434 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
3435 		length = ext_prop->name_len + ext_prop->data_len + 14;
3436 
3437 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
3438 		func->ffs->ms_os_descs_ext_prop_name_avail +=
3439 			ext_prop->name_len;
3440 
3441 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
3442 		func->ffs->ms_os_descs_ext_prop_data_avail +=
3443 			ext_prop->data_len;
3444 		memcpy(ext_prop_data,
3445 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
3446 		       ext_prop->data_len);
3447 		/* unicode data reported to the host as "WCHAR"s */
3448 		switch (ext_prop->type) {
3449 		case USB_EXT_PROP_UNICODE:
3450 		case USB_EXT_PROP_UNICODE_ENV:
3451 		case USB_EXT_PROP_UNICODE_LINK:
3452 		case USB_EXT_PROP_UNICODE_MULTI:
3453 			ext_prop->data_len *= 2;
3454 			break;
3455 		}
3456 		ext_prop->data = ext_prop_data;
3457 
3458 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3459 		       ext_prop->name_len);
3460 		/* property name reported to the host as "WCHAR"s */
3461 		ext_prop->name_len *= 2;
3462 		ext_prop->name = ext_prop_name;
3463 
3464 		t->os_desc->ext_prop_len +=
3465 			ext_prop->name_len + ext_prop->data_len + 14;
3466 		++t->os_desc->ext_prop_count;
3467 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3468 	}
3469 		break;
3470 	default:
3471 		pr_vdebug("unknown descriptor: %d\n", type);
3472 	}
3473 
3474 	return length;
3475 }
3476 
ffs_do_functionfs_bind(struct usb_function * f,struct usb_configuration * c)3477 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3478 						struct usb_configuration *c)
3479 {
3480 	struct ffs_function *func = ffs_func_from_usb(f);
3481 	struct f_fs_opts *ffs_opts =
3482 		container_of(f->fi, struct f_fs_opts, func_inst);
3483 	struct ffs_data *ffs_data;
3484 	int ret;
3485 
3486 	/*
3487 	 * Legacy gadget triggers binding in functionfs_ready_callback,
3488 	 * which already uses locking; taking the same lock here would
3489 	 * cause a deadlock.
3490 	 *
3491 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
3492 	 */
3493 	if (!ffs_opts->no_configfs)
3494 		ffs_dev_lock();
3495 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3496 	ffs_data = ffs_opts->dev->ffs_data;
3497 	if (!ffs_opts->no_configfs)
3498 		ffs_dev_unlock();
3499 	if (ret)
3500 		return ERR_PTR(ret);
3501 
3502 	func->ffs = ffs_data;
3503 	func->conf = c;
3504 	func->gadget = c->cdev->gadget;
3505 
3506 	/*
3507 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3508 	 * configurations are bound in sequence with list_for_each_entry,
3509 	 * in each configuration its functions are bound in sequence
3510 	 * with list_for_each_entry, so we assume no race condition
3511 	 * with regard to ffs_opts->bound access
3512 	 */
3513 	if (!ffs_opts->refcnt) {
3514 		ret = functionfs_bind(func->ffs, c->cdev);
3515 		if (ret)
3516 			return ERR_PTR(ret);
3517 	}
3518 	ffs_opts->refcnt++;
3519 	func->function.strings = func->ffs->stringtabs;
3520 
3521 	return ffs_opts;
3522 }
3523 
_ffs_func_bind(struct usb_configuration * c,struct usb_function * f)3524 static int _ffs_func_bind(struct usb_configuration *c,
3525 			  struct usb_function *f)
3526 {
3527 	struct ffs_function *func = ffs_func_from_usb(f);
3528 	struct ffs_data *ffs = func->ffs;
3529 
3530 	const int full = !!func->ffs->fs_descs_count;
3531 	const int high = !!func->ffs->hs_descs_count;
3532 	const int super = !!func->ffs->ss_descs_count;
3533 
3534 	int fs_len, hs_len, ss_len, ret, i;
3535 	struct ffs_ep *eps_ptr;
3536 
3537 	/* Make it a single chunk, less management later on */
3538 	vla_group(d);
3539 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3540 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3541 		full ? ffs->fs_descs_count + 1 : 0);
