xref: /linux/drivers/ufs/core/ufshcd.c (revision c53f467229a78287efa5b9f65bd22de64416660f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/pm_opp.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/sched/clock.h>
26 #include <linux/iopoll.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_driver.h>
30 #include <scsi/scsi_eh.h>
31 #include <scsi/scsi_tcq.h>
32 #include "ufshcd-priv.h"
33 #include <ufs/ufs_quirks.h>
34 #include <ufs/unipro.h>
35 #include "ufs-sysfs.h"
36 #include "ufs-debugfs.h"
37 #include "ufs-fault-injection.h"
38 #include "ufs_bsg.h"
39 #include "ufshcd-crypto.h"
40 #include <linux/unaligned.h>
41 
42 #define CREATE_TRACE_POINTS
43 #include "ufs_trace.h"
44 
45 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
46 				 UTP_TASK_REQ_COMPL |\
47 				 UFSHCD_ERROR_MASK)
48 
49 /* UIC command timeout, unit: ms */
50 enum {
51 	UIC_CMD_TIMEOUT_DEFAULT	= 500,
52 	UIC_CMD_TIMEOUT_MAX	= 5000,
53 };
54 /* NOP OUT retries waiting for NOP IN response */
55 #define NOP_OUT_RETRIES    10
56 /* Timeout after 50 msecs if NOP OUT hangs without response */
57 #define NOP_OUT_TIMEOUT    50 /* msecs */
58 
59 /* Query request retries */
60 #define QUERY_REQ_RETRIES 3
61 /* Query request timeout */
62 enum {
63 	QUERY_REQ_TIMEOUT_MIN     = 1,
64 	QUERY_REQ_TIMEOUT_DEFAULT = 1500,
65 	QUERY_REQ_TIMEOUT_MAX     = 30000
66 };
67 
68 /* Advanced RPMB request timeout */
69 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
70 
71 /* Task management command timeout */
72 #define TM_CMD_TIMEOUT	100 /* msecs */
73 
74 /* maximum number of retries for a general UIC command  */
75 #define UFS_UIC_COMMAND_RETRIES 3
76 
77 /* maximum number of link-startup retries */
78 #define DME_LINKSTARTUP_RETRIES 3
79 
80 /* maximum number of reset retries before giving up */
81 #define MAX_HOST_RESET_RETRIES 5
82 
83 /* Maximum number of error handler retries before giving up */
84 #define MAX_ERR_HANDLER_RETRIES 5
85 
86 /* Expose the flag value from utp_upiu_query.value */
87 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
88 
89 /* Interrupt aggregation default timeout, unit: 40us */
90 #define INT_AGGR_DEF_TO	0x02
91 
92 /* default delay of autosuspend: 2000 ms */
93 #define RPM_AUTOSUSPEND_DELAY_MS 2000
94 
95 /* Default delay of RPM device flush delayed work */
96 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
97 
98 /* Default value of wait time before gating device ref clock */
99 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
100 
101 /* Polling time to wait for fDeviceInit */
102 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
103 
104 /* Default RTC update every 10 seconds */
105 #define UFS_RTC_UPDATE_INTERVAL_MS (10 * MSEC_PER_SEC)
106 
107 /* bMaxNumOfRTT is equal to two after device manufacturing */
108 #define DEFAULT_MAX_NUM_RTT 2
109 
110 /* UFSHC 4.0 compliant HC support this mode. */
111 static bool use_mcq_mode = true;
112 
is_mcq_supported(struct ufs_hba * hba)113 static bool is_mcq_supported(struct ufs_hba *hba)
114 {
115 	return hba->mcq_sup && use_mcq_mode;
116 }
117 
118 module_param(use_mcq_mode, bool, 0644);
119 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
120 
121 static unsigned int uic_cmd_timeout = UIC_CMD_TIMEOUT_DEFAULT;
122 
uic_cmd_timeout_set(const char * val,const struct kernel_param * kp)123 static int uic_cmd_timeout_set(const char *val, const struct kernel_param *kp)
124 {
125 	return param_set_uint_minmax(val, kp, UIC_CMD_TIMEOUT_DEFAULT,
126 				     UIC_CMD_TIMEOUT_MAX);
127 }
128 
129 static const struct kernel_param_ops uic_cmd_timeout_ops = {
130 	.set = uic_cmd_timeout_set,
131 	.get = param_get_uint,
132 };
133 
134 module_param_cb(uic_cmd_timeout, &uic_cmd_timeout_ops, &uic_cmd_timeout, 0644);
135 MODULE_PARM_DESC(uic_cmd_timeout,
136 		 "UFS UIC command timeout in milliseconds. Defaults to 500ms. Supported values range from 500ms to 5 seconds inclusively");
137 
138 static unsigned int dev_cmd_timeout = QUERY_REQ_TIMEOUT_DEFAULT;
139 
dev_cmd_timeout_set(const char * val,const struct kernel_param * kp)140 static int dev_cmd_timeout_set(const char *val, const struct kernel_param *kp)
141 {
142 	return param_set_uint_minmax(val, kp, QUERY_REQ_TIMEOUT_MIN,
143 				     QUERY_REQ_TIMEOUT_MAX);
144 }
145 
146 static const struct kernel_param_ops dev_cmd_timeout_ops = {
147 	.set = dev_cmd_timeout_set,
148 	.get = param_get_uint,
149 };
150 
151 module_param_cb(dev_cmd_timeout, &dev_cmd_timeout_ops, &dev_cmd_timeout, 0644);
152 MODULE_PARM_DESC(dev_cmd_timeout,
153 		 "UFS Device command timeout in milliseconds. Defaults to 1.5s. Supported values range from 1ms to 30 seconds inclusively");
154 
155 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
156 	({                                                              \
157 		int _ret;                                               \
158 		if (_on)                                                \
159 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
160 		else                                                    \
161 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
162 		_ret;                                                   \
163 	})
164 
165 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
166 	size_t __len = (len);                                            \
167 	print_hex_dump(KERN_ERR, prefix_str,                             \
168 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
169 		       16, 4, buf, __len, false);                        \
170 } while (0)
171 
ufshcd_dump_regs(struct ufs_hba * hba,size_t offset,size_t len,const char * prefix)172 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
173 		     const char *prefix)
174 {
175 	u32 *regs;
176 	size_t pos;
177 
178 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
179 		return -EINVAL;
180 
181 	regs = kzalloc(len, GFP_ATOMIC);
182 	if (!regs)
183 		return -ENOMEM;
184 
185 	for (pos = 0; pos < len; pos += 4) {
186 		if (offset == 0 &&
187 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
188 		    pos <= REG_UIC_ERROR_CODE_DME)
189 			continue;
190 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
191 	}
192 
193 	ufshcd_hex_dump(prefix, regs, len);
194 	kfree(regs);
195 
196 	return 0;
197 }
198 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
199 
200 enum {
201 	UFSHCD_MAX_CHANNEL	= 0,
202 	UFSHCD_MAX_ID		= 1,
203 };
204 
205 static const char *const ufshcd_state_name[] = {
206 	[UFSHCD_STATE_RESET]			= "reset",
207 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
208 	[UFSHCD_STATE_ERROR]			= "error",
209 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
210 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
211 };
212 
213 /* UFSHCD error handling flags */
214 enum {
215 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
216 };
217 
218 /* UFSHCD UIC layer error flags */
219 enum {
220 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
221 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
222 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
223 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
224 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
225 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
226 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
227 };
228 
229 #define ufshcd_set_eh_in_progress(h) \
230 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
231 #define ufshcd_eh_in_progress(h) \
232 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
233 #define ufshcd_clear_eh_in_progress(h) \
234 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
235 
236 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
237 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
238 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
239 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
240 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
241 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
242 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
243 	/*
244 	 * For DeepSleep, the link is first put in hibern8 and then off.
245 	 * Leaving the link in hibern8 is not supported.
246 	 */
247 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
248 };
249 
250 static inline enum ufs_dev_pwr_mode
ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)251 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
252 {
253 	return ufs_pm_lvl_states[lvl].dev_state;
254 }
255 
256 static inline enum uic_link_state
ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)257 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
258 {
259 	return ufs_pm_lvl_states[lvl].link_state;
260 }
261 
262 static inline enum ufs_pm_level
ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,enum uic_link_state link_state)263 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
264 					enum uic_link_state link_state)
265 {
266 	enum ufs_pm_level lvl;
267 
268 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
269 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
270 			(ufs_pm_lvl_states[lvl].link_state == link_state))
271 			return lvl;
272 	}
273 
274 	/* if no match found, return the level 0 */
275 	return UFS_PM_LVL_0;
276 }
277 
ufshcd_has_pending_tasks(struct ufs_hba * hba)278 static bool ufshcd_has_pending_tasks(struct ufs_hba *hba)
279 {
280 	return hba->outstanding_tasks || hba->active_uic_cmd ||
281 	       hba->uic_async_done;
282 }
283 
ufshcd_is_ufs_dev_busy(struct ufs_hba * hba)284 static bool ufshcd_is_ufs_dev_busy(struct ufs_hba *hba)
285 {
286 	return scsi_host_busy(hba->host) || ufshcd_has_pending_tasks(hba);
287 }
288 
289 static const struct ufs_dev_quirk ufs_fixups[] = {
290 	/* UFS cards deviations table */
291 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
292 	  .model = UFS_ANY_MODEL,
293 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
294 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
295 	  .model = UFS_ANY_MODEL,
296 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
297 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
298 		   UFS_DEVICE_QUIRK_PA_HIBER8TIME |
299 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
300 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
301 	  .model = UFS_ANY_MODEL,
302 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
303 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
304 	  .model = "hB8aL1" /*H28U62301AMR*/,
305 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
306 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
307 	  .model = UFS_ANY_MODEL,
308 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
309 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
310 	  .model = "THGLF2G9C8KBADG",
311 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
312 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
313 	  .model = "THGLF2G9D8KBADG",
314 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
315 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
316 	  .model = "THGJFJT1E45BATP",
317 	  .quirk = UFS_DEVICE_QUIRK_NO_TIMESTAMP_SUPPORT },
318 	{}
319 };
320 
321 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
322 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
323 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
324 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
325 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
326 static void ufshcd_hba_exit(struct ufs_hba *hba);
327 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params);
328 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
329 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
330 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
331 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
332 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
333 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
334 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
335 			     bool scale_up);
336 static irqreturn_t ufshcd_intr(int irq, void *__hba);
337 static int ufshcd_change_power_mode(struct ufs_hba *hba,
338 			     struct ufs_pa_layer_attr *pwr_mode);
339 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
340 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
341 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
342 					 struct ufs_vreg *vreg);
343 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
344 						 bool enable);
345 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
346 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
347 
ufshcd_enable_irq(struct ufs_hba * hba)348 void ufshcd_enable_irq(struct ufs_hba *hba)
349 {
350 	if (!hba->is_irq_enabled) {
351 		enable_irq(hba->irq);
352 		hba->is_irq_enabled = true;
353 	}
354 }
355 EXPORT_SYMBOL_GPL(ufshcd_enable_irq);
356 
ufshcd_disable_irq(struct ufs_hba * hba)357 void ufshcd_disable_irq(struct ufs_hba *hba)
358 {
359 	if (hba->is_irq_enabled) {
360 		disable_irq(hba->irq);
361 		hba->is_irq_enabled = false;
362 	}
363 }
364 EXPORT_SYMBOL_GPL(ufshcd_disable_irq);
365 
366 /**
367  * ufshcd_enable_intr - enable interrupts
368  * @hba: per adapter instance
369  * @intrs: interrupt bits
370  */
ufshcd_enable_intr(struct ufs_hba * hba,u32 intrs)371 void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
372 {
373 	u32 old_val = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
374 	u32 new_val = old_val | intrs;
375 
376 	if (new_val != old_val)
377 		ufshcd_writel(hba, new_val, REG_INTERRUPT_ENABLE);
378 }
379 
380 /**
381  * ufshcd_disable_intr - disable interrupts
382  * @hba: per adapter instance
383  * @intrs: interrupt bits
384  */
ufshcd_disable_intr(struct ufs_hba * hba,u32 intrs)385 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
386 {
387 	u32 old_val = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
388 	u32 new_val = old_val & ~intrs;
389 
390 	if (new_val != old_val)
391 		ufshcd_writel(hba, new_val, REG_INTERRUPT_ENABLE);
392 }
393 
ufshcd_configure_wb(struct ufs_hba * hba)394 static void ufshcd_configure_wb(struct ufs_hba *hba)
395 {
396 	if (!ufshcd_is_wb_allowed(hba))
397 		return;
398 
399 	ufshcd_wb_toggle(hba, true);
400 
401 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
402 
403 	if (ufshcd_is_wb_buf_flush_allowed(hba))
404 		ufshcd_wb_toggle_buf_flush(hba, true);
405 }
406 
ufshcd_add_cmd_upiu_trace(struct ufs_hba * hba,struct ufshcd_lrb * lrb,enum ufs_trace_str_t str_t)407 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba,
408 				      struct ufshcd_lrb *lrb,
409 				      enum ufs_trace_str_t str_t)
410 {
411 	struct utp_upiu_req *rq = lrb->ucd_req_ptr;
412 	struct utp_upiu_header *header;
413 
414 	if (!trace_ufshcd_upiu_enabled())
415 		return;
416 
417 	if (str_t == UFS_CMD_SEND)
418 		header = &rq->header;
419 	else
420 		header = &lrb->ucd_rsp_ptr->header;
421 
422 	trace_ufshcd_upiu(hba, str_t, header, &rq->sc.cdb,
423 			  UFS_TSF_CDB);
424 }
425 
ufshcd_add_query_upiu_trace(struct ufs_hba * hba,enum ufs_trace_str_t str_t,struct utp_upiu_req * rq_rsp)426 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
427 					enum ufs_trace_str_t str_t,
428 					struct utp_upiu_req *rq_rsp)
429 {
430 	if (!trace_ufshcd_upiu_enabled())
431 		return;
432 
433 	trace_ufshcd_upiu(hba, str_t, &rq_rsp->header,
434 			  &rq_rsp->qr, UFS_TSF_OSF);
435 }
436 
ufshcd_add_tm_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)437 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
438 				     enum ufs_trace_str_t str_t)
439 {
440 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
441 
442 	if (!trace_ufshcd_upiu_enabled())
443 		return;
444 
445 	if (str_t == UFS_TM_SEND)
446 		trace_ufshcd_upiu(hba, str_t,
447 				  &descp->upiu_req.req_header,
448 				  &descp->upiu_req.input_param1,
449 				  UFS_TSF_TM_INPUT);
450 	else
451 		trace_ufshcd_upiu(hba, str_t,
452 				  &descp->upiu_rsp.rsp_header,
453 				  &descp->upiu_rsp.output_param1,
454 				  UFS_TSF_TM_OUTPUT);
455 }
456 
ufshcd_add_uic_command_trace(struct ufs_hba * hba,const struct uic_command * ucmd,enum ufs_trace_str_t str_t)457 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
458 					 const struct uic_command *ucmd,
459 					 enum ufs_trace_str_t str_t)
460 {
461 	u32 cmd;
462 
463 	if (!trace_ufshcd_uic_command_enabled())
464 		return;
465 
466 	if (str_t == UFS_CMD_SEND)
467 		cmd = ucmd->command;
468 	else
469 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
470 
471 	trace_ufshcd_uic_command(hba, str_t, cmd,
472 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
473 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
474 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
475 }
476 
ufshcd_add_command_trace(struct ufs_hba * hba,struct scsi_cmnd * cmd,enum ufs_trace_str_t str_t)477 static void ufshcd_add_command_trace(struct ufs_hba *hba, struct scsi_cmnd *cmd,
478 				     enum ufs_trace_str_t str_t)
479 {
480 	u64 lba = 0;
481 	u8 opcode = 0, group_id = 0;
482 	u32 doorbell = 0;
483 	u32 intr;
484 	u32 hwq_id = 0;
485 	struct request *rq = scsi_cmd_to_rq(cmd);
486 	unsigned int tag = rq->tag;
487 	struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
488 	int transfer_len = -1;
489 
490 	/* trace UPIU also */
491 	ufshcd_add_cmd_upiu_trace(hba, lrbp, str_t);
492 	if (!trace_ufshcd_command_enabled())
493 		return;
494 
495 	opcode = cmd->cmnd[0];
496 
497 	if (opcode == READ_10 || opcode == WRITE_10) {
498 		/*
499 		 * Currently we only fully trace read(10) and write(10) commands
500 		 */
501 		transfer_len =
502 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
503 		lba = scsi_get_lba(cmd);
504 		if (opcode == WRITE_10)
505 			group_id = cmd->cmnd[6];
506 	} else if (opcode == UNMAP) {
507 		/*
508 		 * The number of Bytes to be unmapped beginning with the lba.
509 		 */
510 		transfer_len = blk_rq_bytes(rq);
511 		lba = scsi_get_lba(cmd);
512 	}
513 
514 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
515 
516 	if (hba->mcq_enabled) {
517 		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
518 
519 		hwq_id = hwq->id;
520 	} else {
521 		doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
522 	}
523 	trace_ufshcd_command(cmd->device, hba, str_t, tag, doorbell, hwq_id,
524 			     transfer_len, intr, lba, opcode, group_id);
525 }
526 
ufshcd_print_clk_freqs(struct ufs_hba * hba)527 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
528 {
529 	struct ufs_clk_info *clki;
530 	struct list_head *head = &hba->clk_list_head;
531 
532 	if (list_empty(head))
533 		return;
534 
535 	list_for_each_entry(clki, head, list) {
536 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
537 				clki->max_freq)
538 			dev_err(hba->dev, "clk: %s, rate: %u\n",
539 					clki->name, clki->curr_freq);
540 	}
541 }
542 
ufshcd_print_evt(struct ufs_hba * hba,u32 id,const char * err_name)543 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
544 			     const char *err_name)
545 {
546 	int i;
547 	bool found = false;
548 	const struct ufs_event_hist *e;
549 
550 	if (id >= UFS_EVT_CNT)
551 		return;
552 
553 	e = &hba->ufs_stats.event[id];
554 
555 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
556 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
557 
558 		if (e->tstamp[p] == 0)
559 			continue;
560 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
561 			e->val[p], div_u64(e->tstamp[p], 1000));
562 		found = true;
563 	}
564 
565 	if (!found)
566 		dev_err(hba->dev, "No record of %s\n", err_name);
567 	else
568 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
569 }
570 
ufshcd_print_evt_hist(struct ufs_hba * hba)571 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
572 {
573 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
574 
575 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
576 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
577 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
578 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
579 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
580 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
581 			 "auto_hibern8_err");
582 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
583 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
584 			 "link_startup_fail");
585 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
586 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
587 			 "suspend_fail");
588 	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
589 	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
590 			 "wlun suspend_fail");
591 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
592 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
593 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
594 
595 	ufshcd_vops_dbg_register_dump(hba);
596 }
597 
ufshcd_print_tr(struct ufs_hba * hba,struct scsi_cmnd * cmd,bool pr_prdt)598 static void ufshcd_print_tr(struct ufs_hba *hba, struct scsi_cmnd *cmd,
599 			    bool pr_prdt)
600 {
601 	struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
602 	const int tag = scsi_cmd_to_rq(cmd)->tag;
603 	int prdt_length;
604 
605 	if (hba->monitor.enabled) {
606 		dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n", tag,
607 			div_u64(lrbp->issue_time_stamp_local_clock, 1000));
608 		dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n", tag,
609 			div_u64(lrbp->compl_time_stamp_local_clock, 1000));
610 	}
611 	dev_err(hba->dev,
612 		"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
613 		tag, (u64)lrbp->utrd_dma_addr);
614 
615 	ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
616 			sizeof(struct utp_transfer_req_desc));
617 	dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
618 		(u64)lrbp->ucd_req_dma_addr);
619 	ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
620 			sizeof(struct utp_upiu_req));
621 	dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
622 		(u64)lrbp->ucd_rsp_dma_addr);
623 	ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
624 			sizeof(struct utp_upiu_rsp));
625 
626 	prdt_length = le16_to_cpu(
627 		lrbp->utr_descriptor_ptr->prd_table_length);
628 	if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
629 		prdt_length /= ufshcd_sg_entry_size(hba);
630 
631 	dev_err(hba->dev,
632 		"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
633 		tag, prdt_length,
634 		(u64)lrbp->ucd_prdt_dma_addr);
635 
636 	if (pr_prdt)
637 		ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
638 			ufshcd_sg_entry_size(hba) * prdt_length);
639 }
640 
ufshcd_print_tr_iter(struct request * req,void * priv)641 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
642 {
643 	struct scsi_device *sdev = req->q->queuedata;
644 	struct Scsi_Host *shost = sdev->host;
645 	struct ufs_hba *hba = shost_priv(shost);
646 
647 	if (!blk_mq_is_reserved_rq(req))
648 		ufshcd_print_tr(hba, blk_mq_rq_to_pdu(req), *(bool *)priv);
649 
650 	return true;
651 }
652 
653 /**
654  * ufshcd_print_trs_all - print trs for all started requests.
655  * @hba: per-adapter instance.
656  * @pr_prdt: need to print prdt or not.
657  */
ufshcd_print_trs_all(struct ufs_hba * hba,bool pr_prdt)658 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
659 {
660 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
661 }
662 
ufshcd_print_tmrs(struct ufs_hba * hba,unsigned long bitmap)663 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
664 {
665 	int tag;
666 
667 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
668 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
669 
670 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
671 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
672 	}
673 }
674 
ufshcd_print_host_state(struct ufs_hba * hba)675 static void ufshcd_print_host_state(struct ufs_hba *hba)
676 {
677 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
678 
679 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
680 	dev_err(hba->dev, "%d outstanding reqs, tasks=0x%lx\n",
681 		scsi_host_busy(hba->host), hba->outstanding_tasks);
682 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
683 		hba->saved_err, hba->saved_uic_err);
684 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
685 		hba->curr_dev_pwr_mode, hba->uic_link_state);
686 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
687 		hba->pm_op_in_progress, hba->is_sys_suspended);
688 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
689 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
690 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
691 	dev_err(hba->dev,
692 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
693 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
694 		hba->ufs_stats.hibern8_exit_cnt);
695 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
696 		hba->eh_flags, hba->req_abort_count);
697 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
698 		hba->ufs_version, hba->capabilities, hba->caps);
699 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
700 		hba->dev_quirks);
701 	if (sdev_ufs)
702 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
703 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
704 
705 	ufshcd_print_clk_freqs(hba);
706 }
707 
708 /**
709  * ufshcd_print_pwr_info - print power params as saved in hba
710  * power info
711  * @hba: per-adapter instance
712  */
ufshcd_print_pwr_info(struct ufs_hba * hba)713 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
714 {
715 	static const char * const names[] = {
716 		"INVALID MODE",
717 		"FAST MODE",
718 		"SLOW_MODE",
719 		"INVALID MODE",
720 		"FASTAUTO_MODE",
721 		"SLOWAUTO_MODE",
722 		"INVALID MODE",
723 	};
724 
725 	/*
726 	 * Using dev_dbg to avoid messages during runtime PM to avoid
727 	 * never-ending cycles of messages written back to storage by user space
728 	 * causing runtime resume, causing more messages and so on.
729 	 */
730 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
731 		 __func__,
732 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
733 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
734 		 names[hba->pwr_info.pwr_rx],
735 		 names[hba->pwr_info.pwr_tx],
736 		 hba->pwr_info.hs_rate);
737 }
738 
ufshcd_device_reset(struct ufs_hba * hba)739 static void ufshcd_device_reset(struct ufs_hba *hba)
740 {
741 	int err;
742 
743 	err = ufshcd_vops_device_reset(hba);
744 
745 	if (!err) {
746 		ufshcd_set_ufs_dev_active(hba);
747 		if (ufshcd_is_wb_allowed(hba)) {
748 			hba->dev_info.wb_enabled = false;
749 			hba->dev_info.wb_buf_flush_enabled = false;
750 		}
751 		if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
752 			hba->dev_info.rtc_time_baseline = 0;
753 	}
754 	if (err != -EOPNOTSUPP)
755 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
756 }
757 
ufshcd_delay_us(unsigned long us,unsigned long tolerance)758 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
759 {
760 	if (!us)
761 		return;
762 
763 	if (us < 10)
764 		udelay(us);
765 	else
766 		usleep_range(us, us + tolerance);
767 }
768 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
769 
770 /**
771  * ufshcd_wait_for_register - wait for register value to change
772  * @hba: per-adapter interface
773  * @reg: mmio register offset
774  * @mask: mask to apply to the read register value
775  * @val: value to wait for
776  * @interval_us: polling interval in microseconds
777  * @timeout_ms: timeout in milliseconds
778  *
779  * Return: -ETIMEDOUT on error, zero on success.
780  */
ufshcd_wait_for_register(struct ufs_hba * hba,u32 reg,u32 mask,u32 val,unsigned long interval_us,unsigned long timeout_ms)781 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
782 				    u32 val, unsigned long interval_us,
783 				    unsigned long timeout_ms)
784 {
785 	u32 v;
786 
787 	val &= mask; /* ignore bits that we don't intend to wait on */
788 
789 	return read_poll_timeout(ufshcd_readl, v, (v & mask) == val,
790 				 interval_us, timeout_ms * 1000, false, hba, reg);
791 }
792 
793 /**
794  * ufshcd_get_intr_mask - Get the interrupt bit mask
795  * @hba: Pointer to adapter instance
796  *
797  * Return: interrupt bit mask per version
798  */
ufshcd_get_intr_mask(struct ufs_hba * hba)799 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
800 {
801 	if (hba->ufs_version <= ufshci_version(2, 0))
802 		return INTERRUPT_MASK_ALL_VER_11;
803 
804 	return INTERRUPT_MASK_ALL_VER_21;
805 }
806 
807 /**
808  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
809  * @hba: Pointer to adapter instance
810  *
811  * Return: UFSHCI version supported by the controller
812  */
ufshcd_get_ufs_version(struct ufs_hba * hba)813 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
814 {
815 	u32 ufshci_ver;
816 
817 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
818 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
819 	else
820 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
821 
822 	/*
823 	 * UFSHCI v1.x uses a different version scheme, in order
824 	 * to allow the use of comparisons with the ufshci_version
825 	 * function, we convert it to the same scheme as ufs 2.0+.
826 	 */
827 	if (ufshci_ver & 0x00010000)
828 		return ufshci_version(1, ufshci_ver & 0x00000100);
829 
830 	return ufshci_ver;
831 }
832 
833 /**
834  * ufshcd_is_device_present - Check if any device connected to
835  *			      the host controller
836  * @hba: pointer to adapter instance
837  *
838  * Return: true if device present, false if no device detected
839  */
ufshcd_is_device_present(struct ufs_hba * hba)840 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
841 {
842 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
843 }
844 
845 /**
846  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
847  * @lrbp: pointer to local command reference block
848  * @cqe: pointer to the completion queue entry
849  *
850  * This function is used to get the OCS field from UTRD
851  *
852  * Return: the OCS field in the UTRD.
853  */
ufshcd_get_tr_ocs(struct ufshcd_lrb * lrbp,struct cq_entry * cqe)854 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
855 				      struct cq_entry *cqe)
856 {
857 	if (cqe)
858 		return cqe->overall_status & MASK_OCS;
859 
860 	return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
861 }
862 
863 /**
864  * ufshcd_utrl_clear() - Clear requests from the controller request list.
865  * @hba: per adapter instance
866  * @mask: mask with one bit set for each request to be cleared
867  */
ufshcd_utrl_clear(struct ufs_hba * hba,u32 mask)868 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
869 {
870 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
871 		mask = ~mask;
872 	/*
873 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
874 	 * Register (UTRLCLR): This field is bit significant. Each bit
875 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
876 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
877 	 * by host software to indicate to the host controller that a transfer
878 	 * request slot is cleared. The host controller
879 	 * shall free up any resources associated to the request slot
880 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
881 	 * host software indicates no change to request slots by setting the
882 	 * associated bits in this field to ‘1’. Bits in this field shall only
883 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
884 	 */
885 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
886 }
887 
888 /**
889  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
890  * @hba: per adapter instance
891  * @pos: position of the bit to be cleared
892  */
ufshcd_utmrl_clear(struct ufs_hba * hba,u32 pos)893 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
894 {
895 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
896 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
897 	else
898 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
899 }
900 
901 /**
902  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
903  * @reg: Register value of host controller status
904  *
905  * Return: 0 on success; a positive value if failed.
906  */
ufshcd_get_lists_status(u32 reg)907 static inline int ufshcd_get_lists_status(u32 reg)
908 {
909 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
910 }
911 
912 /**
913  * ufshcd_get_uic_cmd_result - Get the UIC command result
914  * @hba: Pointer to adapter instance
915  *
916  * This function gets the result of UIC command completion
917  *
918  * Return: 0 on success; non-zero value on error.
919  */
ufshcd_get_uic_cmd_result(struct ufs_hba * hba)920 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
921 {
922 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
923 	       MASK_UIC_COMMAND_RESULT;
924 }
925 
926 /**
927  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
928  * @hba: Pointer to adapter instance
929  *
930  * This function gets UIC command argument3
931  *
932  * Return: 0 on success; non-zero value on error.
933  */
ufshcd_get_dme_attr_val(struct ufs_hba * hba)934 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
935 {
936 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
937 }
938 
939 /**
940  * ufshcd_get_req_rsp - returns the TR response transaction type
941  * @ucd_rsp_ptr: pointer to response UPIU
942  *
943  * Return: UPIU type.
944  */
945 static inline enum upiu_response_transaction
ufshcd_get_req_rsp(struct utp_upiu_rsp * ucd_rsp_ptr)946 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
947 {
948 	return ucd_rsp_ptr->header.transaction_code;
949 }
950 
951 /**
952  * ufshcd_is_exception_event - Check if the device raised an exception event
953  * @ucd_rsp_ptr: pointer to response UPIU
954  *
955  * The function checks if the device raised an exception event indicated in
956  * the Device Information field of response UPIU.
957  *
958  * Return: true if exception is raised, false otherwise.
959  */
ufshcd_is_exception_event(struct utp_upiu_rsp * ucd_rsp_ptr)960 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
961 {
962 	return ucd_rsp_ptr->header.device_information & 1;
963 }
964 
965 /**
966  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
967  * @hba: per adapter instance
968  */
969 static inline void
ufshcd_reset_intr_aggr(struct ufs_hba * hba)970 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
971 {
972 	ufshcd_writel(hba, INT_AGGR_ENABLE |
973 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
974 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
975 }
976 
977 /**
978  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
979  * @hba: per adapter instance
980  * @cnt: Interrupt aggregation counter threshold
981  * @tmout: Interrupt aggregation timeout value
982  */
983 static inline void
ufshcd_config_intr_aggr(struct ufs_hba * hba,u8 cnt,u8 tmout)984 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
985 {
986 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
987 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
988 		      INT_AGGR_TIMEOUT_VAL(tmout),
989 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
990 }
991 
992 /**
993  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
994  * @hba: per adapter instance
995  */
ufshcd_disable_intr_aggr(struct ufs_hba * hba)996 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
997 {
998 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
999 }
1000 
1001 /**
1002  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
1003  *			When run-stop registers are set to 1, it indicates the
1004  *			host controller that it can process the requests
1005  * @hba: per adapter instance
1006  */
ufshcd_enable_run_stop_reg(struct ufs_hba * hba)1007 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
1008 {
1009 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
1010 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
1011 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
1012 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
1013 }
1014 
1015 /**
1016  * ufshcd_hba_start - Start controller initialization sequence
1017  * @hba: per adapter instance
1018  */
ufshcd_hba_start(struct ufs_hba * hba)1019 static inline void ufshcd_hba_start(struct ufs_hba *hba)
1020 {
1021 	u32 val = CONTROLLER_ENABLE;
1022 
1023 	if (ufshcd_crypto_enable(hba))
1024 		val |= CRYPTO_GENERAL_ENABLE;
1025 
1026 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
1027 }
1028 
1029 /**
1030  * ufshcd_is_hba_active - Get controller state
1031  * @hba: per adapter instance
1032  *
1033  * Return: true if and only if the controller is active.
1034  */
ufshcd_is_hba_active(struct ufs_hba * hba)1035 bool ufshcd_is_hba_active(struct ufs_hba *hba)
1036 {
1037 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
1038 }
1039 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
1040 
1041 /**
1042  * ufshcd_pm_qos_init - initialize PM QoS request
1043  * @hba: per adapter instance
1044  */
ufshcd_pm_qos_init(struct ufs_hba * hba)1045 void ufshcd_pm_qos_init(struct ufs_hba *hba)
1046 {
1047 	guard(mutex)(&hba->pm_qos_mutex);
1048 
1049 	if (hba->pm_qos_enabled)
1050 		return;
1051 
1052 	cpu_latency_qos_add_request(&hba->pm_qos_req, PM_QOS_DEFAULT_VALUE);
1053 
1054 	if (cpu_latency_qos_request_active(&hba->pm_qos_req))
1055 		hba->pm_qos_enabled = true;
1056 }
1057 
1058 /**
1059  * ufshcd_pm_qos_exit - remove request from PM QoS
1060  * @hba: per adapter instance
1061  */
ufshcd_pm_qos_exit(struct ufs_hba * hba)1062 void ufshcd_pm_qos_exit(struct ufs_hba *hba)
1063 {
1064 	guard(mutex)(&hba->pm_qos_mutex);
1065 
1066 	if (!hba->pm_qos_enabled)
1067 		return;
1068 
1069 	cpu_latency_qos_remove_request(&hba->pm_qos_req);
1070 	hba->pm_qos_enabled = false;
1071 }
1072 
1073 /**
1074  * ufshcd_pm_qos_update - update PM QoS request
1075  * @hba: per adapter instance
1076  * @on: If True, vote for perf PM QoS mode otherwise power save mode
1077  */
ufshcd_pm_qos_update(struct ufs_hba * hba,bool on)1078 void ufshcd_pm_qos_update(struct ufs_hba *hba, bool on)
1079 {
1080 	guard(mutex)(&hba->pm_qos_mutex);
1081 
1082 	if (!hba->pm_qos_enabled)
1083 		return;
1084 
1085 	cpu_latency_qos_update_request(&hba->pm_qos_req, on ? 0 : PM_QOS_DEFAULT_VALUE);
1086 }
1087 EXPORT_SYMBOL_GPL(ufshcd_pm_qos_update);
1088 
1089 /**
1090  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1091  * @hba: per adapter instance
1092  * @scale_up: If True, set max possible frequency othewise set low frequency
1093  *
1094  * Return: 0 if successful; < 0 upon failure.
1095  */
ufshcd_set_clk_freq(struct ufs_hba * hba,bool scale_up)1096 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1097 {
1098 	int ret = 0;
1099 	struct ufs_clk_info *clki;
1100 	struct list_head *head = &hba->clk_list_head;
1101 
1102 	if (list_empty(head))
1103 		goto out;
1104 
1105 	list_for_each_entry(clki, head, list) {
1106 		if (!IS_ERR_OR_NULL(clki->clk)) {
1107 			if (scale_up && clki->max_freq) {
1108 				if (clki->curr_freq == clki->max_freq)
1109 					continue;
1110 
1111 				ret = clk_set_rate(clki->clk, clki->max_freq);
1112 				if (ret) {
1113 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1114 						__func__, clki->name,
1115 						clki->max_freq, ret);
1116 					break;
1117 				}
1118 				trace_ufshcd_clk_scaling(hba,
1119 						"scaled up", clki->name,
1120 						clki->curr_freq,
1121 						clki->max_freq);
1122 
1123 				clki->curr_freq = clki->max_freq;
1124 
1125 			} else if (!scale_up && clki->min_freq) {
1126 				if (clki->curr_freq == clki->min_freq)
1127 					continue;
1128 
1129 				ret = clk_set_rate(clki->clk, clki->min_freq);
1130 				if (ret) {
1131 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1132 						__func__, clki->name,
1133 						clki->min_freq, ret);
1134 					break;
1135 				}
1136 				trace_ufshcd_clk_scaling(hba,
1137 						"scaled down", clki->name,
1138 						clki->curr_freq,
1139 						clki->min_freq);
1140 				clki->curr_freq = clki->min_freq;
1141 			}
1142 		}
1143 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1144 				clki->name, clk_get_rate(clki->clk));
1145 	}
1146 
1147 out:
1148 	return ret;
1149 }
1150 
ufshcd_opp_config_clks(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * data,bool scaling_down)1151 int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table,
1152 			   struct dev_pm_opp *opp, void *data,
1153 			   bool scaling_down)
1154 {
1155 	struct ufs_hba *hba = dev_get_drvdata(dev);
1156 	struct list_head *head = &hba->clk_list_head;
1157 	struct ufs_clk_info *clki;
1158 	unsigned long freq;
1159 	u8 idx = 0;
1160 	int ret;
1161 
1162 	list_for_each_entry(clki, head, list) {
1163 		if (!IS_ERR_OR_NULL(clki->clk)) {
1164 			freq = dev_pm_opp_get_freq_indexed(opp, idx++);
1165 
1166 			/* Do not set rate for clocks having frequency as 0 */
1167 			if (!freq)
1168 				continue;
1169 
1170 			ret = clk_set_rate(clki->clk, freq);
1171 			if (ret) {
1172 				dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n",
1173 					__func__, clki->name, freq, ret);
1174 				return ret;
1175 			}
1176 
1177 			trace_ufshcd_clk_scaling(hba,
1178 				(scaling_down ? "scaled down" : "scaled up"),
1179 				clki->name, hba->clk_scaling.target_freq, freq);
1180 		}
1181 	}
1182 
1183 	return 0;
1184 }
1185 EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks);
1186 
ufshcd_opp_set_rate(struct ufs_hba * hba,unsigned long freq)1187 static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq)
1188 {
1189 	struct dev_pm_opp *opp;
1190 	int ret;
1191 
1192 	opp = dev_pm_opp_find_freq_floor_indexed(hba->dev,
1193 						 &freq, 0);
1194 	if (IS_ERR(opp))
1195 		return PTR_ERR(opp);
1196 
1197 	ret = dev_pm_opp_set_opp(hba->dev, opp);
1198 	dev_pm_opp_put(opp);
1199 
1200 	return ret;
1201 }
1202 
1203 /**
1204  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1205  * @hba: per adapter instance
1206  * @freq: frequency to scale
1207  * @scale_up: True if scaling up and false if scaling down
1208  *
1209  * Return: 0 if successful; < 0 upon failure.
1210  */
ufshcd_scale_clks(struct ufs_hba * hba,unsigned long freq,bool scale_up)1211 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
1212 			     bool scale_up)
1213 {
1214 	int ret = 0;
1215 	ktime_t start = ktime_get();
1216 
1217 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, freq, PRE_CHANGE);
1218 	if (ret)
1219 		goto out;
1220 
1221 	if (hba->use_pm_opp)
1222 		ret = ufshcd_opp_set_rate(hba, freq);
1223 	else
1224 		ret = ufshcd_set_clk_freq(hba, scale_up);
1225 	if (ret)
1226 		goto out;
1227 
1228 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, freq, POST_CHANGE);
1229 	if (ret) {
1230 		if (hba->use_pm_opp)
1231 			ufshcd_opp_set_rate(hba,
1232 					    hba->devfreq->previous_freq);
1233 		else
1234 			ufshcd_set_clk_freq(hba, !scale_up);
1235 		goto out;
1236 	}
1237 
1238 	ufshcd_pm_qos_update(hba, scale_up);
1239 
1240 out:
1241 	trace_ufshcd_profile_clk_scaling(hba,
1242 			(scale_up ? "up" : "down"),
1243 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1244 	return ret;
1245 }
1246 
1247 /**
1248  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1249  * @hba: per adapter instance
1250  * @freq: frequency to scale
1251  * @scale_up: True if scaling up and false if scaling down
1252  *
1253  * Return: true if scaling is required, false otherwise.
1254  */
ufshcd_is_devfreq_scaling_required(struct ufs_hba * hba,unsigned long freq,bool scale_up)1255 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1256 					       unsigned long freq, bool scale_up)
1257 {
1258 	struct ufs_clk_info *clki;
1259 	struct list_head *head = &hba->clk_list_head;
1260 
1261 	if (list_empty(head))
1262 		return false;
1263 
1264 	if (hba->use_pm_opp)
1265 		return freq != hba->clk_scaling.target_freq;
1266 
1267 	list_for_each_entry(clki, head, list) {
1268 		if (!IS_ERR_OR_NULL(clki->clk)) {
1269 			if (scale_up && clki->max_freq) {
1270 				if (clki->curr_freq == clki->max_freq)
1271 					continue;
1272 				return true;
1273 			} else if (!scale_up && clki->min_freq) {
1274 				if (clki->curr_freq == clki->min_freq)
1275 					continue;
1276 				return true;
1277 			}
1278 		}
1279 	}
1280 
1281 	return false;
1282 }
1283 
1284 /*
1285  * Determine the number of pending commands by counting the bits in the SCSI
1286  * device budget maps. This approach has been selected because a bit is set in
1287  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1288  * flag. The host_self_blocked flag can be modified by calling
1289  * scsi_block_requests() or scsi_unblock_requests().
1290  */
ufshcd_pending_cmds(struct ufs_hba * hba)1291 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1292 {
1293 	struct scsi_device *sdev;
1294 	unsigned long flags;
1295 	u32 pending = 0;
1296 
1297 	spin_lock_irqsave(hba->host->host_lock, flags);
1298 	__shost_for_each_device(sdev, hba->host)
1299 		pending += scsi_device_busy(sdev);
1300 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1301 
1302 	return pending;
1303 }
1304 
1305 /*
1306  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1307  * has expired.
1308  *
1309  * Return: 0 upon success; -EBUSY upon timeout.
1310  */
ufshcd_wait_for_pending_cmds(struct ufs_hba * hba,u64 wait_timeout_us)1311 static int ufshcd_wait_for_pending_cmds(struct ufs_hba *hba,
1312 					u64 wait_timeout_us)
1313 {
1314 	int ret = 0;
1315 	u32 tm_doorbell;
1316 	u32 tr_pending;
1317 	bool timeout = false, do_last_check = false;
1318 	ktime_t start;
1319 
1320 	ufshcd_hold(hba);
1321 	/*
1322 	 * Wait for all the outstanding tasks/transfer requests.
1323 	 * Verify by checking the doorbell registers are clear.
1324 	 */
1325 	start = ktime_get();
1326 	do {
1327 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1328 			ret = -EBUSY;
1329 			goto out;
1330 		}
1331 
1332 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1333 		tr_pending = ufshcd_pending_cmds(hba);
1334 		if (!tm_doorbell && !tr_pending) {
1335 			timeout = false;
1336 			break;
1337 		} else if (do_last_check) {
1338 			break;
1339 		}
1340 
1341 		io_schedule_timeout(msecs_to_jiffies(20));
1342 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1343 		    wait_timeout_us) {
1344 			timeout = true;
1345 			/*
1346 			 * We might have scheduled out for long time so make
1347 			 * sure to check if doorbells are cleared by this time
1348 			 * or not.
1349 			 */
1350 			do_last_check = true;
1351 		}
1352 	} while (tm_doorbell || tr_pending);
1353 
1354 	if (timeout) {
1355 		dev_err(hba->dev,
1356 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1357 			__func__, tm_doorbell, tr_pending);
1358 		ret = -EBUSY;
1359 	}
1360 out:
1361 	ufshcd_release(hba);
1362 	return ret;
1363 }
1364 
1365 /**
1366  * ufshcd_scale_gear - scale up/down UFS gear
1367  * @hba: per adapter instance
1368  * @target_gear: target gear to scale to
1369  * @scale_up: True for scaling up gear and false for scaling down
1370  *
1371  * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1372  * non-zero for any other errors.
1373  */
ufshcd_scale_gear(struct ufs_hba * hba,u32 target_gear,bool scale_up)1374 static int ufshcd_scale_gear(struct ufs_hba *hba, u32 target_gear, bool scale_up)
1375 {
1376 	int ret = 0;
1377 	struct ufs_pa_layer_attr new_pwr_info;
1378 
1379 	if (target_gear) {
1380 		new_pwr_info = hba->pwr_info;
1381 		new_pwr_info.gear_tx = target_gear;
1382 		new_pwr_info.gear_rx = target_gear;
1383 
1384 		goto config_pwr_mode;
1385 	}
1386 
1387 	/* Legacy gear scaling, in case vops_freq_to_gear_speed() is not implemented */
1388 	if (scale_up) {
1389 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1390 		       sizeof(struct ufs_pa_layer_attr));
1391 	} else {
1392 		memcpy(&new_pwr_info, &hba->pwr_info,
1393 		       sizeof(struct ufs_pa_layer_attr));
1394 
1395 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1396 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1397 			/* save the current power mode */
1398 			memcpy(&hba->clk_scaling.saved_pwr_info,
1399 				&hba->pwr_info,
1400 				sizeof(struct ufs_pa_layer_attr));
1401 
1402 			/* scale down gear */
1403 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1404 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1405 		}
1406 	}
1407 
1408 config_pwr_mode:
1409 	/* check if the power mode needs to be changed or not? */
1410 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1411 	if (ret)
1412 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1413 			__func__, ret,
1414 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1415 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1416 
1417 	return ret;
1418 }
1419 
1420 /*
1421  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1422  * has expired.
1423  *
1424  * Return: 0 upon success; -EBUSY upon timeout.
1425  */
ufshcd_clock_scaling_prepare(struct ufs_hba * hba,u64 timeout_us)1426 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1427 {
1428 	int ret = 0;
1429 	/*
1430 	 * make sure that there are no outstanding requests when
1431 	 * clock scaling is in progress
1432 	 */
1433 	mutex_lock(&hba->host->scan_mutex);
1434 	blk_mq_quiesce_tagset(&hba->host->tag_set);
1435 	mutex_lock(&hba->wb_mutex);
1436 	down_write(&hba->clk_scaling_lock);
1437 
1438 	if (!hba->clk_scaling.is_allowed ||
1439 	    ufshcd_wait_for_pending_cmds(hba, timeout_us)) {
1440 		ret = -EBUSY;
1441 		up_write(&hba->clk_scaling_lock);
1442 		mutex_unlock(&hba->wb_mutex);
1443 		blk_mq_unquiesce_tagset(&hba->host->tag_set);
1444 		mutex_unlock(&hba->host->scan_mutex);
1445 		goto out;
1446 	}
1447 
1448 	/* let's not get into low power until clock scaling is completed */
1449 	ufshcd_hold(hba);
1450 
1451 out:
1452 	return ret;
1453 }
1454 
ufshcd_clock_scaling_unprepare(struct ufs_hba * hba,int err)1455 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err)
1456 {
1457 	up_write(&hba->clk_scaling_lock);
1458 	mutex_unlock(&hba->wb_mutex);
1459 	blk_mq_unquiesce_tagset(&hba->host->tag_set);
1460 	mutex_unlock(&hba->host->scan_mutex);
1461 
1462 	/* Enable Write Booster if current gear requires it else disable it */
1463 	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1464 		ufshcd_wb_toggle(hba, hba->pwr_info.gear_rx >= hba->clk_scaling.wb_gear);
1465 
1466 	ufshcd_release(hba);
1467 }
1468 
1469 /**
1470  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1471  * @hba: per adapter instance
1472  * @freq: frequency to scale
1473  * @scale_up: True for scaling up and false for scalin down
1474  *
1475  * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1476  * for any other errors.
