1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6 #ifndef BTRFS_DELAYED_REF_H
7 #define BTRFS_DELAYED_REF_H
8
9 #include <linux/types.h>
10 #include <linux/refcount.h>
11 #include <linux/list.h>
12 #include <linux/rbtree.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/slab.h>
16 #include <uapi/linux/btrfs_tree.h>
17 #include "fs.h"
18 #include "messages.h"
19
20 struct btrfs_trans_handle;
21 struct btrfs_fs_info;
22
23 /* these are the possible values of struct btrfs_delayed_ref_node->action */
24 enum btrfs_delayed_ref_action {
25 /* Add one backref to the tree */
26 BTRFS_ADD_DELAYED_REF = 1,
27 /* Delete one backref from the tree */
28 BTRFS_DROP_DELAYED_REF,
29 /* Record a full extent allocation */
30 BTRFS_ADD_DELAYED_EXTENT,
31 /* Not changing ref count on head ref */
32 BTRFS_UPDATE_DELAYED_HEAD,
33 } __packed;
34
35 struct btrfs_data_ref {
36 /* For EXTENT_DATA_REF */
37
38 /* Inode which refers to this data extent */
39 u64 objectid;
40
41 /*
42 * file_offset - extent_offset
43 *
44 * file_offset is the key.offset of the EXTENT_DATA key.
45 * extent_offset is btrfs_file_extent_offset() of the EXTENT_DATA data.
46 */
47 u64 offset;
48 };
49
50 struct btrfs_tree_ref {
51 /*
52 * Level of this tree block.
53 *
54 * Shared for skinny (TREE_BLOCK_REF) and normal tree ref.
55 */
56 int level;
57
58 /* For non-skinny metadata, no special member needed */
59 };
60
61 struct btrfs_delayed_ref_node {
62 struct rb_node ref_node;
63 /*
64 * If action is BTRFS_ADD_DELAYED_REF, also link this node to
65 * ref_head->ref_add_list, then we do not need to iterate the
66 * refs rbtree in the corresponding delayed ref head
67 * (struct btrfs_delayed_ref_head::ref_tree).
68 */
69 struct list_head add_list;
70
71 /* the starting bytenr of the extent */
72 u64 bytenr;
73
74 /* the size of the extent */
75 u64 num_bytes;
76
77 /* seq number to keep track of insertion order */
78 u64 seq;
79
80 /* The ref_root for this ref */
81 u64 ref_root;
82
83 /*
84 * The parent for this ref, if this isn't set the ref_root is the
85 * reference owner.
86 */
87 u64 parent;
88
89 /* ref count on this data structure */
90 refcount_t refs;
91
92 /*
93 * how many refs is this entry adding or deleting. For
94 * head refs, this may be a negative number because it is keeping
95 * track of the total mods done to the reference count.
96 * For individual refs, this will always be a positive number
97 *
98 * It may be more than one, since it is possible for a single
99 * parent to have more than one ref on an extent
100 */
101 int ref_mod;
102
103 unsigned int action:8;
104 unsigned int type:8;
105
106 union {
107 struct btrfs_tree_ref tree_ref;
108 struct btrfs_data_ref data_ref;
109 };
110 };
111
112 struct btrfs_delayed_extent_op {
113 struct btrfs_disk_key key;
114 bool update_key;
115 bool update_flags;
116 u64 flags_to_set;
117 };
118
119 /*
120 * the head refs are used to hold a lock on a given extent, which allows us
121 * to make sure that only one process is running the delayed refs
122 * at a time for a single extent. They also store the sum of all the
123 * reference count modifications we've queued up.
124 */
125 struct btrfs_delayed_ref_head {
126 u64 bytenr;
127 u64 num_bytes;
128 /*
129 * the mutex is held while running the refs, and it is also
130 * held when checking the sum of reference modifications.