3542 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3543 		high ? ffs->hs_descs_count + 1 : 0);
3544 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3545 		super ? ffs->ss_descs_count + 1 : 0);
3546 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3547 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3548 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3549 	vla_item_with_sz(d, char[16], ext_compat,
3550 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3551 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
3552 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3553 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3554 			 ffs->ms_os_descs_ext_prop_count);
3555 	vla_item_with_sz(d, char, ext_prop_name,
3556 			 ffs->ms_os_descs_ext_prop_name_len);
3557 	vla_item_with_sz(d, char, ext_prop_data,
3558 			 ffs->ms_os_descs_ext_prop_data_len);
3559 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3560 	char *vlabuf;
3561 
3562 	/* Has descriptors only for speeds gadget does not support */
3563 	if (!(full | high | super))
3564 		return -ENOTSUPP;
3565 
3566 	/* Allocate a single chunk, less management later on */
3567 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3568 	if (!vlabuf)
3569 		return -ENOMEM;
3570 
3571 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3572 	ffs->ms_os_descs_ext_prop_name_avail =
3573 		vla_ptr(vlabuf, d, ext_prop_name);
3574 	ffs->ms_os_descs_ext_prop_data_avail =
3575 		vla_ptr(vlabuf, d, ext_prop_data);
3576 
3577 	/* Copy descriptors  */
3578 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3579 	       ffs->raw_descs_length);
3580 
3581 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3582 	eps_ptr = vla_ptr(vlabuf, d, eps);
3583 	for (i = 0; i < ffs->eps_count; i++)
3584 		eps_ptr[i].num = -1;
3585 
3586 	/* Save pointers
3587 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3588 	*/
3589 	func->eps             = vla_ptr(vlabuf, d, eps);
3590 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3591 
3592 	/*
3593 	 * Go through all the endpoint descriptors and allocate
3594 	 * endpoints first, so that later we can rewrite the endpoint
3595 	 * numbers without worrying that it may be described later on.
3596 	 */
3597 	if (full) {
3598 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3599 		fs_len = ffs_do_descs(ffs->fs_descs_count,
3600 				      vla_ptr(vlabuf, d, raw_descs),
3601 				      d_raw_descs__sz,
3602 				      __ffs_func_bind_do_descs, func);
3603 		if (fs_len < 0) {
3604 			ret = fs_len;
3605 			goto error;
3606 		}
3607 	} else {
3608 		fs_len = 0;
3609 	}
3610 
3611 	if (high) {
3612 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3613 		hs_len = ffs_do_descs(ffs->hs_descs_count,
3614 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3615 				      d_raw_descs__sz - fs_len,
3616 				      __ffs_func_bind_do_descs, func);
3617 		if (hs_len < 0) {
3618 			ret = hs_len;
3619 			goto error;
3620 		}
3621 	} else {
3622 		hs_len = 0;
3623 	}
3624 
3625 	if (super) {
3626 		func->function.ss_descriptors = func->function.ssp_descriptors =
3627 			vla_ptr(vlabuf, d, ss_descs);
3628 		ss_len = ffs_do_descs(ffs->ss_descs_count,
3629 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3630 				d_raw_descs__sz - fs_len - hs_len,
3631 				__ffs_func_bind_do_descs, func);
3632 		if (ss_len < 0) {
3633 			ret = ss_len;
3634 			goto error;
3635 		}
3636 	} else {
3637 		ss_len = 0;
3638 	}
3639 
3640 	/*
3641 	 * Now handle interface numbers allocation and interface and
3642 	 * endpoint numbers rewriting.  We can do that in one go
3643 	 * now.