1477  */
ufshcd_devfreq_scale(struct ufs_hba * hba,unsigned long freq,bool scale_up)1478 static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq,
1479 				bool scale_up)
1480 {
1481 	u32 old_gear = hba->pwr_info.gear_rx;
1482 	u32 new_gear = 0;
1483 	int ret = 0;
1484 
1485 	new_gear = ufshcd_vops_freq_to_gear_speed(hba, freq);
1486 
1487 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1488 	if (ret)
1489 		return ret;
1490 
1491 	/* scale down the gear before scaling down clocks */
1492 	if (!scale_up) {
1493 		ret = ufshcd_scale_gear(hba, new_gear, false);
1494 		if (ret)
1495 			goto out_unprepare;
1496 	}
1497 
1498 	ret = ufshcd_scale_clks(hba, freq, scale_up);
1499 	if (ret) {
1500 		if (!scale_up)
1501 			ufshcd_scale_gear(hba, old_gear, true);
1502 		goto out_unprepare;
1503 	}
1504 
1505 	/* scale up the gear after scaling up clocks */
1506 	if (scale_up) {
1507 		ret = ufshcd_scale_gear(hba, new_gear, true);
1508 		if (ret) {
1509 			ufshcd_scale_clks(hba, hba->devfreq->previous_freq,
1510 					  false);
1511 			goto out_unprepare;
1512 		}
1513 	}
1514 
1515 out_unprepare:
1516 	ufshcd_clock_scaling_unprepare(hba, ret);
1517 	return ret;
1518 }
1519 
ufshcd_clk_scaling_suspend_work(struct work_struct * work)1520 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1521 {
1522 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1523 					   clk_scaling.suspend_work);
1524 
1525 	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1526 	{
1527 		if (hba->clk_scaling.active_reqs ||
1528 		    hba->clk_scaling.is_suspended)
1529 			return;
1530 
1531 		hba->clk_scaling.is_suspended = true;
1532 		hba->clk_scaling.window_start_t = 0;
1533 	}
1534 
1535 	devfreq_suspend_device(hba->devfreq);
1536 }
1537 
ufshcd_clk_scaling_resume_work(struct work_struct * work)1538 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1539 {
1540 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1541 					   clk_scaling.resume_work);
1542 
1543 	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1544 	{
1545 		if (!hba->clk_scaling.is_suspended)
1546 			return;
1547 		hba->clk_scaling.is_suspended = false;
1548 	}
1549 
1550 	devfreq_resume_device(hba->devfreq);
1551 }
1552 
ufshcd_devfreq_target(struct device * dev,unsigned long * freq,u32 flags)1553 static int ufshcd_devfreq_target(struct device *dev,
1554 				unsigned long *freq, u32 flags)
1555 {
1556 	int ret = 0;
1557 	struct ufs_hba *hba = dev_get_drvdata(dev);
1558 	ktime_t start;
1559 	bool scale_up = false, sched_clk_scaling_suspend_work = false;
1560 	struct list_head *clk_list = &hba->clk_list_head;
1561 	struct ufs_clk_info *clki;
1562 
1563 	if (!ufshcd_is_clkscaling_supported(hba))
1564 		return -EINVAL;
1565 
1566 	if (hba->use_pm_opp) {
1567 		struct dev_pm_opp *opp;
1568 
1569 		/* Get the recommended frequency from OPP framework */
1570 		opp = devfreq_recommended_opp(dev, freq, flags);
1571 		if (IS_ERR(opp))
1572 			return PTR_ERR(opp);
1573 
1574 		dev_pm_opp_put(opp);
1575 	} else {
1576 		/* Override with the closest supported frequency */
1577 		clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info,
1578 					list);
1579 		*freq =	(unsigned long) clk_round_rate(clki->clk, *freq);
1580 	}
1581 
1582 	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1583 	{
1584 		if (ufshcd_eh_in_progress(hba))
1585 			return 0;
1586 
1587 		/* Skip scaling clock when clock scaling is suspended */
1588 		if (hba->clk_scaling.is_suspended) {
1589 			dev_warn(hba->dev, "clock scaling is suspended, skip");
1590 			return 0;
1591 		}
1592 
1593 		if (!hba->clk_scaling.active_reqs)
1594 			sched_clk_scaling_suspend_work = true;
1595 
1596 		if (list_empty(clk_list))
1597 			goto out;
1598 
1599 		/* Decide based on the target or rounded-off frequency and update */
1600 		if (hba->use_pm_opp)
1601 			scale_up = *freq > hba->clk_scaling.target_freq;
1602 		else
1603 			scale_up = *freq == clki->max_freq;
1604 
1605 		if (!hba->use_pm_opp && !scale_up)
1606 			*freq = clki->min_freq;
1607 
1608 		/* Update the frequency */
1609 		if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) {
1610 			ret = 0;
1611 			goto out; /* no state change required */
1612 		}
1613 	}
1614 
1615 	start = ktime_get();
1616 	ret = ufshcd_devfreq_scale(hba, *freq, scale_up);
1617 	if (!ret)
1618 		hba->clk_scaling.target_freq = *freq;
1619 
1620 	trace_ufshcd_profile_clk_scaling(hba,
1621 		(scale_up ? "up" : "down"),
1622 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1623 
1624 out:
1625 	if (sched_clk_scaling_suspend_work &&
1626 			(!scale_up || hba->clk_scaling.suspend_on_no_request))
1627 		queue_work(hba->clk_scaling.workq,
1628 			   &hba->clk_scaling.suspend_work);
1629 
1630 	return ret;
1631 }
1632 
ufshcd_devfreq_get_dev_status(struct device * dev,struct devfreq_dev_status * stat)1633 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1634 		struct devfreq_dev_status *stat)
1635 {
1636 	struct ufs_hba *hba = dev_get_drvdata(dev);
1637 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1638 	ktime_t curr_t;
1639 
1640 	if (!ufshcd_is_clkscaling_supported(hba))
1641 		return -EINVAL;
1642 
1643 	memset(stat, 0, sizeof(*stat));
1644 
1645 	guard(spinlock_irqsave)(&hba->clk_scaling.lock);
1646 
1647 	curr_t = ktime_get();
1648 	if (!scaling->window_start_t)
1649 		goto start_window;
1650 
1651 	/*
1652 	 * If current frequency is 0, then the ondemand governor considers
1653 	 * there's no initial frequency set. And it always requests to set
1654 	 * to max. frequency.
1655 	 */
1656 	if (hba->use_pm_opp) {
1657 		stat->current_frequency = hba->clk_scaling.target_freq;
1658 	} else {
1659 		struct list_head *clk_list = &hba->clk_list_head;
1660 		struct ufs_clk_info *clki;
1661 
1662 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1663 		stat->current_frequency = clki->curr_freq;
1664 	}
1665 
1666 	if (scaling->is_busy_started)
1667 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1668 				scaling->busy_start_t);
1669 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1670 	stat->busy_time = scaling->tot_busy_t;
1671 start_window:
1672 	scaling->window_start_t = curr_t;
1673 	scaling->tot_busy_t = 0;
1674 
1675 	if (scaling->active_reqs) {
1676 		scaling->busy_start_t = curr_t;
1677 		scaling->is_busy_started = true;
1678 	} else {
1679 		scaling->busy_start_t = 0;
1680 		scaling->is_busy_started = false;
1681 	}
1682 
1683 	return 0;
1684 }
1685 
ufshcd_devfreq_init(struct ufs_hba * hba)1686 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1687 {
1688 	struct list_head *clk_list = &hba->clk_list_head;
1689 	struct ufs_clk_info *clki;
1690 	struct devfreq *devfreq;
1691 	int ret;
1692 
1693 	/* Skip devfreq if we don't have any clocks in the list */
1694 	if (list_empty(clk_list))
1695 		return 0;
1696 
1697 	if (!hba->use_pm_opp) {
1698 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1699 		dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1700 		dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1701 	}
1702 
1703 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1704 					 &hba->vps->ondemand_data);
1705 	devfreq = devfreq_add_device(hba->dev,
1706 			&hba->vps->devfreq_profile,
1707 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1708 			&hba->vps->ondemand_data);
1709 	if (IS_ERR(devfreq)) {
1710 		ret = PTR_ERR(devfreq);
1711 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1712 
1713 		if (!hba->use_pm_opp) {
1714 			dev_pm_opp_remove(hba->dev, clki->min_freq);
1715 			dev_pm_opp_remove(hba->dev, clki->max_freq);
1716 		}
1717 		return ret;
1718 	}
1719 
1720 	hba->devfreq = devfreq;
1721 
1722 	return 0;
1723 }
1724 
ufshcd_devfreq_remove(struct ufs_hba * hba)1725 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1726 {
1727 	struct list_head *clk_list = &hba->clk_list_head;
1728 
1729 	if (!hba->devfreq)
1730 		return;
1731 
1732 	devfreq_remove_device(hba->devfreq);
1733 	hba->devfreq = NULL;
1734 
1735 	if (!hba->use_pm_opp) {
1736 		struct ufs_clk_info *clki;
1737 
1738 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1739 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1740 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1741 	}
1742 }
1743 
ufshcd_suspend_clkscaling(struct ufs_hba * hba)1744 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1745 {
1746 	bool suspend = false;
1747 
1748 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1749 	cancel_work_sync(&hba->clk_scaling.resume_work);
1750 
1751 	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1752 	{
1753 		if (!hba->clk_scaling.is_suspended) {
1754 			suspend = true;
1755 			hba->clk_scaling.is_suspended = true;
1756 			hba->clk_scaling.window_start_t = 0;
1757 		}
1758 	}
1759 
1760 	if (suspend)
1761 		devfreq_suspend_device(hba->devfreq);
1762 }
1763 
ufshcd_resume_clkscaling(struct ufs_hba * hba)1764 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1765 {
1766 	bool resume = false;
1767 
1768 	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1769 	{
1770 		if (hba->clk_scaling.is_suspended) {
1771 			resume = true;
1772 			hba->clk_scaling.is_suspended = false;
1773 		}
1774 	}
1775 
1776 	if (resume)
1777 		devfreq_resume_device(hba->devfreq);
1778 }
1779 
ufshcd_clkscale_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1780 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1781 		struct device_attribute *attr, char *buf)
1782 {
1783 	struct ufs_hba *hba = dev_get_drvdata(dev);
1784 
1785 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1786 }
1787 
ufshcd_clkscale_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1788 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1789 		struct device_attribute *attr, const char *buf, size_t count)
1790 {
1791 	struct ufs_hba *hba = dev_get_drvdata(dev);
1792 	struct ufs_clk_info *clki;
1793 	unsigned long freq;
1794 	u32 value;
1795 	int err = 0;
1796 
1797 	if (kstrtou32(buf, 0, &value))
1798 		return -EINVAL;
1799 
1800 	down(&hba->host_sem);
1801 	if (!ufshcd_is_user_access_allowed(hba)) {
1802 		err = -EBUSY;
1803 		goto out;
1804 	}
1805 
1806 	value = !!value;
1807 	if (value == hba->clk_scaling.is_enabled)
1808 		goto out;
1809 
1810 	ufshcd_rpm_get_sync(hba);
1811 	ufshcd_hold(hba);
1812 
1813 	hba->clk_scaling.is_enabled = value;
1814 
1815 	if (value) {
1816 		ufshcd_resume_clkscaling(hba);
1817 		goto out_rel;
1818 	}
1819 
1820 	clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1821 	freq = clki->max_freq;
1822 
1823 	ufshcd_suspend_clkscaling(hba);
1824 
1825 	if (!ufshcd_is_devfreq_scaling_required(hba, freq, true))
1826 		goto out_rel;
1827 
1828 	err = ufshcd_devfreq_scale(hba, freq, true);
1829 	if (err)
1830 		dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1831 				__func__, err);
1832 	else
1833 		hba->clk_scaling.target_freq = freq;
1834 
1835 out_rel:
1836 	ufshcd_release(hba);
1837 	ufshcd_rpm_put_sync(hba);
1838 out:
1839 	up(&hba->host_sem);
1840 	return err ? err : count;
1841 }
1842 
ufshcd_init_clk_scaling_sysfs(struct ufs_hba * hba)1843 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1844 {
1845 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1846 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1847 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1848 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1849 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1850 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1851 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1852 }
1853 
ufshcd_remove_clk_scaling_sysfs(struct ufs_hba * hba)1854 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1855 {
1856 	if (hba->clk_scaling.enable_attr.attr.name)
1857 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1858 }
1859 
ufshcd_init_clk_scaling(struct ufs_hba * hba)1860 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1861 {
1862 	if (!ufshcd_is_clkscaling_supported(hba))
1863 		return;
1864 
1865 	if (!hba->clk_scaling.min_gear)
1866 		hba->clk_scaling.min_gear = UFS_HS_G1;
1867 
1868 	if (!hba->clk_scaling.wb_gear)
1869 		/* Use intermediate gear speed HS_G3 as the default wb_gear */
1870 		hba->clk_scaling.wb_gear = UFS_HS_G3;
1871 
1872 	INIT_WORK(&hba->clk_scaling.suspend_work,
1873 		  ufshcd_clk_scaling_suspend_work);
1874 	INIT_WORK(&hba->clk_scaling.resume_work,
1875 		  ufshcd_clk_scaling_resume_work);
1876 
1877 	spin_lock_init(&hba->clk_scaling.lock);
1878 
1879 	hba->clk_scaling.workq = alloc_ordered_workqueue(
1880 		"ufs_clkscaling_%d", WQ_MEM_RECLAIM, hba->host->host_no);
1881 
1882 	hba->clk_scaling.is_initialized = true;
1883 }
1884 
ufshcd_exit_clk_scaling(struct ufs_hba * hba)1885 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1886 {
1887 	if (!hba->clk_scaling.is_initialized)
1888 		return;
1889 
1890 	ufshcd_remove_clk_scaling_sysfs(hba);
1891 	destroy_workqueue(hba->clk_scaling.workq);
1892 	ufshcd_devfreq_remove(hba);
1893 	hba->clk_scaling.is_initialized = false;
1894 }
1895 
ufshcd_ungate_work(struct work_struct * work)1896 static void ufshcd_ungate_work(struct work_struct *work)
1897 {
1898 	int ret;
1899 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1900 			clk_gating.ungate_work);
1901 
1902 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1903 
1904 	scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) {
1905 		if (hba->clk_gating.state == CLKS_ON)
1906 			return;
1907 	}
1908 
1909 	ufshcd_hba_vreg_set_hpm(hba);
1910 	ufshcd_setup_clocks(hba, true);
1911 
1912 	ufshcd_enable_irq(hba);
1913 
1914 	/* Exit from hibern8 */
1915 	if (ufshcd_can_hibern8_during_gating(hba)) {
1916 		/* Prevent gating in this path */
1917 		hba->clk_gating.is_suspended = true;
1918 		if (ufshcd_is_link_hibern8(hba)) {
1919 			ret = ufshcd_uic_hibern8_exit(hba);
1920 			if (ret)
1921 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1922 					__func__, ret);
1923 			else
1924 				ufshcd_set_link_active(hba);
1925 		}
1926 		hba->clk_gating.is_suspended = false;
1927 	}
1928 }
1929 
1930 /**
1931  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1932  * Also, exit from hibern8 mode and set the link as active.
1933  * @hba: per adapter instance
1934  */
ufshcd_hold(struct ufs_hba * hba)1935 void ufshcd_hold(struct ufs_hba *hba)
1936 {
1937 	bool flush_result;
1938 	unsigned long flags;
1939 
1940 	if (!ufshcd_is_clkgating_allowed(hba) ||
1941 	    !hba->clk_gating.is_initialized)
1942 		return;
1943 	spin_lock_irqsave(&hba->clk_gating.lock, flags);
1944 	hba->clk_gating.active_reqs++;
1945 
1946 start:
1947 	switch (hba->clk_gating.state) {
1948 	case CLKS_ON:
1949 		/*
1950 		 * Wait for the ungate work to complete if in progress.
1951 		 * Though the clocks may be in ON state, the link could
1952 		 * still be in hibner8 state if hibern8 is allowed
1953 		 * during clock gating.
1954 		 * Make sure we exit hibern8 state also in addition to
1955 		 * clocks being ON.
1956 		 */
1957 		if (ufshcd_can_hibern8_during_gating(hba) &&
1958 		    ufshcd_is_link_hibern8(hba)) {
1959 			spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1960 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1961 			if (hba->clk_gating.is_suspended && !flush_result)
1962 				return;
1963 			spin_lock_irqsave(&hba->clk_gating.lock, flags);
1964 			goto start;
1965 		}
1966 		break;
1967 	case REQ_CLKS_OFF:
1968 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1969 			hba->clk_gating.state = CLKS_ON;
1970 			trace_ufshcd_clk_gating(hba,
1971 						hba->clk_gating.state);
1972 			break;
1973 		}
1974 		/*
1975 		 * If we are here, it means gating work is either done or
1976 		 * currently running. Hence, fall through to cancel gating
1977 		 * work and to enable clocks.
1978 		 */
1979 		fallthrough;
1980 	case CLKS_OFF:
1981 		hba->clk_gating.state = REQ_CLKS_ON;
1982 		trace_ufshcd_clk_gating(hba,
1983 					hba->clk_gating.state);
1984 		queue_work(hba->clk_gating.clk_gating_workq,
1985 			   &hba->clk_gating.ungate_work);
1986 		/*
1987 		 * fall through to check if we should wait for this
1988 		 * work to be done or not.
1989 		 */
1990 		fallthrough;
1991 	case REQ_CLKS_ON:
1992 		spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1993 		flush_work(&hba->clk_gating.ungate_work);
1994 		/* Make sure state is CLKS_ON before returning */
1995 		spin_lock_irqsave(&hba->clk_gating.lock, flags);
1996 		goto start;
1997 	default:
1998 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1999 				__func__, hba->clk_gating.state);
2000 		break;
2001 	}
2002 	spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
2003 }
2004 EXPORT_SYMBOL_GPL(ufshcd_hold);
2005 
ufshcd_gate_work(struct work_struct * work)2006 static void ufshcd_gate_work(struct work_struct *work)
2007 {
2008 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
2009 			clk_gating.gate_work.work);
2010 	int ret;
2011 
2012 	scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) {
2013 		/*
2014 		 * In case you are here to cancel this work the gating state
2015 		 * would be marked as REQ_CLKS_ON. In this case save time by
2016 		 * skipping the gating work and exit after changing the clock
2017 		 * state to CLKS_ON.
2018 		 */
2019 		if (hba->clk_gating.is_suspended ||
2020 		    hba->clk_gating.state != REQ_CLKS_OFF) {
2021 			hba->clk_gating.state = CLKS_ON;
2022 			trace_ufshcd_clk_gating(hba,
2023 						hba->clk_gating.state);
2024 			return;
2025 		}
2026 
2027 		if (hba->clk_gating.active_reqs)
2028 			return;
2029 	}
2030 
2031 	scoped_guard(spinlock_irqsave, hba->host->host_lock) {
2032 		if (ufshcd_is_ufs_dev_busy(hba) ||
2033 		    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
2034 			return;
2035 	}
2036 
2037 	/* put the link into hibern8 mode before turning off clocks */
2038 	if (ufshcd_can_hibern8_during_gating(hba)) {
2039 		ret = ufshcd_uic_hibern8_enter(hba);
2040 		if (ret) {
2041 			hba->clk_gating.state = CLKS_ON;
2042 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
2043 					__func__, ret);
2044 			trace_ufshcd_clk_gating(hba,
2045 						hba->clk_gating.state);
2046 			return;
2047 		}
2048 		ufshcd_set_link_hibern8(hba);
2049 	}
2050 
2051 	ufshcd_disable_irq(hba);
2052 
2053 	ufshcd_setup_clocks(hba, false);
2054 
2055 	/* Put the host controller in low power mode if possible */
2056 	ufshcd_hba_vreg_set_lpm(hba);
2057 	/*
2058 	 * In case you are here to cancel this work the gating state
2059 	 * would be marked as REQ_CLKS_ON. In this case keep the state
2060 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
2061 	 * and a request to turn them on is pending. By doing this way,
2062 	 * we keep the state machine in tact and this would ultimately
2063 	 * prevent from doing cancel work multiple times when there are
2064 	 * new requests arriving before the current cancel work is done.
2065 	 */
2066 	guard(spinlock_irqsave)(&hba->clk_gating.lock);
2067 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
2068 		hba->clk_gating.state = CLKS_OFF;
2069 		trace_ufshcd_clk_gating(hba,
2070 					hba->clk_gating.state);
2071 	}
2072 }
2073 
__ufshcd_release(struct ufs_hba * hba)2074 static void __ufshcd_release(struct ufs_hba *hba)
2075 {
2076 	lockdep_assert_held(&hba->clk_gating.lock);
2077 
2078 	if (!ufshcd_is_clkgating_allowed(hba))
2079 		return;
2080 
2081 	hba->clk_gating.active_reqs--;
2082 
2083 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
2084 	    !hba->clk_gating.is_initialized ||
2085 	    hba->clk_gating.state == CLKS_OFF)
2086 		return;
2087 
2088 	scoped_guard(spinlock_irqsave, hba->host->host_lock) {
2089 		if (ufshcd_has_pending_tasks(hba) ||
2090 		    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
2091 			return;
2092 	}
2093 
2094 	hba->clk_gating.state = REQ_CLKS_OFF;
2095 	trace_ufshcd_clk_gating(hba, hba->clk_gating.state);
2096 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
2097 			   &hba->clk_gating.gate_work,
2098 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
2099 }
2100 
ufshcd_release(struct ufs_hba * hba)2101 void ufshcd_release(struct ufs_hba *hba)
2102 {
2103 	guard(spinlock_irqsave)(&hba->clk_gating.lock);
2104 	__ufshcd_release(hba);
2105 }
2106 EXPORT_SYMBOL_GPL(ufshcd_release);
2107 
ufshcd_clkgate_delay_show(struct device * dev,struct device_attribute * attr,char * buf)2108 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
2109 		struct device_attribute *attr, char *buf)
2110 {
2111 	struct ufs_hba *hba = dev_get_drvdata(dev);
2112 
2113 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
2114 }
2115 
ufshcd_clkgate_delay_set(struct device * dev,unsigned long value)2116 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
2117 {
2118 	struct ufs_hba *hba = dev_get_drvdata(dev);
2119 
2120 	guard(spinlock_irqsave)(&hba->clk_gating.lock);
2121 	hba->clk_gating.delay_ms = value;
2122 }
2123 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
2124 
ufshcd_clkgate_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2125 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
2126 		struct device_attribute *attr, const char *buf, size_t count)
2127 {
2128 	unsigned long value;
2129 
2130 	if (kstrtoul(buf, 0, &value))
2131 		return -EINVAL;
2132 
2133 	ufshcd_clkgate_delay_set(dev, value);
2134 	return count;
2135 }
2136 
ufshcd_clkgate_enable_show(struct device * dev,struct device_attribute * attr,char * buf)2137 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
2138 		struct device_attribute *attr, char *buf)
2139 {
2140 	struct ufs_hba *hba = dev_get_drvdata(dev);
2141 
2142 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
2143 }
2144 
ufshcd_clkgate_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2145 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
2146 		struct device_attribute *attr, const char *buf, size_t count)
2147 {
2148 	struct ufs_hba *hba = dev_get_drvdata(dev);
2149 	u32 value;
2150 
2151 	if (kstrtou32(buf, 0, &value))
2152 		return -EINVAL;
2153 
2154 	value = !!value;
2155 
2156 	guard(spinlock_irqsave)(&hba->clk_gating.lock);
2157 
2158 	if (value == hba->clk_gating.is_enabled)
2159 		return count;
2160 
2161 	if (value)
2162 		__ufshcd_release(hba);
2163 	else
2164 		hba->clk_gating.active_reqs++;
2165 
2166 	hba->clk_gating.is_enabled = value;
2167 
2168 	return count;
2169 }
2170 
ufshcd_init_clk_gating_sysfs(struct ufs_hba * hba)2171 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2172 {
2173 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2174 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2175 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2176 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2177 	hba->clk_gating.delay_attr.attr.mode = 0644;
2178 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2179 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2180 
2181 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2182 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2183 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2184 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2185 	hba->clk_gating.enable_attr.attr.mode = 0644;
2186 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2187 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2188 }
2189 
ufshcd_remove_clk_gating_sysfs(struct ufs_hba * hba)2190 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2191 {
2192 	if (hba->clk_gating.delay_attr.attr.name)
2193 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2194 	if (hba->clk_gating.enable_attr.attr.name)
2195 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2196 }
2197 
ufshcd_init_clk_gating(struct ufs_hba * hba)2198 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2199 {
2200 	if (!ufshcd_is_clkgating_allowed(hba))
2201 		return;
2202 
2203 	hba->clk_gating.state = CLKS_ON;
2204 
2205 	hba->clk_gating.delay_ms = 150;
2206 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2207 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2208 
2209 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(
2210 		"ufs_clk_gating_%d", WQ_MEM_RECLAIM | WQ_HIGHPRI,
2211 		hba->host->host_no);
2212 
2213 	ufshcd_init_clk_gating_sysfs(hba);
2214 
2215 	hba->clk_gating.is_enabled = true;
2216 	hba->clk_gating.is_initialized = true;
2217 }
2218 
ufshcd_exit_clk_gating(struct ufs_hba * hba)2219 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2220 {
2221 	if (!hba->clk_gating.is_initialized)
2222 		return;
2223 
2224 	ufshcd_remove_clk_gating_sysfs(hba);
2225 
2226 	/* Ungate the clock if necessary. */
2227 	ufshcd_hold(hba);
2228 	hba->clk_gating.is_initialized = false;
2229 	ufshcd_release(hba);
2230 
2231 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2232 }
2233 
ufshcd_clk_scaling_start_busy(struct ufs_hba * hba)2234 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2235 {
2236 	bool queue_resume_work = false;
2237 	ktime_t curr_t;
2238 
2239 	if (!ufshcd_is_clkscaling_supported(hba))
2240 		return;
2241 
2242 	curr_t = ktime_get();
2243 
2244 	guard(spinlock_irqsave)(&hba->clk_scaling.lock);
2245 
2246 	if (!hba->clk_scaling.active_reqs++)
2247 		queue_resume_work = true;
2248 
2249 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress)
2250 		return;
2251 
2252 	if (queue_resume_work)
2253 		queue_work(hba->clk_scaling.workq,
2254 			   &hba->clk_scaling.resume_work);
2255 
2256 	if (!hba->clk_scaling.window_start_t) {
2257 		hba->clk_scaling.window_start_t = curr_t;
2258 		hba->clk_scaling.tot_busy_t = 0;
2259 		hba->clk_scaling.is_busy_started = false;
2260 	}
2261 
2262 	if (!hba->clk_scaling.is_busy_started) {
2263 		hba->clk_scaling.busy_start_t = curr_t;
2264 		hba->clk_scaling.is_busy_started = true;
2265 	}
2266 }
2267 
ufshcd_clk_scaling_update_busy(struct ufs_hba * hba)2268 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2269 {
2270 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2271 
2272 	if (!ufshcd_is_clkscaling_supported(hba))
2273 		return;
2274 
2275 	guard(spinlock_irqsave)(&hba->clk_scaling.lock);
2276 
2277 	hba->clk_scaling.active_reqs--;
2278 	if (!scaling->active_reqs && scaling->is_busy_started) {
2279 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2280 					scaling->busy_start_t));
2281 		scaling->busy_start_t = 0;
2282 		scaling->is_busy_started = false;
2283 	}
2284 }
2285 
ufshcd_monitor_opcode2dir(u8 opcode)2286 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2287 {
2288 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2289 		return READ;
2290 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2291 		return WRITE;
2292 	else
2293 		return -EINVAL;
2294 }
2295 
2296 /* Must only be called for SCSI commands. */
ufshcd_should_inform_monitor(struct ufs_hba * hba,struct scsi_cmnd * cmd)2297 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2298 						struct scsi_cmnd *cmd)
2299 {
2300 	const struct ufs_hba_monitor *m = &hba->monitor;
2301 	struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2302 
2303 	return m->enabled &&
2304 	       (!m->chunk_size || m->chunk_size == cmd->sdb.length) &&
2305 	       ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp);
2306 }
2307 
ufshcd_start_monitor(struct ufs_hba * hba,struct scsi_cmnd * cmd)2308 static void ufshcd_start_monitor(struct ufs_hba *hba, struct scsi_cmnd *cmd)
2309 {
2310 	int dir = ufshcd_monitor_opcode2dir(cmd->cmnd[0]);
2311 	unsigned long flags;
2312 
2313 	spin_lock_irqsave(hba->host->host_lock, flags);
2314 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2315 		hba->monitor.busy_start_ts[dir] = ktime_get();
2316 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2317 }
2318 
ufshcd_update_monitor(struct ufs_hba * hba,struct scsi_cmnd * cmd)2319 static void ufshcd_update_monitor(struct ufs_hba *hba, struct scsi_cmnd *cmd)
2320 {
2321 	struct request *req = scsi_cmd_to_rq(cmd);
2322 	const struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2323 	int dir = ufshcd_monitor_opcode2dir(cmd->cmnd[0]);
2324 	unsigned long flags;
2325 
2326 	spin_lock_irqsave(hba->host->host_lock, flags);
2327 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2328 		struct ufs_hba_monitor *m = &hba->monitor;
2329 		ktime_t now, inc, lat;
2330 
2331 		now = lrbp->compl_time_stamp;
2332 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2333 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2334 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2335 
2336 		/* Update latencies */
2337 		m->nr_req[dir]++;
2338 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2339 		m->lat_sum[dir] += lat;
2340 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2341 			m->lat_max[dir] = lat;
2342 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2343 			m->lat_min[dir] = lat;
2344 
2345 		m->nr_queued[dir]--;
2346 		/* Push forward the busy start of monitor */
2347 		m->busy_start_ts[dir] = now;
2348 	}
2349 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2350 }
2351 
2352 /* Returns %true for SCSI commands and %false for device management commands. */
ufshcd_is_scsi_cmd(struct scsi_cmnd * cmd)2353 static bool ufshcd_is_scsi_cmd(struct scsi_cmnd *cmd)
2354 {
2355 	return !blk_mq_is_reserved_rq(scsi_cmd_to_rq(cmd));
2356 }
2357 
2358 /**
2359  * ufshcd_send_command - Send SCSI or device management commands
2360  * @hba: per adapter instance
2361  * @cmd: SCSI command or device management command pointer
2362  * @hwq: pointer to hardware queue instance
2363  */
ufshcd_send_command(struct ufs_hba * hba,struct scsi_cmnd * cmd,struct ufs_hw_queue * hwq)2364 static inline void ufshcd_send_command(struct ufs_hba *hba,
2365 				       struct scsi_cmnd *cmd,
2366 				       struct ufs_hw_queue *hwq)
2367 {
2368 	struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2369 	const int tag = scsi_cmd_to_rq(cmd)->tag;
2370 	unsigned long flags;
2371 
2372 	if (hba->monitor.enabled) {
2373 		lrbp->issue_time_stamp = ktime_get();
2374 		lrbp->issue_time_stamp_local_clock = local_clock();
2375 		lrbp->compl_time_stamp = ktime_set(0, 0);
2376 		lrbp->compl_time_stamp_local_clock = 0;
2377 	}
2378 	if (ufshcd_is_scsi_cmd(cmd)) {
2379 		ufshcd_add_command_trace(hba, cmd, UFS_CMD_SEND);
2380 		ufshcd_clk_scaling_start_busy(hba);
2381 		if (unlikely(ufshcd_should_inform_monitor(hba, cmd)))
2382 			ufshcd_start_monitor(hba, cmd);
2383 	}
2384 
2385 	if (hba->mcq_enabled) {
2386 		int utrd_size = sizeof(struct utp_transfer_req_desc);
2387 		struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2388 		struct utp_transfer_req_desc *dest;
2389 
2390 		spin_lock(&hwq->sq_lock);
2391 		dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2392 		memcpy(dest, src, utrd_size);
2393 		ufshcd_inc_sq_tail(hwq);
2394 		spin_unlock(&hwq->sq_lock);
2395 	} else {
2396 		spin_lock_irqsave(&hba->outstanding_lock, flags);
2397 		if (hba->vops && hba->vops->setup_xfer_req)
2398 			hba->vops->setup_xfer_req(hba, tag,
2399 						  ufshcd_is_scsi_cmd(cmd));
2400 		__set_bit(tag, &hba->outstanding_reqs);
2401 		ufshcd_writel(hba, 1 << tag, REG_UTP_TRANSFER_REQ_DOOR_BELL);
2402 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2403 	}
2404 }
2405 
2406 /**
2407  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2408  * @cmd: SCSI command
2409  */
ufshcd_copy_sense_data(struct scsi_cmnd * cmd)2410 static inline void ufshcd_copy_sense_data(struct scsi_cmnd *cmd)
2411 {
2412 	struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2413 	u8 *const sense_buffer = cmd->sense_buffer;
2414 	u16 resp_len;
2415 	int len;
2416 
2417 	resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2418 	if (sense_buffer && resp_len) {
2419 		int len_to_copy;
2420 
2421 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2422 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2423 
2424 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2425 		       len_to_copy);
2426 	}
2427 }
2428 
2429 /**
2430  * ufshcd_copy_query_response() - Copy the Query Response and the data
2431  * descriptor
2432  * @hba: per adapter instance
2433  * @lrbp: pointer to local reference block
2434  *
2435  * Return: 0 upon success; < 0 upon failure.
2436  */
2437 static
ufshcd_copy_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2438 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2439 {
2440 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2441 
2442 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2443 
2444 	/* Get the descriptor */
2445 	if (hba->dev_cmd.query.descriptor &&
2446 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2447 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2448 				GENERAL_UPIU_REQUEST_SIZE;
2449 		u16 resp_len;
2450 		u16 buf_len;
2451 
2452 		/* data segment length */
2453 		resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2454 				       .data_segment_length);
2455 		buf_len = be16_to_cpu(
2456 				hba->dev_cmd.query.request.upiu_req.length);
2457 		if (likely(buf_len >= resp_len)) {
2458 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2459 		} else {
2460 			dev_warn(hba->dev,
2461 				 "%s: rsp size %d is bigger than buffer size %d",
2462 				 __func__, resp_len, buf_len);
2463 			return -EINVAL;
2464 		}
2465 	}
2466 
2467 	return 0;
2468 }
2469 
2470 /**
2471  * ufshcd_hba_capabilities - Read controller capabilities
2472  * @hba: per adapter instance
2473  *
2474  * Return: 0 on success, negative on error.
2475  */
ufshcd_hba_capabilities(struct ufs_hba * hba)2476 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2477 {
2478 	int err;
2479 
2480 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2481 
2482 	/* nutrs and nutmrs are 0 based values */
2483 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS_SDB) + 1;
2484 	hba->nutmrs =
2485 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2486 
2487 	hba->nortt = FIELD_GET(MASK_NUMBER_OUTSTANDING_RTT, hba->capabilities) + 1;
2488 
2489 	/* Read crypto capabilities */
2490 	err = ufshcd_hba_init_crypto_capabilities(hba);
2491 	if (err) {
2492 		dev_err(hba->dev, "crypto setup failed\n");
2493 		return err;
2494 	}
2495 
2496 	/*
2497 	 * The UFSHCI 3.0 specification does not define MCQ_SUPPORT and
2498 	 * LSDB_SUPPORT, but [31:29] as reserved bits with reset value 0s, which
2499 	 * means we can simply read values regardless of version.
2500 	 */
2501 	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2502 	/*
2503 	 * 0h: legacy single doorbell support is available
2504 	 * 1h: indicate that legacy single doorbell support has been removed
2505 	 */
2506 	if (!(hba->quirks & UFSHCD_QUIRK_BROKEN_LSDBS_CAP))
2507 		hba->lsdb_sup = !FIELD_GET(MASK_LSDB_SUPPORT, hba->capabilities);
2508 	else
2509 		hba->lsdb_sup = true;
2510 
2511 	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2512 
2513 	return 0;
2514 }
2515 
2516 /**
2517  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2518  *                            to accept UIC commands
2519  * @hba: per adapter instance
2520  *
2521  * Return: true on success, else false.
2522  */
ufshcd_ready_for_uic_cmd(struct ufs_hba * hba)2523 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2524 {
2525 	u32 val;
2526 	int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2527 				    500, uic_cmd_timeout * 1000, false, hba,
2528 				    REG_CONTROLLER_STATUS);
2529 	return ret == 0;
2530 }
2531 
2532 /**
2533  * ufshcd_get_upmcrs - Get the power mode change request status
2534  * @hba: Pointer to adapter instance
2535  *
2536  * This function gets the UPMCRS field of HCS register
2537  *
2538  * Return: value of UPMCRS field.
2539  */
ufshcd_get_upmcrs(struct ufs_hba * hba)2540 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2541 {
2542 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2543 }
2544 
2545 /**
2546  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2547  * @hba: per adapter instance
2548  * @uic_cmd: UIC command
2549  */
2550 static inline void
ufshcd_dispatch_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2551 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2552 {
2553 	lockdep_assert_held(&hba->uic_cmd_mutex);
2554 
2555 	WARN_ON(hba->active_uic_cmd);
2556 
2557 	hba->active_uic_cmd = uic_cmd;
2558 
2559 	/* Write Args */
2560 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2561 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2562 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2563 
2564 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2565 
2566 	/* Write UIC Cmd */
2567 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2568 		      REG_UIC_COMMAND);
2569 }
2570 
2571 /**
2572  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2573  * @hba: per adapter instance
2574  * @uic_cmd: UIC command
2575  *
2576  * Return: 0 only if success.
2577  */
2578 static int
ufshcd_wait_for_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2579 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2580 {
2581 	int ret;
2582 	unsigned long flags;
2583 
2584 	lockdep_assert_held(&hba->uic_cmd_mutex);
2585 
2586 	if (wait_for_completion_timeout(&uic_cmd->done,
2587 					msecs_to_jiffies(uic_cmd_timeout))) {
2588 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2589 	} else {
2590 		ret = -ETIMEDOUT;
2591 		dev_err(hba->dev,
2592 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2593 			uic_cmd->command, uic_cmd->argument3);
2594 
2595 		if (!uic_cmd->cmd_active) {
2596 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2597 				__func__);
2598 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2599 		}
2600 	}
2601 
2602 	spin_lock_irqsave(hba->host->host_lock, flags);
2603 	hba->active_uic_cmd = NULL;
2604 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2605 
2606 	return ret;
2607 }
2608 
2609 /**
2610  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2611  * @hba: per adapter instance
2612  * @uic_cmd: UIC command
2613  *
2614  * Return: 0 if successful; < 0 upon failure.
2615  */
2616 static int
__ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2617 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2618 {
2619 	lockdep_assert_held(&hba->uic_cmd_mutex);
2620 
2621 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2622 		dev_err(hba->dev,
2623 			"Controller not ready to accept UIC commands\n");
2624 		return -EIO;
2625 	}
2626 
2627 	init_completion(&uic_cmd->done);
2628 
2629 	uic_cmd->cmd_active = true;
2630 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2631 
2632 	return 0;
2633 }
2634 
2635 /**
2636  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2637  * @hba: per adapter instance
2638  * @uic_cmd: UIC command
2639  *
2640  * Return: 0 only if success.
2641  */
ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2642 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2643 {
2644 	unsigned long flags;
2645 	int ret;
2646 
2647 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2648 		return 0;
2649 
2650 	ufshcd_hold(hba);
2651 	mutex_lock(&hba->uic_cmd_mutex);
2652 	ufshcd_add_delay_before_dme_cmd(hba);
2653 
2654 	spin_lock_irqsave(hba->host->host_lock, flags);
2655 	ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
2656 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2657 
2658 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
2659 	if (!ret)
2660 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2661 
2662 	mutex_unlock(&hba->uic_cmd_mutex);
2663 
2664 	ufshcd_release(hba);
2665 	return ret;
2666 }
2667 
2668 /**
2669  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2670  * @hba:	per-adapter instance
2671  * @lrbp:	pointer to local reference block
2672  * @sg_entries:	The number of sg lists actually used
2673  * @sg_list:	Pointer to SG list
2674  */
ufshcd_sgl_to_prdt(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int sg_entries,struct scatterlist * sg_list)2675 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2676 			       struct scatterlist *sg_list)
2677 {
2678 	struct ufshcd_sg_entry *prd;
2679 	struct scatterlist *sg;
2680 	int i;
2681 
2682 	if (sg_entries) {
2683 
2684 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2685 			lrbp->utr_descriptor_ptr->prd_table_length =
2686 				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2687 		else
2688 			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2689 
2690 		prd = lrbp->ucd_prdt_ptr;
2691 
2692 		for_each_sg(sg_list, sg, sg_entries, i) {
2693 			const unsigned int len = sg_dma_len(sg);
2694 
2695 			/*
2696 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2697 			 * based value that indicates the length, in bytes, of
2698 			 * the data block. A maximum of length of 256KB may
2699 			 * exist for any entry. Bits 1:0 of this field shall be
2700 			 * 11b to indicate Dword granularity. A value of '3'
2701 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2702 			 */
2703 			WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2704 			prd->size = cpu_to_le32(len - 1);
2705 			prd->addr = cpu_to_le64(sg->dma_address);
2706 			prd->reserved = 0;
2707 			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2708 		}
2709 	} else {
2710 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2711 	}
2712 }
2713 
2714 /**
2715  * ufshcd_map_sg - Map scatter-gather list to prdt
2716  * @hba: per adapter instance
2717  * @cmd: SCSI command
2718  *
2719  * Return: 0 in case of success, non-zero value in case of failure.
2720  */
ufshcd_map_sg(struct ufs_hba * hba,struct scsi_cmnd * cmd)2721 static int ufshcd_map_sg(struct ufs_hba *hba, struct scsi_cmnd *cmd)
2722 {
2723 	struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2724 	int sg_segments = scsi_dma_map(cmd);
2725 
2726 	if (sg_segments < 0)
2727 		return sg_segments;
2728 
2729 	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2730 
2731 	return ufshcd_crypto_fill_prdt(hba, cmd);
2732 }
2733 
2734 /**
2735  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2736  * descriptor according to request
2737  * @hba: per adapter instance
2738  * @lrbp: pointer to local reference block
2739  * @upiu_flags: flags required in the header
2740  * @cmd_dir: requests data direction
2741  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2742  */
2743 static void
ufshcd_prepare_req_desc_hdr(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 * upiu_flags,enum dma_data_direction cmd_dir,int ehs_length)2744 ufshcd_prepare_req_desc_hdr(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2745 			    u8 *upiu_flags, enum dma_data_direction cmd_dir,
2746 			    int ehs_length)
2747 {
2748 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2749 	struct request_desc_header *h = &req_desc->header;
2750 	enum utp_data_direction data_direction;
2751 
2752 	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2753 
2754 	*h = (typeof(*h)){ };
2755 
2756 	if (cmd_dir == DMA_FROM_DEVICE) {
2757 		data_direction = UTP_DEVICE_TO_HOST;
2758 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2759 	} else if (cmd_dir == DMA_TO_DEVICE) {
2760 		data_direction = UTP_HOST_TO_DEVICE;
2761 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2762 	} else {
2763 		data_direction = UTP_NO_DATA_TRANSFER;
2764 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2765 	}
2766 
2767 	h->command_type = lrbp->command_type;
2768 	h->data_direction = data_direction;
2769 	h->ehs_length = ehs_length;
2770 
2771 	if (lrbp->intr_cmd)
2772 		h->interrupt = 1;
2773 
2774 	/* Prepare crypto related dwords */
2775 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2776 
2777 	/*
2778 	 * assigning invalid value for command status. Controller
2779 	 * updates OCS on command completion, with the command
2780 	 * status
2781 	 */
2782 	h->ocs = OCS_INVALID_COMMAND_STATUS;
2783 
2784 	req_desc->prd_table_length = 0;
2785 }
2786 
2787 /**
2788  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2789  * for scsi commands
2790  * @cmd: SCSI command
2791  * @upiu_flags: flags
2792  */
ufshcd_prepare_utp_scsi_cmd_upiu(struct scsi_cmnd * cmd,u8 upiu_flags)2793 static void ufshcd_prepare_utp_scsi_cmd_upiu(struct scsi_cmnd *cmd,
2794 					     u8 upiu_flags)
2795 {
2796 	struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2797 	const int tag = scsi_cmd_to_rq(cmd)->tag;
2798 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2799 	unsigned short cdb_len;
2800 
2801 	ucd_req_ptr->header = (struct utp_upiu_header){
2802 		.transaction_code = UPIU_TRANSACTION_COMMAND,
2803 		.flags = upiu_flags,
2804 		.lun = lrbp->lun,
2805 		.task_tag = tag,
2806 		.command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2807 	};
2808 
2809 	WARN_ON_ONCE(ucd_req_ptr->header.task_tag != tag);
2810 
2811 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2812 
2813 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2814 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2815 
2816 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2817 }
2818 
2819 /**
2820  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2821  * @hba: UFS hba
2822  * @cmd: SCSI command pointer
2823  * @upiu_flags: flags
2824  */
ufshcd_prepare_utp_query_req_upiu(struct ufs_hba * hba,struct scsi_cmnd * cmd,u8 upiu_flags)2825 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2826 				struct scsi_cmnd *cmd, u8 upiu_flags)
2827 {
2828 	struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2829 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2830 	const int tag = scsi_cmd_to_rq(cmd)->tag;
2831 	struct ufs_query *query = &hba->dev_cmd.query;
2832 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2833 
2834 	/* Query request header */
2835 	ucd_req_ptr->header = (struct utp_upiu_header){
2836 		.transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2837 		.flags = upiu_flags,
2838 		.lun = lrbp->lun,
2839 		.task_tag = tag,
2840 		.query_function = query->request.query_func,
2841 		/* Data segment length only need for WRITE_DESC */
2842 		.data_segment_length =
2843 			query->request.upiu_req.opcode ==
2844 					UPIU_QUERY_OPCODE_WRITE_DESC ?
2845 				cpu_to_be16(len) :
2846 				0,
2847 	};
2848 
2849 	/* Copy the Query Request buffer as is */
2850 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2851 			QUERY_OSF_SIZE);
2852 
2853 	/* Copy the Descriptor */
2854 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2855 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2856 }
2857 
ufshcd_prepare_utp_nop_upiu(struct scsi_cmnd * cmd)2858 static inline void ufshcd_prepare_utp_nop_upiu(struct scsi_cmnd *cmd)
2859 {
2860 	struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2861 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2862 	const int tag = scsi_cmd_to_rq(cmd)->tag;
2863 
2864 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2865 
2866 	ucd_req_ptr->header = (struct utp_upiu_header){
2867 		.transaction_code = UPIU_TRANSACTION_NOP_OUT,
2868 		.task_tag = tag,
2869 	};
2870 }
2871 
2872 /**
2873  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2874  *			     for Device Management Purposes
2875  * @hba: per adapter instance
2876  * @cmd: SCSI command pointer
2877  *
2878  * Return: 0 upon success; < 0 upon failure.
