xref: /linux/arch/x86/kvm/x86.c (revision 0bb933a9fcdee14ef82970caeb8617ad59a11303)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
29 #include "x86.h"
30 #include "cpuid.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 #include "lapic.h"
34 #include "xen.h"
35 #include "smm.h"
36 
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
40 #include <linux/fs.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/suspend.h>
63 #include <linux/smp.h>
64 
65 #include <trace/events/ipi.h>
66 #include <trace/events/kvm.h>
67 
68 #include <asm/debugreg.h>
69 #include <asm/msr.h>
70 #include <asm/desc.h>
71 #include <asm/mce.h>
72 #include <asm/pkru.h>
73 #include <linux/kernel_stat.h>
74 #include <asm/fpu/api.h>
75 #include <asm/fpu/xcr.h>
76 #include <asm/fpu/xstate.h>
77 #include <asm/pvclock.h>
78 #include <asm/div64.h>
79 #include <asm/irq_remapping.h>
80 #include <asm/mshyperv.h>
81 #include <asm/hypervisor.h>
82 #include <asm/tlbflush.h>
83 #include <asm/intel_pt.h>
84 #include <asm/emulate_prefix.h>
85 #include <asm/sgx.h>
86 #include <clocksource/hyperv_timer.h>
87 
88 #define CREATE_TRACE_POINTS
89 #include "trace.h"
90 
91 #define MAX_IO_MSRS 256
92 
93 /*
94  * Note, kvm_caps fields should *never* have default values, all fields must be
95  * recomputed from scratch during vendor module load, e.g. to account for a
96  * vendor module being reloaded with different module parameters.
97  */
98 struct kvm_caps kvm_caps __read_mostly;
99 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_caps);
100 
101 struct kvm_host_values kvm_host __read_mostly;
102 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_host);
103 
104 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
105 
106 #define emul_to_vcpu(ctxt) \
107 	((struct kvm_vcpu *)(ctxt)->vcpu)
108 
109 /* EFER defaults:
110  * - enable syscall per default because its emulated by KVM
111  * - enable LME and LMA per default on 64 bit KVM
112  */
113 #ifdef CONFIG_X86_64
114 static
115 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
116 #else
117 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
118 #endif
119 
120 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
121 
122 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
123 
124 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
125                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
126 
127 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
128 static void process_nmi(struct kvm_vcpu *vcpu);
129 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
130 static void store_regs(struct kvm_vcpu *vcpu);
131 static int sync_regs(struct kvm_vcpu *vcpu);
132 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
133 
134 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
135 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
136 
137 static DEFINE_MUTEX(vendor_module_lock);
138 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu);
139 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu);
140 
141 struct kvm_x86_ops kvm_x86_ops __read_mostly;
142 
143 #define KVM_X86_OP(func)					     \
144 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
145 				*(((struct kvm_x86_ops *)0)->func));
146 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
147 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
148 #include <asm/kvm-x86-ops.h>
149 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
150 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
151 
152 static bool __read_mostly ignore_msrs = 0;
153 module_param(ignore_msrs, bool, 0644);
154 
155 bool __read_mostly report_ignored_msrs = true;
156 module_param(report_ignored_msrs, bool, 0644);
157 EXPORT_SYMBOL_FOR_KVM_INTERNAL(report_ignored_msrs);
158 
159 unsigned int min_timer_period_us = 200;
160 module_param(min_timer_period_us, uint, 0644);
161 
162 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
163 static u32 __read_mostly tsc_tolerance_ppm = 250;
164 module_param(tsc_tolerance_ppm, uint, 0644);
165 
166 bool __read_mostly enable_vmware_backdoor = false;
167 module_param(enable_vmware_backdoor, bool, 0444);
168 EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_vmware_backdoor);
169 
170 /*
171  * Flags to manipulate forced emulation behavior (any non-zero value will
172  * enable forced emulation).
173  */
174 #define KVM_FEP_CLEAR_RFLAGS_RF	BIT(1)
175 static int __read_mostly force_emulation_prefix;
176 module_param(force_emulation_prefix, int, 0644);
177 
178 int __read_mostly pi_inject_timer = -1;
179 module_param(pi_inject_timer, bint, 0644);
180 
181 /* Enable/disable PMU virtualization */
182 bool __read_mostly enable_pmu = true;
183 EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_pmu);
184 module_param(enable_pmu, bool, 0444);
185 
186 bool __read_mostly eager_page_split = true;
187 module_param(eager_page_split, bool, 0644);
188 
189 /* Enable/disable SMT_RSB bug mitigation */
190 static bool __read_mostly mitigate_smt_rsb;
191 module_param(mitigate_smt_rsb, bool, 0444);
192 
193 /*
194  * Restoring the host value for MSRs that are only consumed when running in
195  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
196  * returns to userspace, i.e. the kernel can run with the guest's value.
197  */
198 #define KVM_MAX_NR_USER_RETURN_MSRS 16
199 
200 struct kvm_user_return_msrs {
201 	struct user_return_notifier urn;
202 	bool registered;
203 	struct kvm_user_return_msr_values {
204 		u64 host;
205 		u64 curr;
206 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
207 };
208 
209 u32 __read_mostly kvm_nr_uret_msrs;
210 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_nr_uret_msrs);
211 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
212 static DEFINE_PER_CPU(struct kvm_user_return_msrs, user_return_msrs);
213 
214 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
215 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
216 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
217 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
218 
219 #define XFEATURE_MASK_CET_ALL	(XFEATURE_MASK_CET_USER | XFEATURE_MASK_CET_KERNEL)
220 /*
221  * Note, KVM supports exposing PT to the guest, but does not support context
222  * switching PT via XSTATE (KVM's PT virtualization relies on perf; swapping
223  * PT via guest XSTATE would clobber perf state), i.e. KVM doesn't support
224  * IA32_XSS[bit 8] (guests can/must use RDMSR/WRMSR to save/restore PT MSRs).
225  */
226 #define KVM_SUPPORTED_XSS	(XFEATURE_MASK_CET_ALL)
227 
228 bool __read_mostly allow_smaller_maxphyaddr = 0;
229 EXPORT_SYMBOL_FOR_KVM_INTERNAL(allow_smaller_maxphyaddr);
230 
231 bool __read_mostly enable_apicv = true;
232 EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_apicv);
233 
234 bool __read_mostly enable_ipiv = true;
235 EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_ipiv);
236 
237 bool __read_mostly enable_device_posted_irqs = true;
238 EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_device_posted_irqs);
239 
240 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
241 	KVM_GENERIC_VM_STATS(),
242 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
243 	STATS_DESC_COUNTER(VM, mmu_pte_write),
244 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
245 	STATS_DESC_COUNTER(VM, mmu_flooded),
246 	STATS_DESC_COUNTER(VM, mmu_recycled),
247 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
248 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
249 	STATS_DESC_ICOUNTER(VM, pages_4k),
250 	STATS_DESC_ICOUNTER(VM, pages_2m),
251 	STATS_DESC_ICOUNTER(VM, pages_1g),
252 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
253 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
254 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
255 };
256 
257 const struct kvm_stats_header kvm_vm_stats_header = {
258 	.name_size = KVM_STATS_NAME_SIZE,
259 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
260 	.id_offset = sizeof(struct kvm_stats_header),
261 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
262 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
263 		       sizeof(kvm_vm_stats_desc),
264 };
265 
266 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
267 	KVM_GENERIC_VCPU_STATS(),
268 	STATS_DESC_COUNTER(VCPU, pf_taken),
269 	STATS_DESC_COUNTER(VCPU, pf_fixed),
270 	STATS_DESC_COUNTER(VCPU, pf_emulate),
271 	STATS_DESC_COUNTER(VCPU, pf_spurious),
272 	STATS_DESC_COUNTER(VCPU, pf_fast),
273 	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
274 	STATS_DESC_COUNTER(VCPU, pf_guest),
275 	STATS_DESC_COUNTER(VCPU, tlb_flush),
276 	STATS_DESC_COUNTER(VCPU, invlpg),
277 	STATS_DESC_COUNTER(VCPU, exits),
278 	STATS_DESC_COUNTER(VCPU, io_exits),
279 	STATS_DESC_COUNTER(VCPU, mmio_exits),
280 	STATS_DESC_COUNTER(VCPU, signal_exits),
281 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
282 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
283 	STATS_DESC_COUNTER(VCPU, l1d_flush),
284 	STATS_DESC_COUNTER(VCPU, halt_exits),
285 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
286 	STATS_DESC_COUNTER(VCPU, irq_exits),
287 	STATS_DESC_COUNTER(VCPU, host_state_reload),
288 	STATS_DESC_COUNTER(VCPU, fpu_reload),
289 	STATS_DESC_COUNTER(VCPU, insn_emulation),
290 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
291 	STATS_DESC_COUNTER(VCPU, hypercalls),
292 	STATS_DESC_COUNTER(VCPU, irq_injections),
293 	STATS_DESC_COUNTER(VCPU, nmi_injections),
294 	STATS_DESC_COUNTER(VCPU, req_event),
295 	STATS_DESC_COUNTER(VCPU, nested_run),
296 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
297 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
298 	STATS_DESC_COUNTER(VCPU, preemption_reported),
299 	STATS_DESC_COUNTER(VCPU, preemption_other),
300 	STATS_DESC_IBOOLEAN(VCPU, guest_mode),
301 	STATS_DESC_COUNTER(VCPU, notify_window_exits),
302 };
303 
304 const struct kvm_stats_header kvm_vcpu_stats_header = {
305 	.name_size = KVM_STATS_NAME_SIZE,
306 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
307 	.id_offset = sizeof(struct kvm_stats_header),
308 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
309 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
310 		       sizeof(kvm_vcpu_stats_desc),
311 };
312 
313 static struct kmem_cache *x86_emulator_cache;
314 
315 /*
316  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
317  * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
318  * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.  msrs_to_save holds MSRs that
319  * require host support, i.e. should be probed via RDMSR.  emulated_msrs holds
320  * MSRs that KVM emulates without strictly requiring host support.
321  * msr_based_features holds MSRs that enumerate features, i.e. are effectively
322  * CPUID leafs.  Note, msr_based_features isn't mutually exclusive with
323  * msrs_to_save and emulated_msrs.
324  */
325 
326 static const u32 msrs_to_save_base[] = {
327 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
328 	MSR_STAR,
329 #ifdef CONFIG_X86_64
330 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
331 #endif
332 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
333 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
334 	MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
335 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
336 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
337 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
338 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
339 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
340 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
341 	MSR_IA32_UMWAIT_CONTROL,
342 
343 	MSR_IA32_XFD, MSR_IA32_XFD_ERR, MSR_IA32_XSS,
344 
345 	MSR_IA32_U_CET, MSR_IA32_S_CET,
346 	MSR_IA32_PL0_SSP, MSR_IA32_PL1_SSP, MSR_IA32_PL2_SSP,
347 	MSR_IA32_PL3_SSP, MSR_IA32_INT_SSP_TAB,
348 };
349 
350 static const u32 msrs_to_save_pmu[] = {
351 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
352 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
353 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
354 	MSR_CORE_PERF_GLOBAL_CTRL,
355 	MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
356 
357 	/* This part of MSRs should match KVM_MAX_NR_INTEL_GP_COUNTERS. */
358 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
359 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
360 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
361 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
362 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
363 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
364 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
365 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
366 
367 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
368 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
369 
370 	/* This part of MSRs should match KVM_MAX_NR_AMD_GP_COUNTERS. */
371 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
372 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
373 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
374 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
375 
376 	MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
377 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
378 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
379 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_SET,
380 };
381 
382 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
383 			ARRAY_SIZE(msrs_to_save_pmu)];
384 static unsigned num_msrs_to_save;
385 
386 static const u32 emulated_msrs_all[] = {
387 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
388 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
389 
390 #ifdef CONFIG_KVM_HYPERV
391 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
392 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
393 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
394 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
395 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
396 	HV_X64_MSR_RESET,
397 	HV_X64_MSR_VP_INDEX,
398 	HV_X64_MSR_VP_RUNTIME,
399 	HV_X64_MSR_SCONTROL,
400 	HV_X64_MSR_STIMER0_CONFIG,
401 	HV_X64_MSR_VP_ASSIST_PAGE,
402 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
403 	HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
404 	HV_X64_MSR_SYNDBG_OPTIONS,
405 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
406 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
407 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
408 #endif
409 
410 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
411 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
412 
413 	MSR_IA32_TSC_ADJUST,
414 	MSR_IA32_TSC_DEADLINE,
415 	MSR_IA32_ARCH_CAPABILITIES,
416 	MSR_IA32_PERF_CAPABILITIES,
417 	MSR_IA32_MISC_ENABLE,
418 	MSR_IA32_MCG_STATUS,
419 	MSR_IA32_MCG_CTL,
420 	MSR_IA32_MCG_EXT_CTL,
421 	MSR_IA32_SMBASE,
422 	MSR_SMI_COUNT,
423 	MSR_PLATFORM_INFO,
424 	MSR_MISC_FEATURES_ENABLES,
425 	MSR_AMD64_VIRT_SPEC_CTRL,
426 	MSR_AMD64_TSC_RATIO,
427 	MSR_IA32_POWER_CTL,
428 	MSR_IA32_UCODE_REV,
429 
430 	/*
431 	 * KVM always supports the "true" VMX control MSRs, even if the host
432 	 * does not.  The VMX MSRs as a whole are considered "emulated" as KVM
433 	 * doesn't strictly require them to exist in the host (ignoring that
434 	 * KVM would refuse to load in the first place if the core set of MSRs
435 	 * aren't supported).
436 	 */
437 	MSR_IA32_VMX_BASIC,
438 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
439 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
440 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
441 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
442 	MSR_IA32_VMX_MISC,
443 	MSR_IA32_VMX_CR0_FIXED0,
444 	MSR_IA32_VMX_CR4_FIXED0,
445 	MSR_IA32_VMX_VMCS_ENUM,
446 	MSR_IA32_VMX_PROCBASED_CTLS2,
447 	MSR_IA32_VMX_EPT_VPID_CAP,
448 	MSR_IA32_VMX_VMFUNC,
449 
450 	MSR_K7_HWCR,
451 	MSR_KVM_POLL_CONTROL,
452 };
453 
454 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
455 static unsigned num_emulated_msrs;
456 
457 /*
458  * List of MSRs that control the existence of MSR-based features, i.e. MSRs
459  * that are effectively CPUID leafs.  VMX MSRs are also included in the set of
460  * feature MSRs, but are handled separately to allow expedited lookups.
461  */
462 static const u32 msr_based_features_all_except_vmx[] = {
463 	MSR_AMD64_DE_CFG,
464 	MSR_IA32_UCODE_REV,
465 	MSR_IA32_ARCH_CAPABILITIES,
466 	MSR_IA32_PERF_CAPABILITIES,
467 	MSR_PLATFORM_INFO,
468 };
469 
470 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
471 			      (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
472 static unsigned int num_msr_based_features;
473 
474 /*
475  * All feature MSRs except uCode revID, which tracks the currently loaded uCode
476  * patch, are immutable once the vCPU model is defined.
477  */
kvm_is_immutable_feature_msr(u32 msr)478 static bool kvm_is_immutable_feature_msr(u32 msr)
479 {
480 	int i;
481 
482 	if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
483 		return true;
484 
485 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
486 		if (msr == msr_based_features_all_except_vmx[i])
487 			return msr != MSR_IA32_UCODE_REV;
488 	}
489 
490 	return false;
491 }
492 
kvm_is_advertised_msr(u32 msr_index)493 static bool kvm_is_advertised_msr(u32 msr_index)
494 {
495 	unsigned int i;
496 
497 	for (i = 0; i < num_msrs_to_save; i++) {
498 		if (msrs_to_save[i] == msr_index)
499 			return true;
500 	}
501 
502 	for (i = 0; i < num_emulated_msrs; i++) {
503 		if (emulated_msrs[i] == msr_index)
504 			return true;
505 	}
506 
507 	return false;
508 }
509 
510 typedef int (*msr_access_t)(struct kvm_vcpu *vcpu, u32 index, u64 *data,
511 			    bool host_initiated);
512 
kvm_do_msr_access(struct kvm_vcpu * vcpu,u32 msr,u64 * data,bool host_initiated,enum kvm_msr_access rw,msr_access_t msr_access_fn)513 static __always_inline int kvm_do_msr_access(struct kvm_vcpu *vcpu, u32 msr,
514 					     u64 *data, bool host_initiated,
515 					     enum kvm_msr_access rw,
516 					     msr_access_t msr_access_fn)
517 {
518 	const char *op = rw == MSR_TYPE_W ? "wrmsr" : "rdmsr";
519 	int ret;
520 
521 	BUILD_BUG_ON(rw != MSR_TYPE_R && rw != MSR_TYPE_W);
522 
523 	/*
524 	 * Zero the data on read failures to avoid leaking stack data to the
525 	 * guest and/or userspace, e.g. if the failure is ignored below.
526 	 */
527 	ret = msr_access_fn(vcpu, msr, data, host_initiated);
528 	if (ret && rw == MSR_TYPE_R)
529 		*data = 0;
530 
531 	if (ret != KVM_MSR_RET_UNSUPPORTED)
532 		return ret;
533 
534 	/*
535 	 * Userspace is allowed to read MSRs, and write '0' to MSRs, that KVM
536 	 * advertises to userspace, even if an MSR isn't fully supported.
537 	 * Simply check that @data is '0', which covers both the write '0' case
538 	 * and all reads (in which case @data is zeroed on failure; see above).
539 	 */
540 	if (host_initiated && !*data && kvm_is_advertised_msr(msr))
541 		return 0;
542 
543 	if (!ignore_msrs) {
544 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
545 				      op, msr, *data);
546 		return ret;
547 	}
548 
549 	if (report_ignored_msrs)
550 		kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", op, msr, *data);
551 
552 	return 0;
553 }
554 
kvm_alloc_emulator_cache(void)555 static struct kmem_cache *kvm_alloc_emulator_cache(void)
556 {
557 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
558 	unsigned int size = sizeof(struct x86_emulate_ctxt);
559 
560 	return kmem_cache_create_usercopy("x86_emulator", size,
561 					  __alignof__(struct x86_emulate_ctxt),
562 					  SLAB_ACCOUNT, useroffset,
563 					  size - useroffset, NULL);
564 }
565 
566 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
567 
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)568 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
569 {
570 	int i;
571 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
572 		vcpu->arch.apf.gfns[i] = ~0;
573 }
574 
kvm_destroy_user_return_msrs(void)575 static void kvm_destroy_user_return_msrs(void)
576 {
577 	int cpu;
578 
579 	for_each_possible_cpu(cpu)
580 		WARN_ON_ONCE(per_cpu(user_return_msrs, cpu).registered);
581 
582 	kvm_nr_uret_msrs = 0;
583 }
584 
kvm_on_user_return(struct user_return_notifier * urn)585 static void kvm_on_user_return(struct user_return_notifier *urn)
586 {
587 	unsigned slot;
588 	struct kvm_user_return_msrs *msrs
589 		= container_of(urn, struct kvm_user_return_msrs, urn);
590 	struct kvm_user_return_msr_values *values;
591 
592 	msrs->registered = false;
593 	user_return_notifier_unregister(urn);
594 
595 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
596 		values = &msrs->values[slot];
597 		if (values->host != values->curr) {
598 			wrmsrq(kvm_uret_msrs_list[slot], values->host);
599 			values->curr = values->host;
600 		}
601 	}
602 }
603 
kvm_probe_user_return_msr(u32 msr)604 static int kvm_probe_user_return_msr(u32 msr)
605 {
606 	u64 val;
607 	int ret;
608 
609 	preempt_disable();
610 	ret = rdmsrq_safe(msr, &val);
611 	if (ret)
612 		goto out;
613 	ret = wrmsrq_safe(msr, val);
614 out:
615 	preempt_enable();
616 	return ret;
617 }
618 
kvm_add_user_return_msr(u32 msr)619 int kvm_add_user_return_msr(u32 msr)
620 {
621 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
622 
623 	if (kvm_probe_user_return_msr(msr))
624 		return -1;
625 
626 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
627 	return kvm_nr_uret_msrs++;
628 }
629 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_add_user_return_msr);
630 
kvm_find_user_return_msr(u32 msr)631 int kvm_find_user_return_msr(u32 msr)
632 {
633 	int i;
634 
635 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
636 		if (kvm_uret_msrs_list[i] == msr)
637 			return i;
638 	}
639 	return -1;
640 }
641 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_find_user_return_msr);
642 
kvm_user_return_msr_cpu_online(void)643 static void kvm_user_return_msr_cpu_online(void)
644 {
645 	struct kvm_user_return_msrs *msrs = this_cpu_ptr(&user_return_msrs);
646 	u64 value;
647 	int i;
648 
649 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
650 		rdmsrq_safe(kvm_uret_msrs_list[i], &value);
651 		msrs->values[i].host = value;
652 		msrs->values[i].curr = value;
653 	}
654 }
655 
kvm_user_return_register_notifier(struct kvm_user_return_msrs * msrs)656 static void kvm_user_return_register_notifier(struct kvm_user_return_msrs *msrs)
657 {
658 	if (!msrs->registered) {
659 		msrs->urn.on_user_return = kvm_on_user_return;
660 		user_return_notifier_register(&msrs->urn);
661 		msrs->registered = true;
662 	}
663 }
664 
kvm_set_user_return_msr(unsigned slot,u64 value,u64 mask)665 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
666 {
667 	struct kvm_user_return_msrs *msrs = this_cpu_ptr(&user_return_msrs);
668 	int err;
669 
670 	value = (value & mask) | (msrs->values[slot].host & ~mask);
671 	if (value == msrs->values[slot].curr)
672 		return 0;
673 	err = wrmsrq_safe(kvm_uret_msrs_list[slot], value);
674 	if (err)
675 		return 1;
676 
677 	msrs->values[slot].curr = value;
678 	kvm_user_return_register_notifier(msrs);
679 	return 0;
680 }
681 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_user_return_msr);
682 
kvm_get_user_return_msr(unsigned int slot)683 u64 kvm_get_user_return_msr(unsigned int slot)
684 {
685 	return this_cpu_ptr(&user_return_msrs)->values[slot].curr;
686 }
687 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_user_return_msr);
688 
drop_user_return_notifiers(void)689 static void drop_user_return_notifiers(void)
690 {
691 	struct kvm_user_return_msrs *msrs = this_cpu_ptr(&user_return_msrs);
692 
693 	if (msrs->registered)
694 		kvm_on_user_return(&msrs->urn);
695 }
696 
697 /*
698  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
699  *
700  * Hardware virtualization extension instructions may fault if a reboot turns
701  * off virtualization while processes are running.  Usually after catching the
702  * fault we just panic; during reboot instead the instruction is ignored.
703  */
kvm_spurious_fault(void)704 noinstr void kvm_spurious_fault(void)
705 {
706 	/* Fault while not rebooting.  We want the trace. */
707 	BUG_ON(!kvm_rebooting);
708 }
709 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_spurious_fault);
710 
711 #define EXCPT_BENIGN		0
712 #define EXCPT_CONTRIBUTORY	1
713 #define EXCPT_PF		2
714 
exception_class(int vector)715 static int exception_class(int vector)
716 {
717 	switch (vector) {
718 	case PF_VECTOR:
719 		return EXCPT_PF;
720 	case DE_VECTOR:
721 	case TS_VECTOR:
722 	case NP_VECTOR:
723 	case SS_VECTOR:
724 	case GP_VECTOR:
725 		return EXCPT_CONTRIBUTORY;
726 	default:
727 		break;
728 	}
729 	return EXCPT_BENIGN;
730 }
731 
732 #define EXCPT_FAULT		0
733 #define EXCPT_TRAP		1
734 #define EXCPT_ABORT		2
735 #define EXCPT_INTERRUPT		3
736 #define EXCPT_DB		4
737 
exception_type(int vector)738 static int exception_type(int vector)
739 {
740 	unsigned int mask;
741 
742 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
743 		return EXCPT_INTERRUPT;
744 
745 	mask = 1 << vector;
746 
747 	/*
748 	 * #DBs can be trap-like or fault-like, the caller must check other CPU
749 	 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
750 	 */
751 	if (mask & (1 << DB_VECTOR))
752 		return EXCPT_DB;
753 
754 	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
755 		return EXCPT_TRAP;
756 
757 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
758 		return EXCPT_ABORT;
759 
760 	/* Reserved exceptions will result in fault */
761 	return EXCPT_FAULT;
762 }
763 
kvm_deliver_exception_payload(struct kvm_vcpu * vcpu,struct kvm_queued_exception * ex)764 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
765 				   struct kvm_queued_exception *ex)
766 {
767 	if (!ex->has_payload)
768 		return;
769 
770 	switch (ex->vector) {
771 	case DB_VECTOR:
772 		/*
773 		 * "Certain debug exceptions may clear bit 0-3.  The
774 		 * remaining contents of the DR6 register are never
775 		 * cleared by the processor".
776 		 */
777 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
778 		/*
779 		 * In order to reflect the #DB exception payload in guest
780 		 * dr6, three components need to be considered: active low
781 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
782 		 * DR6_BS and DR6_BT)
783 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
784 		 * In the target guest dr6:
785 		 * FIXED_1 bits should always be set.
786 		 * Active low bits should be cleared if 1-setting in payload.
787 		 * Active high bits should be set if 1-setting in payload.
788 		 *
789 		 * Note, the payload is compatible with the pending debug
790 		 * exceptions/exit qualification under VMX, that active_low bits
791 		 * are active high in payload.
792 		 * So they need to be flipped for DR6.
793 		 */
794 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
795 		vcpu->arch.dr6 |= ex->payload;
796 		vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
797 
798 		/*
799 		 * The #DB payload is defined as compatible with the 'pending
800 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
801 		 * defined in the 'pending debug exceptions' field (enabled
802 		 * breakpoint), it is reserved and must be zero in DR6.
803 		 */
804 		vcpu->arch.dr6 &= ~BIT(12);
805 		break;
806 	case PF_VECTOR:
807 		vcpu->arch.cr2 = ex->payload;
808 		break;
809 	}
810 
811 	ex->has_payload = false;
812 	ex->payload = 0;
813 }
814 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_deliver_exception_payload);
815 
kvm_queue_exception_vmexit(struct kvm_vcpu * vcpu,unsigned int vector,bool has_error_code,u32 error_code,bool has_payload,unsigned long payload)816 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
817 				       bool has_error_code, u32 error_code,
818 				       bool has_payload, unsigned long payload)
819 {
820 	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
821 
822 	ex->vector = vector;
823 	ex->injected = false;
824 	ex->pending = true;
825 	ex->has_error_code = has_error_code;
826 	ex->error_code = error_code;
827 	ex->has_payload = has_payload;
828 	ex->payload = payload;
829 }
830 
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned int nr,bool has_error,u32 error_code,bool has_payload,unsigned long payload)831 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, unsigned int nr,
832 				   bool has_error, u32 error_code,
833 				   bool has_payload, unsigned long payload)
834 {
835 	u32 prev_nr;
836 	int class1, class2;
837 
838 	kvm_make_request(KVM_REQ_EVENT, vcpu);
839 
840 	/*
841 	 * If the exception is destined for L2, morph it to a VM-Exit if L1
842 	 * wants to intercept the exception.
843 	 */
844 	if (is_guest_mode(vcpu) &&
845 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
846 		kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
847 					   has_payload, payload);
848 		return;
849 	}
850 
851 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
852 	queue:
853 		vcpu->arch.exception.pending = true;
854 		vcpu->arch.exception.injected = false;
855 
856 		vcpu->arch.exception.has_error_code = has_error;
857 		vcpu->arch.exception.vector = nr;
858 		vcpu->arch.exception.error_code = error_code;
859 		vcpu->arch.exception.has_payload = has_payload;
860 		vcpu->arch.exception.payload = payload;
861 		if (!is_guest_mode(vcpu))
862 			kvm_deliver_exception_payload(vcpu,
863 						      &vcpu->arch.exception);
864 		return;
865 	}
866 
867 	/* to check exception */
868 	prev_nr = vcpu->arch.exception.vector;
869 	if (prev_nr == DF_VECTOR) {
870 		/* triple fault -> shutdown */
871 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
872 		return;
873 	}
874 	class1 = exception_class(prev_nr);
875 	class2 = exception_class(nr);
876 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
877 	    (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
878 		/*
879 		 * Synthesize #DF.  Clear the previously injected or pending
880 		 * exception so as not to incorrectly trigger shutdown.
881 		 */
882 		vcpu->arch.exception.injected = false;
883 		vcpu->arch.exception.pending = false;
884 
885 		kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
886 	} else {
887 		/* replace previous exception with a new one in a hope
888 		   that instruction re-execution will regenerate lost
889 		   exception */
890 		goto queue;
891 	}
892 }
893 
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)894 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
895 {
896 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0);
897 }
898 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_queue_exception);
899 
900 
kvm_queue_exception_p(struct kvm_vcpu * vcpu,unsigned nr,unsigned long payload)901 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
902 			   unsigned long payload)
903 {
904 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload);
905 }
906 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_queue_exception_p);
907 
kvm_queue_exception_e_p(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code,unsigned long payload)908 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
909 				    u32 error_code, unsigned long payload)
910 {
911 	kvm_multiple_exception(vcpu, nr, true, error_code, true, payload);
912 }
913 
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned int nr,bool has_error_code,u32 error_code)914 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr,
915 			   bool has_error_code, u32 error_code)
916 {
917 
918 	/*
919 	 * On VM-Entry, an exception can be pending if and only if event
920 	 * injection was blocked by nested_run_pending.  In that case, however,
921 	 * vcpu_enter_guest() requests an immediate exit, and the guest
922 	 * shouldn't proceed far enough to need reinjection.
923 	 */
924 	WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
925 
926 	/*
927 	 * Do not check for interception when injecting an event for L2, as the
928 	 * exception was checked for intercept when it was original queued, and
929 	 * re-checking is incorrect if _L1_ injected the exception, in which
930 	 * case it's exempt from interception.
931 	 */
932 	kvm_make_request(KVM_REQ_EVENT, vcpu);
933 
934 	vcpu->arch.exception.injected = true;
935 	vcpu->arch.exception.has_error_code = has_error_code;
936 	vcpu->arch.exception.vector = nr;
937 	vcpu->arch.exception.error_code = error_code;
938 	vcpu->arch.exception.has_payload = false;
939 	vcpu->arch.exception.payload = 0;
940 }
941 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_requeue_exception);
942 
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)943 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
944 {
945 	if (err)
946 		kvm_inject_gp(vcpu, 0);
947 	else
948 		return kvm_skip_emulated_instruction(vcpu);
949 
950 	return 1;
951 }
952 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_complete_insn_gp);
953 
complete_emulated_insn_gp(struct kvm_vcpu * vcpu,int err)954 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
955 {
956 	if (err) {
957 		kvm_inject_gp(vcpu, 0);
958 		return 1;
959 	}
960 
961 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
962 				       EMULTYPE_COMPLETE_USER_EXIT);
963 }
964 
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)965 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
966 {
967 	++vcpu->stat.pf_guest;
968 
969 	/*
970 	 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
971 	 * whether or not L1 wants to intercept "regular" #PF.
972 	 */
973 	if (is_guest_mode(vcpu) && fault->async_page_fault)
974 		kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
975 					   true, fault->error_code,
976 					   true, fault->address);
977 	else
978 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
979 					fault->address);
980 }
981 
kvm_inject_emulated_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)982 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
983 				    struct x86_exception *fault)
984 {
985 	struct kvm_mmu *fault_mmu;
986 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
987 
988 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
989 					       vcpu->arch.walk_mmu;
990 
991 	/*
992 	 * Invalidate the TLB entry for the faulting address, if it exists,
993 	 * else the access will fault indefinitely (and to emulate hardware).
994 	 */
995 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
996 	    !(fault->error_code & PFERR_RSVD_MASK))
997 		kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
998 					KVM_MMU_ROOT_CURRENT);
999 
1000 	fault_mmu->inject_page_fault(vcpu, fault);
1001 }
1002 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_inject_emulated_page_fault);
1003 
kvm_inject_nmi(struct kvm_vcpu * vcpu)1004 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
1005 {
1006 	atomic_inc(&vcpu->arch.nmi_queued);
1007 	kvm_make_request(KVM_REQ_NMI, vcpu);
1008 }
1009 
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)1010 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
1011 {
1012 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0);
1013 }
1014 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_queue_exception_e);
1015 
1016 /*
1017  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
1018  * a #GP and return false.
1019  */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)1020 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
1021 {
1022 	if (kvm_x86_call(get_cpl)(vcpu) <= required_cpl)
1023 		return true;
1024 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
1025 	return false;
1026 }
1027 
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)1028 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
1029 {
1030 	if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
1031 		return true;
1032 
1033 	kvm_queue_exception(vcpu, UD_VECTOR);
1034 	return false;
1035 }
1036 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_require_dr);
1037 
kvm_pv_async_pf_enabled(struct kvm_vcpu * vcpu)1038 static bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
1039 {
1040 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
1041 
1042 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
1043 }
1044 
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)1045 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
1046 {
1047 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
1048 }
1049 
1050 /*
1051  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
1052  */
load_pdptrs(struct kvm_vcpu * vcpu,unsigned long cr3)1053 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
1054 {
1055 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
1056 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
1057 	gpa_t real_gpa;
1058 	int i;
1059 	int ret;
1060 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
1061 
1062 	/*
1063 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
1064 	 * to an L1 GPA.
1065 	 */
1066 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
1067 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
1068 	if (real_gpa == INVALID_GPA)
1069 		return 0;
1070 
1071 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
1072 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
1073 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
1074 	if (ret < 0)
1075 		return 0;
1076 
1077 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
1078 		if ((pdpte[i] & PT_PRESENT_MASK) &&
1079 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
1080 			return 0;
1081 		}
1082 	}
1083 
1084 	/*
1085 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
1086 	 * Shadow page roots need to be reconstructed instead.
1087 	 */
1088 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
1089 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
1090 
1091 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
1092 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
1093 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
1094 	vcpu->arch.pdptrs_from_userspace = false;
1095 
1096 	return 1;
1097 }
1098 EXPORT_SYMBOL_FOR_KVM_INTERNAL(load_pdptrs);
1099 
kvm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1100 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1101 {
1102 #ifdef CONFIG_X86_64
1103 	if (cr0 & 0xffffffff00000000UL)
1104 		return false;
1105 #endif
1106 
1107 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
1108 		return false;
1109 
1110 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
1111 		return false;
1112 
1113 	return kvm_x86_call(is_valid_cr0)(vcpu, cr0);
1114 }
1115 
kvm_post_set_cr0(struct kvm_vcpu * vcpu,unsigned long old_cr0,unsigned long cr0)1116 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
1117 {
1118 	/*
1119 	 * CR0.WP is incorporated into the MMU role, but only for non-nested,
1120 	 * indirect shadow MMUs.  If paging is disabled, no updates are needed
1121 	 * as there are no permission bits to emulate.  If TDP is enabled, the
1122 	 * MMU's metadata needs to be updated, e.g. so that emulating guest
1123 	 * translations does the right thing, but there's no need to unload the
1124 	 * root as CR0.WP doesn't affect SPTEs.
1125 	 */
1126 	if ((cr0 ^ old_cr0) == X86_CR0_WP) {
1127 		if (!(cr0 & X86_CR0_PG))
1128 			return;
1129 
1130 		if (tdp_enabled) {
1131 			kvm_init_mmu(vcpu);
1132 			return;
1133 		}
1134 	}
1135 
1136 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
1137 		/*
1138 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
1139 		 * perspective.
1140 		 */
1141 		if (!(cr0 & X86_CR0_PG))
1142 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1143 		/*
1144 		 * Check for async #PF completion events when enabling paging,
1145 		 * as the vCPU may have previously encountered async #PFs (it's
1146 		 * entirely legal for the guest to toggle paging on/off without
1147 		 * waiting for the async #PF queue to drain).
1148 		 */
1149 		else if (kvm_pv_async_pf_enabled(vcpu))
1150 			kvm_make_request(KVM_REQ_APF_READY, vcpu);
1151 	}
1152 
1153 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
1154 		kvm_mmu_reset_context(vcpu);
1155 }
1156 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_post_set_cr0);
1157 
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1158 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1159 {
1160 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
1161 
1162 	if (!kvm_is_valid_cr0(vcpu, cr0))
1163 		return 1;
1164 
1165 	cr0 |= X86_CR0_ET;
1166 
1167 	/* Write to CR0 reserved bits are ignored, even on Intel. */
1168 	cr0 &= ~CR0_RESERVED_BITS;
1169 
1170 #ifdef CONFIG_X86_64
1171 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
1172 	    (cr0 & X86_CR0_PG)) {
1173 		int cs_db, cs_l;
1174 
1175 		if (!is_pae(vcpu))
1176 			return 1;
1177 		kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
1178 		if (cs_l)
1179 			return 1;
1180 	}
1181 #endif
1182 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
1183 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
1184 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1185 		return 1;
1186 
1187 	if (!(cr0 & X86_CR0_PG) &&
1188 	    (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1189 		return 1;
1190 
1191 	if (!(cr0 & X86_CR0_WP) && kvm_is_cr4_bit_set(vcpu, X86_CR4_CET))
1192 		return 1;
1193 
1194 	kvm_x86_call(set_cr0)(vcpu, cr0);
1195 
1196 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
1197 
1198 	return 0;
1199 }
1200 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_cr0);
1201 
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)1202 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1203 {
1204 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1205 }
1206 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_lmsw);
1207 
kvm_load_xfeatures(struct kvm_vcpu * vcpu,bool load_guest)1208 static void kvm_load_xfeatures(struct kvm_vcpu *vcpu, bool load_guest)
1209 {
1210 	if (vcpu->arch.guest_state_protected)
1211 		return;
1212 
1213 	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE))
1214 		return;
1215 
1216 	if (vcpu->arch.xcr0 != kvm_host.xcr0)
1217 		xsetbv(XCR_XFEATURE_ENABLED_MASK,
1218 		       load_guest ? vcpu->arch.xcr0 : kvm_host.xcr0);
1219 
1220 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) &&
1221 	    vcpu->arch.ia32_xss != kvm_host.xss)
1222 		wrmsrq(MSR_IA32_XSS, load_guest ? vcpu->arch.ia32_xss : kvm_host.xss);
1223 }
1224 
kvm_load_guest_pkru(struct kvm_vcpu * vcpu)1225 static void kvm_load_guest_pkru(struct kvm_vcpu *vcpu)
1226 {
1227 	if (vcpu->arch.guest_state_protected)
1228 		return;
1229 
1230 	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1231 	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
1232 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1233 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1234 		wrpkru(vcpu->arch.pkru);
1235 }
1236 
kvm_load_host_pkru(struct kvm_vcpu * vcpu)1237 static void kvm_load_host_pkru(struct kvm_vcpu *vcpu)
1238 {
1239 	if (vcpu->arch.guest_state_protected)
1240 		return;
1241 
1242 	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1243 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1244 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1245 		vcpu->arch.pkru = rdpkru();
1246 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1247 			wrpkru(vcpu->arch.host_pkru);
1248 	}
1249 }
1250 
1251 #ifdef CONFIG_X86_64
kvm_guest_supported_xfd(struct kvm_vcpu * vcpu)1252 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1253 {
1254 	return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1255 }
1256 #endif
1257 
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)1258 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1259 {
1260 	u64 xcr0 = xcr;
1261 	u64 old_xcr0 = vcpu->arch.xcr0;
1262 	u64 valid_bits;
1263 
1264 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1265 	if (index != XCR_XFEATURE_ENABLED_MASK)
1266 		return 1;
1267 	if (!(xcr0 & XFEATURE_MASK_FP))
1268 		return 1;
1269 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1270 		return 1;
1271 
1272 	/*
1273 	 * Do not allow the guest to set bits that we do not support
1274 	 * saving.  However, xcr0 bit 0 is always set, even if the
1275 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1276 	 */
1277 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1278 	if (xcr0 & ~valid_bits)
1279 		return 1;
1280 
1281 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1282 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1283 		return 1;
1284 
1285 	if (xcr0 & XFEATURE_MASK_AVX512) {
1286 		if (!(xcr0 & XFEATURE_MASK_YMM))
1287 			return 1;
1288 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1289 			return 1;
1290 	}
1291 
1292 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1293 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1294 		return 1;
1295 
1296 	vcpu->arch.xcr0 = xcr0;
1297 
1298 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1299 		vcpu->arch.cpuid_dynamic_bits_dirty = true;
1300 	return 0;
1301 }
1302 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_set_xcr);
1303 
kvm_emulate_xsetbv(struct kvm_vcpu * vcpu)1304 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1305 {
1306 	/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1307 	if (kvm_x86_call(get_cpl)(vcpu) != 0 ||
1308 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1309 		kvm_inject_gp(vcpu, 0);
1310 		return 1;
1311 	}
1312 
1313 	return kvm_skip_emulated_instruction(vcpu);
1314 }
1315 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_xsetbv);
1316 
kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1317 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1318 {
1319 	return __kvm_is_valid_cr4(vcpu, cr4) &&
1320 	       kvm_x86_call(is_valid_cr4)(vcpu, cr4);
1321 }
1322 
kvm_post_set_cr4(struct kvm_vcpu * vcpu,unsigned long old_cr4,unsigned long cr4)1323 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1324 {
1325 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1326 		kvm_mmu_reset_context(vcpu);
1327 
1328 	/*
1329 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1330 	 * according to the SDM; however, stale prev_roots could be reused
1331 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1332 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1333 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1334 	 * so fall through.
1335 	 */
1336 	if (!tdp_enabled &&
1337 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1338 		kvm_mmu_unload(vcpu);
1339 
1340 	/*
1341 	 * The TLB has to be flushed for all PCIDs if any of the following
1342 	 * (architecturally required) changes happen:
1343 	 * - CR4.PCIDE is changed from 1 to 0
1344 	 * - CR4.PGE is toggled
1345 	 *
1346 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1347 	 */
1348 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1349 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1350 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1351 
1352 	/*
1353 	 * The TLB has to be flushed for the current PCID if any of the
1354 	 * following (architecturally required) changes happen:
1355 	 * - CR4.SMEP is changed from 0 to 1
1356 	 * - CR4.PAE is toggled
1357 	 */
1358 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1359 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1360 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1361 
1362 }
1363 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_post_set_cr4);
1364 
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1365 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1366 {
1367 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1368 
1369 	if (!kvm_is_valid_cr4(vcpu, cr4))
1370 		return 1;
1371 
1372 	if (is_long_mode(vcpu)) {
1373 		if (!(cr4 & X86_CR4_PAE))
1374 			return 1;
1375 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1376 			return 1;
1377 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1378 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1379 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1380 		return 1;
1381 
1382 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1383 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1384 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1385 			return 1;
1386 	}
1387 
1388 	if ((cr4 & X86_CR4_CET) && !kvm_is_cr0_bit_set(vcpu, X86_CR0_WP))
1389 		return 1;
1390 
1391 	kvm_x86_call(set_cr4)(vcpu, cr4);
1392 
1393 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1394 
1395 	return 0;
1396 }
1397 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_cr4);
1398 
kvm_invalidate_pcid(struct kvm_vcpu * vcpu,unsigned long pcid)1399 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1400 {
1401 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1402 	unsigned long roots_to_free = 0;
1403 	int i;
1404 
1405 	/*
1406 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1407 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1408 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1409 	 * the invalidation, but the guest's TLB entries need to be flushed as
1410 	 * the CPU may have cached entries in its TLB for the target PCID.
1411 	 */
1412 	if (unlikely(tdp_enabled)) {
1413 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1414 		return;
1415 	}
1416 
1417 	/*
1418 	 * If neither the current CR3 nor any of the prev_roots use the given
1419 	 * PCID, then nothing needs to be done here because a resync will
1420 	 * happen anyway before switching to any other CR3.
1421 	 */
1422 	if (kvm_get_active_pcid(vcpu) == pcid) {
1423 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1424 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1425 	}
1426 
1427 	/*
1428 	 * If PCID is disabled, there is no need to free prev_roots even if the
1429 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1430 	 * with PCIDE=0.
1431 	 */
1432 	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1433 		return;
1434 
1435 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1436 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1437 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1438 
1439 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1440 }
1441 
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1442 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1443 {
1444 	bool skip_tlb_flush = false;
1445 	unsigned long pcid = 0;
1446 #ifdef CONFIG_X86_64
1447 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1448 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1449 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1450 		pcid = cr3 & X86_CR3_PCID_MASK;
1451 	}
1452 #endif
1453 
1454 	/* PDPTRs are always reloaded for PAE paging. */
1455 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1456 		goto handle_tlb_flush;
1457 
1458 	/*
1459 	 * Do not condition the GPA check on long mode, this helper is used to
1460 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1461 	 * the current vCPU mode is accurate.
1462 	 */
1463 	if (!kvm_vcpu_is_legal_cr3(vcpu, cr3))
1464 		return 1;
1465 
1466 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1467 		return 1;
1468 
1469 	if (cr3 != kvm_read_cr3(vcpu))
1470 		kvm_mmu_new_pgd(vcpu, cr3);
1471 
1472 	vcpu->arch.cr3 = cr3;
1473 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1474 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1475 
1476 handle_tlb_flush:
1477 	/*
1478 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1479 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1480 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1481 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1482 	 * i.e. only PCID=0 can be relevant.
1483 	 */
1484 	if (!skip_tlb_flush)
1485 		kvm_invalidate_pcid(vcpu, pcid);
1486 
1487 	return 0;
1488 }
1489 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_cr3);
1490 
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)1491 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1492 {
1493 	if (cr8 & CR8_RESERVED_BITS)
1494 		return 1;
1495 	if (lapic_in_kernel(vcpu))
1496 		kvm_lapic_set_tpr(vcpu, cr8);
1497 	else
1498 		vcpu->arch.cr8 = cr8;
1499 	return 0;
1500 }
1501 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_cr8);
1502 
kvm_get_cr8(struct kvm_vcpu * vcpu)1503 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1504 {
1505 	if (lapic_in_kernel(vcpu))
1506 		return kvm_lapic_get_cr8(vcpu);
1507 	else
1508 		return vcpu->arch.cr8;
1509 }
1510 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_cr8);
1511 
kvm_update_dr0123(struct kvm_vcpu * vcpu)1512 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1513 {
1514 	int i;
1515 
1516 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1517 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1518 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1519 	}
1520 }
1521 
kvm_update_dr7(struct kvm_vcpu * vcpu)1522 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1523 {
1524 	unsigned long dr7;
1525 
1526 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1527 		dr7 = vcpu->arch.guest_debug_dr7;
1528 	else
1529 		dr7 = vcpu->arch.dr7;
1530 	kvm_x86_call(set_dr7)(vcpu, dr7);
1531 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1532 	if (dr7 & DR7_BP_EN_MASK)
1533 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1534 }
1535 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_update_dr7);
1536 
kvm_dr6_fixed(struct kvm_vcpu * vcpu)1537 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1538 {
1539 	u64 fixed = DR6_FIXED_1;
1540 
1541 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_RTM))
1542 		fixed |= DR6_RTM;
1543 
1544 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1545 		fixed |= DR6_BUS_LOCK;
1546 	return fixed;
1547 }
1548 
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1549 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1550 {
1551 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1552 
1553 	switch (dr) {
1554 	case 0 ... 3:
1555 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1556 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1557 			vcpu->arch.eff_db[dr] = val;
1558 		break;
1559 	case 4:
1560 	case 6:
1561 		if (!kvm_dr6_valid(val))
1562 			return 1; /* #GP */
1563 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1564 		break;
1565 	case 5:
1566 	default: /* 7 */
1567 		if (!kvm_dr7_valid(val))
1568 			return 1; /* #GP */
1569 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1570 		kvm_update_dr7(vcpu);
1571 		break;
1572 	}
1573 
1574 	return 0;
1575 }
1576 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_dr);
1577 
kvm_get_dr(struct kvm_vcpu * vcpu,int dr)1578 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr)
1579 {
1580 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1581 
1582 	switch (dr) {
1583 	case 0 ... 3:
1584 		return vcpu->arch.db[array_index_nospec(dr, size)];
1585 	case 4:
1586 	case 6:
1587 		return vcpu->arch.dr6;
1588 	case 5:
1589 	default: /* 7 */
1590 		return vcpu->arch.dr7;
1591 	}
1592 }
1593 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_dr);
1594 
kvm_emulate_rdpmc(struct kvm_vcpu * vcpu)1595 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1596 {
1597 	u32 pmc = kvm_rcx_read(vcpu);
1598 	u64 data;
1599 
1600 	if (kvm_pmu_rdpmc(vcpu, pmc, &data)) {
1601 		kvm_inject_gp(vcpu, 0);
1602 		return 1;
1603 	}
1604 
1605 	kvm_rax_write(vcpu, (u32)data);
1606 	kvm_rdx_write(vcpu, data >> 32);
1607 	return kvm_skip_emulated_instruction(vcpu);
1608 }
1609 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_rdpmc);
1610 
1611 /*
1612  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1613  * does not yet virtualize. These include:
1614  *   10 - MISC_PACKAGE_CTRLS
1615  *   11 - ENERGY_FILTERING_CTL
1616  *   12 - DOITM
1617  *   18 - FB_CLEAR_CTRL
1618  *   21 - XAPIC_DISABLE_STATUS
1619  *   23 - OVERCLOCKING_STATUS
1620  */
1621 
1622 #define KVM_SUPPORTED_ARCH_CAP \
1623 	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1624 	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1625 	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1626 	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1627 	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1628 	 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO | ARCH_CAP_ITS_NO)
1629 
kvm_get_arch_capabilities(void)1630 static u64 kvm_get_arch_capabilities(void)
1631 {
1632 	u64 data = kvm_host.arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1633 
1634 	/*
1635 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1636 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1637 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1638 	 * L1 guests, so it need not worry about its own (L2) guests.
1639 	 */
1640 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1641 
1642 	/*
1643 	 * If we're doing cache flushes (either "always" or "cond")
1644 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1645 	 * If an outer hypervisor is doing the cache flush for us
1646 	 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1647 	 * capability to the guest too, and if EPT is disabled we're not
1648 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1649 	 * require a nested hypervisor to do a flush of its own.
1650 	 */
1651 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1652 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1653 
1654 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1655 		data |= ARCH_CAP_RDCL_NO;
1656 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1657 		data |= ARCH_CAP_SSB_NO;
1658 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1659 		data |= ARCH_CAP_MDS_NO;
1660 	if (!boot_cpu_has_bug(X86_BUG_RFDS))
1661 		data |= ARCH_CAP_RFDS_NO;
1662 	if (!boot_cpu_has_bug(X86_BUG_ITS))
1663 		data |= ARCH_CAP_ITS_NO;
1664 
1665 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1666 		/*
1667 		 * If RTM=0 because the kernel has disabled TSX, the host might
1668 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1669 		 * and therefore knows that there cannot be TAA) but keep
1670 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1671 		 * and we want to allow migrating those guests to tsx=off hosts.
1672 		 */
1673 		data &= ~ARCH_CAP_TAA_NO;
1674 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1675 		data |= ARCH_CAP_TAA_NO;
1676 	} else {
1677 		/*
1678 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1679 		 * host so the guest can choose between disabling TSX or
1680 		 * using VERW to clear CPU buffers.
1681 		 */
1682 	}
1683 
1684 	if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1685 		data |= ARCH_CAP_GDS_NO;
1686 
1687 	return data;
1688 }
1689 
kvm_get_feature_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1690 static int kvm_get_feature_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1691 			       bool host_initiated)
1692 {
1693 	WARN_ON_ONCE(!host_initiated);
1694 
1695 	switch (index) {
1696 	case MSR_IA32_ARCH_CAPABILITIES:
1697 		*data = kvm_get_arch_capabilities();
1698 		break;
1699 	case MSR_IA32_PERF_CAPABILITIES:
1700 		*data = kvm_caps.supported_perf_cap;
1701 		break;
1702 	case MSR_PLATFORM_INFO:
1703 		*data = MSR_PLATFORM_INFO_CPUID_FAULT;
1704 		break;
1705 	case MSR_IA32_UCODE_REV:
1706 		rdmsrq_safe(index, data);
1707 		break;
1708 	default:
1709 		return kvm_x86_call(get_feature_msr)(index, data);
1710 	}
1711 	return 0;
1712 }
1713 
do_get_feature_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1714 static int do_get_feature_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1715 {
1716 	return kvm_do_msr_access(vcpu, index, data, true, MSR_TYPE_R,
1717 				 kvm_get_feature_msr);
1718 }
1719 
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1720 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1721 {
1722 	if (efer & EFER_AUTOIBRS && !guest_cpu_cap_has(vcpu, X86_FEATURE_AUTOIBRS))
1723 		return false;
1724 
1725 	if (efer & EFER_FFXSR && !guest_cpu_cap_has(vcpu, X86_FEATURE_FXSR_OPT))
1726 		return false;
1727 
1728 	if (efer & EFER_SVME && !guest_cpu_cap_has(vcpu, X86_FEATURE_SVM))
1729 		return false;
1730 
1731 	if (efer & (EFER_LME | EFER_LMA) &&
1732 	    !guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
1733 		return false;
1734 
1735 	if (efer & EFER_NX && !guest_cpu_cap_has(vcpu, X86_FEATURE_NX))
1736 		return false;
1737 
1738 	return true;
1739 
1740 }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1741 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1742 {
1743 	if (efer & efer_reserved_bits)
1744 		return false;
1745 
1746 	return __kvm_valid_efer(vcpu, efer);
1747 }
1748 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_valid_efer);
1749 
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1750 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1751 {
1752 	u64 old_efer = vcpu->arch.efer;
1753 	u64 efer = msr_info->data;
1754 	int r;
1755 
1756 	if (efer & efer_reserved_bits)
1757 		return 1;
1758 
1759 	if (!msr_info->host_initiated) {
1760 		if (!__kvm_valid_efer(vcpu, efer))
1761 			return 1;
1762 
1763 		if (is_paging(vcpu) &&
1764 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1765 			return 1;
1766 	}
1767 
1768 	efer &= ~EFER_LMA;
1769 	efer |= vcpu->arch.efer & EFER_LMA;
1770 
1771 	r = kvm_x86_call(set_efer)(vcpu, efer);
1772 	if (r) {
1773 		WARN_ON(r > 0);
1774 		return r;
1775 	}
1776 
1777 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1778 		kvm_mmu_reset_context(vcpu);
1779 
1780 	if (!static_cpu_has(X86_FEATURE_XSAVES) &&
1781 	    (efer & EFER_SVME))
1782 		kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
1783 
1784 	return 0;
1785 }
1786 
kvm_enable_efer_bits(u64 mask)1787 void kvm_enable_efer_bits(u64 mask)
1788 {
1789        efer_reserved_bits &= ~mask;
1790 }
1791 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_enable_efer_bits);
1792 
kvm_msr_allowed(struct kvm_vcpu * vcpu,u32 index,u32 type)1793 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1794 {
1795 	struct kvm_x86_msr_filter *msr_filter;
1796 	struct msr_bitmap_range *ranges;
1797 	struct kvm *kvm = vcpu->kvm;
1798 	bool allowed;
1799 	int idx;
1800 	u32 i;
1801 
1802 	/* x2APIC MSRs do not support filtering. */
1803 	if (index >= 0x800 && index <= 0x8ff)
1804 		return true;
1805 
1806 	idx = srcu_read_lock(&kvm->srcu);
1807 
1808 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1809 	if (!msr_filter) {
1810 		allowed = true;
1811 		goto out;
1812 	}
1813 
1814 	allowed = msr_filter->default_allow;
1815 	ranges = msr_filter->ranges;
1816 
1817 	for (i = 0; i < msr_filter->count; i++) {
1818 		u32 start = ranges[i].base;
1819 		u32 end = start + ranges[i].nmsrs;
1820 		u32 flags = ranges[i].flags;
1821 		unsigned long *bitmap = ranges[i].bitmap;
1822 
1823 		if ((index >= start) && (index < end) && (flags & type)) {
1824 			allowed = test_bit(index - start, bitmap);
1825 			break;
1826 		}
1827 	}
1828 
1829 out:
1830 	srcu_read_unlock(&kvm->srcu, idx);
1831 
1832 	return allowed;
1833 }
1834 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_msr_allowed);
1835 
1836 /*
1837  * Write @data into the MSR specified by @index.  Select MSR specific fault
1838  * checks are bypassed if @host_initiated is %true.
1839  * Returns 0 on success, non-0 otherwise.
1840  * Assumes vcpu_load() was already called.
1841  */
__kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1842 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1843 			 bool host_initiated)
1844 {
1845 	struct msr_data msr;
1846 
1847 	switch (index) {
1848 	case MSR_FS_BASE:
1849 	case MSR_GS_BASE:
1850 	case MSR_KERNEL_GS_BASE:
1851 	case MSR_CSTAR:
1852 	case MSR_LSTAR:
1853 		if (is_noncanonical_msr_address(data, vcpu))
1854 			return 1;
1855 		break;
1856 	case MSR_IA32_SYSENTER_EIP:
1857 	case MSR_IA32_SYSENTER_ESP:
1858 		/*
1859 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1860 		 * non-canonical address is written on Intel but not on
1861 		 * AMD (which ignores the top 32-bits, because it does
1862 		 * not implement 64-bit SYSENTER).
1863 		 *
1864 		 * 64-bit code should hence be able to write a non-canonical
1865 		 * value on AMD.  Making the address canonical ensures that
1866 		 * vmentry does not fail on Intel after writing a non-canonical
1867 		 * value, and that something deterministic happens if the guest
1868 		 * invokes 64-bit SYSENTER.
1869 		 */
1870 		data = __canonical_address(data, max_host_virt_addr_bits());
1871 		break;
1872 	case MSR_TSC_AUX:
1873 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1874 			return 1;
1875 
1876 		if (!host_initiated &&
1877 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
1878 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID))
1879 			return 1;
1880 
1881 		/*
1882 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1883 		 * incomplete and conflicting architectural behavior.  Current
1884 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1885 		 * reserved and always read as zeros.  Enforce Intel's reserved
1886 		 * bits check if the guest CPU is Intel compatible, otherwise
1887 		 * clear the bits.  This ensures cross-vendor migration will
1888 		 * provide consistent behavior for the guest.
1889 		 */
1890 		if (guest_cpuid_is_intel_compatible(vcpu) && (data >> 32) != 0)
1891 			return 1;
1892 
1893 		data = (u32)data;
1894 		break;
1895 	case MSR_IA32_U_CET:
1896 	case MSR_IA32_S_CET:
1897 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) &&
1898 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_IBT))
1899 			return KVM_MSR_RET_UNSUPPORTED;
1900 		if (!kvm_is_valid_u_s_cet(vcpu, data))
1901 			return 1;
1902 		break;
1903 	case MSR_KVM_INTERNAL_GUEST_SSP:
1904 		if (!host_initiated)
1905 			return 1;
1906 		fallthrough;
1907 		/*
1908 		 * Note that the MSR emulation here is flawed when a vCPU
1909 		 * doesn't support the Intel 64 architecture. The expected
1910 		 * architectural behavior in this case is that the upper 32
1911 		 * bits do not exist and should always read '0'. However,
1912 		 * because the actual hardware on which the virtual CPU is
1913 		 * running does support Intel 64, XRSTORS/XSAVES in the
1914 		 * guest could observe behavior that violates the
1915 		 * architecture. Intercepting XRSTORS/XSAVES for this
1916 		 * special case isn't deemed worthwhile.