3644 	 */
3645 	ret = ffs_do_descs(ffs->fs_descs_count +
3646 			   (high ? ffs->hs_descs_count : 0) +
3647 			   (super ? ffs->ss_descs_count : 0),
3648 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3649 			   __ffs_func_bind_do_nums, func);
3650 	if (ret < 0)
3651 		goto error;
3652 
3653 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3654 	if (c->cdev->use_os_string) {
3655 		for (i = 0; i < ffs->interfaces_count; ++i) {
3656 			struct usb_os_desc *desc;
3657 
3658 			desc = func->function.os_desc_table[i].os_desc =
3659 				vla_ptr(vlabuf, d, os_desc) +
3660 				i * sizeof(struct usb_os_desc);
3661 			desc->ext_compat_id =
3662 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3663 			INIT_LIST_HEAD(&desc->ext_prop);
3664 		}
3665 		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3666 				      vla_ptr(vlabuf, d, raw_descs) +
3667 				      fs_len + hs_len + ss_len,
3668 				      d_raw_descs__sz - fs_len - hs_len -
3669 				      ss_len,
3670 				      __ffs_func_bind_do_os_desc, func);
3671 		if (ret < 0)
3672 			goto error;
3673 	}
3674 	func->function.os_desc_n =
3675 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3676 
3677 	/* And we're done */
3678 	ffs_event_add(ffs, FUNCTIONFS_BIND);
3679 	return 0;
3680 
3681 error:
3682 	/* XXX Do we need to release all claimed endpoints here? */
3683 	return ret;
3684 }
3685 
ffs_func_bind(struct usb_configuration * c,struct usb_function * f)3686 static int ffs_func_bind(struct usb_configuration *c,
3687 			 struct usb_function *f)
3688 {
3689 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3690 	struct ffs_function *func = ffs_func_from_usb(f);
3691 	int ret;
3692 
3693 	if (IS_ERR(ffs_opts))
3694 		return PTR_ERR(ffs_opts);
3695 
3696 	ret = _ffs_func_bind(c, f);
3697 	if (ret && !--ffs_opts->refcnt)
3698 		functionfs_unbind(func->ffs);
3699 
3700 	return ret;
3701 }
3702 
3703 
3704 /* Other USB function hooks *************************************************/
3705 
ffs_reset_work(struct work_struct * work)3706 static void ffs_reset_work(struct work_struct *work)
3707 {
3708 	struct ffs_data *ffs = container_of(work,
3709 		struct ffs_data, reset_work);
3710 	ffs_data_reset(ffs);
3711 }
3712 
ffs_func_get_alt(struct usb_function * f,unsigned int interface)3713 static int ffs_func_get_alt(struct usb_function *f,
3714 			    unsigned int interface)
3715 {
3716 	struct ffs_function *func = ffs_func_from_usb(f);
3717 	int intf = ffs_func_revmap_intf(func, interface);
3718 
3719 	return (intf < 0) ? intf : func->cur_alt[interface];
3720 }
3721 
ffs_func_set_alt(struct usb_function * f,unsigned interface,unsigned alt)3722 static int ffs_func_set_alt(struct usb_function *f,
3723 			    unsigned interface, unsigned alt)
3724 {
3725 	struct ffs_function *func = ffs_func_from_usb(f);
3726 	struct ffs_data *ffs = func->ffs;
3727 	int ret = 0, intf;
3728 
3729 	if (alt > MAX_ALT_SETTINGS)
3730 		return -EINVAL;
3731 
3732 	intf = ffs_func_revmap_intf(func, interface);
3733 	if (intf < 0)
3734 		return intf;
3735 
3736 	if (ffs->func)
3737 		ffs_func_eps_disable(ffs->func);
3738 
3739 	if (ffs->state == FFS_DEACTIVATED) {
3740 		ffs->state = FFS_CLOSING;
3741 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3742 		schedule_work(&ffs->reset_work);
3743 		return -ENODEV;
3744 	}
3745 
3746 	if (ffs->state != FFS_ACTIVE)
3747 		return -ENODEV;
3748 
3749 	ffs->func = func;
