xref: /linux/kernel/kprobes.c (revision b7dbc2e813e00d61e66fc0267599441493774b93)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright (C) IBM Corporation, 2002, 2004
6  *
7  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8  *		Probes initial implementation (includes suggestions from
9  *		Rusty Russell).
10  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
11  *		hlists and exceptions notifier as suggested by Andi Kleen.
12  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
13  *		interface to access function arguments.
14  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
15  *		exceptions notifier to be first on the priority list.
16  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
17  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
18  *		<prasanna@in.ibm.com> added function-return probes.
19  */
20 
21 #define pr_fmt(fmt) "kprobes: " fmt
22 
23 #include <linux/kprobes.h>
24 #include <linux/hash.h>
25 #include <linux/init.h>
26 #include <linux/slab.h>
27 #include <linux/stddef.h>
28 #include <linux/export.h>
29 #include <linux/kallsyms.h>
30 #include <linux/freezer.h>
31 #include <linux/seq_file.h>
32 #include <linux/debugfs.h>
33 #include <linux/sysctl.h>
34 #include <linux/kdebug.h>
35 #include <linux/memory.h>
36 #include <linux/ftrace.h>
37 #include <linux/cpu.h>
38 #include <linux/jump_label.h>
39 #include <linux/static_call.h>
40 #include <linux/perf_event.h>
41 #include <linux/execmem.h>
42 #include <linux/cleanup.h>
43 
44 #include <asm/sections.h>
45 #include <asm/cacheflush.h>
46 #include <asm/errno.h>
47 #include <linux/uaccess.h>
48 
49 #define KPROBE_HASH_BITS 6
50 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
51 
52 #if !defined(CONFIG_OPTPROBES) || !defined(CONFIG_SYSCTL)
53 #define kprobe_sysctls_init() do { } while (0)
54 #endif
55 
56 static int kprobes_initialized;
57 /* kprobe_table can be accessed by
58  * - Normal hlist traversal and RCU add/del under 'kprobe_mutex' is held.
59  * Or
60  * - RCU hlist traversal under disabling preempt (breakpoint handlers)
61  */
62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63 
64 /* NOTE: change this value only with 'kprobe_mutex' held */
65 static bool kprobes_all_disarmed;
66 
67 /* This protects 'kprobe_table' and 'optimizing_list' */
68 static DEFINE_MUTEX(kprobe_mutex);
69 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance);
70 
kprobe_lookup_name(const char * name,unsigned int __unused)71 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
72 					unsigned int __unused)
73 {
74 	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
75 }
76 
77 /*
78  * Blacklist -- list of 'struct kprobe_blacklist_entry' to store info where
79  * kprobes can not probe.
80  */
81 static LIST_HEAD(kprobe_blacklist);
82 
83 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
84 /*
85  * 'kprobe::ainsn.insn' points to the copy of the instruction to be
86  * single-stepped. x86_64, POWER4 and above have no-exec support and
87  * stepping on the instruction on a vmalloced/kmalloced/data page
88  * is a recipe for disaster
89  */
90 struct kprobe_insn_page {
91 	struct list_head list;
92 	kprobe_opcode_t *insns;		/* Page of instruction slots */
93 	struct kprobe_insn_cache *cache;
94 	int nused;
95 	int ngarbage;
96 	char slot_used[];
97 };
98 
slots_per_page(struct kprobe_insn_cache * c)99 static int slots_per_page(struct kprobe_insn_cache *c)
100 {
101 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
102 }
103 
104 enum kprobe_slot_state {
105 	SLOT_CLEAN = 0,
106 	SLOT_DIRTY = 1,
107 	SLOT_USED = 2,
108 };
109 
alloc_insn_page(void)110 void __weak *alloc_insn_page(void)
111 {
112 	/*
113 	 * Use execmem_alloc() so this page is within +/- 2GB of where the
114 	 * kernel image and loaded module images reside. This is required
115 	 * for most of the architectures.
116 	 * (e.g. x86-64 needs this to handle the %rip-relative fixups.)
117 	 */
118 	return execmem_alloc(EXECMEM_KPROBES, PAGE_SIZE);
119 }
120 
free_insn_page(void * page)121 static void free_insn_page(void *page)
122 {
123 	execmem_free(page);
124 }
125 
126 struct kprobe_insn_cache kprobe_insn_slots = {
127 	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
128 	.alloc = alloc_insn_page,
129 	.free = free_insn_page,
130 	.sym = KPROBE_INSN_PAGE_SYM,
131 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
132 	.insn_size = MAX_INSN_SIZE,
133 	.nr_garbage = 0,
134 };
135 static int collect_garbage_slots(struct kprobe_insn_cache *c);
136 
137 /**
138  * __get_insn_slot - Find a slot on an executable page for an instruction.
139  * @c: Pointer to kprobe instruction cache
140  *
141  * Description: Locates available slot on existing executable pages,
142  *              allocates an executable page if there's no room on existing ones.
143  * Return: Pointer to instruction slot on success, NULL on failure.
144  */
__get_insn_slot(struct kprobe_insn_cache * c)145 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
146 {
147 	struct kprobe_insn_page *kip;
148 
149 	/* Since the slot array is not protected by rcu, we need a mutex */
150 	guard(mutex)(&c->mutex);
151 	do {
152 		guard(rcu)();
153 		list_for_each_entry_rcu(kip, &c->pages, list) {
154 			if (kip->nused < slots_per_page(c)) {
155 				int i;
156 
157 				for (i = 0; i < slots_per_page(c); i++) {
158 					if (kip->slot_used[i] == SLOT_CLEAN) {
159 						kip->slot_used[i] = SLOT_USED;
160 						kip->nused++;
161 						return kip->insns + (i * c->insn_size);
162 					}
163 				}
164 				/* kip->nused is broken. Fix it. */
165 				kip->nused = slots_per_page(c);
166 				WARN_ON(1);
167 			}
168 		}
169 	/* If there are any garbage slots, collect it and try again. */
170 	} while (c->nr_garbage && collect_garbage_slots(c) == 0);
171 
172 	/* All out of space.  Need to allocate a new page. */
173 	kip = kmalloc(struct_size(kip, slot_used, slots_per_page(c)), GFP_KERNEL);
174 	if (!kip)
175 		return NULL;
176 
177 	kip->insns = c->alloc();
178 	if (!kip->insns) {
179 		kfree(kip);
180 		return NULL;
181 	}
182 	INIT_LIST_HEAD(&kip->list);
183 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
184 	kip->slot_used[0] = SLOT_USED;
185 	kip->nused = 1;
186 	kip->ngarbage = 0;
187 	kip->cache = c;
188 	list_add_rcu(&kip->list, &c->pages);
189 
190 	/* Record the perf ksymbol register event after adding the page */
191 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
192 			   PAGE_SIZE, false, c->sym);
193 
194 	return kip->insns;
195 }
196 
197 /* Return true if all garbages are collected, otherwise false. */
collect_one_slot(struct kprobe_insn_page * kip,int idx)198 static bool collect_one_slot(struct kprobe_insn_page *kip, int idx)
199 {
200 	kip->slot_used[idx] = SLOT_CLEAN;
201 	kip->nused--;
202 	if (kip->nused != 0)
203 		return false;
204 
205 	/*
206 	 * Page is no longer in use.  Free it unless
207 	 * it's the last one.  We keep the last one
208 	 * so as not to have to set it up again the
209 	 * next time somebody inserts a probe.
210 	 */
211 	if (!list_is_singular(&kip->list)) {
212 		/*
213 		 * Record perf ksymbol unregister event before removing
214 		 * the page.
215 		 */
216 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
217 				   (unsigned long)kip->insns, PAGE_SIZE, true,
218 				   kip->cache->sym);
219 		list_del_rcu(&kip->list);
220 		synchronize_rcu();
221 		kip->cache->free(kip->insns);
222 		kfree(kip);
223 	}
224 	return true;
225 }
226 
collect_garbage_slots(struct kprobe_insn_cache * c)227 static int collect_garbage_slots(struct kprobe_insn_cache *c)
228 {
229 	struct kprobe_insn_page *kip, *next;
230 
231 	/* Ensure no-one is interrupted on the garbages */
232 	synchronize_rcu();
233 
234 	list_for_each_entry_safe(kip, next, &c->pages, list) {
235 		int i;
236 
237 		if (kip->ngarbage == 0)
238 			continue;
239 		kip->ngarbage = 0;	/* we will collect all garbages */
240 		for (i = 0; i < slots_per_page(c); i++) {
241 			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
242 				break;
243 		}
244 	}
245 	c->nr_garbage = 0;
246 	return 0;
247 }
248 
__find_insn_page(struct kprobe_insn_cache * c,kprobe_opcode_t * slot,struct kprobe_insn_page ** pkip)249 static long __find_insn_page(struct kprobe_insn_cache *c,
250 	kprobe_opcode_t *slot, struct kprobe_insn_page **pkip)
251 {
252 	struct kprobe_insn_page *kip = NULL;
253 	long idx;
254 
255 	guard(rcu)();
256 	list_for_each_entry_rcu(kip, &c->pages, list) {
257 		idx = ((long)slot - (long)kip->insns) /
258 			(c->insn_size * sizeof(kprobe_opcode_t));
259 		if (idx >= 0 && idx < slots_per_page(c)) {
260 			*pkip = kip;
261 			return idx;
262 		}
263 	}
264 	/* Could not find this slot. */
265 	WARN_ON(1);
266 	*pkip = NULL;
267 	return -1;
268 }
269 
__free_insn_slot(struct kprobe_insn_cache * c,kprobe_opcode_t * slot,int dirty)270 void __free_insn_slot(struct kprobe_insn_cache *c,
271 		      kprobe_opcode_t *slot, int dirty)
272 {
273 	struct kprobe_insn_page *kip = NULL;
274 	long idx;
275 
276 	guard(mutex)(&c->mutex);
277 	idx = __find_insn_page(c, slot, &kip);
278 	/* Mark and sweep: this may sleep */
279 	if (kip) {
280 		/* Check double free */
281 		WARN_ON(kip->slot_used[idx] != SLOT_USED);
282 		if (dirty) {
283 			kip->slot_used[idx] = SLOT_DIRTY;
284 			kip->ngarbage++;
285 			if (++c->nr_garbage > slots_per_page(c))
286 				collect_garbage_slots(c);
287 		} else {
288 			collect_one_slot(kip, idx);
289 		}
290 	}
291 }
292 
293 /*
294  * Check given address is on the page of kprobe instruction slots.
295  * This will be used for checking whether the address on a stack
296  * is on a text area or not.
297  */
__is_insn_slot_addr(struct kprobe_insn_cache * c,unsigned long addr)298 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
299 {
300 	struct kprobe_insn_page *kip;
301 	bool ret = false;
302 
303 	rcu_read_lock();
304 	list_for_each_entry_rcu(kip, &c->pages, list) {
305 		if (addr >= (unsigned long)kip->insns &&
306 		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
307 			ret = true;
308 			break;
309 		}
310 	}
311 	rcu_read_unlock();
312 
313 	return ret;
314 }
315 
kprobe_cache_get_kallsym(struct kprobe_insn_cache * c,unsigned int * symnum,unsigned long * value,char * type,char * sym)316 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
317 			     unsigned long *value, char *type, char *sym)
318 {
319 	struct kprobe_insn_page *kip;
320 	int ret = -ERANGE;
321 
322 	rcu_read_lock();
323 	list_for_each_entry_rcu(kip, &c->pages, list) {
324 		if ((*symnum)--)
325 			continue;
326 		strscpy(sym, c->sym, KSYM_NAME_LEN);
327 		*type = 't';
328 		*value = (unsigned long)kip->insns;
329 		ret = 0;
330 		break;
331 	}
332 	rcu_read_unlock();
333 
334 	return ret;
335 }
336 
337 #ifdef CONFIG_OPTPROBES
alloc_optinsn_page(void)338 void __weak *alloc_optinsn_page(void)
339 {
340 	return alloc_insn_page();
341 }
342 
free_optinsn_page(void * page)343 void __weak free_optinsn_page(void *page)
344 {
345 	free_insn_page(page);
346 }
347 
348 /* For optimized_kprobe buffer */
349 struct kprobe_insn_cache kprobe_optinsn_slots = {
350 	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
351 	.alloc = alloc_optinsn_page,
352 	.free = free_optinsn_page,
353 	.sym = KPROBE_OPTINSN_PAGE_SYM,
354 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
355 	/* .insn_size is initialized later */
356 	.nr_garbage = 0,
357 };
358 #endif /* CONFIG_OPTPROBES */
359 #endif /* __ARCH_WANT_KPROBES_INSN_SLOT */
360 
361 /* We have preemption disabled.. so it is safe to use __ versions */
set_kprobe_instance(struct kprobe * kp)362 static inline void set_kprobe_instance(struct kprobe *kp)
363 {
364 	__this_cpu_write(kprobe_instance, kp);
365 }
366 
reset_kprobe_instance(void)367 static inline void reset_kprobe_instance(void)
368 {
369 	__this_cpu_write(kprobe_instance, NULL);
370 }
371 
372 /*
373  * This routine is called either:
374  *	- under the 'kprobe_mutex' - during kprobe_[un]register().
375  *				OR
376  *	- with preemption disabled - from architecture specific code.