2879  */
ufshcd_compose_devman_upiu(struct ufs_hba * hba,struct scsi_cmnd * cmd)2880 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2881 				      struct scsi_cmnd *cmd)
2882 {
2883 	struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2884 	u8 upiu_flags;
2885 	int ret = 0;
2886 
2887 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
2888 
2889 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2890 		ufshcd_prepare_utp_query_req_upiu(hba, cmd, upiu_flags);
2891 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2892 		ufshcd_prepare_utp_nop_upiu(cmd);
2893 	else
2894 		ret = -EINVAL;
2895 
2896 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2897 
2898 	return ret;
2899 }
2900 
2901 /**
2902  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2903  *			   for SCSI Purposes
2904  * @hba: per adapter instance
2905  * @cmd: SCSI command
2906  */
ufshcd_comp_scsi_upiu(struct ufs_hba * hba,struct scsi_cmnd * cmd)2907 static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct scsi_cmnd *cmd)
2908 {
2909 	struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2910 	struct request *rq = scsi_cmd_to_rq(cmd);
2911 	unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
2912 	u8 upiu_flags;
2913 
2914 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags,
2915 				    cmd->sc_data_direction, 0);
2916 	if (ioprio_class == IOPRIO_CLASS_RT)
2917 		upiu_flags |= UPIU_CMD_FLAGS_CP;
2918 	ufshcd_prepare_utp_scsi_cmd_upiu(cmd, upiu_flags);
2919 }
2920 
ufshcd_init_lrb(struct ufs_hba * hba,struct scsi_cmnd * cmd)2921 static void ufshcd_init_lrb(struct ufs_hba *hba, struct scsi_cmnd *cmd)
2922 {
2923 	const int i = scsi_cmd_to_rq(cmd)->tag;
2924 	struct utp_transfer_cmd_desc *cmd_descp =
2925 		(void *)hba->ucdl_base_addr + i * ufshcd_get_ucd_size(hba);
2926 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2927 	dma_addr_t cmd_desc_element_addr =
2928 		hba->ucdl_dma_addr + i * ufshcd_get_ucd_size(hba);
2929 	u16 response_offset = le16_to_cpu(utrdlp[i].response_upiu_offset);
2930 	u16 prdt_offset = le16_to_cpu(utrdlp[i].prd_table_offset);
2931 	struct ufshcd_lrb *lrb = scsi_cmd_priv(cmd);
2932 
2933 	lrb->utr_descriptor_ptr = utrdlp + i;
2934 	lrb->utrd_dma_addr =
2935 		hba->utrdl_dma_addr + i * sizeof(struct utp_transfer_req_desc);
2936 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2937 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2938 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2939 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2940 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2941 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2942 }
2943 
__ufshcd_setup_cmd(struct ufs_hba * hba,struct scsi_cmnd * cmd,u8 lun,int tag)2944 static void __ufshcd_setup_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd,
2945 			       u8 lun, int tag)
2946 {
2947 	struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2948 
2949 	ufshcd_init_lrb(hba, cmd);
2950 
2951 	memset(lrbp->ucd_req_ptr, 0, sizeof(*lrbp->ucd_req_ptr));
2952 
2953 	lrbp->lun = lun;
2954 	ufshcd_prepare_lrbp_crypto(ufshcd_is_scsi_cmd(cmd) ?
2955 				   scsi_cmd_to_rq(cmd) : NULL, lrbp);
2956 }
2957 
ufshcd_setup_scsi_cmd(struct ufs_hba * hba,struct scsi_cmnd * cmd,u8 lun,int tag)2958 static void ufshcd_setup_scsi_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd,
2959 				  u8 lun, int tag)
2960 {
2961 	struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2962 
2963 	__ufshcd_setup_cmd(hba, cmd, lun, tag);
2964 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2965 	lrbp->req_abort_skip = false;
2966 
2967 	ufshcd_comp_scsi_upiu(hba, cmd);
2968 }
2969 
2970 /**
2971  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2972  * @upiu_wlun_id: UPIU W-LUN id
2973  *
2974  * Return: SCSI W-LUN id.
2975  */
ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)2976 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2977 {
2978 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2979 }
2980 
is_device_wlun(struct scsi_device * sdev)2981 static inline bool is_device_wlun(struct scsi_device *sdev)
2982 {
2983 	return sdev->lun ==
2984 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2985 }
2986 
2987 /*
2988  * Associate the UFS controller queue with the default and poll HCTX types.
2989  * Initialize the mq_map[] arrays.
2990  */
ufshcd_map_queues(struct Scsi_Host * shost)2991 static void ufshcd_map_queues(struct Scsi_Host *shost)
2992 {
2993 	struct ufs_hba *hba = shost_priv(shost);
2994 	int i, queue_offset = 0;
2995 
2996 	if (!is_mcq_supported(hba)) {
2997 		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2998 		hba->nr_queues[HCTX_TYPE_READ] = 0;
2999 		hba->nr_queues[HCTX_TYPE_POLL] = 1;
3000 		hba->nr_hw_queues = 1;
3001 	}
3002 
3003 	for (i = 0; i < shost->nr_maps; i++) {
3004 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
3005 
3006 		map->nr_queues = hba->nr_queues[i];
3007 		if (!map->nr_queues)
3008 			continue;
3009 		map->queue_offset = queue_offset;
3010 		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
3011 			map->queue_offset = 0;
3012 
3013 		blk_mq_map_queues(map);
3014 		queue_offset += map->nr_queues;
3015 	}
3016 }
3017 
3018 /*
3019  * The only purpose of this function is to make the SCSI core skip the memset()
3020  * call for the private command data.
3021  */
ufshcd_init_cmd_priv(struct Scsi_Host * host,struct scsi_cmnd * cmd)3022 static int ufshcd_init_cmd_priv(struct Scsi_Host *host, struct scsi_cmnd *cmd)
3023 {
3024 	return 0;
3025 }
3026 
3027 /**
3028  * ufshcd_queuecommand - main entry point for SCSI requests
3029  * @host: SCSI host pointer
3030  * @cmd: command from SCSI Midlayer
3031  *
3032  * Return: 0 for success, non-zero in case of failure.
3033  */
ufshcd_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * cmd)3034 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
3035 {
3036 	struct ufs_hba *hba = shost_priv(host);
3037 	int tag = scsi_cmd_to_rq(cmd)->tag;
3038 	int err = 0;
3039 	struct ufs_hw_queue *hwq = NULL;
3040 
3041 	switch (hba->ufshcd_state) {
3042 	case UFSHCD_STATE_OPERATIONAL:
3043 		break;
3044 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
3045 		/*
3046 		 * SCSI error handler can call ->queuecommand() while UFS error
3047 		 * handler is in progress. Error interrupts could change the
3048 		 * state from UFSHCD_STATE_RESET to
3049 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
3050 		 * being issued in that case.
3051 		 */
3052 		if (ufshcd_eh_in_progress(hba)) {
3053 			err = SCSI_MLQUEUE_HOST_BUSY;
3054 			goto out;
3055 		}
3056 		break;
3057 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
3058 		/*
3059 		 * pm_runtime_get_sync() is used at error handling preparation
3060 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
3061 		 * PM ops, it can never be finished if we let SCSI layer keep
3062 		 * retrying it, which gets err handler stuck forever. Neither
3063 		 * can we let the scsi cmd pass through, because UFS is in bad
3064 		 * state, the scsi cmd may eventually time out, which will get
3065 		 * err handler blocked for too long. So, just fail the scsi cmd
3066 		 * sent from PM ops, err handler can recover PM error anyways.
3067 		 */
3068 		if (hba->pm_op_in_progress) {
3069 			hba->force_reset = true;
3070 			set_host_byte(cmd, DID_BAD_TARGET);
3071 			scsi_done(cmd);
3072 			goto out;
3073 		}
3074 		fallthrough;
3075 	case UFSHCD_STATE_RESET:
3076 		err = SCSI_MLQUEUE_HOST_BUSY;
3077 		goto out;
3078 	case UFSHCD_STATE_ERROR:
3079 		set_host_byte(cmd, DID_ERROR);
3080 		scsi_done(cmd);
3081 		goto out;
3082 	}
3083 
3084 	hba->req_abort_count = 0;
3085 
3086 	ufshcd_hold(hba);
3087 
3088 	ufshcd_setup_scsi_cmd(hba, cmd,
3089 			      ufshcd_scsi_to_upiu_lun(cmd->device->lun), tag);
3090 
3091 	err = ufshcd_map_sg(hba, cmd);
3092 	if (err) {
3093 		ufshcd_release(hba);
3094 		goto out;
3095 	}
3096 
3097 	if (hba->mcq_enabled)
3098 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
3099 
3100 	ufshcd_send_command(hba, cmd, hwq);
3101 
3102 out:
3103 	if (ufs_trigger_eh(hba)) {
3104 		unsigned long flags;
3105 
3106 		spin_lock_irqsave(hba->host->host_lock, flags);
3107 		ufshcd_schedule_eh_work(hba);
3108 		spin_unlock_irqrestore(hba->host->host_lock, flags);
3109 	}
3110 
3111 	return err;
3112 }
3113 
ufshcd_queue_reserved_command(struct Scsi_Host * host,struct scsi_cmnd * cmd)3114 static int ufshcd_queue_reserved_command(struct Scsi_Host *host,
3115 					 struct scsi_cmnd *cmd)
3116 {
3117 	struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
3118 	struct request *rq = scsi_cmd_to_rq(cmd);
3119 	struct ufs_hba *hba = shost_priv(host);
3120 	struct ufs_hw_queue *hwq =
3121 		hba->mcq_enabled ? ufshcd_mcq_req_to_hwq(hba, rq) : NULL;
3122 
3123 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3124 	ufshcd_send_command(hba, cmd, hwq);
3125 	return 0;
3126 }
3127 
ufshcd_setup_dev_cmd(struct ufs_hba * hba,struct scsi_cmnd * cmd,enum dev_cmd_type cmd_type,u8 lun,int tag)3128 static void ufshcd_setup_dev_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd,
3129 				 enum dev_cmd_type cmd_type, u8 lun, int tag)
3130 {
3131 	struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
3132 
3133 	__ufshcd_setup_cmd(hba, cmd, lun, tag);
3134 	lrbp->intr_cmd = true; /* No interrupt aggregation */
3135 	hba->dev_cmd.type = cmd_type;
3136 }
3137 
3138 /*
3139  * Return: 0 upon success; < 0 upon failure.
3140  */
ufshcd_compose_dev_cmd(struct ufs_hba * hba,struct scsi_cmnd * cmd,enum dev_cmd_type cmd_type,int tag)3141 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd,
3142 				  enum dev_cmd_type cmd_type, int tag)
3143 {
3144 	ufshcd_setup_dev_cmd(hba, cmd, cmd_type, 0, tag);
3145 
3146 	return ufshcd_compose_devman_upiu(hba, cmd);
3147 }
3148 
3149 /*
3150  * Check with the block layer if the command is inflight
3151  * @cmd: command to check.
3152  *
3153  * Return: true if command is inflight; false if not.
3154  */
ufshcd_cmd_inflight(struct scsi_cmnd * cmd)3155 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
3156 {
3157 	return cmd && blk_mq_rq_state(scsi_cmd_to_rq(cmd)) == MQ_RQ_IN_FLIGHT;
3158 }
3159 
3160 /*
3161  * Clear the pending command in the controller and wait until
3162  * the controller confirms that the command has been cleared.
3163  * @hba: per adapter instance
3164  * @task_tag: The tag number of the command to be cleared.
3165  */
ufshcd_clear_cmd(struct ufs_hba * hba,u32 task_tag)3166 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
3167 {
3168 	u32 mask;
3169 	int err;
3170 
3171 	if (hba->mcq_enabled) {
3172 		/*
3173 		 * MCQ mode. Clean up the MCQ resources similar to
3174 		 * what the ufshcd_utrl_clear() does for SDB mode.
3175 		 */
3176 		err = ufshcd_mcq_sq_cleanup(hba, task_tag);
3177 		if (err) {
3178 			dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
3179 				__func__, task_tag, err);
3180 			return err;
3181 		}
3182 		return 0;
3183 	}
3184 
3185 	mask = 1U << task_tag;
3186 
3187 	/* clear outstanding transaction before retry */
3188 	ufshcd_utrl_clear(hba, mask);
3189 
3190 	/*
3191 	 * wait for h/w to clear corresponding bit in door-bell.
3192 	 * max. wait is 1 sec.
3193 	 */
3194 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3195 					mask, ~mask, 1000, 1000);
3196 }
3197 
3198 /**
3199  * ufshcd_dev_cmd_completion() - handles device management command responses
3200  * @hba: per adapter instance
3201  * @lrbp: pointer to local reference block
3202  *
3203  * Return: 0 upon success; < 0 upon failure.
3204  */
3205 static int
ufshcd_dev_cmd_completion(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)3206 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3207 {
3208 	enum upiu_response_transaction resp;
3209 	int err = 0;
3210 
3211 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3212 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3213 
3214 	switch (resp) {
3215 	case UPIU_TRANSACTION_NOP_IN:
3216 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3217 			err = -EINVAL;
3218 			dev_err(hba->dev, "%s: unexpected response %x\n",
3219 					__func__, resp);
3220 		}
3221 		break;
3222 	case UPIU_TRANSACTION_QUERY_RSP: {
3223 		u8 response = lrbp->ucd_rsp_ptr->header.response;
3224 
3225 		if (response == 0) {
3226 			err = ufshcd_copy_query_response(hba, lrbp);
3227 		} else {
3228 			err = -EINVAL;
3229 			dev_err(hba->dev, "%s: unexpected response in Query RSP: %x\n",
3230 					__func__, response);
3231 		}
3232 		break;
3233 	}
3234 	case UPIU_TRANSACTION_REJECT_UPIU:
3235 		/* TODO: handle Reject UPIU Response */
3236 		err = -EPERM;
3237 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3238 				__func__);
3239 		break;
3240 	case UPIU_TRANSACTION_RESPONSE:
3241 		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3242 			err = -EINVAL;
3243 			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3244 		}
3245 		break;
3246 	default:
3247 		err = -EINVAL;
3248 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3249 				__func__, resp);
3250 		break;
3251 	}
3252 
3253 	WARN_ONCE(err > 0, "Incorrect return value %d > 0\n", err);
3254 	return err;
3255 }
3256 
ufshcd_dev_man_lock(struct ufs_hba * hba)3257 static void ufshcd_dev_man_lock(struct ufs_hba *hba)
3258 {
3259 	ufshcd_hold(hba);
3260 	mutex_lock(&hba->dev_cmd.lock);
3261 	down_read(&hba->clk_scaling_lock);
3262 }
3263 
ufshcd_dev_man_unlock(struct ufs_hba * hba)3264 static void ufshcd_dev_man_unlock(struct ufs_hba *hba)
3265 {
3266 	up_read(&hba->clk_scaling_lock);
3267 	mutex_unlock(&hba->dev_cmd.lock);
3268 	ufshcd_release(hba);
3269 }
3270 
ufshcd_get_dev_mgmt_cmd(struct ufs_hba * hba)3271 static struct scsi_cmnd *ufshcd_get_dev_mgmt_cmd(struct ufs_hba *hba)
3272 {
3273 	/*
3274 	 * The caller must hold this lock to guarantee that the NOWAIT
3275 	 * allocation will succeed.
3276 	 */
3277 	lockdep_assert_held(&hba->dev_cmd.lock);
3278 
3279 	return scsi_get_internal_cmd(
3280 		hba->host->pseudo_sdev, DMA_TO_DEVICE,
3281 		BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
3282 }
3283 
ufshcd_put_dev_mgmt_cmd(struct scsi_cmnd * cmd)3284 static void ufshcd_put_dev_mgmt_cmd(struct scsi_cmnd *cmd)
3285 {
3286 	scsi_put_internal_cmd(cmd);
3287 }
3288 
3289 /*
3290  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3291  * < 0 if another error occurred.
3292  */
ufshcd_issue_dev_cmd(struct ufs_hba * hba,struct scsi_cmnd * cmd,const u32 tag,int timeout)3293 static int ufshcd_issue_dev_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd,
3294 				const u32 tag, int timeout)
3295 {
3296 	struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
3297 	struct request *rq = scsi_cmd_to_rq(cmd);
3298 	blk_status_t sts;
3299 
3300 	rq->timeout = timeout;
3301 	sts = blk_execute_rq(rq, true);
3302 	if (sts != BLK_STS_OK)
3303 		return blk_status_to_errno(sts);
3304 	return lrbp->utr_descriptor_ptr->header.ocs;
3305 }
3306 
3307 /**
3308  * ufshcd_exec_dev_cmd - API for sending device management requests
3309  * @hba: UFS hba
3310  * @cmd_type: specifies the type (NOP, Query...)
3311  * @timeout: timeout in milliseconds
3312  *
3313  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3314  * < 0 if another error occurred.
3315  *
3316  * NOTE: Since there is only one available tag for device management commands,
3317  * it is expected you hold the hba->dev_cmd.lock mutex.
3318  */
ufshcd_exec_dev_cmd(struct ufs_hba * hba,enum dev_cmd_type cmd_type,int timeout)3319 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3320 		enum dev_cmd_type cmd_type, int timeout)
3321 {
3322 	struct scsi_cmnd *cmd = ufshcd_get_dev_mgmt_cmd(hba);
3323 	struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
3324 	u32 tag;
3325 	int err;
3326 
3327 	/* Protects use of hba->dev_cmd. */
3328 	lockdep_assert_held(&hba->dev_cmd.lock);
3329 
3330 	if (WARN_ON_ONCE(!cmd))
3331 		return -ENOMEM;
3332 
3333 	tag = scsi_cmd_to_rq(cmd)->tag;
3334 
3335 	err = ufshcd_compose_dev_cmd(hba, cmd, cmd_type, tag);
3336 	if (unlikely(err))
3337 		goto out;
3338 
3339 	err = ufshcd_issue_dev_cmd(hba, cmd, tag, timeout);
3340 	if (err == 0)
3341 		err = ufshcd_dev_cmd_completion(hba, lrbp);
3342 
3343 out:
3344 	ufshcd_put_dev_mgmt_cmd(cmd);
3345 
3346 	return err;
3347 }
3348 
3349 /**
3350  * ufshcd_init_query() - init the query response and request parameters
3351  * @hba: per-adapter instance
3352  * @request: address of the request pointer to be initialized
3353  * @response: address of the response pointer to be initialized
3354  * @opcode: operation to perform
3355  * @idn: flag idn to access
3356  * @index: LU number to access
3357  * @selector: query/flag/descriptor further identification
3358  */
ufshcd_init_query(struct ufs_hba * hba,struct ufs_query_req ** request,struct ufs_query_res ** response,enum query_opcode opcode,u8 idn,u8 index,u8 selector)3359 static inline void ufshcd_init_query(struct ufs_hba *hba,
3360 		struct ufs_query_req **request, struct ufs_query_res **response,
3361 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3362 {
3363 	*request = &hba->dev_cmd.query.request;
3364 	*response = &hba->dev_cmd.query.response;
3365 	memset(*request, 0, sizeof(struct ufs_query_req));
3366 	memset(*response, 0, sizeof(struct ufs_query_res));
3367 	(*request)->upiu_req.opcode = opcode;
3368 	(*request)->upiu_req.idn = idn;
3369 	(*request)->upiu_req.index = index;
3370 	(*request)->upiu_req.selector = selector;
3371 }
3372 
3373 /*
3374  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3375  * < 0 if another error occurred.
3376  */
ufshcd_query_flag_retry(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3377 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3378 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3379 {
3380 	int ret;
3381 	int retries;
3382 
3383 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3384 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3385 		if (ret)
3386 			dev_dbg(hba->dev,
3387 				"%s: failed with error %d, retries %d\n",
3388 				__func__, ret, retries);
3389 		else
3390 			break;
3391 	}
3392 
3393 	if (ret)
3394 		dev_err(hba->dev,
3395 			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3396 			__func__, opcode, idn, ret, retries);
3397 	return ret;
3398 }
3399 
3400 /**
3401  * ufshcd_query_flag() - API function for sending flag query requests
3402  * @hba: per-adapter instance
3403  * @opcode: flag query to perform
3404  * @idn: flag idn to access
3405  * @index: flag index to access
3406  * @flag_res: the flag value after the query request completes
3407  *
3408  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3409  * < 0 if another error occurred.
3410  */
ufshcd_query_flag(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3411 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3412 			enum flag_idn idn, u8 index, bool *flag_res)
3413 {
3414 	struct ufs_query_req *request = NULL;
3415 	struct ufs_query_res *response = NULL;
3416 	int err, selector = 0;
3417 	int timeout = dev_cmd_timeout;
3418 
3419 	BUG_ON(!hba);
3420 
3421 	ufshcd_dev_man_lock(hba);
3422 
3423 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3424 			selector);
3425 
3426 	switch (opcode) {
3427 	case UPIU_QUERY_OPCODE_SET_FLAG:
3428 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3429 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3430 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3431 		break;
3432 	case UPIU_QUERY_OPCODE_READ_FLAG:
3433 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3434 		if (!flag_res) {
3435 			/* No dummy reads */
3436 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3437 					__func__);
3438 			err = -EINVAL;
3439 			goto out_unlock;
3440 		}
3441 		break;
3442 	default:
3443 		dev_err(hba->dev,
3444 			"%s: Expected query flag opcode but got = %d\n",
3445 			__func__, opcode);
3446 		err = -EINVAL;
3447 		goto out_unlock;
3448 	}
3449 
3450 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3451 
3452 	if (err) {
3453 		dev_err(hba->dev,
3454 			"%s: Sending flag query for idn %d failed, err = %d\n",
3455 			__func__, idn, err);
3456 		goto out_unlock;
3457 	}
3458 
3459 	if (flag_res)
3460 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3461 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3462 
3463 out_unlock:
3464 	ufshcd_dev_man_unlock(hba);
3465 	return err;
3466 }
3467 
3468 /**
3469  * ufshcd_query_attr - API function for sending attribute requests
3470  * @hba: per-adapter instance
3471  * @opcode: attribute opcode
3472  * @idn: attribute idn to access
3473  * @index: index field
3474  * @selector: selector field
3475  * @attr_val: the attribute value after the query request completes
3476  *
3477  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3478  * < 0 if another error occurred.
3479  */
ufshcd_query_attr(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3480 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3481 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3482 {
3483 	struct ufs_query_req *request = NULL;
3484 	struct ufs_query_res *response = NULL;
3485 	int err;
3486 
3487 	BUG_ON(!hba);
3488 
3489 	if (!attr_val) {
3490 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3491 				__func__, opcode);
3492 		return -EINVAL;
3493 	}
3494 
3495 	ufshcd_dev_man_lock(hba);
3496 
3497 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3498 			selector);
3499 
3500 	switch (opcode) {
3501 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3502 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3503 		request->upiu_req.value = cpu_to_be32(*attr_val);
3504 		break;
3505 	case UPIU_QUERY_OPCODE_READ_ATTR:
3506 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3507 		break;
3508 	default:
3509 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3510 				__func__, opcode);
3511 		err = -EINVAL;
3512 		goto out_unlock;
3513 	}
3514 
3515 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
3516 
3517 	if (err) {
3518 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3519 				__func__, opcode, idn, index, err);
3520 		goto out_unlock;
3521 	}
3522 
3523 	*attr_val = be32_to_cpu(response->upiu_res.value);
3524 
3525 out_unlock:
3526 	ufshcd_dev_man_unlock(hba);
3527 	return err;
3528 }
3529 
3530 /**
3531  * ufshcd_query_attr_retry() - API function for sending query
3532  * attribute with retries
3533  * @hba: per-adapter instance
3534  * @opcode: attribute opcode
3535  * @idn: attribute idn to access
3536  * @index: index field
3537  * @selector: selector field
3538  * @attr_val: the attribute value after the query request
3539  * completes
3540  *
3541  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3542  * < 0 if another error occurred.
3543  */
ufshcd_query_attr_retry(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3544 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3545 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3546 	u32 *attr_val)
3547 {
3548 	int ret = 0;
3549 	u32 retries;
3550 
3551 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3552 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3553 						selector, attr_val);
3554 		if (ret)
3555 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3556 				__func__, ret, retries);
3557 		else
3558 			break;
3559 	}
3560 
3561 	if (ret)
3562 		dev_err(hba->dev,
3563 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3564 			__func__, idn, ret, QUERY_REQ_RETRIES);
3565 	return ret;
3566 }
3567 
3568 /*
3569  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3570  * < 0 if another error occurred.
3571  */
__ufshcd_query_descriptor(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3572 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3573 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3574 			u8 selector, u8 *desc_buf, int *buf_len)
3575 {
3576 	struct ufs_query_req *request = NULL;
3577 	struct ufs_query_res *response = NULL;
3578 	int err;
3579 
3580 	BUG_ON(!hba);
3581 
3582 	if (!desc_buf) {
3583 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3584 				__func__, opcode);
3585 		return -EINVAL;
3586 	}
3587 
3588 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3589 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3590 				__func__, *buf_len);
3591 		return -EINVAL;
3592 	}
3593 
3594 	ufshcd_dev_man_lock(hba);
3595 
3596 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3597 			selector);
3598 	hba->dev_cmd.query.descriptor = desc_buf;
3599 	request->upiu_req.length = cpu_to_be16(*buf_len);
3600 
3601 	switch (opcode) {
3602 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3603 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3604 		break;
3605 	case UPIU_QUERY_OPCODE_READ_DESC:
3606 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3607 		break;
3608 	default:
3609 		dev_err(hba->dev,
3610 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3611 				__func__, opcode);
3612 		err = -EINVAL;
3613 		goto out_unlock;
3614 	}
3615 
3616 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
3617 
3618 	if (err) {
3619 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3620 				__func__, opcode, idn, index, err);
3621 		goto out_unlock;
3622 	}
3623 
3624 	*buf_len = be16_to_cpu(response->upiu_res.length);
3625 
3626 out_unlock:
3627 	hba->dev_cmd.query.descriptor = NULL;
3628 	ufshcd_dev_man_unlock(hba);
3629 	return err;
3630 }
3631 
3632 /**
3633  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3634  * @hba: per-adapter instance
3635  * @opcode: attribute opcode
3636  * @idn: attribute idn to access
3637  * @index: index field
3638  * @selector: selector field
3639  * @desc_buf: the buffer that contains the descriptor
3640  * @buf_len: length parameter passed to the device
3641  *
3642  * The buf_len parameter will contain, on return, the length parameter
3643  * received on the response.
3644  *
3645  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3646  * < 0 if another error occurred.
3647  */
ufshcd_query_descriptor_retry(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3648 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3649 				  enum query_opcode opcode,
3650 				  enum desc_idn idn, u8 index,
3651 				  u8 selector,
3652 				  u8 *desc_buf, int *buf_len)
3653 {
3654 	int err;
3655 	int retries;
3656 
3657 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3658 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3659 						selector, desc_buf, buf_len);
3660 		if (!err || err == -EINVAL)
3661 			break;
3662 	}
3663 
3664 	return err;
3665 }
3666 
3667 /**
3668  * ufshcd_read_desc_param - read the specified descriptor parameter
3669  * @hba: Pointer to adapter instance
3670  * @desc_id: descriptor idn value
3671  * @desc_index: descriptor index
3672  * @param_offset: offset of the parameter to read
3673  * @param_read_buf: pointer to buffer where parameter would be read
3674  * @param_size: sizeof(param_read_buf)
3675  *
3676  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3677  * < 0 if another error occurred.
3678  */
ufshcd_read_desc_param(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,u8 param_offset,u8 * param_read_buf,u8 param_size)3679 int ufshcd_read_desc_param(struct ufs_hba *hba,
3680 			   enum desc_idn desc_id,
3681 			   int desc_index,
3682 			   u8 param_offset,
3683 			   u8 *param_read_buf,
3684 			   u8 param_size)
3685 {
3686 	int ret;
3687 	u8 *desc_buf;
3688 	int buff_len = QUERY_DESC_MAX_SIZE;
3689 	bool is_kmalloc = true;
3690 
3691 	/* Safety check */
3692 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3693 		return -EINVAL;
3694 
3695 	/* Check whether we need temp memory */
3696 	if (param_offset != 0 || param_size < buff_len) {
3697 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3698 		if (!desc_buf)
3699 			return -ENOMEM;
3700 	} else {
3701 		desc_buf = param_read_buf;
3702 		is_kmalloc = false;
3703 	}
3704 
3705 	/* Request for full descriptor */
3706 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3707 					    desc_id, desc_index, 0,
3708 					    desc_buf, &buff_len);
3709 	if (ret) {
3710 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3711 			__func__, desc_id, desc_index, param_offset, ret);
3712 		goto out;
3713 	}
3714 
3715 	/* Update descriptor length */
3716 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3717 
3718 	if (param_offset >= buff_len) {
3719 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3720 			__func__, param_offset, desc_id, buff_len);
3721 		ret = -EINVAL;
3722 		goto out;
3723 	}
3724 
3725 	/* Sanity check */
3726 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3727 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3728 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3729 		ret = -EINVAL;
3730 		goto out;
3731 	}
3732 
3733 	if (is_kmalloc) {
3734 		/* Make sure we don't copy more data than available */
3735 		if (param_offset >= buff_len)
3736 			ret = -EINVAL;
3737 		else
3738 			memcpy(param_read_buf, &desc_buf[param_offset],
3739 			       min_t(u32, param_size, buff_len - param_offset));
3740 	}
3741 out:
3742 	if (is_kmalloc)
3743 		kfree(desc_buf);
3744 	return ret;
3745 }
3746 
3747 /**
3748  * struct uc_string_id - unicode string
3749  *
3750  * @len: size of this descriptor inclusive
3751  * @type: descriptor type
3752  * @uc: unicode string character
3753  */
3754 struct uc_string_id {
3755 	u8 len;
3756 	u8 type;
3757 	wchar_t uc[];
3758 } __packed;
3759 
3760 /* replace non-printable or non-ASCII characters with spaces */
ufshcd_remove_non_printable(u8 ch)3761 static inline char ufshcd_remove_non_printable(u8 ch)
3762 {
3763 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3764 }
3765 
3766 /**
3767  * ufshcd_read_string_desc - read string descriptor
3768  * @hba: pointer to adapter instance
3769  * @desc_index: descriptor index
3770  * @buf: pointer to buffer where descriptor would be read,
3771  *       the caller should free the memory.
3772  * @fmt: if %SD_ASCII_STD, convert from UTF-16 to ASCII
3773  *
3774  * Return:
3775  * *      string size on success.
3776  * *      -ENOMEM: on allocation failure
3777  * *      -EINVAL: on a wrong parameter
3778  */
ufshcd_read_string_desc(struct ufs_hba * hba,u8 desc_index,u8 ** buf,enum ufs_descr_fmt fmt)3779 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index, u8 **buf, enum ufs_descr_fmt fmt)
3780 {
3781 	struct uc_string_id *uc_str;
3782 	u8 *str;
3783 	int ret;
3784 
3785 	if (!buf)
3786 		return -EINVAL;
3787 
3788 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3789 	if (!uc_str)
3790 		return -ENOMEM;
3791 
3792 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3793 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3794 	if (ret < 0) {
3795 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3796 			QUERY_REQ_RETRIES, ret);
3797 		str = NULL;
3798 		goto out;
3799 	}
3800 
3801 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3802 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3803 		str = NULL;
3804 		ret = 0;
3805 		goto out;
3806 	}
3807 
3808 	if (fmt == SD_ASCII_STD) {
3809 		ssize_t ascii_len;
3810 		int i;
3811 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3812 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3813 		str = kzalloc(ascii_len, GFP_KERNEL);
3814 		if (!str) {
3815 			ret = -ENOMEM;
3816 			goto out;
3817 		}
3818 
3819 		/*
3820 		 * the descriptor contains string in UTF16 format
3821 		 * we need to convert to utf-8 so it can be displayed
3822 		 */
3823 		ret = utf16s_to_utf8s(uc_str->uc,
3824 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3825 				      UTF16_BIG_ENDIAN, str, ascii_len - 1);
3826 
3827 		/* replace non-printable or non-ASCII characters with spaces */
3828 		for (i = 0; i < ret; i++)
3829 			str[i] = ufshcd_remove_non_printable(str[i]);
3830 
3831 		str[ret++] = '\0';
3832 
3833 	} else {
3834 		str = kmemdup(uc_str->uc, uc_str->len, GFP_KERNEL);
3835 		if (!str) {
3836 			ret = -ENOMEM;
3837 			goto out;
3838 		}
3839 		ret = uc_str->len;
3840 	}
3841 out:
3842 	*buf = str;
3843 	kfree(uc_str);
3844 	return ret;
3845 }
3846 
3847 /**
3848  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3849  * @hba: Pointer to adapter instance
3850  * @lun: lun id
3851  * @param_offset: offset of the parameter to read
3852  * @param_read_buf: pointer to buffer where parameter would be read
3853  * @param_size: sizeof(param_read_buf)
3854  *
3855  * Return: 0 in case of success; < 0 upon failure.
3856  */
ufshcd_read_unit_desc_param(struct ufs_hba * hba,int lun,enum unit_desc_param param_offset,u8 * param_read_buf,u32 param_size)3857 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3858 					      int lun,
3859 					      enum unit_desc_param param_offset,
3860 					      u8 *param_read_buf,
3861 					      u32 param_size)
3862 {
3863 	/*
3864 	 * Unit descriptors are only available for general purpose LUs (LUN id
3865 	 * from 0 to 7) and RPMB Well known LU.
3866 	 */
3867 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3868 		return -EOPNOTSUPP;
3869 
3870 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3871 				      param_offset, param_read_buf, param_size);
3872 }
3873 
ufshcd_get_ref_clk_gating_wait(struct ufs_hba * hba)3874 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3875 {
3876 	int err = 0;
3877 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3878 
3879 	if (hba->dev_info.wspecversion >= 0x300) {
3880 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3881 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3882 				&gating_wait);
3883 		if (err)
3884 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3885 					 err, gating_wait);
3886 
3887 		if (gating_wait == 0) {
3888 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3889 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3890 					 gating_wait);
3891 		}
3892 
3893 		hba->dev_info.clk_gating_wait_us = gating_wait;
3894 	}
3895 
3896 	return err;
3897 }
3898 
3899 /**
3900  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3901  * @hba: per adapter instance
3902  *
3903  * 1. Allocate DMA memory for Command Descriptor array
3904  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3905  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3906  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3907  *	(UTMRDL)
3908  * 4. Allocate memory for local reference block(lrb).
3909  *
3910  * Return: 0 for success, non-zero in case of failure.
3911  */
ufshcd_memory_alloc(struct ufs_hba * hba)3912 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3913 {
3914 	size_t utmrdl_size, utrdl_size, ucdl_size;
3915 
3916 	/* Allocate memory for UTP command descriptors */
3917 	ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3918 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3919 						  ucdl_size,
3920 						  &hba->ucdl_dma_addr,
3921 						  GFP_KERNEL);
3922 
3923 	/*
3924 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3925 	 */
3926 	if (!hba->ucdl_base_addr ||
3927 	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3928 		dev_err(hba->dev,
3929 			"Command Descriptor Memory allocation failed\n");
3930 		goto out;
3931 	}
3932 
3933 	/*
3934 	 * Allocate memory for UTP Transfer descriptors
3935 	 * UFSHCI requires 1KB alignment of UTRD
3936 	 */
3937 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3938 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3939 						   utrdl_size,
3940 						   &hba->utrdl_dma_addr,
3941 						   GFP_KERNEL);
3942 	if (!hba->utrdl_base_addr ||
3943 	    WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3944 		dev_err(hba->dev,
3945 			"Transfer Descriptor Memory allocation failed\n");
3946 		goto out;
3947 	}
3948 
3949 	/*
3950 	 * Skip utmrdl allocation; it may have been
3951 	 * allocated during first pass and not released during
3952 	 * MCQ memory allocation.
3953 	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3954 	 */
3955 	if (hba->utmrdl_base_addr)
3956 		goto skip_utmrdl;
3957 	/*
3958 	 * Allocate memory for UTP Task Management descriptors
3959 	 * UFSHCI requires 1KB alignment of UTMRD
3960 	 */
3961 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3962 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3963 						    utmrdl_size,
3964 						    &hba->utmrdl_dma_addr,
3965 						    GFP_KERNEL);
3966 	if (!hba->utmrdl_base_addr ||
3967 	    WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3968 		dev_err(hba->dev,
3969 		"Task Management Descriptor Memory allocation failed\n");
3970 		goto out;
3971 	}
3972 
3973 skip_utmrdl:
3974 	return 0;
3975 out:
3976 	return -ENOMEM;
3977 }
3978 
3979 /**
3980  * ufshcd_host_memory_configure - configure local reference block with
3981  *				memory offsets
3982  * @hba: per adapter instance
3983  *
3984  * Configure Host memory space
3985  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3986  * address.
3987  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3988  * and PRDT offset.
3989  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3990  * into local reference block.
3991  */
ufshcd_host_memory_configure(struct ufs_hba * hba)3992 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3993 {
3994 	struct utp_transfer_req_desc *utrdlp;
3995 	dma_addr_t cmd_desc_dma_addr;
3996 	dma_addr_t cmd_desc_element_addr;
3997 	u16 response_offset;
3998 	u16 prdt_offset;
3999 	int cmd_desc_size;
4000 	int i;
4001 
4002 	utrdlp = hba->utrdl_base_addr;
4003 
4004 	response_offset =
4005 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
4006 	prdt_offset =
4007 		offsetof(struct utp_transfer_cmd_desc, prd_table);
4008 
4009 	cmd_desc_size = ufshcd_get_ucd_size(hba);
4010 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
4011 
4012 	for (i = 0; i < hba->nutrs; i++) {
4013 		/* Configure UTRD with command descriptor base address */
4014 		cmd_desc_element_addr =
4015 				(cmd_desc_dma_addr + (cmd_desc_size * i));
4016 		utrdlp[i].command_desc_base_addr =
4017 				cpu_to_le64(cmd_desc_element_addr);
4018 
4019 		/* Response upiu and prdt offset should be in double words */
4020 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
4021 			utrdlp[i].response_upiu_offset =
4022 				cpu_to_le16(response_offset);
4023 			utrdlp[i].prd_table_offset =
4024 				cpu_to_le16(prdt_offset);
4025 			utrdlp[i].response_upiu_length =
4026 				cpu_to_le16(ALIGNED_UPIU_SIZE);
4027 		} else {
4028 			utrdlp[i].response_upiu_offset =
4029 				cpu_to_le16(response_offset >> 2);
4030 			utrdlp[i].prd_table_offset =
4031 				cpu_to_le16(prdt_offset >> 2);
4032 			utrdlp[i].response_upiu_length =
4033 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
4034 		}
4035 	}
4036 }
4037 
4038 /**
4039  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
4040  * @hba: per adapter instance
4041  *
4042  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
4043  * in order to initialize the Unipro link startup procedure.
4044  * Once the Unipro links are up, the device connected to the controller
4045  * is detected.
4046  *
4047  * Return: 0 on success, non-zero value on failure.
4048  */
ufshcd_dme_link_startup(struct ufs_hba * hba)4049 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
4050 {
4051 	struct uic_command uic_cmd = {
4052 		.command = UIC_CMD_DME_LINK_STARTUP,
4053 	};
4054 	int ret;
4055 
4056 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4057 	if (ret)
4058 		dev_dbg(hba->dev,
4059 			"dme-link-startup: error code %d\n", ret);
4060 	return ret;
4061 }
4062 /**
4063  * ufshcd_dme_reset - UIC command for DME_RESET
4064  * @hba: per adapter instance
4065  *
4066  * DME_RESET command is issued in order to reset UniPro stack.
4067  * This function now deals with cold reset.
4068  *
4069  * Return: 0 on success, non-zero value on failure.
4070  */
ufshcd_dme_reset(struct ufs_hba * hba)4071 int ufshcd_dme_reset(struct ufs_hba *hba)
4072 {
4073 	struct uic_command uic_cmd = {
4074 		.command = UIC_CMD_DME_RESET,
4075 	};
4076 	int ret;
4077 
4078 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4079 	if (ret)
4080 		dev_err(hba->dev,
4081 			"dme-reset: error code %d\n", ret);
4082 
4083 	return ret;
4084 }
4085 EXPORT_SYMBOL_GPL(ufshcd_dme_reset);
4086 
ufshcd_dme_configure_adapt(struct ufs_hba * hba,int agreed_gear,int adapt_val)4087 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
4088 			       int agreed_gear,
4089 			       int adapt_val)
4090 {
4091 	int ret;
4092 
4093 	if (agreed_gear < UFS_HS_G4)
4094 		adapt_val = PA_NO_ADAPT;
4095 
4096 	ret = ufshcd_dme_set(hba,
4097 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
4098 			     adapt_val);
4099 	return ret;
4100 }
4101 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
4102 
4103 /**
4104  * ufshcd_dme_enable - UIC command for DME_ENABLE
4105  * @hba: per adapter instance
4106  *
4107  * DME_ENABLE command is issued in order to enable UniPro stack.
4108  *
4109  * Return: 0 on success, non-zero value on failure.
4110  */
ufshcd_dme_enable(struct ufs_hba * hba)4111 int ufshcd_dme_enable(struct ufs_hba *hba)
4112 {
4113 	struct uic_command uic_cmd = {
4114 		.command = UIC_CMD_DME_ENABLE,
4115 	};
4116 	int ret;
4117 
4118 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4119 	if (ret)
4120 		dev_err(hba->dev,
4121 			"dme-enable: error code %d\n", ret);
4122 
4123 	return ret;
4124 }
4125 EXPORT_SYMBOL_GPL(ufshcd_dme_enable);
4126 
ufshcd_add_delay_before_dme_cmd(struct ufs_hba * hba)4127 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
4128 {
4129 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
4130 	unsigned long min_sleep_time_us;
4131 
4132 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
4133 		return;
4134 
4135 	/*
4136 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
4137 	 * this function
4138 	 */
4139 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
4140 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
4141 	} else {
4142 		unsigned long delta =
4143 			(unsigned long) ktime_to_us(
4144 				ktime_sub(ktime_get(),
4145 				hba->last_dme_cmd_tstamp));
4146 
4147 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
4148 			min_sleep_time_us =
4149 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
4150 		else
4151 			min_sleep_time_us = 0; /* no more delay required */
4152 	}
4153 
4154 	if (min_sleep_time_us > 0) {
4155 		/* allow sleep for extra 50us if needed */
4156 		usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
4157 	}
4158 
4159 	/* update the last_dme_cmd_tstamp */
4160 	hba->last_dme_cmd_tstamp = ktime_get();
4161 }
4162 
4163 /**
4164  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4165  * @hba: per adapter instance
4166  * @attr_sel: uic command argument1
4167  * @attr_set: attribute set type as uic command argument2
4168  * @mib_val: setting value as uic command argument3
4169  * @peer: indicate whether peer or local
4170  *
4171  * Return: 0 on success, non-zero value on failure.
4172  */
ufshcd_dme_set_attr(struct ufs_hba * hba,u32 attr_sel,u8 attr_set,u32 mib_val,u8 peer)4173 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4174 			u8 attr_set, u32 mib_val, u8 peer)
4175 {
4176 	struct uic_command uic_cmd = {
4177 		.command = peer ? UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET,
4178 		.argument1 = attr_sel,
4179 		.argument2 = UIC_ARG_ATTR_TYPE(attr_set),
4180 		.argument3 = mib_val,
4181 	};
4182 	static const char *const action[] = {
4183 		"dme-set",
4184 		"dme-peer-set"
4185 	};
4186 	const char *set = action[!!peer];
4187 	int ret;
4188 	int retries = UFS_UIC_COMMAND_RETRIES;
4189 
4190 	do {
4191 		/* for peer attributes we retry upon failure */
4192 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4193 		if (ret)
4194 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4195 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4196 	} while (ret && peer && --retries);
4197 
4198 	if (ret)
4199 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4200 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4201 			UFS_UIC_COMMAND_RETRIES - retries);
4202 
4203 	return ret;
4204 }
4205 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4206 
4207 /**
4208  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4209  * @hba: per adapter instance
4210  * @attr_sel: uic command argument1
4211  * @mib_val: the value of the attribute as returned by the UIC command
4212  * @peer: indicate whether peer or local
4213  *
4214  * Return: 0 on success, non-zero value on failure.
