1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * net/sunrpc/cache.c 4 * 5 * Generic code for various authentication-related caches 6 * used by sunrpc clients and servers. 7 * 8 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au> 9 */ 10 11 #include <linux/types.h> 12 #include <linux/fs.h> 13 #include <linux/file.h> 14 #include <linux/hex.h> 15 #include <linux/slab.h> 16 #include <linux/signal.h> 17 #include <linux/sched.h> 18 #include <linux/kmod.h> 19 #include <linux/list.h> 20 #include <linux/module.h> 21 #include <linux/ctype.h> 22 #include <linux/string_helpers.h> 23 #include <linux/uaccess.h> 24 #include <linux/poll.h> 25 #include <linux/seq_file.h> 26 #include <linux/proc_fs.h> 27 #include <linux/net.h> 28 #include <linux/workqueue.h> 29 #include <linux/mutex.h> 30 #include <linux/pagemap.h> 31 #include <asm/ioctls.h> 32 #include <linux/sunrpc/types.h> 33 #include <linux/sunrpc/cache.h> 34 #include <linux/sunrpc/stats.h> 35 #include <linux/sunrpc/rpc_pipe_fs.h> 36 #include <trace/events/sunrpc.h> 37 38 #include "netns.h" 39 #include "fail.h" 40 41 #define RPCDBG_FACILITY RPCDBG_CACHE 42 43 static bool cache_defer_req(struct cache_req *req, struct cache_head *item); 44 static void cache_revisit_request(struct cache_head *item); 45 46 static void cache_init(struct cache_head *h, struct cache_detail *detail) 47 { 48 time64_t now = seconds_since_boot(); 49 INIT_HLIST_NODE(&h->cache_list); 50 h->flags = 0; 51 kref_init(&h->ref); 52 h->expiry_time = now + CACHE_NEW_EXPIRY; 53 if (now <= detail->flush_time) 54 /* ensure it isn't already expired */ 55 now = detail->flush_time + 1; 56 h->last_refresh = now; 57 } 58 59 static void cache_fresh_unlocked(struct cache_head *head, 60 struct cache_detail *detail); 61 62 static struct cache_head *sunrpc_cache_find_rcu(struct cache_detail *detail, 63 struct cache_head *key, 64 int hash) 65 { 66 struct hlist_head *head = &detail->hash_table[hash]; 67 struct cache_head *tmp; 68 69 rcu_read_lock(); 70 hlist_for_each_entry_rcu(tmp, head, cache_list) { 71 if (!detail->match(tmp, key)) 72 continue; 73 if (test_bit(CACHE_VALID, &tmp->flags) && 74 cache_is_expired(detail, tmp)) 75 continue; 76 tmp = cache_get_rcu(tmp); 77 rcu_read_unlock(); 78 return tmp; 79 } 80 rcu_read_unlock(); 81 return NULL; 82 } 83 84 static void sunrpc_begin_cache_remove_entry(struct cache_head *ch, 85 struct cache_detail *cd) 86 { 87 /* Must be called under cd->hash_lock */ 88 hlist_del_init_rcu(&ch->cache_list); 89 set_bit(CACHE_CLEANED, &ch->flags); 90 cd->entries --; 91 } 92 93 static void sunrpc_end_cache_remove_entry(struct cache_head *ch, 94 struct cache_detail *cd) 95 { 96 cache_fresh_unlocked(ch, cd); 97 cache_put(ch, cd); 98 } 99 100 static struct cache_head *sunrpc_cache_add_entry(struct cache_detail *detail, 101 struct cache_head *key, 102 int hash) 103 { 104 struct cache_head *new, *tmp, *freeme = NULL; 105 struct hlist_head *head = &detail->hash_table[hash]; 106 107 new = detail->alloc(); 108 if (!new) 109 return NULL; 110 /* must fully initialise 'new', else 111 * we might get lose if we need to 112 * cache_put it soon. 113 */ 114 cache_init(new, detail); 115 detail->init(new, key); 116 117 spin_lock(&detail->hash_lock); 118 119 /* check if entry appeared while we slept */ 120 hlist_for_each_entry_rcu(tmp, head, cache_list, 121 lockdep_is_held(&detail->hash_lock)) { 122 if (!detail->match(tmp, key)) 123 continue; 124 if (test_bit(CACHE_VALID, &tmp->flags) && 125 cache_is_expired(detail, tmp)) { 126 sunrpc_begin_cache_remove_entry(tmp, detail); 127 trace_cache_entry_expired(detail, tmp); 128 freeme = tmp; 129 break; 130 } 131 cache_get(tmp); 132 spin_unlock(&detail->hash_lock); 133 cache_put(new, detail); 134 return tmp; 135 } 136 137 hlist_add_head_rcu(&new->cache_list, head); 138 detail->entries++; 139 if (detail->nextcheck > new->expiry_time) 140 detail->nextcheck = new->expiry_time + 1; 141 cache_get(new); 142 spin_unlock(&detail->hash_lock); 143 144 if (freeme) 145 sunrpc_end_cache_remove_entry(freeme, detail); 146 return new; 147 } 148 149 struct cache_head *sunrpc_cache_lookup_rcu(struct cache_detail *detail, 150 struct cache_head *key, int hash) 151 { 152 struct cache_head *ret; 153 154 ret = sunrpc_cache_find_rcu(detail, key, hash); 155 if (ret) 156 return ret; 157 /* Didn't find anything, insert an empty entry */ 158 return sunrpc_cache_add_entry(detail, key, hash); 159 } 160 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup_rcu); 161 162 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch); 163 164 static void cache_fresh_locked(struct cache_head *head, time64_t expiry, 165 struct cache_detail *detail) 166 { 167 time64_t now = seconds_since_boot(); 168 if (now <= detail->flush_time) 169 /* ensure it isn't immediately treated as expired */ 170 now = detail->flush_time + 1; 171 head->expiry_time = expiry; 172 head->last_refresh = now; 173 smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */ 174 set_bit(CACHE_VALID, &head->flags); 175 } 176 177 static void cache_fresh_unlocked(struct cache_head *head, 178 struct cache_detail *detail) 179 { 180 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) { 181 cache_revisit_request(head); 182 cache_dequeue(detail, head); 183 } 184 } 185 186 static void cache_make_negative(struct cache_detail *detail, 187 struct cache_head *h) 188 { 189 set_bit(CACHE_NEGATIVE, &h->flags); 190 trace_cache_entry_make_negative(detail, h); 191 } 192 193 static void cache_entry_update(struct cache_detail *detail, 194 struct cache_head *h, 195 struct cache_head *new) 196 { 197 if (!test_bit(CACHE_NEGATIVE, &new->flags)) { 198 detail->update(h, new); 199 trace_cache_entry_update(detail, h); 200 } else { 201 cache_make_negative(detail, h); 202 } 203 } 204 205 struct cache_head *sunrpc_cache_update(struct cache_detail *detail, 206 struct cache_head *new, struct cache_head *old, int hash) 207 { 208 /* The 'old' entry is to be replaced by 'new'. 