377  */
get_kprobe(void * addr)378 struct kprobe *get_kprobe(void *addr)
379 {
380 	struct hlist_head *head;
381 	struct kprobe *p;
382 
383 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
384 	hlist_for_each_entry_rcu(p, head, hlist,
385 				 lockdep_is_held(&kprobe_mutex)) {
386 		if (p->addr == addr)
387 			return p;
388 	}
389 
390 	return NULL;
391 }
392 NOKPROBE_SYMBOL(get_kprobe);
393 
394 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
395 
396 /* Return true if 'p' is an aggregator */
kprobe_aggrprobe(struct kprobe * p)397 static inline bool kprobe_aggrprobe(struct kprobe *p)
398 {
399 	return p->pre_handler == aggr_pre_handler;
400 }
401 
402 /* Return true if 'p' is unused */
kprobe_unused(struct kprobe * p)403 static inline bool kprobe_unused(struct kprobe *p)
404 {
405 	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
406 	       list_empty(&p->list);
407 }
408 
409 /* Keep all fields in the kprobe consistent. */
copy_kprobe(struct kprobe * ap,struct kprobe * p)410 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
411 {
412 	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
413 	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
414 }
415 
416 #ifdef CONFIG_OPTPROBES
417 /* NOTE: This is protected by 'kprobe_mutex'. */
418 static bool kprobes_allow_optimization;
419 
420 /*
421  * Call all 'kprobe::pre_handler' on the list, but ignores its return value.
422  * This must be called from arch-dep optimized caller.
423  */
opt_pre_handler(struct kprobe * p,struct pt_regs * regs)424 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
425 {
426 	struct kprobe *kp;
427 
428 	list_for_each_entry_rcu(kp, &p->list, list) {
429 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
430 			set_kprobe_instance(kp);
431 			kp->pre_handler(kp, regs);
432 		}
433 		reset_kprobe_instance();
434 	}
435 }
436 NOKPROBE_SYMBOL(opt_pre_handler);
437 
438 /* Free optimized instructions and optimized_kprobe */
free_aggr_kprobe(struct kprobe * p)439 static void free_aggr_kprobe(struct kprobe *p)
440 {
441 	struct optimized_kprobe *op;
442 
443 	op = container_of(p, struct optimized_kprobe, kp);
444 	arch_remove_optimized_kprobe(op);
445 	arch_remove_kprobe(p);
446 	kfree(op);
447 }
448 
449 /* Return true if the kprobe is ready for optimization. */
kprobe_optready(struct kprobe * p)450 static inline int kprobe_optready(struct kprobe *p)
451 {
452 	struct optimized_kprobe *op;
453 
454 	if (kprobe_aggrprobe(p)) {
455 		op = container_of(p, struct optimized_kprobe, kp);
456 		return arch_prepared_optinsn(&op->optinsn);
457 	}
458 
459 	return 0;
460 }
461 
462 /* Return true if the kprobe is disarmed. Note: p must be on hash list */
kprobe_disarmed(struct kprobe * p)463 bool kprobe_disarmed(struct kprobe *p)
464 {
465 	struct optimized_kprobe *op;
466 
467 	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
468 	if (!kprobe_aggrprobe(p))
469 		return kprobe_disabled(p);
470 
471 	op = container_of(p, struct optimized_kprobe, kp);
472 
473 	return kprobe_disabled(p) && list_empty(&op->list);
474 }
475 
476 /* Return true if the probe is queued on (un)optimizing lists */
kprobe_queued(struct kprobe * p)477 static bool kprobe_queued(struct kprobe *p)
478 {
479 	struct optimized_kprobe *op;
480 
481 	if (kprobe_aggrprobe(p)) {
482 		op = container_of(p, struct optimized_kprobe, kp);
483 		if (!list_empty(&op->list))
484 			return true;
485 	}
486 	return false;
487 }
488 
489 /*
490  * Return an optimized kprobe whose optimizing code replaces
491  * instructions including 'addr' (exclude breakpoint).
492  */
get_optimized_kprobe(kprobe_opcode_t * addr)493 static struct kprobe *get_optimized_kprobe(kprobe_opcode_t *addr)
494 {
495 	int i;
496 	struct kprobe *p = NULL;
497 	struct optimized_kprobe *op;
498 
499 	/* Don't check i == 0, since that is a breakpoint case. */
500 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH / sizeof(kprobe_opcode_t); i++)
501 		p = get_kprobe(addr - i);
502 
503 	if (p && kprobe_optready(p)) {
504 		op = container_of(p, struct optimized_kprobe, kp);
505 		if (arch_within_optimized_kprobe(op, addr))
506 			return p;
507 	}
508 
509 	return NULL;
510 }
511 
512 /* Optimization staging list, protected by 'kprobe_mutex' */
513 static LIST_HEAD(optimizing_list);
514 static LIST_HEAD(unoptimizing_list);
515 static LIST_HEAD(freeing_list);
516 
517 static void kprobe_optimizer(struct work_struct *work);
518 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
519 #define OPTIMIZE_DELAY 5
520 
521 /*
522  * Optimize (replace a breakpoint with a jump) kprobes listed on
523  * 'optimizing_list'.
524  */
do_optimize_kprobes(void)525 static void do_optimize_kprobes(void)
526 {
527 	lockdep_assert_held(&text_mutex);
528 	/*
529 	 * The optimization/unoptimization refers 'online_cpus' via
530 	 * stop_machine() and cpu-hotplug modifies the 'online_cpus'.
531 	 * And same time, 'text_mutex' will be held in cpu-hotplug and here.
532 	 * This combination can cause a deadlock (cpu-hotplug tries to lock
533 	 * 'text_mutex' but stop_machine() can not be done because
534 	 * the 'online_cpus' has been changed)
535 	 * To avoid this deadlock, caller must have locked cpu-hotplug
536 	 * for preventing cpu-hotplug outside of 'text_mutex' locking.
537 	 */
538 	lockdep_assert_cpus_held();
539 
540 	/* Optimization never be done when disarmed */
541 	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
542 	    list_empty(&optimizing_list))
543 		return;
544 
545 	arch_optimize_kprobes(&optimizing_list);
546 }
547 
548 /*
549  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
550  * if need) kprobes listed on 'unoptimizing_list'.
551  */
do_unoptimize_kprobes(void)552 static void do_unoptimize_kprobes(void)
553 {
554 	struct optimized_kprobe *op, *tmp;
555 
556 	lockdep_assert_held(&text_mutex);
557 	/* See comment in do_optimize_kprobes() */
558 	lockdep_assert_cpus_held();
559 
560 	if (!list_empty(&unoptimizing_list))
561 		arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
562 
563 	/* Loop on 'freeing_list' for disarming and removing from kprobe hash list */
564 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
565 		/* Switching from detour code to origin */
566 		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
567 		/* Disarm probes if marked disabled and not gone */
568 		if (kprobe_disabled(&op->kp) && !kprobe_gone(&op->kp))
569 			arch_disarm_kprobe(&op->kp);
570 		if (kprobe_unused(&op->kp)) {
571 			/*
572 			 * Remove unused probes from hash list. After waiting
573 			 * for synchronization, these probes are reclaimed.
574 			 * (reclaiming is done by do_free_cleaned_kprobes().)
575 			 */
576 			hlist_del_rcu(&op->kp.hlist);
577 		} else
578 			list_del_init(&op->list);
579 	}
580 }
581 
582 /* Reclaim all kprobes on the 'freeing_list' */
do_free_cleaned_kprobes(void)583 static void do_free_cleaned_kprobes(void)
584 {
585 	struct optimized_kprobe *op, *tmp;
586 
587 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
588 		list_del_init(&op->list);
589 		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
590 			/*
591 			 * This must not happen, but if there is a kprobe
592 			 * still in use, keep it on kprobes hash list.
593 			 */
594 			continue;
595 		}
596 		free_aggr_kprobe(&op->kp);
597 	}
598 }
599 
600 /* Start optimizer after OPTIMIZE_DELAY passed */
kick_kprobe_optimizer(void)601 static void kick_kprobe_optimizer(void)
602 {
603 	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
604 }
605 
606 /* Kprobe jump optimizer */
kprobe_optimizer(struct work_struct * work)607 static void kprobe_optimizer(struct work_struct *work)
608 {
609 	guard(mutex)(&kprobe_mutex);
610 
611 	scoped_guard(cpus_read_lock) {
612 		guard(mutex)(&text_mutex);
613 
614 		/*
615 		 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
616 		 * kprobes before waiting for quiesence period.
617 		 */
618 		do_unoptimize_kprobes();
619 
620 		/*
621 		 * Step 2: Wait for quiesence period to ensure all potentially
622 		 * preempted tasks to have normally scheduled. Because optprobe
623 		 * may modify multiple instructions, there is a chance that Nth
624 		 * instruction is preempted. In that case, such tasks can return
625 		 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
626 		 * Note that on non-preemptive kernel, this is transparently converted
627 		 * to synchronoze_sched() to wait for all interrupts to have completed.
628 		 */
629 		synchronize_rcu_tasks();
630 
631 		/* Step 3: Optimize kprobes after quiesence period */
632 		do_optimize_kprobes();
633 
634 		/* Step 4: Free cleaned kprobes after quiesence period */
635 		do_free_cleaned_kprobes();
636 	}
637 
638 	/* Step 5: Kick optimizer again if needed */
639 	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
640 		kick_kprobe_optimizer();
641 }
642 
wait_for_kprobe_optimizer_locked(void)643 static void wait_for_kprobe_optimizer_locked(void)
644 {
645 	lockdep_assert_held(&kprobe_mutex);
646 
647 	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
648 		mutex_unlock(&kprobe_mutex);
649 
650 		/* This will also make 'optimizing_work' execute immmediately */
651 		flush_delayed_work(&optimizing_work);
652 		/* 'optimizing_work' might not have been queued yet, relax */
653 		cpu_relax();
654 
655 		mutex_lock(&kprobe_mutex);
656 	}
657 }
658 
659 /* Wait for completing optimization and unoptimization */
wait_for_kprobe_optimizer(void)660 void wait_for_kprobe_optimizer(void)
661 {
662 	guard(mutex)(&kprobe_mutex);
663 
664 	wait_for_kprobe_optimizer_locked();
665 }
666 
optprobe_queued_unopt(struct optimized_kprobe * op)667 bool optprobe_queued_unopt(struct optimized_kprobe *op)
668 {
669 	struct optimized_kprobe *_op;
670 
671 	list_for_each_entry(_op, &unoptimizing_list, list) {
672 		if (op == _op)
673 			return true;
674 	}
675 
676 	return false;
677 }
678 
679 /* Optimize kprobe if p is ready to be optimized */
optimize_kprobe(struct kprobe * p)680 static void optimize_kprobe(struct kprobe *p)
681 {
682 	struct optimized_kprobe *op;
683 
684 	/* Check if the kprobe is disabled or not ready for optimization. */
685 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
686 	    (kprobe_disabled(p) || kprobes_all_disarmed))
687 		return;
688 
689 	/* kprobes with 'post_handler' can not be optimized */
690 	if (p->post_handler)
691 		return;
692 
693 	op = container_of(p, struct optimized_kprobe, kp);
694 
695 	/* Check there is no other kprobes at the optimized instructions */
696 	if (arch_check_optimized_kprobe(op) < 0)
697 		return;
698 
699 	/* Check if it is already optimized. */
700 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
701 		if (optprobe_queued_unopt(op)) {
702 			/* This is under unoptimizing. Just dequeue the probe */
703 			list_del_init(&op->list);
704 		}
705 		return;
706 	}
707 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
708 
709 	/*
710 	 * On the 'unoptimizing_list' and 'optimizing_list',
711 	 * 'op' must have OPTIMIZED flag
712 	 */
713 	if (WARN_ON_ONCE(!list_empty(&op->list)))
714 		return;
715 
716 	list_add(&op->list, &optimizing_list);
717 	kick_kprobe_optimizer();
718 }
719 
720 /* Short cut to direct unoptimizing */
force_unoptimize_kprobe(struct optimized_kprobe * op)721 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
722 {
723 	lockdep_assert_cpus_held();
724 	arch_unoptimize_kprobe(op);
725 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
726 }
727 
728 /* Unoptimize a kprobe if p is optimized */
unoptimize_kprobe(struct kprobe * p,bool force)729 static void unoptimize_kprobe(struct kprobe *p, bool force)
730 {
731 	struct optimized_kprobe *op;
732 
733 	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
734 		return; /* This is not an optprobe nor optimized */
735 
736 	op = container_of(p, struct optimized_kprobe, kp);
737 	if (!kprobe_optimized(p))
738 		return;
739 
740 	if (!list_empty(&op->list)) {
741 		if (optprobe_queued_unopt(op)) {
742 			/* Queued in unoptimizing queue */
743 			if (force) {
744 				/*
745 				 * Forcibly unoptimize the kprobe here, and queue it
746 				 * in the freeing list for release afterwards.
747 				 */
748 				force_unoptimize_kprobe(op);
749 				list_move(&op->list, &freeing_list);
750 			}
751 		} else {
752 			/* Dequeue from the optimizing queue */
753 			list_del_init(&op->list);
754 			op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
755 		}
756 		return;
757 	}
758 
759 	/* Optimized kprobe case */
760 	if (force) {
761 		/* Forcibly update the code: this is a special case */
762 		force_unoptimize_kprobe(op);
763 	} else {
764 		list_add(&op->list, &unoptimizing_list);
765 		kick_kprobe_optimizer();
766 	}
767 }
768 
769 /* Cancel unoptimizing for reusing */
reuse_unused_kprobe(struct kprobe * ap)770 static int reuse_unused_kprobe(struct kprobe *ap)
771 {
772 	struct optimized_kprobe *op;
773 
774 	/*
775 	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
776 	 * there is still a relative jump) and disabled.