4215  */
ufshcd_dme_get_attr(struct ufs_hba * hba,u32 attr_sel,u32 * mib_val,u8 peer)4216 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4217 			u32 *mib_val, u8 peer)
4218 {
4219 	struct uic_command uic_cmd = {
4220 		.command = peer ? UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET,
4221 		.argument1 = attr_sel,
4222 	};
4223 	static const char *const action[] = {
4224 		"dme-get",
4225 		"dme-peer-get"
4226 	};
4227 	const char *get = action[!!peer];
4228 	int ret;
4229 	int retries = UFS_UIC_COMMAND_RETRIES;
4230 	struct ufs_pa_layer_attr orig_pwr_info;
4231 	struct ufs_pa_layer_attr temp_pwr_info;
4232 	bool pwr_mode_change = false;
4233 
4234 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4235 		orig_pwr_info = hba->pwr_info;
4236 		temp_pwr_info = orig_pwr_info;
4237 
4238 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4239 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4240 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4241 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4242 			pwr_mode_change = true;
4243 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4244 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4245 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4246 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4247 			pwr_mode_change = true;
4248 		}
4249 		if (pwr_mode_change) {
4250 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4251 			if (ret)
4252 				goto out;
4253 		}
4254 	}
4255 
4256 	do {
4257 		/* for peer attributes we retry upon failure */
4258 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4259 		if (ret)
4260 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4261 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4262 	} while (ret && peer && --retries);
4263 
4264 	if (ret)
4265 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4266 			get, UIC_GET_ATTR_ID(attr_sel),
4267 			UFS_UIC_COMMAND_RETRIES - retries);
4268 
4269 	if (mib_val)
4270 		*mib_val = ret == 0 ? uic_cmd.argument3 : 0;
4271 
4272 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4273 	    && pwr_mode_change)
4274 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4275 out:
4276 	return ret;
4277 }
4278 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4279 
4280 /**
4281  * ufshcd_dme_rmw - get modify set a DME attribute
4282  * @hba: per adapter instance
4283  * @mask: indicates which bits to clear from the value that has been read
4284  * @val: actual value to write
4285  * @attr: dme attribute
4286  */
ufshcd_dme_rmw(struct ufs_hba * hba,u32 mask,u32 val,u32 attr)4287 int ufshcd_dme_rmw(struct ufs_hba *hba, u32 mask,
4288 		   u32 val, u32 attr)
4289 {
4290 	u32 cfg = 0;
4291 	int err;
4292 
4293 	err = ufshcd_dme_get(hba, UIC_ARG_MIB(attr), &cfg);
4294 	if (err)
4295 		return err;
4296 
4297 	cfg &= ~mask;
4298 	cfg |= (val & mask);
4299 
4300 	return ufshcd_dme_set(hba, UIC_ARG_MIB(attr), cfg);
4301 }
4302 EXPORT_SYMBOL_GPL(ufshcd_dme_rmw);
4303 
4304 /**
4305  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4306  * state) and waits for it to take effect.
4307  *
4308  * @hba: per adapter instance
4309  * @cmd: UIC command to execute
4310  *
4311  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4312  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4313  * and device UniPro link and hence it's final completion would be indicated by
4314  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4315  * addition to normal UIC command completion Status (UCCS). This function only
4316  * returns after the relevant status bits indicate the completion.
4317  *
4318  * Return: 0 on success, non-zero value on failure.
4319  */
ufshcd_uic_pwr_ctrl(struct ufs_hba * hba,struct uic_command * cmd)4320 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4321 {
4322 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4323 	unsigned long flags;
4324 	u8 status;
4325 	int ret;
4326 
4327 	mutex_lock(&hba->uic_cmd_mutex);
4328 	ufshcd_add_delay_before_dme_cmd(hba);
4329 
4330 	spin_lock_irqsave(hba->host->host_lock, flags);
4331 	if (ufshcd_is_link_broken(hba)) {
4332 		ret = -ENOLINK;
4333 		goto out_unlock;
4334 	}
4335 	hba->uic_async_done = &uic_async_done;
4336 	ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4337 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4338 	ret = __ufshcd_send_uic_cmd(hba, cmd);
4339 	if (ret) {
4340 		dev_err(hba->dev,
4341 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4342 			cmd->command, cmd->argument3, ret);
4343 		goto out;
4344 	}
4345 
4346 	if (!wait_for_completion_timeout(hba->uic_async_done,
4347 					 msecs_to_jiffies(uic_cmd_timeout))) {
4348 		dev_err(hba->dev,
4349 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4350 			cmd->command, cmd->argument3);
4351 
4352 		if (!cmd->cmd_active) {
4353 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4354 				__func__);
4355 			goto check_upmcrs;
4356 		}
4357 
4358 		ret = -ETIMEDOUT;
4359 		goto out;
4360 	}
4361 
4362 check_upmcrs:
4363 	status = ufshcd_get_upmcrs(hba);
4364 	if (status != PWR_LOCAL) {
4365 		dev_err(hba->dev,
4366 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4367 			cmd->command, status);
4368 		ret = (status != PWR_OK) ? status : -1;
4369 	}
4370 out:
4371 	if (ret) {
4372 		ufshcd_print_host_state(hba);
4373 		ufshcd_print_pwr_info(hba);
4374 		ufshcd_print_evt_hist(hba);
4375 	}
4376 
4377 	spin_lock_irqsave(hba->host->host_lock, flags);
4378 	hba->active_uic_cmd = NULL;
4379 	hba->uic_async_done = NULL;
4380 	if (ret && !hba->pm_op_in_progress) {
4381 		ufshcd_set_link_broken(hba);
4382 		ufshcd_schedule_eh_work(hba);
4383 	}
4384 out_unlock:
4385 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4386 	mutex_unlock(&hba->uic_cmd_mutex);
4387 
4388 	/*
4389 	 * If the h8 exit fails during the runtime resume process, it becomes
4390 	 * stuck and cannot be recovered through the error handler.  To fix
4391 	 * this, use link recovery instead of the error handler.
4392 	 */
4393 	if (ret && hba->pm_op_in_progress)
4394 		ret = ufshcd_link_recovery(hba);
4395 
4396 	return ret;
4397 }
4398 
4399 /**
4400  * ufshcd_send_bsg_uic_cmd - Send UIC commands requested via BSG layer and retrieve the result
4401  * @hba: per adapter instance
4402  * @uic_cmd: UIC command
4403  *
4404  * Return: 0 only if success.
4405  */
ufshcd_send_bsg_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)4406 int ufshcd_send_bsg_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
4407 {
4408 	int ret;
4409 
4410 	if (uic_cmd->argument1 != UIC_ARG_MIB(PA_PWRMODE) ||
4411 	    uic_cmd->command != UIC_CMD_DME_SET)
4412 		return ufshcd_send_uic_cmd(hba, uic_cmd);
4413 
4414 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
4415 		return 0;
4416 
4417 	ufshcd_hold(hba);
4418 	ret = ufshcd_uic_pwr_ctrl(hba, uic_cmd);
4419 	ufshcd_release(hba);
4420 
4421 	return ret;
4422 }
4423 
4424 /**
4425  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4426  *				using DME_SET primitives.
4427  * @hba: per adapter instance
4428  * @mode: powr mode value
4429  *
4430  * Return: 0 on success, non-zero value on failure.
4431  */
ufshcd_uic_change_pwr_mode(struct ufs_hba * hba,u8 mode)4432 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4433 {
4434 	struct uic_command uic_cmd = {
4435 		.command = UIC_CMD_DME_SET,
4436 		.argument1 = UIC_ARG_MIB(PA_PWRMODE),
4437 		.argument3 = mode,
4438 	};
4439 	int ret;
4440 
4441 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4442 		ret = ufshcd_dme_set(hba,
4443 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4444 		if (ret) {
4445 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4446 						__func__, ret);
4447 			goto out;
4448 		}
4449 	}
4450 
4451 	ufshcd_hold(hba);
4452 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4453 	ufshcd_release(hba);
4454 
4455 out:
4456 	return ret;
4457 }
4458 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4459 
ufshcd_link_recovery(struct ufs_hba * hba)4460 int ufshcd_link_recovery(struct ufs_hba *hba)
4461 {
4462 	int ret;
4463 	unsigned long flags;
4464 
4465 	spin_lock_irqsave(hba->host->host_lock, flags);
4466 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4467 	ufshcd_set_eh_in_progress(hba);
4468 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4469 
4470 	/* Reset the attached device */
4471 	ufshcd_device_reset(hba);
4472 
4473 	ret = ufshcd_host_reset_and_restore(hba);
4474 
4475 	spin_lock_irqsave(hba->host->host_lock, flags);
4476 	if (ret)
4477 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4478 	ufshcd_clear_eh_in_progress(hba);
4479 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4480 
4481 	if (ret)
4482 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4483 			__func__, ret);
4484 
4485 	return ret;
4486 }
4487 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4488 
ufshcd_uic_hibern8_enter(struct ufs_hba * hba)4489 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4490 {
4491 	struct uic_command uic_cmd = {
4492 		.command = UIC_CMD_DME_HIBER_ENTER,
4493 	};
4494 	ktime_t start = ktime_get();
4495 	int ret;
4496 
4497 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4498 
4499 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4500 	trace_ufshcd_profile_hibern8(hba, "enter",
4501 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4502 
4503 	if (ret)
4504 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4505 			__func__, ret);
4506 	else
4507 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4508 								POST_CHANGE);
4509 
4510 	return ret;
4511 }
4512 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4513 
ufshcd_uic_hibern8_exit(struct ufs_hba * hba)4514 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4515 {
4516 	struct uic_command uic_cmd = {
4517 		.command = UIC_CMD_DME_HIBER_EXIT,
4518 	};
4519 	int ret;
4520 	ktime_t start = ktime_get();
4521 
4522 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4523 
4524 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4525 	trace_ufshcd_profile_hibern8(hba, "exit",
4526 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4527 
4528 	if (ret) {
4529 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4530 			__func__, ret);
4531 	} else {
4532 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4533 								POST_CHANGE);
4534 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4535 		hba->ufs_stats.hibern8_exit_cnt++;
4536 	}
4537 
4538 	return ret;
4539 }
4540 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4541 
ufshcd_configure_auto_hibern8(struct ufs_hba * hba)4542 static void ufshcd_configure_auto_hibern8(struct ufs_hba *hba)
4543 {
4544 	if (!ufshcd_is_auto_hibern8_supported(hba))
4545 		return;
4546 
4547 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4548 }
4549 
ufshcd_auto_hibern8_update(struct ufs_hba * hba,u32 ahit)4550 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4551 {
4552 	const u32 cur_ahit = READ_ONCE(hba->ahit);
4553 
4554 	if (!ufshcd_is_auto_hibern8_supported(hba) || cur_ahit == ahit)
4555 		return;
4556 
4557 	WRITE_ONCE(hba->ahit, ahit);
4558 	if (!pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4559 		ufshcd_rpm_get_sync(hba);
4560 		ufshcd_hold(hba);
4561 		ufshcd_configure_auto_hibern8(hba);
4562 		ufshcd_release(hba);
4563 		ufshcd_rpm_put_sync(hba);
4564 	}
4565 }
4566 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4567 
4568  /**
4569  * ufshcd_init_pwr_info - setting the POR (power on reset)
4570  * values in hba power info
4571  * @hba: per-adapter instance
4572  */
ufshcd_init_pwr_info(struct ufs_hba * hba)4573 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4574 {
4575 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4576 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4577 	hba->pwr_info.lane_rx = UFS_LANE_1;
4578 	hba->pwr_info.lane_tx = UFS_LANE_1;
4579 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4580 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4581 	hba->pwr_info.hs_rate = 0;
4582 }
4583 
4584 /**
4585  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4586  * @hba: per-adapter instance
4587  *
4588  * Return: 0 upon success; < 0 upon failure.
4589  */
ufshcd_get_max_pwr_mode(struct ufs_hba * hba)4590 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4591 {
4592 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4593 
4594 	if (hba->max_pwr_info.is_valid)
4595 		return 0;
4596 
4597 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4598 		pwr_info->pwr_tx = FASTAUTO_MODE;
4599 		pwr_info->pwr_rx = FASTAUTO_MODE;
4600 	} else {
4601 		pwr_info->pwr_tx = FAST_MODE;
4602 		pwr_info->pwr_rx = FAST_MODE;
4603 	}
4604 	pwr_info->hs_rate = PA_HS_MODE_B;
4605 
4606 	/* Get the connected lane count */
4607 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4608 			&pwr_info->lane_rx);
4609 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4610 			&pwr_info->lane_tx);
4611 
4612 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4613 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4614 				__func__,
4615 				pwr_info->lane_rx,
4616 				pwr_info->lane_tx);
4617 		return -EINVAL;
4618 	}
4619 
4620 	if (pwr_info->lane_rx != pwr_info->lane_tx) {
4621 		dev_err(hba->dev, "%s: asymmetric connected lanes. rx=%d, tx=%d\n",
4622 			__func__,
4623 				pwr_info->lane_rx,
4624 				pwr_info->lane_tx);
4625 		return -EINVAL;
4626 	}
4627 
4628 	/*
4629 	 * First, get the maximum gears of HS speed.
4630 	 * If a zero value, it means there is no HSGEAR capability.
4631 	 * Then, get the maximum gears of PWM speed.
4632 	 */
4633 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4634 	if (!pwr_info->gear_rx) {
4635 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4636 				&pwr_info->gear_rx);
4637 		if (!pwr_info->gear_rx) {
4638 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4639 				__func__, pwr_info->gear_rx);
4640 			return -EINVAL;
4641 		}
4642 		pwr_info->pwr_rx = SLOW_MODE;
4643 	}
4644 
4645 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4646 			&pwr_info->gear_tx);
4647 	if (!pwr_info->gear_tx) {
4648 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4649 				&pwr_info->gear_tx);
4650 		if (!pwr_info->gear_tx) {
4651 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4652 				__func__, pwr_info->gear_tx);
4653 			return -EINVAL;
4654 		}
4655 		pwr_info->pwr_tx = SLOW_MODE;
4656 	}
4657 
4658 	hba->max_pwr_info.is_valid = true;
4659 	return 0;
4660 }
4661 
ufshcd_change_power_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * pwr_mode)4662 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4663 			     struct ufs_pa_layer_attr *pwr_mode)
4664 {
4665 	int ret;
4666 
4667 	/* if already configured to the requested pwr_mode */
4668 	if (!hba->force_pmc &&
4669 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4670 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4671 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4672 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4673 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4674 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4675 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4676 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4677 		return 0;
4678 	}
4679 
4680 	/*
4681 	 * Configure attributes for power mode change with below.
4682 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4683 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4684 	 * - PA_HSSERIES
4685 	 */
4686 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4687 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4688 			pwr_mode->lane_rx);
4689 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4690 			pwr_mode->pwr_rx == FAST_MODE)
4691 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4692 	else
4693 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4694 
4695 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4696 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4697 			pwr_mode->lane_tx);
4698 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4699 			pwr_mode->pwr_tx == FAST_MODE)
4700 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4701 	else
4702 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4703 
4704 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4705 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4706 	    pwr_mode->pwr_rx == FAST_MODE ||
4707 	    pwr_mode->pwr_tx == FAST_MODE)
4708 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4709 						pwr_mode->hs_rate);
4710 
4711 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4712 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4713 				DL_FC0ProtectionTimeOutVal_Default);
4714 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4715 				DL_TC0ReplayTimeOutVal_Default);
4716 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4717 				DL_AFC0ReqTimeOutVal_Default);
4718 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4719 				DL_FC1ProtectionTimeOutVal_Default);
4720 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4721 				DL_TC1ReplayTimeOutVal_Default);
4722 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4723 				DL_AFC1ReqTimeOutVal_Default);
4724 
4725 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4726 				DL_FC0ProtectionTimeOutVal_Default);
4727 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4728 				DL_TC0ReplayTimeOutVal_Default);
4729 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4730 				DL_AFC0ReqTimeOutVal_Default);
4731 	}
4732 
4733 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4734 			| pwr_mode->pwr_tx);
4735 
4736 	if (ret) {
4737 		dev_err(hba->dev,
4738 			"%s: power mode change failed %d\n", __func__, ret);
4739 	} else {
4740 		memcpy(&hba->pwr_info, pwr_mode,
4741 			sizeof(struct ufs_pa_layer_attr));
4742 	}
4743 
4744 	return ret;
4745 }
4746 
4747 /**
4748  * ufshcd_config_pwr_mode - configure a new power mode
4749  * @hba: per-adapter instance
4750  * @desired_pwr_mode: desired power configuration
4751  *
4752  * Return: 0 upon success; < 0 upon failure.
4753  */
ufshcd_config_pwr_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * desired_pwr_mode)4754 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4755 		struct ufs_pa_layer_attr *desired_pwr_mode)
4756 {
4757 	struct ufs_pa_layer_attr final_params = { 0 };
4758 	int ret;
4759 
4760 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4761 					desired_pwr_mode, &final_params);
4762 
4763 	if (ret)
4764 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4765 
4766 	ret = ufshcd_change_power_mode(hba, &final_params);
4767 
4768 	if (!ret)
4769 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4770 					&final_params);
4771 
4772 	return ret;
4773 }
4774 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4775 
4776 /**
4777  * ufshcd_complete_dev_init() - checks device readiness
4778  * @hba: per-adapter instance
4779  *
4780  * Set fDeviceInit flag and poll until device toggles it.
4781  *
4782  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
4783  * < 0 if another error occurred.
4784  */
ufshcd_complete_dev_init(struct ufs_hba * hba)4785 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4786 {
4787 	int err;
4788 	bool flag_res = true;
4789 	ktime_t timeout;
4790 
4791 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4792 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4793 	if (err) {
4794 		dev_err(hba->dev,
4795 			"%s: setting fDeviceInit flag failed with error %d\n",
4796 			__func__, err);
4797 		goto out;
4798 	}
4799 
4800 	/* Poll fDeviceInit flag to be cleared */
4801 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4802 	do {
4803 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4804 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4805 		if (!flag_res)
4806 			break;
4807 		usleep_range(500, 1000);
4808 	} while (ktime_before(ktime_get(), timeout));
4809 
4810 	if (err) {
4811 		dev_err(hba->dev,
4812 				"%s: reading fDeviceInit flag failed with error %d\n",
4813 				__func__, err);
4814 	} else if (flag_res) {
4815 		dev_err(hba->dev,
4816 				"%s: fDeviceInit was not cleared by the device\n",
4817 				__func__);
4818 		err = -EBUSY;
4819 	}
4820 out:
4821 	return err;
4822 }
4823 
4824 /**
4825  * ufshcd_make_hba_operational - Make UFS controller operational
4826  * @hba: per adapter instance
4827  *
4828  * To bring UFS host controller to operational state,
4829  * 1. Enable required interrupts
4830  * 2. Configure interrupt aggregation
4831  * 3. Program UTRL and UTMRL base address
4832  * 4. Configure run-stop-registers
4833  *
4834  * Return: 0 if successful; < 0 upon failure.
4835  */
ufshcd_make_hba_operational(struct ufs_hba * hba)4836 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4837 {
4838 	int err = 0;
4839 	u32 reg;
4840 
4841 	/* Enable required interrupts */
4842 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4843 
4844 	/* Configure interrupt aggregation */
4845 	if (ufshcd_is_intr_aggr_allowed(hba))
4846 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4847 	else
4848 		ufshcd_disable_intr_aggr(hba);
4849 
4850 	/* Configure UTRL and UTMRL base address registers */
4851 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4852 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4853 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4854 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4855 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4856 			REG_UTP_TASK_REQ_LIST_BASE_L);
4857 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4858 			REG_UTP_TASK_REQ_LIST_BASE_H);
4859 
4860 	/*
4861 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4862 	 */
4863 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4864 	if (!(ufshcd_get_lists_status(reg))) {
4865 		ufshcd_enable_run_stop_reg(hba);
4866 	} else {
4867 		dev_err(hba->dev,
4868 			"Host controller not ready to process requests");
4869 		err = -EIO;
4870 	}
4871 
4872 	return err;
4873 }
4874 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4875 
4876 /**
4877  * ufshcd_hba_stop - Send controller to reset state
4878  * @hba: per adapter instance
4879  */
ufshcd_hba_stop(struct ufs_hba * hba)4880 void ufshcd_hba_stop(struct ufs_hba *hba)
4881 {
4882 	int err;
4883 
4884 	ufshcd_disable_irq(hba);
4885 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4886 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4887 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4888 					10, 1);
4889 	ufshcd_enable_irq(hba);
4890 	if (err)
4891 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4892 }
4893 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4894 
4895 /**
4896  * ufshcd_hba_execute_hce - initialize the controller
4897  * @hba: per adapter instance
4898  *
4899  * The controller resets itself and controller firmware initialization
4900  * sequence kicks off. When controller is ready it will set
4901  * the Host Controller Enable bit to 1.
4902  *
4903  * Return: 0 on success, non-zero value on failure.
4904  */
ufshcd_hba_execute_hce(struct ufs_hba * hba)4905 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4906 {
4907 	int retry;
4908 
4909 	for (retry = 3; retry > 0; retry--) {
4910 		if (ufshcd_is_hba_active(hba))
4911 			/* change controller state to "reset state" */
4912 			ufshcd_hba_stop(hba);
4913 
4914 		/* UniPro link is disabled at this point */
4915 		ufshcd_set_link_off(hba);
4916 
4917 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4918 
4919 		/* start controller initialization sequence */
4920 		ufshcd_hba_start(hba);
4921 
4922 		/*
4923 		 * To initialize a UFS host controller HCE bit must be set to 1.
4924 		 * During initialization the HCE bit value changes from 1->0->1.
4925 		 * When the host controller completes initialization sequence
4926 		 * it sets the value of HCE bit to 1. The same HCE bit is read back
4927 		 * to check if the controller has completed initialization sequence.
4928 		 * So without this delay the value HCE = 1, set in the previous
4929 		 * instruction might be read back.
4930 		 * This delay can be changed based on the controller.
4931 		 */
4932 		ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4933 
4934 		/* wait for the host controller to complete initialization */
4935 		if (!ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, CONTROLLER_ENABLE,
4936 					      CONTROLLER_ENABLE, 1000, 50))
4937 			break;
4938 
4939 		dev_err(hba->dev, "Enabling the controller failed\n");
4940 	}
4941 
4942 	if (!retry)
4943 		return -EIO;
4944 
4945 	/* enable UIC related interrupts */
4946 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4947 
4948 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4949 
4950 	return 0;
4951 }
4952 
ufshcd_hba_enable(struct ufs_hba * hba)4953 int ufshcd_hba_enable(struct ufs_hba *hba)
4954 {
4955 	int ret;
4956 
4957 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4958 		ufshcd_set_link_off(hba);
4959 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4960 
4961 		/* enable UIC related interrupts */
4962 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4963 		ret = ufshcd_dme_reset(hba);
4964 		if (ret) {
4965 			dev_err(hba->dev, "DME_RESET failed\n");
4966 			return ret;
4967 		}
4968 
4969 		ret = ufshcd_dme_enable(hba);
4970 		if (ret) {
4971 			dev_err(hba->dev, "Enabling DME failed\n");
4972 			return ret;
4973 		}
4974 
4975 		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4976 	} else {
4977 		ret = ufshcd_hba_execute_hce(hba);
4978 	}
4979 
4980 	return ret;
4981 }
4982 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4983 
ufshcd_disable_tx_lcc(struct ufs_hba * hba,bool peer)4984 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4985 {
4986 	int tx_lanes, i, err = 0;
4987 
4988 	if (!peer)
4989 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4990 			       &tx_lanes);
4991 	else
4992 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4993 				    &tx_lanes);
4994 	for (i = 0; i < tx_lanes; i++) {
4995 		if (!peer)
4996 			err = ufshcd_dme_set(hba,
4997 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4998 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4999 					0);
5000 		else
5001 			err = ufshcd_dme_peer_set(hba,
5002 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
5003 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
5004 					0);
5005 		if (err) {
5006 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
5007 				__func__, peer, i, err);
5008 			break;
5009 		}
5010 	}
5011 
5012 	return err;
5013 }
5014 
ufshcd_disable_device_tx_lcc(struct ufs_hba * hba)5015 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
5016 {
5017 	return ufshcd_disable_tx_lcc(hba, true);
5018 }
5019 
ufshcd_update_evt_hist(struct ufs_hba * hba,u32 id,u32 val)5020 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
5021 {
5022 	struct ufs_event_hist *e;
5023 
5024 	if (id >= UFS_EVT_CNT)
5025 		return;
5026 
5027 	e = &hba->ufs_stats.event[id];
5028 	e->val[e->pos] = val;
5029 	e->tstamp[e->pos] = local_clock();
5030 	e->cnt += 1;
5031 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
5032 
5033 	ufshcd_vops_event_notify(hba, id, &val);
5034 }
5035 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
5036 
5037 /**
5038  * ufshcd_link_startup - Initialize unipro link startup
5039  * @hba: per adapter instance
5040  *
5041  * Return: 0 for success, non-zero in case of failure.
5042  */
ufshcd_link_startup(struct ufs_hba * hba)5043 static int ufshcd_link_startup(struct ufs_hba *hba)
5044 {
5045 	int ret;
5046 	int retries = DME_LINKSTARTUP_RETRIES;
5047 	bool link_startup_again = false;
5048 
5049 	/*
5050 	 * If UFS device isn't active then we will have to issue link startup
5051 	 * 2 times to make sure the device state move to active.
5052 	 */
5053 	if (!(hba->quirks & UFSHCD_QUIRK_PERFORM_LINK_STARTUP_ONCE) &&
5054 	    !ufshcd_is_ufs_dev_active(hba))
5055 		link_startup_again = true;
5056 
5057 link_startup:
5058 	do {
5059 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
5060 
5061 		ret = ufshcd_dme_link_startup(hba);
5062 
5063 		/* check if device is detected by inter-connect layer */
5064 		if (!ret && !ufshcd_is_device_present(hba)) {
5065 			ufshcd_update_evt_hist(hba,
5066 					       UFS_EVT_LINK_STARTUP_FAIL,
5067 					       0);
5068 			dev_err(hba->dev, "%s: Device not present\n", __func__);
5069 			ret = -ENXIO;
5070 			goto out;
5071 		}
5072 
5073 		/*
5074 		 * DME link lost indication is only received when link is up,
5075 		 * but we can't be sure if the link is up until link startup
5076 		 * succeeds. So reset the local Uni-Pro and try again.
5077 		 */
5078 		if (ret && retries && ufshcd_hba_enable(hba)) {
5079 			ufshcd_update_evt_hist(hba,
5080 					       UFS_EVT_LINK_STARTUP_FAIL,
5081 					       (u32)ret);
5082 			goto out;
5083 		}
5084 	} while (ret && retries--);
5085 
5086 	if (ret) {
5087 		/* failed to get the link up... retire */
5088 		ufshcd_update_evt_hist(hba,
5089 				       UFS_EVT_LINK_STARTUP_FAIL,
5090 				       (u32)ret);
5091 		goto out;
5092 	}
5093 
5094 	if (link_startup_again) {
5095 		link_startup_again = false;
5096 		retries = DME_LINKSTARTUP_RETRIES;
5097 		goto link_startup;
5098 	}
5099 
5100 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
5101 	ufshcd_init_pwr_info(hba);
5102 	ufshcd_print_pwr_info(hba);
5103 
5104 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
5105 		ret = ufshcd_disable_device_tx_lcc(hba);
5106 		if (ret)
5107 			goto out;
5108 	}
5109 
5110 	/* Include any host controller configuration via UIC commands */
5111 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
5112 	if (ret)
5113 		goto out;
5114 
5115 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
5116 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
5117 	ret = ufshcd_make_hba_operational(hba);
5118 out:
5119 	if (ret)
5120 		dev_err(hba->dev, "link startup failed %d\n", ret);
5121 	return ret;
5122 }
5123 
5124 /**
5125  * ufshcd_verify_dev_init() - Verify device initialization
5126  * @hba: per-adapter instance
5127  *
5128  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
5129  * device Transport Protocol (UTP) layer is ready after a reset.
5130  * If the UTP layer at the device side is not initialized, it may
5131  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
5132  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
5133  *
5134  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
5135  * < 0 if another error occurred.
5136  */
ufshcd_verify_dev_init(struct ufs_hba * hba)5137 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
5138 {
5139 	int err = 0;
5140 	int retries;
5141 
5142 	ufshcd_dev_man_lock(hba);
5143 
5144 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
5145 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
5146 					  hba->nop_out_timeout);
5147 
5148 		if (!err || err == -ETIMEDOUT)
5149 			break;
5150 
5151 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
5152 	}
5153 
5154 	ufshcd_dev_man_unlock(hba);
5155 
5156 	if (err)
5157 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
5158 	return err;
5159 }
5160 
5161 /**
5162  * ufshcd_setup_links - associate link b/w device wlun and other luns
5163  * @sdev: pointer to SCSI device
5164  * @hba: pointer to ufs hba
5165  */
ufshcd_setup_links(struct ufs_hba * hba,struct scsi_device * sdev)5166 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
5167 {
5168 	struct device_link *link;
5169 
5170 	/*
5171 	 * Device wlun is the supplier & rest of the luns are consumers.
5172 	 * This ensures that device wlun suspends after all other luns.
5173 	 */
5174 	if (hba->ufs_device_wlun) {
5175 		link = device_link_add(&sdev->sdev_gendev,
5176 				       &hba->ufs_device_wlun->sdev_gendev,
5177 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5178 		if (!link) {
5179 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5180 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
5181 			return;
5182 		}
5183 		hba->luns_avail--;
5184 		/* Ignore REPORT_LUN wlun probing */
5185 		if (hba->luns_avail == 1) {
5186 			ufshcd_rpm_put(hba);
5187 			return;
5188 		}
5189 	} else {
5190 		/*
5191 		 * Device wlun is probed. The assumption is that WLUNs are
5192 		 * scanned before other LUNs.
5193 		 */
5194 		hba->luns_avail--;
5195 	}
5196 }
5197 
5198 /**
5199  * ufshcd_lu_init - Initialize the relevant parameters of the LU
5200  * @hba: per-adapter instance
5201  * @sdev: pointer to SCSI device
5202  */
ufshcd_lu_init(struct ufs_hba * hba,struct scsi_device * sdev)5203 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5204 {
5205 	int len = QUERY_DESC_MAX_SIZE;
5206 	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5207 	u8 lun_qdepth = hba->nutrs;
5208 	u8 *desc_buf;
5209 	int ret;
5210 
5211 	desc_buf = kzalloc(len, GFP_KERNEL);
5212 	if (!desc_buf)
5213 		goto set_qdepth;
5214 
5215 	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5216 	if (ret < 0) {
5217 		if (ret == -EOPNOTSUPP)
5218 			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5219 			lun_qdepth = 1;
5220 		kfree(desc_buf);
5221 		goto set_qdepth;
5222 	}
5223 
5224 	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5225 		/*
5226 		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5227 		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5228 		 */
5229 		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5230 	}
5231 	/*
5232 	 * According to UFS device specification, the write protection mode is only supported by
5233 	 * normal LU, not supported by WLUN.
5234 	 */
5235 	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5236 	    !hba->dev_info.is_lu_power_on_wp &&
5237 	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5238 		hba->dev_info.is_lu_power_on_wp = true;
5239 
5240 	/* In case of RPMB LU, check if advanced RPMB mode is enabled, and get region size */
5241 	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN) {
5242 		if (desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5243 			hba->dev_info.b_advanced_rpmb_en = true;
5244 		hba->dev_info.rpmb_region_size[0] = desc_buf[RPMB_UNIT_DESC_PARAM_REGION0_SIZE];
5245 		hba->dev_info.rpmb_region_size[1] = desc_buf[RPMB_UNIT_DESC_PARAM_REGION1_SIZE];
5246 		hba->dev_info.rpmb_region_size[2] = desc_buf[RPMB_UNIT_DESC_PARAM_REGION2_SIZE];
5247 		hba->dev_info.rpmb_region_size[3] = desc_buf[RPMB_UNIT_DESC_PARAM_REGION3_SIZE];
5248 	}
5249 
5250 
5251 	kfree(desc_buf);
5252 set_qdepth:
5253 	/*
5254 	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5255 	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5256 	 */
5257 	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5258 	scsi_change_queue_depth(sdev, lun_qdepth);
5259 }
5260 
5261 /**
5262  * ufshcd_sdev_init - handle initial SCSI device configurations
5263  * @sdev: pointer to SCSI device
5264  *
5265  * Return: success.
5266  */
ufshcd_sdev_init(struct scsi_device * sdev)5267 static int ufshcd_sdev_init(struct scsi_device *sdev)
5268 {
5269 	struct ufs_hba *hba;
5270 
5271 	hba = shost_priv(sdev->host);
5272 
5273 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5274 	sdev->use_10_for_ms = 1;
5275 
5276 	/* DBD field should be set to 1 in mode sense(10) */
5277 	sdev->set_dbd_for_ms = 1;
5278 
5279 	/* allow SCSI layer to restart the device in case of errors */
5280 	sdev->allow_restart = 1;
5281 
5282 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5283 	sdev->no_report_opcodes = 1;
5284 
5285 	/* WRITE_SAME command is not supported */
5286 	sdev->no_write_same = 1;
5287 
5288 	ufshcd_lu_init(hba, sdev);
5289 
5290 	ufshcd_setup_links(hba, sdev);
5291 
5292 	return 0;
5293 }
5294 
5295 /**
5296  * ufshcd_change_queue_depth - change queue depth
5297  * @sdev: pointer to SCSI device
5298  * @depth: required depth to set
5299  *
5300  * Change queue depth and make sure the max. limits are not crossed.
5301  *
5302  * Return: new queue depth.
5303  */
ufshcd_change_queue_depth(struct scsi_device * sdev,int depth)5304 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5305 {
5306 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5307 }
5308 
5309 /**
5310  * ufshcd_sdev_configure - adjust SCSI device configurations
5311  * @sdev: pointer to SCSI device
5312  * @lim: queue limits
5313  *
5314  * Return: 0 (success).
5315  */
ufshcd_sdev_configure(struct scsi_device * sdev,struct queue_limits * lim)5316 static int ufshcd_sdev_configure(struct scsi_device *sdev,
5317 				 struct queue_limits *lim)
5318 {
5319 	struct ufs_hba *hba = shost_priv(sdev->host);
5320 	struct request_queue *q = sdev->request_queue;
5321 
5322 	lim->dma_pad_mask = PRDT_DATA_BYTE_COUNT_PAD - 1;
5323 
5324 	/*
5325 	 * Block runtime-pm until all consumers are added.
5326 	 * Refer ufshcd_setup_links().
5327 	 */
5328 	if (is_device_wlun(sdev))
5329 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5330 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5331 		sdev->rpm_autosuspend = 1;
5332 	/*
5333 	 * Do not print messages during runtime PM to avoid never-ending cycles
5334 	 * of messages written back to storage by user space causing runtime
5335 	 * resume, causing more messages and so on.
5336 	 */
5337 	sdev->silence_suspend = 1;
5338 
5339 	if (hba->vops && hba->vops->config_scsi_dev)
5340 		hba->vops->config_scsi_dev(sdev);
5341 
5342 	ufshcd_crypto_register(hba, q);
5343 
5344 	return 0;
5345 }
5346 
5347 /**
5348  * ufshcd_sdev_destroy - remove SCSI device configurations
5349  * @sdev: pointer to SCSI device
5350  */
ufshcd_sdev_destroy(struct scsi_device * sdev)5351 static void ufshcd_sdev_destroy(struct scsi_device *sdev)
5352 {
5353 	struct ufs_hba *hba;
5354 	unsigned long flags;
5355 
5356 	hba = shost_priv(sdev->host);
5357 
5358 	/* Drop the reference as it won't be needed anymore */
5359 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5360 		spin_lock_irqsave(hba->host->host_lock, flags);
5361 		hba->ufs_device_wlun = NULL;
5362 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5363 	} else if (hba->ufs_device_wlun) {
5364 		struct device *supplier = NULL;
5365 
5366 		/* Ensure UFS Device WLUN exists and does not disappear */
5367 		spin_lock_irqsave(hba->host->host_lock, flags);
5368 		if (hba->ufs_device_wlun) {
5369 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5370 			get_device(supplier);
5371 		}
5372 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5373 
5374 		if (supplier) {
5375 			/*
5376 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5377 			 * device will not have been registered but can still
5378 			 * have a device link holding a reference to the device.
5379 			 */
5380 			device_link_remove(&sdev->sdev_gendev, supplier);
5381 			put_device(supplier);
5382 		}
5383 	}
5384 }
5385 
5386 /**
5387  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5388  * @cmd: SCSI command
5389  * @scsi_status: SCSI command status
5390  *
5391  * Return: value base on SCSI command status.
5392  */
ufshcd_scsi_cmd_status(struct scsi_cmnd * cmd,int scsi_status)5393 static inline int ufshcd_scsi_cmd_status(struct scsi_cmnd *cmd, int scsi_status)
5394 {
5395 	int result = 0;
5396 
5397 	switch (scsi_status) {
5398 	case SAM_STAT_CHECK_CONDITION:
5399 		ufshcd_copy_sense_data(cmd);
5400 		fallthrough;
5401 	case SAM_STAT_GOOD:
5402 		result |= DID_OK << 16 | scsi_status;
5403 		break;
5404 	case SAM_STAT_TASK_SET_FULL:
5405 	case SAM_STAT_BUSY:
5406 	case SAM_STAT_TASK_ABORTED:
5407 		ufshcd_copy_sense_data(cmd);
5408 		result |= scsi_status;
5409 		break;
5410 	default:
5411 		result |= DID_ERROR << 16;
5412 		break;
5413 	} /* end of switch */
5414 
5415 	return result;
5416 }
5417 
5418 /**
5419  * ufshcd_transfer_rsp_status - Get overall status of the response
5420  * @hba: per adapter instance
5421  * @cmd: SCSI command
5422  * @cqe: pointer to the completion queue entry
5423  *
5424  * Return: result of the command to notify SCSI midlayer.
5425  */
ufshcd_transfer_rsp_status(struct ufs_hba * hba,struct scsi_cmnd * cmd,struct cq_entry * cqe)5426 static inline int ufshcd_transfer_rsp_status(struct ufs_hba *hba,
5427 					     struct scsi_cmnd *cmd,
5428 					     struct cq_entry *cqe)
5429 {
5430 	struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
5431 	const int tag = scsi_cmd_to_rq(cmd)->tag;
5432 	int result = 0;
5433 	int scsi_status;
5434 	enum utp_ocs ocs;
5435 	u8 upiu_flags;
5436 	u32 resid;
5437 
5438 	upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5439 	resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5440 	/*
5441 	 * Test !overflow instead of underflow to support UFS devices that do
5442 	 * not set either flag.
5443 	 */
5444 	if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5445 		scsi_set_resid(cmd, resid);
5446 
5447 	/* overall command status of utrd */
5448 	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5449 
5450 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5451 		if (lrbp->ucd_rsp_ptr->header.response ||
5452 		    lrbp->ucd_rsp_ptr->header.status)
5453 			ocs = OCS_SUCCESS;
5454 	}
5455 
5456 	switch (ocs) {
5457 	case OCS_SUCCESS:
5458 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5459 		switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5460 		case UPIU_TRANSACTION_RESPONSE:
5461 			/*
5462 			 * get the result based on SCSI status response
5463 			 * to notify the SCSI midlayer of the command status
5464 			 */
5465 			scsi_status = lrbp->ucd_rsp_ptr->header.status;
5466 			result = ufshcd_scsi_cmd_status(cmd, scsi_status);
5467 
5468 			/*
5469 			 * Currently we are only supporting BKOPs exception
5470 			 * events hence we can ignore BKOPs exception event
5471 			 * during power management callbacks. BKOPs exception
5472 			 * event is not expected to be raised in runtime suspend
5473 			 * callback as it allows the urgent bkops.
5474 			 * During system suspend, we are anyway forcefully
5475 			 * disabling the bkops and if urgent bkops is needed
5476 			 * it will be enabled on system resume. Long term
5477 			 * solution could be to abort the system suspend if
5478 			 * UFS device needs urgent BKOPs.
5479 			 */
5480 			if (!hba->pm_op_in_progress &&
5481 			    !ufshcd_eh_in_progress(hba) &&
5482 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5483 				/* Flushed in suspend */
5484 				schedule_work(&hba->eeh_work);
5485 			break;
5486 		case UPIU_TRANSACTION_REJECT_UPIU:
5487 			/* TODO: handle Reject UPIU Response */
5488 			result = DID_ERROR << 16;
5489 			dev_err(hba->dev,
5490 				"Reject UPIU not fully implemented\n");
5491 			break;
5492 		default:
5493 			dev_err(hba->dev,
5494 				"Unexpected request response code = %x\n",
5495 				result);
5496 			result = DID_ERROR << 16;
5497 			break;
5498 		}
5499 		break;
5500 	case OCS_ABORTED:
5501 	case OCS_INVALID_COMMAND_STATUS:
5502 		result |= DID_REQUEUE << 16;
5503 		dev_warn(hba->dev, "OCS %s from controller for tag %d\n",
5504 			 ocs == OCS_ABORTED ? "aborted" : "invalid", tag);
5505 		break;
5506 	case OCS_INVALID_CMD_TABLE_ATTR:
5507 	case OCS_INVALID_PRDT_ATTR:
5508 	case OCS_MISMATCH_DATA_BUF_SIZE:
5509 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5510 	case OCS_PEER_COMM_FAILURE:
5511 	case OCS_FATAL_ERROR:
5512 	case OCS_DEVICE_FATAL_ERROR:
5513 	case OCS_INVALID_CRYPTO_CONFIG:
5514 	case OCS_GENERAL_CRYPTO_ERROR:
5515 	default:
5516 		result |= DID_ERROR << 16;
5517 		dev_err(hba->dev, "OCS error from controller = %x for tag %d\n",
5518 			ocs, tag);
5519 		ufshcd_print_evt_hist(hba);
5520 		ufshcd_print_host_state(hba);
5521 		break;
5522 	} /* end of switch */
5523 
5524 	if ((host_byte(result) != DID_OK) &&
5525 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs) {
5526 		if (cqe)
5527 			ufshcd_hex_dump("UPIU CQE: ", cqe, sizeof(struct cq_entry));
5528 		ufshcd_print_tr(hba, cmd, true);
5529 	}
5530 	return result;
5531 }
5532 
ufshcd_is_auto_hibern8_error(struct ufs_hba * hba,u32 intr_mask)5533 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5534 					 u32 intr_mask)
5535 {
5536 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5537 	    !ufshcd_is_auto_hibern8_enabled(hba))
5538 		return false;
5539 
5540 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5541 		return false;
5542 
5543 	if (hba->active_uic_cmd &&
5544 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5545 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5546 		return false;
5547 
5548 	return true;
5549 }
5550 
5551 /**
5552  * ufshcd_uic_cmd_compl - handle completion of uic command
5553  * @hba: per adapter instance
5554  * @intr_status: interrupt status generated by the controller
5555  *
5556  * Return:
5557  *  IRQ_HANDLED - If interrupt is valid
5558  *  IRQ_NONE    - If invalid interrupt
5559  */
ufshcd_uic_cmd_compl(struct ufs_hba * hba,u32 intr_status)5560 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5561 {
5562 	irqreturn_t retval = IRQ_NONE;
5563 	struct uic_command *cmd;
5564 
5565 	guard(spinlock_irqsave)(hba->host->host_lock);
5566 	cmd = hba->active_uic_cmd;
5567 	if (!cmd)
5568 		return retval;
5569 
5570 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5571 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5572 
5573 	if (intr_status & UIC_COMMAND_COMPL) {
5574 		cmd->argument2 |= ufshcd_get_uic_cmd_result(hba);
5575 		cmd->argument3 = ufshcd_get_dme_attr_val(hba);
5576 		if (!hba->uic_async_done)
5577 			cmd->cmd_active = false;
5578 		complete(&cmd->done);
5579 		retval = IRQ_HANDLED;
5580 	}
5581 
5582 	if (intr_status & UFSHCD_UIC_PWR_MASK && hba->uic_async_done) {
5583 		cmd->cmd_active = false;
5584 		complete(hba->uic_async_done);
5585 		retval = IRQ_HANDLED;
5586 	}
5587 
5588 	if (retval == IRQ_HANDLED)
5589 		ufshcd_add_uic_command_trace(hba, cmd, UFS_CMD_COMP);
5590 
5591 	return retval;
5592 }
5593 
5594 /* Release the resources allocated for processing a SCSI command. */
ufshcd_release_scsi_cmd(struct ufs_hba * hba,struct scsi_cmnd * cmd)5595 void ufshcd_release_scsi_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd)
5596 {
5597 	scsi_dma_unmap(cmd);
5598 	ufshcd_crypto_clear_prdt(hba, cmd);
5599 	ufshcd_release(hba);
5600 	ufshcd_clk_scaling_update_busy(hba);
5601 }
5602 
5603 /**
5604  * ufshcd_compl_one_cqe - handle a completion queue entry
5605  * @hba: per adapter instance
5606  * @task_tag: the task tag of the request to be completed
5607  * @cqe: pointer to the completion queue entry
5608  */
ufshcd_compl_one_cqe(struct ufs_hba * hba,int task_tag,struct cq_entry * cqe)5609 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5610 			  struct cq_entry *cqe)
5611 {
5612 	struct scsi_cmnd *cmd = ufshcd_tag_to_cmd(hba, task_tag);
5613 	struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
5614 	enum utp_ocs ocs;
5615 
5616 	if (WARN_ONCE(!cmd, "cqe->command_desc_base_addr = %#llx\n",
5617 		      le64_to_cpu(cqe->command_desc_base_addr)))
5618 		return;
5619 
5620 	if (hba->monitor.enabled) {
5621 		lrbp->compl_time_stamp = ktime_get();
5622 		lrbp->compl_time_stamp_local_clock = local_clock();
5623 	}
5624 	if (ufshcd_is_scsi_cmd(cmd)) {
5625 		if (unlikely(ufshcd_should_inform_monitor(hba, cmd)))
5626 			ufshcd_update_monitor(hba, cmd);
5627 		ufshcd_add_command_trace(hba, cmd, UFS_CMD_COMP);
5628 		cmd->result = ufshcd_transfer_rsp_status(hba, cmd, cqe);
5629 		ufshcd_release_scsi_cmd(hba, cmd);
5630 	} else {
5631 		if (cqe) {
5632 			ocs = cqe->overall_status & MASK_OCS;
5633 			lrbp->utr_descriptor_ptr->header.ocs = ocs;
5634 		} else {
5635 			ocs = lrbp->utr_descriptor_ptr->header.ocs;
5636 		}
5637 		ufshcd_add_query_upiu_trace(
5638 			hba,
5639 			ocs == OCS_SUCCESS ? UFS_QUERY_COMP : UFS_QUERY_ERR,
5640 			(struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
5641 		cmd->result = 0;
5642 	}
5643 	/* Do not touch lrbp after scsi_done() has been called. */
5644 	scsi_done(cmd);
5645 }
5646 
5647 /**
5648  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5649  * @hba: per adapter instance
5650  * @completed_reqs: bitmask that indicates which requests to complete
5651  */
__ufshcd_transfer_req_compl(struct ufs_hba * hba,unsigned long completed_reqs)5652 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5653 					unsigned long completed_reqs)
5654 {
5655 	int tag;
5656 
5657 	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5658 		ufshcd_compl_one_cqe(hba, tag, NULL);
5659 }
5660 
5661 /* Any value that is not an existing queue number is fine for this constant. */
5662 enum {
5663 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5664 };
5665 
ufshcd_clear_polled(struct ufs_hba * hba,unsigned long * completed_reqs)5666 static void ufshcd_clear_polled(struct ufs_hba *hba,
5667 				unsigned long *completed_reqs)
5668 {
5669 	int tag;
5670 
5671 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5672 		struct scsi_cmnd *cmd = scsi_host_find_tag(hba->host, tag);
5673 
5674 		if (!cmd)
5675 			continue;
5676 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5677 			__clear_bit(tag, completed_reqs);
5678 	}
5679 }
5680 
5681 /*
5682  * Return: > 0 if one or more commands have been completed or 0 if no
5683  * requests have been completed.