3750 	ret = ffs_func_eps_enable(func);
3751 	if (ret >= 0) {
3752 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3753 		func->cur_alt[interface] = alt;
3754 	}
3755 	return ret;
3756 }
3757 
ffs_func_disable(struct usb_function * f)3758 static void ffs_func_disable(struct usb_function *f)
3759 {
3760 	struct ffs_function *func = ffs_func_from_usb(f);
3761 	struct ffs_data *ffs = func->ffs;
3762 
3763 	if (ffs->func)
3764 		ffs_func_eps_disable(ffs->func);
3765 
3766 	if (ffs->state == FFS_DEACTIVATED) {
3767 		ffs->state = FFS_CLOSING;
3768 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3769 		schedule_work(&ffs->reset_work);
3770 		return;
3771 	}
3772 
3773 	if (ffs->state == FFS_ACTIVE) {
3774 		ffs->func = NULL;
3775 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3776 	}
3777 }
3778 
ffs_func_setup(struct usb_function * f,const struct usb_ctrlrequest * creq)3779 static int ffs_func_setup(struct usb_function *f,
3780 			  const struct usb_ctrlrequest *creq)
3781 {
3782 	struct ffs_function *func = ffs_func_from_usb(f);
3783 	struct ffs_data *ffs = func->ffs;
3784 	unsigned long flags;
3785 	int ret;
3786 
3787 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3788 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3789 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3790 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3791 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3792 
3793 	/*
3794 	 * Most requests directed to interface go through here
3795 	 * (notable exceptions are set/get interface) so we need to
3796 	 * handle them.  All other either handled by composite or
3797 	 * passed to usb_configuration->setup() (if one is set).  No
3798 	 * matter, we will handle requests directed to endpoint here
3799 	 * as well (as it's straightforward).  Other request recipient
3800 	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3801 	 * is being used.
3802 	 */
3803 	if (ffs->state != FFS_ACTIVE)
3804 		return -ENODEV;
3805 
3806 	switch (creq->bRequestType & USB_RECIP_MASK) {
3807 	case USB_RECIP_INTERFACE:
3808 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3809 		if (ret < 0)
3810 			return ret;
3811 		break;
3812 
3813 	case USB_RECIP_ENDPOINT:
3814 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3815 		if (ret < 0)
3816 			return ret;
3817 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3818 			ret = func->ffs->eps_addrmap[ret];
3819 		break;
3820 
3821 	default:
3822 		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3823 			ret = le16_to_cpu(creq->wIndex);
3824 		else
3825 			return -EOPNOTSUPP;
3826 	}
3827 
3828 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3829 	ffs->ev.setup = *creq;
3830 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3831 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3832 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3833 
3834 	return ffs->ev.setup.wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3835 }
3836 
ffs_func_req_match(struct usb_function * f,const struct usb_ctrlrequest * creq,bool config0)3837 static bool ffs_func_req_match(struct usb_function *f,
3838 			       const struct usb_ctrlrequest *creq,
3839 			       bool config0)
3840 {
3841 	struct ffs_function *func = ffs_func_from_usb(f);
3842 
3843 	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3844 		return false;
3845 
3846 	switch (creq->bRequestType & USB_RECIP_MASK) {
