xref: /linux/drivers/block/rbd.c (revision 240b8d8227468344e814c6bc7eb8ae532e3b8a09)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/fs_parser.h>
38 #include <linux/bsearch.h>
39 
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49 
50 #include "rbd_types.h"
51 
52 #define RBD_DEBUG	/* Activate rbd_assert() calls */
53 
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
atomic_inc_return_safe(atomic_t * v)60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62 	unsigned int counter;
63 
64 	counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65 	if (counter <= (unsigned int)INT_MAX)
66 		return (int)counter;
67 
68 	atomic_dec(v);
69 
70 	return -EINVAL;
71 }
72 
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
atomic_dec_return_safe(atomic_t * v)74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76 	int counter;
77 
78 	counter = atomic_dec_return(v);
79 	if (counter >= 0)
80 		return counter;
81 
82 	atomic_inc(v);
83 
84 	return -EINVAL;
85 }
86 
87 #define RBD_DRV_NAME "rbd"
88 
89 #define RBD_MINORS_PER_MAJOR		256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
91 
92 #define RBD_MAX_PARENT_CHAIN_LEN	16
93 
94 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
95 #define RBD_MAX_SNAP_NAME_LEN	\
96 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97 
98 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
99 
100 #define RBD_SNAP_HEAD_NAME	"-"
101 
102 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
103 
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX	64
107 
108 #define RBD_OBJ_PREFIX_LEN_MAX	64
109 
110 #define RBD_NOTIFY_TIMEOUT	5	/* seconds */
111 #define RBD_RETRY_DELAY		msecs_to_jiffies(1000)
112 
113 /* Feature bits */
114 
115 #define RBD_FEATURE_LAYERING		(1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2		(1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK	(1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP		(1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF		(1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN	(1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL		(1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS		(1ULL<<8)
123 
124 #define RBD_FEATURES_ALL	(RBD_FEATURE_LAYERING |		\
125 				 RBD_FEATURE_STRIPINGV2 |	\
126 				 RBD_FEATURE_EXCLUSIVE_LOCK |	\
127 				 RBD_FEATURE_OBJECT_MAP |	\
128 				 RBD_FEATURE_FAST_DIFF |	\
129 				 RBD_FEATURE_DEEP_FLATTEN |	\
130 				 RBD_FEATURE_DATA_POOL |	\
131 				 RBD_FEATURE_OPERATIONS)
132 
133 /* Features supported by this (client software) implementation. */
134 
135 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
136 
137 /*
138  * An RBD device name will be "rbd#", where the "rbd" comes from
139  * RBD_DRV_NAME above, and # is a unique integer identifier.
140  */
141 #define DEV_NAME_LEN		32
142 
143 /*
144  * block device image metadata (in-memory version)
145  */
146 struct rbd_image_header {
147 	/* These six fields never change for a given rbd image */
148 	char *object_prefix;
149 	__u8 obj_order;
150 	u64 stripe_unit;
151 	u64 stripe_count;
152 	s64 data_pool_id;
153 	u64 features;		/* Might be changeable someday? */
154 
155 	/* The remaining fields need to be updated occasionally */
156 	u64 image_size;
157 	struct ceph_snap_context *snapc;
158 	char *snap_names;	/* format 1 only */
159 	u64 *snap_sizes;	/* format 1 only */
160 };
161 
162 /*
163  * An rbd image specification.
164  *
165  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166  * identify an image.  Each rbd_dev structure includes a pointer to
167  * an rbd_spec structure that encapsulates this identity.
168  *
169  * Each of the id's in an rbd_spec has an associated name.  For a
170  * user-mapped image, the names are supplied and the id's associated
171  * with them are looked up.  For a layered image, a parent image is
172  * defined by the tuple, and the names are looked up.
173  *
174  * An rbd_dev structure contains a parent_spec pointer which is
175  * non-null if the image it represents is a child in a layered
176  * image.  This pointer will refer to the rbd_spec structure used
177  * by the parent rbd_dev for its own identity (i.e., the structure
178  * is shared between the parent and child).
179  *
180  * Since these structures are populated once, during the discovery
181  * phase of image construction, they are effectively immutable so
182  * we make no effort to synchronize access to them.
183  *
184  * Note that code herein does not assume the image name is known (it
185  * could be a null pointer).
186  */
187 struct rbd_spec {
188 	u64		pool_id;
189 	const char	*pool_name;
190 	const char	*pool_ns;	/* NULL if default, never "" */
191 
192 	const char	*image_id;
193 	const char	*image_name;
194 
195 	u64		snap_id;
196 	const char	*snap_name;
197 
198 	struct kref	kref;
199 };
200 
201 /*
202  * an instance of the client.  multiple devices may share an rbd client.
203  */
204 struct rbd_client {
205 	struct ceph_client	*client;
206 	struct kref		kref;
207 	struct list_head	node;
208 };
209 
210 struct pending_result {
211 	int			result;		/* first nonzero result */
212 	int			num_pending;
213 };
214 
215 struct rbd_img_request;
216 
217 enum obj_request_type {
218 	OBJ_REQUEST_NODATA = 1,
219 	OBJ_REQUEST_BIO,	/* pointer into provided bio (list) */
220 	OBJ_REQUEST_BVECS,	/* pointer into provided bio_vec array */
221 	OBJ_REQUEST_OWN_BVECS,	/* private bio_vec array, doesn't own pages */
222 };
223 
224 enum obj_operation_type {
225 	OBJ_OP_READ = 1,
226 	OBJ_OP_WRITE,
227 	OBJ_OP_DISCARD,
228 	OBJ_OP_ZEROOUT,
229 };
230 
231 #define RBD_OBJ_FLAG_DELETION			(1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED		(1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS		(1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST			(1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT	(1U << 4)
236 
237 enum rbd_obj_read_state {
238 	RBD_OBJ_READ_START = 1,
239 	RBD_OBJ_READ_OBJECT,
240 	RBD_OBJ_READ_PARENT,
241 };
242 
243 /*
244  * Writes go through the following state machine to deal with
245  * layering:
246  *
247  *            . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248  *            .                 |                                    .
249  *            .                 v                                    .
250  *            .    RBD_OBJ_WRITE_READ_FROM_PARENT. . .               .
251  *            .                 |                    .               .
252  *            .                 v                    v (deep-copyup  .
253  *    (image  .   RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC   .  not needed)  .
254  * flattened) v                 |                    .               .
255  *            .                 v                    .               .
256  *            . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . .      (copyup  .
257  *                              |                        not needed) v
258  *                              v                                    .
259  *                            done . . . . . . . . . . . . . . . . . .
260  *                              ^
261  *                              |
262  *                     RBD_OBJ_WRITE_FLAT
263  *
264  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265  * assert_exists guard is needed or not (in some cases it's not needed
266  * even if there is a parent).
267  */
268 enum rbd_obj_write_state {
269 	RBD_OBJ_WRITE_START = 1,
270 	RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271 	RBD_OBJ_WRITE_OBJECT,
272 	__RBD_OBJ_WRITE_COPYUP,
273 	RBD_OBJ_WRITE_COPYUP,
274 	RBD_OBJ_WRITE_POST_OBJECT_MAP,
275 };
276 
277 enum rbd_obj_copyup_state {
278 	RBD_OBJ_COPYUP_START = 1,
279 	RBD_OBJ_COPYUP_READ_PARENT,
280 	__RBD_OBJ_COPYUP_OBJECT_MAPS,
281 	RBD_OBJ_COPYUP_OBJECT_MAPS,
282 	__RBD_OBJ_COPYUP_WRITE_OBJECT,
283 	RBD_OBJ_COPYUP_WRITE_OBJECT,
284 };
285 
286 struct rbd_obj_request {
287 	struct ceph_object_extent ex;
288 	unsigned int		flags;	/* RBD_OBJ_FLAG_* */
289 	union {
290 		enum rbd_obj_read_state	 read_state;	/* for reads */
291 		enum rbd_obj_write_state write_state;	/* for writes */
292 	};
293 
294 	struct rbd_img_request	*img_request;
295 	struct ceph_file_extent	*img_extents;
296 	u32			num_img_extents;
297 
298 	union {
299 		struct ceph_bio_iter	bio_pos;
300 		struct {
301 			struct ceph_bvec_iter	bvec_pos;
302 			u32			bvec_count;
303 			u32			bvec_idx;
304 		};
305 	};
306 
307 	enum rbd_obj_copyup_state copyup_state;
308 	struct bio_vec		*copyup_bvecs;
309 	u32			copyup_bvec_count;
310 
311 	struct list_head	osd_reqs;	/* w/ r_private_item */
312 
313 	struct mutex		state_mutex;
314 	struct pending_result	pending;
315 	struct kref		kref;
316 };
317 
318 enum img_req_flags {
319 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
320 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
321 };
322 
323 enum rbd_img_state {
324 	RBD_IMG_START = 1,
325 	RBD_IMG_EXCLUSIVE_LOCK,
326 	__RBD_IMG_OBJECT_REQUESTS,
327 	RBD_IMG_OBJECT_REQUESTS,
328 };
329 
330 struct rbd_img_request {
331 	struct rbd_device	*rbd_dev;
332 	enum obj_operation_type	op_type;
333 	enum obj_request_type	data_type;
334 	unsigned long		flags;
335 	enum rbd_img_state	state;
336 	union {
337 		u64			snap_id;	/* for reads */
338 		struct ceph_snap_context *snapc;	/* for writes */
339 	};
340 	struct rbd_obj_request	*obj_request;	/* obj req initiator */
341 
342 	struct list_head	lock_item;
343 	struct list_head	object_extents;	/* obj_req.ex structs */
344 
345 	struct mutex		state_mutex;
346 	struct pending_result	pending;
347 	struct work_struct	work;
348 	int			work_result;
349 };
350 
351 #define for_each_obj_request(ireq, oreq) \
352 	list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353 #define for_each_obj_request_safe(ireq, oreq, n) \
354 	list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
355 
356 enum rbd_watch_state {
357 	RBD_WATCH_STATE_UNREGISTERED,
358 	RBD_WATCH_STATE_REGISTERED,
359 	RBD_WATCH_STATE_ERROR,
360 };
361 
362 enum rbd_lock_state {
363 	RBD_LOCK_STATE_UNLOCKED,
364 	RBD_LOCK_STATE_LOCKED,
365 	RBD_LOCK_STATE_QUIESCING,
366 };
367 
368 /* WatchNotify::ClientId */
369 struct rbd_client_id {
370 	u64 gid;
371 	u64 handle;
372 };
373 
374 struct rbd_mapping {
375 	u64                     size;
376 };
377 
378 /*
379  * a single device
380  */
381 struct rbd_device {
382 	int			dev_id;		/* blkdev unique id */
383 
384 	int			major;		/* blkdev assigned major */
385 	int			minor;
386 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
387 
388 	u32			image_format;	/* Either 1 or 2 */
389 	struct rbd_client	*rbd_client;
390 
391 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
392 
393 	spinlock_t		lock;		/* queue, flags, open_count */
394 
395 	struct rbd_image_header	header;
396 	unsigned long		flags;		/* possibly lock protected */
397 	struct rbd_spec		*spec;
398 	struct rbd_options	*opts;
399 	char			*config_info;	/* add{,_single_major} string */
400 
401 	struct ceph_object_id	header_oid;
402 	struct ceph_object_locator header_oloc;
403 
404 	struct ceph_file_layout	layout;		/* used for all rbd requests */
405 
406 	struct mutex		watch_mutex;
407 	enum rbd_watch_state	watch_state;
408 	struct ceph_osd_linger_request *watch_handle;
409 	u64			watch_cookie;
410 	struct delayed_work	watch_dwork;
411 
412 	struct rw_semaphore	lock_rwsem;
413 	enum rbd_lock_state	lock_state;
414 	char			lock_cookie[32];
415 	struct rbd_client_id	owner_cid;
416 	struct work_struct	acquired_lock_work;
417 	struct work_struct	released_lock_work;
418 	struct delayed_work	lock_dwork;
419 	struct work_struct	unlock_work;
420 	spinlock_t		lock_lists_lock;
421 	struct list_head	acquiring_list;
422 	struct list_head	running_list;
423 	struct completion	acquire_wait;
424 	int			acquire_err;
425 	struct completion	quiescing_wait;
426 
427 	spinlock_t		object_map_lock;
428 	u8			*object_map;
429 	u64			object_map_size;	/* in objects */
430 	u64			object_map_flags;
431 
432 	struct workqueue_struct	*task_wq;
433 
434 	struct rbd_spec		*parent_spec;
435 	u64			parent_overlap;
436 	atomic_t		parent_ref;
437 	struct rbd_device	*parent;
438 
439 	/* Block layer tags. */
440 	struct blk_mq_tag_set	tag_set;
441 
442 	/* protects updating the header */
443 	struct rw_semaphore     header_rwsem;
444 
445 	struct rbd_mapping	mapping;
446 
447 	struct list_head	node;
448 
449 	/* sysfs related */
450 	struct device		dev;
451 	unsigned long		open_count;	/* protected by lock */
452 };
453 
454 /*
455  * Flag bits for rbd_dev->flags:
456  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
457  *   by rbd_dev->lock
458  */
459 enum rbd_dev_flags {
460 	RBD_DEV_FLAG_EXISTS,	/* rbd_dev_device_setup() ran */
461 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
462 	RBD_DEV_FLAG_READONLY,  /* -o ro or snapshot */
463 };
464 
465 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
466 
467 static LIST_HEAD(rbd_dev_list);    /* devices */
468 static DEFINE_SPINLOCK(rbd_dev_list_lock);
469 
470 static LIST_HEAD(rbd_client_list);		/* clients */
471 static DEFINE_SPINLOCK(rbd_client_list_lock);
472 
473 /* Slab caches for frequently-allocated structures */
474 
475 static struct kmem_cache	*rbd_img_request_cache;
476 static struct kmem_cache	*rbd_obj_request_cache;
477 
478 static int rbd_major;
479 static DEFINE_IDA(rbd_dev_id_ida);
480 
481 static struct workqueue_struct *rbd_wq;
482 
483 static struct ceph_snap_context rbd_empty_snapc = {
484 	.nref = REFCOUNT_INIT(1),
485 };
486 
487 /*
488  * single-major requires >= 0.75 version of userspace rbd utility.
489  */
490 static bool single_major = true;
491 module_param(single_major, bool, 0444);
492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
493 
494 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count);
495 static ssize_t remove_store(const struct bus_type *bus, const char *buf,
496 			    size_t count);
497 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf,
498 				      size_t count);
499 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf,
500 					 size_t count);
501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
502 
rbd_dev_id_to_minor(int dev_id)503 static int rbd_dev_id_to_minor(int dev_id)
504 {
505 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
506 }
507 
minor_to_rbd_dev_id(int minor)508 static int minor_to_rbd_dev_id(int minor)
509 {
510 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
511 }
512 
rbd_is_ro(struct rbd_device * rbd_dev)513 static bool rbd_is_ro(struct rbd_device *rbd_dev)
514 {
515 	return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
516 }
517 
rbd_is_snap(struct rbd_device * rbd_dev)518 static bool rbd_is_snap(struct rbd_device *rbd_dev)
519 {
520 	return rbd_dev->spec->snap_id != CEPH_NOSNAP;
521 }
522 
__rbd_is_lock_owner(struct rbd_device * rbd_dev)523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
524 {
525 	lockdep_assert_held(&rbd_dev->lock_rwsem);
526 
527 	return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528 	       rbd_dev->lock_state == RBD_LOCK_STATE_QUIESCING;
529 }
530 
rbd_is_lock_owner(struct rbd_device * rbd_dev)531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
532 {
533 	bool is_lock_owner;
534 
535 	down_read(&rbd_dev->lock_rwsem);
536 	is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537 	up_read(&rbd_dev->lock_rwsem);
538 	return is_lock_owner;
539 }
540 
supported_features_show(const struct bus_type * bus,char * buf)541 static ssize_t supported_features_show(const struct bus_type *bus, char *buf)
542 {
543 	return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
544 }
545 
546 static BUS_ATTR_WO(add);
547 static BUS_ATTR_WO(remove);
548 static BUS_ATTR_WO(add_single_major);
549 static BUS_ATTR_WO(remove_single_major);
550 static BUS_ATTR_RO(supported_features);
551 
552 static struct attribute *rbd_bus_attrs[] = {
553 	&bus_attr_add.attr,
554 	&bus_attr_remove.attr,
555 	&bus_attr_add_single_major.attr,
556 	&bus_attr_remove_single_major.attr,
557 	&bus_attr_supported_features.attr,
558 	NULL,
559 };
560 
rbd_bus_is_visible(struct kobject * kobj,struct attribute * attr,int index)561 static umode_t rbd_bus_is_visible(struct kobject *kobj,
562 				  struct attribute *attr, int index)
563 {
564 	if (!single_major &&
565 	    (attr == &bus_attr_add_single_major.attr ||
566 	     attr == &bus_attr_remove_single_major.attr))
567 		return 0;
568 
569 	return attr->mode;
570 }
571 
572 static const struct attribute_group rbd_bus_group = {
573 	.attrs = rbd_bus_attrs,
574 	.is_visible = rbd_bus_is_visible,
575 };
576 __ATTRIBUTE_GROUPS(rbd_bus);
577 
578 static const struct bus_type rbd_bus_type = {
579 	.name		= "rbd",
580 	.bus_groups	= rbd_bus_groups,
581 };
582 
rbd_root_dev_release(struct device * dev)583 static void rbd_root_dev_release(struct device *dev)
584 {
585 }
586 
587 static struct device rbd_root_dev = {
588 	.init_name =    "rbd",
589 	.release =      rbd_root_dev_release,
590 };
591 
592 static __printf(2, 3)
rbd_warn(struct rbd_device * rbd_dev,const char * fmt,...)593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
594 {
595 	struct va_format vaf;
596 	va_list args;
597 
598 	va_start(args, fmt);
599 	vaf.fmt = fmt;
600 	vaf.va = &args;
601 
602 	if (!rbd_dev)
603 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604 	else if (rbd_dev->disk)
605 		printk(KERN_WARNING "%s: %s: %pV\n",
606 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
608 		printk(KERN_WARNING "%s: image %s: %pV\n",
609 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
611 		printk(KERN_WARNING "%s: id %s: %pV\n",
612 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
613 	else	/* punt */
614 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615 			RBD_DRV_NAME, rbd_dev, &vaf);
616 	va_end(args);
617 }
618 
619 #ifdef RBD_DEBUG
620 #define rbd_assert(expr)						\
621 		if (unlikely(!(expr))) {				\
622 			printk(KERN_ERR "\nAssertion failure in %s() "	\
623 						"at line %d:\n\n"	\
624 					"\trbd_assert(%s);\n\n",	\
625 					__func__, __LINE__, #expr);	\
626 			BUG();						\
627 		}
628 #else /* !RBD_DEBUG */
629 #  define rbd_assert(expr)	((void) 0)
630 #endif /* !RBD_DEBUG */
631 
632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
633 
634 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev,
636 				     struct rbd_image_header *header);
637 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
638 					u64 snap_id);
639 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
640 				u8 *order, u64 *snap_size);
641 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
642 
643 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
644 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
645 
646 /*
647  * Return true if nothing else is pending.
648  */
pending_result_dec(struct pending_result * pending,int * result)649 static bool pending_result_dec(struct pending_result *pending, int *result)
650 {
651 	rbd_assert(pending->num_pending > 0);
652 
653 	if (*result && !pending->result)
654 		pending->result = *result;
655 	if (--pending->num_pending)
656 		return false;
657 
658 	*result = pending->result;
659 	return true;
660 }
661 
rbd_open(struct gendisk * disk,blk_mode_t mode)662 static int rbd_open(struct gendisk *disk, blk_mode_t mode)
663 {
664 	struct rbd_device *rbd_dev = disk->private_data;
665 	bool removing = false;
666 
667 	spin_lock_irq(&rbd_dev->lock);
668 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
669 		removing = true;
670 	else
671 		rbd_dev->open_count++;
672 	spin_unlock_irq(&rbd_dev->lock);
673 	if (removing)
674 		return -ENOENT;
675 
676 	(void) get_device(&rbd_dev->dev);
677 
678 	return 0;
679 }
680 
rbd_release(struct gendisk * disk)681 static void rbd_release(struct gendisk *disk)
682 {
683 	struct rbd_device *rbd_dev = disk->private_data;
684 	unsigned long open_count_before;
685 
686 	spin_lock_irq(&rbd_dev->lock);
687 	open_count_before = rbd_dev->open_count--;
688 	spin_unlock_irq(&rbd_dev->lock);
689 	rbd_assert(open_count_before > 0);
690 
691 	put_device(&rbd_dev->dev);
692 }
693 
694 static const struct block_device_operations rbd_bd_ops = {
695 	.owner			= THIS_MODULE,
696 	.open			= rbd_open,
697 	.release		= rbd_release,
698 };
699 
700 /*
701  * Initialize an rbd client instance.  Success or not, this function
702  * consumes ceph_opts.  Caller holds client_mutex.
703  */
rbd_client_create(struct ceph_options * ceph_opts)704 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
705 {
706 	struct rbd_client *rbdc;
707 	int ret = -ENOMEM;
708 
709 	dout("%s:\n", __func__);
710 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
711 	if (!rbdc)
712 		goto out_opt;
713 
714 	kref_init(&rbdc->kref);
715 	INIT_LIST_HEAD(&rbdc->node);
716 
717 	rbdc->client = ceph_create_client(ceph_opts, rbdc);
718 	if (IS_ERR(rbdc->client))
719 		goto out_rbdc;
720 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
721 
722 	ret = ceph_open_session(rbdc->client);
723 	if (ret < 0)
724 		goto out_client;
725 
726 	spin_lock(&rbd_client_list_lock);
727 	list_add_tail(&rbdc->node, &rbd_client_list);
728 	spin_unlock(&rbd_client_list_lock);
729 
730 	dout("%s: rbdc %p\n", __func__, rbdc);
731 
732 	return rbdc;
733 out_client:
734 	ceph_destroy_client(rbdc->client);
735 out_rbdc:
736 	kfree(rbdc);
737 out_opt:
738 	if (ceph_opts)
739 		ceph_destroy_options(ceph_opts);
740 	dout("%s: error %d\n", __func__, ret);
741 
742 	return ERR_PTR(ret);
743 }
744 
__rbd_get_client(struct rbd_client * rbdc)745 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
746 {
747 	kref_get(&rbdc->kref);
748 
749 	return rbdc;
750 }
751 
752 /*
753  * Find a ceph client with specific addr and configuration.  If
754  * found, bump its reference count.
755  */
rbd_client_find(struct ceph_options * ceph_opts)756 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
757 {
758 	struct rbd_client *rbdc = NULL, *iter;
759 
760 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
761 		return NULL;
762 
763 	spin_lock(&rbd_client_list_lock);
764 	list_for_each_entry(iter, &rbd_client_list, node) {
765 		if (!ceph_compare_options(ceph_opts, iter->client)) {
766 			__rbd_get_client(iter);
767 
768 			rbdc = iter;
769 			break;
770 		}
771 	}
772 	spin_unlock(&rbd_client_list_lock);
773 
774 	return rbdc;
775 }
776 
777 /*
778  * (Per device) rbd map options
779  */
780 enum {
781 	Opt_queue_depth,
782 	Opt_alloc_size,
783 	Opt_lock_timeout,
784 	/* int args above */
785 	Opt_pool_ns,
786 	Opt_compression_hint,
787 	/* string args above */
788 	Opt_read_only,
789 	Opt_read_write,
790 	Opt_lock_on_read,
791 	Opt_exclusive,
792 	Opt_notrim,
793 };
794 
795 enum {
796 	Opt_compression_hint_none,
797 	Opt_compression_hint_compressible,
798 	Opt_compression_hint_incompressible,
799 };
800 
801 static const struct constant_table rbd_param_compression_hint[] = {
802 	{"none",		Opt_compression_hint_none},
803 	{"compressible",	Opt_compression_hint_compressible},
804 	{"incompressible",	Opt_compression_hint_incompressible},
805 	{}
806 };
807 
808 static const struct fs_parameter_spec rbd_parameters[] = {
809 	fsparam_u32	("alloc_size",			Opt_alloc_size),
810 	fsparam_enum	("compression_hint",		Opt_compression_hint,
811 			 rbd_param_compression_hint),
812 	fsparam_flag	("exclusive",			Opt_exclusive),
813 	fsparam_flag	("lock_on_read",		Opt_lock_on_read),
814 	fsparam_u32	("lock_timeout",		Opt_lock_timeout),
815 	fsparam_flag	("notrim",			Opt_notrim),
816 	fsparam_string	("_pool_ns",			Opt_pool_ns),
817 	fsparam_u32	("queue_depth",			Opt_queue_depth),
818 	fsparam_flag	("read_only",			Opt_read_only),
819 	fsparam_flag	("read_write",			Opt_read_write),
820 	fsparam_flag	("ro",				Opt_read_only),
821 	fsparam_flag	("rw",				Opt_read_write),
822 	{}
823 };
824 
825 struct rbd_options {
826 	int	queue_depth;
827 	int	alloc_size;
828 	unsigned long	lock_timeout;
829 	bool	read_only;
830 	bool	lock_on_read;
831 	bool	exclusive;
832 	bool	trim;
833 
834 	u32 alloc_hint_flags;  /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
835 };
836 
837 #define RBD_QUEUE_DEPTH_DEFAULT	BLKDEV_DEFAULT_RQ
838 #define RBD_ALLOC_SIZE_DEFAULT	(64 * 1024)
839 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
840 #define RBD_READ_ONLY_DEFAULT	false
841 #define RBD_LOCK_ON_READ_DEFAULT false
842 #define RBD_EXCLUSIVE_DEFAULT	false
843 #define RBD_TRIM_DEFAULT	true
844 
845 struct rbd_parse_opts_ctx {
846 	struct rbd_spec		*spec;
847 	struct ceph_options	*copts;
848 	struct rbd_options	*opts;
849 };
850 
obj_op_name(enum obj_operation_type op_type)851 static char* obj_op_name(enum obj_operation_type op_type)
852 {
853 	switch (op_type) {
854 	case OBJ_OP_READ:
855 		return "read";
856 	case OBJ_OP_WRITE:
857 		return "write";
858 	case OBJ_OP_DISCARD:
859 		return "discard";
860 	case OBJ_OP_ZEROOUT:
861 		return "zeroout";
862 	default:
863 		return "???";
864 	}
865 }
866 
867 /*
868  * Destroy ceph client
869  *
870  * Caller must hold rbd_client_list_lock.
871  */
rbd_client_release(struct kref * kref)872 static void rbd_client_release(struct kref *kref)
873 {
874 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
875 
876 	dout("%s: rbdc %p\n", __func__, rbdc);
877 	spin_lock(&rbd_client_list_lock);
878 	list_del(&rbdc->node);
879 	spin_unlock(&rbd_client_list_lock);
880 
881 	ceph_destroy_client(rbdc->client);
882 	kfree(rbdc);
883 }
884 
885 /*
886  * Drop reference to ceph client node. If it's not referenced anymore, release
887  * it.
888  */
rbd_put_client(struct rbd_client * rbdc)889 static void rbd_put_client(struct rbd_client *rbdc)
890 {
891 	if (rbdc)
892 		kref_put(&rbdc->kref, rbd_client_release);
893 }
894 
895 /*
896  * Get a ceph client with specific addr and configuration, if one does
897  * not exist create it.  Either way, ceph_opts is consumed by this
898  * function.
899  */
rbd_get_client(struct ceph_options * ceph_opts)900 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
901 {
902 	struct rbd_client *rbdc;
903 	int ret;
904 
905 	mutex_lock(&client_mutex);
906 	rbdc = rbd_client_find(ceph_opts);
907 	if (rbdc) {
908 		ceph_destroy_options(ceph_opts);
909 
910 		/*
911 		 * Using an existing client.  Make sure ->pg_pools is up to
912 		 * date before we look up the pool id in do_rbd_add().
913 		 */
914 		ret = ceph_wait_for_latest_osdmap(rbdc->client,
915 					rbdc->client->options->mount_timeout);
916 		if (ret) {
917 			rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
918 			rbd_put_client(rbdc);
919 			rbdc = ERR_PTR(ret);
920 		}
921 	} else {
922 		rbdc = rbd_client_create(ceph_opts);
923 	}
924 	mutex_unlock(&client_mutex);
925 
926 	return rbdc;
927 }
928 
rbd_image_format_valid(u32 image_format)929 static bool rbd_image_format_valid(u32 image_format)
930 {
931 	return image_format == 1 || image_format == 2;
932 }
933 
rbd_dev_ondisk_valid(struct rbd_image_header_ondisk * ondisk)934 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
935 {
936 	size_t size;
937 	u32 snap_count;
938 
939 	/* The header has to start with the magic rbd header text */
940 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
941 		return false;
942 
943 	/* The bio layer requires at least sector-sized I/O */
944 
945 	if (ondisk->options.order < SECTOR_SHIFT)
946 		return false;
947 
948 	/* If we use u64 in a few spots we may be able to loosen this */
949 
950 	if (ondisk->options.order > 8 * sizeof (int) - 1)
951 		return false;
952 
953 	/*
954 	 * The size of a snapshot header has to fit in a size_t, and
955 	 * that limits the number of snapshots.
956 	 */
957 	snap_count = le32_to_cpu(ondisk->snap_count);
958 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
959 	if (snap_count > size / sizeof (__le64))
960 		return false;
961 
962 	/*
963 	 * Not only that, but the size of the entire the snapshot
964 	 * header must also be representable in a size_t.
965 	 */
966 	size -= snap_count * sizeof (__le64);
967 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
968 		return false;
969 
970 	return true;
971 }
972 
973 /*
974  * returns the size of an object in the image
975  */
rbd_obj_bytes(struct rbd_image_header * header)976 static u32 rbd_obj_bytes(struct rbd_image_header *header)
977 {
978 	return 1U << header->obj_order;
979 }
980 
rbd_init_layout(struct rbd_device * rbd_dev)981 static void rbd_init_layout(struct rbd_device *rbd_dev)
982 {
983 	if (rbd_dev->header.stripe_unit == 0 ||
984 	    rbd_dev->header.stripe_count == 0) {
985 		rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
986 		rbd_dev->header.stripe_count = 1;
987 	}
988 
989 	rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
990 	rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
991 	rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
992 	rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
993 			  rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
994 	RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
995 }
996 
rbd_image_header_cleanup(struct rbd_image_header * header)997 static void rbd_image_header_cleanup(struct rbd_image_header *header)
998 {
999 	kfree(header->object_prefix);
1000 	ceph_put_snap_context(header->snapc);
1001 	kfree(header->snap_sizes);
1002 	kfree(header->snap_names);
1003 
1004 	memset(header, 0, sizeof(*header));
1005 }
1006 
1007 /*
1008  * Fill an rbd image header with information from the given format 1
1009  * on-disk header.