777 	 */
778 	op = container_of(ap, struct optimized_kprobe, kp);
779 	WARN_ON_ONCE(list_empty(&op->list));
780 	/* Enable the probe again */
781 	ap->flags &= ~KPROBE_FLAG_DISABLED;
782 	/* Optimize it again. (remove from 'op->list') */
783 	if (!kprobe_optready(ap))
784 		return -EINVAL;
785 
786 	optimize_kprobe(ap);
787 	return 0;
788 }
789 
790 /* Remove optimized instructions */
kill_optimized_kprobe(struct kprobe * p)791 static void kill_optimized_kprobe(struct kprobe *p)
792 {
793 	struct optimized_kprobe *op;
794 
795 	op = container_of(p, struct optimized_kprobe, kp);
796 	if (!list_empty(&op->list))
797 		/* Dequeue from the (un)optimization queue */
798 		list_del_init(&op->list);
799 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
800 
801 	if (kprobe_unused(p)) {
802 		/*
803 		 * Unused kprobe is on unoptimizing or freeing list. We move it
804 		 * to freeing_list and let the kprobe_optimizer() remove it from
805 		 * the kprobe hash list and free it.
806 		 */
807 		if (optprobe_queued_unopt(op))
808 			list_move(&op->list, &freeing_list);
809 	}
810 
811 	/* Don't touch the code, because it is already freed. */
812 	arch_remove_optimized_kprobe(op);
813 }
814 
815 static inline
__prepare_optimized_kprobe(struct optimized_kprobe * op,struct kprobe * p)816 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
817 {
818 	if (!kprobe_ftrace(p))
819 		arch_prepare_optimized_kprobe(op, p);
820 }
821 
822 /* Try to prepare optimized instructions */
prepare_optimized_kprobe(struct kprobe * p)823 static void prepare_optimized_kprobe(struct kprobe *p)
824 {
825 	struct optimized_kprobe *op;
826 
827 	op = container_of(p, struct optimized_kprobe, kp);
828 	__prepare_optimized_kprobe(op, p);
829 }
830 
831 /* Allocate new optimized_kprobe and try to prepare optimized instructions. */
alloc_aggr_kprobe(struct kprobe * p)832 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
833 {
834 	struct optimized_kprobe *op;
835 
836 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
837 	if (!op)
838 		return NULL;
839 
840 	INIT_LIST_HEAD(&op->list);
841 	op->kp.addr = p->addr;
842 	__prepare_optimized_kprobe(op, p);
843 
844 	return &op->kp;
845 }
846 
847 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
848 
849 /*
850  * Prepare an optimized_kprobe and optimize it.
851  * NOTE: 'p' must be a normal registered kprobe.
852  */
try_to_optimize_kprobe(struct kprobe * p)853 static void try_to_optimize_kprobe(struct kprobe *p)
854 {
855 	struct kprobe *ap;
856 	struct optimized_kprobe *op;
857 
858 	/* Impossible to optimize ftrace-based kprobe. */
859 	if (kprobe_ftrace(p))
860 		return;
861 
862 	/* For preparing optimization, jump_label_text_reserved() is called. */
863 	guard(cpus_read_lock)();
864 	guard(jump_label_lock)();
865 	guard(mutex)(&text_mutex);
866 
867 	ap = alloc_aggr_kprobe(p);
868 	if (!ap)
869 		return;
870 
871 	op = container_of(ap, struct optimized_kprobe, kp);
872 	if (!arch_prepared_optinsn(&op->optinsn)) {
873 		/* If failed to setup optimizing, fallback to kprobe. */
874 		arch_remove_optimized_kprobe(op);
875 		kfree(op);
876 		return;
877 	}
878 
879 	init_aggr_kprobe(ap, p);
880 	optimize_kprobe(ap);	/* This just kicks optimizer thread. */
881 }
882 
optimize_all_kprobes(void)883 static void optimize_all_kprobes(void)
884 {
885 	struct hlist_head *head;
886 	struct kprobe *p;
887 	unsigned int i;
888 
889 	guard(mutex)(&kprobe_mutex);
890 	/* If optimization is already allowed, just return. */
891 	if (kprobes_allow_optimization)
892 		return;
893 
894 	cpus_read_lock();
895 	kprobes_allow_optimization = true;
896 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
897 		head = &kprobe_table[i];
898 		hlist_for_each_entry(p, head, hlist)
899 			if (!kprobe_disabled(p))
900 				optimize_kprobe(p);
901 	}
902 	cpus_read_unlock();
903 	pr_info("kprobe jump-optimization is enabled. All kprobes are optimized if possible.\n");
904 }
905 
906 #ifdef CONFIG_SYSCTL
unoptimize_all_kprobes(void)907 static void unoptimize_all_kprobes(void)
908 {
909 	struct hlist_head *head;
910 	struct kprobe *p;
911 	unsigned int i;
912 
913 	guard(mutex)(&kprobe_mutex);
914 	/* If optimization is already prohibited, just return. */
915 	if (!kprobes_allow_optimization)
916 		return;
917 
918 	cpus_read_lock();
919 	kprobes_allow_optimization = false;
920 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
921 		head = &kprobe_table[i];
922 		hlist_for_each_entry(p, head, hlist) {
923 			if (!kprobe_disabled(p))
924 				unoptimize_kprobe(p, false);
925 		}
926 	}
927 	cpus_read_unlock();
928 	/* Wait for unoptimizing completion. */
929 	wait_for_kprobe_optimizer_locked();
930 	pr_info("kprobe jump-optimization is disabled. All kprobes are based on software breakpoint.\n");
931 }
932 
933 static DEFINE_MUTEX(kprobe_sysctl_mutex);
934 static int sysctl_kprobes_optimization;
proc_kprobes_optimization_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)935 static int proc_kprobes_optimization_handler(const struct ctl_table *table,
936 					     int write, void *buffer,
937 					     size_t *length, loff_t *ppos)
938 {
939 	int ret;
940 
941 	guard(mutex)(&kprobe_sysctl_mutex);
942 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
943 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
944 
945 	if (sysctl_kprobes_optimization)
946 		optimize_all_kprobes();
947 	else
948 		unoptimize_all_kprobes();
949 
950 	return ret;
951 }
952 
953 static const struct ctl_table kprobe_sysctls[] = {
954 	{
955 		.procname	= "kprobes-optimization",
956 		.data		= &sysctl_kprobes_optimization,
957 		.maxlen		= sizeof(int),
958 		.mode		= 0644,
959 		.proc_handler	= proc_kprobes_optimization_handler,
960 		.extra1		= SYSCTL_ZERO,
961 		.extra2		= SYSCTL_ONE,
962 	},
963 };
964 
kprobe_sysctls_init(void)965 static void __init kprobe_sysctls_init(void)
966 {
967 	register_sysctl_init("debug", kprobe_sysctls);
968 }
969 #endif /* CONFIG_SYSCTL */
970 
971 /* Put a breakpoint for a probe. */
__arm_kprobe(struct kprobe * p)972 static void __arm_kprobe(struct kprobe *p)
973 {
974 	struct kprobe *_p;
975 
976 	lockdep_assert_held(&text_mutex);
977 
978 	/* Find the overlapping optimized kprobes. */
979 	_p = get_optimized_kprobe(p->addr);
980 	if (unlikely(_p))
981 		/* Fallback to unoptimized kprobe */
982 		unoptimize_kprobe(_p, true);
983 
984 	arch_arm_kprobe(p);
985 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
986 }
987 
988 /* Remove the breakpoint of a probe. */
__disarm_kprobe(struct kprobe * p,bool reopt)989 static void __disarm_kprobe(struct kprobe *p, bool reopt)
990 {
991 	struct kprobe *_p;
992 
993 	lockdep_assert_held(&text_mutex);
994 
995 	/* Try to unoptimize */
996 	unoptimize_kprobe(p, kprobes_all_disarmed);
997 
998 	if (!kprobe_queued(p)) {
999 		arch_disarm_kprobe(p);
1000 		/* If another kprobe was blocked, re-optimize it. */
1001 		_p = get_optimized_kprobe(p->addr);
1002 		if (unlikely(_p) && reopt)
1003 			optimize_kprobe(_p);
1004 	}
1005 	/*
1006 	 * TODO: Since unoptimization and real disarming will be done by
1007 	 * the worker thread, we can not check whether another probe are
1008 	 * unoptimized because of this probe here. It should be re-optimized
1009 	 * by the worker thread.
1010 	 */
1011 }
1012 
1013 #else /* !CONFIG_OPTPROBES */
1014 
1015 #define optimize_kprobe(p)			do {} while (0)
1016 #define unoptimize_kprobe(p, f)			do {} while (0)
1017 #define kill_optimized_kprobe(p)		do {} while (0)
1018 #define prepare_optimized_kprobe(p)		do {} while (0)
1019 #define try_to_optimize_kprobe(p)		do {} while (0)
1020 #define __arm_kprobe(p)				arch_arm_kprobe(p)
1021 #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
1022 #define kprobe_disarmed(p)			kprobe_disabled(p)
1023 #define wait_for_kprobe_optimizer_locked()			\
1024 	lockdep_assert_held(&kprobe_mutex)
1025 
reuse_unused_kprobe(struct kprobe * ap)1026 static int reuse_unused_kprobe(struct kprobe *ap)
1027 {
1028 	/*
1029 	 * If the optimized kprobe is NOT supported, the aggr kprobe is
1030 	 * released at the same time that the last aggregated kprobe is
1031 	 * unregistered.
1032 	 * Thus there should be no chance to reuse unused kprobe.
1033 	 */
1034 	WARN_ON_ONCE(1);
1035 	return -EINVAL;
1036 }
1037 
free_aggr_kprobe(struct kprobe * p)1038 static void free_aggr_kprobe(struct kprobe *p)
1039 {
1040 	arch_remove_kprobe(p);
1041 	kfree(p);
1042 }
1043 
alloc_aggr_kprobe(struct kprobe * p)1044 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1045 {
1046 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1047 }
1048 #endif /* CONFIG_OPTPROBES */
1049 
1050 #ifdef CONFIG_KPROBES_ON_FTRACE
1051 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1052 	.func = kprobe_ftrace_handler,
1053 	.flags = FTRACE_OPS_FL_SAVE_REGS,
1054 };
1055 
1056 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1057 	.func = kprobe_ftrace_handler,
1058 	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1059 };
1060 
1061 static int kprobe_ipmodify_enabled;
1062 static int kprobe_ftrace_enabled;
1063 bool kprobe_ftrace_disabled;
1064 
__arm_kprobe_ftrace(struct kprobe * p,struct ftrace_ops * ops,int * cnt)1065 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1066 			       int *cnt)
1067 {
1068 	int ret;
1069 
1070 	lockdep_assert_held(&kprobe_mutex);
1071 
1072 	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1073 	if (WARN_ONCE(ret < 0, "Failed to arm kprobe-ftrace at %pS (error %d)\n", p->addr, ret))
1074 		return ret;
1075 
1076 	if (*cnt == 0) {
1077 		ret = register_ftrace_function(ops);
1078 		if (WARN(ret < 0, "Failed to register kprobe-ftrace (error %d)\n", ret)) {
1079 			/*
1080 			 * At this point, sinec ops is not registered, we should be sefe from
1081 			 * registering empty filter.