1917 		 */
1918 	case MSR_IA32_PL0_SSP ... MSR_IA32_INT_SSP_TAB:
1919 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK))
1920 			return KVM_MSR_RET_UNSUPPORTED;
1921 		/*
1922 		 * MSR_IA32_INT_SSP_TAB is not present on processors that do
1923 		 * not support Intel 64 architecture.
1924 		 */
1925 		if (index == MSR_IA32_INT_SSP_TAB && !guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
1926 			return KVM_MSR_RET_UNSUPPORTED;
1927 		if (is_noncanonical_msr_address(data, vcpu))
1928 			return 1;
1929 		/* All SSP MSRs except MSR_IA32_INT_SSP_TAB must be 4-byte aligned */
1930 		if (index != MSR_IA32_INT_SSP_TAB && !IS_ALIGNED(data, 4))
1931 			return 1;
1932 		break;
1933 	}
1934 
1935 	msr.data = data;
1936 	msr.index = index;
1937 	msr.host_initiated = host_initiated;
1938 
1939 	return kvm_x86_call(set_msr)(vcpu, &msr);
1940 }
1941 
_kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1942 static int _kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1943 			bool host_initiated)
1944 {
1945 	return __kvm_set_msr(vcpu, index, *data, host_initiated);
1946 }
1947 
kvm_set_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1948 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1949 				     u32 index, u64 data, bool host_initiated)
1950 {
1951 	return kvm_do_msr_access(vcpu, index, &data, host_initiated, MSR_TYPE_W,
1952 				 _kvm_set_msr);
1953 }
1954 
1955 /*
1956  * Read the MSR specified by @index into @data.  Select MSR specific fault
1957  * checks are bypassed if @host_initiated is %true.
1958  * Returns 0 on success, non-0 otherwise.
1959  * Assumes vcpu_load() was already called.
1960  */
__kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1961 static int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1962 			 bool host_initiated)
1963 {
1964 	struct msr_data msr;
1965 	int ret;
1966 
1967 	switch (index) {
1968 	case MSR_TSC_AUX:
1969 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1970 			return 1;
1971 
1972 		if (!host_initiated &&
1973 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
1974 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID))
1975 			return 1;
1976 		break;
1977 	case MSR_IA32_U_CET:
1978 	case MSR_IA32_S_CET:
1979 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) &&
1980 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_IBT))
1981 			return KVM_MSR_RET_UNSUPPORTED;
1982 		break;
1983 	case MSR_KVM_INTERNAL_GUEST_SSP:
1984 		if (!host_initiated)
1985 			return 1;
1986 		fallthrough;
1987 	case MSR_IA32_PL0_SSP ... MSR_IA32_INT_SSP_TAB:
1988 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK))
1989 			return KVM_MSR_RET_UNSUPPORTED;
1990 		break;
1991 	}
1992 
1993 	msr.index = index;
1994 	msr.host_initiated = host_initiated;
1995 
1996 	ret = kvm_x86_call(get_msr)(vcpu, &msr);
1997 	if (!ret)
1998 		*data = msr.data;
1999 	return ret;
2000 }
2001 
kvm_msr_write(struct kvm_vcpu * vcpu,u32 index,u64 data)2002 int kvm_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data)
2003 {
2004 	return __kvm_set_msr(vcpu, index, data, true);
2005 }
2006 
kvm_msr_read(struct kvm_vcpu * vcpu,u32 index,u64 * data)2007 int kvm_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data)
2008 {
2009 	return __kvm_get_msr(vcpu, index, data, true);
2010 }
2011 
kvm_get_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)2012 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
2013 				     u32 index, u64 *data, bool host_initiated)
2014 {
2015 	return kvm_do_msr_access(vcpu, index, data, host_initiated, MSR_TYPE_R,
2016 				 __kvm_get_msr);
2017 }
2018 
__kvm_emulate_msr_read(struct kvm_vcpu * vcpu,u32 index,u64 * data)2019 int __kvm_emulate_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data)
2020 {
2021 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
2022 }
2023 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_emulate_msr_read);
2024 
__kvm_emulate_msr_write(struct kvm_vcpu * vcpu,u32 index,u64 data)2025 int __kvm_emulate_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data)
2026 {
2027 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
2028 }
2029 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_emulate_msr_write);
2030 
kvm_emulate_msr_read(struct kvm_vcpu * vcpu,u32 index,u64 * data)2031 int kvm_emulate_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data)
2032 {
2033 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
2034 		return KVM_MSR_RET_FILTERED;
2035 
2036 	return __kvm_emulate_msr_read(vcpu, index, data);
2037 }
2038 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_msr_read);
2039 
kvm_emulate_msr_write(struct kvm_vcpu * vcpu,u32 index,u64 data)2040 int kvm_emulate_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data)
2041 {
2042 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
2043 		return KVM_MSR_RET_FILTERED;
2044 
2045 	return __kvm_emulate_msr_write(vcpu, index, data);
2046 }
2047 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_msr_write);
2048 
2049 
complete_userspace_rdmsr(struct kvm_vcpu * vcpu)2050 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
2051 {
2052 	if (!vcpu->run->msr.error) {
2053 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
2054 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
2055 	}
2056 }
2057 
complete_emulated_msr_access(struct kvm_vcpu * vcpu)2058 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
2059 {
2060 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
2061 }
2062 
complete_emulated_rdmsr(struct kvm_vcpu * vcpu)2063 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
2064 {
2065 	complete_userspace_rdmsr(vcpu);
2066 	return complete_emulated_msr_access(vcpu);
2067 }
2068 
complete_fast_msr_access(struct kvm_vcpu * vcpu)2069 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2070 {
2071 	return kvm_x86_call(complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2072 }
2073 
complete_fast_rdmsr(struct kvm_vcpu * vcpu)2074 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2075 {
2076 	complete_userspace_rdmsr(vcpu);
2077 	return complete_fast_msr_access(vcpu);
2078 }
2079 
complete_fast_rdmsr_imm(struct kvm_vcpu * vcpu)2080 static int complete_fast_rdmsr_imm(struct kvm_vcpu *vcpu)
2081 {
2082 	if (!vcpu->run->msr.error)
2083 		kvm_register_write(vcpu, vcpu->arch.cui_rdmsr_imm_reg,
2084 				   vcpu->run->msr.data);
2085 
2086 	return complete_fast_msr_access(vcpu);
2087 }
2088 
kvm_msr_reason(int r)2089 static u64 kvm_msr_reason(int r)
2090 {
2091 	switch (r) {
2092 	case KVM_MSR_RET_UNSUPPORTED:
2093 		return KVM_MSR_EXIT_REASON_UNKNOWN;
2094 	case KVM_MSR_RET_FILTERED:
2095 		return KVM_MSR_EXIT_REASON_FILTER;
2096 	default:
2097 		return KVM_MSR_EXIT_REASON_INVAL;
2098 	}
2099 }
2100 
kvm_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u32 exit_reason,u64 data,int (* completion)(struct kvm_vcpu * vcpu),int r)2101 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2102 			      u32 exit_reason, u64 data,
2103 			      int (*completion)(struct kvm_vcpu *vcpu),
2104 			      int r)
2105 {
2106 	u64 msr_reason = kvm_msr_reason(r);
2107 
2108 	/* Check if the user wanted to know about this MSR fault */
2109 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2110 		return 0;
2111 
2112 	vcpu->run->exit_reason = exit_reason;
2113 	vcpu->run->msr.error = 0;
2114 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2115 	vcpu->run->msr.reason = msr_reason;
2116 	vcpu->run->msr.index = index;
2117 	vcpu->run->msr.data = data;
2118 	vcpu->arch.complete_userspace_io = completion;
2119 
2120 	return 1;
2121 }
2122 
__kvm_emulate_rdmsr(struct kvm_vcpu * vcpu,u32 msr,int reg,int (* complete_rdmsr)(struct kvm_vcpu *))2123 static int __kvm_emulate_rdmsr(struct kvm_vcpu *vcpu, u32 msr, int reg,
2124 			       int (*complete_rdmsr)(struct kvm_vcpu *))
2125 {
2126 	u64 data;
2127 	int r;
2128 
2129 	r = kvm_emulate_msr_read(vcpu, msr, &data);
2130 
2131 	if (!r) {
2132 		trace_kvm_msr_read(msr, data);
2133 
2134 		if (reg < 0) {
2135 			kvm_rax_write(vcpu, data & -1u);
2136 			kvm_rdx_write(vcpu, (data >> 32) & -1u);
2137 		} else {
2138 			kvm_register_write(vcpu, reg, data);
2139 		}
2140 	} else {
2141 		/* MSR read failed? See if we should ask user space */
2142 		if (kvm_msr_user_space(vcpu, msr, KVM_EXIT_X86_RDMSR, 0,
2143 				       complete_rdmsr, r))
2144 			return 0;
2145 		trace_kvm_msr_read_ex(msr);
2146 	}
2147 
2148 	return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2149 }
2150 
kvm_emulate_rdmsr(struct kvm_vcpu * vcpu)2151 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2152 {
2153 	return __kvm_emulate_rdmsr(vcpu, kvm_rcx_read(vcpu), -1,
2154 				   complete_fast_rdmsr);
2155 }
2156 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_rdmsr);
2157 
kvm_emulate_rdmsr_imm(struct kvm_vcpu * vcpu,u32 msr,int reg)2158 int kvm_emulate_rdmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg)
2159 {
2160 	vcpu->arch.cui_rdmsr_imm_reg = reg;
2161 
2162 	return __kvm_emulate_rdmsr(vcpu, msr, reg, complete_fast_rdmsr_imm);
2163 }
2164 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_rdmsr_imm);
2165 
__kvm_emulate_wrmsr(struct kvm_vcpu * vcpu,u32 msr,u64 data)2166 static int __kvm_emulate_wrmsr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2167 {
2168 	int r;
2169 
2170 	r = kvm_emulate_msr_write(vcpu, msr, data);
2171 	if (!r) {
2172 		trace_kvm_msr_write(msr, data);
2173 	} else {
2174 		/* MSR write failed? See if we should ask user space */
2175 		if (kvm_msr_user_space(vcpu, msr, KVM_EXIT_X86_WRMSR, data,
2176 				       complete_fast_msr_access, r))
2177 			return 0;
2178 		/* Signal all other negative errors to userspace */
2179 		if (r < 0)
2180 			return r;
2181 		trace_kvm_msr_write_ex(msr, data);
2182 	}
2183 
2184 	return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2185 }
2186 
kvm_emulate_wrmsr(struct kvm_vcpu * vcpu)2187 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2188 {
2189 	return __kvm_emulate_wrmsr(vcpu, kvm_rcx_read(vcpu),
2190 				   kvm_read_edx_eax(vcpu));
2191 }
2192 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_wrmsr);
2193 
kvm_emulate_wrmsr_imm(struct kvm_vcpu * vcpu,u32 msr,int reg)2194 int kvm_emulate_wrmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg)
2195 {
2196 	return __kvm_emulate_wrmsr(vcpu, msr, kvm_register_read(vcpu, reg));
2197 }
2198 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_wrmsr_imm);
2199 
kvm_emulate_as_nop(struct kvm_vcpu * vcpu)2200 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2201 {
2202 	return kvm_skip_emulated_instruction(vcpu);
2203 }
2204 
kvm_emulate_invd(struct kvm_vcpu * vcpu)2205 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2206 {
2207 	/* Treat an INVD instruction as a NOP and just skip it. */
2208 	return kvm_emulate_as_nop(vcpu);
2209 }
2210 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_invd);
2211 
handle_fastpath_invd(struct kvm_vcpu * vcpu)2212 fastpath_t handle_fastpath_invd(struct kvm_vcpu *vcpu)
2213 {
2214 	if (!kvm_emulate_invd(vcpu))
2215 		return EXIT_FASTPATH_EXIT_USERSPACE;
2216 
2217 	return EXIT_FASTPATH_REENTER_GUEST;
2218 }
2219 EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_fastpath_invd);
2220 
kvm_handle_invalid_op(struct kvm_vcpu * vcpu)2221 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2222 {
2223 	kvm_queue_exception(vcpu, UD_VECTOR);
2224 	return 1;
2225 }
2226 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_handle_invalid_op);
2227 
2228 
kvm_emulate_monitor_mwait(struct kvm_vcpu * vcpu,const char * insn)2229 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2230 {
2231 	bool enabled;
2232 
2233 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS))
2234 		goto emulate_as_nop;
2235 
2236 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT))
2237 		enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_MWAIT);
2238 	else
2239 		enabled = vcpu->arch.ia32_misc_enable_msr & MSR_IA32_MISC_ENABLE_MWAIT;
2240 
2241 	if (!enabled)
2242 		return kvm_handle_invalid_op(vcpu);
2243 
2244 emulate_as_nop:
2245 	pr_warn_once("%s instruction emulated as NOP!\n", insn);
2246 	return kvm_emulate_as_nop(vcpu);
2247 }
kvm_emulate_mwait(struct kvm_vcpu * vcpu)2248 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2249 {
2250 	return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2251 }
2252 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_mwait);
2253 
kvm_emulate_monitor(struct kvm_vcpu * vcpu)2254 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2255 {
2256 	return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2257 }
2258 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_monitor);
2259 
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu)2260 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2261 {
2262 	xfer_to_guest_mode_prepare();
2263 
2264 	return READ_ONCE(vcpu->mode) == EXITING_GUEST_MODE ||
2265 	       kvm_request_pending(vcpu) || xfer_to_guest_mode_work_pending();
2266 }
2267 
__handle_fastpath_wrmsr(struct kvm_vcpu * vcpu,u32 msr,u64 data)2268 static fastpath_t __handle_fastpath_wrmsr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2269 {
2270 	switch (msr) {
2271 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2272 		if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic) ||
2273 		    kvm_x2apic_icr_write_fast(vcpu->arch.apic, data))
2274 			return EXIT_FASTPATH_NONE;
2275 		break;
2276 	case MSR_IA32_TSC_DEADLINE:
2277 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2278 		break;
2279 	default:
2280 		return EXIT_FASTPATH_NONE;
2281 	}
2282 
2283 	trace_kvm_msr_write(msr, data);
2284 
2285 	if (!kvm_skip_emulated_instruction(vcpu))
2286 		return EXIT_FASTPATH_EXIT_USERSPACE;
2287 
2288 	return EXIT_FASTPATH_REENTER_GUEST;
2289 }
2290 
handle_fastpath_wrmsr(struct kvm_vcpu * vcpu)2291 fastpath_t handle_fastpath_wrmsr(struct kvm_vcpu *vcpu)
2292 {
2293 	return __handle_fastpath_wrmsr(vcpu, kvm_rcx_read(vcpu),
2294 				       kvm_read_edx_eax(vcpu));
2295 }
2296 EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_fastpath_wrmsr);
2297 
handle_fastpath_wrmsr_imm(struct kvm_vcpu * vcpu,u32 msr,int reg)2298 fastpath_t handle_fastpath_wrmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg)
2299 {
2300 	return __handle_fastpath_wrmsr(vcpu, msr, kvm_register_read(vcpu, reg));
2301 }
2302 EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_fastpath_wrmsr_imm);
2303 
2304 /*
2305  * Adapt set_msr() to msr_io()'s calling convention
2306  */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2307 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2308 {
2309 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2310 }
2311 
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2312 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2313 {
2314 	u64 val;
2315 
2316 	/*
2317 	 * Disallow writes to immutable feature MSRs after KVM_RUN.  KVM does
2318 	 * not support modifying the guest vCPU model on the fly, e.g. changing
2319 	 * the nVMX capabilities while L2 is running is nonsensical.  Allow
2320 	 * writes of the same value, e.g. to allow userspace to blindly stuff
2321 	 * all MSRs when emulating RESET.
2322 	 */
2323 	if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) &&
2324 	    (do_get_msr(vcpu, index, &val) || *data != val))
2325 		return -EINVAL;
2326 
2327 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2328 }
2329 
2330 #ifdef CONFIG_X86_64
2331 struct pvclock_clock {
2332 	int vclock_mode;
2333 	u64 cycle_last;
2334 	u64 mask;
2335 	u32 mult;
2336 	u32 shift;
2337 	u64 base_cycles;
2338 	u64 offset;
2339 };
2340 
2341 struct pvclock_gtod_data {
2342 	seqcount_t	seq;
2343 
2344 	struct pvclock_clock clock; /* extract of a clocksource struct */
2345 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2346 
2347 	ktime_t		offs_boot;
2348 	u64		wall_time_sec;
2349 };
2350 
2351 static struct pvclock_gtod_data pvclock_gtod_data;
2352 
update_pvclock_gtod(struct timekeeper * tk)2353 static void update_pvclock_gtod(struct timekeeper *tk)
2354 {
2355 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2356 
2357 	write_seqcount_begin(&vdata->seq);
2358 
2359 	/* copy pvclock gtod data */
2360 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2361 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2362 	vdata->clock.mask		= tk->tkr_mono.mask;
2363 	vdata->clock.mult		= tk->tkr_mono.mult;
2364 	vdata->clock.shift		= tk->tkr_mono.shift;
2365 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2366 	vdata->clock.offset		= tk->tkr_mono.base;
2367 
2368 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2369 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2370 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2371 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2372 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2373 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2374 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2375 
2376 	vdata->wall_time_sec            = tk->xtime_sec;
2377 
2378 	vdata->offs_boot		= tk->offs_boot;
2379 
2380 	write_seqcount_end(&vdata->seq);
2381 }
2382 
get_kvmclock_base_ns(void)2383 static s64 get_kvmclock_base_ns(void)
2384 {
2385 	/* Count up from boot time, but with the frequency of the raw clock.  */
2386 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2387 }
2388 #else
get_kvmclock_base_ns(void)2389 static s64 get_kvmclock_base_ns(void)
2390 {
2391 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2392 	return ktime_get_boottime_ns();
2393 }
2394 #endif
2395 
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock,int sec_hi_ofs)2396 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2397 {
2398 	int version;
2399 	int r;
2400 	struct pvclock_wall_clock wc;
2401 	u32 wc_sec_hi;
2402 	u64 wall_nsec;
2403 
2404 	if (!wall_clock)
2405 		return;
2406 
2407 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2408 	if (r)
2409 		return;
2410 
2411 	if (version & 1)
2412 		++version;  /* first time write, random junk */
2413 
2414 	++version;
2415 
2416 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2417 		return;
2418 
2419 	wall_nsec = kvm_get_wall_clock_epoch(kvm);
2420 
2421 	wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2422 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2423 	wc.version = version;
2424 
2425 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2426 
2427 	if (sec_hi_ofs) {
2428 		wc_sec_hi = wall_nsec >> 32;
2429 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2430 				&wc_sec_hi, sizeof(wc_sec_hi));
2431 	}
2432 
2433 	version++;
2434 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2435 }
2436 
kvm_write_system_time(struct kvm_vcpu * vcpu,gpa_t system_time,bool old_msr,bool host_initiated)2437 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2438 				  bool old_msr, bool host_initiated)
2439 {
2440 	struct kvm_arch *ka = &vcpu->kvm->arch;
2441 
2442 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2443 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2444 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2445 
2446 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2447 	}
2448 
2449 	vcpu->arch.time = system_time;
2450 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2451 
2452 	/* we verify if the enable bit is set... */
2453 	if (system_time & 1)
2454 		kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2455 				 sizeof(struct pvclock_vcpu_time_info));
2456 	else
2457 		kvm_gpc_deactivate(&vcpu->arch.pv_time);
2458 
2459 	return;
2460 }
2461 
div_frac(uint32_t dividend,uint32_t divisor)2462 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2463 {
2464 	do_shl32_div32(dividend, divisor);
2465 	return dividend;
2466 }
2467 
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)2468 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2469 			       s8 *pshift, u32 *pmultiplier)
2470 {
2471 	uint64_t scaled64;
2472 	int32_t  shift = 0;
2473 	uint64_t tps64;
2474 	uint32_t tps32;
2475 
2476 	tps64 = base_hz;
2477 	scaled64 = scaled_hz;
2478 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2479 		tps64 >>= 1;
2480 		shift--;
2481 	}
2482 
2483 	tps32 = (uint32_t)tps64;
2484 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2485 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2486 			scaled64 >>= 1;
2487 		else
2488 			tps32 <<= 1;
2489 		shift++;
2490 	}
2491 
2492 	*pshift = shift;
2493 	*pmultiplier = div_frac(scaled64, tps32);
2494 }
2495 
2496 #ifdef CONFIG_X86_64
2497 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2498 #endif
2499 
2500 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2501 static unsigned long max_tsc_khz;
2502 
adjust_tsc_khz(u32 khz,s32 ppm)2503 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2504 {
2505 	u64 v = (u64)khz * (1000000 + ppm);
2506 	do_div(v, 1000000);
2507 	return v;
2508 }
2509 
2510 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2511 
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)2512 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2513 {
2514 	u64 ratio;
2515 
2516 	/* Guest TSC same frequency as host TSC? */
2517 	if (!scale) {
2518 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2519 		return 0;
2520 	}
2521 
2522 	/* TSC scaling supported? */
2523 	if (!kvm_caps.has_tsc_control) {
2524 		if (user_tsc_khz > tsc_khz) {
2525 			vcpu->arch.tsc_catchup = 1;
2526 			vcpu->arch.tsc_always_catchup = 1;
2527 			return 0;
2528 		} else {
2529 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2530 			return -1;
2531 		}
2532 	}
2533 
2534 	/* TSC scaling required  - calculate ratio */
2535 	ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2536 				user_tsc_khz, tsc_khz);
2537 
2538 	if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2539 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2540 			            user_tsc_khz);
2541 		return -1;
2542 	}
2543 
2544 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2545 	return 0;
2546 }
2547 
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)2548 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2549 {
2550 	u32 thresh_lo, thresh_hi;
2551 	int use_scaling = 0;
2552 
2553 	/* tsc_khz can be zero if TSC calibration fails */
2554 	if (user_tsc_khz == 0) {
2555 		/* set tsc_scaling_ratio to a safe value */
2556 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2557 		return -1;
2558 	}
2559 
2560 	/* Compute a scale to convert nanoseconds in TSC cycles */
2561 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2562 			   &vcpu->arch.virtual_tsc_shift,
2563 			   &vcpu->arch.virtual_tsc_mult);
2564 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2565 
2566 	/*
2567 	 * Compute the variation in TSC rate which is acceptable
2568 	 * within the range of tolerance and decide if the
2569 	 * rate being applied is within that bounds of the hardware
2570 	 * rate.  If so, no scaling or compensation need be done.
2571 	 */
2572 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2573 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2574 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2575 		pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2576 			 user_tsc_khz, thresh_lo, thresh_hi);
2577 		use_scaling = 1;
2578 	}
2579 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2580 }
2581 
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)2582 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2583 {
2584 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2585 				      vcpu->arch.virtual_tsc_mult,
2586 				      vcpu->arch.virtual_tsc_shift);
2587 	tsc += vcpu->arch.this_tsc_write;
2588 	return tsc;
2589 }
2590 
2591 #ifdef CONFIG_X86_64
gtod_is_based_on_tsc(int mode)2592 static inline bool gtod_is_based_on_tsc(int mode)
2593 {
2594 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2595 }
2596 #endif
2597 
kvm_track_tsc_matching(struct kvm_vcpu * vcpu,bool new_generation)2598 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
2599 {
2600 #ifdef CONFIG_X86_64
2601 	struct kvm_arch *ka = &vcpu->kvm->arch;
2602 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2603 
2604 	/*
2605 	 * To use the masterclock, the host clocksource must be based on TSC
2606 	 * and all vCPUs must have matching TSCs.  Note, the count for matching
2607 	 * vCPUs doesn't include the reference vCPU, hence "+1".
2608 	 */
2609 	bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
2610 				 atomic_read(&vcpu->kvm->online_vcpus)) &&
2611 				gtod_is_based_on_tsc(gtod->clock.vclock_mode);
2612 
2613 	/*
2614 	 * Request a masterclock update if the masterclock needs to be toggled
2615 	 * on/off, or when starting a new generation and the masterclock is
2616 	 * enabled (compute_guest_tsc() requires the masterclock snapshot to be
2617 	 * taken _after_ the new generation is created).
2618 	 */
2619 	if ((ka->use_master_clock && new_generation) ||
2620 	    (ka->use_master_clock != use_master_clock))
2621 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2622 
2623 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2624 			    atomic_read(&vcpu->kvm->online_vcpus),
2625 		            ka->use_master_clock, gtod->clock.vclock_mode);
2626 #endif
2627 }
2628 
2629 /*
2630  * Multiply tsc by a fixed point number represented by ratio.
2631  *
2632  * The most significant 64-N bits (mult) of ratio represent the
2633  * integral part of the fixed point number; the remaining N bits
2634  * (frac) represent the fractional part, ie. ratio represents a fixed
2635  * point number (mult + frac * 2^(-N)).
2636  *
2637  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2638  */
__scale_tsc(u64 ratio,u64 tsc)2639 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2640 {
2641 	return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2642 }
2643 
kvm_scale_tsc(u64 tsc,u64 ratio)2644 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2645 {
2646 	u64 _tsc = tsc;
2647 
2648 	if (ratio != kvm_caps.default_tsc_scaling_ratio)
2649 		_tsc = __scale_tsc(ratio, tsc);
2650 
2651 	return _tsc;
2652 }
2653 
kvm_compute_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)2654 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2655 {
2656 	u64 tsc;
2657 
2658 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2659 
2660 	return target_tsc - tsc;
2661 }
2662 
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2663 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2664 {
2665 	return vcpu->arch.l1_tsc_offset +
2666 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2667 }
2668 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_l1_tsc);
2669 
kvm_calc_nested_tsc_offset(u64 l1_offset,u64 l2_offset,u64 l2_multiplier)2670 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2671 {
2672 	u64 nested_offset;
2673 
2674 	if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2675 		nested_offset = l1_offset;
2676 	else
2677 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2678 						kvm_caps.tsc_scaling_ratio_frac_bits);
2679 
2680 	nested_offset += l2_offset;
2681 	return nested_offset;
2682 }
2683 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_calc_nested_tsc_offset);
2684 
kvm_calc_nested_tsc_multiplier(u64 l1_multiplier,u64 l2_multiplier)2685 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2686 {
2687 	if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2688 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2689 				       kvm_caps.tsc_scaling_ratio_frac_bits);
2690 
2691 	return l1_multiplier;
2692 }
2693 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_calc_nested_tsc_multiplier);
2694 
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 l1_offset)2695 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2696 {
2697 	if (vcpu->arch.guest_tsc_protected)
2698 		return;
2699 
2700 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2701 				   vcpu->arch.l1_tsc_offset,
2702 				   l1_offset);
2703 
2704 	vcpu->arch.l1_tsc_offset = l1_offset;
2705 
2706 	/*
2707 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2708 	 * according to the spec this should set L1's TSC (as opposed to
2709 	 * setting L1's offset for L2).
2710 	 */
2711 	if (is_guest_mode(vcpu))
2712 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2713 			l1_offset,
2714 			kvm_x86_call(get_l2_tsc_offset)(vcpu),
2715 			kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2716 	else
2717 		vcpu->arch.tsc_offset = l1_offset;
2718 
2719 	kvm_x86_call(write_tsc_offset)(vcpu);
2720 }
2721 
kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu * vcpu,u64 l1_multiplier)2722 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2723 {
2724 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2725 
2726 	/* Userspace is changing the multiplier while L2 is active */
2727 	if (is_guest_mode(vcpu))
2728 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2729 			l1_multiplier,
2730 			kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2731 	else
2732 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2733 
2734 	if (kvm_caps.has_tsc_control)
2735 		kvm_x86_call(write_tsc_multiplier)(vcpu);
2736 }
2737 
kvm_check_tsc_unstable(void)2738 static inline bool kvm_check_tsc_unstable(void)
2739 {
2740 #ifdef CONFIG_X86_64
2741 	/*
2742 	 * TSC is marked unstable when we're running on Hyper-V,
2743 	 * 'TSC page' clocksource is good.
2744 	 */
2745 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2746 		return false;
2747 #endif
2748 	return check_tsc_unstable();
2749 }
2750 
2751 /*
2752  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2753  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2754  * participates in.
2755  */
__kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 offset,u64 tsc,u64 ns,bool matched,bool user_set_tsc)2756 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2757 				  u64 ns, bool matched, bool user_set_tsc)
2758 {
2759 	struct kvm *kvm = vcpu->kvm;
2760 
2761 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2762 
2763 	if (vcpu->arch.guest_tsc_protected)
2764 		return;
2765 
2766 	if (user_set_tsc)
2767 		vcpu->kvm->arch.user_set_tsc = true;
2768 
2769 	/*
2770 	 * We also track th most recent recorded KHZ, write and time to
2771 	 * allow the matching interval to be extended at each write.
2772 	 */
2773 	kvm->arch.last_tsc_nsec = ns;
2774 	kvm->arch.last_tsc_write = tsc;
2775 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2776 	kvm->arch.last_tsc_offset = offset;
2777 
2778 	vcpu->arch.last_guest_tsc = tsc;
2779 
2780 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2781 
2782 	if (!matched) {
2783 		/*
2784 		 * We split periods of matched TSC writes into generations.
2785 		 * For each generation, we track the original measured
2786 		 * nanosecond time, offset, and write, so if TSCs are in
2787 		 * sync, we can match exact offset, and if not, we can match
2788 		 * exact software computation in compute_guest_tsc()
2789 		 *
2790 		 * These values are tracked in kvm->arch.cur_xxx variables.
2791 		 */
2792 		kvm->arch.cur_tsc_generation++;
2793 		kvm->arch.cur_tsc_nsec = ns;
2794 		kvm->arch.cur_tsc_write = tsc;
2795 		kvm->arch.cur_tsc_offset = offset;
2796 		kvm->arch.nr_vcpus_matched_tsc = 0;
2797 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2798 		kvm->arch.nr_vcpus_matched_tsc++;
2799 	}
2800 
2801 	/* Keep track of which generation this VCPU has synchronized to */
2802 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2803 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2804 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2805 
2806 	kvm_track_tsc_matching(vcpu, !matched);
2807 }
2808 
kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 * user_value)2809 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2810 {
2811 	u64 data = user_value ? *user_value : 0;
2812 	struct kvm *kvm = vcpu->kvm;
2813 	u64 offset, ns, elapsed;
2814 	unsigned long flags;
2815 	bool matched = false;
2816 	bool synchronizing = false;
2817 
2818 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2819 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2820 	ns = get_kvmclock_base_ns();
2821 	elapsed = ns - kvm->arch.last_tsc_nsec;
2822 
2823 	if (vcpu->arch.virtual_tsc_khz) {
2824 		if (data == 0) {
2825 			/*
2826 			 * Force synchronization when creating a vCPU, or when
2827 			 * userspace explicitly writes a zero value.
2828 			 */
2829 			synchronizing = true;
2830 		} else if (kvm->arch.user_set_tsc) {
2831 			u64 tsc_exp = kvm->arch.last_tsc_write +
2832 						nsec_to_cycles(vcpu, elapsed);
2833 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2834 			/*
2835 			 * Here lies UAPI baggage: when a user-initiated TSC write has
2836 			 * a small delta (1 second) of virtual cycle time against the
2837 			 * previously set vCPU, we assume that they were intended to be
2838 			 * in sync and the delta was only due to the racy nature of the
2839 			 * legacy API.
2840 			 *
2841 			 * This trick falls down when restoring a guest which genuinely
2842 			 * has been running for less time than the 1 second of imprecision
2843 			 * which we allow for in the legacy API. In this case, the first
2844 			 * value written by userspace (on any vCPU) should not be subject
2845 			 * to this 'correction' to make it sync up with values that only
2846 			 * come from the kernel's default vCPU creation. Make the 1-second
2847 			 * slop hack only trigger if the user_set_tsc flag is already set.
2848 			 */
2849 			synchronizing = data < tsc_exp + tsc_hz &&
2850 					data + tsc_hz > tsc_exp;
2851 		}
2852 	}
2853 
2854 
2855 	/*
2856 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2857 	 * TSC, we add elapsed time in this computation.  We could let the
2858 	 * compensation code attempt to catch up if we fall behind, but
2859 	 * it's better to try to match offsets from the beginning.
2860          */
2861 	if (synchronizing &&
2862 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2863 		if (!kvm_check_tsc_unstable()) {
2864 			offset = kvm->arch.cur_tsc_offset;
2865 		} else {
2866 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2867 			data += delta;
2868 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2869 		}
2870 		matched = true;
2871 	}
2872 
2873 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched, !!user_value);
2874 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2875 }
2876 
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)2877 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2878 					   s64 adjustment)
2879 {
2880 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2881 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2882 }
2883 
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)2884 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2885 {
2886 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2887 		WARN_ON(adjustment < 0);
2888 	adjustment = kvm_scale_tsc((u64) adjustment,
2889 				   vcpu->arch.l1_tsc_scaling_ratio);
2890 	adjust_tsc_offset_guest(vcpu, adjustment);
2891 }
2892 
2893 #ifdef CONFIG_X86_64
2894 
read_tsc(void)2895 static u64 read_tsc(void)
2896 {
2897 	u64 ret = (u64)rdtsc_ordered();
2898 	u64 last = pvclock_gtod_data.clock.cycle_last;
2899 
2900 	if (likely(ret >= last))
2901 		return ret;
2902 
2903 	/*
2904 	 * GCC likes to generate cmov here, but this branch is extremely
2905 	 * predictable (it's just a function of time and the likely is
2906 	 * very likely) and there's a data dependence, so force GCC
2907 	 * to generate a branch instead.  I don't barrier() because
2908 	 * we don't actually need a barrier, and if this function
2909 	 * ever gets inlined it will generate worse code.
2910 	 */
2911 	asm volatile ("");
2912 	return last;
2913 }
2914 
vgettsc(struct pvclock_clock * clock,u64 * tsc_timestamp,int * mode)2915 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2916 			  int *mode)
2917 {
2918 	u64 tsc_pg_val;
2919 	long v;
2920 
2921 	switch (clock->vclock_mode) {
2922 	case VDSO_CLOCKMODE_HVCLOCK:
2923 		if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2924 					 tsc_timestamp, &tsc_pg_val)) {
2925 			/* TSC page valid */
2926 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2927 			v = (tsc_pg_val - clock->cycle_last) &
2928 				clock->mask;
2929 		} else {
2930 			/* TSC page invalid */
2931 			*mode = VDSO_CLOCKMODE_NONE;
2932 		}
2933 		break;
2934 	case VDSO_CLOCKMODE_TSC:
2935 		*mode = VDSO_CLOCKMODE_TSC;
2936 		*tsc_timestamp = read_tsc();
2937 		v = (*tsc_timestamp - clock->cycle_last) &
2938 			clock->mask;
2939 		break;
2940 	default:
2941 		*mode = VDSO_CLOCKMODE_NONE;
2942 	}
2943 
2944 	if (*mode == VDSO_CLOCKMODE_NONE)
2945 		*tsc_timestamp = v = 0;
2946 
2947 	return v * clock->mult;
2948 }
2949 
2950 /*
2951  * As with get_kvmclock_base_ns(), this counts from boot time, at the
2952  * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot).
2953  */
do_kvmclock_base(s64 * t,u64 * tsc_timestamp)2954 static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp)
2955 {
2956 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2957 	unsigned long seq;
2958 	int mode;
2959 	u64 ns;
2960 
2961 	do {
2962 		seq = read_seqcount_begin(&gtod->seq);
2963 		ns = gtod->raw_clock.base_cycles;
2964 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2965 		ns >>= gtod->raw_clock.shift;
2966 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2967 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2968 	*t = ns;
2969 
2970 	return mode;
2971 }
2972 
2973 /*
2974  * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with
2975  * no boot time offset.
2976  */
do_monotonic(s64 * t,u64 * tsc_timestamp)2977 static int do_monotonic(s64 *t, u64 *tsc_timestamp)
2978 {
2979 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2980 	unsigned long seq;
2981 	int mode;
2982 	u64 ns;
2983 
2984 	do {
2985 		seq = read_seqcount_begin(&gtod->seq);
2986 		ns = gtod->clock.base_cycles;
2987 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2988 		ns >>= gtod->clock.shift;
2989 		ns += ktime_to_ns(gtod->clock.offset);
2990 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2991 	*t = ns;
2992 
2993 	return mode;
2994 }
2995 
do_realtime(struct timespec64 * ts,u64 * tsc_timestamp)2996 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2997 {
2998 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2999 	unsigned long seq;
3000 	int mode;
3001 	u64 ns;
3002 
3003 	do {
3004 		seq = read_seqcount_begin(&gtod->seq);
3005 		ts->tv_sec = gtod->wall_time_sec;
3006 		ns = gtod->clock.base_cycles;
3007 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
3008 		ns >>= gtod->clock.shift;
3009 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
3010 
3011 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
3012 	ts->tv_nsec = ns;
3013 
3014 	return mode;
3015 }
3016 
3017 /*
3018  * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and
3019  * reports the TSC value from which it do so. Returns true if host is
3020  * using TSC based clocksource.
3021  */
kvm_get_time_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)3022 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
3023 {
3024 	/* checked again under seqlock below */
3025 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
3026 		return false;
3027 
3028 	return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns,
3029 						     tsc_timestamp));
3030 }
3031 
3032 /*
3033  * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did
3034  * so. Returns true if host is using TSC based clocksource.
3035  */
kvm_get_monotonic_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)3036 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
3037 {
3038 	/* checked again under seqlock below */
3039 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
3040 		return false;
3041 
3042 	return gtod_is_based_on_tsc(do_monotonic(kernel_ns,
3043 						 tsc_timestamp));
3044 }
3045 
3046 /*
3047  * Calculates CLOCK_REALTIME and reports the TSC value from which it did
3048  * so. Returns true if host is using TSC based clocksource.
3049  *
3050  * DO NOT USE this for anything related to migration. You want CLOCK_TAI
3051  * for that.
3052  */
kvm_get_walltime_and_clockread(struct timespec64 * ts,u64 * tsc_timestamp)3053 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
3054 					   u64 *tsc_timestamp)
3055 {
3056 	/* checked again under seqlock below */
3057 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
3058 		return false;
3059 
3060 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
3061 }
3062 #endif
3063 
3064 /*
3065  *
3066  * Assuming a stable TSC across physical CPUS, and a stable TSC
3067  * across virtual CPUs, the following condition is possible.
3068  * Each numbered line represents an event visible to both
3069  * CPUs at the next numbered event.
3070  *
3071  * "timespecX" represents host monotonic time. "tscX" represents
3072  * RDTSC value.
3073  *
3074  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
3075  *
3076  * 1.  read timespec0,tsc0
3077  * 2.					| timespec1 = timespec0 + N
3078  * 					| tsc1 = tsc0 + M
3079  * 3. transition to guest		| transition to guest
3080  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
3081  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
3082  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
3083  *
3084  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
3085  *
3086  * 	- ret0 < ret1
3087  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
3088  *		...
3089  *	- 0 < N - M => M < N
3090  *
3091  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
3092  * always the case (the difference between two distinct xtime instances
3093  * might be smaller then the difference between corresponding TSC reads,
3094  * when updating guest vcpus pvclock areas).
3095  *
3096  * To avoid that problem, do not allow visibility of distinct
3097  * system_timestamp/tsc_timestamp values simultaneously: use a master
3098  * copy of host monotonic time values. Update that master copy
3099  * in lockstep.
3100  *
3101  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
3102  *
3103  */
3104 
pvclock_update_vm_gtod_copy(struct kvm * kvm)3105 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
3106 {
3107 #ifdef CONFIG_X86_64
3108 	struct kvm_arch *ka = &kvm->arch;
3109 	int vclock_mode;
3110 	bool host_tsc_clocksource, vcpus_matched;
3111 
3112 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
3113 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
3114 			atomic_read(&kvm->online_vcpus));
3115 
3116 	/*
3117 	 * If the host uses TSC clock, then passthrough TSC as stable
3118 	 * to the guest.
3119 	 */
3120 	host_tsc_clocksource = kvm_get_time_and_clockread(
3121 					&ka->master_kernel_ns,
3122 					&ka->master_cycle_now);
3123 
3124 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
3125 				&& !ka->backwards_tsc_observed
3126 				&& !ka->boot_vcpu_runs_old_kvmclock;
3127 
3128 	if (ka->use_master_clock)
3129 		atomic_set(&kvm_guest_has_master_clock, 1);
3130 
3131 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
3132 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
3133 					vcpus_matched);
3134 #endif
3135 }
3136 
kvm_make_mclock_inprogress_request(struct kvm * kvm)3137 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
3138 {
3139 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
3140 }
3141 
__kvm_start_pvclock_update(struct kvm * kvm)3142 static void __kvm_start_pvclock_update(struct kvm *kvm)
3143 {
3144 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
3145 	write_seqcount_begin(&kvm->arch.pvclock_sc);
3146 }
3147 
kvm_start_pvclock_update(struct kvm * kvm)3148 static void kvm_start_pvclock_update(struct kvm *kvm)
3149 {
3150 	kvm_make_mclock_inprogress_request(kvm);
3151 
3152 	/* no guest entries from this point */
3153 	__kvm_start_pvclock_update(kvm);
3154 }
3155 
kvm_end_pvclock_update(struct kvm * kvm)3156 static void kvm_end_pvclock_update(struct kvm *kvm)
3157 {
3158 	struct kvm_arch *ka = &kvm->arch;
3159 	struct kvm_vcpu *vcpu;
3160 	unsigned long i;
3161 
3162 	write_seqcount_end(&ka->pvclock_sc);
3163 	raw_spin_unlock_irq(&ka->tsc_write_lock);
3164 	kvm_for_each_vcpu(i, vcpu, kvm)
3165 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3166 
3167 	/* guest entries allowed */
3168 	kvm_for_each_vcpu(i, vcpu, kvm)
3169 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3170 }
3171 
kvm_update_masterclock(struct kvm * kvm)3172 static void kvm_update_masterclock(struct kvm *kvm)
3173 {
3174 	kvm_hv_request_tsc_page_update(kvm);
3175 	kvm_start_pvclock_update(kvm);
3176 	pvclock_update_vm_gtod_copy(kvm);
3177 	kvm_end_pvclock_update(kvm);
3178 }
3179 
3180 /*
3181  * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3182  * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
3183  * can change during boot even if the TSC is constant, as it's possible for KVM
3184  * to be loaded before TSC calibration completes.  Ideally, KVM would get a
3185  * notification when calibration completes, but practically speaking calibration
3186  * will complete before userspace is alive enough to create VMs.
3187  */
get_cpu_tsc_khz(void)3188 static unsigned long get_cpu_tsc_khz(void)
3189 {
3190 	if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3191 		return tsc_khz;
3192 	else
3193 		return __this_cpu_read(cpu_tsc_khz);
3194 }
3195 
3196 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
__get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3197 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3198 {
3199 	struct kvm_arch *ka = &kvm->arch;
3200 	struct pvclock_vcpu_time_info hv_clock;
3201 
3202 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
3203 	get_cpu();
3204 
3205 	data->flags = 0;
3206 	if (ka->use_master_clock &&
3207 	    (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3208 #ifdef CONFIG_X86_64
3209 		struct timespec64 ts;
3210 
3211 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3212 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3213 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3214 		} else
3215 #endif
3216 		data->host_tsc = rdtsc();
3217 
3218 		data->flags |= KVM_CLOCK_TSC_STABLE;
3219 		hv_clock.tsc_timestamp = ka->master_cycle_now;
3220 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3221 		kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3222 				   &hv_clock.tsc_shift,
3223 				   &hv_clock.tsc_to_system_mul);
3224 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3225 	} else {
3226 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3227 	}
3228 
3229 	put_cpu();
3230 }
3231 
get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3232 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3233 {
3234 	struct kvm_arch *ka = &kvm->arch;
3235 	unsigned seq;
3236 
3237 	do {
3238 		seq = read_seqcount_begin(&ka->pvclock_sc);
3239 		__get_kvmclock(kvm, data);
3240 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3241 }
3242 
get_kvmclock_ns(struct kvm * kvm)3243 u64 get_kvmclock_ns(struct kvm *kvm)
3244 {
3245 	struct kvm_clock_data data;
3246 
3247 	get_kvmclock(kvm, &data);
3248 	return data.clock;
3249 }
3250 
kvm_setup_guest_pvclock(struct pvclock_vcpu_time_info * ref_hv_clock,struct kvm_vcpu * vcpu,struct gfn_to_pfn_cache * gpc,unsigned int offset)3251 static void kvm_setup_guest_pvclock(struct pvclock_vcpu_time_info *ref_hv_clock,
3252 				    struct kvm_vcpu *vcpu,
3253 				    struct gfn_to_pfn_cache *gpc,
3254 				    unsigned int offset)
3255 {
3256 	struct pvclock_vcpu_time_info *guest_hv_clock;
3257 	struct pvclock_vcpu_time_info hv_clock;
3258 	unsigned long flags;
3259 
3260 	memcpy(&hv_clock, ref_hv_clock, sizeof(hv_clock));
3261 
3262 	read_lock_irqsave(&gpc->lock, flags);
3263 	while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3264 		read_unlock_irqrestore(&gpc->lock, flags);
3265 
3266 		if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3267 			return;
3268 
3269 		read_lock_irqsave(&gpc->lock, flags);
3270 	}
3271 
3272 	guest_hv_clock = (void *)(gpc->khva + offset);
3273 
3274 	/*
3275 	 * This VCPU is paused, but it's legal for a guest to read another
3276 	 * VCPU's kvmclock, so we really have to follow the specification where
3277 	 * it says that version is odd if data is being modified, and even after
3278 	 * it is consistent.
3279 	 */
3280 
3281 	guest_hv_clock->version = hv_clock.version = (guest_hv_clock->version + 1) | 1;
3282 	smp_wmb();
3283 
3284 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3285 	hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3286 
3287 	memcpy(guest_hv_clock, &hv_clock, sizeof(*guest_hv_clock));
3288 
3289 	smp_wmb();
3290 
3291 	guest_hv_clock->version = ++hv_clock.version;
3292 
3293 	kvm_gpc_mark_dirty_in_slot(gpc);
3294 	read_unlock_irqrestore(&gpc->lock, flags);
3295 
3296 	trace_kvm_pvclock_update(vcpu->vcpu_id, &hv_clock);
3297 }
3298 
kvm_guest_time_update(struct kvm_vcpu * v)3299 int kvm_guest_time_update(struct kvm_vcpu *v)
3300 {
3301 	struct pvclock_vcpu_time_info hv_clock = {};
3302 	unsigned long flags, tgt_tsc_khz;
3303 	unsigned seq;
3304 	struct kvm_vcpu_arch *vcpu = &v->arch;
3305 	struct kvm_arch *ka = &v->kvm->arch;
3306 	s64 kernel_ns;
3307 	u64 tsc_timestamp, host_tsc;
3308 	bool use_master_clock;
3309 
3310 	kernel_ns = 0;
3311 	host_tsc = 0;
3312 
3313 	/*
3314 	 * If the host uses TSC clock, then passthrough TSC as stable
3315 	 * to the guest.
3316 	 */
3317 	do {
3318 		seq = read_seqcount_begin(&ka->pvclock_sc);
3319 		use_master_clock = ka->use_master_clock;
3320 		if (use_master_clock) {
3321 			host_tsc = ka->master_cycle_now;
3322 			kernel_ns = ka->master_kernel_ns;
3323 		}
3324 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3325 
3326 	/* Keep irq disabled to prevent changes to the clock */
3327 	local_irq_save(flags);
3328 	tgt_tsc_khz = get_cpu_tsc_khz();
3329 	if (unlikely(tgt_tsc_khz == 0)) {
3330 		local_irq_restore(flags);
3331 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3332 		return 1;
3333 	}
3334 	if (!use_master_clock) {
3335 		host_tsc = rdtsc();
3336 		kernel_ns = get_kvmclock_base_ns();
3337 	}
3338 
3339 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3340 
3341 	/*
3342 	 * We may have to catch up the TSC to match elapsed wall clock
3343 	 * time for two reasons, even if kvmclock is used.
3344 	 *   1) CPU could have been running below the maximum TSC rate
3345 	 *   2) Broken TSC compensation resets the base at each VCPU
3346 	 *      entry to avoid unknown leaps of TSC even when running
3347 	 *      again on the same CPU.  This may cause apparent elapsed
3348 	 *      time to disappear, and the guest to stand still or run
3349 	 *	very slowly.
3350 	 */
3351 	if (vcpu->tsc_catchup) {
3352 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3353 		if (tsc > tsc_timestamp) {
3354 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3355 			tsc_timestamp = tsc;
3356 		}
3357 	}
3358 
3359 	local_irq_restore(flags);
3360 
3361 	/* With all the info we got, fill in the values */
3362 
3363 	if (kvm_caps.has_tsc_control) {
3364 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3365 					    v->arch.l1_tsc_scaling_ratio);
3366 		tgt_tsc_khz = tgt_tsc_khz ? : 1;
3367 	}
3368 
3369 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3370 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3371 				   &vcpu->pvclock_tsc_shift,
3372 				   &vcpu->pvclock_tsc_mul);
3373 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3374 	}
3375 
3376 	hv_clock.tsc_shift = vcpu->pvclock_tsc_shift;
3377 	hv_clock.tsc_to_system_mul = vcpu->pvclock_tsc_mul;
3378 	hv_clock.tsc_timestamp = tsc_timestamp;
3379 	hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3380 	vcpu->last_guest_tsc = tsc_timestamp;
3381 
3382 	/* If the host uses TSC clocksource, then it is stable */
3383 	hv_clock.flags = 0;
3384 	if (use_master_clock)
3385 		hv_clock.flags |= PVCLOCK_TSC_STABLE_BIT;
3386 
3387 	if (vcpu->pv_time.active) {
3388 		/*
3389 		 * GUEST_STOPPED is only supported by kvmclock, and KVM's
3390 		 * historic behavior is to only process the request if kvmclock
3391 		 * is active/enabled.
3392 		 */
3393 		if (vcpu->pvclock_set_guest_stopped_request) {
3394 			hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3395 			vcpu->pvclock_set_guest_stopped_request = false;
3396 		}
3397 		kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->pv_time, 0);
3398 
3399 		hv_clock.flags &= ~PVCLOCK_GUEST_STOPPED;
3400 	}
3401 
3402 	kvm_hv_setup_tsc_page(v->kvm, &hv_clock);
3403 
3404 #ifdef CONFIG_KVM_XEN
3405 	/*
3406 	 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless
3407 	 * explicitly told to use TSC as its clocksource Xen will not set this bit.
3408 	 * This default behaviour led to bugs in some guest kernels which cause
3409 	 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags.
3410 	 *
3411 	 * Note!  Clear TSC_STABLE only for Xen clocks, i.e. the order matters!
3412 	 */
3413 	if (ka->xen.hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE)
3414 		hv_clock.flags &= ~PVCLOCK_TSC_STABLE_BIT;
3415 
3416 	if (vcpu->xen.vcpu_info_cache.active)
3417 		kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_info_cache,
3418 					offsetof(struct compat_vcpu_info, time));
3419 	if (vcpu->xen.vcpu_time_info_cache.active)
3420 		kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_time_info_cache, 0);
3421 #endif
3422 	return 0;
3423 }
3424 
3425 /*
3426  * The pvclock_wall_clock ABI tells the guest the wall clock time at
3427  * which it started (i.e. its epoch, when its kvmclock was zero).
3428  *
3429  * In fact those clocks are subtly different; wall clock frequency is
3430  * adjusted by NTP and has leap seconds, while the kvmclock is a
3431  * simple function of the TSC without any such adjustment.
3432  *
3433  * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3434  * that and kvmclock, but even that would be subject to change over
3435  * time.
3436  *
3437  * Attempt to calculate the epoch at a given moment using the *same*
3438  * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3439  * wallclock and kvmclock times, and subtracting one from the other.
3440  *
3441  * Fall back to using their values at slightly different moments by
3442  * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3443  */
kvm_get_wall_clock_epoch(struct kvm * kvm)3444 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3445 {
3446 #ifdef CONFIG_X86_64
3447 	struct pvclock_vcpu_time_info hv_clock;
3448 	struct kvm_arch *ka = &kvm->arch;
3449 	unsigned long seq, local_tsc_khz;
3450 	struct timespec64 ts;
3451 	uint64_t host_tsc;
3452 
3453 	do {
3454 		seq = read_seqcount_begin(&ka->pvclock_sc);
3455 
3456 		local_tsc_khz = 0;
3457 		if (!ka->use_master_clock)
3458 			break;
3459 
3460 		/*
3461 		 * The TSC read and the call to get_cpu_tsc_khz() must happen
3462 		 * on the same CPU.
3463 		 */
3464 		get_cpu();
3465 
3466 		local_tsc_khz = get_cpu_tsc_khz();
3467 
3468 		if (local_tsc_khz &&
3469 		    !kvm_get_walltime_and_clockread(&ts, &host_tsc))
3470 			local_tsc_khz = 0; /* Fall back to old method */
3471 
3472 		put_cpu();
3473 
3474 		/*
3475 		 * These values must be snapshotted within the seqcount loop.
3476 		 * After that, it's just mathematics which can happen on any
3477 		 * CPU at any time.
3478 		 */
3479 		hv_clock.tsc_timestamp = ka->master_cycle_now;
3480 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3481 
3482 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3483 
3484 	/*
3485 	 * If the conditions were right, and obtaining the wallclock+TSC was
3486 	 * successful, calculate the KVM clock at the corresponding time and
3487 	 * subtract one from the other to get the guest's epoch in nanoseconds
3488 	 * since 1970-01-01.
3489 	 */
3490 	if (local_tsc_khz) {
3491 		kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3492 				   &hv_clock.tsc_shift,
3493 				   &hv_clock.tsc_to_system_mul);
3494 		return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3495 			__pvclock_read_cycles(&hv_clock, host_tsc);
3496 	}
3497 #endif
3498 	return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3499 }
3500 
3501 /*
3502  * kvmclock updates which are isolated to a given vcpu, such as
3503  * vcpu->cpu migration, should not allow system_timestamp from
3504  * the rest of the vcpus to remain static.
3505  *
3506  * So in those cases, request a kvmclock update for all vcpus.
3507  * The worst case for a remote vcpu to update its kvmclock
3508  * is then bounded by maximum nohz sleep latency.
3509  */
kvm_gen_kvmclock_update(struct kvm_vcpu * v)3510 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3511 {
3512 	unsigned long i;
3513 	struct kvm_vcpu *vcpu;
3514 	struct kvm *kvm = v->kvm;
3515 
3516 	kvm_for_each_vcpu(i, vcpu, kvm) {
3517 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3518 		kvm_vcpu_kick(vcpu);
3519 	}
3520 }
3521 
3522 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
is_mci_control_msr(u32 msr)3523 static bool is_mci_control_msr(u32 msr)
3524 {
3525 	return (msr & 3) == 0;
3526 }
is_mci_status_msr(u32 msr)3527 static bool is_mci_status_msr(u32 msr)
3528 {
3529 	return (msr & 3) == 1;
3530 }
3531 
3532 /*
3533  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3534  */
can_set_mci_status(struct kvm_vcpu * vcpu)3535 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3536 {
3537 	/* McStatusWrEn enabled? */
3538 	if (guest_cpuid_is_amd_compatible(vcpu))
3539 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3540 
3541 	return false;
3542 }
3543 
set_msr_mce(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3544 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3545 {
3546 	u64 mcg_cap = vcpu->arch.mcg_cap;
3547 	unsigned bank_num = mcg_cap & 0xff;
3548 	u32 msr = msr_info->index;
3549 	u64 data = msr_info->data;
3550 	u32 offset, last_msr;
3551 
3552 	switch (msr) {
3553 	case MSR_IA32_MCG_STATUS:
3554 		vcpu->arch.mcg_status = data;
3555 		break;
3556 	case MSR_IA32_MCG_CTL:
3557 		if (!(mcg_cap & MCG_CTL_P) &&
3558 		    (data || !msr_info->host_initiated))
3559 			return 1;
3560 		if (data != 0 && data != ~(u64)0)
3561 			return 1;
3562 		vcpu->arch.mcg_ctl = data;
3563 		break;
3564 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3565 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3566 		if (msr > last_msr)
3567 			return 1;
3568 
3569 		if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3570 			return 1;
3571 		/* An attempt to write a 1 to a reserved bit raises #GP */
3572 		if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3573 			return 1;
3574 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3575 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3576 		vcpu->arch.mci_ctl2_banks[offset] = data;
3577 		break;
3578 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3579 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3580 		if (msr > last_msr)
3581 			return 1;
3582 
3583 		/*
3584 		 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3585 		 * values are architecturally undefined.  But, some Linux
3586 		 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3587 		 * issue on AMD K8s, allow bit 10 to be clear when setting all
3588 		 * other bits in order to avoid an uncaught #GP in the guest.
3589 		 *
3590 		 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3591 		 * single-bit ECC data errors.
3592 		 */
3593 		if (is_mci_control_msr(msr) &&
3594 		    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3595 			return 1;
3596 
3597 		/*
3598 		 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3599 		 * AMD-based CPUs allow non-zero values, but if and only if
3600 		 * HWCR[McStatusWrEn] is set.
3601 		 */
3602 		if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3603 		    data != 0 && !can_set_mci_status(vcpu))
3604 			return 1;
3605 
3606 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3607 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3608 		vcpu->arch.mce_banks[offset] = data;
3609 		break;
3610 	default:
3611 		return 1;
3612 	}
3613 	return 0;
3614 }
3615 
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)3616 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3617 {
3618 	gpa_t gpa = data & ~0x3f;
3619 
3620 	/* Bits 4:5 are reserved, Should be zero */
3621 	if (data & 0x30)
3622 		return 1;
3623 
3624 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3625 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3626 		return 1;
3627 
3628 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3629 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3630 		return 1;
3631 
3632 	if (!lapic_in_kernel(vcpu))
3633 		return data ? 1 : 0;
3634 
3635 	vcpu->arch.apf.msr_en_val = data;
3636 
3637 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3638 		kvm_clear_async_pf_completion_queue(vcpu);
3639 		kvm_async_pf_hash_reset(vcpu);
3640 		return 0;
3641 	}
3642 
3643 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3644 					sizeof(u64)))
3645 		return 1;
3646 
3647 	vcpu->arch.apf.send_always = (data & KVM_ASYNC_PF_SEND_ALWAYS);
3648 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3649 
3650 	kvm_async_pf_wakeup_all(vcpu);
3651 
3652 	return 0;
3653 }
3654 
kvm_pv_enable_async_pf_int(struct kvm_vcpu * vcpu,u64 data)3655 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3656 {
3657 	/* Bits 8-63 are reserved */
3658 	if (data >> 8)
3659 		return 1;
3660 
3661 	if (!lapic_in_kernel(vcpu))
3662 		return 1;
3663 
3664 	vcpu->arch.apf.msr_int_val = data;
3665 
3666 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3667 
3668 	return 0;
3669 }
3670 
kvmclock_reset(struct kvm_vcpu * vcpu)3671 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3672 {
3673 	kvm_gpc_deactivate(&vcpu->arch.pv_time);
3674 	vcpu->arch.time = 0;
3675 }
3676 
kvm_vcpu_flush_tlb_all(struct kvm_vcpu * vcpu)3677 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3678 {
3679 	++vcpu->stat.tlb_flush;
3680 	kvm_x86_call(flush_tlb_all)(vcpu);
3681 
3682 	/* Flushing all ASIDs flushes the current ASID... */
3683 	kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3684 }
3685 
kvm_vcpu_flush_tlb_guest(struct kvm_vcpu * vcpu)3686 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3687 {
3688 	++vcpu->stat.tlb_flush;
3689 
3690 	if (!tdp_enabled) {
3691 		/*
3692 		 * A TLB flush on behalf of the guest is equivalent to
3693 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3694 		 * a forced sync of the shadow page tables.  Ensure all the
3695 		 * roots are synced and the guest TLB in hardware is clean.