1010  */
rbd_header_from_disk(struct rbd_image_header * header,struct rbd_image_header_ondisk * ondisk,bool first_time)1011 static int rbd_header_from_disk(struct rbd_image_header *header,
1012 				struct rbd_image_header_ondisk *ondisk,
1013 				bool first_time)
1014 {
1015 	struct ceph_snap_context *snapc;
1016 	char *object_prefix = NULL;
1017 	char *snap_names = NULL;
1018 	u64 *snap_sizes = NULL;
1019 	u32 snap_count;
1020 	int ret = -ENOMEM;
1021 	u32 i;
1022 
1023 	/* Allocate this now to avoid having to handle failure below */
1024 
1025 	if (first_time) {
1026 		object_prefix = kstrndup(ondisk->object_prefix,
1027 					 sizeof(ondisk->object_prefix),
1028 					 GFP_KERNEL);
1029 		if (!object_prefix)
1030 			return -ENOMEM;
1031 	}
1032 
1033 	/* Allocate the snapshot context and fill it in */
1034 
1035 	snap_count = le32_to_cpu(ondisk->snap_count);
1036 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1037 	if (!snapc)
1038 		goto out_err;
1039 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
1040 	if (snap_count) {
1041 		struct rbd_image_snap_ondisk *snaps;
1042 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1043 
1044 		/* We'll keep a copy of the snapshot names... */
1045 
1046 		if (snap_names_len > (u64)SIZE_MAX)
1047 			goto out_2big;
1048 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1049 		if (!snap_names)
1050 			goto out_err;
1051 
1052 		/* ...as well as the array of their sizes. */
1053 		snap_sizes = kmalloc_array(snap_count,
1054 					   sizeof(*header->snap_sizes),
1055 					   GFP_KERNEL);
1056 		if (!snap_sizes)
1057 			goto out_err;
1058 
1059 		/*
1060 		 * Copy the names, and fill in each snapshot's id
1061 		 * and size.
1062 		 *
1063 		 * Note that rbd_dev_v1_header_info() guarantees the
1064 		 * ondisk buffer we're working with has
1065 		 * snap_names_len bytes beyond the end of the
1066 		 * snapshot id array, this memcpy() is safe.
1067 		 */
1068 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1069 		snaps = ondisk->snaps;
1070 		for (i = 0; i < snap_count; i++) {
1071 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1072 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1073 		}
1074 	}
1075 
1076 	/* We won't fail any more, fill in the header */
1077 
1078 	if (first_time) {
1079 		header->object_prefix = object_prefix;
1080 		header->obj_order = ondisk->options.order;
1081 	}
1082 
1083 	/* The remaining fields always get updated (when we refresh) */
1084 
1085 	header->image_size = le64_to_cpu(ondisk->image_size);
1086 	header->snapc = snapc;
1087 	header->snap_names = snap_names;
1088 	header->snap_sizes = snap_sizes;
1089 
1090 	return 0;
1091 out_2big:
1092 	ret = -EIO;
1093 out_err:
1094 	kfree(snap_sizes);
1095 	kfree(snap_names);
1096 	ceph_put_snap_context(snapc);
1097 	kfree(object_prefix);
1098 
1099 	return ret;
1100 }
1101 
_rbd_dev_v1_snap_name(struct rbd_device * rbd_dev,u32 which)1102 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1103 {
1104 	const char *snap_name;
1105 
1106 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1107 
1108 	/* Skip over names until we find the one we are looking for */
1109 
1110 	snap_name = rbd_dev->header.snap_names;
1111 	while (which--)
1112 		snap_name += strlen(snap_name) + 1;
1113 
1114 	return kstrdup(snap_name, GFP_KERNEL);
1115 }
1116 
1117 /*
1118  * Snapshot id comparison function for use with qsort()/bsearch().
1119  * Note that result is for snapshots in *descending* order.
1120  */
snapid_compare_reverse(const void * s1,const void * s2)1121 static int snapid_compare_reverse(const void *s1, const void *s2)
1122 {
1123 	u64 snap_id1 = *(u64 *)s1;
1124 	u64 snap_id2 = *(u64 *)s2;
1125 
1126 	if (snap_id1 < snap_id2)
1127 		return 1;
1128 	return snap_id1 == snap_id2 ? 0 : -1;
1129 }
1130 
1131 /*
1132  * Search a snapshot context to see if the given snapshot id is
1133  * present.
1134  *
1135  * Returns the position of the snapshot id in the array if it's found,
1136  * or BAD_SNAP_INDEX otherwise.
1137  *
1138  * Note: The snapshot array is in kept sorted (by the osd) in
1139  * reverse order, highest snapshot id first.
1140  */
rbd_dev_snap_index(struct rbd_device * rbd_dev,u64 snap_id)1141 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1142 {
1143 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1144 	u64 *found;
1145 
1146 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1147 				sizeof (snap_id), snapid_compare_reverse);
1148 
1149 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1150 }
1151 
rbd_dev_v1_snap_name(struct rbd_device * rbd_dev,u64 snap_id)1152 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1153 					u64 snap_id)
1154 {
1155 	u32 which;
1156 	const char *snap_name;
1157 
1158 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1159 	if (which == BAD_SNAP_INDEX)
1160 		return ERR_PTR(-ENOENT);
1161 
1162 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1163 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1164 }
1165 
rbd_snap_name(struct rbd_device * rbd_dev,u64 snap_id)1166 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1167 {
1168 	if (snap_id == CEPH_NOSNAP)
1169 		return RBD_SNAP_HEAD_NAME;
1170 
1171 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1172 	if (rbd_dev->image_format == 1)
1173 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1174 
1175 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1176 }
1177 
rbd_snap_size(struct rbd_device * rbd_dev,u64 snap_id,u64 * snap_size)1178 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1179 				u64 *snap_size)
1180 {
1181 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1182 	if (snap_id == CEPH_NOSNAP) {
1183 		*snap_size = rbd_dev->header.image_size;
1184 	} else if (rbd_dev->image_format == 1) {
1185 		u32 which;
1186 
1187 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1188 		if (which == BAD_SNAP_INDEX)
1189 			return -ENOENT;
1190 
1191 		*snap_size = rbd_dev->header.snap_sizes[which];
1192 	} else {
1193 		u64 size = 0;
1194 		int ret;
1195 
1196 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1197 		if (ret)
1198 			return ret;
1199 
1200 		*snap_size = size;
1201 	}
1202 	return 0;
1203 }
1204 
rbd_dev_mapping_set(struct rbd_device * rbd_dev)1205 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1206 {
1207 	u64 snap_id = rbd_dev->spec->snap_id;
1208 	u64 size = 0;
1209 	int ret;
1210 
1211 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1212 	if (ret)
1213 		return ret;
1214 
1215 	rbd_dev->mapping.size = size;
1216 	return 0;
1217 }
1218 
rbd_dev_mapping_clear(struct rbd_device * rbd_dev)1219 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1220 {
1221 	rbd_dev->mapping.size = 0;
1222 }
1223 
zero_bios(struct ceph_bio_iter * bio_pos,u32 off,u32 bytes)1224 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1225 {
1226 	struct ceph_bio_iter it = *bio_pos;
1227 
1228 	ceph_bio_iter_advance(&it, off);
1229 	ceph_bio_iter_advance_step(&it, bytes, ({
1230 		memzero_bvec(&bv);
1231 	}));
1232 }
1233 
zero_bvecs(struct ceph_bvec_iter * bvec_pos,u32 off,u32 bytes)1234 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1235 {
1236 	struct ceph_bvec_iter it = *bvec_pos;
1237 
1238 	ceph_bvec_iter_advance(&it, off);
1239 	ceph_bvec_iter_advance_step(&it, bytes, ({
1240 		memzero_bvec(&bv);
1241 	}));
1242 }
1243 
1244 /*
1245  * Zero a range in @obj_req data buffer defined by a bio (list) or
1246  * (private) bio_vec array.
1247  *
1248  * @off is relative to the start of the data buffer.
1249  */
rbd_obj_zero_range(struct rbd_obj_request * obj_req,u32 off,u32 bytes)1250 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1251 			       u32 bytes)
1252 {
1253 	dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1254 
1255 	switch (obj_req->img_request->data_type) {
1256 	case OBJ_REQUEST_BIO:
1257 		zero_bios(&obj_req->bio_pos, off, bytes);
1258 		break;
1259 	case OBJ_REQUEST_BVECS:
1260 	case OBJ_REQUEST_OWN_BVECS:
1261 		zero_bvecs(&obj_req->bvec_pos, off, bytes);
1262 		break;
1263 	default:
1264 		BUG();
1265 	}
1266 }
1267 
1268 static void rbd_obj_request_destroy(struct kref *kref);
rbd_obj_request_put(struct rbd_obj_request * obj_request)1269 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1270 {
1271 	rbd_assert(obj_request != NULL);
1272 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1273 		kref_read(&obj_request->kref));
1274 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1275 }
1276 
rbd_img_obj_request_add(struct rbd_img_request * img_request,struct rbd_obj_request * obj_request)1277 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1278 					struct rbd_obj_request *obj_request)
1279 {
1280 	rbd_assert(obj_request->img_request == NULL);
1281 
1282 	/* Image request now owns object's original reference */
1283 	obj_request->img_request = img_request;
1284 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1285 }
1286 
rbd_img_obj_request_del(struct rbd_img_request * img_request,struct rbd_obj_request * obj_request)1287 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1288 					struct rbd_obj_request *obj_request)
1289 {
1290 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1291 	list_del(&obj_request->ex.oe_item);
1292 	rbd_assert(obj_request->img_request == img_request);
1293 	rbd_obj_request_put(obj_request);
1294 }
1295 
rbd_osd_submit(struct ceph_osd_request * osd_req)1296 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1297 {
1298 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1299 
1300 	dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1301 	     __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1302 	     obj_req->ex.oe_off, obj_req->ex.oe_len);
1303 	ceph_osdc_start_request(osd_req->r_osdc, osd_req);
1304 }
1305 
1306 /*
1307  * The default/initial value for all image request flags is 0.  Each
1308  * is conditionally set to 1 at image request initialization time
1309  * and currently never change thereafter.
1310  */
img_request_layered_set(struct rbd_img_request * img_request)1311 static void img_request_layered_set(struct rbd_img_request *img_request)
1312 {
1313 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1314 }
1315 
img_request_layered_test(struct rbd_img_request * img_request)1316 static bool img_request_layered_test(struct rbd_img_request *img_request)
1317 {
1318 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1319 }
1320 
rbd_obj_is_entire(struct rbd_obj_request * obj_req)1321 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1322 {
1323 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1324 
1325 	return !obj_req->ex.oe_off &&
1326 	       obj_req->ex.oe_len == rbd_dev->layout.object_size;
1327 }
1328 
rbd_obj_is_tail(struct rbd_obj_request * obj_req)1329 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1330 {
1331 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1332 
1333 	return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1334 					rbd_dev->layout.object_size;
1335 }
1336 
1337 /*
1338  * Must be called after rbd_obj_calc_img_extents().
1339  */
rbd_obj_set_copyup_enabled(struct rbd_obj_request * obj_req)1340 static void rbd_obj_set_copyup_enabled(struct rbd_obj_request *obj_req)
1341 {
1342 	rbd_assert(obj_req->img_request->snapc);
1343 
1344 	if (obj_req->img_request->op_type == OBJ_OP_DISCARD) {
1345 		dout("%s %p objno %llu discard\n", __func__, obj_req,
1346 		     obj_req->ex.oe_objno);
1347 		return;
1348 	}
1349 
1350 	if (!obj_req->num_img_extents) {
1351 		dout("%s %p objno %llu not overlapping\n", __func__, obj_req,
1352 		     obj_req->ex.oe_objno);
1353 		return;
1354 	}
1355 
1356 	if (rbd_obj_is_entire(obj_req) &&
1357 	    !obj_req->img_request->snapc->num_snaps) {
1358 		dout("%s %p objno %llu entire\n", __func__, obj_req,
1359 		     obj_req->ex.oe_objno);
1360 		return;
1361 	}
1362 
1363 	obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
1364 }
1365 
rbd_obj_img_extents_bytes(struct rbd_obj_request * obj_req)1366 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1367 {
1368 	return ceph_file_extents_bytes(obj_req->img_extents,
1369 				       obj_req->num_img_extents);
1370 }
1371 
rbd_img_is_write(struct rbd_img_request * img_req)1372 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1373 {
1374 	switch (img_req->op_type) {
1375 	case OBJ_OP_READ:
1376 		return false;
1377 	case OBJ_OP_WRITE:
1378 	case OBJ_OP_DISCARD:
1379 	case OBJ_OP_ZEROOUT:
1380 		return true;
1381 	default:
1382 		BUG();
1383 	}
1384 }
1385 
rbd_osd_req_callback(struct ceph_osd_request * osd_req)1386 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1387 {
1388 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1389 	int result;
1390 
1391 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1392 	     osd_req->r_result, obj_req);
1393 
1394 	/*
1395 	 * Writes aren't allowed to return a data payload.  In some
1396 	 * guarded write cases (e.g. stat + zero on an empty object)
1397 	 * a stat response makes it through, but we don't care.
1398 	 */
1399 	if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1400 		result = 0;
1401 	else
1402 		result = osd_req->r_result;
1403 
1404 	rbd_obj_handle_request(obj_req, result);
1405 }
1406 
rbd_osd_format_read(struct ceph_osd_request * osd_req)1407 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1408 {
1409 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1410 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1411 	struct ceph_options *opt = rbd_dev->rbd_client->client->options;
1412 
1413 	osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica;
1414 	osd_req->r_snapid = obj_request->img_request->snap_id;
1415 }
1416 
rbd_osd_format_write(struct ceph_osd_request * osd_req)1417 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1418 {
1419 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1420 
1421 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1422 	ktime_get_real_ts64(&osd_req->r_mtime);
1423 	osd_req->r_data_offset = obj_request->ex.oe_off;
1424 }
1425 
1426 static struct ceph_osd_request *
__rbd_obj_add_osd_request(struct rbd_obj_request * obj_req,struct ceph_snap_context * snapc,int num_ops)1427 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1428 			  struct ceph_snap_context *snapc, int num_ops)
1429 {
1430 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1431 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1432 	struct ceph_osd_request *req;
1433 	const char *name_format = rbd_dev->image_format == 1 ?
1434 				      RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1435 	int ret;
1436 
1437 	req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1438 	if (!req)
1439 		return ERR_PTR(-ENOMEM);
1440 
1441 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1442 	req->r_callback = rbd_osd_req_callback;
1443 	req->r_priv = obj_req;
1444 
1445 	/*
1446 	 * Data objects may be stored in a separate pool, but always in
1447 	 * the same namespace in that pool as the header in its pool.
1448 	 */
1449 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1450 	req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1451 
1452 	ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1453 			       rbd_dev->header.object_prefix,
1454 			       obj_req->ex.oe_objno);
1455 	if (ret)
1456 		return ERR_PTR(ret);
1457 
1458 	return req;
1459 }
1460 
1461 static struct ceph_osd_request *
rbd_obj_add_osd_request(struct rbd_obj_request * obj_req,int num_ops)1462 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1463 {
1464 	rbd_assert(obj_req->img_request->snapc);
1465 	return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1466 					 num_ops);
1467 }
1468 
rbd_obj_request_create(void)1469 static struct rbd_obj_request *rbd_obj_request_create(void)
1470 {
1471 	struct rbd_obj_request *obj_request;
1472 
1473 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1474 	if (!obj_request)
1475 		return NULL;
1476 
1477 	ceph_object_extent_init(&obj_request->ex);
1478 	INIT_LIST_HEAD(&obj_request->osd_reqs);
1479 	mutex_init(&obj_request->state_mutex);
1480 	kref_init(&obj_request->kref);
1481 
1482 	dout("%s %p\n", __func__, obj_request);
1483 	return obj_request;
1484 }
1485 
rbd_obj_request_destroy(struct kref * kref)1486 static void rbd_obj_request_destroy(struct kref *kref)
1487 {
1488 	struct rbd_obj_request *obj_request;
1489 	struct ceph_osd_request *osd_req;
1490 	u32 i;
1491 
1492 	obj_request = container_of(kref, struct rbd_obj_request, kref);
1493 
1494 	dout("%s: obj %p\n", __func__, obj_request);
1495 
1496 	while (!list_empty(&obj_request->osd_reqs)) {
1497 		osd_req = list_first_entry(&obj_request->osd_reqs,
1498 				    struct ceph_osd_request, r_private_item);
1499 		list_del_init(&osd_req->r_private_item);
1500 		ceph_osdc_put_request(osd_req);
1501 	}
1502 
1503 	switch (obj_request->img_request->data_type) {
1504 	case OBJ_REQUEST_NODATA:
1505 	case OBJ_REQUEST_BIO:
1506 	case OBJ_REQUEST_BVECS:
1507 		break;		/* Nothing to do */
1508 	case OBJ_REQUEST_OWN_BVECS:
1509 		kfree(obj_request->bvec_pos.bvecs);
1510 		break;
1511 	default:
1512 		BUG();
1513 	}
1514 
1515 	kfree(obj_request->img_extents);
1516 	if (obj_request->copyup_bvecs) {
1517 		for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1518 			if (obj_request->copyup_bvecs[i].bv_page)
1519 				__free_page(obj_request->copyup_bvecs[i].bv_page);
1520 		}
1521 		kfree(obj_request->copyup_bvecs);
1522 	}
1523 
1524 	kmem_cache_free(rbd_obj_request_cache, obj_request);
1525 }
1526 
1527 /* It's OK to call this for a device with no parent */
1528 
1529 static void rbd_spec_put(struct rbd_spec *spec);
rbd_dev_unparent(struct rbd_device * rbd_dev)1530 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1531 {
1532 	rbd_dev_remove_parent(rbd_dev);
1533 	rbd_spec_put(rbd_dev->parent_spec);
1534 	rbd_dev->parent_spec = NULL;
1535 	rbd_dev->parent_overlap = 0;
1536 }
1537 
1538 /*
1539  * Parent image reference counting is used to determine when an
1540  * image's parent fields can be safely torn down--after there are no
1541  * more in-flight requests to the parent image.  When the last
1542  * reference is dropped, cleaning them up is safe.
1543  */
rbd_dev_parent_put(struct rbd_device * rbd_dev)1544 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1545 {
1546 	int counter;
1547 
1548 	if (!rbd_dev->parent_spec)
1549 		return;
1550 
1551 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1552 	if (counter > 0)
1553 		return;
1554 
1555 	/* Last reference; clean up parent data structures */
1556 
1557 	if (!counter)
1558 		rbd_dev_unparent(rbd_dev);
1559 	else
1560 		rbd_warn(rbd_dev, "parent reference underflow");
1561 }
1562 
1563 /*
1564  * If an image has a non-zero parent overlap, get a reference to its
1565  * parent.
1566  *
1567  * Returns true if the rbd device has a parent with a non-zero
1568  * overlap and a reference for it was successfully taken, or
1569  * false otherwise.
1570  */
rbd_dev_parent_get(struct rbd_device * rbd_dev)1571 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1572 {
1573 	int counter = 0;
1574 
1575 	if (!rbd_dev->parent_spec)
1576 		return false;
1577 
1578 	if (rbd_dev->parent_overlap)
1579 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1580 
1581 	if (counter < 0)
1582 		rbd_warn(rbd_dev, "parent reference overflow");
1583 
1584 	return counter > 0;
1585 }
1586 
rbd_img_request_init(struct rbd_img_request * img_request,struct rbd_device * rbd_dev,enum obj_operation_type op_type)1587 static void rbd_img_request_init(struct rbd_img_request *img_request,
1588 				 struct rbd_device *rbd_dev,
1589 				 enum obj_operation_type op_type)
1590 {
1591 	memset(img_request, 0, sizeof(*img_request));
1592 
1593 	img_request->rbd_dev = rbd_dev;
1594 	img_request->op_type = op_type;
1595 
1596 	INIT_LIST_HEAD(&img_request->lock_item);
1597 	INIT_LIST_HEAD(&img_request->object_extents);
1598 	mutex_init(&img_request->state_mutex);
1599 }
1600 
1601 /*
1602  * Only snap_id is captured here, for reads.  For writes, snapshot
1603  * context is captured in rbd_img_object_requests() after exclusive
1604  * lock is ensured to be held.
1605  */
rbd_img_capture_header(struct rbd_img_request * img_req)1606 static void rbd_img_capture_header(struct rbd_img_request *img_req)
1607 {
1608 	struct rbd_device *rbd_dev = img_req->rbd_dev;
1609 
1610 	lockdep_assert_held(&rbd_dev->header_rwsem);
1611 
1612 	if (!rbd_img_is_write(img_req))
1613 		img_req->snap_id = rbd_dev->spec->snap_id;
1614 
1615 	if (rbd_dev_parent_get(rbd_dev))
1616 		img_request_layered_set(img_req);
1617 }
1618 
rbd_img_request_destroy(struct rbd_img_request * img_request)1619 static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1620 {
1621 	struct rbd_obj_request *obj_request;
1622 	struct rbd_obj_request *next_obj_request;
1623 
1624 	dout("%s: img %p\n", __func__, img_request);
1625 
1626 	WARN_ON(!list_empty(&img_request->lock_item));
1627 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1628 		rbd_img_obj_request_del(img_request, obj_request);
1629 
1630 	if (img_request_layered_test(img_request))
1631 		rbd_dev_parent_put(img_request->rbd_dev);
1632 
1633 	if (rbd_img_is_write(img_request))
1634 		ceph_put_snap_context(img_request->snapc);
1635 
1636 	if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1637 		kmem_cache_free(rbd_img_request_cache, img_request);
1638 }
1639 
1640 #define BITS_PER_OBJ	2
1641 #define OBJS_PER_BYTE	(BITS_PER_BYTE / BITS_PER_OBJ)
1642 #define OBJ_MASK	((1 << BITS_PER_OBJ) - 1)
1643 
__rbd_object_map_index(struct rbd_device * rbd_dev,u64 objno,u64 * index,u8 * shift)1644 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1645 				   u64 *index, u8 *shift)
1646 {
1647 	u32 off;
1648 
1649 	rbd_assert(objno < rbd_dev->object_map_size);
1650 	*index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1651 	*shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1652 }
1653 
__rbd_object_map_get(struct rbd_device * rbd_dev,u64 objno)1654 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1655 {
1656 	u64 index;
1657 	u8 shift;
1658 
1659 	lockdep_assert_held(&rbd_dev->object_map_lock);
1660 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1661 	return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1662 }
1663 
__rbd_object_map_set(struct rbd_device * rbd_dev,u64 objno,u8 val)1664 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1665 {
1666 	u64 index;
1667 	u8 shift;
1668 	u8 *p;
1669 
1670 	lockdep_assert_held(&rbd_dev->object_map_lock);
1671 	rbd_assert(!(val & ~OBJ_MASK));
1672 
1673 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1674 	p = &rbd_dev->object_map[index];
1675 	*p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1676 }
1677 
rbd_object_map_get(struct rbd_device * rbd_dev,u64 objno)1678 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1679 {
1680 	u8 state;
1681 
1682 	spin_lock(&rbd_dev->object_map_lock);
1683 	state = __rbd_object_map_get(rbd_dev, objno);
1684 	spin_unlock(&rbd_dev->object_map_lock);
1685 	return state;
1686 }
1687 
use_object_map(struct rbd_device * rbd_dev)1688 static bool use_object_map(struct rbd_device *rbd_dev)
1689 {
1690 	/*
1691 	 * An image mapped read-only can't use the object map -- it isn't
1692 	 * loaded because the header lock isn't acquired.  Someone else can
1693 	 * write to the image and update the object map behind our back.
1694 	 *
1695 	 * A snapshot can't be written to, so using the object map is always
1696 	 * safe.
1697 	 */
1698 	if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1699 		return false;
1700 
1701 	return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1702 		!(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1703 }
1704 
rbd_object_map_may_exist(struct rbd_device * rbd_dev,u64 objno)1705 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1706 {
1707 	u8 state;
1708 
1709 	/* fall back to default logic if object map is disabled or invalid */
1710 	if (!use_object_map(rbd_dev))
1711 		return true;
1712 
1713 	state = rbd_object_map_get(rbd_dev, objno);
1714 	return state != OBJECT_NONEXISTENT;
1715 }
1716 
rbd_object_map_name(struct rbd_device * rbd_dev,u64 snap_id,struct ceph_object_id * oid)1717 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1718 				struct ceph_object_id *oid)
1719 {
1720 	if (snap_id == CEPH_NOSNAP)
1721 		ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1722 				rbd_dev->spec->image_id);
1723 	else
1724 		ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1725 				rbd_dev->spec->image_id, snap_id);
1726 }
1727 
rbd_object_map_lock(struct rbd_device * rbd_dev)1728 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1729 {
1730 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1731 	CEPH_DEFINE_OID_ONSTACK(oid);
1732 	u8 lock_type;
1733 	char *lock_tag;
1734 	struct ceph_locker *lockers;
1735 	u32 num_lockers;
1736 	bool broke_lock = false;
1737 	int ret;
1738 
1739 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1740 
1741 again:
1742 	ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1743 			    CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1744 	if (ret != -EBUSY || broke_lock) {
1745 		if (ret == -EEXIST)
1746 			ret = 0; /* already locked by myself */
1747 		if (ret)
1748 			rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1749 		return ret;
1750 	}
1751 
1752 	ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1753 				 RBD_LOCK_NAME, &lock_type, &lock_tag,
1754 				 &lockers, &num_lockers);
1755 	if (ret) {
1756 		if (ret == -ENOENT)
1757 			goto again;
1758 
1759 		rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1760 		return ret;
1761 	}
1762 
1763 	kfree(lock_tag);
1764 	if (num_lockers == 0)
1765 		goto again;
1766 
1767 	rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1768 		 ENTITY_NAME(lockers[0].id.name));
1769 
1770 	ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1771 				  RBD_LOCK_NAME, lockers[0].id.cookie,
1772 				  &lockers[0].id.name);
1773 	ceph_free_lockers(lockers, num_lockers);
1774 	if (ret) {
1775 		if (ret == -ENOENT)
1776 			goto again;
1777 
1778 		rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1779 		return ret;
1780 	}
1781 
1782 	broke_lock = true;
1783 	goto again;
1784 }
1785 
rbd_object_map_unlock(struct rbd_device * rbd_dev)1786 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1787 {
1788 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1789 	CEPH_DEFINE_OID_ONSTACK(oid);
1790 	int ret;
1791 
1792 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1793 
1794 	ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1795 			      "");
1796 	if (ret && ret != -ENOENT)
1797 		rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1798 }
1799 
decode_object_map_header(void ** p,void * end,u64 * object_map_size)1800 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1801 {
1802 	u8 struct_v;
1803 	u32 struct_len;
1804 	u32 header_len;
1805 	void *header_end;
1806 	int ret;
1807 
1808 	ceph_decode_32_safe(p, end, header_len, e_inval);
1809 	header_end = *p + header_len;
1810 
1811 	ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1812 				  &struct_len);
1813 	if (ret)
1814 		return ret;
1815 
1816 	ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1817 
1818 	*p = header_end;
1819 	return 0;
1820 
1821 e_inval:
1822 	return -EINVAL;
1823 }
1824 
__rbd_object_map_load(struct rbd_device * rbd_dev)1825 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1826 {
1827 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1828 	CEPH_DEFINE_OID_ONSTACK(oid);
1829 	struct page **pages;
1830 	void *p, *end;
1831 	size_t reply_len;
1832 	u64 num_objects;
1833 	u64 object_map_bytes;
1834 	u64 object_map_size;
1835 	int num_pages;
1836 	int ret;
1837 
1838 	rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1839 
1840 	num_objects = ceph_get_num_objects(&rbd_dev->layout,
1841 					   rbd_dev->mapping.size);
1842 	object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1843 					    BITS_PER_BYTE);
1844 	num_pages = calc_pages_for(0, object_map_bytes) + 1;
1845 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1846 	if (IS_ERR(pages))
1847 		return PTR_ERR(pages);
1848 
1849 	reply_len = num_pages * PAGE_SIZE;
1850 	rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1851 	ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1852 			     "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1853 			     NULL, 0, pages, &reply_len);
1854 	if (ret)
1855 		goto out;
1856 
1857 	p = page_address(pages[0]);
1858 	end = p + min(reply_len, (size_t)PAGE_SIZE);
1859 	ret = decode_object_map_header(&p, end, &object_map_size);
1860 	if (ret)
1861 		goto out;
1862 
1863 	if (object_map_size != num_objects) {
1864 		rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1865 			 object_map_size, num_objects);
1866 		ret = -EINVAL;
1867 		goto out;
1868 	}
1869 
1870 	if (offset_in_page(p) + object_map_bytes > reply_len) {
1871 		ret = -EINVAL;
1872 		goto out;
1873 	}
1874 
1875 	rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1876 	if (!rbd_dev->object_map) {
1877 		ret = -ENOMEM;
1878 		goto out;
1879 	}
1880 
1881 	rbd_dev->object_map_size = object_map_size;
1882 	ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1883 				   offset_in_page(p), object_map_bytes);
1884 
1885 out:
1886 	ceph_release_page_vector(pages, num_pages);
1887 	return ret;
1888 }
1889 
rbd_object_map_free(struct rbd_device * rbd_dev)1890 static void rbd_object_map_free(struct rbd_device *rbd_dev)
1891 {
1892 	kvfree(rbd_dev->object_map);
1893 	rbd_dev->object_map = NULL;
1894 	rbd_dev->object_map_size = 0;
1895 }
1896 
rbd_object_map_load(struct rbd_device * rbd_dev)1897 static int rbd_object_map_load(struct rbd_device *rbd_dev)
1898 {
1899 	int ret;
1900 
1901 	ret = __rbd_object_map_load(rbd_dev);
1902 	if (ret)
1903 		return ret;
1904 
1905 	ret = rbd_dev_v2_get_flags(rbd_dev);
1906 	if (ret) {
1907 		rbd_object_map_free(rbd_dev);
1908 		return ret;
1909 	}
1910 
1911 	if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1912 		rbd_warn(rbd_dev, "object map is invalid");
1913 
1914 	return 0;
1915 }
1916 
rbd_object_map_open(struct rbd_device * rbd_dev)1917 static int rbd_object_map_open(struct rbd_device *rbd_dev)
1918 {
1919 	int ret;
1920 
1921 	ret = rbd_object_map_lock(rbd_dev);
1922 	if (ret)
1923 		return ret;
1924 
1925 	ret = rbd_object_map_load(rbd_dev);
1926 	if (ret) {
1927 		rbd_object_map_unlock(rbd_dev);
1928 		return ret;
1929 	}
1930 
1931 	return 0;
1932 }
1933 
rbd_object_map_close(struct rbd_device * rbd_dev)1934 static void rbd_object_map_close(struct rbd_device *rbd_dev)
1935 {
1936 	rbd_object_map_free(rbd_dev);
1937 	rbd_object_map_unlock(rbd_dev);
1938 }
1939 
1940 /*
1941  * This function needs snap_id (or more precisely just something to
1942  * distinguish between HEAD and snapshot object maps), new_state and
1943  * current_state that were passed to rbd_object_map_update().