1082 			 */
1083 			ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1084 			return ret;
1085 		}
1086 	}
1087 
1088 	(*cnt)++;
1089 	return ret;
1090 }
1091 
arm_kprobe_ftrace(struct kprobe * p)1092 static int arm_kprobe_ftrace(struct kprobe *p)
1093 {
1094 	bool ipmodify = (p->post_handler != NULL);
1095 
1096 	return __arm_kprobe_ftrace(p,
1097 		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1098 		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1099 }
1100 
__disarm_kprobe_ftrace(struct kprobe * p,struct ftrace_ops * ops,int * cnt)1101 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1102 				  int *cnt)
1103 {
1104 	int ret;
1105 
1106 	lockdep_assert_held(&kprobe_mutex);
1107 
1108 	if (*cnt == 1) {
1109 		ret = unregister_ftrace_function(ops);
1110 		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (error %d)\n", ret))
1111 			return ret;
1112 	}
1113 
1114 	(*cnt)--;
1115 
1116 	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1117 	WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (error %d)\n",
1118 		  p->addr, ret);
1119 	return ret;
1120 }
1121 
disarm_kprobe_ftrace(struct kprobe * p)1122 static int disarm_kprobe_ftrace(struct kprobe *p)
1123 {
1124 	bool ipmodify = (p->post_handler != NULL);
1125 
1126 	return __disarm_kprobe_ftrace(p,
1127 		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1128 		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1129 }
1130 
kprobe_ftrace_kill(void)1131 void kprobe_ftrace_kill(void)
1132 {
1133 	kprobe_ftrace_disabled = true;
1134 }
1135 #else	/* !CONFIG_KPROBES_ON_FTRACE */
arm_kprobe_ftrace(struct kprobe * p)1136 static inline int arm_kprobe_ftrace(struct kprobe *p)
1137 {
1138 	return -ENODEV;
1139 }
1140 
disarm_kprobe_ftrace(struct kprobe * p)1141 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1142 {
1143 	return -ENODEV;
1144 }
1145 #endif
1146 
prepare_kprobe(struct kprobe * p)1147 static int prepare_kprobe(struct kprobe *p)
1148 {
1149 	/* Must ensure p->addr is really on ftrace */
1150 	if (kprobe_ftrace(p))
1151 		return arch_prepare_kprobe_ftrace(p);
1152 
1153 	return arch_prepare_kprobe(p);
1154 }
1155 
arm_kprobe(struct kprobe * kp)1156 static int arm_kprobe(struct kprobe *kp)
1157 {
1158 	if (unlikely(kprobe_ftrace(kp)))
1159 		return arm_kprobe_ftrace(kp);
1160 
1161 	guard(cpus_read_lock)();
1162 	guard(mutex)(&text_mutex);
1163 	__arm_kprobe(kp);
1164 	return 0;
1165 }
1166 
disarm_kprobe(struct kprobe * kp,bool reopt)1167 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1168 {
1169 	if (unlikely(kprobe_ftrace(kp)))
1170 		return disarm_kprobe_ftrace(kp);
1171 
1172 	guard(cpus_read_lock)();
1173 	guard(mutex)(&text_mutex);
1174 	__disarm_kprobe(kp, reopt);
1175 	return 0;
1176 }
1177 
1178 /*
1179  * Aggregate handlers for multiple kprobes support - these handlers
1180  * take care of invoking the individual kprobe handlers on p->list
1181  */
aggr_pre_handler(struct kprobe * p,struct pt_regs * regs)1182 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1183 {
1184 	struct kprobe *kp;
1185 
1186 	list_for_each_entry_rcu(kp, &p->list, list) {
1187 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1188 			set_kprobe_instance(kp);
1189 			if (kp->pre_handler(kp, regs))
1190 				return 1;
1191 		}
1192 		reset_kprobe_instance();
1193 	}
1194 	return 0;
1195 }
1196 NOKPROBE_SYMBOL(aggr_pre_handler);
1197 
aggr_post_handler(struct kprobe * p,struct pt_regs * regs,unsigned long flags)1198 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1199 			      unsigned long flags)
1200 {
1201 	struct kprobe *kp;
1202 
1203 	list_for_each_entry_rcu(kp, &p->list, list) {
1204 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1205 			set_kprobe_instance(kp);
1206 			kp->post_handler(kp, regs, flags);
1207 			reset_kprobe_instance();
1208 		}
1209 	}
1210 }
1211 NOKPROBE_SYMBOL(aggr_post_handler);
1212 
1213 /* Walks the list and increments 'nmissed' if 'p' has child probes. */
kprobes_inc_nmissed_count(struct kprobe * p)1214 void kprobes_inc_nmissed_count(struct kprobe *p)
1215 {
1216 	struct kprobe *kp;
1217 
1218 	if (!kprobe_aggrprobe(p)) {
1219 		p->nmissed++;
1220 	} else {
1221 		list_for_each_entry_rcu(kp, &p->list, list)
1222 			kp->nmissed++;
1223 	}
1224 }
1225 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1226 
1227 static struct kprobe kprobe_busy = {
1228 	.addr = (void *) get_kprobe,
1229 };
1230 
kprobe_busy_begin(void)1231 void kprobe_busy_begin(void)
1232 {
1233 	struct kprobe_ctlblk *kcb;
1234 
1235 	preempt_disable();
1236 	__this_cpu_write(current_kprobe, &kprobe_busy);
1237 	kcb = get_kprobe_ctlblk();
1238 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1239 }
1240 
kprobe_busy_end(void)1241 void kprobe_busy_end(void)
1242 {
1243 	__this_cpu_write(current_kprobe, NULL);
1244 	preempt_enable();
1245 }
1246 
1247 /* Add the new probe to 'ap->list'. */
add_new_kprobe(struct kprobe * ap,struct kprobe * p)1248 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1249 {
1250 	if (p->post_handler)
1251 		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1252 
1253 	list_add_rcu(&p->list, &ap->list);
1254 	if (p->post_handler && !ap->post_handler)
1255 		ap->post_handler = aggr_post_handler;
1256 
1257 	return 0;
1258 }
1259 
1260 /*
1261  * Fill in the required fields of the aggregator kprobe. Replace the
1262  * earlier kprobe in the hlist with the aggregator kprobe.
1263  */
init_aggr_kprobe(struct kprobe * ap,struct kprobe * p)1264 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1265 {
1266 	/* Copy the insn slot of 'p' to 'ap'. */
1267 	copy_kprobe(p, ap);
1268 	flush_insn_slot(ap);
1269 	ap->addr = p->addr;
1270 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1271 	ap->pre_handler = aggr_pre_handler;
1272 	/* We don't care the kprobe which has gone. */
1273 	if (p->post_handler && !kprobe_gone(p))
1274 		ap->post_handler = aggr_post_handler;
1275 
1276 	INIT_LIST_HEAD(&ap->list);
1277 	INIT_HLIST_NODE(&ap->hlist);
1278 
1279 	list_add_rcu(&p->list, &ap->list);
1280 	hlist_replace_rcu(&p->hlist, &ap->hlist);
1281 }
1282 
1283 /*
1284  * This registers the second or subsequent kprobe at the same address.
1285  */
register_aggr_kprobe(struct kprobe * orig_p,struct kprobe * p)1286 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1287 {
1288 	int ret = 0;
1289 	struct kprobe *ap = orig_p;
1290 
1291 	scoped_guard(cpus_read_lock) {
1292 		/* For preparing optimization, jump_label_text_reserved() is called */
1293 		guard(jump_label_lock)();
1294 		guard(mutex)(&text_mutex);
1295 
1296 		if (!kprobe_aggrprobe(orig_p)) {
1297 			/* If 'orig_p' is not an 'aggr_kprobe', create new one. */
1298 			ap = alloc_aggr_kprobe(orig_p);
1299 			if (!ap)
1300 				return -ENOMEM;
1301 			init_aggr_kprobe(ap, orig_p);
1302 		} else if (kprobe_unused(ap)) {
1303 			/* This probe is going to die. Rescue it */
1304 			ret = reuse_unused_kprobe(ap);
1305 			if (ret)
1306 				return ret;
1307 		}
1308 
1309 		if (kprobe_gone(ap)) {
1310 			/*
1311 			 * Attempting to insert new probe at the same location that
1312 			 * had a probe in the module vaddr area which already
1313 			 * freed. So, the instruction slot has already been
1314 			 * released. We need a new slot for the new probe.
1315 			 */
1316 			ret = arch_prepare_kprobe(ap);
1317 			if (ret)
1318 				/*
1319 				 * Even if fail to allocate new slot, don't need to
1320 				 * free the 'ap'. It will be used next time, or
1321 				 * freed by unregister_kprobe().
1322 				 */
1323 				return ret;
1324 
1325 			/* Prepare optimized instructions if possible. */
1326 			prepare_optimized_kprobe(ap);
1327 
1328 			/*
1329 			 * Clear gone flag to prevent allocating new slot again, and
1330 			 * set disabled flag because it is not armed yet.
1331 			 */
1332 			ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1333 					| KPROBE_FLAG_DISABLED;
1334 		}
1335 
1336 		/* Copy the insn slot of 'p' to 'ap'. */
1337 		copy_kprobe(ap, p);
1338 		ret = add_new_kprobe(ap, p);
1339 	}
1340 
1341 	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1342 		ap->flags &= ~KPROBE_FLAG_DISABLED;
1343 		if (!kprobes_all_disarmed) {
1344 			/* Arm the breakpoint again. */
1345 			ret = arm_kprobe(ap);
1346 			if (ret) {
1347 				ap->flags |= KPROBE_FLAG_DISABLED;
1348 				list_del_rcu(&p->list);
1349 				synchronize_rcu();
1350 			}
1351 		}
1352 	}
1353 	return ret;
1354 }
1355 
arch_within_kprobe_blacklist(unsigned long addr)1356 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1357 {
1358 	/* The '__kprobes' functions and entry code must not be probed. */
1359 	return addr >= (unsigned long)__kprobes_text_start &&
1360 	       addr < (unsigned long)__kprobes_text_end;
1361 }
1362 
__within_kprobe_blacklist(unsigned long addr)1363 static bool __within_kprobe_blacklist(unsigned long addr)
1364 {
1365 	struct kprobe_blacklist_entry *ent;
1366 
1367 	if (arch_within_kprobe_blacklist(addr))
1368 		return true;
1369 	/*
1370 	 * If 'kprobe_blacklist' is defined, check the address and
1371 	 * reject any probe registration in the prohibited area.
1372 	 */
1373 	list_for_each_entry(ent, &kprobe_blacklist, list) {
1374 		if (addr >= ent->start_addr && addr < ent->end_addr)
1375 			return true;
1376 	}
1377 	return false;
1378 }
1379 
within_kprobe_blacklist(unsigned long addr)1380 bool within_kprobe_blacklist(unsigned long addr)
1381 {
1382 	char symname[KSYM_NAME_LEN], *p;
1383 
1384 	if (__within_kprobe_blacklist(addr))
1385 		return true;
1386 
1387 	/* Check if the address is on a suffixed-symbol */
1388 	if (!lookup_symbol_name(addr, symname)) {
1389 		p = strchr(symname, '.');
1390 		if (!p)
1391 			return false;
1392 		*p = '\0';
1393 		addr = (unsigned long)kprobe_lookup_name(symname, 0);
1394 		if (addr)
1395 			return __within_kprobe_blacklist(addr);
1396 	}
1397 	return false;
1398 }
1399 
1400 /*
1401  * arch_adjust_kprobe_addr - adjust the address
1402  * @addr: symbol base address
1403  * @offset: offset within the symbol
1404  * @on_func_entry: was this @addr+@offset on the function entry
1405  *
1406  * Typically returns @addr + @offset, except for special cases where the
1407  * function might be prefixed by a CFI landing pad, in that case any offset
1408  * inside the landing pad is mapped to the first 'real' instruction of the
1409  * symbol.
1410  *
1411  * Specifically, for things like IBT/BTI, skip the resp. ENDBR/BTI.C
1412  * instruction at +0.
1413  */
arch_adjust_kprobe_addr(unsigned long addr,unsigned long offset,bool * on_func_entry)1414 kprobe_opcode_t *__weak arch_adjust_kprobe_addr(unsigned long addr,
1415 						unsigned long offset,
1416 						bool *on_func_entry)
1417 {
1418 	*on_func_entry = !offset;
1419 	return (kprobe_opcode_t *)(addr + offset);
1420 }
1421 
1422 /*
1423  * If 'symbol_name' is specified, look it up and add the 'offset'
1424  * to it. This way, we can specify a relative address to a symbol.
1425  * This returns encoded errors if it fails to look up symbol or invalid
1426  * combination of parameters.
1427  */
1428 static kprobe_opcode_t *
_kprobe_addr(kprobe_opcode_t * addr,const char * symbol_name,unsigned long offset,bool * on_func_entry)1429 _kprobe_addr(kprobe_opcode_t *addr, const char *symbol_name,
1430 	     unsigned long offset, bool *on_func_entry)
1431 {
1432 	if ((symbol_name && addr) || (!symbol_name && !addr))
1433 		return ERR_PTR(-EINVAL);
1434 
1435 	if (symbol_name) {
1436 		/*
1437 		 * Input: @sym + @offset
1438 		 * Output: @addr + @offset
1439 		 *
1440 		 * NOTE: kprobe_lookup_name() does *NOT* fold the offset
1441 		 *       argument into it's output!
1442 		 */
1443 		addr = kprobe_lookup_name(symbol_name, offset);
1444 		if (!addr)
1445 			return ERR_PTR(-ENOENT);
1446 	}
1447 
1448 	/*
1449 	 * So here we have @addr + @offset, displace it into a new
1450 	 * @addr' + @offset' where @addr' is the symbol start address.
1451 	 */
1452 	addr = (void *)addr + offset;
1453 	if (!kallsyms_lookup_size_offset((unsigned long)addr, NULL, &offset))
1454 		return ERR_PTR(-ENOENT);
1455 	addr = (void *)addr - offset;
1456 
1457 	/*
1458 	 * Then ask the architecture to re-combine them, taking care of
1459 	 * magical function entry details while telling us if this was indeed
1460 	 * at the start of the function.
1461 	 */
1462 	addr = arch_adjust_kprobe_addr((unsigned long)addr, offset, on_func_entry);
1463 	if (!addr)
1464 		return ERR_PTR(-EINVAL);
1465 
1466 	return addr;
1467 }
1468 
kprobe_addr(struct kprobe * p)1469 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1470 {
1471 	bool on_func_entry;
1472 
1473 	return _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1474 }
1475 
1476 /*
1477  * Check the 'p' is valid and return the aggregator kprobe
1478  * at the same address.
1479  */
__get_valid_kprobe(struct kprobe * p)1480 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1481 {
1482 	struct kprobe *ap, *list_p;
1483 
1484 	lockdep_assert_held(&kprobe_mutex);
1485 
1486 	ap = get_kprobe(p->addr);
1487 	if (unlikely(!ap))
1488 		return NULL;
1489 
1490 	if (p == ap)
1491 		return ap;
1492 
1493 	list_for_each_entry(list_p, &ap->list, list)
1494 		if (list_p == p)
1495 		/* kprobe p is a valid probe */
1496 			return ap;
1497 
1498 	return NULL;
1499 }
1500 
1501 /*
1502  * Warn and return error if the kprobe is being re-registered since
1503  * there must be a software bug.