3696 		 */
3697 		kvm_mmu_sync_roots(vcpu);
3698 		kvm_mmu_sync_prev_roots(vcpu);
3699 	}
3700 
3701 	kvm_x86_call(flush_tlb_guest)(vcpu);
3702 
3703 	/*
3704 	 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3705 	 * grained flushing.
3706 	 */
3707 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3708 }
3709 
3710 
kvm_vcpu_flush_tlb_current(struct kvm_vcpu * vcpu)3711 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3712 {
3713 	++vcpu->stat.tlb_flush;
3714 	kvm_x86_call(flush_tlb_current)(vcpu);
3715 }
3716 
3717 /*
3718  * Service "local" TLB flush requests, which are specific to the current MMU
3719  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3720  * TLB flushes that are targeted at an MMU context also need to be serviced
3721  * prior before nested VM-Enter/VM-Exit.
3722  */
kvm_service_local_tlb_flush_requests(struct kvm_vcpu * vcpu)3723 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3724 {
3725 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3726 		kvm_vcpu_flush_tlb_current(vcpu);
3727 
3728 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3729 		kvm_vcpu_flush_tlb_guest(vcpu);
3730 }
3731 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_service_local_tlb_flush_requests);
3732 
record_steal_time(struct kvm_vcpu * vcpu)3733 static void record_steal_time(struct kvm_vcpu *vcpu)
3734 {
3735 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3736 	struct kvm_steal_time __user *st;
3737 	struct kvm_memslots *slots;
3738 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3739 	u64 steal;
3740 	u32 version;
3741 
3742 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3743 		kvm_xen_runstate_set_running(vcpu);
3744 		return;
3745 	}
3746 
3747 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3748 		return;
3749 
3750 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3751 		return;
3752 
3753 	slots = kvm_memslots(vcpu->kvm);
3754 
3755 	if (unlikely(slots->generation != ghc->generation ||
3756 		     gpa != ghc->gpa ||
3757 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3758 		/* We rely on the fact that it fits in a single page. */
3759 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3760 
3761 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3762 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3763 			return;
3764 	}
3765 
3766 	st = (struct kvm_steal_time __user *)ghc->hva;
3767 	/*
3768 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3769 	 * expensive IPIs.
3770 	 */
3771 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3772 		u8 st_preempted = 0;
3773 		int err = -EFAULT;
3774 
3775 		if (!user_access_begin(st, sizeof(*st)))
3776 			return;
3777 
3778 		asm volatile("1: xchgb %0, %2\n"
3779 			     "xor %1, %1\n"
3780 			     "2:\n"
3781 			     _ASM_EXTABLE_UA(1b, 2b)
3782 			     : "+q" (st_preempted),
3783 			       "+&r" (err),
3784 			       "+m" (st->preempted));
3785 		if (err)
3786 			goto out;
3787 
3788 		user_access_end();
3789 
3790 		vcpu->arch.st.preempted = 0;
3791 
3792 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3793 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3794 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3795 			kvm_vcpu_flush_tlb_guest(vcpu);
3796 
3797 		if (!user_access_begin(st, sizeof(*st)))
3798 			goto dirty;
3799 	} else {
3800 		if (!user_access_begin(st, sizeof(*st)))
3801 			return;
3802 
3803 		unsafe_put_user(0, &st->preempted, out);
3804 		vcpu->arch.st.preempted = 0;
3805 	}
3806 
3807 	unsafe_get_user(version, &st->version, out);
3808 	if (version & 1)
3809 		version += 1;  /* first time write, random junk */
3810 
3811 	version += 1;
3812 	unsafe_put_user(version, &st->version, out);
3813 
3814 	smp_wmb();
3815 
3816 	unsafe_get_user(steal, &st->steal, out);
3817 	steal += current->sched_info.run_delay -
3818 		vcpu->arch.st.last_steal;
3819 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3820 	unsafe_put_user(steal, &st->steal, out);
3821 
3822 	version += 1;
3823 	unsafe_put_user(version, &st->version, out);
3824 
3825  out:
3826 	user_access_end();
3827  dirty:
3828 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3829 }
3830 
3831 /*
3832  * Returns true if the MSR in question is managed via XSTATE, i.e. is context
3833  * switched with the rest of guest FPU state.
3834  *
3835  * Note, S_CET is _not_ saved/restored via XSAVES/XRSTORS.
3836  */
is_xstate_managed_msr(struct kvm_vcpu * vcpu,u32 msr)3837 static bool is_xstate_managed_msr(struct kvm_vcpu *vcpu, u32 msr)
3838 {
3839 	if (!vcpu)
3840 		return false;
3841 
3842 	switch (msr) {
3843 	case MSR_IA32_U_CET:
3844 		return guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) ||
3845 		       guest_cpu_cap_has(vcpu, X86_FEATURE_IBT);
3846 	case MSR_IA32_PL0_SSP ... MSR_IA32_PL3_SSP:
3847 		return guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK);
3848 	default:
3849 		return false;
3850 	}
3851 }
3852 
3853 /*
3854  * Lock (and if necessary, re-load) the guest FPU, i.e. XSTATE, and access an
3855  * MSR that is managed via XSTATE.  Note, the caller is responsible for doing
3856  * the initial FPU load, this helper only ensures that guest state is resident
3857  * in hardware (the kernel can load its FPU state in IRQ context).
3858  *
3859  * Note, loading guest values for U_CET and PL[0-3]_SSP while executing in the
3860  * kernel is safe, as U_CET is specific to userspace, and PL[0-3]_SSP are only
3861  * consumed when transitioning to lower privilege levels, i.e. are effectively
3862  * only consumed by userspace as well.
3863  */
kvm_access_xstate_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info,int access)3864 static __always_inline void kvm_access_xstate_msr(struct kvm_vcpu *vcpu,
3865 						  struct msr_data *msr_info,
3866 						  int access)
3867 {
3868 	BUILD_BUG_ON(access != MSR_TYPE_R && access != MSR_TYPE_W);
3869 
3870 	KVM_BUG_ON(!is_xstate_managed_msr(vcpu, msr_info->index), vcpu->kvm);
3871 	KVM_BUG_ON(!vcpu->arch.guest_fpu.fpstate->in_use, vcpu->kvm);
3872 
3873 	kvm_fpu_get();
3874 	if (access == MSR_TYPE_R)
3875 		rdmsrq(msr_info->index, msr_info->data);
3876 	else
3877 		wrmsrq(msr_info->index, msr_info->data);
3878 	kvm_fpu_put();
3879 }
3880 
kvm_set_xstate_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3881 static void kvm_set_xstate_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3882 {
3883 	kvm_access_xstate_msr(vcpu, msr_info, MSR_TYPE_W);
3884 }
3885 
kvm_get_xstate_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3886 static void kvm_get_xstate_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3887 {
3888 	kvm_access_xstate_msr(vcpu, msr_info, MSR_TYPE_R);
3889 }
3890 
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3891 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3892 {
3893 	u32 msr = msr_info->index;
3894 	u64 data = msr_info->data;
3895 
3896 	/*
3897 	 * Do not allow host-initiated writes to trigger the Xen hypercall
3898 	 * page setup; it could incur locking paths which are not expected
3899 	 * if userspace sets the MSR in an unusual location.
3900 	 */
3901 	if (kvm_xen_is_hypercall_page_msr(vcpu->kvm, msr) &&
3902 	    !msr_info->host_initiated)
3903 		return kvm_xen_write_hypercall_page(vcpu, data);
3904 
3905 	switch (msr) {
3906 	case MSR_AMD64_NB_CFG:
3907 	case MSR_IA32_UCODE_WRITE:
3908 	case MSR_VM_HSAVE_PA:
3909 	case MSR_AMD64_PATCH_LOADER:
3910 	case MSR_AMD64_BU_CFG2:
3911 	case MSR_AMD64_DC_CFG:
3912 	case MSR_AMD64_TW_CFG:
3913 	case MSR_F15H_EX_CFG:
3914 		break;
3915 
3916 	case MSR_IA32_UCODE_REV:
3917 		if (msr_info->host_initiated)
3918 			vcpu->arch.microcode_version = data;
3919 		break;
3920 	case MSR_IA32_ARCH_CAPABILITIES:
3921 		if (!msr_info->host_initiated ||
3922 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3923 			return KVM_MSR_RET_UNSUPPORTED;
3924 		vcpu->arch.arch_capabilities = data;
3925 		break;
3926 	case MSR_IA32_PERF_CAPABILITIES:
3927 		if (!msr_info->host_initiated ||
3928 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM))
3929 			return KVM_MSR_RET_UNSUPPORTED;
3930 
3931 		if (data & ~kvm_caps.supported_perf_cap)
3932 			return 1;
3933 
3934 		/*
3935 		 * Note, this is not just a performance optimization!  KVM
3936 		 * disallows changing feature MSRs after the vCPU has run; PMU
3937 		 * refresh will bug the VM if called after the vCPU has run.
3938 		 */
3939 		if (vcpu->arch.perf_capabilities == data)
3940 			break;
3941 
3942 		vcpu->arch.perf_capabilities = data;
3943 		kvm_pmu_refresh(vcpu);
3944 		break;
3945 	case MSR_IA32_PRED_CMD: {
3946 		u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3947 
3948 		if (!msr_info->host_initiated) {
3949 			if ((!guest_has_pred_cmd_msr(vcpu)))
3950 				return 1;
3951 
3952 			if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3953 			    !guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_IBPB))
3954 				reserved_bits |= PRED_CMD_IBPB;
3955 
3956 			if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SBPB))
3957 				reserved_bits |= PRED_CMD_SBPB;
3958 		}
3959 
3960 		if (!boot_cpu_has(X86_FEATURE_IBPB))
3961 			reserved_bits |= PRED_CMD_IBPB;
3962 
3963 		if (!boot_cpu_has(X86_FEATURE_SBPB))
3964 			reserved_bits |= PRED_CMD_SBPB;
3965 
3966 		if (data & reserved_bits)
3967 			return 1;
3968 
3969 		if (!data)
3970 			break;
3971 
3972 		wrmsrq(MSR_IA32_PRED_CMD, data);
3973 		break;
3974 	}
3975 	case MSR_IA32_FLUSH_CMD:
3976 		if (!msr_info->host_initiated &&
3977 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D))
3978 			return 1;
3979 
3980 		if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3981 			return 1;
3982 		if (!data)
3983 			break;
3984 
3985 		wrmsrq(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3986 		break;
3987 	case MSR_EFER:
3988 		return set_efer(vcpu, msr_info);
3989 	case MSR_K7_HWCR:
3990 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3991 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3992 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3993 
3994 		/*
3995 		 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
3996 		 * through at least v6.6 whine if TscFreqSel is clear,
3997 		 * depending on F/M/S.
3998 		 */
3999 		if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
4000 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4001 			return 1;
4002 		}
4003 		vcpu->arch.msr_hwcr = data;
4004 		break;
4005 	case MSR_FAM10H_MMIO_CONF_BASE:
4006 		if (data != 0) {
4007 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4008 			return 1;
4009 		}
4010 		break;
4011 	case MSR_IA32_CR_PAT:
4012 		if (!kvm_pat_valid(data))
4013 			return 1;
4014 
4015 		vcpu->arch.pat = data;
4016 		break;
4017 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4018 	case MSR_MTRRdefType:
4019 		return kvm_mtrr_set_msr(vcpu, msr, data);
4020 	case MSR_IA32_APICBASE:
4021 		return kvm_apic_set_base(vcpu, data, msr_info->host_initiated);
4022 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4023 		return kvm_x2apic_msr_write(vcpu, msr, data);
4024 	case MSR_IA32_TSC_DEADLINE:
4025 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
4026 		break;
4027 	case MSR_IA32_TSC_ADJUST:
4028 		if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
4029 			if (!msr_info->host_initiated) {
4030 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
4031 				adjust_tsc_offset_guest(vcpu, adj);
4032 				/* Before back to guest, tsc_timestamp must be adjusted
4033 				 * as well, otherwise guest's percpu pvclock time could jump.
4034 				 */
4035 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4036 			}
4037 			vcpu->arch.ia32_tsc_adjust_msr = data;
4038 		}
4039 		break;
4040 	case MSR_IA32_MISC_ENABLE: {
4041 		u64 old_val = vcpu->arch.ia32_misc_enable_msr;
4042 
4043 		if (!msr_info->host_initiated) {
4044 			/* RO bits */
4045 			if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
4046 				return 1;
4047 
4048 			/* R bits, i.e. writes are ignored, but don't fault. */
4049 			data = data & ~MSR_IA32_MISC_ENABLE_EMON;
4050 			data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
4051 		}
4052 
4053 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
4054 		    ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
4055 			if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XMM3))
4056 				return 1;
4057 			vcpu->arch.ia32_misc_enable_msr = data;
4058 			vcpu->arch.cpuid_dynamic_bits_dirty = true;
4059 		} else {
4060 			vcpu->arch.ia32_misc_enable_msr = data;
4061 		}
4062 		break;
4063 	}
4064 	case MSR_IA32_SMBASE:
4065 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4066 			return 1;
4067 		vcpu->arch.smbase = data;
4068 		break;
4069 	case MSR_IA32_POWER_CTL:
4070 		vcpu->arch.msr_ia32_power_ctl = data;
4071 		break;
4072 	case MSR_IA32_TSC:
4073 		if (msr_info->host_initiated) {
4074 			kvm_synchronize_tsc(vcpu, &data);
4075 		} else if (!vcpu->arch.guest_tsc_protected) {
4076 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
4077 			adjust_tsc_offset_guest(vcpu, adj);
4078 			vcpu->arch.ia32_tsc_adjust_msr += adj;
4079 		}
4080 		break;
4081 	case MSR_IA32_XSS:
4082 		if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4083 			return KVM_MSR_RET_UNSUPPORTED;
4084 
4085 		if (data & ~vcpu->arch.guest_supported_xss)
4086 			return 1;
4087 		if (vcpu->arch.ia32_xss == data)
4088 			break;
4089 		vcpu->arch.ia32_xss = data;
4090 		vcpu->arch.cpuid_dynamic_bits_dirty = true;
4091 		break;
4092 	case MSR_SMI_COUNT:
4093 		if (!msr_info->host_initiated)
4094 			return 1;
4095 		vcpu->arch.smi_count = data;
4096 		break;
4097 	case MSR_KVM_WALL_CLOCK_NEW:
4098 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4099 			return 1;
4100 
4101 		vcpu->kvm->arch.wall_clock = data;
4102 		kvm_write_wall_clock(vcpu->kvm, data, 0);
4103 		break;
4104 	case MSR_KVM_WALL_CLOCK:
4105 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4106 			return 1;
4107 
4108 		vcpu->kvm->arch.wall_clock = data;
4109 		kvm_write_wall_clock(vcpu->kvm, data, 0);
4110 		break;
4111 	case MSR_KVM_SYSTEM_TIME_NEW:
4112 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4113 			return 1;
4114 
4115 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
4116 		break;
4117 	case MSR_KVM_SYSTEM_TIME:
4118 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4119 			return 1;
4120 
4121 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
4122 		break;
4123 	case MSR_KVM_ASYNC_PF_EN:
4124 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4125 			return 1;
4126 
4127 		if (kvm_pv_enable_async_pf(vcpu, data))
4128 			return 1;
4129 		break;
4130 	case MSR_KVM_ASYNC_PF_INT:
4131 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4132 			return 1;
4133 
4134 		if (kvm_pv_enable_async_pf_int(vcpu, data))
4135 			return 1;
4136 		break;
4137 	case MSR_KVM_ASYNC_PF_ACK:
4138 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4139 			return 1;
4140 		if (data & 0x1) {
4141 			/*
4142 			 * Pairs with the smp_mb__after_atomic() in
4143 			 * kvm_arch_async_page_present_queued().
4144 			 */
4145 			smp_store_mb(vcpu->arch.apf.pageready_pending, false);
4146 
4147 			kvm_check_async_pf_completion(vcpu);
4148 		}
4149 		break;
4150 	case MSR_KVM_STEAL_TIME:
4151 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4152 			return 1;
4153 
4154 		if (unlikely(!sched_info_on()))
4155 			return 1;
4156 
4157 		if (data & KVM_STEAL_RESERVED_MASK)
4158 			return 1;
4159 
4160 		vcpu->arch.st.msr_val = data;
4161 
4162 		if (!(data & KVM_MSR_ENABLED))
4163 			break;
4164 
4165 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4166 
4167 		break;
4168 	case MSR_KVM_PV_EOI_EN:
4169 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4170 			return 1;
4171 
4172 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
4173 			return 1;
4174 		break;
4175 
4176 	case MSR_KVM_POLL_CONTROL:
4177 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4178 			return 1;
4179 
4180 		/* only enable bit supported */
4181 		if (data & (-1ULL << 1))
4182 			return 1;
4183 
4184 		vcpu->arch.msr_kvm_poll_control = data;
4185 		break;
4186 
4187 	case MSR_IA32_MCG_CTL:
4188 	case MSR_IA32_MCG_STATUS:
4189 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4190 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4191 		return set_msr_mce(vcpu, msr_info);
4192 
4193 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4194 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4195 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4196 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4197 		if (kvm_pmu_is_valid_msr(vcpu, msr))
4198 			return kvm_pmu_set_msr(vcpu, msr_info);
4199 
4200 		if (data)
4201 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4202 		break;
4203 	case MSR_K7_CLK_CTL:
4204 		/*
4205 		 * Ignore all writes to this no longer documented MSR.
4206 		 * Writes are only relevant for old K7 processors,
4207 		 * all pre-dating SVM, but a recommended workaround from
4208 		 * AMD for these chips. It is possible to specify the
4209 		 * affected processor models on the command line, hence
4210 		 * the need to ignore the workaround.
4211 		 */
4212 		break;
4213 #ifdef CONFIG_KVM_HYPERV
4214 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4215 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4216 	case HV_X64_MSR_SYNDBG_OPTIONS:
4217 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4218 	case HV_X64_MSR_CRASH_CTL:
4219 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4220 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4221 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4222 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4223 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4224 		return kvm_hv_set_msr_common(vcpu, msr, data,
4225 					     msr_info->host_initiated);
4226 #endif
4227 	case MSR_IA32_BBL_CR_CTL3:
4228 		/* Drop writes to this legacy MSR -- see rdmsr
4229 		 * counterpart for further detail.
4230 		 */
4231 		kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4232 		break;
4233 	case MSR_AMD64_OSVW_ID_LENGTH:
4234 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4235 			return 1;
4236 		vcpu->arch.osvw.length = data;
4237 		break;
4238 	case MSR_AMD64_OSVW_STATUS:
4239 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4240 			return 1;
4241 		vcpu->arch.osvw.status = data;
4242 		break;
4243 	case MSR_PLATFORM_INFO:
4244 		if (!msr_info->host_initiated)
4245 			return 1;
4246 		vcpu->arch.msr_platform_info = data;
4247 		break;
4248 	case MSR_MISC_FEATURES_ENABLES:
4249 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4250 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4251 		     !supports_cpuid_fault(vcpu)))
4252 			return 1;
4253 		vcpu->arch.msr_misc_features_enables = data;
4254 		break;
4255 #ifdef CONFIG_X86_64
4256 	case MSR_IA32_XFD:
4257 		if (!msr_info->host_initiated &&
4258 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4259 			return 1;
4260 
4261 		if (data & ~kvm_guest_supported_xfd(vcpu))
4262 			return 1;
4263 
4264 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4265 		break;
4266 	case MSR_IA32_XFD_ERR:
4267 		if (!msr_info->host_initiated &&
4268 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4269 			return 1;
4270 
4271 		if (data & ~kvm_guest_supported_xfd(vcpu))
4272 			return 1;
4273 
4274 		vcpu->arch.guest_fpu.xfd_err = data;
4275 		break;
4276 #endif
4277 	case MSR_IA32_U_CET:
4278 	case MSR_IA32_PL0_SSP ... MSR_IA32_PL3_SSP:
4279 		kvm_set_xstate_msr(vcpu, msr_info);
4280 		break;
4281 	default:
4282 		if (kvm_pmu_is_valid_msr(vcpu, msr))
4283 			return kvm_pmu_set_msr(vcpu, msr_info);
4284 
4285 		return KVM_MSR_RET_UNSUPPORTED;
4286 	}
4287 	return 0;
4288 }
4289 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_msr_common);
4290 
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)4291 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4292 {
4293 	u64 data;
4294 	u64 mcg_cap = vcpu->arch.mcg_cap;
4295 	unsigned bank_num = mcg_cap & 0xff;
4296 	u32 offset, last_msr;
4297 
4298 	switch (msr) {
4299 	case MSR_IA32_P5_MC_ADDR:
4300 	case MSR_IA32_P5_MC_TYPE:
4301 		data = 0;
4302 		break;
4303 	case MSR_IA32_MCG_CAP:
4304 		data = vcpu->arch.mcg_cap;
4305 		break;
4306 	case MSR_IA32_MCG_CTL:
4307 		if (!(mcg_cap & MCG_CTL_P) && !host)
4308 			return 1;
4309 		data = vcpu->arch.mcg_ctl;
4310 		break;
4311 	case MSR_IA32_MCG_STATUS:
4312 		data = vcpu->arch.mcg_status;
4313 		break;
4314 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4315 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4316 		if (msr > last_msr)
4317 			return 1;
4318 
4319 		if (!(mcg_cap & MCG_CMCI_P) && !host)
4320 			return 1;
4321 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4322 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
4323 		data = vcpu->arch.mci_ctl2_banks[offset];
4324 		break;
4325 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4326 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4327 		if (msr > last_msr)
4328 			return 1;
4329 
4330 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4331 					    last_msr + 1 - MSR_IA32_MC0_CTL);
4332 		data = vcpu->arch.mce_banks[offset];
4333 		break;
4334 	default:
4335 		return 1;
4336 	}
4337 	*pdata = data;
4338 	return 0;
4339 }
4340 
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)4341 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4342 {
4343 	switch (msr_info->index) {
4344 	case MSR_IA32_PLATFORM_ID:
4345 	case MSR_IA32_EBL_CR_POWERON:
4346 	case MSR_IA32_LASTBRANCHFROMIP:
4347 	case MSR_IA32_LASTBRANCHTOIP:
4348 	case MSR_IA32_LASTINTFROMIP:
4349 	case MSR_IA32_LASTINTTOIP:
4350 	case MSR_AMD64_SYSCFG:
4351 	case MSR_K8_TSEG_ADDR:
4352 	case MSR_K8_TSEG_MASK:
4353 	case MSR_VM_HSAVE_PA:
4354 	case MSR_K8_INT_PENDING_MSG:
4355 	case MSR_AMD64_NB_CFG:
4356 	case MSR_FAM10H_MMIO_CONF_BASE:
4357 	case MSR_AMD64_BU_CFG2:
4358 	case MSR_IA32_PERF_CTL:
4359 	case MSR_AMD64_DC_CFG:
4360 	case MSR_AMD64_TW_CFG:
4361 	case MSR_F15H_EX_CFG:
4362 	/*
4363 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4364 	 * limit) MSRs. Just return 0, as we do not want to expose the host
4365 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
4366 	 * so for existing CPU-specific MSRs.
4367 	 */
4368 	case MSR_RAPL_POWER_UNIT:
4369 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
4370 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
4371 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
4372 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
4373 		msr_info->data = 0;
4374 		break;
4375 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4376 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4377 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4378 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4379 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4380 			return kvm_pmu_get_msr(vcpu, msr_info);
4381 		msr_info->data = 0;
4382 		break;
4383 	case MSR_IA32_UCODE_REV:
4384 		msr_info->data = vcpu->arch.microcode_version;
4385 		break;
4386 	case MSR_IA32_ARCH_CAPABILITIES:
4387 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4388 			return KVM_MSR_RET_UNSUPPORTED;
4389 		msr_info->data = vcpu->arch.arch_capabilities;
4390 		break;
4391 	case MSR_IA32_PERF_CAPABILITIES:
4392 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM))
4393 			return KVM_MSR_RET_UNSUPPORTED;
4394 		msr_info->data = vcpu->arch.perf_capabilities;
4395 		break;
4396 	case MSR_IA32_POWER_CTL:
4397 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4398 		break;
4399 	case MSR_IA32_TSC: {
4400 		/*
4401 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4402 		 * even when not intercepted. AMD manual doesn't explicitly
4403 		 * state this but appears to behave the same.
4404 		 *
4405 		 * On userspace reads and writes, however, we unconditionally
4406 		 * return L1's TSC value to ensure backwards-compatible
4407 		 * behavior for migration.
4408 		 */
4409 		u64 offset, ratio;
4410 
4411 		if (msr_info->host_initiated) {
4412 			offset = vcpu->arch.l1_tsc_offset;
4413 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
4414 		} else {
4415 			offset = vcpu->arch.tsc_offset;
4416 			ratio = vcpu->arch.tsc_scaling_ratio;
4417 		}
4418 
4419 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4420 		break;
4421 	}
4422 	case MSR_IA32_CR_PAT:
4423 		msr_info->data = vcpu->arch.pat;
4424 		break;
4425 	case MSR_MTRRcap:
4426 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4427 	case MSR_MTRRdefType:
4428 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4429 	case 0xcd: /* fsb frequency */
4430 		msr_info->data = 3;
4431 		break;
4432 		/*
4433 		 * MSR_EBC_FREQUENCY_ID
4434 		 * Conservative value valid for even the basic CPU models.
4435 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4436 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4437 		 * and 266MHz for model 3, or 4. Set Core Clock
4438 		 * Frequency to System Bus Frequency Ratio to 1 (bits
4439 		 * 31:24) even though these are only valid for CPU
4440 		 * models > 2, however guests may end up dividing or
4441 		 * multiplying by zero otherwise.
4442 		 */
4443 	case MSR_EBC_FREQUENCY_ID:
4444 		msr_info->data = 1 << 24;
4445 		break;
4446 	case MSR_IA32_APICBASE:
4447 		msr_info->data = vcpu->arch.apic_base;
4448 		break;
4449 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4450 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4451 	case MSR_IA32_TSC_DEADLINE:
4452 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4453 		break;
4454 	case MSR_IA32_TSC_ADJUST:
4455 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4456 		break;
4457 	case MSR_IA32_MISC_ENABLE:
4458 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4459 		break;
4460 	case MSR_IA32_SMBASE:
4461 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4462 			return 1;
4463 		msr_info->data = vcpu->arch.smbase;
4464 		break;
4465 	case MSR_SMI_COUNT:
4466 		msr_info->data = vcpu->arch.smi_count;
4467 		break;
4468 	case MSR_IA32_PERF_STATUS:
4469 		/* TSC increment by tick */
4470 		msr_info->data = 1000ULL;
4471 		/* CPU multiplier */
4472 		msr_info->data |= (((uint64_t)4ULL) << 40);
4473 		break;
4474 	case MSR_EFER:
4475 		msr_info->data = vcpu->arch.efer;
4476 		break;
4477 	case MSR_KVM_WALL_CLOCK:
4478 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4479 			return 1;
4480 
4481 		msr_info->data = vcpu->kvm->arch.wall_clock;
4482 		break;
4483 	case MSR_KVM_WALL_CLOCK_NEW:
4484 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4485 			return 1;
4486 
4487 		msr_info->data = vcpu->kvm->arch.wall_clock;
4488 		break;
4489 	case MSR_KVM_SYSTEM_TIME:
4490 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4491 			return 1;
4492 
4493 		msr_info->data = vcpu->arch.time;
4494 		break;
4495 	case MSR_KVM_SYSTEM_TIME_NEW:
4496 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4497 			return 1;
4498 
4499 		msr_info->data = vcpu->arch.time;
4500 		break;
4501 	case MSR_KVM_ASYNC_PF_EN:
4502 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4503 			return 1;
4504 
4505 		msr_info->data = vcpu->arch.apf.msr_en_val;
4506 		break;
4507 	case MSR_KVM_ASYNC_PF_INT:
4508 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4509 			return 1;
4510 
4511 		msr_info->data = vcpu->arch.apf.msr_int_val;
4512 		break;
4513 	case MSR_KVM_ASYNC_PF_ACK:
4514 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4515 			return 1;
4516 
4517 		msr_info->data = 0;
4518 		break;
4519 	case MSR_KVM_STEAL_TIME:
4520 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4521 			return 1;
4522 
4523 		msr_info->data = vcpu->arch.st.msr_val;
4524 		break;
4525 	case MSR_KVM_PV_EOI_EN:
4526 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4527 			return 1;
4528 
4529 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4530 		break;
4531 	case MSR_KVM_POLL_CONTROL:
4532 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4533 			return 1;
4534 
4535 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4536 		break;
4537 	case MSR_IA32_P5_MC_ADDR:
4538 	case MSR_IA32_P5_MC_TYPE:
4539 	case MSR_IA32_MCG_CAP:
4540 	case MSR_IA32_MCG_CTL:
4541 	case MSR_IA32_MCG_STATUS:
4542 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4543 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4544 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4545 				   msr_info->host_initiated);
4546 	case MSR_IA32_XSS:
4547 		if (!msr_info->host_initiated &&
4548 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4549 			return 1;
4550 		msr_info->data = vcpu->arch.ia32_xss;
4551 		break;
4552 	case MSR_K7_CLK_CTL:
4553 		/*
4554 		 * Provide expected ramp-up count for K7. All other
4555 		 * are set to zero, indicating minimum divisors for
4556 		 * every field.
4557 		 *
4558 		 * This prevents guest kernels on AMD host with CPU
4559 		 * type 6, model 8 and higher from exploding due to
4560 		 * the rdmsr failing.
4561 		 */
4562 		msr_info->data = 0x20000000;
4563 		break;
4564 #ifdef CONFIG_KVM_HYPERV
4565 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4566 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4567 	case HV_X64_MSR_SYNDBG_OPTIONS:
4568 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4569 	case HV_X64_MSR_CRASH_CTL:
4570 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4571 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4572 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4573 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4574 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4575 		return kvm_hv_get_msr_common(vcpu,
4576 					     msr_info->index, &msr_info->data,
4577 					     msr_info->host_initiated);
4578 #endif
4579 	case MSR_IA32_BBL_CR_CTL3:
4580 		/* This legacy MSR exists but isn't fully documented in current
4581 		 * silicon.  It is however accessed by winxp in very narrow
4582 		 * scenarios where it sets bit #19, itself documented as
4583 		 * a "reserved" bit.  Best effort attempt to source coherent
4584 		 * read data here should the balance of the register be
4585 		 * interpreted by the guest:
4586 		 *
4587 		 * L2 cache control register 3: 64GB range, 256KB size,
4588 		 * enabled, latency 0x1, configured
4589 		 */
4590 		msr_info->data = 0xbe702111;
4591 		break;
4592 	case MSR_AMD64_OSVW_ID_LENGTH:
4593 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4594 			return 1;
4595 		msr_info->data = vcpu->arch.osvw.length;
4596 		break;
4597 	case MSR_AMD64_OSVW_STATUS:
4598 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4599 			return 1;
4600 		msr_info->data = vcpu->arch.osvw.status;
4601 		break;
4602 	case MSR_PLATFORM_INFO:
4603 		if (!msr_info->host_initiated &&
4604 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4605 			return 1;
4606 		msr_info->data = vcpu->arch.msr_platform_info;
4607 		break;
4608 	case MSR_MISC_FEATURES_ENABLES:
4609 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4610 		break;
4611 	case MSR_K7_HWCR:
4612 		msr_info->data = vcpu->arch.msr_hwcr;
4613 		break;
4614 #ifdef CONFIG_X86_64
4615 	case MSR_IA32_XFD:
4616 		if (!msr_info->host_initiated &&
4617 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4618 			return 1;
4619 
4620 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4621 		break;
4622 	case MSR_IA32_XFD_ERR:
4623 		if (!msr_info->host_initiated &&
4624 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4625 			return 1;
4626 
4627 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4628 		break;
4629 #endif
4630 	case MSR_IA32_U_CET:
4631 	case MSR_IA32_PL0_SSP ... MSR_IA32_PL3_SSP:
4632 		kvm_get_xstate_msr(vcpu, msr_info);
4633 		break;
4634 	default:
4635 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4636 			return kvm_pmu_get_msr(vcpu, msr_info);
4637 
4638 		return KVM_MSR_RET_UNSUPPORTED;
4639 	}
4640 	return 0;
4641 }
4642 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_msr_common);
4643 
4644 /*
4645  * Read or write a bunch of msrs. All parameters are kernel addresses.
4646  *
4647  * @return number of msrs set successfully.
4648  */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))4649 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4650 		    struct kvm_msr_entry *entries,
4651 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4652 				  unsigned index, u64 *data))
4653 {
4654 	bool fpu_loaded = false;
4655 	int i;
4656 
4657 	for (i = 0; i < msrs->nmsrs; ++i) {
4658 		/*
4659 		 * If userspace is accessing one or more XSTATE-managed MSRs,
4660 		 * temporarily load the guest's FPU state so that the guest's
4661 		 * MSR value(s) is resident in hardware and thus can be accessed
4662 		 * via RDMSR/WRMSR.
4663 		 */
4664 		if (!fpu_loaded && is_xstate_managed_msr(vcpu, entries[i].index)) {
4665 			kvm_load_guest_fpu(vcpu);
4666 			fpu_loaded = true;
4667 		}
4668 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4669 			break;
4670 	}
4671 	if (fpu_loaded)
4672 		kvm_put_guest_fpu(vcpu);
4673 
4674 	return i;
4675 }
4676 
4677 /*
4678  * Read or write a bunch of msrs. Parameters are user addresses.
4679  *
4680  * @return number of msrs set successfully.
4681  */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)4682 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4683 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4684 				unsigned index, u64 *data),
4685 		  int writeback)
4686 {
4687 	struct kvm_msrs msrs;
4688 	struct kvm_msr_entry *entries;
4689 	unsigned size;
4690 	int r;
4691 
4692 	r = -EFAULT;
4693 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4694 		goto out;
4695 
4696 	r = -E2BIG;
4697 	if (msrs.nmsrs >= MAX_IO_MSRS)
4698 		goto out;
4699 
4700 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4701 	entries = memdup_user(user_msrs->entries, size);
4702 	if (IS_ERR(entries)) {
4703 		r = PTR_ERR(entries);
4704 		goto out;
4705 	}
4706 
4707 	r = __msr_io(vcpu, &msrs, entries, do_msr);
4708 
4709 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4710 		r = -EFAULT;
4711 
4712 	kfree(entries);
4713 out:
4714 	return r;
4715 }
4716 
kvm_can_mwait_in_guest(void)4717 static inline bool kvm_can_mwait_in_guest(void)
4718 {
4719 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4720 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4721 		boot_cpu_has(X86_FEATURE_ARAT);
4722 }
4723 
kvm_get_allowed_disable_exits(void)4724 static u64 kvm_get_allowed_disable_exits(void)
4725 {
4726 	u64 r = KVM_X86_DISABLE_EXITS_PAUSE;
4727 
4728 	if (boot_cpu_has(X86_FEATURE_APERFMPERF))
4729 		r |= KVM_X86_DISABLE_EXITS_APERFMPERF;
4730 
4731 	if (!mitigate_smt_rsb) {
4732 		r |= KVM_X86_DISABLE_EXITS_HLT |
4733 			KVM_X86_DISABLE_EXITS_CSTATE;
4734 
4735 		if (kvm_can_mwait_in_guest())
4736 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
4737 	}
4738 	return r;
4739 }
4740 
4741 #ifdef CONFIG_KVM_HYPERV
kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid2 __user * cpuid_arg)4742 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4743 					    struct kvm_cpuid2 __user *cpuid_arg)
4744 {
4745 	struct kvm_cpuid2 cpuid;
4746 	int r;
4747 
4748 	r = -EFAULT;
4749 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4750 		return r;
4751 
4752 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4753 	if (r)
4754 		return r;
4755 
4756 	r = -EFAULT;
4757 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4758 		return r;
4759 
4760 	return 0;
4761 }
4762 #endif
4763 
kvm_is_vm_type_supported(unsigned long type)4764 static bool kvm_is_vm_type_supported(unsigned long type)
4765 {
4766 	return type < 32 && (kvm_caps.supported_vm_types & BIT(type));
4767 }
4768 
kvm_sync_valid_fields(struct kvm * kvm)4769 static inline u64 kvm_sync_valid_fields(struct kvm *kvm)
4770 {
4771 	return kvm && kvm->arch.has_protected_state ? 0 : KVM_SYNC_X86_VALID_FIELDS;
4772 }
4773 
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)4774 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4775 {
4776 	int r = 0;
4777 
4778 	switch (ext) {
4779 	case KVM_CAP_IRQCHIP:
4780 	case KVM_CAP_HLT:
4781 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4782 	case KVM_CAP_SET_TSS_ADDR:
4783 	case KVM_CAP_EXT_CPUID:
4784 	case KVM_CAP_EXT_EMUL_CPUID:
4785 	case KVM_CAP_CLOCKSOURCE:
4786 #ifdef CONFIG_KVM_IOAPIC
4787 	case KVM_CAP_PIT:
4788 	case KVM_CAP_PIT2:
4789 	case KVM_CAP_PIT_STATE2:
4790 	case KVM_CAP_REINJECT_CONTROL:
4791 #endif
4792 	case KVM_CAP_NOP_IO_DELAY:
4793 	case KVM_CAP_MP_STATE:
4794 	case KVM_CAP_SYNC_MMU:
4795 	case KVM_CAP_USER_NMI:
4796 	case KVM_CAP_IRQ_INJECT_STATUS:
4797 	case KVM_CAP_IOEVENTFD:
4798 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4799 
4800 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4801 	case KVM_CAP_VCPU_EVENTS:
4802 #ifdef CONFIG_KVM_HYPERV
4803 	case KVM_CAP_HYPERV:
4804 	case KVM_CAP_HYPERV_VAPIC:
4805 	case KVM_CAP_HYPERV_SPIN:
4806 	case KVM_CAP_HYPERV_TIME:
4807 	case KVM_CAP_HYPERV_SYNIC:
4808 	case KVM_CAP_HYPERV_SYNIC2:
4809 	case KVM_CAP_HYPERV_VP_INDEX:
4810 	case KVM_CAP_HYPERV_EVENTFD:
4811 	case KVM_CAP_HYPERV_TLBFLUSH:
4812 	case KVM_CAP_HYPERV_SEND_IPI:
4813 	case KVM_CAP_HYPERV_CPUID:
4814 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4815 	case KVM_CAP_SYS_HYPERV_CPUID:
4816 #endif
4817 	case KVM_CAP_PCI_SEGMENT:
4818 	case KVM_CAP_DEBUGREGS:
4819 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4820 	case KVM_CAP_XSAVE:
4821 	case KVM_CAP_ASYNC_PF:
4822 	case KVM_CAP_ASYNC_PF_INT:
4823 	case KVM_CAP_GET_TSC_KHZ:
4824 	case KVM_CAP_KVMCLOCK_CTRL:
4825 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4826 	case KVM_CAP_TSC_DEADLINE_TIMER:
4827 	case KVM_CAP_DISABLE_QUIRKS:
4828 	case KVM_CAP_SET_BOOT_CPU_ID:
4829  	case KVM_CAP_SPLIT_IRQCHIP:
4830 	case KVM_CAP_IMMEDIATE_EXIT:
4831 	case KVM_CAP_PMU_EVENT_FILTER:
4832 	case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4833 	case KVM_CAP_GET_MSR_FEATURES:
4834 	case KVM_CAP_MSR_PLATFORM_INFO:
4835 	case KVM_CAP_EXCEPTION_PAYLOAD:
4836 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4837 	case KVM_CAP_SET_GUEST_DEBUG:
4838 	case KVM_CAP_LAST_CPU:
4839 	case KVM_CAP_X86_USER_SPACE_MSR:
4840 	case KVM_CAP_X86_MSR_FILTER:
4841 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4842 #ifdef CONFIG_X86_SGX_KVM
4843 	case KVM_CAP_SGX_ATTRIBUTE:
4844 #endif
4845 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4846 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4847 	case KVM_CAP_SREGS2:
4848 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4849 	case KVM_CAP_VCPU_ATTRIBUTES:
4850 	case KVM_CAP_SYS_ATTRIBUTES:
4851 	case KVM_CAP_VAPIC:
4852 	case KVM_CAP_ENABLE_CAP:
4853 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4854 	case KVM_CAP_IRQFD_RESAMPLE:
4855 	case KVM_CAP_MEMORY_FAULT_INFO:
4856 	case KVM_CAP_X86_GUEST_MODE:
4857 	case KVM_CAP_ONE_REG:
4858 		r = 1;
4859 		break;
4860 	case KVM_CAP_PRE_FAULT_MEMORY:
4861 		r = tdp_enabled;
4862 		break;
4863 	case KVM_CAP_X86_APIC_BUS_CYCLES_NS:
4864 		r = APIC_BUS_CYCLE_NS_DEFAULT;
4865 		break;
4866 	case KVM_CAP_EXIT_HYPERCALL:
4867 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4868 		break;
4869 	case KVM_CAP_SET_GUEST_DEBUG2:
4870 		return KVM_GUESTDBG_VALID_MASK;
4871 #ifdef CONFIG_KVM_XEN
4872 	case KVM_CAP_XEN_HVM:
4873 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4874 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4875 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4876 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4877 		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
4878 		    KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE |
4879 		    KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA;
4880 		if (sched_info_on())
4881 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4882 			     KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4883 		break;
4884 #endif
4885 	case KVM_CAP_SYNC_REGS:
4886 		r = kvm_sync_valid_fields(kvm);
4887 		break;
4888 	case KVM_CAP_ADJUST_CLOCK:
4889 		r = KVM_CLOCK_VALID_FLAGS;
4890 		break;
4891 	case KVM_CAP_X86_DISABLE_EXITS:
4892 		r = kvm_get_allowed_disable_exits();
4893 		break;
4894 	case KVM_CAP_X86_SMM:
4895 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4896 			break;
4897 
4898 		/* SMBASE is usually relocated above 1M on modern chipsets,
4899 		 * and SMM handlers might indeed rely on 4G segment limits,
4900 		 * so do not report SMM to be available if real mode is
4901 		 * emulated via vm86 mode.  Still, do not go to great lengths
4902 		 * to avoid userspace's usage of the feature, because it is a
4903 		 * fringe case that is not enabled except via specific settings
4904 		 * of the module parameters.
4905 		 */
4906 		r = kvm_x86_call(has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4907 		break;
4908 	case KVM_CAP_NR_VCPUS:
4909 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4910 		break;
4911 	case KVM_CAP_MAX_VCPUS:
4912 		r = KVM_MAX_VCPUS;
4913 		if (kvm)
4914 			r = kvm->max_vcpus;
4915 		break;
4916 	case KVM_CAP_MAX_VCPU_ID:
4917 		r = KVM_MAX_VCPU_IDS;
4918 		break;
4919 	case KVM_CAP_PV_MMU:	/* obsolete */
4920 		r = 0;
4921 		break;
4922 	case KVM_CAP_MCE:
4923 		r = KVM_MAX_MCE_BANKS;
4924 		break;
4925 	case KVM_CAP_XCRS:
4926 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4927 		break;
4928 	case KVM_CAP_TSC_CONTROL:
4929 	case KVM_CAP_VM_TSC_CONTROL:
4930 		r = kvm_caps.has_tsc_control;
4931 		break;
4932 	case KVM_CAP_X2APIC_API:
4933 		r = KVM_X2APIC_API_VALID_FLAGS;
4934 		break;
4935 	case KVM_CAP_NESTED_STATE:
4936 		r = kvm_x86_ops.nested_ops->get_state ?
4937 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4938 		break;
4939 #ifdef CONFIG_KVM_HYPERV
4940 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4941 		r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4942 		break;
4943 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4944 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4945 		break;
4946 #endif
4947 	case KVM_CAP_SMALLER_MAXPHYADDR:
4948 		r = (int) allow_smaller_maxphyaddr;
4949 		break;
4950 	case KVM_CAP_STEAL_TIME:
4951 		r = sched_info_on();
4952 		break;
4953 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4954 		if (kvm_caps.has_bus_lock_exit)
4955 			r = KVM_BUS_LOCK_DETECTION_OFF |
4956 			    KVM_BUS_LOCK_DETECTION_EXIT;
4957 		else
4958 			r = 0;
4959 		break;
4960 	case KVM_CAP_XSAVE2: {
4961 		r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4962 		if (r < sizeof(struct kvm_xsave))
4963 			r = sizeof(struct kvm_xsave);
4964 		break;
4965 	}
4966 	case KVM_CAP_PMU_CAPABILITY:
4967 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4968 		break;
4969 	case KVM_CAP_DISABLE_QUIRKS2:
4970 		r = kvm_caps.supported_quirks;
4971 		break;
4972 	case KVM_CAP_X86_NOTIFY_VMEXIT:
4973 		r = kvm_caps.has_notify_vmexit;
4974 		break;
4975 	case KVM_CAP_VM_TYPES:
4976 		r = kvm_caps.supported_vm_types;
4977 		break;
4978 	case KVM_CAP_READONLY_MEM:
4979 		r = kvm ? kvm_arch_has_readonly_mem(kvm) : 1;
4980 		break;
4981 	default:
4982 		break;
4983 	}
4984 	return r;
4985 }
4986 
__kvm_x86_dev_get_attr(struct kvm_device_attr * attr,u64 * val)4987 static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val)
4988 {
4989 	if (attr->group) {
4990 		if (kvm_x86_ops.dev_get_attr)
4991 			return kvm_x86_call(dev_get_attr)(attr->group, attr->attr, val);
4992 		return -ENXIO;
4993 	}
4994 
4995 	switch (attr->attr) {
4996 	case KVM_X86_XCOMP_GUEST_SUPP:
4997 		*val = kvm_caps.supported_xcr0;
4998 		return 0;
4999 	default:
5000 		return -ENXIO;
5001 	}
5002 }
5003 
kvm_x86_dev_get_attr(struct kvm_device_attr * attr)5004 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
5005 {
5006 	u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5007 	int r;
5008 	u64 val;
5009 
5010 	r = __kvm_x86_dev_get_attr(attr, &val);
5011 	if (r < 0)
5012 		return r;
5013 
5014 	if (put_user(val, uaddr))
5015 		return -EFAULT;
5016 
5017 	return 0;
5018 }
5019 
kvm_x86_dev_has_attr(struct kvm_device_attr * attr)5020 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
5021 {
5022 	u64 val;
5023 
5024 	return __kvm_x86_dev_get_attr(attr, &val);
5025 }
5026 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5027 long kvm_arch_dev_ioctl(struct file *filp,
5028 			unsigned int ioctl, unsigned long arg)
5029 {
5030 	void __user *argp = (void __user *)arg;
5031 	long r;
5032 
5033 	switch (ioctl) {
5034 	case KVM_GET_MSR_INDEX_LIST: {
5035 		struct kvm_msr_list __user *user_msr_list = argp;
5036 		struct kvm_msr_list msr_list;
5037 		unsigned n;
5038 
5039 		r = -EFAULT;
5040 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
5041 			goto out;
5042 		n = msr_list.nmsrs;
5043 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
5044 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
5045 			goto out;
5046 		r = -E2BIG;
5047 		if (n < msr_list.nmsrs)
5048 			goto out;
5049 		r = -EFAULT;
5050 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
5051 				 num_msrs_to_save * sizeof(u32)))
5052 			goto out;
5053 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
5054 				 &emulated_msrs,
5055 				 num_emulated_msrs * sizeof(u32)))
5056 			goto out;
5057 		r = 0;
5058 		break;
5059 	}
5060 	case KVM_GET_SUPPORTED_CPUID:
5061 	case KVM_GET_EMULATED_CPUID: {
5062 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5063 		struct kvm_cpuid2 cpuid;
5064 
5065 		r = -EFAULT;
5066 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5067 			goto out;
5068 
5069 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
5070 					    ioctl);
5071 		if (r)
5072 			goto out;
5073 
5074 		r = -EFAULT;
5075 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5076 			goto out;
5077 		r = 0;
5078 		break;
5079 	}
5080 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
5081 		r = -EFAULT;
5082 		if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
5083 				 sizeof(kvm_caps.supported_mce_cap)))
5084 			goto out;
5085 		r = 0;
5086 		break;
5087 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
5088 		struct kvm_msr_list __user *user_msr_list = argp;
5089 		struct kvm_msr_list msr_list;
5090 		unsigned int n;
5091 
5092 		r = -EFAULT;
5093 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
5094 			goto out;
5095 		n = msr_list.nmsrs;
5096 		msr_list.nmsrs = num_msr_based_features;
5097 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
5098 			goto out;
5099 		r = -E2BIG;
5100 		if (n < msr_list.nmsrs)
5101 			goto out;
5102 		r = -EFAULT;
5103 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
5104 				 num_msr_based_features * sizeof(u32)))
5105 			goto out;
5106 		r = 0;
5107 		break;
5108 	}
5109 	case KVM_GET_MSRS:
5110 		r = msr_io(NULL, argp, do_get_feature_msr, 1);
5111 		break;
5112 #ifdef CONFIG_KVM_HYPERV
5113 	case KVM_GET_SUPPORTED_HV_CPUID:
5114 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
5115 		break;
5116 #endif
5117 	case KVM_GET_DEVICE_ATTR: {
5118 		struct kvm_device_attr attr;
5119 		r = -EFAULT;
5120 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
5121 			break;
5122 		r = kvm_x86_dev_get_attr(&attr);
5123 		break;
5124 	}
5125 	case KVM_HAS_DEVICE_ATTR: {
5126 		struct kvm_device_attr attr;
5127 		r = -EFAULT;
5128 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
5129 			break;
5130 		r = kvm_x86_dev_has_attr(&attr);
5131 		break;
5132 	}
5133 	default:
5134 		r = -EINVAL;
5135 		break;
5136 	}
5137 out:
5138 	return r;
5139 }
5140 
need_emulate_wbinvd(struct kvm_vcpu * vcpu)5141 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
5142 {
5143 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
5144 }
5145 
5146 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
5147 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)5148 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
5149 {
5150 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
5151 
5152 	kvm_request_l1tf_flush_l1d();
5153 
5154 	if (vcpu->scheduled_out && pmu->version && pmu->event_count) {
5155 		pmu->need_cleanup = true;
5156 		kvm_make_request(KVM_REQ_PMU, vcpu);
5157 	}
5158 
5159 	/* Address WBINVD may be executed by guest */
5160 	if (need_emulate_wbinvd(vcpu)) {
5161 		if (kvm_x86_call(has_wbinvd_exit)())
5162 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5163 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
5164 			wbinvd_on_cpu(vcpu->cpu);
5165 	}
5166 
5167 	kvm_x86_call(vcpu_load)(vcpu, cpu);
5168 
5169 	if (vcpu != per_cpu(last_vcpu, cpu)) {
5170 		/*
5171 		 * Flush the branch predictor when switching vCPUs on the same
5172 		 * physical CPU, as each vCPU needs its own branch prediction
5173 		 * domain.  No IBPB is needed when switching between L1 and L2
5174 		 * on the same vCPU unless IBRS is advertised to the vCPU; that
5175 		 * is handled on the nested VM-Exit path.
5176 		 */
5177 		if (static_branch_likely(&switch_vcpu_ibpb))
5178 			indirect_branch_prediction_barrier();
5179 		per_cpu(last_vcpu, cpu) = vcpu;
5180 	}
5181 
5182 	/* Save host pkru register if supported */
5183 	vcpu->arch.host_pkru = read_pkru();
5184 
5185 	/* Apply any externally detected TSC adjustments (due to suspend) */
5186 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
5187 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
5188 		vcpu->arch.tsc_offset_adjustment = 0;
5189 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5190 	}
5191 
5192 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
5193 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
5194 				rdtsc() - vcpu->arch.last_host_tsc;
5195 		if (tsc_delta < 0)
5196 			mark_tsc_unstable("KVM discovered backwards TSC");
5197 
5198 		if (kvm_check_tsc_unstable()) {
5199 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
5200 						vcpu->arch.last_guest_tsc);
5201 			kvm_vcpu_write_tsc_offset(vcpu, offset);
5202 			if (!vcpu->arch.guest_tsc_protected)
5203 				vcpu->arch.tsc_catchup = 1;
5204 		}
5205 
5206 		if (kvm_lapic_hv_timer_in_use(vcpu))
5207 			kvm_lapic_restart_hv_timer(vcpu);
5208 
5209 		/*
5210 		 * On a host with synchronized TSC, there is no need to update
5211 		 * kvmclock on vcpu->cpu migration
5212 		 */
5213 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
5214 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
5215 		if (vcpu->cpu != cpu)
5216 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
5217 		vcpu->cpu = cpu;
5218 	}
5219 
5220 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
5221 }
5222 
kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)5223 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
5224 {
5225 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
5226 	struct kvm_steal_time __user *st;
5227 	struct kvm_memslots *slots;
5228 	static const u8 preempted = KVM_VCPU_PREEMPTED;
5229 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
5230 
5231 	/*
5232 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
5233 	 * an instruction boundary and will not trigger guest emulation of any
5234 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
5235 	 * when this is true, for example allowing the vCPU to be marked
5236 	 * preempted if and only if the VM-Exit was due to a host interrupt.
5237 	 */
5238 	if (!vcpu->arch.at_instruction_boundary) {
5239 		vcpu->stat.preemption_other++;
5240 		return;
5241 	}
5242 
5243 	vcpu->stat.preemption_reported++;
5244 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
5245 		return;
5246 
5247 	if (vcpu->arch.st.preempted)
5248 		return;
5249 
5250 	/* This happens on process exit */
5251 	if (unlikely(current->mm != vcpu->kvm->mm))
5252 		return;
5253 
5254 	slots = kvm_memslots(vcpu->kvm);
5255 
5256 	if (unlikely(slots->generation != ghc->generation ||
5257 		     gpa != ghc->gpa ||
5258 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5259 		return;
5260 
5261 	st = (struct kvm_steal_time __user *)ghc->hva;
5262 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5263 
5264 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5265 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5266 
5267 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5268 }
5269 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)5270 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5271 {
5272 	int idx;
5273 
5274 	if (vcpu->preempted) {
5275 		/*
5276 		 * Assume protected guests are in-kernel.  Inefficient yielding
5277 		 * due to false positives is preferable to never yielding due
5278 		 * to false negatives.
5279 		 */
5280 		vcpu->arch.preempted_in_kernel = vcpu->arch.guest_state_protected ||
5281 						 !kvm_x86_call(get_cpl_no_cache)(vcpu);
5282 
5283 		/*
5284 		 * Take the srcu lock as memslots will be accessed to check the gfn
5285 		 * cache generation against the memslots generation.
5286 		 */
5287 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5288 		if (kvm_xen_msr_enabled(vcpu->kvm))
5289 			kvm_xen_runstate_set_preempted(vcpu);
5290 		else
5291 			kvm_steal_time_set_preempted(vcpu);
5292 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5293 	}
5294 
5295 	kvm_x86_call(vcpu_put)(vcpu);
5296 	vcpu->arch.last_host_tsc = rdtsc();
5297 }
5298 
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)5299 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5300 				    struct kvm_lapic_state *s)
5301 {
5302 	if (vcpu->arch.apic->guest_apic_protected)
5303 		return -EINVAL;
5304 
5305 	kvm_x86_call(sync_pir_to_irr)(vcpu);
5306 
5307 	return kvm_apic_get_state(vcpu, s);
5308 }
5309 
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)5310 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5311 				    struct kvm_lapic_state *s)
5312 {
5313 	int r;
5314 
5315 	if (vcpu->arch.apic->guest_apic_protected)
5316 		return -EINVAL;
5317 
5318 	r = kvm_apic_set_state(vcpu, s);
5319 	if (r)
5320 		return r;
5321 	update_cr8_intercept(vcpu);
5322 
5323 	return 0;
5324 }
5325 
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)5326 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5327 {
5328 	/*
5329 	 * We can accept userspace's request for interrupt injection
5330 	 * as long as we have a place to store the interrupt number.
5331 	 * The actual injection will happen when the CPU is able to
5332 	 * deliver the interrupt.
5333 	 */
5334 	if (kvm_cpu_has_extint(vcpu))
5335 		return false;
5336 
5337 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
5338 	return (!lapic_in_kernel(vcpu) ||
5339 		kvm_apic_accept_pic_intr(vcpu));
5340 }
5341 
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)5342 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5343 {
5344 	/*
5345 	 * Do not cause an interrupt window exit if an exception
5346 	 * is pending or an event needs reinjection; userspace
5347 	 * might want to inject the interrupt manually using KVM_SET_REGS
5348 	 * or KVM_SET_SREGS.  For that to work, we must be at an
5349 	 * instruction boundary and with no events half-injected.
5350 	 */
5351 	return (kvm_arch_interrupt_allowed(vcpu) &&
5352 		kvm_cpu_accept_dm_intr(vcpu) &&
5353 		!kvm_event_needs_reinjection(vcpu) &&
5354 		!kvm_is_exception_pending(vcpu));
5355 }
5356 
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)5357 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5358 				    struct kvm_interrupt *irq)
5359 {
5360 	if (irq->irq >= KVM_NR_INTERRUPTS)
5361 		return -EINVAL;
5362 
5363 	if (!irqchip_in_kernel(vcpu->kvm)) {
5364 		kvm_queue_interrupt(vcpu, irq->irq, false);
5365 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5366 		return 0;
5367 	}
5368 
5369 	/*
5370 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
5371 	 * fail for in-kernel 8259.