1944  *
1945  * To avoid allocating and stashing a context we piggyback on the OSD
1946  * request.  A HEAD update has two ops (assert_locked).  For new_state
1947  * and current_state we decode our own object_map_update op, encoded in
1948  * rbd_cls_object_map_update().
1949  */
rbd_object_map_update_finish(struct rbd_obj_request * obj_req,struct ceph_osd_request * osd_req)1950 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
1951 					struct ceph_osd_request *osd_req)
1952 {
1953 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1954 	struct ceph_osd_data *osd_data;
1955 	u64 objno;
1956 	u8 state, new_state, current_state;
1957 	bool has_current_state;
1958 	void *p;
1959 
1960 	if (osd_req->r_result)
1961 		return osd_req->r_result;
1962 
1963 	/*
1964 	 * Nothing to do for a snapshot object map.
1965 	 */
1966 	if (osd_req->r_num_ops == 1)
1967 		return 0;
1968 
1969 	/*
1970 	 * Update in-memory HEAD object map.
1971 	 */
1972 	rbd_assert(osd_req->r_num_ops == 2);
1973 	osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
1974 	rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
1975 
1976 	p = page_address(osd_data->pages[0]);
1977 	objno = ceph_decode_64(&p);
1978 	rbd_assert(objno == obj_req->ex.oe_objno);
1979 	rbd_assert(ceph_decode_64(&p) == objno + 1);
1980 	new_state = ceph_decode_8(&p);
1981 	has_current_state = ceph_decode_8(&p);
1982 	if (has_current_state)
1983 		current_state = ceph_decode_8(&p);
1984 
1985 	spin_lock(&rbd_dev->object_map_lock);
1986 	state = __rbd_object_map_get(rbd_dev, objno);
1987 	if (!has_current_state || current_state == state ||
1988 	    (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
1989 		__rbd_object_map_set(rbd_dev, objno, new_state);
1990 	spin_unlock(&rbd_dev->object_map_lock);
1991 
1992 	return 0;
1993 }
1994 
rbd_object_map_callback(struct ceph_osd_request * osd_req)1995 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
1996 {
1997 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1998 	int result;
1999 
2000 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
2001 	     osd_req->r_result, obj_req);
2002 
2003 	result = rbd_object_map_update_finish(obj_req, osd_req);
2004 	rbd_obj_handle_request(obj_req, result);
2005 }
2006 
update_needed(struct rbd_device * rbd_dev,u64 objno,u8 new_state)2007 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
2008 {
2009 	u8 state = rbd_object_map_get(rbd_dev, objno);
2010 
2011 	if (state == new_state ||
2012 	    (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2013 	    (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2014 		return false;
2015 
2016 	return true;
2017 }
2018 
rbd_cls_object_map_update(struct ceph_osd_request * req,int which,u64 objno,u8 new_state,const u8 * current_state)2019 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2020 				     int which, u64 objno, u8 new_state,
2021 				     const u8 *current_state)
2022 {
2023 	struct page **pages;
2024 	void *p, *start;
2025 	int ret;
2026 
2027 	ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2028 	if (ret)
2029 		return ret;
2030 
2031 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2032 	if (IS_ERR(pages))
2033 		return PTR_ERR(pages);
2034 
2035 	p = start = page_address(pages[0]);
2036 	ceph_encode_64(&p, objno);
2037 	ceph_encode_64(&p, objno + 1);
2038 	ceph_encode_8(&p, new_state);
2039 	if (current_state) {
2040 		ceph_encode_8(&p, 1);
2041 		ceph_encode_8(&p, *current_state);
2042 	} else {
2043 		ceph_encode_8(&p, 0);
2044 	}
2045 
2046 	osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2047 					  false, true);
2048 	return 0;
2049 }
2050 
2051 /*
2052  * Return:
2053  *   0 - object map update sent
2054  *   1 - object map update isn't needed
2055  *  <0 - error
2056  */
rbd_object_map_update(struct rbd_obj_request * obj_req,u64 snap_id,u8 new_state,const u8 * current_state)2057 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2058 				 u8 new_state, const u8 *current_state)
2059 {
2060 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2061 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2062 	struct ceph_osd_request *req;
2063 	int num_ops = 1;
2064 	int which = 0;
2065 	int ret;
2066 
2067 	if (snap_id == CEPH_NOSNAP) {
2068 		if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2069 			return 1;
2070 
2071 		num_ops++; /* assert_locked */
2072 	}
2073 
2074 	req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2075 	if (!req)
2076 		return -ENOMEM;
2077 
2078 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2079 	req->r_callback = rbd_object_map_callback;
2080 	req->r_priv = obj_req;
2081 
2082 	rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2083 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2084 	req->r_flags = CEPH_OSD_FLAG_WRITE;
2085 	ktime_get_real_ts64(&req->r_mtime);
2086 
2087 	if (snap_id == CEPH_NOSNAP) {
2088 		/*
2089 		 * Protect against possible race conditions during lock
2090 		 * ownership transitions.
2091 		 */
2092 		ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2093 					     CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2094 		if (ret)
2095 			return ret;
2096 	}
2097 
2098 	ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2099 					new_state, current_state);
2100 	if (ret)
2101 		return ret;
2102 
2103 	ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2104 	if (ret)
2105 		return ret;
2106 
2107 	ceph_osdc_start_request(osdc, req);
2108 	return 0;
2109 }
2110 
prune_extents(struct ceph_file_extent * img_extents,u32 * num_img_extents,u64 overlap)2111 static void prune_extents(struct ceph_file_extent *img_extents,
2112 			  u32 *num_img_extents, u64 overlap)
2113 {
2114 	u32 cnt = *num_img_extents;
2115 
2116 	/* drop extents completely beyond the overlap */
2117 	while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2118 		cnt--;
2119 
2120 	if (cnt) {
2121 		struct ceph_file_extent *ex = &img_extents[cnt - 1];
2122 
2123 		/* trim final overlapping extent */
2124 		if (ex->fe_off + ex->fe_len > overlap)
2125 			ex->fe_len = overlap - ex->fe_off;
2126 	}
2127 
2128 	*num_img_extents = cnt;
2129 }
2130 
2131 /*
2132  * Determine the byte range(s) covered by either just the object extent
2133  * or the entire object in the parent image.
2134  */
rbd_obj_calc_img_extents(struct rbd_obj_request * obj_req,bool entire)2135 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2136 				    bool entire)
2137 {
2138 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2139 	int ret;
2140 
2141 	if (!rbd_dev->parent_overlap)
2142 		return 0;
2143 
2144 	ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2145 				  entire ? 0 : obj_req->ex.oe_off,
2146 				  entire ? rbd_dev->layout.object_size :
2147 							obj_req->ex.oe_len,
2148 				  &obj_req->img_extents,
2149 				  &obj_req->num_img_extents);
2150 	if (ret)
2151 		return ret;
2152 
2153 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2154 		      rbd_dev->parent_overlap);
2155 	return 0;
2156 }
2157 
rbd_osd_setup_data(struct ceph_osd_request * osd_req,int which)2158 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2159 {
2160 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2161 
2162 	switch (obj_req->img_request->data_type) {
2163 	case OBJ_REQUEST_BIO:
2164 		osd_req_op_extent_osd_data_bio(osd_req, which,
2165 					       &obj_req->bio_pos,
2166 					       obj_req->ex.oe_len);
2167 		break;
2168 	case OBJ_REQUEST_BVECS:
2169 	case OBJ_REQUEST_OWN_BVECS:
2170 		rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2171 							obj_req->ex.oe_len);
2172 		rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2173 		osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2174 						    &obj_req->bvec_pos);
2175 		break;
2176 	default:
2177 		BUG();
2178 	}
2179 }
2180 
rbd_osd_setup_stat(struct ceph_osd_request * osd_req,int which)2181 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2182 {
2183 	struct page **pages;
2184 
2185 	/*
2186 	 * The response data for a STAT call consists of:
2187 	 *     le64 length;
2188 	 *     struct {
2189 	 *         le32 tv_sec;
2190 	 *         le32 tv_nsec;
2191 	 *     } mtime;
2192 	 */
2193 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2194 	if (IS_ERR(pages))
2195 		return PTR_ERR(pages);
2196 
2197 	osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2198 	osd_req_op_raw_data_in_pages(osd_req, which, pages,
2199 				     8 + sizeof(struct ceph_timespec),
2200 				     0, false, true);
2201 	return 0;
2202 }
2203 
rbd_osd_setup_copyup(struct ceph_osd_request * osd_req,int which,u32 bytes)2204 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2205 				u32 bytes)
2206 {
2207 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2208 	int ret;
2209 
2210 	ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2211 	if (ret)
2212 		return ret;
2213 
2214 	osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2215 					  obj_req->copyup_bvec_count, bytes);
2216 	return 0;
2217 }
2218 
rbd_obj_init_read(struct rbd_obj_request * obj_req)2219 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2220 {
2221 	obj_req->read_state = RBD_OBJ_READ_START;
2222 	return 0;
2223 }
2224 
__rbd_osd_setup_write_ops(struct ceph_osd_request * osd_req,int which)2225 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2226 				      int which)
2227 {
2228 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2229 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2230 	u16 opcode;
2231 
2232 	if (!use_object_map(rbd_dev) ||
2233 	    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2234 		osd_req_op_alloc_hint_init(osd_req, which++,
2235 					   rbd_dev->layout.object_size,
2236 					   rbd_dev->layout.object_size,
2237 					   rbd_dev->opts->alloc_hint_flags);
2238 	}
2239 
2240 	if (rbd_obj_is_entire(obj_req))
2241 		opcode = CEPH_OSD_OP_WRITEFULL;
2242 	else
2243 		opcode = CEPH_OSD_OP_WRITE;
2244 
2245 	osd_req_op_extent_init(osd_req, which, opcode,
2246 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2247 	rbd_osd_setup_data(osd_req, which);
2248 }
2249 
rbd_obj_init_write(struct rbd_obj_request * obj_req)2250 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2251 {
2252 	int ret;
2253 
2254 	/* reverse map the entire object onto the parent */
2255 	ret = rbd_obj_calc_img_extents(obj_req, true);
2256 	if (ret)
2257 		return ret;
2258 
2259 	obj_req->write_state = RBD_OBJ_WRITE_START;
2260 	return 0;
2261 }
2262 
truncate_or_zero_opcode(struct rbd_obj_request * obj_req)2263 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2264 {
2265 	return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2266 					  CEPH_OSD_OP_ZERO;
2267 }
2268 
__rbd_osd_setup_discard_ops(struct ceph_osd_request * osd_req,int which)2269 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2270 					int which)
2271 {
2272 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2273 
2274 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2275 		rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2276 		osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2277 	} else {
2278 		osd_req_op_extent_init(osd_req, which,
2279 				       truncate_or_zero_opcode(obj_req),
2280 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2281 				       0, 0);
2282 	}
2283 }
2284 
rbd_obj_init_discard(struct rbd_obj_request * obj_req)2285 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2286 {
2287 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2288 	u64 off, next_off;
2289 	int ret;
2290 
2291 	/*
2292 	 * Align the range to alloc_size boundary and punt on discards
2293 	 * that are too small to free up any space.
2294 	 *
2295 	 * alloc_size == object_size && is_tail() is a special case for
2296 	 * filestore with filestore_punch_hole = false, needed to allow
2297 	 * truncate (in addition to delete).
2298 	 */
2299 	if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2300 	    !rbd_obj_is_tail(obj_req)) {
2301 		off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2302 		next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2303 				      rbd_dev->opts->alloc_size);
2304 		if (off >= next_off)
2305 			return 1;
2306 
2307 		dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2308 		     obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2309 		     off, next_off - off);
2310 		obj_req->ex.oe_off = off;
2311 		obj_req->ex.oe_len = next_off - off;
2312 	}
2313 
2314 	/* reverse map the entire object onto the parent */
2315 	ret = rbd_obj_calc_img_extents(obj_req, true);
2316 	if (ret)
2317 		return ret;
2318 
2319 	obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2320 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2321 		obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2322 
2323 	obj_req->write_state = RBD_OBJ_WRITE_START;
2324 	return 0;
2325 }
2326 
__rbd_osd_setup_zeroout_ops(struct ceph_osd_request * osd_req,int which)2327 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2328 					int which)
2329 {
2330 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2331 	u16 opcode;
2332 
2333 	if (rbd_obj_is_entire(obj_req)) {
2334 		if (obj_req->num_img_extents) {
2335 			if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2336 				osd_req_op_init(osd_req, which++,
2337 						CEPH_OSD_OP_CREATE, 0);
2338 			opcode = CEPH_OSD_OP_TRUNCATE;
2339 		} else {
2340 			rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2341 			osd_req_op_init(osd_req, which++,
2342 					CEPH_OSD_OP_DELETE, 0);
2343 			opcode = 0;
2344 		}
2345 	} else {
2346 		opcode = truncate_or_zero_opcode(obj_req);
2347 	}
2348 
2349 	if (opcode)
2350 		osd_req_op_extent_init(osd_req, which, opcode,
2351 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2352 				       0, 0);
2353 }
2354 
rbd_obj_init_zeroout(struct rbd_obj_request * obj_req)2355 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2356 {
2357 	int ret;
2358 
2359 	/* reverse map the entire object onto the parent */
2360 	ret = rbd_obj_calc_img_extents(obj_req, true);
2361 	if (ret)
2362 		return ret;
2363 
2364 	if (!obj_req->num_img_extents) {
2365 		obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2366 		if (rbd_obj_is_entire(obj_req))
2367 			obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2368 	}
2369 
2370 	obj_req->write_state = RBD_OBJ_WRITE_START;
2371 	return 0;
2372 }
2373 
count_write_ops(struct rbd_obj_request * obj_req)2374 static int count_write_ops(struct rbd_obj_request *obj_req)
2375 {
2376 	struct rbd_img_request *img_req = obj_req->img_request;
2377 
2378 	switch (img_req->op_type) {
2379 	case OBJ_OP_WRITE:
2380 		if (!use_object_map(img_req->rbd_dev) ||
2381 		    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2382 			return 2; /* setallochint + write/writefull */
2383 
2384 		return 1; /* write/writefull */
2385 	case OBJ_OP_DISCARD:
2386 		return 1; /* delete/truncate/zero */
2387 	case OBJ_OP_ZEROOUT:
2388 		if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2389 		    !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2390 			return 2; /* create + truncate */
2391 
2392 		return 1; /* delete/truncate/zero */
2393 	default:
2394 		BUG();
2395 	}
2396 }
2397 
rbd_osd_setup_write_ops(struct ceph_osd_request * osd_req,int which)2398 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2399 				    int which)
2400 {
2401 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2402 
2403 	switch (obj_req->img_request->op_type) {
2404 	case OBJ_OP_WRITE:
2405 		__rbd_osd_setup_write_ops(osd_req, which);
2406 		break;
2407 	case OBJ_OP_DISCARD:
2408 		__rbd_osd_setup_discard_ops(osd_req, which);
2409 		break;
2410 	case OBJ_OP_ZEROOUT:
2411 		__rbd_osd_setup_zeroout_ops(osd_req, which);
2412 		break;
2413 	default:
2414 		BUG();
2415 	}
2416 }
2417 
2418 /*
2419  * Prune the list of object requests (adjust offset and/or length, drop
2420  * redundant requests).  Prepare object request state machines and image
2421  * request state machine for execution.
2422  */
__rbd_img_fill_request(struct rbd_img_request * img_req)2423 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2424 {
2425 	struct rbd_obj_request *obj_req, *next_obj_req;
2426 	int ret;
2427 
2428 	for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2429 		switch (img_req->op_type) {
2430 		case OBJ_OP_READ:
2431 			ret = rbd_obj_init_read(obj_req);
2432 			break;
2433 		case OBJ_OP_WRITE:
2434 			ret = rbd_obj_init_write(obj_req);
2435 			break;
2436 		case OBJ_OP_DISCARD:
2437 			ret = rbd_obj_init_discard(obj_req);
2438 			break;
2439 		case OBJ_OP_ZEROOUT:
2440 			ret = rbd_obj_init_zeroout(obj_req);
2441 			break;
2442 		default:
2443 			BUG();
2444 		}
2445 		if (ret < 0)
2446 			return ret;
2447 		if (ret > 0) {
2448 			rbd_img_obj_request_del(img_req, obj_req);
2449 			continue;
2450 		}
2451 	}
2452 
2453 	img_req->state = RBD_IMG_START;
2454 	return 0;
2455 }
2456 
2457 union rbd_img_fill_iter {
2458 	struct ceph_bio_iter	bio_iter;
2459 	struct ceph_bvec_iter	bvec_iter;
2460 };
2461 
2462 struct rbd_img_fill_ctx {
2463 	enum obj_request_type	pos_type;
2464 	union rbd_img_fill_iter	*pos;
2465 	union rbd_img_fill_iter	iter;
2466 	ceph_object_extent_fn_t	set_pos_fn;
2467 	ceph_object_extent_fn_t	count_fn;
2468 	ceph_object_extent_fn_t	copy_fn;
2469 };
2470 
alloc_object_extent(void * arg)2471 static struct ceph_object_extent *alloc_object_extent(void *arg)
2472 {
2473 	struct rbd_img_request *img_req = arg;
2474 	struct rbd_obj_request *obj_req;
2475 
2476 	obj_req = rbd_obj_request_create();
2477 	if (!obj_req)
2478 		return NULL;
2479 
2480 	rbd_img_obj_request_add(img_req, obj_req);
2481 	return &obj_req->ex;
2482 }
2483 
2484 /*
2485  * While su != os && sc == 1 is technically not fancy (it's the same
2486  * layout as su == os && sc == 1), we can't use the nocopy path for it
2487  * because ->set_pos_fn() should be called only once per object.
2488  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2489  * treat su != os && sc == 1 as fancy.
2490  */
rbd_layout_is_fancy(struct ceph_file_layout * l)2491 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2492 {
2493 	return l->stripe_unit != l->object_size;
2494 }
2495 
rbd_img_fill_request_nocopy(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct rbd_img_fill_ctx * fctx)2496 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2497 				       struct ceph_file_extent *img_extents,
2498 				       u32 num_img_extents,
2499 				       struct rbd_img_fill_ctx *fctx)
2500 {
2501 	u32 i;
2502 	int ret;
2503 
2504 	img_req->data_type = fctx->pos_type;
2505 
2506 	/*
2507 	 * Create object requests and set each object request's starting
2508 	 * position in the provided bio (list) or bio_vec array.
2509 	 */
2510 	fctx->iter = *fctx->pos;
2511 	for (i = 0; i < num_img_extents; i++) {
2512 		ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2513 					   img_extents[i].fe_off,
2514 					   img_extents[i].fe_len,
2515 					   &img_req->object_extents,
2516 					   alloc_object_extent, img_req,
2517 					   fctx->set_pos_fn, &fctx->iter);
2518 		if (ret)
2519 			return ret;
2520 	}
2521 
2522 	return __rbd_img_fill_request(img_req);
2523 }
2524 
2525 /*
2526  * Map a list of image extents to a list of object extents, create the
2527  * corresponding object requests (normally each to a different object,
2528  * but not always) and add them to @img_req.  For each object request,
2529  * set up its data descriptor to point to the corresponding chunk(s) of
2530  * @fctx->pos data buffer.
2531  *
2532  * Because ceph_file_to_extents() will merge adjacent object extents
2533  * together, each object request's data descriptor may point to multiple
2534  * different chunks of @fctx->pos data buffer.
2535  *
2536  * @fctx->pos data buffer is assumed to be large enough.
2537  */
rbd_img_fill_request(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct rbd_img_fill_ctx * fctx)2538 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2539 				struct ceph_file_extent *img_extents,
2540 				u32 num_img_extents,
2541 				struct rbd_img_fill_ctx *fctx)
2542 {
2543 	struct rbd_device *rbd_dev = img_req->rbd_dev;
2544 	struct rbd_obj_request *obj_req;
2545 	u32 i;
2546 	int ret;
2547 
2548 	if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2549 	    !rbd_layout_is_fancy(&rbd_dev->layout))
2550 		return rbd_img_fill_request_nocopy(img_req, img_extents,
2551 						   num_img_extents, fctx);
2552 
2553 	img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2554 
2555 	/*
2556 	 * Create object requests and determine ->bvec_count for each object
2557 	 * request.  Note that ->bvec_count sum over all object requests may
2558 	 * be greater than the number of bio_vecs in the provided bio (list)
2559 	 * or bio_vec array because when mapped, those bio_vecs can straddle
2560 	 * stripe unit boundaries.
2561 	 */
2562 	fctx->iter = *fctx->pos;
2563 	for (i = 0; i < num_img_extents; i++) {
2564 		ret = ceph_file_to_extents(&rbd_dev->layout,
2565 					   img_extents[i].fe_off,
2566 					   img_extents[i].fe_len,
2567 					   &img_req->object_extents,
2568 					   alloc_object_extent, img_req,
2569 					   fctx->count_fn, &fctx->iter);
2570 		if (ret)
2571 			return ret;
2572 	}
2573 
2574 	for_each_obj_request(img_req, obj_req) {
2575 		obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2576 					      sizeof(*obj_req->bvec_pos.bvecs),
2577 					      GFP_NOIO);
2578 		if (!obj_req->bvec_pos.bvecs)
2579 			return -ENOMEM;
2580 	}
2581 
2582 	/*
2583 	 * Fill in each object request's private bio_vec array, splitting and
2584 	 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2585 	 */
2586 	fctx->iter = *fctx->pos;
2587 	for (i = 0; i < num_img_extents; i++) {
2588 		ret = ceph_iterate_extents(&rbd_dev->layout,
2589 					   img_extents[i].fe_off,
2590 					   img_extents[i].fe_len,
2591 					   &img_req->object_extents,
2592 					   fctx->copy_fn, &fctx->iter);
2593 		if (ret)
2594 			return ret;
2595 	}
2596 
2597 	return __rbd_img_fill_request(img_req);
2598 }
2599 
rbd_img_fill_nodata(struct rbd_img_request * img_req,u64 off,u64 len)2600 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2601 			       u64 off, u64 len)
2602 {
2603 	struct ceph_file_extent ex = { off, len };
2604 	union rbd_img_fill_iter dummy = {};
2605 	struct rbd_img_fill_ctx fctx = {
2606 		.pos_type = OBJ_REQUEST_NODATA,
2607 		.pos = &dummy,
2608 	};
2609 
2610 	return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2611 }
2612 
set_bio_pos(struct ceph_object_extent * ex,u32 bytes,void * arg)2613 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2614 {
2615 	struct rbd_obj_request *obj_req =
2616 	    container_of(ex, struct rbd_obj_request, ex);
2617 	struct ceph_bio_iter *it = arg;
2618 
2619 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2620 	obj_req->bio_pos = *it;
2621 	ceph_bio_iter_advance(it, bytes);
2622 }
2623 
count_bio_bvecs(struct ceph_object_extent * ex,u32 bytes,void * arg)2624 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2625 {
2626 	struct rbd_obj_request *obj_req =
2627 	    container_of(ex, struct rbd_obj_request, ex);
2628 	struct ceph_bio_iter *it = arg;
2629 
2630 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2631 	ceph_bio_iter_advance_step(it, bytes, ({
2632 		obj_req->bvec_count++;
2633 	}));
2634 
2635 }
2636 
copy_bio_bvecs(struct ceph_object_extent * ex,u32 bytes,void * arg)2637 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2638 {
2639 	struct rbd_obj_request *obj_req =
2640 	    container_of(ex, struct rbd_obj_request, ex);
2641 	struct ceph_bio_iter *it = arg;
2642 
2643 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2644 	ceph_bio_iter_advance_step(it, bytes, ({
2645 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2646 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2647 	}));
2648 }
2649 
__rbd_img_fill_from_bio(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct ceph_bio_iter * bio_pos)2650 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2651 				   struct ceph_file_extent *img_extents,
2652 				   u32 num_img_extents,
2653 				   struct ceph_bio_iter *bio_pos)
2654 {
2655 	struct rbd_img_fill_ctx fctx = {
2656 		.pos_type = OBJ_REQUEST_BIO,
2657 		.pos = (union rbd_img_fill_iter *)bio_pos,
2658 		.set_pos_fn = set_bio_pos,
2659 		.count_fn = count_bio_bvecs,
2660 		.copy_fn = copy_bio_bvecs,
2661 	};
2662 
2663 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2664 				    &fctx);
2665 }
2666 
rbd_img_fill_from_bio(struct rbd_img_request * img_req,u64 off,u64 len,struct bio * bio)2667 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2668 				 u64 off, u64 len, struct bio *bio)
2669 {
2670 	struct ceph_file_extent ex = { off, len };
2671 	struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2672 
2673 	return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2674 }
2675 
set_bvec_pos(struct ceph_object_extent * ex,u32 bytes,void * arg)2676 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2677 {
2678 	struct rbd_obj_request *obj_req =
2679 	    container_of(ex, struct rbd_obj_request, ex);
2680 	struct ceph_bvec_iter *it = arg;
2681 
2682 	obj_req->bvec_pos = *it;
2683 	ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2684 	ceph_bvec_iter_advance(it, bytes);
2685 }
2686 
count_bvecs(struct ceph_object_extent * ex,u32 bytes,void * arg)2687 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2688 {
2689 	struct rbd_obj_request *obj_req =
2690 	    container_of(ex, struct rbd_obj_request, ex);
2691 	struct ceph_bvec_iter *it = arg;
2692 
2693 	ceph_bvec_iter_advance_step(it, bytes, ({
2694 		obj_req->bvec_count++;
2695 	}));
2696 }
2697 
copy_bvecs(struct ceph_object_extent * ex,u32 bytes,void * arg)2698 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2699 {
2700 	struct rbd_obj_request *obj_req =
2701 	    container_of(ex, struct rbd_obj_request, ex);
2702 	struct ceph_bvec_iter *it = arg;
2703 
2704 	ceph_bvec_iter_advance_step(it, bytes, ({
2705 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2706 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2707 	}));
2708 }
2709 
__rbd_img_fill_from_bvecs(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct ceph_bvec_iter * bvec_pos)2710 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2711 				     struct ceph_file_extent *img_extents,
2712 				     u32 num_img_extents,
2713 				     struct ceph_bvec_iter *bvec_pos)
2714 {
2715 	struct rbd_img_fill_ctx fctx = {
2716 		.pos_type = OBJ_REQUEST_BVECS,
2717 		.pos = (union rbd_img_fill_iter *)bvec_pos,
2718 		.set_pos_fn = set_bvec_pos,
2719 		.count_fn = count_bvecs,
2720 		.copy_fn = copy_bvecs,
2721 	};
2722 
2723 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2724 				    &fctx);
2725 }
2726 
rbd_img_fill_from_bvecs(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct bio_vec * bvecs)2727 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2728 				   struct ceph_file_extent *img_extents,
2729 				   u32 num_img_extents,
2730 				   struct bio_vec *bvecs)
2731 {
2732 	struct ceph_bvec_iter it = {
2733 		.bvecs = bvecs,
2734 		.iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2735 							     num_img_extents) },
2736 	};
2737 
2738 	return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2739 					 &it);
2740 }
2741 
rbd_img_handle_request_work(struct work_struct * work)2742 static void rbd_img_handle_request_work(struct work_struct *work)
2743 {
2744 	struct rbd_img_request *img_req =
2745 	    container_of(work, struct rbd_img_request, work);
2746 
2747 	rbd_img_handle_request(img_req, img_req->work_result);
2748 }
2749 
rbd_img_schedule(struct rbd_img_request * img_req,int result)2750 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2751 {
2752 	INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2753 	img_req->work_result = result;
2754 	queue_work(rbd_wq, &img_req->work);
2755 }
2756 
rbd_obj_may_exist(struct rbd_obj_request * obj_req)2757 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2758 {
2759 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2760 
2761 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2762 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2763 		return true;
2764 	}
2765 
2766 	dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2767 	     obj_req->ex.oe_objno);
2768 	return false;
2769 }
2770 
rbd_obj_read_object(struct rbd_obj_request * obj_req)2771 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2772 {
2773 	struct ceph_osd_request *osd_req;
2774 	int ret;
2775 
2776 	osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2777 	if (IS_ERR(osd_req))
2778 		return PTR_ERR(osd_req);
2779 
2780 	osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2781 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2782 	rbd_osd_setup_data(osd_req, 0);
2783 	rbd_osd_format_read(osd_req);
2784 
2785 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2786 	if (ret)
2787 		return ret;
2788 
2789 	rbd_osd_submit(osd_req);
2790 	return 0;
2791 }
2792 
rbd_obj_read_from_parent(struct rbd_obj_request * obj_req)2793 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2794 {
2795 	struct rbd_img_request *img_req = obj_req->img_request;
2796 	struct rbd_device *parent = img_req->rbd_dev->parent;
2797 	struct rbd_img_request *child_img_req;
2798 	int ret;
2799 
2800 	child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2801 	if (!child_img_req)
2802 		return -ENOMEM;
2803 
2804 	rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2805 	__set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2806 	child_img_req->obj_request = obj_req;
2807 
2808 	down_read(&parent->header_rwsem);
2809 	rbd_img_capture_header(child_img_req);
2810 	up_read(&parent->header_rwsem);
2811 
2812 	dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2813 	     obj_req);
2814 
2815 	if (!rbd_img_is_write(img_req)) {
2816 		switch (img_req->data_type) {
2817 		case OBJ_REQUEST_BIO:
2818 			ret = __rbd_img_fill_from_bio(child_img_req,
2819 						      obj_req->img_extents,
2820 						      obj_req->num_img_extents,
2821 						      &obj_req->bio_pos);
2822 			break;
2823 		case OBJ_REQUEST_BVECS:
2824 		case OBJ_REQUEST_OWN_BVECS:
2825 			ret = __rbd_img_fill_from_bvecs(child_img_req,
2826 						      obj_req->img_extents,
2827 						      obj_req->num_img_extents,
2828 						      &obj_req->bvec_pos);
2829 			break;
2830 		default:
2831 			BUG();
2832 		}
2833 	} else {
2834 		ret = rbd_img_fill_from_bvecs(child_img_req,
2835 					      obj_req->img_extents,
2836 					      obj_req->num_img_extents,
2837 					      obj_req->copyup_bvecs);
2838 	}
2839 	if (ret) {
2840 		rbd_img_request_destroy(child_img_req);
2841 		return ret;
2842 	}
2843 
2844 	/* avoid parent chain recursion */
2845 	rbd_img_schedule(child_img_req, 0);
2846 	return 0;
2847 }
2848 
rbd_obj_advance_read(struct rbd_obj_request * obj_req,int * result)2849 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2850 {
2851 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2852 	int ret;
2853 
2854 again:
2855 	switch (obj_req->read_state) {
2856 	case RBD_OBJ_READ_START:
2857 		rbd_assert(!*result);
2858 
2859 		if (!rbd_obj_may_exist(obj_req)) {
2860 			*result = -ENOENT;
2861 			obj_req->read_state = RBD_OBJ_READ_OBJECT;
2862 			goto again;
2863 		}
2864 
2865 		ret = rbd_obj_read_object(obj_req);
2866 		if (ret) {
2867 			*result = ret;
2868 			return true;
2869 		}
2870 		obj_req->read_state = RBD_OBJ_READ_OBJECT;
2871 		return false;
2872 	case RBD_OBJ_READ_OBJECT:
2873 		if (*result == -ENOENT && rbd_dev->parent_overlap) {
2874 			/* reverse map this object extent onto the parent */
2875 			ret = rbd_obj_calc_img_extents(obj_req, false);
2876 			if (ret) {
2877 				*result = ret;
2878 				return true;
2879 			}
2880 			if (obj_req->num_img_extents) {
2881 				ret = rbd_obj_read_from_parent(obj_req);
2882 				if (ret) {
2883 					*result = ret;
2884 					return true;
2885 				}
2886 				obj_req->read_state = RBD_OBJ_READ_PARENT;
2887 				return false;
2888 			}
2889 		}
2890 
2891 		/*
2892 		 * -ENOENT means a hole in the image -- zero-fill the entire
2893 		 * length of the request.  A short read also implies zero-fill
2894 		 * to the end of the request.