5684  */
ufshcd_poll(struct Scsi_Host * shost,unsigned int queue_num)5685 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5686 {
5687 	struct ufs_hba *hba = shost_priv(shost);
5688 	unsigned long completed_reqs, flags;
5689 	u32 tr_doorbell;
5690 	struct ufs_hw_queue *hwq;
5691 
5692 	if (hba->mcq_enabled) {
5693 		hwq = &hba->uhq[queue_num];
5694 
5695 		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5696 	}
5697 
5698 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5699 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5700 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5701 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5702 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5703 		  hba->outstanding_reqs);
5704 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5705 		/* Do not complete polled requests from interrupt context. */
5706 		ufshcd_clear_polled(hba, &completed_reqs);
5707 	}
5708 	hba->outstanding_reqs &= ~completed_reqs;
5709 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5710 
5711 	if (completed_reqs)
5712 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5713 
5714 	return completed_reqs != 0;
5715 }
5716 
ufshcd_mcq_force_compl_one(struct request * rq,void * priv)5717 static bool ufshcd_mcq_force_compl_one(struct request *rq, void *priv)
5718 {
5719 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
5720 	struct scsi_device *sdev = rq->q->queuedata;
5721 	struct Scsi_Host *shost = sdev->host;
5722 	struct ufs_hba *hba = shost_priv(shost);
5723 	struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
5724 
5725 	if (blk_mq_is_reserved_rq(rq) || !hwq)
5726 		return true;
5727 
5728 	ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5729 
5730 	/*
5731 	 * For those cmds of which the cqes are not present in the cq, complete
5732 	 * them explicitly.
5733 	 */
5734 	scoped_guard(spinlock_irqsave, &hwq->cq_lock) {
5735 		if (!test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5736 			set_host_byte(cmd, DID_REQUEUE);
5737 			ufshcd_release_scsi_cmd(hba, cmd);
5738 			scsi_done(cmd);
5739 		}
5740 	}
5741 
5742 	return true;
5743 }
5744 
ufshcd_mcq_compl_one(struct request * rq,void * priv)5745 static bool ufshcd_mcq_compl_one(struct request *rq, void *priv)
5746 {
5747 	struct scsi_device *sdev = rq->q->queuedata;
5748 	struct Scsi_Host *shost = sdev->host;
5749 	struct ufs_hba *hba = shost_priv(shost);
5750 	struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
5751 
5752 	if (!blk_mq_is_reserved_rq(rq) && hwq)
5753 		ufshcd_mcq_poll_cqe_lock(hba, hwq);
5754 
5755 	return true;
5756 }
5757 
5758 /**
5759  * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5760  * invoked from the error handler context or ufshcd_host_reset_and_restore()
5761  * to complete the pending transfers and free the resources associated with
5762  * the scsi command.
5763  *
5764  * @hba: per adapter instance
5765  * @force_compl: This flag is set to true when invoked
5766  * from ufshcd_host_reset_and_restore() in which case it requires special
5767  * handling because the host controller has been reset by ufshcd_hba_stop().
5768  */
ufshcd_mcq_compl_pending_transfer(struct ufs_hba * hba,bool force_compl)5769 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5770 					      bool force_compl)
5771 {
5772 	blk_mq_tagset_busy_iter(&hba->host->tag_set,
5773 				force_compl ? ufshcd_mcq_force_compl_one :
5774 					      ufshcd_mcq_compl_one,
5775 				NULL);
5776 }
5777 
5778 /**
5779  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5780  * @hba: per adapter instance
5781  *
5782  * Return:
5783  *  IRQ_HANDLED - If interrupt is valid
5784  *  IRQ_NONE    - If invalid interrupt
5785  */
ufshcd_transfer_req_compl(struct ufs_hba * hba)5786 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5787 {
5788 	/* Resetting interrupt aggregation counters first and reading the
5789 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5790 	 * In order to prevent other interrupts starvation the DB is read once
5791 	 * after reset. The down side of this solution is the possibility of
5792 	 * false interrupt if device completes another request after resetting
5793 	 * aggregation and before reading the DB.
5794 	 */
5795 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5796 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5797 		ufshcd_reset_intr_aggr(hba);
5798 
5799 	if (ufs_fail_completion(hba))
5800 		return IRQ_HANDLED;
5801 
5802 	/*
5803 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5804 	 * do not want polling to trigger spurious interrupt complaints.
5805 	 */
5806 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5807 
5808 	return IRQ_HANDLED;
5809 }
5810 
__ufshcd_write_ee_control(struct ufs_hba * hba,u32 ee_ctrl_mask)5811 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5812 {
5813 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5814 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5815 				       &ee_ctrl_mask);
5816 }
5817 
ufshcd_write_ee_control(struct ufs_hba * hba)5818 int ufshcd_write_ee_control(struct ufs_hba *hba)
5819 {
5820 	int err;
5821 
5822 	mutex_lock(&hba->ee_ctrl_mutex);
5823 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5824 	mutex_unlock(&hba->ee_ctrl_mutex);
5825 	if (err)
5826 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5827 			__func__, err);
5828 	return err;
5829 }
5830 
ufshcd_update_ee_control(struct ufs_hba * hba,u16 * mask,const u16 * other_mask,u16 set,u16 clr)5831 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5832 			     const u16 *other_mask, u16 set, u16 clr)
5833 {
5834 	u16 new_mask, ee_ctrl_mask;
5835 	int err = 0;
5836 
5837 	mutex_lock(&hba->ee_ctrl_mutex);
5838 	new_mask = (*mask & ~clr) | set;
5839 	ee_ctrl_mask = new_mask | *other_mask;
5840 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5841 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5842 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5843 	if (!err) {
5844 		hba->ee_ctrl_mask = ee_ctrl_mask;
5845 		*mask = new_mask;
5846 	}
5847 	mutex_unlock(&hba->ee_ctrl_mutex);
5848 	return err;
5849 }
5850 
5851 /**
5852  * ufshcd_disable_ee - disable exception event
5853  * @hba: per-adapter instance
5854  * @mask: exception event to disable
5855  *
5856  * Disables exception event in the device so that the EVENT_ALERT
5857  * bit is not set.
5858  *
5859  * Return: zero on success, non-zero error value on failure.
5860  */
ufshcd_disable_ee(struct ufs_hba * hba,u16 mask)5861 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5862 {
5863 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5864 }
5865 
5866 /**
5867  * ufshcd_enable_ee - enable exception event
5868  * @hba: per-adapter instance
5869  * @mask: exception event to enable
5870  *
5871  * Enable corresponding exception event in the device to allow
5872  * device to alert host in critical scenarios.
5873  *
5874  * Return: zero on success, non-zero error value on failure.
5875  */
ufshcd_enable_ee(struct ufs_hba * hba,u16 mask)5876 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5877 {
5878 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5879 }
5880 
5881 /**
5882  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5883  * @hba: per-adapter instance
5884  *
5885  * Allow device to manage background operations on its own. Enabling
5886  * this might lead to inconsistent latencies during normal data transfers
5887  * as the device is allowed to manage its own way of handling background
5888  * operations.
5889  *
5890  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
5891  * < 0 if another error occurred.
5892  */
ufshcd_enable_auto_bkops(struct ufs_hba * hba)5893 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5894 {
5895 	int err = 0;
5896 
5897 	if (hba->auto_bkops_enabled)
5898 		goto out;
5899 
5900 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5901 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5902 	if (err) {
5903 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5904 				__func__, err);
5905 		goto out;
5906 	}
5907 
5908 	hba->auto_bkops_enabled = true;
5909 	trace_ufshcd_auto_bkops_state(hba, "Enabled");
5910 
5911 	/* No need of URGENT_BKOPS exception from the device */
5912 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5913 	if (err)
5914 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5915 				__func__, err);
5916 out:
5917 	return err;
5918 }
5919 
5920 /**
5921  * ufshcd_disable_auto_bkops - block device in doing background operations
5922  * @hba: per-adapter instance
5923  *
5924  * Disabling background operations improves command response latency but
5925  * has drawback of device moving into critical state where the device is
5926  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5927  * host is idle so that BKOPS are managed effectively without any negative
5928  * impacts.
5929  *
5930  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
5931  * < 0 if another error occurred.
5932  */
ufshcd_disable_auto_bkops(struct ufs_hba * hba)5933 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5934 {
5935 	int err = 0;
5936 
5937 	if (!hba->auto_bkops_enabled)
5938 		goto out;
5939 
5940 	/*
5941 	 * If host assisted BKOPs is to be enabled, make sure
5942 	 * urgent bkops exception is allowed.
5943 	 */
5944 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5945 	if (err) {
5946 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5947 				__func__, err);
5948 		goto out;
5949 	}
5950 
5951 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5952 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5953 	if (err) {
5954 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5955 				__func__, err);
5956 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5957 		goto out;
5958 	}
5959 
5960 	hba->auto_bkops_enabled = false;
5961 	trace_ufshcd_auto_bkops_state(hba, "Disabled");
5962 	hba->is_urgent_bkops_lvl_checked = false;
5963 out:
5964 	return err;
5965 }
5966 
5967 /**
5968  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5969  * @hba: per adapter instance
5970  *
5971  * After a device reset the device may toggle the BKOPS_EN flag
5972  * to default value. The s/w tracking variables should be updated
5973  * as well. This function would change the auto-bkops state based on
5974  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5975  */
ufshcd_force_reset_auto_bkops(struct ufs_hba * hba)5976 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5977 {
5978 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5979 		hba->auto_bkops_enabled = false;
5980 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5981 		ufshcd_enable_auto_bkops(hba);
5982 	} else {
5983 		hba->auto_bkops_enabled = true;
5984 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5985 		ufshcd_disable_auto_bkops(hba);
5986 	}
5987 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5988 	hba->is_urgent_bkops_lvl_checked = false;
5989 }
5990 
ufshcd_get_bkops_status(struct ufs_hba * hba,u32 * status)5991 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5992 {
5993 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5994 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5995 }
5996 
5997 /**
5998  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5999  * @hba: per-adapter instance
6000  *
6001  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
6002  * flag in the device to permit background operations if the device
6003  * bkops_status is greater than or equal to the "hba->urgent_bkops_lvl",
6004  * disable otherwise.
6005  *
6006  * Return: 0 for success, non-zero in case of failure.
6007  *
6008  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
6009  * to know whether auto bkops is enabled or disabled after this function
6010  * returns control to it.
6011  */
ufshcd_bkops_ctrl(struct ufs_hba * hba)6012 static int ufshcd_bkops_ctrl(struct ufs_hba *hba)
6013 {
6014 	enum bkops_status status = hba->urgent_bkops_lvl;
6015 	u32 curr_status = 0;
6016 	int err;
6017 
6018 	err = ufshcd_get_bkops_status(hba, &curr_status);
6019 	if (err) {
6020 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
6021 				__func__, err);
6022 		goto out;
6023 	} else if (curr_status > BKOPS_STATUS_MAX) {
6024 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
6025 				__func__, curr_status);
6026 		err = -EINVAL;
6027 		goto out;
6028 	}
6029 
6030 	if (curr_status >= status)
6031 		err = ufshcd_enable_auto_bkops(hba);
6032 	else
6033 		err = ufshcd_disable_auto_bkops(hba);
6034 out:
6035 	return err;
6036 }
6037 
ufshcd_get_ee_status(struct ufs_hba * hba,u32 * status)6038 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
6039 {
6040 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6041 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
6042 }
6043 
ufshcd_bkops_exception_event_handler(struct ufs_hba * hba)6044 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
6045 {
6046 	int err;
6047 	u32 curr_status = 0;
6048 
6049 	if (hba->is_urgent_bkops_lvl_checked)
6050 		goto enable_auto_bkops;
6051 
6052 	err = ufshcd_get_bkops_status(hba, &curr_status);
6053 	if (err) {
6054 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
6055 				__func__, err);
6056 		goto out;
6057 	}
6058 
6059 	/*
6060 	 * We are seeing that some devices are raising the urgent bkops
6061 	 * exception events even when BKOPS status doesn't indicate performace
6062 	 * impacted or critical. Handle these device by determining their urgent
6063 	 * bkops status at runtime.
6064 	 */
6065 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
6066 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
6067 				__func__, curr_status);
6068 		/* update the current status as the urgent bkops level */
6069 		hba->urgent_bkops_lvl = curr_status;
6070 		hba->is_urgent_bkops_lvl_checked = true;
6071 	}
6072 
6073 enable_auto_bkops:
6074 	err = ufshcd_enable_auto_bkops(hba);
6075 out:
6076 	if (err < 0)
6077 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
6078 				__func__, err);
6079 }
6080 
6081 /*
6082  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
6083  * < 0 if another error occurred.
6084  */
ufshcd_read_device_lvl_exception_id(struct ufs_hba * hba,u64 * exception_id)6085 int ufshcd_read_device_lvl_exception_id(struct ufs_hba *hba, u64 *exception_id)
6086 {
6087 	struct utp_upiu_query_v4_0 *upiu_resp;
6088 	struct ufs_query_req *request = NULL;
6089 	struct ufs_query_res *response = NULL;
6090 	int err;
6091 
6092 	if (hba->dev_info.wspecversion < 0x410)
6093 		return -EOPNOTSUPP;
6094 
6095 	ufshcd_hold(hba);
6096 	mutex_lock(&hba->dev_cmd.lock);
6097 
6098 	ufshcd_init_query(hba, &request, &response,
6099 			  UPIU_QUERY_OPCODE_READ_ATTR,
6100 			  QUERY_ATTR_IDN_DEV_LVL_EXCEPTION_ID, 0, 0);
6101 
6102 	request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
6103 
6104 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
6105 
6106 	if (err) {
6107 		dev_err(hba->dev, "%s: failed to read device level exception %d\n",
6108 			__func__, err);
6109 		goto out;
6110 	}
6111 
6112 	upiu_resp = (struct utp_upiu_query_v4_0 *)response;
6113 	*exception_id = get_unaligned_be64(&upiu_resp->osf3);
6114 out:
6115 	mutex_unlock(&hba->dev_cmd.lock);
6116 	ufshcd_release(hba);
6117 
6118 	return err;
6119 }
6120 
__ufshcd_wb_toggle(struct ufs_hba * hba,bool set,enum flag_idn idn)6121 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
6122 {
6123 	u8 index;
6124 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
6125 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
6126 
6127 	index = ufshcd_wb_get_query_index(hba);
6128 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
6129 }
6130 
ufshcd_wb_toggle(struct ufs_hba * hba,bool enable)6131 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
6132 {
6133 	int ret;
6134 
6135 	if (!ufshcd_is_wb_allowed(hba) ||
6136 	    hba->dev_info.wb_enabled == enable)
6137 		return 0;
6138 
6139 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
6140 	if (ret) {
6141 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
6142 			__func__, enable ? "enabling" : "disabling", ret);
6143 		return ret;
6144 	}
6145 
6146 	hba->dev_info.wb_enabled = enable;
6147 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
6148 			__func__, enable ? "enabled" : "disabled");
6149 
6150 	return ret;
6151 }
6152 
ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba * hba,bool enable)6153 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
6154 						 bool enable)
6155 {
6156 	int ret;
6157 
6158 	ret = __ufshcd_wb_toggle(hba, enable,
6159 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
6160 	if (ret) {
6161 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
6162 			__func__, enable ? "enabling" : "disabling", ret);
6163 		return;
6164 	}
6165 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
6166 			__func__, enable ? "enabled" : "disabled");
6167 }
6168 
ufshcd_wb_toggle_buf_flush(struct ufs_hba * hba,bool enable)6169 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
6170 {
6171 	int ret;
6172 
6173 	if (!ufshcd_is_wb_allowed(hba) ||
6174 	    hba->dev_info.wb_buf_flush_enabled == enable)
6175 		return 0;
6176 
6177 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
6178 	if (ret) {
6179 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
6180 			__func__, enable ? "enabling" : "disabling", ret);
6181 		return ret;
6182 	}
6183 
6184 	hba->dev_info.wb_buf_flush_enabled = enable;
6185 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
6186 			__func__, enable ? "enabled" : "disabled");
6187 
6188 	return ret;
6189 }
6190 
ufshcd_wb_set_resize_en(struct ufs_hba * hba,enum wb_resize_en en_mode)6191 int ufshcd_wb_set_resize_en(struct ufs_hba *hba, enum wb_resize_en en_mode)
6192 {
6193 	int ret;
6194 	u8 index;
6195 
6196 	index = ufshcd_wb_get_query_index(hba);
6197 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
6198 				QUERY_ATTR_IDN_WB_BUF_RESIZE_EN, index, 0, &en_mode);
6199 	if (ret)
6200 		dev_err(hba->dev, "%s: Enable WB buf resize operation failed %d\n",
6201 			__func__, ret);
6202 
6203 	return ret;
6204 }
6205 
ufshcd_wb_curr_buff_threshold_check(struct ufs_hba * hba,u32 avail_buf)6206 static bool ufshcd_wb_curr_buff_threshold_check(struct ufs_hba *hba,
6207 						u32 avail_buf)
6208 {
6209 	u32 cur_buf;
6210 	int ret;
6211 	u8 index;
6212 
6213 	index = ufshcd_wb_get_query_index(hba);
6214 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6215 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
6216 					      index, 0, &cur_buf);
6217 	if (ret) {
6218 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
6219 			__func__, ret);
6220 		return false;
6221 	}
6222 
6223 	if (!cur_buf) {
6224 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6225 			 cur_buf);
6226 		return false;
6227 	}
6228 	/* Let it continue to flush when available buffer exceeds threshold */
6229 	return avail_buf < hba->vps->wb_flush_threshold;
6230 }
6231 
ufshcd_wb_force_disable(struct ufs_hba * hba)6232 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6233 {
6234 	if (ufshcd_is_wb_buf_flush_allowed(hba))
6235 		ufshcd_wb_toggle_buf_flush(hba, false);
6236 
6237 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6238 	ufshcd_wb_toggle(hba, false);
6239 	hba->caps &= ~UFSHCD_CAP_WB_EN;
6240 
6241 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6242 }
6243 
ufshcd_is_wb_buf_lifetime_available(struct ufs_hba * hba)6244 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6245 {
6246 	u32 lifetime;
6247 	int ret;
6248 	u8 index;
6249 
6250 	index = ufshcd_wb_get_query_index(hba);
6251 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6252 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6253 				      index, 0, &lifetime);
6254 	if (ret) {
6255 		dev_err(hba->dev,
6256 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6257 			__func__, ret);
6258 		return false;
6259 	}
6260 
6261 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6262 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6263 			__func__, lifetime);
6264 		return false;
6265 	}
6266 
6267 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6268 		__func__, lifetime);
6269 
6270 	return true;
6271 }
6272 
ufshcd_wb_need_flush(struct ufs_hba * hba)6273 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6274 {
6275 	int ret;
6276 	u32 avail_buf;
6277 	u8 index;
6278 
6279 	if (!ufshcd_is_wb_allowed(hba))
6280 		return false;
6281 
6282 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6283 		ufshcd_wb_force_disable(hba);
6284 		return false;
6285 	}
6286 
6287 	/*
6288 	 * With user-space reduction enabled, it's enough to enable flush
6289 	 * by checking only the available buffer. The threshold
6290 	 * defined here is > 90% full.
6291 	 * With user-space preserved enabled, the current-buffer
6292 	 * should be checked too because the wb buffer size can reduce
6293 	 * when disk tends to be full. This info is provided by current
6294 	 * buffer (dCurrentWriteBoosterBufferSize).
6295 	 */
6296 	index = ufshcd_wb_get_query_index(hba);
6297 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6298 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6299 				      index, 0, &avail_buf);
6300 	if (ret) {
6301 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6302 			 __func__, ret);
6303 		return false;
6304 	}
6305 
6306 	if (!hba->dev_info.b_presrv_uspc_en)
6307 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6308 
6309 	return ufshcd_wb_curr_buff_threshold_check(hba, avail_buf);
6310 }
6311 
ufshcd_rpm_dev_flush_recheck_work(struct work_struct * work)6312 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6313 {
6314 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6315 					   struct ufs_hba,
6316 					   rpm_dev_flush_recheck_work);
6317 	/*
6318 	 * To prevent unnecessary VCC power drain after device finishes
6319 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6320 	 * after a certain delay to recheck the threshold by next runtime
6321 	 * suspend.
6322 	 */
6323 	ufshcd_rpm_get_sync(hba);
6324 	ufshcd_rpm_put_sync(hba);
6325 }
6326 
6327 /**
6328  * ufshcd_exception_event_handler - handle exceptions raised by device
6329  * @work: pointer to work data
6330  *
6331  * Read bExceptionEventStatus attribute from the device and handle the
6332  * exception event accordingly.
6333  */
ufshcd_exception_event_handler(struct work_struct * work)6334 static void ufshcd_exception_event_handler(struct work_struct *work)
6335 {
6336 	struct ufs_hba *hba;
6337 	int err;
6338 	u32 status = 0;
6339 	hba = container_of(work, struct ufs_hba, eeh_work);
6340 
6341 	err = ufshcd_get_ee_status(hba, &status);
6342 	if (err) {
6343 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6344 				__func__, err);
6345 		return;
6346 	}
6347 
6348 	trace_ufshcd_exception_event(hba, status);
6349 
6350 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6351 		ufshcd_bkops_exception_event_handler(hba);
6352 
6353 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6354 		ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
6355 
6356 	if (status & hba->ee_drv_mask & MASK_EE_HEALTH_CRITICAL) {
6357 		hba->critical_health_count++;
6358 		sysfs_notify(&hba->dev->kobj, NULL, "critical_health");
6359 	}
6360 
6361 	if (status & hba->ee_drv_mask & MASK_EE_DEV_LVL_EXCEPTION) {
6362 		atomic_inc(&hba->dev_lvl_exception_count);
6363 		sysfs_notify(&hba->dev->kobj, NULL, "device_lvl_exception_count");
6364 	}
6365 
6366 	ufs_debugfs_exception_event(hba, status);
6367 }
6368 
6369 /* Complete requests that have door-bell cleared */
ufshcd_complete_requests(struct ufs_hba * hba,bool force_compl)6370 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6371 {
6372 	if (hba->mcq_enabled)
6373 		ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6374 	else
6375 		ufshcd_transfer_req_compl(hba);
6376 
6377 	ufshcd_tmc_handler(hba);
6378 }
6379 
6380 /**
6381  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6382  *				to recover from the DL NAC errors or not.
6383  * @hba: per-adapter instance
6384  *
6385  * Return: true if error handling is required, false otherwise.
6386  */
ufshcd_quirk_dl_nac_errors(struct ufs_hba * hba)6387 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6388 {
6389 	unsigned long flags;
6390 	bool err_handling = true;
6391 
6392 	spin_lock_irqsave(hba->host->host_lock, flags);
6393 	/*
6394 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6395 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6396 	 */
6397 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6398 		goto out;
6399 
6400 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6401 	    ((hba->saved_err & UIC_ERROR) &&
6402 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6403 		goto out;
6404 
6405 	if ((hba->saved_err & UIC_ERROR) &&
6406 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6407 		int err;
6408 		/*
6409 		 * wait for 50ms to see if we can get any other errors or not.
6410 		 */
6411 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6412 		msleep(50);
6413 		spin_lock_irqsave(hba->host->host_lock, flags);
6414 
6415 		/*
6416 		 * now check if we have got any other severe errors other than
6417 		 * DL NAC error?
6418 		 */
6419 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6420 		    ((hba->saved_err & UIC_ERROR) &&
6421 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6422 			goto out;
6423 
6424 		/*
6425 		 * As DL NAC is the only error received so far, send out NOP
6426 		 * command to confirm if link is still active or not.
6427 		 *   - If we don't get any response then do error recovery.
6428 		 *   - If we get response then clear the DL NAC error bit.
6429 		 */
6430 
6431 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6432 		err = ufshcd_verify_dev_init(hba);
6433 		spin_lock_irqsave(hba->host->host_lock, flags);
6434 
6435 		if (err)
6436 			goto out;
6437 
6438 		/* Link seems to be alive hence ignore the DL NAC errors */
6439 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6440 			hba->saved_err &= ~UIC_ERROR;
6441 		/* clear NAC error */
6442 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6443 		if (!hba->saved_uic_err)
6444 			err_handling = false;
6445 	}
6446 out:
6447 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6448 	return err_handling;
6449 }
6450 
6451 /* host lock must be held before calling this func */
ufshcd_is_saved_err_fatal(struct ufs_hba * hba)6452 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6453 {
6454 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6455 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6456 }
6457 
ufshcd_schedule_eh_work(struct ufs_hba * hba)6458 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6459 {
6460 	lockdep_assert_held(hba->host->host_lock);
6461 
6462 	/* handle fatal errors only when link is not in error state */
6463 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6464 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6465 		    ufshcd_is_saved_err_fatal(hba))
6466 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6467 		else
6468 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6469 		queue_work(hba->eh_wq, &hba->eh_work);
6470 	}
6471 }
6472 
ufshcd_force_error_recovery(struct ufs_hba * hba)6473 void ufshcd_force_error_recovery(struct ufs_hba *hba)
6474 {
6475 	spin_lock_irq(hba->host->host_lock);
6476 	hba->force_reset = true;
6477 	ufshcd_schedule_eh_work(hba);
6478 	spin_unlock_irq(hba->host->host_lock);
6479 }
6480 EXPORT_SYMBOL_GPL(ufshcd_force_error_recovery);
6481 
ufshcd_clk_scaling_allow(struct ufs_hba * hba,bool allow)6482 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6483 {
6484 	mutex_lock(&hba->wb_mutex);
6485 	down_write(&hba->clk_scaling_lock);
6486 	hba->clk_scaling.is_allowed = allow;
6487 	up_write(&hba->clk_scaling_lock);
6488 	mutex_unlock(&hba->wb_mutex);
6489 }
6490 
ufshcd_clk_scaling_suspend(struct ufs_hba * hba,bool suspend)6491 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6492 {
6493 	if (suspend) {
6494 		if (hba->clk_scaling.is_enabled)
6495 			ufshcd_suspend_clkscaling(hba);
6496 		ufshcd_clk_scaling_allow(hba, false);
6497 	} else {
6498 		ufshcd_clk_scaling_allow(hba, true);
6499 		if (hba->clk_scaling.is_enabled)
6500 			ufshcd_resume_clkscaling(hba);
6501 	}
6502 }
6503 
ufshcd_err_handling_prepare(struct ufs_hba * hba)6504 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6505 {
6506 	/*
6507 	 * A WLUN resume failure could potentially lead to the HBA being
6508 	 * runtime suspended, so take an extra reference on hba->dev.
6509 	 */
6510 	pm_runtime_get_sync(hba->dev);
6511 	ufshcd_rpm_get_sync(hba);
6512 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6513 	    hba->is_sys_suspended) {
6514 		enum ufs_pm_op pm_op;
6515 
6516 		/*
6517 		 * Don't assume anything of resume, if
6518 		 * resume fails, irq and clocks can be OFF, and powers
6519 		 * can be OFF or in LPM.
6520 		 */
6521 		ufshcd_setup_hba_vreg(hba, true);
6522 		ufshcd_enable_irq(hba);
6523 		ufshcd_setup_vreg(hba, true);
6524 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6525 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6526 		ufshcd_hold(hba);
6527 		if (!ufshcd_is_clkgating_allowed(hba))
6528 			ufshcd_setup_clocks(hba, true);
6529 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6530 		ufshcd_vops_resume(hba, pm_op);
6531 	} else {
6532 		ufshcd_hold(hba);
6533 		if (ufshcd_is_clkscaling_supported(hba) &&
6534 		    hba->clk_scaling.is_enabled)
6535 			ufshcd_suspend_clkscaling(hba);
6536 		ufshcd_clk_scaling_allow(hba, false);
6537 	}
6538 	/* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6539 	blk_mq_quiesce_tagset(&hba->host->tag_set);
6540 	cancel_work_sync(&hba->eeh_work);
6541 }
6542 
ufshcd_err_handling_unprepare(struct ufs_hba * hba)6543 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6544 {
6545 	blk_mq_unquiesce_tagset(&hba->host->tag_set);
6546 	ufshcd_release(hba);
6547 	if (ufshcd_is_clkscaling_supported(hba))
6548 		ufshcd_clk_scaling_suspend(hba, false);
6549 	ufshcd_rpm_put(hba);
6550 	pm_runtime_put(hba->dev);
6551 }
6552 
ufshcd_err_handling_should_stop(struct ufs_hba * hba)6553 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6554 {
6555 	return (!hba->is_powered || hba->shutting_down ||
6556 		!hba->ufs_device_wlun ||
6557 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6558 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6559 		   ufshcd_is_link_broken(hba))));
6560 }
6561 
6562 #ifdef CONFIG_PM
ufshcd_recover_pm_error(struct ufs_hba * hba)6563 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6564 {
6565 	struct scsi_target *starget = hba->ufs_device_wlun->sdev_target;
6566 	struct Scsi_Host *shost = hba->host;
6567 	struct scsi_device *sdev;
6568 	struct request_queue *q;
6569 	bool resume_sdev_queues = false;
6570 
6571 	hba->is_sys_suspended = false;
6572 
6573 	/*
6574 	 * Ensure the parent's error status is cleared before proceeding
6575 	 * to the child, as the parent must be active to activate the child.
6576 	 */
6577 	if (hba->dev->power.runtime_error) {
6578 		/* hba->dev has no functional parent thus simplily set RPM_ACTIVE */
6579 		pm_runtime_set_active(hba->dev);
6580 		resume_sdev_queues = true;
6581 	}
6582 
6583 	if (hba->ufs_device_wlun->sdev_gendev.power.runtime_error) {
6584 		/*
6585 		 * starget, parent of wlun, might be suspended if wlun resume failed.
6586 		 * Make sure parent is resumed before set child (wlun) active.
6587 		 */
6588 		pm_runtime_get_sync(&starget->dev);
6589 		pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6590 		pm_runtime_put_sync(&starget->dev);
6591 		resume_sdev_queues = true;
6592 	}
6593 
6594 	/*
6595 	 * If wlun device had runtime error, we also need to resume those
6596 	 * consumer scsi devices in case any of them has failed to be
6597 	 * resumed due to supplier runtime resume failure. This is to unblock
6598 	 * blk_queue_enter in case there are bios waiting inside it.
6599 	 */
6600 	if (resume_sdev_queues) {
6601 		shost_for_each_device(sdev, shost) {
6602 			q = sdev->request_queue;
6603 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6604 				       q->rpm_status == RPM_SUSPENDING))
6605 				pm_request_resume(q->dev);
6606 		}
6607 	}
6608 }
6609 #else
ufshcd_recover_pm_error(struct ufs_hba * hba)6610 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6611 {
6612 }
6613 #endif
6614 
ufshcd_is_pwr_mode_restore_needed(struct ufs_hba * hba)6615 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6616 {
6617 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6618 	u32 mode;
6619 
6620 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6621 
6622 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6623 		return true;
6624 
6625 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6626 		return true;
6627 
6628 	return false;
6629 }
6630 
ufshcd_abort_one(struct request * rq,void * priv)6631 static bool ufshcd_abort_one(struct request *rq, void *priv)
6632 {
6633 	int *ret = priv;
6634 	u32 tag = rq->tag;
6635 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6636 	struct scsi_device *sdev = cmd->device;
6637 	struct Scsi_Host *shost = sdev->host;
6638 	struct ufs_hba *hba = shost_priv(shost);
6639 
6640 	if (blk_mq_is_reserved_rq(rq))
6641 		return true;
6642 
6643 	*ret = ufshcd_try_to_abort_task(hba, tag);
6644 	dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6645 		ufshcd_is_scsi_cmd(cmd) ? cmd->cmnd[0] : -1,
6646 		*ret ? "failed" : "succeeded");
6647 
6648 	return *ret == 0;
6649 }
6650 
6651 /**
6652  * ufshcd_abort_all - Abort all pending commands.
6653  * @hba: Host bus adapter pointer.
6654  *
6655  * Return: true if and only if the host controller needs to be reset.
6656  */
ufshcd_abort_all(struct ufs_hba * hba)6657 static bool ufshcd_abort_all(struct ufs_hba *hba)
6658 {
6659 	int tag, ret = 0;
6660 
6661 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6662 	if (ret)
6663 		goto out;
6664 
6665 	/* Clear pending task management requests */
6666 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6667 		ret = ufshcd_clear_tm_cmd(hba, tag);
6668 		if (ret)
6669 			goto out;
6670 	}
6671 
6672 out:
6673 	/* Complete the requests that are cleared by s/w */
6674 	ufshcd_complete_requests(hba, false);
6675 
6676 	return ret != 0;
6677 }
6678 
6679 /**
6680  * ufshcd_err_handler - handle UFS errors that require s/w attention
6681  * @work: pointer to work structure
6682  */
ufshcd_err_handler(struct work_struct * work)6683 static void ufshcd_err_handler(struct work_struct *work)
6684 {
6685 	int retries = MAX_ERR_HANDLER_RETRIES;
6686 	struct ufs_hba *hba;
6687 	unsigned long flags;
6688 	bool needs_restore;
6689 	bool needs_reset;
6690 	int pmc_err;
6691 
6692 	hba = container_of(work, struct ufs_hba, eh_work);
6693 
6694 	dev_info(hba->dev,
6695 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = 0x%x; saved_uic_err = 0x%x; force_reset = %d%s\n",
6696 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6697 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6698 		 hba->saved_uic_err, hba->force_reset,
6699 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6700 
6701 	if (hba->ufs_device_wlun) {
6702 		/*
6703 		 * Use ufshcd_rpm_get_noresume() here to safely perform link
6704 		 * recovery even if an error occurs during runtime suspend or
6705 		 * runtime resume. This avoids potential deadlocks that could
6706 		 * happen if we tried to resume the device while a PM operation
6707 		 * is already in progress.
6708 		 */
6709 		ufshcd_rpm_get_noresume(hba);
6710 		if (hba->pm_op_in_progress) {
6711 			ufshcd_link_recovery(hba);
6712 			ufshcd_rpm_put(hba);
6713 			return;
6714 		}
6715 		ufshcd_rpm_put(hba);
6716 	}
6717 
6718 	down(&hba->host_sem);
6719 	spin_lock_irqsave(hba->host->host_lock, flags);
6720 	if (ufshcd_err_handling_should_stop(hba)) {
6721 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6722 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6723 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6724 		up(&hba->host_sem);
6725 		return;
6726 	}
6727 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6728 
6729 	ufshcd_err_handling_prepare(hba);
6730 
6731 	spin_lock_irqsave(hba->host->host_lock, flags);
6732 	ufshcd_set_eh_in_progress(hba);
6733 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6734 
6735 	/* Complete requests that have door-bell cleared by h/w */
6736 	ufshcd_complete_requests(hba, false);
6737 	spin_lock_irqsave(hba->host->host_lock, flags);
6738 again:
6739 	needs_restore = false;
6740 	needs_reset = false;
6741 
6742 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6743 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6744 	/*
6745 	 * A full reset and restore might have happened after preparation
6746 	 * is finished, double check whether we should stop.
6747 	 */
6748 	if (ufshcd_err_handling_should_stop(hba))
6749 		goto skip_err_handling;
6750 
6751 	if ((hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) &&
6752 	    !hba->force_reset) {
6753 		bool ret;
6754 
6755 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6756 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6757 		ret = ufshcd_quirk_dl_nac_errors(hba);
6758 		spin_lock_irqsave(hba->host->host_lock, flags);
6759 		if (!ret && ufshcd_err_handling_should_stop(hba))
6760 			goto skip_err_handling;
6761 	}
6762 
6763 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6764 	    (hba->saved_uic_err &&
6765 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6766 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6767 
6768 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6769 		ufshcd_print_host_state(hba);
6770 		ufshcd_print_pwr_info(hba);
6771 		ufshcd_print_evt_hist(hba);
6772 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6773 		ufshcd_print_trs_all(hba, pr_prdt);
6774 		spin_lock_irqsave(hba->host->host_lock, flags);
6775 	}
6776 
6777 	/*
6778 	 * if host reset is required then skip clearing the pending
6779 	 * transfers forcefully because they will get cleared during
6780 	 * host reset and restore
6781 	 */
6782 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6783 	    ufshcd_is_saved_err_fatal(hba) ||
6784 	    ((hba->saved_err & UIC_ERROR) &&
6785 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6786 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6787 		needs_reset = true;
6788 		goto do_reset;
6789 	}
6790 
6791 	/*
6792 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6793 	 * check if power mode restore is needed.
6794 	 */
6795 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6796 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6797 		if (!hba->saved_uic_err)
6798 			hba->saved_err &= ~UIC_ERROR;
6799 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6800 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6801 			needs_restore = true;
6802 		spin_lock_irqsave(hba->host->host_lock, flags);
6803 		if (!hba->saved_err && !needs_restore)
6804 			goto skip_err_handling;
6805 	}
6806 
6807 	hba->silence_err_logs = true;
6808 	/* release lock as clear command might sleep */
6809 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6810 
6811 	needs_reset = ufshcd_abort_all(hba);
6812 
6813 	spin_lock_irqsave(hba->host->host_lock, flags);
6814 	hba->silence_err_logs = false;
6815 	if (needs_reset)
6816 		goto do_reset;
6817 
6818 	/*
6819 	 * After all reqs and tasks are cleared from doorbell,
6820 	 * now it is safe to retore power mode.
6821 	 */
6822 	if (needs_restore) {
6823 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6824 		/*
6825 		 * Hold the scaling lock just in case dev cmds
6826 		 * are sent via bsg and/or sysfs.
6827 		 */
6828 		down_write(&hba->clk_scaling_lock);
6829 		hba->force_pmc = true;
6830 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6831 		if (pmc_err) {
6832 			needs_reset = true;
6833 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6834 					__func__, pmc_err);
6835 		}
6836 		hba->force_pmc = false;
6837 		ufshcd_print_pwr_info(hba);
6838 		up_write(&hba->clk_scaling_lock);
6839 		spin_lock_irqsave(hba->host->host_lock, flags);
6840 	}
6841 
6842 do_reset:
6843 	/* Fatal errors need reset */
6844 	if (needs_reset) {
6845 		int err;
6846 
6847 		hba->force_reset = false;
6848 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6849 		err = ufshcd_reset_and_restore(hba);
6850 		if (err)
6851 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6852 					__func__, err);
6853 		else
6854 			ufshcd_recover_pm_error(hba);
6855 		spin_lock_irqsave(hba->host->host_lock, flags);
6856 	}
6857 
6858 skip_err_handling:
6859 	if (!needs_reset) {
6860 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6861 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6862 		if (hba->saved_err || hba->saved_uic_err)
6863 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6864 			    __func__, hba->saved_err, hba->saved_uic_err);
6865 	}
6866 	/* Exit in an operational state or dead */
6867 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6868 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6869 		if (--retries)
6870 			goto again;
6871 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6872 	}
6873 	ufshcd_clear_eh_in_progress(hba);
6874 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6875 	ufshcd_err_handling_unprepare(hba);
6876 	up(&hba->host_sem);
6877 
6878 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6879 		 ufshcd_state_name[hba->ufshcd_state]);
6880 }
6881 
6882 /**
6883  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6884  * @hba: per-adapter instance
6885  *
6886  * Return:
6887  *  IRQ_HANDLED - If interrupt is valid
6888  *  IRQ_NONE    - If invalid interrupt
6889  */
ufshcd_update_uic_error(struct ufs_hba * hba)6890 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6891 {
6892 	u32 reg;
6893 	irqreturn_t retval = IRQ_NONE;
6894 
6895 	/* PHY layer error */
6896 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6897 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6898 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6899 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6900 		/*
6901 		 * To know whether this error is fatal or not, DB timeout
6902 		 * must be checked but this error is handled separately.
6903 		 */
6904 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6905 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6906 					__func__);
6907 
6908 		/* Got a LINERESET indication. */
6909 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6910 			struct uic_command *cmd = NULL;
6911 
6912 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6913 			if (hba->uic_async_done && hba->active_uic_cmd)
6914 				cmd = hba->active_uic_cmd;
6915 			/*
6916 			 * Ignore the LINERESET during power mode change
6917 			 * operation via DME_SET command.
6918 			 */
6919 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6920 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6921 		}
6922 		retval |= IRQ_HANDLED;
6923 	}
6924 
6925 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6926 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6927 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6928 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6929 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6930 
6931 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6932 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6933 		else if (hba->dev_quirks &
6934 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6935 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6936 				hba->uic_error |=
6937 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6938 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6939 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6940 		}
6941 		retval |= IRQ_HANDLED;
6942 	}
6943 
6944 	/* UIC NL/TL/DME errors needs software retry */
6945 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6946 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6947 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6948 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6949 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6950 		retval |= IRQ_HANDLED;
6951 	}
6952 
6953 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6954 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6955 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6956 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6957 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6958 		retval |= IRQ_HANDLED;
6959 	}
6960 
6961 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6962 	if ((reg & UIC_DME_ERROR) &&
6963 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6964 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6965 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6966 		retval |= IRQ_HANDLED;
6967 	}
6968 
6969 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6970 			__func__, hba->uic_error);
6971 	return retval;
6972 }
6973 
6974 /**
6975  * ufshcd_check_errors - Check for errors that need s/w attention
6976  * @hba: per-adapter instance
6977  * @intr_status: interrupt status generated by the controller
6978  *
6979  * Return:
6980  *  IRQ_HANDLED - If interrupt is valid
6981  *  IRQ_NONE    - If invalid interrupt
6982  */
ufshcd_check_errors(struct ufs_hba * hba,u32 intr_status)6983 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6984 {
6985 	bool queue_eh_work = false;
6986 	irqreturn_t retval = IRQ_NONE;
6987 
6988 	guard(spinlock_irqsave)(hba->host->host_lock);
6989 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6990 
6991 	if (hba->errors & INT_FATAL_ERRORS) {
6992 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6993 				       hba->errors);
6994 		queue_eh_work = true;
6995 	}
6996 
6997 	if (hba->errors & UIC_ERROR) {
6998 		hba->uic_error = 0;
6999 		retval = ufshcd_update_uic_error(hba);
7000 		if (hba->uic_error)
7001 			queue_eh_work = true;
7002 	}
7003 
7004 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
7005 		dev_err(hba->dev,
7006 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
7007 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
7008 			"Enter" : "Exit",
7009 			hba->errors, ufshcd_get_upmcrs(hba));
7010 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
7011 				       hba->errors);
7012 		ufshcd_set_link_broken(hba);
7013 		queue_eh_work = true;
7014 	}
7015 
7016 	if (queue_eh_work) {
7017 		/*
7018 		 * update the transfer error masks to sticky bits, let's do this
7019 		 * irrespective of current ufshcd_state.
7020 		 */
7021 		hba->saved_err |= hba->errors;
7022 		hba->saved_uic_err |= hba->uic_error;
7023 
7024 		/* dump controller state before resetting */
7025 		if ((hba->saved_err &
7026 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
7027 		    (hba->saved_uic_err &&
7028 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
7029 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
7030 					__func__, hba->saved_err,
7031 					hba->saved_uic_err);
7032 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
7033 					 "host_regs: ");
7034 			ufshcd_print_pwr_info(hba);
7035 		}
7036 		ufshcd_schedule_eh_work(hba);
7037 		retval |= IRQ_HANDLED;
7038 	}
7039 	/*
7040 	 * if (!queue_eh_work) -
7041 	 * Other errors are either non-fatal where host recovers
7042 	 * itself without s/w intervention or errors that will be
7043 	 * handled by the SCSI core layer.
7044 	 */
7045 	hba->errors = 0;
7046 	hba->uic_error = 0;
7047 
7048 	return retval;
7049 }
7050 
7051 /**
7052  * ufshcd_tmc_handler - handle task management function completion
7053  * @hba: per adapter instance
7054  *
7055  * Return:
7056  *  IRQ_HANDLED - If interrupt is valid
7057  *  IRQ_NONE    - If invalid interrupt
7058  */
ufshcd_tmc_handler(struct ufs_hba * hba)7059 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
7060 {
7061 	unsigned long flags, pending, issued;
7062 	irqreturn_t ret = IRQ_NONE;
7063 	int tag;
7064 
7065 	spin_lock_irqsave(hba->host->host_lock, flags);
7066 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
7067 	issued = hba->outstanding_tasks & ~pending;
7068 	for_each_set_bit(tag, &issued, hba->nutmrs) {
7069 		struct request *req = hba->tmf_rqs[tag];
7070 		struct completion *c = req->end_io_data;
7071 
7072 		complete(c);
7073 		ret = IRQ_HANDLED;
7074 	}
7075 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7076 
7077 	return ret;
7078 }
7079 
7080 /**
7081  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
7082  * @hba: per adapter instance
7083  *
7084  * Return: IRQ_HANDLED if interrupt is handled.