5372 	 */
5373 	if (pic_in_kernel(vcpu->kvm))
5374 		return -ENXIO;
5375 
5376 	if (vcpu->arch.pending_external_vector != -1)
5377 		return -EEXIST;
5378 
5379 	vcpu->arch.pending_external_vector = irq->irq;
5380 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5381 	return 0;
5382 }
5383 
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)5384 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5385 {
5386 	kvm_inject_nmi(vcpu);
5387 
5388 	return 0;
5389 }
5390 
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)5391 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5392 					   struct kvm_tpr_access_ctl *tac)
5393 {
5394 	if (tac->flags)
5395 		return -EINVAL;
5396 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
5397 	return 0;
5398 }
5399 
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)5400 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5401 					u64 mcg_cap)
5402 {
5403 	int r;
5404 	unsigned bank_num = mcg_cap & 0xff, bank;
5405 
5406 	r = -EINVAL;
5407 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5408 		goto out;
5409 	if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5410 		goto out;
5411 	r = 0;
5412 	vcpu->arch.mcg_cap = mcg_cap;
5413 	/* Init IA32_MCG_CTL to all 1s */
5414 	if (mcg_cap & MCG_CTL_P)
5415 		vcpu->arch.mcg_ctl = ~(u64)0;
5416 	/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5417 	for (bank = 0; bank < bank_num; bank++) {
5418 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5419 		if (mcg_cap & MCG_CMCI_P)
5420 			vcpu->arch.mci_ctl2_banks[bank] = 0;
5421 	}
5422 
5423 	kvm_apic_after_set_mcg_cap(vcpu);
5424 
5425 	kvm_x86_call(setup_mce)(vcpu);
5426 out:
5427 	return r;
5428 }
5429 
5430 /*
5431  * Validate this is an UCNA (uncorrectable no action) error by checking the
5432  * MCG_STATUS and MCi_STATUS registers:
5433  * - none of the bits for Machine Check Exceptions are set
5434  * - both the VAL (valid) and UC (uncorrectable) bits are set
5435  * MCI_STATUS_PCC - Processor Context Corrupted
5436  * MCI_STATUS_S - Signaled as a Machine Check Exception
5437  * MCI_STATUS_AR - Software recoverable Action Required
5438  */
is_ucna(struct kvm_x86_mce * mce)5439 static bool is_ucna(struct kvm_x86_mce *mce)
5440 {
5441 	return	!mce->mcg_status &&
5442 		!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5443 		(mce->status & MCI_STATUS_VAL) &&
5444 		(mce->status & MCI_STATUS_UC);
5445 }
5446 
kvm_vcpu_x86_set_ucna(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce,u64 * banks)5447 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5448 {
5449 	u64 mcg_cap = vcpu->arch.mcg_cap;
5450 
5451 	banks[1] = mce->status;
5452 	banks[2] = mce->addr;
5453 	banks[3] = mce->misc;
5454 	vcpu->arch.mcg_status = mce->mcg_status;
5455 
5456 	if (!(mcg_cap & MCG_CMCI_P) ||
5457 	    !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5458 		return 0;
5459 
5460 	if (lapic_in_kernel(vcpu))
5461 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5462 
5463 	return 0;
5464 }
5465 
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)5466 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5467 				      struct kvm_x86_mce *mce)
5468 {
5469 	u64 mcg_cap = vcpu->arch.mcg_cap;
5470 	unsigned bank_num = mcg_cap & 0xff;
5471 	u64 *banks = vcpu->arch.mce_banks;
5472 
5473 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5474 		return -EINVAL;
5475 
5476 	banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5477 
5478 	if (is_ucna(mce))
5479 		return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5480 
5481 	/*
5482 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5483 	 * reporting is disabled
5484 	 */
5485 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5486 	    vcpu->arch.mcg_ctl != ~(u64)0)
5487 		return 0;
5488 	/*
5489 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5490 	 * reporting is disabled for the bank
5491 	 */
5492 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5493 		return 0;
5494 	if (mce->status & MCI_STATUS_UC) {
5495 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5496 		    !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5497 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5498 			return 0;
5499 		}
5500 		if (banks[1] & MCI_STATUS_VAL)
5501 			mce->status |= MCI_STATUS_OVER;
5502 		banks[2] = mce->addr;
5503 		banks[3] = mce->misc;
5504 		vcpu->arch.mcg_status = mce->mcg_status;
5505 		banks[1] = mce->status;
5506 		kvm_queue_exception(vcpu, MC_VECTOR);
5507 	} else if (!(banks[1] & MCI_STATUS_VAL)
5508 		   || !(banks[1] & MCI_STATUS_UC)) {
5509 		if (banks[1] & MCI_STATUS_VAL)
5510 			mce->status |= MCI_STATUS_OVER;
5511 		banks[2] = mce->addr;
5512 		banks[3] = mce->misc;
5513 		banks[1] = mce->status;
5514 	} else
5515 		banks[1] |= MCI_STATUS_OVER;
5516 	return 0;
5517 }
5518 
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5519 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5520 					       struct kvm_vcpu_events *events)
5521 {
5522 	struct kvm_queued_exception *ex;
5523 
5524 	process_nmi(vcpu);
5525 
5526 #ifdef CONFIG_KVM_SMM
5527 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
5528 		process_smi(vcpu);
5529 #endif
5530 
5531 	/*
5532 	 * KVM's ABI only allows for one exception to be migrated.  Luckily,
5533 	 * the only time there can be two queued exceptions is if there's a
5534 	 * non-exiting _injected_ exception, and a pending exiting exception.
5535 	 * In that case, ignore the VM-Exiting exception as it's an extension
5536 	 * of the injected exception.
5537 	 */
5538 	if (vcpu->arch.exception_vmexit.pending &&
5539 	    !vcpu->arch.exception.pending &&
5540 	    !vcpu->arch.exception.injected)
5541 		ex = &vcpu->arch.exception_vmexit;
5542 	else
5543 		ex = &vcpu->arch.exception;
5544 
5545 	/*
5546 	 * In guest mode, payload delivery should be deferred if the exception
5547 	 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5548 	 * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5549 	 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5550 	 * propagate the payload and so it cannot be safely deferred.  Deliver
5551 	 * the payload if the capability hasn't been requested.
5552 	 */
5553 	if (!vcpu->kvm->arch.exception_payload_enabled &&
5554 	    ex->pending && ex->has_payload)
5555 		kvm_deliver_exception_payload(vcpu, ex);
5556 
5557 	memset(events, 0, sizeof(*events));
5558 
5559 	/*
5560 	 * The API doesn't provide the instruction length for software
5561 	 * exceptions, so don't report them. As long as the guest RIP
5562 	 * isn't advanced, we should expect to encounter the exception
5563 	 * again.
5564 	 */
5565 	if (!kvm_exception_is_soft(ex->vector)) {
5566 		events->exception.injected = ex->injected;
5567 		events->exception.pending = ex->pending;
5568 		/*
5569 		 * For ABI compatibility, deliberately conflate
5570 		 * pending and injected exceptions when
5571 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5572 		 */
5573 		if (!vcpu->kvm->arch.exception_payload_enabled)
5574 			events->exception.injected |= ex->pending;
5575 	}
5576 	events->exception.nr = ex->vector;
5577 	events->exception.has_error_code = ex->has_error_code;
5578 	events->exception.error_code = ex->error_code;
5579 	events->exception_has_payload = ex->has_payload;
5580 	events->exception_payload = ex->payload;
5581 
5582 	events->interrupt.injected =
5583 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5584 	events->interrupt.nr = vcpu->arch.interrupt.nr;
5585 	events->interrupt.shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
5586 
5587 	events->nmi.injected = vcpu->arch.nmi_injected;
5588 	events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5589 	events->nmi.masked = kvm_x86_call(get_nmi_mask)(vcpu);
5590 
5591 	/* events->sipi_vector is never valid when reporting to user space */
5592 
5593 #ifdef CONFIG_KVM_SMM
5594 	events->smi.smm = is_smm(vcpu);
5595 	events->smi.pending = vcpu->arch.smi_pending;
5596 	events->smi.smm_inside_nmi =
5597 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5598 #endif
5599 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5600 
5601 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5602 			 | KVM_VCPUEVENT_VALID_SHADOW
5603 			 | KVM_VCPUEVENT_VALID_SMM);
5604 	if (vcpu->kvm->arch.exception_payload_enabled)
5605 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5606 	if (vcpu->kvm->arch.triple_fault_event) {
5607 		events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5608 		events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5609 	}
5610 }
5611 
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5612 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5613 					      struct kvm_vcpu_events *events)
5614 {
5615 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5616 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5617 			      | KVM_VCPUEVENT_VALID_SHADOW
5618 			      | KVM_VCPUEVENT_VALID_SMM
5619 			      | KVM_VCPUEVENT_VALID_PAYLOAD
5620 			      | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5621 		return -EINVAL;
5622 
5623 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5624 		if (!vcpu->kvm->arch.exception_payload_enabled)
5625 			return -EINVAL;
5626 		if (events->exception.pending)
5627 			events->exception.injected = 0;
5628 		else
5629 			events->exception_has_payload = 0;
5630 	} else {
5631 		events->exception.pending = 0;
5632 		events->exception_has_payload = 0;
5633 	}
5634 
5635 	if ((events->exception.injected || events->exception.pending) &&
5636 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5637 		return -EINVAL;
5638 
5639 	process_nmi(vcpu);
5640 
5641 	/*
5642 	 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5643 	 * morph the exception to a VM-Exit if appropriate.  Do this only for
5644 	 * pending exceptions, already-injected exceptions are not subject to
5645 	 * intercpetion.  Note, userspace that conflates pending and injected
5646 	 * is hosed, and will incorrectly convert an injected exception into a
5647 	 * pending exception, which in turn may cause a spurious VM-Exit.
5648 	 */
5649 	vcpu->arch.exception_from_userspace = events->exception.pending;
5650 
5651 	vcpu->arch.exception_vmexit.pending = false;
5652 
5653 	vcpu->arch.exception.injected = events->exception.injected;
5654 	vcpu->arch.exception.pending = events->exception.pending;
5655 	vcpu->arch.exception.vector = events->exception.nr;
5656 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5657 	vcpu->arch.exception.error_code = events->exception.error_code;
5658 	vcpu->arch.exception.has_payload = events->exception_has_payload;
5659 	vcpu->arch.exception.payload = events->exception_payload;
5660 
5661 	vcpu->arch.interrupt.injected = events->interrupt.injected;
5662 	vcpu->arch.interrupt.nr = events->interrupt.nr;
5663 	vcpu->arch.interrupt.soft = events->interrupt.soft;
5664 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5665 		kvm_x86_call(set_interrupt_shadow)(vcpu,
5666 						   events->interrupt.shadow);
5667 
5668 	vcpu->arch.nmi_injected = events->nmi.injected;
5669 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5670 		vcpu->arch.nmi_pending = 0;
5671 		atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5672 		if (events->nmi.pending)
5673 			kvm_make_request(KVM_REQ_NMI, vcpu);
5674 	}
5675 	kvm_x86_call(set_nmi_mask)(vcpu, events->nmi.masked);
5676 
5677 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5678 	    lapic_in_kernel(vcpu))
5679 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5680 
5681 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5682 #ifdef CONFIG_KVM_SMM
5683 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5684 			kvm_leave_nested(vcpu);
5685 			kvm_smm_changed(vcpu, events->smi.smm);
5686 		}
5687 
5688 		vcpu->arch.smi_pending = events->smi.pending;
5689 
5690 		if (events->smi.smm) {
5691 			if (events->smi.smm_inside_nmi)
5692 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5693 			else
5694 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5695 		}
5696 
5697 #else
5698 		if (events->smi.smm || events->smi.pending ||
5699 		    events->smi.smm_inside_nmi)
5700 			return -EINVAL;
5701 #endif
5702 
5703 		if (lapic_in_kernel(vcpu)) {
5704 			if (events->smi.latched_init)
5705 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5706 			else
5707 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5708 		}
5709 	}
5710 
5711 	if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5712 		if (!vcpu->kvm->arch.triple_fault_event)
5713 			return -EINVAL;
5714 		if (events->triple_fault.pending)
5715 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5716 		else
5717 			kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5718 	}
5719 
5720 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5721 
5722 	return 0;
5723 }
5724 
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5725 static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5726 					    struct kvm_debugregs *dbgregs)
5727 {
5728 	unsigned int i;
5729 
5730 	if (vcpu->kvm->arch.has_protected_state &&
5731 	    vcpu->arch.guest_state_protected)
5732 		return -EINVAL;
5733 
5734 	memset(dbgregs, 0, sizeof(*dbgregs));
5735 
5736 	BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db));
5737 	for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5738 		dbgregs->db[i] = vcpu->arch.db[i];
5739 
5740 	dbgregs->dr6 = vcpu->arch.dr6;
5741 	dbgregs->dr7 = vcpu->arch.dr7;
5742 	return 0;
5743 }
5744 
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5745 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5746 					    struct kvm_debugregs *dbgregs)
5747 {
5748 	unsigned int i;
5749 
5750 	if (vcpu->kvm->arch.has_protected_state &&
5751 	    vcpu->arch.guest_state_protected)
5752 		return -EINVAL;
5753 
5754 	if (dbgregs->flags)
5755 		return -EINVAL;
5756 
5757 	if (!kvm_dr6_valid(dbgregs->dr6))
5758 		return -EINVAL;
5759 	if (!kvm_dr7_valid(dbgregs->dr7))
5760 		return -EINVAL;
5761 
5762 	for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5763 		vcpu->arch.db[i] = dbgregs->db[i];
5764 
5765 	kvm_update_dr0123(vcpu);
5766 	vcpu->arch.dr6 = dbgregs->dr6;
5767 	vcpu->arch.dr7 = dbgregs->dr7;
5768 	kvm_update_dr7(vcpu);
5769 
5770 	return 0;
5771 }
5772 
5773 
kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu * vcpu,u8 * state,unsigned int size)5774 static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5775 					 u8 *state, unsigned int size)
5776 {
5777 	/*
5778 	 * Only copy state for features that are enabled for the guest.  The
5779 	 * state itself isn't problematic, but setting bits in the header for
5780 	 * features that are supported in *this* host but not exposed to the
5781 	 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5782 	 * compatible host without the features that are NOT exposed to the
5783 	 * guest.
5784 	 *
5785 	 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5786 	 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5787 	 * supported by the host.
5788 	 */
5789 	u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5790 			     XFEATURE_MASK_FPSSE;
5791 
5792 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5793 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5794 
5795 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5796 				       supported_xcr0, vcpu->arch.pkru);
5797 	return 0;
5798 }
5799 
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5800 static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5801 					struct kvm_xsave *guest_xsave)
5802 {
5803 	return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5804 					     sizeof(guest_xsave->region));
5805 }
5806 
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5807 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5808 					struct kvm_xsave *guest_xsave)
5809 {
5810 	union fpregs_state *xstate = (union fpregs_state *)guest_xsave->region;
5811 
5812 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5813 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5814 
5815 	/*
5816 	 * For backwards compatibility, do not expect disabled features to be in
5817 	 * their initial state.  XSTATE_BV[i] must still be cleared whenever
5818 	 * XFD[i]=1, or XRSTOR would cause a #NM.
5819 	 */
5820 	xstate->xsave.header.xfeatures &= ~vcpu->arch.guest_fpu.fpstate->xfd;
5821 
5822 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5823 					      guest_xsave->region,
5824 					      kvm_caps.supported_xcr0,
5825 					      &vcpu->arch.pkru);
5826 }
5827 
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5828 static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5829 				       struct kvm_xcrs *guest_xcrs)
5830 {
5831 	if (vcpu->kvm->arch.has_protected_state &&
5832 	    vcpu->arch.guest_state_protected)
5833 		return -EINVAL;
5834 
5835 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5836 		guest_xcrs->nr_xcrs = 0;
5837 		return 0;
5838 	}
5839 
5840 	guest_xcrs->nr_xcrs = 1;
5841 	guest_xcrs->flags = 0;
5842 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5843 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5844 	return 0;
5845 }
5846 
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5847 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5848 				       struct kvm_xcrs *guest_xcrs)
5849 {
5850 	int i, r = 0;
5851 
5852 	if (vcpu->kvm->arch.has_protected_state &&
5853 	    vcpu->arch.guest_state_protected)
5854 		return -EINVAL;
5855 
5856 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5857 		return -EINVAL;
5858 
5859 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5860 		return -EINVAL;
5861 
5862 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5863 		/* Only support XCR0 currently */
5864 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5865 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5866 				guest_xcrs->xcrs[i].value);
5867 			break;
5868 		}
5869 	if (r)
5870 		r = -EINVAL;
5871 	return r;
5872 }
5873 
5874 /*
5875  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5876  * stopped by the hypervisor.  This function will be called from the host only.
5877  * EINVAL is returned when the host attempts to set the flag for a guest that
5878  * does not support pv clocks.
5879  */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)5880 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5881 {
5882 	if (!vcpu->arch.pv_time.active)
5883 		return -EINVAL;
5884 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5885 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5886 	return 0;
5887 }
5888 
kvm_arch_tsc_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5889 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5890 				 struct kvm_device_attr *attr)
5891 {
5892 	int r;
5893 
5894 	switch (attr->attr) {
5895 	case KVM_VCPU_TSC_OFFSET:
5896 		r = 0;
5897 		break;
5898 	default:
5899 		r = -ENXIO;
5900 	}
5901 
5902 	return r;
5903 }
5904 
kvm_arch_tsc_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5905 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5906 				 struct kvm_device_attr *attr)
5907 {
5908 	u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5909 	int r;
5910 
5911 	switch (attr->attr) {
5912 	case KVM_VCPU_TSC_OFFSET:
5913 		r = -EFAULT;
5914 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5915 			break;
5916 		r = 0;
5917 		break;
5918 	default:
5919 		r = -ENXIO;
5920 	}
5921 
5922 	return r;
5923 }
5924 
kvm_arch_tsc_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5925 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5926 				 struct kvm_device_attr *attr)
5927 {
5928 	u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5929 	struct kvm *kvm = vcpu->kvm;
5930 	int r;
5931 
5932 	switch (attr->attr) {
5933 	case KVM_VCPU_TSC_OFFSET: {
5934 		u64 offset, tsc, ns;
5935 		unsigned long flags;
5936 		bool matched;
5937 
5938 		r = -EFAULT;
5939 		if (get_user(offset, uaddr))
5940 			break;
5941 
5942 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5943 
5944 		matched = (vcpu->arch.virtual_tsc_khz &&
5945 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5946 			   kvm->arch.last_tsc_offset == offset);
5947 
5948 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5949 		ns = get_kvmclock_base_ns();
5950 
5951 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched, true);
5952 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5953 
5954 		r = 0;
5955 		break;
5956 	}
5957 	default:
5958 		r = -ENXIO;
5959 	}
5960 
5961 	return r;
5962 }
5963 
kvm_vcpu_ioctl_device_attr(struct kvm_vcpu * vcpu,unsigned int ioctl,void __user * argp)5964 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5965 				      unsigned int ioctl,
5966 				      void __user *argp)
5967 {
5968 	struct kvm_device_attr attr;
5969 	int r;
5970 
5971 	if (copy_from_user(&attr, argp, sizeof(attr)))
5972 		return -EFAULT;
5973 
5974 	if (attr.group != KVM_VCPU_TSC_CTRL)
5975 		return -ENXIO;
5976 
5977 	switch (ioctl) {
5978 	case KVM_HAS_DEVICE_ATTR:
5979 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5980 		break;
5981 	case KVM_GET_DEVICE_ATTR:
5982 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5983 		break;
5984 	case KVM_SET_DEVICE_ATTR:
5985 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5986 		break;
5987 	}
5988 
5989 	return r;
5990 }
5991 
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)5992 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5993 				     struct kvm_enable_cap *cap)
5994 {
5995 	if (cap->flags)
5996 		return -EINVAL;
5997 
5998 	switch (cap->cap) {
5999 #ifdef CONFIG_KVM_HYPERV
6000 	case KVM_CAP_HYPERV_SYNIC2:
6001 		if (cap->args[0])
6002 			return -EINVAL;
6003 		fallthrough;
6004 
6005 	case KVM_CAP_HYPERV_SYNIC:
6006 		if (!irqchip_in_kernel(vcpu->kvm))
6007 			return -EINVAL;
6008 		return kvm_hv_activate_synic(vcpu, cap->cap ==
6009 					     KVM_CAP_HYPERV_SYNIC2);
6010 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
6011 		{
6012 			int r;
6013 			uint16_t vmcs_version;
6014 			void __user *user_ptr;
6015 
6016 			if (!kvm_x86_ops.nested_ops->enable_evmcs)
6017 				return -ENOTTY;
6018 			r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
6019 			if (!r) {
6020 				user_ptr = (void __user *)(uintptr_t)cap->args[0];
6021 				if (copy_to_user(user_ptr, &vmcs_version,
6022 						 sizeof(vmcs_version)))
6023 					r = -EFAULT;
6024 			}
6025 			return r;
6026 		}
6027 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
6028 		if (!kvm_x86_ops.enable_l2_tlb_flush)
6029 			return -ENOTTY;
6030 
6031 		return kvm_x86_call(enable_l2_tlb_flush)(vcpu);
6032 
6033 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
6034 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
6035 #endif
6036 
6037 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
6038 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
6039 		return 0;
6040 	default:
6041 		return -EINVAL;
6042 	}
6043 }
6044 
6045 struct kvm_x86_reg_id {
6046 	__u32 index;
6047 	__u8  type;
6048 	__u8  rsvd1;
6049 	__u8  rsvd2:4;
6050 	__u8  size:4;
6051 	__u8  x86;
6052 };
6053 
kvm_translate_kvm_reg(struct kvm_vcpu * vcpu,struct kvm_x86_reg_id * reg)6054 static int kvm_translate_kvm_reg(struct kvm_vcpu *vcpu,
6055 				 struct kvm_x86_reg_id *reg)
6056 {
6057 	switch (reg->index) {
6058 	case KVM_REG_GUEST_SSP:
6059 		/*
6060 		 * FIXME: If host-initiated accesses are ever exempted from
6061 		 * ignore_msrs (in kvm_do_msr_access()), drop this manual check
6062 		 * and rely on KVM's standard checks to reject accesses to regs
6063 		 * that don't exist.
6064 		 */
6065 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK))
6066 			return -EINVAL;
6067 
6068 		reg->type = KVM_X86_REG_TYPE_MSR;
6069 		reg->index = MSR_KVM_INTERNAL_GUEST_SSP;
6070 		break;
6071 	default:
6072 		return -EINVAL;
6073 	}
6074 	return 0;
6075 }
6076 
kvm_get_one_msr(struct kvm_vcpu * vcpu,u32 msr,u64 __user * user_val)6077 static int kvm_get_one_msr(struct kvm_vcpu *vcpu, u32 msr, u64 __user *user_val)
6078 {
6079 	u64 val;
6080 
6081 	if (do_get_msr(vcpu, msr, &val))
6082 		return -EINVAL;
6083 
6084 	if (put_user(val, user_val))
6085 		return -EFAULT;
6086 
6087 	return 0;
6088 }
6089 
kvm_set_one_msr(struct kvm_vcpu * vcpu,u32 msr,u64 __user * user_val)6090 static int kvm_set_one_msr(struct kvm_vcpu *vcpu, u32 msr, u64 __user *user_val)
6091 {
6092 	u64 val;
6093 
6094 	if (get_user(val, user_val))
6095 		return -EFAULT;
6096 
6097 	if (do_set_msr(vcpu, msr, &val))
6098 		return -EINVAL;
6099 
6100 	return 0;
6101 }
6102 
kvm_get_set_one_reg(struct kvm_vcpu * vcpu,unsigned int ioctl,void __user * argp)6103 static int kvm_get_set_one_reg(struct kvm_vcpu *vcpu, unsigned int ioctl,
6104 			       void __user *argp)
6105 {
6106 	struct kvm_one_reg one_reg;
6107 	struct kvm_x86_reg_id *reg;
6108 	u64 __user *user_val;
6109 	bool load_fpu;
6110 	int r;
6111 
6112 	if (copy_from_user(&one_reg, argp, sizeof(one_reg)))
6113 		return -EFAULT;
6114 
6115 	if ((one_reg.id & KVM_REG_ARCH_MASK) != KVM_REG_X86)
6116 		return -EINVAL;
6117 
6118 	reg = (struct kvm_x86_reg_id *)&one_reg.id;
6119 	if (reg->rsvd1 || reg->rsvd2)
6120 		return -EINVAL;
6121 
6122 	if (reg->type == KVM_X86_REG_TYPE_KVM) {
6123 		r = kvm_translate_kvm_reg(vcpu, reg);
6124 		if (r)
6125 			return r;
6126 	}
6127 
6128 	if (reg->type != KVM_X86_REG_TYPE_MSR)
6129 		return -EINVAL;
6130 
6131 	if ((one_reg.id & KVM_REG_SIZE_MASK) != KVM_REG_SIZE_U64)
6132 		return -EINVAL;
6133 
6134 	guard(srcu)(&vcpu->kvm->srcu);
6135 
6136 	load_fpu = is_xstate_managed_msr(vcpu, reg->index);
6137 	if (load_fpu)
6138 		kvm_load_guest_fpu(vcpu);
6139 
6140 	user_val = u64_to_user_ptr(one_reg.addr);
6141 	if (ioctl == KVM_GET_ONE_REG)
6142 		r = kvm_get_one_msr(vcpu, reg->index, user_val);
6143 	else
6144 		r = kvm_set_one_msr(vcpu, reg->index, user_val);
6145 
6146 	if (load_fpu)
6147 		kvm_put_guest_fpu(vcpu);
6148 	return r;
6149 }
6150 
kvm_get_reg_list(struct kvm_vcpu * vcpu,struct kvm_reg_list __user * user_list)6151 static int kvm_get_reg_list(struct kvm_vcpu *vcpu,
6152 			    struct kvm_reg_list __user *user_list)
6153 {
6154 	u64 nr_regs = guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) ? 1 : 0;
6155 	u64 user_nr_regs;
6156 
6157 	if (get_user(user_nr_regs, &user_list->n))
6158 		return -EFAULT;
6159 
6160 	if (put_user(nr_regs, &user_list->n))
6161 		return -EFAULT;
6162 
6163 	if (user_nr_regs < nr_regs)
6164 		return -E2BIG;
6165 
6166 	if (nr_regs &&
6167 	    put_user(KVM_X86_REG_KVM(KVM_REG_GUEST_SSP), &user_list->reg[0]))
6168 		return -EFAULT;
6169 
6170 	return 0;
6171 }
6172 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)6173 long kvm_arch_vcpu_ioctl(struct file *filp,
6174 			 unsigned int ioctl, unsigned long arg)
6175 {
6176 	struct kvm_vcpu *vcpu = filp->private_data;
6177 	void __user *argp = (void __user *)arg;
6178 	int r;
6179 	union {
6180 		struct kvm_sregs2 *sregs2;
6181 		struct kvm_lapic_state *lapic;
6182 		struct kvm_xsave *xsave;
6183 		struct kvm_xcrs *xcrs;
6184 		void *buffer;
6185 	} u;
6186 
6187 	vcpu_load(vcpu);
6188 
6189 	u.buffer = NULL;
6190 	switch (ioctl) {
6191 	case KVM_GET_LAPIC: {
6192 		r = -EINVAL;
6193 		if (!lapic_in_kernel(vcpu))
6194 			goto out;
6195 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
6196 
6197 		r = -ENOMEM;
6198 		if (!u.lapic)
6199 			goto out;
6200 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
6201 		if (r)
6202 			goto out;
6203 		r = -EFAULT;
6204 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
6205 			goto out;
6206 		r = 0;
6207 		break;
6208 	}
6209 	case KVM_SET_LAPIC: {
6210 		r = -EINVAL;
6211 		if (!lapic_in_kernel(vcpu))
6212 			goto out;
6213 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
6214 		if (IS_ERR(u.lapic)) {
6215 			r = PTR_ERR(u.lapic);
6216 			goto out_nofree;
6217 		}
6218 
6219 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
6220 		break;
6221 	}
6222 	case KVM_INTERRUPT: {
6223 		struct kvm_interrupt irq;
6224 
6225 		r = -EFAULT;
6226 		if (copy_from_user(&irq, argp, sizeof(irq)))
6227 			goto out;
6228 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
6229 		break;
6230 	}
6231 	case KVM_NMI: {
6232 		r = kvm_vcpu_ioctl_nmi(vcpu);
6233 		break;
6234 	}
6235 	case KVM_SMI: {
6236 		r = kvm_inject_smi(vcpu);
6237 		break;
6238 	}
6239 	case KVM_SET_CPUID: {
6240 		struct kvm_cpuid __user *cpuid_arg = argp;
6241 		struct kvm_cpuid cpuid;
6242 
6243 		r = -EFAULT;
6244 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
6245 			goto out;
6246 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
6247 		break;
6248 	}
6249 	case KVM_SET_CPUID2: {
6250 		struct kvm_cpuid2 __user *cpuid_arg = argp;
6251 		struct kvm_cpuid2 cpuid;
6252 
6253 		r = -EFAULT;
6254 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
6255 			goto out;
6256 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
6257 					      cpuid_arg->entries);
6258 		break;
6259 	}
6260 	case KVM_GET_CPUID2: {
6261 		struct kvm_cpuid2 __user *cpuid_arg = argp;
6262 		struct kvm_cpuid2 cpuid;
6263 
6264 		r = -EFAULT;
6265 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
6266 			goto out;
6267 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
6268 					      cpuid_arg->entries);
6269 		if (r)
6270 			goto out;
6271 		r = -EFAULT;
6272 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
6273 			goto out;
6274 		r = 0;
6275 		break;
6276 	}
6277 	case KVM_GET_MSRS: {
6278 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
6279 		r = msr_io(vcpu, argp, do_get_msr, 1);
6280 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
6281 		break;
6282 	}
6283 	case KVM_SET_MSRS: {
6284 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
6285 		r = msr_io(vcpu, argp, do_set_msr, 0);
6286 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
6287 		break;
6288 	}
6289 	case KVM_GET_ONE_REG:
6290 	case KVM_SET_ONE_REG:
6291 		r = kvm_get_set_one_reg(vcpu, ioctl, argp);
6292 		break;
6293 	case KVM_GET_REG_LIST:
6294 		r = kvm_get_reg_list(vcpu, argp);
6295 		break;
6296 	case KVM_TPR_ACCESS_REPORTING: {
6297 		struct kvm_tpr_access_ctl tac;
6298 
6299 		r = -EFAULT;
6300 		if (copy_from_user(&tac, argp, sizeof(tac)))
6301 			goto out;
6302 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
6303 		if (r)
6304 			goto out;
6305 		r = -EFAULT;
6306 		if (copy_to_user(argp, &tac, sizeof(tac)))
6307 			goto out;
6308 		r = 0;
6309 		break;
6310 	};
6311 	case KVM_SET_VAPIC_ADDR: {
6312 		struct kvm_vapic_addr va;
6313 		int idx;
6314 
6315 		r = -EINVAL;
6316 		if (!lapic_in_kernel(vcpu))
6317 			goto out;
6318 		r = -EFAULT;
6319 		if (copy_from_user(&va, argp, sizeof(va)))
6320 			goto out;
6321 		idx = srcu_read_lock(&vcpu->kvm->srcu);
6322 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
6323 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
6324 		break;
6325 	}
6326 	case KVM_X86_SETUP_MCE: {
6327 		u64 mcg_cap;
6328 
6329 		r = -EFAULT;
6330 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
6331 			goto out;
6332 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
6333 		break;
6334 	}
6335 	case KVM_X86_SET_MCE: {
6336 		struct kvm_x86_mce mce;
6337 
6338 		r = -EFAULT;
6339 		if (copy_from_user(&mce, argp, sizeof(mce)))
6340 			goto out;
6341 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
6342 		break;
6343 	}
6344 	case KVM_GET_VCPU_EVENTS: {
6345 		struct kvm_vcpu_events events;
6346 
6347 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
6348 
6349 		r = -EFAULT;
6350 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
6351 			break;
6352 		r = 0;
6353 		break;
6354 	}
6355 	case KVM_SET_VCPU_EVENTS: {
6356 		struct kvm_vcpu_events events;
6357 
6358 		r = -EFAULT;
6359 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
6360 			break;
6361 
6362 		kvm_vcpu_srcu_read_lock(vcpu);
6363 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
6364 		kvm_vcpu_srcu_read_unlock(vcpu);
6365 		break;
6366 	}
6367 	case KVM_GET_DEBUGREGS: {
6368 		struct kvm_debugregs dbgregs;
6369 
6370 		r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
6371 		if (r < 0)
6372 			break;
6373 
6374 		r = -EFAULT;
6375 		if (copy_to_user(argp, &dbgregs,
6376 				 sizeof(struct kvm_debugregs)))
6377 			break;
6378 		r = 0;
6379 		break;
6380 	}
6381 	case KVM_SET_DEBUGREGS: {
6382 		struct kvm_debugregs dbgregs;
6383 
6384 		r = -EFAULT;
6385 		if (copy_from_user(&dbgregs, argp,
6386 				   sizeof(struct kvm_debugregs)))
6387 			break;
6388 
6389 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
6390 		break;
6391 	}
6392 	case KVM_GET_XSAVE: {
6393 		r = -EINVAL;
6394 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
6395 			break;
6396 
6397 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
6398 		r = -ENOMEM;
6399 		if (!u.xsave)
6400 			break;
6401 
6402 		r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
6403 		if (r < 0)
6404 			break;
6405 
6406 		r = -EFAULT;
6407 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
6408 			break;
6409 		r = 0;
6410 		break;
6411 	}
6412 	case KVM_SET_XSAVE: {
6413 		int size = vcpu->arch.guest_fpu.uabi_size;
6414 
6415 		u.xsave = memdup_user(argp, size);
6416 		if (IS_ERR(u.xsave)) {
6417 			r = PTR_ERR(u.xsave);
6418 			goto out_nofree;
6419 		}
6420 
6421 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
6422 		break;
6423 	}
6424 
6425 	case KVM_GET_XSAVE2: {
6426 		int size = vcpu->arch.guest_fpu.uabi_size;
6427 
6428 		u.xsave = kzalloc(size, GFP_KERNEL);
6429 		r = -ENOMEM;
6430 		if (!u.xsave)
6431 			break;
6432 
6433 		r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6434 		if (r < 0)
6435 			break;
6436 
6437 		r = -EFAULT;
6438 		if (copy_to_user(argp, u.xsave, size))
6439 			break;
6440 
6441 		r = 0;
6442 		break;
6443 	}
6444 
6445 	case KVM_GET_XCRS: {
6446 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
6447 		r = -ENOMEM;
6448 		if (!u.xcrs)
6449 			break;
6450 
6451 		r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6452 		if (r < 0)
6453 			break;
6454 
6455 		r = -EFAULT;
6456 		if (copy_to_user(argp, u.xcrs,
6457 				 sizeof(struct kvm_xcrs)))
6458 			break;
6459 		r = 0;
6460 		break;
6461 	}
6462 	case KVM_SET_XCRS: {
6463 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6464 		if (IS_ERR(u.xcrs)) {
6465 			r = PTR_ERR(u.xcrs);
6466 			goto out_nofree;
6467 		}
6468 
6469 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6470 		break;
6471 	}
6472 	case KVM_SET_TSC_KHZ: {
6473 		u32 user_tsc_khz;
6474 
6475 		r = -EINVAL;
6476 
6477 		if (vcpu->arch.guest_tsc_protected)
6478 			goto out;
6479 
6480 		user_tsc_khz = (u32)arg;
6481 
6482 		if (kvm_caps.has_tsc_control &&
6483 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6484 			goto out;
6485 
6486 		if (user_tsc_khz == 0)
6487 			user_tsc_khz = tsc_khz;
6488 
6489 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6490 			r = 0;
6491 
6492 		goto out;
6493 	}
6494 	case KVM_GET_TSC_KHZ: {
6495 		r = vcpu->arch.virtual_tsc_khz;
6496 		goto out;
6497 	}
6498 	case KVM_KVMCLOCK_CTRL: {
6499 		r = kvm_set_guest_paused(vcpu);
6500 		goto out;
6501 	}
6502 	case KVM_ENABLE_CAP: {
6503 		struct kvm_enable_cap cap;
6504 
6505 		r = -EFAULT;
6506 		if (copy_from_user(&cap, argp, sizeof(cap)))
6507 			goto out;
6508 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6509 		break;
6510 	}
6511 	case KVM_GET_NESTED_STATE: {
6512 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
6513 		u32 user_data_size;
6514 
6515 		r = -EINVAL;
6516 		if (!kvm_x86_ops.nested_ops->get_state)
6517 			break;
6518 
6519 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6520 		r = -EFAULT;
6521 		if (get_user(user_data_size, &user_kvm_nested_state->size))
6522 			break;
6523 
6524 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6525 						     user_data_size);
6526 		if (r < 0)
6527 			break;
6528 
6529 		if (r > user_data_size) {
6530 			if (put_user(r, &user_kvm_nested_state->size))
6531 				r = -EFAULT;
6532 			else
6533 				r = -E2BIG;
6534 			break;
6535 		}
6536 
6537 		r = 0;
6538 		break;
6539 	}
6540 	case KVM_SET_NESTED_STATE: {
6541 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
6542 		struct kvm_nested_state kvm_state;
6543 		int idx;
6544 
6545 		r = -EINVAL;
6546 		if (!kvm_x86_ops.nested_ops->set_state)
6547 			break;
6548 
6549 		r = -EFAULT;
6550 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6551 			break;
6552 
6553 		r = -EINVAL;
6554 		if (kvm_state.size < sizeof(kvm_state))
6555 			break;
6556 
6557 		if (kvm_state.flags &
6558 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6559 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6560 		      | KVM_STATE_NESTED_GIF_SET))
6561 			break;
6562 
6563 		/* nested_run_pending implies guest_mode.  */
6564 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6565 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6566 			break;
6567 
6568 		idx = srcu_read_lock(&vcpu->kvm->srcu);
6569 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6570 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
6571 		break;
6572 	}
6573 #ifdef CONFIG_KVM_HYPERV
6574 	case KVM_GET_SUPPORTED_HV_CPUID:
6575 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6576 		break;
6577 #endif
6578 #ifdef CONFIG_KVM_XEN
6579 	case KVM_XEN_VCPU_GET_ATTR: {
6580 		struct kvm_xen_vcpu_attr xva;
6581 
6582 		r = -EFAULT;
6583 		if (copy_from_user(&xva, argp, sizeof(xva)))
6584 			goto out;
6585 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6586 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6587 			r = -EFAULT;
6588 		break;
6589 	}
6590 	case KVM_XEN_VCPU_SET_ATTR: {
6591 		struct kvm_xen_vcpu_attr xva;
6592 
6593 		r = -EFAULT;
6594 		if (copy_from_user(&xva, argp, sizeof(xva)))
6595 			goto out;
6596 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6597 		break;
6598 	}
6599 #endif
6600 	case KVM_GET_SREGS2: {
6601 		r = -EINVAL;
6602 		if (vcpu->kvm->arch.has_protected_state &&
6603 		    vcpu->arch.guest_state_protected)
6604 			goto out;
6605 
6606 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6607 		r = -ENOMEM;
6608 		if (!u.sregs2)
6609 			goto out;
6610 		__get_sregs2(vcpu, u.sregs2);
6611 		r = -EFAULT;
6612 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6613 			goto out;
6614 		r = 0;
6615 		break;
6616 	}
6617 	case KVM_SET_SREGS2: {
6618 		r = -EINVAL;
6619 		if (vcpu->kvm->arch.has_protected_state &&
6620 		    vcpu->arch.guest_state_protected)
6621 			goto out;
6622 
6623 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6624 		if (IS_ERR(u.sregs2)) {
6625 			r = PTR_ERR(u.sregs2);
6626 			u.sregs2 = NULL;
6627 			goto out;
6628 		}
6629 		r = __set_sregs2(vcpu, u.sregs2);
6630 		break;
6631 	}
6632 	case KVM_HAS_DEVICE_ATTR:
6633 	case KVM_GET_DEVICE_ATTR:
6634 	case KVM_SET_DEVICE_ATTR:
6635 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6636 		break;
6637 	case KVM_MEMORY_ENCRYPT_OP:
6638 		r = -ENOTTY;
6639 		if (!kvm_x86_ops.vcpu_mem_enc_ioctl)
6640 			goto out;
6641 		r = kvm_x86_ops.vcpu_mem_enc_ioctl(vcpu, argp);
6642 		break;
6643 	default:
6644 		r = -EINVAL;
6645 	}
6646 out:
6647 	kfree(u.buffer);
6648 out_nofree:
6649 	vcpu_put(vcpu);
6650 	return r;
6651 }
6652 
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)6653 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6654 {
6655 	return VM_FAULT_SIGBUS;
6656 }
6657 
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)6658 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6659 {
6660 	int ret;
6661 
6662 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
6663 		return -EINVAL;
6664 	ret = kvm_x86_call(set_tss_addr)(kvm, addr);
6665 	return ret;
6666 }
6667 
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)6668 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6669 					      u64 ident_addr)
6670 {
6671 	return kvm_x86_call(set_identity_map_addr)(kvm, ident_addr);
6672 }
6673 
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,unsigned long kvm_nr_mmu_pages)6674 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6675 					 unsigned long kvm_nr_mmu_pages)
6676 {
6677 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6678 		return -EINVAL;
6679 
6680 	mutex_lock(&kvm->slots_lock);
6681 
6682 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6683 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6684 
6685 	mutex_unlock(&kvm->slots_lock);
6686 	return 0;
6687 }
6688 
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)6689 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6690 {
6691 
6692 	/*
6693 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6694 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6695 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6696 	 * VM-Exit.
6697 	 */
6698 	struct kvm_vcpu *vcpu;
6699 	unsigned long i;
6700 
6701 	if (!kvm->arch.cpu_dirty_log_size)
6702 		return;
6703 
6704 	kvm_for_each_vcpu(i, vcpu, kvm)
6705 		kvm_vcpu_kick(vcpu);
6706 }
6707 
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)6708 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6709 			    struct kvm_enable_cap *cap)
6710 {
6711 	int r;
6712 
6713 	if (cap->flags)
6714 		return -EINVAL;
6715 
6716 	switch (cap->cap) {
6717 	case KVM_CAP_DISABLE_QUIRKS2:
6718 		r = -EINVAL;
6719 		if (cap->args[0] & ~kvm_caps.supported_quirks)
6720 			break;
6721 		fallthrough;
6722 	case KVM_CAP_DISABLE_QUIRKS:
6723 		kvm->arch.disabled_quirks |= cap->args[0] & kvm_caps.supported_quirks;
6724 		r = 0;
6725 		break;
6726 	case KVM_CAP_SPLIT_IRQCHIP: {
6727 		mutex_lock(&kvm->lock);
6728 		r = -EINVAL;
6729 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6730 			goto split_irqchip_unlock;
6731 		r = -EEXIST;
6732 		if (irqchip_in_kernel(kvm))
6733 			goto split_irqchip_unlock;
6734 		if (kvm->created_vcpus)
6735 			goto split_irqchip_unlock;
6736 		/* Pairs with irqchip_in_kernel. */
6737 		smp_wmb();
6738 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6739 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6740 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6741 		r = 0;
6742 split_irqchip_unlock:
6743 		mutex_unlock(&kvm->lock);
6744 		break;
6745 	}
6746 	case KVM_CAP_X2APIC_API:
6747 		r = -EINVAL;
6748 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6749 			break;
6750 
6751 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6752 			kvm->arch.x2apic_format = true;
6753 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6754 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6755 
6756 		r = 0;
6757 		break;
6758 	case KVM_CAP_X86_DISABLE_EXITS:
6759 		r = -EINVAL;
6760 		if (cap->args[0] & ~kvm_get_allowed_disable_exits())
6761 			break;
6762 
6763 		mutex_lock(&kvm->lock);
6764 		if (kvm->created_vcpus)
6765 			goto disable_exits_unlock;
6766 
6767 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6768 		    "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6769 
6770 		if (!mitigate_smt_rsb && boot_cpu_has_bug(X86_BUG_SMT_RSB) &&
6771 		    cpu_smt_possible() &&
6772 		    (cap->args[0] & ~(KVM_X86_DISABLE_EXITS_PAUSE |
6773 				      KVM_X86_DISABLE_EXITS_APERFMPERF)))
6774 			pr_warn_once(SMT_RSB_MSG);
6775 
6776 		kvm_disable_exits(kvm, cap->args[0]);
6777 		r = 0;
6778 disable_exits_unlock:
6779 		mutex_unlock(&kvm->lock);
6780 		break;
6781 	case KVM_CAP_MSR_PLATFORM_INFO:
6782 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6783 		r = 0;
6784 		break;
6785 	case KVM_CAP_EXCEPTION_PAYLOAD:
6786 		kvm->arch.exception_payload_enabled = cap->args[0];
6787 		r = 0;
6788 		break;
6789 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6790 		kvm->arch.triple_fault_event = cap->args[0];
6791 		r = 0;
6792 		break;
6793 	case KVM_CAP_X86_USER_SPACE_MSR:
6794 		r = -EINVAL;
6795 		if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6796 			break;
6797 		kvm->arch.user_space_msr_mask = cap->args[0];
6798 		r = 0;
6799 		break;
6800 	case KVM_CAP_X86_BUS_LOCK_EXIT:
6801 		r = -EINVAL;
6802 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6803 			break;
6804 
6805 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6806 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6807 			break;
6808 
6809 		if (kvm_caps.has_bus_lock_exit &&
6810 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6811 			kvm->arch.bus_lock_detection_enabled = true;
6812 		r = 0;
6813 		break;
6814 #ifdef CONFIG_X86_SGX_KVM
6815 	case KVM_CAP_SGX_ATTRIBUTE: {
6816 		unsigned long allowed_attributes = 0;
6817 
6818 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6819 		if (r)
6820 			break;
6821 
6822 		/* KVM only supports the PROVISIONKEY privileged attribute. */
6823 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6824 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6825 			kvm->arch.sgx_provisioning_allowed = true;
6826 		else
6827 			r = -EINVAL;
6828 		break;
6829 	}
6830 #endif
6831 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6832 		r = -EINVAL;
6833 		if (!kvm_x86_ops.vm_copy_enc_context_from)
6834 			break;
6835 
6836 		r = kvm_x86_call(vm_copy_enc_context_from)(kvm, cap->args[0]);
6837 		break;
6838 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6839 		r = -EINVAL;
6840 		if (!kvm_x86_ops.vm_move_enc_context_from)
6841 			break;
6842 
6843 		r = kvm_x86_call(vm_move_enc_context_from)(kvm, cap->args[0]);
6844 		break;
6845 	case KVM_CAP_EXIT_HYPERCALL:
6846 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6847 			r = -EINVAL;
6848 			break;
6849 		}
6850 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6851 		r = 0;
6852 		break;
6853 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6854 		r = -EINVAL;
6855 		if (cap->args[0] & ~1)
6856 			break;
6857 		kvm->arch.exit_on_emulation_error = cap->args[0];
6858 		r = 0;
6859 		break;
6860 	case KVM_CAP_PMU_CAPABILITY:
6861 		r = -EINVAL;
6862 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6863 			break;
6864 
6865 		mutex_lock(&kvm->lock);
6866 		if (!kvm->created_vcpus) {
6867 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6868 			r = 0;
6869 		}
6870 		mutex_unlock(&kvm->lock);
6871 		break;
6872 	case KVM_CAP_MAX_VCPU_ID:
6873 		r = -EINVAL;
6874 		if (cap->args[0] > KVM_MAX_VCPU_IDS)
6875 			break;
6876 
6877 		mutex_lock(&kvm->lock);
6878 		if (kvm->arch.bsp_vcpu_id > cap->args[0]) {
6879 			;
6880 		} else if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6881 			r = 0;
6882 		} else if (!kvm->arch.max_vcpu_ids) {
6883 			kvm->arch.max_vcpu_ids = cap->args[0];
6884 			r = 0;
6885 		}
6886 		mutex_unlock(&kvm->lock);
6887 		break;
6888 	case KVM_CAP_X86_NOTIFY_VMEXIT:
6889 		r = -EINVAL;
6890 		if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6891 			break;
6892 		if (!kvm_caps.has_notify_vmexit)
6893 			break;
6894 		if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6895 			break;
6896 		mutex_lock(&kvm->lock);
6897 		if (!kvm->created_vcpus) {
6898 			kvm->arch.notify_window = cap->args[0] >> 32;
6899 			kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6900 			r = 0;
6901 		}
6902 		mutex_unlock(&kvm->lock);
6903 		break;
6904 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6905 		r = -EINVAL;
6906 
6907 		/*
6908 		 * Since the risk of disabling NX hugepages is a guest crashing
6909 		 * the system, ensure the userspace process has permission to
6910 		 * reboot the system.
6911 		 *
6912 		 * Note that unlike the reboot() syscall, the process must have
6913 		 * this capability in the root namespace because exposing
6914 		 * /dev/kvm into a container does not limit the scope of the
6915 		 * iTLB multihit bug to that container. In other words,
6916 		 * this must use capable(), not ns_capable().
6917 		 */
6918 		if (!capable(CAP_SYS_BOOT)) {
6919 			r = -EPERM;
6920 			break;
6921 		}
6922 
6923 		if (cap->args[0])
6924 			break;
6925 
6926 		mutex_lock(&kvm->lock);
6927 		if (!kvm->created_vcpus) {
6928 			kvm->arch.disable_nx_huge_pages = true;
6929 			r = 0;
6930 		}
6931 		mutex_unlock(&kvm->lock);
6932 		break;
6933 	case KVM_CAP_X86_APIC_BUS_CYCLES_NS: {
6934 		u64 bus_cycle_ns = cap->args[0];
6935 		u64 unused;
6936 
6937 		/*
6938 		 * Guard against overflow in tmict_to_ns(). 128 is the highest
6939 		 * divide value that can be programmed in APIC_TDCR.
6940 		 */
6941 		r = -EINVAL;
6942 		if (!bus_cycle_ns ||
6943 		    check_mul_overflow((u64)U32_MAX * 128, bus_cycle_ns, &unused))
6944 			break;
6945 
6946 		r = 0;
6947 		mutex_lock(&kvm->lock);
6948 		if (!irqchip_in_kernel(kvm))
6949 			r = -ENXIO;
6950 		else if (kvm->created_vcpus)
6951 			r = -EINVAL;
6952 		else
6953 			kvm->arch.apic_bus_cycle_ns = bus_cycle_ns;
6954 		mutex_unlock(&kvm->lock);
6955 		break;
6956 	}
6957 	default:
6958 		r = -EINVAL;
6959 		break;
6960 	}
6961 	return r;
6962 }
6963 
kvm_alloc_msr_filter(bool default_allow)6964 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6965 {
6966 	struct kvm_x86_msr_filter *msr_filter;
6967 
6968 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6969 	if (!msr_filter)
6970 		return NULL;
6971 
6972 	msr_filter->default_allow = default_allow;
6973 	return msr_filter;
6974 }
6975 
kvm_free_msr_filter(struct kvm_x86_msr_filter * msr_filter)6976 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6977 {
6978 	u32 i;
6979 
6980 	if (!msr_filter)
6981 		return;
6982 
6983 	for (i = 0; i < msr_filter->count; i++)
6984 		kfree(msr_filter->ranges[i].bitmap);
6985 
6986 	kfree(msr_filter);
6987 }
6988 
kvm_add_msr_filter(struct kvm_x86_msr_filter * msr_filter,struct kvm_msr_filter_range * user_range)6989 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6990 			      struct kvm_msr_filter_range *user_range)
6991 {
6992 	unsigned long *bitmap;
6993 	size_t bitmap_size;
6994 
6995 	if (!user_range->nmsrs)
6996 		return 0;
6997 
6998 	if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6999 		return -EINVAL;
7000 
7001 	if (!user_range->flags)
7002 		return -EINVAL;
7003 
7004 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
7005 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
7006 		return -EINVAL;
7007 
7008 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
7009 	if (IS_ERR(bitmap))
7010 		return PTR_ERR(bitmap);
7011 
7012 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
7013 		.flags = user_range->flags,
7014 		.base = user_range->base,
7015 		.nmsrs = user_range->nmsrs,
7016 		.bitmap = bitmap,
7017 	};
7018 
7019 	msr_filter->count++;
7020 	return 0;
7021 }
7022 
kvm_vm_ioctl_set_msr_filter(struct kvm * kvm,struct kvm_msr_filter * filter)7023 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
7024 				       struct kvm_msr_filter *filter)
7025 {
7026 	struct kvm_x86_msr_filter *new_filter, *old_filter;
7027 	bool default_allow;
7028 	bool empty = true;
7029 	int r;
7030 	u32 i;
7031 
7032 	if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
7033 		return -EINVAL;
7034 
7035 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
7036 		empty &= !filter->ranges[i].nmsrs;
7037 
7038 	default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
7039 	if (empty && !default_allow)
7040 		return -EINVAL;
7041 
7042 	new_filter = kvm_alloc_msr_filter(default_allow);
7043 	if (!new_filter)
7044 		return -ENOMEM;
7045 
7046 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
7047 		r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
7048 		if (r) {
7049 			kvm_free_msr_filter(new_filter);
7050 			return r;
7051 		}
7052 	}
7053 
7054 	mutex_lock(&kvm->lock);
7055 	old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
7056 					 mutex_is_locked(&kvm->lock));
7057 	mutex_unlock(&kvm->lock);
7058 	synchronize_srcu(&kvm->srcu);
7059 
7060 	kvm_free_msr_filter(old_filter);
7061 
7062 	/*
7063 	 * Recalc MSR intercepts as userspace may want to intercept accesses to
7064 	 * MSRs that KVM would otherwise pass through to the guest.
7065 	 */
7066 	kvm_make_all_cpus_request(kvm, KVM_REQ_RECALC_INTERCEPTS);
7067 
7068 	return 0;
7069 }
7070 
7071 #ifdef CONFIG_KVM_COMPAT
7072 /* for KVM_X86_SET_MSR_FILTER */
7073 struct kvm_msr_filter_range_compat {
7074 	__u32 flags;
7075 	__u32 nmsrs;
7076 	__u32 base;
7077 	__u32 bitmap;
7078 };
7079 
7080 struct kvm_msr_filter_compat {
7081 	__u32 flags;
7082 	struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
7083 };
7084 
7085 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
7086 
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)7087 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
7088 			      unsigned long arg)
7089 {
7090 	void __user *argp = (void __user *)arg;
7091 	struct kvm *kvm = filp->private_data;
7092 	long r = -ENOTTY;
7093 
7094 	switch (ioctl) {
7095 	case KVM_X86_SET_MSR_FILTER_COMPAT: {
7096 		struct kvm_msr_filter __user *user_msr_filter = argp;
7097 		struct kvm_msr_filter_compat filter_compat;
7098 		struct kvm_msr_filter filter;
7099 		int i;
7100 
7101 		if (copy_from_user(&filter_compat, user_msr_filter,
7102 				   sizeof(filter_compat)))
7103 			return -EFAULT;
7104 
7105 		filter.flags = filter_compat.flags;
7106 		for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
7107 			struct kvm_msr_filter_range_compat *cr;
7108 
7109 			cr = &filter_compat.ranges[i];
7110 			filter.ranges[i] = (struct kvm_msr_filter_range) {
7111 				.flags = cr->flags,
7112 				.nmsrs = cr->nmsrs,
7113 				.base = cr->base,
7114 				.bitmap = (__u8 *)(ulong)cr->bitmap,
7115 			};
7116 		}
7117 
7118 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7119 		break;
7120 	}
7121 	}
7122 
7123 	return r;
7124 }
7125 #endif
7126 
7127 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_arch_suspend_notifier(struct kvm * kvm)7128 static int kvm_arch_suspend_notifier(struct kvm *kvm)
7129 {
7130 	struct kvm_vcpu *vcpu;
7131 	unsigned long i;
7132 
7133 	/*
7134 	 * Ignore the return, marking the guest paused only "fails" if the vCPU
7135 	 * isn't using kvmclock; continuing on is correct and desirable.
7136 	 */
7137 	kvm_for_each_vcpu(i, vcpu, kvm)
7138 		(void)kvm_set_guest_paused(vcpu);
7139 
7140 	return NOTIFY_DONE;
7141 }
7142 
kvm_arch_pm_notifier(struct kvm * kvm,unsigned long state)7143 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
7144 {
7145 	switch (state) {
7146 	case PM_HIBERNATION_PREPARE:
7147 	case PM_SUSPEND_PREPARE:
7148 		return kvm_arch_suspend_notifier(kvm);
7149 	}
7150 
7151 	return NOTIFY_DONE;
7152 }
7153 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
7154 
kvm_vm_ioctl_get_clock(struct kvm * kvm,void __user * argp)7155 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
7156 {
7157 	struct kvm_clock_data data = { 0 };
7158 
7159 	get_kvmclock(kvm, &data);
7160 	if (copy_to_user(argp, &data, sizeof(data)))
7161 		return -EFAULT;
7162 
7163 	return 0;
7164 }
7165 
kvm_vm_ioctl_set_clock(struct kvm * kvm,void __user * argp)7166 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
7167 {
7168 	struct kvm_arch *ka = &kvm->arch;
7169 	struct kvm_clock_data data;
7170 	u64 now_raw_ns;
7171 
7172 	if (copy_from_user(&data, argp, sizeof(data)))
7173 		return -EFAULT;
7174 
7175 	/*
7176 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
7177 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
7178 	 */
7179 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
7180 		return -EINVAL;
7181 
7182 	kvm_hv_request_tsc_page_update(kvm);
7183 	kvm_start_pvclock_update(kvm);
7184 	pvclock_update_vm_gtod_copy(kvm);
7185 
7186 	/*
7187 	 * This pairs with kvm_guest_time_update(): when masterclock is
7188 	 * in use, we use master_kernel_ns + kvmclock_offset to set
7189 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
7190 	 * is slightly ahead) here we risk going negative on unsigned
7191 	 * 'system_time' when 'data.clock' is very small.
7192 	 */
7193 	if (data.flags & KVM_CLOCK_REALTIME) {
7194 		u64 now_real_ns = ktime_get_real_ns();
7195 
7196 		/*
7197 		 * Avoid stepping the kvmclock backwards.
7198 		 */
7199 		if (now_real_ns > data.realtime)
7200 			data.clock += now_real_ns - data.realtime;
7201 	}
7202 
7203 	if (ka->use_master_clock)
7204 		now_raw_ns = ka->master_kernel_ns;
7205 	else
7206 		now_raw_ns = get_kvmclock_base_ns();
7207 	ka->kvmclock_offset = data.clock - now_raw_ns;
7208 	kvm_end_pvclock_update(kvm);
7209 	return 0;
7210 }
7211 
kvm_arch_vcpu_unlocked_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)7212 long kvm_arch_vcpu_unlocked_ioctl(struct file *filp, unsigned int ioctl,
7213 				  unsigned long arg)
7214 {
7215 	struct kvm_vcpu *vcpu = filp->private_data;
7216 	void __user *argp = (void __user *)arg;
7217 
7218 	if (ioctl == KVM_MEMORY_ENCRYPT_OP &&
7219 	    kvm_x86_ops.vcpu_mem_enc_unlocked_ioctl)
7220 		return kvm_x86_call(vcpu_mem_enc_unlocked_ioctl)(vcpu, argp);
7221 
7222 	return -ENOIOCTLCMD;
7223 }
7224 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)7225 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
7226 {
7227 	struct kvm *kvm = filp->private_data;
7228 	void __user *argp = (void __user *)arg;
7229 	int r = -ENOTTY;
7230 
7231 #ifdef CONFIG_KVM_IOAPIC
7232 	/*
7233 	 * This union makes it completely explicit to gcc-3.x
7234 	 * that these three variables' stack usage should be
7235 	 * combined, not added together.
7236 	 */
7237 	union {
7238 		struct kvm_pit_state ps;
7239 		struct kvm_pit_state2 ps2;
7240 		struct kvm_pit_config pit_config;
7241 	} u;
7242 #endif
7243 
7244 	switch (ioctl) {
7245 	case KVM_SET_TSS_ADDR:
7246 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
7247 		break;
7248 	case KVM_SET_IDENTITY_MAP_ADDR: {
7249 		u64 ident_addr;
7250 
7251 		mutex_lock(&kvm->lock);
7252 		r = -EINVAL;
7253 		if (kvm->created_vcpus)
7254 			goto set_identity_unlock;
7255 		r = -EFAULT;
7256 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
7257 			goto set_identity_unlock;
7258 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
7259 set_identity_unlock:
7260 		mutex_unlock(&kvm->lock);
7261 		break;
7262 	}
7263 	case KVM_SET_NR_MMU_PAGES:
7264 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
7265 		break;
7266 #ifdef CONFIG_KVM_IOAPIC
7267 	case KVM_CREATE_IRQCHIP: {
7268 		mutex_lock(&kvm->lock);
7269 
7270 		r = -EEXIST;
7271 		if (irqchip_in_kernel(kvm))
7272 			goto create_irqchip_unlock;
7273 
7274 		/*
7275 		 * Disallow an in-kernel I/O APIC if the VM has protected EOIs,
7276 		 * i.e. if KVM can't intercept EOIs and thus can't properly
7277 		 * emulate level-triggered interrupts.
