1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Universal Flash Storage Host controller driver Core
4 * Copyright (C) 2011-2013 Samsung India Software Operations
5 * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6 *
7 * Authors:
8 * Santosh Yaraganavi <santosh.sy@samsung.com>
9 * Vinayak Holikatti <h.vinayak@samsung.com>
10 */
11
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/pm_opp.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/sched/clock.h>
26 #include <linux/iopoll.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_driver.h>
30 #include <scsi/scsi_eh.h>
31 #include <scsi/scsi_tcq.h>
32 #include "ufshcd-priv.h"
33 #include <ufs/ufs_quirks.h>
34 #include <ufs/unipro.h>
35 #include "ufs-sysfs.h"
36 #include "ufs-debugfs.h"
37 #include "ufs-fault-injection.h"
38 #include "ufs_bsg.h"
39 #include "ufshcd-crypto.h"
40 #include <linux/unaligned.h>
41
42 #define CREATE_TRACE_POINTS
43 #include "ufs_trace.h"
44
45 #define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\
46 UTP_TASK_REQ_COMPL |\
47 UFSHCD_ERROR_MASK)
48
49 /* UIC command timeout, unit: ms */
50 enum {
51 UIC_CMD_TIMEOUT_DEFAULT = 500,
52 UIC_CMD_TIMEOUT_MAX = 5000,
53 };
54 /* NOP OUT retries waiting for NOP IN response */
55 #define NOP_OUT_RETRIES 10
56 /* Timeout after 50 msecs if NOP OUT hangs without response */
57 #define NOP_OUT_TIMEOUT 50 /* msecs */
58
59 /* Query request retries */
60 #define QUERY_REQ_RETRIES 3
61 /* Query request timeout */
62 enum {
63 QUERY_REQ_TIMEOUT_MIN = 1,
64 QUERY_REQ_TIMEOUT_DEFAULT = 1500,
65 QUERY_REQ_TIMEOUT_MAX = 30000
66 };
67
68 /* Advanced RPMB request timeout */
69 #define ADVANCED_RPMB_REQ_TIMEOUT 3000 /* 3 seconds */
70
71 /* Task management command timeout */
72 #define TM_CMD_TIMEOUT 100 /* msecs */
73
74 /* maximum number of retries for a general UIC command */
75 #define UFS_UIC_COMMAND_RETRIES 3
76
77 /* maximum number of link-startup retries */
78 #define DME_LINKSTARTUP_RETRIES 3
79
80 /* maximum number of reset retries before giving up */
81 #define MAX_HOST_RESET_RETRIES 5
82
83 /* Maximum number of error handler retries before giving up */
84 #define MAX_ERR_HANDLER_RETRIES 5
85
86 /* Expose the flag value from utp_upiu_query.value */
87 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
88
89 /* Interrupt aggregation default timeout, unit: 40us */
90 #define INT_AGGR_DEF_TO 0x02
91
92 /* default delay of autosuspend: 2000 ms */
93 #define RPM_AUTOSUSPEND_DELAY_MS 2000
94
95 /* Default delay of RPM device flush delayed work */
96 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
97
98 /* Default value of wait time before gating device ref clock */
99 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
100
101 /* Polling time to wait for fDeviceInit */
102 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
103
104 /* Default RTC update every 10 seconds */
105 #define UFS_RTC_UPDATE_INTERVAL_MS (10 * MSEC_PER_SEC)
106
107 /* bMaxNumOfRTT is equal to two after device manufacturing */
108 #define DEFAULT_MAX_NUM_RTT 2
109
110 /* UFSHC 4.0 compliant HC support this mode. */
111 static bool use_mcq_mode = true;
112
is_mcq_supported(struct ufs_hba * hba)113 static bool is_mcq_supported(struct ufs_hba *hba)
114 {
115 return hba->mcq_sup && use_mcq_mode;
116 }
117
118 module_param(use_mcq_mode, bool, 0644);
119 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
120
121 static unsigned int uic_cmd_timeout = UIC_CMD_TIMEOUT_DEFAULT;
122
uic_cmd_timeout_set(const char * val,const struct kernel_param * kp)123 static int uic_cmd_timeout_set(const char *val, const struct kernel_param *kp)
124 {
125 return param_set_uint_minmax(val, kp, UIC_CMD_TIMEOUT_DEFAULT,
126 UIC_CMD_TIMEOUT_MAX);
127 }
128
129 static const struct kernel_param_ops uic_cmd_timeout_ops = {
130 .set = uic_cmd_timeout_set,
131 .get = param_get_uint,
132 };
133
134 module_param_cb(uic_cmd_timeout, &uic_cmd_timeout_ops, &uic_cmd_timeout, 0644);
135 MODULE_PARM_DESC(uic_cmd_timeout,
136 "UFS UIC command timeout in milliseconds. Defaults to 500ms. Supported values range from 500ms to 5 seconds inclusively");
137
138 static unsigned int dev_cmd_timeout = QUERY_REQ_TIMEOUT_DEFAULT;
139
dev_cmd_timeout_set(const char * val,const struct kernel_param * kp)140 static int dev_cmd_timeout_set(const char *val, const struct kernel_param *kp)
141 {
142 return param_set_uint_minmax(val, kp, QUERY_REQ_TIMEOUT_MIN,
143 QUERY_REQ_TIMEOUT_MAX);
144 }
145
146 static const struct kernel_param_ops dev_cmd_timeout_ops = {
147 .set = dev_cmd_timeout_set,
148 .get = param_get_uint,
149 };
150
151 module_param_cb(dev_cmd_timeout, &dev_cmd_timeout_ops, &dev_cmd_timeout, 0644);
152 MODULE_PARM_DESC(dev_cmd_timeout,
153 "UFS Device command timeout in milliseconds. Defaults to 1.5s. Supported values range from 1ms to 30 seconds inclusively");
154
155 #define ufshcd_toggle_vreg(_dev, _vreg, _on) \
156 ({ \
157 int _ret; \
158 if (_on) \
159 _ret = ufshcd_enable_vreg(_dev, _vreg); \
160 else \
161 _ret = ufshcd_disable_vreg(_dev, _vreg); \
162 _ret; \
163 })
164
165 #define ufshcd_hex_dump(prefix_str, buf, len) do { \
166 size_t __len = (len); \
167 print_hex_dump(KERN_ERR, prefix_str, \
168 __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
169 16, 4, buf, __len, false); \
170 } while (0)
171
ufshcd_dump_regs(struct ufs_hba * hba,size_t offset,size_t len,const char * prefix)172 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
173 const char *prefix)
174 {
175 u32 *regs;
176 size_t pos;
177
178 if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
179 return -EINVAL;
180
181 regs = kzalloc(len, GFP_ATOMIC);
182 if (!regs)
183 return -ENOMEM;
184
185 for (pos = 0; pos < len; pos += 4) {
186 if (offset == 0 &&
187 pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
188 pos <= REG_UIC_ERROR_CODE_DME)
189 continue;
190 regs[pos / 4] = ufshcd_readl(hba, offset + pos);
191 }
192
193 ufshcd_hex_dump(prefix, regs, len);
194 kfree(regs);
195
196 return 0;
197 }
198 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
199
200 enum {
201 UFSHCD_MAX_CHANNEL = 0,
202 UFSHCD_MAX_ID = 1,
203 };
204
205 static const char *const ufshcd_state_name[] = {
206 [UFSHCD_STATE_RESET] = "reset",
207 [UFSHCD_STATE_OPERATIONAL] = "operational",
208 [UFSHCD_STATE_ERROR] = "error",
209 [UFSHCD_STATE_EH_SCHEDULED_FATAL] = "eh_fatal",
210 [UFSHCD_STATE_EH_SCHEDULED_NON_FATAL] = "eh_non_fatal",
211 };
212
213 /* UFSHCD error handling flags */
214 enum {
215 UFSHCD_EH_IN_PROGRESS = (1 << 0),
216 };
217
218 /* UFSHCD UIC layer error flags */
219 enum {
220 UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
221 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
222 UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
223 UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
224 UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
225 UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
226 UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
227 };
228
229 #define ufshcd_set_eh_in_progress(h) \
230 ((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
231 #define ufshcd_eh_in_progress(h) \
232 ((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
233 #define ufshcd_clear_eh_in_progress(h) \
234 ((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
235
236 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
237 [UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
238 [UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
239 [UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
240 [UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
241 [UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
242 [UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
243 /*
244 * For DeepSleep, the link is first put in hibern8 and then off.
245 * Leaving the link in hibern8 is not supported.
246 */
247 [UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
248 };
249
250 static inline enum ufs_dev_pwr_mode
ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)251 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
252 {
253 return ufs_pm_lvl_states[lvl].dev_state;
254 }
255
256 static inline enum uic_link_state
ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)257 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
258 {
259 return ufs_pm_lvl_states[lvl].link_state;
260 }
261
262 static inline enum ufs_pm_level
ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,enum uic_link_state link_state)263 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
264 enum uic_link_state link_state)
265 {
266 enum ufs_pm_level lvl;
267
268 for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
269 if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
270 (ufs_pm_lvl_states[lvl].link_state == link_state))
271 return lvl;
272 }
273
274 /* if no match found, return the level 0 */
275 return UFS_PM_LVL_0;
276 }
277
ufshcd_has_pending_tasks(struct ufs_hba * hba)278 static bool ufshcd_has_pending_tasks(struct ufs_hba *hba)
279 {
280 return hba->outstanding_tasks || hba->active_uic_cmd ||
281 hba->uic_async_done;
282 }
283
ufshcd_is_ufs_dev_busy(struct ufs_hba * hba)284 static bool ufshcd_is_ufs_dev_busy(struct ufs_hba *hba)
285 {
286 return scsi_host_busy(hba->host) || ufshcd_has_pending_tasks(hba);
287 }
288
289 static const struct ufs_dev_quirk ufs_fixups[] = {
290 /* UFS cards deviations table */
291 { .wmanufacturerid = UFS_VENDOR_MICRON,
292 .model = UFS_ANY_MODEL,
293 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
294 { .wmanufacturerid = UFS_VENDOR_SAMSUNG,
295 .model = UFS_ANY_MODEL,
296 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
297 UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
298 UFS_DEVICE_QUIRK_PA_HIBER8TIME |
299 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
300 { .wmanufacturerid = UFS_VENDOR_SKHYNIX,
301 .model = UFS_ANY_MODEL,
302 .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
303 { .wmanufacturerid = UFS_VENDOR_SKHYNIX,
304 .model = "hB8aL1" /*H28U62301AMR*/,
305 .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
306 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
307 .model = UFS_ANY_MODEL,
308 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
309 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
310 .model = "THGLF2G9C8KBADG",
311 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
312 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
313 .model = "THGLF2G9D8KBADG",
314 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
315 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
316 .model = "THGJFJT1E45BATP",
317 .quirk = UFS_DEVICE_QUIRK_NO_TIMESTAMP_SUPPORT },
318 {}
319 };
320
321 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
322 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
323 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
324 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
325 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
326 static void ufshcd_hba_exit(struct ufs_hba *hba);
327 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params);
328 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
329 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
330 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
331 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
332 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
333 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
334 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
335 bool scale_up);
336 static irqreturn_t ufshcd_intr(int irq, void *__hba);
337 static int ufshcd_change_power_mode(struct ufs_hba *hba,
338 struct ufs_pa_layer_attr *pwr_mode);
339 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
340 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
341 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
342 struct ufs_vreg *vreg);
343 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
344 bool enable);
345 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
346 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
347
ufshcd_enable_irq(struct ufs_hba * hba)348 void ufshcd_enable_irq(struct ufs_hba *hba)
349 {
350 if (!hba->is_irq_enabled) {
351 enable_irq(hba->irq);
352 hba->is_irq_enabled = true;
353 }
354 }
355 EXPORT_SYMBOL_GPL(ufshcd_enable_irq);
356
ufshcd_disable_irq(struct ufs_hba * hba)357 void ufshcd_disable_irq(struct ufs_hba *hba)
358 {
359 if (hba->is_irq_enabled) {
360 disable_irq(hba->irq);
361 hba->is_irq_enabled = false;
362 }
363 }
364 EXPORT_SYMBOL_GPL(ufshcd_disable_irq);
365
366 /**
367 * ufshcd_enable_intr - enable interrupts
368 * @hba: per adapter instance
369 * @intrs: interrupt bits
370 */
ufshcd_enable_intr(struct ufs_hba * hba,u32 intrs)371 void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
372 {
373 u32 old_val = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
374 u32 new_val = old_val | intrs;
375
376 if (new_val != old_val)
377 ufshcd_writel(hba, new_val, REG_INTERRUPT_ENABLE);
378 }
379
380 /**
381 * ufshcd_disable_intr - disable interrupts
382 * @hba: per adapter instance
383 * @intrs: interrupt bits
384 */
ufshcd_disable_intr(struct ufs_hba * hba,u32 intrs)385 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
386 {
387 u32 old_val = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
388 u32 new_val = old_val & ~intrs;
389
390 if (new_val != old_val)
391 ufshcd_writel(hba, new_val, REG_INTERRUPT_ENABLE);
392 }
393
ufshcd_configure_wb(struct ufs_hba * hba)394 static void ufshcd_configure_wb(struct ufs_hba *hba)
395 {
396 if (!ufshcd_is_wb_allowed(hba))
397 return;
398
399 ufshcd_wb_toggle(hba, true);
400
401 ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
402
403 if (ufshcd_is_wb_buf_flush_allowed(hba))
404 ufshcd_wb_toggle_buf_flush(hba, true);
405 }
406
ufshcd_add_cmd_upiu_trace(struct ufs_hba * hba,struct ufshcd_lrb * lrb,enum ufs_trace_str_t str_t)407 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba,
408 struct ufshcd_lrb *lrb,
409 enum ufs_trace_str_t str_t)
410 {
411 struct utp_upiu_req *rq = lrb->ucd_req_ptr;
412 struct utp_upiu_header *header;
413
414 if (!trace_ufshcd_upiu_enabled())
415 return;
416
417 if (str_t == UFS_CMD_SEND)
418 header = &rq->header;
419 else
420 header = &lrb->ucd_rsp_ptr->header;
421
422 trace_ufshcd_upiu(hba, str_t, header, &rq->sc.cdb,
423 UFS_TSF_CDB);
424 }
425
ufshcd_add_query_upiu_trace(struct ufs_hba * hba,enum ufs_trace_str_t str_t,struct utp_upiu_req * rq_rsp)426 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
427 enum ufs_trace_str_t str_t,
428 struct utp_upiu_req *rq_rsp)
429 {
430 if (!trace_ufshcd_upiu_enabled())
431 return;
432
433 trace_ufshcd_upiu(hba, str_t, &rq_rsp->header,
434 &rq_rsp->qr, UFS_TSF_OSF);
435 }
436
ufshcd_add_tm_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)437 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
438 enum ufs_trace_str_t str_t)
439 {
440 struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
441
442 if (!trace_ufshcd_upiu_enabled())
443 return;
444
445 if (str_t == UFS_TM_SEND)
446 trace_ufshcd_upiu(hba, str_t,
447 &descp->upiu_req.req_header,
448 &descp->upiu_req.input_param1,
449 UFS_TSF_TM_INPUT);
450 else
451 trace_ufshcd_upiu(hba, str_t,
452 &descp->upiu_rsp.rsp_header,
453 &descp->upiu_rsp.output_param1,
454 UFS_TSF_TM_OUTPUT);
455 }
456
ufshcd_add_uic_command_trace(struct ufs_hba * hba,const struct uic_command * ucmd,enum ufs_trace_str_t str_t)457 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
458 const struct uic_command *ucmd,
459 enum ufs_trace_str_t str_t)
460 {
461 u32 cmd;
462
463 if (!trace_ufshcd_uic_command_enabled())
464 return;
465
466 if (str_t == UFS_CMD_SEND)
467 cmd = ucmd->command;
468 else
469 cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
470
471 trace_ufshcd_uic_command(hba, str_t, cmd,
472 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
473 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
474 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
475 }
476
ufshcd_add_command_trace(struct ufs_hba * hba,struct scsi_cmnd * cmd,enum ufs_trace_str_t str_t)477 static void ufshcd_add_command_trace(struct ufs_hba *hba, struct scsi_cmnd *cmd,
478 enum ufs_trace_str_t str_t)
479 {
480 u64 lba = 0;
481 u8 opcode = 0, group_id = 0;
482 u32 doorbell = 0;
483 u32 intr;
484 u32 hwq_id = 0;
485 struct request *rq = scsi_cmd_to_rq(cmd);
486 unsigned int tag = rq->tag;
487 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
488 int transfer_len = -1;
489
490 /* trace UPIU also */
491 ufshcd_add_cmd_upiu_trace(hba, lrbp, str_t);
492 if (!trace_ufshcd_command_enabled())
493 return;
494
495 opcode = cmd->cmnd[0];
496
497 if (opcode == READ_10 || opcode == WRITE_10) {
498 /*
499 * Currently we only fully trace read(10) and write(10) commands
500 */
501 transfer_len =
502 be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
503 lba = scsi_get_lba(cmd);
504 if (opcode == WRITE_10)
505 group_id = cmd->cmnd[6];
506 } else if (opcode == UNMAP) {
507 /*
508 * The number of Bytes to be unmapped beginning with the lba.
509 */
510 transfer_len = blk_rq_bytes(rq);
511 lba = scsi_get_lba(cmd);
512 }
513
514 intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
515
516 if (hba->mcq_enabled) {
517 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
518
519 hwq_id = hwq->id;
520 } else {
521 doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
522 }
523 trace_ufshcd_command(cmd->device, hba, str_t, tag, doorbell, hwq_id,
524 transfer_len, intr, lba, opcode, group_id);
525 }
526
ufshcd_print_clk_freqs(struct ufs_hba * hba)527 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
528 {
529 struct ufs_clk_info *clki;
530 struct list_head *head = &hba->clk_list_head;
531
532 if (list_empty(head))
533 return;
534
535 list_for_each_entry(clki, head, list) {
536 if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
537 clki->max_freq)
538 dev_err(hba->dev, "clk: %s, rate: %u\n",
539 clki->name, clki->curr_freq);
540 }
541 }
542
ufshcd_print_evt(struct ufs_hba * hba,u32 id,const char * err_name)543 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
544 const char *err_name)
545 {
546 int i;
547 bool found = false;
548 const struct ufs_event_hist *e;
549
550 if (id >= UFS_EVT_CNT)
551 return;
552
553 e = &hba->ufs_stats.event[id];
554
555 for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
556 int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
557
558 if (e->tstamp[p] == 0)
559 continue;
560 dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
561 e->val[p], div_u64(e->tstamp[p], 1000));
562 found = true;
563 }
564
565 if (!found)
566 dev_err(hba->dev, "No record of %s\n", err_name);
567 else
568 dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
569 }
570
ufshcd_print_evt_hist(struct ufs_hba * hba)571 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
572 {
573 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
574
575 ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
576 ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
577 ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
578 ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
579 ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
580 ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
581 "auto_hibern8_err");
582 ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
583 ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
584 "link_startup_fail");
585 ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
586 ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
587 "suspend_fail");
588 ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
589 ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
590 "wlun suspend_fail");
591 ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
592 ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
593 ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
594
595 ufshcd_vops_dbg_register_dump(hba);
596 }
597
ufshcd_print_tr(struct ufs_hba * hba,struct scsi_cmnd * cmd,bool pr_prdt)598 static void ufshcd_print_tr(struct ufs_hba *hba, struct scsi_cmnd *cmd,
599 bool pr_prdt)
600 {
601 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
602 const int tag = scsi_cmd_to_rq(cmd)->tag;
603 int prdt_length;
604
605 if (hba->monitor.enabled) {
606 dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n", tag,
607 div_u64(lrbp->issue_time_stamp_local_clock, 1000));
608 dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n", tag,
609 div_u64(lrbp->compl_time_stamp_local_clock, 1000));
610 }
611 dev_err(hba->dev,
612 "UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
613 tag, (u64)lrbp->utrd_dma_addr);
614
615 ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
616 sizeof(struct utp_transfer_req_desc));
617 dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
618 (u64)lrbp->ucd_req_dma_addr);
619 ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
620 sizeof(struct utp_upiu_req));
621 dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
622 (u64)lrbp->ucd_rsp_dma_addr);
623 ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
624 sizeof(struct utp_upiu_rsp));
625
626 prdt_length = le16_to_cpu(
627 lrbp->utr_descriptor_ptr->prd_table_length);
628 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
629 prdt_length /= ufshcd_sg_entry_size(hba);
630
631 dev_err(hba->dev,
632 "UPIU[%d] - PRDT - %d entries phys@0x%llx\n",
633 tag, prdt_length,
634 (u64)lrbp->ucd_prdt_dma_addr);
635
636 if (pr_prdt)
637 ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
638 ufshcd_sg_entry_size(hba) * prdt_length);
639 }
640
ufshcd_print_tr_iter(struct request * req,void * priv)641 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
642 {
643 struct scsi_device *sdev = req->q->queuedata;
644 struct Scsi_Host *shost = sdev->host;
645 struct ufs_hba *hba = shost_priv(shost);
646
647 if (!blk_mq_is_reserved_rq(req))
648 ufshcd_print_tr(hba, blk_mq_rq_to_pdu(req), *(bool *)priv);
649
650 return true;
651 }
652
653 /**
654 * ufshcd_print_trs_all - print trs for all started requests.
655 * @hba: per-adapter instance.
656 * @pr_prdt: need to print prdt or not.
657 */
ufshcd_print_trs_all(struct ufs_hba * hba,bool pr_prdt)658 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
659 {
660 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
661 }
662
ufshcd_print_tmrs(struct ufs_hba * hba,unsigned long bitmap)663 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
664 {
665 int tag;
666
667 for_each_set_bit(tag, &bitmap, hba->nutmrs) {
668 struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
669
670 dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
671 ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
672 }
673 }
674
ufshcd_print_host_state(struct ufs_hba * hba)675 static void ufshcd_print_host_state(struct ufs_hba *hba)
676 {
677 const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
678
679 dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
680 dev_err(hba->dev, "%d outstanding reqs, tasks=0x%lx\n",
681 scsi_host_busy(hba->host), hba->outstanding_tasks);
682 dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
683 hba->saved_err, hba->saved_uic_err);
684 dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
685 hba->curr_dev_pwr_mode, hba->uic_link_state);
686 dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
687 hba->pm_op_in_progress, hba->is_sys_suspended);
688 dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
689 hba->auto_bkops_enabled, hba->host->host_self_blocked);
690 dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
691 dev_err(hba->dev,
692 "last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
693 div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
694 hba->ufs_stats.hibern8_exit_cnt);
695 dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
696 hba->eh_flags, hba->req_abort_count);
697 dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
698 hba->ufs_version, hba->capabilities, hba->caps);
699 dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
700 hba->dev_quirks);
701 if (sdev_ufs)
702 dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
703 sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
704
705 ufshcd_print_clk_freqs(hba);
706 }
707
708 /**
709 * ufshcd_print_pwr_info - print power params as saved in hba
710 * power info
711 * @hba: per-adapter instance
712 */
ufshcd_print_pwr_info(struct ufs_hba * hba)713 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
714 {
715 static const char * const names[] = {
716 "INVALID MODE",
717 "FAST MODE",
718 "SLOW_MODE",
719 "INVALID MODE",
720 "FASTAUTO_MODE",
721 "SLOWAUTO_MODE",
722 "INVALID MODE",
723 };
724
725 /*
726 * Using dev_dbg to avoid messages during runtime PM to avoid
727 * never-ending cycles of messages written back to storage by user space
728 * causing runtime resume, causing more messages and so on.
729 */
730 dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
731 __func__,
732 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
733 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
734 names[hba->pwr_info.pwr_rx],
735 names[hba->pwr_info.pwr_tx],
736 hba->pwr_info.hs_rate);
737 }
738
ufshcd_device_reset(struct ufs_hba * hba)739 static void ufshcd_device_reset(struct ufs_hba *hba)
740 {
741 int err;
742
743 err = ufshcd_vops_device_reset(hba);
744
745 if (!err) {
746 ufshcd_set_ufs_dev_active(hba);
747 if (ufshcd_is_wb_allowed(hba)) {
748 hba->dev_info.wb_enabled = false;
749 hba->dev_info.wb_buf_flush_enabled = false;
750 }
751 if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
752 hba->dev_info.rtc_time_baseline = 0;
753 }
754 if (err != -EOPNOTSUPP)
755 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
756 }
757
ufshcd_delay_us(unsigned long us,unsigned long tolerance)758 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
759 {
760 if (!us)
761 return;
762
763 if (us < 10)
764 udelay(us);
765 else
766 usleep_range(us, us + tolerance);
767 }
768 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
769
770 /**
771 * ufshcd_wait_for_register - wait for register value to change
772 * @hba: per-adapter interface
773 * @reg: mmio register offset
774 * @mask: mask to apply to the read register value
775 * @val: value to wait for
776 * @interval_us: polling interval in microseconds
777 * @timeout_ms: timeout in milliseconds
778 *
779 * Return: -ETIMEDOUT on error, zero on success.
780 */
ufshcd_wait_for_register(struct ufs_hba * hba,u32 reg,u32 mask,u32 val,unsigned long interval_us,unsigned long timeout_ms)781 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
782 u32 val, unsigned long interval_us,
783 unsigned long timeout_ms)
784 {
785 u32 v;
786
787 val &= mask; /* ignore bits that we don't intend to wait on */
788
789 return read_poll_timeout(ufshcd_readl, v, (v & mask) == val,
790 interval_us, timeout_ms * 1000, false, hba, reg);
791 }
792
793 /**
794 * ufshcd_get_intr_mask - Get the interrupt bit mask
795 * @hba: Pointer to adapter instance
796 *
797 * Return: interrupt bit mask per version
798 */
ufshcd_get_intr_mask(struct ufs_hba * hba)799 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
800 {
801 if (hba->ufs_version <= ufshci_version(2, 0))
802 return INTERRUPT_MASK_ALL_VER_11;
803
804 return INTERRUPT_MASK_ALL_VER_21;
805 }
806
807 /**
808 * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
809 * @hba: Pointer to adapter instance
810 *
811 * Return: UFSHCI version supported by the controller
812 */
ufshcd_get_ufs_version(struct ufs_hba * hba)813 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
814 {
815 u32 ufshci_ver;
816
817 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
818 ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
819 else
820 ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
821
822 /*
823 * UFSHCI v1.x uses a different version scheme, in order
824 * to allow the use of comparisons with the ufshci_version
825 * function, we convert it to the same scheme as ufs 2.0+.
826 */
827 if (ufshci_ver & 0x00010000)
828 return ufshci_version(1, ufshci_ver & 0x00000100);
829
830 return ufshci_ver;
831 }
832
833 /**
834 * ufshcd_is_device_present - Check if any device connected to
835 * the host controller
836 * @hba: pointer to adapter instance
837 *
838 * Return: true if device present, false if no device detected
839 */
ufshcd_is_device_present(struct ufs_hba * hba)840 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
841 {
842 return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
843 }
844
845 /**
846 * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
847 * @lrbp: pointer to local command reference block
848 * @cqe: pointer to the completion queue entry
849 *
850 * This function is used to get the OCS field from UTRD
851 *
852 * Return: the OCS field in the UTRD.
853 */
ufshcd_get_tr_ocs(struct ufshcd_lrb * lrbp,struct cq_entry * cqe)854 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
855 struct cq_entry *cqe)
856 {
857 if (cqe)
858 return cqe->overall_status & MASK_OCS;
859
860 return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
861 }
862
863 /**
864 * ufshcd_utrl_clear() - Clear requests from the controller request list.
865 * @hba: per adapter instance
866 * @mask: mask with one bit set for each request to be cleared
867 */
ufshcd_utrl_clear(struct ufs_hba * hba,u32 mask)868 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
869 {
870 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
871 mask = ~mask;
872 /*
873 * From the UFSHCI specification: "UTP Transfer Request List CLear
874 * Register (UTRLCLR): This field is bit significant. Each bit
875 * corresponds to a slot in the UTP Transfer Request List, where bit 0
876 * corresponds to request slot 0. A bit in this field is set to ‘0’
877 * by host software to indicate to the host controller that a transfer
878 * request slot is cleared. The host controller
879 * shall free up any resources associated to the request slot
880 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
881 * host software indicates no change to request slots by setting the
882 * associated bits in this field to ‘1’. Bits in this field shall only
883 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
884 */
885 ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
886 }
887
888 /**
889 * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
890 * @hba: per adapter instance
891 * @pos: position of the bit to be cleared
892 */
ufshcd_utmrl_clear(struct ufs_hba * hba,u32 pos)893 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
894 {
895 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
896 ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
897 else
898 ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
899 }
900
901 /**
902 * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
903 * @reg: Register value of host controller status
904 *
905 * Return: 0 on success; a positive value if failed.
906 */
ufshcd_get_lists_status(u32 reg)907 static inline int ufshcd_get_lists_status(u32 reg)
908 {
909 return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
910 }
911
912 /**
913 * ufshcd_get_uic_cmd_result - Get the UIC command result
914 * @hba: Pointer to adapter instance
915 *
916 * This function gets the result of UIC command completion
917 *
918 * Return: 0 on success; non-zero value on error.
919 */
ufshcd_get_uic_cmd_result(struct ufs_hba * hba)920 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
921 {
922 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
923 MASK_UIC_COMMAND_RESULT;
924 }
925
926 /**
927 * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
928 * @hba: Pointer to adapter instance
929 *
930 * This function gets UIC command argument3
931 *
932 * Return: 0 on success; non-zero value on error.
933 */
ufshcd_get_dme_attr_val(struct ufs_hba * hba)934 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
935 {
936 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
937 }
938
939 /**
940 * ufshcd_get_req_rsp - returns the TR response transaction type
941 * @ucd_rsp_ptr: pointer to response UPIU
942 *
943 * Return: UPIU type.
944 */
945 static inline enum upiu_response_transaction
ufshcd_get_req_rsp(struct utp_upiu_rsp * ucd_rsp_ptr)946 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
947 {
948 return ucd_rsp_ptr->header.transaction_code;
949 }
950
951 /**
952 * ufshcd_is_exception_event - Check if the device raised an exception event
953 * @ucd_rsp_ptr: pointer to response UPIU
954 *
955 * The function checks if the device raised an exception event indicated in
956 * the Device Information field of response UPIU.
957 *
958 * Return: true if exception is raised, false otherwise.
959 */
ufshcd_is_exception_event(struct utp_upiu_rsp * ucd_rsp_ptr)960 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
961 {
962 return ucd_rsp_ptr->header.device_information & 1;
963 }
964
965 /**
966 * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
967 * @hba: per adapter instance
968 */
969 static inline void
ufshcd_reset_intr_aggr(struct ufs_hba * hba)970 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
971 {
972 ufshcd_writel(hba, INT_AGGR_ENABLE |
973 INT_AGGR_COUNTER_AND_TIMER_RESET,
974 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
975 }
976
977 /**
978 * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
979 * @hba: per adapter instance
980 * @cnt: Interrupt aggregation counter threshold
981 * @tmout: Interrupt aggregation timeout value
982 */
983 static inline void
ufshcd_config_intr_aggr(struct ufs_hba * hba,u8 cnt,u8 tmout)984 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
985 {
986 ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
987 INT_AGGR_COUNTER_THLD_VAL(cnt) |
988 INT_AGGR_TIMEOUT_VAL(tmout),
989 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
990 }
991
992 /**
993 * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
994 * @hba: per adapter instance
995 */
ufshcd_disable_intr_aggr(struct ufs_hba * hba)996 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
997 {
998 ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
999 }
1000
1001 /**
1002 * ufshcd_enable_run_stop_reg - Enable run-stop registers,
1003 * When run-stop registers are set to 1, it indicates the
1004 * host controller that it can process the requests
1005 * @hba: per adapter instance
1006 */
ufshcd_enable_run_stop_reg(struct ufs_hba * hba)1007 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
1008 {
1009 ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
1010 REG_UTP_TASK_REQ_LIST_RUN_STOP);
1011 ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
1012 REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
1013 }
1014
1015 /**
1016 * ufshcd_hba_start - Start controller initialization sequence
1017 * @hba: per adapter instance
1018 */
ufshcd_hba_start(struct ufs_hba * hba)1019 static inline void ufshcd_hba_start(struct ufs_hba *hba)
1020 {
1021 u32 val = CONTROLLER_ENABLE;
1022
1023 if (ufshcd_crypto_enable(hba))
1024 val |= CRYPTO_GENERAL_ENABLE;
1025
1026 ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
1027 }
1028
1029 /**
1030 * ufshcd_is_hba_active - Get controller state
1031 * @hba: per adapter instance
1032 *
1033 * Return: true if and only if the controller is active.
1034 */
ufshcd_is_hba_active(struct ufs_hba * hba)1035 bool ufshcd_is_hba_active(struct ufs_hba *hba)
1036 {
1037 return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
1038 }
1039 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
1040
1041 /**
1042 * ufshcd_pm_qos_init - initialize PM QoS request
1043 * @hba: per adapter instance
1044 */
ufshcd_pm_qos_init(struct ufs_hba * hba)1045 void ufshcd_pm_qos_init(struct ufs_hba *hba)
1046 {
1047 guard(mutex)(&hba->pm_qos_mutex);
1048
1049 if (hba->pm_qos_enabled)
1050 return;
1051
1052 cpu_latency_qos_add_request(&hba->pm_qos_req, PM_QOS_DEFAULT_VALUE);
1053
1054 if (cpu_latency_qos_request_active(&hba->pm_qos_req))
1055 hba->pm_qos_enabled = true;
1056 }
1057
1058 /**
1059 * ufshcd_pm_qos_exit - remove request from PM QoS
1060 * @hba: per adapter instance
1061 */
ufshcd_pm_qos_exit(struct ufs_hba * hba)1062 void ufshcd_pm_qos_exit(struct ufs_hba *hba)
1063 {
1064 guard(mutex)(&hba->pm_qos_mutex);
1065
1066 if (!hba->pm_qos_enabled)
1067 return;
1068
1069 cpu_latency_qos_remove_request(&hba->pm_qos_req);
1070 hba->pm_qos_enabled = false;
1071 }
1072
1073 /**
1074 * ufshcd_pm_qos_update - update PM QoS request
1075 * @hba: per adapter instance
1076 * @on: If True, vote for perf PM QoS mode otherwise power save mode
1077 */
ufshcd_pm_qos_update(struct ufs_hba * hba,bool on)1078 void ufshcd_pm_qos_update(struct ufs_hba *hba, bool on)
1079 {
1080 guard(mutex)(&hba->pm_qos_mutex);
1081
1082 if (!hba->pm_qos_enabled)
1083 return;
1084
1085 cpu_latency_qos_update_request(&hba->pm_qos_req, on ? 0 : PM_QOS_DEFAULT_VALUE);
1086 }
1087 EXPORT_SYMBOL_GPL(ufshcd_pm_qos_update);
1088
1089 /**
1090 * ufshcd_set_clk_freq - set UFS controller clock frequencies
1091 * @hba: per adapter instance
1092 * @scale_up: If True, set max possible frequency othewise set low frequency
1093 *
1094 * Return: 0 if successful; < 0 upon failure.
1095 */
ufshcd_set_clk_freq(struct ufs_hba * hba,bool scale_up)1096 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1097 {
1098 int ret = 0;
1099 struct ufs_clk_info *clki;
1100 struct list_head *head = &hba->clk_list_head;
1101
1102 if (list_empty(head))
1103 goto out;
1104
1105 list_for_each_entry(clki, head, list) {
1106 if (!IS_ERR_OR_NULL(clki->clk)) {
1107 if (scale_up && clki->max_freq) {
1108 if (clki->curr_freq == clki->max_freq)
1109 continue;
1110
1111 ret = clk_set_rate(clki->clk, clki->max_freq);
1112 if (ret) {
1113 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1114 __func__, clki->name,
1115 clki->max_freq, ret);
1116 break;
1117 }
1118 trace_ufshcd_clk_scaling(hba,
1119 "scaled up", clki->name,
1120 clki->curr_freq,
1121 clki->max_freq);
1122
1123 clki->curr_freq = clki->max_freq;
1124
1125 } else if (!scale_up && clki->min_freq) {
1126 if (clki->curr_freq == clki->min_freq)
1127 continue;
1128
1129 ret = clk_set_rate(clki->clk, clki->min_freq);
1130 if (ret) {
1131 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1132 __func__, clki->name,
1133 clki->min_freq, ret);
1134 break;
1135 }
1136 trace_ufshcd_clk_scaling(hba,
1137 "scaled down", clki->name,
1138 clki->curr_freq,
1139 clki->min_freq);
1140 clki->curr_freq = clki->min_freq;
1141 }
1142 }
1143 dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1144 clki->name, clk_get_rate(clki->clk));
1145 }
1146
1147 out:
1148 return ret;
1149 }
1150
ufshcd_opp_config_clks(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * data,bool scaling_down)1151 int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table,
1152 struct dev_pm_opp *opp, void *data,
1153 bool scaling_down)
1154 {
1155 struct ufs_hba *hba = dev_get_drvdata(dev);
1156 struct list_head *head = &hba->clk_list_head;
1157 struct ufs_clk_info *clki;
1158 unsigned long freq;
1159 u8 idx = 0;
1160 int ret;
1161
1162 list_for_each_entry(clki, head, list) {
1163 if (!IS_ERR_OR_NULL(clki->clk)) {
1164 freq = dev_pm_opp_get_freq_indexed(opp, idx++);
1165
1166 /* Do not set rate for clocks having frequency as 0 */
1167 if (!freq)
1168 continue;
1169
1170 ret = clk_set_rate(clki->clk, freq);
1171 if (ret) {
1172 dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n",
1173 __func__, clki->name, freq, ret);
1174 return ret;
1175 }
1176
1177 trace_ufshcd_clk_scaling(hba,
1178 (scaling_down ? "scaled down" : "scaled up"),
1179 clki->name, hba->clk_scaling.target_freq, freq);
1180 }
1181 }
1182
1183 return 0;
1184 }
1185 EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks);
1186
ufshcd_opp_set_rate(struct ufs_hba * hba,unsigned long freq)1187 static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq)
1188 {
1189 struct dev_pm_opp *opp;
1190 int ret;
1191
1192 opp = dev_pm_opp_find_freq_floor_indexed(hba->dev,
1193 &freq, 0);
1194 if (IS_ERR(opp))
1195 return PTR_ERR(opp);
1196
1197 ret = dev_pm_opp_set_opp(hba->dev, opp);
1198 dev_pm_opp_put(opp);
1199
1200 return ret;
1201 }
1202
1203 /**
1204 * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1205 * @hba: per adapter instance
1206 * @freq: frequency to scale
1207 * @scale_up: True if scaling up and false if scaling down
1208 *
1209 * Return: 0 if successful; < 0 upon failure.
1210 */
ufshcd_scale_clks(struct ufs_hba * hba,unsigned long freq,bool scale_up)1211 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
1212 bool scale_up)
1213 {
1214 int ret = 0;
1215 ktime_t start = ktime_get();
1216
1217 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, freq, PRE_CHANGE);
1218 if (ret)
1219 goto out;
1220
1221 if (hba->use_pm_opp)
1222 ret = ufshcd_opp_set_rate(hba, freq);
1223 else
1224 ret = ufshcd_set_clk_freq(hba, scale_up);
1225 if (ret)
1226 goto out;
1227
1228 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, freq, POST_CHANGE);
1229 if (ret) {
1230 if (hba->use_pm_opp)
1231 ufshcd_opp_set_rate(hba,
1232 hba->devfreq->previous_freq);
1233 else
1234 ufshcd_set_clk_freq(hba, !scale_up);
1235 goto out;
1236 }
1237
1238 ufshcd_pm_qos_update(hba, scale_up);
1239
1240 out:
1241 trace_ufshcd_profile_clk_scaling(hba,
1242 (scale_up ? "up" : "down"),
1243 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1244 return ret;
1245 }
1246
1247 /**
1248 * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1249 * @hba: per adapter instance
1250 * @freq: frequency to scale
1251 * @scale_up: True if scaling up and false if scaling down
1252 *
1253 * Return: true if scaling is required, false otherwise.
1254 */
ufshcd_is_devfreq_scaling_required(struct ufs_hba * hba,unsigned long freq,bool scale_up)1255 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1256 unsigned long freq, bool scale_up)
1257 {
1258 struct ufs_clk_info *clki;
1259 struct list_head *head = &hba->clk_list_head;
1260
1261 if (list_empty(head))
1262 return false;
1263
1264 if (hba->use_pm_opp)
1265 return freq != hba->clk_scaling.target_freq;
1266
1267 list_for_each_entry(clki, head, list) {
1268 if (!IS_ERR_OR_NULL(clki->clk)) {
1269 if (scale_up && clki->max_freq) {
1270 if (clki->curr_freq == clki->max_freq)
1271 continue;
1272 return true;
1273 } else if (!scale_up && clki->min_freq) {
1274 if (clki->curr_freq == clki->min_freq)
1275 continue;
1276 return true;
1277 }
1278 }
1279 }
1280
1281 return false;
1282 }
1283
1284 /*
1285 * Determine the number of pending commands by counting the bits in the SCSI
1286 * device budget maps. This approach has been selected because a bit is set in
1287 * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1288 * flag. The host_self_blocked flag can be modified by calling
1289 * scsi_block_requests() or scsi_unblock_requests().
1290 */
ufshcd_pending_cmds(struct ufs_hba * hba)1291 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1292 {
1293 struct scsi_device *sdev;
1294 unsigned long flags;
1295 u32 pending = 0;
1296
1297 spin_lock_irqsave(hba->host->host_lock, flags);
1298 __shost_for_each_device(sdev, hba->host)
1299 pending += scsi_device_busy(sdev);
1300 spin_unlock_irqrestore(hba->host->host_lock, flags);
1301
1302 return pending;
1303 }
1304
1305 /*
1306 * Wait until all pending SCSI commands and TMFs have finished or the timeout
1307 * has expired.
1308 *
1309 * Return: 0 upon success; -EBUSY upon timeout.
1310 */
ufshcd_wait_for_pending_cmds(struct ufs_hba * hba,u64 wait_timeout_us)1311 static int ufshcd_wait_for_pending_cmds(struct ufs_hba *hba,
1312 u64 wait_timeout_us)
1313 {
1314 int ret = 0;
1315 u32 tm_doorbell;
1316 u32 tr_pending;
1317 bool timeout = false, do_last_check = false;
1318 ktime_t start;
1319
1320 ufshcd_hold(hba);
1321 /*
1322 * Wait for all the outstanding tasks/transfer requests.
1323 * Verify by checking the doorbell registers are clear.
1324 */
1325 start = ktime_get();
1326 do {
1327 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1328 ret = -EBUSY;
1329 goto out;
1330 }
1331
1332 tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1333 tr_pending = ufshcd_pending_cmds(hba);
1334 if (!tm_doorbell && !tr_pending) {
1335 timeout = false;
1336 break;
1337 } else if (do_last_check) {
1338 break;
1339 }
1340
1341 io_schedule_timeout(msecs_to_jiffies(20));
1342 if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1343 wait_timeout_us) {
1344 timeout = true;
1345 /*
1346 * We might have scheduled out for long time so make
1347 * sure to check if doorbells are cleared by this time
1348 * or not.
1349 */
1350 do_last_check = true;
1351 }
1352 } while (tm_doorbell || tr_pending);
1353
1354 if (timeout) {
1355 dev_err(hba->dev,
1356 "%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1357 __func__, tm_doorbell, tr_pending);
1358 ret = -EBUSY;
1359 }
1360 out:
1361 ufshcd_release(hba);
1362 return ret;
1363 }
1364
1365 /**
1366 * ufshcd_scale_gear - scale up/down UFS gear
1367 * @hba: per adapter instance
1368 * @target_gear: target gear to scale to
1369 * @scale_up: True for scaling up gear and false for scaling down
1370 *
1371 * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1372 * non-zero for any other errors.