2895 		 */
2896 		if (*result == -ENOENT) {
2897 			rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2898 			*result = 0;
2899 		} else if (*result >= 0) {
2900 			if (*result < obj_req->ex.oe_len)
2901 				rbd_obj_zero_range(obj_req, *result,
2902 						obj_req->ex.oe_len - *result);
2903 			else
2904 				rbd_assert(*result == obj_req->ex.oe_len);
2905 			*result = 0;
2906 		}
2907 		return true;
2908 	case RBD_OBJ_READ_PARENT:
2909 		/*
2910 		 * The parent image is read only up to the overlap -- zero-fill
2911 		 * from the overlap to the end of the request.
2912 		 */
2913 		if (!*result) {
2914 			u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2915 
2916 			if (obj_overlap < obj_req->ex.oe_len)
2917 				rbd_obj_zero_range(obj_req, obj_overlap,
2918 					    obj_req->ex.oe_len - obj_overlap);
2919 		}
2920 		return true;
2921 	default:
2922 		BUG();
2923 	}
2924 }
2925 
rbd_obj_write_is_noop(struct rbd_obj_request * obj_req)2926 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2927 {
2928 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2929 
2930 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2931 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2932 
2933 	if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2934 	    (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2935 		dout("%s %p noop for nonexistent\n", __func__, obj_req);
2936 		return true;
2937 	}
2938 
2939 	return false;
2940 }
2941 
2942 /*
2943  * Return:
2944  *   0 - object map update sent
2945  *   1 - object map update isn't needed
2946  *  <0 - error
2947  */
rbd_obj_write_pre_object_map(struct rbd_obj_request * obj_req)2948 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
2949 {
2950 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2951 	u8 new_state;
2952 
2953 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
2954 		return 1;
2955 
2956 	if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
2957 		new_state = OBJECT_PENDING;
2958 	else
2959 		new_state = OBJECT_EXISTS;
2960 
2961 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
2962 }
2963 
rbd_obj_write_object(struct rbd_obj_request * obj_req)2964 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
2965 {
2966 	struct ceph_osd_request *osd_req;
2967 	int num_ops = count_write_ops(obj_req);
2968 	int which = 0;
2969 	int ret;
2970 
2971 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
2972 		num_ops++; /* stat */
2973 
2974 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
2975 	if (IS_ERR(osd_req))
2976 		return PTR_ERR(osd_req);
2977 
2978 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
2979 		ret = rbd_osd_setup_stat(osd_req, which++);
2980 		if (ret)
2981 			return ret;
2982 	}
2983 
2984 	rbd_osd_setup_write_ops(osd_req, which);
2985 	rbd_osd_format_write(osd_req);
2986 
2987 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2988 	if (ret)
2989 		return ret;
2990 
2991 	rbd_osd_submit(osd_req);
2992 	return 0;
2993 }
2994 
2995 /*
2996  * copyup_bvecs pages are never highmem pages
2997  */
is_zero_bvecs(struct bio_vec * bvecs,u32 bytes)2998 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
2999 {
3000 	struct ceph_bvec_iter it = {
3001 		.bvecs = bvecs,
3002 		.iter = { .bi_size = bytes },
3003 	};
3004 
3005 	ceph_bvec_iter_advance_step(&it, bytes, ({
3006 		if (memchr_inv(bvec_virt(&bv), 0, bv.bv_len))
3007 			return false;
3008 	}));
3009 	return true;
3010 }
3011 
3012 #define MODS_ONLY	U32_MAX
3013 
rbd_obj_copyup_empty_snapc(struct rbd_obj_request * obj_req,u32 bytes)3014 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3015 				      u32 bytes)
3016 {
3017 	struct ceph_osd_request *osd_req;
3018 	int ret;
3019 
3020 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3021 	rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3022 
3023 	osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3024 	if (IS_ERR(osd_req))
3025 		return PTR_ERR(osd_req);
3026 
3027 	ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3028 	if (ret)
3029 		return ret;
3030 
3031 	rbd_osd_format_write(osd_req);
3032 
3033 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3034 	if (ret)
3035 		return ret;
3036 
3037 	rbd_osd_submit(osd_req);
3038 	return 0;
3039 }
3040 
rbd_obj_copyup_current_snapc(struct rbd_obj_request * obj_req,u32 bytes)3041 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3042 					u32 bytes)
3043 {
3044 	struct ceph_osd_request *osd_req;
3045 	int num_ops = count_write_ops(obj_req);
3046 	int which = 0;
3047 	int ret;
3048 
3049 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3050 
3051 	if (bytes != MODS_ONLY)
3052 		num_ops++; /* copyup */
3053 
3054 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3055 	if (IS_ERR(osd_req))
3056 		return PTR_ERR(osd_req);
3057 
3058 	if (bytes != MODS_ONLY) {
3059 		ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3060 		if (ret)
3061 			return ret;
3062 	}
3063 
3064 	rbd_osd_setup_write_ops(osd_req, which);
3065 	rbd_osd_format_write(osd_req);
3066 
3067 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3068 	if (ret)
3069 		return ret;
3070 
3071 	rbd_osd_submit(osd_req);
3072 	return 0;
3073 }
3074 
setup_copyup_bvecs(struct rbd_obj_request * obj_req,u64 obj_overlap)3075 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3076 {
3077 	u32 i;
3078 
3079 	rbd_assert(!obj_req->copyup_bvecs);
3080 	obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3081 	obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3082 					sizeof(*obj_req->copyup_bvecs),
3083 					GFP_NOIO);
3084 	if (!obj_req->copyup_bvecs)
3085 		return -ENOMEM;
3086 
3087 	for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3088 		unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3089 		struct page *page = alloc_page(GFP_NOIO);
3090 
3091 		if (!page)
3092 			return -ENOMEM;
3093 
3094 		bvec_set_page(&obj_req->copyup_bvecs[i], page, len, 0);
3095 		obj_overlap -= len;
3096 	}
3097 
3098 	rbd_assert(!obj_overlap);
3099 	return 0;
3100 }
3101 
3102 /*
3103  * The target object doesn't exist.  Read the data for the entire
3104  * target object up to the overlap point (if any) from the parent,
3105  * so we can use it for a copyup.
3106  */
rbd_obj_copyup_read_parent(struct rbd_obj_request * obj_req)3107 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3108 {
3109 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3110 	int ret;
3111 
3112 	rbd_assert(obj_req->num_img_extents);
3113 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3114 		      rbd_dev->parent_overlap);
3115 	if (!obj_req->num_img_extents) {
3116 		/*
3117 		 * The overlap has become 0 (most likely because the
3118 		 * image has been flattened).  Re-submit the original write
3119 		 * request -- pass MODS_ONLY since the copyup isn't needed
3120 		 * anymore.
3121 		 */
3122 		return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3123 	}
3124 
3125 	ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3126 	if (ret)
3127 		return ret;
3128 
3129 	return rbd_obj_read_from_parent(obj_req);
3130 }
3131 
rbd_obj_copyup_object_maps(struct rbd_obj_request * obj_req)3132 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3133 {
3134 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3135 	struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3136 	u8 new_state;
3137 	u32 i;
3138 	int ret;
3139 
3140 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3141 
3142 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3143 		return;
3144 
3145 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3146 		return;
3147 
3148 	for (i = 0; i < snapc->num_snaps; i++) {
3149 		if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3150 		    i + 1 < snapc->num_snaps)
3151 			new_state = OBJECT_EXISTS_CLEAN;
3152 		else
3153 			new_state = OBJECT_EXISTS;
3154 
3155 		ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3156 					    new_state, NULL);
3157 		if (ret < 0) {
3158 			obj_req->pending.result = ret;
3159 			return;
3160 		}
3161 
3162 		rbd_assert(!ret);
3163 		obj_req->pending.num_pending++;
3164 	}
3165 }
3166 
rbd_obj_copyup_write_object(struct rbd_obj_request * obj_req)3167 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3168 {
3169 	u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3170 	int ret;
3171 
3172 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3173 
3174 	/*
3175 	 * Only send non-zero copyup data to save some I/O and network
3176 	 * bandwidth -- zero copyup data is equivalent to the object not
3177 	 * existing.
3178 	 */
3179 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3180 		bytes = 0;
3181 
3182 	if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3183 		/*
3184 		 * Send a copyup request with an empty snapshot context to
3185 		 * deep-copyup the object through all existing snapshots.
3186 		 * A second request with the current snapshot context will be
3187 		 * sent for the actual modification.
3188 		 */
3189 		ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3190 		if (ret) {
3191 			obj_req->pending.result = ret;
3192 			return;
3193 		}
3194 
3195 		obj_req->pending.num_pending++;
3196 		bytes = MODS_ONLY;
3197 	}
3198 
3199 	ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3200 	if (ret) {
3201 		obj_req->pending.result = ret;
3202 		return;
3203 	}
3204 
3205 	obj_req->pending.num_pending++;
3206 }
3207 
rbd_obj_advance_copyup(struct rbd_obj_request * obj_req,int * result)3208 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3209 {
3210 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3211 	int ret;
3212 
3213 again:
3214 	switch (obj_req->copyup_state) {
3215 	case RBD_OBJ_COPYUP_START:
3216 		rbd_assert(!*result);
3217 
3218 		ret = rbd_obj_copyup_read_parent(obj_req);
3219 		if (ret) {
3220 			*result = ret;
3221 			return true;
3222 		}
3223 		if (obj_req->num_img_extents)
3224 			obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3225 		else
3226 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3227 		return false;
3228 	case RBD_OBJ_COPYUP_READ_PARENT:
3229 		if (*result)
3230 			return true;
3231 
3232 		if (is_zero_bvecs(obj_req->copyup_bvecs,
3233 				  rbd_obj_img_extents_bytes(obj_req))) {
3234 			dout("%s %p detected zeros\n", __func__, obj_req);
3235 			obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3236 		}
3237 
3238 		rbd_obj_copyup_object_maps(obj_req);
3239 		if (!obj_req->pending.num_pending) {
3240 			*result = obj_req->pending.result;
3241 			obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3242 			goto again;
3243 		}
3244 		obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3245 		return false;
3246 	case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3247 		if (!pending_result_dec(&obj_req->pending, result))
3248 			return false;
3249 		fallthrough;
3250 	case RBD_OBJ_COPYUP_OBJECT_MAPS:
3251 		if (*result) {
3252 			rbd_warn(rbd_dev, "snap object map update failed: %d",
3253 				 *result);
3254 			return true;
3255 		}
3256 
3257 		rbd_obj_copyup_write_object(obj_req);
3258 		if (!obj_req->pending.num_pending) {
3259 			*result = obj_req->pending.result;
3260 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3261 			goto again;
3262 		}
3263 		obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3264 		return false;
3265 	case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3266 		if (!pending_result_dec(&obj_req->pending, result))
3267 			return false;
3268 		fallthrough;
3269 	case RBD_OBJ_COPYUP_WRITE_OBJECT:
3270 		return true;
3271 	default:
3272 		BUG();
3273 	}
3274 }
3275 
3276 /*
3277  * Return:
3278  *   0 - object map update sent
3279  *   1 - object map update isn't needed
3280  *  <0 - error
3281  */
rbd_obj_write_post_object_map(struct rbd_obj_request * obj_req)3282 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3283 {
3284 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3285 	u8 current_state = OBJECT_PENDING;
3286 
3287 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3288 		return 1;
3289 
3290 	if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3291 		return 1;
3292 
3293 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3294 				     &current_state);
3295 }
3296 
rbd_obj_advance_write(struct rbd_obj_request * obj_req,int * result)3297 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3298 {
3299 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3300 	int ret;
3301 
3302 again:
3303 	switch (obj_req->write_state) {
3304 	case RBD_OBJ_WRITE_START:
3305 		rbd_assert(!*result);
3306 
3307 		rbd_obj_set_copyup_enabled(obj_req);
3308 		if (rbd_obj_write_is_noop(obj_req))
3309 			return true;
3310 
3311 		ret = rbd_obj_write_pre_object_map(obj_req);
3312 		if (ret < 0) {
3313 			*result = ret;
3314 			return true;
3315 		}
3316 		obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3317 		if (ret > 0)
3318 			goto again;
3319 		return false;
3320 	case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3321 		if (*result) {
3322 			rbd_warn(rbd_dev, "pre object map update failed: %d",
3323 				 *result);
3324 			return true;
3325 		}
3326 		ret = rbd_obj_write_object(obj_req);
3327 		if (ret) {
3328 			*result = ret;
3329 			return true;
3330 		}
3331 		obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3332 		return false;
3333 	case RBD_OBJ_WRITE_OBJECT:
3334 		if (*result == -ENOENT) {
3335 			if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3336 				*result = 0;
3337 				obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3338 				obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3339 				goto again;
3340 			}
3341 			/*
3342 			 * On a non-existent object:
3343 			 *   delete - -ENOENT, truncate/zero - 0
3344 			 */
3345 			if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3346 				*result = 0;
3347 		}
3348 		if (*result)
3349 			return true;
3350 
3351 		obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3352 		goto again;
3353 	case __RBD_OBJ_WRITE_COPYUP:
3354 		if (!rbd_obj_advance_copyup(obj_req, result))
3355 			return false;
3356 		fallthrough;
3357 	case RBD_OBJ_WRITE_COPYUP:
3358 		if (*result) {
3359 			rbd_warn(rbd_dev, "copyup failed: %d", *result);
3360 			return true;
3361 		}
3362 		ret = rbd_obj_write_post_object_map(obj_req);
3363 		if (ret < 0) {
3364 			*result = ret;
3365 			return true;
3366 		}
3367 		obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3368 		if (ret > 0)
3369 			goto again;
3370 		return false;
3371 	case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3372 		if (*result)
3373 			rbd_warn(rbd_dev, "post object map update failed: %d",
3374 				 *result);
3375 		return true;
3376 	default:
3377 		BUG();
3378 	}
3379 }
3380 
3381 /*
3382  * Return true if @obj_req is completed.
3383  */
__rbd_obj_handle_request(struct rbd_obj_request * obj_req,int * result)3384 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3385 				     int *result)
3386 {
3387 	struct rbd_img_request *img_req = obj_req->img_request;
3388 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3389 	bool done;
3390 
3391 	mutex_lock(&obj_req->state_mutex);
3392 	if (!rbd_img_is_write(img_req))
3393 		done = rbd_obj_advance_read(obj_req, result);
3394 	else
3395 		done = rbd_obj_advance_write(obj_req, result);
3396 	mutex_unlock(&obj_req->state_mutex);
3397 
3398 	if (done && *result) {
3399 		rbd_assert(*result < 0);
3400 		rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3401 			 obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3402 			 obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3403 	}
3404 	return done;
3405 }
3406 
3407 /*
3408  * This is open-coded in rbd_img_handle_request() to avoid parent chain
3409  * recursion.
3410  */
rbd_obj_handle_request(struct rbd_obj_request * obj_req,int result)3411 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3412 {
3413 	if (__rbd_obj_handle_request(obj_req, &result))
3414 		rbd_img_handle_request(obj_req->img_request, result);
3415 }
3416 
need_exclusive_lock(struct rbd_img_request * img_req)3417 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3418 {
3419 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3420 
3421 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3422 		return false;
3423 
3424 	if (rbd_is_ro(rbd_dev))
3425 		return false;
3426 
3427 	rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3428 	if (rbd_dev->opts->lock_on_read ||
3429 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3430 		return true;
3431 
3432 	return rbd_img_is_write(img_req);
3433 }
3434 
rbd_lock_add_request(struct rbd_img_request * img_req)3435 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3436 {
3437 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3438 	bool locked;
3439 
3440 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3441 	locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3442 	spin_lock(&rbd_dev->lock_lists_lock);
3443 	rbd_assert(list_empty(&img_req->lock_item));
3444 	if (!locked)
3445 		list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3446 	else
3447 		list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3448 	spin_unlock(&rbd_dev->lock_lists_lock);
3449 	return locked;
3450 }
3451 
rbd_lock_del_request(struct rbd_img_request * img_req)3452 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3453 {
3454 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3455 	bool need_wakeup = false;
3456 
3457 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3458 	spin_lock(&rbd_dev->lock_lists_lock);
3459 	if (!list_empty(&img_req->lock_item)) {
3460 		rbd_assert(!list_empty(&rbd_dev->running_list));
3461 		list_del_init(&img_req->lock_item);
3462 		need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_QUIESCING &&
3463 			       list_empty(&rbd_dev->running_list));
3464 	}
3465 	spin_unlock(&rbd_dev->lock_lists_lock);
3466 	if (need_wakeup)
3467 		complete(&rbd_dev->quiescing_wait);
3468 }
3469 
rbd_img_exclusive_lock(struct rbd_img_request * img_req)3470 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3471 {
3472 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3473 
3474 	if (!need_exclusive_lock(img_req))
3475 		return 1;
3476 
3477 	if (rbd_lock_add_request(img_req))
3478 		return 1;
3479 
3480 	/*
3481 	 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3482 	 * and cancel_delayed_work() in wake_lock_waiters().
3483 	 */
3484 	dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3485 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3486 	return 0;
3487 }
3488 
rbd_img_object_requests(struct rbd_img_request * img_req)3489 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3490 {
3491 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3492 	struct rbd_obj_request *obj_req;
3493 
3494 	rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3495 	rbd_assert(!need_exclusive_lock(img_req) ||
3496 		   __rbd_is_lock_owner(rbd_dev));
3497 
3498 	if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3499 		rbd_assert(!rbd_img_is_write(img_req));
3500 	} else {
3501 		struct request *rq = blk_mq_rq_from_pdu(img_req);
3502 		u64 off = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3503 		u64 len = blk_rq_bytes(rq);
3504 		u64 mapping_size;
3505 
3506 		down_read(&rbd_dev->header_rwsem);
3507 		mapping_size = rbd_dev->mapping.size;
3508 		if (rbd_img_is_write(img_req)) {
3509 			rbd_assert(!img_req->snapc);
3510 			img_req->snapc =
3511 			    ceph_get_snap_context(rbd_dev->header.snapc);
3512 		}
3513 		up_read(&rbd_dev->header_rwsem);
3514 
3515 		if (unlikely(off + len > mapping_size)) {
3516 			rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)",
3517 				 off, len, mapping_size);
3518 			img_req->pending.result = -EIO;
3519 			return;
3520 		}
3521 	}
3522 
3523 	for_each_obj_request(img_req, obj_req) {
3524 		int result = 0;
3525 
3526 		if (__rbd_obj_handle_request(obj_req, &result)) {
3527 			if (result) {
3528 				img_req->pending.result = result;
3529 				return;
3530 			}
3531 		} else {
3532 			img_req->pending.num_pending++;
3533 		}
3534 	}
3535 }
3536 
rbd_img_advance(struct rbd_img_request * img_req,int * result)3537 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3538 {
3539 	int ret;
3540 
3541 again:
3542 	switch (img_req->state) {
3543 	case RBD_IMG_START:
3544 		rbd_assert(!*result);
3545 
3546 		ret = rbd_img_exclusive_lock(img_req);
3547 		if (ret < 0) {
3548 			*result = ret;
3549 			return true;
3550 		}
3551 		img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3552 		if (ret > 0)
3553 			goto again;
3554 		return false;
3555 	case RBD_IMG_EXCLUSIVE_LOCK:
3556 		if (*result)
3557 			return true;
3558 
3559 		rbd_img_object_requests(img_req);
3560 		if (!img_req->pending.num_pending) {
3561 			*result = img_req->pending.result;
3562 			img_req->state = RBD_IMG_OBJECT_REQUESTS;
3563 			goto again;
3564 		}
3565 		img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3566 		return false;
3567 	case __RBD_IMG_OBJECT_REQUESTS:
3568 		if (!pending_result_dec(&img_req->pending, result))
3569 			return false;
3570 		fallthrough;
3571 	case RBD_IMG_OBJECT_REQUESTS:
3572 		return true;
3573 	default:
3574 		BUG();
3575 	}
3576 }
3577 
3578 /*
3579  * Return true if @img_req is completed.
3580  */
__rbd_img_handle_request(struct rbd_img_request * img_req,int * result)3581 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3582 				     int *result)
3583 {
3584 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3585 	bool done;
3586 
3587 	if (need_exclusive_lock(img_req)) {
3588 		down_read(&rbd_dev->lock_rwsem);
3589 		mutex_lock(&img_req->state_mutex);
3590 		done = rbd_img_advance(img_req, result);
3591 		if (done)
3592 			rbd_lock_del_request(img_req);
3593 		mutex_unlock(&img_req->state_mutex);
3594 		up_read(&rbd_dev->lock_rwsem);
3595 	} else {
3596 		mutex_lock(&img_req->state_mutex);
3597 		done = rbd_img_advance(img_req, result);
3598 		mutex_unlock(&img_req->state_mutex);
3599 	}
3600 
3601 	if (done && *result) {
3602 		rbd_assert(*result < 0);
3603 		rbd_warn(rbd_dev, "%s%s result %d",
3604 		      test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3605 		      obj_op_name(img_req->op_type), *result);
3606 	}
3607 	return done;
3608 }
3609 
rbd_img_handle_request(struct rbd_img_request * img_req,int result)3610 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3611 {
3612 again:
3613 	if (!__rbd_img_handle_request(img_req, &result))
3614 		return;
3615 
3616 	if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3617 		struct rbd_obj_request *obj_req = img_req->obj_request;
3618 
3619 		rbd_img_request_destroy(img_req);
3620 		if (__rbd_obj_handle_request(obj_req, &result)) {
3621 			img_req = obj_req->img_request;
3622 			goto again;
3623 		}
3624 	} else {
3625 		struct request *rq = blk_mq_rq_from_pdu(img_req);
3626 
3627 		rbd_img_request_destroy(img_req);
3628 		blk_mq_end_request(rq, errno_to_blk_status(result));
3629 	}
3630 }
3631 
3632 static const struct rbd_client_id rbd_empty_cid;
3633 
rbd_cid_equal(const struct rbd_client_id * lhs,const struct rbd_client_id * rhs)3634 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3635 			  const struct rbd_client_id *rhs)
3636 {
3637 	return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3638 }
3639 
rbd_get_cid(struct rbd_device * rbd_dev)3640 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3641 {
3642 	struct rbd_client_id cid;
3643 
3644 	mutex_lock(&rbd_dev->watch_mutex);
3645 	cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3646 	cid.handle = rbd_dev->watch_cookie;
3647 	mutex_unlock(&rbd_dev->watch_mutex);
3648 	return cid;
3649 }
3650 
3651 /*
3652  * lock_rwsem must be held for write
3653  */
rbd_set_owner_cid(struct rbd_device * rbd_dev,const struct rbd_client_id * cid)3654 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3655 			      const struct rbd_client_id *cid)
3656 {
3657 	dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3658 	     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3659 	     cid->gid, cid->handle);
3660 	rbd_dev->owner_cid = *cid; /* struct */
3661 }
3662 
format_lock_cookie(struct rbd_device * rbd_dev,char * buf)3663 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3664 {
3665 	mutex_lock(&rbd_dev->watch_mutex);
3666 	sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3667 	mutex_unlock(&rbd_dev->watch_mutex);
3668 }
3669 
__rbd_lock(struct rbd_device * rbd_dev,const char * cookie)3670 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3671 {
3672 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3673 
3674 	rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3675 	strcpy(rbd_dev->lock_cookie, cookie);
3676 	rbd_set_owner_cid(rbd_dev, &cid);
3677 	queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3678 }
3679 
3680 /*
3681  * lock_rwsem must be held for write
3682  */
rbd_lock(struct rbd_device * rbd_dev)3683 static int rbd_lock(struct rbd_device *rbd_dev)
3684 {
3685 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3686 	char cookie[32];
3687 	int ret;
3688 
3689 	WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3690 		rbd_dev->lock_cookie[0] != '\0');
3691 
3692 	format_lock_cookie(rbd_dev, cookie);
3693 	ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3694 			    RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3695 			    RBD_LOCK_TAG, "", 0);
3696 	if (ret && ret != -EEXIST)
3697 		return ret;
3698 
3699 	__rbd_lock(rbd_dev, cookie);
3700 	return 0;
3701 }
3702 
3703 /*
3704  * lock_rwsem must be held for write
3705  */
rbd_unlock(struct rbd_device * rbd_dev)3706 static void rbd_unlock(struct rbd_device *rbd_dev)
3707 {
3708 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3709 	int ret;
3710 
3711 	WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3712 		rbd_dev->lock_cookie[0] == '\0');
3713 
3714 	ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3715 			      RBD_LOCK_NAME, rbd_dev->lock_cookie);
3716 	if (ret && ret != -ENOENT)
3717 		rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3718 
3719 	/* treat errors as the image is unlocked */
3720 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3721 	rbd_dev->lock_cookie[0] = '\0';
3722 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3723 	queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3724 }
3725 
__rbd_notify_op_lock(struct rbd_device * rbd_dev,enum rbd_notify_op notify_op,struct page *** preply_pages,size_t * preply_len)3726 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3727 				enum rbd_notify_op notify_op,
3728 				struct page ***preply_pages,
3729 				size_t *preply_len)
3730 {
3731 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3732 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3733 	char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3734 	int buf_size = sizeof(buf);
3735 	void *p = buf;
3736 
3737 	dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3738 
3739 	/* encode *LockPayload NotifyMessage (op + ClientId) */
3740 	ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3741 	ceph_encode_32(&p, notify_op);
3742 	ceph_encode_64(&p, cid.gid);
3743 	ceph_encode_64(&p, cid.handle);
3744 
3745 	return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3746 				&rbd_dev->header_oloc, buf, buf_size,
3747 				RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3748 }
3749 
rbd_notify_op_lock(struct rbd_device * rbd_dev,enum rbd_notify_op notify_op)3750 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3751 			       enum rbd_notify_op notify_op)
3752 {
3753 	__rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3754 }
3755 
rbd_notify_acquired_lock(struct work_struct * work)3756 static void rbd_notify_acquired_lock(struct work_struct *work)
3757 {
3758 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3759 						  acquired_lock_work);
3760 
3761 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3762 }
3763 
rbd_notify_released_lock(struct work_struct * work)3764 static void rbd_notify_released_lock(struct work_struct *work)
3765 {
3766 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3767 						  released_lock_work);
3768 
3769 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3770 }
3771 
rbd_request_lock(struct rbd_device * rbd_dev)3772 static int rbd_request_lock(struct rbd_device *rbd_dev)
3773 {
3774 	struct page **reply_pages;
3775 	size_t reply_len;
3776 	bool lock_owner_responded = false;
3777 	int ret;
3778 
3779 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3780 
3781 	ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3782 				   &reply_pages, &reply_len);
3783 	if (ret && ret != -ETIMEDOUT) {
3784 		rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3785 		goto out;
3786 	}
3787 
3788 	if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3789 		void *p = page_address(reply_pages[0]);
3790 		void *const end = p + reply_len;
3791 		u32 n;
3792 
3793 		ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3794 		while (n--) {
3795 			u8 struct_v;
3796 			u32 len;
3797 
3798 			ceph_decode_need(&p, end, 8 + 8, e_inval);
3799 			p += 8 + 8; /* skip gid and cookie */
3800 
3801 			ceph_decode_32_safe(&p, end, len, e_inval);
3802 			if (!len)
3803 				continue;
3804 
3805 			if (lock_owner_responded) {
3806 				rbd_warn(rbd_dev,
3807 					 "duplicate lock owners detected");
3808 				ret = -EIO;
3809 				goto out;
3810 			}
3811 
3812 			lock_owner_responded = true;
3813 			ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3814 						  &struct_v, &len);
3815 			if (ret) {
3816 				rbd_warn(rbd_dev,
3817 					 "failed to decode ResponseMessage: %d",
3818 					 ret);
3819 				goto e_inval;
3820 			}
3821 
3822 			ret = ceph_decode_32(&p);
3823 		}
3824 	}
3825 
3826 	if (!lock_owner_responded) {
3827 		rbd_warn(rbd_dev, "no lock owners detected");
3828 		ret = -ETIMEDOUT;
3829 	}
3830 
3831 out:
3832 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3833 	return ret;
3834 
3835 e_inval:
3836 	ret = -EINVAL;
3837 	goto out;
3838 }
3839 
3840 /*
3841  * Either image request state machine(s) or rbd_add_acquire_lock()
3842  * (i.e. "rbd map").