1504  */
warn_kprobe_rereg(struct kprobe * p)1505 static inline int warn_kprobe_rereg(struct kprobe *p)
1506 {
1507 	guard(mutex)(&kprobe_mutex);
1508 
1509 	if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1510 		return -EINVAL;
1511 
1512 	return 0;
1513 }
1514 
check_ftrace_location(struct kprobe * p)1515 static int check_ftrace_location(struct kprobe *p)
1516 {
1517 	unsigned long addr = (unsigned long)p->addr;
1518 
1519 	if (ftrace_location(addr) == addr) {
1520 #ifdef CONFIG_KPROBES_ON_FTRACE
1521 		p->flags |= KPROBE_FLAG_FTRACE;
1522 #else
1523 		return -EINVAL;
1524 #endif
1525 	}
1526 	return 0;
1527 }
1528 
is_cfi_preamble_symbol(unsigned long addr)1529 static bool is_cfi_preamble_symbol(unsigned long addr)
1530 {
1531 	char symbuf[KSYM_NAME_LEN];
1532 
1533 	if (lookup_symbol_name(addr, symbuf))
1534 		return false;
1535 
1536 	return str_has_prefix(symbuf, "__cfi_") ||
1537 		str_has_prefix(symbuf, "__pfx_");
1538 }
1539 
check_kprobe_address_safe(struct kprobe * p,struct module ** probed_mod)1540 static int check_kprobe_address_safe(struct kprobe *p,
1541 				     struct module **probed_mod)
1542 {
1543 	int ret;
1544 
1545 	ret = check_ftrace_location(p);
1546 	if (ret)
1547 		return ret;
1548 
1549 	guard(jump_label_lock)();
1550 
1551 	/* Ensure the address is in a text area, and find a module if exists. */
1552 	*probed_mod = NULL;
1553 	if (!core_kernel_text((unsigned long) p->addr)) {
1554 		guard(rcu)();
1555 		*probed_mod = __module_text_address((unsigned long) p->addr);
1556 		if (!(*probed_mod))
1557 			return -EINVAL;
1558 
1559 		/*
1560 		 * We must hold a refcount of the probed module while updating
1561 		 * its code to prohibit unexpected unloading.
1562 		 */
1563 		if (unlikely(!try_module_get(*probed_mod)))
1564 			return -ENOENT;
1565 	}
1566 	/* Ensure it is not in reserved area. */
1567 	if (in_gate_area_no_mm((unsigned long) p->addr) ||
1568 	    within_kprobe_blacklist((unsigned long) p->addr) ||
1569 	    jump_label_text_reserved(p->addr, p->addr) ||
1570 	    static_call_text_reserved(p->addr, p->addr) ||
1571 	    find_bug((unsigned long)p->addr) ||
1572 	    is_cfi_preamble_symbol((unsigned long)p->addr)) {
1573 		module_put(*probed_mod);
1574 		return -EINVAL;
1575 	}
1576 
1577 	/* Get module refcount and reject __init functions for loaded modules. */
1578 	if (IS_ENABLED(CONFIG_MODULES) && *probed_mod) {
1579 		/*
1580 		 * If the module freed '.init.text', we couldn't insert
1581 		 * kprobes in there.
1582 		 */
1583 		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1584 		    !module_is_coming(*probed_mod)) {
1585 			module_put(*probed_mod);
1586 			return -ENOENT;
1587 		}
1588 	}
1589 
1590 	return 0;
1591 }
1592 
__register_kprobe(struct kprobe * p)1593 static int __register_kprobe(struct kprobe *p)
1594 {
1595 	int ret;
1596 	struct kprobe *old_p;
1597 
1598 	guard(mutex)(&kprobe_mutex);
1599 
1600 	old_p = get_kprobe(p->addr);
1601 	if (old_p)
1602 		/* Since this may unoptimize 'old_p', locking 'text_mutex'. */
1603 		return register_aggr_kprobe(old_p, p);
1604 
1605 	scoped_guard(cpus_read_lock) {
1606 		/* Prevent text modification */
1607 		guard(mutex)(&text_mutex);
1608 		ret = prepare_kprobe(p);
1609 		if (ret)
1610 			return ret;
1611 	}
1612 
1613 	INIT_HLIST_NODE(&p->hlist);
1614 	hlist_add_head_rcu(&p->hlist,
1615 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1616 
1617 	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1618 		ret = arm_kprobe(p);
1619 		if (ret) {
1620 			hlist_del_rcu(&p->hlist);
1621 			synchronize_rcu();
1622 		}
1623 	}
1624 
1625 	/* Try to optimize kprobe */
1626 	try_to_optimize_kprobe(p);
1627 	return 0;
1628 }
1629 
register_kprobe(struct kprobe * p)1630 int register_kprobe(struct kprobe *p)
1631 {
1632 	int ret;
1633 	struct module *probed_mod;
1634 	kprobe_opcode_t *addr;
1635 	bool on_func_entry;
1636 
1637 	/* Canonicalize probe address from symbol */
1638 	addr = _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1639 	if (IS_ERR(addr))
1640 		return PTR_ERR(addr);
1641 	p->addr = addr;
1642 
1643 	ret = warn_kprobe_rereg(p);
1644 	if (ret)
1645 		return ret;
1646 
1647 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1648 	p->flags &= KPROBE_FLAG_DISABLED;
1649 	if (on_func_entry)
1650 		p->flags |= KPROBE_FLAG_ON_FUNC_ENTRY;
1651 	p->nmissed = 0;
1652 	INIT_LIST_HEAD(&p->list);
1653 
1654 	ret = check_kprobe_address_safe(p, &probed_mod);
1655 	if (ret)
1656 		return ret;
1657 
1658 	ret = __register_kprobe(p);
1659 
1660 	if (probed_mod)
1661 		module_put(probed_mod);
1662 
1663 	return ret;
1664 }
1665 EXPORT_SYMBOL_GPL(register_kprobe);
1666 
1667 /* Check if all probes on the 'ap' are disabled. */
aggr_kprobe_disabled(struct kprobe * ap)1668 static bool aggr_kprobe_disabled(struct kprobe *ap)
1669 {
1670 	struct kprobe *kp;
1671 
1672 	lockdep_assert_held(&kprobe_mutex);
1673 
1674 	list_for_each_entry(kp, &ap->list, list)
1675 		if (!kprobe_disabled(kp))
1676 			/*
1677 			 * Since there is an active probe on the list,
1678 			 * we can't disable this 'ap'.
1679 			 */
1680 			return false;
1681 
1682 	return true;
1683 }
1684 
__disable_kprobe(struct kprobe * p)1685 static struct kprobe *__disable_kprobe(struct kprobe *p)
1686 {
1687 	struct kprobe *orig_p;
1688 	int ret;
1689 
1690 	lockdep_assert_held(&kprobe_mutex);
1691 
1692 	/* Get an original kprobe for return */
1693 	orig_p = __get_valid_kprobe(p);
1694 	if (unlikely(orig_p == NULL))
1695 		return ERR_PTR(-EINVAL);
1696 
1697 	if (kprobe_disabled(p))
1698 		return orig_p;
1699 
1700 	/* Disable probe if it is a child probe */
1701 	if (p != orig_p)
1702 		p->flags |= KPROBE_FLAG_DISABLED;
1703 
1704 	/* Try to disarm and disable this/parent probe */
1705 	if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1706 		/*
1707 		 * Don't be lazy here.  Even if 'kprobes_all_disarmed'
1708 		 * is false, 'orig_p' might not have been armed yet.
1709 		 * Note arm_all_kprobes() __tries__ to arm all kprobes
1710 		 * on the best effort basis.
1711 		 */
1712 		if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) {
1713 			ret = disarm_kprobe(orig_p, true);
1714 			if (ret) {
1715 				p->flags &= ~KPROBE_FLAG_DISABLED;
1716 				return ERR_PTR(ret);
1717 			}
1718 		}
1719 		orig_p->flags |= KPROBE_FLAG_DISABLED;
1720 	}
1721 
1722 	return orig_p;
1723 }
1724 
1725 /*
1726  * Unregister a kprobe without a scheduler synchronization.
1727  */
__unregister_kprobe_top(struct kprobe * p)1728 static int __unregister_kprobe_top(struct kprobe *p)
1729 {
1730 	struct kprobe *ap, *list_p;
1731 
1732 	/* Disable kprobe. This will disarm it if needed. */
1733 	ap = __disable_kprobe(p);
1734 	if (IS_ERR(ap))
1735 		return PTR_ERR(ap);
1736 
1737 	WARN_ON(ap != p && !kprobe_aggrprobe(ap));
1738 
1739 	/*
1740 	 * If the probe is an independent(and non-optimized) kprobe
1741 	 * (not an aggrprobe), the last kprobe on the aggrprobe, or
1742 	 * kprobe is already disarmed, just remove from the hash list.
1743 	 */
1744 	if (ap == p ||
1745 		(list_is_singular(&ap->list) && kprobe_disarmed(ap))) {
1746 		/*
1747 		 * !disarmed could be happen if the probe is under delayed
1748 		 * unoptimizing.
1749 		 */
1750 		hlist_del_rcu(&ap->hlist);
1751 		return 0;
1752 	}
1753 
1754 	/* If disabling probe has special handlers, update aggrprobe */
1755 	if (p->post_handler && !kprobe_gone(p)) {
1756 		list_for_each_entry(list_p, &ap->list, list) {
1757 			if ((list_p != p) && (list_p->post_handler))
1758 				break;
1759 		}
1760 		/* No other probe has post_handler */
1761 		if (list_entry_is_head(list_p, &ap->list, list)) {
1762 			/*
1763 			 * For the kprobe-on-ftrace case, we keep the
1764 			 * post_handler setting to identify this aggrprobe
1765 			 * armed with kprobe_ipmodify_ops.
1766 			 */
1767 			if (!kprobe_ftrace(ap))
1768 				ap->post_handler = NULL;
1769 		}
1770 	}
1771 
1772 	/*
1773 	 * Remove from the aggrprobe: this path will do nothing in
1774 	 * __unregister_kprobe_bottom().
1775 	 */
1776 	list_del_rcu(&p->list);
1777 	if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1778 		/*
1779 		 * Try to optimize this probe again, because post
1780 		 * handler may have been changed.
1781 		 */
1782 		optimize_kprobe(ap);
1783 	return 0;
1784 
1785 }
1786 
__unregister_kprobe_bottom(struct kprobe * p)1787 static void __unregister_kprobe_bottom(struct kprobe *p)
1788 {
1789 	struct kprobe *ap;
1790 
1791 	if (list_empty(&p->list))
1792 		/* This is an independent kprobe */
1793 		arch_remove_kprobe(p);
1794 	else if (list_is_singular(&p->list)) {
1795 		/* This is the last child of an aggrprobe */
1796 		ap = list_entry(p->list.next, struct kprobe, list);
1797 		list_del(&p->list);
1798 		free_aggr_kprobe(ap);
1799 	}
1800 	/* Otherwise, do nothing. */
1801 }
1802 
register_kprobes(struct kprobe ** kps,int num)1803 int register_kprobes(struct kprobe **kps, int num)
1804 {
1805 	int i, ret = 0;
1806 
1807 	if (num <= 0)
1808 		return -EINVAL;
1809 	for (i = 0; i < num; i++) {
1810 		ret = register_kprobe(kps[i]);
1811 		if (ret < 0) {
1812 			if (i > 0)
1813 				unregister_kprobes(kps, i);
1814 			break;
1815 		}
1816 	}
1817 	return ret;
1818 }
1819 EXPORT_SYMBOL_GPL(register_kprobes);
1820 
unregister_kprobe(struct kprobe * p)1821 void unregister_kprobe(struct kprobe *p)
1822 {
1823 	unregister_kprobes(&p, 1);
1824 }
1825 EXPORT_SYMBOL_GPL(unregister_kprobe);
1826 
unregister_kprobes(struct kprobe ** kps,int num)1827 void unregister_kprobes(struct kprobe **kps, int num)
1828 {
1829 	int i;
1830 
1831 	if (num <= 0)
1832 		return;
1833 	scoped_guard(mutex, &kprobe_mutex) {
1834 		for (i = 0; i < num; i++)
1835 			if (__unregister_kprobe_top(kps[i]) < 0)
1836 				kps[i]->addr = NULL;
1837 	}
1838 	synchronize_rcu();
1839 	for (i = 0; i < num; i++)
1840 		if (kps[i]->addr)
1841 			__unregister_kprobe_bottom(kps[i]);
1842 }
1843 EXPORT_SYMBOL_GPL(unregister_kprobes);
1844 
kprobe_exceptions_notify(struct notifier_block * self,unsigned long val,void * data)1845 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1846 					unsigned long val, void *data)
1847 {
1848 	return NOTIFY_DONE;
1849 }
1850 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1851 
1852 static struct notifier_block kprobe_exceptions_nb = {
1853 	.notifier_call = kprobe_exceptions_notify,
1854 	.priority = 0x7fffffff /* we need to be notified first */
1855 };
1856 
1857 #ifdef CONFIG_KRETPROBES
1858 
1859 #if !defined(CONFIG_KRETPROBE_ON_RETHOOK)
1860 
1861 /* callbacks for objpool of kretprobe instances */
kretprobe_init_inst(void * nod,void * context)1862 static int kretprobe_init_inst(void *nod, void *context)
1863 {
1864 	struct kretprobe_instance *ri = nod;
1865 
1866 	ri->rph = context;
1867 	return 0;
1868 }
kretprobe_fini_pool(struct objpool_head * head,void * context)1869 static int kretprobe_fini_pool(struct objpool_head *head, void *context)
1870 {
1871 	kfree(context);
1872 	return 0;
1873 }
1874 
free_rp_inst_rcu(struct rcu_head * head)1875 static void free_rp_inst_rcu(struct rcu_head *head)
1876 {
1877 	struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1878 	struct kretprobe_holder *rph = ri->rph;
1879 
1880 	objpool_drop(ri, &rph->pool);
1881 }
1882 NOKPROBE_SYMBOL(free_rp_inst_rcu);
1883 
recycle_rp_inst(struct kretprobe_instance * ri)1884 static void recycle_rp_inst(struct kretprobe_instance *ri)
1885 {
1886 	struct kretprobe *rp = get_kretprobe(ri);
1887 
1888 	if (likely(rp))
1889 		objpool_push(ri, &rp->rph->pool);
1890 	else
1891 		call_rcu(&ri->rcu, free_rp_inst_rcu);
1892 }
1893 NOKPROBE_SYMBOL(recycle_rp_inst);
1894 
1895 /*
1896  * This function is called from delayed_put_task_struct() when a task is
1897  * dead and cleaned up to recycle any kretprobe instances associated with
1898  * this task. These left over instances represent probed functions that
1899  * have been called but will never return.