1373 */
ufshcd_scale_gear(struct ufs_hba * hba,u32 target_gear,bool scale_up)1374 static int ufshcd_scale_gear(struct ufs_hba *hba, u32 target_gear, bool scale_up)
1375 {
1376 int ret = 0;
1377 struct ufs_pa_layer_attr new_pwr_info;
1378
1379 if (target_gear) {
1380 new_pwr_info = hba->pwr_info;
1381 new_pwr_info.gear_tx = target_gear;
1382 new_pwr_info.gear_rx = target_gear;
1383
1384 goto config_pwr_mode;
1385 }
1386
1387 /* Legacy gear scaling, in case vops_freq_to_gear_speed() is not implemented */
1388 if (scale_up) {
1389 memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1390 sizeof(struct ufs_pa_layer_attr));
1391 } else {
1392 memcpy(&new_pwr_info, &hba->pwr_info,
1393 sizeof(struct ufs_pa_layer_attr));
1394
1395 if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1396 hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1397 /* save the current power mode */
1398 memcpy(&hba->clk_scaling.saved_pwr_info,
1399 &hba->pwr_info,
1400 sizeof(struct ufs_pa_layer_attr));
1401
1402 /* scale down gear */
1403 new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1404 new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1405 }
1406 }
1407
1408 config_pwr_mode:
1409 /* check if the power mode needs to be changed or not? */
1410 ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1411 if (ret)
1412 dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1413 __func__, ret,
1414 hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1415 new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1416
1417 return ret;
1418 }
1419
1420 /*
1421 * Wait until all pending SCSI commands and TMFs have finished or the timeout
1422 * has expired.
1423 *
1424 * Return: 0 upon success; -EBUSY upon timeout.
1425 */
ufshcd_clock_scaling_prepare(struct ufs_hba * hba,u64 timeout_us)1426 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1427 {
1428 int ret = 0;
1429 /*
1430 * make sure that there are no outstanding requests when
1431 * clock scaling is in progress
1432 */
1433 mutex_lock(&hba->host->scan_mutex);
1434 blk_mq_quiesce_tagset(&hba->host->tag_set);
1435 mutex_lock(&hba->wb_mutex);
1436 down_write(&hba->clk_scaling_lock);
1437
1438 if (!hba->clk_scaling.is_allowed ||
1439 ufshcd_wait_for_pending_cmds(hba, timeout_us)) {
1440 ret = -EBUSY;
1441 up_write(&hba->clk_scaling_lock);
1442 mutex_unlock(&hba->wb_mutex);
1443 blk_mq_unquiesce_tagset(&hba->host->tag_set);
1444 mutex_unlock(&hba->host->scan_mutex);
1445 goto out;
1446 }
1447
1448 /* let's not get into low power until clock scaling is completed */
1449 ufshcd_hold(hba);
1450
1451 out:
1452 return ret;
1453 }
1454
ufshcd_clock_scaling_unprepare(struct ufs_hba * hba,int err)1455 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err)
1456 {
1457 up_write(&hba->clk_scaling_lock);
1458 mutex_unlock(&hba->wb_mutex);
1459 blk_mq_unquiesce_tagset(&hba->host->tag_set);
1460 mutex_unlock(&hba->host->scan_mutex);
1461
1462 /* Enable Write Booster if current gear requires it else disable it */
1463 if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1464 ufshcd_wb_toggle(hba, hba->pwr_info.gear_rx >= hba->clk_scaling.wb_gear);
1465
1466 ufshcd_release(hba);
1467 }
1468
1469 /**
1470 * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1471 * @hba: per adapter instance
1472 * @freq: frequency to scale
1473 * @scale_up: True for scaling up and false for scalin down
1474 *
1475 * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1476 * for any other errors.
1477 */
ufshcd_devfreq_scale(struct ufs_hba * hba,unsigned long freq,bool scale_up)1478 static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq,
1479 bool scale_up)
1480 {
1481 u32 old_gear = hba->pwr_info.gear_rx;
1482 u32 new_gear = 0;
1483 int ret = 0;
1484
1485 new_gear = ufshcd_vops_freq_to_gear_speed(hba, freq);
1486
1487 ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1488 if (ret)
1489 return ret;
1490
1491 /* scale down the gear before scaling down clocks */
1492 if (!scale_up) {
1493 ret = ufshcd_scale_gear(hba, new_gear, false);
1494 if (ret)
1495 goto out_unprepare;
1496 }
1497
1498 ret = ufshcd_scale_clks(hba, freq, scale_up);
1499 if (ret) {
1500 if (!scale_up)
1501 ufshcd_scale_gear(hba, old_gear, true);
1502 goto out_unprepare;
1503 }
1504
1505 /* scale up the gear after scaling up clocks */
1506 if (scale_up) {
1507 ret = ufshcd_scale_gear(hba, new_gear, true);
1508 if (ret) {
1509 ufshcd_scale_clks(hba, hba->devfreq->previous_freq,
1510 false);
1511 goto out_unprepare;
1512 }
1513 }
1514
1515 out_unprepare:
1516 ufshcd_clock_scaling_unprepare(hba, ret);
1517 return ret;
1518 }
1519
ufshcd_clk_scaling_suspend_work(struct work_struct * work)1520 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1521 {
1522 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1523 clk_scaling.suspend_work);
1524
1525 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1526 {
1527 if (hba->clk_scaling.active_reqs ||
1528 hba->clk_scaling.is_suspended)
1529 return;
1530
1531 hba->clk_scaling.is_suspended = true;
1532 hba->clk_scaling.window_start_t = 0;
1533 }
1534
1535 devfreq_suspend_device(hba->devfreq);
1536 }
1537
ufshcd_clk_scaling_resume_work(struct work_struct * work)1538 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1539 {
1540 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1541 clk_scaling.resume_work);
1542
1543 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1544 {
1545 if (!hba->clk_scaling.is_suspended)
1546 return;
1547 hba->clk_scaling.is_suspended = false;
1548 }
1549
1550 devfreq_resume_device(hba->devfreq);
1551 }
1552
ufshcd_devfreq_target(struct device * dev,unsigned long * freq,u32 flags)1553 static int ufshcd_devfreq_target(struct device *dev,
1554 unsigned long *freq, u32 flags)
1555 {
1556 int ret = 0;
1557 struct ufs_hba *hba = dev_get_drvdata(dev);
1558 ktime_t start;
1559 bool scale_up = false, sched_clk_scaling_suspend_work = false;
1560 struct list_head *clk_list = &hba->clk_list_head;
1561 struct ufs_clk_info *clki;
1562
1563 if (!ufshcd_is_clkscaling_supported(hba))
1564 return -EINVAL;
1565
1566 if (hba->use_pm_opp) {
1567 struct dev_pm_opp *opp;
1568
1569 /* Get the recommended frequency from OPP framework */
1570 opp = devfreq_recommended_opp(dev, freq, flags);
1571 if (IS_ERR(opp))
1572 return PTR_ERR(opp);
1573
1574 dev_pm_opp_put(opp);
1575 } else {
1576 /* Override with the closest supported frequency */
1577 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info,
1578 list);
1579 *freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1580 }
1581
1582 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1583 {
1584 if (ufshcd_eh_in_progress(hba))
1585 return 0;
1586
1587 /* Skip scaling clock when clock scaling is suspended */
1588 if (hba->clk_scaling.is_suspended) {
1589 dev_warn(hba->dev, "clock scaling is suspended, skip");
1590 return 0;
1591 }
1592
1593 if (!hba->clk_scaling.active_reqs)
1594 sched_clk_scaling_suspend_work = true;
1595
1596 if (list_empty(clk_list))
1597 goto out;
1598
1599 /* Decide based on the target or rounded-off frequency and update */
1600 if (hba->use_pm_opp)
1601 scale_up = *freq > hba->clk_scaling.target_freq;
1602 else
1603 scale_up = *freq == clki->max_freq;
1604
1605 if (!hba->use_pm_opp && !scale_up)
1606 *freq = clki->min_freq;
1607
1608 /* Update the frequency */
1609 if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) {
1610 ret = 0;
1611 goto out; /* no state change required */
1612 }
1613 }
1614
1615 start = ktime_get();
1616 ret = ufshcd_devfreq_scale(hba, *freq, scale_up);
1617 if (!ret)
1618 hba->clk_scaling.target_freq = *freq;
1619
1620 trace_ufshcd_profile_clk_scaling(hba,
1621 (scale_up ? "up" : "down"),
1622 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1623
1624 out:
1625 if (sched_clk_scaling_suspend_work &&
1626 (!scale_up || hba->clk_scaling.suspend_on_no_request))
1627 queue_work(hba->clk_scaling.workq,
1628 &hba->clk_scaling.suspend_work);
1629
1630 return ret;
1631 }
1632
ufshcd_devfreq_get_dev_status(struct device * dev,struct devfreq_dev_status * stat)1633 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1634 struct devfreq_dev_status *stat)
1635 {
1636 struct ufs_hba *hba = dev_get_drvdata(dev);
1637 struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1638 ktime_t curr_t;
1639
1640 if (!ufshcd_is_clkscaling_supported(hba))
1641 return -EINVAL;
1642
1643 memset(stat, 0, sizeof(*stat));
1644
1645 guard(spinlock_irqsave)(&hba->clk_scaling.lock);
1646
1647 curr_t = ktime_get();
1648 if (!scaling->window_start_t)
1649 goto start_window;
1650
1651 /*
1652 * If current frequency is 0, then the ondemand governor considers
1653 * there's no initial frequency set. And it always requests to set
1654 * to max. frequency.
1655 */
1656 if (hba->use_pm_opp) {
1657 stat->current_frequency = hba->clk_scaling.target_freq;
1658 } else {
1659 struct list_head *clk_list = &hba->clk_list_head;
1660 struct ufs_clk_info *clki;
1661
1662 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1663 stat->current_frequency = clki->curr_freq;
1664 }
1665
1666 if (scaling->is_busy_started)
1667 scaling->tot_busy_t += ktime_us_delta(curr_t,
1668 scaling->busy_start_t);
1669 stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1670 stat->busy_time = scaling->tot_busy_t;
1671 start_window:
1672 scaling->window_start_t = curr_t;
1673 scaling->tot_busy_t = 0;
1674
1675 if (scaling->active_reqs) {
1676 scaling->busy_start_t = curr_t;
1677 scaling->is_busy_started = true;
1678 } else {
1679 scaling->busy_start_t = 0;
1680 scaling->is_busy_started = false;
1681 }
1682
1683 return 0;
1684 }
1685
ufshcd_devfreq_init(struct ufs_hba * hba)1686 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1687 {
1688 struct list_head *clk_list = &hba->clk_list_head;
1689 struct ufs_clk_info *clki;
1690 struct devfreq *devfreq;
1691 int ret;
1692
1693 /* Skip devfreq if we don't have any clocks in the list */
1694 if (list_empty(clk_list))
1695 return 0;
1696
1697 if (!hba->use_pm_opp) {
1698 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1699 dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1700 dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1701 }
1702
1703 ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1704 &hba->vps->ondemand_data);
1705 devfreq = devfreq_add_device(hba->dev,
1706 &hba->vps->devfreq_profile,
1707 DEVFREQ_GOV_SIMPLE_ONDEMAND,
1708 &hba->vps->ondemand_data);
1709 if (IS_ERR(devfreq)) {
1710 ret = PTR_ERR(devfreq);
1711 dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1712
1713 if (!hba->use_pm_opp) {
1714 dev_pm_opp_remove(hba->dev, clki->min_freq);
1715 dev_pm_opp_remove(hba->dev, clki->max_freq);
1716 }
1717 return ret;
1718 }
1719
1720 hba->devfreq = devfreq;
1721
1722 return 0;
1723 }
1724
ufshcd_devfreq_remove(struct ufs_hba * hba)1725 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1726 {
1727 struct list_head *clk_list = &hba->clk_list_head;
1728
1729 if (!hba->devfreq)
1730 return;
1731
1732 devfreq_remove_device(hba->devfreq);
1733 hba->devfreq = NULL;
1734
1735 if (!hba->use_pm_opp) {
1736 struct ufs_clk_info *clki;
1737
1738 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1739 dev_pm_opp_remove(hba->dev, clki->min_freq);
1740 dev_pm_opp_remove(hba->dev, clki->max_freq);
1741 }
1742 }
1743
ufshcd_suspend_clkscaling(struct ufs_hba * hba)1744 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1745 {
1746 bool suspend = false;
1747
1748 cancel_work_sync(&hba->clk_scaling.suspend_work);
1749 cancel_work_sync(&hba->clk_scaling.resume_work);
1750
1751 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1752 {
1753 if (!hba->clk_scaling.is_suspended) {
1754 suspend = true;
1755 hba->clk_scaling.is_suspended = true;
1756 hba->clk_scaling.window_start_t = 0;
1757 }
1758 }
1759
1760 if (suspend)
1761 devfreq_suspend_device(hba->devfreq);
1762 }
1763
ufshcd_resume_clkscaling(struct ufs_hba * hba)1764 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1765 {
1766 bool resume = false;
1767
1768 scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1769 {
1770 if (hba->clk_scaling.is_suspended) {
1771 resume = true;
1772 hba->clk_scaling.is_suspended = false;
1773 }
1774 }
1775
1776 if (resume)
1777 devfreq_resume_device(hba->devfreq);
1778 }
1779
ufshcd_clkscale_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1780 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1781 struct device_attribute *attr, char *buf)
1782 {
1783 struct ufs_hba *hba = dev_get_drvdata(dev);
1784
1785 return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1786 }
1787
ufshcd_clkscale_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1788 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1789 struct device_attribute *attr, const char *buf, size_t count)
1790 {
1791 struct ufs_hba *hba = dev_get_drvdata(dev);
1792 struct ufs_clk_info *clki;
1793 unsigned long freq;
1794 u32 value;
1795 int err = 0;
1796
1797 if (kstrtou32(buf, 0, &value))
1798 return -EINVAL;
1799
1800 down(&hba->host_sem);
1801 if (!ufshcd_is_user_access_allowed(hba)) {
1802 err = -EBUSY;
1803 goto out;
1804 }
1805
1806 value = !!value;
1807 if (value == hba->clk_scaling.is_enabled)
1808 goto out;
1809
1810 ufshcd_rpm_get_sync(hba);
1811 ufshcd_hold(hba);
1812
1813 hba->clk_scaling.is_enabled = value;
1814
1815 if (value) {
1816 ufshcd_resume_clkscaling(hba);
1817 goto out_rel;
1818 }
1819
1820 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1821 freq = clki->max_freq;
1822
1823 ufshcd_suspend_clkscaling(hba);
1824
1825 if (!ufshcd_is_devfreq_scaling_required(hba, freq, true))
1826 goto out_rel;
1827
1828 err = ufshcd_devfreq_scale(hba, freq, true);
1829 if (err)
1830 dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1831 __func__, err);
1832 else
1833 hba->clk_scaling.target_freq = freq;
1834
1835 out_rel:
1836 ufshcd_release(hba);
1837 ufshcd_rpm_put_sync(hba);
1838 out:
1839 up(&hba->host_sem);
1840 return err ? err : count;
1841 }
1842
ufshcd_init_clk_scaling_sysfs(struct ufs_hba * hba)1843 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1844 {
1845 hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1846 hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1847 sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1848 hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1849 hba->clk_scaling.enable_attr.attr.mode = 0644;
1850 if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1851 dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1852 }
1853
ufshcd_remove_clk_scaling_sysfs(struct ufs_hba * hba)1854 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1855 {
1856 if (hba->clk_scaling.enable_attr.attr.name)
1857 device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1858 }
1859
ufshcd_init_clk_scaling(struct ufs_hba * hba)1860 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1861 {
1862 if (!ufshcd_is_clkscaling_supported(hba))
1863 return;
1864
1865 if (!hba->clk_scaling.min_gear)
1866 hba->clk_scaling.min_gear = UFS_HS_G1;
1867
1868 if (!hba->clk_scaling.wb_gear)
1869 /* Use intermediate gear speed HS_G3 as the default wb_gear */
1870 hba->clk_scaling.wb_gear = UFS_HS_G3;
1871
1872 INIT_WORK(&hba->clk_scaling.suspend_work,
1873 ufshcd_clk_scaling_suspend_work);
1874 INIT_WORK(&hba->clk_scaling.resume_work,
1875 ufshcd_clk_scaling_resume_work);
1876
1877 spin_lock_init(&hba->clk_scaling.lock);
1878
1879 hba->clk_scaling.workq = alloc_ordered_workqueue(
1880 "ufs_clkscaling_%d", WQ_MEM_RECLAIM, hba->host->host_no);
1881
1882 hba->clk_scaling.is_initialized = true;
1883 }
1884
ufshcd_exit_clk_scaling(struct ufs_hba * hba)1885 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1886 {
1887 if (!hba->clk_scaling.is_initialized)
1888 return;
1889
1890 ufshcd_remove_clk_scaling_sysfs(hba);
1891 destroy_workqueue(hba->clk_scaling.workq);
1892 ufshcd_devfreq_remove(hba);
1893 hba->clk_scaling.is_initialized = false;
1894 }
1895
ufshcd_ungate_work(struct work_struct * work)1896 static void ufshcd_ungate_work(struct work_struct *work)
1897 {
1898 int ret;
1899 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1900 clk_gating.ungate_work);
1901
1902 cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1903
1904 scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) {
1905 if (hba->clk_gating.state == CLKS_ON)
1906 return;
1907 }
1908
1909 ufshcd_hba_vreg_set_hpm(hba);
1910 ufshcd_setup_clocks(hba, true);
1911
1912 ufshcd_enable_irq(hba);
1913
1914 /* Exit from hibern8 */
1915 if (ufshcd_can_hibern8_during_gating(hba)) {
1916 /* Prevent gating in this path */
1917 hba->clk_gating.is_suspended = true;
1918 if (ufshcd_is_link_hibern8(hba)) {
1919 ret = ufshcd_uic_hibern8_exit(hba);
1920 if (ret)
1921 dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1922 __func__, ret);
1923 else
1924 ufshcd_set_link_active(hba);
1925 }
1926 hba->clk_gating.is_suspended = false;
1927 }
1928 }
1929
1930 /**
1931 * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1932 * Also, exit from hibern8 mode and set the link as active.
1933 * @hba: per adapter instance
1934 */
ufshcd_hold(struct ufs_hba * hba)1935 void ufshcd_hold(struct ufs_hba *hba)
1936 {
1937 bool flush_result;
1938 unsigned long flags;
1939
1940 if (!ufshcd_is_clkgating_allowed(hba) ||
1941 !hba->clk_gating.is_initialized)
1942 return;
1943 spin_lock_irqsave(&hba->clk_gating.lock, flags);
1944 hba->clk_gating.active_reqs++;
1945
1946 start:
1947 switch (hba->clk_gating.state) {
1948 case CLKS_ON:
1949 /*
1950 * Wait for the ungate work to complete if in progress.
1951 * Though the clocks may be in ON state, the link could
1952 * still be in hibner8 state if hibern8 is allowed
1953 * during clock gating.
1954 * Make sure we exit hibern8 state also in addition to
1955 * clocks being ON.
1956 */
1957 if (ufshcd_can_hibern8_during_gating(hba) &&
1958 ufshcd_is_link_hibern8(hba)) {
1959 spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1960 flush_result = flush_work(&hba->clk_gating.ungate_work);
1961 if (hba->clk_gating.is_suspended && !flush_result)
1962 return;
1963 spin_lock_irqsave(&hba->clk_gating.lock, flags);
1964 goto start;
1965 }
1966 break;
1967 case REQ_CLKS_OFF:
1968 if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1969 hba->clk_gating.state = CLKS_ON;
1970 trace_ufshcd_clk_gating(hba,
1971 hba->clk_gating.state);
1972 break;
1973 }
1974 /*
1975 * If we are here, it means gating work is either done or
1976 * currently running. Hence, fall through to cancel gating
1977 * work and to enable clocks.
1978 */
1979 fallthrough;
1980 case CLKS_OFF:
1981 hba->clk_gating.state = REQ_CLKS_ON;
1982 trace_ufshcd_clk_gating(hba,
1983 hba->clk_gating.state);
1984 queue_work(hba->clk_gating.clk_gating_workq,
1985 &hba->clk_gating.ungate_work);
1986 /*
1987 * fall through to check if we should wait for this
1988 * work to be done or not.
1989 */
1990 fallthrough;
1991 case REQ_CLKS_ON:
1992 spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1993 flush_work(&hba->clk_gating.ungate_work);
1994 /* Make sure state is CLKS_ON before returning */
1995 spin_lock_irqsave(&hba->clk_gating.lock, flags);
1996 goto start;
1997 default:
1998 dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1999 __func__, hba->clk_gating.state);
2000 break;
2001 }
2002 spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
2003 }
2004 EXPORT_SYMBOL_GPL(ufshcd_hold);
2005
ufshcd_gate_work(struct work_struct * work)2006 static void ufshcd_gate_work(struct work_struct *work)
2007 {
2008 struct ufs_hba *hba = container_of(work, struct ufs_hba,
2009 clk_gating.gate_work.work);
2010 int ret;
2011
2012 scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) {
2013 /*
2014 * In case you are here to cancel this work the gating state
2015 * would be marked as REQ_CLKS_ON. In this case save time by
2016 * skipping the gating work and exit after changing the clock
2017 * state to CLKS_ON.
2018 */
2019 if (hba->clk_gating.is_suspended ||
2020 hba->clk_gating.state != REQ_CLKS_OFF) {
2021 hba->clk_gating.state = CLKS_ON;
2022 trace_ufshcd_clk_gating(hba,
2023 hba->clk_gating.state);
2024 return;
2025 }
2026
2027 if (hba->clk_gating.active_reqs)
2028 return;
2029 }
2030
2031 scoped_guard(spinlock_irqsave, hba->host->host_lock) {
2032 if (ufshcd_is_ufs_dev_busy(hba) ||
2033 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
2034 return;
2035 }
2036
2037 /* put the link into hibern8 mode before turning off clocks */
2038 if (ufshcd_can_hibern8_during_gating(hba)) {
2039 ret = ufshcd_uic_hibern8_enter(hba);
2040 if (ret) {
2041 hba->clk_gating.state = CLKS_ON;
2042 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
2043 __func__, ret);
2044 trace_ufshcd_clk_gating(hba,
2045 hba->clk_gating.state);
2046 return;
2047 }
2048 ufshcd_set_link_hibern8(hba);
2049 }
2050
2051 ufshcd_disable_irq(hba);
2052
2053 ufshcd_setup_clocks(hba, false);
2054
2055 /* Put the host controller in low power mode if possible */
2056 ufshcd_hba_vreg_set_lpm(hba);
2057 /*
2058 * In case you are here to cancel this work the gating state
2059 * would be marked as REQ_CLKS_ON. In this case keep the state
2060 * as REQ_CLKS_ON which would anyway imply that clocks are off
2061 * and a request to turn them on is pending. By doing this way,
2062 * we keep the state machine in tact and this would ultimately
2063 * prevent from doing cancel work multiple times when there are
2064 * new requests arriving before the current cancel work is done.
2065 */
2066 guard(spinlock_irqsave)(&hba->clk_gating.lock);
2067 if (hba->clk_gating.state == REQ_CLKS_OFF) {
2068 hba->clk_gating.state = CLKS_OFF;
2069 trace_ufshcd_clk_gating(hba,
2070 hba->clk_gating.state);
2071 }
2072 }
2073
__ufshcd_release(struct ufs_hba * hba)2074 static void __ufshcd_release(struct ufs_hba *hba)
2075 {
2076 lockdep_assert_held(&hba->clk_gating.lock);
2077
2078 if (!ufshcd_is_clkgating_allowed(hba))
2079 return;
2080
2081 hba->clk_gating.active_reqs--;
2082
2083 if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
2084 !hba->clk_gating.is_initialized ||
2085 hba->clk_gating.state == CLKS_OFF)
2086 return;
2087
2088 scoped_guard(spinlock_irqsave, hba->host->host_lock) {
2089 if (ufshcd_has_pending_tasks(hba) ||
2090 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
2091 return;
2092 }
2093
2094 hba->clk_gating.state = REQ_CLKS_OFF;
2095 trace_ufshcd_clk_gating(hba, hba->clk_gating.state);
2096 queue_delayed_work(hba->clk_gating.clk_gating_workq,
2097 &hba->clk_gating.gate_work,
2098 msecs_to_jiffies(hba->clk_gating.delay_ms));
2099 }
2100
ufshcd_release(struct ufs_hba * hba)2101 void ufshcd_release(struct ufs_hba *hba)
2102 {
2103 guard(spinlock_irqsave)(&hba->clk_gating.lock);
2104 __ufshcd_release(hba);
2105 }
2106 EXPORT_SYMBOL_GPL(ufshcd_release);
2107
ufshcd_clkgate_delay_show(struct device * dev,struct device_attribute * attr,char * buf)2108 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
2109 struct device_attribute *attr, char *buf)
2110 {
2111 struct ufs_hba *hba = dev_get_drvdata(dev);
2112
2113 return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
2114 }
2115
ufshcd_clkgate_delay_set(struct device * dev,unsigned long value)2116 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
2117 {
2118 struct ufs_hba *hba = dev_get_drvdata(dev);
2119
2120 guard(spinlock_irqsave)(&hba->clk_gating.lock);
2121 hba->clk_gating.delay_ms = value;
2122 }
2123 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
2124
ufshcd_clkgate_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2125 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
2126 struct device_attribute *attr, const char *buf, size_t count)
2127 {
2128 unsigned long value;
2129
2130 if (kstrtoul(buf, 0, &value))
2131 return -EINVAL;
2132
2133 ufshcd_clkgate_delay_set(dev, value);
2134 return count;
2135 }
2136
ufshcd_clkgate_enable_show(struct device * dev,struct device_attribute * attr,char * buf)2137 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
2138 struct device_attribute *attr, char *buf)
2139 {
2140 struct ufs_hba *hba = dev_get_drvdata(dev);
2141
2142 return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
2143 }
2144
ufshcd_clkgate_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2145 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
2146 struct device_attribute *attr, const char *buf, size_t count)
2147 {
2148 struct ufs_hba *hba = dev_get_drvdata(dev);
2149 u32 value;
2150
2151 if (kstrtou32(buf, 0, &value))
2152 return -EINVAL;
2153
2154 value = !!value;
2155
2156 guard(spinlock_irqsave)(&hba->clk_gating.lock);
2157
2158 if (value == hba->clk_gating.is_enabled)
2159 return count;
2160
2161 if (value)
2162 __ufshcd_release(hba);
2163 else
2164 hba->clk_gating.active_reqs++;
2165
2166 hba->clk_gating.is_enabled = value;
2167
2168 return count;
2169 }
2170
ufshcd_init_clk_gating_sysfs(struct ufs_hba * hba)2171 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2172 {
2173 hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2174 hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2175 sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2176 hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2177 hba->clk_gating.delay_attr.attr.mode = 0644;
2178 if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2179 dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2180
2181 hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2182 hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2183 sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2184 hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2185 hba->clk_gating.enable_attr.attr.mode = 0644;
2186 if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2187 dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2188 }
2189
ufshcd_remove_clk_gating_sysfs(struct ufs_hba * hba)2190 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2191 {
2192 if (hba->clk_gating.delay_attr.attr.name)
2193 device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2194 if (hba->clk_gating.enable_attr.attr.name)
2195 device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2196 }
2197
ufshcd_init_clk_gating(struct ufs_hba * hba)2198 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2199 {
2200 if (!ufshcd_is_clkgating_allowed(hba))
2201 return;
2202
2203 hba->clk_gating.state = CLKS_ON;
2204
2205 hba->clk_gating.delay_ms = 150;
2206 INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2207 INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2208
2209 hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(
2210 "ufs_clk_gating_%d", WQ_MEM_RECLAIM | WQ_HIGHPRI,
2211 hba->host->host_no);
2212
2213 ufshcd_init_clk_gating_sysfs(hba);
2214
2215 hba->clk_gating.is_enabled = true;
2216 hba->clk_gating.is_initialized = true;
2217 }
2218
ufshcd_exit_clk_gating(struct ufs_hba * hba)2219 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2220 {
2221 if (!hba->clk_gating.is_initialized)
2222 return;
2223
2224 ufshcd_remove_clk_gating_sysfs(hba);
2225
2226 /* Ungate the clock if necessary. */
2227 ufshcd_hold(hba);
2228 hba->clk_gating.is_initialized = false;
2229 ufshcd_release(hba);
2230
2231 destroy_workqueue(hba->clk_gating.clk_gating_workq);
2232 }
2233
ufshcd_clk_scaling_start_busy(struct ufs_hba * hba)2234 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2235 {
2236 bool queue_resume_work = false;
2237 ktime_t curr_t;
2238
2239 if (!ufshcd_is_clkscaling_supported(hba))
2240 return;
2241
2242 curr_t = ktime_get();
2243
2244 guard(spinlock_irqsave)(&hba->clk_scaling.lock);
2245
2246 if (!hba->clk_scaling.active_reqs++)
2247 queue_resume_work = true;
2248
2249 if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress)
2250 return;
2251
2252 if (queue_resume_work)
2253 queue_work(hba->clk_scaling.workq,
2254 &hba->clk_scaling.resume_work);
2255
2256 if (!hba->clk_scaling.window_start_t) {
2257 hba->clk_scaling.window_start_t = curr_t;
2258 hba->clk_scaling.tot_busy_t = 0;
2259 hba->clk_scaling.is_busy_started = false;
2260 }
2261
2262 if (!hba->clk_scaling.is_busy_started) {
2263 hba->clk_scaling.busy_start_t = curr_t;
2264 hba->clk_scaling.is_busy_started = true;
2265 }
2266 }
2267
ufshcd_clk_scaling_update_busy(struct ufs_hba * hba)2268 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2269 {
2270 struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2271
2272 if (!ufshcd_is_clkscaling_supported(hba))
2273 return;
2274
2275 guard(spinlock_irqsave)(&hba->clk_scaling.lock);
2276
2277 hba->clk_scaling.active_reqs--;
2278 if (!scaling->active_reqs && scaling->is_busy_started) {
2279 scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2280 scaling->busy_start_t));
2281 scaling->busy_start_t = 0;
2282 scaling->is_busy_started = false;
2283 }
2284 }
2285
ufshcd_monitor_opcode2dir(u8 opcode)2286 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2287 {
2288 if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2289 return READ;
2290 else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2291 return WRITE;
2292 else
2293 return -EINVAL;
2294 }
2295
2296 /* Must only be called for SCSI commands. */
ufshcd_should_inform_monitor(struct ufs_hba * hba,struct scsi_cmnd * cmd)2297 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2298 struct scsi_cmnd *cmd)
2299 {
2300 const struct ufs_hba_monitor *m = &hba->monitor;
2301 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2302
2303 return m->enabled &&
2304 (!m->chunk_size || m->chunk_size == cmd->sdb.length) &&
2305 ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp);
2306 }
2307
ufshcd_start_monitor(struct ufs_hba * hba,struct scsi_cmnd * cmd)2308 static void ufshcd_start_monitor(struct ufs_hba *hba, struct scsi_cmnd *cmd)
2309 {
2310 int dir = ufshcd_monitor_opcode2dir(cmd->cmnd[0]);
2311 unsigned long flags;
2312
2313 spin_lock_irqsave(hba->host->host_lock, flags);
2314 if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2315 hba->monitor.busy_start_ts[dir] = ktime_get();
2316 spin_unlock_irqrestore(hba->host->host_lock, flags);
2317 }
2318
ufshcd_update_monitor(struct ufs_hba * hba,struct scsi_cmnd * cmd)2319 static void ufshcd_update_monitor(struct ufs_hba *hba, struct scsi_cmnd *cmd)
2320 {
2321 struct request *req = scsi_cmd_to_rq(cmd);
2322 const struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2323 int dir = ufshcd_monitor_opcode2dir(cmd->cmnd[0]);
2324 unsigned long flags;
2325
2326 spin_lock_irqsave(hba->host->host_lock, flags);
2327 if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2328 struct ufs_hba_monitor *m = &hba->monitor;
2329 ktime_t now, inc, lat;
2330
2331 now = lrbp->compl_time_stamp;
2332 inc = ktime_sub(now, m->busy_start_ts[dir]);
2333 m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2334 m->nr_sec_rw[dir] += blk_rq_sectors(req);
2335
2336 /* Update latencies */
2337 m->nr_req[dir]++;
2338 lat = ktime_sub(now, lrbp->issue_time_stamp);
2339 m->lat_sum[dir] += lat;
2340 if (m->lat_max[dir] < lat || !m->lat_max[dir])
2341 m->lat_max[dir] = lat;
2342 if (m->lat_min[dir] > lat || !m->lat_min[dir])
2343 m->lat_min[dir] = lat;
2344
2345 m->nr_queued[dir]--;
2346 /* Push forward the busy start of monitor */
2347 m->busy_start_ts[dir] = now;
2348 }
2349 spin_unlock_irqrestore(hba->host->host_lock, flags);
2350 }
2351
2352 /* Returns %true for SCSI commands and %false for device management commands. */
ufshcd_is_scsi_cmd(struct scsi_cmnd * cmd)2353 static bool ufshcd_is_scsi_cmd(struct scsi_cmnd *cmd)
2354 {
2355 return !blk_mq_is_reserved_rq(scsi_cmd_to_rq(cmd));
2356 }
2357
2358 /**
2359 * ufshcd_send_command - Send SCSI or device management commands
2360 * @hba: per adapter instance
2361 * @cmd: SCSI command or device management command pointer
2362 * @hwq: pointer to hardware queue instance
2363 */
ufshcd_send_command(struct ufs_hba * hba,struct scsi_cmnd * cmd,struct ufs_hw_queue * hwq)2364 static inline void ufshcd_send_command(struct ufs_hba *hba,
2365 struct scsi_cmnd *cmd,
2366 struct ufs_hw_queue *hwq)
2367 {
2368 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2369 const int tag = scsi_cmd_to_rq(cmd)->tag;
2370 unsigned long flags;
2371
2372 if (hba->monitor.enabled) {
2373 lrbp->issue_time_stamp = ktime_get();
2374 lrbp->issue_time_stamp_local_clock = local_clock();
2375 lrbp->compl_time_stamp = ktime_set(0, 0);
2376 lrbp->compl_time_stamp_local_clock = 0;
2377 }
2378 if (ufshcd_is_scsi_cmd(cmd)) {
2379 ufshcd_add_command_trace(hba, cmd, UFS_CMD_SEND);
2380 ufshcd_clk_scaling_start_busy(hba);
2381 if (unlikely(ufshcd_should_inform_monitor(hba, cmd)))
2382 ufshcd_start_monitor(hba, cmd);
2383 }
2384
2385 if (hba->mcq_enabled) {
2386 int utrd_size = sizeof(struct utp_transfer_req_desc);
2387 struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2388 struct utp_transfer_req_desc *dest;
2389
2390 spin_lock(&hwq->sq_lock);
2391 dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2392 memcpy(dest, src, utrd_size);
2393 ufshcd_inc_sq_tail(hwq);
2394 spin_unlock(&hwq->sq_lock);
2395 } else {
2396 spin_lock_irqsave(&hba->outstanding_lock, flags);
2397 if (hba->vops && hba->vops->setup_xfer_req)
2398 hba->vops->setup_xfer_req(hba, tag,
2399 ufshcd_is_scsi_cmd(cmd));
2400 __set_bit(tag, &hba->outstanding_reqs);
2401 ufshcd_writel(hba, 1 << tag, REG_UTP_TRANSFER_REQ_DOOR_BELL);
2402 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2403 }
2404 }
2405
2406 /**
2407 * ufshcd_copy_sense_data - Copy sense data in case of check condition
2408 * @cmd: SCSI command
2409 */
ufshcd_copy_sense_data(struct scsi_cmnd * cmd)2410 static inline void ufshcd_copy_sense_data(struct scsi_cmnd *cmd)
2411 {
2412 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2413 u8 *const sense_buffer = cmd->sense_buffer;
2414 u16 resp_len;
2415 int len;
2416
2417 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2418 if (sense_buffer && resp_len) {
2419 int len_to_copy;
2420
2421 len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2422 len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2423
2424 memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2425 len_to_copy);
2426 }
2427 }
2428
2429 /**
2430 * ufshcd_copy_query_response() - Copy the Query Response and the data
2431 * descriptor
2432 * @hba: per adapter instance
2433 * @lrbp: pointer to local reference block
2434 *
2435 * Return: 0 upon success; < 0 upon failure.
2436 */
2437 static
ufshcd_copy_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2438 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2439 {
2440 struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2441
2442 memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2443
2444 /* Get the descriptor */
2445 if (hba->dev_cmd.query.descriptor &&
2446 lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2447 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2448 GENERAL_UPIU_REQUEST_SIZE;
2449 u16 resp_len;
2450 u16 buf_len;
2451
2452 /* data segment length */
2453 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2454 .data_segment_length);
2455 buf_len = be16_to_cpu(
2456 hba->dev_cmd.query.request.upiu_req.length);
2457 if (likely(buf_len >= resp_len)) {
2458 memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2459 } else {
2460 dev_warn(hba->dev,
2461 "%s: rsp size %d is bigger than buffer size %d",
2462 __func__, resp_len, buf_len);
2463 return -EINVAL;
2464 }
2465 }
2466
2467 return 0;
2468 }
2469
2470 /**
2471 * ufshcd_hba_capabilities - Read controller capabilities
2472 * @hba: per adapter instance
2473 *
2474 * Return: 0 on success, negative on error.
2475 */
ufshcd_hba_capabilities(struct ufs_hba * hba)2476 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2477 {
2478 int err;
2479
2480 hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2481
2482 /* nutrs and nutmrs are 0 based values */
2483 hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS_SDB) + 1;
2484 hba->nutmrs =
2485 ((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2486
2487 hba->nortt = FIELD_GET(MASK_NUMBER_OUTSTANDING_RTT, hba->capabilities) + 1;
2488
2489 /* Read crypto capabilities */
2490 err = ufshcd_hba_init_crypto_capabilities(hba);
2491 if (err) {
2492 dev_err(hba->dev, "crypto setup failed\n");
2493 return err;
2494 }
2495
2496 /*
2497 * The UFSHCI 3.0 specification does not define MCQ_SUPPORT and
2498 * LSDB_SUPPORT, but [31:29] as reserved bits with reset value 0s, which
2499 * means we can simply read values regardless of version.
2500 */
2501 hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2502 /*
2503 * 0h: legacy single doorbell support is available
2504 * 1h: indicate that legacy single doorbell support has been removed
2505 */
2506 if (!(hba->quirks & UFSHCD_QUIRK_BROKEN_LSDBS_CAP))
2507 hba->lsdb_sup = !FIELD_GET(MASK_LSDB_SUPPORT, hba->capabilities);
2508 else
2509 hba->lsdb_sup = true;
2510
2511 hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2512
2513 return 0;
2514 }
2515
2516 /**
2517 * ufshcd_ready_for_uic_cmd - Check if controller is ready
2518 * to accept UIC commands
2519 * @hba: per adapter instance
2520 *
2521 * Return: true on success, else false.
2522 */
ufshcd_ready_for_uic_cmd(struct ufs_hba * hba)2523 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2524 {
2525 u32 val;
2526 int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2527 500, uic_cmd_timeout * 1000, false, hba,
2528 REG_CONTROLLER_STATUS);
2529 return ret == 0;
2530 }
2531
2532 /**
2533 * ufshcd_get_upmcrs - Get the power mode change request status
2534 * @hba: Pointer to adapter instance
2535 *
2536 * This function gets the UPMCRS field of HCS register
2537 *
2538 * Return: value of UPMCRS field.
2539 */
ufshcd_get_upmcrs(struct ufs_hba * hba)2540 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2541 {
2542 return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2543 }
2544
2545 /**
2546 * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2547 * @hba: per adapter instance
2548 * @uic_cmd: UIC command
2549 */
2550 static inline void
ufshcd_dispatch_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2551 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2552 {
2553 lockdep_assert_held(&hba->uic_cmd_mutex);
2554
2555 WARN_ON(hba->active_uic_cmd);
2556
2557 hba->active_uic_cmd = uic_cmd;
2558
2559 /* Write Args */
2560 ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2561 ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2562 ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2563
2564 ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2565
2566 /* Write UIC Cmd */
2567 ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2568 REG_UIC_COMMAND);
2569 }
2570
2571 /**
2572 * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2573 * @hba: per adapter instance
2574 * @uic_cmd: UIC command
2575 *
2576 * Return: 0 only if success.
2577 */
2578 static int
ufshcd_wait_for_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2579 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2580 {
2581 int ret;
2582 unsigned long flags;
2583
2584 lockdep_assert_held(&hba->uic_cmd_mutex);
2585
2586 if (wait_for_completion_timeout(&uic_cmd->done,
2587 msecs_to_jiffies(uic_cmd_timeout))) {
2588 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2589 } else {
2590 ret = -ETIMEDOUT;
2591 dev_err(hba->dev,
2592 "uic cmd 0x%x with arg3 0x%x completion timeout\n",
2593 uic_cmd->command, uic_cmd->argument3);
2594
2595 if (!uic_cmd->cmd_active) {
2596 dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2597 __func__);
2598 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2599 }
2600 }
2601
2602 spin_lock_irqsave(hba->host->host_lock, flags);
2603 hba->active_uic_cmd = NULL;
2604 spin_unlock_irqrestore(hba->host->host_lock, flags);
2605
2606 return ret;
2607 }
2608
2609 /**
2610 * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2611 * @hba: per adapter instance
2612 * @uic_cmd: UIC command
2613 *
2614 * Return: 0 if successful; < 0 upon failure.
2615 */
2616 static int
__ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2617 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2618 {
2619 lockdep_assert_held(&hba->uic_cmd_mutex);
2620
2621 if (!ufshcd_ready_for_uic_cmd(hba)) {
2622 dev_err(hba->dev,
2623 "Controller not ready to accept UIC commands\n");
2624 return -EIO;
2625 }
2626
2627 init_completion(&uic_cmd->done);
2628
2629 uic_cmd->cmd_active = true;
2630 ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2631
2632 return 0;
2633 }
2634
2635 /**
2636 * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2637 * @hba: per adapter instance
2638 * @uic_cmd: UIC command
2639 *
2640 * Return: 0 only if success.
2641 */
ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2642 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2643 {
2644 unsigned long flags;
2645 int ret;
2646
2647 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2648 return 0;
2649
2650 ufshcd_hold(hba);
2651 mutex_lock(&hba->uic_cmd_mutex);
2652 ufshcd_add_delay_before_dme_cmd(hba);
2653
2654 spin_lock_irqsave(hba->host->host_lock, flags);
2655 ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
2656 spin_unlock_irqrestore(hba->host->host_lock, flags);
2657
2658 ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
2659 if (!ret)
2660 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2661
2662 mutex_unlock(&hba->uic_cmd_mutex);
2663
2664 ufshcd_release(hba);
2665 return ret;
2666 }
2667
2668 /**
2669 * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2670 * @hba: per-adapter instance
2671 * @lrbp: pointer to local reference block
2672 * @sg_entries: The number of sg lists actually used
2673 * @sg_list: Pointer to SG list
2674 */
ufshcd_sgl_to_prdt(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int sg_entries,struct scatterlist * sg_list)2675 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2676 struct scatterlist *sg_list)
2677 {
2678 struct ufshcd_sg_entry *prd;
2679 struct scatterlist *sg;
2680 int i;
2681
2682 if (sg_entries) {
2683
2684 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2685 lrbp->utr_descriptor_ptr->prd_table_length =
2686 cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2687 else
2688 lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2689
2690 prd = lrbp->ucd_prdt_ptr;
2691
2692 for_each_sg(sg_list, sg, sg_entries, i) {
2693 const unsigned int len = sg_dma_len(sg);
2694
2695 /*
2696 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2697 * based value that indicates the length, in bytes, of
2698 * the data block. A maximum of length of 256KB may
2699 * exist for any entry. Bits 1:0 of this field shall be
2700 * 11b to indicate Dword granularity. A value of '3'
2701 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2702 */
2703 WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2704 prd->size = cpu_to_le32(len - 1);
2705 prd->addr = cpu_to_le64(sg->dma_address);
2706 prd->reserved = 0;
2707 prd = (void *)prd + ufshcd_sg_entry_size(hba);
2708 }
2709 } else {
2710 lrbp->utr_descriptor_ptr->prd_table_length = 0;
2711 }
2712 }
2713
2714 /**
2715 * ufshcd_map_sg - Map scatter-gather list to prdt
2716 * @hba: per adapter instance
2717 * @cmd: SCSI command
2718 *
2719 * Return: 0 in case of success, non-zero value in case of failure.