209 * If 'old' is not VALID, we update it directly, 210 * otherwise we need to replace it 211 */ 212 struct cache_head *tmp; 213 214 if (!test_bit(CACHE_VALID, &old->flags)) { 215 spin_lock(&detail->hash_lock); 216 if (!test_bit(CACHE_VALID, &old->flags)) { 217 cache_entry_update(detail, old, new); 218 cache_fresh_locked(old, new->expiry_time, detail); 219 spin_unlock(&detail->hash_lock); 220 cache_fresh_unlocked(old, detail); 221 return old; 222 } 223 spin_unlock(&detail->hash_lock); 224 } 225 /* We need to insert a new entry */ 226 tmp = detail->alloc(); 227 if (!tmp) { 228 cache_put(old, detail); 229 return NULL; 230 } 231 cache_init(tmp, detail); 232 detail->init(tmp, old); 233 234 spin_lock(&detail->hash_lock); 235 cache_entry_update(detail, tmp, new); 236 hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]); 237 detail->entries++; 238 cache_get(tmp); 239 cache_fresh_locked(tmp, new->expiry_time, detail); 240 cache_fresh_locked(old, 0, detail); 241 spin_unlock(&detail->hash_lock); 242 cache_fresh_unlocked(tmp, detail); 243 cache_fresh_unlocked(old, detail); 244 cache_put(old, detail); 245 return tmp; 246 } 247 EXPORT_SYMBOL_GPL(sunrpc_cache_update); 248 249 static inline int cache_is_valid(struct cache_head *h) 250 { 251 if (!test_bit(CACHE_VALID, &h->flags)) 252 return -EAGAIN; 253 else { 254 /* entry is valid */ 255 if (test_bit(CACHE_NEGATIVE, &h->flags)) 256 return -ENOENT; 257 else { 258 /* 259 * In combination with write barrier in 260 * sunrpc_cache_update, ensures that anyone 261 * using the cache entry after this sees the 262 * updated contents: 263 */ 264 smp_rmb(); 265 return 0; 266 } 267 } 268 } 269 270 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h) 271 { 272 int rv; 273 274 spin_lock(&detail->hash_lock); 275 rv = cache_is_valid(h); 276 if (rv == -EAGAIN) { 277 cache_make_negative(detail, h); 278 cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY, 279 detail); 280 rv = -ENOENT; 281 } 282 spin_unlock(&detail->hash_lock); 283 cache_fresh_unlocked(h, detail); 284 return rv; 285 } 286 287 int cache_check_rcu(struct cache_detail *detail, 288 struct cache_head *h, struct cache_req *rqstp) 289 { 290 int rv; 291 time64_t refresh_age, age; 292 293 /* First decide return status as best we can */ 294 rv = cache_is_valid(h); 295 296 /* now see if we want to start an upcall */ 297 refresh_age = (h->expiry_time - h->last_refresh); 298 age = seconds_since_boot() - h->last_refresh; 299 300 if (rqstp == NULL) { 301 if (rv == -EAGAIN) 302 rv = -ENOENT; 303 } else if (rv == -EAGAIN || 304 (h->expiry_time != 0 && age > refresh_age/2)) { 305 dprintk("RPC: Want update, refage=%lld, age=%lld\n", 306 refresh_age, age); 307 switch (detail->cache_upcall(detail, h)) { 308 case -EINVAL: 309 rv = try_to_negate_entry(detail, h); 310 break; 311 case -EAGAIN: 312 cache_fresh_unlocked(h, detail); 313 break; 314 } 315 } 316 317 if (rv == -EAGAIN) { 318 if (!cache_defer_req(rqstp, h)) { 319 /* 320 * Request was not deferred; handle it as best 321 * we can ourselves: 322 */ 323 rv = cache_is_valid(h); 324 if (rv == -EAGAIN) 325 rv = -ETIMEDOUT; 326 } 327 } 328 329 return rv; 330 } 331 EXPORT_SYMBOL_GPL(cache_check_rcu); 332 333 /* 334 * This is the generic cache management routine for all 335 * the authentication caches. 336 * It checks the currency of a cache item and will (later) 337 * initiate an upcall to fill it if needed. 338 * 339 * 340 * Returns 0 if the cache_head can be used, or cache_puts it and returns 341 * -EAGAIN if upcall is pending and request has been queued 342 * -ETIMEDOUT if upcall failed or request could not be queue or 343 * upcall completed but item is still invalid (implying that 344 * the cache item has been replaced with a newer one). 345 * -ENOENT if cache entry was negative 346 */ 347 int cache_check(struct cache_detail *detail, 348 struct cache_head *h, struct cache_req *rqstp) 349 { 350 int rv; 351 352 rv = cache_check_rcu(detail, h, rqstp); 353 if (rv) 354 cache_put(h, detail); 355 return rv; 356 } 357 EXPORT_SYMBOL_GPL(cache_check); 358 359 /* 360 * caches need to be periodically cleaned. 361 * For this we maintain a list of cache_detail and 362 * a current pointer into that list and into the table 363 * for that entry. 364 * 365 * Each time cache_clean is called it finds the next non-empty entry 366 * in the current table and walks the list in that entry 367 * looking for entries that can be removed. 368 * 369 * An entry gets removed if: 370 * - The expiry is before current time 371 * - The last_refresh time is before the flush_time for that cache 372 * 373 * later we might drop old entries with non-NEVER expiry if that table 374 * is getting 'full' for some definition of 'full' 375 * 376 * The question of "how often to scan a table" is an interesting one 377 * and is answered in part by the use of the "nextcheck" field in the 378 * cache_detail. 379 * When a scan of a table begins, the nextcheck field is set to a time 380 * that is well into the future. 381 * While scanning, if an expiry time is found that is earlier than the 382 * current nextcheck time, nextcheck is set to that expiry time. 383 * If the flush_time is ever set to a time earlier than the nextcheck 384 * time, the nextcheck time is then set to that flush_time. 385 * 386 * A table is then only scanned if the current time is at least 387 * the nextcheck time. 388 * 389 */ 390 391 static LIST_HEAD(cache_list); 392 static DEFINE_SPINLOCK(cache_list_lock); 393 static struct cache_detail *current_detail; 394 static int current_index; 395 396 static void do_cache_clean(struct work_struct *work); 397 static struct delayed_work cache_cleaner; 398 399 void sunrpc_init_cache_detail(struct cache_detail *cd) 400 { 401 spin_lock_init(&cd->hash_lock); 402 INIT_LIST_HEAD(&cd->queue); 403 spin_lock(&cache_list_lock); 404 cd->nextcheck = 0; 405 cd->entries = 0; 406 atomic_set(&cd->writers, 0); 407 cd->last_close = 0; 408 cd->last_warn = -1; 409 list_add(&cd->others, &cache_list); 410 spin_unlock(&cache_list_lock); 411 412 /* start the cleaning process */ 413 queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0); 414 } 415 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail); 416 417 void sunrpc_destroy_cache_detail(struct cache_detail *cd) 418 { 419 cache_purge(cd); 420 spin_lock(&cache_list_lock); 421 spin_lock(&cd->hash_lock); 422 if (current_detail == cd) 423 current_detail = NULL; 424 list_del_init(&cd->others); 425 spin_unlock(&cd->hash_lock); 426 spin_unlock(&cache_list_lock); 427 if (list_empty(&cache_list)) { 428 /* module must be being unloaded so its safe to kill the worker */ 429 cancel_delayed_work_sync(&cache_cleaner); 430 } 431 } 432 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail); 433 434 /* clean cache tries to find something to clean 435 * and cleans it. 436 * It returns 1 if it cleaned something, 437 * 0 if it didn't find anything this time 438 * -1 if it fell off the end of the list. 439 */ 440 static int cache_clean(void) 441 { 442 int rv = 0; 443 struct list_head *next; 444 445 spin_lock(&cache_list_lock); 446 447 /* find a suitable table if we don't already have one */ 448 while (current_detail == NULL || 449 current_index >= current_detail->hash_size) { 450 if (current_detail) 451 next = current_detail->others.next; 452 else 453 next = cache_list.next; 454 if (next == &cache_list) { 455 current_detail = NULL; 456 spin_unlock(&cache_list_lock); 457 return -1; 458 } 459 current_detail = list_entry(next, struct cache_detail, others); 460 if (current_detail->nextcheck > seconds_since_boot()) 461 current_index = current_detail->hash_size; 462 else { 463 current_index = 0; 464 current_detail->nextcheck = seconds_since_boot()+30*60; 465 } 466 } 467 468 spin_lock(¤t_detail->hash_lock); 469 470 /* find a non-empty bucket in the table */ 471 while (current_index < current_detail->hash_size && 472 hlist_empty(¤t_detail->hash_table[current_index])) 473 current_index++; 474 475 /* find a cleanable entry in the bucket and clean it, or set to next bucket */ 476 if (current_index < current_detail->hash_size) { 477 struct cache_head *ch = NULL; 478 struct cache_detail *d; 479 struct hlist_head *head; 480 struct hlist_node *tmp; 481 482 /* Ok, now to clean this strand */ 483 head = ¤t_detail->hash_table[current_index]; 484 hlist_for_each_entry_safe(ch, tmp, head, cache_list) { 485 if (current_detail->nextcheck > ch->expiry_time) 486 current_detail->nextcheck = ch->expiry_time+1; 487 if (!cache_is_expired(current_detail, ch)) 488 continue; 489 490 sunrpc_begin_cache_remove_entry(ch, current_detail); 491 trace_cache_entry_expired(current_detail, ch); 492 rv = 1; 493 break; 494 } 495 496 spin_unlock(¤t_detail->hash_lock); 497 d = current_detail; 498 if (!ch) 499 current_index ++; 500 spin_unlock(&cache_list_lock); 501 if (ch) 502 sunrpc_end_cache_remove_entry(ch, d); 503 } else { 504 spin_unlock(¤t_detail->hash_lock); 505 spin_unlock(&cache_list_lock); 506 } 507 508 return rv; 509 } 510 511 /* 512 * We want to regularly clean the cache, so we need to schedule some work ... 513 */ 514 static void do_cache_clean(struct work_struct *work) 515 { 516 int delay; 517 518 if (list_empty(&cache_list)) 519 return; 520 521 if (cache_clean() == -1) 522 delay = round_jiffies_relative(30*HZ); 523 else 524 delay = 5; 525 526 queue_delayed_work(system_power_efficient_wq, &cache_cleaner, delay); 527 } 528 529 530 /* 531 * Clean all caches promptly. This just calls cache_clean 532 * repeatedly until we are sure that every cache has had a chance to 533 * be fully cleaned 534 */ 535 void cache_flush(void) 536 { 537 while (cache_clean() != -1) 538 cond_resched(); 539 while (cache_clean() != -1) 540 cond_resched(); 541 } 542 EXPORT_SYMBOL_GPL(cache_flush); 543 544 void cache_purge(struct cache_detail *detail) 545 { 546 struct cache_head *ch = NULL; 547 struct hlist_head *head = NULL; 548 int i = 0; 549 550 spin_lock(&detail->hash_lock); 551 if (!detail->entries) { 552 spin_unlock(&detail->hash_lock); 553 return; 554 } 555 556 dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name); 557 for (i = 0; i < detail->hash_size; i++) { 558 head = &detail->hash_table[i]; 559 while (!hlist_empty(head)) { 560 ch = hlist_entry(head->first, struct cache_head, 561 cache_list); 562 sunrpc_begin_cache_remove_entry(ch, detail); 563 spin_unlock(&detail->hash_lock); 564 sunrpc_end_cache_remove_entry(ch, detail); 565 spin_lock(&detail->hash_lock); 566 } 567 } 568 spin_unlock(&detail->hash_lock); 569 } 570 EXPORT_SYMBOL_GPL(cache_purge); 571 572 573 /* 574 * Deferral and Revisiting of Requests. 575 * 576 * If a cache lookup finds a pending entry, we 577 * need to defer the request and revisit it later. 578 * All deferred requests are stored in a hash table, 579 * indexed by "struct cache_head *". 580 * As it may be wasteful to store a whole request 581 * structure, we allow the request to provide a 582 * deferred form, which must contain a 583 * 'struct cache_deferred_req' 584 * This cache_deferred_req contains a method to allow 585 * it to be revisited when cache info is available 586 */ 587 588 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head)) 589 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE) 590 591 #define DFR_MAX 300 /* ??? */ 592 593 static DEFINE_SPINLOCK(cache_defer_lock); 594 static LIST_HEAD(cache_defer_list); 595 static struct hlist_head cache_defer_hash[DFR_HASHSIZE]; 596 static int cache_defer_cnt; 597 598 static void __unhash_deferred_req(struct cache_deferred_req *dreq) 599 { 600 hlist_del_init(&dreq->hash); 601 if (!list_empty(&dreq->recent)) { 602 list_del_init(&dreq->recent); 603 cache_defer_cnt--; 604 } 605 } 606 607 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item) 608 { 609 int hash = DFR_HASH(item); 610 611 INIT_LIST_HEAD(&dreq->recent); 612 hlist_add_head(&dreq->hash, &cache_defer_hash[hash]); 613 } 614 615 static void setup_deferral(struct cache_deferred_req *dreq, 616 struct cache_head *item, 617 int count_me) 618 { 619 620 dreq->item = item; 621 622 spin_lock(&cache_defer_lock); 623 624 __hash_deferred_req(dreq, item); 625 626 if (count_me) { 627 cache_defer_cnt++; 628 list_add(&dreq->recent, &cache_defer_list); 629 } 630 631 spin_unlock(&cache_defer_lock); 632 633 } 634 635 struct thread_deferred_req { 636 struct cache_deferred_req handle; 637 struct completion completion; 638 }; 639 640 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many) 641 { 642 struct thread_deferred_req *dr = 643 container_of(dreq, struct thread_deferred_req, handle); 644 complete(&dr->completion); 645 } 646 647 static void cache_wait_req(struct cache_req *req, struct cache_head *item) 648 { 649 struct thread_deferred_req sleeper; 650 struct cache_deferred_req *dreq = &sleeper.handle; 651 652 sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion); 653 dreq->revisit = cache_restart_thread; 654 655 setup_deferral(dreq, item, 0); 656 657 if (!test_bit(CACHE_PENDING, &item->flags) || 658 wait_for_completion_interruptible_timeout( 659 &sleeper.completion, req->thread_wait) <= 0) { 660 /* The completion wasn't completed, so we need 661 * to clean up 662 */ 663 spin_lock(&cache_defer_lock); 664 if (!hlist_unhashed(&sleeper.handle.hash)) { 665 __unhash_deferred_req(&sleeper.handle); 666 spin_unlock(&cache_defer_lock); 667 } else { 668 /* cache_revisit_request already removed 669 * this from the hash table, but hasn't 670 * called ->revisit yet. It will very soon 671 * and we need to wait for it. 672 */ 673 spin_unlock(&cache_defer_lock); 674 wait_for_completion(&sleeper.completion); 675 } 676 } 677 } 678 679 static void cache_limit_defers(void) 680 { 681 /* Make sure we haven't exceed the limit of allowed deferred 682 * requests. 