1900  */
kprobe_flush_task(struct task_struct * tk)1901 void kprobe_flush_task(struct task_struct *tk)
1902 {
1903 	struct kretprobe_instance *ri;
1904 	struct llist_node *node;
1905 
1906 	/* Early boot, not yet initialized. */
1907 	if (unlikely(!kprobes_initialized))
1908 		return;
1909 
1910 	kprobe_busy_begin();
1911 
1912 	node = __llist_del_all(&tk->kretprobe_instances);
1913 	while (node) {
1914 		ri = container_of(node, struct kretprobe_instance, llist);
1915 		node = node->next;
1916 
1917 		recycle_rp_inst(ri);
1918 	}
1919 
1920 	kprobe_busy_end();
1921 }
1922 NOKPROBE_SYMBOL(kprobe_flush_task);
1923 
free_rp_inst(struct kretprobe * rp)1924 static inline void free_rp_inst(struct kretprobe *rp)
1925 {
1926 	struct kretprobe_holder *rph = rp->rph;
1927 
1928 	if (!rph)
1929 		return;
1930 	rp->rph = NULL;
1931 	objpool_fini(&rph->pool);
1932 }
1933 
1934 /* This assumes the 'tsk' is the current task or the is not running. */
__kretprobe_find_ret_addr(struct task_struct * tsk,struct llist_node ** cur)1935 static kprobe_opcode_t *__kretprobe_find_ret_addr(struct task_struct *tsk,
1936 						  struct llist_node **cur)
1937 {
1938 	struct kretprobe_instance *ri = NULL;
1939 	struct llist_node *node = *cur;
1940 
1941 	if (!node)
1942 		node = tsk->kretprobe_instances.first;
1943 	else
1944 		node = node->next;
1945 
1946 	while (node) {
1947 		ri = container_of(node, struct kretprobe_instance, llist);
1948 		if (ri->ret_addr != kretprobe_trampoline_addr()) {
1949 			*cur = node;
1950 			return ri->ret_addr;
1951 		}
1952 		node = node->next;
1953 	}
1954 	return NULL;
1955 }
1956 NOKPROBE_SYMBOL(__kretprobe_find_ret_addr);
1957 
1958 /**
1959  * kretprobe_find_ret_addr -- Find correct return address modified by kretprobe
1960  * @tsk: Target task
1961  * @fp: A frame pointer
1962  * @cur: a storage of the loop cursor llist_node pointer for next call
1963  *
1964  * Find the correct return address modified by a kretprobe on @tsk in unsigned
1965  * long type. If it finds the return address, this returns that address value,
1966  * or this returns 0.
1967  * The @tsk must be 'current' or a task which is not running. @fp is a hint
1968  * to get the currect return address - which is compared with the
1969  * kretprobe_instance::fp field. The @cur is a loop cursor for searching the
1970  * kretprobe return addresses on the @tsk. The '*@cur' should be NULL at the
1971  * first call, but '@cur' itself must NOT NULL.
1972  */
kretprobe_find_ret_addr(struct task_struct * tsk,void * fp,struct llist_node ** cur)1973 unsigned long kretprobe_find_ret_addr(struct task_struct *tsk, void *fp,
1974 				      struct llist_node **cur)
1975 {
1976 	struct kretprobe_instance *ri;
1977 	kprobe_opcode_t *ret;
1978 
1979 	if (WARN_ON_ONCE(!cur))
1980 		return 0;
1981 
1982 	do {
1983 		ret = __kretprobe_find_ret_addr(tsk, cur);
1984 		if (!ret)
1985 			break;
1986 		ri = container_of(*cur, struct kretprobe_instance, llist);
1987 	} while (ri->fp != fp);
1988 
1989 	return (unsigned long)ret;
1990 }
1991 NOKPROBE_SYMBOL(kretprobe_find_ret_addr);
1992 
arch_kretprobe_fixup_return(struct pt_regs * regs,kprobe_opcode_t * correct_ret_addr)1993 void __weak arch_kretprobe_fixup_return(struct pt_regs *regs,
1994 					kprobe_opcode_t *correct_ret_addr)
1995 {
1996 	/*
1997 	 * Do nothing by default. Please fill this to update the fake return
1998 	 * address on the stack with the correct one on each arch if possible.
1999 	 */
2000 }
2001 
__kretprobe_trampoline_handler(struct pt_regs * regs,void * frame_pointer)2002 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
2003 					     void *frame_pointer)
2004 {
2005 	struct kretprobe_instance *ri = NULL;
2006 	struct llist_node *first, *node = NULL;
2007 	kprobe_opcode_t *correct_ret_addr;
2008 	struct kretprobe *rp;
2009 
2010 	/* Find correct address and all nodes for this frame. */
2011 	correct_ret_addr = __kretprobe_find_ret_addr(current, &node);
2012 	if (!correct_ret_addr) {
2013 		pr_err("kretprobe: Return address not found, not execute handler. Maybe there is a bug in the kernel.\n");
2014 		BUG_ON(1);
2015 	}
2016 
2017 	/*
2018 	 * Set the return address as the instruction pointer, because if the
2019 	 * user handler calls stack_trace_save_regs() with this 'regs',
2020 	 * the stack trace will start from the instruction pointer.
2021 	 */
2022 	instruction_pointer_set(regs, (unsigned long)correct_ret_addr);
2023 
2024 	/* Run the user handler of the nodes. */
2025 	first = current->kretprobe_instances.first;
2026 	while (first) {
2027 		ri = container_of(first, struct kretprobe_instance, llist);
2028 
2029 		if (WARN_ON_ONCE(ri->fp != frame_pointer))
2030 			break;
2031 
2032 		rp = get_kretprobe(ri);
2033 		if (rp && rp->handler) {
2034 			struct kprobe *prev = kprobe_running();
2035 
2036 			__this_cpu_write(current_kprobe, &rp->kp);
2037 			ri->ret_addr = correct_ret_addr;
2038 			rp->handler(ri, regs);
2039 			__this_cpu_write(current_kprobe, prev);
2040 		}
2041 		if (first == node)
2042 			break;
2043 
2044 		first = first->next;
2045 	}
2046 
2047 	arch_kretprobe_fixup_return(regs, correct_ret_addr);
2048 
2049 	/* Unlink all nodes for this frame. */
2050 	first = current->kretprobe_instances.first;
2051 	current->kretprobe_instances.first = node->next;
2052 	node->next = NULL;
2053 
2054 	/* Recycle free instances. */
2055 	while (first) {
2056 		ri = container_of(first, struct kretprobe_instance, llist);
2057 		first = first->next;
2058 
2059 		recycle_rp_inst(ri);
2060 	}
2061 
2062 	return (unsigned long)correct_ret_addr;
2063 }
NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)2064 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
2065 
2066 /*
2067  * This kprobe pre_handler is registered with every kretprobe. When probe
2068  * hits it will set up the return probe.
2069  */
2070 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2071 {
2072 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2073 	struct kretprobe_holder *rph = rp->rph;
2074 	struct kretprobe_instance *ri;
2075 
2076 	ri = objpool_pop(&rph->pool);
2077 	if (!ri) {
2078 		rp->nmissed++;
2079 		return 0;
2080 	}
2081 
2082 	if (rp->entry_handler && rp->entry_handler(ri, regs)) {
2083 		objpool_push(ri, &rph->pool);
2084 		return 0;
2085 	}
2086 
2087 	arch_prepare_kretprobe(ri, regs);
2088 
2089 	__llist_add(&ri->llist, &current->kretprobe_instances);
2090 
2091 	return 0;
2092 }
2093 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2094 #else /* CONFIG_KRETPROBE_ON_RETHOOK */
2095 /*
2096  * This kprobe pre_handler is registered with every kretprobe. When probe
2097  * hits it will set up the return probe.
2098  */
pre_handler_kretprobe(struct kprobe * p,struct pt_regs * regs)2099 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2100 {
2101 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2102 	struct kretprobe_instance *ri;
2103 	struct rethook_node *rhn;
2104 
2105 	rhn = rethook_try_get(rp->rh);
2106 	if (!rhn) {
2107 		rp->nmissed++;
2108 		return 0;
2109 	}
2110 
2111 	ri = container_of(rhn, struct kretprobe_instance, node);
2112 
2113 	if (rp->entry_handler && rp->entry_handler(ri, regs))
2114 		rethook_recycle(rhn);
2115 	else
2116 		rethook_hook(rhn, regs, kprobe_ftrace(p));
2117 
2118 	return 0;
2119 }
2120 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2121 
kretprobe_rethook_handler(struct rethook_node * rh,void * data,unsigned long ret_addr,struct pt_regs * regs)2122 static void kretprobe_rethook_handler(struct rethook_node *rh, void *data,
2123 				      unsigned long ret_addr,
2124 				      struct pt_regs *regs)
2125 {
2126 	struct kretprobe *rp = (struct kretprobe *)data;
2127 	struct kretprobe_instance *ri;
2128 	struct kprobe_ctlblk *kcb;
2129 
2130 	/* The data must NOT be null. This means rethook data structure is broken. */
2131 	if (WARN_ON_ONCE(!data) || !rp->handler)
2132 		return;
2133 
2134 	__this_cpu_write(current_kprobe, &rp->kp);
2135 	kcb = get_kprobe_ctlblk();
2136 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
2137 
2138 	ri = container_of(rh, struct kretprobe_instance, node);
2139 	rp->handler(ri, regs);
2140 
2141 	__this_cpu_write(current_kprobe, NULL);
2142 }
2143 NOKPROBE_SYMBOL(kretprobe_rethook_handler);
2144 
2145 #endif /* !CONFIG_KRETPROBE_ON_RETHOOK */
2146 
2147 /**
2148  * kprobe_on_func_entry() -- check whether given address is function entry
2149  * @addr: Target address
2150  * @sym:  Target symbol name
2151  * @offset: The offset from the symbol or the address
2152  *
2153  * This checks whether the given @addr+@offset or @sym+@offset is on the
2154  * function entry address or not.
2155  * This returns 0 if it is the function entry, or -EINVAL if it is not.
2156  * And also it returns -ENOENT if it fails the symbol or address lookup.
2157  * Caller must pass @addr or @sym (either one must be NULL), or this
2158  * returns -EINVAL.