2720 */
ufshcd_map_sg(struct ufs_hba * hba,struct scsi_cmnd * cmd)2721 static int ufshcd_map_sg(struct ufs_hba *hba, struct scsi_cmnd *cmd)
2722 {
2723 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2724 int sg_segments = scsi_dma_map(cmd);
2725
2726 if (sg_segments < 0)
2727 return sg_segments;
2728
2729 ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2730
2731 return ufshcd_crypto_fill_prdt(hba, cmd);
2732 }
2733
2734 /**
2735 * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2736 * descriptor according to request
2737 * @hba: per adapter instance
2738 * @lrbp: pointer to local reference block
2739 * @upiu_flags: flags required in the header
2740 * @cmd_dir: requests data direction
2741 * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2742 */
2743 static void
ufshcd_prepare_req_desc_hdr(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 * upiu_flags,enum dma_data_direction cmd_dir,int ehs_length)2744 ufshcd_prepare_req_desc_hdr(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2745 u8 *upiu_flags, enum dma_data_direction cmd_dir,
2746 int ehs_length)
2747 {
2748 struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2749 struct request_desc_header *h = &req_desc->header;
2750 enum utp_data_direction data_direction;
2751
2752 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2753
2754 *h = (typeof(*h)){ };
2755
2756 if (cmd_dir == DMA_FROM_DEVICE) {
2757 data_direction = UTP_DEVICE_TO_HOST;
2758 *upiu_flags = UPIU_CMD_FLAGS_READ;
2759 } else if (cmd_dir == DMA_TO_DEVICE) {
2760 data_direction = UTP_HOST_TO_DEVICE;
2761 *upiu_flags = UPIU_CMD_FLAGS_WRITE;
2762 } else {
2763 data_direction = UTP_NO_DATA_TRANSFER;
2764 *upiu_flags = UPIU_CMD_FLAGS_NONE;
2765 }
2766
2767 h->command_type = lrbp->command_type;
2768 h->data_direction = data_direction;
2769 h->ehs_length = ehs_length;
2770
2771 if (lrbp->intr_cmd)
2772 h->interrupt = 1;
2773
2774 /* Prepare crypto related dwords */
2775 ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2776
2777 /*
2778 * assigning invalid value for command status. Controller
2779 * updates OCS on command completion, with the command
2780 * status
2781 */
2782 h->ocs = OCS_INVALID_COMMAND_STATUS;
2783
2784 req_desc->prd_table_length = 0;
2785 }
2786
2787 /**
2788 * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2789 * for scsi commands
2790 * @cmd: SCSI command
2791 * @upiu_flags: flags
2792 */
ufshcd_prepare_utp_scsi_cmd_upiu(struct scsi_cmnd * cmd,u8 upiu_flags)2793 static void ufshcd_prepare_utp_scsi_cmd_upiu(struct scsi_cmnd *cmd,
2794 u8 upiu_flags)
2795 {
2796 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2797 const int tag = scsi_cmd_to_rq(cmd)->tag;
2798 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2799 unsigned short cdb_len;
2800
2801 ucd_req_ptr->header = (struct utp_upiu_header){
2802 .transaction_code = UPIU_TRANSACTION_COMMAND,
2803 .flags = upiu_flags,
2804 .lun = lrbp->lun,
2805 .task_tag = tag,
2806 .command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2807 };
2808
2809 WARN_ON_ONCE(ucd_req_ptr->header.task_tag != tag);
2810
2811 ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2812
2813 cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2814 memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2815
2816 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2817 }
2818
2819 /**
2820 * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2821 * @hba: UFS hba
2822 * @cmd: SCSI command pointer
2823 * @upiu_flags: flags
2824 */
ufshcd_prepare_utp_query_req_upiu(struct ufs_hba * hba,struct scsi_cmnd * cmd,u8 upiu_flags)2825 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2826 struct scsi_cmnd *cmd, u8 upiu_flags)
2827 {
2828 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2829 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2830 const int tag = scsi_cmd_to_rq(cmd)->tag;
2831 struct ufs_query *query = &hba->dev_cmd.query;
2832 u16 len = be16_to_cpu(query->request.upiu_req.length);
2833
2834 /* Query request header */
2835 ucd_req_ptr->header = (struct utp_upiu_header){
2836 .transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2837 .flags = upiu_flags,
2838 .lun = lrbp->lun,
2839 .task_tag = tag,
2840 .query_function = query->request.query_func,
2841 /* Data segment length only need for WRITE_DESC */
2842 .data_segment_length =
2843 query->request.upiu_req.opcode ==
2844 UPIU_QUERY_OPCODE_WRITE_DESC ?
2845 cpu_to_be16(len) :
2846 0,
2847 };
2848
2849 /* Copy the Query Request buffer as is */
2850 memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2851 QUERY_OSF_SIZE);
2852
2853 /* Copy the Descriptor */
2854 if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2855 memcpy(ucd_req_ptr + 1, query->descriptor, len);
2856 }
2857
ufshcd_prepare_utp_nop_upiu(struct scsi_cmnd * cmd)2858 static inline void ufshcd_prepare_utp_nop_upiu(struct scsi_cmnd *cmd)
2859 {
2860 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2861 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2862 const int tag = scsi_cmd_to_rq(cmd)->tag;
2863
2864 memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2865
2866 ucd_req_ptr->header = (struct utp_upiu_header){
2867 .transaction_code = UPIU_TRANSACTION_NOP_OUT,
2868 .task_tag = tag,
2869 };
2870 }
2871
2872 /**
2873 * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2874 * for Device Management Purposes
2875 * @hba: per adapter instance
2876 * @cmd: SCSI command pointer
2877 *
2878 * Return: 0 upon success; < 0 upon failure.
2879 */
ufshcd_compose_devman_upiu(struct ufs_hba * hba,struct scsi_cmnd * cmd)2880 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2881 struct scsi_cmnd *cmd)
2882 {
2883 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2884 u8 upiu_flags;
2885 int ret = 0;
2886
2887 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
2888
2889 if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2890 ufshcd_prepare_utp_query_req_upiu(hba, cmd, upiu_flags);
2891 else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2892 ufshcd_prepare_utp_nop_upiu(cmd);
2893 else
2894 ret = -EINVAL;
2895
2896 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2897
2898 return ret;
2899 }
2900
2901 /**
2902 * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2903 * for SCSI Purposes
2904 * @hba: per adapter instance
2905 * @cmd: SCSI command
2906 */
ufshcd_comp_scsi_upiu(struct ufs_hba * hba,struct scsi_cmnd * cmd)2907 static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct scsi_cmnd *cmd)
2908 {
2909 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2910 struct request *rq = scsi_cmd_to_rq(cmd);
2911 unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
2912 u8 upiu_flags;
2913
2914 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags,
2915 cmd->sc_data_direction, 0);
2916 if (ioprio_class == IOPRIO_CLASS_RT)
2917 upiu_flags |= UPIU_CMD_FLAGS_CP;
2918 ufshcd_prepare_utp_scsi_cmd_upiu(cmd, upiu_flags);
2919 }
2920
ufshcd_init_lrb(struct ufs_hba * hba,struct scsi_cmnd * cmd)2921 static void ufshcd_init_lrb(struct ufs_hba *hba, struct scsi_cmnd *cmd)
2922 {
2923 const int i = scsi_cmd_to_rq(cmd)->tag;
2924 struct utp_transfer_cmd_desc *cmd_descp =
2925 (void *)hba->ucdl_base_addr + i * ufshcd_get_ucd_size(hba);
2926 struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2927 dma_addr_t cmd_desc_element_addr =
2928 hba->ucdl_dma_addr + i * ufshcd_get_ucd_size(hba);
2929 u16 response_offset = le16_to_cpu(utrdlp[i].response_upiu_offset);
2930 u16 prdt_offset = le16_to_cpu(utrdlp[i].prd_table_offset);
2931 struct ufshcd_lrb *lrb = scsi_cmd_priv(cmd);
2932
2933 lrb->utr_descriptor_ptr = utrdlp + i;
2934 lrb->utrd_dma_addr =
2935 hba->utrdl_dma_addr + i * sizeof(struct utp_transfer_req_desc);
2936 lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2937 lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2938 lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2939 lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2940 lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2941 lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2942 }
2943
__ufshcd_setup_cmd(struct ufs_hba * hba,struct scsi_cmnd * cmd,u8 lun,int tag)2944 static void __ufshcd_setup_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd,
2945 u8 lun, int tag)
2946 {
2947 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2948
2949 ufshcd_init_lrb(hba, cmd);
2950
2951 memset(lrbp->ucd_req_ptr, 0, sizeof(*lrbp->ucd_req_ptr));
2952
2953 lrbp->lun = lun;
2954 ufshcd_prepare_lrbp_crypto(ufshcd_is_scsi_cmd(cmd) ?
2955 scsi_cmd_to_rq(cmd) : NULL, lrbp);
2956 }
2957
ufshcd_setup_scsi_cmd(struct ufs_hba * hba,struct scsi_cmnd * cmd,u8 lun,int tag)2958 static void ufshcd_setup_scsi_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd,
2959 u8 lun, int tag)
2960 {
2961 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
2962
2963 __ufshcd_setup_cmd(hba, cmd, lun, tag);
2964 lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2965 lrbp->req_abort_skip = false;
2966
2967 ufshcd_comp_scsi_upiu(hba, cmd);
2968 }
2969
2970 /**
2971 * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2972 * @upiu_wlun_id: UPIU W-LUN id
2973 *
2974 * Return: SCSI W-LUN id.
2975 */
ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)2976 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2977 {
2978 return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2979 }
2980
is_device_wlun(struct scsi_device * sdev)2981 static inline bool is_device_wlun(struct scsi_device *sdev)
2982 {
2983 return sdev->lun ==
2984 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2985 }
2986
2987 /*
2988 * Associate the UFS controller queue with the default and poll HCTX types.
2989 * Initialize the mq_map[] arrays.
2990 */
ufshcd_map_queues(struct Scsi_Host * shost)2991 static void ufshcd_map_queues(struct Scsi_Host *shost)
2992 {
2993 struct ufs_hba *hba = shost_priv(shost);
2994 int i, queue_offset = 0;
2995
2996 if (!is_mcq_supported(hba)) {
2997 hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2998 hba->nr_queues[HCTX_TYPE_READ] = 0;
2999 hba->nr_queues[HCTX_TYPE_POLL] = 1;
3000 hba->nr_hw_queues = 1;
3001 }
3002
3003 for (i = 0; i < shost->nr_maps; i++) {
3004 struct blk_mq_queue_map *map = &shost->tag_set.map[i];
3005
3006 map->nr_queues = hba->nr_queues[i];
3007 if (!map->nr_queues)
3008 continue;
3009 map->queue_offset = queue_offset;
3010 if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
3011 map->queue_offset = 0;
3012
3013 blk_mq_map_queues(map);
3014 queue_offset += map->nr_queues;
3015 }
3016 }
3017
3018 /*
3019 * The only purpose of this function is to make the SCSI core skip the memset()
3020 * call for the private command data.
3021 */
ufshcd_init_cmd_priv(struct Scsi_Host * host,struct scsi_cmnd * cmd)3022 static int ufshcd_init_cmd_priv(struct Scsi_Host *host, struct scsi_cmnd *cmd)
3023 {
3024 return 0;
3025 }
3026
3027 /**
3028 * ufshcd_queuecommand - main entry point for SCSI requests
3029 * @host: SCSI host pointer
3030 * @cmd: command from SCSI Midlayer
3031 *
3032 * Return: 0 for success, non-zero in case of failure.
3033 */
ufshcd_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * cmd)3034 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
3035 {
3036 struct ufs_hba *hba = shost_priv(host);
3037 int tag = scsi_cmd_to_rq(cmd)->tag;
3038 int err = 0;
3039 struct ufs_hw_queue *hwq = NULL;
3040
3041 switch (hba->ufshcd_state) {
3042 case UFSHCD_STATE_OPERATIONAL:
3043 break;
3044 case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
3045 /*
3046 * SCSI error handler can call ->queuecommand() while UFS error
3047 * handler is in progress. Error interrupts could change the
3048 * state from UFSHCD_STATE_RESET to
3049 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
3050 * being issued in that case.
3051 */
3052 if (ufshcd_eh_in_progress(hba)) {
3053 err = SCSI_MLQUEUE_HOST_BUSY;
3054 goto out;
3055 }
3056 break;
3057 case UFSHCD_STATE_EH_SCHEDULED_FATAL:
3058 /*
3059 * pm_runtime_get_sync() is used at error handling preparation
3060 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
3061 * PM ops, it can never be finished if we let SCSI layer keep
3062 * retrying it, which gets err handler stuck forever. Neither
3063 * can we let the scsi cmd pass through, because UFS is in bad
3064 * state, the scsi cmd may eventually time out, which will get
3065 * err handler blocked for too long. So, just fail the scsi cmd
3066 * sent from PM ops, err handler can recover PM error anyways.
3067 */
3068 if (hba->pm_op_in_progress) {
3069 hba->force_reset = true;
3070 set_host_byte(cmd, DID_BAD_TARGET);
3071 scsi_done(cmd);
3072 goto out;
3073 }
3074 fallthrough;
3075 case UFSHCD_STATE_RESET:
3076 err = SCSI_MLQUEUE_HOST_BUSY;
3077 goto out;
3078 case UFSHCD_STATE_ERROR:
3079 set_host_byte(cmd, DID_ERROR);
3080 scsi_done(cmd);
3081 goto out;
3082 }
3083
3084 hba->req_abort_count = 0;
3085
3086 ufshcd_hold(hba);
3087
3088 ufshcd_setup_scsi_cmd(hba, cmd,
3089 ufshcd_scsi_to_upiu_lun(cmd->device->lun), tag);
3090
3091 err = ufshcd_map_sg(hba, cmd);
3092 if (err) {
3093 ufshcd_release(hba);
3094 goto out;
3095 }
3096
3097 if (hba->mcq_enabled)
3098 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
3099
3100 ufshcd_send_command(hba, cmd, hwq);
3101
3102 out:
3103 if (ufs_trigger_eh(hba)) {
3104 unsigned long flags;
3105
3106 spin_lock_irqsave(hba->host->host_lock, flags);
3107 ufshcd_schedule_eh_work(hba);
3108 spin_unlock_irqrestore(hba->host->host_lock, flags);
3109 }
3110
3111 return err;
3112 }
3113
ufshcd_queue_reserved_command(struct Scsi_Host * host,struct scsi_cmnd * cmd)3114 static int ufshcd_queue_reserved_command(struct Scsi_Host *host,
3115 struct scsi_cmnd *cmd)
3116 {
3117 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
3118 struct request *rq = scsi_cmd_to_rq(cmd);
3119 struct ufs_hba *hba = shost_priv(host);
3120 struct ufs_hw_queue *hwq =
3121 hba->mcq_enabled ? ufshcd_mcq_req_to_hwq(hba, rq) : NULL;
3122
3123 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3124 ufshcd_send_command(hba, cmd, hwq);
3125 return 0;
3126 }
3127
ufshcd_setup_dev_cmd(struct ufs_hba * hba,struct scsi_cmnd * cmd,enum dev_cmd_type cmd_type,u8 lun,int tag)3128 static void ufshcd_setup_dev_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd,
3129 enum dev_cmd_type cmd_type, u8 lun, int tag)
3130 {
3131 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
3132
3133 __ufshcd_setup_cmd(hba, cmd, lun, tag);
3134 lrbp->intr_cmd = true; /* No interrupt aggregation */
3135 hba->dev_cmd.type = cmd_type;
3136 }
3137
3138 /*
3139 * Return: 0 upon success; < 0 upon failure.
3140 */
ufshcd_compose_dev_cmd(struct ufs_hba * hba,struct scsi_cmnd * cmd,enum dev_cmd_type cmd_type,int tag)3141 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd,
3142 enum dev_cmd_type cmd_type, int tag)
3143 {
3144 ufshcd_setup_dev_cmd(hba, cmd, cmd_type, 0, tag);
3145
3146 return ufshcd_compose_devman_upiu(hba, cmd);
3147 }
3148
3149 /*
3150 * Check with the block layer if the command is inflight
3151 * @cmd: command to check.
3152 *
3153 * Return: true if command is inflight; false if not.
3154 */
ufshcd_cmd_inflight(struct scsi_cmnd * cmd)3155 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
3156 {
3157 return cmd && blk_mq_rq_state(scsi_cmd_to_rq(cmd)) == MQ_RQ_IN_FLIGHT;
3158 }
3159
3160 /*
3161 * Clear the pending command in the controller and wait until
3162 * the controller confirms that the command has been cleared.
3163 * @hba: per adapter instance
3164 * @task_tag: The tag number of the command to be cleared.
3165 */
ufshcd_clear_cmd(struct ufs_hba * hba,u32 task_tag)3166 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
3167 {
3168 u32 mask;
3169 int err;
3170
3171 if (hba->mcq_enabled) {
3172 /*
3173 * MCQ mode. Clean up the MCQ resources similar to
3174 * what the ufshcd_utrl_clear() does for SDB mode.
3175 */
3176 err = ufshcd_mcq_sq_cleanup(hba, task_tag);
3177 if (err) {
3178 dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
3179 __func__, task_tag, err);
3180 return err;
3181 }
3182 return 0;
3183 }
3184
3185 mask = 1U << task_tag;
3186
3187 /* clear outstanding transaction before retry */
3188 ufshcd_utrl_clear(hba, mask);
3189
3190 /*
3191 * wait for h/w to clear corresponding bit in door-bell.
3192 * max. wait is 1 sec.
3193 */
3194 return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3195 mask, ~mask, 1000, 1000);
3196 }
3197
3198 /**
3199 * ufshcd_dev_cmd_completion() - handles device management command responses
3200 * @hba: per adapter instance
3201 * @lrbp: pointer to local reference block
3202 *
3203 * Return: 0 upon success; < 0 upon failure.
3204 */
3205 static int
ufshcd_dev_cmd_completion(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)3206 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3207 {
3208 enum upiu_response_transaction resp;
3209 int err = 0;
3210
3211 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3212 resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3213
3214 switch (resp) {
3215 case UPIU_TRANSACTION_NOP_IN:
3216 if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3217 err = -EINVAL;
3218 dev_err(hba->dev, "%s: unexpected response %x\n",
3219 __func__, resp);
3220 }
3221 break;
3222 case UPIU_TRANSACTION_QUERY_RSP: {
3223 u8 response = lrbp->ucd_rsp_ptr->header.response;
3224
3225 if (response == 0) {
3226 err = ufshcd_copy_query_response(hba, lrbp);
3227 } else {
3228 err = -EINVAL;
3229 dev_err(hba->dev, "%s: unexpected response in Query RSP: %x\n",
3230 __func__, response);
3231 }
3232 break;
3233 }
3234 case UPIU_TRANSACTION_REJECT_UPIU:
3235 /* TODO: handle Reject UPIU Response */
3236 err = -EPERM;
3237 dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3238 __func__);
3239 break;
3240 case UPIU_TRANSACTION_RESPONSE:
3241 if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3242 err = -EINVAL;
3243 dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3244 }
3245 break;
3246 default:
3247 err = -EINVAL;
3248 dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3249 __func__, resp);
3250 break;
3251 }
3252
3253 WARN_ONCE(err > 0, "Incorrect return value %d > 0\n", err);
3254 return err;
3255 }
3256
ufshcd_dev_man_lock(struct ufs_hba * hba)3257 static void ufshcd_dev_man_lock(struct ufs_hba *hba)
3258 {
3259 ufshcd_hold(hba);
3260 mutex_lock(&hba->dev_cmd.lock);
3261 down_read(&hba->clk_scaling_lock);
3262 }
3263
ufshcd_dev_man_unlock(struct ufs_hba * hba)3264 static void ufshcd_dev_man_unlock(struct ufs_hba *hba)
3265 {
3266 up_read(&hba->clk_scaling_lock);
3267 mutex_unlock(&hba->dev_cmd.lock);
3268 ufshcd_release(hba);
3269 }
3270
ufshcd_get_dev_mgmt_cmd(struct ufs_hba * hba)3271 static struct scsi_cmnd *ufshcd_get_dev_mgmt_cmd(struct ufs_hba *hba)
3272 {
3273 /*
3274 * The caller must hold this lock to guarantee that the NOWAIT
3275 * allocation will succeed.
3276 */
3277 lockdep_assert_held(&hba->dev_cmd.lock);
3278
3279 return scsi_get_internal_cmd(
3280 hba->host->pseudo_sdev, DMA_TO_DEVICE,
3281 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
3282 }
3283
ufshcd_put_dev_mgmt_cmd(struct scsi_cmnd * cmd)3284 static void ufshcd_put_dev_mgmt_cmd(struct scsi_cmnd *cmd)
3285 {
3286 scsi_put_internal_cmd(cmd);
3287 }
3288
3289 /*
3290 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3291 * < 0 if another error occurred.
3292 */
ufshcd_issue_dev_cmd(struct ufs_hba * hba,struct scsi_cmnd * cmd,const u32 tag,int timeout)3293 static int ufshcd_issue_dev_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd,
3294 const u32 tag, int timeout)
3295 {
3296 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
3297 struct request *rq = scsi_cmd_to_rq(cmd);
3298 blk_status_t sts;
3299
3300 rq->timeout = timeout;
3301 sts = blk_execute_rq(rq, true);
3302 if (sts != BLK_STS_OK)
3303 return blk_status_to_errno(sts);
3304 return lrbp->utr_descriptor_ptr->header.ocs;
3305 }
3306
3307 /**
3308 * ufshcd_exec_dev_cmd - API for sending device management requests
3309 * @hba: UFS hba
3310 * @cmd_type: specifies the type (NOP, Query...)
3311 * @timeout: timeout in milliseconds
3312 *
3313 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3314 * < 0 if another error occurred.
3315 *
3316 * NOTE: Since there is only one available tag for device management commands,
3317 * it is expected you hold the hba->dev_cmd.lock mutex.
3318 */
ufshcd_exec_dev_cmd(struct ufs_hba * hba,enum dev_cmd_type cmd_type,int timeout)3319 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3320 enum dev_cmd_type cmd_type, int timeout)
3321 {
3322 struct scsi_cmnd *cmd = ufshcd_get_dev_mgmt_cmd(hba);
3323 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
3324 u32 tag;
3325 int err;
3326
3327 /* Protects use of hba->dev_cmd. */
3328 lockdep_assert_held(&hba->dev_cmd.lock);
3329
3330 if (WARN_ON_ONCE(!cmd))
3331 return -ENOMEM;
3332
3333 tag = scsi_cmd_to_rq(cmd)->tag;
3334
3335 err = ufshcd_compose_dev_cmd(hba, cmd, cmd_type, tag);
3336 if (unlikely(err))
3337 goto out;
3338
3339 err = ufshcd_issue_dev_cmd(hba, cmd, tag, timeout);
3340 if (err == 0)
3341 err = ufshcd_dev_cmd_completion(hba, lrbp);
3342
3343 out:
3344 ufshcd_put_dev_mgmt_cmd(cmd);
3345
3346 return err;
3347 }
3348
3349 /**
3350 * ufshcd_init_query() - init the query response and request parameters
3351 * @hba: per-adapter instance
3352 * @request: address of the request pointer to be initialized
3353 * @response: address of the response pointer to be initialized
3354 * @opcode: operation to perform
3355 * @idn: flag idn to access
3356 * @index: LU number to access
3357 * @selector: query/flag/descriptor further identification
3358 */
ufshcd_init_query(struct ufs_hba * hba,struct ufs_query_req ** request,struct ufs_query_res ** response,enum query_opcode opcode,u8 idn,u8 index,u8 selector)3359 static inline void ufshcd_init_query(struct ufs_hba *hba,
3360 struct ufs_query_req **request, struct ufs_query_res **response,
3361 enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3362 {
3363 *request = &hba->dev_cmd.query.request;
3364 *response = &hba->dev_cmd.query.response;
3365 memset(*request, 0, sizeof(struct ufs_query_req));
3366 memset(*response, 0, sizeof(struct ufs_query_res));
3367 (*request)->upiu_req.opcode = opcode;
3368 (*request)->upiu_req.idn = idn;
3369 (*request)->upiu_req.index = index;
3370 (*request)->upiu_req.selector = selector;
3371 }
3372
3373 /*
3374 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3375 * < 0 if another error occurred.
3376 */
ufshcd_query_flag_retry(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3377 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3378 enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3379 {
3380 int ret;
3381 int retries;
3382
3383 for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3384 ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3385 if (ret)
3386 dev_dbg(hba->dev,
3387 "%s: failed with error %d, retries %d\n",
3388 __func__, ret, retries);
3389 else
3390 break;
3391 }
3392
3393 if (ret)
3394 dev_err(hba->dev,
3395 "%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3396 __func__, opcode, idn, ret, retries);
3397 return ret;
3398 }
3399
3400 /**
3401 * ufshcd_query_flag() - API function for sending flag query requests
3402 * @hba: per-adapter instance
3403 * @opcode: flag query to perform
3404 * @idn: flag idn to access
3405 * @index: flag index to access
3406 * @flag_res: the flag value after the query request completes
3407 *
3408 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3409 * < 0 if another error occurred.
3410 */
ufshcd_query_flag(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3411 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3412 enum flag_idn idn, u8 index, bool *flag_res)
3413 {
3414 struct ufs_query_req *request = NULL;
3415 struct ufs_query_res *response = NULL;
3416 int err, selector = 0;
3417 int timeout = dev_cmd_timeout;
3418
3419 BUG_ON(!hba);
3420
3421 ufshcd_dev_man_lock(hba);
3422
3423 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3424 selector);
3425
3426 switch (opcode) {
3427 case UPIU_QUERY_OPCODE_SET_FLAG:
3428 case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3429 case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3430 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3431 break;
3432 case UPIU_QUERY_OPCODE_READ_FLAG:
3433 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3434 if (!flag_res) {
3435 /* No dummy reads */
3436 dev_err(hba->dev, "%s: Invalid argument for read request\n",
3437 __func__);
3438 err = -EINVAL;
3439 goto out_unlock;
3440 }
3441 break;
3442 default:
3443 dev_err(hba->dev,
3444 "%s: Expected query flag opcode but got = %d\n",
3445 __func__, opcode);
3446 err = -EINVAL;
3447 goto out_unlock;
3448 }
3449
3450 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3451
3452 if (err) {
3453 dev_err(hba->dev,
3454 "%s: Sending flag query for idn %d failed, err = %d\n",
3455 __func__, idn, err);
3456 goto out_unlock;
3457 }
3458
3459 if (flag_res)
3460 *flag_res = (be32_to_cpu(response->upiu_res.value) &
3461 MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3462
3463 out_unlock:
3464 ufshcd_dev_man_unlock(hba);
3465 return err;
3466 }
3467
3468 /**
3469 * ufshcd_query_attr - API function for sending attribute requests
3470 * @hba: per-adapter instance
3471 * @opcode: attribute opcode
3472 * @idn: attribute idn to access
3473 * @index: index field
3474 * @selector: selector field
3475 * @attr_val: the attribute value after the query request completes
3476 *
3477 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3478 * < 0 if another error occurred.
3479 */
ufshcd_query_attr(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3480 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3481 enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3482 {
3483 struct ufs_query_req *request = NULL;
3484 struct ufs_query_res *response = NULL;
3485 int err;
3486
3487 BUG_ON(!hba);
3488
3489 if (!attr_val) {
3490 dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3491 __func__, opcode);
3492 return -EINVAL;
3493 }
3494
3495 ufshcd_dev_man_lock(hba);
3496
3497 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3498 selector);
3499
3500 switch (opcode) {
3501 case UPIU_QUERY_OPCODE_WRITE_ATTR:
3502 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3503 request->upiu_req.value = cpu_to_be32(*attr_val);
3504 break;
3505 case UPIU_QUERY_OPCODE_READ_ATTR:
3506 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3507 break;
3508 default:
3509 dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3510 __func__, opcode);
3511 err = -EINVAL;
3512 goto out_unlock;
3513 }
3514
3515 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
3516
3517 if (err) {
3518 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3519 __func__, opcode, idn, index, err);
3520 goto out_unlock;
3521 }
3522
3523 *attr_val = be32_to_cpu(response->upiu_res.value);
3524
3525 out_unlock:
3526 ufshcd_dev_man_unlock(hba);
3527 return err;
3528 }
3529
3530 /**
3531 * ufshcd_query_attr_retry() - API function for sending query
3532 * attribute with retries
3533 * @hba: per-adapter instance
3534 * @opcode: attribute opcode
3535 * @idn: attribute idn to access
3536 * @index: index field
3537 * @selector: selector field
3538 * @attr_val: the attribute value after the query request
3539 * completes
3540 *
3541 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3542 * < 0 if another error occurred.
3543 */
ufshcd_query_attr_retry(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3544 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3545 enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3546 u32 *attr_val)
3547 {
3548 int ret = 0;
3549 u32 retries;
3550
3551 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3552 ret = ufshcd_query_attr(hba, opcode, idn, index,
3553 selector, attr_val);
3554 if (ret)
3555 dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3556 __func__, ret, retries);
3557 else
3558 break;
3559 }
3560
3561 if (ret)
3562 dev_err(hba->dev,
3563 "%s: query attribute, idn %d, failed with error %d after %d retries\n",
3564 __func__, idn, ret, QUERY_REQ_RETRIES);
3565 return ret;
3566 }
3567
3568 /*
3569 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3570 * < 0 if another error occurred.
3571 */
__ufshcd_query_descriptor(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3572 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3573 enum query_opcode opcode, enum desc_idn idn, u8 index,
3574 u8 selector, u8 *desc_buf, int *buf_len)
3575 {
3576 struct ufs_query_req *request = NULL;
3577 struct ufs_query_res *response = NULL;
3578 int err;
3579
3580 BUG_ON(!hba);
3581
3582 if (!desc_buf) {
3583 dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3584 __func__, opcode);
3585 return -EINVAL;
3586 }
3587
3588 if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3589 dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3590 __func__, *buf_len);
3591 return -EINVAL;
3592 }
3593
3594 ufshcd_dev_man_lock(hba);
3595
3596 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3597 selector);
3598 hba->dev_cmd.query.descriptor = desc_buf;
3599 request->upiu_req.length = cpu_to_be16(*buf_len);
3600
3601 switch (opcode) {
3602 case UPIU_QUERY_OPCODE_WRITE_DESC:
3603 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3604 break;
3605 case UPIU_QUERY_OPCODE_READ_DESC:
3606 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3607 break;
3608 default:
3609 dev_err(hba->dev,
3610 "%s: Expected query descriptor opcode but got = 0x%.2x\n",
3611 __func__, opcode);
3612 err = -EINVAL;
3613 goto out_unlock;
3614 }
3615
3616 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
3617
3618 if (err) {
3619 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3620 __func__, opcode, idn, index, err);
3621 goto out_unlock;
3622 }
3623
3624 *buf_len = be16_to_cpu(response->upiu_res.length);
3625
3626 out_unlock:
3627 hba->dev_cmd.query.descriptor = NULL;
3628 ufshcd_dev_man_unlock(hba);
3629 return err;
3630 }
3631
3632 /**
3633 * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3634 * @hba: per-adapter instance
3635 * @opcode: attribute opcode
3636 * @idn: attribute idn to access
3637 * @index: index field
3638 * @selector: selector field
3639 * @desc_buf: the buffer that contains the descriptor
3640 * @buf_len: length parameter passed to the device
3641 *
3642 * The buf_len parameter will contain, on return, the length parameter
3643 * received on the response.
3644 *
3645 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3646 * < 0 if another error occurred.
3647 */
ufshcd_query_descriptor_retry(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3648 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3649 enum query_opcode opcode,
3650 enum desc_idn idn, u8 index,
3651 u8 selector,
3652 u8 *desc_buf, int *buf_len)
3653 {
3654 int err;
3655 int retries;
3656
3657 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3658 err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3659 selector, desc_buf, buf_len);
3660 if (!err || err == -EINVAL)
3661 break;
3662 }
3663
3664 return err;
3665 }
3666
3667 /**
3668 * ufshcd_read_desc_param - read the specified descriptor parameter
3669 * @hba: Pointer to adapter instance
3670 * @desc_id: descriptor idn value
3671 * @desc_index: descriptor index
3672 * @param_offset: offset of the parameter to read
3673 * @param_read_buf: pointer to buffer where parameter would be read
3674 * @param_size: sizeof(param_read_buf)
3675 *
3676 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
3677 * < 0 if another error occurred.
3678 */
ufshcd_read_desc_param(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,u8 param_offset,u8 * param_read_buf,u8 param_size)3679 int ufshcd_read_desc_param(struct ufs_hba *hba,
3680 enum desc_idn desc_id,
3681 int desc_index,
3682 u8 param_offset,
3683 u8 *param_read_buf,
3684 u8 param_size)
3685 {
3686 int ret;
3687 u8 *desc_buf;
3688 int buff_len = QUERY_DESC_MAX_SIZE;
3689 bool is_kmalloc = true;
3690
3691 /* Safety check */
3692 if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3693 return -EINVAL;
3694
3695 /* Check whether we need temp memory */
3696 if (param_offset != 0 || param_size < buff_len) {
3697 desc_buf = kzalloc(buff_len, GFP_KERNEL);
3698 if (!desc_buf)
3699 return -ENOMEM;
3700 } else {
3701 desc_buf = param_read_buf;
3702 is_kmalloc = false;
3703 }
3704
3705 /* Request for full descriptor */
3706 ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3707 desc_id, desc_index, 0,
3708 desc_buf, &buff_len);
3709 if (ret) {
3710 dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3711 __func__, desc_id, desc_index, param_offset, ret);
3712 goto out;
3713 }
3714
3715 /* Update descriptor length */
3716 buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3717
3718 if (param_offset >= buff_len) {
3719 dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3720 __func__, param_offset, desc_id, buff_len);
3721 ret = -EINVAL;
3722 goto out;
3723 }
3724
3725 /* Sanity check */
3726 if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3727 dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3728 __func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3729 ret = -EINVAL;
3730 goto out;
3731 }
3732
3733 if (is_kmalloc) {
3734 /* Make sure we don't copy more data than available */
3735 if (param_offset >= buff_len)
3736 ret = -EINVAL;
3737 else
3738 memcpy(param_read_buf, &desc_buf[param_offset],
3739 min_t(u32, param_size, buff_len - param_offset));
3740 }
3741 out:
3742 if (is_kmalloc)
3743 kfree(desc_buf);
3744 return ret;
3745 }
3746
3747 /**
3748 * struct uc_string_id - unicode string
3749 *
3750 * @len: size of this descriptor inclusive
3751 * @type: descriptor type
3752 * @uc: unicode string character
3753 */
3754 struct uc_string_id {
3755 u8 len;
3756 u8 type;
3757 wchar_t uc[];
3758 } __packed;
3759
3760 /* replace non-printable or non-ASCII characters with spaces */
ufshcd_remove_non_printable(u8 ch)3761 static inline char ufshcd_remove_non_printable(u8 ch)
3762 {
3763 return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3764 }
3765
3766 /**
3767 * ufshcd_read_string_desc - read string descriptor
3768 * @hba: pointer to adapter instance
3769 * @desc_index: descriptor index
3770 * @buf: pointer to buffer where descriptor would be read,
3771 * the caller should free the memory.
3772 * @fmt: if %SD_ASCII_STD, convert from UTF-16 to ASCII
3773 *
3774 * Return:
3775 * * string size on success.
3776 * * -ENOMEM: on allocation failure
3777 * * -EINVAL: on a wrong parameter
3778 */
ufshcd_read_string_desc(struct ufs_hba * hba,u8 desc_index,u8 ** buf,enum ufs_descr_fmt fmt)3779 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index, u8 **buf, enum ufs_descr_fmt fmt)
3780 {
3781 struct uc_string_id *uc_str;
3782 u8 *str;
3783 int ret;
3784
3785 if (!buf)
3786 return -EINVAL;
3787
3788 uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3789 if (!uc_str)
3790 return -ENOMEM;
3791
3792 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3793 (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3794 if (ret < 0) {
3795 dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3796 QUERY_REQ_RETRIES, ret);
3797 str = NULL;
3798 goto out;
3799 }
3800
3801 if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3802 dev_dbg(hba->dev, "String Desc is of zero length\n");
3803 str = NULL;
3804 ret = 0;
3805 goto out;
3806 }
3807
3808 if (fmt == SD_ASCII_STD) {
3809 ssize_t ascii_len;
3810 int i;
3811 /* remove header and divide by 2 to move from UTF16 to UTF8 */
3812 ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3813 str = kzalloc(ascii_len, GFP_KERNEL);
3814 if (!str) {
3815 ret = -ENOMEM;
3816 goto out;
3817 }
3818
3819 /*
3820 * the descriptor contains string in UTF16 format
3821 * we need to convert to utf-8 so it can be displayed
3822 */
3823 ret = utf16s_to_utf8s(uc_str->uc,
3824 uc_str->len - QUERY_DESC_HDR_SIZE,
3825 UTF16_BIG_ENDIAN, str, ascii_len - 1);
3826
3827 /* replace non-printable or non-ASCII characters with spaces */
3828 for (i = 0; i < ret; i++)
3829 str[i] = ufshcd_remove_non_printable(str[i]);
3830
3831 str[ret++] = '\0';
3832
3833 } else {
3834 str = kmemdup(uc_str->uc, uc_str->len, GFP_KERNEL);
3835 if (!str) {
3836 ret = -ENOMEM;
3837 goto out;
3838 }
3839 ret = uc_str->len;
3840 }
3841 out:
3842 *buf = str;
3843 kfree(uc_str);
3844 return ret;
3845 }
3846
3847 /**
3848 * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3849 * @hba: Pointer to adapter instance
3850 * @lun: lun id
3851 * @param_offset: offset of the parameter to read
3852 * @param_read_buf: pointer to buffer where parameter would be read
3853 * @param_size: sizeof(param_read_buf)
3854 *
3855 * Return: 0 in case of success; < 0 upon failure.
3856 */
ufshcd_read_unit_desc_param(struct ufs_hba * hba,int lun,enum unit_desc_param param_offset,u8 * param_read_buf,u32 param_size)3857 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3858 int lun,
3859 enum unit_desc_param param_offset,
3860 u8 *param_read_buf,
3861 u32 param_size)
3862 {
3863 /*
3864 * Unit descriptors are only available for general purpose LUs (LUN id
3865 * from 0 to 7) and RPMB Well known LU.
3866 */
3867 if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3868 return -EOPNOTSUPP;
3869
3870 return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3871 param_offset, param_read_buf, param_size);
3872 }
3873
ufshcd_get_ref_clk_gating_wait(struct ufs_hba * hba)3874 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3875 {
3876 int err = 0;
3877 u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3878
3879 if (hba->dev_info.wspecversion >= 0x300) {
3880 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3881 QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3882 &gating_wait);
3883 if (err)
3884 dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3885 err, gating_wait);
3886
3887 if (gating_wait == 0) {
3888 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3889 dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3890 gating_wait);
3891 }
3892
3893 hba->dev_info.clk_gating_wait_us = gating_wait;
3894 }
3895
3896 return err;
3897 }
3898
3899 /**
3900 * ufshcd_memory_alloc - allocate memory for host memory space data structures
3901 * @hba: per adapter instance
3902 *
3903 * 1. Allocate DMA memory for Command Descriptor array
3904 * Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3905 * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3906 * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3907 * (UTMRDL)
3908 * 4. Allocate memory for local reference block(lrb).
3909 *
3910 * Return: 0 for success, non-zero in case of failure.
3911 */
ufshcd_memory_alloc(struct ufs_hba * hba)3912 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3913 {
3914 size_t utmrdl_size, utrdl_size, ucdl_size;
3915
3916 /* Allocate memory for UTP command descriptors */
3917 ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3918 hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3919 ucdl_size,
3920 &hba->ucdl_dma_addr,
3921 GFP_KERNEL);
3922
3923 /*
3924 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3925 */
3926 if (!hba->ucdl_base_addr ||
3927 WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3928 dev_err(hba->dev,
3929 "Command Descriptor Memory allocation failed\n");
3930 goto out;
3931 }
3932
3933 /*
3934 * Allocate memory for UTP Transfer descriptors
3935 * UFSHCI requires 1KB alignment of UTRD
3936 */
3937 utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3938 hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3939 utrdl_size,
3940 &hba->utrdl_dma_addr,
3941 GFP_KERNEL);
3942 if (!hba->utrdl_base_addr ||
3943 WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3944 dev_err(hba->dev,
3945 "Transfer Descriptor Memory allocation failed\n");
3946 goto out;
3947 }
3948
3949 /*
3950 * Skip utmrdl allocation; it may have been
3951 * allocated during first pass and not released during
3952 * MCQ memory allocation.
3953 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3954 */
3955 if (hba->utmrdl_base_addr)
3956 goto skip_utmrdl;
3957 /*
3958 * Allocate memory for UTP Task Management descriptors
3959 * UFSHCI requires 1KB alignment of UTMRD
3960 */
3961 utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3962 hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3963 utmrdl_size,
3964 &hba->utmrdl_dma_addr,
3965 GFP_KERNEL);
3966 if (!hba->utmrdl_base_addr ||
3967 WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3968 dev_err(hba->dev,
3969 "Task Management Descriptor Memory allocation failed\n");
3970 goto out;
3971 }
3972
3973 skip_utmrdl:
3974 return 0;
3975 out:
3976 return -ENOMEM;
3977 }
3978
3979 /**
3980 * ufshcd_host_memory_configure - configure local reference block with
3981 * memory offsets
3982 * @hba: per adapter instance
3983 *
3984 * Configure Host memory space
3985 * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3986 * address.
3987 * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3988 * and PRDT offset.
3989 * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3990 * into local reference block.