131 */
132 struct mutex mutex;
133
134 refcount_t refs;
135
136 /* Protects 'ref_tree' and 'ref_add_list'. */
137 spinlock_t lock;
138 struct rb_root_cached ref_tree;
139 /* accumulate add BTRFS_ADD_DELAYED_REF nodes to this ref_add_list. */
140 struct list_head ref_add_list;
141
142 struct btrfs_delayed_extent_op *extent_op;
143
144 /*
145 * This is used to track the final ref_mod from all the refs associated
146 * with this head ref, this is not adjusted as delayed refs are run,
147 * this is meant to track if we need to do the csum accounting or not.
148 */
149 int total_ref_mod;
150
151 /*
152 * This is the current outstanding mod references for this bytenr. This
153 * is used with lookup_extent_info to get an accurate reference count
154 * for a bytenr, so it is adjusted as delayed refs are run so that any
155 * on disk reference count + ref_mod is accurate.
156 */
157 int ref_mod;
158
159 /*
160 * The root that triggered the allocation when must_insert_reserved is
161 * set to true.
162 */
163 u64 owning_root;
164
165 /*
166 * Track reserved bytes when setting must_insert_reserved. On success
167 * or cleanup, we will need to free the reservation.
168 */
169 u64 reserved_bytes;
170
171 /* Tree block level, for metadata only. */
172 u8 level;
173
174 /*
175 * when a new extent is allocated, it is just reserved in memory
176 * The actual extent isn't inserted into the extent allocation tree
177 * until the delayed ref is processed. must_insert_reserved is
178 * used to flag a delayed ref so the accounting can be updated
179 * when a full insert is done.
180 *
181 * It is possible the extent will be freed before it is ever
182 * inserted into the extent allocation tree. In this case
183 * we need to update the in ram accounting to properly reflect
184 * the free has happened.
185 */
186 bool must_insert_reserved;
187
188 bool is_data;
189 bool is_system;
190 bool processing;
191 /*
192 * Indicate if it's currently in the data structure that tracks head
193 * refs (struct btrfs_delayed_ref_root::head_refs).
194 */
195 bool tracked;
196 };
197
198 enum btrfs_delayed_ref_flags {
199 /* Indicate that we are flushing delayed refs for the commit */
200 BTRFS_DELAYED_REFS_FLUSHING,
201 };
202
203 struct btrfs_delayed_ref_root {
204 /*
205 * Track head references.
206 * The keys correspond to the logical address of the extent ("bytenr")
207 * right shifted by fs_info->sectorsize_bits. This is both to get a more
208 * dense index space (optimizes xarray structure) and because indexes in
209 * xarrays are of "unsigned long" type, meaning they are 32 bits wide on
210 * 32 bits platforms, limiting the extent range to 4G which is too low
211 * and makes it unusable (truncated index values) on 32 bits platforms.
212 * Protected by the spinlock 'lock' defined below.
213 */
214 struct xarray head_refs;
215
216 /*
217 * Track dirty extent records.
218 * The keys correspond to the logical address of the extent ("bytenr")
219 * right shifted by fs_info->sectorsize_bits, for same reasons as above.
220 */
221 struct xarray dirty_extents;
222
223 /*
224 * Protects the xarray head_refs, its entries and the following fields:
225 * num_heads, num_heads_ready, pending_csums and run_delayed_start.
226 */
227 spinlock_t lock;
228
229 /* Total number of head refs, protected by the spinlock 'lock'. */
230 unsigned long num_heads;
231
232 /*
233 * Total number of head refs ready for processing, protected by the
234 * spinlock 'lock'.
235 */
236 unsigned long num_heads_ready;
237
238 /*
239 * Track space reserved for deleting csums of data extents.
240 * Protected by the spinlock 'lock'.
241 */
242 u64 pending_csums;
243
244 unsigned long flags;
245
246 /*
247 * Track from which bytenr to start searching ref heads.
248 * Protected by the spinlock 'lock'.
249 */
250 u64 run_delayed_start;
251
252 /*
253 * To make qgroup to skip given root.
254 * This is for snapshot, as btrfs_qgroup_inherit() will manually
255 * modify counters for snapshot and its source, so we should skip
256 * the snapshot in new_root/old_roots or it will get calculated twice
257 */
258 u64 qgroup_to_skip;
259 };
260
261 enum btrfs_ref_type {
262 BTRFS_REF_NOT_SET,
263 BTRFS_REF_DATA,
264 BTRFS_REF_METADATA,
265 } __packed;
266
267 struct btrfs_ref {
268 enum btrfs_ref_type type;
269 enum btrfs_delayed_ref_action action;
270
271 /*
272 * Whether this extent should go through qgroup record.