3847 	case USB_RECIP_INTERFACE:
3848 		return (ffs_func_revmap_intf(func,
3849 					     le16_to_cpu(creq->wIndex)) >= 0);
3850 	case USB_RECIP_ENDPOINT:
3851 		return (ffs_func_revmap_ep(func,
3852 					   le16_to_cpu(creq->wIndex)) >= 0);
3853 	default:
3854 		return (bool) (func->ffs->user_flags &
3855 			       FUNCTIONFS_ALL_CTRL_RECIP);
3856 	}
3857 }
3858 
ffs_func_suspend(struct usb_function * f)3859 static void ffs_func_suspend(struct usb_function *f)
3860 {
3861 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3862 }
3863 
ffs_func_resume(struct usb_function * f)3864 static void ffs_func_resume(struct usb_function *f)
3865 {
3866 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3867 }
3868 
3869 
3870 /* Endpoint and interface numbers reverse mapping ***************************/
3871 
ffs_func_revmap_ep(struct ffs_function * func,u8 num)3872 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3873 {
3874 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3875 	return num ? num : -EDOM;
3876 }
3877 
ffs_func_revmap_intf(struct ffs_function * func,u8 intf)3878 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3879 {
3880 	short *nums = func->interfaces_nums;
3881 	unsigned count = func->ffs->interfaces_count;
3882 
3883 	for (; count; --count, ++nums) {
3884 		if (*nums >= 0 && *nums == intf)
3885 			return nums - func->interfaces_nums;
3886 	}
3887 
3888 	return -EDOM;
3889 }
3890 
3891 
3892 /* Devices management *******************************************************/
3893 
3894 static LIST_HEAD(ffs_devices);
3895 
_ffs_do_find_dev(const char * name)3896 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3897 {
3898 	struct ffs_dev *dev;
3899 
3900 	if (!name)
3901 		return NULL;
3902 
3903 	list_for_each_entry(dev, &ffs_devices, entry) {
3904 		if (strcmp(dev->name, name) == 0)
3905 			return dev;
3906 	}
3907 
3908 	return NULL;
3909 }
3910 
3911 /*
3912  * ffs_lock must be taken by the caller of this function
3913  */
_ffs_get_single_dev(void)3914 static struct ffs_dev *_ffs_get_single_dev(void)
3915 {
3916 	struct ffs_dev *dev;
3917 
3918 	if (list_is_singular(&ffs_devices)) {
3919 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3920 		if (dev->single)
3921 			return dev;
3922 	}
3923 
3924 	return NULL;
3925 }
3926 
3927 /*
3928  * ffs_lock must be taken by the caller of this function
3929  */
_ffs_find_dev(const char * name)3930 static struct ffs_dev *_ffs_find_dev(const char *name)
3931 {
3932 	struct ffs_dev *dev;
3933 
3934 	dev = _ffs_get_single_dev();
3935 	if (dev)
3936 		return dev;
3937 
3938 	return _ffs_do_find_dev(name);
3939 }
3940 
3941 /* Configfs support *********************************************************/
3942 
to_ffs_opts(struct config_item * item)3943 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3944 {
3945 	return container_of(to_config_group(item), struct f_fs_opts,
3946 			    func_inst.group);
3947 }
3948 
f_fs_opts_ready_show(struct config_item * item,char * page)3949 static ssize_t f_fs_opts_ready_show(struct config_item *item, char *page)
3950 {
3951 	struct f_fs_opts *opts = to_ffs_opts(item);
3952 	int ready;
3953 
3954 	ffs_dev_lock();
3955 	ready = opts->dev->desc_ready;
3956 	ffs_dev_unlock();
3957 
3958 	return sprintf(page, "%d\n", ready);
3959 }
3960 
3961 CONFIGFS_ATTR_RO(f_fs_opts_, ready);
3962 
3963 static struct configfs_attribute *ffs_attrs[] = {