3991 */
ufshcd_host_memory_configure(struct ufs_hba * hba)3992 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3993 {
3994 struct utp_transfer_req_desc *utrdlp;
3995 dma_addr_t cmd_desc_dma_addr;
3996 dma_addr_t cmd_desc_element_addr;
3997 u16 response_offset;
3998 u16 prdt_offset;
3999 int cmd_desc_size;
4000 int i;
4001
4002 utrdlp = hba->utrdl_base_addr;
4003
4004 response_offset =
4005 offsetof(struct utp_transfer_cmd_desc, response_upiu);
4006 prdt_offset =
4007 offsetof(struct utp_transfer_cmd_desc, prd_table);
4008
4009 cmd_desc_size = ufshcd_get_ucd_size(hba);
4010 cmd_desc_dma_addr = hba->ucdl_dma_addr;
4011
4012 for (i = 0; i < hba->nutrs; i++) {
4013 /* Configure UTRD with command descriptor base address */
4014 cmd_desc_element_addr =
4015 (cmd_desc_dma_addr + (cmd_desc_size * i));
4016 utrdlp[i].command_desc_base_addr =
4017 cpu_to_le64(cmd_desc_element_addr);
4018
4019 /* Response upiu and prdt offset should be in double words */
4020 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
4021 utrdlp[i].response_upiu_offset =
4022 cpu_to_le16(response_offset);
4023 utrdlp[i].prd_table_offset =
4024 cpu_to_le16(prdt_offset);
4025 utrdlp[i].response_upiu_length =
4026 cpu_to_le16(ALIGNED_UPIU_SIZE);
4027 } else {
4028 utrdlp[i].response_upiu_offset =
4029 cpu_to_le16(response_offset >> 2);
4030 utrdlp[i].prd_table_offset =
4031 cpu_to_le16(prdt_offset >> 2);
4032 utrdlp[i].response_upiu_length =
4033 cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
4034 }
4035 }
4036 }
4037
4038 /**
4039 * ufshcd_dme_link_startup - Notify Unipro to perform link startup
4040 * @hba: per adapter instance
4041 *
4042 * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
4043 * in order to initialize the Unipro link startup procedure.
4044 * Once the Unipro links are up, the device connected to the controller
4045 * is detected.
4046 *
4047 * Return: 0 on success, non-zero value on failure.
4048 */
ufshcd_dme_link_startup(struct ufs_hba * hba)4049 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
4050 {
4051 struct uic_command uic_cmd = {
4052 .command = UIC_CMD_DME_LINK_STARTUP,
4053 };
4054 int ret;
4055
4056 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4057 if (ret)
4058 dev_dbg(hba->dev,
4059 "dme-link-startup: error code %d\n", ret);
4060 return ret;
4061 }
4062 /**
4063 * ufshcd_dme_reset - UIC command for DME_RESET
4064 * @hba: per adapter instance
4065 *
4066 * DME_RESET command is issued in order to reset UniPro stack.
4067 * This function now deals with cold reset.
4068 *
4069 * Return: 0 on success, non-zero value on failure.
4070 */
ufshcd_dme_reset(struct ufs_hba * hba)4071 int ufshcd_dme_reset(struct ufs_hba *hba)
4072 {
4073 struct uic_command uic_cmd = {
4074 .command = UIC_CMD_DME_RESET,
4075 };
4076 int ret;
4077
4078 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4079 if (ret)
4080 dev_err(hba->dev,
4081 "dme-reset: error code %d\n", ret);
4082
4083 return ret;
4084 }
4085 EXPORT_SYMBOL_GPL(ufshcd_dme_reset);
4086
ufshcd_dme_configure_adapt(struct ufs_hba * hba,int agreed_gear,int adapt_val)4087 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
4088 int agreed_gear,
4089 int adapt_val)
4090 {
4091 int ret;
4092
4093 if (agreed_gear < UFS_HS_G4)
4094 adapt_val = PA_NO_ADAPT;
4095
4096 ret = ufshcd_dme_set(hba,
4097 UIC_ARG_MIB(PA_TXHSADAPTTYPE),
4098 adapt_val);
4099 return ret;
4100 }
4101 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
4102
4103 /**
4104 * ufshcd_dme_enable - UIC command for DME_ENABLE
4105 * @hba: per adapter instance
4106 *
4107 * DME_ENABLE command is issued in order to enable UniPro stack.
4108 *
4109 * Return: 0 on success, non-zero value on failure.
4110 */
ufshcd_dme_enable(struct ufs_hba * hba)4111 int ufshcd_dme_enable(struct ufs_hba *hba)
4112 {
4113 struct uic_command uic_cmd = {
4114 .command = UIC_CMD_DME_ENABLE,
4115 };
4116 int ret;
4117
4118 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4119 if (ret)
4120 dev_err(hba->dev,
4121 "dme-enable: error code %d\n", ret);
4122
4123 return ret;
4124 }
4125 EXPORT_SYMBOL_GPL(ufshcd_dme_enable);
4126
ufshcd_add_delay_before_dme_cmd(struct ufs_hba * hba)4127 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
4128 {
4129 #define MIN_DELAY_BEFORE_DME_CMDS_US 1000
4130 unsigned long min_sleep_time_us;
4131
4132 if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
4133 return;
4134
4135 /*
4136 * last_dme_cmd_tstamp will be 0 only for 1st call to
4137 * this function
4138 */
4139 if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
4140 min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
4141 } else {
4142 unsigned long delta =
4143 (unsigned long) ktime_to_us(
4144 ktime_sub(ktime_get(),
4145 hba->last_dme_cmd_tstamp));
4146
4147 if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
4148 min_sleep_time_us =
4149 MIN_DELAY_BEFORE_DME_CMDS_US - delta;
4150 else
4151 min_sleep_time_us = 0; /* no more delay required */
4152 }
4153
4154 if (min_sleep_time_us > 0) {
4155 /* allow sleep for extra 50us if needed */
4156 usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
4157 }
4158
4159 /* update the last_dme_cmd_tstamp */
4160 hba->last_dme_cmd_tstamp = ktime_get();
4161 }
4162
4163 /**
4164 * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4165 * @hba: per adapter instance
4166 * @attr_sel: uic command argument1
4167 * @attr_set: attribute set type as uic command argument2
4168 * @mib_val: setting value as uic command argument3
4169 * @peer: indicate whether peer or local
4170 *
4171 * Return: 0 on success, non-zero value on failure.
4172 */
ufshcd_dme_set_attr(struct ufs_hba * hba,u32 attr_sel,u8 attr_set,u32 mib_val,u8 peer)4173 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4174 u8 attr_set, u32 mib_val, u8 peer)
4175 {
4176 struct uic_command uic_cmd = {
4177 .command = peer ? UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET,
4178 .argument1 = attr_sel,
4179 .argument2 = UIC_ARG_ATTR_TYPE(attr_set),
4180 .argument3 = mib_val,
4181 };
4182 static const char *const action[] = {
4183 "dme-set",
4184 "dme-peer-set"
4185 };
4186 const char *set = action[!!peer];
4187 int ret;
4188 int retries = UFS_UIC_COMMAND_RETRIES;
4189
4190 do {
4191 /* for peer attributes we retry upon failure */
4192 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4193 if (ret)
4194 dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4195 set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4196 } while (ret && peer && --retries);
4197
4198 if (ret)
4199 dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4200 set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4201 UFS_UIC_COMMAND_RETRIES - retries);
4202
4203 return ret;
4204 }
4205 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4206
4207 /**
4208 * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4209 * @hba: per adapter instance
4210 * @attr_sel: uic command argument1
4211 * @mib_val: the value of the attribute as returned by the UIC command
4212 * @peer: indicate whether peer or local
4213 *
4214 * Return: 0 on success, non-zero value on failure.
4215 */
ufshcd_dme_get_attr(struct ufs_hba * hba,u32 attr_sel,u32 * mib_val,u8 peer)4216 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4217 u32 *mib_val, u8 peer)
4218 {
4219 struct uic_command uic_cmd = {
4220 .command = peer ? UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET,
4221 .argument1 = attr_sel,
4222 };
4223 static const char *const action[] = {
4224 "dme-get",
4225 "dme-peer-get"
4226 };
4227 const char *get = action[!!peer];
4228 int ret;
4229 int retries = UFS_UIC_COMMAND_RETRIES;
4230 struct ufs_pa_layer_attr orig_pwr_info;
4231 struct ufs_pa_layer_attr temp_pwr_info;
4232 bool pwr_mode_change = false;
4233
4234 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4235 orig_pwr_info = hba->pwr_info;
4236 temp_pwr_info = orig_pwr_info;
4237
4238 if (orig_pwr_info.pwr_tx == FAST_MODE ||
4239 orig_pwr_info.pwr_rx == FAST_MODE) {
4240 temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4241 temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4242 pwr_mode_change = true;
4243 } else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4244 orig_pwr_info.pwr_rx == SLOW_MODE) {
4245 temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4246 temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4247 pwr_mode_change = true;
4248 }
4249 if (pwr_mode_change) {
4250 ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4251 if (ret)
4252 goto out;
4253 }
4254 }
4255
4256 do {
4257 /* for peer attributes we retry upon failure */
4258 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4259 if (ret)
4260 dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4261 get, UIC_GET_ATTR_ID(attr_sel), ret);
4262 } while (ret && peer && --retries);
4263
4264 if (ret)
4265 dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4266 get, UIC_GET_ATTR_ID(attr_sel),
4267 UFS_UIC_COMMAND_RETRIES - retries);
4268
4269 if (mib_val)
4270 *mib_val = ret == 0 ? uic_cmd.argument3 : 0;
4271
4272 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4273 && pwr_mode_change)
4274 ufshcd_change_power_mode(hba, &orig_pwr_info);
4275 out:
4276 return ret;
4277 }
4278 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4279
4280 /**
4281 * ufshcd_dme_rmw - get modify set a DME attribute
4282 * @hba: per adapter instance
4283 * @mask: indicates which bits to clear from the value that has been read
4284 * @val: actual value to write
4285 * @attr: dme attribute
4286 */
ufshcd_dme_rmw(struct ufs_hba * hba,u32 mask,u32 val,u32 attr)4287 int ufshcd_dme_rmw(struct ufs_hba *hba, u32 mask,
4288 u32 val, u32 attr)
4289 {
4290 u32 cfg = 0;
4291 int err;
4292
4293 err = ufshcd_dme_get(hba, UIC_ARG_MIB(attr), &cfg);
4294 if (err)
4295 return err;
4296
4297 cfg &= ~mask;
4298 cfg |= (val & mask);
4299
4300 return ufshcd_dme_set(hba, UIC_ARG_MIB(attr), cfg);
4301 }
4302 EXPORT_SYMBOL_GPL(ufshcd_dme_rmw);
4303
4304 /**
4305 * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4306 * state) and waits for it to take effect.
4307 *
4308 * @hba: per adapter instance
4309 * @cmd: UIC command to execute
4310 *
4311 * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4312 * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4313 * and device UniPro link and hence it's final completion would be indicated by
4314 * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4315 * addition to normal UIC command completion Status (UCCS). This function only
4316 * returns after the relevant status bits indicate the completion.
4317 *
4318 * Return: 0 on success, non-zero value on failure.
4319 */
ufshcd_uic_pwr_ctrl(struct ufs_hba * hba,struct uic_command * cmd)4320 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4321 {
4322 DECLARE_COMPLETION_ONSTACK(uic_async_done);
4323 unsigned long flags;
4324 u8 status;
4325 int ret;
4326
4327 mutex_lock(&hba->uic_cmd_mutex);
4328 ufshcd_add_delay_before_dme_cmd(hba);
4329
4330 spin_lock_irqsave(hba->host->host_lock, flags);
4331 if (ufshcd_is_link_broken(hba)) {
4332 ret = -ENOLINK;
4333 goto out_unlock;
4334 }
4335 hba->uic_async_done = &uic_async_done;
4336 ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4337 spin_unlock_irqrestore(hba->host->host_lock, flags);
4338 ret = __ufshcd_send_uic_cmd(hba, cmd);
4339 if (ret) {
4340 dev_err(hba->dev,
4341 "pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4342 cmd->command, cmd->argument3, ret);
4343 goto out;
4344 }
4345
4346 if (!wait_for_completion_timeout(hba->uic_async_done,
4347 msecs_to_jiffies(uic_cmd_timeout))) {
4348 dev_err(hba->dev,
4349 "pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4350 cmd->command, cmd->argument3);
4351
4352 if (!cmd->cmd_active) {
4353 dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4354 __func__);
4355 goto check_upmcrs;
4356 }
4357
4358 ret = -ETIMEDOUT;
4359 goto out;
4360 }
4361
4362 check_upmcrs:
4363 status = ufshcd_get_upmcrs(hba);
4364 if (status != PWR_LOCAL) {
4365 dev_err(hba->dev,
4366 "pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4367 cmd->command, status);
4368 ret = (status != PWR_OK) ? status : -1;
4369 }
4370 out:
4371 if (ret) {
4372 ufshcd_print_host_state(hba);
4373 ufshcd_print_pwr_info(hba);
4374 ufshcd_print_evt_hist(hba);
4375 }
4376
4377 spin_lock_irqsave(hba->host->host_lock, flags);
4378 hba->active_uic_cmd = NULL;
4379 hba->uic_async_done = NULL;
4380 if (ret && !hba->pm_op_in_progress) {
4381 ufshcd_set_link_broken(hba);
4382 ufshcd_schedule_eh_work(hba);
4383 }
4384 out_unlock:
4385 spin_unlock_irqrestore(hba->host->host_lock, flags);
4386 mutex_unlock(&hba->uic_cmd_mutex);
4387
4388 /*
4389 * If the h8 exit fails during the runtime resume process, it becomes
4390 * stuck and cannot be recovered through the error handler. To fix
4391 * this, use link recovery instead of the error handler.
4392 */
4393 if (ret && hba->pm_op_in_progress)
4394 ret = ufshcd_link_recovery(hba);
4395
4396 return ret;
4397 }
4398
4399 /**
4400 * ufshcd_send_bsg_uic_cmd - Send UIC commands requested via BSG layer and retrieve the result
4401 * @hba: per adapter instance
4402 * @uic_cmd: UIC command
4403 *
4404 * Return: 0 only if success.
4405 */
ufshcd_send_bsg_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)4406 int ufshcd_send_bsg_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
4407 {
4408 int ret;
4409
4410 if (uic_cmd->argument1 != UIC_ARG_MIB(PA_PWRMODE) ||
4411 uic_cmd->command != UIC_CMD_DME_SET)
4412 return ufshcd_send_uic_cmd(hba, uic_cmd);
4413
4414 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
4415 return 0;
4416
4417 ufshcd_hold(hba);
4418 ret = ufshcd_uic_pwr_ctrl(hba, uic_cmd);
4419 ufshcd_release(hba);
4420
4421 return ret;
4422 }
4423
4424 /**
4425 * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4426 * using DME_SET primitives.
4427 * @hba: per adapter instance
4428 * @mode: powr mode value
4429 *
4430 * Return: 0 on success, non-zero value on failure.
4431 */
ufshcd_uic_change_pwr_mode(struct ufs_hba * hba,u8 mode)4432 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4433 {
4434 struct uic_command uic_cmd = {
4435 .command = UIC_CMD_DME_SET,
4436 .argument1 = UIC_ARG_MIB(PA_PWRMODE),
4437 .argument3 = mode,
4438 };
4439 int ret;
4440
4441 if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4442 ret = ufshcd_dme_set(hba,
4443 UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4444 if (ret) {
4445 dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4446 __func__, ret);
4447 goto out;
4448 }
4449 }
4450
4451 ufshcd_hold(hba);
4452 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4453 ufshcd_release(hba);
4454
4455 out:
4456 return ret;
4457 }
4458 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4459
ufshcd_link_recovery(struct ufs_hba * hba)4460 int ufshcd_link_recovery(struct ufs_hba *hba)
4461 {
4462 int ret;
4463 unsigned long flags;
4464
4465 spin_lock_irqsave(hba->host->host_lock, flags);
4466 hba->ufshcd_state = UFSHCD_STATE_RESET;
4467 ufshcd_set_eh_in_progress(hba);
4468 spin_unlock_irqrestore(hba->host->host_lock, flags);
4469
4470 /* Reset the attached device */
4471 ufshcd_device_reset(hba);
4472
4473 ret = ufshcd_host_reset_and_restore(hba);
4474
4475 spin_lock_irqsave(hba->host->host_lock, flags);
4476 if (ret)
4477 hba->ufshcd_state = UFSHCD_STATE_ERROR;
4478 ufshcd_clear_eh_in_progress(hba);
4479 spin_unlock_irqrestore(hba->host->host_lock, flags);
4480
4481 if (ret)
4482 dev_err(hba->dev, "%s: link recovery failed, err %d",
4483 __func__, ret);
4484
4485 return ret;
4486 }
4487 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4488
ufshcd_uic_hibern8_enter(struct ufs_hba * hba)4489 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4490 {
4491 struct uic_command uic_cmd = {
4492 .command = UIC_CMD_DME_HIBER_ENTER,
4493 };
4494 ktime_t start = ktime_get();
4495 int ret;
4496
4497 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4498
4499 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4500 trace_ufshcd_profile_hibern8(hba, "enter",
4501 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4502
4503 if (ret)
4504 dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4505 __func__, ret);
4506 else
4507 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4508 POST_CHANGE);
4509
4510 return ret;
4511 }
4512 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4513
ufshcd_uic_hibern8_exit(struct ufs_hba * hba)4514 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4515 {
4516 struct uic_command uic_cmd = {
4517 .command = UIC_CMD_DME_HIBER_EXIT,
4518 };
4519 int ret;
4520 ktime_t start = ktime_get();
4521
4522 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4523
4524 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4525 trace_ufshcd_profile_hibern8(hba, "exit",
4526 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4527
4528 if (ret) {
4529 dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4530 __func__, ret);
4531 } else {
4532 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4533 POST_CHANGE);
4534 hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4535 hba->ufs_stats.hibern8_exit_cnt++;
4536 }
4537
4538 return ret;
4539 }
4540 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4541
ufshcd_configure_auto_hibern8(struct ufs_hba * hba)4542 static void ufshcd_configure_auto_hibern8(struct ufs_hba *hba)
4543 {
4544 if (!ufshcd_is_auto_hibern8_supported(hba))
4545 return;
4546
4547 ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4548 }
4549
ufshcd_auto_hibern8_update(struct ufs_hba * hba,u32 ahit)4550 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4551 {
4552 const u32 cur_ahit = READ_ONCE(hba->ahit);
4553
4554 if (!ufshcd_is_auto_hibern8_supported(hba) || cur_ahit == ahit)
4555 return;
4556
4557 WRITE_ONCE(hba->ahit, ahit);
4558 if (!pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4559 ufshcd_rpm_get_sync(hba);
4560 ufshcd_hold(hba);
4561 ufshcd_configure_auto_hibern8(hba);
4562 ufshcd_release(hba);
4563 ufshcd_rpm_put_sync(hba);
4564 }
4565 }
4566 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4567
4568 /**
4569 * ufshcd_init_pwr_info - setting the POR (power on reset)
4570 * values in hba power info
4571 * @hba: per-adapter instance
4572 */
ufshcd_init_pwr_info(struct ufs_hba * hba)4573 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4574 {
4575 hba->pwr_info.gear_rx = UFS_PWM_G1;
4576 hba->pwr_info.gear_tx = UFS_PWM_G1;
4577 hba->pwr_info.lane_rx = UFS_LANE_1;
4578 hba->pwr_info.lane_tx = UFS_LANE_1;
4579 hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4580 hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4581 hba->pwr_info.hs_rate = 0;
4582 }
4583
4584 /**
4585 * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4586 * @hba: per-adapter instance
4587 *
4588 * Return: 0 upon success; < 0 upon failure.
4589 */
ufshcd_get_max_pwr_mode(struct ufs_hba * hba)4590 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4591 {
4592 struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4593
4594 if (hba->max_pwr_info.is_valid)
4595 return 0;
4596
4597 if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4598 pwr_info->pwr_tx = FASTAUTO_MODE;
4599 pwr_info->pwr_rx = FASTAUTO_MODE;
4600 } else {
4601 pwr_info->pwr_tx = FAST_MODE;
4602 pwr_info->pwr_rx = FAST_MODE;
4603 }
4604 pwr_info->hs_rate = PA_HS_MODE_B;
4605
4606 /* Get the connected lane count */
4607 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4608 &pwr_info->lane_rx);
4609 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4610 &pwr_info->lane_tx);
4611
4612 if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4613 dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4614 __func__,
4615 pwr_info->lane_rx,
4616 pwr_info->lane_tx);
4617 return -EINVAL;
4618 }
4619
4620 if (pwr_info->lane_rx != pwr_info->lane_tx) {
4621 dev_err(hba->dev, "%s: asymmetric connected lanes. rx=%d, tx=%d\n",
4622 __func__,
4623 pwr_info->lane_rx,
4624 pwr_info->lane_tx);
4625 return -EINVAL;
4626 }
4627
4628 /*
4629 * First, get the maximum gears of HS speed.
4630 * If a zero value, it means there is no HSGEAR capability.
4631 * Then, get the maximum gears of PWM speed.
4632 */
4633 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4634 if (!pwr_info->gear_rx) {
4635 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4636 &pwr_info->gear_rx);
4637 if (!pwr_info->gear_rx) {
4638 dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4639 __func__, pwr_info->gear_rx);
4640 return -EINVAL;
4641 }
4642 pwr_info->pwr_rx = SLOW_MODE;
4643 }
4644
4645 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4646 &pwr_info->gear_tx);
4647 if (!pwr_info->gear_tx) {
4648 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4649 &pwr_info->gear_tx);
4650 if (!pwr_info->gear_tx) {
4651 dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4652 __func__, pwr_info->gear_tx);
4653 return -EINVAL;
4654 }
4655 pwr_info->pwr_tx = SLOW_MODE;
4656 }
4657
4658 hba->max_pwr_info.is_valid = true;
4659 return 0;
4660 }
4661
ufshcd_change_power_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * pwr_mode)4662 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4663 struct ufs_pa_layer_attr *pwr_mode)
4664 {
4665 int ret;
4666
4667 /* if already configured to the requested pwr_mode */
4668 if (!hba->force_pmc &&
4669 pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4670 pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4671 pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4672 pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4673 pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4674 pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4675 pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4676 dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4677 return 0;
4678 }
4679
4680 /*
4681 * Configure attributes for power mode change with below.
4682 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4683 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4684 * - PA_HSSERIES
4685 */
4686 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4687 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4688 pwr_mode->lane_rx);
4689 if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4690 pwr_mode->pwr_rx == FAST_MODE)
4691 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4692 else
4693 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4694
4695 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4696 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4697 pwr_mode->lane_tx);
4698 if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4699 pwr_mode->pwr_tx == FAST_MODE)
4700 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4701 else
4702 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4703
4704 if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4705 pwr_mode->pwr_tx == FASTAUTO_MODE ||
4706 pwr_mode->pwr_rx == FAST_MODE ||
4707 pwr_mode->pwr_tx == FAST_MODE)
4708 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4709 pwr_mode->hs_rate);
4710
4711 if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4712 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4713 DL_FC0ProtectionTimeOutVal_Default);
4714 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4715 DL_TC0ReplayTimeOutVal_Default);
4716 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4717 DL_AFC0ReqTimeOutVal_Default);
4718 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4719 DL_FC1ProtectionTimeOutVal_Default);
4720 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4721 DL_TC1ReplayTimeOutVal_Default);
4722 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4723 DL_AFC1ReqTimeOutVal_Default);
4724
4725 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4726 DL_FC0ProtectionTimeOutVal_Default);
4727 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4728 DL_TC0ReplayTimeOutVal_Default);
4729 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4730 DL_AFC0ReqTimeOutVal_Default);
4731 }
4732
4733 ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4734 | pwr_mode->pwr_tx);
4735
4736 if (ret) {
4737 dev_err(hba->dev,
4738 "%s: power mode change failed %d\n", __func__, ret);
4739 } else {
4740 memcpy(&hba->pwr_info, pwr_mode,
4741 sizeof(struct ufs_pa_layer_attr));
4742 }
4743
4744 return ret;
4745 }
4746
4747 /**
4748 * ufshcd_config_pwr_mode - configure a new power mode
4749 * @hba: per-adapter instance
4750 * @desired_pwr_mode: desired power configuration
4751 *
4752 * Return: 0 upon success; < 0 upon failure.
4753 */
ufshcd_config_pwr_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * desired_pwr_mode)4754 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4755 struct ufs_pa_layer_attr *desired_pwr_mode)
4756 {
4757 struct ufs_pa_layer_attr final_params = { 0 };
4758 int ret;
4759
4760 ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4761 desired_pwr_mode, &final_params);
4762
4763 if (ret)
4764 memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4765
4766 ret = ufshcd_change_power_mode(hba, &final_params);
4767
4768 if (!ret)
4769 ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4770 &final_params);
4771
4772 return ret;
4773 }
4774 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4775
4776 /**
4777 * ufshcd_complete_dev_init() - checks device readiness
4778 * @hba: per-adapter instance
4779 *
4780 * Set fDeviceInit flag and poll until device toggles it.
4781 *
4782 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
4783 * < 0 if another error occurred.
4784 */
ufshcd_complete_dev_init(struct ufs_hba * hba)4785 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4786 {
4787 int err;
4788 bool flag_res = true;
4789 ktime_t timeout;
4790
4791 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4792 QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4793 if (err) {
4794 dev_err(hba->dev,
4795 "%s: setting fDeviceInit flag failed with error %d\n",
4796 __func__, err);
4797 goto out;
4798 }
4799
4800 /* Poll fDeviceInit flag to be cleared */
4801 timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4802 do {
4803 err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4804 QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4805 if (!flag_res)
4806 break;
4807 usleep_range(500, 1000);
4808 } while (ktime_before(ktime_get(), timeout));
4809
4810 if (err) {
4811 dev_err(hba->dev,
4812 "%s: reading fDeviceInit flag failed with error %d\n",
4813 __func__, err);
4814 } else if (flag_res) {
4815 dev_err(hba->dev,
4816 "%s: fDeviceInit was not cleared by the device\n",
4817 __func__);
4818 err = -EBUSY;
4819 }
4820 out:
4821 return err;
4822 }
4823
4824 /**
4825 * ufshcd_make_hba_operational - Make UFS controller operational
4826 * @hba: per adapter instance
4827 *
4828 * To bring UFS host controller to operational state,
4829 * 1. Enable required interrupts
4830 * 2. Configure interrupt aggregation
4831 * 3. Program UTRL and UTMRL base address
4832 * 4. Configure run-stop-registers
4833 *
4834 * Return: 0 if successful; < 0 upon failure.
4835 */
ufshcd_make_hba_operational(struct ufs_hba * hba)4836 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4837 {
4838 int err = 0;
4839 u32 reg;
4840
4841 /* Enable required interrupts */
4842 ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4843
4844 /* Configure interrupt aggregation */
4845 if (ufshcd_is_intr_aggr_allowed(hba))
4846 ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4847 else
4848 ufshcd_disable_intr_aggr(hba);
4849
4850 /* Configure UTRL and UTMRL base address registers */
4851 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4852 REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4853 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4854 REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4855 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4856 REG_UTP_TASK_REQ_LIST_BASE_L);
4857 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4858 REG_UTP_TASK_REQ_LIST_BASE_H);
4859
4860 /*
4861 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4862 */
4863 reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4864 if (!(ufshcd_get_lists_status(reg))) {
4865 ufshcd_enable_run_stop_reg(hba);
4866 } else {
4867 dev_err(hba->dev,
4868 "Host controller not ready to process requests");
4869 err = -EIO;
4870 }
4871
4872 return err;
4873 }
4874 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4875
4876 /**
4877 * ufshcd_hba_stop - Send controller to reset state
4878 * @hba: per adapter instance
4879 */
ufshcd_hba_stop(struct ufs_hba * hba)4880 void ufshcd_hba_stop(struct ufs_hba *hba)
4881 {
4882 int err;
4883
4884 ufshcd_disable_irq(hba);
4885 ufshcd_writel(hba, CONTROLLER_DISABLE, REG_CONTROLLER_ENABLE);
4886 err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4887 CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4888 10, 1);
4889 ufshcd_enable_irq(hba);
4890 if (err)
4891 dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4892 }
4893 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4894
4895 /**
4896 * ufshcd_hba_execute_hce - initialize the controller
4897 * @hba: per adapter instance
4898 *
4899 * The controller resets itself and controller firmware initialization
4900 * sequence kicks off. When controller is ready it will set
4901 * the Host Controller Enable bit to 1.
4902 *
4903 * Return: 0 on success, non-zero value on failure.
4904 */
ufshcd_hba_execute_hce(struct ufs_hba * hba)4905 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4906 {
4907 int retry;
4908
4909 for (retry = 3; retry > 0; retry--) {
4910 if (ufshcd_is_hba_active(hba))
4911 /* change controller state to "reset state" */
4912 ufshcd_hba_stop(hba);
4913
4914 /* UniPro link is disabled at this point */
4915 ufshcd_set_link_off(hba);
4916
4917 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4918
4919 /* start controller initialization sequence */
4920 ufshcd_hba_start(hba);
4921
4922 /*
4923 * To initialize a UFS host controller HCE bit must be set to 1.
4924 * During initialization the HCE bit value changes from 1->0->1.
4925 * When the host controller completes initialization sequence
4926 * it sets the value of HCE bit to 1. The same HCE bit is read back
4927 * to check if the controller has completed initialization sequence.
4928 * So without this delay the value HCE = 1, set in the previous
4929 * instruction might be read back.
4930 * This delay can be changed based on the controller.
4931 */
4932 ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4933
4934 /* wait for the host controller to complete initialization */
4935 if (!ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, CONTROLLER_ENABLE,
4936 CONTROLLER_ENABLE, 1000, 50))
4937 break;
4938
4939 dev_err(hba->dev, "Enabling the controller failed\n");
4940 }
4941
4942 if (!retry)
4943 return -EIO;
4944
4945 /* enable UIC related interrupts */
4946 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4947
4948 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4949
4950 return 0;
4951 }
4952
ufshcd_hba_enable(struct ufs_hba * hba)4953 int ufshcd_hba_enable(struct ufs_hba *hba)
4954 {
4955 int ret;
4956
4957 if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4958 ufshcd_set_link_off(hba);
4959 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4960
4961 /* enable UIC related interrupts */
4962 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4963 ret = ufshcd_dme_reset(hba);
4964 if (ret) {
4965 dev_err(hba->dev, "DME_RESET failed\n");
4966 return ret;
4967 }
4968
4969 ret = ufshcd_dme_enable(hba);
4970 if (ret) {
4971 dev_err(hba->dev, "Enabling DME failed\n");
4972 return ret;
4973 }
4974
4975 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4976 } else {
4977 ret = ufshcd_hba_execute_hce(hba);
4978 }
4979
4980 return ret;
4981 }
4982 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4983
ufshcd_disable_tx_lcc(struct ufs_hba * hba,bool peer)4984 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4985 {
4986 int tx_lanes, i, err = 0;
4987
4988 if (!peer)
4989 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4990 &tx_lanes);
4991 else
4992 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4993 &tx_lanes);
4994 for (i = 0; i < tx_lanes; i++) {
4995 if (!peer)
4996 err = ufshcd_dme_set(hba,
4997 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4998 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4999 0);
5000 else
5001 err = ufshcd_dme_peer_set(hba,
5002 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
5003 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
5004 0);
5005 if (err) {
5006 dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
5007 __func__, peer, i, err);
5008 break;
5009 }
5010 }
5011
5012 return err;
5013 }
5014
ufshcd_disable_device_tx_lcc(struct ufs_hba * hba)5015 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
5016 {
5017 return ufshcd_disable_tx_lcc(hba, true);
5018 }
5019
ufshcd_update_evt_hist(struct ufs_hba * hba,u32 id,u32 val)5020 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
5021 {
5022 struct ufs_event_hist *e;
5023
5024 if (id >= UFS_EVT_CNT)
5025 return;
5026
5027 e = &hba->ufs_stats.event[id];
5028 e->val[e->pos] = val;
5029 e->tstamp[e->pos] = local_clock();
5030 e->cnt += 1;
5031 e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
5032
5033 ufshcd_vops_event_notify(hba, id, &val);
5034 }
5035 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
5036
5037 /**
5038 * ufshcd_link_startup - Initialize unipro link startup
5039 * @hba: per adapter instance
5040 *
5041 * Return: 0 for success, non-zero in case of failure.
5042 */
ufshcd_link_startup(struct ufs_hba * hba)5043 static int ufshcd_link_startup(struct ufs_hba *hba)
5044 {
5045 int ret;
5046 int retries = DME_LINKSTARTUP_RETRIES;
5047 bool link_startup_again = false;
5048
5049 /*
5050 * If UFS device isn't active then we will have to issue link startup
5051 * 2 times to make sure the device state move to active.
5052 */
5053 if (!(hba->quirks & UFSHCD_QUIRK_PERFORM_LINK_STARTUP_ONCE) &&
5054 !ufshcd_is_ufs_dev_active(hba))
5055 link_startup_again = true;
5056
5057 link_startup:
5058 do {
5059 ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
5060
5061 ret = ufshcd_dme_link_startup(hba);
5062
5063 /* check if device is detected by inter-connect layer */
5064 if (!ret && !ufshcd_is_device_present(hba)) {
5065 ufshcd_update_evt_hist(hba,
5066 UFS_EVT_LINK_STARTUP_FAIL,
5067 0);
5068 dev_err(hba->dev, "%s: Device not present\n", __func__);
5069 ret = -ENXIO;
5070 goto out;
5071 }
5072
5073 /*
5074 * DME link lost indication is only received when link is up,
5075 * but we can't be sure if the link is up until link startup
5076 * succeeds. So reset the local Uni-Pro and try again.
5077 */
5078 if (ret && retries && ufshcd_hba_enable(hba)) {
5079 ufshcd_update_evt_hist(hba,
5080 UFS_EVT_LINK_STARTUP_FAIL,
5081 (u32)ret);
5082 goto out;
5083 }
5084 } while (ret && retries--);
5085
5086 if (ret) {
5087 /* failed to get the link up... retire */
5088 ufshcd_update_evt_hist(hba,
5089 UFS_EVT_LINK_STARTUP_FAIL,
5090 (u32)ret);
5091 goto out;
5092 }
5093
5094 if (link_startup_again) {
5095 link_startup_again = false;
5096 retries = DME_LINKSTARTUP_RETRIES;
5097 goto link_startup;
5098 }
5099
5100 /* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
5101 ufshcd_init_pwr_info(hba);
5102 ufshcd_print_pwr_info(hba);
5103
5104 if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
5105 ret = ufshcd_disable_device_tx_lcc(hba);
5106 if (ret)
5107 goto out;
5108 }
5109
5110 /* Include any host controller configuration via UIC commands */
5111 ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
5112 if (ret)
5113 goto out;
5114
5115 /* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
5116 ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
5117 ret = ufshcd_make_hba_operational(hba);
5118 out:
5119 if (ret)
5120 dev_err(hba->dev, "link startup failed %d\n", ret);
5121 return ret;
5122 }
5123
5124 /**
5125 * ufshcd_verify_dev_init() - Verify device initialization
5126 * @hba: per-adapter instance
5127 *
5128 * Send NOP OUT UPIU and wait for NOP IN response to check whether the
5129 * device Transport Protocol (UTP) layer is ready after a reset.
5130 * If the UTP layer at the device side is not initialized, it may
5131 * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
5132 * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
5133 *
5134 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
5135 * < 0 if another error occurred.
5136 */
ufshcd_verify_dev_init(struct ufs_hba * hba)5137 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
5138 {
5139 int err = 0;
5140 int retries;
5141
5142 ufshcd_dev_man_lock(hba);
5143
5144 for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
5145 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
5146 hba->nop_out_timeout);
5147
5148 if (!err || err == -ETIMEDOUT)
5149 break;
5150
5151 dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
5152 }
5153
5154 ufshcd_dev_man_unlock(hba);
5155
5156 if (err)
5157 dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
5158 return err;
5159 }
5160
5161 /**
5162 * ufshcd_setup_links - associate link b/w device wlun and other luns
5163 * @sdev: pointer to SCSI device
5164 * @hba: pointer to ufs hba
5165 */
ufshcd_setup_links(struct ufs_hba * hba,struct scsi_device * sdev)5166 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
5167 {
5168 struct device_link *link;
5169
5170 /*
5171 * Device wlun is the supplier & rest of the luns are consumers.
5172 * This ensures that device wlun suspends after all other luns.
5173 */
5174 if (hba->ufs_device_wlun) {
5175 link = device_link_add(&sdev->sdev_gendev,
5176 &hba->ufs_device_wlun->sdev_gendev,
5177 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5178 if (!link) {
5179 dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5180 dev_name(&hba->ufs_device_wlun->sdev_gendev));
5181 return;
5182 }
5183 hba->luns_avail--;
5184 /* Ignore REPORT_LUN wlun probing */
5185 if (hba->luns_avail == 1) {
5186 ufshcd_rpm_put(hba);
5187 return;
5188 }
5189 } else {
5190 /*
5191 * Device wlun is probed. The assumption is that WLUNs are
5192 * scanned before other LUNs.
5193 */
5194 hba->luns_avail--;
5195 }
5196 }
5197
5198 /**
5199 * ufshcd_lu_init - Initialize the relevant parameters of the LU
5200 * @hba: per-adapter instance
5201 * @sdev: pointer to SCSI device
5202 */
ufshcd_lu_init(struct ufs_hba * hba,struct scsi_device * sdev)5203 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5204 {
5205 int len = QUERY_DESC_MAX_SIZE;
5206 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5207 u8 lun_qdepth = hba->nutrs;
5208 u8 *desc_buf;
5209 int ret;
5210
5211 desc_buf = kzalloc(len, GFP_KERNEL);
5212 if (!desc_buf)
5213 goto set_qdepth;
5214
5215 ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5216 if (ret < 0) {
5217 if (ret == -EOPNOTSUPP)
5218 /* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5219 lun_qdepth = 1;
5220 kfree(desc_buf);
5221 goto set_qdepth;
5222 }
5223
5224 if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5225 /*
5226 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5227 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5228 */
5229 lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5230 }
5231 /*
5232 * According to UFS device specification, the write protection mode is only supported by
5233 * normal LU, not supported by WLUN.
5234 */
5235 if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5236 !hba->dev_info.is_lu_power_on_wp &&
5237 desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5238 hba->dev_info.is_lu_power_on_wp = true;
5239
5240 /* In case of RPMB LU, check if advanced RPMB mode is enabled, and get region size */
5241 if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN) {
5242 if (desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5243 hba->dev_info.b_advanced_rpmb_en = true;
5244 hba->dev_info.rpmb_region_size[0] = desc_buf[RPMB_UNIT_DESC_PARAM_REGION0_SIZE];
5245 hba->dev_info.rpmb_region_size[1] = desc_buf[RPMB_UNIT_DESC_PARAM_REGION1_SIZE];
5246 hba->dev_info.rpmb_region_size[2] = desc_buf[RPMB_UNIT_DESC_PARAM_REGION2_SIZE];
5247 hba->dev_info.rpmb_region_size[3] = desc_buf[RPMB_UNIT_DESC_PARAM_REGION3_SIZE];
5248 }
5249
5250
5251 kfree(desc_buf);
5252 set_qdepth:
5253 /*
5254 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5255 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5256 */
5257 dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5258 scsi_change_queue_depth(sdev, lun_qdepth);
5259 }
5260
5261 /**
5262 * ufshcd_sdev_init - handle initial SCSI device configurations
5263 * @sdev: pointer to SCSI device
5264 *
5265 * Return: success.
5266 */
ufshcd_sdev_init(struct scsi_device * sdev)5267 static int ufshcd_sdev_init(struct scsi_device *sdev)
5268 {
5269 struct ufs_hba *hba;
5270
5271 hba = shost_priv(sdev->host);
5272
5273 /* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5274 sdev->use_10_for_ms = 1;
5275
5276 /* DBD field should be set to 1 in mode sense(10) */
5277 sdev->set_dbd_for_ms = 1;
5278
5279 /* allow SCSI layer to restart the device in case of errors */
5280 sdev->allow_restart = 1;
5281
5282 /* REPORT SUPPORTED OPERATION CODES is not supported */
5283 sdev->no_report_opcodes = 1;
5284
5285 /* WRITE_SAME command is not supported */
5286 sdev->no_write_same = 1;
5287
5288 ufshcd_lu_init(hba, sdev);
5289
5290 ufshcd_setup_links(hba, sdev);
5291
5292 return 0;
5293 }
5294
5295 /**
5296 * ufshcd_change_queue_depth - change queue depth
5297 * @sdev: pointer to SCSI device
5298 * @depth: required depth to set
5299 *
5300 * Change queue depth and make sure the max. limits are not crossed.
5301 *
5302 * Return: new queue depth.
5303 */
ufshcd_change_queue_depth(struct scsi_device * sdev,int depth)5304 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5305 {
5306 return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5307 }
5308
5309 /**
5310 * ufshcd_sdev_configure - adjust SCSI device configurations
5311 * @sdev: pointer to SCSI device
5312 * @lim: queue limits
5313 *
5314 * Return: 0 (success).
5315 */
ufshcd_sdev_configure(struct scsi_device * sdev,struct queue_limits * lim)5316 static int ufshcd_sdev_configure(struct scsi_device *sdev,
5317 struct queue_limits *lim)
5318 {
5319 struct ufs_hba *hba = shost_priv(sdev->host);
5320 struct request_queue *q = sdev->request_queue;
5321
5322 lim->dma_pad_mask = PRDT_DATA_BYTE_COUNT_PAD - 1;
5323
5324 /*
5325 * Block runtime-pm until all consumers are added.
5326 * Refer ufshcd_setup_links().
5327 */
5328 if (is_device_wlun(sdev))
5329 pm_runtime_get_noresume(&sdev->sdev_gendev);
5330 else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5331 sdev->rpm_autosuspend = 1;
5332 /*
5333 * Do not print messages during runtime PM to avoid never-ending cycles
5334 * of messages written back to storage by user space causing runtime
5335 * resume, causing more messages and so on.
5336 */
5337 sdev->silence_suspend = 1;
5338
5339 if (hba->vops && hba->vops->config_scsi_dev)
5340 hba->vops->config_scsi_dev(sdev);
5341
5342 ufshcd_crypto_register(hba, q);
5343
5344 return 0;
5345 }
5346
5347 /**
5348 * ufshcd_sdev_destroy - remove SCSI device configurations
5349 * @sdev: pointer to SCSI device
5350 */
ufshcd_sdev_destroy(struct scsi_device * sdev)5351 static void ufshcd_sdev_destroy(struct scsi_device *sdev)
5352 {
5353 struct ufs_hba *hba;
5354 unsigned long flags;
5355
5356 hba = shost_priv(sdev->host);
5357
5358 /* Drop the reference as it won't be needed anymore */
5359 if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5360 spin_lock_irqsave(hba->host->host_lock, flags);
5361 hba->ufs_device_wlun = NULL;
5362 spin_unlock_irqrestore(hba->host->host_lock, flags);
5363 } else if (hba->ufs_device_wlun) {
5364 struct device *supplier = NULL;
5365
5366 /* Ensure UFS Device WLUN exists and does not disappear */
5367 spin_lock_irqsave(hba->host->host_lock, flags);
5368 if (hba->ufs_device_wlun) {
5369 supplier = &hba->ufs_device_wlun->sdev_gendev;
5370 get_device(supplier);
5371 }
5372 spin_unlock_irqrestore(hba->host->host_lock, flags);
5373
5374 if (supplier) {
5375 /*
5376 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5377 * device will not have been registered but can still
5378 * have a device link holding a reference to the device.
5379 */
5380 device_link_remove(&sdev->sdev_gendev, supplier);
5381 put_device(supplier);
5382 }
5383 }
5384 }
5385
5386 /**
5387 * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5388 * @cmd: SCSI command
5389 * @scsi_status: SCSI command status
5390 *
5391 * Return: value base on SCSI command status.
5392 */
ufshcd_scsi_cmd_status(struct scsi_cmnd * cmd,int scsi_status)5393 static inline int ufshcd_scsi_cmd_status(struct scsi_cmnd *cmd, int scsi_status)
5394 {
5395 int result = 0;
5396
5397 switch (scsi_status) {
5398 case SAM_STAT_CHECK_CONDITION:
5399 ufshcd_copy_sense_data(cmd);
5400 fallthrough;
5401 case SAM_STAT_GOOD:
5402 result |= DID_OK << 16 | scsi_status;
5403 break;
5404 case SAM_STAT_TASK_SET_FULL:
5405 case SAM_STAT_BUSY:
5406 case SAM_STAT_TASK_ABORTED:
5407 ufshcd_copy_sense_data(cmd);
5408 result |= scsi_status;
5409 break;
5410 default:
5411 result |= DID_ERROR << 16;
5412 break;
5413 } /* end of switch */
5414
5415 return result;
5416 }
5417
5418 /**
5419 * ufshcd_transfer_rsp_status - Get overall status of the response
5420 * @hba: per adapter instance
5421 * @cmd: SCSI command
5422 * @cqe: pointer to the completion queue entry
5423 *
5424 * Return: result of the command to notify SCSI midlayer.