7278 		 */
7279 		r = -ENOTTY;
7280 		if (kvm->arch.has_protected_eoi)
7281 			goto create_irqchip_unlock;
7282 
7283 		r = -EINVAL;
7284 		if (kvm->created_vcpus)
7285 			goto create_irqchip_unlock;
7286 
7287 		r = kvm_pic_init(kvm);
7288 		if (r)
7289 			goto create_irqchip_unlock;
7290 
7291 		r = kvm_ioapic_init(kvm);
7292 		if (r) {
7293 			kvm_pic_destroy(kvm);
7294 			goto create_irqchip_unlock;
7295 		}
7296 
7297 		r = kvm_setup_default_ioapic_and_pic_routing(kvm);
7298 		if (r) {
7299 			kvm_ioapic_destroy(kvm);
7300 			kvm_pic_destroy(kvm);
7301 			goto create_irqchip_unlock;
7302 		}
7303 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
7304 		smp_wmb();
7305 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
7306 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
7307 	create_irqchip_unlock:
7308 		mutex_unlock(&kvm->lock);
7309 		break;
7310 	}
7311 	case KVM_CREATE_PIT:
7312 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
7313 		goto create_pit;
7314 	case KVM_CREATE_PIT2:
7315 		r = -EFAULT;
7316 		if (copy_from_user(&u.pit_config, argp,
7317 				   sizeof(struct kvm_pit_config)))
7318 			goto out;
7319 	create_pit:
7320 		mutex_lock(&kvm->lock);
7321 		r = -EEXIST;
7322 		if (kvm->arch.vpit)
7323 			goto create_pit_unlock;
7324 		r = -ENOENT;
7325 		if (!pic_in_kernel(kvm))
7326 			goto create_pit_unlock;
7327 		r = -ENOMEM;
7328 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7329 		if (kvm->arch.vpit)
7330 			r = 0;
7331 	create_pit_unlock:
7332 		mutex_unlock(&kvm->lock);
7333 		break;
7334 	case KVM_GET_IRQCHIP: {
7335 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7336 		struct kvm_irqchip *chip;
7337 
7338 		chip = memdup_user(argp, sizeof(*chip));
7339 		if (IS_ERR(chip)) {
7340 			r = PTR_ERR(chip);
7341 			goto out;
7342 		}
7343 
7344 		r = -ENXIO;
7345 		if (!irqchip_full(kvm))
7346 			goto get_irqchip_out;
7347 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
7348 		if (r)
7349 			goto get_irqchip_out;
7350 		r = -EFAULT;
7351 		if (copy_to_user(argp, chip, sizeof(*chip)))
7352 			goto get_irqchip_out;
7353 		r = 0;
7354 	get_irqchip_out:
7355 		kfree(chip);
7356 		break;
7357 	}
7358 	case KVM_SET_IRQCHIP: {
7359 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7360 		struct kvm_irqchip *chip;
7361 
7362 		chip = memdup_user(argp, sizeof(*chip));
7363 		if (IS_ERR(chip)) {
7364 			r = PTR_ERR(chip);
7365 			goto out;
7366 		}
7367 
7368 		r = -ENXIO;
7369 		if (!irqchip_full(kvm))
7370 			goto set_irqchip_out;
7371 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7372 	set_irqchip_out:
7373 		kfree(chip);
7374 		break;
7375 	}
7376 	case KVM_GET_PIT: {
7377 		r = -EFAULT;
7378 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7379 			goto out;
7380 		r = -ENXIO;
7381 		if (!kvm->arch.vpit)
7382 			goto out;
7383 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7384 		if (r)
7385 			goto out;
7386 		r = -EFAULT;
7387 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7388 			goto out;
7389 		r = 0;
7390 		break;
7391 	}
7392 	case KVM_SET_PIT: {
7393 		r = -EFAULT;
7394 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7395 			goto out;
7396 		mutex_lock(&kvm->lock);
7397 		r = -ENXIO;
7398 		if (!kvm->arch.vpit)
7399 			goto set_pit_out;
7400 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7401 set_pit_out:
7402 		mutex_unlock(&kvm->lock);
7403 		break;
7404 	}
7405 	case KVM_GET_PIT2: {
7406 		r = -ENXIO;
7407 		if (!kvm->arch.vpit)
7408 			goto out;
7409 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7410 		if (r)
7411 			goto out;
7412 		r = -EFAULT;
7413 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7414 			goto out;
7415 		r = 0;
7416 		break;
7417 	}
7418 	case KVM_SET_PIT2: {
7419 		r = -EFAULT;
7420 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7421 			goto out;
7422 		mutex_lock(&kvm->lock);
7423 		r = -ENXIO;
7424 		if (!kvm->arch.vpit)
7425 			goto set_pit2_out;
7426 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7427 set_pit2_out:
7428 		mutex_unlock(&kvm->lock);
7429 		break;
7430 	}
7431 	case KVM_REINJECT_CONTROL: {
7432 		struct kvm_reinject_control control;
7433 		r =  -EFAULT;
7434 		if (copy_from_user(&control, argp, sizeof(control)))
7435 			goto out;
7436 		r = -ENXIO;
7437 		if (!kvm->arch.vpit)
7438 			goto out;
7439 		r = kvm_vm_ioctl_reinject(kvm, &control);
7440 		break;
7441 	}
7442 #endif
7443 	case KVM_SET_BOOT_CPU_ID:
7444 		r = 0;
7445 		mutex_lock(&kvm->lock);
7446 		if (kvm->created_vcpus)
7447 			r = -EBUSY;
7448 		else if (arg > KVM_MAX_VCPU_IDS ||
7449 			 (kvm->arch.max_vcpu_ids && arg > kvm->arch.max_vcpu_ids))
7450 			r = -EINVAL;
7451 		else
7452 			kvm->arch.bsp_vcpu_id = arg;
7453 		mutex_unlock(&kvm->lock);
7454 		break;
7455 #ifdef CONFIG_KVM_XEN
7456 	case KVM_XEN_HVM_CONFIG: {
7457 		struct kvm_xen_hvm_config xhc;
7458 		r = -EFAULT;
7459 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
7460 			goto out;
7461 		r = kvm_xen_hvm_config(kvm, &xhc);
7462 		break;
7463 	}
7464 	case KVM_XEN_HVM_GET_ATTR: {
7465 		struct kvm_xen_hvm_attr xha;
7466 
7467 		r = -EFAULT;
7468 		if (copy_from_user(&xha, argp, sizeof(xha)))
7469 			goto out;
7470 		r = kvm_xen_hvm_get_attr(kvm, &xha);
7471 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7472 			r = -EFAULT;
7473 		break;
7474 	}
7475 	case KVM_XEN_HVM_SET_ATTR: {
7476 		struct kvm_xen_hvm_attr xha;
7477 
7478 		r = -EFAULT;
7479 		if (copy_from_user(&xha, argp, sizeof(xha)))
7480 			goto out;
7481 		r = kvm_xen_hvm_set_attr(kvm, &xha);
7482 		break;
7483 	}
7484 	case KVM_XEN_HVM_EVTCHN_SEND: {
7485 		struct kvm_irq_routing_xen_evtchn uxe;
7486 
7487 		r = -EFAULT;
7488 		if (copy_from_user(&uxe, argp, sizeof(uxe)))
7489 			goto out;
7490 		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7491 		break;
7492 	}
7493 #endif
7494 	case KVM_SET_CLOCK:
7495 		r = kvm_vm_ioctl_set_clock(kvm, argp);
7496 		break;
7497 	case KVM_GET_CLOCK:
7498 		r = kvm_vm_ioctl_get_clock(kvm, argp);
7499 		break;
7500 	case KVM_SET_TSC_KHZ: {
7501 		u32 user_tsc_khz;
7502 
7503 		r = -EINVAL;
7504 		user_tsc_khz = (u32)arg;
7505 
7506 		if (kvm_caps.has_tsc_control &&
7507 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7508 			goto out;
7509 
7510 		if (user_tsc_khz == 0)
7511 			user_tsc_khz = tsc_khz;
7512 
7513 		mutex_lock(&kvm->lock);
7514 		if (!kvm->created_vcpus) {
7515 			WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7516 			r = 0;
7517 		}
7518 		mutex_unlock(&kvm->lock);
7519 		goto out;
7520 	}
7521 	case KVM_GET_TSC_KHZ: {
7522 		r = READ_ONCE(kvm->arch.default_tsc_khz);
7523 		goto out;
7524 	}
7525 	case KVM_MEMORY_ENCRYPT_OP:
7526 		r = -ENOTTY;
7527 		if (!kvm_x86_ops.mem_enc_ioctl)
7528 			goto out;
7529 
7530 		r = kvm_x86_call(mem_enc_ioctl)(kvm, argp);
7531 		break;
7532 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
7533 		struct kvm_enc_region region;
7534 
7535 		r = -EFAULT;
7536 		if (copy_from_user(&region, argp, sizeof(region)))
7537 			goto out;
7538 
7539 		r = -ENOTTY;
7540 		if (!kvm_x86_ops.mem_enc_register_region)
7541 			goto out;
7542 
7543 		r = kvm_x86_call(mem_enc_register_region)(kvm, &region);
7544 		break;
7545 	}
7546 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7547 		struct kvm_enc_region region;
7548 
7549 		r = -EFAULT;
7550 		if (copy_from_user(&region, argp, sizeof(region)))
7551 			goto out;
7552 
7553 		r = -ENOTTY;
7554 		if (!kvm_x86_ops.mem_enc_unregister_region)
7555 			goto out;
7556 
7557 		r = kvm_x86_call(mem_enc_unregister_region)(kvm, &region);
7558 		break;
7559 	}
7560 #ifdef CONFIG_KVM_HYPERV
7561 	case KVM_HYPERV_EVENTFD: {
7562 		struct kvm_hyperv_eventfd hvevfd;
7563 
7564 		r = -EFAULT;
7565 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7566 			goto out;
7567 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7568 		break;
7569 	}
7570 #endif
7571 	case KVM_SET_PMU_EVENT_FILTER:
7572 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7573 		break;
7574 	case KVM_X86_SET_MSR_FILTER: {
7575 		struct kvm_msr_filter __user *user_msr_filter = argp;
7576 		struct kvm_msr_filter filter;
7577 
7578 		if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7579 			return -EFAULT;
7580 
7581 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7582 		break;
7583 	}
7584 	default:
7585 		r = -ENOTTY;
7586 	}
7587 out:
7588 	return r;
7589 }
7590 
kvm_probe_feature_msr(u32 msr_index)7591 static void kvm_probe_feature_msr(u32 msr_index)
7592 {
7593 	u64 data;
7594 
7595 	if (kvm_get_feature_msr(NULL, msr_index, &data, true))
7596 		return;
7597 
7598 	msr_based_features[num_msr_based_features++] = msr_index;
7599 }
7600 
kvm_probe_msr_to_save(u32 msr_index)7601 static void kvm_probe_msr_to_save(u32 msr_index)
7602 {
7603 	u32 dummy[2];
7604 
7605 	if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7606 		return;
7607 
7608 	/*
7609 	 * Even MSRs that are valid in the host may not be exposed to guests in
7610 	 * some cases.
7611 	 */
7612 	switch (msr_index) {
7613 	case MSR_IA32_BNDCFGS:
7614 		if (!kvm_mpx_supported())
7615 			return;
7616 		break;
7617 	case MSR_TSC_AUX:
7618 		if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7619 		    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7620 			return;
7621 		break;
7622 	case MSR_IA32_UMWAIT_CONTROL:
7623 		if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7624 			return;
7625 		break;
7626 	case MSR_IA32_RTIT_CTL:
7627 	case MSR_IA32_RTIT_STATUS:
7628 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7629 			return;
7630 		break;
7631 	case MSR_IA32_RTIT_CR3_MATCH:
7632 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7633 		    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7634 			return;
7635 		break;
7636 	case MSR_IA32_RTIT_OUTPUT_BASE:
7637 	case MSR_IA32_RTIT_OUTPUT_MASK:
7638 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7639 		    (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7640 		     !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7641 			return;
7642 		break;
7643 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7644 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7645 		    (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7646 		     intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7647 			return;
7648 		break;
7649 	case MSR_ARCH_PERFMON_PERFCTR0 ...
7650 	     MSR_ARCH_PERFMON_PERFCTR0 + KVM_MAX_NR_GP_COUNTERS - 1:
7651 		if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7652 		    kvm_pmu_cap.num_counters_gp)
7653 			return;
7654 		break;
7655 	case MSR_ARCH_PERFMON_EVENTSEL0 ...
7656 	     MSR_ARCH_PERFMON_EVENTSEL0 + KVM_MAX_NR_GP_COUNTERS - 1:
7657 		if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7658 		    kvm_pmu_cap.num_counters_gp)
7659 			return;
7660 		break;
7661 	case MSR_ARCH_PERFMON_FIXED_CTR0 ...
7662 	     MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_MAX_NR_FIXED_COUNTERS - 1:
7663 		if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7664 		    kvm_pmu_cap.num_counters_fixed)
7665 			return;
7666 		break;
7667 	case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7668 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7669 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7670 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_SET:
7671 		if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7672 			return;
7673 		break;
7674 	case MSR_IA32_XFD:
7675 	case MSR_IA32_XFD_ERR:
7676 		if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7677 			return;
7678 		break;
7679 	case MSR_IA32_TSX_CTRL:
7680 		if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7681 			return;
7682 		break;
7683 	case MSR_IA32_XSS:
7684 		if (!kvm_caps.supported_xss)
7685 			return;
7686 		break;
7687 	case MSR_IA32_U_CET:
7688 	case MSR_IA32_S_CET:
7689 		if (!kvm_cpu_cap_has(X86_FEATURE_SHSTK) &&
7690 		    !kvm_cpu_cap_has(X86_FEATURE_IBT))
7691 			return;
7692 		break;
7693 	case MSR_IA32_INT_SSP_TAB:
7694 		if (!kvm_cpu_cap_has(X86_FEATURE_LM))
7695 			return;
7696 		fallthrough;
7697 	case MSR_IA32_PL0_SSP ... MSR_IA32_PL3_SSP:
7698 		if (!kvm_cpu_cap_has(X86_FEATURE_SHSTK))
7699 			return;
7700 		break;
7701 	default:
7702 		break;
7703 	}
7704 
7705 	msrs_to_save[num_msrs_to_save++] = msr_index;
7706 }
7707 
kvm_init_msr_lists(void)7708 static void kvm_init_msr_lists(void)
7709 {
7710 	unsigned i;
7711 
7712 	BUILD_BUG_ON_MSG(KVM_MAX_NR_FIXED_COUNTERS != 3,
7713 			 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7714 
7715 	num_msrs_to_save = 0;
7716 	num_emulated_msrs = 0;
7717 	num_msr_based_features = 0;
7718 
7719 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7720 		kvm_probe_msr_to_save(msrs_to_save_base[i]);
7721 
7722 	if (enable_pmu) {
7723 		for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7724 			kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7725 	}
7726 
7727 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7728 		if (!kvm_x86_call(has_emulated_msr)(NULL,
7729 						    emulated_msrs_all[i]))
7730 			continue;
7731 
7732 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7733 	}
7734 
7735 	for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7736 		kvm_probe_feature_msr(i);
7737 
7738 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7739 		kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7740 }
7741 
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)7742 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7743 			   const void *v)
7744 {
7745 	int handled = 0;
7746 	int n;
7747 
7748 	do {
7749 		n = min(len, 8);
7750 		if (!(lapic_in_kernel(vcpu) &&
7751 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7752 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7753 			break;
7754 		handled += n;
7755 		addr += n;
7756 		len -= n;
7757 		v += n;
7758 	} while (len);
7759 
7760 	return handled;
7761 }
7762 
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)7763 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7764 {
7765 	int handled = 0;
7766 	int n;
7767 
7768 	do {
7769 		n = min(len, 8);
7770 		if (!(lapic_in_kernel(vcpu) &&
7771 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7772 					 addr, n, v))
7773 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7774 			break;
7775 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7776 		handled += n;
7777 		addr += n;
7778 		len -= n;
7779 		v += n;
7780 	} while (len);
7781 
7782 	return handled;
7783 }
7784 
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7785 void kvm_set_segment(struct kvm_vcpu *vcpu,
7786 		     struct kvm_segment *var, int seg)
7787 {
7788 	kvm_x86_call(set_segment)(vcpu, var, seg);
7789 }
7790 
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7791 void kvm_get_segment(struct kvm_vcpu *vcpu,
7792 		     struct kvm_segment *var, int seg)
7793 {
7794 	kvm_x86_call(get_segment)(vcpu, var, seg);
7795 }
7796 
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u64 access,struct x86_exception * exception)7797 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7798 			   struct x86_exception *exception)
7799 {
7800 	struct kvm_mmu *mmu = vcpu->arch.mmu;
7801 	gpa_t t_gpa;
7802 
7803 	BUG_ON(!mmu_is_nested(vcpu));
7804 
7805 	/* NPT walks are always user-walks */
7806 	access |= PFERR_USER_MASK;
7807 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7808 
7809 	return t_gpa;
7810 }
7811 
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7812 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7813 			      struct x86_exception *exception)
7814 {
7815 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7816 
7817 	u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7818 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7819 }
7820 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_gva_to_gpa_read);
7821 
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7822 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7823 			       struct x86_exception *exception)
7824 {
7825 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7826 
7827 	u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7828 	access |= PFERR_WRITE_MASK;
7829 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7830 }
7831 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_gva_to_gpa_write);
7832 
7833 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7834 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7835 				struct x86_exception *exception)
7836 {
7837 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7838 
7839 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7840 }
7841 
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7842 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7843 				      struct kvm_vcpu *vcpu, u64 access,
7844 				      struct x86_exception *exception)
7845 {
7846 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7847 	void *data = val;
7848 	int r = X86EMUL_CONTINUE;
7849 
7850 	while (bytes) {
7851 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7852 		unsigned offset = addr & (PAGE_SIZE-1);
7853 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7854 		int ret;
7855 
7856 		if (gpa == INVALID_GPA)
7857 			return X86EMUL_PROPAGATE_FAULT;
7858 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7859 					       offset, toread);
7860 		if (ret < 0) {
7861 			r = X86EMUL_IO_NEEDED;
7862 			goto out;
7863 		}
7864 
7865 		bytes -= toread;
7866 		data += toread;
7867 		addr += toread;
7868 	}
7869 out:
7870 	return r;
7871 }
7872 
7873 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7874 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7875 				gva_t addr, void *val, unsigned int bytes,
7876 				struct x86_exception *exception)
7877 {
7878 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7879 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7880 	u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7881 	unsigned offset;
7882 	int ret;
7883 
7884 	/* Inline kvm_read_guest_virt_helper for speed.  */
7885 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7886 				    exception);
7887 	if (unlikely(gpa == INVALID_GPA))
7888 		return X86EMUL_PROPAGATE_FAULT;
7889 
7890 	offset = addr & (PAGE_SIZE-1);
7891 	if (WARN_ON(offset + bytes > PAGE_SIZE))
7892 		bytes = (unsigned)PAGE_SIZE - offset;
7893 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7894 				       offset, bytes);
7895 	if (unlikely(ret < 0))
7896 		return X86EMUL_IO_NEEDED;
7897 
7898 	return X86EMUL_CONTINUE;
7899 }
7900 
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7901 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7902 			       gva_t addr, void *val, unsigned int bytes,
7903 			       struct x86_exception *exception)
7904 {
7905 	u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7906 
7907 	/*
7908 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7909 	 * is returned, but our callers are not ready for that and they blindly
7910 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
7911 	 * uninitialized kernel stack memory into cr2 and error code.
7912 	 */
7913 	memset(exception, 0, sizeof(*exception));
7914 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7915 					  exception);
7916 }
7917 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest_virt);
7918 
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7919 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7920 			     gva_t addr, void *val, unsigned int bytes,
7921 			     struct x86_exception *exception, bool system)
7922 {
7923 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7924 	u64 access = 0;
7925 
7926 	if (system)
7927 		access |= PFERR_IMPLICIT_ACCESS;
7928 	else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7929 		access |= PFERR_USER_MASK;
7930 
7931 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7932 }
7933 
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7934 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7935 				      struct kvm_vcpu *vcpu, u64 access,
7936 				      struct x86_exception *exception)
7937 {
7938 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7939 	void *data = val;
7940 	int r = X86EMUL_CONTINUE;
7941 
7942 	while (bytes) {
7943 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7944 		unsigned offset = addr & (PAGE_SIZE-1);
7945 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7946 		int ret;
7947 
7948 		if (gpa == INVALID_GPA)
7949 			return X86EMUL_PROPAGATE_FAULT;
7950 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7951 		if (ret < 0) {
7952 			r = X86EMUL_IO_NEEDED;
7953 			goto out;
7954 		}
7955 
7956 		bytes -= towrite;
7957 		data += towrite;
7958 		addr += towrite;
7959 	}
7960 out:
7961 	return r;
7962 }
7963 
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7964 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7965 			      unsigned int bytes, struct x86_exception *exception,
7966 			      bool system)
7967 {
7968 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7969 	u64 access = PFERR_WRITE_MASK;
7970 
7971 	if (system)
7972 		access |= PFERR_IMPLICIT_ACCESS;
7973 	else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7974 		access |= PFERR_USER_MASK;
7975 
7976 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7977 					   access, exception);
7978 }
7979 
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7980 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7981 				unsigned int bytes, struct x86_exception *exception)
7982 {
7983 	/* kvm_write_guest_virt_system can pull in tons of pages. */
7984 	kvm_request_l1tf_flush_l1d();
7985 
7986 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7987 					   PFERR_WRITE_MASK, exception);
7988 }
7989 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest_virt_system);
7990 
kvm_check_emulate_insn(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)7991 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7992 				  void *insn, int insn_len)
7993 {
7994 	return kvm_x86_call(check_emulate_instruction)(vcpu, emul_type,
7995 						       insn, insn_len);
7996 }
7997 
handle_ud(struct kvm_vcpu * vcpu)7998 int handle_ud(struct kvm_vcpu *vcpu)
7999 {
8000 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
8001 	int fep_flags = READ_ONCE(force_emulation_prefix);
8002 	int emul_type = EMULTYPE_TRAP_UD;
8003 	char sig[5]; /* ud2; .ascii "kvm" */
8004 	struct x86_exception e;
8005 	int r;
8006 
8007 	r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
8008 	if (r != X86EMUL_CONTINUE)
8009 		return 1;
8010 
8011 	if (fep_flags &&
8012 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
8013 				sig, sizeof(sig), &e) == 0 &&
8014 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
8015 		if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
8016 			kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
8017 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
8018 		emul_type = EMULTYPE_TRAP_UD_FORCED;
8019 	}
8020 
8021 	return kvm_emulate_instruction(vcpu, emul_type);
8022 }
8023 EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_ud);
8024 
vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)8025 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
8026 			    gpa_t gpa, bool write)
8027 {
8028 	/* For APIC access vmexit */
8029 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
8030 		return 1;
8031 
8032 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
8033 		trace_vcpu_match_mmio(gva, gpa, write, true);
8034 		return 1;
8035 	}
8036 
8037 	return 0;
8038 }
8039 
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)8040 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
8041 				gpa_t *gpa, struct x86_exception *exception,
8042 				bool write)
8043 {
8044 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
8045 	u64 access = ((kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
8046 		     | (write ? PFERR_WRITE_MASK : 0);
8047 
8048 	/*
8049 	 * currently PKRU is only applied to ept enabled guest so
8050 	 * there is no pkey in EPT page table for L1 guest or EPT
8051 	 * shadow page table for L2 guest.
8052 	 */
8053 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
8054 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
8055 			      vcpu->arch.mmio_access, 0, access))) {
8056 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
8057 					(gva & (PAGE_SIZE - 1));
8058 		trace_vcpu_match_mmio(gva, *gpa, write, false);
8059 		return 1;
8060 	}
8061 
8062 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
8063 
8064 	if (*gpa == INVALID_GPA)
8065 		return -1;
8066 
8067 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
8068 }
8069 
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)8070 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
8071 			const void *val, int bytes)
8072 {
8073 	int ret;
8074 
8075 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
8076 	if (ret < 0)
8077 		return 0;
8078 	kvm_page_track_write(vcpu, gpa, val, bytes);
8079 	return 1;
8080 }
8081 
8082 struct read_write_emulator_ops {
8083 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
8084 				  int bytes);
8085 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
8086 				  void *val, int bytes);
8087 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
8088 			       int bytes, void *val);
8089 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
8090 				    void *val, int bytes);
8091 	bool write;
8092 };
8093 
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)8094 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
8095 {
8096 	if (vcpu->mmio_read_completed) {
8097 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
8098 			       vcpu->mmio_fragments[0].gpa, val);
8099 		vcpu->mmio_read_completed = 0;
8100 		return 1;
8101 	}
8102 
8103 	return 0;
8104 }
8105 
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)8106 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
8107 			void *val, int bytes)
8108 {
8109 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
8110 }
8111 
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)8112 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
8113 			 void *val, int bytes)
8114 {
8115 	return emulator_write_phys(vcpu, gpa, val, bytes);
8116 }
8117 
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)8118 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
8119 {
8120 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
8121 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
8122 }
8123 
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)8124 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
8125 			  void *val, int bytes)
8126 {
8127 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
8128 	return X86EMUL_IO_NEEDED;
8129 }
8130 
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)8131 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
8132 			   void *val, int bytes)
8133 {
8134 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
8135 
8136 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
8137 	return X86EMUL_CONTINUE;
8138 }
8139 
8140 static const struct read_write_emulator_ops read_emultor = {
8141 	.read_write_prepare = read_prepare,
8142 	.read_write_emulate = read_emulate,
8143 	.read_write_mmio = vcpu_mmio_read,
8144 	.read_write_exit_mmio = read_exit_mmio,
8145 };
8146 
8147 static const struct read_write_emulator_ops write_emultor = {
8148 	.read_write_emulate = write_emulate,
8149 	.read_write_mmio = write_mmio,
8150 	.read_write_exit_mmio = write_exit_mmio,
8151 	.write = true,
8152 };
8153 
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)8154 static int emulator_read_write_onepage(unsigned long addr, void *val,
8155 				       unsigned int bytes,
8156 				       struct x86_exception *exception,
8157 				       struct kvm_vcpu *vcpu,
8158 				       const struct read_write_emulator_ops *ops)
8159 {
8160 	gpa_t gpa;
8161 	int handled, ret;
8162 	bool write = ops->write;
8163 	struct kvm_mmio_fragment *frag;
8164 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8165 
8166 	/*
8167 	 * If the exit was due to a NPF we may already have a GPA.
8168 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
8169 	 * Note, this cannot be used on string operations since string
8170 	 * operation using rep will only have the initial GPA from the NPF
8171 	 * occurred.
8172 	 */
8173 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
8174 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
8175 		gpa = ctxt->gpa_val;
8176 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
8177 	} else {
8178 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
8179 		if (ret < 0)
8180 			return X86EMUL_PROPAGATE_FAULT;
8181 	}
8182 
8183 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
8184 		return X86EMUL_CONTINUE;
8185 
8186 	/*
8187 	 * Is this MMIO handled locally?
8188 	 */
8189 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
8190 	if (handled == bytes)
8191 		return X86EMUL_CONTINUE;
8192 
8193 	gpa += handled;
8194 	bytes -= handled;
8195 	val += handled;
8196 
8197 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
8198 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
8199 	frag->gpa = gpa;
8200 	frag->data = val;
8201 	frag->len = bytes;
8202 	return X86EMUL_CONTINUE;
8203 }
8204 
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)8205 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
8206 			unsigned long addr,
8207 			void *val, unsigned int bytes,
8208 			struct x86_exception *exception,
8209 			const struct read_write_emulator_ops *ops)
8210 {
8211 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8212 	gpa_t gpa;
8213 	int rc;
8214 
8215 	if (ops->read_write_prepare &&
8216 		  ops->read_write_prepare(vcpu, val, bytes))
8217 		return X86EMUL_CONTINUE;
8218 
8219 	vcpu->mmio_nr_fragments = 0;
8220 
8221 	/* Crossing a page boundary? */
8222 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
8223 		int now;
8224 
8225 		now = -addr & ~PAGE_MASK;
8226 		rc = emulator_read_write_onepage(addr, val, now, exception,
8227 						 vcpu, ops);
8228 
8229 		if (rc != X86EMUL_CONTINUE)
8230 			return rc;
8231 		addr += now;
8232 		if (ctxt->mode != X86EMUL_MODE_PROT64)
8233 			addr = (u32)addr;
8234 		val += now;
8235 		bytes -= now;
8236 	}
8237 
8238 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
8239 					 vcpu, ops);
8240 	if (rc != X86EMUL_CONTINUE)
8241 		return rc;
8242 
8243 	if (!vcpu->mmio_nr_fragments)
8244 		return X86EMUL_CONTINUE;
8245 
8246 	gpa = vcpu->mmio_fragments[0].gpa;
8247 
8248 	vcpu->mmio_needed = 1;
8249 	vcpu->mmio_cur_fragment = 0;
8250 
8251 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
8252 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
8253 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
8254 	vcpu->run->mmio.phys_addr = gpa;
8255 
8256 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
8257 }
8258 
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)8259 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
8260 				  unsigned long addr,
8261 				  void *val,
8262 				  unsigned int bytes,
8263 				  struct x86_exception *exception)
8264 {
8265 	return emulator_read_write(ctxt, addr, val, bytes,
8266 				   exception, &read_emultor);
8267 }
8268 
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)8269 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
8270 			    unsigned long addr,
8271 			    const void *val,
8272 			    unsigned int bytes,
8273 			    struct x86_exception *exception)
8274 {
8275 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
8276 				   exception, &write_emultor);
8277 }
8278 
8279 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
8280 	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
8281 
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)8282 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
8283 				     unsigned long addr,
8284 				     const void *old,
8285 				     const void *new,
8286 				     unsigned int bytes,
8287 				     struct x86_exception *exception)
8288 {
8289 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8290 	u64 page_line_mask;
8291 	unsigned long hva;
8292 	gpa_t gpa;
8293 	int r;
8294 
8295 	/* guests cmpxchg8b have to be emulated atomically */
8296 	if (bytes > 8 || (bytes & (bytes - 1)))
8297 		goto emul_write;
8298 
8299 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
8300 
8301 	if (gpa == INVALID_GPA ||
8302 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
8303 		goto emul_write;
8304 
8305 	/*
8306 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
8307 	 * enabled in the host and the access splits a cache line.
8308 	 */
8309 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
8310 		page_line_mask = ~(cache_line_size() - 1);
8311 	else
8312 		page_line_mask = PAGE_MASK;
8313 
8314 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
8315 		goto emul_write;
8316 
8317 	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
8318 	if (kvm_is_error_hva(hva))
8319 		goto emul_write;
8320 
8321 	hva += offset_in_page(gpa);
8322 
8323 	switch (bytes) {
8324 	case 1:
8325 		r = emulator_try_cmpxchg_user(u8, hva, old, new);
8326 		break;
8327 	case 2:
8328 		r = emulator_try_cmpxchg_user(u16, hva, old, new);
8329 		break;
8330 	case 4:
8331 		r = emulator_try_cmpxchg_user(u32, hva, old, new);
8332 		break;
8333 	case 8:
8334 		r = emulator_try_cmpxchg_user(u64, hva, old, new);
8335 		break;
8336 	default:
8337 		BUG();
8338 	}
8339 
8340 	if (r < 0)
8341 		return X86EMUL_UNHANDLEABLE;
8342 
8343 	/*
8344 	 * Mark the page dirty _before_ checking whether or not the CMPXCHG was
8345 	 * successful, as the old value is written back on failure.  Note, for
8346 	 * live migration, this is unnecessarily conservative as CMPXCHG writes
8347 	 * back the original value and the access is atomic, but KVM's ABI is
8348 	 * that all writes are dirty logged, regardless of the value written.
8349 	 */
8350 	kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa));
8351 
8352 	if (r)
8353 		return X86EMUL_CMPXCHG_FAILED;
8354 
8355 	kvm_page_track_write(vcpu, gpa, new, bytes);
8356 
8357 	return X86EMUL_CONTINUE;
8358 
8359 emul_write:
8360 	pr_warn_once("emulating exchange as write\n");
8361 
8362 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
8363 }
8364 
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * data,unsigned int count,bool in)8365 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
8366 			       unsigned short port, void *data,
8367 			       unsigned int count, bool in)
8368 {
8369 	unsigned i;
8370 	int r;
8371 
8372 	WARN_ON_ONCE(vcpu->arch.pio.count);
8373 	for (i = 0; i < count; i++) {
8374 		if (in)
8375 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
8376 		else
8377 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
8378 
8379 		if (r) {
8380 			if (i == 0)
8381 				goto userspace_io;
8382 
8383 			/*
8384 			 * Userspace must have unregistered the device while PIO
8385 			 * was running.  Drop writes / read as 0.
8386 			 */
8387 			if (in)
8388 				memset(data, 0, size * (count - i));
8389 			break;
8390 		}
8391 
8392 		data += size;
8393 	}
8394 	return 1;
8395 
8396 userspace_io:
8397 	vcpu->arch.pio.port = port;
8398 	vcpu->arch.pio.in = in;
8399 	vcpu->arch.pio.count = count;
8400 	vcpu->arch.pio.size = size;
8401 
8402 	if (in)
8403 		memset(vcpu->arch.pio_data, 0, size * count);
8404 	else
8405 		memcpy(vcpu->arch.pio_data, data, size * count);
8406 
8407 	vcpu->run->exit_reason = KVM_EXIT_IO;
8408 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8409 	vcpu->run->io.size = size;
8410 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8411 	vcpu->run->io.count = count;
8412 	vcpu->run->io.port = port;
8413 	return 0;
8414 }
8415 
emulator_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count)8416 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8417       			   unsigned short port, void *val, unsigned int count)
8418 {
8419 	int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8420 	if (r)
8421 		trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8422 
8423 	return r;
8424 }
8425 
complete_emulator_pio_in(struct kvm_vcpu * vcpu,void * val)8426 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8427 {
8428 	int size = vcpu->arch.pio.size;
8429 	unsigned int count = vcpu->arch.pio.count;
8430 	memcpy(val, vcpu->arch.pio_data, size * count);
8431 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8432 	vcpu->arch.pio.count = 0;
8433 }
8434 
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)8435 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8436 				    int size, unsigned short port, void *val,
8437 				    unsigned int count)
8438 {
8439 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8440 	if (vcpu->arch.pio.count) {
8441 		/*
8442 		 * Complete a previous iteration that required userspace I/O.
8443 		 * Note, @count isn't guaranteed to match pio.count as userspace
8444 		 * can modify ECX before rerunning the vCPU.  Ignore any such
8445 		 * shenanigans as KVM doesn't support modifying the rep count,
8446 		 * and the emulator ensures @count doesn't overflow the buffer.
8447 		 */
8448 		complete_emulator_pio_in(vcpu, val);
8449 		return 1;
8450 	}
8451 
8452 	return emulator_pio_in(vcpu, size, port, val, count);
8453 }
8454 
emulator_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port,const void * val,unsigned int count)8455 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8456 			    unsigned short port, const void *val,
8457 			    unsigned int count)
8458 {
8459 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8460 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8461 }
8462 
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)8463 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8464 				     int size, unsigned short port,
8465 				     const void *val, unsigned int count)
8466 {
8467 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8468 }
8469 
get_segment_base(struct kvm_vcpu * vcpu,int seg)8470 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8471 {
8472 	return kvm_x86_call(get_segment_base)(vcpu, seg);
8473 }
8474 
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)8475 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8476 {
8477 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8478 }
8479 
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)8480 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8481 {
8482 	if (!need_emulate_wbinvd(vcpu))
8483 		return X86EMUL_CONTINUE;
8484 
8485 	if (kvm_x86_call(has_wbinvd_exit)()) {
8486 		int cpu = get_cpu();
8487 
8488 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8489 		wbinvd_on_cpus_mask(vcpu->arch.wbinvd_dirty_mask);
8490 		put_cpu();
8491 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8492 	} else
8493 		wbinvd();
8494 	return X86EMUL_CONTINUE;
8495 }
8496 
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)8497 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8498 {
8499 	kvm_emulate_wbinvd_noskip(vcpu);
8500 	return kvm_skip_emulated_instruction(vcpu);
8501 }
8502 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_wbinvd);
8503 
8504 
8505 
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)8506 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8507 {
8508 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8509 }
8510 
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr)8511 static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr)
8512 {
8513 	return kvm_get_dr(emul_to_vcpu(ctxt), dr);
8514 }
8515 
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)8516 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8517 			   unsigned long value)
8518 {
8519 
8520 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8521 }
8522 
mk_cr_64(u64 curr_cr,u32 new_val)8523 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8524 {
8525 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8526 }
8527 
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)8528 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8529 {
8530 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8531 	unsigned long value;
8532 
8533 	switch (cr) {
8534 	case 0:
8535 		value = kvm_read_cr0(vcpu);
8536 		break;
8537 	case 2:
8538 		value = vcpu->arch.cr2;
8539 		break;
8540 	case 3:
8541 		value = kvm_read_cr3(vcpu);
8542 		break;
8543 	case 4:
8544 		value = kvm_read_cr4(vcpu);
8545 		break;
8546 	case 8:
8547 		value = kvm_get_cr8(vcpu);
8548 		break;
8549 	default:
8550 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8551 		return 0;
8552 	}
8553 
8554 	return value;
8555 }
8556 
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)8557 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8558 {
8559 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8560 	int res = 0;
8561 
8562 	switch (cr) {
8563 	case 0:
8564 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8565 		break;
8566 	case 2:
8567 		vcpu->arch.cr2 = val;
8568 		break;
8569 	case 3:
8570 		res = kvm_set_cr3(vcpu, val);
8571 		break;
8572 	case 4:
8573 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8574 		break;
8575 	case 8:
8576 		res = kvm_set_cr8(vcpu, val);
8577 		break;
8578 	default:
8579 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8580 		res = -1;
8581 	}
8582 
8583 	return res;
8584 }
8585 
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)8586 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8587 {
8588 	return kvm_x86_call(get_cpl)(emul_to_vcpu(ctxt));
8589 }
8590 
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8591 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8592 {
8593 	kvm_x86_call(get_gdt)(emul_to_vcpu(ctxt), dt);
8594 }
8595 
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8596 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8597 {
8598 	kvm_x86_call(get_idt)(emul_to_vcpu(ctxt), dt);
8599 }
8600 
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8601 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8602 {
8603 	kvm_x86_call(set_gdt)(emul_to_vcpu(ctxt), dt);
8604 }
8605 
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8606 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8607 {
8608 	kvm_x86_call(set_idt)(emul_to_vcpu(ctxt), dt);
8609 }
8610 
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)8611 static unsigned long emulator_get_cached_segment_base(
8612 	struct x86_emulate_ctxt *ctxt, int seg)
8613 {
8614 	return get_segment_base(emul_to_vcpu(ctxt), seg);
8615 }
8616 
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)8617 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8618 				 struct desc_struct *desc, u32 *base3,
8619 				 int seg)
8620 {
8621 	struct kvm_segment var;
8622 
8623 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8624 	*selector = var.selector;
8625 
8626 	if (var.unusable) {
8627 		memset(desc, 0, sizeof(*desc));
8628 		if (base3)
8629 			*base3 = 0;
8630 		return false;
8631 	}
8632 
8633 	if (var.g)
8634 		var.limit >>= 12;
8635 	set_desc_limit(desc, var.limit);
8636 	set_desc_base(desc, (unsigned long)var.base);
8637 #ifdef CONFIG_X86_64
8638 	if (base3)
8639 		*base3 = var.base >> 32;
8640 #endif
8641 	desc->type = var.type;
8642 	desc->s = var.s;
8643 	desc->dpl = var.dpl;
8644 	desc->p = var.present;
8645 	desc->avl = var.avl;
8646 	desc->l = var.l;
8647 	desc->d = var.db;
8648 	desc->g = var.g;
8649 
8650 	return true;
8651 }
8652 
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)8653 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8654 				 struct desc_struct *desc, u32 base3,
8655 				 int seg)
8656 {
8657 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8658 	struct kvm_segment var;
8659 
8660 	var.selector = selector;
8661 	var.base = get_desc_base(desc);
8662 #ifdef CONFIG_X86_64
8663 	var.base |= ((u64)base3) << 32;
8664 #endif
8665 	var.limit = get_desc_limit(desc);
8666 	if (desc->g)
8667 		var.limit = (var.limit << 12) | 0xfff;
8668 	var.type = desc->type;
8669 	var.dpl = desc->dpl;
8670 	var.db = desc->d;
8671 	var.s = desc->s;
8672 	var.l = desc->l;
8673 	var.g = desc->g;
8674 	var.avl = desc->avl;
8675 	var.present = desc->p;
8676 	var.unusable = !var.present;
8677 	var.padding = 0;
8678 
8679 	kvm_set_segment(vcpu, &var, seg);
8680 	return;
8681 }
8682 
emulator_get_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8683 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8684 					u32 msr_index, u64 *pdata)
8685 {
8686 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8687 	int r;
8688 
8689 	r = kvm_emulate_msr_read(vcpu, msr_index, pdata);
8690 	if (r < 0)
8691 		return X86EMUL_UNHANDLEABLE;
8692 
8693 	if (r) {
8694 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8695 				       complete_emulated_rdmsr, r))
8696 			return X86EMUL_IO_NEEDED;
8697 
8698 		trace_kvm_msr_read_ex(msr_index);
8699 		return X86EMUL_PROPAGATE_FAULT;
8700 	}
8701 
8702 	trace_kvm_msr_read(msr_index, *pdata);
8703 	return X86EMUL_CONTINUE;
8704 }
8705 
emulator_set_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)8706 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8707 					u32 msr_index, u64 data)
8708 {
8709 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8710 	int r;
8711 
8712 	r = kvm_emulate_msr_write(vcpu, msr_index, data);
8713 	if (r < 0)
8714 		return X86EMUL_UNHANDLEABLE;
8715 
8716 	if (r) {
8717 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8718 				       complete_emulated_msr_access, r))
8719 			return X86EMUL_IO_NEEDED;
8720 
8721 		trace_kvm_msr_write_ex(msr_index, data);
8722 		return X86EMUL_PROPAGATE_FAULT;
8723 	}
8724 
8725 	trace_kvm_msr_write(msr_index, data);
8726 	return X86EMUL_CONTINUE;
8727 }
8728 
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8729 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8730 			    u32 msr_index, u64 *pdata)
8731 {
8732 	/*
8733 	 * Treat emulator accesses to the current shadow stack pointer as host-
8734 	 * initiated, as they aren't true MSR accesses (SSP is a "just a reg"),
8735 	 * and this API is used only for implicit accesses, i.e. not RDMSR, and
8736 	 * so the index is fully KVM-controlled.
8737 	 */
8738 	if (unlikely(msr_index == MSR_KVM_INTERNAL_GUEST_SSP))
8739 		return kvm_msr_read(emul_to_vcpu(ctxt), msr_index, pdata);
8740 
8741 	return __kvm_emulate_msr_read(emul_to_vcpu(ctxt), msr_index, pdata);
8742 }
8743 
emulator_check_rdpmc_early(struct x86_emulate_ctxt * ctxt,u32 pmc)8744 static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc)
8745 {
8746 	return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc);
8747 }
8748 
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)8749 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8750 			     u32 pmc, u64 *pdata)
8751 {
8752 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8753 }
8754 
emulator_halt(struct x86_emulate_ctxt * ctxt)8755 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8756 {
8757 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
8758 }
8759 
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)8760 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8761 			      struct x86_instruction_info *info,
8762 			      enum x86_intercept_stage stage)
8763 {
8764 	return kvm_x86_call(check_intercept)(emul_to_vcpu(ctxt), info, stage,
8765 					     &ctxt->exception);
8766 }
8767 
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)8768 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8769 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8770 			      bool exact_only)
8771 {
8772 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8773 }
8774 
emulator_guest_has_movbe(struct x86_emulate_ctxt * ctxt)8775 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8776 {
8777 	return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8778 }
8779 
emulator_guest_has_fxsr(struct x86_emulate_ctxt * ctxt)8780 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8781 {
8782 	return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8783 }
8784 
emulator_guest_has_rdpid(struct x86_emulate_ctxt * ctxt)8785 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8786 {
8787 	return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8788 }
8789 
emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt * ctxt)8790 static bool emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt *ctxt)
8791 {
8792 	return guest_cpuid_is_intel_compatible(emul_to_vcpu(ctxt));
8793 }
8794 
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)8795 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8796 {
8797 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8798 }
8799 
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)8800 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8801 {
8802 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8803 }
8804 
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)8805 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8806 {
8807 	kvm_x86_call(set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8808 }
8809 
emulator_is_smm(struct x86_emulate_ctxt * ctxt)8810 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8811 {
8812 	return is_smm(emul_to_vcpu(ctxt));
8813 }
8814 
8815 #ifndef CONFIG_KVM_SMM
emulator_leave_smm(struct x86_emulate_ctxt * ctxt)8816 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8817 {
8818 	WARN_ON_ONCE(1);
8819 	return X86EMUL_UNHANDLEABLE;
8820 }
8821 #endif
8822 
emulator_triple_fault(struct x86_emulate_ctxt * ctxt)8823 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8824 {
8825 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8826 }
8827 
emulator_get_xcr(struct x86_emulate_ctxt * ctxt,u32 index,u64 * xcr)8828 static int emulator_get_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 *xcr)
8829 {
8830 	if (index != XCR_XFEATURE_ENABLED_MASK)
8831 		return 1;
8832 	*xcr = emul_to_vcpu(ctxt)->arch.xcr0;
8833 	return 0;
8834 }
8835 
emulator_set_xcr(struct x86_emulate_ctxt * ctxt,u32 index,u64 xcr)8836 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8837 {
8838 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8839 }
8840 
emulator_vm_bugged(struct x86_emulate_ctxt * ctxt)8841 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8842 {
8843 	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8844 
8845 	if (!kvm->vm_bugged)
8846 		kvm_vm_bugged(kvm);
8847 }
8848 
emulator_get_untagged_addr(struct x86_emulate_ctxt * ctxt,gva_t addr,unsigned int flags)8849 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt,
8850 					gva_t addr, unsigned int flags)
8851 {
8852 	if (!kvm_x86_ops.get_untagged_addr)
8853 		return addr;
8854 
8855 	return kvm_x86_call(get_untagged_addr)(emul_to_vcpu(ctxt),
8856 					       addr, flags);
8857 }
8858 
emulator_is_canonical_addr(struct x86_emulate_ctxt * ctxt,gva_t addr,unsigned int flags)8859 static bool emulator_is_canonical_addr(struct x86_emulate_ctxt *ctxt,
8860 				       gva_t addr, unsigned int flags)
8861 {
8862 	return !is_noncanonical_address(addr, emul_to_vcpu(ctxt), flags);
8863 }
8864 
8865 static const struct x86_emulate_ops emulate_ops = {
8866 	.vm_bugged           = emulator_vm_bugged,
8867 	.read_gpr            = emulator_read_gpr,
8868 	.write_gpr           = emulator_write_gpr,
8869 	.read_std            = emulator_read_std,
8870 	.write_std           = emulator_write_std,
8871 	.fetch               = kvm_fetch_guest_virt,
8872 	.read_emulated       = emulator_read_emulated,
8873 	.write_emulated      = emulator_write_emulated,
8874 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
8875 	.invlpg              = emulator_invlpg,
8876 	.pio_in_emulated     = emulator_pio_in_emulated,
8877 	.pio_out_emulated    = emulator_pio_out_emulated,
8878 	.get_segment         = emulator_get_segment,
8879 	.set_segment         = emulator_set_segment,
8880 	.get_cached_segment_base = emulator_get_cached_segment_base,
8881 	.get_gdt             = emulator_get_gdt,
8882 	.get_idt	     = emulator_get_idt,
8883 	.set_gdt             = emulator_set_gdt,
8884 	.set_idt	     = emulator_set_idt,
8885 	.get_cr              = emulator_get_cr,
8886 	.set_cr              = emulator_set_cr,
8887 	.cpl                 = emulator_get_cpl,
8888 	.get_dr              = emulator_get_dr,
8889 	.set_dr              = emulator_set_dr,
8890 	.set_msr_with_filter = emulator_set_msr_with_filter,
8891 	.get_msr_with_filter = emulator_get_msr_with_filter,
8892 	.get_msr             = emulator_get_msr,
8893 	.check_rdpmc_early   = emulator_check_rdpmc_early,
8894 	.read_pmc            = emulator_read_pmc,
8895 	.halt                = emulator_halt,
8896 	.wbinvd              = emulator_wbinvd,
8897 	.fix_hypercall       = emulator_fix_hypercall,
8898 	.intercept           = emulator_intercept,
8899 	.get_cpuid           = emulator_get_cpuid,
8900 	.guest_has_movbe     = emulator_guest_has_movbe,
8901 	.guest_has_fxsr      = emulator_guest_has_fxsr,
8902 	.guest_has_rdpid     = emulator_guest_has_rdpid,
8903 	.guest_cpuid_is_intel_compatible = emulator_guest_cpuid_is_intel_compatible,
8904 	.set_nmi_mask        = emulator_set_nmi_mask,
8905 	.is_smm              = emulator_is_smm,
8906 	.leave_smm           = emulator_leave_smm,
8907 	.triple_fault        = emulator_triple_fault,
8908 	.get_xcr             = emulator_get_xcr,
8909 	.set_xcr             = emulator_set_xcr,
8910 	.get_untagged_addr   = emulator_get_untagged_addr,
8911 	.is_canonical_addr   = emulator_is_canonical_addr,
8912 };
8913 
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)8914 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8915 {
8916 	u32 int_shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
8917 	/*
8918 	 * an sti; sti; sequence only disable interrupts for the first
8919 	 * instruction. So, if the last instruction, be it emulated or
8920 	 * not, left the system with the INT_STI flag enabled, it
8921 	 * means that the last instruction is an sti. We should not
8922 	 * leave the flag on in this case. The same goes for mov ss
8923 	 */
8924 	if (int_shadow & mask)
8925 		mask = 0;
8926 	if (unlikely(int_shadow || mask)) {
8927 		kvm_x86_call(set_interrupt_shadow)(vcpu, mask);
8928 		if (!mask)
8929 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8930 	}
8931 }
8932 
inject_emulated_exception(struct kvm_vcpu * vcpu)8933 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8934 {
8935 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8936 
8937 	if (ctxt->exception.vector == PF_VECTOR)
8938 		kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8939 	else if (ctxt->exception.error_code_valid)
8940 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8941 				      ctxt->exception.error_code);
8942 	else
8943 		kvm_queue_exception(vcpu, ctxt->exception.vector);
8944 }
8945 
alloc_emulate_ctxt(struct kvm_vcpu * vcpu)8946 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8947 {
8948 	struct x86_emulate_ctxt *ctxt;
8949 
8950 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8951 	if (!ctxt) {
8952 		pr_err("failed to allocate vcpu's emulator\n");
8953 		return NULL;
8954 	}
8955 
8956 	ctxt->vcpu = vcpu;
8957 	ctxt->ops = &emulate_ops;
8958 	vcpu->arch.emulate_ctxt = ctxt;
8959 
8960 	return ctxt;
8961 }
8962 
init_emulate_ctxt(struct kvm_vcpu * vcpu)8963 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8964 {
8965 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8966 	int cs_db, cs_l;
8967 
8968 	kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8969 
8970 	ctxt->gpa_available = false;
8971 	ctxt->eflags = kvm_get_rflags(vcpu);
8972 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8973 
8974 	ctxt->eip = kvm_rip_read(vcpu);
8975 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
8976 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
8977 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
8978 		     cs_db				? X86EMUL_MODE_PROT32 :
8979 							  X86EMUL_MODE_PROT16;
8980 	ctxt->interruptibility = 0;
8981 	ctxt->have_exception = false;
8982 	ctxt->exception.vector = -1;
8983 	ctxt->perm_ok = false;
8984 
8985 	init_decode_cache(ctxt);
8986 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8987 }
8988 
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)8989 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8990 {
8991 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8992 	int ret;
8993 
8994 	init_emulate_ctxt(vcpu);
8995 
8996 	ctxt->op_bytes = 2;
8997 	ctxt->ad_bytes = 2;
8998 	ctxt->_eip = ctxt->eip + inc_eip;
8999 	ret = emulate_int_real(ctxt, irq);
9000 
9001 	if (ret != X86EMUL_CONTINUE) {
9002 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
9003 	} else {
9004 		ctxt->eip = ctxt->_eip;
9005 		kvm_rip_write(vcpu, ctxt->eip);
9006 		kvm_set_rflags(vcpu, ctxt->eflags);
9007 	}
9008 }
9009 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_inject_realmode_interrupt);
9010 
prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata,u8 * insn_bytes,u8 insn_size)9011 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
9012 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
9013 {
9014 	struct kvm_run *run = vcpu->run;
9015 	u64 info[5];
9016 	u8 info_start;
9017 
9018 	/*
9019 	 * Zero the whole array used to retrieve the exit info, as casting to
9020 	 * u32 for select entries will leave some chunks uninitialized.
9021 	 */
9022 	memset(&info, 0, sizeof(info));
9023 
9024 	kvm_x86_call(get_exit_info)(vcpu, (u32 *)&info[0], &info[1], &info[2],
9025 				    (u32 *)&info[3], (u32 *)&info[4]);
9026 
9027 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9028 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
9029 
9030 	/*
9031 	 * There's currently space for 13 entries, but 5 are used for the exit
9032 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
9033 	 * when expanding kvm_run.emulation_failure in the future.
9034 	 */
9035 	if (WARN_ON_ONCE(ndata > 4))
9036 		ndata = 4;
9037 
9038 	/* Always include the flags as a 'data' entry. */
9039 	info_start = 1;
9040 	run->emulation_failure.flags = 0;
9041 
9042 	if (insn_size) {
9043 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
9044 			      sizeof(run->emulation_failure.insn_bytes) != 16));
9045 		info_start += 2;
9046 		run->emulation_failure.flags |=
9047 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
9048 		run->emulation_failure.insn_size = insn_size;
9049 		memset(run->emulation_failure.insn_bytes, 0x90,
9050 		       sizeof(run->emulation_failure.insn_bytes));
9051 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
9052 	}
9053 
9054 	memcpy(&run->internal.data[info_start], info, sizeof(info));
9055 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
9056 	       ndata * sizeof(data[0]));
9057 
9058 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
9059 }
9060 
prepare_emulation_ctxt_failure_exit(struct kvm_vcpu * vcpu)9061 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
9062 {
9063 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9064 
9065 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
9066 				       ctxt->fetch.end - ctxt->fetch.data);
9067 }
9068 
__kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata)9069 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
9070 					  u8 ndata)
9071 {
9072 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
9073 }
9074 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_prepare_emulation_failure_exit);
9075 
kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu)9076 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
9077 {
9078 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
9079 }
9080 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_prepare_emulation_failure_exit);
9081 
kvm_prepare_event_vectoring_exit(struct kvm_vcpu * vcpu,gpa_t gpa)9082 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa)
9083 {
9084 	u32 reason, intr_info, error_code;
9085 	struct kvm_run *run = vcpu->run;
9086 	u64 info1, info2;
9087 	int ndata = 0;
9088 
9089 	kvm_x86_call(get_exit_info)(vcpu, &reason, &info1, &info2,
9090 				    &intr_info, &error_code);
9091 
9092 	run->internal.data[ndata++] = info2;
9093 	run->internal.data[ndata++] = reason;
9094 	run->internal.data[ndata++] = info1;
9095 	run->internal.data[ndata++] = gpa;
9096 	run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
9097 
9098 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9099 	run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
9100 	run->internal.ndata = ndata;
9101 }
9102 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_prepare_event_vectoring_exit);
9103 
kvm_prepare_unexpected_reason_exit(struct kvm_vcpu * vcpu,u64 exit_reason)9104 void kvm_prepare_unexpected_reason_exit(struct kvm_vcpu *vcpu, u64 exit_reason)
9105 {
9106 	vcpu_unimpl(vcpu, "unexpected exit reason 0x%llx\n", exit_reason);
9107 
9108 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9109 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
9110 	vcpu->run->internal.ndata = 2;
9111 	vcpu->run->internal.data[0] = exit_reason;
9112 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
9113 }
9114 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_prepare_unexpected_reason_exit);
9115 
handle_emulation_failure(struct kvm_vcpu * vcpu,int emulation_type)9116 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
9117 {
9118 	struct kvm *kvm = vcpu->kvm;
9119 
9120 	++vcpu->stat.insn_emulation_fail;
9121 	trace_kvm_emulate_insn_failed(vcpu);
9122 
9123 	if (emulation_type & EMULTYPE_VMWARE_GP) {
9124 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9125 		return 1;
9126 	}
9127 
9128 	if (kvm->arch.exit_on_emulation_error ||
9129 	    (emulation_type & EMULTYPE_SKIP)) {
9130 		prepare_emulation_ctxt_failure_exit(vcpu);
9131 		return 0;
9132 	}
9133 
9134 	kvm_queue_exception(vcpu, UD_VECTOR);
9135 
9136 	if (!is_guest_mode(vcpu) && kvm_x86_call(get_cpl)(vcpu) == 0) {
9137 		prepare_emulation_ctxt_failure_exit(vcpu);
9138 		return 0;
9139 	}
9140 
9141 	return 1;
9142 }
9143 
kvm_unprotect_and_retry_on_failure(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type)9144 static bool kvm_unprotect_and_retry_on_failure(struct kvm_vcpu *vcpu,
9145 					       gpa_t cr2_or_gpa,
9146 					       int emulation_type)
9147 {
9148 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
9149 		return false;
9150 
9151 	/*
9152 	 * If the failed instruction faulted on an access to page tables that
9153 	 * are used to translate any part of the instruction, KVM can't resolve
9154 	 * the issue by unprotecting the gfn, as zapping the shadow page will
9155 	 * result in the instruction taking a !PRESENT page fault and thus put
9156 	 * the vCPU into an infinite loop of page faults.  E.g. KVM will create
9157 	 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and
9158 	 * then zap the SPTE to unprotect the gfn, and then do it all over
9159 	 * again.  Report the error to userspace.
9160 	 */
9161 	if (emulation_type & EMULTYPE_WRITE_PF_TO_SP)
9162 		return false;
9163 
9164 	/*
9165 	 * If emulation may have been triggered by a write to a shadowed page
9166 	 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the
9167 	 * guest to let the CPU re-execute the instruction in the hope that the
9168 	 * CPU can cleanly execute the instruction that KVM failed to emulate.
9169 	 */
9170 	__kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, true);
9171 
9172 	/*
9173 	 * Retry even if _this_ vCPU didn't unprotect the gfn, as it's possible
9174 	 * all SPTEs were already zapped by a different task.  The alternative
9175 	 * is to report the error to userspace and likely terminate the guest,
9176 	 * and the last_retry_{eip,addr} checks will prevent retrying the page
9177 	 * fault indefinitely, i.e. there's nothing to lose by retrying.