3964 	&f_fs_opts_attr_ready,
3965 	NULL,
3966 };
3967 
ffs_attr_release(struct config_item * item)3968 static void ffs_attr_release(struct config_item *item)
3969 {
3970 	struct f_fs_opts *opts = to_ffs_opts(item);
3971 
3972 	usb_put_function_instance(&opts->func_inst);
3973 }
3974 
3975 static struct configfs_item_operations ffs_item_ops = {
3976 	.release	= ffs_attr_release,
3977 };
3978 
3979 static const struct config_item_type ffs_func_type = {
3980 	.ct_item_ops	= &ffs_item_ops,
3981 	.ct_attrs	= ffs_attrs,
3982 	.ct_owner	= THIS_MODULE,
3983 };
3984 
3985 
3986 /* Function registration interface ******************************************/
3987 
ffs_free_inst(struct usb_function_instance * f)3988 static void ffs_free_inst(struct usb_function_instance *f)
3989 {
3990 	struct f_fs_opts *opts;
3991 
3992 	opts = to_f_fs_opts(f);
3993 	ffs_release_dev(opts->dev);
3994 	ffs_dev_lock();
3995 	_ffs_free_dev(opts->dev);
3996 	ffs_dev_unlock();
3997 	kfree(opts);
3998 }
3999 
ffs_set_inst_name(struct usb_function_instance * fi,const char * name)4000 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
4001 {
4002 	if (strlen(name) >= sizeof_field(struct ffs_dev, name))
4003 		return -ENAMETOOLONG;
4004 	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
4005 }
4006 
ffs_alloc_inst(void)4007 static struct usb_function_instance *ffs_alloc_inst(void)
4008 {
4009 	struct f_fs_opts *opts;
4010 	struct ffs_dev *dev;
4011 
4012 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
4013 	if (!opts)
4014 		return ERR_PTR(-ENOMEM);
4015 
4016 	opts->func_inst.set_inst_name = ffs_set_inst_name;
4017 	opts->func_inst.free_func_inst = ffs_free_inst;
4018 	ffs_dev_lock();
4019 	dev = _ffs_alloc_dev();
4020 	ffs_dev_unlock();
4021 	if (IS_ERR(dev)) {
4022 		kfree(opts);
4023 		return ERR_CAST(dev);
4024 	}
4025 	opts->dev = dev;
4026 	dev->opts = opts;
4027 
4028 	config_group_init_type_name(&opts->func_inst.group, "",
4029 				    &ffs_func_type);
4030 	return &opts->func_inst;
4031 }
4032 
ffs_free(struct usb_function * f)4033 static void ffs_free(struct usb_function *f)
4034 {
4035 	kfree(ffs_func_from_usb(f));
4036 }
4037 
ffs_func_unbind(struct usb_configuration * c,struct usb_function * f)4038 static void ffs_func_unbind(struct usb_configuration *c,
4039 			    struct usb_function *f)
4040 {
4041 	struct ffs_function *func = ffs_func_from_usb(f);
4042 	struct ffs_data *ffs = func->ffs;
4043 	struct f_fs_opts *opts =
4044 		container_of(f->fi, struct f_fs_opts, func_inst);
4045 	struct ffs_ep *ep = func->eps;
4046 	unsigned count = ffs->eps_count;
4047 	unsigned long flags;
4048 
4049 	if (ffs->func == func) {
4050 		ffs_func_eps_disable(func);
4051 		ffs->func = NULL;
4052 	}
4053 
4054 	/* Drain any pending AIO completions */
4055 	drain_workqueue(ffs->io_completion_wq);
4056 
4057 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
4058 	if (!--opts->refcnt)
4059 		functionfs_unbind(ffs);
4060 
4061 	/* cleanup after autoconfig */
4062 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
4063 	while (count--) {
4064 		if (ep->ep && ep->req)
4065 			usb_ep_free_request(ep->ep, ep->req);
4066 		ep->req = NULL;
4067 		++ep;
4068 	}
4069 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
4070 	kfree(func->eps);
4071 	func->eps = NULL;
4072 	/*
4073 	 * eps, descriptors and interfaces_nums are allocated in the
4074 	 * same chunk so only one free is required.