5425 */
ufshcd_transfer_rsp_status(struct ufs_hba * hba,struct scsi_cmnd * cmd,struct cq_entry * cqe)5426 static inline int ufshcd_transfer_rsp_status(struct ufs_hba *hba,
5427 struct scsi_cmnd *cmd,
5428 struct cq_entry *cqe)
5429 {
5430 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
5431 const int tag = scsi_cmd_to_rq(cmd)->tag;
5432 int result = 0;
5433 int scsi_status;
5434 enum utp_ocs ocs;
5435 u8 upiu_flags;
5436 u32 resid;
5437
5438 upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5439 resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5440 /*
5441 * Test !overflow instead of underflow to support UFS devices that do
5442 * not set either flag.
5443 */
5444 if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5445 scsi_set_resid(cmd, resid);
5446
5447 /* overall command status of utrd */
5448 ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5449
5450 if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5451 if (lrbp->ucd_rsp_ptr->header.response ||
5452 lrbp->ucd_rsp_ptr->header.status)
5453 ocs = OCS_SUCCESS;
5454 }
5455
5456 switch (ocs) {
5457 case OCS_SUCCESS:
5458 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5459 switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5460 case UPIU_TRANSACTION_RESPONSE:
5461 /*
5462 * get the result based on SCSI status response
5463 * to notify the SCSI midlayer of the command status
5464 */
5465 scsi_status = lrbp->ucd_rsp_ptr->header.status;
5466 result = ufshcd_scsi_cmd_status(cmd, scsi_status);
5467
5468 /*
5469 * Currently we are only supporting BKOPs exception
5470 * events hence we can ignore BKOPs exception event
5471 * during power management callbacks. BKOPs exception
5472 * event is not expected to be raised in runtime suspend
5473 * callback as it allows the urgent bkops.
5474 * During system suspend, we are anyway forcefully
5475 * disabling the bkops and if urgent bkops is needed
5476 * it will be enabled on system resume. Long term
5477 * solution could be to abort the system suspend if
5478 * UFS device needs urgent BKOPs.
5479 */
5480 if (!hba->pm_op_in_progress &&
5481 !ufshcd_eh_in_progress(hba) &&
5482 ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5483 /* Flushed in suspend */
5484 schedule_work(&hba->eeh_work);
5485 break;
5486 case UPIU_TRANSACTION_REJECT_UPIU:
5487 /* TODO: handle Reject UPIU Response */
5488 result = DID_ERROR << 16;
5489 dev_err(hba->dev,
5490 "Reject UPIU not fully implemented\n");
5491 break;
5492 default:
5493 dev_err(hba->dev,
5494 "Unexpected request response code = %x\n",
5495 result);
5496 result = DID_ERROR << 16;
5497 break;
5498 }
5499 break;
5500 case OCS_ABORTED:
5501 case OCS_INVALID_COMMAND_STATUS:
5502 result |= DID_REQUEUE << 16;
5503 dev_warn(hba->dev, "OCS %s from controller for tag %d\n",
5504 ocs == OCS_ABORTED ? "aborted" : "invalid", tag);
5505 break;
5506 case OCS_INVALID_CMD_TABLE_ATTR:
5507 case OCS_INVALID_PRDT_ATTR:
5508 case OCS_MISMATCH_DATA_BUF_SIZE:
5509 case OCS_MISMATCH_RESP_UPIU_SIZE:
5510 case OCS_PEER_COMM_FAILURE:
5511 case OCS_FATAL_ERROR:
5512 case OCS_DEVICE_FATAL_ERROR:
5513 case OCS_INVALID_CRYPTO_CONFIG:
5514 case OCS_GENERAL_CRYPTO_ERROR:
5515 default:
5516 result |= DID_ERROR << 16;
5517 dev_err(hba->dev, "OCS error from controller = %x for tag %d\n",
5518 ocs, tag);
5519 ufshcd_print_evt_hist(hba);
5520 ufshcd_print_host_state(hba);
5521 break;
5522 } /* end of switch */
5523
5524 if ((host_byte(result) != DID_OK) &&
5525 (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs) {
5526 if (cqe)
5527 ufshcd_hex_dump("UPIU CQE: ", cqe, sizeof(struct cq_entry));
5528 ufshcd_print_tr(hba, cmd, true);
5529 }
5530 return result;
5531 }
5532
ufshcd_is_auto_hibern8_error(struct ufs_hba * hba,u32 intr_mask)5533 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5534 u32 intr_mask)
5535 {
5536 if (!ufshcd_is_auto_hibern8_supported(hba) ||
5537 !ufshcd_is_auto_hibern8_enabled(hba))
5538 return false;
5539
5540 if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5541 return false;
5542
5543 if (hba->active_uic_cmd &&
5544 (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5545 hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5546 return false;
5547
5548 return true;
5549 }
5550
5551 /**
5552 * ufshcd_uic_cmd_compl - handle completion of uic command
5553 * @hba: per adapter instance
5554 * @intr_status: interrupt status generated by the controller
5555 *
5556 * Return:
5557 * IRQ_HANDLED - If interrupt is valid
5558 * IRQ_NONE - If invalid interrupt
5559 */
ufshcd_uic_cmd_compl(struct ufs_hba * hba,u32 intr_status)5560 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5561 {
5562 irqreturn_t retval = IRQ_NONE;
5563 struct uic_command *cmd;
5564
5565 guard(spinlock_irqsave)(hba->host->host_lock);
5566 cmd = hba->active_uic_cmd;
5567 if (!cmd)
5568 return retval;
5569
5570 if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5571 hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5572
5573 if (intr_status & UIC_COMMAND_COMPL) {
5574 cmd->argument2 |= ufshcd_get_uic_cmd_result(hba);
5575 cmd->argument3 = ufshcd_get_dme_attr_val(hba);
5576 if (!hba->uic_async_done)
5577 cmd->cmd_active = false;
5578 complete(&cmd->done);
5579 retval = IRQ_HANDLED;
5580 }
5581
5582 if (intr_status & UFSHCD_UIC_PWR_MASK && hba->uic_async_done) {
5583 cmd->cmd_active = false;
5584 complete(hba->uic_async_done);
5585 retval = IRQ_HANDLED;
5586 }
5587
5588 if (retval == IRQ_HANDLED)
5589 ufshcd_add_uic_command_trace(hba, cmd, UFS_CMD_COMP);
5590
5591 return retval;
5592 }
5593
5594 /* Release the resources allocated for processing a SCSI command. */
ufshcd_release_scsi_cmd(struct ufs_hba * hba,struct scsi_cmnd * cmd)5595 void ufshcd_release_scsi_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd)
5596 {
5597 scsi_dma_unmap(cmd);
5598 ufshcd_crypto_clear_prdt(hba, cmd);
5599 ufshcd_release(hba);
5600 ufshcd_clk_scaling_update_busy(hba);
5601 }
5602
5603 /**
5604 * ufshcd_compl_one_cqe - handle a completion queue entry
5605 * @hba: per adapter instance
5606 * @task_tag: the task tag of the request to be completed
5607 * @cqe: pointer to the completion queue entry
5608 */
ufshcd_compl_one_cqe(struct ufs_hba * hba,int task_tag,struct cq_entry * cqe)5609 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5610 struct cq_entry *cqe)
5611 {
5612 struct scsi_cmnd *cmd = ufshcd_tag_to_cmd(hba, task_tag);
5613 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
5614 enum utp_ocs ocs;
5615
5616 if (WARN_ONCE(!cmd, "cqe->command_desc_base_addr = %#llx\n",
5617 le64_to_cpu(cqe->command_desc_base_addr)))
5618 return;
5619
5620 if (hba->monitor.enabled) {
5621 lrbp->compl_time_stamp = ktime_get();
5622 lrbp->compl_time_stamp_local_clock = local_clock();
5623 }
5624 if (ufshcd_is_scsi_cmd(cmd)) {
5625 if (unlikely(ufshcd_should_inform_monitor(hba, cmd)))
5626 ufshcd_update_monitor(hba, cmd);
5627 ufshcd_add_command_trace(hba, cmd, UFS_CMD_COMP);
5628 cmd->result = ufshcd_transfer_rsp_status(hba, cmd, cqe);
5629 ufshcd_release_scsi_cmd(hba, cmd);
5630 } else {
5631 if (cqe) {
5632 ocs = cqe->overall_status & MASK_OCS;
5633 lrbp->utr_descriptor_ptr->header.ocs = ocs;
5634 } else {
5635 ocs = lrbp->utr_descriptor_ptr->header.ocs;
5636 }
5637 ufshcd_add_query_upiu_trace(
5638 hba,
5639 ocs == OCS_SUCCESS ? UFS_QUERY_COMP : UFS_QUERY_ERR,
5640 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
5641 cmd->result = 0;
5642 }
5643 /* Do not touch lrbp after scsi_done() has been called. */
5644 scsi_done(cmd);
5645 }
5646
5647 /**
5648 * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5649 * @hba: per adapter instance
5650 * @completed_reqs: bitmask that indicates which requests to complete
5651 */
__ufshcd_transfer_req_compl(struct ufs_hba * hba,unsigned long completed_reqs)5652 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5653 unsigned long completed_reqs)
5654 {
5655 int tag;
5656
5657 for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5658 ufshcd_compl_one_cqe(hba, tag, NULL);
5659 }
5660
5661 /* Any value that is not an existing queue number is fine for this constant. */
5662 enum {
5663 UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5664 };
5665
ufshcd_clear_polled(struct ufs_hba * hba,unsigned long * completed_reqs)5666 static void ufshcd_clear_polled(struct ufs_hba *hba,
5667 unsigned long *completed_reqs)
5668 {
5669 int tag;
5670
5671 for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5672 struct scsi_cmnd *cmd = scsi_host_find_tag(hba->host, tag);
5673
5674 if (!cmd)
5675 continue;
5676 if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5677 __clear_bit(tag, completed_reqs);
5678 }
5679 }
5680
5681 /*
5682 * Return: > 0 if one or more commands have been completed or 0 if no
5683 * requests have been completed.
5684 */
ufshcd_poll(struct Scsi_Host * shost,unsigned int queue_num)5685 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5686 {
5687 struct ufs_hba *hba = shost_priv(shost);
5688 unsigned long completed_reqs, flags;
5689 u32 tr_doorbell;
5690 struct ufs_hw_queue *hwq;
5691
5692 if (hba->mcq_enabled) {
5693 hwq = &hba->uhq[queue_num];
5694
5695 return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5696 }
5697
5698 spin_lock_irqsave(&hba->outstanding_lock, flags);
5699 tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5700 completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5701 WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5702 "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5703 hba->outstanding_reqs);
5704 if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5705 /* Do not complete polled requests from interrupt context. */
5706 ufshcd_clear_polled(hba, &completed_reqs);
5707 }
5708 hba->outstanding_reqs &= ~completed_reqs;
5709 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5710
5711 if (completed_reqs)
5712 __ufshcd_transfer_req_compl(hba, completed_reqs);
5713
5714 return completed_reqs != 0;
5715 }
5716
ufshcd_mcq_force_compl_one(struct request * rq,void * priv)5717 static bool ufshcd_mcq_force_compl_one(struct request *rq, void *priv)
5718 {
5719 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
5720 struct scsi_device *sdev = rq->q->queuedata;
5721 struct Scsi_Host *shost = sdev->host;
5722 struct ufs_hba *hba = shost_priv(shost);
5723 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
5724
5725 if (blk_mq_is_reserved_rq(rq) || !hwq)
5726 return true;
5727
5728 ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5729
5730 /*
5731 * For those cmds of which the cqes are not present in the cq, complete
5732 * them explicitly.
5733 */
5734 scoped_guard(spinlock_irqsave, &hwq->cq_lock) {
5735 if (!test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5736 set_host_byte(cmd, DID_REQUEUE);
5737 ufshcd_release_scsi_cmd(hba, cmd);
5738 scsi_done(cmd);
5739 }
5740 }
5741
5742 return true;
5743 }
5744
ufshcd_mcq_compl_one(struct request * rq,void * priv)5745 static bool ufshcd_mcq_compl_one(struct request *rq, void *priv)
5746 {
5747 struct scsi_device *sdev = rq->q->queuedata;
5748 struct Scsi_Host *shost = sdev->host;
5749 struct ufs_hba *hba = shost_priv(shost);
5750 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
5751
5752 if (!blk_mq_is_reserved_rq(rq) && hwq)
5753 ufshcd_mcq_poll_cqe_lock(hba, hwq);
5754
5755 return true;
5756 }
5757
5758 /**
5759 * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5760 * invoked from the error handler context or ufshcd_host_reset_and_restore()
5761 * to complete the pending transfers and free the resources associated with
5762 * the scsi command.
5763 *
5764 * @hba: per adapter instance
5765 * @force_compl: This flag is set to true when invoked
5766 * from ufshcd_host_reset_and_restore() in which case it requires special
5767 * handling because the host controller has been reset by ufshcd_hba_stop().
5768 */
ufshcd_mcq_compl_pending_transfer(struct ufs_hba * hba,bool force_compl)5769 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5770 bool force_compl)
5771 {
5772 blk_mq_tagset_busy_iter(&hba->host->tag_set,
5773 force_compl ? ufshcd_mcq_force_compl_one :
5774 ufshcd_mcq_compl_one,
5775 NULL);
5776 }
5777
5778 /**
5779 * ufshcd_transfer_req_compl - handle SCSI and query command completion
5780 * @hba: per adapter instance
5781 *
5782 * Return:
5783 * IRQ_HANDLED - If interrupt is valid
5784 * IRQ_NONE - If invalid interrupt
5785 */
ufshcd_transfer_req_compl(struct ufs_hba * hba)5786 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5787 {
5788 /* Resetting interrupt aggregation counters first and reading the
5789 * DOOR_BELL afterward allows us to handle all the completed requests.
5790 * In order to prevent other interrupts starvation the DB is read once
5791 * after reset. The down side of this solution is the possibility of
5792 * false interrupt if device completes another request after resetting
5793 * aggregation and before reading the DB.
5794 */
5795 if (ufshcd_is_intr_aggr_allowed(hba) &&
5796 !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5797 ufshcd_reset_intr_aggr(hba);
5798
5799 if (ufs_fail_completion(hba))
5800 return IRQ_HANDLED;
5801
5802 /*
5803 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5804 * do not want polling to trigger spurious interrupt complaints.
5805 */
5806 ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5807
5808 return IRQ_HANDLED;
5809 }
5810
__ufshcd_write_ee_control(struct ufs_hba * hba,u32 ee_ctrl_mask)5811 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5812 {
5813 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5814 QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5815 &ee_ctrl_mask);
5816 }
5817
ufshcd_write_ee_control(struct ufs_hba * hba)5818 int ufshcd_write_ee_control(struct ufs_hba *hba)
5819 {
5820 int err;
5821
5822 mutex_lock(&hba->ee_ctrl_mutex);
5823 err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5824 mutex_unlock(&hba->ee_ctrl_mutex);
5825 if (err)
5826 dev_err(hba->dev, "%s: failed to write ee control %d\n",
5827 __func__, err);
5828 return err;
5829 }
5830
ufshcd_update_ee_control(struct ufs_hba * hba,u16 * mask,const u16 * other_mask,u16 set,u16 clr)5831 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5832 const u16 *other_mask, u16 set, u16 clr)
5833 {
5834 u16 new_mask, ee_ctrl_mask;
5835 int err = 0;
5836
5837 mutex_lock(&hba->ee_ctrl_mutex);
5838 new_mask = (*mask & ~clr) | set;
5839 ee_ctrl_mask = new_mask | *other_mask;
5840 if (ee_ctrl_mask != hba->ee_ctrl_mask)
5841 err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5842 /* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5843 if (!err) {
5844 hba->ee_ctrl_mask = ee_ctrl_mask;
5845 *mask = new_mask;
5846 }
5847 mutex_unlock(&hba->ee_ctrl_mutex);
5848 return err;
5849 }
5850
5851 /**
5852 * ufshcd_disable_ee - disable exception event
5853 * @hba: per-adapter instance
5854 * @mask: exception event to disable
5855 *
5856 * Disables exception event in the device so that the EVENT_ALERT
5857 * bit is not set.
5858 *
5859 * Return: zero on success, non-zero error value on failure.
5860 */
ufshcd_disable_ee(struct ufs_hba * hba,u16 mask)5861 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5862 {
5863 return ufshcd_update_ee_drv_mask(hba, 0, mask);
5864 }
5865
5866 /**
5867 * ufshcd_enable_ee - enable exception event
5868 * @hba: per-adapter instance
5869 * @mask: exception event to enable
5870 *
5871 * Enable corresponding exception event in the device to allow
5872 * device to alert host in critical scenarios.
5873 *
5874 * Return: zero on success, non-zero error value on failure.
5875 */
ufshcd_enable_ee(struct ufs_hba * hba,u16 mask)5876 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5877 {
5878 return ufshcd_update_ee_drv_mask(hba, mask, 0);
5879 }
5880
5881 /**
5882 * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5883 * @hba: per-adapter instance
5884 *
5885 * Allow device to manage background operations on its own. Enabling
5886 * this might lead to inconsistent latencies during normal data transfers
5887 * as the device is allowed to manage its own way of handling background
5888 * operations.
5889 *
5890 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
5891 * < 0 if another error occurred.
5892 */
ufshcd_enable_auto_bkops(struct ufs_hba * hba)5893 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5894 {
5895 int err = 0;
5896
5897 if (hba->auto_bkops_enabled)
5898 goto out;
5899
5900 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5901 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5902 if (err) {
5903 dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5904 __func__, err);
5905 goto out;
5906 }
5907
5908 hba->auto_bkops_enabled = true;
5909 trace_ufshcd_auto_bkops_state(hba, "Enabled");
5910
5911 /* No need of URGENT_BKOPS exception from the device */
5912 err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5913 if (err)
5914 dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5915 __func__, err);
5916 out:
5917 return err;
5918 }
5919
5920 /**
5921 * ufshcd_disable_auto_bkops - block device in doing background operations
5922 * @hba: per-adapter instance
5923 *
5924 * Disabling background operations improves command response latency but
5925 * has drawback of device moving into critical state where the device is
5926 * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5927 * host is idle so that BKOPS are managed effectively without any negative
5928 * impacts.
5929 *
5930 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
5931 * < 0 if another error occurred.
5932 */
ufshcd_disable_auto_bkops(struct ufs_hba * hba)5933 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5934 {
5935 int err = 0;
5936
5937 if (!hba->auto_bkops_enabled)
5938 goto out;
5939
5940 /*
5941 * If host assisted BKOPs is to be enabled, make sure
5942 * urgent bkops exception is allowed.
5943 */
5944 err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5945 if (err) {
5946 dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5947 __func__, err);
5948 goto out;
5949 }
5950
5951 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5952 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5953 if (err) {
5954 dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5955 __func__, err);
5956 ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5957 goto out;
5958 }
5959
5960 hba->auto_bkops_enabled = false;
5961 trace_ufshcd_auto_bkops_state(hba, "Disabled");
5962 hba->is_urgent_bkops_lvl_checked = false;
5963 out:
5964 return err;
5965 }
5966
5967 /**
5968 * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5969 * @hba: per adapter instance
5970 *
5971 * After a device reset the device may toggle the BKOPS_EN flag
5972 * to default value. The s/w tracking variables should be updated
5973 * as well. This function would change the auto-bkops state based on
5974 * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5975 */
ufshcd_force_reset_auto_bkops(struct ufs_hba * hba)5976 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5977 {
5978 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5979 hba->auto_bkops_enabled = false;
5980 hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5981 ufshcd_enable_auto_bkops(hba);
5982 } else {
5983 hba->auto_bkops_enabled = true;
5984 hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5985 ufshcd_disable_auto_bkops(hba);
5986 }
5987 hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5988 hba->is_urgent_bkops_lvl_checked = false;
5989 }
5990
ufshcd_get_bkops_status(struct ufs_hba * hba,u32 * status)5991 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5992 {
5993 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5994 QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5995 }
5996
5997 /**
5998 * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5999 * @hba: per-adapter instance
6000 *
6001 * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
6002 * flag in the device to permit background operations if the device
6003 * bkops_status is greater than or equal to the "hba->urgent_bkops_lvl",
6004 * disable otherwise.
6005 *
6006 * Return: 0 for success, non-zero in case of failure.
6007 *
6008 * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
6009 * to know whether auto bkops is enabled or disabled after this function
6010 * returns control to it.
6011 */
ufshcd_bkops_ctrl(struct ufs_hba * hba)6012 static int ufshcd_bkops_ctrl(struct ufs_hba *hba)
6013 {
6014 enum bkops_status status = hba->urgent_bkops_lvl;
6015 u32 curr_status = 0;
6016 int err;
6017
6018 err = ufshcd_get_bkops_status(hba, &curr_status);
6019 if (err) {
6020 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
6021 __func__, err);
6022 goto out;
6023 } else if (curr_status > BKOPS_STATUS_MAX) {
6024 dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
6025 __func__, curr_status);
6026 err = -EINVAL;
6027 goto out;
6028 }
6029
6030 if (curr_status >= status)
6031 err = ufshcd_enable_auto_bkops(hba);
6032 else
6033 err = ufshcd_disable_auto_bkops(hba);
6034 out:
6035 return err;
6036 }
6037
ufshcd_get_ee_status(struct ufs_hba * hba,u32 * status)6038 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
6039 {
6040 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6041 QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
6042 }
6043
ufshcd_bkops_exception_event_handler(struct ufs_hba * hba)6044 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
6045 {
6046 int err;
6047 u32 curr_status = 0;
6048
6049 if (hba->is_urgent_bkops_lvl_checked)
6050 goto enable_auto_bkops;
6051
6052 err = ufshcd_get_bkops_status(hba, &curr_status);
6053 if (err) {
6054 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
6055 __func__, err);
6056 goto out;
6057 }
6058
6059 /*
6060 * We are seeing that some devices are raising the urgent bkops
6061 * exception events even when BKOPS status doesn't indicate performace
6062 * impacted or critical. Handle these device by determining their urgent
6063 * bkops status at runtime.
6064 */
6065 if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
6066 dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
6067 __func__, curr_status);
6068 /* update the current status as the urgent bkops level */
6069 hba->urgent_bkops_lvl = curr_status;
6070 hba->is_urgent_bkops_lvl_checked = true;
6071 }
6072
6073 enable_auto_bkops:
6074 err = ufshcd_enable_auto_bkops(hba);
6075 out:
6076 if (err < 0)
6077 dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
6078 __func__, err);
6079 }
6080
6081 /*
6082 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
6083 * < 0 if another error occurred.
6084 */
ufshcd_read_device_lvl_exception_id(struct ufs_hba * hba,u64 * exception_id)6085 int ufshcd_read_device_lvl_exception_id(struct ufs_hba *hba, u64 *exception_id)
6086 {
6087 struct utp_upiu_query_v4_0 *upiu_resp;
6088 struct ufs_query_req *request = NULL;
6089 struct ufs_query_res *response = NULL;
6090 int err;
6091
6092 if (hba->dev_info.wspecversion < 0x410)
6093 return -EOPNOTSUPP;
6094
6095 ufshcd_hold(hba);
6096 mutex_lock(&hba->dev_cmd.lock);
6097
6098 ufshcd_init_query(hba, &request, &response,
6099 UPIU_QUERY_OPCODE_READ_ATTR,
6100 QUERY_ATTR_IDN_DEV_LVL_EXCEPTION_ID, 0, 0);
6101
6102 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
6103
6104 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
6105
6106 if (err) {
6107 dev_err(hba->dev, "%s: failed to read device level exception %d\n",
6108 __func__, err);
6109 goto out;
6110 }
6111
6112 upiu_resp = (struct utp_upiu_query_v4_0 *)response;
6113 *exception_id = get_unaligned_be64(&upiu_resp->osf3);
6114 out:
6115 mutex_unlock(&hba->dev_cmd.lock);
6116 ufshcd_release(hba);
6117
6118 return err;
6119 }
6120
__ufshcd_wb_toggle(struct ufs_hba * hba,bool set,enum flag_idn idn)6121 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
6122 {
6123 u8 index;
6124 enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
6125 UPIU_QUERY_OPCODE_CLEAR_FLAG;
6126
6127 index = ufshcd_wb_get_query_index(hba);
6128 return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
6129 }
6130
ufshcd_wb_toggle(struct ufs_hba * hba,bool enable)6131 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
6132 {
6133 int ret;
6134
6135 if (!ufshcd_is_wb_allowed(hba) ||
6136 hba->dev_info.wb_enabled == enable)
6137 return 0;
6138
6139 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
6140 if (ret) {
6141 dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
6142 __func__, enable ? "enabling" : "disabling", ret);
6143 return ret;
6144 }
6145
6146 hba->dev_info.wb_enabled = enable;
6147 dev_dbg(hba->dev, "%s: Write Booster %s\n",
6148 __func__, enable ? "enabled" : "disabled");
6149
6150 return ret;
6151 }
6152
ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba * hba,bool enable)6153 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
6154 bool enable)
6155 {
6156 int ret;
6157
6158 ret = __ufshcd_wb_toggle(hba, enable,
6159 QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
6160 if (ret) {
6161 dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
6162 __func__, enable ? "enabling" : "disabling", ret);
6163 return;
6164 }
6165 dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
6166 __func__, enable ? "enabled" : "disabled");
6167 }
6168
ufshcd_wb_toggle_buf_flush(struct ufs_hba * hba,bool enable)6169 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
6170 {
6171 int ret;
6172
6173 if (!ufshcd_is_wb_allowed(hba) ||
6174 hba->dev_info.wb_buf_flush_enabled == enable)
6175 return 0;
6176
6177 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
6178 if (ret) {
6179 dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
6180 __func__, enable ? "enabling" : "disabling", ret);
6181 return ret;
6182 }
6183
6184 hba->dev_info.wb_buf_flush_enabled = enable;
6185 dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
6186 __func__, enable ? "enabled" : "disabled");
6187
6188 return ret;
6189 }
6190
ufshcd_wb_set_resize_en(struct ufs_hba * hba,enum wb_resize_en en_mode)6191 int ufshcd_wb_set_resize_en(struct ufs_hba *hba, enum wb_resize_en en_mode)
6192 {
6193 int ret;
6194 u8 index;
6195
6196 index = ufshcd_wb_get_query_index(hba);
6197 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
6198 QUERY_ATTR_IDN_WB_BUF_RESIZE_EN, index, 0, &en_mode);
6199 if (ret)
6200 dev_err(hba->dev, "%s: Enable WB buf resize operation failed %d\n",
6201 __func__, ret);
6202
6203 return ret;
6204 }
6205
ufshcd_wb_curr_buff_threshold_check(struct ufs_hba * hba,u32 avail_buf)6206 static bool ufshcd_wb_curr_buff_threshold_check(struct ufs_hba *hba,
6207 u32 avail_buf)
6208 {
6209 u32 cur_buf;
6210 int ret;
6211 u8 index;
6212
6213 index = ufshcd_wb_get_query_index(hba);
6214 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6215 QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
6216 index, 0, &cur_buf);
6217 if (ret) {
6218 dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
6219 __func__, ret);
6220 return false;
6221 }
6222
6223 if (!cur_buf) {
6224 dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6225 cur_buf);
6226 return false;
6227 }
6228 /* Let it continue to flush when available buffer exceeds threshold */
6229 return avail_buf < hba->vps->wb_flush_threshold;
6230 }
6231
ufshcd_wb_force_disable(struct ufs_hba * hba)6232 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6233 {
6234 if (ufshcd_is_wb_buf_flush_allowed(hba))
6235 ufshcd_wb_toggle_buf_flush(hba, false);
6236
6237 ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6238 ufshcd_wb_toggle(hba, false);
6239 hba->caps &= ~UFSHCD_CAP_WB_EN;
6240
6241 dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6242 }
6243
ufshcd_is_wb_buf_lifetime_available(struct ufs_hba * hba)6244 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6245 {
6246 u32 lifetime;
6247 int ret;
6248 u8 index;
6249
6250 index = ufshcd_wb_get_query_index(hba);
6251 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6252 QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6253 index, 0, &lifetime);
6254 if (ret) {
6255 dev_err(hba->dev,
6256 "%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6257 __func__, ret);
6258 return false;
6259 }
6260
6261 if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6262 dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6263 __func__, lifetime);
6264 return false;
6265 }
6266
6267 dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6268 __func__, lifetime);
6269
6270 return true;
6271 }
6272
ufshcd_wb_need_flush(struct ufs_hba * hba)6273 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6274 {
6275 int ret;
6276 u32 avail_buf;
6277 u8 index;
6278
6279 if (!ufshcd_is_wb_allowed(hba))
6280 return false;
6281
6282 if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6283 ufshcd_wb_force_disable(hba);
6284 return false;
6285 }
6286
6287 /*
6288 * With user-space reduction enabled, it's enough to enable flush
6289 * by checking only the available buffer. The threshold
6290 * defined here is > 90% full.
6291 * With user-space preserved enabled, the current-buffer
6292 * should be checked too because the wb buffer size can reduce
6293 * when disk tends to be full. This info is provided by current
6294 * buffer (dCurrentWriteBoosterBufferSize).
6295 */
6296 index = ufshcd_wb_get_query_index(hba);
6297 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6298 QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6299 index, 0, &avail_buf);
6300 if (ret) {
6301 dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6302 __func__, ret);
6303 return false;
6304 }
6305
6306 if (!hba->dev_info.b_presrv_uspc_en)
6307 return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6308
6309 return ufshcd_wb_curr_buff_threshold_check(hba, avail_buf);
6310 }
6311
ufshcd_rpm_dev_flush_recheck_work(struct work_struct * work)6312 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6313 {
6314 struct ufs_hba *hba = container_of(to_delayed_work(work),
6315 struct ufs_hba,
6316 rpm_dev_flush_recheck_work);
6317 /*
6318 * To prevent unnecessary VCC power drain after device finishes
6319 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6320 * after a certain delay to recheck the threshold by next runtime
6321 * suspend.
6322 */
6323 ufshcd_rpm_get_sync(hba);
6324 ufshcd_rpm_put_sync(hba);
6325 }
6326
6327 /**
6328 * ufshcd_exception_event_handler - handle exceptions raised by device
6329 * @work: pointer to work data
6330 *
6331 * Read bExceptionEventStatus attribute from the device and handle the
6332 * exception event accordingly.
6333 */
ufshcd_exception_event_handler(struct work_struct * work)6334 static void ufshcd_exception_event_handler(struct work_struct *work)
6335 {
6336 struct ufs_hba *hba;
6337 int err;
6338 u32 status = 0;
6339 hba = container_of(work, struct ufs_hba, eeh_work);
6340
6341 err = ufshcd_get_ee_status(hba, &status);
6342 if (err) {
6343 dev_err(hba->dev, "%s: failed to get exception status %d\n",
6344 __func__, err);
6345 return;
6346 }
6347
6348 trace_ufshcd_exception_event(hba, status);
6349
6350 if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6351 ufshcd_bkops_exception_event_handler(hba);
6352
6353 if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6354 ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
6355
6356 if (status & hba->ee_drv_mask & MASK_EE_HEALTH_CRITICAL) {
6357 hba->critical_health_count++;
6358 sysfs_notify(&hba->dev->kobj, NULL, "critical_health");
6359 }
6360
6361 if (status & hba->ee_drv_mask & MASK_EE_DEV_LVL_EXCEPTION) {
6362 atomic_inc(&hba->dev_lvl_exception_count);
6363 sysfs_notify(&hba->dev->kobj, NULL, "device_lvl_exception_count");
6364 }
6365
6366 ufs_debugfs_exception_event(hba, status);
6367 }
6368
6369 /* Complete requests that have door-bell cleared */
ufshcd_complete_requests(struct ufs_hba * hba,bool force_compl)6370 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6371 {
6372 if (hba->mcq_enabled)
6373 ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6374 else
6375 ufshcd_transfer_req_compl(hba);
6376
6377 ufshcd_tmc_handler(hba);
6378 }
6379
6380 /**
6381 * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6382 * to recover from the DL NAC errors or not.
6383 * @hba: per-adapter instance
6384 *
6385 * Return: true if error handling is required, false otherwise.
6386 */
ufshcd_quirk_dl_nac_errors(struct ufs_hba * hba)6387 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6388 {
6389 unsigned long flags;
6390 bool err_handling = true;
6391
6392 spin_lock_irqsave(hba->host->host_lock, flags);
6393 /*
6394 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6395 * device fatal error and/or DL NAC & REPLAY timeout errors.
6396 */
6397 if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6398 goto out;
6399
6400 if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6401 ((hba->saved_err & UIC_ERROR) &&
6402 (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6403 goto out;
6404
6405 if ((hba->saved_err & UIC_ERROR) &&
6406 (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6407 int err;
6408 /*
6409 * wait for 50ms to see if we can get any other errors or not.
6410 */
6411 spin_unlock_irqrestore(hba->host->host_lock, flags);
6412 msleep(50);
6413 spin_lock_irqsave(hba->host->host_lock, flags);
6414
6415 /*
6416 * now check if we have got any other severe errors other than
6417 * DL NAC error?
6418 */
6419 if ((hba->saved_err & INT_FATAL_ERRORS) ||
6420 ((hba->saved_err & UIC_ERROR) &&
6421 (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6422 goto out;
6423
6424 /*
6425 * As DL NAC is the only error received so far, send out NOP
6426 * command to confirm if link is still active or not.
6427 * - If we don't get any response then do error recovery.
6428 * - If we get response then clear the DL NAC error bit.
6429 */
6430
6431 spin_unlock_irqrestore(hba->host->host_lock, flags);
6432 err = ufshcd_verify_dev_init(hba);
6433 spin_lock_irqsave(hba->host->host_lock, flags);
6434
6435 if (err)
6436 goto out;
6437
6438 /* Link seems to be alive hence ignore the DL NAC errors */
6439 if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6440 hba->saved_err &= ~UIC_ERROR;
6441 /* clear NAC error */
6442 hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6443 if (!hba->saved_uic_err)
6444 err_handling = false;
6445 }
6446 out:
6447 spin_unlock_irqrestore(hba->host->host_lock, flags);
6448 return err_handling;
6449 }
6450
6451 /* host lock must be held before calling this func */
ufshcd_is_saved_err_fatal(struct ufs_hba * hba)6452 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6453 {
6454 return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6455 (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6456 }
6457
ufshcd_schedule_eh_work(struct ufs_hba * hba)6458 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6459 {
6460 lockdep_assert_held(hba->host->host_lock);
6461
6462 /* handle fatal errors only when link is not in error state */
6463 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6464 if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6465 ufshcd_is_saved_err_fatal(hba))
6466 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6467 else
6468 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6469 queue_work(hba->eh_wq, &hba->eh_work);
6470 }
6471 }
6472
ufshcd_force_error_recovery(struct ufs_hba * hba)6473 void ufshcd_force_error_recovery(struct ufs_hba *hba)
6474 {
6475 spin_lock_irq(hba->host->host_lock);
6476 hba->force_reset = true;
6477 ufshcd_schedule_eh_work(hba);
6478 spin_unlock_irq(hba->host->host_lock);
6479 }
6480 EXPORT_SYMBOL_GPL(ufshcd_force_error_recovery);
6481
ufshcd_clk_scaling_allow(struct ufs_hba * hba,bool allow)6482 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6483 {
6484 mutex_lock(&hba->wb_mutex);
6485 down_write(&hba->clk_scaling_lock);
6486 hba->clk_scaling.is_allowed = allow;
6487 up_write(&hba->clk_scaling_lock);
6488 mutex_unlock(&hba->wb_mutex);
6489 }
6490
ufshcd_clk_scaling_suspend(struct ufs_hba * hba,bool suspend)6491 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6492 {
6493 if (suspend) {
6494 if (hba->clk_scaling.is_enabled)
6495 ufshcd_suspend_clkscaling(hba);
6496 ufshcd_clk_scaling_allow(hba, false);
6497 } else {
6498 ufshcd_clk_scaling_allow(hba, true);
6499 if (hba->clk_scaling.is_enabled)
6500 ufshcd_resume_clkscaling(hba);
6501 }
6502 }
6503
ufshcd_err_handling_prepare(struct ufs_hba * hba)6504 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6505 {
6506 /*
6507 * A WLUN resume failure could potentially lead to the HBA being
6508 * runtime suspended, so take an extra reference on hba->dev.
6509 */
6510 pm_runtime_get_sync(hba->dev);
6511 ufshcd_rpm_get_sync(hba);
6512 if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6513 hba->is_sys_suspended) {
6514 enum ufs_pm_op pm_op;
6515
6516 /*
6517 * Don't assume anything of resume, if
6518 * resume fails, irq and clocks can be OFF, and powers
6519 * can be OFF or in LPM.
6520 */
6521 ufshcd_setup_hba_vreg(hba, true);
6522 ufshcd_enable_irq(hba);
6523 ufshcd_setup_vreg(hba, true);
6524 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6525 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6526 ufshcd_hold(hba);
6527 if (!ufshcd_is_clkgating_allowed(hba))
6528 ufshcd_setup_clocks(hba, true);
6529 pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6530 ufshcd_vops_resume(hba, pm_op);
6531 } else {
6532 ufshcd_hold(hba);
6533 if (ufshcd_is_clkscaling_supported(hba) &&
6534 hba->clk_scaling.is_enabled)
6535 ufshcd_suspend_clkscaling(hba);
6536 ufshcd_clk_scaling_allow(hba, false);
6537 }
6538 /* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6539 blk_mq_quiesce_tagset(&hba->host->tag_set);
6540 cancel_work_sync(&hba->eeh_work);
6541 }
6542
ufshcd_err_handling_unprepare(struct ufs_hba * hba)6543 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6544 {
6545 blk_mq_unquiesce_tagset(&hba->host->tag_set);
6546 ufshcd_release(hba);
6547 if (ufshcd_is_clkscaling_supported(hba))
6548 ufshcd_clk_scaling_suspend(hba, false);
6549 ufshcd_rpm_put(hba);
6550 pm_runtime_put(hba->dev);
6551 }
6552
ufshcd_err_handling_should_stop(struct ufs_hba * hba)6553 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6554 {
6555 return (!hba->is_powered || hba->shutting_down ||
6556 !hba->ufs_device_wlun ||
6557 hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6558 (!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6559 ufshcd_is_link_broken(hba))));
6560 }
6561
6562 #ifdef CONFIG_PM
ufshcd_recover_pm_error(struct ufs_hba * hba)6563 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6564 {
6565 struct scsi_target *starget = hba->ufs_device_wlun->sdev_target;
6566 struct Scsi_Host *shost = hba->host;
6567 struct scsi_device *sdev;
6568 struct request_queue *q;
6569 bool resume_sdev_queues = false;
6570
6571 hba->is_sys_suspended = false;
6572
6573 /*
6574 * Ensure the parent's error status is cleared before proceeding
6575 * to the child, as the parent must be active to activate the child.
6576 */
6577 if (hba->dev->power.runtime_error) {
6578 /* hba->dev has no functional parent thus simplily set RPM_ACTIVE */
6579 pm_runtime_set_active(hba->dev);
6580 resume_sdev_queues = true;
6581 }
6582
6583 if (hba->ufs_device_wlun->sdev_gendev.power.runtime_error) {
6584 /*
6585 * starget, parent of wlun, might be suspended if wlun resume failed.
6586 * Make sure parent is resumed before set child (wlun) active.
6587 */
6588 pm_runtime_get_sync(&starget->dev);
6589 pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6590 pm_runtime_put_sync(&starget->dev);
6591 resume_sdev_queues = true;
6592 }
6593
6594 /*
6595 * If wlun device had runtime error, we also need to resume those
6596 * consumer scsi devices in case any of them has failed to be
6597 * resumed due to supplier runtime resume failure. This is to unblock
6598 * blk_queue_enter in case there are bios waiting inside it.
6599 */
6600 if (resume_sdev_queues) {
6601 shost_for_each_device(sdev, shost) {
6602 q = sdev->request_queue;
6603 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6604 q->rpm_status == RPM_SUSPENDING))
6605 pm_request_resume(q->dev);
6606 }
6607 }
6608 }
6609 #else
ufshcd_recover_pm_error(struct ufs_hba * hba)6610 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6611 {
6612 }
6613 #endif
6614
ufshcd_is_pwr_mode_restore_needed(struct ufs_hba * hba)6615 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6616 {
6617 struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6618 u32 mode;
6619
6620 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6621
6622 if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6623 return true;
6624
6625 if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6626 return true;
6627
6628 return false;
6629 }
6630
ufshcd_abort_one(struct request * rq,void * priv)6631 static bool ufshcd_abort_one(struct request *rq, void *priv)
6632 {
6633 int *ret = priv;
6634 u32 tag = rq->tag;
6635 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6636 struct scsi_device *sdev = cmd->device;
6637 struct Scsi_Host *shost = sdev->host;
6638 struct ufs_hba *hba = shost_priv(shost);
6639
6640 if (blk_mq_is_reserved_rq(rq))
6641 return true;
6642
6643 *ret = ufshcd_try_to_abort_task(hba, tag);
6644 dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6645 ufshcd_is_scsi_cmd(cmd) ? cmd->cmnd[0] : -1,
6646 *ret ? "failed" : "succeeded");
6647
6648 return *ret == 0;
6649 }
6650
6651 /**
6652 * ufshcd_abort_all - Abort all pending commands.
6653 * @hba: Host bus adapter pointer.
6654 *
6655 * Return: true if and only if the host controller needs to be reset.
6656 */
ufshcd_abort_all(struct ufs_hba * hba)6657 static bool ufshcd_abort_all(struct ufs_hba *hba)
6658 {
6659 int tag, ret = 0;
6660
6661 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6662 if (ret)
6663 goto out;
6664
6665 /* Clear pending task management requests */
6666 for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6667 ret = ufshcd_clear_tm_cmd(hba, tag);
6668 if (ret)
6669 goto out;
6670 }
6671
6672 out:
6673 /* Complete the requests that are cleared by s/w */
6674 ufshcd_complete_requests(hba, false);
6675
6676 return ret != 0;
6677 }
6678
6679 /**
6680 * ufshcd_err_handler - handle UFS errors that require s/w attention
6681 * @work: pointer to work structure
6682 */
ufshcd_err_handler(struct work_struct * work)6683 static void ufshcd_err_handler(struct work_struct *work)
6684 {
6685 int retries = MAX_ERR_HANDLER_RETRIES;
6686 struct ufs_hba *hba;
6687 unsigned long flags;
6688 bool needs_restore;
6689 bool needs_reset;
6690 int pmc_err;
6691
6692 hba = container_of(work, struct ufs_hba, eh_work);
6693
6694 dev_info(hba->dev,
6695 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = 0x%x; saved_uic_err = 0x%x; force_reset = %d%s\n",
6696 __func__, ufshcd_state_name[hba->ufshcd_state],
6697 hba->is_powered, hba->shutting_down, hba->saved_err,
6698 hba->saved_uic_err, hba->force_reset,
6699 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6700
6701 if (hba->ufs_device_wlun) {
6702 /*
6703 * Use ufshcd_rpm_get_noresume() here to safely perform link
6704 * recovery even if an error occurs during runtime suspend or
6705 * runtime resume. This avoids potential deadlocks that could
6706 * happen if we tried to resume the device while a PM operation
6707 * is already in progress.