3843  */
wake_lock_waiters(struct rbd_device * rbd_dev,int result)3844 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3845 {
3846 	struct rbd_img_request *img_req;
3847 
3848 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3849 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3850 
3851 	cancel_delayed_work(&rbd_dev->lock_dwork);
3852 	if (!completion_done(&rbd_dev->acquire_wait)) {
3853 		rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3854 			   list_empty(&rbd_dev->running_list));
3855 		rbd_dev->acquire_err = result;
3856 		complete_all(&rbd_dev->acquire_wait);
3857 		return;
3858 	}
3859 
3860 	while (!list_empty(&rbd_dev->acquiring_list)) {
3861 		img_req = list_first_entry(&rbd_dev->acquiring_list,
3862 					   struct rbd_img_request, lock_item);
3863 		mutex_lock(&img_req->state_mutex);
3864 		rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3865 		if (!result)
3866 			list_move_tail(&img_req->lock_item,
3867 				       &rbd_dev->running_list);
3868 		else
3869 			list_del_init(&img_req->lock_item);
3870 		rbd_img_schedule(img_req, result);
3871 		mutex_unlock(&img_req->state_mutex);
3872 	}
3873 }
3874 
locker_equal(const struct ceph_locker * lhs,const struct ceph_locker * rhs)3875 static bool locker_equal(const struct ceph_locker *lhs,
3876 			 const struct ceph_locker *rhs)
3877 {
3878 	return lhs->id.name.type == rhs->id.name.type &&
3879 	       lhs->id.name.num == rhs->id.name.num &&
3880 	       !strcmp(lhs->id.cookie, rhs->id.cookie) &&
3881 	       ceph_addr_equal_no_type(&lhs->info.addr, &rhs->info.addr);
3882 }
3883 
free_locker(struct ceph_locker * locker)3884 static void free_locker(struct ceph_locker *locker)
3885 {
3886 	if (locker)
3887 		ceph_free_lockers(locker, 1);
3888 }
3889 
get_lock_owner_info(struct rbd_device * rbd_dev)3890 static struct ceph_locker *get_lock_owner_info(struct rbd_device *rbd_dev)
3891 {
3892 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3893 	struct ceph_locker *lockers;
3894 	u32 num_lockers;
3895 	u8 lock_type;
3896 	char *lock_tag;
3897 	u64 handle;
3898 	int ret;
3899 
3900 	ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3901 				 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3902 				 &lock_type, &lock_tag, &lockers, &num_lockers);
3903 	if (ret) {
3904 		rbd_warn(rbd_dev, "failed to get header lockers: %d", ret);
3905 		return ERR_PTR(ret);
3906 	}
3907 
3908 	if (num_lockers == 0) {
3909 		dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3910 		lockers = NULL;
3911 		goto out;
3912 	}
3913 
3914 	if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3915 		rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3916 			 lock_tag);
3917 		goto err_busy;
3918 	}
3919 
3920 	if (lock_type != CEPH_CLS_LOCK_EXCLUSIVE) {
3921 		rbd_warn(rbd_dev, "incompatible lock type detected");
3922 		goto err_busy;
3923 	}
3924 
3925 	WARN_ON(num_lockers != 1);
3926 	ret = sscanf(lockers[0].id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu",
3927 		     &handle);
3928 	if (ret != 1) {
3929 		rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3930 			 lockers[0].id.cookie);
3931 		goto err_busy;
3932 	}
3933 	if (ceph_addr_is_blank(&lockers[0].info.addr)) {
3934 		rbd_warn(rbd_dev, "locker has a blank address");
3935 		goto err_busy;
3936 	}
3937 
3938 	dout("%s rbd_dev %p got locker %s%llu@%pISpc/%u handle %llu\n",
3939 	     __func__, rbd_dev, ENTITY_NAME(lockers[0].id.name),
3940 	     &lockers[0].info.addr.in_addr,
3941 	     le32_to_cpu(lockers[0].info.addr.nonce), handle);
3942 
3943 out:
3944 	kfree(lock_tag);
3945 	return lockers;
3946 
3947 err_busy:
3948 	kfree(lock_tag);
3949 	ceph_free_lockers(lockers, num_lockers);
3950 	return ERR_PTR(-EBUSY);
3951 }
3952 
find_watcher(struct rbd_device * rbd_dev,const struct ceph_locker * locker)3953 static int find_watcher(struct rbd_device *rbd_dev,
3954 			const struct ceph_locker *locker)
3955 {
3956 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3957 	struct ceph_watch_item *watchers;
3958 	u32 num_watchers;
3959 	u64 cookie;
3960 	int i;
3961 	int ret;
3962 
3963 	ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3964 				      &rbd_dev->header_oloc, &watchers,
3965 				      &num_watchers);
3966 	if (ret) {
3967 		rbd_warn(rbd_dev, "failed to get watchers: %d", ret);
3968 		return ret;
3969 	}
3970 
3971 	sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3972 	for (i = 0; i < num_watchers; i++) {
3973 		/*
3974 		 * Ignore addr->type while comparing.  This mimics
3975 		 * entity_addr_t::get_legacy_str() + strcmp().
3976 		 */
3977 		if (ceph_addr_equal_no_type(&watchers[i].addr,
3978 					    &locker->info.addr) &&
3979 		    watchers[i].cookie == cookie) {
3980 			struct rbd_client_id cid = {
3981 				.gid = le64_to_cpu(watchers[i].name.num),
3982 				.handle = cookie,
3983 			};
3984 
3985 			dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3986 			     rbd_dev, cid.gid, cid.handle);
3987 			rbd_set_owner_cid(rbd_dev, &cid);
3988 			ret = 1;
3989 			goto out;
3990 		}
3991 	}
3992 
3993 	dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3994 	ret = 0;
3995 out:
3996 	kfree(watchers);
3997 	return ret;
3998 }
3999 
4000 /*
4001  * lock_rwsem must be held for write
4002  */
rbd_try_lock(struct rbd_device * rbd_dev)4003 static int rbd_try_lock(struct rbd_device *rbd_dev)
4004 {
4005 	struct ceph_client *client = rbd_dev->rbd_client->client;
4006 	struct ceph_locker *locker, *refreshed_locker;
4007 	int ret;
4008 
4009 	for (;;) {
4010 		locker = refreshed_locker = NULL;
4011 
4012 		ret = rbd_lock(rbd_dev);
4013 		if (!ret)
4014 			goto out;
4015 		if (ret != -EBUSY) {
4016 			rbd_warn(rbd_dev, "failed to lock header: %d", ret);
4017 			goto out;
4018 		}
4019 
4020 		/* determine if the current lock holder is still alive */
4021 		locker = get_lock_owner_info(rbd_dev);
4022 		if (IS_ERR(locker)) {
4023 			ret = PTR_ERR(locker);
4024 			locker = NULL;
4025 			goto out;
4026 		}
4027 		if (!locker)
4028 			goto again;
4029 
4030 		ret = find_watcher(rbd_dev, locker);
4031 		if (ret)
4032 			goto out; /* request lock or error */
4033 
4034 		refreshed_locker = get_lock_owner_info(rbd_dev);
4035 		if (IS_ERR(refreshed_locker)) {
4036 			ret = PTR_ERR(refreshed_locker);
4037 			refreshed_locker = NULL;
4038 			goto out;
4039 		}
4040 		if (!refreshed_locker ||
4041 		    !locker_equal(locker, refreshed_locker))
4042 			goto again;
4043 
4044 		rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
4045 			 ENTITY_NAME(locker->id.name));
4046 
4047 		ret = ceph_monc_blocklist_add(&client->monc,
4048 					      &locker->info.addr);
4049 		if (ret) {
4050 			rbd_warn(rbd_dev, "failed to blocklist %s%llu: %d",
4051 				 ENTITY_NAME(locker->id.name), ret);
4052 			goto out;
4053 		}
4054 
4055 		ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
4056 					  &rbd_dev->header_oloc, RBD_LOCK_NAME,
4057 					  locker->id.cookie, &locker->id.name);
4058 		if (ret && ret != -ENOENT) {
4059 			rbd_warn(rbd_dev, "failed to break header lock: %d",
4060 				 ret);
4061 			goto out;
4062 		}
4063 
4064 again:
4065 		free_locker(refreshed_locker);
4066 		free_locker(locker);
4067 	}
4068 
4069 out:
4070 	free_locker(refreshed_locker);
4071 	free_locker(locker);
4072 	return ret;
4073 }
4074 
rbd_post_acquire_action(struct rbd_device * rbd_dev)4075 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
4076 {
4077 	int ret;
4078 
4079 	ret = rbd_dev_refresh(rbd_dev);
4080 	if (ret)
4081 		return ret;
4082 
4083 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
4084 		ret = rbd_object_map_open(rbd_dev);
4085 		if (ret)
4086 			return ret;
4087 	}
4088 
4089 	return 0;
4090 }
4091 
4092 /*
4093  * Return:
4094  *   0 - lock acquired
4095  *   1 - caller should call rbd_request_lock()
4096  *  <0 - error
4097  */
rbd_try_acquire_lock(struct rbd_device * rbd_dev)4098 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4099 {
4100 	int ret;
4101 
4102 	down_read(&rbd_dev->lock_rwsem);
4103 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4104 	     rbd_dev->lock_state);
4105 	if (__rbd_is_lock_owner(rbd_dev)) {
4106 		up_read(&rbd_dev->lock_rwsem);
4107 		return 0;
4108 	}
4109 
4110 	up_read(&rbd_dev->lock_rwsem);
4111 	down_write(&rbd_dev->lock_rwsem);
4112 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4113 	     rbd_dev->lock_state);
4114 	if (__rbd_is_lock_owner(rbd_dev)) {
4115 		up_write(&rbd_dev->lock_rwsem);
4116 		return 0;
4117 	}
4118 
4119 	ret = rbd_try_lock(rbd_dev);
4120 	if (ret < 0) {
4121 		rbd_warn(rbd_dev, "failed to acquire lock: %d", ret);
4122 		goto out;
4123 	}
4124 	if (ret > 0) {
4125 		up_write(&rbd_dev->lock_rwsem);
4126 		return ret;
4127 	}
4128 
4129 	rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4130 	rbd_assert(list_empty(&rbd_dev->running_list));
4131 
4132 	ret = rbd_post_acquire_action(rbd_dev);
4133 	if (ret) {
4134 		rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4135 		/*
4136 		 * Can't stay in RBD_LOCK_STATE_LOCKED because
4137 		 * rbd_lock_add_request() would let the request through,
4138 		 * assuming that e.g. object map is locked and loaded.
4139 		 */
4140 		rbd_unlock(rbd_dev);
4141 	}
4142 
4143 out:
4144 	wake_lock_waiters(rbd_dev, ret);
4145 	up_write(&rbd_dev->lock_rwsem);
4146 	return ret;
4147 }
4148 
rbd_acquire_lock(struct work_struct * work)4149 static void rbd_acquire_lock(struct work_struct *work)
4150 {
4151 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4152 					    struct rbd_device, lock_dwork);
4153 	int ret;
4154 
4155 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4156 again:
4157 	ret = rbd_try_acquire_lock(rbd_dev);
4158 	if (ret <= 0) {
4159 		dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4160 		return;
4161 	}
4162 
4163 	ret = rbd_request_lock(rbd_dev);
4164 	if (ret == -ETIMEDOUT) {
4165 		goto again; /* treat this as a dead client */
4166 	} else if (ret == -EROFS) {
4167 		rbd_warn(rbd_dev, "peer will not release lock");
4168 		down_write(&rbd_dev->lock_rwsem);
4169 		wake_lock_waiters(rbd_dev, ret);
4170 		up_write(&rbd_dev->lock_rwsem);
4171 	} else if (ret < 0) {
4172 		rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4173 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4174 				 RBD_RETRY_DELAY);
4175 	} else {
4176 		/*
4177 		 * lock owner acked, but resend if we don't see them
4178 		 * release the lock
4179 		 */
4180 		dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4181 		     rbd_dev);
4182 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4183 		    msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4184 	}
4185 }
4186 
rbd_quiesce_lock(struct rbd_device * rbd_dev)4187 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4188 {
4189 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4190 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4191 
4192 	if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4193 		return false;
4194 
4195 	/*
4196 	 * Ensure that all in-flight IO is flushed.
4197 	 */
4198 	rbd_dev->lock_state = RBD_LOCK_STATE_QUIESCING;
4199 	rbd_assert(!completion_done(&rbd_dev->quiescing_wait));
4200 	if (list_empty(&rbd_dev->running_list))
4201 		return true;
4202 
4203 	up_write(&rbd_dev->lock_rwsem);
4204 	wait_for_completion(&rbd_dev->quiescing_wait);
4205 
4206 	down_write(&rbd_dev->lock_rwsem);
4207 	if (rbd_dev->lock_state != RBD_LOCK_STATE_QUIESCING)
4208 		return false;
4209 
4210 	rbd_assert(list_empty(&rbd_dev->running_list));
4211 	return true;
4212 }
4213 
rbd_pre_release_action(struct rbd_device * rbd_dev)4214 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4215 {
4216 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4217 		rbd_object_map_close(rbd_dev);
4218 }
4219 
__rbd_release_lock(struct rbd_device * rbd_dev)4220 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4221 {
4222 	rbd_assert(list_empty(&rbd_dev->running_list));
4223 
4224 	rbd_pre_release_action(rbd_dev);
4225 	rbd_unlock(rbd_dev);
4226 }
4227 
4228 /*
4229  * lock_rwsem must be held for write
4230  */
rbd_release_lock(struct rbd_device * rbd_dev)4231 static void rbd_release_lock(struct rbd_device *rbd_dev)
4232 {
4233 	if (!rbd_quiesce_lock(rbd_dev))
4234 		return;
4235 
4236 	__rbd_release_lock(rbd_dev);
4237 
4238 	/*
4239 	 * Give others a chance to grab the lock - we would re-acquire
4240 	 * almost immediately if we got new IO while draining the running
4241 	 * list otherwise.  We need to ack our own notifications, so this
4242 	 * lock_dwork will be requeued from rbd_handle_released_lock() by
4243 	 * way of maybe_kick_acquire().
4244 	 */
4245 	cancel_delayed_work(&rbd_dev->lock_dwork);
4246 }
4247 
rbd_release_lock_work(struct work_struct * work)4248 static void rbd_release_lock_work(struct work_struct *work)
4249 {
4250 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4251 						  unlock_work);
4252 
4253 	down_write(&rbd_dev->lock_rwsem);
4254 	rbd_release_lock(rbd_dev);
4255 	up_write(&rbd_dev->lock_rwsem);
4256 }
4257 
maybe_kick_acquire(struct rbd_device * rbd_dev)4258 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4259 {
4260 	bool have_requests;
4261 
4262 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4263 	if (__rbd_is_lock_owner(rbd_dev))
4264 		return;
4265 
4266 	spin_lock(&rbd_dev->lock_lists_lock);
4267 	have_requests = !list_empty(&rbd_dev->acquiring_list);
4268 	spin_unlock(&rbd_dev->lock_lists_lock);
4269 	if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4270 		dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4271 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4272 	}
4273 }
4274 
rbd_handle_acquired_lock(struct rbd_device * rbd_dev,u8 struct_v,void ** p)4275 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4276 				     void **p)
4277 {
4278 	struct rbd_client_id cid = { 0 };
4279 
4280 	if (struct_v >= 2) {
4281 		cid.gid = ceph_decode_64(p);
4282 		cid.handle = ceph_decode_64(p);
4283 	}
4284 
4285 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4286 	     cid.handle);
4287 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4288 		down_write(&rbd_dev->lock_rwsem);
4289 		if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4290 			dout("%s rbd_dev %p cid %llu-%llu == owner_cid\n",
4291 			     __func__, rbd_dev, cid.gid, cid.handle);
4292 		} else {
4293 			rbd_set_owner_cid(rbd_dev, &cid);
4294 		}
4295 		downgrade_write(&rbd_dev->lock_rwsem);
4296 	} else {
4297 		down_read(&rbd_dev->lock_rwsem);
4298 	}
4299 
4300 	maybe_kick_acquire(rbd_dev);
4301 	up_read(&rbd_dev->lock_rwsem);
4302 }
4303 
rbd_handle_released_lock(struct rbd_device * rbd_dev,u8 struct_v,void ** p)4304 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4305 				     void **p)
4306 {
4307 	struct rbd_client_id cid = { 0 };
4308 
4309 	if (struct_v >= 2) {
4310 		cid.gid = ceph_decode_64(p);
4311 		cid.handle = ceph_decode_64(p);
4312 	}
4313 
4314 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4315 	     cid.handle);
4316 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4317 		down_write(&rbd_dev->lock_rwsem);
4318 		if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4319 			dout("%s rbd_dev %p cid %llu-%llu != owner_cid %llu-%llu\n",
4320 			     __func__, rbd_dev, cid.gid, cid.handle,
4321 			     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4322 		} else {
4323 			rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4324 		}
4325 		downgrade_write(&rbd_dev->lock_rwsem);
4326 	} else {
4327 		down_read(&rbd_dev->lock_rwsem);
4328 	}
4329 
4330 	maybe_kick_acquire(rbd_dev);
4331 	up_read(&rbd_dev->lock_rwsem);
4332 }
4333 
4334 /*
4335  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4336  * ResponseMessage is needed.
4337  */
rbd_handle_request_lock(struct rbd_device * rbd_dev,u8 struct_v,void ** p)4338 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4339 				   void **p)
4340 {
4341 	struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4342 	struct rbd_client_id cid = { 0 };
4343 	int result = 1;
4344 
4345 	if (struct_v >= 2) {
4346 		cid.gid = ceph_decode_64(p);
4347 		cid.handle = ceph_decode_64(p);
4348 	}
4349 
4350 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4351 	     cid.handle);
4352 	if (rbd_cid_equal(&cid, &my_cid))
4353 		return result;
4354 
4355 	down_read(&rbd_dev->lock_rwsem);
4356 	if (__rbd_is_lock_owner(rbd_dev)) {
4357 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4358 		    rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4359 			goto out_unlock;
4360 
4361 		/*
4362 		 * encode ResponseMessage(0) so the peer can detect
4363 		 * a missing owner
4364 		 */
4365 		result = 0;
4366 
4367 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4368 			if (!rbd_dev->opts->exclusive) {
4369 				dout("%s rbd_dev %p queueing unlock_work\n",
4370 				     __func__, rbd_dev);
4371 				queue_work(rbd_dev->task_wq,
4372 					   &rbd_dev->unlock_work);
4373 			} else {
4374 				/* refuse to release the lock */
4375 				result = -EROFS;
4376 			}
4377 		}
4378 	}
4379 
4380 out_unlock:
4381 	up_read(&rbd_dev->lock_rwsem);
4382 	return result;
4383 }
4384 
__rbd_acknowledge_notify(struct rbd_device * rbd_dev,u64 notify_id,u64 cookie,s32 * result)4385 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4386 				     u64 notify_id, u64 cookie, s32 *result)
4387 {
4388 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4389 	char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4390 	int buf_size = sizeof(buf);
4391 	int ret;
4392 
4393 	if (result) {
4394 		void *p = buf;
4395 
4396 		/* encode ResponseMessage */
4397 		ceph_start_encoding(&p, 1, 1,
4398 				    buf_size - CEPH_ENCODING_START_BLK_LEN);
4399 		ceph_encode_32(&p, *result);
4400 	} else {
4401 		buf_size = 0;
4402 	}
4403 
4404 	ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4405 				   &rbd_dev->header_oloc, notify_id, cookie,
4406 				   buf, buf_size);
4407 	if (ret)
4408 		rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4409 }
4410 
rbd_acknowledge_notify(struct rbd_device * rbd_dev,u64 notify_id,u64 cookie)4411 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4412 				   u64 cookie)
4413 {
4414 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4415 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4416 }
4417 
rbd_acknowledge_notify_result(struct rbd_device * rbd_dev,u64 notify_id,u64 cookie,s32 result)4418 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4419 					  u64 notify_id, u64 cookie, s32 result)
4420 {
4421 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4422 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4423 }
4424 
rbd_watch_cb(void * arg,u64 notify_id,u64 cookie,u64 notifier_id,void * data,size_t data_len)4425 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4426 			 u64 notifier_id, void *data, size_t data_len)
4427 {
4428 	struct rbd_device *rbd_dev = arg;
4429 	void *p = data;
4430 	void *const end = p + data_len;
4431 	u8 struct_v = 0;
4432 	u32 len;
4433 	u32 notify_op;
4434 	int ret;
4435 
4436 	dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4437 	     __func__, rbd_dev, cookie, notify_id, data_len);
4438 	if (data_len) {
4439 		ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4440 					  &struct_v, &len);
4441 		if (ret) {
4442 			rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4443 				 ret);
4444 			return;
4445 		}
4446 
4447 		notify_op = ceph_decode_32(&p);
4448 	} else {
4449 		/* legacy notification for header updates */
4450 		notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4451 		len = 0;
4452 	}
4453 
4454 	dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4455 	switch (notify_op) {
4456 	case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4457 		rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4458 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4459 		break;
4460 	case RBD_NOTIFY_OP_RELEASED_LOCK:
4461 		rbd_handle_released_lock(rbd_dev, struct_v, &p);
4462 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4463 		break;
4464 	case RBD_NOTIFY_OP_REQUEST_LOCK:
4465 		ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4466 		if (ret <= 0)
4467 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4468 						      cookie, ret);
4469 		else
4470 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4471 		break;
4472 	case RBD_NOTIFY_OP_HEADER_UPDATE:
4473 		ret = rbd_dev_refresh(rbd_dev);
4474 		if (ret)
4475 			rbd_warn(rbd_dev, "refresh failed: %d", ret);
4476 
4477 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4478 		break;
4479 	default:
4480 		if (rbd_is_lock_owner(rbd_dev))
4481 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4482 						      cookie, -EOPNOTSUPP);
4483 		else
4484 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4485 		break;
4486 	}
4487 }
4488 
4489 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4490 
rbd_watch_errcb(void * arg,u64 cookie,int err)4491 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4492 {
4493 	struct rbd_device *rbd_dev = arg;
4494 
4495 	rbd_warn(rbd_dev, "encountered watch error: %d", err);
4496 
4497 	down_write(&rbd_dev->lock_rwsem);
4498 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4499 	up_write(&rbd_dev->lock_rwsem);
4500 
4501 	mutex_lock(&rbd_dev->watch_mutex);
4502 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4503 		__rbd_unregister_watch(rbd_dev);
4504 		rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4505 
4506 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4507 	}
4508 	mutex_unlock(&rbd_dev->watch_mutex);
4509 }
4510 
4511 /*
4512  * watch_mutex must be locked
4513  */
__rbd_register_watch(struct rbd_device * rbd_dev)4514 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4515 {
4516 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4517 	struct ceph_osd_linger_request *handle;
4518 
4519 	rbd_assert(!rbd_dev->watch_handle);
4520 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4521 
4522 	handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4523 				 &rbd_dev->header_oloc, rbd_watch_cb,
4524 				 rbd_watch_errcb, rbd_dev);
4525 	if (IS_ERR(handle))
4526 		return PTR_ERR(handle);
4527 
4528 	rbd_dev->watch_handle = handle;
4529 	return 0;
4530 }
4531 
4532 /*
4533  * watch_mutex must be locked
4534  */
__rbd_unregister_watch(struct rbd_device * rbd_dev)4535 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4536 {
4537 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4538 	int ret;
4539 
4540 	rbd_assert(rbd_dev->watch_handle);
4541 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4542 
4543 	ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4544 	if (ret)
4545 		rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4546 
4547 	rbd_dev->watch_handle = NULL;
4548 }
4549 
rbd_register_watch(struct rbd_device * rbd_dev)4550 static int rbd_register_watch(struct rbd_device *rbd_dev)
4551 {
4552 	int ret;
4553 
4554 	mutex_lock(&rbd_dev->watch_mutex);
4555 	rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4556 	ret = __rbd_register_watch(rbd_dev);
4557 	if (ret)
4558 		goto out;
4559 
4560 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4561 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4562 
4563 out:
4564 	mutex_unlock(&rbd_dev->watch_mutex);
4565 	return ret;
4566 }
4567 
cancel_tasks_sync(struct rbd_device * rbd_dev)4568 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4569 {
4570 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4571 
4572 	cancel_work_sync(&rbd_dev->acquired_lock_work);
4573 	cancel_work_sync(&rbd_dev->released_lock_work);
4574 	cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4575 	cancel_work_sync(&rbd_dev->unlock_work);
4576 }
4577 
4578 /*
4579  * header_rwsem must not be held to avoid a deadlock with
4580  * rbd_dev_refresh() when flushing notifies.
4581  */
rbd_unregister_watch(struct rbd_device * rbd_dev)4582 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4583 {
4584 	cancel_tasks_sync(rbd_dev);
4585 
4586 	mutex_lock(&rbd_dev->watch_mutex);
4587 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4588 		__rbd_unregister_watch(rbd_dev);
4589 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4590 	mutex_unlock(&rbd_dev->watch_mutex);
4591 
4592 	cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4593 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4594 }
4595 
4596 /*
4597  * lock_rwsem must be held for write
4598  */
rbd_reacquire_lock(struct rbd_device * rbd_dev)4599 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4600 {
4601 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4602 	char cookie[32];
4603 	int ret;
4604 
4605 	if (!rbd_quiesce_lock(rbd_dev))
4606 		return;
4607 
4608 	format_lock_cookie(rbd_dev, cookie);
4609 	ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4610 				  &rbd_dev->header_oloc, RBD_LOCK_NAME,
4611 				  CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4612 				  RBD_LOCK_TAG, cookie);
4613 	if (ret) {
4614 		if (ret != -EOPNOTSUPP)
4615 			rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4616 				 ret);
4617 
4618 		if (rbd_dev->opts->exclusive)
4619 			rbd_warn(rbd_dev,
4620 			     "temporarily releasing lock on exclusive mapping");
4621 
4622 		/*
4623 		 * Lock cookie cannot be updated on older OSDs, so do
4624 		 * a manual release and queue an acquire.
4625 		 */
4626 		__rbd_release_lock(rbd_dev);
4627 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4628 	} else {
4629 		__rbd_lock(rbd_dev, cookie);
4630 		wake_lock_waiters(rbd_dev, 0);
4631 	}
4632 }
4633 
rbd_reregister_watch(struct work_struct * work)4634 static void rbd_reregister_watch(struct work_struct *work)
4635 {
4636 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4637 					    struct rbd_device, watch_dwork);
4638 	int ret;
4639 
4640 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4641 
4642 	mutex_lock(&rbd_dev->watch_mutex);
4643 	if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4644 		mutex_unlock(&rbd_dev->watch_mutex);
4645 		return;
4646 	}
4647 
4648 	ret = __rbd_register_watch(rbd_dev);
4649 	if (ret) {
4650 		rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4651 		if (ret != -EBLOCKLISTED && ret != -ENOENT) {
4652 			queue_delayed_work(rbd_dev->task_wq,
4653 					   &rbd_dev->watch_dwork,
4654 					   RBD_RETRY_DELAY);
4655 			mutex_unlock(&rbd_dev->watch_mutex);
4656 			return;
4657 		}
4658 
4659 		mutex_unlock(&rbd_dev->watch_mutex);
4660 		down_write(&rbd_dev->lock_rwsem);
4661 		wake_lock_waiters(rbd_dev, ret);
4662 		up_write(&rbd_dev->lock_rwsem);
4663 		return;
4664 	}
4665 
4666 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4667 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4668 	mutex_unlock(&rbd_dev->watch_mutex);
4669 
4670 	down_write(&rbd_dev->lock_rwsem);
4671 	if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4672 		rbd_reacquire_lock(rbd_dev);
4673 	up_write(&rbd_dev->lock_rwsem);
4674 
4675 	ret = rbd_dev_refresh(rbd_dev);
4676 	if (ret)
4677 		rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4678 }
4679 
4680 /*
4681  * Synchronous osd object method call.  Returns the number of bytes
4682  * returned in the outbound buffer, or a negative error code.
4683  */
rbd_obj_method_sync(struct rbd_device * rbd_dev,struct ceph_object_id * oid,struct ceph_object_locator * oloc,const char * method_name,const void * outbound,size_t outbound_size,void * inbound,size_t inbound_size)4684 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4685 			     struct ceph_object_id *oid,
4686 			     struct ceph_object_locator *oloc,
4687 			     const char *method_name,
4688 			     const void *outbound,
4689 			     size_t outbound_size,
4690 			     void *inbound,
4691 			     size_t inbound_size)
4692 {
4693 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4694 	struct page *req_page = NULL;
4695 	struct page *reply_page;
4696 	int ret;
4697 
4698 	/*
4699 	 * Method calls are ultimately read operations.  The result
4700 	 * should placed into the inbound buffer provided.  They
4701 	 * also supply outbound data--parameters for the object
4702 	 * method.  Currently if this is present it will be a
4703 	 * snapshot id.