7085  */
ufshcd_handle_mcq_cq_events(struct ufs_hba * hba)7086 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
7087 {
7088 	struct ufs_hw_queue *hwq;
7089 	unsigned long outstanding_cqs;
7090 	unsigned int nr_queues;
7091 	int i, ret;
7092 	u32 events;
7093 
7094 	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
7095 	if (ret)
7096 		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
7097 
7098 	/* Exclude the poll queues */
7099 	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
7100 	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
7101 		hwq = &hba->uhq[i];
7102 
7103 		events = ufshcd_mcq_read_cqis(hba, i);
7104 		if (events)
7105 			ufshcd_mcq_write_cqis(hba, events, i);
7106 
7107 		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
7108 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
7109 	}
7110 
7111 	return IRQ_HANDLED;
7112 }
7113 
7114 /**
7115  * ufshcd_sl_intr - Interrupt service routine
7116  * @hba: per adapter instance
7117  * @intr_status: contains interrupts generated by the controller
7118  *
7119  * Return:
7120  *  IRQ_HANDLED - If interrupt is valid
7121  *  IRQ_NONE    - If invalid interrupt
7122  */
ufshcd_sl_intr(struct ufs_hba * hba,u32 intr_status)7123 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
7124 {
7125 	irqreturn_t retval = IRQ_NONE;
7126 
7127 	if (intr_status & UFSHCD_UIC_MASK)
7128 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
7129 
7130 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
7131 		retval |= ufshcd_check_errors(hba, intr_status);
7132 
7133 	if (intr_status & UTP_TASK_REQ_COMPL)
7134 		retval |= ufshcd_tmc_handler(hba);
7135 
7136 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
7137 		retval |= ufshcd_transfer_req_compl(hba);
7138 
7139 	if (intr_status & MCQ_CQ_EVENT_STATUS)
7140 		retval |= ufshcd_handle_mcq_cq_events(hba);
7141 
7142 	return retval;
7143 }
7144 
7145 /**
7146  * ufshcd_threaded_intr - Threaded interrupt service routine
7147  * @irq: irq number
7148  * @__hba: pointer to adapter instance
7149  *
7150  * Return:
7151  *  IRQ_HANDLED - If interrupt is valid
7152  *  IRQ_NONE    - If invalid interrupt
7153  */
ufshcd_threaded_intr(int irq,void * __hba)7154 static irqreturn_t ufshcd_threaded_intr(int irq, void *__hba)
7155 {
7156 	u32 last_intr_status, intr_status, enabled_intr_status = 0;
7157 	irqreturn_t retval = IRQ_NONE;
7158 	struct ufs_hba *hba = __hba;
7159 	int retries = hba->nutrs;
7160 
7161 	last_intr_status = intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7162 
7163 	/*
7164 	 * There could be max of hba->nutrs reqs in flight and in worst case
7165 	 * if the reqs get finished 1 by 1 after the interrupt status is
7166 	 * read, make sure we handle them by checking the interrupt status
7167 	 * again in a loop until we process all of the reqs before returning.
7168 	 */
7169 	while (intr_status && retries--) {
7170 		enabled_intr_status =
7171 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
7172 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
7173 		if (enabled_intr_status)
7174 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
7175 
7176 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7177 	}
7178 
7179 	if (enabled_intr_status && retval == IRQ_NONE &&
7180 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
7181 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
7182 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
7183 					__func__,
7184 					intr_status,
7185 					last_intr_status,
7186 					enabled_intr_status);
7187 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
7188 	}
7189 
7190 	return retval;
7191 }
7192 
7193 /**
7194  * ufshcd_intr - Main interrupt service routine
7195  * @irq: irq number
7196  * @__hba: pointer to adapter instance
7197  *
7198  * Return:
7199  *  IRQ_HANDLED     - If interrupt is valid
7200  *  IRQ_WAKE_THREAD - If handling is moved to threaded handled
7201  *  IRQ_NONE        - If invalid interrupt
7202  */
ufshcd_intr(int irq,void * __hba)7203 static irqreturn_t ufshcd_intr(int irq, void *__hba)
7204 {
7205 	struct ufs_hba *hba = __hba;
7206 	u32 intr_status, enabled_intr_status;
7207 
7208 	/* Move interrupt handling to thread when MCQ & ESI are not enabled */
7209 	if (!hba->mcq_enabled || !hba->mcq_esi_enabled)
7210 		return IRQ_WAKE_THREAD;
7211 
7212 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7213 	enabled_intr_status = intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
7214 
7215 	ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
7216 
7217 	/* Directly handle interrupts since MCQ ESI handlers does the hard job */
7218 	return ufshcd_sl_intr(hba, enabled_intr_status);
7219 }
7220 
ufshcd_clear_tm_cmd(struct ufs_hba * hba,int tag)7221 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
7222 {
7223 	int err = 0;
7224 	u32 mask = 1 << tag;
7225 
7226 	if (!test_bit(tag, &hba->outstanding_tasks))
7227 		goto out;
7228 
7229 	ufshcd_utmrl_clear(hba, tag);
7230 
7231 	/* poll for max. 1 sec to clear door bell register by h/w */
7232 	err = ufshcd_wait_for_register(hba,
7233 			REG_UTP_TASK_REQ_DOOR_BELL,
7234 			mask, 0, 1000, 1000);
7235 
7236 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
7237 		tag, err < 0 ? "failed" : "succeeded");
7238 
7239 out:
7240 	return err;
7241 }
7242 
__ufshcd_issue_tm_cmd(struct ufs_hba * hba,struct utp_task_req_desc * treq,u8 tm_function)7243 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
7244 		struct utp_task_req_desc *treq, u8 tm_function)
7245 {
7246 	struct request_queue *q = hba->tmf_queue;
7247 	struct Scsi_Host *host = hba->host;
7248 	DECLARE_COMPLETION_ONSTACK(wait);
7249 	struct request *req;
7250 	unsigned long flags;
7251 	int task_tag, err;
7252 
7253 	/*
7254 	 * blk_mq_alloc_request() is used here only to get a free tag.
7255 	 */
7256 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
7257 	if (IS_ERR(req))
7258 		return PTR_ERR(req);
7259 
7260 	req->end_io_data = &wait;
7261 	ufshcd_hold(hba);
7262 
7263 	spin_lock_irqsave(host->host_lock, flags);
7264 
7265 	task_tag = req->tag;
7266 	hba->tmf_rqs[req->tag] = req;
7267 	treq->upiu_req.req_header.task_tag = task_tag;
7268 
7269 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
7270 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
7271 
7272 	__set_bit(task_tag, &hba->outstanding_tasks);
7273 
7274 	spin_unlock_irqrestore(host->host_lock, flags);
7275 
7276 	/* send command to the controller */
7277 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
7278 
7279 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
7280 
7281 	/* wait until the task management command is completed */
7282 	err = wait_for_completion_io_timeout(&wait,
7283 			msecs_to_jiffies(TM_CMD_TIMEOUT));
7284 	if (!err) {
7285 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7286 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7287 				__func__, tm_function);
7288 		if (ufshcd_clear_tm_cmd(hba, task_tag))
7289 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7290 					__func__, task_tag);
7291 		err = -ETIMEDOUT;
7292 	} else {
7293 		err = 0;
7294 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7295 
7296 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7297 	}
7298 
7299 	spin_lock_irqsave(hba->host->host_lock, flags);
7300 	hba->tmf_rqs[req->tag] = NULL;
7301 	__clear_bit(task_tag, &hba->outstanding_tasks);
7302 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7303 
7304 	ufshcd_release(hba);
7305 	blk_mq_free_request(req);
7306 
7307 	return err;
7308 }
7309 
7310 /**
7311  * ufshcd_issue_tm_cmd - issues task management commands to controller
7312  * @hba: per adapter instance
7313  * @lun_id: LUN ID to which TM command is sent
7314  * @task_id: task ID to which the TM command is applicable
7315  * @tm_function: task management function opcode
7316  * @tm_response: task management service response return value
7317  *
7318  * Return: non-zero value on error, zero on success.
7319  */
ufshcd_issue_tm_cmd(struct ufs_hba * hba,int lun_id,int task_id,u8 tm_function,u8 * tm_response)7320 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7321 		u8 tm_function, u8 *tm_response)
7322 {
7323 	struct utp_task_req_desc treq = { };
7324 	enum utp_ocs ocs_value;
7325 	int err;
7326 
7327 	/* Configure task request descriptor */
7328 	treq.header.interrupt = 1;
7329 	treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7330 
7331 	/* Configure task request UPIU */
7332 	treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7333 	treq.upiu_req.req_header.lun = lun_id;
7334 	treq.upiu_req.req_header.tm_function = tm_function;
7335 
7336 	/*
7337 	 * The host shall provide the same value for LUN field in the basic
7338 	 * header and for Input Parameter.
7339 	 */
7340 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7341 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7342 
7343 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7344 	if (err == -ETIMEDOUT)
7345 		return err;
7346 
7347 	ocs_value = treq.header.ocs & MASK_OCS;
7348 	if (ocs_value != OCS_SUCCESS)
7349 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7350 				__func__, ocs_value);
7351 	else if (tm_response)
7352 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7353 				MASK_TM_SERVICE_RESP;
7354 	return err;
7355 }
7356 
7357 /**
7358  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7359  * @hba:	per-adapter instance
7360  * @req_upiu:	upiu request
7361  * @rsp_upiu:	upiu reply
7362  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7363  * @buff_len:	descriptor size, 0 if NA
7364  * @cmd_type:	specifies the type (NOP, Query...)
7365  * @desc_op:	descriptor operation
7366  *
7367  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7368  * Therefore, it "rides" the device management infrastructure: uses its tag and
7369  * tasks work queues.
7370  *
7371  * Since there is only one available tag for device management commands,
7372  * the caller is expected to hold the hba->dev_cmd.lock mutex.
7373  *
7374  * Return: 0 upon success; < 0 upon failure.
7375  */
ufshcd_issue_devman_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,u8 * desc_buff,int * buff_len,enum dev_cmd_type cmd_type,enum query_opcode desc_op)7376 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7377 					struct utp_upiu_req *req_upiu,
7378 					struct utp_upiu_req *rsp_upiu,
7379 					u8 *desc_buff, int *buff_len,
7380 					enum dev_cmd_type cmd_type,
7381 					enum query_opcode desc_op)
7382 {
7383 	struct scsi_cmnd *cmd = ufshcd_get_dev_mgmt_cmd(hba);
7384 	struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
7385 	u32 tag;
7386 	int err = 0;
7387 	u8 upiu_flags;
7388 
7389 	/* Protects use of hba->dev_cmd. */
7390 	lockdep_assert_held(&hba->dev_cmd.lock);
7391 
7392 	if (WARN_ON_ONCE(!cmd))
7393 		return -ENOMEM;
7394 
7395 	tag = scsi_cmd_to_rq(cmd)->tag;
7396 
7397 	ufshcd_setup_dev_cmd(hba, cmd, cmd_type, 0, tag);
7398 
7399 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
7400 
7401 	/* update the task tag in the request upiu */
7402 	req_upiu->header.task_tag = tag;
7403 
7404 	/* just copy the upiu request as it is */
7405 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7406 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7407 		/* The Data Segment Area is optional depending upon the query
7408 		 * function value. for WRITE DESCRIPTOR, the data segment
7409 		 * follows right after the tsf.
7410 		 */
7411 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7412 		*buff_len = 0;
7413 	}
7414 
7415 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7416 
7417 	err = ufshcd_issue_dev_cmd(hba, cmd, tag, dev_cmd_timeout);
7418 	if (err)
7419 		goto put_dev_mgmt_cmd;
7420 
7421 	/* just copy the upiu response as it is */
7422 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7423 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7424 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7425 		u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7426 					   .data_segment_length);
7427 
7428 		if (*buff_len >= resp_len) {
7429 			memcpy(desc_buff, descp, resp_len);
7430 			*buff_len = resp_len;
7431 		} else {
7432 			dev_warn(hba->dev,
7433 				 "%s: rsp size %d is bigger than buffer size %d",
7434 				 __func__, resp_len, *buff_len);
7435 			*buff_len = 0;
7436 			err = -EINVAL;
7437 		}
7438 	}
7439 
7440 put_dev_mgmt_cmd:
7441 	ufshcd_put_dev_mgmt_cmd(cmd);
7442 
7443 	return err;
7444 }
7445 
7446 /**
7447  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7448  * @hba:	per-adapter instance
7449  * @req_upiu:	upiu request
7450  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7451  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7452  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7453  * @buff_len:	descriptor size, 0 if NA
7454  * @desc_op:	descriptor operation
7455  *
7456  * Supports UTP Transfer requests (nop and query), and UTP Task
7457  * Management requests.
7458  * It is up to the caller to fill the upiu conent properly, as it will
7459  * be copied without any further input validations.
7460  *
7461  * Return: 0 upon success; < 0 upon failure.
7462  */
ufshcd_exec_raw_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,enum upiu_request_transaction msgcode,u8 * desc_buff,int * buff_len,enum query_opcode desc_op)7463 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7464 			     struct utp_upiu_req *req_upiu,
7465 			     struct utp_upiu_req *rsp_upiu,
7466 			     enum upiu_request_transaction msgcode,
7467 			     u8 *desc_buff, int *buff_len,
7468 			     enum query_opcode desc_op)
7469 {
7470 	int err;
7471 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7472 	struct utp_task_req_desc treq = { };
7473 	enum utp_ocs ocs_value;
7474 	u8 tm_f = req_upiu->header.tm_function;
7475 
7476 	switch (msgcode) {
7477 	case UPIU_TRANSACTION_NOP_OUT:
7478 		cmd_type = DEV_CMD_TYPE_NOP;
7479 		fallthrough;
7480 	case UPIU_TRANSACTION_QUERY_REQ:
7481 		ufshcd_dev_man_lock(hba);
7482 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7483 						   desc_buff, buff_len,
7484 						   cmd_type, desc_op);
7485 		ufshcd_dev_man_unlock(hba);
7486 
7487 		break;
7488 	case UPIU_TRANSACTION_TASK_REQ:
7489 		treq.header.interrupt = 1;
7490 		treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7491 
7492 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7493 
7494 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7495 		if (err == -ETIMEDOUT)
7496 			break;
7497 
7498 		ocs_value = treq.header.ocs & MASK_OCS;
7499 		if (ocs_value != OCS_SUCCESS) {
7500 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7501 				ocs_value);
7502 			break;
7503 		}
7504 
7505 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7506 
7507 		break;
7508 	default:
7509 		err = -EINVAL;
7510 
7511 		break;
7512 	}
7513 
7514 	return err;
7515 }
7516 
7517 /**
7518  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7519  * @hba:	per adapter instance
7520  * @req_upiu:	upiu request
7521  * @rsp_upiu:	upiu reply
7522  * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7523  * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7524  * @sg_cnt:	The number of sg lists actually used
7525  * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7526  * @dir:	DMA direction
7527  *
7528  * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
7529  * < 0 if another error occurred.
7530  */
ufshcd_advanced_rpmb_req_handler(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,struct ufs_ehs * req_ehs,struct ufs_ehs * rsp_ehs,int sg_cnt,struct scatterlist * sg_list,enum dma_data_direction dir)7531 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7532 			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7533 			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7534 			 enum dma_data_direction dir)
7535 {
7536 	struct scsi_cmnd *cmd;
7537 	struct ufshcd_lrb *lrbp;
7538 	u32 tag;
7539 	int err = 0;
7540 	int result;
7541 	u8 upiu_flags;
7542 	u8 *ehs_data;
7543 	u16 ehs_len;
7544 	int ehs = (hba->capabilities & MASK_EHSLUTRD_SUPPORTED) ? 2 : 0;
7545 
7546 	ufshcd_dev_man_lock(hba);
7547 
7548 	cmd = ufshcd_get_dev_mgmt_cmd(hba);
7549 
7550 	if (WARN_ON_ONCE(!cmd)) {
7551 		err = -ENOMEM;
7552 		goto unlock;
7553 	}
7554 
7555 	lrbp = scsi_cmd_priv(cmd);
7556 	tag = scsi_cmd_to_rq(cmd)->tag;
7557 
7558 	ufshcd_setup_dev_cmd(hba, cmd, DEV_CMD_TYPE_RPMB, UFS_UPIU_RPMB_WLUN,
7559 			     tag);
7560 
7561 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, ehs);
7562 
7563 	/* update the task tag */
7564 	req_upiu->header.task_tag = tag;
7565 
7566 	/* copy the UPIU(contains CDB) request as it is */
7567 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7568 	/* Copy EHS, starting with byte32, immediately after the CDB package */
7569 	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7570 
7571 	if (dir != DMA_NONE && sg_list)
7572 		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7573 
7574 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7575 
7576 	err = ufshcd_issue_dev_cmd(hba, cmd, tag, ADVANCED_RPMB_REQ_TIMEOUT);
7577 	if (err)
7578 		goto put_dev_mgmt_cmd;
7579 
7580 	err = ufshcd_dev_cmd_completion(hba, lrbp);
7581 	if (!err) {
7582 		/* Just copy the upiu response as it is */
7583 		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7584 		/* Get the response UPIU result */
7585 		result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7586 			lrbp->ucd_rsp_ptr->header.status;
7587 
7588 		ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7589 		/*
7590 		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7591 		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7592 		 * Message is 02h
7593 		 */
7594 		if (ehs_len == 2 && rsp_ehs) {
7595 			/*
7596 			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7597 			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7598 			 */
7599 			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7600 			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7601 		}
7602 	}
7603 
7604 put_dev_mgmt_cmd:
7605 	ufshcd_put_dev_mgmt_cmd(cmd);
7606 
7607 unlock:
7608 	ufshcd_dev_man_unlock(hba);
7609 
7610 	return err ? : result;
7611 }
7612 
ufshcd_clear_lu_cmds(struct request * req,void * priv)7613 static bool ufshcd_clear_lu_cmds(struct request *req, void *priv)
7614 {
7615 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
7616 	struct scsi_device *sdev = cmd->device;
7617 	struct Scsi_Host *shost = sdev->host;
7618 	struct ufs_hba *hba = shost_priv(shost);
7619 	const u64 lun = *(u64 *)priv;
7620 	const u32 tag = req->tag;
7621 
7622 	if (blk_mq_is_reserved_rq(req) || sdev->lun != lun)
7623 		return true;
7624 
7625 	if (ufshcd_clear_cmd(hba, tag) < 0) {
7626 		dev_err(hba->dev, "%s: failed to clear request %d\n", __func__,
7627 			tag);
7628 		return true;
7629 	}
7630 
7631 	if (hba->mcq_enabled) {
7632 		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, req);
7633 
7634 		if (hwq)
7635 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
7636 		return true;
7637 	}
7638 
7639 	ufshcd_compl_one_cqe(hba, tag, NULL);
7640 	return true;
7641 }
7642 
7643 /**
7644  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7645  * @cmd: SCSI command pointer
7646  *
7647  * Return: SUCCESS or FAILED.
7648  */
ufshcd_eh_device_reset_handler(struct scsi_cmnd * cmd)7649 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7650 {
7651 	struct Scsi_Host *host;
7652 	struct ufs_hba *hba;
7653 	int err;
7654 	u8 resp = 0xF, lun;
7655 
7656 	host = cmd->device->host;
7657 	hba = shost_priv(host);
7658 
7659 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7660 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7661 	if (err) {
7662 	} else if (resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7663 		err = resp;
7664 	} else {
7665 		/* clear the commands that were pending for corresponding LUN */
7666 		blk_mq_tagset_busy_iter(&hba->host->tag_set,
7667 					ufshcd_clear_lu_cmds,
7668 					&cmd->device->lun);
7669 	}
7670 
7671 	hba->req_abort_count = 0;
7672 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7673 	if (!err) {
7674 		err = SUCCESS;
7675 	} else {
7676 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7677 		err = FAILED;
7678 	}
7679 	return err;
7680 }
7681 
ufshcd_set_req_abort_skip(struct ufs_hba * hba,unsigned long bitmap)7682 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7683 {
7684 	int tag;
7685 
7686 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7687 		struct scsi_cmnd *cmd = ufshcd_tag_to_cmd(hba, tag);
7688 		struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
7689 
7690 		lrbp->req_abort_skip = true;
7691 	}
7692 }
7693 
7694 /**
7695  * ufshcd_try_to_abort_task - abort a specific task
7696  * @hba: Pointer to adapter instance
7697  * @tag: Tag of the task to be aborted
7698  *
7699  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7700  * command, and in host controller by clearing the door-bell register. There can
7701  * be race between controller sending the command to the device while abort is
7702  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7703  * really issued and then try to abort it.
7704  *
7705  * Return: zero on success, non-zero on failure.
7706  */
ufshcd_try_to_abort_task(struct ufs_hba * hba,int tag)7707 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7708 {
7709 	struct scsi_cmnd *cmd = ufshcd_tag_to_cmd(hba, tag);
7710 	struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
7711 	int err;
7712 	int poll_cnt;
7713 	u8 resp = 0xF;
7714 
7715 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7716 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, tag, UFS_QUERY_TASK,
7717 					  &resp);
7718 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7719 			/* cmd pending in the device */
7720 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7721 				__func__, tag);
7722 			break;
7723 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7724 			/*
7725 			 * cmd not pending in the device, check if it is
7726 			 * in transition.
7727 			 */
7728 			dev_info(
7729 				hba->dev,
7730 				"%s: cmd with tag %d not pending in the device.\n",
7731 				__func__, tag);
7732 			if (!ufshcd_cmd_inflight(cmd)) {
7733 				dev_info(hba->dev,
7734 					 "%s: cmd with tag=%d completed.\n",
7735 					 __func__, tag);
7736 				return 0;
7737 			}
7738 			usleep_range(100, 200);
7739 		} else {
7740 			dev_err(hba->dev,
7741 				"%s: no response from device. tag = %d, err %d\n",
7742 				__func__, tag, err);
7743 			return err ? : resp;
7744 		}
7745 	}
7746 
7747 	if (!poll_cnt)
7748 		return -EBUSY;
7749 
7750 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, tag, UFS_ABORT_TASK, &resp);
7751 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7752 		if (!err) {
7753 			err = resp; /* service response error */
7754 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7755 				__func__, tag, err);
7756 		}
7757 		return err;
7758 	}
7759 
7760 	err = ufshcd_clear_cmd(hba, tag);
7761 	if (err)
7762 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7763 			__func__, tag, err);
7764 
7765 	return err;
7766 }
7767 
7768 /**
7769  * ufshcd_abort - scsi host template eh_abort_handler callback
7770  * @cmd: SCSI command pointer
7771  *
7772  * Return: SUCCESS or FAILED.
7773  */
ufshcd_abort(struct scsi_cmnd * cmd)7774 static int ufshcd_abort(struct scsi_cmnd *cmd)
7775 {
7776 	struct Scsi_Host *host = cmd->device->host;
7777 	struct ufs_hba *hba = shost_priv(host);
7778 	struct request *rq = scsi_cmd_to_rq(cmd);
7779 	int tag = rq->tag;
7780 	struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
7781 	unsigned long flags;
7782 	int err = FAILED;
7783 	bool outstanding;
7784 	u32 reg;
7785 
7786 	ufshcd_hold(hba);
7787 
7788 	if (!hba->mcq_enabled) {
7789 		reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7790 		if (!test_bit(tag, &hba->outstanding_reqs)) {
7791 			/* If command is already aborted/completed, return FAILED. */
7792 			dev_err(hba->dev,
7793 				"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7794 				__func__, tag, hba->outstanding_reqs, reg);
7795 			goto release;
7796 		}
7797 	}
7798 
7799 	/* Print Transfer Request of aborted task */
7800 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7801 
7802 	/*
7803 	 * Print detailed info about aborted request.
7804 	 * As more than one request might get aborted at the same time,
7805 	 * print full information only for the first aborted request in order
7806 	 * to reduce repeated printouts. For other aborted requests only print
7807 	 * basic details.
7808 	 */
7809 	if (ufshcd_is_scsi_cmd(cmd))
7810 		scsi_print_command(cmd);
7811 	if (!hba->req_abort_count) {
7812 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7813 		ufshcd_print_evt_hist(hba);
7814 		ufshcd_print_host_state(hba);
7815 		ufshcd_print_pwr_info(hba);
7816 		ufshcd_print_tr(hba, cmd, true);
7817 	} else {
7818 		ufshcd_print_tr(hba, cmd, false);
7819 	}
7820 	hba->req_abort_count++;
7821 
7822 	if (!hba->mcq_enabled && !(reg & (1 << tag))) {
7823 		/* only execute this code in single doorbell mode */
7824 		dev_err(hba->dev,
7825 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7826 		__func__, tag);
7827 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7828 		goto release;
7829 	}
7830 
7831 	/*
7832 	 * Task abort to the device W-LUN is illegal. When this command
7833 	 * will fail, due to spec violation, scsi err handling next step
7834 	 * will be to send LU reset which, again, is a spec violation.
7835 	 * To avoid these unnecessary/illegal steps, first we clean up
7836 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7837 	 * then queue the eh_work and bail.
7838 	 */
7839 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7840 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7841 
7842 		spin_lock_irqsave(host->host_lock, flags);
7843 		hba->force_reset = true;
7844 		ufshcd_schedule_eh_work(hba);
7845 		spin_unlock_irqrestore(host->host_lock, flags);
7846 		goto release;
7847 	}
7848 
7849 	if (hba->mcq_enabled) {
7850 		/* MCQ mode. Branch off to handle abort for mcq mode */
7851 		err = ufshcd_mcq_abort(cmd);
7852 		goto release;
7853 	}
7854 
7855 	/* Skip task abort in case previous aborts failed and report failure */
7856 	if (lrbp->req_abort_skip) {
7857 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7858 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7859 		goto release;
7860 	}
7861 
7862 	if (blk_mq_is_reserved_rq(rq))
7863 		err = ufshcd_clear_cmd(hba, tag);
7864 	else
7865 		err = ufshcd_try_to_abort_task(hba, tag);
7866 	if (err) {
7867 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7868 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7869 		err = FAILED;
7870 		goto release;
7871 	}
7872 
7873 	/*
7874 	 * Clear the corresponding bit from outstanding_reqs since the command
7875 	 * has been aborted successfully.
7876 	 */
7877 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7878 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7879 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7880 
7881 	if (outstanding)
7882 		ufshcd_release_scsi_cmd(hba, cmd);
7883 
7884 	err = SUCCESS;
7885 
7886 release:
7887 	/* Matches the ufshcd_hold() call at the start of this function. */
7888 	ufshcd_release(hba);
7889 	return err;
7890 }
7891 
7892 /**
7893  * ufshcd_process_probe_result - Process the ufshcd_probe_hba() result.
7894  * @hba: UFS host controller instance.
7895  * @probe_start: time when the ufshcd_probe_hba() call started.
7896  * @ret: ufshcd_probe_hba() return value.
7897  */
ufshcd_process_probe_result(struct ufs_hba * hba,ktime_t probe_start,int ret)7898 static void ufshcd_process_probe_result(struct ufs_hba *hba,
7899 					ktime_t probe_start, int ret)
7900 {
7901 	unsigned long flags;
7902 
7903 	spin_lock_irqsave(hba->host->host_lock, flags);
7904 	if (ret)
7905 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7906 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
7907 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
7908 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7909 
7910 	trace_ufshcd_init(hba, ret,
7911 			  ktime_to_us(ktime_sub(ktime_get(), probe_start)),
7912 			  hba->curr_dev_pwr_mode, hba->uic_link_state);
7913 }
7914 
7915 /**
7916  * ufshcd_host_reset_and_restore - reset and restore host controller
7917  * @hba: per-adapter instance
7918  *
7919  * Note that host controller reset may issue DME_RESET to
7920  * local and remote (device) Uni-Pro stack and the attributes
7921  * are reset to default state.
7922  *
7923  * Return: zero on success, non-zero on failure.
7924  */
ufshcd_host_reset_and_restore(struct ufs_hba * hba)7925 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7926 {
7927 	int err;
7928 
7929 	/*
7930 	 * Stop the host controller and complete the requests
7931 	 * cleared by h/w
7932 	 */
7933 	ufshcd_hba_stop(hba);
7934 	hba->silence_err_logs = true;
7935 	ufshcd_complete_requests(hba, true);
7936 	hba->silence_err_logs = false;
7937 
7938 	/* scale up clocks to max frequency before full reinitialization */
7939 	if (ufshcd_is_clkscaling_supported(hba))
7940 		ufshcd_scale_clks(hba, ULONG_MAX, true);
7941 
7942 	err = ufshcd_hba_enable(hba);
7943 
7944 	/* Establish the link again and restore the device */
7945 	if (!err) {
7946 		ktime_t probe_start = ktime_get();
7947 
7948 		err = ufshcd_device_init(hba, /*init_dev_params=*/false);
7949 		if (!err)
7950 			err = ufshcd_probe_hba(hba, false);
7951 		ufshcd_process_probe_result(hba, probe_start, err);
7952 	}
7953 
7954 	if (err)
7955 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7956 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7957 	return err;
7958 }
7959 
7960 /**
7961  * ufshcd_reset_and_restore - reset and re-initialize host/device
7962  * @hba: per-adapter instance
7963  *
7964  * Reset and recover device, host and re-establish link. This
7965  * is helpful to recover the communication in fatal error conditions.
7966  *
7967  * Return: zero on success, non-zero on failure.
7968  */
ufshcd_reset_and_restore(struct ufs_hba * hba)7969 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7970 {
7971 	u32 saved_err = 0;
7972 	u32 saved_uic_err = 0;
7973 	int err = 0;
7974 	unsigned long flags;
7975 	int retries = MAX_HOST_RESET_RETRIES;
7976 
7977 	spin_lock_irqsave(hba->host->host_lock, flags);
7978 	do {
7979 		/*
7980 		 * This is a fresh start, cache and clear saved error first,
7981 		 * in case new error generated during reset and restore.
7982 		 */
7983 		saved_err |= hba->saved_err;
7984 		saved_uic_err |= hba->saved_uic_err;
7985 		hba->saved_err = 0;
7986 		hba->saved_uic_err = 0;
7987 		hba->force_reset = false;
7988 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7989 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7990 
7991 		/* Reset the attached device */
7992 		ufshcd_device_reset(hba);
7993 
7994 		err = ufshcd_host_reset_and_restore(hba);
7995 
7996 		spin_lock_irqsave(hba->host->host_lock, flags);
7997 		if (err)
7998 			continue;
7999 		/* Do not exit unless operational or dead */
8000 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
8001 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
8002 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
8003 			err = -EAGAIN;
8004 	} while (err && --retries);
8005 
8006 	/*
8007 	 * Inform scsi mid-layer that we did reset and allow to handle
8008 	 * Unit Attention properly.
8009 	 */
8010 	scsi_report_bus_reset(hba->host, 0);
8011 	if (err) {
8012 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
8013 		hba->saved_err |= saved_err;
8014 		hba->saved_uic_err |= saved_uic_err;
8015 	}
8016 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8017 
8018 	return err;
8019 }
8020 
8021 /**
8022  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
8023  * @cmd: SCSI command pointer
8024  *
8025  * Return: SUCCESS or FAILED.
8026  */
ufshcd_eh_host_reset_handler(struct scsi_cmnd * cmd)8027 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
8028 {
8029 	int err = SUCCESS;
8030 	unsigned long flags;
8031 	struct ufs_hba *hba;
8032 
8033 	hba = shost_priv(cmd->device->host);
8034 
8035 	/*
8036 	 * If runtime PM sent SSU and got a timeout, scsi_error_handler is
8037 	 * stuck in this function waiting for flush_work(&hba->eh_work). And
8038 	 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do
8039 	 * ufshcd_link_recovery instead of eh_work to prevent deadlock.
8040 	 */
8041 	if (hba->pm_op_in_progress) {
8042 		if (ufshcd_link_recovery(hba))
8043 			err = FAILED;
8044 
8045 		return err;
8046 	}
8047 
8048 	spin_lock_irqsave(hba->host->host_lock, flags);
8049 	hba->force_reset = true;
8050 	ufshcd_schedule_eh_work(hba);
8051 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
8052 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8053 
8054 	flush_work(&hba->eh_work);
8055 
8056 	spin_lock_irqsave(hba->host->host_lock, flags);
8057 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
8058 		err = FAILED;
8059 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8060 
8061 	return err;
8062 }
8063 
8064 /**
8065  * ufshcd_get_max_icc_level - calculate the ICC level
8066  * @sup_curr_uA: max. current supported by the regulator
8067  * @start_scan: row at the desc table to start scan from
8068  * @buff: power descriptor buffer
8069  *
8070  * Return: calculated max ICC level for specific regulator.
8071  */
ufshcd_get_max_icc_level(int sup_curr_uA,u32 start_scan,const char * buff)8072 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
8073 				    const char *buff)
8074 {
8075 	int i;
8076 	int curr_uA;
8077 	u16 data;
8078 	u16 unit;
8079 
8080 	for (i = start_scan; i >= 0; i--) {
8081 		data = get_unaligned_be16(&buff[2 * i]);
8082 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
8083 						ATTR_ICC_LVL_UNIT_OFFSET;
8084 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
8085 		switch (unit) {
8086 		case UFSHCD_NANO_AMP:
8087 			curr_uA = curr_uA / 1000;
8088 			break;
8089 		case UFSHCD_MILI_AMP:
8090 			curr_uA = curr_uA * 1000;
8091 			break;
8092 		case UFSHCD_AMP:
8093 			curr_uA = curr_uA * 1000 * 1000;
8094 			break;
8095 		case UFSHCD_MICRO_AMP:
8096 		default:
8097 			break;
8098 		}
8099 		if (sup_curr_uA >= curr_uA)
8100 			break;
8101 	}
8102 	if (i < 0) {
8103 		i = 0;
8104 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
8105 	}
8106 
8107 	return (u32)i;
8108 }
8109 
8110 /**
8111  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
8112  * In case regulators are not initialized we'll return 0
8113  * @hba: per-adapter instance
8114  * @desc_buf: power descriptor buffer to extract ICC levels from.
8115  *
8116  * Return: calculated ICC level.
8117  */
ufshcd_find_max_sup_active_icc_level(struct ufs_hba * hba,const u8 * desc_buf)8118 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
8119 						const u8 *desc_buf)
8120 {
8121 	u32 icc_level = 0;
8122 
8123 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
8124 						!hba->vreg_info.vccq2) {
8125 		/*
8126 		 * Using dev_dbg to avoid messages during runtime PM to avoid
8127 		 * never-ending cycles of messages written back to storage by
8128 		 * user space causing runtime resume, causing more messages and
8129 		 * so on.
8130 		 */
8131 		dev_dbg(hba->dev,
8132 			"%s: Regulator capability was not set, actvIccLevel=%d",
8133 							__func__, icc_level);
8134 		goto out;
8135 	}
8136 
8137 	if (hba->vreg_info.vcc->max_uA)
8138 		icc_level = ufshcd_get_max_icc_level(
8139 				hba->vreg_info.vcc->max_uA,
8140 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
8141 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
8142 
8143 	if (hba->vreg_info.vccq->max_uA)
8144 		icc_level = ufshcd_get_max_icc_level(
8145 				hba->vreg_info.vccq->max_uA,
8146 				icc_level,
8147 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
8148 
8149 	if (hba->vreg_info.vccq2->max_uA)
8150 		icc_level = ufshcd_get_max_icc_level(
8151 				hba->vreg_info.vccq2->max_uA,
8152 				icc_level,
8153 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
8154 out:
8155 	return icc_level;
8156 }
8157 
ufshcd_set_active_icc_lvl(struct ufs_hba * hba)8158 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
8159 {
8160 	int ret;
8161 	u8 *desc_buf;
8162 	u32 icc_level;
8163 
8164 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8165 	if (!desc_buf)
8166 		return;
8167 
8168 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
8169 				     desc_buf, QUERY_DESC_MAX_SIZE);
8170 	if (ret) {
8171 		dev_err(hba->dev,
8172 			"%s: Failed reading power descriptor ret = %d",
8173 			__func__, ret);
8174 		goto out;
8175 	}
8176 
8177 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
8178 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
8179 
8180 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8181 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
8182 
8183 	if (ret)
8184 		dev_err(hba->dev,
8185 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
8186 			__func__, icc_level, ret);
8187 
8188 out:
8189 	kfree(desc_buf);
8190 }
8191 
ufshcd_blk_pm_runtime_init(struct scsi_device * sdev)8192 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
8193 {
8194 	struct Scsi_Host *shost = sdev->host;
8195 
8196 	scsi_autopm_get_device(sdev);
8197 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
8198 	if (sdev->rpm_autosuspend)
8199 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
8200 						 shost->rpm_autosuspend_delay);
8201 	scsi_autopm_put_device(sdev);
8202 }
8203 
8204 /**
8205  * ufshcd_scsi_add_wlus - Adds required W-LUs
8206  * @hba: per-adapter instance
8207  *
8208  * UFS device specification requires the UFS devices to support 4 well known
8209  * logical units:
8210  *	"REPORT_LUNS" (address: 01h)
8211  *	"UFS Device" (address: 50h)
8212  *	"RPMB" (address: 44h)
8213  *	"BOOT" (address: 30h)
8214  * UFS device's power management needs to be controlled by "POWER CONDITION"
8215  * field of SSU (START STOP UNIT) command. But this "power condition" field
8216  * will take effect only when its sent to "UFS device" well known logical unit
8217  * hence we require the scsi_device instance to represent this logical unit in
8218  * order for the UFS host driver to send the SSU command for power management.
8219  *
8220  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
8221  * Block) LU so user space process can control this LU. User space may also
8222  * want to have access to BOOT LU.
8223  *
8224  * This function adds scsi device instances for each of all well known LUs
8225  * (except "REPORT LUNS" LU).
8226  *
8227  * Return: zero on success (all required W-LUs are added successfully),
8228  * non-zero error value on failure (if failed to add any of the required W-LU).
8229  */
ufshcd_scsi_add_wlus(struct ufs_hba * hba)8230 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
8231 {
8232 	int ret = 0;
8233 	struct scsi_device *sdev_boot, *sdev_rpmb;
8234 
8235 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
8236 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
8237 	if (IS_ERR(hba->ufs_device_wlun)) {
8238 		ret = PTR_ERR(hba->ufs_device_wlun);
8239 		hba->ufs_device_wlun = NULL;
8240 		goto out;
8241 	}
8242 	scsi_device_put(hba->ufs_device_wlun);
8243 
8244 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
8245 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
8246 	if (IS_ERR(sdev_rpmb)) {
8247 		ret = PTR_ERR(sdev_rpmb);
8248 		hba->ufs_rpmb_wlun = NULL;
8249 		dev_err(hba->dev, "%s: RPMB WLUN not found\n", __func__);
8250 		goto remove_ufs_device_wlun;
8251 	}
8252 	hba->ufs_rpmb_wlun = sdev_rpmb;
8253 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
8254 	scsi_device_put(sdev_rpmb);
8255 
8256 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
8257 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
8258 	if (IS_ERR(sdev_boot)) {
8259 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
8260 	} else {
8261 		ufshcd_blk_pm_runtime_init(sdev_boot);
8262 		scsi_device_put(sdev_boot);
8263 	}
8264 	goto out;
8265 
8266 remove_ufs_device_wlun:
8267 	scsi_remove_device(hba->ufs_device_wlun);
8268 out:
8269 	return ret;
8270 }
8271 
ufshcd_wb_probe(struct ufs_hba * hba,const u8 * desc_buf)8272 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
8273 {
8274 	struct ufs_dev_info *dev_info = &hba->dev_info;
8275 	u8 lun;
8276 	u32 d_lu_wb_buf_alloc;
8277 	u32 ext_ufs_feature;
8278 
8279 	if (!ufshcd_is_wb_allowed(hba))
8280 		return;
8281 
8282 	/*
8283 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
8284 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
8285 	 * enabled
8286 	 */
8287 	if (!(dev_info->wspecversion >= 0x310 ||
8288 	      dev_info->wspecversion == 0x220 ||
8289 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
8290 		goto wb_disabled;
8291 
8292 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8293 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8294 
8295 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8296 		goto wb_disabled;
8297 
8298 	/*
8299 	 * WB may be supported but not configured while provisioning. The spec
8300 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8301 	 * buffer configured.
8302 	 */
8303 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8304 
8305 	dev_info->ext_wb_sup =  get_unaligned_be16(desc_buf +
8306 						DEVICE_DESC_PARAM_EXT_WB_SUP);
8307 
8308 	dev_info->b_presrv_uspc_en =
8309 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8310 
8311 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8312 		if (!get_unaligned_be32(desc_buf +
8313 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8314 			goto wb_disabled;
8315 	} else {
8316 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8317 			d_lu_wb_buf_alloc = 0;
8318 			ufshcd_read_unit_desc_param(hba,
8319 					lun,
8320 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8321 					(u8 *)&d_lu_wb_buf_alloc,
8322 					sizeof(d_lu_wb_buf_alloc));
8323 			if (d_lu_wb_buf_alloc) {
8324 				dev_info->wb_dedicated_lu = lun;
8325 				break;
8326 			}
8327 		}
8328 
8329 		if (!d_lu_wb_buf_alloc)
8330 			goto wb_disabled;
8331 	}
8332 
8333 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
8334 		goto wb_disabled;
8335 
8336 	return;
8337 
8338 wb_disabled:
8339 	hba->caps &= ~UFSHCD_CAP_WB_EN;
8340 }
8341 
ufshcd_temp_notif_probe(struct ufs_hba * hba,const u8 * desc_buf)8342 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8343 {
8344 	struct ufs_dev_info *dev_info = &hba->dev_info;
8345 	u32 ext_ufs_feature;
8346 	u8 mask = 0;
8347 
8348 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8349 		return;
8350 
8351 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8352 
8353 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8354 		mask |= MASK_EE_TOO_LOW_TEMP;
8355 
8356 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8357 		mask |= MASK_EE_TOO_HIGH_TEMP;
8358 
8359 	if (mask) {
8360 		ufshcd_enable_ee(hba, mask);
8361 		ufs_hwmon_probe(hba, mask);
8362 	}
8363 }
8364 
ufshcd_device_lvl_exception_probe(struct ufs_hba * hba,u8 * desc_buf)8365 static void ufshcd_device_lvl_exception_probe(struct ufs_hba *hba, u8 *desc_buf)
8366 {
8367 	u32 ext_ufs_feature;
8368 
8369 	if (hba->dev_info.wspecversion < 0x410)
8370 		return;
8371 
8372 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8373 				DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8374 	if (!(ext_ufs_feature & UFS_DEV_LVL_EXCEPTION_SUP))
8375 		return;
8376 
8377 	atomic_set(&hba->dev_lvl_exception_count, 0);
8378 	ufshcd_enable_ee(hba, MASK_EE_DEV_LVL_EXCEPTION);
8379 }
8380 
ufshcd_set_rtt(struct ufs_hba * hba)8381 static void ufshcd_set_rtt(struct ufs_hba *hba)
8382 {
8383 	struct ufs_dev_info *dev_info = &hba->dev_info;
8384 	u32 rtt = 0;
8385 	u32 dev_rtt = 0;
8386 	int host_rtt_cap = hba->vops && hba->vops->max_num_rtt ?
8387 			   hba->vops->max_num_rtt : hba->nortt;
8388 
8389 	/* RTT override makes sense only for UFS-4.0 and above */
8390 	if (dev_info->wspecversion < 0x400)
8391 		return;
8392 
8393 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8394 				    QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &dev_rtt)) {
8395 		dev_err(hba->dev, "failed reading bMaxNumOfRTT\n");
8396 		return;
8397 	}
8398 
8399 	/* do not override if it was already written */
8400 	if (dev_rtt != DEFAULT_MAX_NUM_RTT)
8401 		return;
8402 
8403 	rtt = min_t(int, dev_info->rtt_cap, host_rtt_cap);
8404 
8405 	if (rtt == dev_rtt)
8406 		return;
8407 
8408 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8409 				    QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt))
8410 		dev_err(hba->dev, "failed writing bMaxNumOfRTT\n");
8411 }
8412 
ufshcd_fixup_dev_quirks(struct ufs_hba * hba,const struct ufs_dev_quirk * fixups)8413 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8414 			     const struct ufs_dev_quirk *fixups)
8415 {
8416 	const struct ufs_dev_quirk *f;
8417 	struct ufs_dev_info *dev_info = &hba->dev_info;
8418 
8419 	if (!fixups)
8420 		return;
8421 
8422 	for (f = fixups; f->quirk; f++) {
8423 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8424 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
8425 		     ((dev_info->model &&
8426 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8427 		      !strcmp(f->model, UFS_ANY_MODEL)))
8428 			hba->dev_quirks |= f->quirk;
8429 	}
8430 }
8431 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8432 
ufs_fixup_device_setup(struct ufs_hba * hba)8433 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8434 {
8435 	/* fix by general quirk table */
8436 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8437 
8438 	/* allow vendors to fix quirks */
8439 	ufshcd_vops_fixup_dev_quirks(hba);
8440 }
8441 
ufshcd_update_rtc(struct ufs_hba * hba)8442 static void ufshcd_update_rtc(struct ufs_hba *hba)
8443 {
8444 	struct timespec64 ts64;
8445 	int err;
8446 	u32 val;
8447 
8448 	ktime_get_real_ts64(&ts64);
8449 
8450 	if (ts64.tv_sec < hba->dev_info.rtc_time_baseline) {
8451 		dev_warn_once(hba->dev, "%s: Current time precedes previous setting!\n", __func__);
8452 		return;
8453 	}
8454 
8455 	/*
8456 	 * The Absolute RTC mode has a 136-year limit, spanning from 2010 to 2146. If a time beyond
8457 	 * 2146 is required, it is recommended to choose the relative RTC mode.
8458 	 */
8459 	val = ts64.tv_sec - hba->dev_info.rtc_time_baseline;
8460 
8461 	/* Skip update RTC if RPM state is not RPM_ACTIVE */
8462 	if (ufshcd_rpm_get_if_active(hba) <= 0)
8463 		return;
8464 
8465 	err = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_SECONDS_PASSED,
8466 				0, 0, &val);
8467 	ufshcd_rpm_put(hba);
8468 
8469 	if (err)
8470 		dev_err(hba->dev, "%s: Failed to update rtc %d\n", __func__, err);
8471 	else if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
8472 		hba->dev_info.rtc_time_baseline = ts64.tv_sec;
8473 }
8474 
ufshcd_rtc_work(struct work_struct * work)8475 static void ufshcd_rtc_work(struct work_struct *work)
8476 {
8477 	struct ufs_hba *hba;
8478 
8479 	hba = container_of(to_delayed_work(work), struct ufs_hba, ufs_rtc_update_work);
8480 
8481 	 /* Update RTC only when there are no requests in progress and UFSHCI is operational */
8482 	if (!ufshcd_is_ufs_dev_busy(hba) &&
8483 	    hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL &&
8484 	    !hba->clk_gating.active_reqs)
8485 		ufshcd_update_rtc(hba);
8486 
8487 	if (ufshcd_is_ufs_dev_active(hba) && hba->dev_info.rtc_update_period)
8488 		schedule_delayed_work(&hba->ufs_rtc_update_work,
8489 				      msecs_to_jiffies(hba->dev_info.rtc_update_period));
8490 }
8491 
ufs_init_rtc(struct ufs_hba * hba,u8 * desc_buf)8492 static void ufs_init_rtc(struct ufs_hba *hba, u8 *desc_buf)
8493 {
8494 	u16 periodic_rtc_update = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_FRQ_RTC]);
8495 	struct ufs_dev_info *dev_info = &hba->dev_info;
8496 
8497 	if (periodic_rtc_update & UFS_RTC_TIME_BASELINE) {
8498 		dev_info->rtc_type = UFS_RTC_ABSOLUTE;
8499 
8500 		/*
8501 		 * The concept of measuring time in Linux as the number of seconds elapsed since
8502 		 * 00:00:00 UTC on January 1, 1970, and UFS ABS RTC is elapsed from January 1st
8503 		 * 2010 00:00, here we need to adjust ABS baseline.