273 *
274 * Normally false, but for certain cases like delayed subtree scan,
275 * setting this flag can hugely reduce qgroup overhead.
276 */
277 bool skip_qgroup;
278
279 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
280 /* Through which root is this modification. */
281 u64 real_root;
282 #endif
283 u64 bytenr;
284 u64 num_bytes;
285 u64 owning_root;
286
287 /*
288 * The root that owns the reference for this reference, this will be set
289 * or ->parent will be set, depending on what type of reference this is.
290 */
291 u64 ref_root;
292
293 /* Bytenr of the parent tree block */
294 u64 parent;
295 union {
296 struct btrfs_data_ref data_ref;
297 struct btrfs_tree_ref tree_ref;
298 };
299 };
300
301 extern struct kmem_cache *btrfs_delayed_ref_head_cachep;
302 extern struct kmem_cache *btrfs_delayed_ref_node_cachep;
303 extern struct kmem_cache *btrfs_delayed_extent_op_cachep;
304
305 int __init btrfs_delayed_ref_init(void);
306 void __cold btrfs_delayed_ref_exit(void);
307
btrfs_calc_delayed_ref_bytes(const struct btrfs_fs_info * fs_info,int num_delayed_refs)308 static inline u64 btrfs_calc_delayed_ref_bytes(const struct btrfs_fs_info *fs_info,
309 int num_delayed_refs)
310 {
311 u64 num_bytes;
312
313 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_delayed_refs);
314
315 /*
316 * We have to check the mount option here because we could be enabling
317 * the free space tree for the first time and don't have the compat_ro
318 * option set yet.
319 *
320 * We need extra reservations if we have the free space tree because
321 * we'll have to modify that tree as well.
322 */
323 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
324 num_bytes *= 2;
325
326 return num_bytes;
327 }
328
btrfs_calc_delayed_ref_csum_bytes(const struct btrfs_fs_info * fs_info,int num_csum_items)329 static inline u64 btrfs_calc_delayed_ref_csum_bytes(const struct btrfs_fs_info *fs_info,
330 int num_csum_items)
331 {
332 /*
333 * Deleting csum items does not result in new nodes/leaves and does not
334 * require changing the free space tree, only the csum tree, so this is
335 * all we need.
336 */
337 return btrfs_calc_metadata_size(fs_info, num_csum_items);
338 }
339
340 void btrfs_init_tree_ref(struct btrfs_ref *generic_ref, int level, u64 mod_root,
341 bool skip_qgroup);
342 void btrfs_init_data_ref(struct btrfs_ref *generic_ref, u64 ino, u64 offset,
343 u64 mod_root, bool skip_qgroup);
344
345 static inline struct btrfs_delayed_extent_op *
btrfs_alloc_delayed_extent_op(void)346 btrfs_alloc_delayed_extent_op(void)
347 {
348 return kmem_cache_alloc(btrfs_delayed_extent_op_cachep, GFP_NOFS);
349 }
350
351 static inline void
btrfs_free_delayed_extent_op(struct btrfs_delayed_extent_op * op)352 btrfs_free_delayed_extent_op(struct btrfs_delayed_extent_op *op)
353 {
354 if (op)
355 kmem_cache_free(btrfs_delayed_extent_op_cachep, op);
356 }
357
358 void btrfs_put_delayed_ref(struct btrfs_delayed_ref_node *ref);
359
btrfs_ref_head_to_space_flags(struct btrfs_delayed_ref_head * head_ref)360 static inline u64 btrfs_ref_head_to_space_flags(
361 struct btrfs_delayed_ref_head *head_ref)
362 {
363 if (head_ref->is_data)
364 return BTRFS_BLOCK_GROUP_DATA;
365 else if (head_ref->is_system)
366 return BTRFS_BLOCK_GROUP_SYSTEM;
367 return BTRFS_BLOCK_GROUP_METADATA;
368 }
369
btrfs_put_delayed_ref_head(struct btrfs_delayed_ref_head * head)370 static inline void btrfs_put_delayed_ref_head(struct btrfs_delayed_ref_head *head)
371 {
372 if (refcount_dec_and_test(&head->refs))
373 kmem_cache_free(btrfs_delayed_ref_head_cachep, head);