4704 	 */
4705 	if (outbound) {
4706 		if (outbound_size > PAGE_SIZE)
4707 			return -E2BIG;
4708 
4709 		req_page = alloc_page(GFP_KERNEL);
4710 		if (!req_page)
4711 			return -ENOMEM;
4712 
4713 		memcpy(page_address(req_page), outbound, outbound_size);
4714 	}
4715 
4716 	reply_page = alloc_page(GFP_KERNEL);
4717 	if (!reply_page) {
4718 		if (req_page)
4719 			__free_page(req_page);
4720 		return -ENOMEM;
4721 	}
4722 
4723 	ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4724 			     CEPH_OSD_FLAG_READ, req_page, outbound_size,
4725 			     &reply_page, &inbound_size);
4726 	if (!ret) {
4727 		memcpy(inbound, page_address(reply_page), inbound_size);
4728 		ret = inbound_size;
4729 	}
4730 
4731 	if (req_page)
4732 		__free_page(req_page);
4733 	__free_page(reply_page);
4734 	return ret;
4735 }
4736 
rbd_queue_workfn(struct work_struct * work)4737 static void rbd_queue_workfn(struct work_struct *work)
4738 {
4739 	struct rbd_img_request *img_request =
4740 	    container_of(work, struct rbd_img_request, work);
4741 	struct rbd_device *rbd_dev = img_request->rbd_dev;
4742 	enum obj_operation_type op_type = img_request->op_type;
4743 	struct request *rq = blk_mq_rq_from_pdu(img_request);
4744 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4745 	u64 length = blk_rq_bytes(rq);
4746 	int result;
4747 
4748 	/* Ignore/skip any zero-length requests */
4749 	if (!length) {
4750 		dout("%s: zero-length request\n", __func__);
4751 		result = 0;
4752 		goto err_img_request;
4753 	}
4754 
4755 	blk_mq_start_request(rq);
4756 
4757 	down_read(&rbd_dev->header_rwsem);
4758 	rbd_img_capture_header(img_request);
4759 	up_read(&rbd_dev->header_rwsem);
4760 
4761 	dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4762 	     img_request, obj_op_name(op_type), offset, length);
4763 
4764 	if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4765 		result = rbd_img_fill_nodata(img_request, offset, length);
4766 	else
4767 		result = rbd_img_fill_from_bio(img_request, offset, length,
4768 					       rq->bio);
4769 	if (result)
4770 		goto err_img_request;
4771 
4772 	rbd_img_handle_request(img_request, 0);
4773 	return;
4774 
4775 err_img_request:
4776 	rbd_img_request_destroy(img_request);
4777 	if (result)
4778 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4779 			 obj_op_name(op_type), length, offset, result);
4780 	blk_mq_end_request(rq, errno_to_blk_status(result));
4781 }
4782 
rbd_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)4783 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4784 		const struct blk_mq_queue_data *bd)
4785 {
4786 	struct rbd_device *rbd_dev = hctx->queue->queuedata;
4787 	struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4788 	enum obj_operation_type op_type;
4789 
4790 	switch (req_op(bd->rq)) {
4791 	case REQ_OP_DISCARD:
4792 		op_type = OBJ_OP_DISCARD;
4793 		break;
4794 	case REQ_OP_WRITE_ZEROES:
4795 		op_type = OBJ_OP_ZEROOUT;
4796 		break;
4797 	case REQ_OP_WRITE:
4798 		op_type = OBJ_OP_WRITE;
4799 		break;
4800 	case REQ_OP_READ:
4801 		op_type = OBJ_OP_READ;
4802 		break;
4803 	default:
4804 		rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4805 		return BLK_STS_IOERR;
4806 	}
4807 
4808 	rbd_img_request_init(img_req, rbd_dev, op_type);
4809 
4810 	if (rbd_img_is_write(img_req)) {
4811 		if (rbd_is_ro(rbd_dev)) {
4812 			rbd_warn(rbd_dev, "%s on read-only mapping",
4813 				 obj_op_name(img_req->op_type));
4814 			return BLK_STS_IOERR;
4815 		}
4816 		rbd_assert(!rbd_is_snap(rbd_dev));
4817 	}
4818 
4819 	INIT_WORK(&img_req->work, rbd_queue_workfn);
4820 	queue_work(rbd_wq, &img_req->work);
4821 	return BLK_STS_OK;
4822 }
4823 
rbd_free_disk(struct rbd_device * rbd_dev)4824 static void rbd_free_disk(struct rbd_device *rbd_dev)
4825 {
4826 	put_disk(rbd_dev->disk);
4827 	blk_mq_free_tag_set(&rbd_dev->tag_set);
4828 	rbd_dev->disk = NULL;
4829 }
4830 
rbd_obj_read_sync(struct rbd_device * rbd_dev,struct ceph_object_id * oid,struct ceph_object_locator * oloc,void * buf,int buf_len)4831 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4832 			     struct ceph_object_id *oid,
4833 			     struct ceph_object_locator *oloc,
4834 			     void *buf, int buf_len)
4835 
4836 {
4837 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4838 	struct ceph_osd_request *req;
4839 	struct page **pages;
4840 	int num_pages = calc_pages_for(0, buf_len);
4841 	int ret;
4842 
4843 	req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4844 	if (!req)
4845 		return -ENOMEM;
4846 
4847 	ceph_oid_copy(&req->r_base_oid, oid);
4848 	ceph_oloc_copy(&req->r_base_oloc, oloc);
4849 	req->r_flags = CEPH_OSD_FLAG_READ;
4850 
4851 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4852 	if (IS_ERR(pages)) {
4853 		ret = PTR_ERR(pages);
4854 		goto out_req;
4855 	}
4856 
4857 	osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4858 	osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4859 					 true);
4860 
4861 	ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4862 	if (ret)
4863 		goto out_req;
4864 
4865 	ceph_osdc_start_request(osdc, req);
4866 	ret = ceph_osdc_wait_request(osdc, req);
4867 	if (ret >= 0)
4868 		ceph_copy_from_page_vector(pages, buf, 0, ret);
4869 
4870 out_req:
4871 	ceph_osdc_put_request(req);
4872 	return ret;
4873 }
4874 
4875 /*
4876  * Read the complete header for the given rbd device.  On successful
4877  * return, the rbd_dev->header field will contain up-to-date
4878  * information about the image.
4879  */
rbd_dev_v1_header_info(struct rbd_device * rbd_dev,struct rbd_image_header * header,bool first_time)4880 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev,
4881 				  struct rbd_image_header *header,
4882 				  bool first_time)
4883 {
4884 	struct rbd_image_header_ondisk *ondisk = NULL;
4885 	u32 snap_count = 0;
4886 	u64 names_size = 0;
4887 	u32 want_count;
4888 	int ret;
4889 
4890 	/*
4891 	 * The complete header will include an array of its 64-bit
4892 	 * snapshot ids, followed by the names of those snapshots as
4893 	 * a contiguous block of NUL-terminated strings.  Note that
4894 	 * the number of snapshots could change by the time we read
4895 	 * it in, in which case we re-read it.
4896 	 */
4897 	do {
4898 		size_t size;
4899 
4900 		kfree(ondisk);
4901 
4902 		size = sizeof (*ondisk);
4903 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4904 		size += names_size;
4905 		ondisk = kmalloc(size, GFP_KERNEL);
4906 		if (!ondisk)
4907 			return -ENOMEM;
4908 
4909 		ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4910 					&rbd_dev->header_oloc, ondisk, size);
4911 		if (ret < 0)
4912 			goto out;
4913 		if ((size_t)ret < size) {
4914 			ret = -ENXIO;
4915 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4916 				size, ret);
4917 			goto out;
4918 		}
4919 		if (!rbd_dev_ondisk_valid(ondisk)) {
4920 			ret = -ENXIO;
4921 			rbd_warn(rbd_dev, "invalid header");
4922 			goto out;
4923 		}
4924 
4925 		names_size = le64_to_cpu(ondisk->snap_names_len);
4926 		want_count = snap_count;
4927 		snap_count = le32_to_cpu(ondisk->snap_count);
4928 	} while (snap_count != want_count);
4929 
4930 	ret = rbd_header_from_disk(header, ondisk, first_time);
4931 out:
4932 	kfree(ondisk);
4933 
4934 	return ret;
4935 }
4936 
rbd_dev_update_size(struct rbd_device * rbd_dev)4937 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4938 {
4939 	sector_t size;
4940 
4941 	/*
4942 	 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4943 	 * try to update its size.  If REMOVING is set, updating size
4944 	 * is just useless work since the device can't be opened.
4945 	 */
4946 	if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4947 	    !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4948 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4949 		dout("setting size to %llu sectors", (unsigned long long)size);
4950 		set_capacity_and_notify(rbd_dev->disk, size);
4951 	}
4952 }
4953 
4954 static const struct blk_mq_ops rbd_mq_ops = {
4955 	.queue_rq	= rbd_queue_rq,
4956 };
4957 
rbd_init_disk(struct rbd_device * rbd_dev)4958 static int rbd_init_disk(struct rbd_device *rbd_dev)
4959 {
4960 	struct gendisk *disk;
4961 	unsigned int objset_bytes =
4962 	    rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4963 	struct queue_limits lim = {
4964 		.max_hw_sectors		= objset_bytes >> SECTOR_SHIFT,
4965 		.io_opt			= objset_bytes,
4966 		.io_min			= rbd_dev->opts->alloc_size,
4967 		.max_segments		= USHRT_MAX,
4968 		.max_segment_size	= UINT_MAX,
4969 	};
4970 	int err;
4971 
4972 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4973 	rbd_dev->tag_set.ops = &rbd_mq_ops;
4974 	rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4975 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4976 	rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
4977 	rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
4978 
4979 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4980 	if (err)
4981 		return err;
4982 
4983 	if (rbd_dev->opts->trim) {
4984 		lim.discard_granularity = rbd_dev->opts->alloc_size;
4985 		lim.max_hw_discard_sectors = objset_bytes >> SECTOR_SHIFT;
4986 		lim.max_write_zeroes_sectors = objset_bytes >> SECTOR_SHIFT;
4987 	}
4988 
4989 	if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4990 		lim.features |= BLK_FEAT_STABLE_WRITES;
4991 
4992 	disk = blk_mq_alloc_disk(&rbd_dev->tag_set, &lim, rbd_dev);
4993 	if (IS_ERR(disk)) {
4994 		err = PTR_ERR(disk);
4995 		goto out_tag_set;
4996 	}
4997 
4998 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4999 		 rbd_dev->dev_id);
5000 	disk->major = rbd_dev->major;
5001 	disk->first_minor = rbd_dev->minor;
5002 	if (single_major)
5003 		disk->minors = (1 << RBD_SINGLE_MAJOR_PART_SHIFT);
5004 	else
5005 		disk->minors = RBD_MINORS_PER_MAJOR;
5006 	disk->fops = &rbd_bd_ops;
5007 	disk->private_data = rbd_dev;
5008 	rbd_dev->disk = disk;
5009 
5010 	return 0;
5011 out_tag_set:
5012 	blk_mq_free_tag_set(&rbd_dev->tag_set);
5013 	return err;
5014 }
5015 
5016 /*
5017   sysfs
5018 */
5019 
dev_to_rbd_dev(struct device * dev)5020 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
5021 {
5022 	return container_of(dev, struct rbd_device, dev);
5023 }
5024 
rbd_size_show(struct device * dev,struct device_attribute * attr,char * buf)5025 static ssize_t rbd_size_show(struct device *dev,
5026 			     struct device_attribute *attr, char *buf)
5027 {
5028 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5029 
5030 	return sprintf(buf, "%llu\n",
5031 		(unsigned long long)rbd_dev->mapping.size);
5032 }
5033 
rbd_features_show(struct device * dev,struct device_attribute * attr,char * buf)5034 static ssize_t rbd_features_show(struct device *dev,
5035 			     struct device_attribute *attr, char *buf)
5036 {
5037 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5038 
5039 	return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
5040 }
5041 
rbd_major_show(struct device * dev,struct device_attribute * attr,char * buf)5042 static ssize_t rbd_major_show(struct device *dev,
5043 			      struct device_attribute *attr, char *buf)
5044 {
5045 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5046 
5047 	if (rbd_dev->major)
5048 		return sprintf(buf, "%d\n", rbd_dev->major);
5049 
5050 	return sprintf(buf, "(none)\n");
5051 }
5052 
rbd_minor_show(struct device * dev,struct device_attribute * attr,char * buf)5053 static ssize_t rbd_minor_show(struct device *dev,
5054 			      struct device_attribute *attr, char *buf)
5055 {
5056 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5057 
5058 	return sprintf(buf, "%d\n", rbd_dev->minor);
5059 }
5060 
rbd_client_addr_show(struct device * dev,struct device_attribute * attr,char * buf)5061 static ssize_t rbd_client_addr_show(struct device *dev,
5062 				    struct device_attribute *attr, char *buf)
5063 {
5064 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5065 	struct ceph_entity_addr *client_addr =
5066 	    ceph_client_addr(rbd_dev->rbd_client->client);
5067 
5068 	return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5069 		       le32_to_cpu(client_addr->nonce));
5070 }
5071 
rbd_client_id_show(struct device * dev,struct device_attribute * attr,char * buf)5072 static ssize_t rbd_client_id_show(struct device *dev,
5073 				  struct device_attribute *attr, char *buf)
5074 {
5075 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5076 
5077 	return sprintf(buf, "client%lld\n",
5078 		       ceph_client_gid(rbd_dev->rbd_client->client));
5079 }
5080 
rbd_cluster_fsid_show(struct device * dev,struct device_attribute * attr,char * buf)5081 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5082 				     struct device_attribute *attr, char *buf)
5083 {
5084 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5085 
5086 	return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5087 }
5088 
rbd_config_info_show(struct device * dev,struct device_attribute * attr,char * buf)5089 static ssize_t rbd_config_info_show(struct device *dev,
5090 				    struct device_attribute *attr, char *buf)
5091 {
5092 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5093 
5094 	if (!capable(CAP_SYS_ADMIN))
5095 		return -EPERM;
5096 
5097 	return sprintf(buf, "%s\n", rbd_dev->config_info);
5098 }
5099 
rbd_pool_show(struct device * dev,struct device_attribute * attr,char * buf)5100 static ssize_t rbd_pool_show(struct device *dev,
5101 			     struct device_attribute *attr, char *buf)
5102 {
5103 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5104 
5105 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5106 }
5107 
rbd_pool_id_show(struct device * dev,struct device_attribute * attr,char * buf)5108 static ssize_t rbd_pool_id_show(struct device *dev,
5109 			     struct device_attribute *attr, char *buf)
5110 {
5111 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5112 
5113 	return sprintf(buf, "%llu\n",
5114 			(unsigned long long) rbd_dev->spec->pool_id);
5115 }
5116 
rbd_pool_ns_show(struct device * dev,struct device_attribute * attr,char * buf)5117 static ssize_t rbd_pool_ns_show(struct device *dev,
5118 				struct device_attribute *attr, char *buf)
5119 {
5120 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5121 
5122 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5123 }
5124 
rbd_name_show(struct device * dev,struct device_attribute * attr,char * buf)5125 static ssize_t rbd_name_show(struct device *dev,
5126 			     struct device_attribute *attr, char *buf)
5127 {
5128 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5129 
5130 	if (rbd_dev->spec->image_name)
5131 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5132 
5133 	return sprintf(buf, "(unknown)\n");
5134 }
5135 
rbd_image_id_show(struct device * dev,struct device_attribute * attr,char * buf)5136 static ssize_t rbd_image_id_show(struct device *dev,
5137 			     struct device_attribute *attr, char *buf)
5138 {
5139 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5140 
5141 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5142 }
5143 
5144 /*
5145  * Shows the name of the currently-mapped snapshot (or
5146  * RBD_SNAP_HEAD_NAME for the base image).
5147  */
rbd_snap_show(struct device * dev,struct device_attribute * attr,char * buf)5148 static ssize_t rbd_snap_show(struct device *dev,
5149 			     struct device_attribute *attr,
5150 			     char *buf)
5151 {
5152 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5153 
5154 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5155 }
5156 
rbd_snap_id_show(struct device * dev,struct device_attribute * attr,char * buf)5157 static ssize_t rbd_snap_id_show(struct device *dev,
5158 				struct device_attribute *attr, char *buf)
5159 {
5160 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5161 
5162 	return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5163 }
5164 
5165 /*
5166  * For a v2 image, shows the chain of parent images, separated by empty
5167  * lines.  For v1 images or if there is no parent, shows "(no parent
5168  * image)".
5169  */
rbd_parent_show(struct device * dev,struct device_attribute * attr,char * buf)5170 static ssize_t rbd_parent_show(struct device *dev,
5171 			       struct device_attribute *attr,
5172 			       char *buf)
5173 {
5174 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5175 	ssize_t count = 0;
5176 
5177 	if (!rbd_dev->parent)
5178 		return sprintf(buf, "(no parent image)\n");
5179 
5180 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5181 		struct rbd_spec *spec = rbd_dev->parent_spec;
5182 
5183 		count += sprintf(&buf[count], "%s"
5184 			    "pool_id %llu\npool_name %s\n"
5185 			    "pool_ns %s\n"
5186 			    "image_id %s\nimage_name %s\n"
5187 			    "snap_id %llu\nsnap_name %s\n"
5188 			    "overlap %llu\n",
5189 			    !count ? "" : "\n", /* first? */
5190 			    spec->pool_id, spec->pool_name,
5191 			    spec->pool_ns ?: "",
5192 			    spec->image_id, spec->image_name ?: "(unknown)",
5193 			    spec->snap_id, spec->snap_name,
5194 			    rbd_dev->parent_overlap);
5195 	}
5196 
5197 	return count;
5198 }
5199 
rbd_image_refresh(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)5200 static ssize_t rbd_image_refresh(struct device *dev,
5201 				 struct device_attribute *attr,
5202 				 const char *buf,
5203 				 size_t size)
5204 {
5205 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5206 	int ret;
5207 
5208 	if (!capable(CAP_SYS_ADMIN))
5209 		return -EPERM;
5210 
5211 	ret = rbd_dev_refresh(rbd_dev);
5212 	if (ret)
5213 		return ret;
5214 
5215 	return size;
5216 }
5217 
5218 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5219 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5220 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5221 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5222 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5223 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5224 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5225 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5226 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5227 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5228 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5229 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5230 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5231 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5232 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5233 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5234 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5235 
5236 static struct attribute *rbd_attrs[] = {
5237 	&dev_attr_size.attr,
5238 	&dev_attr_features.attr,
5239 	&dev_attr_major.attr,
5240 	&dev_attr_minor.attr,
5241 	&dev_attr_client_addr.attr,
5242 	&dev_attr_client_id.attr,
5243 	&dev_attr_cluster_fsid.attr,
5244 	&dev_attr_config_info.attr,
5245 	&dev_attr_pool.attr,
5246 	&dev_attr_pool_id.attr,
5247 	&dev_attr_pool_ns.attr,
5248 	&dev_attr_name.attr,
5249 	&dev_attr_image_id.attr,
5250 	&dev_attr_current_snap.attr,
5251 	&dev_attr_snap_id.attr,
5252 	&dev_attr_parent.attr,
5253 	&dev_attr_refresh.attr,
5254 	NULL
5255 };
5256 
5257 static struct attribute_group rbd_attr_group = {
5258 	.attrs = rbd_attrs,
5259 };
5260 
5261 static const struct attribute_group *rbd_attr_groups[] = {
5262 	&rbd_attr_group,
5263 	NULL
5264 };
5265 
5266 static void rbd_dev_release(struct device *dev);
5267 
5268 static const struct device_type rbd_device_type = {
5269 	.name		= "rbd",
5270 	.groups		= rbd_attr_groups,
5271 	.release	= rbd_dev_release,
5272 };
5273 
rbd_spec_get(struct rbd_spec * spec)5274 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5275 {
5276 	kref_get(&spec->kref);
5277 
5278 	return spec;
5279 }
5280 
5281 static void rbd_spec_free(struct kref *kref);
rbd_spec_put(struct rbd_spec * spec)5282 static void rbd_spec_put(struct rbd_spec *spec)
5283 {
5284 	if (spec)
5285 		kref_put(&spec->kref, rbd_spec_free);
5286 }
5287 
rbd_spec_alloc(void)5288 static struct rbd_spec *rbd_spec_alloc(void)
5289 {
5290 	struct rbd_spec *spec;
5291 
5292 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5293 	if (!spec)
5294 		return NULL;
5295 
5296 	spec->pool_id = CEPH_NOPOOL;
5297 	spec->snap_id = CEPH_NOSNAP;
5298 	kref_init(&spec->kref);
5299 
5300 	return spec;
5301 }
5302 
rbd_spec_free(struct kref * kref)5303 static void rbd_spec_free(struct kref *kref)
5304 {
5305 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5306 
5307 	kfree(spec->pool_name);
5308 	kfree(spec->pool_ns);
5309 	kfree(spec->image_id);
5310 	kfree(spec->image_name);
5311 	kfree(spec->snap_name);
5312 	kfree(spec);
5313 }
5314 
rbd_dev_free(struct rbd_device * rbd_dev)5315 static void rbd_dev_free(struct rbd_device *rbd_dev)
5316 {
5317 	WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5318 	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5319 
5320 	ceph_oid_destroy(&rbd_dev->header_oid);
5321 	ceph_oloc_destroy(&rbd_dev->header_oloc);
5322 	kfree(rbd_dev->config_info);
5323 
5324 	rbd_put_client(rbd_dev->rbd_client);
5325 	rbd_spec_put(rbd_dev->spec);
5326 	kfree(rbd_dev->opts);
5327 	kfree(rbd_dev);
5328 }
5329 
rbd_dev_release(struct device * dev)5330 static void rbd_dev_release(struct device *dev)
5331 {
5332 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5333 	bool need_put = !!rbd_dev->opts;
5334 
5335 	if (need_put) {
5336 		destroy_workqueue(rbd_dev->task_wq);
5337 		ida_free(&rbd_dev_id_ida, rbd_dev->dev_id);
5338 	}
5339 
5340 	rbd_dev_free(rbd_dev);
5341 
5342 	/*
5343 	 * This is racy, but way better than putting module outside of
5344 	 * the release callback.  The race window is pretty small, so
5345 	 * doing something similar to dm (dm-builtin.c) is overkill.
5346 	 */
5347 	if (need_put)
5348 		module_put(THIS_MODULE);
5349 }
5350 
__rbd_dev_create(struct rbd_spec * spec)5351 static struct rbd_device *__rbd_dev_create(struct rbd_spec *spec)
5352 {
5353 	struct rbd_device *rbd_dev;
5354 
5355 	rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5356 	if (!rbd_dev)
5357 		return NULL;
5358 
5359 	spin_lock_init(&rbd_dev->lock);
5360 	INIT_LIST_HEAD(&rbd_dev->node);
5361 	init_rwsem(&rbd_dev->header_rwsem);
5362 
5363 	rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5364 	ceph_oid_init(&rbd_dev->header_oid);
5365 	rbd_dev->header_oloc.pool = spec->pool_id;
5366 	if (spec->pool_ns) {
5367 		WARN_ON(!*spec->pool_ns);
5368 		rbd_dev->header_oloc.pool_ns =
5369 		    ceph_find_or_create_string(spec->pool_ns,
5370 					       strlen(spec->pool_ns));
5371 	}
5372 
5373 	mutex_init(&rbd_dev->watch_mutex);
5374 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5375 	INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5376 
5377 	init_rwsem(&rbd_dev->lock_rwsem);
5378 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5379 	INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5380 	INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5381 	INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5382 	INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5383 	spin_lock_init(&rbd_dev->lock_lists_lock);
5384 	INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5385 	INIT_LIST_HEAD(&rbd_dev->running_list);
5386 	init_completion(&rbd_dev->acquire_wait);
5387 	init_completion(&rbd_dev->quiescing_wait);
5388 
5389 	spin_lock_init(&rbd_dev->object_map_lock);
5390 
5391 	rbd_dev->dev.bus = &rbd_bus_type;
5392 	rbd_dev->dev.type = &rbd_device_type;
5393 	rbd_dev->dev.parent = &rbd_root_dev;
5394 	device_initialize(&rbd_dev->dev);
5395 
5396 	return rbd_dev;
5397 }
5398 
5399 /*
5400  * Create a mapping rbd_dev.
5401  */
rbd_dev_create(struct rbd_client * rbdc,struct rbd_spec * spec,struct rbd_options * opts)5402 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5403 					 struct rbd_spec *spec,
5404 					 struct rbd_options *opts)
5405 {
5406 	struct rbd_device *rbd_dev;
5407 
5408 	rbd_dev = __rbd_dev_create(spec);
5409 	if (!rbd_dev)
5410 		return NULL;
5411 
5412 	/* get an id and fill in device name */
5413 	rbd_dev->dev_id = ida_alloc_max(&rbd_dev_id_ida,
5414 					minor_to_rbd_dev_id(1 << MINORBITS) - 1,
5415 					GFP_KERNEL);
5416 	if (rbd_dev->dev_id < 0)
5417 		goto fail_rbd_dev;
5418 
5419 	sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5420 	rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5421 						   rbd_dev->name);
5422 	if (!rbd_dev->task_wq)
5423 		goto fail_dev_id;
5424 
5425 	/* we have a ref from do_rbd_add() */
5426 	__module_get(THIS_MODULE);
5427 
5428 	rbd_dev->rbd_client = rbdc;
5429 	rbd_dev->spec = spec;
5430 	rbd_dev->opts = opts;
5431 
5432 	dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5433 	return rbd_dev;
5434 
5435 fail_dev_id:
5436 	ida_free(&rbd_dev_id_ida, rbd_dev->dev_id);
5437 fail_rbd_dev:
5438 	rbd_dev_free(rbd_dev);
5439 	return NULL;
5440 }
5441 
rbd_dev_destroy(struct rbd_device * rbd_dev)5442 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5443 {
5444 	if (rbd_dev)
5445 		put_device(&rbd_dev->dev);
5446 }
5447 
5448 /*
5449  * Get the size and object order for an image snapshot, or if
5450  * snap_id is CEPH_NOSNAP, gets this information for the base
5451  * image.
5452  */
_rbd_dev_v2_snap_size(struct rbd_device * rbd_dev,u64 snap_id,u8 * order,u64 * snap_size)5453 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5454 				u8 *order, u64 *snap_size)
5455 {
5456 	__le64 snapid = cpu_to_le64(snap_id);
5457 	int ret;
5458 	struct {
5459 		u8 order;
5460 		__le64 size;
5461 	} __attribute__ ((packed)) size_buf = { 0 };
5462 
5463 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5464 				  &rbd_dev->header_oloc, "get_size",
5465 				  &snapid, sizeof(snapid),
5466 				  &size_buf, sizeof(size_buf));
5467 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5468 	if (ret < 0)
5469 		return ret;
5470 	if (ret < sizeof (size_buf))
5471 		return -ERANGE;
5472 
5473 	if (order) {
5474 		*order = size_buf.order;
5475 		dout("  order %u", (unsigned int)*order);
5476 	}
5477 	*snap_size = le64_to_cpu(size_buf.size);
5478 
5479 	dout("  snap_id 0x%016llx snap_size = %llu\n",
5480 		(unsigned long long)snap_id,
5481 		(unsigned long long)*snap_size);
5482 
5483 	return 0;
5484 }
5485 
rbd_dev_v2_object_prefix(struct rbd_device * rbd_dev,char ** pobject_prefix)5486 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev,
5487 				    char **pobject_prefix)
5488 {
5489 	size_t size;
5490 	void *reply_buf;
5491 	char *object_prefix;
5492 	int ret;
5493 	void *p;
5494 
5495 	/* Response will be an encoded string, which includes a length */
5496 	size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5497 	reply_buf = kzalloc(size, GFP_KERNEL);
5498 	if (!reply_buf)
5499 		return -ENOMEM;
5500 
5501 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5502 				  &rbd_dev->header_oloc, "get_object_prefix",
5503 				  NULL, 0, reply_buf, size);
5504 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5505 	if (ret < 0)
5506 		goto out;
5507 
5508 	p = reply_buf;
5509 	object_prefix = ceph_extract_encoded_string(&p, p + ret, NULL,
5510 						    GFP_NOIO);
5511 	if (IS_ERR(object_prefix)) {
5512 		ret = PTR_ERR(object_prefix);
5513 		goto out;
5514 	}
5515 	ret = 0;
5516 
5517 	*pobject_prefix = object_prefix;
5518 	dout("  object_prefix = %s\n", object_prefix);
5519 out:
5520 	kfree(reply_buf);
5521 
5522 	return ret;
5523 }
5524 
_rbd_dev_v2_snap_features(struct rbd_device * rbd_dev,u64 snap_id,bool read_only,u64 * snap_features)5525 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5526 				     bool read_only, u64 *snap_features)
5527 {
5528 	struct {
5529 		__le64 snap_id;
5530 		u8 read_only;
5531 	} features_in;
5532 	struct {
5533 		__le64 features;
5534 		__le64 incompat;
5535 	} __attribute__ ((packed)) features_buf = { 0 };
5536 	u64 unsup;
5537 	int ret;
5538 
5539 	features_in.snap_id = cpu_to_le64(snap_id);
5540 	features_in.read_only = read_only;
5541 
5542 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5543 				  &rbd_dev->header_oloc, "get_features",
5544 				  &features_in, sizeof(features_in),
5545 				  &features_buf, sizeof(features_buf));
5546 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5547 	if (ret < 0)
5548 		return ret;
5549 	if (ret < sizeof (features_buf))
5550 		return -ERANGE;
5551 
5552 	unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5553 	if (unsup) {
5554 		rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5555 			 unsup);
5556 		return -ENXIO;
5557 	}
5558 
5559 	*snap_features = le64_to_cpu(features_buf.features);
5560 
5561 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5562 		(unsigned long long)snap_id,
5563 		(unsigned long long)*snap_features,
5564 		(unsigned long long)le64_to_cpu(features_buf.incompat));
5565 
5566 	return 0;
5567 }
5568 
5569 /*
5570  * These are generic image flags, but since they are used only for
5571  * object map, store them in rbd_dev->object_map_flags.
5572  *
5573  * For the same reason, this function is called only on object map
5574  * (re)load and not on header refresh.
5575  */
rbd_dev_v2_get_flags(struct rbd_device * rbd_dev)5576 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5577 {
5578 	__le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5579 	__le64 flags;
5580 	int ret;
5581 
5582 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5583 				  &rbd_dev->header_oloc, "get_flags",
5584 				  &snapid, sizeof(snapid),
5585 				  &flags, sizeof(flags));
5586 	if (ret < 0)
5587 		return ret;
5588 	if (ret < sizeof(flags))
5589 		return -EBADMSG;
5590 
5591 	rbd_dev->object_map_flags = le64_to_cpu(flags);
5592 	return 0;
5593 }
5594 
5595 struct parent_image_info {
5596 	u64		pool_id;
5597 	const char	*pool_ns;
5598 	const char	*image_id;
5599 	u64		snap_id;
5600 
5601 	bool		has_overlap;
5602 	u64		overlap;
5603 };
5604 
rbd_parent_info_cleanup(struct parent_image_info * pii)5605 static void rbd_parent_info_cleanup(struct parent_image_info *pii)
5606 {
5607 	kfree(pii->pool_ns);
5608 	kfree(pii->image_id);
5609 
5610 	memset(pii, 0, sizeof(*pii));
5611 }
5612 
5613 /*
5614  * The caller is responsible for @pii.