8504 		 */
8505 		dev_info->rtc_time_baseline = mktime64(2010, 1, 1, 0, 0, 0) -
8506 							mktime64(1970, 1, 1, 0, 0, 0);
8507 	} else {
8508 		dev_info->rtc_type = UFS_RTC_RELATIVE;
8509 		dev_info->rtc_time_baseline = 0;
8510 	}
8511 
8512 	/*
8513 	 * We ignore TIME_PERIOD defined in wPeriodicRTCUpdate because Spec does not clearly state
8514 	 * how to calculate the specific update period for each time unit. And we disable periodic
8515 	 * RTC update work, let user configure by sysfs node according to specific circumstance.
8516 	 */
8517 	dev_info->rtc_update_period = 0;
8518 }
8519 
8520 /**
8521  * ufshcd_create_device_id - Generate unique device identifier string
8522  * @hba: per-adapter instance
8523  * @desc_buf: device descriptor buffer
8524  *
8525  * Creates a unique device ID string combining manufacturer ID, spec version,
8526  * model name, serial number (as hex), device version, and manufacture date.
8527  *
8528  * Returns: Allocated device ID string on success, NULL on failure
8529  */
ufshcd_create_device_id(struct ufs_hba * hba,u8 * desc_buf)8530 static char *ufshcd_create_device_id(struct ufs_hba *hba, u8 *desc_buf)
8531 {
8532 	struct ufs_dev_info *dev_info = &hba->dev_info;
8533 	u16 manufacture_date;
8534 	u16 device_version;
8535 	u8 *serial_number;
8536 	char *serial_hex;
8537 	char *device_id;
8538 	u8 serial_index;
8539 	int serial_len;
8540 	int ret;
8541 
8542 	serial_index = desc_buf[DEVICE_DESC_PARAM_SN];
8543 
8544 	ret = ufshcd_read_string_desc(hba, serial_index, &serial_number, SD_RAW);
8545 	if (ret < 0) {
8546 		dev_err(hba->dev, "Failed reading Serial Number. err = %d\n", ret);
8547 		return NULL;
8548 	}
8549 
8550 	device_version = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_DEV_VER]);
8551 	manufacture_date = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_MANF_DATE]);
8552 
8553 	serial_len = ret;
8554 	/* Allocate buffer for hex string: 2 chars per byte + null terminator */
8555 	serial_hex = kzalloc(serial_len * 2 + 1, GFP_KERNEL);
8556 	if (!serial_hex) {
8557 		kfree(serial_number);
8558 		return NULL;
8559 	}
8560 
8561 	bin2hex(serial_hex, serial_number, serial_len);
8562 
8563 	/*
8564 	 * Device ID format is ABI with secure world - do not change without firmware
8565 	 * coordination.
8566 	 */
8567 	device_id = kasprintf(GFP_KERNEL, "%04X-%04X-%s-%s-%04X-%04X",
8568 			      dev_info->wmanufacturerid, dev_info->wspecversion,
8569 			      dev_info->model, serial_hex, device_version,
8570 			      manufacture_date);
8571 
8572 	kfree(serial_hex);
8573 	kfree(serial_number);
8574 
8575 	if (!device_id)
8576 		dev_warn(hba->dev, "Failed to allocate unique device ID\n");
8577 
8578 	return device_id;
8579 }
8580 
ufs_get_device_desc(struct ufs_hba * hba)8581 static int ufs_get_device_desc(struct ufs_hba *hba)
8582 {
8583 	struct ufs_dev_info *dev_info = &hba->dev_info;
8584 	struct Scsi_Host *shost = hba->host;
8585 	int err;
8586 	u8 model_index;
8587 	u8 *desc_buf;
8588 
8589 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8590 	if (!desc_buf) {
8591 		err = -ENOMEM;
8592 		goto out;
8593 	}
8594 
8595 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8596 				     QUERY_DESC_MAX_SIZE);
8597 	if (err) {
8598 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8599 			__func__, err);
8600 		goto out;
8601 	}
8602 
8603 	/*
8604 	 * getting vendor (manufacturerID) and Bank Index in big endian
8605 	 * format
8606 	 */
8607 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8608 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8609 
8610 	/* getting Specification Version in big endian format */
8611 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8612 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8613 	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8614 
8615 	/*
8616 	 * According to the UFS standard, the UFS device queue depth
8617 	 * (bQueueDepth) must be in the range 1..255 if the shared queueing
8618 	 * architecture is supported. bQueueDepth is zero if the shared queueing
8619 	 * architecture is not supported.
8620 	 */
8621 	if (dev_info->bqueuedepth)
8622 		shost->cmd_per_lun = min(hba->nutrs, dev_info->bqueuedepth) -
8623 				     UFSHCD_NUM_RESERVED;
8624 	else
8625 		shost->cmd_per_lun = shost->can_queue;
8626 
8627 	dev_info->rtt_cap = desc_buf[DEVICE_DESC_PARAM_RTT_CAP];
8628 
8629 	dev_info->hid_sup = get_unaligned_be32(desc_buf +
8630 				DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP) &
8631 				UFS_DEV_HID_SUPPORT;
8632 
8633 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8634 
8635 	err = ufshcd_read_string_desc(hba, model_index,
8636 				      &dev_info->model, SD_ASCII_STD);
8637 	if (err < 0) {
8638 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8639 			__func__, err);
8640 		goto out;
8641 	}
8642 
8643 	/* Generate unique device ID */
8644 	dev_info->device_id = ufshcd_create_device_id(hba, desc_buf);
8645 
8646 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8647 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8648 
8649 	ufs_fixup_device_setup(hba);
8650 
8651 	ufshcd_wb_probe(hba, desc_buf);
8652 
8653 	ufshcd_temp_notif_probe(hba, desc_buf);
8654 
8655 	if (dev_info->wspecversion >= 0x410) {
8656 		hba->critical_health_count = 0;
8657 		ufshcd_enable_ee(hba, MASK_EE_HEALTH_CRITICAL);
8658 	}
8659 
8660 	ufs_init_rtc(hba, desc_buf);
8661 
8662 	ufshcd_device_lvl_exception_probe(hba, desc_buf);
8663 
8664 	/*
8665 	 * ufshcd_read_string_desc returns size of the string
8666 	 * reset the error value
8667 	 */
8668 	err = 0;
8669 
8670 out:
8671 	kfree(desc_buf);
8672 	return err;
8673 }
8674 
ufs_put_device_desc(struct ufs_hba * hba)8675 static void ufs_put_device_desc(struct ufs_hba *hba)
8676 {
8677 	struct ufs_dev_info *dev_info = &hba->dev_info;
8678 
8679 	kfree(dev_info->model);
8680 	dev_info->model = NULL;
8681 	kfree(dev_info->device_id);
8682 	dev_info->device_id = NULL;
8683 }
8684 
8685 /**
8686  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8687  * less than device PA_TACTIVATE time.
8688  * @hba: per-adapter instance
8689  *
8690  * Some UFS devices require host PA_TACTIVATE to be lower than device
8691  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8692  * for such devices.
8693  *
8694  * Return: zero on success, non-zero error value on failure.
8695  */
ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba * hba)8696 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8697 {
8698 	int ret = 0;
8699 	u32 granularity, peer_granularity;
8700 	u32 pa_tactivate, peer_pa_tactivate;
8701 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8702 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8703 
8704 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8705 				  &granularity);
8706 	if (ret)
8707 		goto out;
8708 
8709 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8710 				  &peer_granularity);
8711 	if (ret)
8712 		goto out;
8713 
8714 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8715 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8716 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8717 			__func__, granularity);
8718 		return -EINVAL;
8719 	}
8720 
8721 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8722 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8723 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8724 			__func__, peer_granularity);
8725 		return -EINVAL;
8726 	}
8727 
8728 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8729 	if (ret)
8730 		goto out;
8731 
8732 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8733 				  &peer_pa_tactivate);
8734 	if (ret)
8735 		goto out;
8736 
8737 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8738 	peer_pa_tactivate_us = peer_pa_tactivate *
8739 			     gran_to_us_table[peer_granularity - 1];
8740 
8741 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8742 		u32 new_peer_pa_tactivate;
8743 
8744 		new_peer_pa_tactivate = pa_tactivate_us /
8745 				      gran_to_us_table[peer_granularity - 1];
8746 		new_peer_pa_tactivate++;
8747 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8748 					  new_peer_pa_tactivate);
8749 	}
8750 
8751 out:
8752 	return ret;
8753 }
8754 
8755 /**
8756  * ufshcd_quirk_override_pa_h8time - Ensures proper adjustment of PA_HIBERN8TIME.
8757  * @hba: per-adapter instance
8758  *
8759  * Some UFS devices require specific adjustments to the PA_HIBERN8TIME parameter
8760  * to ensure proper hibernation timing. This function retrieves the current
8761  * PA_HIBERN8TIME value and increments it by 100us.
8762  */
ufshcd_quirk_override_pa_h8time(struct ufs_hba * hba)8763 static void ufshcd_quirk_override_pa_h8time(struct ufs_hba *hba)
8764 {
8765 	u32 pa_h8time;
8766 	int ret;
8767 
8768 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_HIBERN8TIME), &pa_h8time);
8769 	if (ret) {
8770 		dev_err(hba->dev, "Failed to get PA_HIBERN8TIME: %d\n", ret);
8771 		return;
8772 	}
8773 
8774 	/* Increment by 1 to increase hibernation time by 100 µs */
8775 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME), pa_h8time + 1);
8776 	if (ret)
8777 		dev_err(hba->dev, "Failed updating PA_HIBERN8TIME: %d\n", ret);
8778 }
8779 
ufshcd_tune_unipro_params(struct ufs_hba * hba)8780 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8781 {
8782 	ufshcd_vops_apply_dev_quirks(hba);
8783 
8784 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8785 		/* set 1ms timeout for PA_TACTIVATE */
8786 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8787 
8788 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8789 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8790 
8791 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_HIBER8TIME)
8792 		ufshcd_quirk_override_pa_h8time(hba);
8793 }
8794 
ufshcd_clear_dbg_ufs_stats(struct ufs_hba * hba)8795 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8796 {
8797 	hba->ufs_stats.hibern8_exit_cnt = 0;
8798 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8799 	hba->req_abort_count = 0;
8800 }
8801 
ufshcd_device_geo_params_init(struct ufs_hba * hba)8802 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8803 {
8804 	int err;
8805 	u8 *desc_buf;
8806 
8807 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8808 	if (!desc_buf) {
8809 		err = -ENOMEM;
8810 		goto out;
8811 	}
8812 
8813 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8814 				     desc_buf, QUERY_DESC_MAX_SIZE);
8815 	if (err) {
8816 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8817 				__func__, err);
8818 		goto out;
8819 	}
8820 
8821 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8822 		hba->dev_info.max_lu_supported = 32;
8823 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8824 		hba->dev_info.max_lu_supported = 8;
8825 
8826 	hba->dev_info.rpmb_io_size = desc_buf[GEOMETRY_DESC_PARAM_RPMB_RW_SIZE];
8827 
8828 out:
8829 	kfree(desc_buf);
8830 	return err;
8831 }
8832 
8833 struct ufs_ref_clk {
8834 	unsigned long freq_hz;
8835 	enum ufs_ref_clk_freq val;
8836 };
8837 
8838 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8839 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8840 	{26000000, REF_CLK_FREQ_26_MHZ},
8841 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8842 	{52000000, REF_CLK_FREQ_52_MHZ},
8843 	{0, REF_CLK_FREQ_INVAL},
8844 };
8845 
8846 static enum ufs_ref_clk_freq
ufs_get_bref_clk_from_hz(unsigned long freq)8847 ufs_get_bref_clk_from_hz(unsigned long freq)
8848 {
8849 	int i;
8850 
8851 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8852 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8853 			return ufs_ref_clk_freqs[i].val;
8854 
8855 	return REF_CLK_FREQ_INVAL;
8856 }
8857 
ufshcd_parse_dev_ref_clk_freq(struct ufs_hba * hba,struct clk * refclk)8858 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8859 {
8860 	unsigned long freq;
8861 
8862 	freq = clk_get_rate(refclk);
8863 
8864 	hba->dev_ref_clk_freq =
8865 		ufs_get_bref_clk_from_hz(freq);
8866 
8867 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8868 		dev_err(hba->dev,
8869 		"invalid ref_clk setting = %ld\n", freq);
8870 }
8871 
ufshcd_set_dev_ref_clk(struct ufs_hba * hba)8872 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8873 {
8874 	int err;
8875 	u32 ref_clk;
8876 	u32 freq = hba->dev_ref_clk_freq;
8877 
8878 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8879 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8880 
8881 	if (err) {
8882 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8883 			err);
8884 		goto out;
8885 	}
8886 
8887 	if (ref_clk == freq)
8888 		goto out; /* nothing to update */
8889 
8890 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8891 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8892 
8893 	if (err) {
8894 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8895 			ufs_ref_clk_freqs[freq].freq_hz);
8896 		goto out;
8897 	}
8898 
8899 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8900 			ufs_ref_clk_freqs[freq].freq_hz);
8901 
8902 out:
8903 	return err;
8904 }
8905 
ufshcd_device_params_init(struct ufs_hba * hba)8906 static int ufshcd_device_params_init(struct ufs_hba *hba)
8907 {
8908 	bool flag;
8909 	int ret;
8910 
8911 	/* Init UFS geometry descriptor related parameters */
8912 	ret = ufshcd_device_geo_params_init(hba);
8913 	if (ret)
8914 		goto out;
8915 
8916 	/* Check and apply UFS device quirks */
8917 	ret = ufs_get_device_desc(hba);
8918 	if (ret) {
8919 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8920 			__func__, ret);
8921 		goto out;
8922 	}
8923 
8924 	ufshcd_set_rtt(hba);
8925 
8926 	ufshcd_get_ref_clk_gating_wait(hba);
8927 
8928 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8929 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8930 		hba->dev_info.f_power_on_wp_en = flag;
8931 
8932 	/* Probe maximum power mode co-supported by both UFS host and device */
8933 	if (ufshcd_get_max_pwr_mode(hba))
8934 		dev_err(hba->dev,
8935 			"%s: Failed getting max supported power mode\n",
8936 			__func__);
8937 out:
8938 	return ret;
8939 }
8940 
ufshcd_set_timestamp_attr(struct ufs_hba * hba)8941 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8942 {
8943 	int err;
8944 	struct ufs_query_req *request = NULL;
8945 	struct ufs_query_res *response = NULL;
8946 	struct ufs_dev_info *dev_info = &hba->dev_info;
8947 	struct utp_upiu_query_v4_0 *upiu_data;
8948 
8949 	if (dev_info->wspecversion < 0x400 ||
8950 	    hba->dev_quirks & UFS_DEVICE_QUIRK_NO_TIMESTAMP_SUPPORT)
8951 		return;
8952 
8953 	ufshcd_dev_man_lock(hba);
8954 
8955 	ufshcd_init_query(hba, &request, &response,
8956 			  UPIU_QUERY_OPCODE_WRITE_ATTR,
8957 			  QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8958 
8959 	request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8960 
8961 	upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8962 
8963 	put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8964 
8965 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
8966 
8967 	if (err)
8968 		dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8969 			__func__, err);
8970 
8971 	ufshcd_dev_man_unlock(hba);
8972 }
8973 
8974 /**
8975  * ufshcd_add_lus - probe and add UFS logical units
8976  * @hba: per-adapter instance
8977  *
8978  * Return: 0 upon success; < 0 upon failure.
8979  */
ufshcd_add_lus(struct ufs_hba * hba)8980 static int ufshcd_add_lus(struct ufs_hba *hba)
8981 {
8982 	int ret;
8983 
8984 	/* Add required well known logical units to scsi mid layer */
8985 	ret = ufshcd_scsi_add_wlus(hba);
8986 	if (ret)
8987 		goto out;
8988 
8989 	/* Initialize devfreq after UFS device is detected */
8990 	if (ufshcd_is_clkscaling_supported(hba)) {
8991 		memcpy(&hba->clk_scaling.saved_pwr_info,
8992 			&hba->pwr_info,
8993 			sizeof(struct ufs_pa_layer_attr));
8994 		hba->clk_scaling.is_allowed = true;
8995 
8996 		ret = ufshcd_devfreq_init(hba);
8997 		if (ret)
8998 			goto out;
8999 
9000 		hba->clk_scaling.is_enabled = true;
9001 		ufshcd_init_clk_scaling_sysfs(hba);
9002 	}
9003 
9004 	/*
9005 	 * The RTC update code accesses the hba->ufs_device_wlun->sdev_gendev
9006 	 * pointer and hence must only be started after the WLUN pointer has
9007 	 * been initialized by ufshcd_scsi_add_wlus().
9008 	 */
9009 	schedule_delayed_work(&hba->ufs_rtc_update_work,
9010 			      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
9011 
9012 	ufs_bsg_probe(hba);
9013 	scsi_scan_host(hba->host);
9014 	ufs_rpmb_probe(hba);
9015 
9016 out:
9017 	return ret;
9018 }
9019 
9020 /* SDB - Single Doorbell */
ufshcd_release_sdb_queue(struct ufs_hba * hba,int nutrs)9021 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
9022 {
9023 	size_t ucdl_size, utrdl_size;
9024 
9025 	ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
9026 	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
9027 			   hba->ucdl_dma_addr);
9028 
9029 	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
9030 	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
9031 			   hba->utrdl_dma_addr);
9032 }
9033 
ufshcd_alloc_mcq(struct ufs_hba * hba)9034 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
9035 {
9036 	int ret;
9037 	int old_nutrs = hba->nutrs;
9038 
9039 	ret = ufshcd_get_hba_mac(hba);
9040 	if (ret < 0)
9041 		return ret;
9042 
9043 	hba->nutrs = ret;
9044 	ret = ufshcd_mcq_init(hba);
9045 	if (ret)
9046 		goto err;
9047 
9048 	/*
9049 	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
9050 	 * Number of supported tags in MCQ mode may be larger than SDB mode.
9051 	 */
9052 	if (hba->nutrs != old_nutrs) {
9053 		ufshcd_release_sdb_queue(hba, old_nutrs);
9054 		ret = ufshcd_memory_alloc(hba);
9055 		if (ret)
9056 			goto err;
9057 		ufshcd_host_memory_configure(hba);
9058 	}
9059 
9060 	ret = ufshcd_mcq_memory_alloc(hba);
9061 	if (ret)
9062 		goto err;
9063 
9064 	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
9065 
9066 	return 0;
9067 err:
9068 	hba->nutrs = old_nutrs;
9069 	return ret;
9070 }
9071 
ufshcd_config_mcq(struct ufs_hba * hba)9072 static void ufshcd_config_mcq(struct ufs_hba *hba)
9073 {
9074 	int ret;
9075 
9076 	ret = ufshcd_mcq_vops_config_esi(hba);
9077 	hba->mcq_esi_enabled = !ret;
9078 	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
9079 
9080 	ufshcd_mcq_make_queues_operational(hba);
9081 	ufshcd_mcq_config_mac(hba, hba->nutrs);
9082 
9083 	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
9084 		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
9085 		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
9086 		 hba->nutrs);
9087 }
9088 
ufshcd_post_device_init(struct ufs_hba * hba)9089 static int ufshcd_post_device_init(struct ufs_hba *hba)
9090 {
9091 	int ret;
9092 
9093 	ufshcd_tune_unipro_params(hba);
9094 
9095 	/* UFS device is also active now */
9096 	ufshcd_set_ufs_dev_active(hba);
9097 	ufshcd_force_reset_auto_bkops(hba);
9098 
9099 	ufshcd_set_timestamp_attr(hba);
9100 
9101 	if (!hba->max_pwr_info.is_valid)
9102 		return 0;
9103 
9104 	/*
9105 	 * Set the right value to bRefClkFreq before attempting to
9106 	 * switch to HS gears.
9107 	 */
9108 	if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
9109 		ufshcd_set_dev_ref_clk(hba);
9110 	/* Gear up to HS gear. */
9111 	ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
9112 	if (ret) {
9113 		dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
9114 			__func__, ret);
9115 		return ret;
9116 	}
9117 
9118 	return 0;
9119 }
9120 
ufshcd_device_init(struct ufs_hba * hba,bool init_dev_params)9121 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
9122 {
9123 	int ret;
9124 
9125 	WARN_ON_ONCE(!hba->scsi_host_added);
9126 
9127 	hba->ufshcd_state = UFSHCD_STATE_RESET;
9128 
9129 	ret = ufshcd_link_startup(hba);
9130 	if (ret)
9131 		return ret;
9132 
9133 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
9134 		return ret;
9135 
9136 	/* Debug counters initialization */
9137 	ufshcd_clear_dbg_ufs_stats(hba);
9138 
9139 	/* UniPro link is active now */
9140 	ufshcd_set_link_active(hba);
9141 
9142 	/* Reconfigure MCQ upon reset */
9143 	if (hba->mcq_enabled && !init_dev_params) {
9144 		ufshcd_config_mcq(hba);
9145 		ufshcd_mcq_enable(hba);
9146 	}
9147 
9148 	/* Verify device initialization by sending NOP OUT UPIU */
9149 	ret = ufshcd_verify_dev_init(hba);
9150 	if (ret)
9151 		return ret;
9152 
9153 	/* Initiate UFS initialization, and waiting until completion */
9154 	ret = ufshcd_complete_dev_init(hba);
9155 	if (ret)
9156 		return ret;
9157 
9158 	/*
9159 	 * Initialize UFS device parameters used by driver, these
9160 	 * parameters are associated with UFS descriptors.
9161 	 */
9162 	if (init_dev_params) {
9163 		ret = ufshcd_device_params_init(hba);
9164 		if (ret)
9165 			return ret;
9166 		if (is_mcq_supported(hba) &&
9167 		    hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH) {
9168 			ufshcd_config_mcq(hba);
9169 			ufshcd_mcq_enable(hba);
9170 		}
9171 	}
9172 
9173 	return ufshcd_post_device_init(hba);
9174 }
9175 
9176 /**
9177  * ufshcd_probe_hba - probe hba to detect device and initialize it
9178  * @hba: per-adapter instance
9179  * @init_dev_params: whether or not to call ufshcd_device_params_init().
9180  *
9181  * Execute link-startup and verify device initialization
9182  *
9183  * Return: 0 upon success; < 0 upon failure.
9184  */
ufshcd_probe_hba(struct ufs_hba * hba,bool init_dev_params)9185 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
9186 {
9187 	int ret;
9188 
9189 	if (!hba->pm_op_in_progress &&
9190 	    (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
9191 		/* Reset the device and controller before doing reinit */
9192 		ufshcd_device_reset(hba);
9193 		ufs_put_device_desc(hba);
9194 		ufshcd_hba_stop(hba);
9195 		ret = ufshcd_hba_enable(hba);
9196 		if (ret) {
9197 			dev_err(hba->dev, "Host controller enable failed\n");
9198 			ufshcd_print_evt_hist(hba);
9199 			ufshcd_print_host_state(hba);
9200 			return ret;
9201 		}
9202 
9203 		/* Reinit the device */
9204 		ret = ufshcd_device_init(hba, init_dev_params);
9205 		if (ret)
9206 			return ret;
9207 	}
9208 
9209 	ufshcd_print_pwr_info(hba);
9210 
9211 	/*
9212 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
9213 	 * and for removable UFS card as well, hence always set the parameter.
9214 	 * Note: Error handler may issue the device reset hence resetting
9215 	 * bActiveICCLevel as well so it is always safe to set this here.
9216 	 */
9217 	ufshcd_set_active_icc_lvl(hba);
9218 
9219 	/* Enable UFS Write Booster if supported */
9220 	ufshcd_configure_wb(hba);
9221 
9222 	if (hba->ee_usr_mask)
9223 		ufshcd_write_ee_control(hba);
9224 	ufshcd_configure_auto_hibern8(hba);
9225 
9226 	return 0;
9227 }
9228 
9229 /**
9230  * ufshcd_async_scan - asynchronous execution for probing hba
9231  * @data: data pointer to pass to this function
9232  * @cookie: cookie data
9233  */
ufshcd_async_scan(void * data,async_cookie_t cookie)9234 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
9235 {
9236 	struct ufs_hba *hba = (struct ufs_hba *)data;
9237 	ktime_t probe_start;
9238 	int ret;
9239 
9240 	down(&hba->host_sem);
9241 	/* Initialize hba, detect and initialize UFS device */
9242 	probe_start = ktime_get();
9243 	ret = ufshcd_probe_hba(hba, true);
9244 	ufshcd_process_probe_result(hba, probe_start, ret);
9245 	up(&hba->host_sem);
9246 	if (ret)
9247 		goto out;
9248 
9249 	/* Probe and add UFS logical units  */
9250 	ret = ufshcd_add_lus(hba);
9251 
9252 out:
9253 	pm_runtime_put_sync(hba->dev);
9254 
9255 	if (ret)
9256 		dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
9257 }
9258 
ufshcd_eh_timed_out(struct scsi_cmnd * scmd)9259 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
9260 {
9261 	struct ufs_hba *hba = shost_priv(scmd->device->host);
9262 
9263 	if (!hba->system_suspending) {
9264 		/* Activate the error handler in the SCSI core. */
9265 		return SCSI_EH_NOT_HANDLED;
9266 	}
9267 
9268 	/*
9269 	 * If we get here we know that no TMFs are outstanding and also that
9270 	 * the only pending command is a START STOP UNIT command. Handle the
9271 	 * timeout of that command directly to prevent a deadlock between
9272 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
9273 	 */
9274 	ufshcd_link_recovery(hba);
9275 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
9276 		 __func__, hba->outstanding_tasks);
9277 
9278 	return scsi_host_busy(hba->host) ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
9279 }
9280 
9281 static const struct attribute_group *ufshcd_driver_groups[] = {
9282 	&ufs_sysfs_unit_descriptor_group,
9283 	&ufs_sysfs_lun_attributes_group,
9284 	NULL,
9285 };
9286 
9287 static struct ufs_hba_variant_params ufs_hba_vps = {
9288 	.hba_enable_delay_us		= 1000,
9289 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
9290 	.devfreq_profile.polling_ms	= 100,
9291 	.devfreq_profile.target		= ufshcd_devfreq_target,
9292 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
9293 	.ondemand_data.upthreshold	= 70,
9294 	.ondemand_data.downdifferential	= 5,
9295 };
9296 
9297 static const struct scsi_host_template ufshcd_driver_template = {
9298 	.module			= THIS_MODULE,
9299 	.name			= UFSHCD,
9300 	.proc_name		= UFSHCD,
9301 	.map_queues		= ufshcd_map_queues,
9302 	.cmd_size		= sizeof(struct ufshcd_lrb),
9303 	.init_cmd_priv		= ufshcd_init_cmd_priv,
9304 	.queuecommand		= ufshcd_queuecommand,
9305 	.queue_reserved_command	= ufshcd_queue_reserved_command,
9306 	.nr_reserved_cmds	= UFSHCD_NUM_RESERVED,
9307 	.mq_poll		= ufshcd_poll,
9308 	.sdev_init		= ufshcd_sdev_init,
9309 	.sdev_configure		= ufshcd_sdev_configure,
9310 	.sdev_destroy		= ufshcd_sdev_destroy,
9311 	.change_queue_depth	= ufshcd_change_queue_depth,
9312 	.eh_abort_handler	= ufshcd_abort,
9313 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
9314 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
9315 	.eh_timed_out		= ufshcd_eh_timed_out,
9316 	.this_id		= -1,
9317 	.sg_tablesize		= SG_ALL,
9318 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
9319 	.max_sectors		= SZ_1M / SECTOR_SIZE,
9320 	.max_host_blocked	= 1,
9321 	.track_queue_depth	= 1,
9322 	.skip_settle_delay	= 1,
9323 	.sdev_groups		= ufshcd_driver_groups,
9324 };
9325 
ufshcd_config_vreg_load(struct device * dev,struct ufs_vreg * vreg,int ua)9326 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
9327 				   int ua)
9328 {
9329 	int ret;
9330 
9331 	if (!vreg)
9332 		return 0;
9333 
9334 	/*
9335 	 * "set_load" operation shall be required on those regulators
9336 	 * which specifically configured current limitation. Otherwise
9337 	 * zero max_uA may cause unexpected behavior when regulator is
9338 	 * enabled or set as high power mode.
9339 	 */
9340 	if (!vreg->max_uA)
9341 		return 0;
9342 
9343 	ret = regulator_set_load(vreg->reg, ua);
9344 	if (ret < 0) {
9345 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
9346 				__func__, vreg->name, ua, ret);
9347 	}
9348 
9349 	return ret;
9350 }
9351 
ufshcd_config_vreg_lpm(struct ufs_hba * hba,struct ufs_vreg * vreg)9352 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
9353 					 struct ufs_vreg *vreg)
9354 {
9355 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
9356 }
9357 
ufshcd_config_vreg_hpm(struct ufs_hba * hba,struct ufs_vreg * vreg)9358 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
9359 					 struct ufs_vreg *vreg)
9360 {
9361 	if (!vreg)
9362 		return 0;
9363 
9364 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
9365 }
9366 
ufshcd_config_vreg(struct device * dev,struct ufs_vreg * vreg,bool on)9367 static int ufshcd_config_vreg(struct device *dev,
9368 		struct ufs_vreg *vreg, bool on)
9369 {
9370 	if (regulator_count_voltages(vreg->reg) <= 0)
9371 		return 0;
9372 
9373 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
9374 }
9375 
ufshcd_enable_vreg(struct device * dev,struct ufs_vreg * vreg)9376 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
9377 {
9378 	int ret = 0;
9379 
9380 	if (!vreg || vreg->enabled)
9381 		goto out;
9382 
9383 	ret = ufshcd_config_vreg(dev, vreg, true);
9384 	if (!ret)
9385 		ret = regulator_enable(vreg->reg);
9386 
9387 	if (!ret)
9388 		vreg->enabled = true;
9389 	else
9390 		dev_err(dev, "%s: %s enable failed, err=%d\n",
9391 				__func__, vreg->name, ret);
9392 out:
9393 	return ret;
9394 }
9395 
ufshcd_disable_vreg(struct device * dev,struct ufs_vreg * vreg)9396 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
9397 {
9398 	int ret = 0;
9399 
9400 	if (!vreg || !vreg->enabled || vreg->always_on)
9401 		goto out;
9402 
9403 	ret = regulator_disable(vreg->reg);
9404 
9405 	if (!ret) {
9406 		/* ignore errors on applying disable config */
9407 		ufshcd_config_vreg(dev, vreg, false);
9408 		vreg->enabled = false;
9409 	} else {
9410 		dev_err(dev, "%s: %s disable failed, err=%d\n",
9411 				__func__, vreg->name, ret);
9412 	}
9413 out:
9414 	return ret;
9415 }
9416 
ufshcd_setup_vreg(struct ufs_hba * hba,bool on)9417 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
9418 {
9419 	int ret = 0;
9420 	struct device *dev = hba->dev;
9421 	struct ufs_vreg_info *info = &hba->vreg_info;
9422 
9423 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9424 	if (ret)
9425 		goto out;
9426 
9427 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9428 	if (ret)
9429 		goto out;
9430 
9431 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9432 
9433 out:
9434 	if (ret) {
9435 		ufshcd_toggle_vreg(dev, info->vccq2, false);
9436 		ufshcd_toggle_vreg(dev, info->vccq, false);
9437 		ufshcd_toggle_vreg(dev, info->vcc, false);
9438 	}
9439 	return ret;
9440 }
9441 
ufshcd_setup_hba_vreg(struct ufs_hba * hba,bool on)9442 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9443 {
9444 	struct ufs_vreg_info *info = &hba->vreg_info;
9445 
9446 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9447 }
9448 
ufshcd_get_vreg(struct device * dev,struct ufs_vreg * vreg)9449 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9450 {
9451 	int ret = 0;
9452 
9453 	if (!vreg)
9454 		goto out;
9455 
9456 	vreg->reg = devm_regulator_get(dev, vreg->name);
9457 	if (IS_ERR(vreg->reg)) {
9458 		ret = PTR_ERR(vreg->reg);
9459 		dev_err(dev, "%s: %s get failed, err=%d\n",
9460 				__func__, vreg->name, ret);
9461 	}
9462 out:
9463 	return ret;
9464 }
9465 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9466 
ufshcd_init_vreg(struct ufs_hba * hba)9467 static int ufshcd_init_vreg(struct ufs_hba *hba)
9468 {
9469 	int ret = 0;
9470 	struct device *dev = hba->dev;
9471 	struct ufs_vreg_info *info = &hba->vreg_info;
9472 
9473 	ret = ufshcd_get_vreg(dev, info->vcc);
9474 	if (ret)
9475 		goto out;
9476 
9477 	ret = ufshcd_get_vreg(dev, info->vccq);
9478 	if (!ret)
9479 		ret = ufshcd_get_vreg(dev, info->vccq2);
9480 out:
9481 	return ret;
9482 }
9483 
ufshcd_init_hba_vreg(struct ufs_hba * hba)9484 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9485 {
9486 	struct ufs_vreg_info *info = &hba->vreg_info;
9487 
9488 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9489 }
9490 
ufshcd_setup_clocks(struct ufs_hba * hba,bool on)9491 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9492 {
9493 	int ret = 0;
9494 	struct ufs_clk_info *clki;
9495 	struct list_head *head = &hba->clk_list_head;
9496 	ktime_t start = ktime_get();
9497 	bool clk_state_changed = false;
9498 
9499 	if (list_empty(head))
9500 		goto out;
9501 
9502 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9503 	if (ret)
9504 		return ret;
9505 
9506 	list_for_each_entry(clki, head, list) {
9507 		if (!IS_ERR_OR_NULL(clki->clk)) {
9508 			/*
9509 			 * Don't disable clocks which are needed
9510 			 * to keep the link active.
9511 			 */
9512 			if (ufshcd_is_link_active(hba) &&
9513 			    clki->keep_link_active)
9514 				continue;
9515 
9516 			clk_state_changed = on ^ clki->enabled;
9517 			if (on && !clki->enabled) {
9518 				ret = clk_prepare_enable(clki->clk);
9519 				if (ret) {
9520 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9521 						__func__, clki->name, ret);
9522 					goto out;
9523 				}
9524 			} else if (!on && clki->enabled) {
9525 				clk_disable_unprepare(clki->clk);
9526 			}
9527 			clki->enabled = on;
9528 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9529 					clki->name, on ? "en" : "dis");
9530 		}
9531 	}
9532 
9533 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9534 	if (ret)
9535 		return ret;
9536 
9537 	if (!ufshcd_is_clkscaling_supported(hba))
9538 		ufshcd_pm_qos_update(hba, on);
9539 out:
9540 	if (ret) {
9541 		list_for_each_entry(clki, head, list) {
9542 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9543 				clk_disable_unprepare(clki->clk);
9544 		}
9545 	} else if (!ret && on && hba->clk_gating.is_initialized) {
9546 		scoped_guard(spinlock_irqsave, &hba->clk_gating.lock)
9547 			hba->clk_gating.state = CLKS_ON;
9548 		trace_ufshcd_clk_gating(hba,
9549 					hba->clk_gating.state);
9550 	}
9551 
9552 	if (clk_state_changed)
9553 		trace_ufshcd_profile_clk_gating(hba,
9554 			(on ? "on" : "off"),
9555 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9556 	return ret;
9557 }
9558 
ufshcd_parse_ref_clk_property(struct ufs_hba * hba)9559 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9560 {
9561 	u32 freq;
9562 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9563 
9564 	if (ret) {
9565 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9566 		return REF_CLK_FREQ_INVAL;
9567 	}
9568 
9569 	return ufs_get_bref_clk_from_hz(freq);
9570 }
9571 
ufshcd_init_clocks(struct ufs_hba * hba)9572 static int ufshcd_init_clocks(struct ufs_hba *hba)
9573 {
9574 	int ret = 0;
9575 	struct ufs_clk_info *clki;
9576 	struct device *dev = hba->dev;
9577 	struct list_head *head = &hba->clk_list_head;
9578 
9579 	if (list_empty(head))
9580 		goto out;
9581 
9582 	list_for_each_entry(clki, head, list) {
9583 		if (!clki->name)
9584 			continue;
9585 
9586 		clki->clk = devm_clk_get(dev, clki->name);
9587 		if (IS_ERR(clki->clk)) {
9588 			ret = PTR_ERR(clki->clk);
9589 			dev_err(dev, "%s: %s clk get failed, %d\n",
9590 					__func__, clki->name, ret);
9591 			goto out;
9592 		}
9593 
9594 		/*
9595 		 * Parse device ref clk freq as per device tree "ref_clk".
9596 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9597 		 * in ufshcd_alloc_host().
9598 		 */
9599 		if (!strcmp(clki->name, "ref_clk"))
9600 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9601 
9602 		if (clki->max_freq) {
9603 			ret = clk_set_rate(clki->clk, clki->max_freq);
9604 			if (ret) {
9605 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9606 					__func__, clki->name,
9607 					clki->max_freq, ret);
9608 				goto out;
9609 			}
9610 			clki->curr_freq = clki->max_freq;
9611 		}
9612 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9613 				clki->name, clk_get_rate(clki->clk));
9614 	}
9615 
9616 	/* Set Max. frequency for all clocks */
9617 	if (hba->use_pm_opp) {
9618 		ret = ufshcd_opp_set_rate(hba, ULONG_MAX);
9619 		if (ret) {
9620 			dev_err(hba->dev, "%s: failed to set OPP: %d", __func__,
9621 				ret);
9622 			goto out;
9623 		}
9624 	}
9625 
9626 out:
9627 	return ret;
9628 }
9629 
ufshcd_variant_hba_init(struct ufs_hba * hba)9630 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9631 {
9632 	int err = 0;
9633 
9634 	if (!hba->vops)
9635 		goto out;
9636 
9637 	err = ufshcd_vops_init(hba);
9638 	if (err)
9639 		dev_err_probe(hba->dev, err,
9640 			      "%s: variant %s init failed with err %d\n",
9641 			      __func__, ufshcd_get_var_name(hba), err);
9642 out:
9643 	return err;
9644 }
9645 
ufshcd_variant_hba_exit(struct ufs_hba * hba)9646 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9647 {
9648 	if (!hba->vops)
9649 		return;
9650 
9651 	ufshcd_vops_exit(hba);
9652 }
9653 
ufshcd_hba_init(struct ufs_hba * hba)9654 static int ufshcd_hba_init(struct ufs_hba *hba)
9655 {
9656 	int err;
9657 
9658 	/*
9659 	 * Handle host controller power separately from the UFS device power
9660 	 * rails as it will help controlling the UFS host controller power
9661 	 * collapse easily which is different than UFS device power collapse.
9662 	 * Also, enable the host controller power before we go ahead with rest
9663 	 * of the initialization here.
9664 	 */
9665 	err = ufshcd_init_hba_vreg(hba);
9666 	if (err)
9667 		goto out;
9668 
9669 	err = ufshcd_setup_hba_vreg(hba, true);
9670 	if (err)
9671 		goto out;
9672 
9673 	err = ufshcd_init_clocks(hba);
9674 	if (err)
9675 		goto out_disable_hba_vreg;
9676 
9677 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9678 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9679 
9680 	err = ufshcd_setup_clocks(hba, true);
9681 	if (err)
9682 		goto out_disable_hba_vreg;
9683 
9684 	err = ufshcd_init_vreg(hba);
9685 	if (err)
9686 		goto out_disable_clks;
9687 
9688 	err = ufshcd_setup_vreg(hba, true);
9689 	if (err)
9690 		goto out_disable_clks;
9691 
9692 	err = ufshcd_variant_hba_init(hba);
9693 	if (err)
9694 		goto out_disable_vreg;
9695 
9696 	ufs_debugfs_hba_init(hba);
9697 	ufs_fault_inject_hba_init(hba);
9698 
9699 	hba->is_powered = true;
9700 	goto out;
9701 
9702 out_disable_vreg:
9703 	ufshcd_setup_vreg(hba, false);
9704 out_disable_clks:
9705 	ufshcd_setup_clocks(hba, false);
9706 out_disable_hba_vreg:
9707 	ufshcd_setup_hba_vreg(hba, false);
9708 out:
9709 	return err;
9710 }
9711 
ufshcd_hba_exit(struct ufs_hba * hba)9712 static void ufshcd_hba_exit(struct ufs_hba *hba)
9713 {
9714 	if (hba->is_powered) {
9715 		ufshcd_pm_qos_exit(hba);
9716 		ufshcd_exit_clk_scaling(hba);
9717 		ufshcd_exit_clk_gating(hba);
9718 		if (hba->eh_wq)
9719 			destroy_workqueue(hba->eh_wq);
9720 		ufs_debugfs_hba_exit(hba);
9721 		ufshcd_variant_hba_exit(hba);
9722 		ufshcd_setup_vreg(hba, false);
9723 		ufshcd_setup_clocks(hba, false);
9724 		ufshcd_setup_hba_vreg(hba, false);
9725 		hba->is_powered = false;
9726 		ufs_put_device_desc(hba);
9727 	}
9728 }
9729 
ufshcd_execute_start_stop(struct scsi_device * sdev,enum ufs_dev_pwr_mode pwr_mode,struct scsi_sense_hdr * sshdr)9730 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9731 				     enum ufs_dev_pwr_mode pwr_mode,
9732 				     struct scsi_sense_hdr *sshdr)
9733 {
9734 	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9735 	struct scsi_failure failure_defs[] = {
9736 		{
9737 			.allowed = 2,
9738 			.result = SCMD_FAILURE_RESULT_ANY,
9739 		},
9740 	};
9741 	struct scsi_failures failures = {
9742 		.failure_definitions = failure_defs,
9743 	};
9744 	const struct scsi_exec_args args = {
9745 		.failures = &failures,
9746 		.sshdr = sshdr,
9747 		.req_flags = BLK_MQ_REQ_PM,
9748 		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9749 	};
9750 
9751 	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9752 			/*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9753 			&args);
9754 }
9755 
9756 /**
9757  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9758  *			     power mode
9759  * @hba: per adapter instance
9760  * @pwr_mode: device power mode to set
9761  *
9762  * Return: 0 if requested power mode is set successfully;
9763  *         < 0 if failed to set the requested power mode.
9764  */
ufshcd_set_dev_pwr_mode(struct ufs_hba * hba,enum ufs_dev_pwr_mode pwr_mode)9765 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9766 				     enum ufs_dev_pwr_mode pwr_mode)
9767 {
9768 	struct scsi_sense_hdr sshdr;
9769 	struct scsi_device *sdp;
9770 	unsigned long flags;
9771 	int ret;
9772 
9773 	spin_lock_irqsave(hba->host->host_lock, flags);
9774 	sdp = hba->ufs_device_wlun;
9775 	if (sdp && scsi_device_online(sdp))
9776 		ret = scsi_device_get(sdp);
9777 	else
9778 		ret = -ENODEV;
9779 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9780 
9781 	if (ret)
9782 		return ret;
9783 
9784 	/*
9785 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9786 	 * handling, which would wait for host to be resumed. Since we know
9787 	 * we are functional while we are here, skip host resume in error
9788 	 * handling context.
9789 	 */
9790 	hba->host->eh_noresume = 1;
9791 
9792 	/*
9793 	 * Current function would be generally called from the power management
9794 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9795 	 * already suspended childs.
9796 	 */
9797 	ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9798 	if (ret) {
9799 		sdev_printk(KERN_WARNING, sdp,
9800 			    "START_STOP failed for power mode: %d, result %x\n",
9801 			    pwr_mode, ret);
9802 		if (ret > 0) {
9803 			if (scsi_sense_valid(&sshdr))
9804 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9805 			ret = -EIO;
9806 		}
9807 	} else {
9808 		hba->curr_dev_pwr_mode = pwr_mode;
9809 	}
9810 
9811 	scsi_device_put(sdp);
9812 	hba->host->eh_noresume = 0;
9813 	return ret;
9814 }
9815 
ufshcd_link_state_transition(struct ufs_hba * hba,enum uic_link_state req_link_state,bool check_for_bkops)9816 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9817 					enum uic_link_state req_link_state,
9818 					bool check_for_bkops)
9819 {
9820 	int ret = 0;
9821 
9822 	if (req_link_state == hba->uic_link_state)
9823 		return 0;
9824 
9825 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9826 		ret = ufshcd_uic_hibern8_enter(hba);
9827 		if (!ret) {
9828 			ufshcd_set_link_hibern8(hba);
9829 		} else {
9830 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9831 					__func__, ret);
9832 			goto out;
9833 		}
9834 	}
9835 	/*
9836 	 * If autobkops is enabled, link can't be turned off because
9837 	 * turning off the link would also turn off the device, except in the
9838 	 * case of DeepSleep where the device is expected to remain powered.
9839 	 */
9840 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9841 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9842 		/*
9843 		 * Let's make sure that link is in low power mode, we are doing
9844 		 * this currently by putting the link in Hibern8. Otherway to
9845 		 * put the link in low power mode is to send the DME end point
9846 		 * to device and then send the DME reset command to local
9847 		 * unipro. But putting the link in hibern8 is much faster.
9848 		 *
9849 		 * Note also that putting the link in Hibern8 is a requirement
9850 		 * for entering DeepSleep.
9851 		 */
9852 		ret = ufshcd_uic_hibern8_enter(hba);
9853 		if (ret) {
9854 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9855 					__func__, ret);
9856 			goto out;
9857 		}
9858 		/*
9859 		 * Change controller state to "reset state" which
9860 		 * should also put the link in off/reset state
9861 		 */
9862 		ufshcd_hba_stop(hba);
9863 		/*
9864 		 * TODO: Check if we need any delay to make sure that
9865 		 * controller is reset
9866 		 */
9867 		ufshcd_set_link_off(hba);
9868 	}
9869 
9870 out:
9871 	return ret;
9872 }
9873 
ufshcd_vreg_set_lpm(struct ufs_hba * hba)9874 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9875 {
9876 	bool vcc_off = false;
9877 
9878 	/*
9879 	 * It seems some UFS devices may keep drawing more than sleep current
9880 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9881 	 * To avoid this situation, add 2ms delay before putting these UFS
9882 	 * rails in LPM mode.
9883 	 */
9884 	if (!ufshcd_is_link_active(hba) &&
9885 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9886 		usleep_range(2000, 2100);
9887 
9888 	/*
9889 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9890 	 * power.