6708 */
6709 ufshcd_rpm_get_noresume(hba);
6710 if (hba->pm_op_in_progress) {
6711 ufshcd_link_recovery(hba);
6712 ufshcd_rpm_put(hba);
6713 return;
6714 }
6715 ufshcd_rpm_put(hba);
6716 }
6717
6718 down(&hba->host_sem);
6719 spin_lock_irqsave(hba->host->host_lock, flags);
6720 if (ufshcd_err_handling_should_stop(hba)) {
6721 if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6722 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6723 spin_unlock_irqrestore(hba->host->host_lock, flags);
6724 up(&hba->host_sem);
6725 return;
6726 }
6727 spin_unlock_irqrestore(hba->host->host_lock, flags);
6728
6729 ufshcd_err_handling_prepare(hba);
6730
6731 spin_lock_irqsave(hba->host->host_lock, flags);
6732 ufshcd_set_eh_in_progress(hba);
6733 spin_unlock_irqrestore(hba->host->host_lock, flags);
6734
6735 /* Complete requests that have door-bell cleared by h/w */
6736 ufshcd_complete_requests(hba, false);
6737 spin_lock_irqsave(hba->host->host_lock, flags);
6738 again:
6739 needs_restore = false;
6740 needs_reset = false;
6741
6742 if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6743 hba->ufshcd_state = UFSHCD_STATE_RESET;
6744 /*
6745 * A full reset and restore might have happened after preparation
6746 * is finished, double check whether we should stop.
6747 */
6748 if (ufshcd_err_handling_should_stop(hba))
6749 goto skip_err_handling;
6750
6751 if ((hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) &&
6752 !hba->force_reset) {
6753 bool ret;
6754
6755 spin_unlock_irqrestore(hba->host->host_lock, flags);
6756 /* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6757 ret = ufshcd_quirk_dl_nac_errors(hba);
6758 spin_lock_irqsave(hba->host->host_lock, flags);
6759 if (!ret && ufshcd_err_handling_should_stop(hba))
6760 goto skip_err_handling;
6761 }
6762
6763 if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6764 (hba->saved_uic_err &&
6765 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6766 bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6767
6768 spin_unlock_irqrestore(hba->host->host_lock, flags);
6769 ufshcd_print_host_state(hba);
6770 ufshcd_print_pwr_info(hba);
6771 ufshcd_print_evt_hist(hba);
6772 ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6773 ufshcd_print_trs_all(hba, pr_prdt);
6774 spin_lock_irqsave(hba->host->host_lock, flags);
6775 }
6776
6777 /*
6778 * if host reset is required then skip clearing the pending
6779 * transfers forcefully because they will get cleared during
6780 * host reset and restore
6781 */
6782 if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6783 ufshcd_is_saved_err_fatal(hba) ||
6784 ((hba->saved_err & UIC_ERROR) &&
6785 (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6786 UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6787 needs_reset = true;
6788 goto do_reset;
6789 }
6790
6791 /*
6792 * If LINERESET was caught, UFS might have been put to PWM mode,
6793 * check if power mode restore is needed.
6794 */
6795 if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6796 hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6797 if (!hba->saved_uic_err)
6798 hba->saved_err &= ~UIC_ERROR;
6799 spin_unlock_irqrestore(hba->host->host_lock, flags);
6800 if (ufshcd_is_pwr_mode_restore_needed(hba))
6801 needs_restore = true;
6802 spin_lock_irqsave(hba->host->host_lock, flags);
6803 if (!hba->saved_err && !needs_restore)
6804 goto skip_err_handling;
6805 }
6806
6807 hba->silence_err_logs = true;
6808 /* release lock as clear command might sleep */
6809 spin_unlock_irqrestore(hba->host->host_lock, flags);
6810
6811 needs_reset = ufshcd_abort_all(hba);
6812
6813 spin_lock_irqsave(hba->host->host_lock, flags);
6814 hba->silence_err_logs = false;
6815 if (needs_reset)
6816 goto do_reset;
6817
6818 /*
6819 * After all reqs and tasks are cleared from doorbell,
6820 * now it is safe to retore power mode.
6821 */
6822 if (needs_restore) {
6823 spin_unlock_irqrestore(hba->host->host_lock, flags);
6824 /*
6825 * Hold the scaling lock just in case dev cmds
6826 * are sent via bsg and/or sysfs.
6827 */
6828 down_write(&hba->clk_scaling_lock);
6829 hba->force_pmc = true;
6830 pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6831 if (pmc_err) {
6832 needs_reset = true;
6833 dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6834 __func__, pmc_err);
6835 }
6836 hba->force_pmc = false;
6837 ufshcd_print_pwr_info(hba);
6838 up_write(&hba->clk_scaling_lock);
6839 spin_lock_irqsave(hba->host->host_lock, flags);
6840 }
6841
6842 do_reset:
6843 /* Fatal errors need reset */
6844 if (needs_reset) {
6845 int err;
6846
6847 hba->force_reset = false;
6848 spin_unlock_irqrestore(hba->host->host_lock, flags);
6849 err = ufshcd_reset_and_restore(hba);
6850 if (err)
6851 dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6852 __func__, err);
6853 else
6854 ufshcd_recover_pm_error(hba);
6855 spin_lock_irqsave(hba->host->host_lock, flags);
6856 }
6857
6858 skip_err_handling:
6859 if (!needs_reset) {
6860 if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6861 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6862 if (hba->saved_err || hba->saved_uic_err)
6863 dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6864 __func__, hba->saved_err, hba->saved_uic_err);
6865 }
6866 /* Exit in an operational state or dead */
6867 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6868 hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6869 if (--retries)
6870 goto again;
6871 hba->ufshcd_state = UFSHCD_STATE_ERROR;
6872 }
6873 ufshcd_clear_eh_in_progress(hba);
6874 spin_unlock_irqrestore(hba->host->host_lock, flags);
6875 ufshcd_err_handling_unprepare(hba);
6876 up(&hba->host_sem);
6877
6878 dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6879 ufshcd_state_name[hba->ufshcd_state]);
6880 }
6881
6882 /**
6883 * ufshcd_update_uic_error - check and set fatal UIC error flags.
6884 * @hba: per-adapter instance
6885 *
6886 * Return:
6887 * IRQ_HANDLED - If interrupt is valid
6888 * IRQ_NONE - If invalid interrupt
6889 */
ufshcd_update_uic_error(struct ufs_hba * hba)6890 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6891 {
6892 u32 reg;
6893 irqreturn_t retval = IRQ_NONE;
6894
6895 /* PHY layer error */
6896 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6897 if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6898 (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6899 ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6900 /*
6901 * To know whether this error is fatal or not, DB timeout
6902 * must be checked but this error is handled separately.
6903 */
6904 if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6905 dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6906 __func__);
6907
6908 /* Got a LINERESET indication. */
6909 if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6910 struct uic_command *cmd = NULL;
6911
6912 hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6913 if (hba->uic_async_done && hba->active_uic_cmd)
6914 cmd = hba->active_uic_cmd;
6915 /*
6916 * Ignore the LINERESET during power mode change
6917 * operation via DME_SET command.
6918 */
6919 if (cmd && (cmd->command == UIC_CMD_DME_SET))
6920 hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6921 }
6922 retval |= IRQ_HANDLED;
6923 }
6924
6925 /* PA_INIT_ERROR is fatal and needs UIC reset */
6926 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6927 if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6928 (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6929 ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6930
6931 if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6932 hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6933 else if (hba->dev_quirks &
6934 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6935 if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6936 hba->uic_error |=
6937 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6938 else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6939 hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6940 }
6941 retval |= IRQ_HANDLED;
6942 }
6943
6944 /* UIC NL/TL/DME errors needs software retry */
6945 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6946 if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6947 (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6948 ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6949 hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6950 retval |= IRQ_HANDLED;
6951 }
6952
6953 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6954 if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6955 (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6956 ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6957 hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6958 retval |= IRQ_HANDLED;
6959 }
6960
6961 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6962 if ((reg & UIC_DME_ERROR) &&
6963 (reg & UIC_DME_ERROR_CODE_MASK)) {
6964 ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6965 hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6966 retval |= IRQ_HANDLED;
6967 }
6968
6969 dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6970 __func__, hba->uic_error);
6971 return retval;
6972 }
6973
6974 /**
6975 * ufshcd_check_errors - Check for errors that need s/w attention
6976 * @hba: per-adapter instance
6977 * @intr_status: interrupt status generated by the controller
6978 *
6979 * Return:
6980 * IRQ_HANDLED - If interrupt is valid
6981 * IRQ_NONE - If invalid interrupt
6982 */
ufshcd_check_errors(struct ufs_hba * hba,u32 intr_status)6983 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6984 {
6985 bool queue_eh_work = false;
6986 irqreturn_t retval = IRQ_NONE;
6987
6988 guard(spinlock_irqsave)(hba->host->host_lock);
6989 hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6990
6991 if (hba->errors & INT_FATAL_ERRORS) {
6992 ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6993 hba->errors);
6994 queue_eh_work = true;
6995 }
6996
6997 if (hba->errors & UIC_ERROR) {
6998 hba->uic_error = 0;
6999 retval = ufshcd_update_uic_error(hba);
7000 if (hba->uic_error)
7001 queue_eh_work = true;
7002 }
7003
7004 if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
7005 dev_err(hba->dev,
7006 "%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
7007 __func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
7008 "Enter" : "Exit",
7009 hba->errors, ufshcd_get_upmcrs(hba));
7010 ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
7011 hba->errors);
7012 ufshcd_set_link_broken(hba);
7013 queue_eh_work = true;
7014 }
7015
7016 if (queue_eh_work) {
7017 /*
7018 * update the transfer error masks to sticky bits, let's do this
7019 * irrespective of current ufshcd_state.
7020 */
7021 hba->saved_err |= hba->errors;
7022 hba->saved_uic_err |= hba->uic_error;
7023
7024 /* dump controller state before resetting */
7025 if ((hba->saved_err &
7026 (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
7027 (hba->saved_uic_err &&
7028 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
7029 dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
7030 __func__, hba->saved_err,
7031 hba->saved_uic_err);
7032 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
7033 "host_regs: ");
7034 ufshcd_print_pwr_info(hba);
7035 }
7036 ufshcd_schedule_eh_work(hba);
7037 retval |= IRQ_HANDLED;
7038 }
7039 /*
7040 * if (!queue_eh_work) -
7041 * Other errors are either non-fatal where host recovers
7042 * itself without s/w intervention or errors that will be
7043 * handled by the SCSI core layer.
7044 */
7045 hba->errors = 0;
7046 hba->uic_error = 0;
7047
7048 return retval;
7049 }
7050
7051 /**
7052 * ufshcd_tmc_handler - handle task management function completion
7053 * @hba: per adapter instance
7054 *
7055 * Return:
7056 * IRQ_HANDLED - If interrupt is valid
7057 * IRQ_NONE - If invalid interrupt
7058 */
ufshcd_tmc_handler(struct ufs_hba * hba)7059 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
7060 {
7061 unsigned long flags, pending, issued;
7062 irqreturn_t ret = IRQ_NONE;
7063 int tag;
7064
7065 spin_lock_irqsave(hba->host->host_lock, flags);
7066 pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
7067 issued = hba->outstanding_tasks & ~pending;
7068 for_each_set_bit(tag, &issued, hba->nutmrs) {
7069 struct request *req = hba->tmf_rqs[tag];
7070 struct completion *c = req->end_io_data;
7071
7072 complete(c);
7073 ret = IRQ_HANDLED;
7074 }
7075 spin_unlock_irqrestore(hba->host->host_lock, flags);
7076
7077 return ret;
7078 }
7079
7080 /**
7081 * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
7082 * @hba: per adapter instance
7083 *
7084 * Return: IRQ_HANDLED if interrupt is handled.
7085 */
ufshcd_handle_mcq_cq_events(struct ufs_hba * hba)7086 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
7087 {
7088 struct ufs_hw_queue *hwq;
7089 unsigned long outstanding_cqs;
7090 unsigned int nr_queues;
7091 int i, ret;
7092 u32 events;
7093
7094 ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
7095 if (ret)
7096 outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
7097
7098 /* Exclude the poll queues */
7099 nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
7100 for_each_set_bit(i, &outstanding_cqs, nr_queues) {
7101 hwq = &hba->uhq[i];
7102
7103 events = ufshcd_mcq_read_cqis(hba, i);
7104 if (events)
7105 ufshcd_mcq_write_cqis(hba, events, i);
7106
7107 if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
7108 ufshcd_mcq_poll_cqe_lock(hba, hwq);
7109 }
7110
7111 return IRQ_HANDLED;
7112 }
7113
7114 /**
7115 * ufshcd_sl_intr - Interrupt service routine
7116 * @hba: per adapter instance
7117 * @intr_status: contains interrupts generated by the controller
7118 *
7119 * Return:
7120 * IRQ_HANDLED - If interrupt is valid
7121 * IRQ_NONE - If invalid interrupt
7122 */
ufshcd_sl_intr(struct ufs_hba * hba,u32 intr_status)7123 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
7124 {
7125 irqreturn_t retval = IRQ_NONE;
7126
7127 if (intr_status & UFSHCD_UIC_MASK)
7128 retval |= ufshcd_uic_cmd_compl(hba, intr_status);
7129
7130 if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
7131 retval |= ufshcd_check_errors(hba, intr_status);
7132
7133 if (intr_status & UTP_TASK_REQ_COMPL)
7134 retval |= ufshcd_tmc_handler(hba);
7135
7136 if (intr_status & UTP_TRANSFER_REQ_COMPL)
7137 retval |= ufshcd_transfer_req_compl(hba);
7138
7139 if (intr_status & MCQ_CQ_EVENT_STATUS)
7140 retval |= ufshcd_handle_mcq_cq_events(hba);
7141
7142 return retval;
7143 }
7144
7145 /**
7146 * ufshcd_threaded_intr - Threaded interrupt service routine
7147 * @irq: irq number
7148 * @__hba: pointer to adapter instance
7149 *
7150 * Return:
7151 * IRQ_HANDLED - If interrupt is valid
7152 * IRQ_NONE - If invalid interrupt
7153 */
ufshcd_threaded_intr(int irq,void * __hba)7154 static irqreturn_t ufshcd_threaded_intr(int irq, void *__hba)
7155 {
7156 u32 last_intr_status, intr_status, enabled_intr_status = 0;
7157 irqreturn_t retval = IRQ_NONE;
7158 struct ufs_hba *hba = __hba;
7159 int retries = hba->nutrs;
7160
7161 last_intr_status = intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7162
7163 /*
7164 * There could be max of hba->nutrs reqs in flight and in worst case
7165 * if the reqs get finished 1 by 1 after the interrupt status is
7166 * read, make sure we handle them by checking the interrupt status
7167 * again in a loop until we process all of the reqs before returning.
7168 */
7169 while (intr_status && retries--) {
7170 enabled_intr_status =
7171 intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
7172 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
7173 if (enabled_intr_status)
7174 retval |= ufshcd_sl_intr(hba, enabled_intr_status);
7175
7176 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7177 }
7178
7179 if (enabled_intr_status && retval == IRQ_NONE &&
7180 (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
7181 hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
7182 dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
7183 __func__,
7184 intr_status,
7185 last_intr_status,
7186 enabled_intr_status);
7187 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
7188 }
7189
7190 return retval;
7191 }
7192
7193 /**
7194 * ufshcd_intr - Main interrupt service routine
7195 * @irq: irq number
7196 * @__hba: pointer to adapter instance
7197 *
7198 * Return:
7199 * IRQ_HANDLED - If interrupt is valid
7200 * IRQ_WAKE_THREAD - If handling is moved to threaded handled
7201 * IRQ_NONE - If invalid interrupt
7202 */
ufshcd_intr(int irq,void * __hba)7203 static irqreturn_t ufshcd_intr(int irq, void *__hba)
7204 {
7205 struct ufs_hba *hba = __hba;
7206 u32 intr_status, enabled_intr_status;
7207
7208 /* Move interrupt handling to thread when MCQ & ESI are not enabled */
7209 if (!hba->mcq_enabled || !hba->mcq_esi_enabled)
7210 return IRQ_WAKE_THREAD;
7211
7212 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7213 enabled_intr_status = intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
7214
7215 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
7216
7217 /* Directly handle interrupts since MCQ ESI handlers does the hard job */
7218 return ufshcd_sl_intr(hba, enabled_intr_status);
7219 }
7220
ufshcd_clear_tm_cmd(struct ufs_hba * hba,int tag)7221 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
7222 {
7223 int err = 0;
7224 u32 mask = 1 << tag;
7225
7226 if (!test_bit(tag, &hba->outstanding_tasks))
7227 goto out;
7228
7229 ufshcd_utmrl_clear(hba, tag);
7230
7231 /* poll for max. 1 sec to clear door bell register by h/w */
7232 err = ufshcd_wait_for_register(hba,
7233 REG_UTP_TASK_REQ_DOOR_BELL,
7234 mask, 0, 1000, 1000);
7235
7236 dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
7237 tag, err < 0 ? "failed" : "succeeded");
7238
7239 out:
7240 return err;
7241 }
7242
__ufshcd_issue_tm_cmd(struct ufs_hba * hba,struct utp_task_req_desc * treq,u8 tm_function)7243 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
7244 struct utp_task_req_desc *treq, u8 tm_function)
7245 {
7246 struct request_queue *q = hba->tmf_queue;
7247 struct Scsi_Host *host = hba->host;
7248 DECLARE_COMPLETION_ONSTACK(wait);
7249 struct request *req;
7250 unsigned long flags;
7251 int task_tag, err;
7252
7253 /*
7254 * blk_mq_alloc_request() is used here only to get a free tag.
7255 */
7256 req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
7257 if (IS_ERR(req))
7258 return PTR_ERR(req);
7259
7260 req->end_io_data = &wait;
7261 ufshcd_hold(hba);
7262
7263 spin_lock_irqsave(host->host_lock, flags);
7264
7265 task_tag = req->tag;
7266 hba->tmf_rqs[req->tag] = req;
7267 treq->upiu_req.req_header.task_tag = task_tag;
7268
7269 memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
7270 ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
7271
7272 __set_bit(task_tag, &hba->outstanding_tasks);
7273
7274 spin_unlock_irqrestore(host->host_lock, flags);
7275
7276 /* send command to the controller */
7277 ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
7278
7279 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
7280
7281 /* wait until the task management command is completed */
7282 err = wait_for_completion_io_timeout(&wait,
7283 msecs_to_jiffies(TM_CMD_TIMEOUT));
7284 if (!err) {
7285 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7286 dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7287 __func__, tm_function);
7288 if (ufshcd_clear_tm_cmd(hba, task_tag))
7289 dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7290 __func__, task_tag);
7291 err = -ETIMEDOUT;
7292 } else {
7293 err = 0;
7294 memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7295
7296 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7297 }
7298
7299 spin_lock_irqsave(hba->host->host_lock, flags);
7300 hba->tmf_rqs[req->tag] = NULL;
7301 __clear_bit(task_tag, &hba->outstanding_tasks);
7302 spin_unlock_irqrestore(hba->host->host_lock, flags);
7303
7304 ufshcd_release(hba);
7305 blk_mq_free_request(req);
7306
7307 return err;
7308 }
7309
7310 /**
7311 * ufshcd_issue_tm_cmd - issues task management commands to controller
7312 * @hba: per adapter instance
7313 * @lun_id: LUN ID to which TM command is sent
7314 * @task_id: task ID to which the TM command is applicable
7315 * @tm_function: task management function opcode
7316 * @tm_response: task management service response return value
7317 *
7318 * Return: non-zero value on error, zero on success.
7319 */
ufshcd_issue_tm_cmd(struct ufs_hba * hba,int lun_id,int task_id,u8 tm_function,u8 * tm_response)7320 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7321 u8 tm_function, u8 *tm_response)
7322 {
7323 struct utp_task_req_desc treq = { };
7324 enum utp_ocs ocs_value;
7325 int err;
7326
7327 /* Configure task request descriptor */
7328 treq.header.interrupt = 1;
7329 treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7330
7331 /* Configure task request UPIU */
7332 treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7333 treq.upiu_req.req_header.lun = lun_id;
7334 treq.upiu_req.req_header.tm_function = tm_function;
7335
7336 /*
7337 * The host shall provide the same value for LUN field in the basic
7338 * header and for Input Parameter.
7339 */
7340 treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7341 treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7342
7343 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7344 if (err == -ETIMEDOUT)
7345 return err;
7346
7347 ocs_value = treq.header.ocs & MASK_OCS;
7348 if (ocs_value != OCS_SUCCESS)
7349 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7350 __func__, ocs_value);
7351 else if (tm_response)
7352 *tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7353 MASK_TM_SERVICE_RESP;
7354 return err;
7355 }
7356
7357 /**
7358 * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7359 * @hba: per-adapter instance
7360 * @req_upiu: upiu request
7361 * @rsp_upiu: upiu reply
7362 * @desc_buff: pointer to descriptor buffer, NULL if NA
7363 * @buff_len: descriptor size, 0 if NA
7364 * @cmd_type: specifies the type (NOP, Query...)
7365 * @desc_op: descriptor operation
7366 *
7367 * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7368 * Therefore, it "rides" the device management infrastructure: uses its tag and
7369 * tasks work queues.
7370 *
7371 * Since there is only one available tag for device management commands,
7372 * the caller is expected to hold the hba->dev_cmd.lock mutex.
7373 *
7374 * Return: 0 upon success; < 0 upon failure.
7375 */
ufshcd_issue_devman_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,u8 * desc_buff,int * buff_len,enum dev_cmd_type cmd_type,enum query_opcode desc_op)7376 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7377 struct utp_upiu_req *req_upiu,
7378 struct utp_upiu_req *rsp_upiu,
7379 u8 *desc_buff, int *buff_len,
7380 enum dev_cmd_type cmd_type,
7381 enum query_opcode desc_op)
7382 {
7383 struct scsi_cmnd *cmd = ufshcd_get_dev_mgmt_cmd(hba);
7384 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
7385 u32 tag;
7386 int err = 0;
7387 u8 upiu_flags;
7388
7389 /* Protects use of hba->dev_cmd. */
7390 lockdep_assert_held(&hba->dev_cmd.lock);
7391
7392 if (WARN_ON_ONCE(!cmd))
7393 return -ENOMEM;
7394
7395 tag = scsi_cmd_to_rq(cmd)->tag;
7396
7397 ufshcd_setup_dev_cmd(hba, cmd, cmd_type, 0, tag);
7398
7399 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
7400
7401 /* update the task tag in the request upiu */
7402 req_upiu->header.task_tag = tag;
7403
7404 /* just copy the upiu request as it is */
7405 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7406 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7407 /* The Data Segment Area is optional depending upon the query
7408 * function value. for WRITE DESCRIPTOR, the data segment
7409 * follows right after the tsf.
7410 */
7411 memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7412 *buff_len = 0;
7413 }
7414
7415 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7416
7417 err = ufshcd_issue_dev_cmd(hba, cmd, tag, dev_cmd_timeout);
7418 if (err)
7419 goto put_dev_mgmt_cmd;
7420
7421 /* just copy the upiu response as it is */
7422 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7423 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7424 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7425 u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7426 .data_segment_length);
7427
7428 if (*buff_len >= resp_len) {
7429 memcpy(desc_buff, descp, resp_len);
7430 *buff_len = resp_len;
7431 } else {
7432 dev_warn(hba->dev,
7433 "%s: rsp size %d is bigger than buffer size %d",
7434 __func__, resp_len, *buff_len);
7435 *buff_len = 0;
7436 err = -EINVAL;
7437 }
7438 }
7439
7440 put_dev_mgmt_cmd:
7441 ufshcd_put_dev_mgmt_cmd(cmd);
7442
7443 return err;
7444 }
7445
7446 /**
7447 * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7448 * @hba: per-adapter instance
7449 * @req_upiu: upiu request
7450 * @rsp_upiu: upiu reply - only 8 DW as we do not support scsi commands
7451 * @msgcode: message code, one of UPIU Transaction Codes Initiator to Target
7452 * @desc_buff: pointer to descriptor buffer, NULL if NA
7453 * @buff_len: descriptor size, 0 if NA
7454 * @desc_op: descriptor operation
7455 *
7456 * Supports UTP Transfer requests (nop and query), and UTP Task
7457 * Management requests.
7458 * It is up to the caller to fill the upiu conent properly, as it will
7459 * be copied without any further input validations.
7460 *
7461 * Return: 0 upon success; < 0 upon failure.
7462 */
ufshcd_exec_raw_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,enum upiu_request_transaction msgcode,u8 * desc_buff,int * buff_len,enum query_opcode desc_op)7463 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7464 struct utp_upiu_req *req_upiu,
7465 struct utp_upiu_req *rsp_upiu,
7466 enum upiu_request_transaction msgcode,
7467 u8 *desc_buff, int *buff_len,
7468 enum query_opcode desc_op)
7469 {
7470 int err;
7471 enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7472 struct utp_task_req_desc treq = { };
7473 enum utp_ocs ocs_value;
7474 u8 tm_f = req_upiu->header.tm_function;
7475
7476 switch (msgcode) {
7477 case UPIU_TRANSACTION_NOP_OUT:
7478 cmd_type = DEV_CMD_TYPE_NOP;
7479 fallthrough;
7480 case UPIU_TRANSACTION_QUERY_REQ:
7481 ufshcd_dev_man_lock(hba);
7482 err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7483 desc_buff, buff_len,
7484 cmd_type, desc_op);
7485 ufshcd_dev_man_unlock(hba);
7486
7487 break;
7488 case UPIU_TRANSACTION_TASK_REQ:
7489 treq.header.interrupt = 1;
7490 treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7491
7492 memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7493
7494 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7495 if (err == -ETIMEDOUT)
7496 break;
7497
7498 ocs_value = treq.header.ocs & MASK_OCS;
7499 if (ocs_value != OCS_SUCCESS) {
7500 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7501 ocs_value);
7502 break;
7503 }
7504
7505 memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7506
7507 break;
7508 default:
7509 err = -EINVAL;
7510
7511 break;
7512 }
7513
7514 return err;
7515 }
7516
7517 /**
7518 * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7519 * @hba: per adapter instance
7520 * @req_upiu: upiu request
7521 * @rsp_upiu: upiu reply
7522 * @req_ehs: EHS field which contains Advanced RPMB Request Message
7523 * @rsp_ehs: EHS field which returns Advanced RPMB Response Message
7524 * @sg_cnt: The number of sg lists actually used
7525 * @sg_list: Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7526 * @dir: DMA direction
7527 *
7528 * Return: 0 upon success; > 0 in case the UFS device reported an OCS error;
7529 * < 0 if another error occurred.
7530 */
ufshcd_advanced_rpmb_req_handler(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,struct ufs_ehs * req_ehs,struct ufs_ehs * rsp_ehs,int sg_cnt,struct scatterlist * sg_list,enum dma_data_direction dir)7531 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7532 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7533 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7534 enum dma_data_direction dir)
7535 {
7536 struct scsi_cmnd *cmd;
7537 struct ufshcd_lrb *lrbp;
7538 u32 tag;
7539 int err = 0;
7540 int result;
7541 u8 upiu_flags;
7542 u8 *ehs_data;
7543 u16 ehs_len;
7544 int ehs = (hba->capabilities & MASK_EHSLUTRD_SUPPORTED) ? 2 : 0;
7545
7546 ufshcd_dev_man_lock(hba);
7547
7548 cmd = ufshcd_get_dev_mgmt_cmd(hba);
7549
7550 if (WARN_ON_ONCE(!cmd)) {
7551 err = -ENOMEM;
7552 goto unlock;
7553 }
7554
7555 lrbp = scsi_cmd_priv(cmd);
7556 tag = scsi_cmd_to_rq(cmd)->tag;
7557
7558 ufshcd_setup_dev_cmd(hba, cmd, DEV_CMD_TYPE_RPMB, UFS_UPIU_RPMB_WLUN,
7559 tag);
7560
7561 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, ehs);
7562
7563 /* update the task tag */
7564 req_upiu->header.task_tag = tag;
7565
7566 /* copy the UPIU(contains CDB) request as it is */
7567 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7568 /* Copy EHS, starting with byte32, immediately after the CDB package */
7569 memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7570
7571 if (dir != DMA_NONE && sg_list)
7572 ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7573
7574 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7575
7576 err = ufshcd_issue_dev_cmd(hba, cmd, tag, ADVANCED_RPMB_REQ_TIMEOUT);
7577 if (err)
7578 goto put_dev_mgmt_cmd;
7579
7580 err = ufshcd_dev_cmd_completion(hba, lrbp);
7581 if (!err) {
7582 /* Just copy the upiu response as it is */
7583 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7584 /* Get the response UPIU result */
7585 result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7586 lrbp->ucd_rsp_ptr->header.status;
7587
7588 ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7589 /*
7590 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7591 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7592 * Message is 02h
7593 */
7594 if (ehs_len == 2 && rsp_ehs) {
7595 /*
7596 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7597 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7598 */
7599 ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7600 memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7601 }
7602 }
7603
7604 put_dev_mgmt_cmd:
7605 ufshcd_put_dev_mgmt_cmd(cmd);
7606
7607 unlock:
7608 ufshcd_dev_man_unlock(hba);
7609
7610 return err ? : result;
7611 }
7612
ufshcd_clear_lu_cmds(struct request * req,void * priv)7613 static bool ufshcd_clear_lu_cmds(struct request *req, void *priv)
7614 {
7615 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
7616 struct scsi_device *sdev = cmd->device;
7617 struct Scsi_Host *shost = sdev->host;
7618 struct ufs_hba *hba = shost_priv(shost);
7619 const u64 lun = *(u64 *)priv;
7620 const u32 tag = req->tag;
7621
7622 if (blk_mq_is_reserved_rq(req) || sdev->lun != lun)
7623 return true;
7624
7625 if (ufshcd_clear_cmd(hba, tag) < 0) {
7626 dev_err(hba->dev, "%s: failed to clear request %d\n", __func__,
7627 tag);
7628 return true;
7629 }
7630
7631 if (hba->mcq_enabled) {
7632 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, req);
7633
7634 if (hwq)
7635 ufshcd_mcq_poll_cqe_lock(hba, hwq);
7636 return true;
7637 }
7638
7639 ufshcd_compl_one_cqe(hba, tag, NULL);
7640 return true;
7641 }
7642
7643 /**
7644 * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7645 * @cmd: SCSI command pointer
7646 *
7647 * Return: SUCCESS or FAILED.
7648 */
ufshcd_eh_device_reset_handler(struct scsi_cmnd * cmd)7649 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7650 {
7651 struct Scsi_Host *host;
7652 struct ufs_hba *hba;
7653 int err;
7654 u8 resp = 0xF, lun;
7655
7656 host = cmd->device->host;
7657 hba = shost_priv(host);
7658
7659 lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7660 err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7661 if (err) {
7662 } else if (resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7663 err = resp;
7664 } else {
7665 /* clear the commands that were pending for corresponding LUN */
7666 blk_mq_tagset_busy_iter(&hba->host->tag_set,
7667 ufshcd_clear_lu_cmds,
7668 &cmd->device->lun);
7669 }
7670
7671 hba->req_abort_count = 0;
7672 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7673 if (!err) {
7674 err = SUCCESS;
7675 } else {
7676 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7677 err = FAILED;
7678 }
7679 return err;
7680 }
7681
ufshcd_set_req_abort_skip(struct ufs_hba * hba,unsigned long bitmap)7682 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7683 {
7684 int tag;
7685
7686 for_each_set_bit(tag, &bitmap, hba->nutrs) {
7687 struct scsi_cmnd *cmd = ufshcd_tag_to_cmd(hba, tag);
7688 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
7689
7690 lrbp->req_abort_skip = true;
7691 }
7692 }
7693
7694 /**
7695 * ufshcd_try_to_abort_task - abort a specific task
7696 * @hba: Pointer to adapter instance
7697 * @tag: Tag of the task to be aborted
7698 *
7699 * Abort the pending command in device by sending UFS_ABORT_TASK task management
7700 * command, and in host controller by clearing the door-bell register. There can
7701 * be race between controller sending the command to the device while abort is
7702 * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7703 * really issued and then try to abort it.
7704 *
7705 * Return: zero on success, non-zero on failure.
7706 */
ufshcd_try_to_abort_task(struct ufs_hba * hba,int tag)7707 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7708 {
7709 struct scsi_cmnd *cmd = ufshcd_tag_to_cmd(hba, tag);
7710 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
7711 int err;
7712 int poll_cnt;
7713 u8 resp = 0xF;
7714
7715 for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7716 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, tag, UFS_QUERY_TASK,
7717 &resp);
7718 if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7719 /* cmd pending in the device */
7720 dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7721 __func__, tag);
7722 break;
7723 } else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7724 /*
7725 * cmd not pending in the device, check if it is
7726 * in transition.
7727 */
7728 dev_info(
7729 hba->dev,
7730 "%s: cmd with tag %d not pending in the device.\n",
7731 __func__, tag);
7732 if (!ufshcd_cmd_inflight(cmd)) {
7733 dev_info(hba->dev,
7734 "%s: cmd with tag=%d completed.\n",
7735 __func__, tag);
7736 return 0;
7737 }
7738 usleep_range(100, 200);
7739 } else {
7740 dev_err(hba->dev,
7741 "%s: no response from device. tag = %d, err %d\n",
7742 __func__, tag, err);
7743 return err ? : resp;
7744 }
7745 }
7746
7747 if (!poll_cnt)
7748 return -EBUSY;
7749
7750 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, tag, UFS_ABORT_TASK, &resp);
7751 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7752 if (!err) {
7753 err = resp; /* service response error */
7754 dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7755 __func__, tag, err);
7756 }
7757 return err;
7758 }
7759
7760 err = ufshcd_clear_cmd(hba, tag);
7761 if (err)
7762 dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7763 __func__, tag, err);
7764
7765 return err;
7766 }
7767
7768 /**
7769 * ufshcd_abort - scsi host template eh_abort_handler callback
7770 * @cmd: SCSI command pointer
7771 *
7772 * Return: SUCCESS or FAILED.
7773 */
ufshcd_abort(struct scsi_cmnd * cmd)7774 static int ufshcd_abort(struct scsi_cmnd *cmd)
7775 {
7776 struct Scsi_Host *host = cmd->device->host;
7777 struct ufs_hba *hba = shost_priv(host);
7778 struct request *rq = scsi_cmd_to_rq(cmd);
7779 int tag = rq->tag;
7780 struct ufshcd_lrb *lrbp = scsi_cmd_priv(cmd);
7781 unsigned long flags;
7782 int err = FAILED;
7783 bool outstanding;
7784 u32 reg;
7785
7786 ufshcd_hold(hba);
7787
7788 if (!hba->mcq_enabled) {
7789 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7790 if (!test_bit(tag, &hba->outstanding_reqs)) {
7791 /* If command is already aborted/completed, return FAILED. */
7792 dev_err(hba->dev,
7793 "%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7794 __func__, tag, hba->outstanding_reqs, reg);
7795 goto release;
7796 }
7797 }
7798
7799 /* Print Transfer Request of aborted task */
7800 dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7801
7802 /*
7803 * Print detailed info about aborted request.
7804 * As more than one request might get aborted at the same time,
7805 * print full information only for the first aborted request in order
7806 * to reduce repeated printouts. For other aborted requests only print
7807 * basic details.
7808 */
7809 if (ufshcd_is_scsi_cmd(cmd))
7810 scsi_print_command(cmd);
7811 if (!hba->req_abort_count) {
7812 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7813 ufshcd_print_evt_hist(hba);
7814 ufshcd_print_host_state(hba);
7815 ufshcd_print_pwr_info(hba);
7816 ufshcd_print_tr(hba, cmd, true);
7817 } else {
7818 ufshcd_print_tr(hba, cmd, false);
7819 }
7820 hba->req_abort_count++;
7821
7822 if (!hba->mcq_enabled && !(reg & (1 << tag))) {
7823 /* only execute this code in single doorbell mode */
7824 dev_err(hba->dev,
7825 "%s: cmd was completed, but without a notifying intr, tag = %d",
7826 __func__, tag);
7827 __ufshcd_transfer_req_compl(hba, 1UL << tag);
7828 goto release;
7829 }
7830
7831 /*
7832 * Task abort to the device W-LUN is illegal. When this command
7833 * will fail, due to spec violation, scsi err handling next step
7834 * will be to send LU reset which, again, is a spec violation.
7835 * To avoid these unnecessary/illegal steps, first we clean up
7836 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7837 * then queue the eh_work and bail.
7838 */
7839 if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7840 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7841
7842 spin_lock_irqsave(host->host_lock, flags);
7843 hba->force_reset = true;
7844 ufshcd_schedule_eh_work(hba);
7845 spin_unlock_irqrestore(host->host_lock, flags);
7846 goto release;
7847 }
7848
7849 if (hba->mcq_enabled) {
7850 /* MCQ mode. Branch off to handle abort for mcq mode */
7851 err = ufshcd_mcq_abort(cmd);
7852 goto release;
7853 }
7854
7855 /* Skip task abort in case previous aborts failed and report failure */
7856 if (lrbp->req_abort_skip) {
7857 dev_err(hba->dev, "%s: skipping abort\n", __func__);
7858 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7859 goto release;
7860 }
7861
7862 if (blk_mq_is_reserved_rq(rq))
7863 err = ufshcd_clear_cmd(hba, tag);
7864 else
7865 err = ufshcd_try_to_abort_task(hba, tag);
7866 if (err) {
7867 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7868 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7869 err = FAILED;
7870 goto release;
7871 }
7872
7873 /*
7874 * Clear the corresponding bit from outstanding_reqs since the command
7875 * has been aborted successfully.
7876 */
7877 spin_lock_irqsave(&hba->outstanding_lock, flags);
7878 outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7879 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7880
7881 if (outstanding)
7882 ufshcd_release_scsi_cmd(hba, cmd);
7883
7884 err = SUCCESS;
7885
7886 release:
7887 /* Matches the ufshcd_hold() call at the start of this function. */
7888 ufshcd_release(hba);
7889 return err;
7890 }
7891
7892 /**
7893 * ufshcd_process_probe_result - Process the ufshcd_probe_hba() result.
7894 * @hba: UFS host controller instance.
7895 * @probe_start: time when the ufshcd_probe_hba() call started.
7896 * @ret: ufshcd_probe_hba() return value.
7897 */
ufshcd_process_probe_result(struct ufs_hba * hba,ktime_t probe_start,int ret)7898 static void ufshcd_process_probe_result(struct ufs_hba *hba,
7899 ktime_t probe_start, int ret)
7900 {
7901 unsigned long flags;
7902
7903 spin_lock_irqsave(hba->host->host_lock, flags);
7904 if (ret)
7905 hba->ufshcd_state = UFSHCD_STATE_ERROR;
7906 else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
7907 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
7908 spin_unlock_irqrestore(hba->host->host_lock, flags);
7909
7910 trace_ufshcd_init(hba, ret,
7911 ktime_to_us(ktime_sub(ktime_get(), probe_start)),
7912 hba->curr_dev_pwr_mode, hba->uic_link_state);
7913 }
7914
7915 /**
7916 * ufshcd_host_reset_and_restore - reset and restore host controller
7917 * @hba: per-adapter instance
7918 *
7919 * Note that host controller reset may issue DME_RESET to
7920 * local and remote (device) Uni-Pro stack and the attributes
7921 * are reset to default state.
7922 *
7923 * Return: zero on success, non-zero on failure.
7924 */
ufshcd_host_reset_and_restore(struct ufs_hba * hba)7925 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7926 {
7927 int err;
7928
7929 /*
7930 * Stop the host controller and complete the requests
7931 * cleared by h/w
7932 */
7933 ufshcd_hba_stop(hba);
7934 hba->silence_err_logs = true;
7935 ufshcd_complete_requests(hba, true);
7936 hba->silence_err_logs = false;
7937
7938 /* scale up clocks to max frequency before full reinitialization */
7939 if (ufshcd_is_clkscaling_supported(hba))
7940 ufshcd_scale_clks(hba, ULONG_MAX, true);
7941
7942 err = ufshcd_hba_enable(hba);
7943
7944 /* Establish the link again and restore the device */
7945 if (!err) {
7946 ktime_t probe_start = ktime_get();
7947
7948 err = ufshcd_device_init(hba, /*init_dev_params=*/false);
7949 if (!err)
7950 err = ufshcd_probe_hba(hba, false);
7951 ufshcd_process_probe_result(hba, probe_start, err);
7952 }
7953
7954 if (err)
7955 dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7956 ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7957 return err;
7958 }
7959
7960 /**
7961 * ufshcd_reset_and_restore - reset and re-initialize host/device
7962 * @hba: per-adapter instance
7963 *
7964 * Reset and recover device, host and re-establish link. This
7965 * is helpful to recover the communication in fatal error conditions.
7966 *
7967 * Return: zero on success, non-zero on failure.
7968 */
ufshcd_reset_and_restore(struct ufs_hba * hba)7969 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7970 {
7971 u32 saved_err = 0;
7972 u32 saved_uic_err = 0;
7973 int err = 0;
7974 unsigned long flags;
7975 int retries = MAX_HOST_RESET_RETRIES;
7976
7977 spin_lock_irqsave(hba->host->host_lock, flags);
7978 do {
7979 /*
7980 * This is a fresh start, cache and clear saved error first,
7981 * in case new error generated during reset and restore.
7982 */
7983 saved_err |= hba->saved_err;
7984 saved_uic_err |= hba->saved_uic_err;
7985 hba->saved_err = 0;
7986 hba->saved_uic_err = 0;
7987 hba->force_reset = false;
7988 hba->ufshcd_state = UFSHCD_STATE_RESET;
7989 spin_unlock_irqrestore(hba->host->host_lock, flags);
7990
7991 /* Reset the attached device */
7992 ufshcd_device_reset(hba);
7993
7994 err = ufshcd_host_reset_and_restore(hba);
7995
7996 spin_lock_irqsave(hba->host->host_lock, flags);
7997 if (err)
7998 continue;
7999 /* Do not exit unless operational or dead */
8000 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
8001 hba->ufshcd_state != UFSHCD_STATE_ERROR &&
8002 hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
8003 err = -EAGAIN;
8004 } while (err && --retries);
8005
8006 /*
8007 * Inform scsi mid-layer that we did reset and allow to handle
8008 * Unit Attention properly.
8009 */
8010 scsi_report_bus_reset(hba->host, 0);
8011 if (err) {
8012 hba->ufshcd_state = UFSHCD_STATE_ERROR;
8013 hba->saved_err |= saved_err;
8014 hba->saved_uic_err |= saved_uic_err;
8015 }
8016 spin_unlock_irqrestore(hba->host->host_lock, flags);
8017
8018 return err;
8019 }
8020
8021 /**
8022 * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
8023 * @cmd: SCSI command pointer
8024 *
8025 * Return: SUCCESS or FAILED.
8026 */
ufshcd_eh_host_reset_handler(struct scsi_cmnd * cmd)8027 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
8028 {
8029 int err = SUCCESS;
8030 unsigned long flags;
8031 struct ufs_hba *hba;
8032
8033 hba = shost_priv(cmd->device->host);
8034
8035 /*
8036 * If runtime PM sent SSU and got a timeout, scsi_error_handler is
8037 * stuck in this function waiting for flush_work(&hba->eh_work). And
8038 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do
8039 * ufshcd_link_recovery instead of eh_work to prevent deadlock.