5615  */
decode_parent_image_spec(void ** p,void * end,struct parent_image_info * pii)5616 static int decode_parent_image_spec(void **p, void *end,
5617 				    struct parent_image_info *pii)
5618 {
5619 	u8 struct_v;
5620 	u32 struct_len;
5621 	int ret;
5622 
5623 	ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5624 				  &struct_v, &struct_len);
5625 	if (ret)
5626 		return ret;
5627 
5628 	ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5629 	pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5630 	if (IS_ERR(pii->pool_ns)) {
5631 		ret = PTR_ERR(pii->pool_ns);
5632 		pii->pool_ns = NULL;
5633 		return ret;
5634 	}
5635 	pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5636 	if (IS_ERR(pii->image_id)) {
5637 		ret = PTR_ERR(pii->image_id);
5638 		pii->image_id = NULL;
5639 		return ret;
5640 	}
5641 	ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5642 	return 0;
5643 
5644 e_inval:
5645 	return -EINVAL;
5646 }
5647 
__get_parent_info(struct rbd_device * rbd_dev,struct page * req_page,struct page * reply_page,struct parent_image_info * pii)5648 static int __get_parent_info(struct rbd_device *rbd_dev,
5649 			     struct page *req_page,
5650 			     struct page *reply_page,
5651 			     struct parent_image_info *pii)
5652 {
5653 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5654 	size_t reply_len = PAGE_SIZE;
5655 	void *p, *end;
5656 	int ret;
5657 
5658 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5659 			     "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5660 			     req_page, sizeof(u64), &reply_page, &reply_len);
5661 	if (ret)
5662 		return ret == -EOPNOTSUPP ? 1 : ret;
5663 
5664 	p = page_address(reply_page);
5665 	end = p + reply_len;
5666 	ret = decode_parent_image_spec(&p, end, pii);
5667 	if (ret)
5668 		return ret;
5669 
5670 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5671 			     "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5672 			     req_page, sizeof(u64), &reply_page, &reply_len);
5673 	if (ret)
5674 		return ret;
5675 
5676 	p = page_address(reply_page);
5677 	end = p + reply_len;
5678 	ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5679 	if (pii->has_overlap)
5680 		ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5681 
5682 	dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5683 	     __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id,
5684 	     pii->has_overlap, pii->overlap);
5685 	return 0;
5686 
5687 e_inval:
5688 	return -EINVAL;
5689 }
5690 
5691 /*
5692  * The caller is responsible for @pii.
5693  */
__get_parent_info_legacy(struct rbd_device * rbd_dev,struct page * req_page,struct page * reply_page,struct parent_image_info * pii)5694 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5695 				    struct page *req_page,
5696 				    struct page *reply_page,
5697 				    struct parent_image_info *pii)
5698 {
5699 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5700 	size_t reply_len = PAGE_SIZE;
5701 	void *p, *end;
5702 	int ret;
5703 
5704 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5705 			     "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5706 			     req_page, sizeof(u64), &reply_page, &reply_len);
5707 	if (ret)
5708 		return ret;
5709 
5710 	p = page_address(reply_page);
5711 	end = p + reply_len;
5712 	ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5713 	pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5714 	if (IS_ERR(pii->image_id)) {
5715 		ret = PTR_ERR(pii->image_id);
5716 		pii->image_id = NULL;
5717 		return ret;
5718 	}
5719 	ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5720 	pii->has_overlap = true;
5721 	ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5722 
5723 	dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5724 	     __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id,
5725 	     pii->has_overlap, pii->overlap);
5726 	return 0;
5727 
5728 e_inval:
5729 	return -EINVAL;
5730 }
5731 
rbd_dev_v2_parent_info(struct rbd_device * rbd_dev,struct parent_image_info * pii)5732 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev,
5733 				  struct parent_image_info *pii)
5734 {
5735 	struct page *req_page, *reply_page;
5736 	void *p;
5737 	int ret;
5738 
5739 	req_page = alloc_page(GFP_KERNEL);
5740 	if (!req_page)
5741 		return -ENOMEM;
5742 
5743 	reply_page = alloc_page(GFP_KERNEL);
5744 	if (!reply_page) {
5745 		__free_page(req_page);
5746 		return -ENOMEM;
5747 	}
5748 
5749 	p = page_address(req_page);
5750 	ceph_encode_64(&p, rbd_dev->spec->snap_id);
5751 	ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5752 	if (ret > 0)
5753 		ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5754 					       pii);
5755 
5756 	__free_page(req_page);
5757 	__free_page(reply_page);
5758 	return ret;
5759 }
5760 
rbd_dev_setup_parent(struct rbd_device * rbd_dev)5761 static int rbd_dev_setup_parent(struct rbd_device *rbd_dev)
5762 {
5763 	struct rbd_spec *parent_spec;
5764 	struct parent_image_info pii = { 0 };
5765 	int ret;
5766 
5767 	parent_spec = rbd_spec_alloc();
5768 	if (!parent_spec)
5769 		return -ENOMEM;
5770 
5771 	ret = rbd_dev_v2_parent_info(rbd_dev, &pii);
5772 	if (ret)
5773 		goto out_err;
5774 
5775 	if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap)
5776 		goto out;	/* No parent?  No problem. */
5777 
5778 	/* The ceph file layout needs to fit pool id in 32 bits */
5779 
5780 	ret = -EIO;
5781 	if (pii.pool_id > (u64)U32_MAX) {
5782 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5783 			(unsigned long long)pii.pool_id, U32_MAX);
5784 		goto out_err;
5785 	}
5786 
5787 	/*
5788 	 * The parent won't change except when the clone is flattened,
5789 	 * so we only need to record the parent image spec once.
5790 	 */
5791 	parent_spec->pool_id = pii.pool_id;
5792 	if (pii.pool_ns && *pii.pool_ns) {
5793 		parent_spec->pool_ns = pii.pool_ns;
5794 		pii.pool_ns = NULL;
5795 	}
5796 	parent_spec->image_id = pii.image_id;
5797 	pii.image_id = NULL;
5798 	parent_spec->snap_id = pii.snap_id;
5799 
5800 	rbd_assert(!rbd_dev->parent_spec);
5801 	rbd_dev->parent_spec = parent_spec;
5802 	parent_spec = NULL;	/* rbd_dev now owns this */
5803 
5804 	/*
5805 	 * Record the parent overlap.  If it's zero, issue a warning as
5806 	 * we will proceed as if there is no parent.
5807 	 */
5808 	if (!pii.overlap)
5809 		rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5810 	rbd_dev->parent_overlap = pii.overlap;
5811 
5812 out:
5813 	ret = 0;
5814 out_err:
5815 	rbd_parent_info_cleanup(&pii);
5816 	rbd_spec_put(parent_spec);
5817 	return ret;
5818 }
5819 
rbd_dev_v2_striping_info(struct rbd_device * rbd_dev,u64 * stripe_unit,u64 * stripe_count)5820 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev,
5821 				    u64 *stripe_unit, u64 *stripe_count)
5822 {
5823 	struct {
5824 		__le64 stripe_unit;
5825 		__le64 stripe_count;
5826 	} __attribute__ ((packed)) striping_info_buf = { 0 };
5827 	size_t size = sizeof (striping_info_buf);
5828 	int ret;
5829 
5830 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5831 				&rbd_dev->header_oloc, "get_stripe_unit_count",
5832 				NULL, 0, &striping_info_buf, size);
5833 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5834 	if (ret < 0)
5835 		return ret;
5836 	if (ret < size)
5837 		return -ERANGE;
5838 
5839 	*stripe_unit = le64_to_cpu(striping_info_buf.stripe_unit);
5840 	*stripe_count = le64_to_cpu(striping_info_buf.stripe_count);
5841 	dout("  stripe_unit = %llu stripe_count = %llu\n", *stripe_unit,
5842 	     *stripe_count);
5843 
5844 	return 0;
5845 }
5846 
rbd_dev_v2_data_pool(struct rbd_device * rbd_dev,s64 * data_pool_id)5847 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev, s64 *data_pool_id)
5848 {
5849 	__le64 data_pool_buf;
5850 	int ret;
5851 
5852 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5853 				  &rbd_dev->header_oloc, "get_data_pool",
5854 				  NULL, 0, &data_pool_buf,
5855 				  sizeof(data_pool_buf));
5856 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5857 	if (ret < 0)
5858 		return ret;
5859 	if (ret < sizeof(data_pool_buf))
5860 		return -EBADMSG;
5861 
5862 	*data_pool_id = le64_to_cpu(data_pool_buf);
5863 	dout("  data_pool_id = %lld\n", *data_pool_id);
5864 	WARN_ON(*data_pool_id == CEPH_NOPOOL);
5865 
5866 	return 0;
5867 }
5868 
rbd_dev_image_name(struct rbd_device * rbd_dev)5869 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5870 {
5871 	CEPH_DEFINE_OID_ONSTACK(oid);
5872 	size_t image_id_size;
5873 	char *image_id;
5874 	void *p;
5875 	void *end;
5876 	size_t size;
5877 	void *reply_buf = NULL;
5878 	size_t len = 0;
5879 	char *image_name = NULL;
5880 	int ret;
5881 
5882 	rbd_assert(!rbd_dev->spec->image_name);
5883 
5884 	len = strlen(rbd_dev->spec->image_id);
5885 	image_id_size = sizeof (__le32) + len;
5886 	image_id = kmalloc(image_id_size, GFP_KERNEL);
5887 	if (!image_id)
5888 		return NULL;
5889 
5890 	p = image_id;
5891 	end = image_id + image_id_size;
5892 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5893 
5894 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5895 	reply_buf = kmalloc(size, GFP_KERNEL);
5896 	if (!reply_buf)
5897 		goto out;
5898 
5899 	ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5900 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5901 				  "dir_get_name", image_id, image_id_size,
5902 				  reply_buf, size);
5903 	if (ret < 0)
5904 		goto out;
5905 	p = reply_buf;
5906 	end = reply_buf + ret;
5907 
5908 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5909 	if (IS_ERR(image_name))
5910 		image_name = NULL;
5911 	else
5912 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5913 out:
5914 	kfree(reply_buf);
5915 	kfree(image_id);
5916 
5917 	return image_name;
5918 }
5919 
rbd_v1_snap_id_by_name(struct rbd_device * rbd_dev,const char * name)5920 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5921 {
5922 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5923 	const char *snap_name;
5924 	u32 which = 0;
5925 
5926 	/* Skip over names until we find the one we are looking for */
5927 
5928 	snap_name = rbd_dev->header.snap_names;
5929 	while (which < snapc->num_snaps) {
5930 		if (!strcmp(name, snap_name))
5931 			return snapc->snaps[which];
5932 		snap_name += strlen(snap_name) + 1;
5933 		which++;
5934 	}
5935 	return CEPH_NOSNAP;
5936 }
5937 
rbd_v2_snap_id_by_name(struct rbd_device * rbd_dev,const char * name)5938 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5939 {
5940 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5941 	u32 which;
5942 	bool found = false;
5943 	u64 snap_id;
5944 
5945 	for (which = 0; !found && which < snapc->num_snaps; which++) {
5946 		const char *snap_name;
5947 
5948 		snap_id = snapc->snaps[which];
5949 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5950 		if (IS_ERR(snap_name)) {
5951 			/* ignore no-longer existing snapshots */
5952 			if (PTR_ERR(snap_name) == -ENOENT)
5953 				continue;
5954 			else
5955 				break;
5956 		}
5957 		found = !strcmp(name, snap_name);
5958 		kfree(snap_name);
5959 	}
5960 	return found ? snap_id : CEPH_NOSNAP;
5961 }
5962 
5963 /*
5964  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5965  * no snapshot by that name is found, or if an error occurs.
5966  */
rbd_snap_id_by_name(struct rbd_device * rbd_dev,const char * name)5967 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5968 {
5969 	if (rbd_dev->image_format == 1)
5970 		return rbd_v1_snap_id_by_name(rbd_dev, name);
5971 
5972 	return rbd_v2_snap_id_by_name(rbd_dev, name);
5973 }
5974 
5975 /*
5976  * An image being mapped will have everything but the snap id.
5977  */
rbd_spec_fill_snap_id(struct rbd_device * rbd_dev)5978 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5979 {
5980 	struct rbd_spec *spec = rbd_dev->spec;
5981 
5982 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5983 	rbd_assert(spec->image_id && spec->image_name);
5984 	rbd_assert(spec->snap_name);
5985 
5986 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5987 		u64 snap_id;
5988 
5989 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5990 		if (snap_id == CEPH_NOSNAP)
5991 			return -ENOENT;
5992 
5993 		spec->snap_id = snap_id;
5994 	} else {
5995 		spec->snap_id = CEPH_NOSNAP;
5996 	}
5997 
5998 	return 0;
5999 }
6000 
6001 /*
6002  * A parent image will have all ids but none of the names.
6003  *
6004  * All names in an rbd spec are dynamically allocated.  It's OK if we
6005  * can't figure out the name for an image id.
6006  */
rbd_spec_fill_names(struct rbd_device * rbd_dev)6007 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
6008 {
6009 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6010 	struct rbd_spec *spec = rbd_dev->spec;
6011 	const char *pool_name;
6012 	const char *image_name;
6013 	const char *snap_name;
6014 	int ret;
6015 
6016 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
6017 	rbd_assert(spec->image_id);
6018 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
6019 
6020 	/* Get the pool name; we have to make our own copy of this */
6021 
6022 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6023 	if (!pool_name) {
6024 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6025 		return -EIO;
6026 	}
6027 	pool_name = kstrdup(pool_name, GFP_KERNEL);
6028 	if (!pool_name)
6029 		return -ENOMEM;
6030 
6031 	/* Fetch the image name; tolerate failure here */
6032 
6033 	image_name = rbd_dev_image_name(rbd_dev);
6034 	if (!image_name)
6035 		rbd_warn(rbd_dev, "unable to get image name");
6036 
6037 	/* Fetch the snapshot name */
6038 
6039 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6040 	if (IS_ERR(snap_name)) {
6041 		ret = PTR_ERR(snap_name);
6042 		goto out_err;
6043 	}
6044 
6045 	spec->pool_name = pool_name;
6046 	spec->image_name = image_name;
6047 	spec->snap_name = snap_name;
6048 
6049 	return 0;
6050 
6051 out_err:
6052 	kfree(image_name);
6053 	kfree(pool_name);
6054 	return ret;
6055 }
6056 
rbd_dev_v2_snap_context(struct rbd_device * rbd_dev,struct ceph_snap_context ** psnapc)6057 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev,
6058 				   struct ceph_snap_context **psnapc)
6059 {
6060 	size_t size;
6061 	int ret;
6062 	void *reply_buf;
6063 	void *p;
6064 	void *end;
6065 	u64 seq;
6066 	u32 snap_count;
6067 	struct ceph_snap_context *snapc;
6068 	u32 i;
6069 
6070 	/*
6071 	 * We'll need room for the seq value (maximum snapshot id),
6072 	 * snapshot count, and array of that many snapshot ids.
6073 	 * For now we have a fixed upper limit on the number we're
6074 	 * prepared to receive.
6075 	 */
6076 	size = sizeof (__le64) + sizeof (__le32) +
6077 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
6078 	reply_buf = kzalloc(size, GFP_KERNEL);
6079 	if (!reply_buf)
6080 		return -ENOMEM;
6081 
6082 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6083 				  &rbd_dev->header_oloc, "get_snapcontext",
6084 				  NULL, 0, reply_buf, size);
6085 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6086 	if (ret < 0)
6087 		goto out;
6088 
6089 	p = reply_buf;
6090 	end = reply_buf + ret;
6091 	ret = -ERANGE;
6092 	ceph_decode_64_safe(&p, end, seq, out);
6093 	ceph_decode_32_safe(&p, end, snap_count, out);
6094 
6095 	/*
6096 	 * Make sure the reported number of snapshot ids wouldn't go
6097 	 * beyond the end of our buffer.  But before checking that,
6098 	 * make sure the computed size of the snapshot context we
6099 	 * allocate is representable in a size_t.
6100 	 */
6101 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6102 				 / sizeof (u64)) {
6103 		ret = -EINVAL;
6104 		goto out;
6105 	}
6106 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6107 		goto out;
6108 	ret = 0;
6109 
6110 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6111 	if (!snapc) {
6112 		ret = -ENOMEM;
6113 		goto out;
6114 	}
6115 	snapc->seq = seq;
6116 	for (i = 0; i < snap_count; i++)
6117 		snapc->snaps[i] = ceph_decode_64(&p);
6118 
6119 	*psnapc = snapc;
6120 	dout("  snap context seq = %llu, snap_count = %u\n",
6121 		(unsigned long long)seq, (unsigned int)snap_count);
6122 out:
6123 	kfree(reply_buf);
6124 
6125 	return ret;
6126 }
6127 
rbd_dev_v2_snap_name(struct rbd_device * rbd_dev,u64 snap_id)6128 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6129 					u64 snap_id)
6130 {
6131 	size_t size;
6132 	void *reply_buf;
6133 	__le64 snapid;
6134 	int ret;
6135 	void *p;
6136 	void *end;
6137 	char *snap_name;
6138 
6139 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6140 	reply_buf = kmalloc(size, GFP_KERNEL);
6141 	if (!reply_buf)
6142 		return ERR_PTR(-ENOMEM);
6143 
6144 	snapid = cpu_to_le64(snap_id);
6145 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6146 				  &rbd_dev->header_oloc, "get_snapshot_name",
6147 				  &snapid, sizeof(snapid), reply_buf, size);
6148 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6149 	if (ret < 0) {
6150 		snap_name = ERR_PTR(ret);
6151 		goto out;
6152 	}
6153 
6154 	p = reply_buf;
6155 	end = reply_buf + ret;
6156 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6157 	if (IS_ERR(snap_name))
6158 		goto out;
6159 
6160 	dout("  snap_id 0x%016llx snap_name = %s\n",
6161 		(unsigned long long)snap_id, snap_name);
6162 out:
6163 	kfree(reply_buf);
6164 
6165 	return snap_name;
6166 }
6167 
rbd_dev_v2_header_info(struct rbd_device * rbd_dev,struct rbd_image_header * header,bool first_time)6168 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev,
6169 				  struct rbd_image_header *header,
6170 				  bool first_time)
6171 {
6172 	int ret;
6173 
6174 	ret = _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
6175 				    first_time ? &header->obj_order : NULL,
6176 				    &header->image_size);
6177 	if (ret)
6178 		return ret;
6179 
6180 	if (first_time) {
6181 		ret = rbd_dev_v2_header_onetime(rbd_dev, header);
6182 		if (ret)
6183 			return ret;
6184 	}
6185 
6186 	ret = rbd_dev_v2_snap_context(rbd_dev, &header->snapc);
6187 	if (ret)
6188 		return ret;
6189 
6190 	return 0;
6191 }
6192 
rbd_dev_header_info(struct rbd_device * rbd_dev,struct rbd_image_header * header,bool first_time)6193 static int rbd_dev_header_info(struct rbd_device *rbd_dev,
6194 			       struct rbd_image_header *header,
6195 			       bool first_time)
6196 {
6197 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6198 	rbd_assert(!header->object_prefix && !header->snapc);
6199 
6200 	if (rbd_dev->image_format == 1)
6201 		return rbd_dev_v1_header_info(rbd_dev, header, first_time);
6202 
6203 	return rbd_dev_v2_header_info(rbd_dev, header, first_time);
6204 }
6205 
6206 /*
6207  * Skips over white space at *buf, and updates *buf to point to the
6208  * first found non-space character (if any). Returns the length of
6209  * the token (string of non-white space characters) found.  Note
6210  * that *buf must be terminated with '\0'.
6211  */
next_token(const char ** buf)6212 static inline size_t next_token(const char **buf)
6213 {
6214         /*
6215         * These are the characters that produce nonzero for
6216         * isspace() in the "C" and "POSIX" locales.
6217         */
6218 	static const char spaces[] = " \f\n\r\t\v";
6219 
6220         *buf += strspn(*buf, spaces);	/* Find start of token */
6221 
6222 	return strcspn(*buf, spaces);   /* Return token length */
6223 }
6224 
6225 /*
6226  * Finds the next token in *buf, dynamically allocates a buffer big
6227  * enough to hold a copy of it, and copies the token into the new
6228  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
6229  * that a duplicate buffer is created even for a zero-length token.
6230  *
6231  * Returns a pointer to the newly-allocated duplicate, or a null
6232  * pointer if memory for the duplicate was not available.  If
6233  * the lenp argument is a non-null pointer, the length of the token
6234  * (not including the '\0') is returned in *lenp.
6235  *
6236  * If successful, the *buf pointer will be updated to point beyond
6237  * the end of the found token.
6238  *
6239  * Note: uses GFP_KERNEL for allocation.
6240  */
dup_token(const char ** buf,size_t * lenp)6241 static inline char *dup_token(const char **buf, size_t *lenp)
6242 {
6243 	char *dup;
6244 	size_t len;
6245 
6246 	len = next_token(buf);
6247 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6248 	if (!dup)
6249 		return NULL;
6250 	*(dup + len) = '\0';
6251 	*buf += len;
6252 
6253 	if (lenp)
6254 		*lenp = len;
6255 
6256 	return dup;
6257 }
6258 
rbd_parse_param(struct fs_parameter * param,struct rbd_parse_opts_ctx * pctx)6259 static int rbd_parse_param(struct fs_parameter *param,
6260 			    struct rbd_parse_opts_ctx *pctx)
6261 {
6262 	struct rbd_options *opt = pctx->opts;
6263 	struct fs_parse_result result;
6264 	struct p_log log = {.prefix = "rbd"};
6265 	int token, ret;
6266 
6267 	ret = ceph_parse_param(param, pctx->copts, NULL);
6268 	if (ret != -ENOPARAM)
6269 		return ret;
6270 
6271 	token = __fs_parse(&log, rbd_parameters, param, &result);
6272 	dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6273 	if (token < 0) {
6274 		if (token == -ENOPARAM)
6275 			return inval_plog(&log, "Unknown parameter '%s'",
6276 					  param->key);
6277 		return token;
6278 	}
6279 
6280 	switch (token) {
6281 	case Opt_queue_depth:
6282 		if (result.uint_32 < 1)
6283 			goto out_of_range;
6284 		opt->queue_depth = result.uint_32;
6285 		break;
6286 	case Opt_alloc_size:
6287 		if (result.uint_32 < SECTOR_SIZE)
6288 			goto out_of_range;
6289 		if (!is_power_of_2(result.uint_32))
6290 			return inval_plog(&log, "alloc_size must be a power of 2");
6291 		opt->alloc_size = result.uint_32;
6292 		break;
6293 	case Opt_lock_timeout:
6294 		/* 0 is "wait forever" (i.e. infinite timeout) */
6295 		if (result.uint_32 > INT_MAX / 1000)
6296 			goto out_of_range;
6297 		opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6298 		break;
6299 	case Opt_pool_ns:
6300 		kfree(pctx->spec->pool_ns);
6301 		pctx->spec->pool_ns = param->string;
6302 		param->string = NULL;
6303 		break;
6304 	case Opt_compression_hint:
6305 		switch (result.uint_32) {
6306 		case Opt_compression_hint_none:
6307 			opt->alloc_hint_flags &=
6308 			    ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6309 			      CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6310 			break;
6311 		case Opt_compression_hint_compressible:
6312 			opt->alloc_hint_flags |=
6313 			    CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6314 			opt->alloc_hint_flags &=
6315 			    ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6316 			break;
6317 		case Opt_compression_hint_incompressible:
6318 			opt->alloc_hint_flags |=
6319 			    CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6320 			opt->alloc_hint_flags &=
6321 			    ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6322 			break;
6323 		default:
6324 			BUG();
6325 		}
6326 		break;
6327 	case Opt_read_only:
6328 		opt->read_only = true;
6329 		break;
6330 	case Opt_read_write:
6331 		opt->read_only = false;
6332 		break;
6333 	case Opt_lock_on_read:
6334 		opt->lock_on_read = true;
6335 		break;
6336 	case Opt_exclusive:
6337 		opt->exclusive = true;
6338 		break;
6339 	case Opt_notrim:
6340 		opt->trim = false;
6341 		break;
6342 	default:
6343 		BUG();
6344 	}
6345 
6346 	return 0;
6347 
6348 out_of_range:
6349 	return inval_plog(&log, "%s out of range", param->key);
6350 }
6351 
6352 /*
6353  * This duplicates most of generic_parse_monolithic(), untying it from
6354  * fs_context and skipping standard superblock and security options.
6355  */
rbd_parse_options(char * options,struct rbd_parse_opts_ctx * pctx)6356 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6357 {
6358 	char *key;
6359 	int ret = 0;
6360 
6361 	dout("%s '%s'\n", __func__, options);
6362 	while ((key = strsep(&options, ",")) != NULL) {
6363 		if (*key) {
6364 			struct fs_parameter param = {
6365 				.key	= key,
6366 				.type	= fs_value_is_flag,
6367 			};
6368 			char *value = strchr(key, '=');
6369 			size_t v_len = 0;
6370 
6371 			if (value) {
6372 				if (value == key)
6373 					continue;
6374 				*value++ = 0;
6375 				v_len = strlen(value);
6376 				param.string = kmemdup_nul(value, v_len,
6377 							   GFP_KERNEL);
6378 				if (!param.string)
6379 					return -ENOMEM;
6380 				param.type = fs_value_is_string;
6381 			}
6382 			param.size = v_len;
6383 
6384 			ret = rbd_parse_param(&param, pctx);
6385 			kfree(param.string);
6386 			if (ret)
6387 				break;
6388 		}
6389 	}
6390 
6391 	return ret;
6392 }
6393 
6394 /*
6395  * Parse the options provided for an "rbd add" (i.e., rbd image
6396  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
6397  * and the data written is passed here via a NUL-terminated buffer.
6398  * Returns 0 if successful or an error code otherwise.
6399  *
6400  * The information extracted from these options is recorded in
6401  * the other parameters which return dynamically-allocated
6402  * structures:
6403  *  ceph_opts
6404  *      The address of a pointer that will refer to a ceph options
6405  *      structure.  Caller must release the returned pointer using
6406  *      ceph_destroy_options() when it is no longer needed.
6407  *  rbd_opts
6408  *	Address of an rbd options pointer.  Fully initialized by
6409  *	this function; caller must release with kfree().
6410  *  spec
6411  *	Address of an rbd image specification pointer.  Fully
6412  *	initialized by this function based on parsed options.
6413  *	Caller must release with rbd_spec_put().
6414  *
6415  * The options passed take this form:
6416  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6417  * where:
6418  *  <mon_addrs>
6419  *      A comma-separated list of one or more monitor addresses.
6420  *      A monitor address is an ip address, optionally followed
6421  *      by a port number (separated by a colon).
6422  *        I.e.:  ip1[:port1][,ip2[:port2]...]
6423  *  <options>
6424  *      A comma-separated list of ceph and/or rbd options.
6425  *  <pool_name>
6426  *      The name of the rados pool containing the rbd image.
6427  *  <image_name>
6428  *      The name of the image in that pool to map.
6429  *  <snap_id>
6430  *      An optional snapshot id.  If provided, the mapping will
6431  *      present data from the image at the time that snapshot was
6432  *      created.  The image head is used if no snapshot id is
6433  *      provided.  Snapshot mappings are always read-only.
6434  */
rbd_add_parse_args(const char * buf,struct ceph_options ** ceph_opts,struct rbd_options ** opts,struct rbd_spec ** rbd_spec)6435 static int rbd_add_parse_args(const char *buf,
6436 				struct ceph_options **ceph_opts,
6437 				struct rbd_options **opts,
6438 				struct rbd_spec **rbd_spec)
6439 {
6440 	size_t len;
6441 	char *options;
6442 	const char *mon_addrs;
6443 	char *snap_name;
6444 	size_t mon_addrs_size;
6445 	struct rbd_parse_opts_ctx pctx = { 0 };
6446 	int ret;
6447 
6448 	/* The first four tokens are required */
6449 
6450 	len = next_token(&buf);
6451 	if (!len) {
6452 		rbd_warn(NULL, "no monitor address(es) provided");
6453 		return -EINVAL;
6454 	}
6455 	mon_addrs = buf;
6456 	mon_addrs_size = len;
6457 	buf += len;
6458 
6459 	ret = -EINVAL;
6460 	options = dup_token(&buf, NULL);
6461 	if (!options)
6462 		return -ENOMEM;
6463 	if (!*options) {
6464 		rbd_warn(NULL, "no options provided");
6465 		goto out_err;
6466 	}
6467 
6468 	pctx.spec = rbd_spec_alloc();
6469 	if (!pctx.spec)
6470 		goto out_mem;
6471 
6472 	pctx.spec->pool_name = dup_token(&buf, NULL);
6473 	if (!pctx.spec->pool_name)
6474 		goto out_mem;
6475 	if (!*pctx.spec->pool_name) {
6476 		rbd_warn(NULL, "no pool name provided");
6477 		goto out_err;
6478 	}
6479 
6480 	pctx.spec->image_name = dup_token(&buf, NULL);
6481 	if (!pctx.spec->image_name)
6482 		goto out_mem;
6483 	if (!*pctx.spec->image_name) {
6484 		rbd_warn(NULL, "no image name provided");
6485 		goto out_err;
6486 	}
6487 
6488 	/*
6489 	 * Snapshot name is optional; default is to use "-"
6490 	 * (indicating the head/no snapshot).
6491 	 */
6492 	len = next_token(&buf);
6493 	if (!len) {
6494 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6495 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6496 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
6497 		ret = -ENAMETOOLONG;
6498 		goto out_err;
6499 	}
6500 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6501 	if (!snap_name)
6502 		goto out_mem;
6503 	*(snap_name + len) = '\0';
6504 	pctx.spec->snap_name = snap_name;
6505 
6506 	pctx.copts = ceph_alloc_options();
6507 	if (!pctx.copts)
6508 		goto out_mem;
6509 
6510 	/* Initialize all rbd options to the defaults */
6511 
6512 	pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6513 	if (!pctx.opts)
6514 		goto out_mem;
6515 
6516 	pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6517 	pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6518 	pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6519 	pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6520 	pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6521 	pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6522 	pctx.opts->trim = RBD_TRIM_DEFAULT;
6523 
6524 	ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL,
6525 				 ',');
6526 	if (ret)
6527 		goto out_err;
6528 
6529 	ret = rbd_parse_options(options, &pctx);
6530 	if (ret)
6531 		goto out_err;
6532 
6533 	*ceph_opts = pctx.copts;
6534 	*opts = pctx.opts;
6535 	*rbd_spec = pctx.spec;
6536 	kfree(options);
6537 	return 0;
6538 
6539 out_mem:
6540 	ret = -ENOMEM;
6541 out_err:
6542 	kfree(pctx.opts);
6543 	ceph_destroy_options(pctx.copts);
6544 	rbd_spec_put(pctx.spec);
6545 	kfree(options);
6546 	return ret;
6547 }
6548 
rbd_dev_image_unlock(struct rbd_device * rbd_dev)6549 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6550 {
6551 	down_write(&rbd_dev->lock_rwsem);
6552 	if (__rbd_is_lock_owner(rbd_dev))
6553 		__rbd_release_lock(rbd_dev);
6554 	up_write(&rbd_dev->lock_rwsem);
6555 }
6556 
6557 /*
6558  * If the wait is interrupted, an error is returned even if the lock
6559  * was successfully acquired.  rbd_dev_image_unlock() will release it
6560  * if needed.