683 */ 684 struct cache_deferred_req *discard = NULL; 685 686 if (cache_defer_cnt <= DFR_MAX) 687 return; 688 689 spin_lock(&cache_defer_lock); 690 691 /* Consider removing either the first or the last */ 692 if (cache_defer_cnt > DFR_MAX) { 693 if (get_random_u32_below(2)) 694 discard = list_entry(cache_defer_list.next, 695 struct cache_deferred_req, recent); 696 else 697 discard = list_entry(cache_defer_list.prev, 698 struct cache_deferred_req, recent); 699 __unhash_deferred_req(discard); 700 } 701 spin_unlock(&cache_defer_lock); 702 if (discard) 703 discard->revisit(discard, 1); 704 } 705 706 #if IS_ENABLED(CONFIG_FAIL_SUNRPC) 707 static inline bool cache_defer_immediately(void) 708 { 709 return !fail_sunrpc.ignore_cache_wait && 710 should_fail(&fail_sunrpc.attr, 1); 711 } 712 #else 713 static inline bool cache_defer_immediately(void) 714 { 715 return false; 716 } 717 #endif 718 719 /* Return true if and only if a deferred request is queued. */ 720 static bool cache_defer_req(struct cache_req *req, struct cache_head *item) 721 { 722 struct cache_deferred_req *dreq; 723 724 if (!cache_defer_immediately()) { 725 cache_wait_req(req, item); 726 if (!test_bit(CACHE_PENDING, &item->flags)) 727 return false; 728 } 729 730 dreq = req->defer(req); 731 if (dreq == NULL) 732 return false; 733 setup_deferral(dreq, item, 1); 734 if (!test_bit(CACHE_PENDING, &item->flags)) 735 /* Bit could have been cleared before we managed to 736 * set up the deferral, so need to revisit just in case 737 */ 738 cache_revisit_request(item); 739 740 cache_limit_defers(); 741 return true; 742 } 743 744 static void cache_revisit_request(struct cache_head *item) 745 { 746 struct cache_deferred_req *dreq; 747 struct hlist_node *tmp; 748 int hash = DFR_HASH(item); 749 LIST_HEAD(pending); 750 751 spin_lock(&cache_defer_lock); 752 753 hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash) 754 if (dreq->item == item) { 755 __unhash_deferred_req(dreq); 756 list_add(&dreq->recent, &pending); 757 } 758 759 spin_unlock(&cache_defer_lock); 760 761 while (!list_empty(&pending)) { 762 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 763 list_del_init(&dreq->recent); 764 dreq->revisit(dreq, 0); 765 } 766 } 767 768 void cache_clean_deferred(void *owner) 769 { 770 struct cache_deferred_req *dreq, *tmp; 771 LIST_HEAD(pending); 772 773 spin_lock(&cache_defer_lock); 774 775 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) { 776 if (dreq->owner == owner) { 777 __unhash_deferred_req(dreq); 778 list_add(&dreq->recent, &pending); 779 } 780 } 781 spin_unlock(&cache_defer_lock); 782 783 while (!list_empty(&pending)) { 784 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 785 list_del_init(&dreq->recent); 786 dreq->revisit(dreq, 1); 787 } 788 } 789 790 /* 791 * communicate with user-space 792 * 793 * We have a magic /proc file - /proc/net/rpc/<cachename>/channel. 794 * On read, you get a full request, or block. 795 * On write, an update request is processed. 796 * Poll works if anything to read, and always allows write. 797 * 798 * Implemented by linked list of requests. Each open file has 799 * a ->private that also exists in this list. New requests are added 800 * to the end and may wakeup and preceding readers. 801 * New readers are added to the head. If, on read, an item is found with 802 * CACHE_UPCALLING clear, we free it from the list. 803 * 804 */ 805 806 static DEFINE_SPINLOCK(queue_lock); 807 808 struct cache_queue { 809 struct list_head list; 810 int reader; /* if 0, then request */ 811 }; 812 struct cache_request { 813 struct cache_queue q; 814 struct cache_head *item; 815 char * buf; 816 int len; 817 int readers; 818 }; 819 struct cache_reader { 820 struct cache_queue q; 821 int offset; /* if non-0, we have a refcnt on next request */ 822 }; 823 824 static int cache_request(struct cache_detail *detail, 825 struct cache_request *crq) 826 { 827 char *bp = crq->buf; 828 int len = PAGE_SIZE; 829 830 detail->cache_request(detail, crq->item, &bp, &len); 831 if (len < 0) 832 return -E2BIG; 833 return PAGE_SIZE - len; 834 } 835 836 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count, 837 loff_t *ppos, struct cache_detail *cd) 838 { 839 struct cache_reader *rp = filp->private_data; 840 struct cache_request *rq; 841 struct inode *inode = file_inode(filp); 842 int err; 843 844 if (count == 0) 845 return 0; 846 847 inode_lock(inode); /* protect against multiple concurrent 848 * readers on this file */ 849 again: 850 spin_lock(&queue_lock); 851 /* need to find next request */ 852 while (rp->q.list.next != &cd->queue && 853 list_entry(rp->q.list.next, struct cache_queue, list) 854 ->reader) { 855 struct list_head *next = rp->q.list.next; 856 list_move(&rp->q.list, next); 857 } 858 if (rp->q.list.next == &cd->queue) { 859 spin_unlock(&queue_lock); 860 inode_unlock(inode); 861 WARN_ON_ONCE(rp->offset); 862 return 0; 863 } 864 rq = container_of(rp->q.list.next, struct cache_request, q.list); 865 WARN_ON_ONCE(rq->q.reader); 866 if (rp->offset == 0) 867 rq->readers++; 868 spin_unlock(&queue_lock); 869 870 if (rq->len == 0) { 871 err = cache_request(cd, rq); 872 if (err < 0) 873 goto out; 874 rq->len = err; 875 } 876 877 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) { 878 err = -EAGAIN; 879 spin_lock(&queue_lock); 880 list_move(&rp->q.list, &rq->q.list); 881 spin_unlock(&queue_lock); 882 } else { 883 if (rp->offset + count > rq->len) 884 count = rq->len - rp->offset; 885 err = -EFAULT; 886 if (copy_to_user(buf, rq->buf + rp->offset, count)) 887 goto out; 888 rp->offset += count; 889 if (rp->offset >= rq->len) { 890 rp->offset = 0; 891 spin_lock(&queue_lock); 892 list_move(&rp->q.list, &rq->q.list); 893 spin_unlock(&queue_lock); 894 } 895 err = 0; 896 } 897 out: 898 if (rp->offset == 0) { 899 /* need to release rq */ 900 spin_lock(&queue_lock); 901 rq->readers--; 902 if (rq->readers == 0 && 903 !test_bit(CACHE_PENDING, &rq->item->flags)) { 904 list_del(&rq->q.list); 905 spin_unlock(&queue_lock); 906 cache_put(rq->item, cd); 907 kfree(rq->buf); 908 kfree(rq); 909 } else 910 spin_unlock(&queue_lock); 911 } 912 if (err == -EAGAIN) 913 goto again; 914 inode_unlock(inode); 915 return err ? err : count; 916 } 917 918 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf, 919 size_t count, struct cache_detail *cd) 920 { 921 ssize_t ret; 922 923 if (count == 0) 924 return -EINVAL; 925 if (copy_from_user(kaddr, buf, count)) 926 return -EFAULT; 927 kaddr[count] = '\0'; 928 ret = cd->cache_parse(cd, kaddr, count); 