8040 */
8041 if (hba->pm_op_in_progress) {
8042 if (ufshcd_link_recovery(hba))
8043 err = FAILED;
8044
8045 return err;
8046 }
8047
8048 spin_lock_irqsave(hba->host->host_lock, flags);
8049 hba->force_reset = true;
8050 ufshcd_schedule_eh_work(hba);
8051 dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
8052 spin_unlock_irqrestore(hba->host->host_lock, flags);
8053
8054 flush_work(&hba->eh_work);
8055
8056 spin_lock_irqsave(hba->host->host_lock, flags);
8057 if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
8058 err = FAILED;
8059 spin_unlock_irqrestore(hba->host->host_lock, flags);
8060
8061 return err;
8062 }
8063
8064 /**
8065 * ufshcd_get_max_icc_level - calculate the ICC level
8066 * @sup_curr_uA: max. current supported by the regulator
8067 * @start_scan: row at the desc table to start scan from
8068 * @buff: power descriptor buffer
8069 *
8070 * Return: calculated max ICC level for specific regulator.
8071 */
ufshcd_get_max_icc_level(int sup_curr_uA,u32 start_scan,const char * buff)8072 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
8073 const char *buff)
8074 {
8075 int i;
8076 int curr_uA;
8077 u16 data;
8078 u16 unit;
8079
8080 for (i = start_scan; i >= 0; i--) {
8081 data = get_unaligned_be16(&buff[2 * i]);
8082 unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
8083 ATTR_ICC_LVL_UNIT_OFFSET;
8084 curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
8085 switch (unit) {
8086 case UFSHCD_NANO_AMP:
8087 curr_uA = curr_uA / 1000;
8088 break;
8089 case UFSHCD_MILI_AMP:
8090 curr_uA = curr_uA * 1000;
8091 break;
8092 case UFSHCD_AMP:
8093 curr_uA = curr_uA * 1000 * 1000;
8094 break;
8095 case UFSHCD_MICRO_AMP:
8096 default:
8097 break;
8098 }
8099 if (sup_curr_uA >= curr_uA)
8100 break;
8101 }
8102 if (i < 0) {
8103 i = 0;
8104 pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
8105 }
8106
8107 return (u32)i;
8108 }
8109
8110 /**
8111 * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
8112 * In case regulators are not initialized we'll return 0
8113 * @hba: per-adapter instance
8114 * @desc_buf: power descriptor buffer to extract ICC levels from.
8115 *
8116 * Return: calculated ICC level.
8117 */
ufshcd_find_max_sup_active_icc_level(struct ufs_hba * hba,const u8 * desc_buf)8118 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
8119 const u8 *desc_buf)
8120 {
8121 u32 icc_level = 0;
8122
8123 if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
8124 !hba->vreg_info.vccq2) {
8125 /*
8126 * Using dev_dbg to avoid messages during runtime PM to avoid
8127 * never-ending cycles of messages written back to storage by
8128 * user space causing runtime resume, causing more messages and
8129 * so on.
8130 */
8131 dev_dbg(hba->dev,
8132 "%s: Regulator capability was not set, actvIccLevel=%d",
8133 __func__, icc_level);
8134 goto out;
8135 }
8136
8137 if (hba->vreg_info.vcc->max_uA)
8138 icc_level = ufshcd_get_max_icc_level(
8139 hba->vreg_info.vcc->max_uA,
8140 POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
8141 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
8142
8143 if (hba->vreg_info.vccq->max_uA)
8144 icc_level = ufshcd_get_max_icc_level(
8145 hba->vreg_info.vccq->max_uA,
8146 icc_level,
8147 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
8148
8149 if (hba->vreg_info.vccq2->max_uA)
8150 icc_level = ufshcd_get_max_icc_level(
8151 hba->vreg_info.vccq2->max_uA,
8152 icc_level,
8153 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
8154 out:
8155 return icc_level;
8156 }
8157
ufshcd_set_active_icc_lvl(struct ufs_hba * hba)8158 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
8159 {
8160 int ret;
8161 u8 *desc_buf;
8162 u32 icc_level;
8163
8164 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8165 if (!desc_buf)
8166 return;
8167
8168 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
8169 desc_buf, QUERY_DESC_MAX_SIZE);
8170 if (ret) {
8171 dev_err(hba->dev,
8172 "%s: Failed reading power descriptor ret = %d",
8173 __func__, ret);
8174 goto out;
8175 }
8176
8177 icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
8178 dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
8179
8180 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8181 QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
8182
8183 if (ret)
8184 dev_err(hba->dev,
8185 "%s: Failed configuring bActiveICCLevel = %d ret = %d",
8186 __func__, icc_level, ret);
8187
8188 out:
8189 kfree(desc_buf);
8190 }
8191
ufshcd_blk_pm_runtime_init(struct scsi_device * sdev)8192 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
8193 {
8194 struct Scsi_Host *shost = sdev->host;
8195
8196 scsi_autopm_get_device(sdev);
8197 blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
8198 if (sdev->rpm_autosuspend)
8199 pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
8200 shost->rpm_autosuspend_delay);
8201 scsi_autopm_put_device(sdev);
8202 }
8203
8204 /**
8205 * ufshcd_scsi_add_wlus - Adds required W-LUs
8206 * @hba: per-adapter instance
8207 *
8208 * UFS device specification requires the UFS devices to support 4 well known
8209 * logical units:
8210 * "REPORT_LUNS" (address: 01h)
8211 * "UFS Device" (address: 50h)
8212 * "RPMB" (address: 44h)
8213 * "BOOT" (address: 30h)
8214 * UFS device's power management needs to be controlled by "POWER CONDITION"
8215 * field of SSU (START STOP UNIT) command. But this "power condition" field
8216 * will take effect only when its sent to "UFS device" well known logical unit
8217 * hence we require the scsi_device instance to represent this logical unit in
8218 * order for the UFS host driver to send the SSU command for power management.
8219 *
8220 * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
8221 * Block) LU so user space process can control this LU. User space may also
8222 * want to have access to BOOT LU.
8223 *
8224 * This function adds scsi device instances for each of all well known LUs
8225 * (except "REPORT LUNS" LU).
8226 *
8227 * Return: zero on success (all required W-LUs are added successfully),
8228 * non-zero error value on failure (if failed to add any of the required W-LU).
8229 */
ufshcd_scsi_add_wlus(struct ufs_hba * hba)8230 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
8231 {
8232 int ret = 0;
8233 struct scsi_device *sdev_boot, *sdev_rpmb;
8234
8235 hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
8236 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
8237 if (IS_ERR(hba->ufs_device_wlun)) {
8238 ret = PTR_ERR(hba->ufs_device_wlun);
8239 hba->ufs_device_wlun = NULL;
8240 goto out;
8241 }
8242 scsi_device_put(hba->ufs_device_wlun);
8243
8244 sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
8245 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
8246 if (IS_ERR(sdev_rpmb)) {
8247 ret = PTR_ERR(sdev_rpmb);
8248 hba->ufs_rpmb_wlun = NULL;
8249 dev_err(hba->dev, "%s: RPMB WLUN not found\n", __func__);
8250 goto remove_ufs_device_wlun;
8251 }
8252 hba->ufs_rpmb_wlun = sdev_rpmb;
8253 ufshcd_blk_pm_runtime_init(sdev_rpmb);
8254 scsi_device_put(sdev_rpmb);
8255
8256 sdev_boot = __scsi_add_device(hba->host, 0, 0,
8257 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
8258 if (IS_ERR(sdev_boot)) {
8259 dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
8260 } else {
8261 ufshcd_blk_pm_runtime_init(sdev_boot);
8262 scsi_device_put(sdev_boot);
8263 }
8264 goto out;
8265
8266 remove_ufs_device_wlun:
8267 scsi_remove_device(hba->ufs_device_wlun);
8268 out:
8269 return ret;
8270 }
8271
ufshcd_wb_probe(struct ufs_hba * hba,const u8 * desc_buf)8272 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
8273 {
8274 struct ufs_dev_info *dev_info = &hba->dev_info;
8275 u8 lun;
8276 u32 d_lu_wb_buf_alloc;
8277 u32 ext_ufs_feature;
8278
8279 if (!ufshcd_is_wb_allowed(hba))
8280 return;
8281
8282 /*
8283 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
8284 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
8285 * enabled
8286 */
8287 if (!(dev_info->wspecversion >= 0x310 ||
8288 dev_info->wspecversion == 0x220 ||
8289 (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
8290 goto wb_disabled;
8291
8292 ext_ufs_feature = get_unaligned_be32(desc_buf +
8293 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8294
8295 if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8296 goto wb_disabled;
8297
8298 /*
8299 * WB may be supported but not configured while provisioning. The spec
8300 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8301 * buffer configured.
8302 */
8303 dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8304
8305 dev_info->ext_wb_sup = get_unaligned_be16(desc_buf +
8306 DEVICE_DESC_PARAM_EXT_WB_SUP);
8307
8308 dev_info->b_presrv_uspc_en =
8309 desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8310
8311 if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8312 if (!get_unaligned_be32(desc_buf +
8313 DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8314 goto wb_disabled;
8315 } else {
8316 for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8317 d_lu_wb_buf_alloc = 0;
8318 ufshcd_read_unit_desc_param(hba,
8319 lun,
8320 UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8321 (u8 *)&d_lu_wb_buf_alloc,
8322 sizeof(d_lu_wb_buf_alloc));
8323 if (d_lu_wb_buf_alloc) {
8324 dev_info->wb_dedicated_lu = lun;
8325 break;
8326 }
8327 }
8328
8329 if (!d_lu_wb_buf_alloc)
8330 goto wb_disabled;
8331 }
8332
8333 if (!ufshcd_is_wb_buf_lifetime_available(hba))
8334 goto wb_disabled;
8335
8336 return;
8337
8338 wb_disabled:
8339 hba->caps &= ~UFSHCD_CAP_WB_EN;
8340 }
8341
ufshcd_temp_notif_probe(struct ufs_hba * hba,const u8 * desc_buf)8342 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8343 {
8344 struct ufs_dev_info *dev_info = &hba->dev_info;
8345 u32 ext_ufs_feature;
8346 u8 mask = 0;
8347
8348 if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8349 return;
8350
8351 ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8352
8353 if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8354 mask |= MASK_EE_TOO_LOW_TEMP;
8355
8356 if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8357 mask |= MASK_EE_TOO_HIGH_TEMP;
8358
8359 if (mask) {
8360 ufshcd_enable_ee(hba, mask);
8361 ufs_hwmon_probe(hba, mask);
8362 }
8363 }
8364
ufshcd_device_lvl_exception_probe(struct ufs_hba * hba,u8 * desc_buf)8365 static void ufshcd_device_lvl_exception_probe(struct ufs_hba *hba, u8 *desc_buf)
8366 {
8367 u32 ext_ufs_feature;
8368
8369 if (hba->dev_info.wspecversion < 0x410)
8370 return;
8371
8372 ext_ufs_feature = get_unaligned_be32(desc_buf +
8373 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8374 if (!(ext_ufs_feature & UFS_DEV_LVL_EXCEPTION_SUP))
8375 return;
8376
8377 atomic_set(&hba->dev_lvl_exception_count, 0);
8378 ufshcd_enable_ee(hba, MASK_EE_DEV_LVL_EXCEPTION);
8379 }
8380
ufshcd_set_rtt(struct ufs_hba * hba)8381 static void ufshcd_set_rtt(struct ufs_hba *hba)
8382 {
8383 struct ufs_dev_info *dev_info = &hba->dev_info;
8384 u32 rtt = 0;
8385 u32 dev_rtt = 0;
8386 int host_rtt_cap = hba->vops && hba->vops->max_num_rtt ?
8387 hba->vops->max_num_rtt : hba->nortt;
8388
8389 /* RTT override makes sense only for UFS-4.0 and above */
8390 if (dev_info->wspecversion < 0x400)
8391 return;
8392
8393 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8394 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &dev_rtt)) {
8395 dev_err(hba->dev, "failed reading bMaxNumOfRTT\n");
8396 return;
8397 }
8398
8399 /* do not override if it was already written */
8400 if (dev_rtt != DEFAULT_MAX_NUM_RTT)
8401 return;
8402
8403 rtt = min_t(int, dev_info->rtt_cap, host_rtt_cap);
8404
8405 if (rtt == dev_rtt)
8406 return;
8407
8408 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8409 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt))
8410 dev_err(hba->dev, "failed writing bMaxNumOfRTT\n");
8411 }
8412
ufshcd_fixup_dev_quirks(struct ufs_hba * hba,const struct ufs_dev_quirk * fixups)8413 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8414 const struct ufs_dev_quirk *fixups)
8415 {
8416 const struct ufs_dev_quirk *f;
8417 struct ufs_dev_info *dev_info = &hba->dev_info;
8418
8419 if (!fixups)
8420 return;
8421
8422 for (f = fixups; f->quirk; f++) {
8423 if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8424 f->wmanufacturerid == UFS_ANY_VENDOR) &&
8425 ((dev_info->model &&
8426 STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8427 !strcmp(f->model, UFS_ANY_MODEL)))
8428 hba->dev_quirks |= f->quirk;
8429 }
8430 }
8431 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8432
ufs_fixup_device_setup(struct ufs_hba * hba)8433 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8434 {
8435 /* fix by general quirk table */
8436 ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8437
8438 /* allow vendors to fix quirks */
8439 ufshcd_vops_fixup_dev_quirks(hba);
8440 }
8441
ufshcd_update_rtc(struct ufs_hba * hba)8442 static void ufshcd_update_rtc(struct ufs_hba *hba)
8443 {
8444 struct timespec64 ts64;
8445 int err;
8446 u32 val;
8447
8448 ktime_get_real_ts64(&ts64);
8449
8450 if (ts64.tv_sec < hba->dev_info.rtc_time_baseline) {
8451 dev_warn_once(hba->dev, "%s: Current time precedes previous setting!\n", __func__);
8452 return;
8453 }
8454
8455 /*
8456 * The Absolute RTC mode has a 136-year limit, spanning from 2010 to 2146. If a time beyond
8457 * 2146 is required, it is recommended to choose the relative RTC mode.
8458 */
8459 val = ts64.tv_sec - hba->dev_info.rtc_time_baseline;
8460
8461 /* Skip update RTC if RPM state is not RPM_ACTIVE */
8462 if (ufshcd_rpm_get_if_active(hba) <= 0)
8463 return;
8464
8465 err = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_SECONDS_PASSED,
8466 0, 0, &val);
8467 ufshcd_rpm_put(hba);
8468
8469 if (err)
8470 dev_err(hba->dev, "%s: Failed to update rtc %d\n", __func__, err);
8471 else if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
8472 hba->dev_info.rtc_time_baseline = ts64.tv_sec;
8473 }
8474
ufshcd_rtc_work(struct work_struct * work)8475 static void ufshcd_rtc_work(struct work_struct *work)
8476 {
8477 struct ufs_hba *hba;
8478
8479 hba = container_of(to_delayed_work(work), struct ufs_hba, ufs_rtc_update_work);
8480
8481 /* Update RTC only when there are no requests in progress and UFSHCI is operational */
8482 if (!ufshcd_is_ufs_dev_busy(hba) &&
8483 hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL &&
8484 !hba->clk_gating.active_reqs)
8485 ufshcd_update_rtc(hba);
8486
8487 if (ufshcd_is_ufs_dev_active(hba) && hba->dev_info.rtc_update_period)
8488 schedule_delayed_work(&hba->ufs_rtc_update_work,
8489 msecs_to_jiffies(hba->dev_info.rtc_update_period));
8490 }
8491
ufs_init_rtc(struct ufs_hba * hba,u8 * desc_buf)8492 static void ufs_init_rtc(struct ufs_hba *hba, u8 *desc_buf)
8493 {
8494 u16 periodic_rtc_update = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_FRQ_RTC]);
8495 struct ufs_dev_info *dev_info = &hba->dev_info;
8496
8497 if (periodic_rtc_update & UFS_RTC_TIME_BASELINE) {
8498 dev_info->rtc_type = UFS_RTC_ABSOLUTE;
8499
8500 /*
8501 * The concept of measuring time in Linux as the number of seconds elapsed since
8502 * 00:00:00 UTC on January 1, 1970, and UFS ABS RTC is elapsed from January 1st
8503 * 2010 00:00, here we need to adjust ABS baseline.
8504 */
8505 dev_info->rtc_time_baseline = mktime64(2010, 1, 1, 0, 0, 0) -
8506 mktime64(1970, 1, 1, 0, 0, 0);
8507 } else {
8508 dev_info->rtc_type = UFS_RTC_RELATIVE;
8509 dev_info->rtc_time_baseline = 0;
8510 }
8511
8512 /*
8513 * We ignore TIME_PERIOD defined in wPeriodicRTCUpdate because Spec does not clearly state
8514 * how to calculate the specific update period for each time unit. And we disable periodic
8515 * RTC update work, let user configure by sysfs node according to specific circumstance.
8516 */
8517 dev_info->rtc_update_period = 0;
8518 }
8519
8520 /**
8521 * ufshcd_create_device_id - Generate unique device identifier string
8522 * @hba: per-adapter instance
8523 * @desc_buf: device descriptor buffer
8524 *
8525 * Creates a unique device ID string combining manufacturer ID, spec version,
8526 * model name, serial number (as hex), device version, and manufacture date.
8527 *
8528 * Returns: Allocated device ID string on success, NULL on failure
8529 */
ufshcd_create_device_id(struct ufs_hba * hba,u8 * desc_buf)8530 static char *ufshcd_create_device_id(struct ufs_hba *hba, u8 *desc_buf)
8531 {
8532 struct ufs_dev_info *dev_info = &hba->dev_info;
8533 u16 manufacture_date;
8534 u16 device_version;
8535 u8 *serial_number;
8536 char *serial_hex;
8537 char *device_id;
8538 u8 serial_index;
8539 int serial_len;
8540 int ret;
8541
8542 serial_index = desc_buf[DEVICE_DESC_PARAM_SN];
8543
8544 ret = ufshcd_read_string_desc(hba, serial_index, &serial_number, SD_RAW);
8545 if (ret < 0) {
8546 dev_err(hba->dev, "Failed reading Serial Number. err = %d\n", ret);
8547 return NULL;
8548 }
8549
8550 device_version = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_DEV_VER]);
8551 manufacture_date = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_MANF_DATE]);
8552
8553 serial_len = ret;
8554 /* Allocate buffer for hex string: 2 chars per byte + null terminator */
8555 serial_hex = kzalloc(serial_len * 2 + 1, GFP_KERNEL);
8556 if (!serial_hex) {
8557 kfree(serial_number);
8558 return NULL;
8559 }
8560
8561 bin2hex(serial_hex, serial_number, serial_len);
8562
8563 /*
8564 * Device ID format is ABI with secure world - do not change without firmware
8565 * coordination.
8566 */
8567 device_id = kasprintf(GFP_KERNEL, "%04X-%04X-%s-%s-%04X-%04X",
8568 dev_info->wmanufacturerid, dev_info->wspecversion,
8569 dev_info->model, serial_hex, device_version,
8570 manufacture_date);
8571
8572 kfree(serial_hex);
8573 kfree(serial_number);
8574
8575 if (!device_id)
8576 dev_warn(hba->dev, "Failed to allocate unique device ID\n");
8577
8578 return device_id;
8579 }
8580
ufs_get_device_desc(struct ufs_hba * hba)8581 static int ufs_get_device_desc(struct ufs_hba *hba)
8582 {
8583 struct ufs_dev_info *dev_info = &hba->dev_info;
8584 struct Scsi_Host *shost = hba->host;
8585 int err;
8586 u8 model_index;
8587 u8 *desc_buf;
8588
8589 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8590 if (!desc_buf) {
8591 err = -ENOMEM;
8592 goto out;
8593 }
8594
8595 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8596 QUERY_DESC_MAX_SIZE);
8597 if (err) {
8598 dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8599 __func__, err);
8600 goto out;
8601 }
8602
8603 /*
8604 * getting vendor (manufacturerID) and Bank Index in big endian
8605 * format
8606 */
8607 dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8608 desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8609
8610 /* getting Specification Version in big endian format */
8611 dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8612 desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8613 dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8614
8615 /*
8616 * According to the UFS standard, the UFS device queue depth
8617 * (bQueueDepth) must be in the range 1..255 if the shared queueing
8618 * architecture is supported. bQueueDepth is zero if the shared queueing
8619 * architecture is not supported.
8620 */
8621 if (dev_info->bqueuedepth)
8622 shost->cmd_per_lun = min(hba->nutrs, dev_info->bqueuedepth) -
8623 UFSHCD_NUM_RESERVED;
8624 else
8625 shost->cmd_per_lun = shost->can_queue;
8626
8627 dev_info->rtt_cap = desc_buf[DEVICE_DESC_PARAM_RTT_CAP];
8628
8629 dev_info->hid_sup = get_unaligned_be32(desc_buf +
8630 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP) &
8631 UFS_DEV_HID_SUPPORT;
8632
8633 model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8634
8635 err = ufshcd_read_string_desc(hba, model_index,
8636 &dev_info->model, SD_ASCII_STD);
8637 if (err < 0) {
8638 dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8639 __func__, err);
8640 goto out;
8641 }
8642
8643 /* Generate unique device ID */
8644 dev_info->device_id = ufshcd_create_device_id(hba, desc_buf);
8645
8646 hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8647 desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8648
8649 ufs_fixup_device_setup(hba);
8650
8651 ufshcd_wb_probe(hba, desc_buf);
8652
8653 ufshcd_temp_notif_probe(hba, desc_buf);
8654
8655 if (dev_info->wspecversion >= 0x410) {
8656 hba->critical_health_count = 0;
8657 ufshcd_enable_ee(hba, MASK_EE_HEALTH_CRITICAL);
8658 }
8659
8660 ufs_init_rtc(hba, desc_buf);
8661
8662 ufshcd_device_lvl_exception_probe(hba, desc_buf);
8663
8664 /*
8665 * ufshcd_read_string_desc returns size of the string
8666 * reset the error value
8667 */
8668 err = 0;
8669
8670 out:
8671 kfree(desc_buf);
8672 return err;
8673 }
8674
ufs_put_device_desc(struct ufs_hba * hba)8675 static void ufs_put_device_desc(struct ufs_hba *hba)
8676 {
8677 struct ufs_dev_info *dev_info = &hba->dev_info;
8678
8679 kfree(dev_info->model);
8680 dev_info->model = NULL;
8681 kfree(dev_info->device_id);
8682 dev_info->device_id = NULL;
8683 }
8684
8685 /**
8686 * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8687 * less than device PA_TACTIVATE time.
8688 * @hba: per-adapter instance
8689 *
8690 * Some UFS devices require host PA_TACTIVATE to be lower than device
8691 * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8692 * for such devices.
8693 *
8694 * Return: zero on success, non-zero error value on failure.
8695 */
ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba * hba)8696 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8697 {
8698 int ret = 0;
8699 u32 granularity, peer_granularity;
8700 u32 pa_tactivate, peer_pa_tactivate;
8701 u32 pa_tactivate_us, peer_pa_tactivate_us;
8702 static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8703
8704 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8705 &granularity);
8706 if (ret)
8707 goto out;
8708
8709 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8710 &peer_granularity);
8711 if (ret)
8712 goto out;
8713
8714 if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8715 (granularity > PA_GRANULARITY_MAX_VAL)) {
8716 dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8717 __func__, granularity);
8718 return -EINVAL;
8719 }
8720
8721 if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8722 (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8723 dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8724 __func__, peer_granularity);
8725 return -EINVAL;
8726 }
8727
8728 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8729 if (ret)
8730 goto out;
8731
8732 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8733 &peer_pa_tactivate);
8734 if (ret)
8735 goto out;
8736
8737 pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8738 peer_pa_tactivate_us = peer_pa_tactivate *
8739 gran_to_us_table[peer_granularity - 1];
8740
8741 if (pa_tactivate_us >= peer_pa_tactivate_us) {
8742 u32 new_peer_pa_tactivate;
8743
8744 new_peer_pa_tactivate = pa_tactivate_us /
8745 gran_to_us_table[peer_granularity - 1];
8746 new_peer_pa_tactivate++;
8747 ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8748 new_peer_pa_tactivate);
8749 }
8750
8751 out:
8752 return ret;
8753 }
8754
8755 /**
8756 * ufshcd_quirk_override_pa_h8time - Ensures proper adjustment of PA_HIBERN8TIME.
8757 * @hba: per-adapter instance
8758 *
8759 * Some UFS devices require specific adjustments to the PA_HIBERN8TIME parameter
8760 * to ensure proper hibernation timing. This function retrieves the current
8761 * PA_HIBERN8TIME value and increments it by 100us.
8762 */
ufshcd_quirk_override_pa_h8time(struct ufs_hba * hba)8763 static void ufshcd_quirk_override_pa_h8time(struct ufs_hba *hba)
8764 {
8765 u32 pa_h8time;
8766 int ret;
8767
8768 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_HIBERN8TIME), &pa_h8time);
8769 if (ret) {
8770 dev_err(hba->dev, "Failed to get PA_HIBERN8TIME: %d\n", ret);
8771 return;
8772 }
8773
8774 /* Increment by 1 to increase hibernation time by 100 µs */
8775 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME), pa_h8time + 1);
8776 if (ret)
8777 dev_err(hba->dev, "Failed updating PA_HIBERN8TIME: %d\n", ret);
8778 }
8779
ufshcd_tune_unipro_params(struct ufs_hba * hba)8780 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8781 {
8782 ufshcd_vops_apply_dev_quirks(hba);
8783
8784 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8785 /* set 1ms timeout for PA_TACTIVATE */
8786 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8787
8788 if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8789 ufshcd_quirk_tune_host_pa_tactivate(hba);
8790
8791 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_HIBER8TIME)
8792 ufshcd_quirk_override_pa_h8time(hba);
8793 }
8794
ufshcd_clear_dbg_ufs_stats(struct ufs_hba * hba)8795 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8796 {
8797 hba->ufs_stats.hibern8_exit_cnt = 0;
8798 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8799 hba->req_abort_count = 0;
8800 }
8801
ufshcd_device_geo_params_init(struct ufs_hba * hba)8802 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8803 {
8804 int err;
8805 u8 *desc_buf;
8806
8807 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8808 if (!desc_buf) {
8809 err = -ENOMEM;
8810 goto out;
8811 }
8812
8813 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8814 desc_buf, QUERY_DESC_MAX_SIZE);
8815 if (err) {
8816 dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8817 __func__, err);
8818 goto out;
8819 }
8820
8821 if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8822 hba->dev_info.max_lu_supported = 32;
8823 else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8824 hba->dev_info.max_lu_supported = 8;
8825
8826 hba->dev_info.rpmb_io_size = desc_buf[GEOMETRY_DESC_PARAM_RPMB_RW_SIZE];
8827
8828 out:
8829 kfree(desc_buf);
8830 return err;
8831 }
8832
8833 struct ufs_ref_clk {
8834 unsigned long freq_hz;
8835 enum ufs_ref_clk_freq val;
8836 };
8837
8838 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8839 {19200000, REF_CLK_FREQ_19_2_MHZ},
8840 {26000000, REF_CLK_FREQ_26_MHZ},
8841 {38400000, REF_CLK_FREQ_38_4_MHZ},
8842 {52000000, REF_CLK_FREQ_52_MHZ},
8843 {0, REF_CLK_FREQ_INVAL},
8844 };
8845
8846 static enum ufs_ref_clk_freq
ufs_get_bref_clk_from_hz(unsigned long freq)8847 ufs_get_bref_clk_from_hz(unsigned long freq)
8848 {
8849 int i;
8850
8851 for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8852 if (ufs_ref_clk_freqs[i].freq_hz == freq)
8853 return ufs_ref_clk_freqs[i].val;
8854
8855 return REF_CLK_FREQ_INVAL;
8856 }
8857
ufshcd_parse_dev_ref_clk_freq(struct ufs_hba * hba,struct clk * refclk)8858 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8859 {
8860 unsigned long freq;
8861
8862 freq = clk_get_rate(refclk);
8863
8864 hba->dev_ref_clk_freq =
8865 ufs_get_bref_clk_from_hz(freq);
8866
8867 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8868 dev_err(hba->dev,
8869 "invalid ref_clk setting = %ld\n", freq);
8870 }
8871
ufshcd_set_dev_ref_clk(struct ufs_hba * hba)8872 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8873 {
8874 int err;
8875 u32 ref_clk;
8876 u32 freq = hba->dev_ref_clk_freq;
8877
8878 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8879 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8880
8881 if (err) {
8882 dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8883 err);
8884 goto out;
8885 }
8886
8887 if (ref_clk == freq)
8888 goto out; /* nothing to update */
8889
8890 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8891 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8892
8893 if (err) {
8894 dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8895 ufs_ref_clk_freqs[freq].freq_hz);
8896 goto out;
8897 }
8898
8899 dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8900 ufs_ref_clk_freqs[freq].freq_hz);
8901
8902 out:
8903 return err;
8904 }
8905
ufshcd_device_params_init(struct ufs_hba * hba)8906 static int ufshcd_device_params_init(struct ufs_hba *hba)
8907 {
8908 bool flag;
8909 int ret;
8910
8911 /* Init UFS geometry descriptor related parameters */
8912 ret = ufshcd_device_geo_params_init(hba);
8913 if (ret)
8914 goto out;
8915
8916 /* Check and apply UFS device quirks */
8917 ret = ufs_get_device_desc(hba);
8918 if (ret) {
8919 dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8920 __func__, ret);
8921 goto out;
8922 }
8923
8924 ufshcd_set_rtt(hba);
8925
8926 ufshcd_get_ref_clk_gating_wait(hba);
8927
8928 if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8929 QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8930 hba->dev_info.f_power_on_wp_en = flag;
8931
8932 /* Probe maximum power mode co-supported by both UFS host and device */
8933 if (ufshcd_get_max_pwr_mode(hba))
8934 dev_err(hba->dev,
8935 "%s: Failed getting max supported power mode\n",
8936 __func__);
8937 out:
8938 return ret;
8939 }
8940
ufshcd_set_timestamp_attr(struct ufs_hba * hba)8941 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8942 {
8943 int err;
8944 struct ufs_query_req *request = NULL;
8945 struct ufs_query_res *response = NULL;
8946 struct ufs_dev_info *dev_info = &hba->dev_info;
8947 struct utp_upiu_query_v4_0 *upiu_data;
8948
8949 if (dev_info->wspecversion < 0x400 ||
8950 hba->dev_quirks & UFS_DEVICE_QUIRK_NO_TIMESTAMP_SUPPORT)
8951 return;
8952
8953 ufshcd_dev_man_lock(hba);
8954
8955 ufshcd_init_query(hba, &request, &response,
8956 UPIU_QUERY_OPCODE_WRITE_ATTR,
8957 QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8958
8959 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8960
8961 upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8962
8963 put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8964
8965 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, dev_cmd_timeout);
8966
8967 if (err)
8968 dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8969 __func__, err);
8970
8971 ufshcd_dev_man_unlock(hba);
8972 }
8973
8974 /**
8975 * ufshcd_add_lus - probe and add UFS logical units
8976 * @hba: per-adapter instance
8977 *
8978 * Return: 0 upon success; < 0 upon failure.
8979 */
ufshcd_add_lus(struct ufs_hba * hba)8980 static int ufshcd_add_lus(struct ufs_hba *hba)
8981 {
8982 int ret;
8983
8984 /* Add required well known logical units to scsi mid layer */
8985 ret = ufshcd_scsi_add_wlus(hba);
8986 if (ret)
8987 goto out;
8988
8989 /* Initialize devfreq after UFS device is detected */
8990 if (ufshcd_is_clkscaling_supported(hba)) {
8991 memcpy(&hba->clk_scaling.saved_pwr_info,
8992 &hba->pwr_info,
8993 sizeof(struct ufs_pa_layer_attr));
8994 hba->clk_scaling.is_allowed = true;
8995
8996 ret = ufshcd_devfreq_init(hba);
8997 if (ret)
8998 goto out;
8999
9000 hba->clk_scaling.is_enabled = true;
9001 ufshcd_init_clk_scaling_sysfs(hba);
9002 }
9003
9004 /*
9005 * The RTC update code accesses the hba->ufs_device_wlun->sdev_gendev
9006 * pointer and hence must only be started after the WLUN pointer has
9007 * been initialized by ufshcd_scsi_add_wlus().
9008 */
9009 schedule_delayed_work(&hba->ufs_rtc_update_work,
9010 msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
9011
9012 ufs_bsg_probe(hba);
9013 scsi_scan_host(hba->host);
9014 ufs_rpmb_probe(hba);
9015
9016 out:
9017 return ret;
9018 }
9019
9020 /* SDB - Single Doorbell */
ufshcd_release_sdb_queue(struct ufs_hba * hba,int nutrs)9021 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
9022 {
9023 size_t ucdl_size, utrdl_size;
9024
9025 ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
9026 dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
9027 hba->ucdl_dma_addr);
9028
9029 utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
9030 dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
9031 hba->utrdl_dma_addr);
9032 }
9033
ufshcd_alloc_mcq(struct ufs_hba * hba)9034 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
9035 {
9036 int ret;
9037 int old_nutrs = hba->nutrs;
9038
9039 ret = ufshcd_get_hba_mac(hba);
9040 if (ret < 0)
9041 return ret;
9042
9043 hba->nutrs = ret;
9044 ret = ufshcd_mcq_init(hba);
9045 if (ret)
9046 goto err;
9047
9048 /*
9049 * Previously allocated memory for nutrs may not be enough in MCQ mode.
9050 * Number of supported tags in MCQ mode may be larger than SDB mode.
9051 */
9052 if (hba->nutrs != old_nutrs) {
9053 ufshcd_release_sdb_queue(hba, old_nutrs);
9054 ret = ufshcd_memory_alloc(hba);
9055 if (ret)
9056 goto err;
9057 ufshcd_host_memory_configure(hba);
9058 }
9059
9060 ret = ufshcd_mcq_memory_alloc(hba);
9061 if (ret)
9062 goto err;
9063
9064 hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
9065
9066 return 0;
9067 err:
9068 hba->nutrs = old_nutrs;
9069 return ret;
9070 }
9071
ufshcd_config_mcq(struct ufs_hba * hba)9072 static void ufshcd_config_mcq(struct ufs_hba *hba)
9073 {
9074 int ret;
9075
9076 ret = ufshcd_mcq_vops_config_esi(hba);
9077 hba->mcq_esi_enabled = !ret;
9078 dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
9079
9080 ufshcd_mcq_make_queues_operational(hba);
9081 ufshcd_mcq_config_mac(hba, hba->nutrs);
9082
9083 dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
9084 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
9085 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
9086 hba->nutrs);
9087 }
9088
ufshcd_post_device_init(struct ufs_hba * hba)9089 static int ufshcd_post_device_init(struct ufs_hba *hba)
9090 {
9091 int ret;
9092
9093 ufshcd_tune_unipro_params(hba);
9094
9095 /* UFS device is also active now */
9096 ufshcd_set_ufs_dev_active(hba);
9097 ufshcd_force_reset_auto_bkops(hba);
9098
9099 ufshcd_set_timestamp_attr(hba);
9100
9101 if (!hba->max_pwr_info.is_valid)
9102 return 0;
9103
9104 /*
9105 * Set the right value to bRefClkFreq before attempting to
9106 * switch to HS gears.
9107 */
9108 if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
9109 ufshcd_set_dev_ref_clk(hba);
9110 /* Gear up to HS gear. */
9111 ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
9112 if (ret) {
9113 dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
9114 __func__, ret);
9115 return ret;
9116 }
9117
9118 return 0;
9119 }
9120
ufshcd_device_init(struct ufs_hba * hba,bool init_dev_params)9121 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
9122 {
9123 int ret;
9124
9125 WARN_ON_ONCE(!hba->scsi_host_added);
9126
9127 hba->ufshcd_state = UFSHCD_STATE_RESET;
9128
9129 ret = ufshcd_link_startup(hba);
9130 if (ret)
9131 return ret;
9132
9133 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
9134 return ret;
9135
9136 /* Debug counters initialization */
9137 ufshcd_clear_dbg_ufs_stats(hba);
9138
9139 /* UniPro link is active now */
9140 ufshcd_set_link_active(hba);
9141
9142 /* Reconfigure MCQ upon reset */
9143 if (hba->mcq_enabled && !init_dev_params) {
9144 ufshcd_config_mcq(hba);
9145 ufshcd_mcq_enable(hba);
9146 }
9147
9148 /* Verify device initialization by sending NOP OUT UPIU */
9149 ret = ufshcd_verify_dev_init(hba);
9150 if (ret)
9151 return ret;
9152
9153 /* Initiate UFS initialization, and waiting until completion */
9154 ret = ufshcd_complete_dev_init(hba);
9155 if (ret)
9156 return ret;
9157
9158 /*
9159 * Initialize UFS device parameters used by driver, these
9160 * parameters are associated with UFS descriptors.
9161 */
9162 if (init_dev_params) {
9163 ret = ufshcd_device_params_init(hba);
9164 if (ret)
9165 return ret;
9166 if (is_mcq_supported(hba) &&
9167 hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH) {
9168 ufshcd_config_mcq(hba);
9169 ufshcd_mcq_enable(hba);
9170 }
9171 }
9172
9173 return ufshcd_post_device_init(hba);
9174 }
9175
9176 /**
9177 * ufshcd_probe_hba - probe hba to detect device and initialize it
9178 * @hba: per-adapter instance
9179 * @init_dev_params: whether or not to call ufshcd_device_params_init().
9180 *
9181 * Execute link-startup and verify device initialization
9182 *
9183 * Return: 0 upon success; < 0 upon failure.
9184 */
ufshcd_probe_hba(struct ufs_hba * hba,bool init_dev_params)9185 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
9186 {
9187 int ret;
9188
9189 if (!hba->pm_op_in_progress &&
9190 (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
9191 /* Reset the device and controller before doing reinit */
9192 ufshcd_device_reset(hba);
9193 ufs_put_device_desc(hba);
9194 ufshcd_hba_stop(hba);
9195 ret = ufshcd_hba_enable(hba);
9196 if (ret) {
9197 dev_err(hba->dev, "Host controller enable failed\n");
9198 ufshcd_print_evt_hist(hba);
9199 ufshcd_print_host_state(hba);
9200 return ret;
9201 }
9202
9203 /* Reinit the device */
9204 ret = ufshcd_device_init(hba, init_dev_params);
9205 if (ret)
9206 return ret;
9207 }
9208
9209 ufshcd_print_pwr_info(hba);
9210
9211 /*
9212 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
9213 * and for removable UFS card as well, hence always set the parameter.
9214 * Note: Error handler may issue the device reset hence resetting
9215 * bActiveICCLevel as well so it is always safe to set this here.
9216 */
9217 ufshcd_set_active_icc_lvl(hba);
9218
9219 /* Enable UFS Write Booster if supported */
9220 ufshcd_configure_wb(hba);
9221
9222 if (hba->ee_usr_mask)
9223 ufshcd_write_ee_control(hba);
9224 ufshcd_configure_auto_hibern8(hba);
9225
9226 return 0;
9227 }
9228
9229 /**
9230 * ufshcd_async_scan - asynchronous execution for probing hba
9231 * @data: data pointer to pass to this function
9232 * @cookie: cookie data
9233 */
ufshcd_async_scan(void * data,async_cookie_t cookie)9234 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
9235 {
9236 struct ufs_hba *hba = (struct ufs_hba *)data;
9237 ktime_t probe_start;
9238 int ret;
9239
9240 down(&hba->host_sem);
9241 /* Initialize hba, detect and initialize UFS device */
9242 probe_start = ktime_get();
9243 ret = ufshcd_probe_hba(hba, true);
9244 ufshcd_process_probe_result(hba, probe_start, ret);
9245 up(&hba->host_sem);
9246 if (ret)
9247 goto out;
9248
9249 /* Probe and add UFS logical units */
9250 ret = ufshcd_add_lus(hba);
9251
9252 out:
9253 pm_runtime_put_sync(hba->dev);
9254
9255 if (ret)
9256 dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
9257 }
9258
ufshcd_eh_timed_out(struct scsi_cmnd * scmd)9259 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
9260 {
9261 struct ufs_hba *hba = shost_priv(scmd->device->host);
9262
9263 if (!hba->system_suspending) {
9264 /* Activate the error handler in the SCSI core. */
9265 return SCSI_EH_NOT_HANDLED;
9266 }
9267
9268 /*
9269 * If we get here we know that no TMFs are outstanding and also that
9270 * the only pending command is a START STOP UNIT command. Handle the
9271 * timeout of that command directly to prevent a deadlock between
9272 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
9273 */
9274 ufshcd_link_recovery(hba);
9275 dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
9276 __func__, hba->outstanding_tasks);
9277
9278 return scsi_host_busy(hba->host) ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
9279 }
9280
9281 static const struct attribute_group *ufshcd_driver_groups[] = {
9282 &ufs_sysfs_unit_descriptor_group,
9283 &ufs_sysfs_lun_attributes_group,
9284 NULL,
9285 };
9286
9287 static struct ufs_hba_variant_params ufs_hba_vps = {
9288 .hba_enable_delay_us = 1000,
9289 .wb_flush_threshold = UFS_WB_BUF_REMAIN_PERCENT(40),
9290 .devfreq_profile.polling_ms = 100,
9291 .devfreq_profile.target = ufshcd_devfreq_target,
9292 .devfreq_profile.get_dev_status = ufshcd_devfreq_get_dev_status,
9293 .ondemand_data.upthreshold = 70,
9294 .ondemand_data.downdifferential = 5,
9295 };
9296
9297 static const struct scsi_host_template ufshcd_driver_template = {
9298 .module = THIS_MODULE,
9299 .name = UFSHCD,
9300 .proc_name = UFSHCD,
9301 .map_queues = ufshcd_map_queues,
9302 .cmd_size = sizeof(struct ufshcd_lrb),
9303 .init_cmd_priv = ufshcd_init_cmd_priv,
9304 .queuecommand = ufshcd_queuecommand,
9305 .queue_reserved_command = ufshcd_queue_reserved_command,
9306 .nr_reserved_cmds = UFSHCD_NUM_RESERVED,
9307 .mq_poll = ufshcd_poll,
9308 .sdev_init = ufshcd_sdev_init,
9309 .sdev_configure = ufshcd_sdev_configure,
9310 .sdev_destroy = ufshcd_sdev_destroy,
9311 .change_queue_depth = ufshcd_change_queue_depth,
9312 .eh_abort_handler = ufshcd_abort,
9313 .eh_device_reset_handler = ufshcd_eh_device_reset_handler,
9314 .eh_host_reset_handler = ufshcd_eh_host_reset_handler,
9315 .eh_timed_out = ufshcd_eh_timed_out,
9316 .this_id = -1,
9317 .sg_tablesize = SG_ALL,
9318 .max_segment_size = PRDT_DATA_BYTE_COUNT_MAX,
9319 .max_sectors = SZ_1M / SECTOR_SIZE,
9320 .max_host_blocked = 1,
9321 .track_queue_depth = 1,
9322 .skip_settle_delay = 1,
9323 .sdev_groups = ufshcd_driver_groups,
9324 };
9325
ufshcd_config_vreg_load(struct device * dev,struct ufs_vreg * vreg,int ua)9326 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
9327 int ua)
9328 {
9329 int ret;
9330
9331 if (!vreg)
9332 return 0;
9333
9334 /*
9335 * "set_load" operation shall be required on those regulators
9336 * which specifically configured current limitation. Otherwise
9337 * zero max_uA may cause unexpected behavior when regulator is
9338 * enabled or set as high power mode.