4075 	 */
4076 	func->function.fs_descriptors = NULL;
4077 	func->function.hs_descriptors = NULL;
4078 	func->function.ss_descriptors = NULL;
4079 	func->function.ssp_descriptors = NULL;
4080 	func->interfaces_nums = NULL;
4081 
4082 }
4083 
ffs_alloc(struct usb_function_instance * fi)4084 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
4085 {
4086 	struct ffs_function *func;
4087 
4088 	func = kzalloc(sizeof(*func), GFP_KERNEL);
4089 	if (!func)
4090 		return ERR_PTR(-ENOMEM);
4091 
4092 	func->function.name    = "Function FS Gadget";
4093 
4094 	func->function.bind    = ffs_func_bind;
4095 	func->function.unbind  = ffs_func_unbind;
4096 	func->function.set_alt = ffs_func_set_alt;
4097 	func->function.get_alt = ffs_func_get_alt;
4098 	func->function.disable = ffs_func_disable;
4099 	func->function.setup   = ffs_func_setup;
4100 	func->function.req_match = ffs_func_req_match;
4101 	func->function.suspend = ffs_func_suspend;
4102 	func->function.resume  = ffs_func_resume;
4103 	func->function.free_func = ffs_free;
4104 
4105 	return &func->function;
4106 }
4107 
4108 /*
4109  * ffs_lock must be taken by the caller of this function
4110  */
_ffs_alloc_dev(void)4111 static struct ffs_dev *_ffs_alloc_dev(void)
4112 {
4113 	struct ffs_dev *dev;
4114 	int ret;
4115 
4116 	if (_ffs_get_single_dev())
4117 			return ERR_PTR(-EBUSY);
4118 
4119 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4120 	if (!dev)
4121 		return ERR_PTR(-ENOMEM);
4122 
4123 	if (list_empty(&ffs_devices)) {
4124 		ret = functionfs_init();
4125 		if (ret) {
4126 			kfree(dev);
4127 			return ERR_PTR(ret);
4128 		}
4129 	}
4130 
4131 	list_add(&dev->entry, &ffs_devices);
4132 
4133 	return dev;
4134 }
4135 
ffs_name_dev(struct ffs_dev * dev,const char * name)4136 int ffs_name_dev(struct ffs_dev *dev, const char *name)
4137 {
4138 	struct ffs_dev *existing;
4139 	int ret = 0;
4140 
4141 	ffs_dev_lock();
4142 
4143 	existing = _ffs_do_find_dev(name);
4144 	if (!existing)
4145 		strscpy(dev->name, name, ARRAY_SIZE(dev->name));
4146 	else if (existing != dev)
4147 		ret = -EBUSY;
4148 
4149 	ffs_dev_unlock();
4150 
4151 	return ret;
4152 }
4153 EXPORT_SYMBOL_GPL(ffs_name_dev);
4154 
ffs_single_dev(struct ffs_dev * dev)4155 int ffs_single_dev(struct ffs_dev *dev)
4156 {
4157 	int ret;
4158 
4159 	ret = 0;
4160 	ffs_dev_lock();
4161 
4162 	if (!list_is_singular(&ffs_devices))
4163 		ret = -EBUSY;
4164 	else
4165 		dev->single = true;
4166 
4167 	ffs_dev_unlock();
4168 	return ret;
4169 }
4170 EXPORT_SYMBOL_GPL(ffs_single_dev);
4171 
4172 /*
4173  * ffs_lock must be taken by the caller of this function
4174  */
_ffs_free_dev(struct ffs_dev * dev)4175 static void _ffs_free_dev(struct ffs_dev *dev)
4176 {
4177 	list_del(&dev->entry);
4178 
4179 	kfree(dev);
4180 	if (list_empty(&ffs_devices))
4181 		functionfs_cleanup();
4182 }
4183 
ffs_acquire_dev(const char * dev_name,struct ffs_data * ffs_data)4184 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data)
4185 {
4186 	int ret = 0;
4187 	struct ffs_dev *ffs_dev;
4188 
4189 	ffs_dev_lock();
4190 
4191 	ffs_dev = _ffs_find_dev(dev_name);
4192 	if (!ffs_dev) {
4193 		ret = -ENOENT;
4194 	} else if (ffs_dev->mounted) {
4195 		ret = -EBUSY;
4196 	} else if (ffs_dev->ffs_acquire_dev_callback &&
4197 		   ffs_dev->ffs_acquire_dev_callback(ffs_dev)) {