929 if (!ret) 930 ret = count; 931 return ret; 932 } 933 934 static ssize_t cache_downcall(struct address_space *mapping, 935 const char __user *buf, 936 size_t count, struct cache_detail *cd) 937 { 938 char *write_buf; 939 ssize_t ret = -ENOMEM; 940 941 if (count >= 32768) { /* 32k is max userland buffer, lets check anyway */ 942 ret = -EINVAL; 943 goto out; 944 } 945 946 write_buf = kvmalloc(count + 1, GFP_KERNEL); 947 if (!write_buf) 948 goto out; 949 950 ret = cache_do_downcall(write_buf, buf, count, cd); 951 kvfree(write_buf); 952 out: 953 return ret; 954 } 955 956 static ssize_t cache_write(struct file *filp, const char __user *buf, 957 size_t count, loff_t *ppos, 958 struct cache_detail *cd) 959 { 960 struct address_space *mapping = filp->f_mapping; 961 struct inode *inode = file_inode(filp); 962 ssize_t ret = -EINVAL; 963 964 if (!cd->cache_parse) 965 goto out; 966 967 inode_lock(inode); 968 ret = cache_downcall(mapping, buf, count, cd); 969 inode_unlock(inode); 970 out: 971 return ret; 972 } 973 974 static DECLARE_WAIT_QUEUE_HEAD(queue_wait); 975 976 static __poll_t cache_poll(struct file *filp, poll_table *wait, 977 struct cache_detail *cd) 978 { 979 __poll_t mask; 980 struct cache_reader *rp = filp->private_data; 981 struct cache_queue *cq; 982 983 poll_wait(filp, &queue_wait, wait); 984 985 /* alway allow write */ 986 mask = EPOLLOUT | EPOLLWRNORM; 987 988 if (!rp) 989 return mask; 990 991 spin_lock(&queue_lock); 992 993 for (cq= &rp->q; &cq->list != &cd->queue; 994 cq = list_entry(cq->list.next, struct cache_queue, list)) 995 if (!cq->reader) { 996 mask |= EPOLLIN | EPOLLRDNORM; 997 break; 998 } 999 spin_unlock(&queue_lock); 1000 return mask; 1001 } 1002 1003 static int cache_ioctl(struct inode *ino, struct file *filp, 1004 unsigned int cmd, unsigned long arg, 1005 struct cache_detail *cd) 1006 { 1007 int len = 0; 1008 struct cache_reader *rp = filp->private_data; 1009 struct cache_queue *cq; 1010 1011 if (cmd != FIONREAD || !rp) 1012 return -EINVAL; 1013 1014 spin_lock(&queue_lock); 1015 1016 /* only find the length remaining in current request, 1017 * or the length of the next request 1018 */ 1019 for (cq= &rp->q; &cq->list != &cd->queue; 1020 cq = list_entry(cq->list.next, struct cache_queue, list)) 1021 if (!cq->reader) { 1022 struct cache_request *cr = 1023 container_of(cq, struct cache_request, q); 1024 len = cr->len - rp->offset; 1025 break; 1026 } 1027 spin_unlock(&queue_lock); 1028 1029 return put_user(len, (int __user *)arg); 1030 } 1031 1032 static int cache_open(struct inode *inode, struct file *filp, 1033 struct cache_detail *cd) 1034 { 1035 struct cache_reader *rp = NULL; 1036 1037 if (!cd || !try_module_get(cd->owner)) 1038 return -EACCES; 1039 nonseekable_open(inode, filp); 1040 if (filp->f_mode & FMODE_READ) { 1041 rp = kmalloc(sizeof(*rp), GFP_KERNEL); 1042 if (!rp) { 1043 module_put(cd->owner); 1044 return -ENOMEM; 1045 } 1046 rp->offset = 0; 1047 rp->q.reader = 1; 1048 1049 spin_lock(&queue_lock); 1050 list_add(&rp->q.list, &cd->queue); 1051 spin_unlock(&queue_lock); 1052 } 1053 if (filp->f_mode & FMODE_WRITE) 1054 atomic_inc(&cd->writers); 1055 filp->private_data = rp; 1056 return 0; 1057 } 1058 1059 static int cache_release(struct inode *inode, struct file *filp, 1060 struct cache_detail *cd) 1061 { 1062 struct cache_reader *rp = filp->private_data; 1063 1064 if (rp) { 1065 spin_lock(&queue_lock); 1066 if (rp->offset) { 1067 struct cache_queue *cq; 1068 for (cq= &rp->q; &cq->list != &cd->queue; 1069 cq = list_entry(cq->list.next, struct cache_queue, list)) 1070 if (!cq->reader) { 1071 container_of(cq, struct cache_request, q) 1072 ->readers--; 1073 break; 1074 } 1075 rp->offset = 0; 1076 } 1077 list_del(&rp->q.list); 1078 spin_unlock(&queue_lock); 1079 1080 filp->private_data = NULL; 1081 kfree(rp); 1082 1083 } 1084 if (filp->f_mode & FMODE_WRITE) { 1085 atomic_dec(&cd->writers); 1086 cd->last_close = seconds_since_boot(); 1087 } 1088 module_put(cd->owner); 1089 return 0; 1090 } 1091 1092 1093 1094 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch) 1095 { 1096 struct cache_queue *cq, *tmp; 1097 struct cache_request *cr; 1098 LIST_HEAD(dequeued); 1099 1100 spin_lock(&queue_lock); 1101 list_for_each_entry_safe(cq, tmp, &detail->queue, list) 1102 if (!cq->reader) { 1103 cr = container_of(cq, struct cache_request, q); 1104 if (cr->item != ch) 1105 continue; 1106 if (test_bit(CACHE_PENDING, &ch->flags)) 1107 /* Lost a race and it is pending again */ 1108 break; 1109 if (cr->readers != 0) 1110 continue; 1111 list_move(&cr->q.list, &dequeued); 1112 } 1113 spin_unlock(&queue_lock); 1114 while (!list_empty(&dequeued)) { 1115 cr = list_entry(dequeued.next, struct cache_request, q.list); 1116 list_del(&cr->q.list); 1117 cache_put(cr->item, detail); 1118 kfree(cr->buf); 1119 kfree(cr); 1120 } 1121 } 1122 1123 /* 1124 * Support routines for text-based upcalls. 1125 * Fields are separated by spaces. 1126 * Fields are either mangled to quote space tab newline slosh with slosh 1127 * or a hexified with a leading \x 1128 * Record is terminated with newline. 1129 * 1130 */ 1131 1132 void qword_add(char **bpp, int *lp, char *str) 1133 { 1134 char *bp = *bpp; 1135 int len = *lp; 1136 int ret; 1137 1138 if (len < 0) return; 1139 1140 ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t"); 1141 if (ret >= len) { 1142 bp += len; 1143 len = -1; 1144 } else { 1145 bp += ret; 1146 len -= ret; 1147 *bp++ = ' '; 1148 len--; 1149 } 1150 *bpp = bp; 1151 *lp = len; 1152 } 1153 EXPORT_SYMBOL_GPL(qword_add); 1154 1155 void qword_addhex(char **bpp, int *lp, char *buf, int blen) 1156 { 1157 char *bp = *bpp; 1158 int len = *lp; 1159 1160 if (len < 0) return; 1161 1162 if (len > 2) { 1163 *bp++ = '\\'; 1164 *bp++ = 'x'; 1165 len -= 2; 1166 while (blen && len >= 2) { 1167 bp = hex_byte_pack(bp, *buf++); 1168 len -= 2; 1169 blen--; 1170 } 1171 } 1172 if (blen || len<1) len = -1; 1173 else { 1174 *bp++ = ' '; 1175 len--; 1176 } 1177 *bpp = bp; 1178 *lp = len; 1179 } 1180 EXPORT_SYMBOL_GPL(qword_addhex); 1181 1182 static void warn_no_listener(struct cache_detail *detail) 1183 { 1184 if (detail->last_warn != detail->last_close) { 1185 detail->last_warn = detail->last_close; 1186 if (detail->warn_no_listener) 1187 detail->warn_no_listener(detail, detail->last_close != 0); 1188 } 1189 } 1190 1191 static bool cache_listeners_exist(struct cache_detail *detail) 1192 { 1193 if (atomic_read(&detail->writers)) 1194 return true; 1195 if (detail->last_close == 0) 1196 /* This cache was never opened */ 1197 return false; 1198 if (detail->last_close < seconds_since_boot() - 30) 1199 /* 1200 * We allow for the possibility that someone might 1201 * restart a userspace daemon without restarting the 1202 * server; but after 30 seconds, we give up. 1203 */ 1204 return false; 1205 return true; 1206 } 1207 1208 /* 1209 * register an upcall request to user-space and queue it up for read() by the 1210 * upcall daemon. 