2159  */
kprobe_on_func_entry(kprobe_opcode_t * addr,const char * sym,unsigned long offset)2160 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
2161 {
2162 	bool on_func_entry;
2163 	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset, &on_func_entry);
2164 
2165 	if (IS_ERR(kp_addr))
2166 		return PTR_ERR(kp_addr);
2167 
2168 	if (!on_func_entry)
2169 		return -EINVAL;
2170 
2171 	return 0;
2172 }
2173 
register_kretprobe(struct kretprobe * rp)2174 int register_kretprobe(struct kretprobe *rp)
2175 {
2176 	int ret;
2177 	int i;
2178 	void *addr;
2179 
2180 	ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
2181 	if (ret)
2182 		return ret;
2183 
2184 	/* If only 'rp->kp.addr' is specified, check reregistering kprobes */
2185 	if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
2186 		return -EINVAL;
2187 
2188 	if (kretprobe_blacklist_size) {
2189 		addr = kprobe_addr(&rp->kp);
2190 		if (IS_ERR(addr))
2191 			return PTR_ERR(addr);
2192 
2193 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2194 			if (kretprobe_blacklist[i].addr == addr)
2195 				return -EINVAL;
2196 		}
2197 	}
2198 
2199 	if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
2200 		return -E2BIG;
2201 
2202 	rp->kp.pre_handler = pre_handler_kretprobe;
2203 	rp->kp.post_handler = NULL;
2204 
2205 	/* Pre-allocate memory for max kretprobe instances */
2206 	if (rp->maxactive <= 0)
2207 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2208 
2209 #ifdef CONFIG_KRETPROBE_ON_RETHOOK
2210 	rp->rh = rethook_alloc((void *)rp, kretprobe_rethook_handler,
2211 				sizeof(struct kretprobe_instance) +
2212 				rp->data_size, rp->maxactive);
2213 	if (IS_ERR(rp->rh))
2214 		return PTR_ERR(rp->rh);
2215 
2216 	rp->nmissed = 0;
2217 	/* Establish function entry probe point */
2218 	ret = register_kprobe(&rp->kp);
2219 	if (ret != 0) {
2220 		rethook_free(rp->rh);
2221 		rp->rh = NULL;
2222 	}
2223 #else	/* !CONFIG_KRETPROBE_ON_RETHOOK */
2224 	rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2225 	if (!rp->rph)
2226 		return -ENOMEM;
2227 
2228 	if (objpool_init(&rp->rph->pool, rp->maxactive, rp->data_size +
2229 			sizeof(struct kretprobe_instance), GFP_KERNEL,
2230 			rp->rph, kretprobe_init_inst, kretprobe_fini_pool)) {
2231 		kfree(rp->rph);
2232 		rp->rph = NULL;
2233 		return -ENOMEM;
2234 	}
2235 	rcu_assign_pointer(rp->rph->rp, rp);
2236 	rp->nmissed = 0;
2237 	/* Establish function entry probe point */
2238 	ret = register_kprobe(&rp->kp);
2239 	if (ret != 0)
2240 		free_rp_inst(rp);
2241 #endif
2242 	return ret;
2243 }
2244 EXPORT_SYMBOL_GPL(register_kretprobe);
2245 
register_kretprobes(struct kretprobe ** rps,int num)2246 int register_kretprobes(struct kretprobe **rps, int num)
2247 {
2248 	int ret = 0, i;
2249 
2250 	if (num <= 0)
2251 		return -EINVAL;
2252 	for (i = 0; i < num; i++) {
2253 		ret = register_kretprobe(rps[i]);
2254 		if (ret < 0) {
2255 			if (i > 0)
2256 				unregister_kretprobes(rps, i);
2257 			break;
2258 		}
2259 	}
2260 	return ret;
2261 }
2262 EXPORT_SYMBOL_GPL(register_kretprobes);
2263 
unregister_kretprobe(struct kretprobe * rp)2264 void unregister_kretprobe(struct kretprobe *rp)
2265 {
2266 	unregister_kretprobes(&rp, 1);
2267 }
2268 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2269 
unregister_kretprobes(struct kretprobe ** rps,int num)2270 void unregister_kretprobes(struct kretprobe **rps, int num)
2271 {
2272 	int i;
2273 
2274 	if (num <= 0)
2275 		return;
2276 	for (i = 0; i < num; i++) {
2277 		guard(mutex)(&kprobe_mutex);
2278 
2279 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2280 			rps[i]->kp.addr = NULL;
2281 #ifdef CONFIG_KRETPROBE_ON_RETHOOK
2282 		rethook_free(rps[i]->rh);
2283 #else
2284 		rcu_assign_pointer(rps[i]->rph->rp, NULL);
2285 #endif
2286 	}
2287 
2288 	synchronize_rcu();
2289 	for (i = 0; i < num; i++) {
2290 		if (rps[i]->kp.addr) {
2291 			__unregister_kprobe_bottom(&rps[i]->kp);
2292 #ifndef CONFIG_KRETPROBE_ON_RETHOOK
2293 			free_rp_inst(rps[i]);
2294 #endif
2295 		}
2296 	}
2297 }
2298 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2299 
2300 #else /* CONFIG_KRETPROBES */
register_kretprobe(struct kretprobe * rp)2301 int register_kretprobe(struct kretprobe *rp)
2302 {
2303 	return -EOPNOTSUPP;
2304 }
2305 EXPORT_SYMBOL_GPL(register_kretprobe);
2306 
register_kretprobes(struct kretprobe ** rps,int num)2307 int register_kretprobes(struct kretprobe **rps, int num)
2308 {
2309 	return -EOPNOTSUPP;
2310 }
2311 EXPORT_SYMBOL_GPL(register_kretprobes);
2312 
unregister_kretprobe(struct kretprobe * rp)2313 void unregister_kretprobe(struct kretprobe *rp)
2314 {
2315 }
2316 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2317 
unregister_kretprobes(struct kretprobe ** rps,int num)2318 void unregister_kretprobes(struct kretprobe **rps, int num)
2319 {
2320 }
2321 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2322 
pre_handler_kretprobe(struct kprobe * p,struct pt_regs * regs)2323 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2324 {
2325 	return 0;
2326 }
2327 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2328 
2329 #endif /* CONFIG_KRETPROBES */
2330 
2331 /* Set the kprobe gone and remove its instruction buffer. */
kill_kprobe(struct kprobe * p)2332 static void kill_kprobe(struct kprobe *p)
2333 {
2334 	struct kprobe *kp;
2335 
2336 	lockdep_assert_held(&kprobe_mutex);
2337 
2338 	/*
2339 	 * The module is going away. We should disarm the kprobe which
2340 	 * is using ftrace, because ftrace framework is still available at
2341 	 * 'MODULE_STATE_GOING' notification.
2342 	 */
2343 	if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2344 		disarm_kprobe_ftrace(p);
2345 
2346 	p->flags |= KPROBE_FLAG_GONE;
2347 	if (kprobe_aggrprobe(p)) {
2348 		/*
2349 		 * If this is an aggr_kprobe, we have to list all the
2350 		 * chained probes and mark them GONE.
2351 		 */
2352 		list_for_each_entry(kp, &p->list, list)
2353 			kp->flags |= KPROBE_FLAG_GONE;
2354 		p->post_handler = NULL;
2355 		kill_optimized_kprobe(p);
2356 	}
2357 	/*
2358 	 * Here, we can remove insn_slot safely, because no thread calls
2359 	 * the original probed function (which will be freed soon) any more.
2360 	 */
2361 	arch_remove_kprobe(p);
2362 }
2363 
2364 /* Disable one kprobe */
disable_kprobe(struct kprobe * kp)2365 int disable_kprobe(struct kprobe *kp)
2366 {
2367 	struct kprobe *p;
2368 
2369 	guard(mutex)(&kprobe_mutex);
2370 
2371 	/* Disable this kprobe */
2372 	p = __disable_kprobe(kp);
2373 
2374 	return IS_ERR(p) ? PTR_ERR(p) : 0;
2375 }
2376 EXPORT_SYMBOL_GPL(disable_kprobe);
2377 
2378 /* Enable one kprobe */
enable_kprobe(struct kprobe * kp)2379 int enable_kprobe(struct kprobe *kp)
2380 {
2381 	int ret = 0;
2382 	struct kprobe *p;
2383 
2384 	guard(mutex)(&kprobe_mutex);
2385 
2386 	/* Check whether specified probe is valid. */
2387 	p = __get_valid_kprobe(kp);
2388 	if (unlikely(p == NULL))
2389 		return -EINVAL;
2390 
2391 	if (kprobe_gone(kp))
2392 		/* This kprobe has gone, we couldn't enable it. */
2393 		return -EINVAL;
2394 
2395 	if (p != kp)
2396 		kp->flags &= ~KPROBE_FLAG_DISABLED;
2397 
2398 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2399 		p->flags &= ~KPROBE_FLAG_DISABLED;
2400 		ret = arm_kprobe(p);
2401 		if (ret) {
2402 			p->flags |= KPROBE_FLAG_DISABLED;
2403 			if (p != kp)
2404 				kp->flags |= KPROBE_FLAG_DISABLED;
2405 		}
2406 	}
2407 	return ret;
2408 }
2409 EXPORT_SYMBOL_GPL(enable_kprobe);
2410 
2411 /* Caller must NOT call this in usual path. This is only for critical case */
dump_kprobe(struct kprobe * kp)2412 void dump_kprobe(struct kprobe *kp)
2413 {
2414 	pr_err("Dump kprobe:\n.symbol_name = %s, .offset = %x, .addr = %pS\n",
2415 	       kp->symbol_name, kp->offset, kp->addr);
2416 }
2417 NOKPROBE_SYMBOL(dump_kprobe);
2418 
kprobe_add_ksym_blacklist(unsigned long entry)2419 int kprobe_add_ksym_blacklist(unsigned long entry)
2420 {
2421 	struct kprobe_blacklist_entry *ent;
2422 	unsigned long offset = 0, size = 0;
2423 
2424 	if (!kernel_text_address(entry) ||
2425 	    !kallsyms_lookup_size_offset(entry, &size, &offset))
2426 		return -EINVAL;
2427 
2428 	ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2429 	if (!ent)
2430 		return -ENOMEM;
2431 	ent->start_addr = entry;
2432 	ent->end_addr = entry + size;
2433 	INIT_LIST_HEAD(&ent->list);
2434 	list_add_tail(&ent->list, &kprobe_blacklist);
2435 
2436 	return (int)size;
2437 }
2438 
2439 /* Add all symbols in given area into kprobe blacklist */
kprobe_add_area_blacklist(unsigned long start,unsigned long end)2440 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2441 {
2442 	unsigned long entry;
2443 	int ret = 0;
2444 
2445 	for (entry = start; entry < end; entry += ret) {
2446 		ret = kprobe_add_ksym_blacklist(entry);
2447 		if (ret < 0)
2448 			return ret;
2449 		if (ret == 0)	/* In case of alias symbol */
2450 			ret = 1;
2451 	}
2452 	return 0;
2453 }
2454 
arch_kprobe_get_kallsym(unsigned int * symnum,unsigned long * value,char * type,char * sym)2455 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2456 				   char *type, char *sym)
2457 {
2458 	return -ERANGE;
2459 }
2460 
kprobe_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * sym)2461 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2462 		       char *sym)
2463 {
2464 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2465 	if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2466 		return 0;
2467 #ifdef CONFIG_OPTPROBES
2468 	if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2469 		return 0;
2470 #endif
2471 #endif
2472 	if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2473 		return 0;
2474 	return -ERANGE;
2475 }
2476 
arch_populate_kprobe_blacklist(void)2477 int __init __weak arch_populate_kprobe_blacklist(void)
2478 {
2479 	return 0;
2480 }
2481 
2482 /*
2483  * Lookup and populate the kprobe_blacklist.
2484  *
2485  * Unlike the kretprobe blacklist, we'll need to determine
2486  * the range of addresses that belong to the said functions,
2487  * since a kprobe need not necessarily be at the beginning
2488  * of a function.
2489  */
populate_kprobe_blacklist(unsigned long * start,unsigned long * end)2490 static int __init populate_kprobe_blacklist(unsigned long *start,
2491 					     unsigned long *end)
2492 {
2493 	unsigned long entry;
2494 	unsigned long *iter;
2495 	int ret;
2496 
2497 	for (iter = start; iter < end; iter++) {
2498 		entry = (unsigned long)dereference_symbol_descriptor((void *)*iter);
2499 		ret = kprobe_add_ksym_blacklist(entry);
2500 		if (ret == -EINVAL)
2501 			continue;
2502 		if (ret < 0)
2503 			return ret;
2504 	}
2505 
2506 	/* Symbols in '__kprobes_text' are blacklisted */
2507 	ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2508 					(unsigned long)__kprobes_text_end);
2509 	if (ret)
2510 		return ret;
2511 
2512 	/* Symbols in 'noinstr' section are blacklisted */
2513 	ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2514 					(unsigned long)__noinstr_text_end);
2515 
2516 	return ret ? : arch_populate_kprobe_blacklist();
2517 }
2518 
2519 #ifdef CONFIG_MODULES
2520 /* Remove all symbols in given area from kprobe blacklist */
kprobe_remove_area_blacklist(unsigned long start,unsigned long end)2521 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2522 {
2523 	struct kprobe_blacklist_entry *ent, *n;
2524 
2525 	list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2526 		if (ent->start_addr < start || ent->start_addr >= end)
2527 			continue;
2528 		list_del(&ent->list);
2529 		kfree(ent);
2530 	}
2531 }
2532 
kprobe_remove_ksym_blacklist(unsigned long entry)2533 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2534 {
2535 	kprobe_remove_area_blacklist(entry, entry + 1);
2536 }
2537 
add_module_kprobe_blacklist(struct module * mod)2538 static void add_module_kprobe_blacklist(struct module *mod)
2539 {
2540 	unsigned long start, end;
2541 	int i;
2542 
2543 	if (mod->kprobe_blacklist) {
2544 		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2545 			kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2546 	}
2547 
2548 	start = (unsigned long)mod->kprobes_text_start;
2549 	if (start) {
2550 		end = start + mod->kprobes_text_size;
2551 		kprobe_add_area_blacklist(start, end);
2552 	}
2553 
2554 	start = (unsigned long)mod->noinstr_text_start;
2555 	if (start) {
2556 		end = start + mod->noinstr_text_size;
2557 		kprobe_add_area_blacklist(start, end);
2558 	}
2559 }
2560 
remove_module_kprobe_blacklist(struct module * mod)2561 static void remove_module_kprobe_blacklist(struct module *mod)
2562 {
2563 	unsigned long start, end;
2564 	int i;
2565 
2566 	if (mod->kprobe_blacklist) {
2567 		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2568 			kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2569 	}
2570 
2571 	start = (unsigned long)mod->kprobes_text_start;
2572 	if (start) {
2573 		end = start + mod->kprobes_text_size;
2574 		kprobe_remove_area_blacklist(start, end);
2575 	}
2576 
2577 	start = (unsigned long)mod->noinstr_text_start;
2578 	if (start) {
2579 		end = start + mod->noinstr_text_size;
2580 		kprobe_remove_area_blacklist(start, end);
2581 	}
2582 }
2583 
2584 /* Module notifier call back, checking kprobes on the module */
kprobes_module_callback(struct notifier_block * nb,unsigned long val,void * data)2585 static int kprobes_module_callback(struct notifier_block *nb,
2586 				   unsigned long val, void *data)
2587 {
2588 	struct module *mod = data;
2589 	struct hlist_head *head;
2590 	struct kprobe *p;
2591 	unsigned int i;
2592 	int checkcore = (val == MODULE_STATE_GOING);
2593 
2594 	guard(mutex)(&kprobe_mutex);
2595 
2596 	if (val == MODULE_STATE_COMING)
2597 		add_module_kprobe_blacklist(mod);
2598 
2599 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2600 		return NOTIFY_DONE;
2601 
2602 	/*
2603 	 * When 'MODULE_STATE_GOING' was notified, both of module '.text' and
2604 	 * '.init.text' sections would be freed. When 'MODULE_STATE_LIVE' was
2605 	 * notified, only '.init.text' section would be freed. We need to
2606 	 * disable kprobes which have been inserted in the sections.
2607 	 */
2608 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2609 		head = &kprobe_table[i];
2610 		hlist_for_each_entry(p, head, hlist)
2611 			if (within_module_init((unsigned long)p->addr, mod) ||
2612 			    (checkcore &&
2613 			     within_module_core((unsigned long)p->addr, mod))) {
2614 				/*
2615 				 * The vaddr this probe is installed will soon
2616 				 * be vfreed buy not synced to disk. Hence,
2617 				 * disarming the breakpoint isn't needed.