9178 	 */
9179 	return true;
9180 }
9181 
9182 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
9183 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
9184 
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)9185 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
9186 				unsigned long *db)
9187 {
9188 	u32 dr6 = 0;
9189 	int i;
9190 	u32 enable, rwlen;
9191 
9192 	enable = dr7;
9193 	rwlen = dr7 >> 16;
9194 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
9195 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
9196 			dr6 |= (1 << i);
9197 	return dr6;
9198 }
9199 
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu)9200 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
9201 {
9202 	struct kvm_run *kvm_run = vcpu->run;
9203 
9204 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
9205 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
9206 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
9207 		kvm_run->debug.arch.exception = DB_VECTOR;
9208 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
9209 		return 0;
9210 	}
9211 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
9212 	return 1;
9213 }
9214 
kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)9215 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
9216 {
9217 	unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
9218 	int r;
9219 
9220 	r = kvm_x86_call(skip_emulated_instruction)(vcpu);
9221 	if (unlikely(!r))
9222 		return 0;
9223 
9224 	kvm_pmu_instruction_retired(vcpu);
9225 
9226 	/*
9227 	 * rflags is the old, "raw" value of the flags.  The new value has
9228 	 * not been saved yet.
9229 	 *
9230 	 * This is correct even for TF set by the guest, because "the
9231 	 * processor will not generate this exception after the instruction
9232 	 * that sets the TF flag".
9233 	 */
9234 	if (unlikely(rflags & X86_EFLAGS_TF))
9235 		r = kvm_vcpu_do_singlestep(vcpu);
9236 	return r;
9237 }
9238 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_skip_emulated_instruction);
9239 
kvm_is_code_breakpoint_inhibited(struct kvm_vcpu * vcpu)9240 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
9241 {
9242 	if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
9243 		return true;
9244 
9245 	/*
9246 	 * Intel compatible CPUs inhibit code #DBs when MOV/POP SS blocking is
9247 	 * active, but AMD compatible CPUs do not.
9248 	 */
9249 	if (!guest_cpuid_is_intel_compatible(vcpu))
9250 		return false;
9251 
9252 	return kvm_x86_call(get_interrupt_shadow)(vcpu) & KVM_X86_SHADOW_INT_MOV_SS;
9253 }
9254 
kvm_vcpu_check_code_breakpoint(struct kvm_vcpu * vcpu,int emulation_type,int * r)9255 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
9256 					   int emulation_type, int *r)
9257 {
9258 	WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
9259 
9260 	/*
9261 	 * Do not check for code breakpoints if hardware has already done the
9262 	 * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
9263 	 * the instruction has passed all exception checks, and all intercepted
9264 	 * exceptions that trigger emulation have lower priority than code
9265 	 * breakpoints, i.e. the fact that the intercepted exception occurred
9266 	 * means any code breakpoints have already been serviced.
9267 	 *
9268 	 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
9269 	 * hardware has checked the RIP of the magic prefix, but not the RIP of
9270 	 * the instruction being emulated.  The intent of forced emulation is
9271 	 * to behave as if KVM intercepted the instruction without an exception
9272 	 * and without a prefix.
9273 	 */
9274 	if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
9275 			      EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
9276 		return false;
9277 
9278 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
9279 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
9280 		struct kvm_run *kvm_run = vcpu->run;
9281 		unsigned long eip = kvm_get_linear_rip(vcpu);
9282 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9283 					   vcpu->arch.guest_debug_dr7,
9284 					   vcpu->arch.eff_db);
9285 
9286 		if (dr6 != 0) {
9287 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
9288 			kvm_run->debug.arch.pc = eip;
9289 			kvm_run->debug.arch.exception = DB_VECTOR;
9290 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
9291 			*r = 0;
9292 			return true;
9293 		}
9294 	}
9295 
9296 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
9297 	    !kvm_is_code_breakpoint_inhibited(vcpu)) {
9298 		unsigned long eip = kvm_get_linear_rip(vcpu);
9299 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9300 					   vcpu->arch.dr7,
9301 					   vcpu->arch.db);
9302 
9303 		if (dr6 != 0) {
9304 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
9305 			*r = 1;
9306 			return true;
9307 		}
9308 	}
9309 
9310 	return false;
9311 }
9312 
is_vmware_backdoor_opcode(struct x86_emulate_ctxt * ctxt)9313 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
9314 {
9315 	switch (ctxt->opcode_len) {
9316 	case 1:
9317 		switch (ctxt->b) {
9318 		case 0xe4:	/* IN */
9319 		case 0xe5:
9320 		case 0xec:
9321 		case 0xed:
9322 		case 0xe6:	/* OUT */
9323 		case 0xe7:
9324 		case 0xee:
9325 		case 0xef:
9326 		case 0x6c:	/* INS */
9327 		case 0x6d:
9328 		case 0x6e:	/* OUTS */
9329 		case 0x6f:
9330 			return true;
9331 		}
9332 		break;
9333 	case 2:
9334 		switch (ctxt->b) {
9335 		case 0x33:	/* RDPMC */
9336 			return true;
9337 		}
9338 		break;
9339 	}
9340 
9341 	return false;
9342 }
9343 
is_soft_int_instruction(struct x86_emulate_ctxt * ctxt,int emulation_type)9344 static bool is_soft_int_instruction(struct x86_emulate_ctxt *ctxt,
9345 				    int emulation_type)
9346 {
9347 	u8 vector = EMULTYPE_GET_SOFT_INT_VECTOR(emulation_type);
9348 
9349 	switch (ctxt->b) {
9350 	case 0xcc:
9351 		return vector == BP_VECTOR;
9352 	case 0xcd:
9353 		return vector == ctxt->src.val;
9354 	case 0xce:
9355 		return vector == OF_VECTOR;
9356 	default:
9357 		return false;
9358 	}
9359 }
9360 
9361 /*
9362  * Decode an instruction for emulation.  The caller is responsible for handling
9363  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
9364  * (and wrong) when emulating on an intercepted fault-like exception[*], as
9365  * code breakpoints have higher priority and thus have already been done by
9366  * hardware.
9367  *
9368  * [*] Except #MC, which is higher priority, but KVM should never emulate in
9369  *     response to a machine check.
9370  */
x86_decode_emulated_instruction(struct kvm_vcpu * vcpu,int emulation_type,void * insn,int insn_len)9371 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
9372 				    void *insn, int insn_len)
9373 {
9374 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9375 	int r;
9376 
9377 	init_emulate_ctxt(vcpu);
9378 
9379 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
9380 
9381 	trace_kvm_emulate_insn_start(vcpu);
9382 	++vcpu->stat.insn_emulation;
9383 
9384 	return r;
9385 }
9386 EXPORT_SYMBOL_FOR_KVM_INTERNAL(x86_decode_emulated_instruction);
9387 
x86_emulate_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type,void * insn,int insn_len)9388 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
9389 			    int emulation_type, void *insn, int insn_len)
9390 {
9391 	int r;
9392 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9393 	bool writeback = true;
9394 
9395 	if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9396 	    (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
9397 	     WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))))
9398 		emulation_type &= ~EMULTYPE_ALLOW_RETRY_PF;
9399 
9400 	r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
9401 	if (r != X86EMUL_CONTINUE) {
9402 		if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9403 			return 1;
9404 
9405 		if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9406 						       emulation_type))
9407 			return 1;
9408 
9409 		if (r == X86EMUL_UNHANDLEABLE_VECTORING) {
9410 			kvm_prepare_event_vectoring_exit(vcpu, cr2_or_gpa);
9411 			return 0;
9412 		}
9413 
9414 		WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9415 		return handle_emulation_failure(vcpu, emulation_type);
9416 	}
9417 
9418 	kvm_request_l1tf_flush_l1d();
9419 
9420 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9421 		kvm_clear_exception_queue(vcpu);
9422 
9423 		/*
9424 		 * Return immediately if RIP hits a code breakpoint, such #DBs
9425 		 * are fault-like and are higher priority than any faults on
9426 		 * the code fetch itself.
9427 		 */
9428 		if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9429 			return r;
9430 
9431 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
9432 						    insn, insn_len);
9433 		if (r != EMULATION_OK)  {
9434 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
9435 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9436 				kvm_queue_exception(vcpu, UD_VECTOR);
9437 				return 1;
9438 			}
9439 			if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9440 							       emulation_type))
9441 				return 1;
9442 
9443 			if (ctxt->have_exception &&
9444 			    !(emulation_type & EMULTYPE_SKIP)) {
9445 				/*
9446 				 * #UD should result in just EMULATION_FAILED, and trap-like
9447 				 * exception should not be encountered during decode.
9448 				 */
9449 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9450 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9451 				inject_emulated_exception(vcpu);
9452 				return 1;
9453 			}
9454 			return handle_emulation_failure(vcpu, emulation_type);
9455 		}
9456 	}
9457 
9458 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9459 	    !is_vmware_backdoor_opcode(ctxt)) {
9460 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9461 		return 1;
9462 	}
9463 
9464 	/*
9465 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9466 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9467 	 * The caller is responsible for updating interruptibility state and
9468 	 * injecting single-step #DBs.
9469 	 */
9470 	if (emulation_type & EMULTYPE_SKIP) {
9471 		if (emulation_type & EMULTYPE_SKIP_SOFT_INT &&
9472 		    !is_soft_int_instruction(ctxt, emulation_type))
9473 			return 0;
9474 
9475 		if (ctxt->mode != X86EMUL_MODE_PROT64)
9476 			ctxt->eip = (u32)ctxt->_eip;
9477 		else
9478 			ctxt->eip = ctxt->_eip;
9479 
9480 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9481 			r = 1;
9482 			goto writeback;
9483 		}
9484 
9485 		kvm_rip_write(vcpu, ctxt->eip);
9486 		if (ctxt->eflags & X86_EFLAGS_RF)
9487 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9488 		return 1;
9489 	}
9490 
9491 	/*
9492 	 * If emulation was caused by a write-protection #PF on a non-page_table
9493 	 * writing instruction, try to unprotect the gfn, i.e. zap shadow pages,
9494 	 * and retry the instruction, as the vCPU is likely no longer using the
9495 	 * gfn as a page table.
9496 	 */
9497 	if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9498 	    !x86_page_table_writing_insn(ctxt) &&
9499 	    kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa))
9500 		return 1;
9501 
9502 	/* this is needed for vmware backdoor interface to work since it
9503 	   changes registers values  during IO operation */
9504 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9505 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9506 		emulator_invalidate_register_cache(ctxt);
9507 	}
9508 
9509 restart:
9510 	if (emulation_type & EMULTYPE_PF) {
9511 		/* Save the faulting GPA (cr2) in the address field */
9512 		ctxt->exception.address = cr2_or_gpa;
9513 
9514 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
9515 		if (vcpu->arch.mmu->root_role.direct) {
9516 			ctxt->gpa_available = true;
9517 			ctxt->gpa_val = cr2_or_gpa;
9518 		}
9519 	} else {
9520 		/* Sanitize the address out of an abundance of paranoia. */
9521 		ctxt->exception.address = 0;
9522 	}
9523 
9524 	/*
9525 	 * Check L1's instruction intercepts when emulating instructions for
9526 	 * L2, unless KVM is re-emulating a previously decoded instruction,
9527 	 * e.g. to complete userspace I/O, in which case KVM has already
9528 	 * checked the intercepts.
9529 	 */
9530 	r = x86_emulate_insn(ctxt, is_guest_mode(vcpu) &&
9531 				   !(emulation_type & EMULTYPE_NO_DECODE));
9532 
9533 	if (r == EMULATION_INTERCEPTED)
9534 		return 1;
9535 
9536 	if (r == EMULATION_FAILED) {
9537 		if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9538 						       emulation_type))
9539 			return 1;
9540 
9541 		return handle_emulation_failure(vcpu, emulation_type);
9542 	}
9543 
9544 	if (ctxt->have_exception) {
9545 		WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9546 		vcpu->mmio_needed = false;
9547 		r = 1;
9548 		inject_emulated_exception(vcpu);
9549 	} else if (vcpu->arch.pio.count) {
9550 		if (!vcpu->arch.pio.in) {
9551 			/* FIXME: return into emulator if single-stepping.  */
9552 			vcpu->arch.pio.count = 0;
9553 		} else {
9554 			writeback = false;
9555 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
9556 		}
9557 		r = 0;
9558 	} else if (vcpu->mmio_needed) {
9559 		++vcpu->stat.mmio_exits;
9560 
9561 		if (!vcpu->mmio_is_write)
9562 			writeback = false;
9563 		r = 0;
9564 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9565 	} else if (vcpu->arch.complete_userspace_io) {
9566 		writeback = false;
9567 		r = 0;
9568 	} else if (r == EMULATION_RESTART)
9569 		goto restart;
9570 	else
9571 		r = 1;
9572 
9573 writeback:
9574 	if (writeback) {
9575 		unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
9576 		toggle_interruptibility(vcpu, ctxt->interruptibility);
9577 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9578 
9579 		/*
9580 		 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9581 		 * only supports code breakpoints and general detect #DB, both
9582 		 * of which are fault-like.
9583 		 */
9584 		if (!ctxt->have_exception ||
9585 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9586 			kvm_pmu_instruction_retired(vcpu);
9587 			if (ctxt->is_branch)
9588 				kvm_pmu_branch_retired(vcpu);
9589 			kvm_rip_write(vcpu, ctxt->eip);
9590 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9591 				r = kvm_vcpu_do_singlestep(vcpu);
9592 			kvm_x86_call(update_emulated_instruction)(vcpu);
9593 			__kvm_set_rflags(vcpu, ctxt->eflags);
9594 		}
9595 
9596 		/*
9597 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9598 		 * do nothing, and it will be requested again as soon as
9599 		 * the shadow expires.  But we still need to check here,
9600 		 * because POPF has no interrupt shadow.
9601 		 */
9602 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9603 			kvm_make_request(KVM_REQ_EVENT, vcpu);
9604 	} else
9605 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9606 
9607 	return r;
9608 }
9609 
kvm_emulate_instruction(struct kvm_vcpu * vcpu,int emulation_type)9610 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9611 {
9612 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9613 }
9614 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_instruction);
9615 
kvm_emulate_instruction_from_buffer(struct kvm_vcpu * vcpu,void * insn,int insn_len)9616 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9617 					void *insn, int insn_len)
9618 {
9619 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9620 }
9621 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_instruction_from_buffer);
9622 
complete_fast_pio_out_port_0x7e(struct kvm_vcpu * vcpu)9623 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9624 {
9625 	vcpu->arch.pio.count = 0;
9626 	return 1;
9627 }
9628 
complete_fast_pio_out(struct kvm_vcpu * vcpu)9629 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9630 {
9631 	vcpu->arch.pio.count = 0;
9632 
9633 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip)))
9634 		return 1;
9635 
9636 	return kvm_skip_emulated_instruction(vcpu);
9637 }
9638 
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)9639 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9640 			    unsigned short port)
9641 {
9642 	unsigned long val = kvm_rax_read(vcpu);
9643 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9644 
9645 	if (ret)
9646 		return ret;
9647 
9648 	/*
9649 	 * Workaround userspace that relies on old KVM behavior of %rip being
9650 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9651 	 */
9652 	if (port == 0x7e &&
9653 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9654 		vcpu->arch.complete_userspace_io =
9655 			complete_fast_pio_out_port_0x7e;
9656 		kvm_skip_emulated_instruction(vcpu);
9657 	} else {
9658 		vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu);
9659 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9660 	}
9661 	return 0;
9662 }
9663 
complete_fast_pio_in(struct kvm_vcpu * vcpu)9664 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9665 {
9666 	unsigned long val;
9667 
9668 	/* We should only ever be called with arch.pio.count equal to 1 */
9669 	BUG_ON(vcpu->arch.pio.count != 1);
9670 
9671 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip))) {
9672 		vcpu->arch.pio.count = 0;
9673 		return 1;
9674 	}
9675 
9676 	/* For size less than 4 we merge, else we zero extend */
9677 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9678 
9679 	complete_emulator_pio_in(vcpu, &val);
9680 	kvm_rax_write(vcpu, val);
9681 
9682 	return kvm_skip_emulated_instruction(vcpu);
9683 }
9684 
kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)9685 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9686 			   unsigned short port)
9687 {
9688 	unsigned long val;
9689 	int ret;
9690 
9691 	/* For size less than 4 we merge, else we zero extend */
9692 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9693 
9694 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
9695 	if (ret) {
9696 		kvm_rax_write(vcpu, val);
9697 		return ret;
9698 	}
9699 
9700 	vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu);
9701 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9702 
9703 	return 0;
9704 }
9705 
kvm_fast_pio(struct kvm_vcpu * vcpu,int size,unsigned short port,int in)9706 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9707 {
9708 	int ret;
9709 
9710 	if (in)
9711 		ret = kvm_fast_pio_in(vcpu, size, port);
9712 	else
9713 		ret = kvm_fast_pio_out(vcpu, size, port);
9714 	return ret && kvm_skip_emulated_instruction(vcpu);
9715 }
9716 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_fast_pio);
9717 
kvmclock_cpu_down_prep(unsigned int cpu)9718 static int kvmclock_cpu_down_prep(unsigned int cpu)
9719 {
9720 	__this_cpu_write(cpu_tsc_khz, 0);
9721 	return 0;
9722 }
9723 
tsc_khz_changed(void * data)9724 static void tsc_khz_changed(void *data)
9725 {
9726 	struct cpufreq_freqs *freq = data;
9727 	unsigned long khz;
9728 
9729 	WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9730 
9731 	if (data)
9732 		khz = freq->new;
9733 	else
9734 		khz = cpufreq_quick_get(raw_smp_processor_id());
9735 	if (!khz)
9736 		khz = tsc_khz;
9737 	__this_cpu_write(cpu_tsc_khz, khz);
9738 }
9739 
9740 #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)9741 static void kvm_hyperv_tsc_notifier(void)
9742 {
9743 	struct kvm *kvm;
9744 	int cpu;
9745 
9746 	mutex_lock(&kvm_lock);
9747 	list_for_each_entry(kvm, &vm_list, vm_list)
9748 		kvm_make_mclock_inprogress_request(kvm);
9749 
9750 	/* no guest entries from this point */
9751 	hyperv_stop_tsc_emulation();
9752 
9753 	/* TSC frequency always matches when on Hyper-V */
9754 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9755 		for_each_present_cpu(cpu)
9756 			per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9757 	}
9758 	kvm_caps.max_guest_tsc_khz = tsc_khz;
9759 
9760 	list_for_each_entry(kvm, &vm_list, vm_list) {
9761 		__kvm_start_pvclock_update(kvm);
9762 		pvclock_update_vm_gtod_copy(kvm);
9763 		kvm_end_pvclock_update(kvm);
9764 	}
9765 
9766 	mutex_unlock(&kvm_lock);
9767 }
9768 #endif
9769 
__kvmclock_cpufreq_notifier(struct cpufreq_freqs * freq,int cpu)9770 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9771 {
9772 	struct kvm *kvm;
9773 	struct kvm_vcpu *vcpu;
9774 	int send_ipi = 0;
9775 	unsigned long i;
9776 
9777 	/*
9778 	 * We allow guests to temporarily run on slowing clocks,
9779 	 * provided we notify them after, or to run on accelerating
9780 	 * clocks, provided we notify them before.  Thus time never
9781 	 * goes backwards.
9782 	 *
9783 	 * However, we have a problem.  We can't atomically update
9784 	 * the frequency of a given CPU from this function; it is
9785 	 * merely a notifier, which can be called from any CPU.
9786 	 * Changing the TSC frequency at arbitrary points in time
9787 	 * requires a recomputation of local variables related to
9788 	 * the TSC for each VCPU.  We must flag these local variables
9789 	 * to be updated and be sure the update takes place with the
9790 	 * new frequency before any guests proceed.
9791 	 *
9792 	 * Unfortunately, the combination of hotplug CPU and frequency
9793 	 * change creates an intractable locking scenario; the order
9794 	 * of when these callouts happen is undefined with respect to
9795 	 * CPU hotplug, and they can race with each other.  As such,
9796 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9797 	 * undefined; you can actually have a CPU frequency change take
9798 	 * place in between the computation of X and the setting of the
9799 	 * variable.  To protect against this problem, all updates of
9800 	 * the per_cpu tsc_khz variable are done in an interrupt
9801 	 * protected IPI, and all callers wishing to update the value
9802 	 * must wait for a synchronous IPI to complete (which is trivial
9803 	 * if the caller is on the CPU already).  This establishes the
9804 	 * necessary total order on variable updates.
9805 	 *
9806 	 * Note that because a guest time update may take place
9807 	 * anytime after the setting of the VCPU's request bit, the
9808 	 * correct TSC value must be set before the request.  However,
9809 	 * to ensure the update actually makes it to any guest which
9810 	 * starts running in hardware virtualization between the set
9811 	 * and the acquisition of the spinlock, we must also ping the
9812 	 * CPU after setting the request bit.
9813 	 *
9814 	 */
9815 
9816 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9817 
9818 	mutex_lock(&kvm_lock);
9819 	list_for_each_entry(kvm, &vm_list, vm_list) {
9820 		kvm_for_each_vcpu(i, vcpu, kvm) {
9821 			if (vcpu->cpu != cpu)
9822 				continue;
9823 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9824 			if (vcpu->cpu != raw_smp_processor_id())
9825 				send_ipi = 1;
9826 		}
9827 	}
9828 	mutex_unlock(&kvm_lock);
9829 
9830 	if (freq->old < freq->new && send_ipi) {
9831 		/*
9832 		 * We upscale the frequency.  Must make the guest
9833 		 * doesn't see old kvmclock values while running with
9834 		 * the new frequency, otherwise we risk the guest sees
9835 		 * time go backwards.
9836 		 *
9837 		 * In case we update the frequency for another cpu
9838 		 * (which might be in guest context) send an interrupt
9839 		 * to kick the cpu out of guest context.  Next time
9840 		 * guest context is entered kvmclock will be updated,
9841 		 * so the guest will not see stale values.
9842 		 */
9843 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9844 	}
9845 }
9846 
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)9847 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9848 				     void *data)
9849 {
9850 	struct cpufreq_freqs *freq = data;
9851 	int cpu;
9852 
9853 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9854 		return 0;
9855 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9856 		return 0;
9857 
9858 	for_each_cpu(cpu, freq->policy->cpus)
9859 		__kvmclock_cpufreq_notifier(freq, cpu);
9860 
9861 	return 0;
9862 }
9863 
9864 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9865 	.notifier_call  = kvmclock_cpufreq_notifier
9866 };
9867 
kvmclock_cpu_online(unsigned int cpu)9868 static int kvmclock_cpu_online(unsigned int cpu)
9869 {
9870 	tsc_khz_changed(NULL);
9871 	return 0;
9872 }
9873 
kvm_timer_init(void)9874 static void kvm_timer_init(void)
9875 {
9876 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9877 		max_tsc_khz = tsc_khz;
9878 
9879 		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9880 			struct cpufreq_policy *policy;
9881 			int cpu;
9882 
9883 			cpu = get_cpu();
9884 			policy = cpufreq_cpu_get(cpu);
9885 			if (policy) {
9886 				if (policy->cpuinfo.max_freq)
9887 					max_tsc_khz = policy->cpuinfo.max_freq;
9888 				cpufreq_cpu_put(policy);
9889 			}
9890 			put_cpu();
9891 		}
9892 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9893 					  CPUFREQ_TRANSITION_NOTIFIER);
9894 
9895 		cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9896 				  kvmclock_cpu_online, kvmclock_cpu_down_prep);
9897 	}
9898 }
9899 
9900 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)9901 static void pvclock_gtod_update_fn(struct work_struct *work)
9902 {
9903 	struct kvm *kvm;
9904 	struct kvm_vcpu *vcpu;
9905 	unsigned long i;
9906 
9907 	mutex_lock(&kvm_lock);
9908 	list_for_each_entry(kvm, &vm_list, vm_list)
9909 		kvm_for_each_vcpu(i, vcpu, kvm)
9910 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9911 	atomic_set(&kvm_guest_has_master_clock, 0);
9912 	mutex_unlock(&kvm_lock);
9913 }
9914 
9915 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9916 
9917 /*
9918  * Indirection to move queue_work() out of the tk_core.seq write held
9919  * region to prevent possible deadlocks against time accessors which
9920  * are invoked with work related locks held.
9921  */
pvclock_irq_work_fn(struct irq_work * w)9922 static void pvclock_irq_work_fn(struct irq_work *w)
9923 {
9924 	queue_work(system_long_wq, &pvclock_gtod_work);
9925 }
9926 
9927 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9928 
9929 /*
9930  * Notification about pvclock gtod data update.
9931  */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)9932 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9933 			       void *priv)
9934 {
9935 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9936 	struct timekeeper *tk = priv;
9937 
9938 	update_pvclock_gtod(tk);
9939 
9940 	/*
9941 	 * Disable master clock if host does not trust, or does not use,
9942 	 * TSC based clocksource. Delegate queue_work() to irq_work as
9943 	 * this is invoked with tk_core.seq write held.
9944 	 */
9945 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9946 	    atomic_read(&kvm_guest_has_master_clock) != 0)
9947 		irq_work_queue(&pvclock_irq_work);
9948 	return 0;
9949 }
9950 
9951 static struct notifier_block pvclock_gtod_notifier = {
9952 	.notifier_call = pvclock_gtod_notify,
9953 };
9954 #endif
9955 
kvm_ops_update(struct kvm_x86_init_ops * ops)9956 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9957 {
9958 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9959 
9960 #define __KVM_X86_OP(func) \
9961 	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9962 #define KVM_X86_OP(func) \
9963 	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9964 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9965 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9966 	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9967 					   (void *)__static_call_return0);
9968 #include <asm/kvm-x86-ops.h>
9969 #undef __KVM_X86_OP
9970 
9971 	kvm_pmu_ops_update(ops->pmu_ops);
9972 }
9973 
kvm_x86_check_processor_compatibility(void)9974 static int kvm_x86_check_processor_compatibility(void)
9975 {
9976 	int cpu = smp_processor_id();
9977 	struct cpuinfo_x86 *c = &cpu_data(cpu);
9978 
9979 	/*
9980 	 * Compatibility checks are done when loading KVM and when enabling
9981 	 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9982 	 * compatible, i.e. KVM should never perform a compatibility check on
9983 	 * an offline CPU.
9984 	 */
9985 	WARN_ON(!cpu_online(cpu));
9986 
9987 	if (__cr4_reserved_bits(cpu_has, c) !=
9988 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9989 		return -EIO;
9990 
9991 	return kvm_x86_call(check_processor_compatibility)();
9992 }
9993 
kvm_x86_check_cpu_compat(void * ret)9994 static void kvm_x86_check_cpu_compat(void *ret)
9995 {
9996 	*(int *)ret = kvm_x86_check_processor_compatibility();
9997 }
9998 
kvm_x86_vendor_init(struct kvm_x86_init_ops * ops)9999 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
10000 {
10001 	u64 host_pat;
10002 	int r, cpu;
10003 
10004 	guard(mutex)(&vendor_module_lock);
10005 
10006 	if (kvm_x86_ops.enable_virtualization_cpu) {
10007 		pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
10008 		return -EEXIST;
10009 	}
10010 
10011 	/*
10012 	 * KVM explicitly assumes that the guest has an FPU and
10013 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
10014 	 * vCPU's FPU state as a fxregs_state struct.
10015 	 */
10016 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
10017 		pr_err("inadequate fpu\n");
10018 		return -EOPNOTSUPP;
10019 	}
10020 
10021 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
10022 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
10023 		return -EOPNOTSUPP;
10024 	}
10025 
10026 	/*
10027 	 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
10028 	 * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
10029 	 * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
10030 	 * with an exception.  PAT[0] is set to WB on RESET and also by the
10031 	 * kernel, i.e. failure indicates a kernel bug or broken firmware.
10032 	 */
10033 	if (rdmsrq_safe(MSR_IA32_CR_PAT, &host_pat) ||
10034 	    (host_pat & GENMASK(2, 0)) != 6) {
10035 		pr_err("host PAT[0] is not WB\n");
10036 		return -EIO;
10037 	}
10038 
10039 	if (boot_cpu_has(X86_FEATURE_SHSTK) || boot_cpu_has(X86_FEATURE_IBT)) {
10040 		rdmsrq(MSR_IA32_S_CET, kvm_host.s_cet);
10041 		/*
10042 		 * Linux doesn't yet support supervisor shadow stacks (SSS), so
10043 		 * KVM doesn't save/restore the associated MSRs, i.e. KVM may
10044 		 * clobber the host values.  Yell and refuse to load if SSS is
10045 		 * unexpectedly enabled, e.g. to avoid crashing the host.
10046 		 */
10047 		if (WARN_ON_ONCE(kvm_host.s_cet & CET_SHSTK_EN))
10048 			return -EIO;
10049 	}
10050 
10051 	memset(&kvm_caps, 0, sizeof(kvm_caps));
10052 
10053 	x86_emulator_cache = kvm_alloc_emulator_cache();
10054 	if (!x86_emulator_cache) {
10055 		pr_err("failed to allocate cache for x86 emulator\n");
10056 		return -ENOMEM;
10057 	}
10058 
10059 	r = kvm_mmu_vendor_module_init();
10060 	if (r)
10061 		goto out_free_x86_emulator_cache;
10062 
10063 	kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM);
10064 	kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P;
10065 
10066 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
10067 		kvm_host.xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
10068 		kvm_caps.supported_xcr0 = kvm_host.xcr0 & KVM_SUPPORTED_XCR0;
10069 	}
10070 
10071 	if (boot_cpu_has(X86_FEATURE_XSAVES)) {
10072 		rdmsrq(MSR_IA32_XSS, kvm_host.xss);
10073 		kvm_caps.supported_xss = kvm_host.xss & KVM_SUPPORTED_XSS;
10074 	}
10075 
10076 	kvm_caps.supported_quirks = KVM_X86_VALID_QUIRKS;
10077 	kvm_caps.inapplicable_quirks = KVM_X86_CONDITIONAL_QUIRKS;
10078 
10079 	rdmsrq_safe(MSR_EFER, &kvm_host.efer);
10080 
10081 	kvm_init_pmu_capability(ops->pmu_ops);
10082 
10083 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
10084 		rdmsrq(MSR_IA32_ARCH_CAPABILITIES, kvm_host.arch_capabilities);
10085 
10086 	WARN_ON_ONCE(kvm_nr_uret_msrs);
10087 
10088 	r = ops->hardware_setup();
10089 	if (r != 0)
10090 		goto out_mmu_exit;
10091 
10092 	enable_device_posted_irqs &= enable_apicv &&
10093 				     irq_remapping_cap(IRQ_POSTING_CAP);
10094 
10095 	kvm_ops_update(ops);
10096 
10097 	for_each_online_cpu(cpu) {
10098 		smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
10099 		if (r < 0)
10100 			goto out_unwind_ops;
10101 	}
10102 
10103 	/*
10104 	 * Point of no return!  DO NOT add error paths below this point unless
10105 	 * absolutely necessary, as most operations from this point forward
10106 	 * require unwinding.
10107 	 */
10108 	kvm_timer_init();
10109 
10110 	if (pi_inject_timer == -1)
10111 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
10112 #ifdef CONFIG_X86_64
10113 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
10114 
10115 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
10116 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
10117 #endif
10118 
10119 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
10120 
10121 	if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled)
10122 		kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM);
10123 
10124 	/* KVM always ignores guest PAT for shadow paging.  */
10125 	if (!tdp_enabled)
10126 		kvm_caps.supported_quirks &= ~KVM_X86_QUIRK_IGNORE_GUEST_PAT;
10127 
10128 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10129 		kvm_caps.supported_xss = 0;
10130 
10131 	if (!kvm_cpu_cap_has(X86_FEATURE_SHSTK) &&
10132 	    !kvm_cpu_cap_has(X86_FEATURE_IBT))
10133 		kvm_caps.supported_xss &= ~XFEATURE_MASK_CET_ALL;
10134 
10135 	if ((kvm_caps.supported_xss & XFEATURE_MASK_CET_ALL) != XFEATURE_MASK_CET_ALL) {
10136 		kvm_cpu_cap_clear(X86_FEATURE_SHSTK);
10137 		kvm_cpu_cap_clear(X86_FEATURE_IBT);
10138 		kvm_caps.supported_xss &= ~XFEATURE_MASK_CET_ALL;
10139 	}
10140 
10141 	if (kvm_caps.has_tsc_control) {
10142 		/*
10143 		 * Make sure the user can only configure tsc_khz values that
10144 		 * fit into a signed integer.
10145 		 * A min value is not calculated because it will always
10146 		 * be 1 on all machines.
10147 		 */
10148 		u64 max = min(0x7fffffffULL,
10149 			      __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
10150 		kvm_caps.max_guest_tsc_khz = max;
10151 	}
10152 	kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
10153 	kvm_init_msr_lists();
10154 	return 0;
10155 
10156 out_unwind_ops:
10157 	kvm_x86_ops.enable_virtualization_cpu = NULL;
10158 	kvm_x86_call(hardware_unsetup)();
10159 out_mmu_exit:
10160 	kvm_destroy_user_return_msrs();
10161 	kvm_mmu_vendor_module_exit();
10162 out_free_x86_emulator_cache:
10163 	kmem_cache_destroy(x86_emulator_cache);
10164 	return r;
10165 }
10166 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_x86_vendor_init);
10167 
kvm_x86_vendor_exit(void)10168 void kvm_x86_vendor_exit(void)
10169 {
10170 	kvm_unregister_perf_callbacks();
10171 
10172 #ifdef CONFIG_X86_64
10173 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
10174 		clear_hv_tscchange_cb();
10175 #endif
10176 	kvm_lapic_exit();
10177 
10178 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
10179 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
10180 					    CPUFREQ_TRANSITION_NOTIFIER);
10181 		cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
10182 	}
10183 #ifdef CONFIG_X86_64
10184 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
10185 	irq_work_sync(&pvclock_irq_work);
10186 	cancel_work_sync(&pvclock_gtod_work);
10187 #endif
10188 	kvm_x86_call(hardware_unsetup)();
10189 	kvm_destroy_user_return_msrs();
10190 	kvm_mmu_vendor_module_exit();
10191 	kmem_cache_destroy(x86_emulator_cache);
10192 #ifdef CONFIG_KVM_XEN
10193 	static_key_deferred_flush(&kvm_xen_enabled);
10194 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
10195 #endif
10196 	mutex_lock(&vendor_module_lock);
10197 	kvm_x86_ops.enable_virtualization_cpu = NULL;
10198 	mutex_unlock(&vendor_module_lock);
10199 }
10200 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_x86_vendor_exit);
10201 
10202 #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)10203 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
10204 			        unsigned long clock_type)
10205 {
10206 	struct kvm_clock_pairing clock_pairing;
10207 	struct timespec64 ts;
10208 	u64 cycle;
10209 	int ret;
10210 
10211 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
10212 		return -KVM_EOPNOTSUPP;
10213 
10214 	/*
10215 	 * When tsc is in permanent catchup mode guests won't be able to use
10216 	 * pvclock_read_retry loop to get consistent view of pvclock
10217 	 */
10218 	if (vcpu->arch.tsc_always_catchup)
10219 		return -KVM_EOPNOTSUPP;
10220 
10221 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
10222 		return -KVM_EOPNOTSUPP;
10223 
10224 	clock_pairing.sec = ts.tv_sec;
10225 	clock_pairing.nsec = ts.tv_nsec;
10226 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
10227 	clock_pairing.flags = 0;
10228 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
10229 
10230 	ret = 0;
10231 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
10232 			    sizeof(struct kvm_clock_pairing)))
10233 		ret = -KVM_EFAULT;
10234 
10235 	return ret;
10236 }
10237 #endif
10238 
10239 /*
10240  * kvm_pv_kick_cpu_op:  Kick a vcpu.
10241  *
10242  * @apicid - apicid of vcpu to be kicked.
10243  */
kvm_pv_kick_cpu_op(struct kvm * kvm,int apicid)10244 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
10245 {
10246 	/*
10247 	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
10248 	 * common code, e.g. for tracing. Defer initialization to the compiler.
10249 	 */
10250 	struct kvm_lapic_irq lapic_irq = {
10251 		.delivery_mode = APIC_DM_REMRD,
10252 		.dest_mode = APIC_DEST_PHYSICAL,
10253 		.shorthand = APIC_DEST_NOSHORT,
10254 		.dest_id = apicid,
10255 	};
10256 
10257 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
10258 }
10259 
kvm_apicv_activated(struct kvm * kvm)10260 bool kvm_apicv_activated(struct kvm *kvm)
10261 {
10262 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
10263 }
10264 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_apicv_activated);
10265 
kvm_vcpu_apicv_activated(struct kvm_vcpu * vcpu)10266 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
10267 {
10268 	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
10269 	ulong vcpu_reasons =
10270 			kvm_x86_call(vcpu_get_apicv_inhibit_reasons)(vcpu);
10271 
10272 	return (vm_reasons | vcpu_reasons) == 0;
10273 }
10274 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_apicv_activated);
10275 
set_or_clear_apicv_inhibit(unsigned long * inhibits,enum kvm_apicv_inhibit reason,bool set)10276 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
10277 				       enum kvm_apicv_inhibit reason, bool set)
10278 {
10279 	const struct trace_print_flags apicv_inhibits[] = { APICV_INHIBIT_REASONS };
10280 
10281 	BUILD_BUG_ON(ARRAY_SIZE(apicv_inhibits) != NR_APICV_INHIBIT_REASONS);
10282 
10283 	if (set)
10284 		__set_bit(reason, inhibits);
10285 	else
10286 		__clear_bit(reason, inhibits);
10287 
10288 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
10289 }
10290 
kvm_apicv_init(struct kvm * kvm)10291 static void kvm_apicv_init(struct kvm *kvm)
10292 {
10293 	enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT :
10294 						       APICV_INHIBIT_REASON_DISABLED;
10295 
10296 	set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true);
10297 
10298 	init_rwsem(&kvm->arch.apicv_update_lock);
10299 }
10300 
kvm_sched_yield(struct kvm_vcpu * vcpu,unsigned long dest_id)10301 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
10302 {
10303 	struct kvm_vcpu *target = NULL;
10304 	struct kvm_apic_map *map;
10305 
10306 	vcpu->stat.directed_yield_attempted++;
10307 
10308 	if (single_task_running())
10309 		goto no_yield;
10310 
10311 	rcu_read_lock();
10312 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
10313 
10314 	if (likely(map) && dest_id <= map->max_apic_id) {
10315 		dest_id = array_index_nospec(dest_id, map->max_apic_id + 1);
10316 		if (map->phys_map[dest_id])
10317 			target = map->phys_map[dest_id]->vcpu;
10318 	}
10319 
10320 	rcu_read_unlock();
10321 
10322 	if (!target || !READ_ONCE(target->ready))
10323 		goto no_yield;
10324 
10325 	/* Ignore requests to yield to self */
10326 	if (vcpu == target)
10327 		goto no_yield;
10328 
10329 	if (kvm_vcpu_yield_to(target) <= 0)
10330 		goto no_yield;
10331 
10332 	vcpu->stat.directed_yield_successful++;
10333 
10334 no_yield:
10335 	return;
10336 }
10337 
complete_hypercall_exit(struct kvm_vcpu * vcpu)10338 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
10339 {
10340 	u64 ret = vcpu->run->hypercall.ret;
10341 
10342 	if (!is_64_bit_hypercall(vcpu))
10343 		ret = (u32)ret;
10344 	kvm_rax_write(vcpu, ret);
10345 	return kvm_skip_emulated_instruction(vcpu);
10346 }
10347 
____kvm_emulate_hypercall(struct kvm_vcpu * vcpu,int cpl,int (* complete_hypercall)(struct kvm_vcpu *))10348 int ____kvm_emulate_hypercall(struct kvm_vcpu *vcpu, int cpl,
10349 			      int (*complete_hypercall)(struct kvm_vcpu *))
10350 {
10351 	unsigned long ret;
10352 	unsigned long nr = kvm_rax_read(vcpu);
10353 	unsigned long a0 = kvm_rbx_read(vcpu);
10354 	unsigned long a1 = kvm_rcx_read(vcpu);
10355 	unsigned long a2 = kvm_rdx_read(vcpu);
10356 	unsigned long a3 = kvm_rsi_read(vcpu);
10357 	int op_64_bit = is_64_bit_hypercall(vcpu);
10358 
10359 	++vcpu->stat.hypercalls;
10360 
10361 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
10362 
10363 	if (!op_64_bit) {
10364 		nr &= 0xFFFFFFFF;
10365 		a0 &= 0xFFFFFFFF;
10366 		a1 &= 0xFFFFFFFF;
10367 		a2 &= 0xFFFFFFFF;
10368 		a3 &= 0xFFFFFFFF;
10369 	}
10370 
10371 	if (cpl) {
10372 		ret = -KVM_EPERM;
10373 		goto out;
10374 	}
10375 
10376 	ret = -KVM_ENOSYS;
10377 
10378 	switch (nr) {
10379 	case KVM_HC_VAPIC_POLL_IRQ:
10380 		ret = 0;
10381 		break;
10382 	case KVM_HC_KICK_CPU:
10383 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
10384 			break;
10385 
10386 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
10387 		kvm_sched_yield(vcpu, a1);
10388 		ret = 0;
10389 		break;
10390 #ifdef CONFIG_X86_64
10391 	case KVM_HC_CLOCK_PAIRING:
10392 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
10393 		break;
10394 #endif
10395 	case KVM_HC_SEND_IPI:
10396 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
10397 			break;
10398 
10399 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
10400 		break;
10401 	case KVM_HC_SCHED_YIELD:
10402 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
10403 			break;
10404 
10405 		kvm_sched_yield(vcpu, a0);
10406 		ret = 0;
10407 		break;
10408 	case KVM_HC_MAP_GPA_RANGE: {
10409 		u64 gpa = a0, npages = a1, attrs = a2;
10410 
10411 		ret = -KVM_ENOSYS;
10412 		if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE))
10413 			break;
10414 
10415 		if (!PAGE_ALIGNED(gpa) || !npages ||
10416 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10417 			ret = -KVM_EINVAL;
10418 			break;
10419 		}
10420 
10421 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
10422 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
10423 		/*
10424 		 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2)
10425 		 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that
10426 		 * it was always zero on KVM_EXIT_HYPERCALL.  Since KVM is now overwriting
10427 		 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU.
10428 		 */
10429 		vcpu->run->hypercall.ret = 0;
10430 		vcpu->run->hypercall.args[0]  = gpa;
10431 		vcpu->run->hypercall.args[1]  = npages;
10432 		vcpu->run->hypercall.args[2]  = attrs;
10433 		vcpu->run->hypercall.flags    = 0;
10434 		if (op_64_bit)
10435 			vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10436 
10437 		WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10438 		vcpu->arch.complete_userspace_io = complete_hypercall;
10439 		return 0;
10440 	}
10441 	default:
10442 		ret = -KVM_ENOSYS;
10443 		break;
10444 	}
10445 
10446 out:
10447 	vcpu->run->hypercall.ret = ret;
10448 	return 1;
10449 }
10450 EXPORT_SYMBOL_FOR_KVM_INTERNAL(____kvm_emulate_hypercall);
10451 
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)10452 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
10453 {
10454 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
10455 		return kvm_xen_hypercall(vcpu);
10456 
10457 	if (kvm_hv_hypercall_enabled(vcpu))
10458 		return kvm_hv_hypercall(vcpu);
10459 
10460 	return __kvm_emulate_hypercall(vcpu, kvm_x86_call(get_cpl)(vcpu),
10461 				       complete_hypercall_exit);
10462 }
10463 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_hypercall);
10464 
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)10465 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10466 {
10467 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10468 	char instruction[3];
10469 	unsigned long rip = kvm_rip_read(vcpu);
10470 
10471 	/*
10472 	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
10473 	 * the pieces.
10474 	 */
10475 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10476 		ctxt->exception.error_code_valid = false;
10477 		ctxt->exception.vector = UD_VECTOR;
10478 		ctxt->have_exception = true;
10479 		return X86EMUL_PROPAGATE_FAULT;
10480 	}
10481 
10482 	kvm_x86_call(patch_hypercall)(vcpu, instruction);
10483 
10484 	return emulator_write_emulated(ctxt, rip, instruction, 3,
10485 		&ctxt->exception);
10486 }
10487 
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)10488 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10489 {
10490 	return vcpu->run->request_interrupt_window &&
10491 		likely(!pic_in_kernel(vcpu->kvm));
10492 }
10493 
10494 /* Called within kvm->srcu read side.  */
post_kvm_run_save(struct kvm_vcpu * vcpu)10495 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10496 {
10497 	struct kvm_run *kvm_run = vcpu->run;
10498 
10499 	kvm_run->if_flag = kvm_x86_call(get_if_flag)(vcpu);
10500 	kvm_run->cr8 = kvm_get_cr8(vcpu);
10501 	kvm_run->apic_base = vcpu->arch.apic_base;
10502 
10503 	kvm_run->ready_for_interrupt_injection =
10504 		pic_in_kernel(vcpu->kvm) ||
10505 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
10506 
10507 	if (is_smm(vcpu))
10508 		kvm_run->flags |= KVM_RUN_X86_SMM;
10509 	if (is_guest_mode(vcpu))
10510 		kvm_run->flags |= KVM_RUN_X86_GUEST_MODE;
10511 }
10512 
update_cr8_intercept(struct kvm_vcpu * vcpu)10513 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10514 {
10515 	int max_irr, tpr;
10516 
10517 	if (!kvm_x86_ops.update_cr8_intercept)
10518 		return;
10519 
10520 	if (!lapic_in_kernel(vcpu))
10521 		return;
10522 
10523 	if (vcpu->arch.apic->apicv_active)
10524 		return;
10525 
10526 	if (!vcpu->arch.apic->vapic_addr)
10527 		max_irr = kvm_lapic_find_highest_irr(vcpu);
10528 	else
10529 		max_irr = -1;
10530 
10531 	if (max_irr != -1)
10532 		max_irr >>= 4;
10533 
10534 	tpr = kvm_lapic_get_cr8(vcpu);
10535 
10536 	kvm_x86_call(update_cr8_intercept)(vcpu, tpr, max_irr);
10537 }
10538 
10539 
kvm_check_nested_events(struct kvm_vcpu * vcpu)10540 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10541 {
10542 	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10543 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
10544 		return 1;
10545 	}
10546 
10547 	return kvm_x86_ops.nested_ops->check_events(vcpu);
10548 }
10549 
kvm_inject_exception(struct kvm_vcpu * vcpu)10550 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10551 {
10552 	/*
10553 	 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10554 	 * exceptions don't report error codes.  The presence of an error code
10555 	 * is carried with the exception and only stripped when the exception
10556 	 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10557 	 * report an error code despite the CPU being in Real Mode.
10558 	 */
10559 	vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10560 
10561 	trace_kvm_inj_exception(vcpu->arch.exception.vector,
10562 				vcpu->arch.exception.has_error_code,
10563 				vcpu->arch.exception.error_code,
10564 				vcpu->arch.exception.injected);
10565 
10566 	kvm_x86_call(inject_exception)(vcpu);
10567 }
10568 
10569 /*
10570  * Check for any event (interrupt or exception) that is ready to be injected,
10571  * and if there is at least one event, inject the event with the highest
10572  * priority.  This handles both "pending" events, i.e. events that have never
10573  * been injected into the guest, and "injected" events, i.e. events that were
10574  * injected as part of a previous VM-Enter, but weren't successfully delivered
10575  * and need to be re-injected.
10576  *
10577  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10578  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
10579  * be able to inject exceptions in the "middle" of an instruction, and so must
10580  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10581  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10582  * boundaries is necessary and correct.
10583  *
10584  * For simplicity, KVM uses a single path to inject all events (except events
10585  * that are injected directly from L1 to L2) and doesn't explicitly track
10586  * instruction boundaries for asynchronous events.  However, because VM-Exits
10587  * that can occur during instruction execution typically result in KVM skipping
10588  * the instruction or injecting an exception, e.g. instruction and exception
10589  * intercepts, and because pending exceptions have higher priority than pending
10590  * interrupts, KVM still honors instruction boundaries in most scenarios.
10591  *
10592  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10593  * the instruction or inject an exception, then KVM can incorrecty inject a new
10594  * asynchronous event if the event became pending after the CPU fetched the
10595  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
10596  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10597  * injected on the restarted instruction instead of being deferred until the
10598  * instruction completes.
10599  *
10600  * In practice, this virtualization hole is unlikely to be observed by the
10601  * guest, and even less likely to cause functional problems.  To detect the
10602  * hole, the guest would have to trigger an event on a side effect of an early
10603  * phase of instruction execution, e.g. on the instruction fetch from memory.
10604  * And for it to be a functional problem, the guest would need to depend on the
10605  * ordering between that side effect, the instruction completing, _and_ the
10606  * delivery of the asynchronous event.
10607  */
kvm_check_and_inject_events(struct kvm_vcpu * vcpu,bool * req_immediate_exit)10608 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10609 				       bool *req_immediate_exit)
10610 {
10611 	bool can_inject;
10612 	int r;
10613 
10614 	/*
10615 	 * Process nested events first, as nested VM-Exit supersedes event
10616 	 * re-injection.  If there's an event queued for re-injection, it will
10617 	 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10618 	 */
10619 	if (is_guest_mode(vcpu))
10620 		r = kvm_check_nested_events(vcpu);
10621 	else
10622 		r = 0;
10623 
10624 	/*
10625 	 * Re-inject exceptions and events *especially* if immediate entry+exit
10626 	 * to/from L2 is needed, as any event that has already been injected
10627 	 * into L2 needs to complete its lifecycle before injecting a new event.
10628 	 *
10629 	 * Don't re-inject an NMI or interrupt if there is a pending exception.
10630 	 * This collision arises if an exception occurred while vectoring the
10631 	 * injected event, KVM intercepted said exception, and KVM ultimately
10632 	 * determined the fault belongs to the guest and queues the exception
10633 	 * for injection back into the guest.
10634 	 *
10635 	 * "Injected" interrupts can also collide with pending exceptions if
10636 	 * userspace ignores the "ready for injection" flag and blindly queues
10637 	 * an interrupt.  In that case, prioritizing the exception is correct,
10638 	 * as the exception "occurred" before the exit to userspace.  Trap-like
10639 	 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10640 	 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10641 	 * priority, they're only generated (pended) during instruction
10642 	 * execution, and interrupts are recognized at instruction boundaries.
10643 	 * Thus a pending fault-like exception means the fault occurred on the
10644 	 * *previous* instruction and must be serviced prior to recognizing any
10645 	 * new events in order to fully complete the previous instruction.
10646 	 */
10647 	if (vcpu->arch.exception.injected)
10648 		kvm_inject_exception(vcpu);
10649 	else if (kvm_is_exception_pending(vcpu))
10650 		; /* see above */
10651 	else if (vcpu->arch.nmi_injected)
10652 		kvm_x86_call(inject_nmi)(vcpu);
10653 	else if (vcpu->arch.interrupt.injected)
10654 		kvm_x86_call(inject_irq)(vcpu, true);
10655 
10656 	/*
10657 	 * Exceptions that morph to VM-Exits are handled above, and pending
10658 	 * exceptions on top of injected exceptions that do not VM-Exit should
10659 	 * either morph to #DF or, sadly, override the injected exception.
10660 	 */
10661 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
10662 		     vcpu->arch.exception.pending);
10663 
10664 	/*
10665 	 * Bail if immediate entry+exit to/from the guest is needed to complete
10666 	 * nested VM-Enter or event re-injection so that a different pending
10667 	 * event can be serviced (or if KVM needs to exit to userspace).
10668 	 *
10669 	 * Otherwise, continue processing events even if VM-Exit occurred.  The
10670 	 * VM-Exit will have cleared exceptions that were meant for L2, but
10671 	 * there may now be events that can be injected into L1.
10672 	 */
10673 	if (r < 0)
10674 		goto out;
10675 
10676 	/*
10677 	 * A pending exception VM-Exit should either result in nested VM-Exit
10678 	 * or force an immediate re-entry and exit to/from L2, and exception
10679 	 * VM-Exits cannot be injected (flag should _never_ be set).
10680 	 */
10681 	WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10682 		     vcpu->arch.exception_vmexit.pending);
10683 
10684 	/*
10685 	 * New events, other than exceptions, cannot be injected if KVM needs
10686 	 * to re-inject a previous event.  See above comments on re-injecting
10687 	 * for why pending exceptions get priority.
10688 	 */
10689 	can_inject = !kvm_event_needs_reinjection(vcpu);
10690 
10691 	if (vcpu->arch.exception.pending) {
10692 		/*
10693 		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10694 		 * value pushed on the stack.  Trap-like exception and all #DBs
10695 		 * leave RF as-is (KVM follows Intel's behavior in this regard;
10696 		 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10697 		 *
10698 		 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10699 		 * describe the behavior of General Detect #DBs, which are
10700 		 * fault-like.  They do _not_ set RF, a la code breakpoints.
10701 		 */
10702 		if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10703 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10704 					     X86_EFLAGS_RF);
10705 
10706 		if (vcpu->arch.exception.vector == DB_VECTOR) {
10707 			kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10708 			if (vcpu->arch.dr7 & DR7_GD) {
10709 				vcpu->arch.dr7 &= ~DR7_GD;
10710 				kvm_update_dr7(vcpu);
10711 			}
10712 		}
10713 
10714 		kvm_inject_exception(vcpu);
10715 
10716 		vcpu->arch.exception.pending = false;
10717 		vcpu->arch.exception.injected = true;
10718 
10719 		can_inject = false;
10720 	}
10721 
10722 	/* Don't inject interrupts if the user asked to avoid doing so */
10723 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10724 		return 0;
10725 
10726 	/*
10727 	 * Finally, inject interrupt events.  If an event cannot be injected
10728 	 * due to architectural conditions (e.g. IF=0) a window-open exit
10729 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10730 	 * and can architecturally be injected, but we cannot do it right now:
10731 	 * an interrupt could have arrived just now and we have to inject it
10732 	 * as a vmexit, or there could already an event in the queue, which is
10733 	 * indicated by can_inject.  In that case we request an immediate exit
10734 	 * in order to make progress and get back here for another iteration.
10735 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10736 	 */
10737 #ifdef CONFIG_KVM_SMM
10738 	if (vcpu->arch.smi_pending) {
10739 		r = can_inject ? kvm_x86_call(smi_allowed)(vcpu, true) :
10740 				 -EBUSY;
10741 		if (r < 0)
10742 			goto out;
10743 		if (r) {
10744 			vcpu->arch.smi_pending = false;
10745 			++vcpu->arch.smi_count;
10746 			enter_smm(vcpu);
10747 			can_inject = false;
10748 		} else
10749 			kvm_x86_call(enable_smi_window)(vcpu);
10750 	}
10751 #endif
10752 
10753 	if (vcpu->arch.nmi_pending) {
10754 		r = can_inject ? kvm_x86_call(nmi_allowed)(vcpu, true) :
10755 				 -EBUSY;
10756 		if (r < 0)
10757 			goto out;
10758 		if (r) {
10759 			--vcpu->arch.nmi_pending;
10760 			vcpu->arch.nmi_injected = true;
10761 			kvm_x86_call(inject_nmi)(vcpu);
10762 			can_inject = false;
10763 			WARN_ON(kvm_x86_call(nmi_allowed)(vcpu, true) < 0);
10764 		}
10765 		if (vcpu->arch.nmi_pending)
10766 			kvm_x86_call(enable_nmi_window)(vcpu);
10767 	}
10768 
10769 	if (kvm_cpu_has_injectable_intr(vcpu)) {
10770 		r = can_inject ? kvm_x86_call(interrupt_allowed)(vcpu, true) :
10771 				 -EBUSY;
10772 		if (r < 0)
10773 			goto out;
10774 		if (r) {
10775 			int irq = kvm_cpu_get_interrupt(vcpu);
10776 
10777 			if (!WARN_ON_ONCE(irq == -1)) {
10778 				kvm_queue_interrupt(vcpu, irq, false);
10779 				kvm_x86_call(inject_irq)(vcpu, false);
10780 				WARN_ON(kvm_x86_call(interrupt_allowed)(vcpu, true) < 0);
10781 			}
10782 		}
10783 		if (kvm_cpu_has_injectable_intr(vcpu))
10784 			kvm_x86_call(enable_irq_window)(vcpu);
10785 	}
10786 
10787 	if (is_guest_mode(vcpu) &&
10788 	    kvm_x86_ops.nested_ops->has_events &&
10789 	    kvm_x86_ops.nested_ops->has_events(vcpu, true))
10790 		*req_immediate_exit = true;
10791 
10792 	/*
10793 	 * KVM must never queue a new exception while injecting an event; KVM
10794 	 * is done emulating and should only propagate the to-be-injected event
10795 	 * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10796 	 * infinite loop as KVM will bail from VM-Enter to inject the pending
10797 	 * exception and start the cycle all over.
10798 	 *
10799 	 * Exempt triple faults as they have special handling and won't put the
10800 	 * vCPU into an infinite loop.  Triple fault can be queued when running
10801 	 * VMX without unrestricted guest, as that requires KVM to emulate Real
10802 	 * Mode events (see kvm_inject_realmode_interrupt()).
10803 	 */
10804 	WARN_ON_ONCE(vcpu->arch.exception.pending ||
10805 		     vcpu->arch.exception_vmexit.pending);
10806 	return 0;
10807 
10808 out:
10809 	if (r == -EBUSY) {
10810 		*req_immediate_exit = true;
10811 		r = 0;
10812 	}
10813 	return r;
10814 }
10815 
process_nmi(struct kvm_vcpu * vcpu)10816 static void process_nmi(struct kvm_vcpu *vcpu)
10817 {
10818 	unsigned int limit;
10819 
10820 	/*
10821 	 * x86 is limited to one NMI pending, but because KVM can't react to
10822 	 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10823 	 * scheduled out, KVM needs to play nice with two queued NMIs showing
10824 	 * up at the same time.  To handle this scenario, allow two NMIs to be
10825 	 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10826 	 * waiting for a previous NMI injection to complete (which effectively
10827 	 * blocks NMIs).  KVM will immediately inject one of the two NMIs, and
10828 	 * will request an NMI window to handle the second NMI.
10829 	 */
10830 	if (kvm_x86_call(get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10831 		limit = 1;
10832 	else
10833 		limit = 2;
10834 
10835 	/*
10836 	 * Adjust the limit to account for pending virtual NMIs, which aren't
10837 	 * tracked in vcpu->arch.nmi_pending.