1211 * 1212 * Each request is at most one page long. 1213 */ 1214 static int cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h) 1215 { 1216 char *buf; 1217 struct cache_request *crq; 1218 int ret = 0; 1219 1220 if (test_bit(CACHE_CLEANED, &h->flags)) 1221 /* Too late to make an upcall */ 1222 return -EAGAIN; 1223 1224 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1225 if (!buf) 1226 return -EAGAIN; 1227 1228 crq = kmalloc(sizeof (*crq), GFP_KERNEL); 1229 if (!crq) { 1230 kfree(buf); 1231 return -EAGAIN; 1232 } 1233 1234 crq->q.reader = 0; 1235 crq->buf = buf; 1236 crq->len = 0; 1237 crq->readers = 0; 1238 spin_lock(&queue_lock); 1239 if (test_bit(CACHE_PENDING, &h->flags)) { 1240 crq->item = cache_get(h); 1241 list_add_tail(&crq->q.list, &detail->queue); 1242 trace_cache_entry_upcall(detail, h); 1243 } else 1244 /* Lost a race, no longer PENDING, so don't enqueue */ 1245 ret = -EAGAIN; 1246 spin_unlock(&queue_lock); 1247 wake_up(&queue_wait); 1248 if (ret == -EAGAIN) { 1249 kfree(buf); 1250 kfree(crq); 1251 } 1252 return ret; 1253 } 1254 1255 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h) 1256 { 1257 if (test_and_set_bit(CACHE_PENDING, &h->flags)) 1258 return 0; 1259 return cache_pipe_upcall(detail, h); 1260 } 1261 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall); 1262 1263 int sunrpc_cache_pipe_upcall_timeout(struct cache_detail *detail, 1264 struct cache_head *h) 1265 { 1266 if (!cache_listeners_exist(detail)) { 1267 warn_no_listener(detail); 1268 trace_cache_entry_no_listener(detail, h); 1269 return -EINVAL; 1270 } 1271 return sunrpc_cache_pipe_upcall(detail, h); 1272 } 1273 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall_timeout); 1274 1275 /* 1276 * parse a message from user-space and pass it 1277 * to an appropriate cache 1278 * Messages are, like requests, separated into fields by 1279 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal 1280 * 1281 * Message is 1282 * reply cachename expiry key ... content.... 1283 * 1284 * key and content are both parsed by cache 1285 */ 1286 1287 int qword_get(char **bpp, char *dest, int bufsize) 1288 { 1289 /* return bytes copied, or -1 on error */ 1290 char *bp = *bpp; 1291 int len = 0; 1292 1293 while (*bp == ' ') bp++; 1294 1295 if (bp[0] == '\\' && bp[1] == 'x') { 1296 /* HEX STRING */ 1297 bp += 2; 1298 while (len < bufsize - 1) { 1299 int h, l; 1300 1301 h = hex_to_bin(bp[0]); 1302 if (h < 0) 1303 break; 1304 1305 l = hex_to_bin(bp[1]); 1306 if (l < 0) 1307 break; 1308 1309 *dest++ = (h << 4) | l; 1310 bp += 2; 1311 len++; 1312 } 1313 } else { 1314 /* text with \nnn octal quoting */ 1315 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) { 1316 if (*bp == '\\' && 1317 isodigit(bp[1]) && (bp[1] <= '3') && 1318 isodigit(bp[2]) && 1319 isodigit(bp[3])) { 1320 int byte = (*++bp -'0'); 1321 bp++; 1322 byte = (byte << 3) | (*bp++ - '0'); 1323 byte = (byte << 3) | (*bp++ - '0'); 1324 *dest++ = byte; 1325 len++; 1326 } else { 1327 *dest++ = *bp++; 1328 len++; 1329 } 1330 } 1331 } 1332 1333 if (*bp != ' ' && *bp != '\n' && *bp != '\0') 1334 return -1; 1335 while (*bp == ' ') bp++; 1336 *bpp = bp; 1337 *dest = '\0'; 1338 return len; 1339 } 1340 EXPORT_SYMBOL_GPL(qword_get); 1341 1342 1343 /* 1344 * support /proc/net/rpc/$CACHENAME/content 1345 * as a seqfile. 1346 * We call ->cache_show passing NULL for the item to 1347 * get a header, then pass each real item in the cache 1348 */ 1349 1350 static void *__cache_seq_start(struct seq_file *m, loff_t *pos) 1351 { 1352 loff_t n = *pos; 1353 unsigned int hash, entry; 1354 struct cache_head *ch; 1355 struct cache_detail *cd = m->private; 1356 1357 if (!n--) 1358 return SEQ_START_TOKEN; 1359 hash = n >> 32; 1360 entry = n & ((1LL<<32) - 1); 1361 1362 hlist_for_each_entry_rcu(ch, &cd->hash_table[hash], cache_list) 1363 if (!entry--) 1364 return ch; 1365 n &= ~((1LL<<32) - 1); 1366 do { 1367 hash++; 1368 n += 1LL<<32; 1369 } while(hash < cd->hash_size && 1370 hlist_empty(&cd->hash_table[hash])); 1371 if (hash >= cd->hash_size) 1372 return NULL; 1373 *pos = n+1; 1374 return hlist_entry_safe(rcu_dereference_raw( 1375 hlist_first_rcu(&cd->hash_table[hash])), 1376 struct cache_head, cache_list); 1377 } 1378 1379 static void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos) 1380 { 1381 struct cache_head *ch = p; 1382 int hash = (*pos >> 32); 1383 struct cache_detail *cd = m->private; 1384 1385 if (p == SEQ_START_TOKEN) 1386 hash = 0; 1387 else if (ch->cache_list.next == NULL) { 1388 hash++; 1389 *pos += 1LL<<32; 1390 } else { 1391 ++*pos; 1392 return hlist_entry_safe(rcu_dereference_raw( 1393 hlist_next_rcu(&ch->cache_list)), 1394 struct cache_head, cache_list); 1395 } 1396 *pos &= ~((1LL<<32) - 1); 1397 while (hash < cd->hash_size && 1398 hlist_empty(&cd->hash_table[hash])) { 1399 hash++; 1400 *pos += 1LL<<32; 1401 } 1402 if (hash >= cd->hash_size) 1403 return NULL; 1404 ++*pos; 1405 return hlist_entry_safe(rcu_dereference_raw( 1406 hlist_first_rcu(&cd->hash_table[hash])), 1407 struct cache_head, cache_list); 1408 } 1409 1410 void *cache_seq_start_rcu(struct seq_file *m, loff_t *pos) 1411 __acquires(RCU) 1412 { 1413 rcu_read_lock(); 1414 return __cache_seq_start(m, pos); 1415 } 1416 EXPORT_SYMBOL_GPL(cache_seq_start_rcu); 1417 1418 void *cache_seq_next_rcu(struct seq_file *file, void *p, loff_t *pos) 1419 { 1420 return cache_seq_next(file, p, pos); 1421 } 1422 EXPORT_SYMBOL_GPL(cache_seq_next_rcu); 1423 1424 void cache_seq_stop_rcu(struct seq_file *m, void *p) 1425 __releases(RCU) 1426 { 1427 rcu_read_unlock(); 1428 } 1429 EXPORT_SYMBOL_GPL(cache_seq_stop_rcu); 1430 1431 static int c_show(struct seq_file *m, void *p) 1432 { 1433 struct cache_head *cp = p; 1434 struct cache_detail *cd = m->private; 1435 1436 if (p == SEQ_START_TOKEN) 1437 return cd->cache_show(m, cd, NULL); 1438 1439 ifdebug(CACHE) 1440 seq_printf(m, "# expiry=%lld refcnt=%d flags=%lx\n", 1441 convert_to_wallclock(cp->expiry_time), 1442 kref_read(&cp->ref), cp->flags); 1443 1444 if (cache_check_rcu(cd, cp, NULL)) 1445 seq_puts(m, "# "); 1446 else if (cache_is_expired(cd, cp)) 1447 seq_puts(m, "# "); 