4198 		ret = -ENOENT;
4199 	} else {
4200 		ffs_dev->mounted = true;
4201 		ffs_dev->ffs_data = ffs_data;
4202 		ffs_data->private_data = ffs_dev;
4203 	}
4204 
4205 	ffs_dev_unlock();
4206 	return ret;
4207 }
4208 
ffs_release_dev(struct ffs_dev * ffs_dev)4209 static void ffs_release_dev(struct ffs_dev *ffs_dev)
4210 {
4211 	ffs_dev_lock();
4212 
4213 	if (ffs_dev && ffs_dev->mounted) {
4214 		ffs_dev->mounted = false;
4215 		if (ffs_dev->ffs_data) {
4216 			ffs_dev->ffs_data->private_data = NULL;
4217 			ffs_dev->ffs_data = NULL;
4218 		}
4219 
4220 		if (ffs_dev->ffs_release_dev_callback)
4221 			ffs_dev->ffs_release_dev_callback(ffs_dev);
4222 	}
4223 
4224 	ffs_dev_unlock();
4225 }
4226 
ffs_ready(struct ffs_data * ffs)4227 static int ffs_ready(struct ffs_data *ffs)
4228 {
4229 	struct ffs_dev *ffs_obj;
4230 	int ret = 0;
4231 
4232 	ffs_dev_lock();
4233 
4234 	ffs_obj = ffs->private_data;
4235 	if (!ffs_obj) {
4236 		ret = -EINVAL;
4237 		goto done;
4238 	}
4239 	if (WARN_ON(ffs_obj->desc_ready)) {
4240 		ret = -EBUSY;
4241 		goto done;
4242 	}
4243 
4244 	ffs_obj->desc_ready = true;
4245 
4246 	if (ffs_obj->ffs_ready_callback) {
4247 		ret = ffs_obj->ffs_ready_callback(ffs);
4248 		if (ret)
4249 			goto done;
4250 	}
4251 
4252 	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
4253 done:
4254 	ffs_dev_unlock();
4255 	return ret;
4256 }
4257 
ffs_closed(struct ffs_data * ffs)4258 static void ffs_closed(struct ffs_data *ffs)
4259 {
4260 	struct ffs_dev *ffs_obj;
4261 	struct f_fs_opts *opts;
4262 	struct config_item *ci;
4263 
4264 	ffs_dev_lock();
4265 
4266 	ffs_obj = ffs->private_data;
4267 	if (!ffs_obj)
4268 		goto done;
4269 
4270 	ffs_obj->desc_ready = false;
4271 
4272 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
4273 	    ffs_obj->ffs_closed_callback)
4274 		ffs_obj->ffs_closed_callback(ffs);
4275 
4276 	if (ffs_obj->opts)
4277 		opts = ffs_obj->opts;
4278 	else
4279 		goto done;
4280 
4281 	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
4282 	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
4283 		goto done;
4284 
4285 	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
4286 	ffs_dev_unlock();
4287 
4288 	if (test_bit(FFS_FL_BOUND, &ffs->flags))
4289 		unregister_gadget_item(ci);
4290 	return;
4291 done:
4292 	ffs_dev_unlock();
4293 }
4294 
4295 /* Misc helper functions ****************************************************/
4296 
ffs_mutex_lock(struct mutex * mutex,unsigned nonblock)4297 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
4298 {
4299 	return nonblock
4300 		? mutex_trylock(mutex) ? 0 : -EAGAIN
4301 		: mutex_lock_interruptible(mutex);
4302 }
4303 
ffs_prepare_buffer(const char __user * buf,size_t len)4304 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
4305 {
4306 	char *data;
4307 
4308 	if (!len)
4309 		return NULL;
4310 
4311 	data = memdup_user(buf, len);
4312 	if (IS_ERR(data))
4313 		return data;
4314 
4315 	pr_vdebug("Buffer from user space:\n");
4316 	ffs_dump_mem("", data, len);
4317 
4318 	return data;
4319 }
4320 
4321 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
4322 MODULE_DESCRIPTION("user mode file system API for USB composite function controllers");
4323 MODULE_LICENSE("GPL");
4324 MODULE_AUTHOR("Michal Nazarewicz");
4325