6561  */
rbd_add_acquire_lock(struct rbd_device * rbd_dev)6562 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6563 {
6564 	long ret;
6565 
6566 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6567 		if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6568 			return 0;
6569 
6570 		rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6571 		return -EINVAL;
6572 	}
6573 
6574 	if (rbd_is_ro(rbd_dev))
6575 		return 0;
6576 
6577 	rbd_assert(!rbd_is_lock_owner(rbd_dev));
6578 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6579 	ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6580 			    ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6581 	if (ret > 0) {
6582 		ret = rbd_dev->acquire_err;
6583 	} else {
6584 		cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6585 		if (!ret)
6586 			ret = -ETIMEDOUT;
6587 
6588 		rbd_warn(rbd_dev, "failed to acquire lock: %ld", ret);
6589 	}
6590 	if (ret)
6591 		return ret;
6592 
6593 	return 0;
6594 }
6595 
6596 /*
6597  * An rbd format 2 image has a unique identifier, distinct from the
6598  * name given to it by the user.  Internally, that identifier is
6599  * what's used to specify the names of objects related to the image.
6600  *
6601  * A special "rbd id" object is used to map an rbd image name to its
6602  * id.  If that object doesn't exist, then there is no v2 rbd image
6603  * with the supplied name.
6604  *
6605  * This function will record the given rbd_dev's image_id field if
6606  * it can be determined, and in that case will return 0.  If any
6607  * errors occur a negative errno will be returned and the rbd_dev's
6608  * image_id field will be unchanged (and should be NULL).
6609  */
rbd_dev_image_id(struct rbd_device * rbd_dev)6610 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6611 {
6612 	int ret;
6613 	size_t size;
6614 	CEPH_DEFINE_OID_ONSTACK(oid);
6615 	void *response;
6616 	char *image_id;
6617 
6618 	/*
6619 	 * When probing a parent image, the image id is already
6620 	 * known (and the image name likely is not).  There's no
6621 	 * need to fetch the image id again in this case.  We
6622 	 * do still need to set the image format though.
6623 	 */
6624 	if (rbd_dev->spec->image_id) {
6625 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6626 
6627 		return 0;
6628 	}
6629 
6630 	/*
6631 	 * First, see if the format 2 image id file exists, and if
6632 	 * so, get the image's persistent id from it.
6633 	 */
6634 	ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6635 			       rbd_dev->spec->image_name);
6636 	if (ret)
6637 		return ret;
6638 
6639 	dout("rbd id object name is %s\n", oid.name);
6640 
6641 	/* Response will be an encoded string, which includes a length */
6642 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6643 	response = kzalloc(size, GFP_NOIO);
6644 	if (!response) {
6645 		ret = -ENOMEM;
6646 		goto out;
6647 	}
6648 
6649 	/* If it doesn't exist we'll assume it's a format 1 image */
6650 
6651 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6652 				  "get_id", NULL, 0,
6653 				  response, size);
6654 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6655 	if (ret == -ENOENT) {
6656 		image_id = kstrdup("", GFP_KERNEL);
6657 		ret = image_id ? 0 : -ENOMEM;
6658 		if (!ret)
6659 			rbd_dev->image_format = 1;
6660 	} else if (ret >= 0) {
6661 		void *p = response;
6662 
6663 		image_id = ceph_extract_encoded_string(&p, p + ret,
6664 						NULL, GFP_NOIO);
6665 		ret = PTR_ERR_OR_ZERO(image_id);
6666 		if (!ret)
6667 			rbd_dev->image_format = 2;
6668 	}
6669 
6670 	if (!ret) {
6671 		rbd_dev->spec->image_id = image_id;
6672 		dout("image_id is %s\n", image_id);
6673 	}
6674 out:
6675 	kfree(response);
6676 	ceph_oid_destroy(&oid);
6677 	return ret;
6678 }
6679 
6680 /*
6681  * Undo whatever state changes are made by v1 or v2 header info
6682  * call.
6683  */
rbd_dev_unprobe(struct rbd_device * rbd_dev)6684 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6685 {
6686 	rbd_dev_parent_put(rbd_dev);
6687 	rbd_object_map_free(rbd_dev);
6688 	rbd_dev_mapping_clear(rbd_dev);
6689 
6690 	/* Free dynamic fields from the header, then zero it out */
6691 
6692 	rbd_image_header_cleanup(&rbd_dev->header);
6693 }
6694 
rbd_dev_v2_header_onetime(struct rbd_device * rbd_dev,struct rbd_image_header * header)6695 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev,
6696 				     struct rbd_image_header *header)
6697 {
6698 	int ret;
6699 
6700 	ret = rbd_dev_v2_object_prefix(rbd_dev, &header->object_prefix);
6701 	if (ret)
6702 		return ret;
6703 
6704 	/*
6705 	 * Get the and check features for the image.  Currently the
6706 	 * features are assumed to never change.
6707 	 */
6708 	ret = _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
6709 					rbd_is_ro(rbd_dev), &header->features);
6710 	if (ret)
6711 		return ret;
6712 
6713 	/* If the image supports fancy striping, get its parameters */
6714 
6715 	if (header->features & RBD_FEATURE_STRIPINGV2) {
6716 		ret = rbd_dev_v2_striping_info(rbd_dev, &header->stripe_unit,
6717 					       &header->stripe_count);
6718 		if (ret)
6719 			return ret;
6720 	}
6721 
6722 	if (header->features & RBD_FEATURE_DATA_POOL) {
6723 		ret = rbd_dev_v2_data_pool(rbd_dev, &header->data_pool_id);
6724 		if (ret)
6725 			return ret;
6726 	}
6727 
6728 	return 0;
6729 }
6730 
6731 /*
6732  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6733  * rbd_dev_image_probe() recursion depth, which means it's also the
6734  * length of the already discovered part of the parent chain.
6735  */
rbd_dev_probe_parent(struct rbd_device * rbd_dev,int depth)6736 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6737 {
6738 	struct rbd_device *parent = NULL;
6739 	int ret;
6740 
6741 	if (!rbd_dev->parent_spec)
6742 		return 0;
6743 
6744 	if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6745 		pr_info("parent chain is too long (%d)\n", depth);
6746 		ret = -EINVAL;
6747 		goto out_err;
6748 	}
6749 
6750 	parent = __rbd_dev_create(rbd_dev->parent_spec);
6751 	if (!parent) {
6752 		ret = -ENOMEM;
6753 		goto out_err;
6754 	}
6755 
6756 	/*
6757 	 * Images related by parent/child relationships always share
6758 	 * rbd_client and spec/parent_spec, so bump their refcounts.
6759 	 */
6760 	parent->rbd_client = __rbd_get_client(rbd_dev->rbd_client);
6761 	parent->spec = rbd_spec_get(rbd_dev->parent_spec);
6762 
6763 	__set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6764 
6765 	ret = rbd_dev_image_probe(parent, depth);
6766 	if (ret < 0)
6767 		goto out_err;
6768 
6769 	rbd_dev->parent = parent;
6770 	atomic_set(&rbd_dev->parent_ref, 1);
6771 	return 0;
6772 
6773 out_err:
6774 	rbd_dev_unparent(rbd_dev);
6775 	rbd_dev_destroy(parent);
6776 	return ret;
6777 }
6778 
rbd_dev_device_release(struct rbd_device * rbd_dev)6779 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6780 {
6781 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6782 	rbd_free_disk(rbd_dev);
6783 	if (!single_major)
6784 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6785 }
6786 
6787 /*
6788  * rbd_dev->header_rwsem must be locked for write and will be unlocked
6789  * upon return.
6790  */
rbd_dev_device_setup(struct rbd_device * rbd_dev)6791 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6792 {
6793 	int ret;
6794 
6795 	/* Record our major and minor device numbers. */
6796 
6797 	if (!single_major) {
6798 		ret = register_blkdev(0, rbd_dev->name);
6799 		if (ret < 0)
6800 			goto err_out_unlock;
6801 
6802 		rbd_dev->major = ret;
6803 		rbd_dev->minor = 0;
6804 	} else {
6805 		rbd_dev->major = rbd_major;
6806 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6807 	}
6808 
6809 	/* Set up the blkdev mapping. */
6810 
6811 	ret = rbd_init_disk(rbd_dev);
6812 	if (ret)
6813 		goto err_out_blkdev;
6814 
6815 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6816 	set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6817 
6818 	ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6819 	if (ret)
6820 		goto err_out_disk;
6821 
6822 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6823 	up_write(&rbd_dev->header_rwsem);
6824 	return 0;
6825 
6826 err_out_disk:
6827 	rbd_free_disk(rbd_dev);
6828 err_out_blkdev:
6829 	if (!single_major)
6830 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6831 err_out_unlock:
6832 	up_write(&rbd_dev->header_rwsem);
6833 	return ret;
6834 }
6835 
rbd_dev_header_name(struct rbd_device * rbd_dev)6836 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6837 {
6838 	struct rbd_spec *spec = rbd_dev->spec;
6839 	int ret;
6840 
6841 	/* Record the header object name for this rbd image. */
6842 
6843 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6844 	if (rbd_dev->image_format == 1)
6845 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6846 				       spec->image_name, RBD_SUFFIX);
6847 	else
6848 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6849 				       RBD_HEADER_PREFIX, spec->image_id);
6850 
6851 	return ret;
6852 }
6853 
rbd_print_dne(struct rbd_device * rbd_dev,bool is_snap)6854 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6855 {
6856 	if (!is_snap) {
6857 		pr_info("image %s/%s%s%s does not exist\n",
6858 			rbd_dev->spec->pool_name,
6859 			rbd_dev->spec->pool_ns ?: "",
6860 			rbd_dev->spec->pool_ns ? "/" : "",
6861 			rbd_dev->spec->image_name);
6862 	} else {
6863 		pr_info("snap %s/%s%s%s@%s does not exist\n",
6864 			rbd_dev->spec->pool_name,
6865 			rbd_dev->spec->pool_ns ?: "",
6866 			rbd_dev->spec->pool_ns ? "/" : "",
6867 			rbd_dev->spec->image_name,
6868 			rbd_dev->spec->snap_name);
6869 	}
6870 }
6871 
rbd_dev_image_release(struct rbd_device * rbd_dev)6872 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6873 {
6874 	if (!rbd_is_ro(rbd_dev))
6875 		rbd_unregister_watch(rbd_dev);
6876 
6877 	rbd_dev_unprobe(rbd_dev);
6878 	rbd_dev->image_format = 0;
6879 	kfree(rbd_dev->spec->image_id);
6880 	rbd_dev->spec->image_id = NULL;
6881 }
6882 
6883 /*
6884  * Probe for the existence of the header object for the given rbd
6885  * device.  If this image is the one being mapped (i.e., not a
6886  * parent), initiate a watch on its header object before using that
6887  * object to get detailed information about the rbd image.
6888  *
6889  * On success, returns with header_rwsem held for write if called
6890  * with @depth == 0.
6891  */
rbd_dev_image_probe(struct rbd_device * rbd_dev,int depth)6892 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6893 {
6894 	bool need_watch = !rbd_is_ro(rbd_dev);
6895 	int ret;
6896 
6897 	/*
6898 	 * Get the id from the image id object.  Unless there's an
6899 	 * error, rbd_dev->spec->image_id will be filled in with
6900 	 * a dynamically-allocated string, and rbd_dev->image_format
6901 	 * will be set to either 1 or 2.
6902 	 */
6903 	ret = rbd_dev_image_id(rbd_dev);
6904 	if (ret)
6905 		return ret;
6906 
6907 	ret = rbd_dev_header_name(rbd_dev);
6908 	if (ret)
6909 		goto err_out_format;
6910 
6911 	if (need_watch) {
6912 		ret = rbd_register_watch(rbd_dev);
6913 		if (ret) {
6914 			if (ret == -ENOENT)
6915 				rbd_print_dne(rbd_dev, false);
6916 			goto err_out_format;
6917 		}
6918 	}
6919 
6920 	if (!depth)
6921 		down_write(&rbd_dev->header_rwsem);
6922 
6923 	ret = rbd_dev_header_info(rbd_dev, &rbd_dev->header, true);
6924 	if (ret) {
6925 		if (ret == -ENOENT && !need_watch)
6926 			rbd_print_dne(rbd_dev, false);
6927 		goto err_out_probe;
6928 	}
6929 
6930 	rbd_init_layout(rbd_dev);
6931 
6932 	/*
6933 	 * If this image is the one being mapped, we have pool name and
6934 	 * id, image name and id, and snap name - need to fill snap id.
6935 	 * Otherwise this is a parent image, identified by pool, image
6936 	 * and snap ids - need to fill in names for those ids.
6937 	 */
6938 	if (!depth)
6939 		ret = rbd_spec_fill_snap_id(rbd_dev);
6940 	else
6941 		ret = rbd_spec_fill_names(rbd_dev);
6942 	if (ret) {
6943 		if (ret == -ENOENT)
6944 			rbd_print_dne(rbd_dev, true);
6945 		goto err_out_probe;
6946 	}
6947 
6948 	ret = rbd_dev_mapping_set(rbd_dev);
6949 	if (ret)
6950 		goto err_out_probe;
6951 
6952 	if (rbd_is_snap(rbd_dev) &&
6953 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
6954 		ret = rbd_object_map_load(rbd_dev);
6955 		if (ret)
6956 			goto err_out_probe;
6957 	}
6958 
6959 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6960 		ret = rbd_dev_setup_parent(rbd_dev);
6961 		if (ret)
6962 			goto err_out_probe;
6963 	}
6964 
6965 	ret = rbd_dev_probe_parent(rbd_dev, depth);
6966 	if (ret)
6967 		goto err_out_probe;
6968 
6969 	dout("discovered format %u image, header name is %s\n",
6970 		rbd_dev->image_format, rbd_dev->header_oid.name);
6971 	return 0;
6972 
6973 err_out_probe:
6974 	if (!depth)
6975 		up_write(&rbd_dev->header_rwsem);
6976 	if (need_watch)
6977 		rbd_unregister_watch(rbd_dev);
6978 	rbd_dev_unprobe(rbd_dev);
6979 err_out_format:
6980 	rbd_dev->image_format = 0;
6981 	kfree(rbd_dev->spec->image_id);
6982 	rbd_dev->spec->image_id = NULL;
6983 	return ret;
6984 }
6985 
rbd_dev_update_header(struct rbd_device * rbd_dev,struct rbd_image_header * header)6986 static void rbd_dev_update_header(struct rbd_device *rbd_dev,
6987 				  struct rbd_image_header *header)
6988 {
6989 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6990 	rbd_assert(rbd_dev->header.object_prefix); /* !first_time */
6991 
6992 	if (rbd_dev->header.image_size != header->image_size) {
6993 		rbd_dev->header.image_size = header->image_size;
6994 
6995 		if (!rbd_is_snap(rbd_dev)) {
6996 			rbd_dev->mapping.size = header->image_size;
6997 			rbd_dev_update_size(rbd_dev);
6998 		}
6999 	}
7000 
7001 	ceph_put_snap_context(rbd_dev->header.snapc);
7002 	rbd_dev->header.snapc = header->snapc;
7003 	header->snapc = NULL;
7004 
7005 	if (rbd_dev->image_format == 1) {
7006 		kfree(rbd_dev->header.snap_names);
7007 		rbd_dev->header.snap_names = header->snap_names;
7008 		header->snap_names = NULL;
7009 
7010 		kfree(rbd_dev->header.snap_sizes);
7011 		rbd_dev->header.snap_sizes = header->snap_sizes;
7012 		header->snap_sizes = NULL;
7013 	}
7014 }
7015 
rbd_dev_update_parent(struct rbd_device * rbd_dev,struct parent_image_info * pii)7016 static void rbd_dev_update_parent(struct rbd_device *rbd_dev,
7017 				  struct parent_image_info *pii)
7018 {
7019 	if (pii->pool_id == CEPH_NOPOOL || !pii->has_overlap) {
7020 		/*
7021 		 * Either the parent never existed, or we have
7022 		 * record of it but the image got flattened so it no
7023 		 * longer has a parent.  When the parent of a
7024 		 * layered image disappears we immediately set the
7025 		 * overlap to 0.  The effect of this is that all new
7026 		 * requests will be treated as if the image had no
7027 		 * parent.
7028 		 *
7029 		 * If !pii.has_overlap, the parent image spec is not
7030 		 * applicable.  It's there to avoid duplication in each
7031 		 * snapshot record.
7032 		 */
7033 		if (rbd_dev->parent_overlap) {
7034 			rbd_dev->parent_overlap = 0;
7035 			rbd_dev_parent_put(rbd_dev);
7036 			pr_info("%s: clone has been flattened\n",
7037 				rbd_dev->disk->disk_name);
7038 		}
7039 	} else {
7040 		rbd_assert(rbd_dev->parent_spec);
7041 
7042 		/*
7043 		 * Update the parent overlap.  If it became zero, issue
7044 		 * a warning as we will proceed as if there is no parent.
7045 		 */
7046 		if (!pii->overlap && rbd_dev->parent_overlap)
7047 			rbd_warn(rbd_dev,
7048 				 "clone has become standalone (overlap 0)");
7049 		rbd_dev->parent_overlap = pii->overlap;
7050 	}
7051 }
7052 
rbd_dev_refresh(struct rbd_device * rbd_dev)7053 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
7054 {
7055 	struct rbd_image_header	header = { 0 };
7056 	struct parent_image_info pii = { 0 };
7057 	int ret;
7058 
7059 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
7060 
7061 	ret = rbd_dev_header_info(rbd_dev, &header, false);
7062 	if (ret)
7063 		goto out;
7064 
7065 	/*
7066 	 * If there is a parent, see if it has disappeared due to the
7067 	 * mapped image getting flattened.
7068 	 */
7069 	if (rbd_dev->parent) {
7070 		ret = rbd_dev_v2_parent_info(rbd_dev, &pii);
7071 		if (ret)
7072 			goto out;
7073 	}
7074 
7075 	down_write(&rbd_dev->header_rwsem);
7076 	rbd_dev_update_header(rbd_dev, &header);
7077 	if (rbd_dev->parent)
7078 		rbd_dev_update_parent(rbd_dev, &pii);
7079 	up_write(&rbd_dev->header_rwsem);
7080 
7081 out:
7082 	rbd_parent_info_cleanup(&pii);
7083 	rbd_image_header_cleanup(&header);
7084 	return ret;
7085 }
7086 
do_rbd_add(const char * buf,size_t count)7087 static ssize_t do_rbd_add(const char *buf, size_t count)
7088 {
7089 	struct rbd_device *rbd_dev = NULL;
7090 	struct ceph_options *ceph_opts = NULL;
7091 	struct rbd_options *rbd_opts = NULL;
7092 	struct rbd_spec *spec = NULL;
7093 	struct rbd_client *rbdc;
7094 	int rc;
7095 
7096 	if (!capable(CAP_SYS_ADMIN))
7097 		return -EPERM;
7098 
7099 	if (!try_module_get(THIS_MODULE))
7100 		return -ENODEV;
7101 
7102 	/* parse add command */
7103 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7104 	if (rc < 0)
7105 		goto out;
7106 
7107 	rbdc = rbd_get_client(ceph_opts);
7108 	if (IS_ERR(rbdc)) {
7109 		rc = PTR_ERR(rbdc);
7110 		goto err_out_args;
7111 	}
7112 
7113 	/* pick the pool */
7114 	rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7115 	if (rc < 0) {
7116 		if (rc == -ENOENT)
7117 			pr_info("pool %s does not exist\n", spec->pool_name);
7118 		goto err_out_client;
7119 	}
7120 	spec->pool_id = (u64)rc;
7121 
7122 	rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7123 	if (!rbd_dev) {
7124 		rc = -ENOMEM;
7125 		goto err_out_client;
7126 	}
7127 	rbdc = NULL;		/* rbd_dev now owns this */
7128 	spec = NULL;		/* rbd_dev now owns this */
7129 	rbd_opts = NULL;	/* rbd_dev now owns this */
7130 
7131 	/* if we are mapping a snapshot it will be a read-only mapping */
7132 	if (rbd_dev->opts->read_only ||
7133 	    strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7134 		__set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7135 
7136 	rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7137 	if (!rbd_dev->config_info) {
7138 		rc = -ENOMEM;
7139 		goto err_out_rbd_dev;
7140 	}
7141 
7142 	rc = rbd_dev_image_probe(rbd_dev, 0);
7143 	if (rc < 0)
7144 		goto err_out_rbd_dev;
7145 
7146 	if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7147 		rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7148 			 rbd_dev->layout.object_size);
7149 		rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7150 	}
7151 
7152 	rc = rbd_dev_device_setup(rbd_dev);
7153 	if (rc)
7154 		goto err_out_image_probe;
7155 
7156 	rc = rbd_add_acquire_lock(rbd_dev);
7157 	if (rc)
7158 		goto err_out_image_lock;
7159 
7160 	/* Everything's ready.  Announce the disk to the world. */
7161 
7162 	rc = device_add(&rbd_dev->dev);
7163 	if (rc)
7164 		goto err_out_image_lock;
7165 
7166 	rc = device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7167 	if (rc)
7168 		goto err_out_cleanup_disk;
7169 
7170 	spin_lock(&rbd_dev_list_lock);
7171 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
7172 	spin_unlock(&rbd_dev_list_lock);
7173 
7174 	pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7175 		(unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7176 		rbd_dev->header.features);
7177 	rc = count;
7178 out:
7179 	module_put(THIS_MODULE);
7180 	return rc;
7181 
7182 err_out_cleanup_disk:
7183 	rbd_free_disk(rbd_dev);
7184 err_out_image_lock:
7185 	rbd_dev_image_unlock(rbd_dev);
7186 	rbd_dev_device_release(rbd_dev);
7187 err_out_image_probe:
7188 	rbd_dev_image_release(rbd_dev);
7189 err_out_rbd_dev:
7190 	rbd_dev_destroy(rbd_dev);
7191 err_out_client:
7192 	rbd_put_client(rbdc);
7193 err_out_args:
7194 	rbd_spec_put(spec);
7195 	kfree(rbd_opts);
7196 	goto out;
7197 }
7198 
add_store(const struct bus_type * bus,const char * buf,size_t count)7199 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count)
7200 {
7201 	if (single_major)
7202 		return -EINVAL;
7203 
7204 	return do_rbd_add(buf, count);
7205 }
7206 
add_single_major_store(const struct bus_type * bus,const char * buf,size_t count)7207 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf,
7208 				      size_t count)
7209 {
7210 	return do_rbd_add(buf, count);
7211 }
7212 
rbd_dev_remove_parent(struct rbd_device * rbd_dev)7213 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7214 {
7215 	while (rbd_dev->parent) {
7216 		struct rbd_device *first = rbd_dev;
7217 		struct rbd_device *second = first->parent;
7218 		struct rbd_device *third;
7219 
7220 		/*
7221 		 * Follow to the parent with no grandparent and
7222 		 * remove it.
7223 		 */
7224 		while (second && (third = second->parent)) {
7225 			first = second;
7226 			second = third;
7227 		}
7228 		rbd_assert(second);
7229 		rbd_dev_image_release(second);
7230 		rbd_dev_destroy(second);
7231 		first->parent = NULL;
7232 		first->parent_overlap = 0;
7233 
7234 		rbd_assert(first->parent_spec);
7235 		rbd_spec_put(first->parent_spec);
7236 		first->parent_spec = NULL;
7237 	}
7238 }
7239 
do_rbd_remove(const char * buf,size_t count)7240 static ssize_t do_rbd_remove(const char *buf, size_t count)
7241 {
7242 	struct rbd_device *rbd_dev = NULL;
7243 	int dev_id;
7244 	char opt_buf[6];
7245 	bool force = false;
7246 	int ret;
7247 
7248 	if (!capable(CAP_SYS_ADMIN))
7249 		return -EPERM;
7250 
7251 	dev_id = -1;
7252 	opt_buf[0] = '\0';
7253 	sscanf(buf, "%d %5s", &dev_id, opt_buf);
7254 	if (dev_id < 0) {
7255 		pr_err("dev_id out of range\n");
7256 		return -EINVAL;
7257 	}
7258 	if (opt_buf[0] != '\0') {
7259 		if (!strcmp(opt_buf, "force")) {
7260 			force = true;
7261 		} else {
7262 			pr_err("bad remove option at '%s'\n", opt_buf);
7263 			return -EINVAL;
7264 		}
7265 	}
7266 
7267 	ret = -ENOENT;
7268 	spin_lock(&rbd_dev_list_lock);
7269 	list_for_each_entry(rbd_dev, &rbd_dev_list, node) {
7270 		if (rbd_dev->dev_id == dev_id) {
7271 			ret = 0;
7272 			break;
7273 		}
7274 	}
7275 	if (!ret) {
7276 		spin_lock_irq(&rbd_dev->lock);
7277 		if (rbd_dev->open_count && !force)
7278 			ret = -EBUSY;
7279 		else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7280 					  &rbd_dev->flags))
7281 			ret = -EINPROGRESS;
7282 		spin_unlock_irq(&rbd_dev->lock);
7283 	}
7284 	spin_unlock(&rbd_dev_list_lock);
7285 	if (ret)
7286 		return ret;
7287 
7288 	if (force) {
7289 		/*
7290 		 * Prevent new IO from being queued and wait for existing
7291 		 * IO to complete/fail.
7292 		 */
7293 		unsigned int memflags = blk_mq_freeze_queue(rbd_dev->disk->queue);
7294 
7295 		blk_mark_disk_dead(rbd_dev->disk);
7296 		blk_mq_unfreeze_queue(rbd_dev->disk->queue, memflags);
7297 	}
7298 
7299 	del_gendisk(rbd_dev->disk);
7300 	spin_lock(&rbd_dev_list_lock);
7301 	list_del_init(&rbd_dev->node);
7302 	spin_unlock(&rbd_dev_list_lock);
7303 	device_del(&rbd_dev->dev);
7304 
7305 	rbd_dev_image_unlock(rbd_dev);
7306 	rbd_dev_device_release(rbd_dev);
7307 	rbd_dev_image_release(rbd_dev);
7308 	rbd_dev_destroy(rbd_dev);
7309 	return count;
7310 }
7311 
remove_store(const struct bus_type * bus,const char * buf,size_t count)7312 static ssize_t remove_store(const struct bus_type *bus, const char *buf, size_t count)
7313 {
7314 	if (single_major)
7315 		return -EINVAL;
7316 
7317 	return do_rbd_remove(buf, count);
7318 }
7319 
remove_single_major_store(const struct bus_type * bus,const char * buf,size_t count)7320 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf,
7321 					 size_t count)
7322 {
7323 	return do_rbd_remove(buf, count);
7324 }
7325 
7326 /*
7327  * create control files in sysfs
7328  * /sys/bus/rbd/...
7329  */
rbd_sysfs_init(void)7330 static int __init rbd_sysfs_init(void)
7331 {
7332 	int ret;
7333 
7334 	ret = device_register(&rbd_root_dev);
7335 	if (ret < 0) {
7336 		put_device(&rbd_root_dev);
7337 		return ret;
7338 	}
7339 
7340 	ret = bus_register(&rbd_bus_type);
7341 	if (ret < 0)
7342 		device_unregister(&rbd_root_dev);
7343 
7344 	return ret;
7345 }
7346 
rbd_sysfs_cleanup(void)7347 static void __exit rbd_sysfs_cleanup(void)
7348 {
7349 	bus_unregister(&rbd_bus_type);
7350 	device_unregister(&rbd_root_dev);
7351 }
7352 
rbd_slab_init(void)7353 static int __init rbd_slab_init(void)
7354 {
7355 	rbd_assert(!rbd_img_request_cache);
7356 	rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7357 	if (!rbd_img_request_cache)
7358 		return -ENOMEM;
7359 
7360 	rbd_assert(!rbd_obj_request_cache);
7361 	rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7362 	if (!rbd_obj_request_cache)
7363 		goto out_err;
7364 
7365 	return 0;
7366 
7367 out_err:
7368 	kmem_cache_destroy(rbd_img_request_cache);
7369 	rbd_img_request_cache = NULL;
7370 	return -ENOMEM;
7371 }
7372 
rbd_slab_exit(void)7373 static void rbd_slab_exit(void)
7374 {
7375 	rbd_assert(rbd_obj_request_cache);
7376 	kmem_cache_destroy(rbd_obj_request_cache);
7377 	rbd_obj_request_cache = NULL;
7378 
7379 	rbd_assert(rbd_img_request_cache);
7380 	kmem_cache_destroy(rbd_img_request_cache);
7381 	rbd_img_request_cache = NULL;
7382 }
7383 
rbd_init(void)7384 static int __init rbd_init(void)
7385 {
7386 	int rc;
7387 
7388 	if (!libceph_compatible(NULL)) {
7389 		rbd_warn(NULL, "libceph incompatibility (quitting)");
7390 		return -EINVAL;
7391 	}
7392 
7393 	rc = rbd_slab_init();
7394 	if (rc)
7395 		return rc;
7396 
7397 	/*
7398 	 * The number of active work items is limited by the number of
7399 	 * rbd devices * queue depth, so leave @max_active at default.
7400 	 */
7401 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM | WQ_PERCPU, 0);
7402 	if (!rbd_wq) {
7403 		rc = -ENOMEM;
7404 		goto err_out_slab;
7405 	}
7406 
7407 	if (single_major) {
7408 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
7409 		if (rbd_major < 0) {
7410 			rc = rbd_major;
7411 			goto err_out_wq;
7412 		}
7413 	}
7414 
7415 	rc = rbd_sysfs_init();
7416 	if (rc)
7417 		goto err_out_blkdev;
7418 
7419 	if (single_major)
7420 		pr_info("loaded (major %d)\n", rbd_major);
7421 	else
7422 		pr_info("loaded\n");
7423 
7424 	return 0;
7425 
7426 err_out_blkdev:
7427 	if (single_major)
7428 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7429 err_out_wq:
7430 	destroy_workqueue(rbd_wq);
7431 err_out_slab:
7432 	rbd_slab_exit();
7433 	return rc;
7434 }
7435 
rbd_exit(void)7436 static void __exit rbd_exit(void)
7437 {
7438 	ida_destroy(&rbd_dev_id_ida);
7439 	rbd_sysfs_cleanup();
7440 	if (single_major)
7441 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7442 	destroy_workqueue(rbd_wq);
7443 	rbd_slab_exit();
7444 }
7445 
7446 module_init(rbd_init);
7447 module_exit(rbd_exit);
7448 
7449 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7450 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7451 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7452 /* following authorship retained from original osdblk.c */
7453 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7454 
7455 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7456 MODULE_LICENSE("GPL");
7457