1448 1449 return cd->cache_show(m, cd, cp); 1450 } 1451 1452 static const struct seq_operations cache_content_op = { 1453 .start = cache_seq_start_rcu, 1454 .next = cache_seq_next_rcu, 1455 .stop = cache_seq_stop_rcu, 1456 .show = c_show, 1457 }; 1458 1459 static int content_open(struct inode *inode, struct file *file, 1460 struct cache_detail *cd) 1461 { 1462 struct seq_file *seq; 1463 int err; 1464 1465 if (!cd || !try_module_get(cd->owner)) 1466 return -EACCES; 1467 1468 err = seq_open(file, &cache_content_op); 1469 if (err) { 1470 module_put(cd->owner); 1471 return err; 1472 } 1473 1474 seq = file->private_data; 1475 seq->private = cd; 1476 return 0; 1477 } 1478 1479 static int content_release(struct inode *inode, struct file *file, 1480 struct cache_detail *cd) 1481 { 1482 int ret = seq_release(inode, file); 1483 module_put(cd->owner); 1484 return ret; 1485 } 1486 1487 static int open_flush(struct inode *inode, struct file *file, 1488 struct cache_detail *cd) 1489 { 1490 if (!cd || !try_module_get(cd->owner)) 1491 return -EACCES; 1492 return nonseekable_open(inode, file); 1493 } 1494 1495 static int release_flush(struct inode *inode, struct file *file, 1496 struct cache_detail *cd) 1497 { 1498 module_put(cd->owner); 1499 return 0; 1500 } 1501 1502 static ssize_t read_flush(struct file *file, char __user *buf, 1503 size_t count, loff_t *ppos, 1504 struct cache_detail *cd) 1505 { 1506 char tbuf[22]; 1507 size_t len; 1508 1509 len = snprintf(tbuf, sizeof(tbuf), "%llu\n", 1510 convert_to_wallclock(cd->flush_time)); 1511 return simple_read_from_buffer(buf, count, ppos, tbuf, len); 1512 } 1513 1514 static ssize_t write_flush(struct file *file, const char __user *buf, 1515 size_t count, loff_t *ppos, 1516 struct cache_detail *cd) 1517 { 1518 char tbuf[20]; 1519 char *ep; 1520 time64_t now; 1521 1522 if (*ppos || count > sizeof(tbuf)-1) 1523 return -EINVAL; 1524 if (copy_from_user(tbuf, buf, count)) 1525 return -EFAULT; 1526 tbuf[count] = 0; 1527 simple_strtoul(tbuf, &ep, 0); 1528 if (*ep && *ep != '\n') 1529 return -EINVAL; 1530 /* Note that while we check that 'buf' holds a valid number, 1531 * we always ignore the value and just flush everything. 1532 * Making use of the number leads to races. 1533 */ 1534 1535 now = seconds_since_boot(); 1536 /* Always flush everything, so behave like cache_purge() 1537 * Do this by advancing flush_time to the current time, 1538 * or by one second if it has already reached the current time. 1539 * Newly added cache entries will always have ->last_refresh greater 1540 * that ->flush_time, so they don't get flushed prematurely. 1541 */ 1542 1543 if (cd->flush_time >= now) 1544 now = cd->flush_time + 1; 1545 1546 cd->flush_time = now; 1547 cd->nextcheck = now; 1548 cache_flush(); 1549 1550 if (cd->flush) 1551 cd->flush(); 1552 1553 *ppos += count; 1554 return count; 1555 } 1556 1557 static ssize_t cache_read_procfs(struct file *filp, char __user *buf, 1558 size_t count, loff_t *ppos) 1559 { 1560 struct cache_detail *cd = pde_data(file_inode(filp)); 1561 1562 return cache_read(filp, buf, count, ppos, cd); 1563 } 1564 1565 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf, 1566 size_t count, loff_t *ppos) 1567 { 1568 struct cache_detail *cd = pde_data(file_inode(filp)); 1569 1570 return cache_write(filp, buf, count, ppos, cd); 1571 } 1572 1573 static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait) 1574 { 1575 struct cache_detail *cd = pde_data(file_inode(filp)); 1576 1577 return cache_poll(filp, wait, cd); 1578 } 1579 1580 static long cache_ioctl_procfs(struct file *filp, 1581 unsigned int cmd, unsigned long arg) 1582 { 1583 struct inode *inode = file_inode(filp); 1584 struct cache_detail *cd = pde_data(inode); 1585 1586 return cache_ioctl(inode, filp, cmd, arg, cd); 1587 } 1588 1589 static int cache_open_procfs(struct inode *inode, struct file *filp) 1590 { 1591 struct cache_detail *cd = pde_data(inode); 1592 1593 return cache_open(inode, filp, cd); 1594 } 1595 1596 static int cache_release_procfs(struct inode *inode, struct file *filp) 1597 { 1598 struct cache_detail *cd = pde_data(inode); 1599 1600 return cache_release(inode, filp, cd); 1601 } 1602 1603 static const struct proc_ops cache_channel_proc_ops = { 1604 .proc_read = cache_read_procfs, 1605 .proc_write = cache_write_procfs, 1606 .proc_poll = cache_poll_procfs, 1607 .proc_ioctl = cache_ioctl_procfs, /* for FIONREAD */ 1608 .proc_open = cache_open_procfs, 1609 .proc_release = cache_release_procfs, 1610 }; 1611 1612 static int content_open_procfs(struct inode *inode, struct file *filp) 1613 { 1614 struct cache_detail *cd = pde_data(inode); 1615 1616 return content_open(inode, filp, cd); 1617 } 1618 1619 static int content_release_procfs(struct inode *inode, struct file *filp) 1620 { 1621 struct cache_detail *cd = pde_data(inode); 1622 1623 return content_release(inode, filp, cd); 1624 } 1625 1626 static const struct proc_ops content_proc_ops = { 1627 .proc_open = content_open_procfs, 1628 .proc_read = seq_read, 1629 .proc_lseek = seq_lseek, 1630 .proc_release = content_release_procfs, 1631 }; 1632 1633 static int open_flush_procfs(struct inode *inode, struct file *filp) 1634 { 1635 struct cache_detail *cd = pde_data(inode); 1636 1637 return open_flush(inode, filp, cd); 1638 } 1639 1640 static int release_flush_procfs(struct inode *inode, struct file *filp) 1641 { 1642 struct cache_detail *cd = pde_data(inode); 1643 1644 return release_flush(inode, filp, cd); 1645 } 1646 1647 static ssize_t read_flush_procfs(struct file *filp, char __user *buf, 1648 size_t count, loff_t *ppos) 1649 { 1650 struct cache_detail *cd = pde_data(file_inode(filp)); 1651 1652 return read_flush(filp, buf, count, ppos, cd); 1653 } 1654 1655 static ssize_t write_flush_procfs(struct file *filp, 1656 const char __user *buf, 1657 size_t count, loff_t *ppos) 1658 { 1659 struct cache_detail *cd = pde_data(file_inode(filp)); 1660 1661 return write_flush(filp, buf, count, ppos, cd); 1662 } 1663 1664 static const struct proc_ops cache_flush_proc_ops = { 1665 .proc_open = open_flush_procfs, 1666 .proc_read = read_flush_procfs, 1667 .proc_write = write_flush_procfs, 1668 .proc_release = release_flush_procfs, 1669 }; 1670 1671 static void remove_cache_proc_entries(struct cache_detail *cd) 1672 { 1673 if (cd->procfs) { 1674 proc_remove(cd->procfs); 1675 cd->procfs = NULL; 1676 } 1677 } 1678 1679 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1680 { 1681 struct proc_dir_entry *p; 1682 struct sunrpc_net *sn; 1683 1684 if (!IS_ENABLED(CONFIG_PROC_FS)) 1685 return 0; 1686 1687 sn = net_generic(net, sunrpc_net_id); 1688 cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc); 1689 if (cd->procfs == NULL) 1690 goto out_nomem; 1691 1692 p = proc_create_data("flush", S_IFREG | 0600, 1693 cd->procfs, &cache_flush_proc_ops, cd); 1694 if (p == NULL) 1695 goto out_nomem; 1696 1697 if (cd->cache_request || cd->cache_parse) { 1698 p = proc_create_data("channel", S_IFREG | 0600, cd->procfs, 1699 &cache_channel_proc_ops, cd); 1700 if (p == NULL) 1701 goto out_nomem; 1702 } 1703 if (cd->cache_show) { 1704 p = proc_create_data("content", S_IFREG | 0400, cd->procfs, 1705 &content_proc_ops, cd); 1706 if (p == NULL) 1707 goto out_nomem; 1708 } 1709 return 0; 1710 out_nomem: 1711 remove_cache_proc_entries(cd); 1712 return -ENOMEM; 1713 } 1714 1715 void __init cache_initialize(void) 1716 { 1717 INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean); 1718 } 1719 1720 int cache_register_net(struct cache_detail *cd, struct net *net) 1721 { 1722 int ret; 1723 1724 sunrpc_init_cache_detail(cd); 1725 ret = create_cache_proc_entries(cd, net); 1726 if (ret) 1727 sunrpc_destroy_cache_detail(cd); 1728 return ret; 1729 } 1730 EXPORT_SYMBOL_GPL(cache_register_net); 1731 1732 void cache_unregister_net(struct cache_detail *cd, struct net *net) 1733 { 1734 remove_cache_proc_entries(cd); 1735 sunrpc_destroy_cache_detail(cd); 1736 } 1737 EXPORT_SYMBOL_GPL(cache_unregister_net); 1738 1739 struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net) 1740 { 1741 struct cache_detail *cd; 1742 int i; 1743 1744 cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL); 1745 if (cd == NULL) 1746 return ERR_PTR(-ENOMEM); 1747 1748 cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head), 1749 GFP_KERNEL); 1750 if (cd->hash_table == NULL) { 1751 kfree(cd); 1752 return ERR_PTR(-ENOMEM); 1753 } 1754 1755 for (i = 0; i < cd->hash_size; i++) 1756 INIT_HLIST_HEAD(&cd->hash_table[i]); 1757 cd->net = net; 1758 return cd; 1759 } 1760 EXPORT_SYMBOL_GPL(cache_create_net); 1761 1762 void cache_destroy_net(struct cache_detail *cd, struct net *net) 1763 { 1764 kfree(cd->hash_table); 1765 kfree(cd); 1766 } 1767 EXPORT_SYMBOL_GPL(cache_destroy_net); 1768 1769 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf, 1770 size_t count, loff_t *ppos) 1771 { 1772 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1773 1774 return cache_read(filp, buf, count, ppos, cd); 1775 } 1776 1777 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf, 1778 size_t count, loff_t *ppos) 1779 { 1780 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1781 1782 return cache_write(filp, buf, count, ppos, cd); 1783 } 1784 1785 static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait) 1786 { 1787 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1788 1789 return cache_poll(filp, wait, cd); 1790 } 1791 1792 static long cache_ioctl_pipefs(struct file *filp, 1793 unsigned int cmd, unsigned long arg) 1794 { 1795 struct inode *inode = file_inode(filp); 1796 struct cache_detail *cd = RPC_I(inode)->private; 1797 1798 return cache_ioctl(inode, filp, cmd, arg, cd); 1799 } 1800 1801 static int cache_open_pipefs(struct inode *inode, struct file *filp) 1802 { 1803 struct cache_detail *cd = RPC_I(inode)->private; 1804 1805 return cache_open(inode, filp, cd); 1806 } 1807 1808 static int cache_release_pipefs(struct inode *inode, struct file *filp) 1809 { 1810 struct cache_detail *cd = RPC_I(inode)->private; 1811 1812 return cache_release(inode, filp, cd); 1813 } 1814 1815 const struct file_operations cache_file_operations_pipefs = { 1816 .owner = THIS_MODULE, 1817 .read = cache_read_pipefs, 1818 .write = cache_write_pipefs, 1819 .poll = cache_poll_pipefs, 1820 .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */ 1821 .open = cache_open_pipefs, 1822 .release = cache_release_pipefs, 1823 }; 1824 1825 static int content_open_pipefs(struct inode *inode, struct file *filp) 1826 { 1827 struct cache_detail *cd = RPC_I(inode)->private; 1828 1829 return content_open(inode, filp, cd); 1830 } 1831 1832 static int content_release_pipefs(struct inode *inode, struct file *filp) 1833 { 1834 struct cache_detail *cd = RPC_I(inode)->private; 1835 1836 return content_release(inode, filp, cd); 1837 } 1838 1839 const struct file_operations content_file_operations_pipefs = { 1840 .open = content_open_pipefs, 1841 .read = seq_read, 1842 .llseek = seq_lseek, 1843 .release = content_release_pipefs, 1844 }; 1845 1846 static int open_flush_pipefs(struct inode *inode, struct file *filp) 1847 { 1848 struct cache_detail *cd = RPC_I(inode)->private; 1849 1850 return open_flush(inode, filp, cd); 1851 } 1852 1853 static int release_flush_pipefs(struct inode *inode, struct file *filp) 1854 { 1855 struct cache_detail *cd = RPC_I(inode)->private; 1856 1857 return release_flush(inode, filp, cd); 1858 } 1859 1860 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf, 1861 size_t count, loff_t *ppos) 1862 { 1863 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1864 1865 return read_flush(filp, buf, count, ppos, cd); 1866 } 1867 1868 static ssize_t write_flush_pipefs(struct file *filp, 1869 const char __user *buf, 1870 size_t count, loff_t *ppos) 1871 { 1872 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1873 1874 return write_flush(filp, buf, count, ppos, cd); 1875 } 1876 1877 const struct file_operations cache_flush_operations_pipefs = { 1878 .open = open_flush_pipefs, 1879 .read = read_flush_pipefs, 1880 .write = write_flush_pipefs, 1881 .release = release_flush_pipefs, 1882 }; 1883 1884 int sunrpc_cache_register_pipefs(struct dentry *parent, 1885 const char *name, umode_t umode, 1886 struct cache_detail *cd) 1887 { 1888 struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd); 1889 if (IS_ERR(dir)) 1890 return PTR_ERR(dir); 1891 cd->pipefs = dir; 1892 return 0; 1893 } 1894 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs); 1895 1896 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd) 1897 { 1898 if (cd->pipefs) { 1899 rpc_remove_cache_dir(cd->pipefs); 1900 cd->pipefs = NULL; 1901 } 1902 } 1903 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs); 1904 1905 void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h) 1906 { 1907 spin_lock(&cd->hash_lock); 1908 if (!hlist_unhashed(&h->cache_list)){ 1909 sunrpc_begin_cache_remove_entry(h, cd); 1910 spin_unlock(&cd->hash_lock); 1911 sunrpc_end_cache_remove_entry(h, cd); 1912 } else 1913 spin_unlock(&cd->hash_lock); 1914 } 1915 EXPORT_SYMBOL_GPL(sunrpc_cache_unhash); 1916