10838 	 */
10839 	if (kvm_x86_call(is_vnmi_pending)(vcpu))
10840 		limit--;
10841 
10842 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10843 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10844 
10845 	if (vcpu->arch.nmi_pending &&
10846 	    (kvm_x86_call(set_vnmi_pending)(vcpu)))
10847 		vcpu->arch.nmi_pending--;
10848 
10849 	if (vcpu->arch.nmi_pending)
10850 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10851 }
10852 
10853 /* Return total number of NMIs pending injection to the VM */
kvm_get_nr_pending_nmis(struct kvm_vcpu * vcpu)10854 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10855 {
10856 	return vcpu->arch.nmi_pending +
10857 	       kvm_x86_call(is_vnmi_pending)(vcpu);
10858 }
10859 
kvm_make_scan_ioapic_request_mask(struct kvm * kvm,unsigned long * vcpu_bitmap)10860 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10861 				       unsigned long *vcpu_bitmap)
10862 {
10863 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10864 }
10865 
kvm_make_scan_ioapic_request(struct kvm * kvm)10866 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10867 {
10868 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10869 }
10870 
__kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10871 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10872 {
10873 	struct kvm_lapic *apic = vcpu->arch.apic;
10874 	bool activate;
10875 
10876 	if (!lapic_in_kernel(vcpu))
10877 		return;
10878 
10879 	down_read(&vcpu->kvm->arch.apicv_update_lock);
10880 	preempt_disable();
10881 
10882 	/* Do not activate APICV when APIC is disabled */
10883 	activate = kvm_vcpu_apicv_activated(vcpu) &&
10884 		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10885 
10886 	if (apic->apicv_active == activate)
10887 		goto out;
10888 
10889 	apic->apicv_active = activate;
10890 	kvm_apic_update_apicv(vcpu);
10891 	kvm_x86_call(refresh_apicv_exec_ctrl)(vcpu);
10892 
10893 	/*
10894 	 * When APICv gets disabled, we may still have injected interrupts
10895 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10896 	 * still active when the interrupt got accepted. Make sure
10897 	 * kvm_check_and_inject_events() is called to check for that.
10898 	 *
10899 	 * Update SVI when APICv gets enabled, otherwise SVI won't reflect the
10900 	 * highest bit in vISR and the next accelerated EOI in the guest won't
10901 	 * be virtualized correctly (the CPU uses SVI to determine which vISR
10902 	 * vector to clear).
10903 	 */
10904 	if (!apic->apicv_active)
10905 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10906 	else
10907 		kvm_apic_update_hwapic_isr(vcpu);
10908 
10909 out:
10910 	preempt_enable();
10911 	up_read(&vcpu->kvm->arch.apicv_update_lock);
10912 }
10913 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_vcpu_update_apicv);
10914 
kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10915 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10916 {
10917 	if (!lapic_in_kernel(vcpu))
10918 		return;
10919 
10920 	/*
10921 	 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10922 	 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10923 	 * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
10924 	 * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
10925 	 * this case so that KVM can use the AVIC doorbell to inject interrupts
10926 	 * to running vCPUs, but KVM must not create SPTEs for the APIC base as
10927 	 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10928 	 * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
10929 	 * access page is sticky.
10930 	 */
10931 	if (apic_x2apic_mode(vcpu->arch.apic) &&
10932 	    kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10933 		kvm_inhibit_apic_access_page(vcpu);
10934 
10935 	__kvm_vcpu_update_apicv(vcpu);
10936 }
10937 
__kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10938 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10939 				      enum kvm_apicv_inhibit reason, bool set)
10940 {
10941 	unsigned long old, new;
10942 
10943 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10944 
10945 	if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10946 		return;
10947 
10948 	old = new = kvm->arch.apicv_inhibit_reasons;
10949 
10950 	set_or_clear_apicv_inhibit(&new, reason, set);
10951 
10952 	if (!!old != !!new) {
10953 		/*
10954 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10955 		 * false positives in the sanity check WARN in vcpu_enter_guest().
10956 		 * This task will wait for all vCPUs to ack the kick IRQ before
10957 		 * updating apicv_inhibit_reasons, and all other vCPUs will
10958 		 * block on acquiring apicv_update_lock so that vCPUs can't
10959 		 * redo vcpu_enter_guest() without seeing the new inhibit state.
10960 		 *
10961 		 * Note, holding apicv_update_lock and taking it in the read
10962 		 * side (handling the request) also prevents other vCPUs from
10963 		 * servicing the request with a stale apicv_inhibit_reasons.
10964 		 */
10965 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10966 		kvm->arch.apicv_inhibit_reasons = new;
10967 		if (new) {
10968 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10969 			int idx = srcu_read_lock(&kvm->srcu);
10970 
10971 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
10972 			srcu_read_unlock(&kvm->srcu, idx);
10973 		}
10974 	} else {
10975 		kvm->arch.apicv_inhibit_reasons = new;
10976 	}
10977 }
10978 
kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10979 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10980 				    enum kvm_apicv_inhibit reason, bool set)
10981 {
10982 	if (!enable_apicv)
10983 		return;
10984 
10985 	down_write(&kvm->arch.apicv_update_lock);
10986 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10987 	up_write(&kvm->arch.apicv_update_lock);
10988 }
10989 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_or_clear_apicv_inhibit);
10990 
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)10991 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10992 {
10993 	if (!kvm_apic_present(vcpu))
10994 		return;
10995 
10996 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10997 	vcpu->arch.highest_stale_pending_ioapic_eoi = -1;
10998 
10999 	kvm_x86_call(sync_pir_to_irr)(vcpu);
11000 
11001 	if (irqchip_split(vcpu->kvm))
11002 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
11003 #ifdef CONFIG_KVM_IOAPIC
11004 	else if (ioapic_in_kernel(vcpu->kvm))
11005 		kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
11006 #endif
11007 
11008 	if (is_guest_mode(vcpu))
11009 		vcpu->arch.load_eoi_exitmap_pending = true;
11010 	else
11011 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
11012 }
11013 
vcpu_load_eoi_exitmap(struct kvm_vcpu * vcpu)11014 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
11015 {
11016 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
11017 		return;
11018 
11019 #ifdef CONFIG_KVM_HYPERV
11020 	if (to_hv_vcpu(vcpu)) {
11021 		u64 eoi_exit_bitmap[4];
11022 
11023 		bitmap_or((ulong *)eoi_exit_bitmap,
11024 			  vcpu->arch.ioapic_handled_vectors,
11025 			  to_hv_synic(vcpu)->vec_bitmap, 256);
11026 		kvm_x86_call(load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
11027 		return;
11028 	}
11029 #endif
11030 	kvm_x86_call(load_eoi_exitmap)(
11031 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
11032 }
11033 
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)11034 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
11035 {
11036 	kvm_x86_call(guest_memory_reclaimed)(kvm);
11037 }
11038 
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)11039 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
11040 {
11041 	if (!lapic_in_kernel(vcpu))
11042 		return;
11043 
11044 	kvm_x86_call(set_apic_access_page_addr)(vcpu);
11045 }
11046 
11047 /*
11048  * Called within kvm->srcu read side.
11049  * Returns 1 to let vcpu_run() continue the guest execution loop without
11050  * exiting to the userspace.  Otherwise, the value will be returned to the
11051  * userspace.
11052  */
vcpu_enter_guest(struct kvm_vcpu * vcpu)11053 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
11054 {
11055 	int r;
11056 	bool req_int_win =
11057 		dm_request_for_irq_injection(vcpu) &&
11058 		kvm_cpu_accept_dm_intr(vcpu);
11059 	fastpath_t exit_fastpath;
11060 	u64 run_flags, debug_ctl;
11061 
11062 	bool req_immediate_exit = false;
11063 
11064 	if (kvm_request_pending(vcpu)) {
11065 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
11066 			r = -EIO;
11067 			goto out;
11068 		}
11069 
11070 		if (kvm_dirty_ring_check_request(vcpu)) {
11071 			r = 0;
11072 			goto out;
11073 		}
11074 
11075 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
11076 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
11077 				r = 0;
11078 				goto out;
11079 			}
11080 		}
11081 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
11082 			kvm_mmu_free_obsolete_roots(vcpu);
11083 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
11084 			__kvm_migrate_timers(vcpu);
11085 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
11086 			kvm_update_masterclock(vcpu->kvm);
11087 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
11088 			kvm_gen_kvmclock_update(vcpu);
11089 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
11090 			r = kvm_guest_time_update(vcpu);
11091 			if (unlikely(r))
11092 				goto out;
11093 		}
11094 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
11095 			kvm_mmu_sync_roots(vcpu);
11096 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
11097 			kvm_mmu_load_pgd(vcpu);
11098 
11099 		/*
11100 		 * Note, the order matters here, as flushing "all" TLB entries
11101 		 * also flushes the "current" TLB entries, i.e. servicing the
11102 		 * flush "all" will clear any request to flush "current".
11103 		 */
11104 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
11105 			kvm_vcpu_flush_tlb_all(vcpu);
11106 
11107 		kvm_service_local_tlb_flush_requests(vcpu);
11108 
11109 		/*
11110 		 * Fall back to a "full" guest flush if Hyper-V's precise
11111 		 * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
11112 		 * the flushes are considered "remote" and not "local" because
11113 		 * the requests can be initiated from other vCPUs.
11114 		 */
11115 #ifdef CONFIG_KVM_HYPERV
11116 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
11117 		    kvm_hv_vcpu_flush_tlb(vcpu))
11118 			kvm_vcpu_flush_tlb_guest(vcpu);
11119 #endif
11120 
11121 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
11122 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
11123 			r = 0;
11124 			goto out;
11125 		}
11126 		if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
11127 			if (is_guest_mode(vcpu))
11128 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
11129 
11130 			if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
11131 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
11132 				vcpu->mmio_needed = 0;
11133 				r = 0;
11134 				goto out;
11135 			}
11136 		}
11137 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
11138 			/* Page is swapped out. Do synthetic halt */
11139 			vcpu->arch.apf.halted = true;
11140 			r = 1;
11141 			goto out;
11142 		}
11143 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
11144 			record_steal_time(vcpu);
11145 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
11146 			kvm_pmu_handle_event(vcpu);
11147 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
11148 			kvm_pmu_deliver_pmi(vcpu);
11149 #ifdef CONFIG_KVM_SMM
11150 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
11151 			process_smi(vcpu);
11152 #endif
11153 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
11154 			process_nmi(vcpu);
11155 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
11156 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
11157 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
11158 				     vcpu->arch.ioapic_handled_vectors)) {
11159 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
11160 				vcpu->run->eoi.vector =
11161 						vcpu->arch.pending_ioapic_eoi;
11162 				r = 0;
11163 				goto out;
11164 			}
11165 		}
11166 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
11167 			vcpu_scan_ioapic(vcpu);
11168 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
11169 			vcpu_load_eoi_exitmap(vcpu);
11170 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
11171 			kvm_vcpu_reload_apic_access_page(vcpu);
11172 #ifdef CONFIG_KVM_HYPERV
11173 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
11174 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
11175 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
11176 			vcpu->run->system_event.ndata = 0;
11177 			r = 0;
11178 			goto out;
11179 		}
11180 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
11181 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
11182 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
11183 			vcpu->run->system_event.ndata = 0;
11184 			r = 0;
11185 			goto out;
11186 		}
11187 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
11188 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
11189 
11190 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
11191 			vcpu->run->hyperv = hv_vcpu->exit;
11192 			r = 0;
11193 			goto out;
11194 		}
11195 
11196 		/*
11197 		 * KVM_REQ_HV_STIMER has to be processed after
11198 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
11199 		 * depend on the guest clock being up-to-date
11200 		 */
11201 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
11202 			kvm_hv_process_stimers(vcpu);
11203 #endif
11204 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
11205 			kvm_vcpu_update_apicv(vcpu);
11206 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
11207 			kvm_check_async_pf_completion(vcpu);
11208 
11209 		if (kvm_check_request(KVM_REQ_RECALC_INTERCEPTS, vcpu))
11210 			kvm_x86_call(recalc_intercepts)(vcpu);
11211 
11212 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
11213 			kvm_x86_call(update_cpu_dirty_logging)(vcpu);
11214 
11215 		if (kvm_check_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) {
11216 			kvm_vcpu_reset(vcpu, true);
11217 			if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) {
11218 				r = 1;
11219 				goto out;
11220 			}
11221 		}
11222 	}
11223 
11224 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
11225 	    kvm_xen_has_interrupt(vcpu)) {
11226 		++vcpu->stat.req_event;
11227 		r = kvm_apic_accept_events(vcpu);
11228 		if (r < 0) {
11229 			r = 0;
11230 			goto out;
11231 		}
11232 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
11233 			r = 1;
11234 			goto out;
11235 		}
11236 
11237 		r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
11238 		if (r < 0) {
11239 			r = 0;
11240 			goto out;
11241 		}
11242 		if (req_int_win)
11243 			kvm_x86_call(enable_irq_window)(vcpu);
11244 
11245 		if (kvm_lapic_enabled(vcpu)) {
11246 			update_cr8_intercept(vcpu);
11247 			kvm_lapic_sync_to_vapic(vcpu);
11248 		}
11249 	}
11250 
11251 	r = kvm_mmu_reload(vcpu);
11252 	if (unlikely(r)) {
11253 		goto cancel_injection;
11254 	}
11255 
11256 	preempt_disable();
11257 
11258 	kvm_x86_call(prepare_switch_to_guest)(vcpu);
11259 
11260 	/*
11261 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
11262 	 * IPI are then delayed after guest entry, which ensures that they
11263 	 * result in virtual interrupt delivery.
11264 	 */
11265 	local_irq_disable();
11266 
11267 	/* Store vcpu->apicv_active before vcpu->mode.  */
11268 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
11269 
11270 	kvm_vcpu_srcu_read_unlock(vcpu);
11271 
11272 	/*
11273 	 * 1) We should set ->mode before checking ->requests.  Please see
11274 	 * the comment in kvm_vcpu_exiting_guest_mode().
11275 	 *
11276 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
11277 	 * pairs with the memory barrier implicit in pi_test_and_set_on
11278 	 * (see vmx_deliver_posted_interrupt).
11279 	 *
11280 	 * 3) This also orders the write to mode from any reads to the page
11281 	 * tables done while the VCPU is running.  Please see the comment
11282 	 * in kvm_flush_remote_tlbs.
11283 	 */
11284 	smp_mb__after_srcu_read_unlock();
11285 
11286 	/*
11287 	 * Process pending posted interrupts to handle the case where the
11288 	 * notification IRQ arrived in the host, or was never sent (because the
11289 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
11290 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
11291 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
11292 	 */
11293 	if (kvm_lapic_enabled(vcpu))
11294 		kvm_x86_call(sync_pir_to_irr)(vcpu);
11295 
11296 	if (kvm_vcpu_exit_request(vcpu)) {
11297 		vcpu->mode = OUTSIDE_GUEST_MODE;
11298 		smp_wmb();
11299 		local_irq_enable();
11300 		preempt_enable();
11301 		kvm_vcpu_srcu_read_lock(vcpu);
11302 		r = 1;
11303 		goto cancel_injection;
11304 	}
11305 
11306 	run_flags = 0;
11307 	if (req_immediate_exit) {
11308 		run_flags |= KVM_RUN_FORCE_IMMEDIATE_EXIT;
11309 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11310 	}
11311 
11312 	fpregs_assert_state_consistent();
11313 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
11314 		switch_fpu_return();
11315 
11316 	if (vcpu->arch.guest_fpu.xfd_err)
11317 		wrmsrq(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
11318 
11319 	kvm_load_xfeatures(vcpu, true);
11320 
11321 	if (unlikely(vcpu->arch.switch_db_regs &&
11322 		     !(vcpu->arch.switch_db_regs & KVM_DEBUGREG_AUTO_SWITCH))) {
11323 		set_debugreg(DR7_FIXED_1, 7);
11324 		set_debugreg(vcpu->arch.eff_db[0], 0);
11325 		set_debugreg(vcpu->arch.eff_db[1], 1);
11326 		set_debugreg(vcpu->arch.eff_db[2], 2);
11327 		set_debugreg(vcpu->arch.eff_db[3], 3);
11328 		/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
11329 		if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
11330 			run_flags |= KVM_RUN_LOAD_GUEST_DR6;
11331 	} else if (unlikely(hw_breakpoint_active())) {
11332 		set_debugreg(DR7_FIXED_1, 7);
11333 	}
11334 
11335 	/*
11336 	 * Refresh the host DEBUGCTL snapshot after disabling IRQs, as DEBUGCTL
11337 	 * can be modified in IRQ context, e.g. via SMP function calls.  Inform
11338 	 * vendor code if any host-owned bits were changed, e.g. so that the
11339 	 * value loaded into hardware while running the guest can be updated.
11340 	 */
11341 	debug_ctl = get_debugctlmsr();
11342 	if ((debug_ctl ^ vcpu->arch.host_debugctl) & kvm_x86_ops.HOST_OWNED_DEBUGCTL &&
11343 	    !vcpu->arch.guest_state_protected)
11344 		run_flags |= KVM_RUN_LOAD_DEBUGCTL;
11345 	vcpu->arch.host_debugctl = debug_ctl;
11346 
11347 	guest_timing_enter_irqoff();
11348 
11349 	/*
11350 	 * Swap PKRU with hardware breakpoints disabled to minimize the number
11351 	 * of flows where non-KVM code can run with guest state loaded.
11352 	 */
11353 	kvm_load_guest_pkru(vcpu);
11354 
11355 	for (;;) {
11356 		/*
11357 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
11358 		 * update must kick and wait for all vCPUs before toggling the
11359 		 * per-VM state, and responding vCPUs must wait for the update
11360 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
11361 		 */
11362 		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
11363 			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
11364 
11365 		exit_fastpath = kvm_x86_call(vcpu_run)(vcpu, run_flags);
11366 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
11367 			break;
11368 
11369 		if (kvm_lapic_enabled(vcpu))
11370 			kvm_x86_call(sync_pir_to_irr)(vcpu);
11371 
11372 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
11373 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
11374 			break;
11375 		}
11376 
11377 		run_flags = 0;
11378 
11379 		/* Note, VM-Exits that go down the "slow" path are accounted below. */
11380 		++vcpu->stat.exits;
11381 	}
11382 
11383 	kvm_load_host_pkru(vcpu);
11384 
11385 	/*
11386 	 * Do this here before restoring debug registers on the host.  And
11387 	 * since we do this before handling the vmexit, a DR access vmexit
11388 	 * can (a) read the correct value of the debug registers, (b) set
11389 	 * KVM_DEBUGREG_WONT_EXIT again.
11390 	 */
11391 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
11392 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
11393 		WARN_ON(vcpu->arch.switch_db_regs & KVM_DEBUGREG_AUTO_SWITCH);
11394 		kvm_x86_call(sync_dirty_debug_regs)(vcpu);
11395 		kvm_update_dr0123(vcpu);
11396 		kvm_update_dr7(vcpu);
11397 	}
11398 
11399 	/*
11400 	 * If the guest has used debug registers, at least dr7
11401 	 * will be disabled while returning to the host.
11402 	 * If we don't have active breakpoints in the host, we don't
11403 	 * care about the messed up debug address registers. But if
11404 	 * we have some of them active, restore the old state.
11405 	 */
11406 	if (hw_breakpoint_active())
11407 		hw_breakpoint_restore();
11408 
11409 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
11410 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
11411 
11412 	vcpu->mode = OUTSIDE_GUEST_MODE;
11413 	smp_wmb();
11414 
11415 	kvm_load_xfeatures(vcpu, false);
11416 
11417 	/*
11418 	 * Sync xfd before calling handle_exit_irqoff() which may
11419 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
11420 	 * in #NM irqoff handler).
11421 	 */
11422 	if (vcpu->arch.xfd_no_write_intercept)
11423 		fpu_sync_guest_vmexit_xfd_state();
11424 
11425 	kvm_x86_call(handle_exit_irqoff)(vcpu);
11426 
11427 	if (vcpu->arch.guest_fpu.xfd_err)
11428 		wrmsrq(MSR_IA32_XFD_ERR, 0);
11429 
11430 	/*
11431 	 * Mark this CPU as needing a branch predictor flush before running
11432 	 * userspace. Must be done before enabling preemption to ensure it gets
11433 	 * set for the CPU that actually ran the guest, and not the CPU that it
11434 	 * may migrate to.
11435 	 */
11436 	if (cpu_feature_enabled(X86_FEATURE_IBPB_EXIT_TO_USER))
11437 		this_cpu_write(x86_ibpb_exit_to_user, true);
11438 
11439 	/*
11440 	 * Consume any pending interrupts, including the possible source of
11441 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
11442 	 * An instruction is required after local_irq_enable() to fully unblock
11443 	 * interrupts on processors that implement an interrupt shadow, the
11444 	 * stat.exits increment will do nicely.
11445 	 */
11446 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
11447 	local_irq_enable();
11448 	++vcpu->stat.exits;
11449 	local_irq_disable();
11450 	kvm_after_interrupt(vcpu);
11451 
11452 	/*
11453 	 * Wait until after servicing IRQs to account guest time so that any
11454 	 * ticks that occurred while running the guest are properly accounted
11455 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
11456 	 * of accounting via context tracking, but the loss of accuracy is
11457 	 * acceptable for all known use cases.
11458 	 */
11459 	guest_timing_exit_irqoff();
11460 
11461 	local_irq_enable();
11462 	preempt_enable();
11463 
11464 	kvm_vcpu_srcu_read_lock(vcpu);
11465 
11466 	/*
11467 	 * Call this to ensure WC buffers in guest are evicted after each VM
11468 	 * Exit, so that the evicted WC writes can be snooped across all cpus
11469 	 */
11470 	smp_mb__after_srcu_read_lock();
11471 
11472 	/*
11473 	 * Profile KVM exit RIPs:
11474 	 */
11475 	if (unlikely(prof_on == KVM_PROFILING &&
11476 		     !vcpu->arch.guest_state_protected)) {
11477 		unsigned long rip = kvm_rip_read(vcpu);
11478 		profile_hit(KVM_PROFILING, (void *)rip);
11479 	}
11480 
11481 	if (unlikely(vcpu->arch.tsc_always_catchup))
11482 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11483 
11484 	if (vcpu->arch.apic_attention)
11485 		kvm_lapic_sync_from_vapic(vcpu);
11486 
11487 	if (unlikely(exit_fastpath == EXIT_FASTPATH_EXIT_USERSPACE))
11488 		return 0;
11489 
11490 	r = kvm_x86_call(handle_exit)(vcpu, exit_fastpath);
11491 	return r;
11492 
11493 cancel_injection:
11494 	if (req_immediate_exit)
11495 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11496 	kvm_x86_call(cancel_injection)(vcpu);
11497 	if (unlikely(vcpu->arch.apic_attention))
11498 		kvm_lapic_sync_from_vapic(vcpu);
11499 out:
11500 	return r;
11501 }
11502 
kvm_vcpu_running(struct kvm_vcpu * vcpu)11503 static bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11504 {
11505 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11506 		!vcpu->arch.apf.halted);
11507 }
11508 
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)11509 bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11510 {
11511 	if (!list_empty_careful(&vcpu->async_pf.done))
11512 		return true;
11513 
11514 	if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
11515 	    kvm_apic_init_sipi_allowed(vcpu))
11516 		return true;
11517 
11518 	if (kvm_is_exception_pending(vcpu))
11519 		return true;
11520 
11521 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11522 	    (vcpu->arch.nmi_pending &&
11523 	     kvm_x86_call(nmi_allowed)(vcpu, false)))
11524 		return true;
11525 
11526 #ifdef CONFIG_KVM_SMM
11527 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11528 	    (vcpu->arch.smi_pending &&
11529 	     kvm_x86_call(smi_allowed)(vcpu, false)))
11530 		return true;
11531 #endif
11532 
11533 	if (kvm_test_request(KVM_REQ_PMI, vcpu))
11534 		return true;
11535 
11536 	if (kvm_test_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu))
11537 		return true;
11538 
11539 	if (kvm_arch_interrupt_allowed(vcpu) && kvm_cpu_has_interrupt(vcpu))
11540 		return true;
11541 
11542 	if (kvm_hv_has_stimer_pending(vcpu))
11543 		return true;
11544 
11545 	if (is_guest_mode(vcpu) &&
11546 	    kvm_x86_ops.nested_ops->has_events &&
11547 	    kvm_x86_ops.nested_ops->has_events(vcpu, false))
11548 		return true;
11549 
11550 	if (kvm_xen_has_pending_events(vcpu))
11551 		return true;
11552 
11553 	return false;
11554 }
11555 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_has_events);
11556 
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)11557 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11558 {
11559 	return kvm_vcpu_running(vcpu) || vcpu->arch.pv.pv_unhalted ||
11560 	       kvm_vcpu_has_events(vcpu);
11561 }
11562 
11563 /* Called within kvm->srcu read side.  */
vcpu_block(struct kvm_vcpu * vcpu)11564 static inline int vcpu_block(struct kvm_vcpu *vcpu)
11565 {
11566 	bool hv_timer;
11567 
11568 	if (!kvm_arch_vcpu_runnable(vcpu)) {
11569 		/*
11570 		 * Switch to the software timer before halt-polling/blocking as
11571 		 * the guest's timer may be a break event for the vCPU, and the
11572 		 * hypervisor timer runs only when the CPU is in guest mode.
11573 		 * Switch before halt-polling so that KVM recognizes an expired
11574 		 * timer before blocking.
11575 		 */
11576 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11577 		if (hv_timer)
11578 			kvm_lapic_switch_to_sw_timer(vcpu);
11579 
11580 		kvm_vcpu_srcu_read_unlock(vcpu);
11581 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11582 			kvm_vcpu_halt(vcpu);
11583 		else
11584 			kvm_vcpu_block(vcpu);
11585 		kvm_vcpu_srcu_read_lock(vcpu);
11586 
11587 		if (hv_timer)
11588 			kvm_lapic_switch_to_hv_timer(vcpu);
11589 
11590 		/*
11591 		 * If the vCPU is not runnable, a signal or another host event
11592 		 * of some kind is pending; service it without changing the
11593 		 * vCPU's activity state.
11594 		 */
11595 		if (!kvm_arch_vcpu_runnable(vcpu))
11596 			return 1;
11597 	}
11598 
11599 	/*
11600 	 * Evaluate nested events before exiting the halted state.  This allows
11601 	 * the halt state to be recorded properly in the VMCS12's activity
11602 	 * state field (AMD does not have a similar field and a VM-Exit always
11603 	 * causes a spurious wakeup from HLT).
11604 	 */
11605 	if (is_guest_mode(vcpu)) {
11606 		int r = kvm_check_nested_events(vcpu);
11607 
11608 		WARN_ON_ONCE(r == -EBUSY);
11609 		if (r < 0)
11610 			return 0;
11611 	}
11612 
11613 	if (kvm_apic_accept_events(vcpu) < 0)
11614 		return 0;
11615 	switch(vcpu->arch.mp_state) {
11616 	case KVM_MP_STATE_HALTED:
11617 	case KVM_MP_STATE_AP_RESET_HOLD:
11618 		kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
11619 		fallthrough;
11620 	case KVM_MP_STATE_RUNNABLE:
11621 		vcpu->arch.apf.halted = false;
11622 		break;
11623 	case KVM_MP_STATE_INIT_RECEIVED:
11624 		break;
11625 	default:
11626 		WARN_ON_ONCE(1);
11627 		break;
11628 	}
11629 	return 1;
11630 }
11631 
11632 /* Called within kvm->srcu read side.  */
vcpu_run(struct kvm_vcpu * vcpu)11633 static int vcpu_run(struct kvm_vcpu *vcpu)
11634 {
11635 	int r;
11636 
11637 	vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
11638 
11639 	for (;;) {
11640 		/*
11641 		 * If another guest vCPU requests a PV TLB flush in the middle
11642 		 * of instruction emulation, the rest of the emulation could
11643 		 * use a stale page translation. Assume that any code after
11644 		 * this point can start executing an instruction.
11645 		 */
11646 		vcpu->arch.at_instruction_boundary = false;
11647 		if (kvm_vcpu_running(vcpu)) {
11648 			r = vcpu_enter_guest(vcpu);
11649 		} else {
11650 			r = vcpu_block(vcpu);
11651 		}
11652 
11653 		if (r <= 0)
11654 			break;
11655 
11656 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11657 		if (kvm_xen_has_pending_events(vcpu))
11658 			kvm_xen_inject_pending_events(vcpu);
11659 
11660 		if (kvm_cpu_has_pending_timer(vcpu))
11661 			kvm_inject_pending_timer_irqs(vcpu);
11662 
11663 		if (dm_request_for_irq_injection(vcpu) &&
11664 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11665 			r = 0;
11666 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11667 			++vcpu->stat.request_irq_exits;
11668 			break;
11669 		}
11670 
11671 		if (__xfer_to_guest_mode_work_pending()) {
11672 			kvm_vcpu_srcu_read_unlock(vcpu);
11673 			r = kvm_xfer_to_guest_mode_handle_work(vcpu);
11674 			kvm_vcpu_srcu_read_lock(vcpu);
11675 			if (r)
11676 				return r;
11677 		}
11678 	}
11679 
11680 	return r;
11681 }
11682 
__kvm_emulate_halt(struct kvm_vcpu * vcpu,int state,int reason)11683 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
11684 {
11685 	/*
11686 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
11687 	 * local APIC is in-kernel, the run loop will detect the non-runnable
11688 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
11689 	 * managed by userspace, in which case userspace is responsible for
11690 	 * handling wake events.
11691 	 */
11692 	++vcpu->stat.halt_exits;
11693 	if (lapic_in_kernel(vcpu)) {
11694 		if (kvm_vcpu_has_events(vcpu) || vcpu->arch.pv.pv_unhalted)
11695 			state = KVM_MP_STATE_RUNNABLE;
11696 		kvm_set_mp_state(vcpu, state);
11697 		return 1;
11698 	} else {
11699 		vcpu->run->exit_reason = reason;
11700 		return 0;
11701 	}
11702 }
11703 
kvm_emulate_halt_noskip(struct kvm_vcpu * vcpu)11704 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
11705 {
11706 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
11707 }
11708 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_halt_noskip);
11709 
kvm_emulate_halt(struct kvm_vcpu * vcpu)11710 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
11711 {
11712 	int ret = kvm_skip_emulated_instruction(vcpu);
11713 	/*
11714 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
11715 	 * KVM_EXIT_DEBUG here.
11716 	 */
11717 	return kvm_emulate_halt_noskip(vcpu) && ret;
11718 }
11719 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_halt);
11720 
handle_fastpath_hlt(struct kvm_vcpu * vcpu)11721 fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu)
11722 {
11723 	if (!kvm_emulate_halt(vcpu))
11724 		return EXIT_FASTPATH_EXIT_USERSPACE;
11725 
11726 	if (kvm_vcpu_running(vcpu))
11727 		return EXIT_FASTPATH_REENTER_GUEST;
11728 
11729 	return EXIT_FASTPATH_EXIT_HANDLED;
11730 }
11731 EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_fastpath_hlt);
11732 
kvm_emulate_ap_reset_hold(struct kvm_vcpu * vcpu)11733 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
11734 {
11735 	int ret = kvm_skip_emulated_instruction(vcpu);
11736 
11737 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
11738 					KVM_EXIT_AP_RESET_HOLD) && ret;
11739 }
11740 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_ap_reset_hold);
11741 
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)11742 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11743 {
11744 	return kvm_vcpu_apicv_active(vcpu) &&
11745 	       kvm_x86_call(dy_apicv_has_pending_interrupt)(vcpu);
11746 }
11747 
kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu * vcpu)11748 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
11749 {
11750 	return vcpu->arch.preempted_in_kernel;
11751 }
11752 
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)11753 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11754 {
11755 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11756 		return true;
11757 
11758 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11759 #ifdef CONFIG_KVM_SMM
11760 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
11761 #endif
11762 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
11763 		return true;
11764 
11765 	return kvm_arch_dy_has_pending_interrupt(vcpu);
11766 }
11767 
complete_emulated_io(struct kvm_vcpu * vcpu)11768 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11769 {
11770 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11771 }
11772 
complete_emulated_pio(struct kvm_vcpu * vcpu)11773 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11774 {
11775 	BUG_ON(!vcpu->arch.pio.count);
11776 
11777 	return complete_emulated_io(vcpu);
11778 }
11779 
11780 /*
11781  * Implements the following, as a state machine:
11782  *
11783  * read:
11784  *   for each fragment
11785  *     for each mmio piece in the fragment
11786  *       write gpa, len
11787  *       exit
11788  *       copy data
11789  *   execute insn
11790  *
11791  * write:
11792  *   for each fragment
11793  *     for each mmio piece in the fragment
11794  *       write gpa, len
11795  *       copy data
11796  *       exit
11797  */
complete_emulated_mmio(struct kvm_vcpu * vcpu)11798 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11799 {
11800 	struct kvm_run *run = vcpu->run;
11801 	struct kvm_mmio_fragment *frag;
11802 	unsigned len;
11803 
11804 	BUG_ON(!vcpu->mmio_needed);
11805 
11806 	/* Complete previous fragment */
11807 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11808 	len = min(8u, frag->len);
11809 	if (!vcpu->mmio_is_write)
11810 		memcpy(frag->data, run->mmio.data, len);
11811 
11812 	if (frag->len <= 8) {
11813 		/* Switch to the next fragment. */
11814 		frag++;
11815 		vcpu->mmio_cur_fragment++;
11816 	} else {
11817 		/* Go forward to the next mmio piece. */
11818 		frag->data += len;
11819 		frag->gpa += len;
11820 		frag->len -= len;
11821 	}
11822 
11823 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11824 		vcpu->mmio_needed = 0;
11825 
11826 		/* FIXME: return into emulator if single-stepping.  */
11827 		if (vcpu->mmio_is_write)
11828 			return 1;
11829 		vcpu->mmio_read_completed = 1;
11830 		return complete_emulated_io(vcpu);
11831 	}
11832 
11833 	run->exit_reason = KVM_EXIT_MMIO;
11834 	run->mmio.phys_addr = frag->gpa;
11835 	if (vcpu->mmio_is_write)
11836 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11837 	run->mmio.len = min(8u, frag->len);
11838 	run->mmio.is_write = vcpu->mmio_is_write;
11839 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11840 	return 0;
11841 }
11842 
11843 /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)11844 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11845 {
11846 	if (KVM_BUG_ON(vcpu->arch.guest_fpu.fpstate->in_use, vcpu->kvm))
11847 		return;
11848 
11849 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11850 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11851 	trace_kvm_fpu(1);
11852 }
11853 
11854 /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)11855 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11856 {
11857 	if (KVM_BUG_ON(!vcpu->arch.guest_fpu.fpstate->in_use, vcpu->kvm))
11858 		return;
11859 
11860 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11861 	++vcpu->stat.fpu_reload;
11862 	trace_kvm_fpu(0);
11863 }
11864 
kvm_x86_vcpu_pre_run(struct kvm_vcpu * vcpu)11865 static int kvm_x86_vcpu_pre_run(struct kvm_vcpu *vcpu)
11866 {
11867 	/*
11868 	 * SIPI_RECEIVED is obsolete; KVM leaves the vCPU in Wait-For-SIPI and
11869 	 * tracks the pending SIPI separately.  SIPI_RECEIVED is still accepted
11870 	 * by KVM_SET_VCPU_EVENTS for backwards compatibility, but should be
11871 	 * converted to INIT_RECEIVED.
11872 	 */
11873 	if (WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED))
11874 		return -EINVAL;
11875 
11876 	/*
11877 	 * Disallow running the vCPU if userspace forced it into an impossible
11878 	 * MP_STATE, e.g. if the vCPU is in WFS but SIPI is blocked.
11879 	 */
11880 	if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED &&
11881 	    !kvm_apic_init_sipi_allowed(vcpu))
11882 		return -EINVAL;
11883 
11884 	return kvm_x86_call(vcpu_pre_run)(vcpu);
11885 }
11886 
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)11887 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11888 {
11889 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
11890 	struct kvm_run *kvm_run = vcpu->run;
11891 	u64 sync_valid_fields;
11892 	int r;
11893 
11894 	r = kvm_mmu_post_init_vm(vcpu->kvm);
11895 	if (r)
11896 		return r;
11897 
11898 	vcpu_load(vcpu);
11899 	kvm_sigset_activate(vcpu);
11900 	kvm_run->flags = 0;
11901 	kvm_load_guest_fpu(vcpu);
11902 
11903 	kvm_vcpu_srcu_read_lock(vcpu);
11904 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11905 		if (!vcpu->wants_to_run) {
11906 			r = -EINTR;
11907 			goto out;
11908 		}
11909 
11910 		/*
11911 		 * Don't bother switching APIC timer emulation from the
11912 		 * hypervisor timer to the software timer, the only way for the
11913 		 * APIC timer to be active is if userspace stuffed vCPU state,
11914 		 * i.e. put the vCPU into a nonsensical state.  Only an INIT
11915 		 * will transition the vCPU out of UNINITIALIZED (without more
11916 		 * state stuffing from userspace), which will reset the local
11917 		 * APIC and thus cancel the timer or drop the IRQ (if the timer
11918 		 * already expired).
11919 		 */
11920 		kvm_vcpu_srcu_read_unlock(vcpu);
11921 		kvm_vcpu_block(vcpu);
11922 		kvm_vcpu_srcu_read_lock(vcpu);
11923 
11924 		if (kvm_apic_accept_events(vcpu) < 0) {
11925 			r = 0;
11926 			goto out;
11927 		}
11928 		r = -EAGAIN;
11929 		if (signal_pending(current)) {
11930 			r = -EINTR;
11931 			kvm_run->exit_reason = KVM_EXIT_INTR;
11932 			++vcpu->stat.signal_exits;
11933 		}
11934 		goto out;
11935 	}
11936 
11937 	sync_valid_fields = kvm_sync_valid_fields(vcpu->kvm);
11938 	if ((kvm_run->kvm_valid_regs & ~sync_valid_fields) ||
11939 	    (kvm_run->kvm_dirty_regs & ~sync_valid_fields)) {
11940 		r = -EINVAL;
11941 		goto out;
11942 	}
11943 
11944 	if (kvm_run->kvm_dirty_regs) {
11945 		r = sync_regs(vcpu);
11946 		if (r != 0)
11947 			goto out;
11948 	}
11949 
11950 	/* re-sync apic's tpr */
11951 	if (!lapic_in_kernel(vcpu)) {
11952 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11953 			r = -EINVAL;
11954 			goto out;
11955 		}
11956 	}
11957 
11958 	/*
11959 	 * If userspace set a pending exception and L2 is active, convert it to
11960 	 * a pending VM-Exit if L1 wants to intercept the exception.
11961 	 */
11962 	if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11963 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11964 							ex->error_code)) {
11965 		kvm_queue_exception_vmexit(vcpu, ex->vector,
11966 					   ex->has_error_code, ex->error_code,
11967 					   ex->has_payload, ex->payload);
11968 		ex->injected = false;
11969 		ex->pending = false;
11970 	}
11971 	vcpu->arch.exception_from_userspace = false;
11972 
11973 	if (unlikely(vcpu->arch.complete_userspace_io)) {
11974 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11975 		vcpu->arch.complete_userspace_io = NULL;
11976 		r = cui(vcpu);
11977 		if (r <= 0)
11978 			goto out;
11979 	} else {
11980 		WARN_ON_ONCE(vcpu->arch.pio.count);
11981 		WARN_ON_ONCE(vcpu->mmio_needed);
11982 	}
11983 
11984 	if (!vcpu->wants_to_run) {
11985 		r = -EINTR;
11986 		goto out;
11987 	}
11988 
11989 	r = kvm_x86_vcpu_pre_run(vcpu);
11990 	if (r <= 0)
11991 		goto out;
11992 
11993 	r = vcpu_run(vcpu);
11994 
11995 out:
11996 	kvm_put_guest_fpu(vcpu);
11997 	if (kvm_run->kvm_valid_regs && likely(!vcpu->arch.guest_state_protected))
11998 		store_regs(vcpu);
11999 	post_kvm_run_save(vcpu);
12000 	kvm_vcpu_srcu_read_unlock(vcpu);
12001 
12002 	kvm_sigset_deactivate(vcpu);
12003 	vcpu_put(vcpu);
12004 	return r;
12005 }
12006 
__get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)12007 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
12008 {
12009 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
12010 		/*
12011 		 * We are here if userspace calls get_regs() in the middle of
12012 		 * instruction emulation. Registers state needs to be copied
12013 		 * back from emulation context to vcpu. Userspace shouldn't do
12014 		 * that usually, but some bad designed PV devices (vmware
12015 		 * backdoor interface) need this to work
12016 		 */
12017 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
12018 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
12019 	}
12020 	regs->rax = kvm_rax_read(vcpu);
12021 	regs->rbx = kvm_rbx_read(vcpu);
12022 	regs->rcx = kvm_rcx_read(vcpu);
12023 	regs->rdx = kvm_rdx_read(vcpu);
12024 	regs->rsi = kvm_rsi_read(vcpu);
12025 	regs->rdi = kvm_rdi_read(vcpu);
12026 	regs->rsp = kvm_rsp_read(vcpu);
12027 	regs->rbp = kvm_rbp_read(vcpu);
12028 #ifdef CONFIG_X86_64
12029 	regs->r8 = kvm_r8_read(vcpu);
12030 	regs->r9 = kvm_r9_read(vcpu);
12031 	regs->r10 = kvm_r10_read(vcpu);
12032 	regs->r11 = kvm_r11_read(vcpu);
12033 	regs->r12 = kvm_r12_read(vcpu);
12034 	regs->r13 = kvm_r13_read(vcpu);
12035 	regs->r14 = kvm_r14_read(vcpu);
12036 	regs->r15 = kvm_r15_read(vcpu);
12037 #endif
12038 
12039 	regs->rip = kvm_rip_read(vcpu);
12040 	regs->rflags = kvm_get_rflags(vcpu);
12041 }
12042 
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)12043 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
12044 {
12045 	if (vcpu->kvm->arch.has_protected_state &&
12046 	    vcpu->arch.guest_state_protected)
12047 		return -EINVAL;
12048 
12049 	vcpu_load(vcpu);
12050 	__get_regs(vcpu, regs);
12051 	vcpu_put(vcpu);
12052 	return 0;
12053 }
12054 
__set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)12055 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
12056 {
12057 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
12058 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
12059 
12060 	kvm_rax_write(vcpu, regs->rax);
12061 	kvm_rbx_write(vcpu, regs->rbx);
12062 	kvm_rcx_write(vcpu, regs->rcx);
12063 	kvm_rdx_write(vcpu, regs->rdx);
12064 	kvm_rsi_write(vcpu, regs->rsi);
12065 	kvm_rdi_write(vcpu, regs->rdi);
12066 	kvm_rsp_write(vcpu, regs->rsp);
12067 	kvm_rbp_write(vcpu, regs->rbp);
12068 #ifdef CONFIG_X86_64
12069 	kvm_r8_write(vcpu, regs->r8);
12070 	kvm_r9_write(vcpu, regs->r9);
12071 	kvm_r10_write(vcpu, regs->r10);
12072 	kvm_r11_write(vcpu, regs->r11);
12073 	kvm_r12_write(vcpu, regs->r12);
12074 	kvm_r13_write(vcpu, regs->r13);
12075 	kvm_r14_write(vcpu, regs->r14);
12076 	kvm_r15_write(vcpu, regs->r15);
12077 #endif
12078 
12079 	kvm_rip_write(vcpu, regs->rip);
12080 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
12081 
12082 	vcpu->arch.exception.pending = false;
12083 	vcpu->arch.exception_vmexit.pending = false;
12084 
12085 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12086 }
12087 
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)12088 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
12089 {
12090 	if (vcpu->kvm->arch.has_protected_state &&
12091 	    vcpu->arch.guest_state_protected)
12092 		return -EINVAL;
12093 
12094 	vcpu_load(vcpu);
12095 	__set_regs(vcpu, regs);
12096 	vcpu_put(vcpu);
12097 	return 0;
12098 }
12099 
__get_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12100 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
12101 {
12102 	struct desc_ptr dt;
12103 
12104 	if (vcpu->arch.guest_state_protected)
12105 		goto skip_protected_regs;
12106 
12107 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
12108 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
12109 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
12110 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
12111 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
12112 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
12113 
12114 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
12115 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
12116 
12117 	kvm_x86_call(get_idt)(vcpu, &dt);
12118 	sregs->idt.limit = dt.size;
12119 	sregs->idt.base = dt.address;
12120 	kvm_x86_call(get_gdt)(vcpu, &dt);
12121 	sregs->gdt.limit = dt.size;
12122 	sregs->gdt.base = dt.address;
12123 
12124 	sregs->cr2 = vcpu->arch.cr2;
12125 	sregs->cr3 = kvm_read_cr3(vcpu);
12126 
12127 skip_protected_regs:
12128 	sregs->cr0 = kvm_read_cr0(vcpu);
12129 	sregs->cr4 = kvm_read_cr4(vcpu);
12130 	sregs->cr8 = kvm_get_cr8(vcpu);
12131 	sregs->efer = vcpu->arch.efer;
12132 	sregs->apic_base = vcpu->arch.apic_base;
12133 }
12134 
__get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12135 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
12136 {
12137 	__get_sregs_common(vcpu, sregs);
12138 
12139 	if (vcpu->arch.guest_state_protected)
12140 		return;
12141 
12142 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
12143 		set_bit(vcpu->arch.interrupt.nr,
12144 			(unsigned long *)sregs->interrupt_bitmap);
12145 }
12146 
__get_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)12147 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
12148 {
12149 	int i;
12150 
12151 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
12152 
12153 	if (vcpu->arch.guest_state_protected)
12154 		return;
12155 
12156 	if (is_pae_paging(vcpu)) {
12157 		for (i = 0 ; i < 4 ; i++)
12158 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
12159 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
12160 	}
12161 }
12162 
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12163 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
12164 				  struct kvm_sregs *sregs)
12165 {
12166 	if (vcpu->kvm->arch.has_protected_state &&
12167 	    vcpu->arch.guest_state_protected)
12168 		return -EINVAL;
12169 
12170 	vcpu_load(vcpu);
12171 	__get_sregs(vcpu, sregs);
12172 	vcpu_put(vcpu);
12173 	return 0;
12174 }
12175 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)12176 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
12177 				    struct kvm_mp_state *mp_state)
12178 {
12179 	int r;
12180 
12181 	vcpu_load(vcpu);
12182 	kvm_vcpu_srcu_read_lock(vcpu);
12183 
12184 	r = kvm_apic_accept_events(vcpu);
12185 	if (r < 0)
12186 		goto out;
12187 	r = 0;
12188 
12189 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
12190 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
12191 	    vcpu->arch.pv.pv_unhalted)
12192 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
12193 	else
12194 		mp_state->mp_state = vcpu->arch.mp_state;
12195 
12196 out:
12197 	kvm_vcpu_srcu_read_unlock(vcpu);
12198 	vcpu_put(vcpu);
12199 	return r;
12200 }
12201 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)12202 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
12203 				    struct kvm_mp_state *mp_state)
12204 {
12205 	int ret = -EINVAL;
12206 
12207 	vcpu_load(vcpu);
12208 
12209 	switch (mp_state->mp_state) {
12210 	case KVM_MP_STATE_UNINITIALIZED:
12211 	case KVM_MP_STATE_HALTED:
12212 	case KVM_MP_STATE_AP_RESET_HOLD:
12213 	case KVM_MP_STATE_INIT_RECEIVED:
12214 	case KVM_MP_STATE_SIPI_RECEIVED:
12215 		if (!lapic_in_kernel(vcpu))
12216 			goto out;
12217 		break;
12218 
12219 	case KVM_MP_STATE_RUNNABLE:
12220 		break;
12221 
12222 	default:
12223 		goto out;
12224 	}
12225 
12226 	/*
12227 	 * SIPI_RECEIVED is obsolete and no longer used internally; KVM instead
12228 	 * leaves the vCPU in INIT_RECIEVED (Wait-For-SIPI) and pends the SIPI.
12229 	 * Translate SIPI_RECEIVED as appropriate for backwards compatibility.
12230 	 */
12231 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
12232 		mp_state->mp_state = KVM_MP_STATE_INIT_RECEIVED;
12233 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
12234 	}
12235 
12236 	kvm_set_mp_state(vcpu, mp_state->mp_state);
12237 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12238 
12239 	ret = 0;
12240 out:
12241 	vcpu_put(vcpu);
12242 	return ret;
12243 }
12244 
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)12245 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
12246 		    int reason, bool has_error_code, u32 error_code)
12247 {
12248 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
12249 	int ret;
12250 
12251 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_CET)) {
12252 		u64 u_cet, s_cet;
12253 
12254 		/*
12255 		 * Check both User and Supervisor on task switches as inter-
12256 		 * privilege level task switches are impacted by CET at both
12257 		 * the current privilege level and the new privilege level, and
12258 		 * that information is not known at this time.  The expectation
12259 		 * is that the guest won't require emulation of task switches
12260 		 * while using IBT or Shadow Stacks.
12261 		 */
12262 		if (__kvm_emulate_msr_read(vcpu, MSR_IA32_U_CET, &u_cet) ||
12263 		    __kvm_emulate_msr_read(vcpu, MSR_IA32_S_CET, &s_cet))
12264 			goto unhandled_task_switch;
12265 
12266 		if ((u_cet | s_cet) & (CET_ENDBR_EN | CET_SHSTK_EN))
12267 			goto unhandled_task_switch;
12268 	}
12269 
12270 	init_emulate_ctxt(vcpu);
12271 
12272 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
12273 				   has_error_code, error_code);
12274 
12275 	/*
12276 	 * Report an error userspace if MMIO is needed, as KVM doesn't support
12277 	 * MMIO during a task switch (or any other complex operation).
12278 	 */
12279 	if (ret || vcpu->mmio_needed)
12280 		goto unhandled_task_switch;
12281 
12282 	kvm_rip_write(vcpu, ctxt->eip);
12283 	kvm_set_rflags(vcpu, ctxt->eflags);
12284 	return 1;
12285 
12286 unhandled_task_switch:
12287 	vcpu->mmio_needed = false;
12288 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
12289 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
12290 	vcpu->run->internal.ndata = 0;
12291 	return 0;
12292 }
12293 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_task_switch);
12294 
kvm_is_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12295 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
12296 {
12297 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
12298 		/*
12299 		 * When EFER.LME and CR0.PG are set, the processor is in
12300 		 * 64-bit mode (though maybe in a 32-bit code segment).
12301 		 * CR4.PAE and EFER.LMA must be set.
12302 		 */
12303 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
12304 			return false;
12305 		if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3))
12306 			return false;
12307 	} else {
12308 		/*
12309 		 * Not in 64-bit mode: EFER.LMA is clear and the code
12310 		 * segment cannot be 64-bit.
12311 		 */
12312 		if (sregs->efer & EFER_LMA || sregs->cs.l)
12313 			return false;
12314 	}
12315 
12316 	return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
12317 	       kvm_is_valid_cr0(vcpu, sregs->cr0);
12318 }
12319 
__set_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs,int * mmu_reset_needed,bool update_pdptrs)12320 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
12321 		int *mmu_reset_needed, bool update_pdptrs)
12322 {
12323 	int idx;
12324 	struct desc_ptr dt;
12325 
12326 	if (!kvm_is_valid_sregs(vcpu, sregs))
12327 		return -EINVAL;
12328 
12329 	if (kvm_apic_set_base(vcpu, sregs->apic_base, true))
12330 		return -EINVAL;
12331 
12332 	if (vcpu->arch.guest_state_protected)
12333 		return 0;
12334 
12335 	dt.size = sregs->idt.limit;
12336 	dt.address = sregs->idt.base;
12337 	kvm_x86_call(set_idt)(vcpu, &dt);
12338 	dt.size = sregs->gdt.limit;
12339 	dt.address = sregs->gdt.base;
12340 	kvm_x86_call(set_gdt)(vcpu, &dt);
12341 
12342 	vcpu->arch.cr2 = sregs->cr2;
12343 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
12344 	vcpu->arch.cr3 = sregs->cr3;
12345 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12346 	kvm_x86_call(post_set_cr3)(vcpu, sregs->cr3);
12347 
12348 	kvm_set_cr8(vcpu, sregs->cr8);
12349 
12350 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
12351 	kvm_x86_call(set_efer)(vcpu, sregs->efer);
12352 
12353 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
12354 	kvm_x86_call(set_cr0)(vcpu, sregs->cr0);
12355 
12356 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
12357 	kvm_x86_call(set_cr4)(vcpu, sregs->cr4);
12358 
12359 	if (update_pdptrs) {
12360 		idx = srcu_read_lock(&vcpu->kvm->srcu);
12361 		if (is_pae_paging(vcpu)) {
12362 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
12363 			*mmu_reset_needed = 1;
12364 		}
12365 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
12366 	}
12367 
12368 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
12369 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
12370 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
12371 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
12372 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
12373 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
12374 
12375 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
12376 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
12377 
12378 	update_cr8_intercept(vcpu);
12379 
12380 	/* Older userspace won't unhalt the vcpu on reset. */
12381 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
12382 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
12383 	    !is_protmode(vcpu))
12384 		kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
12385 
12386 	return 0;
12387 }
12388 
__set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12389 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
12390 {
12391 	int pending_vec, max_bits;
12392 	int mmu_reset_needed = 0;
12393 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
12394 
12395 	if (ret)
12396 		return ret;
12397 
12398 	if (mmu_reset_needed) {
12399 		kvm_mmu_reset_context(vcpu);
12400 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12401 	}
12402 
12403 	max_bits = KVM_NR_INTERRUPTS;
12404 	pending_vec = find_first_bit(
12405 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
12406 
12407 	if (pending_vec < max_bits) {
12408 		kvm_queue_interrupt(vcpu, pending_vec, false);
12409 		pr_debug("Set back pending irq %d\n", pending_vec);
12410 		kvm_make_request(KVM_REQ_EVENT, vcpu);
12411 	}
12412 	return 0;
12413 }
12414 
__set_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)12415 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
12416 {
12417 	int mmu_reset_needed = 0;
12418 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
12419 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
12420 		!(sregs2->efer & EFER_LMA);
12421 	int i, ret;
12422 
12423 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
12424 		return -EINVAL;
12425 
12426 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
12427 		return -EINVAL;
12428 
12429 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
12430 				 &mmu_reset_needed, !valid_pdptrs);
12431 	if (ret)
12432 		return ret;
12433 
12434 	if (valid_pdptrs) {
12435 		for (i = 0; i < 4 ; i++)
12436 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
12437 
12438 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
12439 		mmu_reset_needed = 1;
12440 		vcpu->arch.pdptrs_from_userspace = true;
12441 	}
12442 	if (mmu_reset_needed) {
12443 		kvm_mmu_reset_context(vcpu);
12444 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12445 	}
12446 	return 0;
12447 }
12448 
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12449 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
12450 				  struct kvm_sregs *sregs)
12451 {
12452 	int ret;
12453 
12454 	if (vcpu->kvm->arch.has_protected_state &&
12455 	    vcpu->arch.guest_state_protected)
12456 		return -EINVAL;
12457 
12458 	vcpu_load(vcpu);
12459 	ret = __set_sregs(vcpu, sregs);
12460 	vcpu_put(vcpu);
12461 	return ret;
12462 }
12463 
kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm * kvm)12464 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
12465 {
12466 	bool set = false;
12467 	struct kvm_vcpu *vcpu;
12468 	unsigned long i;
12469 
12470 	if (!enable_apicv)
12471 		return;
12472 
12473 	down_write(&kvm->arch.apicv_update_lock);
12474 
12475 	kvm_for_each_vcpu(i, vcpu, kvm) {
12476 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
12477 			set = true;
12478 			break;
12479 		}
12480 	}
12481 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
12482 	up_write(&kvm->arch.apicv_update_lock);
12483 }
12484 
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)12485 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
12486 					struct kvm_guest_debug *dbg)
12487 {
12488 	unsigned long rflags;
12489 	int i, r;
12490 
12491 	if (vcpu->arch.guest_state_protected)
12492 		return -EINVAL;
12493 
12494 	vcpu_load(vcpu);
12495 
12496 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
12497 		r = -EBUSY;
12498 		if (kvm_is_exception_pending(vcpu))
12499 			goto out;
12500 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
12501 			kvm_queue_exception(vcpu, DB_VECTOR);
12502 		else
12503 			kvm_queue_exception(vcpu, BP_VECTOR);
12504 	}
12505 
12506 	/*
12507 	 * Read rflags as long as potentially injected trace flags are still
12508 	 * filtered out.
12509 	 */
12510 	rflags = kvm_get_rflags(vcpu);
12511 
12512 	vcpu->guest_debug = dbg->control;
12513 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
12514 		vcpu->guest_debug = 0;
12515 
12516 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
12517 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
12518 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
12519 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
12520 	} else {
12521 		for (i = 0; i < KVM_NR_DB_REGS; i++)
12522 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
12523 	}
12524 	kvm_update_dr7(vcpu);
12525 
12526 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12527 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
12528 
12529 	/*
12530 	 * Trigger an rflags update that will inject or remove the trace
12531 	 * flags.
12532 	 */
12533 	kvm_set_rflags(vcpu, rflags);
12534 
12535 	kvm_x86_call(update_exception_bitmap)(vcpu);
12536 
12537 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
12538 
12539 	r = 0;
12540 
12541 out:
12542 	vcpu_put(vcpu);
12543 	return r;
12544 }
12545 
12546 /*
12547  * Translate a guest virtual address to a guest physical address.