374 }
375
376 int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
377 struct btrfs_ref *generic_ref,
378 struct btrfs_delayed_extent_op *extent_op);
379 int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
380 struct btrfs_ref *generic_ref,
381 u64 reserved);
382 int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
383 u64 bytenr, u64 num_bytes, u8 level,
384 struct btrfs_delayed_extent_op *extent_op);
385 void btrfs_merge_delayed_refs(struct btrfs_fs_info *fs_info,
386 struct btrfs_delayed_ref_root *delayed_refs,
387 struct btrfs_delayed_ref_head *head);
388
389 struct btrfs_delayed_ref_head *
390 btrfs_find_delayed_ref_head(const struct btrfs_fs_info *fs_info,
391 struct btrfs_delayed_ref_root *delayed_refs,
392 u64 bytenr);
btrfs_delayed_ref_unlock(struct btrfs_delayed_ref_head * head)393 static inline void btrfs_delayed_ref_unlock(struct btrfs_delayed_ref_head *head)
394 {
395 mutex_unlock(&head->mutex);
396 }
397 void btrfs_delete_ref_head(const struct btrfs_fs_info *fs_info,
398 struct btrfs_delayed_ref_root *delayed_refs,
399 struct btrfs_delayed_ref_head *head);
400
401 struct btrfs_delayed_ref_head *btrfs_select_ref_head(
402 const struct btrfs_fs_info *fs_info,
403 struct btrfs_delayed_ref_root *delayed_refs);
404 void btrfs_unselect_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
405 struct btrfs_delayed_ref_head *head);
406 struct btrfs_delayed_ref_node *btrfs_select_delayed_ref(struct btrfs_delayed_ref_head *head);
407
408 int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq);
409
410 void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr_refs, int nr_csums);
411 void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans);
412 void btrfs_inc_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info);
413 void btrfs_dec_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info);
414 void btrfs_inc_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info);
415 void btrfs_dec_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info);
416 int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
417 enum btrfs_reserve_flush_enum flush);
418 bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info);
419 bool btrfs_find_delayed_tree_ref(struct btrfs_delayed_ref_head *head,
420 u64 root, u64 parent);
421 void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans);
422
btrfs_delayed_ref_owner(const struct btrfs_delayed_ref_node * node)423 static inline u64 btrfs_delayed_ref_owner(const struct btrfs_delayed_ref_node *node)
424 {
425 if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
426 node->type == BTRFS_SHARED_DATA_REF_KEY)
427 return node->data_ref.objectid;
428 return node->tree_ref.level;
429 }
430
btrfs_delayed_ref_offset(const struct btrfs_delayed_ref_node * node)431 static inline u64 btrfs_delayed_ref_offset(const struct btrfs_delayed_ref_node *node)
432 {
433 if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
434 node->type == BTRFS_SHARED_DATA_REF_KEY)
435 return node->data_ref.offset;
436 return 0;
437 }
438
btrfs_ref_type(const struct btrfs_ref * ref)439 static inline u8 btrfs_ref_type(const struct btrfs_ref *ref)
440 {
441 ASSERT(ref->type == BTRFS_REF_DATA || ref->type == BTRFS_REF_METADATA);
442
443 if (ref->type == BTRFS_REF_DATA) {
444 if (ref->parent)
445 return BTRFS_SHARED_DATA_REF_KEY;
446 else
447 return BTRFS_EXTENT_DATA_REF_KEY;
448 } else {
449 if (ref->parent)
450 return BTRFS_SHARED_BLOCK_REF_KEY;
451 else
452 return BTRFS_TREE_BLOCK_REF_KEY;
453 }
454
455 return 0;
456 }
457
458 #endif
459