9891 	 *
9892 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9893 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9894 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9895 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9896 	 *
9897 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9898 	 * in low power state which would save some power.
9899 	 *
9900 	 * If Write Booster is enabled and the device needs to flush the WB
9901 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9902 	 */
9903 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9904 	    !hba->dev_info.is_lu_power_on_wp) {
9905 		ufshcd_setup_vreg(hba, false);
9906 		vcc_off = true;
9907 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9908 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9909 		vcc_off = true;
9910 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9911 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9912 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9913 		}
9914 	}
9915 
9916 	/*
9917 	 * All UFS devices require delay after VCC power rail is turned-off.
9918 	 */
9919 	if (vcc_off && hba->vreg_info.vcc && !hba->vreg_info.vcc->always_on)
9920 		usleep_range(hba->vcc_off_delay_us,
9921 			     hba->vcc_off_delay_us + 100);
9922 }
9923 
9924 #ifdef CONFIG_PM
ufshcd_vreg_set_hpm(struct ufs_hba * hba)9925 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9926 {
9927 	int ret = 0;
9928 
9929 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9930 	    !hba->dev_info.is_lu_power_on_wp) {
9931 		ret = ufshcd_setup_vreg(hba, true);
9932 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9933 		if (!ufshcd_is_link_active(hba)) {
9934 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9935 			if (ret)
9936 				goto vcc_disable;
9937 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9938 			if (ret)
9939 				goto vccq_lpm;
9940 		}
9941 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9942 	}
9943 	goto out;
9944 
9945 vccq_lpm:
9946 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9947 vcc_disable:
9948 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9949 out:
9950 	return ret;
9951 }
9952 #endif /* CONFIG_PM */
9953 
ufshcd_hba_vreg_set_lpm(struct ufs_hba * hba)9954 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9955 {
9956 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9957 		ufshcd_setup_hba_vreg(hba, false);
9958 }
9959 
ufshcd_hba_vreg_set_hpm(struct ufs_hba * hba)9960 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9961 {
9962 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9963 		ufshcd_setup_hba_vreg(hba, true);
9964 }
9965 
__ufshcd_wl_suspend(struct ufs_hba * hba,enum ufs_pm_op pm_op)9966 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9967 {
9968 	int ret = 0;
9969 	bool check_for_bkops;
9970 	enum ufs_pm_level pm_lvl;
9971 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9972 	enum uic_link_state req_link_state;
9973 
9974 	hba->pm_op_in_progress = true;
9975 	if (pm_op != UFS_SHUTDOWN_PM) {
9976 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9977 			 hba->rpm_lvl : hba->spm_lvl;
9978 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9979 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9980 	} else {
9981 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9982 		req_link_state = UIC_LINK_OFF_STATE;
9983 	}
9984 
9985 	/*
9986 	 * If we can't transition into any of the low power modes
9987 	 * just gate the clocks.
9988 	 */
9989 	ufshcd_hold(hba);
9990 	hba->clk_gating.is_suspended = true;
9991 
9992 	if (ufshcd_is_clkscaling_supported(hba))
9993 		ufshcd_clk_scaling_suspend(hba, true);
9994 
9995 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9996 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9997 		goto vops_suspend;
9998 	}
9999 
10000 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
10001 	    (req_link_state == hba->uic_link_state))
10002 		goto enable_scaling;
10003 
10004 	/* UFS device & link must be active before we enter in this function */
10005 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
10006 		/*  Wait err handler finish or trigger err recovery */
10007 		if (!ufshcd_eh_in_progress(hba))
10008 			ufshcd_force_error_recovery(hba);
10009 		ret = -EBUSY;
10010 		goto enable_scaling;
10011 	}
10012 
10013 	if (pm_op == UFS_RUNTIME_PM) {
10014 		if (ufshcd_can_autobkops_during_suspend(hba)) {
10015 			/*
10016 			 * The device is idle with no requests in the queue,
10017 			 * allow background operations if bkops status shows
10018 			 * that performance might be impacted.
10019 			 */
10020 			ret = ufshcd_bkops_ctrl(hba);
10021 			if (ret) {
10022 				/*
10023 				 * If return err in suspend flow, IO will hang.
10024 				 * Trigger error handler and break suspend for
10025 				 * error recovery.
10026 				 */
10027 				ufshcd_force_error_recovery(hba);
10028 				ret = -EBUSY;
10029 				goto enable_scaling;
10030 			}
10031 		} else {
10032 			/* make sure that auto bkops is disabled */
10033 			ufshcd_disable_auto_bkops(hba);
10034 		}
10035 		/*
10036 		 * If device needs to do BKOP or WB buffer flush during
10037 		 * Hibern8, keep device power mode as "active power mode"
10038 		 * and VCC supply.
10039 		 */
10040 		hba->dev_info.b_rpm_dev_flush_capable =
10041 			hba->auto_bkops_enabled ||
10042 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
10043 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
10044 			ufshcd_is_auto_hibern8_enabled(hba))) &&
10045 			ufshcd_wb_need_flush(hba));
10046 	}
10047 
10048 	flush_work(&hba->eeh_work);
10049 
10050 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
10051 	if (ret)
10052 		goto enable_scaling;
10053 
10054 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
10055 		if (pm_op != UFS_RUNTIME_PM)
10056 			/* ensure that bkops is disabled */
10057 			ufshcd_disable_auto_bkops(hba);
10058 
10059 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
10060 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
10061 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
10062 				/*
10063 				 * If return err in suspend flow, IO will hang.
10064 				 * Trigger error handler and break suspend for
10065 				 * error recovery.
10066 				 */
10067 				ufshcd_force_error_recovery(hba);
10068 				ret = -EBUSY;
10069 			}
10070 			if (ret)
10071 				goto enable_scaling;
10072 		}
10073 	}
10074 
10075 	/*
10076 	 * In the case of DeepSleep, the device is expected to remain powered
10077 	 * with the link off, so do not check for bkops.
10078 	 */
10079 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
10080 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
10081 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
10082 		/*
10083 		 * If return err in suspend flow, IO will hang.
10084 		 * Trigger error handler and break suspend for
10085 		 * error recovery.
10086 		 */
10087 		ufshcd_force_error_recovery(hba);
10088 		ret = -EBUSY;
10089 	}
10090 	if (ret)
10091 		goto set_dev_active;
10092 
10093 vops_suspend:
10094 	/*
10095 	 * Call vendor specific suspend callback. As these callbacks may access
10096 	 * vendor specific host controller register space call them before the
10097 	 * host clocks are ON.
10098 	 */
10099 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
10100 	if (ret)
10101 		goto set_link_active;
10102 
10103 	cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
10104 	goto out;
10105 
10106 set_link_active:
10107 	/*
10108 	 * Device hardware reset is required to exit DeepSleep. Also, for
10109 	 * DeepSleep, the link is off so host reset and restore will be done
10110 	 * further below.
10111 	 */
10112 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
10113 		ufshcd_device_reset(hba);
10114 		WARN_ON(!ufshcd_is_link_off(hba));
10115 	}
10116 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
10117 		ufshcd_set_link_active(hba);
10118 	else if (ufshcd_is_link_off(hba))
10119 		ufshcd_host_reset_and_restore(hba);
10120 set_dev_active:
10121 	/* Can also get here needing to exit DeepSleep */
10122 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
10123 		ufshcd_device_reset(hba);
10124 		ufshcd_host_reset_and_restore(hba);
10125 	}
10126 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
10127 		ufshcd_disable_auto_bkops(hba);
10128 enable_scaling:
10129 	if (ufshcd_is_clkscaling_supported(hba))
10130 		ufshcd_clk_scaling_suspend(hba, false);
10131 
10132 	hba->dev_info.b_rpm_dev_flush_capable = false;
10133 out:
10134 	if (hba->dev_info.b_rpm_dev_flush_capable) {
10135 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
10136 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
10137 	}
10138 
10139 	if (ret) {
10140 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
10141 		hba->clk_gating.is_suspended = false;
10142 		ufshcd_release(hba);
10143 	}
10144 	hba->pm_op_in_progress = false;
10145 	return ret;
10146 }
10147 
10148 #ifdef CONFIG_PM
__ufshcd_wl_resume(struct ufs_hba * hba,enum ufs_pm_op pm_op)10149 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
10150 {
10151 	int ret;
10152 	enum uic_link_state old_link_state = hba->uic_link_state;
10153 
10154 	hba->pm_op_in_progress = true;
10155 
10156 	/*
10157 	 * Call vendor specific resume callback. As these callbacks may access
10158 	 * vendor specific host controller register space call them when the
10159 	 * host clocks are ON.
10160 	 */
10161 	ret = ufshcd_vops_resume(hba, pm_op);
10162 	if (ret)
10163 		goto out;
10164 
10165 	/* For DeepSleep, the only supported option is to have the link off */
10166 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
10167 
10168 	if (ufshcd_is_link_hibern8(hba)) {
10169 		ret = ufshcd_uic_hibern8_exit(hba);
10170 		if (!ret) {
10171 			ufshcd_set_link_active(hba);
10172 		} else {
10173 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
10174 					__func__, ret);
10175 			goto vendor_suspend;
10176 		}
10177 	} else if (ufshcd_is_link_off(hba)) {
10178 		/*
10179 		 * A full initialization of the host and the device is
10180 		 * required since the link was put to off during suspend.
10181 		 * Note, in the case of DeepSleep, the device will exit
10182 		 * DeepSleep due to device reset.
10183 		 */
10184 		ret = ufshcd_reset_and_restore(hba);
10185 		/*
10186 		 * ufshcd_reset_and_restore() should have already
10187 		 * set the link state as active
10188 		 */
10189 		if (ret || !ufshcd_is_link_active(hba))
10190 			goto vendor_suspend;
10191 	}
10192 
10193 	if (!ufshcd_is_ufs_dev_active(hba)) {
10194 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
10195 		if (ret)
10196 			goto set_old_link_state;
10197 		ufshcd_set_timestamp_attr(hba);
10198 		schedule_delayed_work(&hba->ufs_rtc_update_work,
10199 				      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
10200 	}
10201 
10202 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
10203 		ufshcd_enable_auto_bkops(hba);
10204 	else
10205 		/*
10206 		 * If BKOPs operations are urgently needed at this moment then
10207 		 * keep auto-bkops enabled or else disable it.
10208 		 */
10209 		ufshcd_bkops_ctrl(hba);
10210 
10211 	if (hba->ee_usr_mask)
10212 		ufshcd_write_ee_control(hba);
10213 
10214 	if (ufshcd_is_clkscaling_supported(hba))
10215 		ufshcd_clk_scaling_suspend(hba, false);
10216 
10217 	if (hba->dev_info.b_rpm_dev_flush_capable) {
10218 		hba->dev_info.b_rpm_dev_flush_capable = false;
10219 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
10220 	}
10221 
10222 	ufshcd_configure_auto_hibern8(hba);
10223 
10224 	goto out;
10225 
10226 set_old_link_state:
10227 	ufshcd_link_state_transition(hba, old_link_state, 0);
10228 vendor_suspend:
10229 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
10230 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
10231 out:
10232 	if (ret)
10233 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
10234 	hba->clk_gating.is_suspended = false;
10235 	ufshcd_release(hba);
10236 	hba->pm_op_in_progress = false;
10237 	return ret;
10238 }
10239 
ufshcd_wl_runtime_suspend(struct device * dev)10240 static int ufshcd_wl_runtime_suspend(struct device *dev)
10241 {
10242 	struct scsi_device *sdev = to_scsi_device(dev);
10243 	struct ufs_hba *hba;
10244 	int ret;
10245 	ktime_t start = ktime_get();
10246 
10247 	hba = shost_priv(sdev->host);
10248 
10249 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
10250 	if (ret)
10251 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10252 
10253 	trace_ufshcd_wl_runtime_suspend(hba, ret,
10254 		ktime_to_us(ktime_sub(ktime_get(), start)),
10255 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10256 
10257 	return ret;
10258 }
10259 
ufshcd_wl_runtime_resume(struct device * dev)10260 static int ufshcd_wl_runtime_resume(struct device *dev)
10261 {
10262 	struct scsi_device *sdev = to_scsi_device(dev);
10263 	struct ufs_hba *hba;
10264 	int ret = 0;
10265 	ktime_t start = ktime_get();
10266 
10267 	hba = shost_priv(sdev->host);
10268 
10269 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
10270 	if (ret)
10271 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10272 
10273 	trace_ufshcd_wl_runtime_resume(hba, ret,
10274 		ktime_to_us(ktime_sub(ktime_get(), start)),
10275 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10276 
10277 	return ret;
10278 }
10279 #endif
10280 
10281 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_suspend(struct device * dev)10282 static int ufshcd_wl_suspend(struct device *dev)
10283 {
10284 	struct scsi_device *sdev = to_scsi_device(dev);
10285 	struct ufs_hba *hba;
10286 	int ret = 0;
10287 	ktime_t start = ktime_get();
10288 
10289 	hba = shost_priv(sdev->host);
10290 	down(&hba->host_sem);
10291 	hba->system_suspending = true;
10292 
10293 	if (pm_runtime_suspended(dev))
10294 		goto out;
10295 
10296 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
10297 	if (ret) {
10298 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
10299 		up(&hba->host_sem);
10300 	}
10301 
10302 out:
10303 	if (!ret)
10304 		hba->is_sys_suspended = true;
10305 	trace_ufshcd_wl_suspend(hba, ret,
10306 		ktime_to_us(ktime_sub(ktime_get(), start)),
10307 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10308 
10309 	return ret;
10310 }
10311 
ufshcd_wl_resume(struct device * dev)10312 static int ufshcd_wl_resume(struct device *dev)
10313 {
10314 	struct scsi_device *sdev = to_scsi_device(dev);
10315 	struct ufs_hba *hba;
10316 	int ret = 0;
10317 	ktime_t start = ktime_get();
10318 
10319 	hba = shost_priv(sdev->host);
10320 
10321 	if (pm_runtime_suspended(dev))
10322 		goto out;
10323 
10324 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
10325 	if (ret)
10326 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10327 out:
10328 	trace_ufshcd_wl_resume(hba, ret,
10329 		ktime_to_us(ktime_sub(ktime_get(), start)),
10330 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10331 	if (!ret)
10332 		hba->is_sys_suspended = false;
10333 	hba->system_suspending = false;
10334 	up(&hba->host_sem);
10335 	return ret;
10336 }
10337 #endif
10338 
10339 /**
10340  * ufshcd_suspend - helper function for suspend operations
10341  * @hba: per adapter instance
10342  *
10343  * This function will put disable irqs, turn off clocks
10344  * and set vreg and hba-vreg in lpm mode.
10345  *
10346  * Return: 0 upon success; < 0 upon failure.
10347  */
ufshcd_suspend(struct ufs_hba * hba)10348 static int ufshcd_suspend(struct ufs_hba *hba)
10349 {
10350 	int ret;
10351 
10352 	if (!hba->is_powered)
10353 		return 0;
10354 	/*
10355 	 * Disable the host irq as host controller as there won't be any
10356 	 * host controller transaction expected till resume.
10357 	 */
10358 	ufshcd_disable_irq(hba);
10359 	ret = ufshcd_setup_clocks(hba, false);
10360 	if (ret) {
10361 		ufshcd_enable_irq(hba);
10362 		goto out;
10363 	}
10364 	if (ufshcd_is_clkgating_allowed(hba)) {
10365 		hba->clk_gating.state = CLKS_OFF;
10366 		trace_ufshcd_clk_gating(hba,
10367 					hba->clk_gating.state);
10368 	}
10369 
10370 	ufshcd_vreg_set_lpm(hba);
10371 	/* Put the host controller in low power mode if possible */
10372 	ufshcd_hba_vreg_set_lpm(hba);
10373 	ufshcd_pm_qos_update(hba, false);
10374 out:
10375 	if (ret)
10376 		ufshcd_update_evt_hist(hba, UFS_EVT_SUSPEND_ERR, (u32)ret);
10377 	return ret;
10378 }
10379 
10380 #ifdef CONFIG_PM
10381 /**
10382  * ufshcd_resume - helper function for resume operations
10383  * @hba: per adapter instance
10384  *
10385  * This function basically turns on the regulators, clocks and
10386  * irqs of the hba.
10387  *
10388  * Return: 0 for success and non-zero for failure.
10389  */
ufshcd_resume(struct ufs_hba * hba)10390 static int ufshcd_resume(struct ufs_hba *hba)
10391 {
10392 	int ret;
10393 
10394 	if (!hba->is_powered)
10395 		return 0;
10396 
10397 	ufshcd_hba_vreg_set_hpm(hba);
10398 	ret = ufshcd_vreg_set_hpm(hba);
10399 	if (ret)
10400 		goto out;
10401 
10402 	/* Make sure clocks are enabled before accessing controller */
10403 	ret = ufshcd_setup_clocks(hba, true);
10404 	if (ret)
10405 		goto disable_vreg;
10406 
10407 	/* enable the host irq as host controller would be active soon */
10408 	ufshcd_enable_irq(hba);
10409 
10410 	goto out;
10411 
10412 disable_vreg:
10413 	ufshcd_vreg_set_lpm(hba);
10414 out:
10415 	if (ret)
10416 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
10417 	return ret;
10418 }
10419 #endif /* CONFIG_PM */
10420 
10421 #ifdef CONFIG_PM_SLEEP
10422 /**
10423  * ufshcd_system_suspend - system suspend callback
10424  * @dev: Device associated with the UFS controller.
10425  *
10426  * Executed before putting the system into a sleep state in which the contents
10427  * of main memory are preserved.
10428  *
10429  * Return: 0 for success and non-zero for failure.
10430  */
ufshcd_system_suspend(struct device * dev)10431 int ufshcd_system_suspend(struct device *dev)
10432 {
10433 	struct ufs_hba *hba = dev_get_drvdata(dev);
10434 	int ret = 0;
10435 	ktime_t start = ktime_get();
10436 
10437 	if (pm_runtime_suspended(hba->dev))
10438 		goto out;
10439 
10440 	ret = ufshcd_suspend(hba);
10441 out:
10442 	trace_ufshcd_system_suspend(hba, ret,
10443 		ktime_to_us(ktime_sub(ktime_get(), start)),
10444 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10445 	return ret;
10446 }
10447 EXPORT_SYMBOL(ufshcd_system_suspend);
10448 
10449 /**
10450  * ufshcd_system_resume - system resume callback
10451  * @dev: Device associated with the UFS controller.
10452  *
10453  * Executed after waking the system up from a sleep state in which the contents
10454  * of main memory were preserved.
10455  *
10456  * Return: 0 for success and non-zero for failure.
10457  */
ufshcd_system_resume(struct device * dev)10458 int ufshcd_system_resume(struct device *dev)
10459 {
10460 	struct ufs_hba *hba = dev_get_drvdata(dev);
10461 	ktime_t start = ktime_get();
10462 	int ret = 0;
10463 
10464 	if (pm_runtime_suspended(hba->dev))
10465 		goto out;
10466 
10467 	ret = ufshcd_resume(hba);
10468 
10469 out:
10470 	trace_ufshcd_system_resume(hba, ret,
10471 		ktime_to_us(ktime_sub(ktime_get(), start)),
10472 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10473 
10474 	return ret;
10475 }
10476 EXPORT_SYMBOL(ufshcd_system_resume);
10477 #endif /* CONFIG_PM_SLEEP */
10478 
10479 #ifdef CONFIG_PM
10480 /**
10481  * ufshcd_runtime_suspend - runtime suspend callback
10482  * @dev: Device associated with the UFS controller.
10483  *
10484  * Check the description of ufshcd_suspend() function for more details.
10485  *
10486  * Return: 0 for success and non-zero for failure.
10487  */
ufshcd_runtime_suspend(struct device * dev)10488 int ufshcd_runtime_suspend(struct device *dev)
10489 {
10490 	struct ufs_hba *hba = dev_get_drvdata(dev);
10491 	int ret;
10492 	ktime_t start = ktime_get();
10493 
10494 	ret = ufshcd_suspend(hba);
10495 
10496 	trace_ufshcd_runtime_suspend(hba, ret,
10497 		ktime_to_us(ktime_sub(ktime_get(), start)),
10498 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10499 	return ret;
10500 }
10501 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10502 
10503 /**
10504  * ufshcd_runtime_resume - runtime resume routine
10505  * @dev: Device associated with the UFS controller.
10506  *
10507  * This function basically brings controller
10508  * to active state. Following operations are done in this function:
10509  *
10510  * 1. Turn on all the controller related clocks
10511  * 2. Turn ON VCC rail
10512  *
10513  * Return: 0 upon success; < 0 upon failure.
10514  */
ufshcd_runtime_resume(struct device * dev)10515 int ufshcd_runtime_resume(struct device *dev)
10516 {
10517 	struct ufs_hba *hba = dev_get_drvdata(dev);
10518 	int ret;
10519 	ktime_t start = ktime_get();
10520 
10521 	ret = ufshcd_resume(hba);
10522 
10523 	trace_ufshcd_runtime_resume(hba, ret,
10524 		ktime_to_us(ktime_sub(ktime_get(), start)),
10525 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10526 	return ret;
10527 }
10528 EXPORT_SYMBOL(ufshcd_runtime_resume);
10529 #endif /* CONFIG_PM */
10530 
ufshcd_wl_shutdown(struct device * dev)10531 static void ufshcd_wl_shutdown(struct device *dev)
10532 {
10533 	struct scsi_device *sdev = to_scsi_device(dev);
10534 	struct ufs_hba *hba = shost_priv(sdev->host);
10535 
10536 	down(&hba->host_sem);
10537 	hba->shutting_down = true;
10538 	up(&hba->host_sem);
10539 
10540 	/* Turn on everything while shutting down */
10541 	ufshcd_rpm_get_sync(hba);
10542 	scsi_device_quiesce(sdev);
10543 	shost_for_each_device(sdev, hba->host) {
10544 		if (sdev == hba->ufs_device_wlun)
10545 			continue;
10546 		mutex_lock(&sdev->state_mutex);
10547 		scsi_device_set_state(sdev, SDEV_OFFLINE);
10548 		mutex_unlock(&sdev->state_mutex);
10549 	}
10550 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10551 
10552 	/*
10553 	 * Next, turn off the UFS controller and the UFS regulators. Disable
10554 	 * clocks.
10555 	 */
10556 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10557 		ufshcd_suspend(hba);
10558 
10559 	hba->is_powered = false;
10560 }
10561 
10562 /**
10563  * ufshcd_remove - de-allocate SCSI host and host memory space
10564  *		data structure memory
10565  * @hba: per adapter instance
10566  */
ufshcd_remove(struct ufs_hba * hba)10567 void ufshcd_remove(struct ufs_hba *hba)
10568 {
10569 	if (hba->ufs_device_wlun)
10570 		ufshcd_rpm_get_sync(hba);
10571 	ufs_hwmon_remove(hba);
10572 	ufs_bsg_remove(hba);
10573 	ufs_rpmb_remove(hba);
10574 	ufs_sysfs_remove_nodes(hba->dev);
10575 	cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
10576 	blk_mq_destroy_queue(hba->tmf_queue);
10577 	blk_put_queue(hba->tmf_queue);
10578 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10579 	if (hba->scsi_host_added)
10580 		scsi_remove_host(hba->host);
10581 	/* disable interrupts */
10582 	ufshcd_disable_intr(hba, hba->intr_mask);
10583 	ufshcd_hba_stop(hba);
10584 	ufshcd_hba_exit(hba);
10585 }
10586 EXPORT_SYMBOL_GPL(ufshcd_remove);
10587 
10588 #ifdef CONFIG_PM_SLEEP
ufshcd_system_freeze(struct device * dev)10589 int ufshcd_system_freeze(struct device *dev)
10590 {
10591 
10592 	return ufshcd_system_suspend(dev);
10593 
10594 }
10595 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10596 
ufshcd_system_restore(struct device * dev)10597 int ufshcd_system_restore(struct device *dev)
10598 {
10599 
10600 	struct ufs_hba *hba = dev_get_drvdata(dev);
10601 	int ret;
10602 
10603 	ret = ufshcd_system_resume(dev);
10604 	if (ret)
10605 		return ret;
10606 
10607 	/* Configure UTRL and UTMRL base address registers */
10608 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10609 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10610 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10611 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10612 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10613 			REG_UTP_TASK_REQ_LIST_BASE_L);
10614 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10615 			REG_UTP_TASK_REQ_LIST_BASE_H);
10616 	/*
10617 	 * Make sure that UTRL and UTMRL base address registers
10618 	 * are updated with the latest queue addresses. Only after
10619 	 * updating these addresses, we can queue the new commands.
10620 	 */
10621 	ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H);
10622 
10623 	return 0;
10624 
10625 }
10626 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10627 
ufshcd_system_thaw(struct device * dev)10628 int ufshcd_system_thaw(struct device *dev)
10629 {
10630 	return ufshcd_system_resume(dev);
10631 }
10632 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10633 #endif /* CONFIG_PM_SLEEP  */
10634 
10635 /**
10636  * ufshcd_set_dma_mask - Set dma mask based on the controller
10637  *			 addressing capability
10638  * @hba: per adapter instance
10639  *
10640  * Return: 0 for success, non-zero for failure.
10641  */
ufshcd_set_dma_mask(struct ufs_hba * hba)10642 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10643 {
10644 	if (hba->vops && hba->vops->set_dma_mask)
10645 		return hba->vops->set_dma_mask(hba);
10646 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10647 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10648 			return 0;
10649 	}
10650 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10651 }
10652 
10653 /**
10654  * ufshcd_devres_release - devres cleanup handler, invoked during release of
10655  *			   hba->dev
10656  * @host: pointer to SCSI host
10657  */
ufshcd_devres_release(void * host)10658 static void ufshcd_devres_release(void *host)
10659 {
10660 	scsi_host_put(host);
10661 }
10662 
10663 /**
10664  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10665  * @dev: pointer to device handle
10666  * @hba_handle: driver private handle
10667  *
10668  * Return: 0 on success, non-zero value on failure.
10669  *
10670  * NOTE: There is no corresponding ufshcd_dealloc_host() because this function
10671  * keeps track of its allocations using devres and deallocates everything on
10672  * device removal automatically.
10673  */
ufshcd_alloc_host(struct device * dev,struct ufs_hba ** hba_handle)10674 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10675 {
10676 	struct Scsi_Host *host;
10677 	struct ufs_hba *hba;
10678 	int err = 0;
10679 
10680 	if (!dev) {
10681 		dev_err(dev,
10682 		"Invalid memory reference for dev is NULL\n");
10683 		err = -ENODEV;
10684 		goto out_error;
10685 	}
10686 
10687 	host = scsi_host_alloc(&ufshcd_driver_template,
10688 				sizeof(struct ufs_hba));
10689 	if (!host) {
10690 		dev_err(dev, "scsi_host_alloc failed\n");
10691 		err = -ENOMEM;
10692 		goto out_error;
10693 	}
10694 
10695 	err = devm_add_action_or_reset(dev, ufshcd_devres_release,
10696 				       host);
10697 	if (err)
10698 		return err;
10699 
10700 	host->nr_maps = HCTX_TYPE_POLL + 1;
10701 	hba = shost_priv(host);
10702 	hba->host = host;
10703 	hba->dev = dev;
10704 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10705 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10706 	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10707 	INIT_LIST_HEAD(&hba->clk_list_head);
10708 	spin_lock_init(&hba->outstanding_lock);
10709 
10710 	*hba_handle = hba;
10711 
10712 out_error:
10713 	return err;
10714 }
10715 EXPORT_SYMBOL(ufshcd_alloc_host);
10716 
10717 /* This function exists because blk_mq_alloc_tag_set() requires this. */
ufshcd_queue_tmf(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * qd)10718 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10719 				     const struct blk_mq_queue_data *qd)
10720 {
10721 	WARN_ON_ONCE(true);
10722 	return BLK_STS_NOTSUPP;
10723 }
10724 
10725 static const struct blk_mq_ops ufshcd_tmf_ops = {
10726 	.queue_rq = ufshcd_queue_tmf,
10727 };
10728 
ufshcd_add_scsi_host(struct ufs_hba * hba)10729 static int ufshcd_add_scsi_host(struct ufs_hba *hba)
10730 {
10731 	int err;
10732 
10733 	WARN_ON_ONCE(!hba->host->can_queue);
10734 	WARN_ON_ONCE(!hba->host->cmd_per_lun);
10735 
10736 	if (is_mcq_supported(hba)) {
10737 		ufshcd_mcq_enable(hba);
10738 		err = ufshcd_alloc_mcq(hba);
10739 		if (!err) {
10740 			ufshcd_config_mcq(hba);
10741 		} else {
10742 			/* Continue with SDB mode */
10743 			ufshcd_mcq_disable(hba);
10744 			use_mcq_mode = false;
10745 			dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
10746 				err);
10747 		}
10748 	}
10749 	if (!is_mcq_supported(hba) && !hba->lsdb_sup) {
10750 		dev_err(hba->dev,
10751 			"%s: failed to initialize (legacy doorbell mode not supported)\n",
10752 			__func__);
10753 		return -EINVAL;
10754 	}
10755 
10756 	err = scsi_add_host(hba->host, hba->dev);
10757 	if (err) {
10758 		dev_err(hba->dev, "scsi_add_host failed\n");
10759 		return err;
10760 	}
10761 	hba->scsi_host_added = true;
10762 
10763 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10764 		.nr_hw_queues	= 1,
10765 		.queue_depth	= hba->nutmrs,
10766 		.ops		= &ufshcd_tmf_ops,
10767 	};
10768 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10769 	if (err < 0)
10770 		goto remove_scsi_host;
10771 	hba->tmf_queue = blk_mq_alloc_queue(&hba->tmf_tag_set, NULL, NULL);
10772 	if (IS_ERR(hba->tmf_queue)) {
10773 		err = PTR_ERR(hba->tmf_queue);
10774 		goto free_tmf_tag_set;
10775 	}
10776 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10777 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10778 	if (!hba->tmf_rqs) {
10779 		err = -ENOMEM;
10780 		goto free_tmf_queue;
10781 	}
10782 
10783 	return 0;
10784 
10785 free_tmf_queue:
10786 	blk_mq_destroy_queue(hba->tmf_queue);
10787 	blk_put_queue(hba->tmf_queue);
10788 
10789 free_tmf_tag_set:
10790 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10791 
10792 remove_scsi_host:
10793 	if (hba->scsi_host_added)
10794 		scsi_remove_host(hba->host);
10795 
10796 	return err;
10797 }
10798 
10799 /**
10800  * ufshcd_init - Driver initialization routine
10801  * @hba: per-adapter instance
10802  * @mmio_base: base register address
10803  * @irq: Interrupt line of device
10804  *
10805  * Return: 0 on success; < 0 on failure.
10806  */
ufshcd_init(struct ufs_hba * hba,void __iomem * mmio_base,unsigned int irq)10807 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10808 {
10809 	int err;
10810 	struct Scsi_Host *host = hba->host;
10811 	struct device *dev = hba->dev;
10812 
10813 	/*
10814 	 * dev_set_drvdata() must be called before any callbacks are registered
10815 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10816 	 * sysfs).
10817 	 */
10818 	dev_set_drvdata(dev, hba);
10819 
10820 	if (!mmio_base) {
10821 		dev_err(hba->dev,
10822 		"Invalid memory reference for mmio_base is NULL\n");
10823 		err = -ENODEV;
10824 		goto out_error;
10825 	}
10826 
10827 	hba->mmio_base = mmio_base;
10828 	hba->irq = irq;
10829 	hba->vps = &ufs_hba_vps;
10830 
10831 	/*
10832 	 * Initialize clk_gating.lock early since it is being used in
10833 	 * ufshcd_setup_clocks()
10834 	 */
10835 	spin_lock_init(&hba->clk_gating.lock);
10836 
10837 	/* Initialize mutex for PM QoS request synchronization */
10838 	mutex_init(&hba->pm_qos_mutex);
10839 
10840 	/*
10841 	 * Set the default power management level for runtime and system PM.
10842 	 * Host controller drivers can override them in their
10843 	 * 'ufs_hba_variant_ops::init' callback.
10844 	 *
10845 	 * Default power saving mode is to keep UFS link in Hibern8 state
10846 	 * and UFS device in sleep state.
10847 	 */
10848 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10849 						UFS_SLEEP_PWR_MODE,
10850 						UIC_LINK_HIBERN8_STATE);
10851 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10852 						UFS_SLEEP_PWR_MODE,
10853 						UIC_LINK_HIBERN8_STATE);
10854 
10855 	/*
10856 	 * Most ufs devices require 1ms delay after vcc is powered off before
10857 	 * it can be powered on again. Set the default to 2ms. The platform
10858 	 * drivers can override this setting as needed.
10859 	 */
10860 	hba->vcc_off_delay_us = 2000;
10861 
10862 	err = ufshcd_hba_init(hba);
10863 	if (err)
10864 		goto out_error;
10865 
10866 	/* Read capabilities registers */
10867 	err = ufshcd_hba_capabilities(hba);
10868 	if (err)
10869 		goto out_disable;
10870 
10871 	/* Get UFS version supported by the controller */
10872 	hba->ufs_version = ufshcd_get_ufs_version(hba);
10873 
10874 	/* Get Interrupt bit mask per version */
10875 	hba->intr_mask = ufshcd_get_intr_mask(hba);
10876 
10877 	err = ufshcd_set_dma_mask(hba);
10878 	if (err) {
10879 		dev_err(hba->dev, "set dma mask failed\n");
10880 		goto out_disable;
10881 	}
10882 
10883 	/* Allocate memory for host memory space */
10884 	err = ufshcd_memory_alloc(hba);
10885 	if (err) {
10886 		dev_err(hba->dev, "Memory allocation failed\n");
10887 		goto out_disable;
10888 	}
10889 
10890 	/* Configure LRB */
10891 	ufshcd_host_memory_configure(hba);
10892 
10893 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10894 	/*
10895 	 * Set the queue depth for WLUNs. ufs_get_device_desc() will increase
10896 	 * host->cmd_per_lun to a larger value.
10897 	 */
10898 	host->cmd_per_lun = 1;
10899 	host->max_id = UFSHCD_MAX_ID;
10900 	host->max_lun = UFS_MAX_LUNS;
10901 	host->max_channel = UFSHCD_MAX_CHANNEL;
10902 	host->unique_id = host->host_no;
10903 	host->max_cmd_len = UFS_CDB_SIZE;
10904 	host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10905 
10906 	/* Use default RPM delay if host not set */
10907 	if (host->rpm_autosuspend_delay == 0)
10908 		host->rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS;
10909 
10910 	hba->max_pwr_info.is_valid = false;
10911 
10912 	/* Initialize work queues */
10913 	hba->eh_wq = alloc_ordered_workqueue("ufs_eh_wq_%d", WQ_MEM_RECLAIM,
10914 					     hba->host->host_no);
10915 	if (!hba->eh_wq) {
10916 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10917 			__func__);
10918 		err = -ENOMEM;
10919 		goto out_disable;
10920 	}
10921 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10922 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10923 
10924 	sema_init(&hba->host_sem, 1);
10925 
10926 	/* Initialize UIC command mutex */
10927 	mutex_init(&hba->uic_cmd_mutex);
10928 
10929 	/* Initialize mutex for device management commands */
10930 	mutex_init(&hba->dev_cmd.lock);
10931 
10932 	/* Initialize mutex for exception event control */
10933 	mutex_init(&hba->ee_ctrl_mutex);
10934 
10935 	mutex_init(&hba->wb_mutex);
10936 
10937 	init_rwsem(&hba->clk_scaling_lock);
10938 
10939 	ufshcd_init_clk_gating(hba);
10940 
10941 	ufshcd_init_clk_scaling(hba);
10942 
10943 	/*
10944 	 * In order to avoid any spurious interrupt immediately after
10945 	 * registering UFS controller interrupt handler, clear any pending UFS
10946 	 * interrupt status and disable all the UFS interrupts.
10947 	 */
10948 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10949 		      REG_INTERRUPT_STATUS);
10950 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10951 	/*
10952 	 * Make sure that UFS interrupts are disabled and any pending interrupt
10953 	 * status is cleared before registering UFS interrupt handler.
10954 	 */
10955 	ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
10956 
10957 	/* IRQ registration */
10958 	err = devm_request_threaded_irq(dev, irq, ufshcd_intr, ufshcd_threaded_intr,
10959 					IRQF_ONESHOT | IRQF_SHARED, UFSHCD, hba);
10960 	if (err) {
10961 		dev_err(hba->dev, "request irq failed\n");
10962 		goto out_disable;
10963 	} else {
10964 		hba->is_irq_enabled = true;
10965 	}
10966 
10967 	/* Reset the attached device */
10968 	ufshcd_device_reset(hba);
10969 
10970 	ufshcd_init_crypto(hba);
10971 
10972 	/* Host controller enable */
10973 	err = ufshcd_hba_enable(hba);
10974 	if (err) {
10975 		dev_err(hba->dev, "Host controller enable failed\n");
10976 		ufshcd_print_evt_hist(hba);
10977 		ufshcd_print_host_state(hba);
10978 		goto out_disable;
10979 	}
10980 
10981 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work);
10982 	INIT_DELAYED_WORK(&hba->ufs_rtc_update_work, ufshcd_rtc_work);
10983 
10984 	/* Set the default auto-hiberate idle timer value to 150 ms */
10985 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10986 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10987 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10988 	}
10989 
10990 	err = ufshcd_add_scsi_host(hba);
10991 	if (err)
10992 		goto out_disable;
10993 
10994 	/* Hold auto suspend until async scan completes */
10995 	pm_runtime_get_sync(dev);
10996 
10997 	/*
10998 	 * We are assuming that device wasn't put in sleep/power-down
10999 	 * state exclusively during the boot stage before kernel.
11000 	 * This assumption helps avoid doing link startup twice during
11001 	 * ufshcd_probe_hba().
11002 	 */
11003 	ufshcd_set_ufs_dev_active(hba);
11004 
11005 	/* Initialize hba, detect and initialize UFS device */
11006 	ktime_t probe_start = ktime_get();
11007 
11008 	hba->ufshcd_state = UFSHCD_STATE_RESET;
11009 
11010 	err = ufshcd_link_startup(hba);
11011 	if (err)
11012 		goto out_disable;
11013 
11014 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
11015 		goto initialized;
11016 
11017 	/* Debug counters initialization */
11018 	ufshcd_clear_dbg_ufs_stats(hba);
11019 
11020 	/* UniPro link is active now */
11021 	ufshcd_set_link_active(hba);
11022 
11023 	/* Verify device initialization by sending NOP OUT UPIU */
11024 	err = ufshcd_verify_dev_init(hba);
11025 	if (err)
11026 		goto out_disable;
11027 
11028 	/* Initiate UFS initialization, and waiting until completion */
11029 	err = ufshcd_complete_dev_init(hba);
11030 	if (err)
11031 		goto out_disable;
11032 
11033 	err = ufshcd_device_params_init(hba);
11034 	if (err)
11035 		goto out_disable;
11036 
11037 	err = ufshcd_post_device_init(hba);
11038 
11039 initialized:
11040 	ufshcd_process_probe_result(hba, probe_start, err);
11041 	if (err)
11042 		goto out_disable;
11043 
11044 	ufs_sysfs_add_nodes(hba->dev);
11045 	async_schedule(ufshcd_async_scan, hba);
11046 
11047 	device_enable_async_suspend(dev);
11048 	ufshcd_pm_qos_init(hba);
11049 	return 0;
11050 
11051 out_disable:
11052 	hba->is_irq_enabled = false;
11053 	ufshcd_hba_exit(hba);
11054 out_error:
11055 	return err > 0 ? -EIO : err;
11056 }
11057 EXPORT_SYMBOL_GPL(ufshcd_init);
11058 
ufshcd_resume_complete(struct device * dev)11059 void ufshcd_resume_complete(struct device *dev)
11060 {
11061 	struct ufs_hba *hba = dev_get_drvdata(dev);
11062 
11063 	if (hba->complete_put) {
11064 		ufshcd_rpm_put(hba);
11065 		hba->complete_put = false;
11066 	}
11067 }
11068 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
11069 
ufshcd_rpm_ok_for_spm(struct ufs_hba * hba)11070 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
11071 {
11072 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
11073 	enum ufs_dev_pwr_mode dev_pwr_mode;
11074 	enum uic_link_state link_state;
11075 	unsigned long flags;
11076 	bool res;
11077 
11078 	spin_lock_irqsave(&dev->power.lock, flags);
11079 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
11080 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
11081 	res = pm_runtime_suspended(dev) &&
11082 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
11083 	      hba->uic_link_state == link_state &&
11084 	      !hba->dev_info.b_rpm_dev_flush_capable;
11085 	spin_unlock_irqrestore(&dev->power.lock, flags);
11086 
11087 	return res;
11088 }
11089 
__ufshcd_suspend_prepare(struct device * dev,bool rpm_ok_for_spm)11090 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
11091 {
11092 	struct ufs_hba *hba = dev_get_drvdata(dev);
11093 	int ret;
11094 
11095 	/*
11096 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
11097 	 * are same. And it doesn't wake up the device for system-suspend
11098 	 * if it's runtime suspended. But ufs doesn't follow that.
11099 	 * Refer ufshcd_resume_complete()
11100 	 */
11101 	if (hba->ufs_device_wlun) {
11102 		/* Prevent runtime suspend */
11103 		ufshcd_rpm_get_noresume(hba);
11104 		/*
11105 		 * Check if already runtime suspended in same state as system
11106 		 * suspend would be.
11107 		 */
11108 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
11109 			/* RPM state is not ok for SPM, so runtime resume */
11110 			ret = ufshcd_rpm_resume(hba);
11111 			if (ret < 0 && ret != -EACCES) {
11112 				ufshcd_rpm_put(hba);
11113 				return ret;
11114 			}
11115 		}
11116 		hba->complete_put = true;
11117 	}
11118 	return 0;
11119 }
11120 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
11121 
ufshcd_suspend_prepare(struct device * dev)11122 int ufshcd_suspend_prepare(struct device *dev)
11123 {
11124 	return __ufshcd_suspend_prepare(dev, true);
11125 }
11126 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
11127 
11128 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_poweroff(struct device * dev)11129 static int ufshcd_wl_poweroff(struct device *dev)
11130 {
11131 	struct scsi_device *sdev = to_scsi_device(dev);
11132 	struct ufs_hba *hba = shost_priv(sdev->host);
11133 
11134 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
11135 	return 0;
11136 }
11137 #endif
11138 
ufshcd_wl_probe(struct device * dev)11139 static int ufshcd_wl_probe(struct device *dev)
11140 {
11141 	struct scsi_device *sdev = to_scsi_device(dev);
11142 
11143 	if (!is_device_wlun(sdev))
11144 		return -ENODEV;
11145 
11146 	blk_pm_runtime_init(sdev->request_queue, dev);
11147 	pm_runtime_set_autosuspend_delay(dev, 0);
11148 	pm_runtime_allow(dev);
11149 
11150 	return  0;
11151 }
11152 
ufshcd_wl_remove(struct device * dev)11153 static int ufshcd_wl_remove(struct device *dev)
11154 {
11155 	pm_runtime_forbid(dev);
11156 	return 0;
11157 }
11158 
11159 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
11160 #ifdef CONFIG_PM_SLEEP
11161 	.suspend = ufshcd_wl_suspend,
11162 	.resume = ufshcd_wl_resume,
11163 	.freeze = ufshcd_wl_suspend,
11164 	.thaw = ufshcd_wl_resume,
11165 	.poweroff = ufshcd_wl_poweroff,
11166 	.restore = ufshcd_wl_resume,
11167 #endif
11168 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
11169 };
11170 
ufshcd_check_header_layout(void)11171 static void ufshcd_check_header_layout(void)
11172 {
11173 	/*
11174 	 * gcc compilers before version 10 cannot do constant-folding for
11175 	 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
11176 	 * before.
11177 	 */
11178 	if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
11179 		return;
11180 
11181 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11182 				.cci = 3})[0] != 3);
11183 
11184 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11185 				.ehs_length = 2})[1] != 2);
11186 
11187 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11188 				.enable_crypto = 1})[2]
11189 		     != 0x80);
11190 
11191 	BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
11192 					.command_type = 5,
11193 					.data_direction = 3,
11194 					.interrupt = 1,
11195 				})[3]) != ((5 << 4) | (3 << 1) | 1));
11196 
11197 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
11198 				.dunl = cpu_to_le32(0xdeadbeef)})[1] !=
11199 		cpu_to_le32(0xdeadbeef));
11200 
11201 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11202 				.ocs = 4})[8] != 4);
11203 
11204 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11205 				.cds = 5})[9] != 5);
11206 
11207 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
11208 				.dunu = cpu_to_le32(0xbadcafe)})[3] !=
11209 		cpu_to_le32(0xbadcafe));
11210 
11211 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
11212 			     .iid = 0xf })[4] != 0xf0);
11213 
11214 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
11215 			     .command_set_type = 0xf })[4] != 0xf);
11216 }
11217 
11218 /*
11219  * ufs_dev_wlun_template - describes ufs device wlun
11220  * ufs-device wlun - used to send pm commands
11221  * All luns are consumers of ufs-device wlun.
11222  *
11223  * Currently, no sd driver is present for wluns.
11224  * Hence the no specific pm operations are performed.
11225  * With ufs design, SSU should be sent to ufs-device wlun.
11226  * Hence register a scsi driver for ufs wluns only.
11227  */
11228 static struct scsi_driver ufs_dev_wlun_template = {
11229 	.gendrv = {
11230 		.name = "ufs_device_wlun",
11231 		.probe = ufshcd_wl_probe,
11232 		.remove = ufshcd_wl_remove,
11233 		.pm = &ufshcd_wl_pm_ops,
11234 		.shutdown = ufshcd_wl_shutdown,
11235 	},
11236 };
11237 
ufshcd_core_init(void)11238 static int __init ufshcd_core_init(void)
11239 {
11240 	int ret;
11241 
11242 	ufshcd_check_header_layout();
11243 
11244 	ufs_debugfs_init();
11245 
11246 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
11247 	if (ret)
11248 		ufs_debugfs_exit();
11249 	return ret;
11250 }
11251 
ufshcd_core_exit(void)11252 static void __exit ufshcd_core_exit(void)
11253 {
11254 	ufs_debugfs_exit();
11255 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
11256 }
11257 
11258 module_init(ufshcd_core_init);
11259 module_exit(ufshcd_core_exit);
11260 
11261 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
11262 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
11263 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
11264 MODULE_SOFTDEP("pre: governor_simpleondemand");
11265 MODULE_LICENSE("GPL");
11266