12548  */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)12549 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
12550 				    struct kvm_translation *tr)
12551 {
12552 	unsigned long vaddr = tr->linear_address;
12553 	gpa_t gpa;
12554 	int idx;
12555 
12556 	vcpu_load(vcpu);
12557 
12558 	idx = srcu_read_lock(&vcpu->kvm->srcu);
12559 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
12560 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
12561 	tr->physical_address = gpa;
12562 	tr->valid = gpa != INVALID_GPA;
12563 	tr->writeable = 1;
12564 	tr->usermode = 0;
12565 
12566 	vcpu_put(vcpu);
12567 	return 0;
12568 }
12569 
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)12570 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12571 {
12572 	struct fxregs_state *fxsave;
12573 
12574 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12575 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12576 
12577 	vcpu_load(vcpu);
12578 
12579 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12580 	memcpy(fpu->fpr, fxsave->st_space, 128);
12581 	fpu->fcw = fxsave->cwd;
12582 	fpu->fsw = fxsave->swd;
12583 	fpu->ftwx = fxsave->twd;
12584 	fpu->last_opcode = fxsave->fop;
12585 	fpu->last_ip = fxsave->rip;
12586 	fpu->last_dp = fxsave->rdp;
12587 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
12588 
12589 	vcpu_put(vcpu);
12590 	return 0;
12591 }
12592 
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)12593 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12594 {
12595 	struct fxregs_state *fxsave;
12596 
12597 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12598 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12599 
12600 	vcpu_load(vcpu);
12601 
12602 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12603 
12604 	memcpy(fxsave->st_space, fpu->fpr, 128);
12605 	fxsave->cwd = fpu->fcw;
12606 	fxsave->swd = fpu->fsw;
12607 	fxsave->twd = fpu->ftwx;
12608 	fxsave->fop = fpu->last_opcode;
12609 	fxsave->rip = fpu->last_ip;
12610 	fxsave->rdp = fpu->last_dp;
12611 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
12612 
12613 	vcpu_put(vcpu);
12614 	return 0;
12615 }
12616 
store_regs(struct kvm_vcpu * vcpu)12617 static void store_regs(struct kvm_vcpu *vcpu)
12618 {
12619 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
12620 
12621 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
12622 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
12623 
12624 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
12625 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
12626 
12627 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
12628 		kvm_vcpu_ioctl_x86_get_vcpu_events(
12629 				vcpu, &vcpu->run->s.regs.events);
12630 }
12631 
sync_regs(struct kvm_vcpu * vcpu)12632 static int sync_regs(struct kvm_vcpu *vcpu)
12633 {
12634 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
12635 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
12636 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
12637 	}
12638 
12639 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
12640 		struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
12641 
12642 		if (__set_sregs(vcpu, &sregs))
12643 			return -EINVAL;
12644 
12645 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
12646 	}
12647 
12648 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
12649 		struct kvm_vcpu_events events = vcpu->run->s.regs.events;
12650 
12651 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
12652 			return -EINVAL;
12653 
12654 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
12655 	}
12656 
12657 	return 0;
12658 }
12659 
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)12660 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
12661 {
12662 	if (kvm_check_tsc_unstable() && kvm->created_vcpus)
12663 		pr_warn_once("SMP vm created on host with unstable TSC; "
12664 			     "guest TSC will not be reliable\n");
12665 
12666 	if (!kvm->arch.max_vcpu_ids)
12667 		kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
12668 
12669 	if (id >= kvm->arch.max_vcpu_ids)
12670 		return -EINVAL;
12671 
12672 	return kvm_x86_call(vcpu_precreate)(kvm);
12673 }
12674 
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)12675 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
12676 {
12677 	struct page *page;
12678 	int r;
12679 
12680 	vcpu->arch.last_vmentry_cpu = -1;
12681 	vcpu->arch.regs_avail = ~0;
12682 	vcpu->arch.regs_dirty = ~0;
12683 
12684 	kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm);
12685 
12686 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
12687 		kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
12688 	else
12689 		kvm_set_mp_state(vcpu, KVM_MP_STATE_UNINITIALIZED);
12690 
12691 	r = kvm_mmu_create(vcpu);
12692 	if (r < 0)
12693 		return r;
12694 
12695 	r = kvm_create_lapic(vcpu);
12696 	if (r < 0)
12697 		goto fail_mmu_destroy;
12698 
12699 	r = -ENOMEM;
12700 
12701 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12702 	if (!page)
12703 		goto fail_free_lapic;
12704 	vcpu->arch.pio_data = page_address(page);
12705 
12706 	vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12707 				       GFP_KERNEL_ACCOUNT);
12708 	vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12709 					    GFP_KERNEL_ACCOUNT);
12710 	if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12711 		goto fail_free_mce_banks;
12712 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12713 
12714 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12715 				GFP_KERNEL_ACCOUNT))
12716 		goto fail_free_mce_banks;
12717 
12718 	if (!alloc_emulate_ctxt(vcpu))
12719 		goto free_wbinvd_dirty_mask;
12720 
12721 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12722 		pr_err("failed to allocate vcpu's fpu\n");
12723 		goto free_emulate_ctxt;
12724 	}
12725 
12726 	kvm_async_pf_hash_reset(vcpu);
12727 
12728 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) {
12729 		vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12730 		vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12731 		vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12732 	}
12733 	kvm_pmu_init(vcpu);
12734 
12735 	vcpu->arch.pending_external_vector = -1;
12736 	vcpu->arch.preempted_in_kernel = false;
12737 
12738 #if IS_ENABLED(CONFIG_HYPERV)
12739 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
12740 #endif
12741 
12742 	r = kvm_x86_call(vcpu_create)(vcpu);
12743 	if (r)
12744 		goto free_guest_fpu;
12745 
12746 	kvm_xen_init_vcpu(vcpu);
12747 	vcpu_load(vcpu);
12748 	kvm_vcpu_after_set_cpuid(vcpu);
12749 	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12750 	kvm_vcpu_reset(vcpu, false);
12751 	kvm_init_mmu(vcpu);
12752 	vcpu_put(vcpu);
12753 	return 0;
12754 
12755 free_guest_fpu:
12756 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12757 free_emulate_ctxt:
12758 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12759 free_wbinvd_dirty_mask:
12760 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12761 fail_free_mce_banks:
12762 	kfree(vcpu->arch.mce_banks);
12763 	kfree(vcpu->arch.mci_ctl2_banks);
12764 	free_page((unsigned long)vcpu->arch.pio_data);
12765 fail_free_lapic:
12766 	kvm_free_lapic(vcpu);
12767 fail_mmu_destroy:
12768 	kvm_mmu_destroy(vcpu);
12769 	return r;
12770 }
12771 
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)12772 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12773 {
12774 	if (mutex_lock_killable(&vcpu->mutex))
12775 		return;
12776 	vcpu_load(vcpu);
12777 	kvm_synchronize_tsc(vcpu, NULL);
12778 	vcpu_put(vcpu);
12779 
12780 	/* poll control enabled by default */
12781 	vcpu->arch.msr_kvm_poll_control = 1;
12782 
12783 	mutex_unlock(&vcpu->mutex);
12784 }
12785 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)12786 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12787 {
12788 	int idx, cpu;
12789 
12790 	kvm_clear_async_pf_completion_queue(vcpu);
12791 	kvm_mmu_unload(vcpu);
12792 
12793 	kvmclock_reset(vcpu);
12794 
12795 	for_each_possible_cpu(cpu)
12796 		cmpxchg(per_cpu_ptr(&last_vcpu, cpu), vcpu, NULL);
12797 
12798 	kvm_x86_call(vcpu_free)(vcpu);
12799 
12800 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12801 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12802 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12803 
12804 	kvm_xen_destroy_vcpu(vcpu);
12805 	kvm_hv_vcpu_uninit(vcpu);
12806 	kvm_pmu_destroy(vcpu);
12807 	kfree(vcpu->arch.mce_banks);
12808 	kfree(vcpu->arch.mci_ctl2_banks);
12809 	kvm_free_lapic(vcpu);
12810 	idx = srcu_read_lock(&vcpu->kvm->srcu);
12811 	kvm_mmu_destroy(vcpu);
12812 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
12813 	free_page((unsigned long)vcpu->arch.pio_data);
12814 	kvfree(vcpu->arch.cpuid_entries);
12815 }
12816 
kvm_xstate_reset(struct kvm_vcpu * vcpu,bool init_event)12817 static void kvm_xstate_reset(struct kvm_vcpu *vcpu, bool init_event)
12818 {
12819 	struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12820 	u64 xfeatures_mask;
12821 	bool fpu_in_use;
12822 	int i;
12823 
12824 	/*
12825 	 * Guest FPU state is zero allocated and so doesn't need to be manually
12826 	 * cleared on RESET, i.e. during vCPU creation.
12827 	 */
12828 	if (!init_event || !fpstate)
12829 		return;
12830 
12831 	/*
12832 	 * On INIT, only select XSTATE components are zeroed, most components
12833 	 * are unchanged.  Currently, the only components that are zeroed and
12834 	 * supported by KVM are MPX and CET related.
12835 	 */
12836 	xfeatures_mask = (kvm_caps.supported_xcr0 | kvm_caps.supported_xss) &
12837 			 (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR |
12838 			  XFEATURE_MASK_CET_ALL);
12839 	if (!xfeatures_mask)
12840 		return;
12841 
12842 	BUILD_BUG_ON(sizeof(xfeatures_mask) * BITS_PER_BYTE <= XFEATURE_MAX);
12843 
12844 	/*
12845 	 * Unload guest FPU state (if necessary) before zeroing XSTATE fields
12846 	 * as the kernel can only modify the state when its resident in memory,
12847 	 * i.e. when it's not loaded into hardware.
12848 	 *
12849 	 * WARN if the vCPU's desire to run, i.e. whether or not its in KVM_RUN,
12850 	 * doesn't match the loaded/in-use state of the FPU, as KVM_RUN is the
12851 	 * only path that can trigger INIT emulation _and_ loads FPU state, and
12852 	 * KVM_RUN should _always_ load FPU state.
12853 	 */
12854 	WARN_ON_ONCE(vcpu->wants_to_run != fpstate->in_use);
12855 	fpu_in_use = fpstate->in_use;
12856 	if (fpu_in_use)
12857 		kvm_put_guest_fpu(vcpu);
12858 	for_each_set_bit(i, (unsigned long *)&xfeatures_mask, XFEATURE_MAX)
12859 		fpstate_clear_xstate_component(fpstate, i);
12860 	if (fpu_in_use)
12861 		kvm_load_guest_fpu(vcpu);
12862 }
12863 
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)12864 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12865 {
12866 	struct kvm_cpuid_entry2 *cpuid_0x1;
12867 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
12868 	unsigned long new_cr0;
12869 
12870 	/*
12871 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12872 	 * to handle side effects.  RESET emulation hits those flows and relies
12873 	 * on emulated/virtualized registers, including those that are loaded
12874 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
12875 	 * to detect improper or missing initialization.
12876 	 */
12877 	WARN_ON_ONCE(!init_event &&
12878 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12879 
12880 	/*
12881 	 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12882 	 * possible to INIT the vCPU while L2 is active.  Force the vCPU back
12883 	 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12884 	 * bits), i.e. virtualization is disabled.
12885 	 */
12886 	if (is_guest_mode(vcpu))
12887 		kvm_leave_nested(vcpu);
12888 
12889 	kvm_lapic_reset(vcpu, init_event);
12890 
12891 	WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12892 	vcpu->arch.hflags = 0;
12893 
12894 	vcpu->arch.smi_pending = 0;
12895 	vcpu->arch.smi_count = 0;
12896 	atomic_set(&vcpu->arch.nmi_queued, 0);
12897 	vcpu->arch.nmi_pending = 0;
12898 	vcpu->arch.nmi_injected = false;
12899 	kvm_clear_interrupt_queue(vcpu);
12900 	kvm_clear_exception_queue(vcpu);
12901 
12902 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12903 	kvm_update_dr0123(vcpu);
12904 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12905 	vcpu->arch.dr7 = DR7_FIXED_1;
12906 	kvm_update_dr7(vcpu);
12907 
12908 	vcpu->arch.cr2 = 0;
12909 
12910 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12911 	vcpu->arch.apf.msr_en_val = 0;
12912 	vcpu->arch.apf.msr_int_val = 0;
12913 	vcpu->arch.st.msr_val = 0;
12914 
12915 	kvmclock_reset(vcpu);
12916 
12917 	kvm_clear_async_pf_completion_queue(vcpu);
12918 	kvm_async_pf_hash_reset(vcpu);
12919 	vcpu->arch.apf.halted = false;
12920 
12921 	kvm_xstate_reset(vcpu, init_event);
12922 
12923 	if (!init_event) {
12924 		vcpu->arch.smbase = 0x30000;
12925 
12926 		vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12927 
12928 		vcpu->arch.msr_misc_features_enables = 0;
12929 		vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12930 						  MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12931 
12932 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12933 		kvm_msr_write(vcpu, MSR_IA32_XSS, 0);
12934 	}
12935 
12936 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12937 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12938 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12939 
12940 	/*
12941 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12942 	 * if no CPUID match is found.  Note, it's impossible to get a match at
12943 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12944 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12945 	 * on RESET.  But, go through the motions in case that's ever remedied.
12946 	 */
12947 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12948 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12949 
12950 	kvm_x86_call(vcpu_reset)(vcpu, init_event);
12951 
12952 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12953 	kvm_rip_write(vcpu, 0xfff0);
12954 
12955 	vcpu->arch.cr3 = 0;
12956 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12957 
12958 	/*
12959 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
12960 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12961 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
12962 	 */
12963 	new_cr0 = X86_CR0_ET;
12964 	if (init_event)
12965 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12966 	else
12967 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12968 
12969 	kvm_x86_call(set_cr0)(vcpu, new_cr0);
12970 	kvm_x86_call(set_cr4)(vcpu, 0);
12971 	kvm_x86_call(set_efer)(vcpu, 0);
12972 	kvm_x86_call(update_exception_bitmap)(vcpu);
12973 
12974 	/*
12975 	 * On the standard CR0/CR4/EFER modification paths, there are several
12976 	 * complex conditions determining whether the MMU has to be reset and/or
12977 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
12978 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12979 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12980 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
12981 	 */
12982 	if (old_cr0 & X86_CR0_PG) {
12983 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12984 		kvm_mmu_reset_context(vcpu);
12985 	}
12986 
12987 	/*
12988 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
12989 	 * APM states the TLBs are untouched by INIT, but it also states that
12990 	 * the TLBs are flushed on "External initialization of the processor."
12991 	 * Flush the guest TLB regardless of vendor, there is no meaningful
12992 	 * benefit in relying on the guest to flush the TLB immediately after
12993 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
12994 	 * performance perspective.
12995 	 */
12996 	if (init_event)
12997 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12998 }
12999 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_reset);
13000 
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)13001 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
13002 {
13003 	struct kvm_segment cs;
13004 
13005 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
13006 	cs.selector = vector << 8;
13007 	cs.base = vector << 12;
13008 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
13009 	kvm_rip_write(vcpu, 0);
13010 }
13011 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_deliver_sipi_vector);
13012 
kvm_arch_enable_virtualization(void)13013 void kvm_arch_enable_virtualization(void)
13014 {
13015 	cpu_emergency_register_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
13016 }
13017 
kvm_arch_disable_virtualization(void)13018 void kvm_arch_disable_virtualization(void)
13019 {
13020 	cpu_emergency_unregister_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
13021 }
13022 
kvm_arch_enable_virtualization_cpu(void)13023 int kvm_arch_enable_virtualization_cpu(void)
13024 {
13025 	struct kvm *kvm;
13026 	struct kvm_vcpu *vcpu;
13027 	unsigned long i;
13028 	int ret;
13029 	u64 local_tsc;
13030 	u64 max_tsc = 0;
13031 	bool stable, backwards_tsc = false;
13032 
13033 	kvm_user_return_msr_cpu_online();
13034 
13035 	ret = kvm_x86_check_processor_compatibility();
13036 	if (ret)
13037 		return ret;
13038 
13039 	ret = kvm_x86_call(enable_virtualization_cpu)();
13040 	if (ret != 0)
13041 		return ret;
13042 
13043 	local_tsc = rdtsc();
13044 	stable = !kvm_check_tsc_unstable();
13045 	list_for_each_entry(kvm, &vm_list, vm_list) {
13046 		kvm_for_each_vcpu(i, vcpu, kvm) {
13047 			if (!stable && vcpu->cpu == smp_processor_id())
13048 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
13049 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
13050 				backwards_tsc = true;
13051 				if (vcpu->arch.last_host_tsc > max_tsc)
13052 					max_tsc = vcpu->arch.last_host_tsc;
13053 			}
13054 		}
13055 	}
13056 
13057 	/*
13058 	 * Sometimes, even reliable TSCs go backwards.  This happens on
13059 	 * platforms that reset TSC during suspend or hibernate actions, but
13060 	 * maintain synchronization.  We must compensate.  Fortunately, we can
13061 	 * detect that condition here, which happens early in CPU bringup,
13062 	 * before any KVM threads can be running.  Unfortunately, we can't
13063 	 * bring the TSCs fully up to date with real time, as we aren't yet far
13064 	 * enough into CPU bringup that we know how much real time has actually
13065 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
13066 	 * variables that haven't been updated yet.
13067 	 *
13068 	 * So we simply find the maximum observed TSC above, then record the
13069 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
13070 	 * the adjustment will be applied.  Note that we accumulate
13071 	 * adjustments, in case multiple suspend cycles happen before some VCPU
13072 	 * gets a chance to run again.  In the event that no KVM threads get a
13073 	 * chance to run, we will miss the entire elapsed period, as we'll have
13074 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
13075 	 * loose cycle time.  This isn't too big a deal, since the loss will be
13076 	 * uniform across all VCPUs (not to mention the scenario is extremely
13077 	 * unlikely). It is possible that a second hibernate recovery happens
13078 	 * much faster than a first, causing the observed TSC here to be
13079 	 * smaller; this would require additional padding adjustment, which is
13080 	 * why we set last_host_tsc to the local tsc observed here.
13081 	 *
13082 	 * N.B. - this code below runs only on platforms with reliable TSC,
13083 	 * as that is the only way backwards_tsc is set above.  Also note
13084 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
13085 	 * have the same delta_cyc adjustment applied if backwards_tsc
13086 	 * is detected.  Note further, this adjustment is only done once,
13087 	 * as we reset last_host_tsc on all VCPUs to stop this from being
13088 	 * called multiple times (one for each physical CPU bringup).
13089 	 *
13090 	 * Platforms with unreliable TSCs don't have to deal with this, they
13091 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
13092 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
13093 	 * guarantee that they stay in perfect synchronization.
13094 	 */
13095 	if (backwards_tsc) {
13096 		u64 delta_cyc = max_tsc - local_tsc;
13097 		list_for_each_entry(kvm, &vm_list, vm_list) {
13098 			kvm->arch.backwards_tsc_observed = true;
13099 			kvm_for_each_vcpu(i, vcpu, kvm) {
13100 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
13101 				vcpu->arch.last_host_tsc = local_tsc;
13102 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
13103 			}
13104 
13105 			/*
13106 			 * We have to disable TSC offset matching.. if you were
13107 			 * booting a VM while issuing an S4 host suspend....
13108 			 * you may have some problem.  Solving this issue is
13109 			 * left as an exercise to the reader.
13110 			 */
13111 			kvm->arch.last_tsc_nsec = 0;
13112 			kvm->arch.last_tsc_write = 0;
13113 		}
13114 
13115 	}
13116 	return 0;
13117 }
13118 
kvm_arch_disable_virtualization_cpu(void)13119 void kvm_arch_disable_virtualization_cpu(void)
13120 {
13121 	kvm_x86_call(disable_virtualization_cpu)();
13122 
13123 	/*
13124 	 * Leave the user-return notifiers as-is when disabling virtualization
13125 	 * for reboot, i.e. when disabling via IPI function call, and instead
13126 	 * pin kvm.ko (if it's a module) to defend against use-after-free (in
13127 	 * the *very* unlikely scenario module unload is racing with reboot).
13128 	 * On a forced reboot, tasks aren't frozen before shutdown, and so KVM
13129 	 * could be actively modifying user-return MSR state when the IPI to
13130 	 * disable virtualization arrives.  Handle the extreme edge case here
13131 	 * instead of trying to account for it in the normal flows.
13132 	 */
13133 	if (in_task() || WARN_ON_ONCE(!kvm_rebooting))
13134 		drop_user_return_notifiers();
13135 	else
13136 		__module_get(THIS_MODULE);
13137 }
13138 
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)13139 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
13140 {
13141 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
13142 }
13143 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_is_reset_bsp);
13144 
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)13145 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
13146 {
13147 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
13148 }
13149 
kvm_arch_free_vm(struct kvm * kvm)13150 void kvm_arch_free_vm(struct kvm *kvm)
13151 {
13152 #if IS_ENABLED(CONFIG_HYPERV)
13153 	kfree(kvm->arch.hv_pa_pg);
13154 #endif
13155 	__kvm_arch_free_vm(kvm);
13156 }
13157 
13158 
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)13159 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
13160 {
13161 	int ret;
13162 	unsigned long flags;
13163 
13164 	if (!kvm_is_vm_type_supported(type))
13165 		return -EINVAL;
13166 
13167 	kvm->arch.vm_type = type;
13168 	kvm->arch.has_private_mem =
13169 		(type == KVM_X86_SW_PROTECTED_VM);
13170 	/* Decided by the vendor code for other VM types.  */
13171 	kvm->arch.pre_fault_allowed =
13172 		type == KVM_X86_DEFAULT_VM || type == KVM_X86_SW_PROTECTED_VM;
13173 	kvm->arch.disabled_quirks = kvm_caps.inapplicable_quirks & kvm_caps.supported_quirks;
13174 
13175 	ret = kvm_page_track_init(kvm);
13176 	if (ret)
13177 		goto out;
13178 
13179 	ret = kvm_mmu_init_vm(kvm);
13180 	if (ret)
13181 		goto out_cleanup_page_track;
13182 
13183 	ret = kvm_x86_call(vm_init)(kvm);
13184 	if (ret)
13185 		goto out_uninit_mmu;
13186 
13187 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
13188 
13189 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
13190 	mutex_init(&kvm->arch.apic_map_lock);
13191 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
13192 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
13193 
13194 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
13195 	pvclock_update_vm_gtod_copy(kvm);
13196 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
13197 
13198 	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
13199 	kvm->arch.apic_bus_cycle_ns = APIC_BUS_CYCLE_NS_DEFAULT;
13200 	kvm->arch.guest_can_read_msr_platform_info = true;
13201 	kvm->arch.enable_pmu = enable_pmu;
13202 
13203 #if IS_ENABLED(CONFIG_HYPERV)
13204 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
13205 	kvm->arch.hv_root_tdp = INVALID_PAGE;
13206 #endif
13207 
13208 	kvm_apicv_init(kvm);
13209 	kvm_hv_init_vm(kvm);
13210 	kvm_xen_init_vm(kvm);
13211 
13212 	if (ignore_msrs && !report_ignored_msrs) {
13213 		pr_warn_once("Running KVM with ignore_msrs=1 and report_ignored_msrs=0 is not a\n"
13214 			     "a supported configuration.  Lying to the guest about the existence of MSRs\n"
13215 			     "may cause the guest operating system to hang or produce errors.  If a guest\n"
13216 			     "does not run without ignore_msrs=1, please report it to kvm@vger.kernel.org.\n");
13217 	}
13218 
13219 	once_init(&kvm->arch.nx_once);
13220 	return 0;
13221 
13222 out_uninit_mmu:
13223 	kvm_mmu_uninit_vm(kvm);
13224 out_cleanup_page_track:
13225 	kvm_page_track_cleanup(kvm);
13226 out:
13227 	return ret;
13228 }
13229 
13230 /**
13231  * __x86_set_memory_region: Setup KVM internal memory slot
13232  *
13233  * @kvm: the kvm pointer to the VM.
13234  * @id: the slot ID to setup.
13235  * @gpa: the GPA to install the slot (unused when @size == 0).
13236  * @size: the size of the slot. Set to zero to uninstall a slot.
13237  *
13238  * This function helps to setup a KVM internal memory slot.  Specify
13239  * @size > 0 to install a new slot, while @size == 0 to uninstall a
13240  * slot.  The return code can be one of the following:
13241  *
13242  *   HVA:           on success (uninstall will return a bogus HVA)
13243  *   -errno:        on error
13244  *
13245  * The caller should always use IS_ERR() to check the return value
13246  * before use.  Note, the KVM internal memory slots are guaranteed to
13247  * remain valid and unchanged until the VM is destroyed, i.e., the
13248  * GPA->HVA translation will not change.  However, the HVA is a user
13249  * address, i.e. its accessibility is not guaranteed, and must be
13250  * accessed via __copy_{to,from}_user().
13251  */
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)13252 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
13253 				      u32 size)
13254 {
13255 	int i, r;
13256 	unsigned long hva, old_npages;
13257 	struct kvm_memslots *slots = kvm_memslots(kvm);
13258 	struct kvm_memory_slot *slot;
13259 
13260 	lockdep_assert_held(&kvm->slots_lock);
13261 
13262 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
13263 		return ERR_PTR_USR(-EINVAL);
13264 
13265 	slot = id_to_memslot(slots, id);
13266 	if (size) {
13267 		if (slot && slot->npages)
13268 			return ERR_PTR_USR(-EEXIST);
13269 
13270 		/*
13271 		 * MAP_SHARED to prevent internal slot pages from being moved
13272 		 * by fork()/COW.
13273 		 */
13274 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
13275 			      MAP_SHARED | MAP_ANONYMOUS, 0);
13276 		if (IS_ERR_VALUE(hva))
13277 			return (void __user *)hva;
13278 	} else {
13279 		if (!slot || !slot->npages)
13280 			return NULL;
13281 
13282 		old_npages = slot->npages;
13283 		hva = slot->userspace_addr;
13284 	}
13285 
13286 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
13287 		struct kvm_userspace_memory_region2 m;
13288 
13289 		m.slot = id | (i << 16);
13290 		m.flags = 0;
13291 		m.guest_phys_addr = gpa;
13292 		m.userspace_addr = hva;
13293 		m.memory_size = size;
13294 		r = kvm_set_internal_memslot(kvm, &m);
13295 		if (r < 0)
13296 			return ERR_PTR_USR(r);
13297 	}
13298 
13299 	if (!size)
13300 		vm_munmap(hva, old_npages * PAGE_SIZE);
13301 
13302 	return (void __user *)hva;
13303 }
13304 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__x86_set_memory_region);
13305 
kvm_arch_pre_destroy_vm(struct kvm * kvm)13306 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
13307 {
13308 	/*
13309 	 * Stop all background workers and kthreads before destroying vCPUs, as
13310 	 * iterating over vCPUs in a different task while vCPUs are being freed
13311 	 * is unsafe, i.e. will lead to use-after-free.  The PIT also needs to
13312 	 * be stopped before IRQ routing is freed.
13313 	 */
13314 #ifdef CONFIG_KVM_IOAPIC
13315 	kvm_free_pit(kvm);
13316 #endif
13317 
13318 	kvm_mmu_pre_destroy_vm(kvm);
13319 	static_call_cond(kvm_x86_vm_pre_destroy)(kvm);
13320 }
13321 
kvm_arch_destroy_vm(struct kvm * kvm)13322 void kvm_arch_destroy_vm(struct kvm *kvm)
13323 {
13324 	if (current->mm == kvm->mm) {
13325 		/*
13326 		 * Free memory regions allocated on behalf of userspace,
13327 		 * unless the memory map has changed due to process exit
13328 		 * or fd copying.
13329 		 */
13330 		mutex_lock(&kvm->slots_lock);
13331 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
13332 					0, 0);
13333 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
13334 					0, 0);
13335 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
13336 		mutex_unlock(&kvm->slots_lock);
13337 	}
13338 	kvm_destroy_vcpus(kvm);
13339 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
13340 #ifdef CONFIG_KVM_IOAPIC
13341 	kvm_pic_destroy(kvm);
13342 	kvm_ioapic_destroy(kvm);
13343 #endif
13344 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
13345 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
13346 	kvm_mmu_uninit_vm(kvm);
13347 	kvm_page_track_cleanup(kvm);
13348 	kvm_xen_destroy_vm(kvm);
13349 	kvm_hv_destroy_vm(kvm);
13350 	kvm_x86_call(vm_destroy)(kvm);
13351 }
13352 
memslot_rmap_free(struct kvm_memory_slot * slot)13353 static void memslot_rmap_free(struct kvm_memory_slot *slot)
13354 {
13355 	int i;
13356 
13357 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
13358 		vfree(slot->arch.rmap[i]);
13359 		slot->arch.rmap[i] = NULL;
13360 	}
13361 }
13362 
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)13363 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
13364 {
13365 	int i;
13366 
13367 	memslot_rmap_free(slot);
13368 
13369 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
13370 		vfree(slot->arch.lpage_info[i - 1]);
13371 		slot->arch.lpage_info[i - 1] = NULL;
13372 	}
13373 
13374 	kvm_page_track_free_memslot(slot);
13375 }
13376 
memslot_rmap_alloc(struct kvm_memory_slot * slot,unsigned long npages)13377 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
13378 {
13379 	const int sz = sizeof(*slot->arch.rmap[0]);
13380 	int i;
13381 
13382 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
13383 		int level = i + 1;
13384 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
13385 
13386 		if (slot->arch.rmap[i])
13387 			continue;
13388 
13389 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
13390 		if (!slot->arch.rmap[i]) {
13391 			memslot_rmap_free(slot);
13392 			return -ENOMEM;
13393 		}
13394 	}
13395 
13396 	return 0;
13397 }
13398 
kvm_alloc_memslot_metadata(struct kvm * kvm,struct kvm_memory_slot * slot)13399 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
13400 				      struct kvm_memory_slot *slot)
13401 {
13402 	unsigned long npages = slot->npages;
13403 	int i, r;
13404 
13405 	/*
13406 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
13407 	 * old arrays will be freed by kvm_set_memory_region() if installing
13408 	 * the new memslot is successful.
13409 	 */
13410 	memset(&slot->arch, 0, sizeof(slot->arch));
13411 
13412 	if (kvm_memslots_have_rmaps(kvm)) {
13413 		r = memslot_rmap_alloc(slot, npages);
13414 		if (r)
13415 			return r;
13416 	}
13417 
13418 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
13419 		struct kvm_lpage_info *linfo;
13420 		unsigned long ugfn;
13421 		int lpages;
13422 		int level = i + 1;
13423 
13424 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
13425 
13426 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
13427 		if (!linfo)
13428 			goto out_free;
13429 
13430 		slot->arch.lpage_info[i - 1] = linfo;
13431 
13432 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
13433 			linfo[0].disallow_lpage = 1;
13434 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
13435 			linfo[lpages - 1].disallow_lpage = 1;
13436 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
13437 		/*
13438 		 * If the gfn and userspace address are not aligned wrt each
13439 		 * other, disable large page support for this slot.
13440 		 */
13441 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
13442 			unsigned long j;
13443 
13444 			for (j = 0; j < lpages; ++j)
13445 				linfo[j].disallow_lpage = 1;
13446 		}
13447 	}
13448 
13449 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
13450 	kvm_mmu_init_memslot_memory_attributes(kvm, slot);
13451 #endif
13452 
13453 	if (kvm_page_track_create_memslot(kvm, slot, npages))
13454 		goto out_free;
13455 
13456 	return 0;
13457 
13458 out_free:
13459 	memslot_rmap_free(slot);
13460 
13461 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
13462 		vfree(slot->arch.lpage_info[i - 1]);
13463 		slot->arch.lpage_info[i - 1] = NULL;
13464 	}
13465 	return -ENOMEM;
13466 }
13467 
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)13468 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
13469 {
13470 	struct kvm_vcpu *vcpu;
13471 	unsigned long i;
13472 
13473 	/*
13474 	 * memslots->generation has been incremented.
13475 	 * mmio generation may have reached its maximum value.
13476 	 */
13477 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
13478 
13479 	/* Force re-initialization of steal_time cache */
13480 	kvm_for_each_vcpu(i, vcpu, kvm)
13481 		kvm_vcpu_kick(vcpu);
13482 }
13483 
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)13484 int kvm_arch_prepare_memory_region(struct kvm *kvm,
13485 				   const struct kvm_memory_slot *old,
13486 				   struct kvm_memory_slot *new,
13487 				   enum kvm_mr_change change)
13488 {
13489 	/*
13490 	 * KVM doesn't support moving memslots when there are external page
13491 	 * trackers attached to the VM, i.e. if KVMGT is in use.
13492 	 */
13493 	if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
13494 		return -EINVAL;
13495 
13496 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
13497 		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
13498 			return -EINVAL;
13499 
13500 		if (kvm_is_gfn_alias(kvm, new->base_gfn + new->npages - 1))
13501 			return -EINVAL;
13502 
13503 		return kvm_alloc_memslot_metadata(kvm, new);
13504 	}
13505 
13506 	if (change == KVM_MR_FLAGS_ONLY)
13507 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
13508 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
13509 		return -EIO;
13510 
13511 	return 0;
13512 }
13513 
13514 
kvm_mmu_update_cpu_dirty_logging(struct kvm * kvm,bool enable)13515 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
13516 {
13517 	int nr_slots;
13518 
13519 	if (!kvm->arch.cpu_dirty_log_size)
13520 		return;
13521 
13522 	nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
13523 	if ((enable && nr_slots == 1) || !nr_slots)
13524 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
13525 }
13526 
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)13527 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
13528 				     struct kvm_memory_slot *old,
13529 				     const struct kvm_memory_slot *new,
13530 				     enum kvm_mr_change change)
13531 {
13532 	u32 old_flags = old ? old->flags : 0;
13533 	u32 new_flags = new ? new->flags : 0;
13534 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
13535 
13536 	/*
13537 	 * Update CPU dirty logging if dirty logging is being toggled.  This
13538 	 * applies to all operations.
13539 	 */
13540 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
13541 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
13542 
13543 	/*
13544 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
13545 	 * made writable) or CREATE/MOVE/DELETE of a slot.
13546 	 *
13547 	 * For a memslot with dirty logging disabled:
13548 	 * CREATE:      No dirty mappings will already exist.
13549 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
13550 	 *		kvm_arch_flush_shadow_memslot()
13551 	 *
13552 	 * For a memslot with dirty logging enabled:
13553 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
13554 	 *		and no dirty bits to clear.
13555 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
13556 	 *		kvm_arch_flush_shadow_memslot().
13557 	 */
13558 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
13559 		return;
13560 
13561 	/*
13562 	 * READONLY and non-flags changes were filtered out above, and the only
13563 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
13564 	 * logging isn't being toggled on or off.
13565 	 */
13566 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
13567 		return;
13568 
13569 	if (!log_dirty_pages) {
13570 		/*
13571 		 * Recover huge page mappings in the slot now that dirty logging
13572 		 * is disabled, i.e. now that KVM does not have to track guest
13573 		 * writes at 4KiB granularity.
13574 		 *
13575 		 * Dirty logging might be disabled by userspace if an ongoing VM
13576 		 * live migration is cancelled and the VM must continue running
13577 		 * on the source.
13578 		 */
13579 		kvm_mmu_recover_huge_pages(kvm, new);
13580 	} else {
13581 		/*
13582 		 * Initially-all-set does not require write protecting any page,
13583 		 * because they're all assumed to be dirty.
13584 		 */
13585 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
13586 			return;
13587 
13588 		if (READ_ONCE(eager_page_split))
13589 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
13590 
13591 		if (kvm->arch.cpu_dirty_log_size) {
13592 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
13593 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
13594 		} else {
13595 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
13596 		}
13597 
13598 		/*
13599 		 * Unconditionally flush the TLBs after enabling dirty logging.
13600 		 * A flush is almost always going to be necessary (see below),
13601 		 * and unconditionally flushing allows the helpers to omit
13602 		 * the subtly complex checks when removing write access.
13603 		 *
13604 		 * Do the flush outside of mmu_lock to reduce the amount of
13605 		 * time mmu_lock is held.  Flushing after dropping mmu_lock is
13606 		 * safe as KVM only needs to guarantee the slot is fully
13607 		 * write-protected before returning to userspace, i.e. before
13608 		 * userspace can consume the dirty status.
13609 		 *
13610 		 * Flushing outside of mmu_lock requires KVM to be careful when
13611 		 * making decisions based on writable status of an SPTE, e.g. a
13612 		 * !writable SPTE doesn't guarantee a CPU can't perform writes.
13613 		 *
13614 		 * Specifically, KVM also write-protects guest page tables to
13615 		 * monitor changes when using shadow paging, and must guarantee
13616 		 * no CPUs can write to those page before mmu_lock is dropped.
13617 		 * Because CPUs may have stale TLB entries at this point, a
13618 		 * !writable SPTE doesn't guarantee CPUs can't perform writes.
13619 		 *
13620 		 * KVM also allows making SPTES writable outside of mmu_lock,
13621 		 * e.g. to allow dirty logging without taking mmu_lock.
13622 		 *
13623 		 * To handle these scenarios, KVM uses a separate software-only
13624 		 * bit (MMU-writable) to track if a SPTE is !writable due to
13625 		 * a guest page table being write-protected (KVM clears the
13626 		 * MMU-writable flag when write-protecting for shadow paging).
13627 		 *
13628 		 * The use of MMU-writable is also the primary motivation for
13629 		 * the unconditional flush.  Because KVM must guarantee that a
13630 		 * CPU doesn't contain stale, writable TLB entries for a
13631 		 * !MMU-writable SPTE, KVM must flush if it encounters any
13632 		 * MMU-writable SPTE regardless of whether the actual hardware
13633 		 * writable bit was set.  I.e. KVM is almost guaranteed to need
13634 		 * to flush, while unconditionally flushing allows the "remove
13635 		 * write access" helpers to ignore MMU-writable entirely.
13636 		 *
13637 		 * See is_writable_pte() for more details (the case involving
13638 		 * access-tracked SPTEs is particularly relevant).
13639 		 */
13640 		kvm_flush_remote_tlbs_memslot(kvm, new);
13641 	}
13642 }
13643 
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)13644 void kvm_arch_commit_memory_region(struct kvm *kvm,
13645 				struct kvm_memory_slot *old,
13646 				const struct kvm_memory_slot *new,
13647 				enum kvm_mr_change change)
13648 {
13649 	if (change == KVM_MR_DELETE)
13650 		kvm_page_track_delete_slot(kvm, old);
13651 
13652 	if (!kvm->arch.n_requested_mmu_pages &&
13653 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
13654 		unsigned long nr_mmu_pages;
13655 
13656 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
13657 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
13658 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
13659 	}
13660 
13661 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
13662 
13663 	/* Free the arrays associated with the old memslot. */
13664 	if (change == KVM_MR_MOVE)
13665 		kvm_arch_free_memslot(kvm, old);
13666 }
13667 
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)13668 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13669 {
13670 	WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu));
13671 
13672 	if (vcpu->arch.guest_state_protected)
13673 		return true;
13674 
13675 	return kvm_x86_call(get_cpl)(vcpu) == 0;
13676 }
13677 
kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)13678 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13679 {
13680 	WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu));
13681 
13682 	if (vcpu->arch.guest_state_protected)
13683 		return 0;
13684 
13685 	return kvm_rip_read(vcpu);
13686 }
13687 
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)13688 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13689 {
13690 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13691 }
13692 
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)13693 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13694 {
13695 	return kvm_x86_call(interrupt_allowed)(vcpu, false);
13696 }
13697 
kvm_get_linear_rip(struct kvm_vcpu * vcpu)13698 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13699 {
13700 	/* Can't read the RIP when guest state is protected, just return 0 */
13701 	if (vcpu->arch.guest_state_protected)
13702 		return 0;
13703 
13704 	if (is_64_bit_mode(vcpu))
13705 		return kvm_rip_read(vcpu);
13706 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13707 		     kvm_rip_read(vcpu));
13708 }
13709 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_linear_rip);
13710 
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)13711 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13712 {
13713 	return kvm_get_linear_rip(vcpu) == linear_rip;
13714 }
13715 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_is_linear_rip);
13716 
kvm_get_rflags(struct kvm_vcpu * vcpu)13717 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13718 {
13719 	unsigned long rflags;
13720 
13721 	rflags = kvm_x86_call(get_rflags)(vcpu);
13722 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13723 		rflags &= ~X86_EFLAGS_TF;
13724 	return rflags;
13725 }
13726 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_rflags);
13727 
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13728 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13729 {
13730 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13731 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13732 		rflags |= X86_EFLAGS_TF;
13733 	kvm_x86_call(set_rflags)(vcpu, rflags);
13734 }
13735 
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13736 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13737 {
13738 	__kvm_set_rflags(vcpu, rflags);
13739 	kvm_make_request(KVM_REQ_EVENT, vcpu);
13740 }
13741 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_rflags);
13742 
kvm_async_pf_hash_fn(gfn_t gfn)13743 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13744 {
13745 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13746 
13747 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13748 }
13749 
kvm_async_pf_next_probe(u32 key)13750 static inline u32 kvm_async_pf_next_probe(u32 key)
13751 {
13752 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13753 }
13754 
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13755 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13756 {
13757 	u32 key = kvm_async_pf_hash_fn(gfn);
13758 
13759 	while (vcpu->arch.apf.gfns[key] != ~0)
13760 		key = kvm_async_pf_next_probe(key);
13761 
13762 	vcpu->arch.apf.gfns[key] = gfn;
13763 }
13764 
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)13765 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13766 {
13767 	int i;
13768 	u32 key = kvm_async_pf_hash_fn(gfn);
13769 
13770 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
13771 		     (vcpu->arch.apf.gfns[key] != gfn &&
13772 		      vcpu->arch.apf.gfns[key] != ~0); i++)
13773 		key = kvm_async_pf_next_probe(key);
13774 
13775 	return key;
13776 }
13777 
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13778 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13779 {
13780 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13781 }
13782 
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13783 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13784 {
13785 	u32 i, j, k;
13786 
13787 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13788 
13789 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13790 		return;
13791 
13792 	while (true) {
13793 		vcpu->arch.apf.gfns[i] = ~0;
13794 		do {
13795 			j = kvm_async_pf_next_probe(j);
13796 			if (vcpu->arch.apf.gfns[j] == ~0)
13797 				return;
13798 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13799 			/*
13800 			 * k lies cyclically in ]i,j]
13801 			 * |    i.k.j |
13802 			 * |....j i.k.| or  |.k..j i...|
13803 			 */
13804 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13805 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13806 		i = j;
13807 	}
13808 }
13809 
apf_put_user_notpresent(struct kvm_vcpu * vcpu)13810 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13811 {
13812 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13813 
13814 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13815 				      sizeof(reason));
13816 }
13817 
apf_put_user_ready(struct kvm_vcpu * vcpu,u32 token)13818 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13819 {
13820 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13821 
13822 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13823 					     &token, offset, sizeof(token));
13824 }
13825 
apf_pageready_slot_free(struct kvm_vcpu * vcpu)13826 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13827 {
13828 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13829 	u32 val;
13830 
13831 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13832 					 &val, offset, sizeof(val)))
13833 		return false;
13834 
13835 	return !val;
13836 }
13837 
kvm_can_deliver_async_pf(struct kvm_vcpu * vcpu)13838 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13839 {
13840 
13841 	if (!kvm_pv_async_pf_enabled(vcpu))
13842 		return false;
13843 
13844 	if (!vcpu->arch.apf.send_always &&
13845 	    (vcpu->arch.guest_state_protected || !kvm_x86_call(get_cpl)(vcpu)))
13846 		return false;
13847 
13848 	if (is_guest_mode(vcpu)) {
13849 		/*
13850 		 * L1 needs to opt into the special #PF vmexits that are
13851 		 * used to deliver async page faults.
13852 		 */
13853 		return vcpu->arch.apf.delivery_as_pf_vmexit;
13854 	} else {
13855 		/*
13856 		 * Play it safe in case the guest temporarily disables paging.
13857 		 * The real mode IDT in particular is unlikely to have a #PF
13858 		 * exception setup.
13859 		 */
13860 		return is_paging(vcpu);
13861 	}
13862 }
13863 
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)13864 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13865 {
13866 	if (unlikely(!lapic_in_kernel(vcpu) ||
13867 		     kvm_event_needs_reinjection(vcpu) ||
13868 		     kvm_is_exception_pending(vcpu)))
13869 		return false;
13870 
13871 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13872 		return false;
13873 
13874 	/*
13875 	 * If interrupts are off we cannot even use an artificial
13876 	 * halt state.
13877 	 */
13878 	return kvm_arch_interrupt_allowed(vcpu);
13879 }
13880 
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13881 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13882 				     struct kvm_async_pf *work)
13883 {
13884 	struct x86_exception fault;
13885 
13886 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13887 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13888 
13889 	if (kvm_can_deliver_async_pf(vcpu) &&
13890 	    !apf_put_user_notpresent(vcpu)) {
13891 		fault.vector = PF_VECTOR;
13892 		fault.error_code_valid = true;
13893 		fault.error_code = 0;
13894 		fault.nested_page_fault = false;
13895 		fault.address = work->arch.token;
13896 		fault.async_page_fault = true;
13897 		kvm_inject_page_fault(vcpu, &fault);
13898 		return true;
13899 	} else {
13900 		/*
13901 		 * It is not possible to deliver a paravirtualized asynchronous
13902 		 * page fault, but putting the guest in an artificial halt state
13903 		 * can be beneficial nevertheless: if an interrupt arrives, we
13904 		 * can deliver it timely and perhaps the guest will schedule
13905 		 * another process.  When the instruction that triggered a page
13906 		 * fault is retried, hopefully the page will be ready in the host.
13907 		 */
13908 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13909 		return false;
13910 	}
13911 }
13912 
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13913 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13914 				 struct kvm_async_pf *work)
13915 {
13916 	struct kvm_lapic_irq irq = {
13917 		.delivery_mode = APIC_DM_FIXED,
13918 		.vector = vcpu->arch.apf.vec
13919 	};
13920 
13921 	if (work->wakeup_all)
13922 		work->arch.token = ~0; /* broadcast wakeup */
13923 	else
13924 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13925 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13926 
13927 	if ((work->wakeup_all || work->notpresent_injected) &&
13928 	    kvm_pv_async_pf_enabled(vcpu) &&
13929 	    !apf_put_user_ready(vcpu, work->arch.token)) {
13930 		WRITE_ONCE(vcpu->arch.apf.pageready_pending, true);
13931 		kvm_apic_set_irq(vcpu, &irq, NULL);
13932 	}
13933 
13934 	vcpu->arch.apf.halted = false;
13935 	kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
13936 }
13937 
kvm_arch_async_page_present_queued(struct kvm_vcpu * vcpu)13938 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13939 {
13940 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
13941 
13942 	/* Pairs with smp_store_mb() in kvm_set_msr_common(). */
13943 	smp_mb__after_atomic();
13944 
13945 	if (!READ_ONCE(vcpu->arch.apf.pageready_pending))
13946 		kvm_vcpu_kick(vcpu);
13947 }
13948 
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)13949 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13950 {
13951 	if (!kvm_pv_async_pf_enabled(vcpu))
13952 		return true;
13953 	else
13954 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13955 }
13956 
kvm_noncoherent_dma_assignment_start_or_stop(struct kvm * kvm)13957 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13958 {
13959 	/*
13960 	 * Non-coherent DMA assignment and de-assignment may affect whether or
13961 	 * not KVM honors guest PAT, and thus may cause changes in EPT SPTEs
13962 	 * due to toggling the "ignore PAT" bit.  Zap all SPTEs when the first
13963 	 * (or last) non-coherent device is (un)registered to so that new SPTEs
13964 	 * with the correct "ignore guest PAT" setting are created.
13965 	 *
13966 	 * If KVM always honors guest PAT, however, there is nothing to do.
13967 	 */
13968 	if (kvm_check_has_quirk(kvm, KVM_X86_QUIRK_IGNORE_GUEST_PAT))
13969 		kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13970 }
13971 
kvm_arch_register_noncoherent_dma(struct kvm * kvm)13972 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13973 {
13974 	if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13975 		kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13976 }
13977 
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)13978 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13979 {
13980 	if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13981 		kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13982 }
13983 
kvm_arch_has_noncoherent_dma(struct kvm * kvm)13984 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13985 {
13986 	return atomic_read(&kvm->arch.noncoherent_dma_count);
13987 }
13988 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_arch_has_noncoherent_dma);
13989 
kvm_arch_no_poll(struct kvm_vcpu * vcpu)13990 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13991 {
13992 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13993 }
13994 
13995 #ifdef CONFIG_KVM_GUEST_MEMFD
13996 /*
13997  * KVM doesn't yet support initializing guest_memfd memory as shared for VMs
13998  * with private memory (the private vs. shared tracking needs to be moved into
13999  * guest_memfd).
14000  */
kvm_arch_supports_gmem_init_shared(struct kvm * kvm)14001 bool kvm_arch_supports_gmem_init_shared(struct kvm *kvm)
14002 {
14003 	return !kvm_arch_has_private_mem(kvm);
14004 }
14005 
14006 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
kvm_arch_gmem_prepare(struct kvm * kvm,gfn_t gfn,kvm_pfn_t pfn,int max_order)14007 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order)
14008 {
14009 	return kvm_x86_call(gmem_prepare)(kvm, pfn, gfn, max_order);
14010 }
14011 #endif
14012 
14013 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
kvm_arch_gmem_invalidate(kvm_pfn_t start,kvm_pfn_t end)14014 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end)
14015 {
14016 	kvm_x86_call(gmem_invalidate)(start, end);
14017 }
14018 #endif
14019 #endif
14020 
kvm_spec_ctrl_test_value(u64 value)14021 int kvm_spec_ctrl_test_value(u64 value)
14022 {
14023 	/*
14024 	 * test that setting IA32_SPEC_CTRL to given value
14025 	 * is allowed by the host processor
14026 	 */
14027 
14028 	u64 saved_value;
14029 	unsigned long flags;
14030 	int ret = 0;
14031 
14032 	local_irq_save(flags);
14033 
14034 	if (rdmsrq_safe(MSR_IA32_SPEC_CTRL, &saved_value))
14035 		ret = 1;
14036 	else if (wrmsrq_safe(MSR_IA32_SPEC_CTRL, value))
14037 		ret = 1;
14038 	else
14039 		wrmsrq(MSR_IA32_SPEC_CTRL, saved_value);
14040 
14041 	local_irq_restore(flags);
14042 
14043 	return ret;
14044 }
14045 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_spec_ctrl_test_value);
14046 
kvm_fixup_and_inject_pf_error(struct kvm_vcpu * vcpu,gva_t gva,u16 error_code)14047 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
14048 {
14049 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
14050 	struct x86_exception fault;
14051 	u64 access = error_code &
14052 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
14053 
14054 	if (!(error_code & PFERR_PRESENT_MASK) ||
14055 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
14056 		/*
14057 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
14058 		 * tables probably do not match the TLB.  Just proceed
14059 		 * with the error code that the processor gave.
14060 		 */
14061 		fault.vector = PF_VECTOR;
14062 		fault.error_code_valid = true;
14063 		fault.error_code = error_code;
14064 		fault.nested_page_fault = false;
14065 		fault.address = gva;
14066 		fault.async_page_fault = false;
14067 	}
14068 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
14069 }
14070 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_fixup_and_inject_pf_error);
14071 
14072 /*
14073  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
14074  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
14075  * indicates whether exit to userspace is needed.
14076  */
kvm_handle_memory_failure(struct kvm_vcpu * vcpu,int r,struct x86_exception * e)14077 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
14078 			      struct x86_exception *e)
14079 {
14080 	if (r == X86EMUL_PROPAGATE_FAULT) {
14081 		if (KVM_BUG_ON(!e, vcpu->kvm))
14082 			return -EIO;
14083 
14084 		kvm_inject_emulated_page_fault(vcpu, e);
14085 		return 1;
14086 	}
14087 
14088 	/*
14089 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
14090 	 * while handling a VMX instruction KVM could've handled the request
14091 	 * correctly by exiting to userspace and performing I/O but there
14092 	 * doesn't seem to be a real use-case behind such requests, just return
14093 	 * KVM_EXIT_INTERNAL_ERROR for now.
14094 	 */
14095 	kvm_prepare_emulation_failure_exit(vcpu);
14096 
14097 	return 0;
14098 }
14099 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_handle_memory_failure);
14100 
kvm_handle_invpcid(struct kvm_vcpu * vcpu,unsigned long type,gva_t gva)14101 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
14102 {
14103 	bool pcid_enabled;
14104 	struct x86_exception e;
14105 	struct {
14106 		u64 pcid;
14107 		u64 gla;
14108 	} operand;
14109 	int r;
14110 
14111 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
14112 	if (r != X86EMUL_CONTINUE)
14113 		return kvm_handle_memory_failure(vcpu, r, &e);
14114 
14115 	if (operand.pcid >> 12 != 0) {
14116 		kvm_inject_gp(vcpu, 0);
14117 		return 1;
14118 	}
14119 
14120 	pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
14121 
14122 	switch (type) {
14123 	case INVPCID_TYPE_INDIV_ADDR:
14124 		/*
14125 		 * LAM doesn't apply to addresses that are inputs to TLB
14126 		 * invalidation.
14127 		 */
14128 		if ((!pcid_enabled && (operand.pcid != 0)) ||
14129 		    is_noncanonical_invlpg_address(operand.gla, vcpu)) {
14130 			kvm_inject_gp(vcpu, 0);
14131 			return 1;
14132 		}
14133 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
14134 		return kvm_skip_emulated_instruction(vcpu);
14135 
14136 	case INVPCID_TYPE_SINGLE_CTXT:
14137 		if (!pcid_enabled && (operand.pcid != 0)) {
14138 			kvm_inject_gp(vcpu, 0);
14139 			return 1;
14140 		}
14141 
14142 		kvm_invalidate_pcid(vcpu, operand.pcid);
14143 		return kvm_skip_emulated_instruction(vcpu);
14144 
14145 	case INVPCID_TYPE_ALL_NON_GLOBAL:
14146 		/*
14147 		 * Currently, KVM doesn't mark global entries in the shadow
14148 		 * page tables, so a non-global flush just degenerates to a
14149 		 * global flush. If needed, we could optimize this later by
14150 		 * keeping track of global entries in shadow page tables.
14151 		 */
14152 
14153 		fallthrough;
14154 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
14155 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
14156 		return kvm_skip_emulated_instruction(vcpu);
14157 
14158 	default:
14159 		kvm_inject_gp(vcpu, 0);
14160 		return 1;
14161 	}
14162 }
14163 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_handle_invpcid);
14164 
complete_sev_es_emulated_mmio(struct kvm_vcpu * vcpu)14165 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
14166 {
14167 	struct kvm_run *run = vcpu->run;
14168 	struct kvm_mmio_fragment *frag;
14169 	unsigned int len;
14170 
14171 	BUG_ON(!vcpu->mmio_needed);
14172 
14173 	/* Complete previous fragment */
14174 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
14175 	len = min(8u, frag->len);
14176 	if (!vcpu->mmio_is_write)
14177 		memcpy(frag->data, run->mmio.data, len);
14178 
14179 	if (frag->len <= 8) {
14180 		/* Switch to the next fragment. */
14181 		frag++;
14182 		vcpu->mmio_cur_fragment++;
14183 	} else {
14184 		/* Go forward to the next mmio piece. */
14185 		frag->data += len;
14186 		frag->gpa += len;
14187 		frag->len -= len;
14188 	}
14189 
14190 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
14191 		vcpu->mmio_needed = 0;
14192 
14193 		// VMG change, at this point, we're always done
14194 		// RIP has already been advanced
14195 		return 1;
14196 	}
14197 
14198 	// More MMIO is needed
14199 	run->mmio.phys_addr = frag->gpa;
14200 	run->mmio.len = min(8u, frag->len);
14201 	run->mmio.is_write = vcpu->mmio_is_write;
14202 	if (run->mmio.is_write)
14203 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
14204 	run->exit_reason = KVM_EXIT_MMIO;
14205 
14206 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
14207 
14208 	return 0;
14209 }
14210 
kvm_sev_es_mmio_write(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)14211 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
14212 			  void *data)
14213 {
14214 	int handled;
14215 	struct kvm_mmio_fragment *frag;
14216 
14217 	if (!data)
14218 		return -EINVAL;
14219 
14220 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
14221 	if (handled == bytes)
14222 		return 1;
14223 
14224 	bytes -= handled;
14225 	gpa += handled;
14226 	data += handled;
14227 
14228 	/*TODO: Check if need to increment number of frags */
14229 	frag = vcpu->mmio_fragments;
14230 	vcpu->mmio_nr_fragments = 1;
14231 	frag->len = bytes;
14232 	frag->gpa = gpa;
14233 	frag->data = data;
14234 
14235 	vcpu->mmio_needed = 1;
14236 	vcpu->mmio_cur_fragment = 0;
14237 
14238 	vcpu->run->mmio.phys_addr = gpa;
14239 	vcpu->run->mmio.len = min(8u, frag->len);
14240 	vcpu->run->mmio.is_write = 1;
14241 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
14242 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
14243 
14244 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
14245 
14246 	return 0;
14247 }
14248 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_sev_es_mmio_write);
14249 
kvm_sev_es_mmio_read(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)14250 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
14251 			 void *data)
14252 {
14253 	int handled;
14254 	struct kvm_mmio_fragment *frag;
14255 
14256 	if (!data)
14257 		return -EINVAL;
14258 
14259 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
14260 	if (handled == bytes)
14261 		return 1;
14262 
14263 	bytes -= handled;
14264 	gpa += handled;
14265 	data += handled;
14266 
14267 	/*TODO: Check if need to increment number of frags */
14268 	frag = vcpu->mmio_fragments;
14269 	vcpu->mmio_nr_fragments = 1;
14270 	frag->len = bytes;
14271 	frag->gpa = gpa;
14272 	frag->data = data;
14273 
14274 	vcpu->mmio_needed = 1;
14275 	vcpu->mmio_cur_fragment = 0;
14276 
14277 	vcpu->run->mmio.phys_addr = gpa;
14278 	vcpu->run->mmio.len = min(8u, frag->len);
14279 	vcpu->run->mmio.is_write = 0;
14280 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
14281 
14282 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
14283 
14284 	return 0;
14285 }
14286 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_sev_es_mmio_read);
14287 
advance_sev_es_emulated_pio(struct kvm_vcpu * vcpu,unsigned count,int size)14288 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
14289 {
14290 	vcpu->arch.sev_pio_count -= count;
14291 	vcpu->arch.sev_pio_data += count * size;
14292 }
14293 
14294 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
14295 			   unsigned int port);
14296 
complete_sev_es_emulated_outs(struct kvm_vcpu * vcpu)14297 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
14298 {
14299 	int size = vcpu->arch.pio.size;
14300 	int port = vcpu->arch.pio.port;
14301 
14302 	vcpu->arch.pio.count = 0;
14303 	if (vcpu->arch.sev_pio_count)
14304 		return kvm_sev_es_outs(vcpu, size, port);
14305 	return 1;
14306 }
14307 
kvm_sev_es_outs(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)14308 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
14309 			   unsigned int port)
14310 {
14311 	for (;;) {
14312 		unsigned int count =
14313 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
14314 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
14315 
14316 		/* memcpy done already by emulator_pio_out.  */
14317 		advance_sev_es_emulated_pio(vcpu, count, size);
14318 		if (!ret)
14319 			break;
14320 
14321 		/* Emulation done by the kernel.  */
14322 		if (!vcpu->arch.sev_pio_count)
14323 			return 1;
14324 	}
14325 
14326 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
14327 	return 0;
14328 }
14329 
14330 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
14331 			  unsigned int port);
14332 
complete_sev_es_emulated_ins(struct kvm_vcpu * vcpu)14333 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
14334 {
14335 	unsigned count = vcpu->arch.pio.count;
14336 	int size = vcpu->arch.pio.size;
14337 	int port = vcpu->arch.pio.port;
14338 
14339 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
14340 	advance_sev_es_emulated_pio(vcpu, count, size);
14341 	if (vcpu->arch.sev_pio_count)
14342 		return kvm_sev_es_ins(vcpu, size, port);
14343 	return 1;
14344 }
14345 
kvm_sev_es_ins(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)14346 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
14347 			  unsigned int port)
14348 {
14349 	for (;;) {
14350 		unsigned int count =
14351 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
14352 		if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
14353 			break;
14354 
14355 		/* Emulation done by the kernel.  */
14356 		advance_sev_es_emulated_pio(vcpu, count, size);
14357 		if (!vcpu->arch.sev_pio_count)
14358 			return 1;
14359 	}
14360 
14361 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
14362 	return 0;
14363 }
14364 
kvm_sev_es_string_io(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port,void * data,unsigned int count,int in)14365 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
14366 			 unsigned int port, void *data,  unsigned int count,
14367 			 int in)
14368 {
14369 	vcpu->arch.sev_pio_data = data;
14370 	vcpu->arch.sev_pio_count = count;
14371 	return in ? kvm_sev_es_ins(vcpu, size, port)
14372 		  : kvm_sev_es_outs(vcpu, size, port);
14373 }
14374 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_sev_es_string_io);
14375 
14376 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
14377 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
14378 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_mmio);
14379 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
14380 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
14381 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
14382 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
14383 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
14384 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
14385 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
14386 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
14387 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
14388 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
14389 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
14390 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
14391 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
14392 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
14393 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
14394 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
14395 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
14396 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
14397 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
14398 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
14399 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
14400 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
14401 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
14402 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
14403 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
14404 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
14405 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_rmp_fault);
14406 
kvm_x86_init(void)14407 static int __init kvm_x86_init(void)
14408 {
14409 	kvm_init_xstate_sizes();
14410 
14411 	kvm_mmu_x86_module_init();
14412 	mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
14413 	return 0;
14414 }
14415 module_init(kvm_x86_init);
14416 
kvm_x86_exit(void)14417 static void __exit kvm_x86_exit(void)
14418 {
14419 	WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu));
14420 }
14421 module_exit(kvm_x86_exit);
14422