2618 				 *
2619 				 * Note, this will also move any optimized probes
2620 				 * that are pending to be removed from their
2621 				 * corresponding lists to the 'freeing_list' and
2622 				 * will not be touched by the delayed
2623 				 * kprobe_optimizer() work handler.
2624 				 */
2625 				kill_kprobe(p);
2626 			}
2627 	}
2628 	if (val == MODULE_STATE_GOING)
2629 		remove_module_kprobe_blacklist(mod);
2630 	return NOTIFY_DONE;
2631 }
2632 
2633 static struct notifier_block kprobe_module_nb = {
2634 	.notifier_call = kprobes_module_callback,
2635 	.priority = 0
2636 };
2637 
kprobe_register_module_notifier(void)2638 static int kprobe_register_module_notifier(void)
2639 {
2640 	return register_module_notifier(&kprobe_module_nb);
2641 }
2642 #else
kprobe_register_module_notifier(void)2643 static int kprobe_register_module_notifier(void)
2644 {
2645 	return 0;
2646 }
2647 #endif /* CONFIG_MODULES */
2648 
kprobe_free_init_mem(void)2649 void kprobe_free_init_mem(void)
2650 {
2651 	void *start = (void *)(&__init_begin);
2652 	void *end = (void *)(&__init_end);
2653 	struct hlist_head *head;
2654 	struct kprobe *p;
2655 	int i;
2656 
2657 	guard(mutex)(&kprobe_mutex);
2658 
2659 	/* Kill all kprobes on initmem because the target code has been freed. */
2660 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2661 		head = &kprobe_table[i];
2662 		hlist_for_each_entry(p, head, hlist) {
2663 			if (start <= (void *)p->addr && (void *)p->addr < end)
2664 				kill_kprobe(p);
2665 		}
2666 	}
2667 }
2668 
init_kprobes(void)2669 static int __init init_kprobes(void)
2670 {
2671 	int i, err;
2672 
2673 	/* FIXME allocate the probe table, currently defined statically */
2674 	/* initialize all list heads */
2675 	for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2676 		INIT_HLIST_HEAD(&kprobe_table[i]);
2677 
2678 	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2679 					__stop_kprobe_blacklist);
2680 	if (err)
2681 		pr_err("Failed to populate blacklist (error %d), kprobes not restricted, be careful using them!\n", err);
2682 
2683 	if (kretprobe_blacklist_size) {
2684 		/* lookup the function address from its name */
2685 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2686 			kretprobe_blacklist[i].addr =
2687 				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2688 			if (!kretprobe_blacklist[i].addr)
2689 				pr_err("Failed to lookup symbol '%s' for kretprobe blacklist. Maybe the target function is removed or renamed.\n",
2690 				       kretprobe_blacklist[i].name);
2691 		}
2692 	}
2693 
2694 	/* By default, kprobes are armed */
2695 	kprobes_all_disarmed = false;
2696 
2697 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2698 	/* Init 'kprobe_optinsn_slots' for allocation */
2699 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2700 #endif
2701 
2702 	err = arch_init_kprobes();
2703 	if (!err)
2704 		err = register_die_notifier(&kprobe_exceptions_nb);
2705 	if (!err)
2706 		err = kprobe_register_module_notifier();
2707 
2708 	kprobes_initialized = (err == 0);
2709 	kprobe_sysctls_init();
2710 	return err;
2711 }
2712 early_initcall(init_kprobes);
2713 
2714 #if defined(CONFIG_OPTPROBES)
init_optprobes(void)2715 static int __init init_optprobes(void)
2716 {
2717 	/*
2718 	 * Enable kprobe optimization - this kicks the optimizer which
2719 	 * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2720 	 * not spawned in early initcall. So delay the optimization.
2721 	 */
2722 	optimize_all_kprobes();
2723 
2724 	return 0;
2725 }
2726 subsys_initcall(init_optprobes);
2727 #endif
2728 
2729 #ifdef CONFIG_DEBUG_FS
report_probe(struct seq_file * pi,struct kprobe * p,const char * sym,int offset,char * modname,struct kprobe * pp)2730 static void report_probe(struct seq_file *pi, struct kprobe *p,
2731 		const char *sym, int offset, char *modname, struct kprobe *pp)
2732 {
2733 	char *kprobe_type;
2734 	void *addr = p->addr;
2735 
2736 	if (p->pre_handler == pre_handler_kretprobe)
2737 		kprobe_type = "r";
2738 	else
2739 		kprobe_type = "k";
2740 
2741 	if (!kallsyms_show_value(pi->file->f_cred))
2742 		addr = NULL;
2743 
2744 	if (sym)
2745 		seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2746 			addr, kprobe_type, sym, offset,
2747 			(modname ? modname : " "));
2748 	else	/* try to use %pS */
2749 		seq_printf(pi, "%px  %s  %pS ",
2750 			addr, kprobe_type, p->addr);
2751 
2752 	if (!pp)
2753 		pp = p;
2754 	seq_printf(pi, "%s%s%s%s\n",
2755 		(kprobe_gone(p) ? "[GONE]" : ""),
2756 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2757 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2758 		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2759 }
2760 
kprobe_seq_start(struct seq_file * f,loff_t * pos)2761 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2762 {
2763 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2764 }
2765 
kprobe_seq_next(struct seq_file * f,void * v,loff_t * pos)2766 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2767 {
2768 	(*pos)++;
2769 	if (*pos >= KPROBE_TABLE_SIZE)
2770 		return NULL;
2771 	return pos;
2772 }
2773 
kprobe_seq_stop(struct seq_file * f,void * v)2774 static void kprobe_seq_stop(struct seq_file *f, void *v)
2775 {
2776 	/* Nothing to do */
2777 }
2778 
show_kprobe_addr(struct seq_file * pi,void * v)2779 static int show_kprobe_addr(struct seq_file *pi, void *v)
2780 {
2781 	struct hlist_head *head;
2782 	struct kprobe *p, *kp;
2783 	const char *sym;
2784 	unsigned int i = *(loff_t *) v;
2785 	unsigned long offset = 0;
2786 	char *modname, namebuf[KSYM_NAME_LEN];
2787 
2788 	head = &kprobe_table[i];
2789 	preempt_disable();
2790 	hlist_for_each_entry_rcu(p, head, hlist) {
2791 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2792 					&offset, &modname, namebuf);
2793 		if (kprobe_aggrprobe(p)) {
2794 			list_for_each_entry_rcu(kp, &p->list, list)
2795 				report_probe(pi, kp, sym, offset, modname, p);
2796 		} else
2797 			report_probe(pi, p, sym, offset, modname, NULL);
2798 	}
2799 	preempt_enable();
2800 	return 0;
2801 }
2802 
2803 static const struct seq_operations kprobes_sops = {
2804 	.start = kprobe_seq_start,
2805 	.next  = kprobe_seq_next,
2806 	.stop  = kprobe_seq_stop,
2807 	.show  = show_kprobe_addr
2808 };
2809 
2810 DEFINE_SEQ_ATTRIBUTE(kprobes);
2811 
2812 /* kprobes/blacklist -- shows which functions can not be probed */
kprobe_blacklist_seq_start(struct seq_file * m,loff_t * pos)2813 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2814 {
2815 	mutex_lock(&kprobe_mutex);
2816 	return seq_list_start(&kprobe_blacklist, *pos);
2817 }
2818 
kprobe_blacklist_seq_next(struct seq_file * m,void * v,loff_t * pos)2819 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2820 {
2821 	return seq_list_next(v, &kprobe_blacklist, pos);
2822 }
2823 
kprobe_blacklist_seq_show(struct seq_file * m,void * v)2824 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2825 {
2826 	struct kprobe_blacklist_entry *ent =
2827 		list_entry(v, struct kprobe_blacklist_entry, list);
2828 
2829 	/*
2830 	 * If '/proc/kallsyms' is not showing kernel address, we won't
2831 	 * show them here either.
2832 	 */
2833 	if (!kallsyms_show_value(m->file->f_cred))
2834 		seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2835 			   (void *)ent->start_addr);
2836 	else
2837 		seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2838 			   (void *)ent->end_addr, (void *)ent->start_addr);
2839 	return 0;
2840 }
2841 
kprobe_blacklist_seq_stop(struct seq_file * f,void * v)2842 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2843 {
2844 	mutex_unlock(&kprobe_mutex);
2845 }
2846 
2847 static const struct seq_operations kprobe_blacklist_sops = {
2848 	.start = kprobe_blacklist_seq_start,
2849 	.next  = kprobe_blacklist_seq_next,
2850 	.stop  = kprobe_blacklist_seq_stop,
2851 	.show  = kprobe_blacklist_seq_show,
2852 };
2853 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2854 
arm_all_kprobes(void)2855 static int arm_all_kprobes(void)
2856 {
2857 	struct hlist_head *head;
2858 	struct kprobe *p;
2859 	unsigned int i, total = 0, errors = 0;
2860 	int err, ret = 0;
2861 
2862 	guard(mutex)(&kprobe_mutex);
2863 
2864 	/* If kprobes are armed, just return */
2865 	if (!kprobes_all_disarmed)
2866 		return 0;
2867 
2868 	/*
2869 	 * optimize_kprobe() called by arm_kprobe() checks
2870 	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2871 	 * arm_kprobe.
2872 	 */
2873 	kprobes_all_disarmed = false;
2874 	/* Arming kprobes doesn't optimize kprobe itself */
2875 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2876 		head = &kprobe_table[i];
2877 		/* Arm all kprobes on a best-effort basis */
2878 		hlist_for_each_entry(p, head, hlist) {
2879 			if (!kprobe_disabled(p)) {
2880 				err = arm_kprobe(p);
2881 				if (err)  {
2882 					errors++;
2883 					ret = err;
2884 				}
2885 				total++;
2886 			}
2887 		}
2888 	}
2889 
2890 	if (errors)
2891 		pr_warn("Kprobes globally enabled, but failed to enable %d out of %d probes. Please check which kprobes are kept disabled via debugfs.\n",
2892 			errors, total);
2893 	else
2894 		pr_info("Kprobes globally enabled\n");
2895 
2896 	return ret;
2897 }
2898 
disarm_all_kprobes(void)2899 static int disarm_all_kprobes(void)
2900 {
2901 	struct hlist_head *head;
2902 	struct kprobe *p;
2903 	unsigned int i, total = 0, errors = 0;
2904 	int err, ret = 0;
2905 
2906 	guard(mutex)(&kprobe_mutex);
2907 
2908 	/* If kprobes are already disarmed, just return */
2909 	if (kprobes_all_disarmed)
2910 		return 0;
2911 
2912 	kprobes_all_disarmed = true;
2913 
2914 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2915 		head = &kprobe_table[i];
2916 		/* Disarm all kprobes on a best-effort basis */
2917 		hlist_for_each_entry(p, head, hlist) {
2918 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2919 				err = disarm_kprobe(p, false);
2920 				if (err) {
2921 					errors++;
2922 					ret = err;
2923 				}
2924 				total++;
2925 			}
2926 		}
2927 	}
2928 
2929 	if (errors)
2930 		pr_warn("Kprobes globally disabled, but failed to disable %d out of %d probes. Please check which kprobes are kept enabled via debugfs.\n",
2931 			errors, total);
2932 	else
2933 		pr_info("Kprobes globally disabled\n");
2934 
2935 	/* Wait for disarming all kprobes by optimizer */
2936 	wait_for_kprobe_optimizer_locked();
2937 	return ret;
2938 }
2939 
2940 /*
2941  * XXX: The debugfs bool file interface doesn't allow for callbacks
2942  * when the bool state is switched. We can reuse that facility when
2943  * available
2944  */
read_enabled_file_bool(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)2945 static ssize_t read_enabled_file_bool(struct file *file,
2946 	       char __user *user_buf, size_t count, loff_t *ppos)
2947 {
2948 	char buf[3];
2949 
2950 	if (!kprobes_all_disarmed)
2951 		buf[0] = '1';
2952 	else
2953 		buf[0] = '0';
2954 	buf[1] = '\n';
2955 	buf[2] = 0x00;
2956 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2957 }
2958 
write_enabled_file_bool(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)2959 static ssize_t write_enabled_file_bool(struct file *file,
2960 	       const char __user *user_buf, size_t count, loff_t *ppos)
2961 {
2962 	bool enable;
2963 	int ret;
2964 
2965 	ret = kstrtobool_from_user(user_buf, count, &enable);
2966 	if (ret)
2967 		return ret;
2968 
2969 	ret = enable ? arm_all_kprobes() : disarm_all_kprobes();
2970 	if (ret)
2971 		return ret;
2972 
2973 	return count;
2974 }
2975 
2976 static const struct file_operations fops_kp = {
2977 	.read =         read_enabled_file_bool,
2978 	.write =        write_enabled_file_bool,
2979 	.llseek =	default_llseek,
2980 };
2981 
debugfs_kprobe_init(void)2982 static int __init debugfs_kprobe_init(void)
2983 {
2984 	struct dentry *dir;
2985 
2986 	dir = debugfs_create_dir("kprobes", NULL);
2987 
2988 	debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
2989 
2990 	debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp);
2991 
2992 	debugfs_create_file("blacklist", 0400, dir, NULL,
2993 			    &kprobe_blacklist_fops);
2994 
2995 	return 0;
2996 }
2997 
2998 late_initcall(debugfs_kprobe_init);
2999 #endif /* CONFIG_DEBUG_FS */
3000