9339 */
9340 if (!vreg->max_uA)
9341 return 0;
9342
9343 ret = regulator_set_load(vreg->reg, ua);
9344 if (ret < 0) {
9345 dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
9346 __func__, vreg->name, ua, ret);
9347 }
9348
9349 return ret;
9350 }
9351
ufshcd_config_vreg_lpm(struct ufs_hba * hba,struct ufs_vreg * vreg)9352 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
9353 struct ufs_vreg *vreg)
9354 {
9355 return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
9356 }
9357
ufshcd_config_vreg_hpm(struct ufs_hba * hba,struct ufs_vreg * vreg)9358 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
9359 struct ufs_vreg *vreg)
9360 {
9361 if (!vreg)
9362 return 0;
9363
9364 return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
9365 }
9366
ufshcd_config_vreg(struct device * dev,struct ufs_vreg * vreg,bool on)9367 static int ufshcd_config_vreg(struct device *dev,
9368 struct ufs_vreg *vreg, bool on)
9369 {
9370 if (regulator_count_voltages(vreg->reg) <= 0)
9371 return 0;
9372
9373 return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
9374 }
9375
ufshcd_enable_vreg(struct device * dev,struct ufs_vreg * vreg)9376 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
9377 {
9378 int ret = 0;
9379
9380 if (!vreg || vreg->enabled)
9381 goto out;
9382
9383 ret = ufshcd_config_vreg(dev, vreg, true);
9384 if (!ret)
9385 ret = regulator_enable(vreg->reg);
9386
9387 if (!ret)
9388 vreg->enabled = true;
9389 else
9390 dev_err(dev, "%s: %s enable failed, err=%d\n",
9391 __func__, vreg->name, ret);
9392 out:
9393 return ret;
9394 }
9395
ufshcd_disable_vreg(struct device * dev,struct ufs_vreg * vreg)9396 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
9397 {
9398 int ret = 0;
9399
9400 if (!vreg || !vreg->enabled || vreg->always_on)
9401 goto out;
9402
9403 ret = regulator_disable(vreg->reg);
9404
9405 if (!ret) {
9406 /* ignore errors on applying disable config */
9407 ufshcd_config_vreg(dev, vreg, false);
9408 vreg->enabled = false;
9409 } else {
9410 dev_err(dev, "%s: %s disable failed, err=%d\n",
9411 __func__, vreg->name, ret);
9412 }
9413 out:
9414 return ret;
9415 }
9416
ufshcd_setup_vreg(struct ufs_hba * hba,bool on)9417 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
9418 {
9419 int ret = 0;
9420 struct device *dev = hba->dev;
9421 struct ufs_vreg_info *info = &hba->vreg_info;
9422
9423 ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9424 if (ret)
9425 goto out;
9426
9427 ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9428 if (ret)
9429 goto out;
9430
9431 ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9432
9433 out:
9434 if (ret) {
9435 ufshcd_toggle_vreg(dev, info->vccq2, false);
9436 ufshcd_toggle_vreg(dev, info->vccq, false);
9437 ufshcd_toggle_vreg(dev, info->vcc, false);
9438 }
9439 return ret;
9440 }
9441
ufshcd_setup_hba_vreg(struct ufs_hba * hba,bool on)9442 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9443 {
9444 struct ufs_vreg_info *info = &hba->vreg_info;
9445
9446 return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9447 }
9448
ufshcd_get_vreg(struct device * dev,struct ufs_vreg * vreg)9449 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9450 {
9451 int ret = 0;
9452
9453 if (!vreg)
9454 goto out;
9455
9456 vreg->reg = devm_regulator_get(dev, vreg->name);
9457 if (IS_ERR(vreg->reg)) {
9458 ret = PTR_ERR(vreg->reg);
9459 dev_err(dev, "%s: %s get failed, err=%d\n",
9460 __func__, vreg->name, ret);
9461 }
9462 out:
9463 return ret;
9464 }
9465 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9466
ufshcd_init_vreg(struct ufs_hba * hba)9467 static int ufshcd_init_vreg(struct ufs_hba *hba)
9468 {
9469 int ret = 0;
9470 struct device *dev = hba->dev;
9471 struct ufs_vreg_info *info = &hba->vreg_info;
9472
9473 ret = ufshcd_get_vreg(dev, info->vcc);
9474 if (ret)
9475 goto out;
9476
9477 ret = ufshcd_get_vreg(dev, info->vccq);
9478 if (!ret)
9479 ret = ufshcd_get_vreg(dev, info->vccq2);
9480 out:
9481 return ret;
9482 }
9483
ufshcd_init_hba_vreg(struct ufs_hba * hba)9484 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9485 {
9486 struct ufs_vreg_info *info = &hba->vreg_info;
9487
9488 return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9489 }
9490
ufshcd_setup_clocks(struct ufs_hba * hba,bool on)9491 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9492 {
9493 int ret = 0;
9494 struct ufs_clk_info *clki;
9495 struct list_head *head = &hba->clk_list_head;
9496 ktime_t start = ktime_get();
9497 bool clk_state_changed = false;
9498
9499 if (list_empty(head))
9500 goto out;
9501
9502 ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9503 if (ret)
9504 return ret;
9505
9506 list_for_each_entry(clki, head, list) {
9507 if (!IS_ERR_OR_NULL(clki->clk)) {
9508 /*
9509 * Don't disable clocks which are needed
9510 * to keep the link active.
9511 */
9512 if (ufshcd_is_link_active(hba) &&
9513 clki->keep_link_active)
9514 continue;
9515
9516 clk_state_changed = on ^ clki->enabled;
9517 if (on && !clki->enabled) {
9518 ret = clk_prepare_enable(clki->clk);
9519 if (ret) {
9520 dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9521 __func__, clki->name, ret);
9522 goto out;
9523 }
9524 } else if (!on && clki->enabled) {
9525 clk_disable_unprepare(clki->clk);
9526 }
9527 clki->enabled = on;
9528 dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9529 clki->name, on ? "en" : "dis");
9530 }
9531 }
9532
9533 ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9534 if (ret)
9535 return ret;
9536
9537 if (!ufshcd_is_clkscaling_supported(hba))
9538 ufshcd_pm_qos_update(hba, on);
9539 out:
9540 if (ret) {
9541 list_for_each_entry(clki, head, list) {
9542 if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9543 clk_disable_unprepare(clki->clk);
9544 }
9545 } else if (!ret && on && hba->clk_gating.is_initialized) {
9546 scoped_guard(spinlock_irqsave, &hba->clk_gating.lock)
9547 hba->clk_gating.state = CLKS_ON;
9548 trace_ufshcd_clk_gating(hba,
9549 hba->clk_gating.state);
9550 }
9551
9552 if (clk_state_changed)
9553 trace_ufshcd_profile_clk_gating(hba,
9554 (on ? "on" : "off"),
9555 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9556 return ret;
9557 }
9558
ufshcd_parse_ref_clk_property(struct ufs_hba * hba)9559 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9560 {
9561 u32 freq;
9562 int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9563
9564 if (ret) {
9565 dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9566 return REF_CLK_FREQ_INVAL;
9567 }
9568
9569 return ufs_get_bref_clk_from_hz(freq);
9570 }
9571
ufshcd_init_clocks(struct ufs_hba * hba)9572 static int ufshcd_init_clocks(struct ufs_hba *hba)
9573 {
9574 int ret = 0;
9575 struct ufs_clk_info *clki;
9576 struct device *dev = hba->dev;
9577 struct list_head *head = &hba->clk_list_head;
9578
9579 if (list_empty(head))
9580 goto out;
9581
9582 list_for_each_entry(clki, head, list) {
9583 if (!clki->name)
9584 continue;
9585
9586 clki->clk = devm_clk_get(dev, clki->name);
9587 if (IS_ERR(clki->clk)) {
9588 ret = PTR_ERR(clki->clk);
9589 dev_err(dev, "%s: %s clk get failed, %d\n",
9590 __func__, clki->name, ret);
9591 goto out;
9592 }
9593
9594 /*
9595 * Parse device ref clk freq as per device tree "ref_clk".
9596 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9597 * in ufshcd_alloc_host().
9598 */
9599 if (!strcmp(clki->name, "ref_clk"))
9600 ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9601
9602 if (clki->max_freq) {
9603 ret = clk_set_rate(clki->clk, clki->max_freq);
9604 if (ret) {
9605 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9606 __func__, clki->name,
9607 clki->max_freq, ret);
9608 goto out;
9609 }
9610 clki->curr_freq = clki->max_freq;
9611 }
9612 dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9613 clki->name, clk_get_rate(clki->clk));
9614 }
9615
9616 /* Set Max. frequency for all clocks */
9617 if (hba->use_pm_opp) {
9618 ret = ufshcd_opp_set_rate(hba, ULONG_MAX);
9619 if (ret) {
9620 dev_err(hba->dev, "%s: failed to set OPP: %d", __func__,
9621 ret);
9622 goto out;
9623 }
9624 }
9625
9626 out:
9627 return ret;
9628 }
9629
ufshcd_variant_hba_init(struct ufs_hba * hba)9630 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9631 {
9632 int err = 0;
9633
9634 if (!hba->vops)
9635 goto out;
9636
9637 err = ufshcd_vops_init(hba);
9638 if (err)
9639 dev_err_probe(hba->dev, err,
9640 "%s: variant %s init failed with err %d\n",
9641 __func__, ufshcd_get_var_name(hba), err);
9642 out:
9643 return err;
9644 }
9645
ufshcd_variant_hba_exit(struct ufs_hba * hba)9646 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9647 {
9648 if (!hba->vops)
9649 return;
9650
9651 ufshcd_vops_exit(hba);
9652 }
9653
ufshcd_hba_init(struct ufs_hba * hba)9654 static int ufshcd_hba_init(struct ufs_hba *hba)
9655 {
9656 int err;
9657
9658 /*
9659 * Handle host controller power separately from the UFS device power
9660 * rails as it will help controlling the UFS host controller power
9661 * collapse easily which is different than UFS device power collapse.
9662 * Also, enable the host controller power before we go ahead with rest
9663 * of the initialization here.
9664 */
9665 err = ufshcd_init_hba_vreg(hba);
9666 if (err)
9667 goto out;
9668
9669 err = ufshcd_setup_hba_vreg(hba, true);
9670 if (err)
9671 goto out;
9672
9673 err = ufshcd_init_clocks(hba);
9674 if (err)
9675 goto out_disable_hba_vreg;
9676
9677 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9678 hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9679
9680 err = ufshcd_setup_clocks(hba, true);
9681 if (err)
9682 goto out_disable_hba_vreg;
9683
9684 err = ufshcd_init_vreg(hba);
9685 if (err)
9686 goto out_disable_clks;
9687
9688 err = ufshcd_setup_vreg(hba, true);
9689 if (err)
9690 goto out_disable_clks;
9691
9692 err = ufshcd_variant_hba_init(hba);
9693 if (err)
9694 goto out_disable_vreg;
9695
9696 ufs_debugfs_hba_init(hba);
9697 ufs_fault_inject_hba_init(hba);
9698
9699 hba->is_powered = true;
9700 goto out;
9701
9702 out_disable_vreg:
9703 ufshcd_setup_vreg(hba, false);
9704 out_disable_clks:
9705 ufshcd_setup_clocks(hba, false);
9706 out_disable_hba_vreg:
9707 ufshcd_setup_hba_vreg(hba, false);
9708 out:
9709 return err;
9710 }
9711
ufshcd_hba_exit(struct ufs_hba * hba)9712 static void ufshcd_hba_exit(struct ufs_hba *hba)
9713 {
9714 if (hba->is_powered) {
9715 ufshcd_pm_qos_exit(hba);
9716 ufshcd_exit_clk_scaling(hba);
9717 ufshcd_exit_clk_gating(hba);
9718 if (hba->eh_wq)
9719 destroy_workqueue(hba->eh_wq);
9720 ufs_debugfs_hba_exit(hba);
9721 ufshcd_variant_hba_exit(hba);
9722 ufshcd_setup_vreg(hba, false);
9723 ufshcd_setup_clocks(hba, false);
9724 ufshcd_setup_hba_vreg(hba, false);
9725 hba->is_powered = false;
9726 ufs_put_device_desc(hba);
9727 }
9728 }
9729
ufshcd_execute_start_stop(struct scsi_device * sdev,enum ufs_dev_pwr_mode pwr_mode,struct scsi_sense_hdr * sshdr)9730 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9731 enum ufs_dev_pwr_mode pwr_mode,
9732 struct scsi_sense_hdr *sshdr)
9733 {
9734 const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9735 struct scsi_failure failure_defs[] = {
9736 {
9737 .allowed = 2,
9738 .result = SCMD_FAILURE_RESULT_ANY,
9739 },
9740 };
9741 struct scsi_failures failures = {
9742 .failure_definitions = failure_defs,
9743 };
9744 const struct scsi_exec_args args = {
9745 .failures = &failures,
9746 .sshdr = sshdr,
9747 .req_flags = BLK_MQ_REQ_PM,
9748 .scmd_flags = SCMD_FAIL_IF_RECOVERING,
9749 };
9750
9751 return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9752 /*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9753 &args);
9754 }
9755
9756 /**
9757 * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9758 * power mode
9759 * @hba: per adapter instance
9760 * @pwr_mode: device power mode to set
9761 *
9762 * Return: 0 if requested power mode is set successfully;
9763 * < 0 if failed to set the requested power mode.
9764 */
ufshcd_set_dev_pwr_mode(struct ufs_hba * hba,enum ufs_dev_pwr_mode pwr_mode)9765 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9766 enum ufs_dev_pwr_mode pwr_mode)
9767 {
9768 struct scsi_sense_hdr sshdr;
9769 struct scsi_device *sdp;
9770 unsigned long flags;
9771 int ret;
9772
9773 spin_lock_irqsave(hba->host->host_lock, flags);
9774 sdp = hba->ufs_device_wlun;
9775 if (sdp && scsi_device_online(sdp))
9776 ret = scsi_device_get(sdp);
9777 else
9778 ret = -ENODEV;
9779 spin_unlock_irqrestore(hba->host->host_lock, flags);
9780
9781 if (ret)
9782 return ret;
9783
9784 /*
9785 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9786 * handling, which would wait for host to be resumed. Since we know
9787 * we are functional while we are here, skip host resume in error
9788 * handling context.
9789 */
9790 hba->host->eh_noresume = 1;
9791
9792 /*
9793 * Current function would be generally called from the power management
9794 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9795 * already suspended childs.
9796 */
9797 ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9798 if (ret) {
9799 sdev_printk(KERN_WARNING, sdp,
9800 "START_STOP failed for power mode: %d, result %x\n",
9801 pwr_mode, ret);
9802 if (ret > 0) {
9803 if (scsi_sense_valid(&sshdr))
9804 scsi_print_sense_hdr(sdp, NULL, &sshdr);
9805 ret = -EIO;
9806 }
9807 } else {
9808 hba->curr_dev_pwr_mode = pwr_mode;
9809 }
9810
9811 scsi_device_put(sdp);
9812 hba->host->eh_noresume = 0;
9813 return ret;
9814 }
9815
ufshcd_link_state_transition(struct ufs_hba * hba,enum uic_link_state req_link_state,bool check_for_bkops)9816 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9817 enum uic_link_state req_link_state,
9818 bool check_for_bkops)
9819 {
9820 int ret = 0;
9821
9822 if (req_link_state == hba->uic_link_state)
9823 return 0;
9824
9825 if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9826 ret = ufshcd_uic_hibern8_enter(hba);
9827 if (!ret) {
9828 ufshcd_set_link_hibern8(hba);
9829 } else {
9830 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9831 __func__, ret);
9832 goto out;
9833 }
9834 }
9835 /*
9836 * If autobkops is enabled, link can't be turned off because
9837 * turning off the link would also turn off the device, except in the
9838 * case of DeepSleep where the device is expected to remain powered.
9839 */
9840 else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9841 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9842 /*
9843 * Let's make sure that link is in low power mode, we are doing
9844 * this currently by putting the link in Hibern8. Otherway to
9845 * put the link in low power mode is to send the DME end point
9846 * to device and then send the DME reset command to local
9847 * unipro. But putting the link in hibern8 is much faster.
9848 *
9849 * Note also that putting the link in Hibern8 is a requirement
9850 * for entering DeepSleep.
9851 */
9852 ret = ufshcd_uic_hibern8_enter(hba);
9853 if (ret) {
9854 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9855 __func__, ret);
9856 goto out;
9857 }
9858 /*
9859 * Change controller state to "reset state" which
9860 * should also put the link in off/reset state
9861 */
9862 ufshcd_hba_stop(hba);
9863 /*
9864 * TODO: Check if we need any delay to make sure that
9865 * controller is reset
9866 */
9867 ufshcd_set_link_off(hba);
9868 }
9869
9870 out:
9871 return ret;
9872 }
9873
ufshcd_vreg_set_lpm(struct ufs_hba * hba)9874 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9875 {
9876 bool vcc_off = false;
9877
9878 /*
9879 * It seems some UFS devices may keep drawing more than sleep current
9880 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9881 * To avoid this situation, add 2ms delay before putting these UFS
9882 * rails in LPM mode.
9883 */
9884 if (!ufshcd_is_link_active(hba) &&
9885 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9886 usleep_range(2000, 2100);
9887
9888 /*
9889 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9890 * power.
9891 *
9892 * If UFS device and link is in OFF state, all power supplies (VCC,
9893 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9894 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9895 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9896 *
9897 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9898 * in low power state which would save some power.
9899 *
9900 * If Write Booster is enabled and the device needs to flush the WB
9901 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9902 */
9903 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9904 !hba->dev_info.is_lu_power_on_wp) {
9905 ufshcd_setup_vreg(hba, false);
9906 vcc_off = true;
9907 } else if (!ufshcd_is_ufs_dev_active(hba)) {
9908 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9909 vcc_off = true;
9910 if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9911 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9912 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9913 }
9914 }
9915
9916 /*
9917 * All UFS devices require delay after VCC power rail is turned-off.
9918 */
9919 if (vcc_off && hba->vreg_info.vcc && !hba->vreg_info.vcc->always_on)
9920 usleep_range(hba->vcc_off_delay_us,
9921 hba->vcc_off_delay_us + 100);
9922 }
9923
9924 #ifdef CONFIG_PM
ufshcd_vreg_set_hpm(struct ufs_hba * hba)9925 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9926 {
9927 int ret = 0;
9928
9929 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9930 !hba->dev_info.is_lu_power_on_wp) {
9931 ret = ufshcd_setup_vreg(hba, true);
9932 } else if (!ufshcd_is_ufs_dev_active(hba)) {
9933 if (!ufshcd_is_link_active(hba)) {
9934 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9935 if (ret)
9936 goto vcc_disable;
9937 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9938 if (ret)
9939 goto vccq_lpm;
9940 }
9941 ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9942 }
9943 goto out;
9944
9945 vccq_lpm:
9946 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9947 vcc_disable:
9948 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9949 out:
9950 return ret;
9951 }
9952 #endif /* CONFIG_PM */
9953
ufshcd_hba_vreg_set_lpm(struct ufs_hba * hba)9954 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9955 {
9956 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9957 ufshcd_setup_hba_vreg(hba, false);
9958 }
9959
ufshcd_hba_vreg_set_hpm(struct ufs_hba * hba)9960 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9961 {
9962 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9963 ufshcd_setup_hba_vreg(hba, true);
9964 }
9965
__ufshcd_wl_suspend(struct ufs_hba * hba,enum ufs_pm_op pm_op)9966 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9967 {
9968 int ret = 0;
9969 bool check_for_bkops;
9970 enum ufs_pm_level pm_lvl;
9971 enum ufs_dev_pwr_mode req_dev_pwr_mode;
9972 enum uic_link_state req_link_state;
9973
9974 hba->pm_op_in_progress = true;
9975 if (pm_op != UFS_SHUTDOWN_PM) {
9976 pm_lvl = pm_op == UFS_RUNTIME_PM ?
9977 hba->rpm_lvl : hba->spm_lvl;
9978 req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9979 req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9980 } else {
9981 req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9982 req_link_state = UIC_LINK_OFF_STATE;
9983 }
9984
9985 /*
9986 * If we can't transition into any of the low power modes
9987 * just gate the clocks.
9988 */
9989 ufshcd_hold(hba);
9990 hba->clk_gating.is_suspended = true;
9991
9992 if (ufshcd_is_clkscaling_supported(hba))
9993 ufshcd_clk_scaling_suspend(hba, true);
9994
9995 if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9996 req_link_state == UIC_LINK_ACTIVE_STATE) {
9997 goto vops_suspend;
9998 }
9999
10000 if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
10001 (req_link_state == hba->uic_link_state))
10002 goto enable_scaling;
10003
10004 /* UFS device & link must be active before we enter in this function */
10005 if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
10006 /* Wait err handler finish or trigger err recovery */
10007 if (!ufshcd_eh_in_progress(hba))
10008 ufshcd_force_error_recovery(hba);
10009 ret = -EBUSY;
10010 goto enable_scaling;
10011 }
10012
10013 if (pm_op == UFS_RUNTIME_PM) {
10014 if (ufshcd_can_autobkops_during_suspend(hba)) {
10015 /*
10016 * The device is idle with no requests in the queue,
10017 * allow background operations if bkops status shows
10018 * that performance might be impacted.
10019 */
10020 ret = ufshcd_bkops_ctrl(hba);
10021 if (ret) {
10022 /*
10023 * If return err in suspend flow, IO will hang.
10024 * Trigger error handler and break suspend for
10025 * error recovery.
10026 */
10027 ufshcd_force_error_recovery(hba);
10028 ret = -EBUSY;
10029 goto enable_scaling;
10030 }
10031 } else {
10032 /* make sure that auto bkops is disabled */
10033 ufshcd_disable_auto_bkops(hba);
10034 }
10035 /*
10036 * If device needs to do BKOP or WB buffer flush during
10037 * Hibern8, keep device power mode as "active power mode"
10038 * and VCC supply.
10039 */
10040 hba->dev_info.b_rpm_dev_flush_capable =
10041 hba->auto_bkops_enabled ||
10042 (((req_link_state == UIC_LINK_HIBERN8_STATE) ||
10043 ((req_link_state == UIC_LINK_ACTIVE_STATE) &&
10044 ufshcd_is_auto_hibern8_enabled(hba))) &&
10045 ufshcd_wb_need_flush(hba));
10046 }
10047
10048 flush_work(&hba->eeh_work);
10049
10050 ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
10051 if (ret)
10052 goto enable_scaling;
10053
10054 if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
10055 if (pm_op != UFS_RUNTIME_PM)
10056 /* ensure that bkops is disabled */
10057 ufshcd_disable_auto_bkops(hba);
10058
10059 if (!hba->dev_info.b_rpm_dev_flush_capable) {
10060 ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
10061 if (ret && pm_op != UFS_SHUTDOWN_PM) {
10062 /*
10063 * If return err in suspend flow, IO will hang.
10064 * Trigger error handler and break suspend for
10065 * error recovery.
10066 */
10067 ufshcd_force_error_recovery(hba);
10068 ret = -EBUSY;
10069 }
10070 if (ret)
10071 goto enable_scaling;
10072 }
10073 }
10074
10075 /*
10076 * In the case of DeepSleep, the device is expected to remain powered
10077 * with the link off, so do not check for bkops.
10078 */
10079 check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
10080 ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
10081 if (ret && pm_op != UFS_SHUTDOWN_PM) {
10082 /*
10083 * If return err in suspend flow, IO will hang.
10084 * Trigger error handler and break suspend for
10085 * error recovery.
10086 */
10087 ufshcd_force_error_recovery(hba);
10088 ret = -EBUSY;
10089 }
10090 if (ret)
10091 goto set_dev_active;
10092
10093 vops_suspend:
10094 /*
10095 * Call vendor specific suspend callback. As these callbacks may access
10096 * vendor specific host controller register space call them before the
10097 * host clocks are ON.
10098 */
10099 ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
10100 if (ret)
10101 goto set_link_active;
10102
10103 cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
10104 goto out;
10105
10106 set_link_active:
10107 /*
10108 * Device hardware reset is required to exit DeepSleep. Also, for
10109 * DeepSleep, the link is off so host reset and restore will be done
10110 * further below.
10111 */
10112 if (ufshcd_is_ufs_dev_deepsleep(hba)) {
10113 ufshcd_device_reset(hba);
10114 WARN_ON(!ufshcd_is_link_off(hba));
10115 }
10116 if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
10117 ufshcd_set_link_active(hba);
10118 else if (ufshcd_is_link_off(hba))
10119 ufshcd_host_reset_and_restore(hba);
10120 set_dev_active:
10121 /* Can also get here needing to exit DeepSleep */
10122 if (ufshcd_is_ufs_dev_deepsleep(hba)) {
10123 ufshcd_device_reset(hba);
10124 ufshcd_host_reset_and_restore(hba);
10125 }
10126 if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
10127 ufshcd_disable_auto_bkops(hba);
10128 enable_scaling:
10129 if (ufshcd_is_clkscaling_supported(hba))
10130 ufshcd_clk_scaling_suspend(hba, false);
10131
10132 hba->dev_info.b_rpm_dev_flush_capable = false;
10133 out:
10134 if (hba->dev_info.b_rpm_dev_flush_capable) {
10135 schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
10136 msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
10137 }
10138
10139 if (ret) {
10140 ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
10141 hba->clk_gating.is_suspended = false;
10142 ufshcd_release(hba);
10143 }
10144 hba->pm_op_in_progress = false;
10145 return ret;
10146 }
10147
10148 #ifdef CONFIG_PM
__ufshcd_wl_resume(struct ufs_hba * hba,enum ufs_pm_op pm_op)10149 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
10150 {
10151 int ret;
10152 enum uic_link_state old_link_state = hba->uic_link_state;
10153
10154 hba->pm_op_in_progress = true;
10155
10156 /*
10157 * Call vendor specific resume callback. As these callbacks may access
10158 * vendor specific host controller register space call them when the
10159 * host clocks are ON.
10160 */
10161 ret = ufshcd_vops_resume(hba, pm_op);
10162 if (ret)
10163 goto out;
10164
10165 /* For DeepSleep, the only supported option is to have the link off */
10166 WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
10167
10168 if (ufshcd_is_link_hibern8(hba)) {
10169 ret = ufshcd_uic_hibern8_exit(hba);
10170 if (!ret) {
10171 ufshcd_set_link_active(hba);
10172 } else {
10173 dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
10174 __func__, ret);
10175 goto vendor_suspend;
10176 }
10177 } else if (ufshcd_is_link_off(hba)) {
10178 /*
10179 * A full initialization of the host and the device is
10180 * required since the link was put to off during suspend.
10181 * Note, in the case of DeepSleep, the device will exit
10182 * DeepSleep due to device reset.
10183 */
10184 ret = ufshcd_reset_and_restore(hba);
10185 /*
10186 * ufshcd_reset_and_restore() should have already
10187 * set the link state as active
10188 */
10189 if (ret || !ufshcd_is_link_active(hba))
10190 goto vendor_suspend;
10191 }
10192
10193 if (!ufshcd_is_ufs_dev_active(hba)) {
10194 ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
10195 if (ret)
10196 goto set_old_link_state;
10197 ufshcd_set_timestamp_attr(hba);
10198 schedule_delayed_work(&hba->ufs_rtc_update_work,
10199 msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
10200 }
10201
10202 if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
10203 ufshcd_enable_auto_bkops(hba);
10204 else
10205 /*
10206 * If BKOPs operations are urgently needed at this moment then
10207 * keep auto-bkops enabled or else disable it.
10208 */
10209 ufshcd_bkops_ctrl(hba);
10210
10211 if (hba->ee_usr_mask)
10212 ufshcd_write_ee_control(hba);
10213
10214 if (ufshcd_is_clkscaling_supported(hba))
10215 ufshcd_clk_scaling_suspend(hba, false);
10216
10217 if (hba->dev_info.b_rpm_dev_flush_capable) {
10218 hba->dev_info.b_rpm_dev_flush_capable = false;
10219 cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
10220 }
10221
10222 ufshcd_configure_auto_hibern8(hba);
10223
10224 goto out;
10225
10226 set_old_link_state:
10227 ufshcd_link_state_transition(hba, old_link_state, 0);
10228 vendor_suspend:
10229 ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
10230 ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
10231 out:
10232 if (ret)
10233 ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
10234 hba->clk_gating.is_suspended = false;
10235 ufshcd_release(hba);
10236 hba->pm_op_in_progress = false;
10237 return ret;
10238 }
10239
ufshcd_wl_runtime_suspend(struct device * dev)10240 static int ufshcd_wl_runtime_suspend(struct device *dev)
10241 {
10242 struct scsi_device *sdev = to_scsi_device(dev);
10243 struct ufs_hba *hba;
10244 int ret;
10245 ktime_t start = ktime_get();
10246
10247 hba = shost_priv(sdev->host);
10248
10249 ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
10250 if (ret)
10251 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10252
10253 trace_ufshcd_wl_runtime_suspend(hba, ret,
10254 ktime_to_us(ktime_sub(ktime_get(), start)),
10255 hba->curr_dev_pwr_mode, hba->uic_link_state);
10256
10257 return ret;
10258 }
10259
ufshcd_wl_runtime_resume(struct device * dev)10260 static int ufshcd_wl_runtime_resume(struct device *dev)
10261 {
10262 struct scsi_device *sdev = to_scsi_device(dev);
10263 struct ufs_hba *hba;
10264 int ret = 0;
10265 ktime_t start = ktime_get();
10266
10267 hba = shost_priv(sdev->host);
10268
10269 ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
10270 if (ret)
10271 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10272
10273 trace_ufshcd_wl_runtime_resume(hba, ret,
10274 ktime_to_us(ktime_sub(ktime_get(), start)),
10275 hba->curr_dev_pwr_mode, hba->uic_link_state);
10276
10277 return ret;
10278 }
10279 #endif
10280
10281 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_suspend(struct device * dev)10282 static int ufshcd_wl_suspend(struct device *dev)
10283 {
10284 struct scsi_device *sdev = to_scsi_device(dev);
10285 struct ufs_hba *hba;
10286 int ret = 0;
10287 ktime_t start = ktime_get();
10288
10289 hba = shost_priv(sdev->host);
10290 down(&hba->host_sem);
10291 hba->system_suspending = true;
10292
10293 if (pm_runtime_suspended(dev))
10294 goto out;
10295
10296 ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
10297 if (ret) {
10298 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10299 up(&hba->host_sem);
10300 }
10301
10302 out:
10303 if (!ret)
10304 hba->is_sys_suspended = true;
10305 trace_ufshcd_wl_suspend(hba, ret,
10306 ktime_to_us(ktime_sub(ktime_get(), start)),
10307 hba->curr_dev_pwr_mode, hba->uic_link_state);
10308
10309 return ret;
10310 }
10311
ufshcd_wl_resume(struct device * dev)10312 static int ufshcd_wl_resume(struct device *dev)
10313 {
10314 struct scsi_device *sdev = to_scsi_device(dev);
10315 struct ufs_hba *hba;
10316 int ret = 0;
10317 ktime_t start = ktime_get();
10318
10319 hba = shost_priv(sdev->host);
10320
10321 if (pm_runtime_suspended(dev))
10322 goto out;
10323
10324 ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
10325 if (ret)
10326 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10327 out:
10328 trace_ufshcd_wl_resume(hba, ret,
10329 ktime_to_us(ktime_sub(ktime_get(), start)),
10330 hba->curr_dev_pwr_mode, hba->uic_link_state);
10331 if (!ret)
10332 hba->is_sys_suspended = false;
10333 hba->system_suspending = false;
10334 up(&hba->host_sem);
10335 return ret;
10336 }
10337 #endif
10338
10339 /**
10340 * ufshcd_suspend - helper function for suspend operations
10341 * @hba: per adapter instance
10342 *
10343 * This function will put disable irqs, turn off clocks
10344 * and set vreg and hba-vreg in lpm mode.
10345 *
10346 * Return: 0 upon success; < 0 upon failure.
10347 */
ufshcd_suspend(struct ufs_hba * hba)10348 static int ufshcd_suspend(struct ufs_hba *hba)
10349 {
10350 int ret;
10351
10352 if (!hba->is_powered)
10353 return 0;
10354 /*
10355 * Disable the host irq as host controller as there won't be any
10356 * host controller transaction expected till resume.
10357 */
10358 ufshcd_disable_irq(hba);
10359 ret = ufshcd_setup_clocks(hba, false);
10360 if (ret) {
10361 ufshcd_enable_irq(hba);
10362 goto out;
10363 }
10364 if (ufshcd_is_clkgating_allowed(hba)) {
10365 hba->clk_gating.state = CLKS_OFF;
10366 trace_ufshcd_clk_gating(hba,
10367 hba->clk_gating.state);
10368 }
10369
10370 ufshcd_vreg_set_lpm(hba);
10371 /* Put the host controller in low power mode if possible */
10372 ufshcd_hba_vreg_set_lpm(hba);
10373 ufshcd_pm_qos_update(hba, false);
10374 out:
10375 if (ret)
10376 ufshcd_update_evt_hist(hba, UFS_EVT_SUSPEND_ERR, (u32)ret);
10377 return ret;
10378 }
10379
10380 #ifdef CONFIG_PM
10381 /**
10382 * ufshcd_resume - helper function for resume operations
10383 * @hba: per adapter instance
10384 *
10385 * This function basically turns on the regulators, clocks and
10386 * irqs of the hba.
10387 *
10388 * Return: 0 for success and non-zero for failure.
10389 */
ufshcd_resume(struct ufs_hba * hba)10390 static int ufshcd_resume(struct ufs_hba *hba)
10391 {
10392 int ret;
10393
10394 if (!hba->is_powered)
10395 return 0;
10396
10397 ufshcd_hba_vreg_set_hpm(hba);
10398 ret = ufshcd_vreg_set_hpm(hba);
10399 if (ret)
10400 goto out;
10401
10402 /* Make sure clocks are enabled before accessing controller */
10403 ret = ufshcd_setup_clocks(hba, true);
10404 if (ret)
10405 goto disable_vreg;
10406
10407 /* enable the host irq as host controller would be active soon */
10408 ufshcd_enable_irq(hba);
10409
10410 goto out;
10411
10412 disable_vreg:
10413 ufshcd_vreg_set_lpm(hba);
10414 out:
10415 if (ret)
10416 ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
10417 return ret;
10418 }
10419 #endif /* CONFIG_PM */
10420
10421 #ifdef CONFIG_PM_SLEEP
10422 /**
10423 * ufshcd_system_suspend - system suspend callback
10424 * @dev: Device associated with the UFS controller.
10425 *
10426 * Executed before putting the system into a sleep state in which the contents
10427 * of main memory are preserved.
10428 *
10429 * Return: 0 for success and non-zero for failure.
10430 */
ufshcd_system_suspend(struct device * dev)10431 int ufshcd_system_suspend(struct device *dev)
10432 {
10433 struct ufs_hba *hba = dev_get_drvdata(dev);
10434 int ret = 0;
10435 ktime_t start = ktime_get();
10436
10437 if (pm_runtime_suspended(hba->dev))
10438 goto out;
10439
10440 ret = ufshcd_suspend(hba);
10441 out:
10442 trace_ufshcd_system_suspend(hba, ret,
10443 ktime_to_us(ktime_sub(ktime_get(), start)),
10444 hba->curr_dev_pwr_mode, hba->uic_link_state);
10445 return ret;
10446 }
10447 EXPORT_SYMBOL(ufshcd_system_suspend);
10448
10449 /**
10450 * ufshcd_system_resume - system resume callback
10451 * @dev: Device associated with the UFS controller.
10452 *
10453 * Executed after waking the system up from a sleep state in which the contents
10454 * of main memory were preserved.
10455 *
10456 * Return: 0 for success and non-zero for failure.
10457 */
ufshcd_system_resume(struct device * dev)10458 int ufshcd_system_resume(struct device *dev)
10459 {
10460 struct ufs_hba *hba = dev_get_drvdata(dev);
10461 ktime_t start = ktime_get();
10462 int ret = 0;
10463
10464 if (pm_runtime_suspended(hba->dev))
10465 goto out;
10466
10467 ret = ufshcd_resume(hba);
10468
10469 out:
10470 trace_ufshcd_system_resume(hba, ret,
10471 ktime_to_us(ktime_sub(ktime_get(), start)),
10472 hba->curr_dev_pwr_mode, hba->uic_link_state);
10473
10474 return ret;
10475 }
10476 EXPORT_SYMBOL(ufshcd_system_resume);
10477 #endif /* CONFIG_PM_SLEEP */
10478
10479 #ifdef CONFIG_PM
10480 /**
10481 * ufshcd_runtime_suspend - runtime suspend callback
10482 * @dev: Device associated with the UFS controller.
10483 *
10484 * Check the description of ufshcd_suspend() function for more details.
10485 *
10486 * Return: 0 for success and non-zero for failure.
10487 */
ufshcd_runtime_suspend(struct device * dev)10488 int ufshcd_runtime_suspend(struct device *dev)
10489 {
10490 struct ufs_hba *hba = dev_get_drvdata(dev);
10491 int ret;
10492 ktime_t start = ktime_get();
10493
10494 ret = ufshcd_suspend(hba);
10495
10496 trace_ufshcd_runtime_suspend(hba, ret,
10497 ktime_to_us(ktime_sub(ktime_get(), start)),
10498 hba->curr_dev_pwr_mode, hba->uic_link_state);
10499 return ret;
10500 }
10501 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10502
10503 /**
10504 * ufshcd_runtime_resume - runtime resume routine
10505 * @dev: Device associated with the UFS controller.
10506 *
10507 * This function basically brings controller
10508 * to active state. Following operations are done in this function:
10509 *
10510 * 1. Turn on all the controller related clocks
10511 * 2. Turn ON VCC rail
10512 *
10513 * Return: 0 upon success; < 0 upon failure.
10514 */
ufshcd_runtime_resume(struct device * dev)10515 int ufshcd_runtime_resume(struct device *dev)
10516 {
10517 struct ufs_hba *hba = dev_get_drvdata(dev);
10518 int ret;
10519 ktime_t start = ktime_get();
10520
10521 ret = ufshcd_resume(hba);
10522
10523 trace_ufshcd_runtime_resume(hba, ret,
10524 ktime_to_us(ktime_sub(ktime_get(), start)),
10525 hba->curr_dev_pwr_mode, hba->uic_link_state);
10526 return ret;
10527 }
10528 EXPORT_SYMBOL(ufshcd_runtime_resume);
10529 #endif /* CONFIG_PM */
10530
ufshcd_wl_shutdown(struct device * dev)10531 static void ufshcd_wl_shutdown(struct device *dev)
10532 {
10533 struct scsi_device *sdev = to_scsi_device(dev);
10534 struct ufs_hba *hba = shost_priv(sdev->host);
10535
10536 down(&hba->host_sem);
10537 hba->shutting_down = true;
10538 up(&hba->host_sem);
10539
10540 /* Turn on everything while shutting down */
10541 ufshcd_rpm_get_sync(hba);
10542 scsi_device_quiesce(sdev);
10543 shost_for_each_device(sdev, hba->host) {
10544 if (sdev == hba->ufs_device_wlun)
10545 continue;
10546 mutex_lock(&sdev->state_mutex);
10547 scsi_device_set_state(sdev, SDEV_OFFLINE);
10548 mutex_unlock(&sdev->state_mutex);
10549 }
10550 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10551
10552 /*
10553 * Next, turn off the UFS controller and the UFS regulators. Disable
10554 * clocks.
10555 */
10556 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10557 ufshcd_suspend(hba);
10558
10559 hba->is_powered = false;
10560 }
10561
10562 /**
10563 * ufshcd_remove - de-allocate SCSI host and host memory space
10564 * data structure memory
10565 * @hba: per adapter instance
10566 */
ufshcd_remove(struct ufs_hba * hba)10567 void ufshcd_remove(struct ufs_hba *hba)
10568 {
10569 if (hba->ufs_device_wlun)
10570 ufshcd_rpm_get_sync(hba);
10571 ufs_hwmon_remove(hba);
10572 ufs_bsg_remove(hba);
10573 ufs_rpmb_remove(hba);
10574 ufs_sysfs_remove_nodes(hba->dev);
10575 cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
10576 blk_mq_destroy_queue(hba->tmf_queue);
10577 blk_put_queue(hba->tmf_queue);
10578 blk_mq_free_tag_set(&hba->tmf_tag_set);
10579 if (hba->scsi_host_added)
10580 scsi_remove_host(hba->host);
10581 /* disable interrupts */
10582 ufshcd_disable_intr(hba, hba->intr_mask);
10583 ufshcd_hba_stop(hba);
10584 ufshcd_hba_exit(hba);
10585 }
10586 EXPORT_SYMBOL_GPL(ufshcd_remove);
10587
10588 #ifdef CONFIG_PM_SLEEP
ufshcd_system_freeze(struct device * dev)10589 int ufshcd_system_freeze(struct device *dev)
10590 {
10591
10592 return ufshcd_system_suspend(dev);
10593
10594 }
10595 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10596
ufshcd_system_restore(struct device * dev)10597 int ufshcd_system_restore(struct device *dev)
10598 {
10599
10600 struct ufs_hba *hba = dev_get_drvdata(dev);
10601 int ret;
10602
10603 ret = ufshcd_system_resume(dev);
10604 if (ret)
10605 return ret;
10606
10607 /* Configure UTRL and UTMRL base address registers */
10608 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10609 REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10610 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10611 REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10612 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10613 REG_UTP_TASK_REQ_LIST_BASE_L);
10614 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10615 REG_UTP_TASK_REQ_LIST_BASE_H);
10616 /*
10617 * Make sure that UTRL and UTMRL base address registers
10618 * are updated with the latest queue addresses. Only after
10619 * updating these addresses, we can queue the new commands.
10620 */
10621 ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H);
10622
10623 return 0;
10624
10625 }
10626 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10627
ufshcd_system_thaw(struct device * dev)10628 int ufshcd_system_thaw(struct device *dev)
10629 {
10630 return ufshcd_system_resume(dev);
10631 }
10632 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10633 #endif /* CONFIG_PM_SLEEP */
10634
10635 /**
10636 * ufshcd_set_dma_mask - Set dma mask based on the controller
10637 * addressing capability
10638 * @hba: per adapter instance
10639 *
10640 * Return: 0 for success, non-zero for failure.
10641 */
ufshcd_set_dma_mask(struct ufs_hba * hba)10642 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10643 {
10644 if (hba->vops && hba->vops->set_dma_mask)
10645 return hba->vops->set_dma_mask(hba);
10646 if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10647 if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10648 return 0;
10649 }
10650 return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10651 }
10652
10653 /**
10654 * ufshcd_devres_release - devres cleanup handler, invoked during release of
10655 * hba->dev
10656 * @host: pointer to SCSI host
10657 */
ufshcd_devres_release(void * host)10658 static void ufshcd_devres_release(void *host)
10659 {
10660 scsi_host_put(host);
10661 }
10662
10663 /**
10664 * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10665 * @dev: pointer to device handle
10666 * @hba_handle: driver private handle
10667 *
10668 * Return: 0 on success, non-zero value on failure.
10669 *
10670 * NOTE: There is no corresponding ufshcd_dealloc_host() because this function
10671 * keeps track of its allocations using devres and deallocates everything on
10672 * device removal automatically.
10673 */
ufshcd_alloc_host(struct device * dev,struct ufs_hba ** hba_handle)10674 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10675 {
10676 struct Scsi_Host *host;
10677 struct ufs_hba *hba;
10678 int err = 0;
10679
10680 if (!dev) {
10681 dev_err(dev,
10682 "Invalid memory reference for dev is NULL\n");
10683 err = -ENODEV;
10684 goto out_error;
10685 }
10686
10687 host = scsi_host_alloc(&ufshcd_driver_template,
10688 sizeof(struct ufs_hba));
10689 if (!host) {
10690 dev_err(dev, "scsi_host_alloc failed\n");
10691 err = -ENOMEM;
10692 goto out_error;
10693 }
10694
10695 err = devm_add_action_or_reset(dev, ufshcd_devres_release,
10696 host);
10697 if (err)
10698 return err;
10699
10700 host->nr_maps = HCTX_TYPE_POLL + 1;
10701 hba = shost_priv(host);
10702 hba->host = host;
10703 hba->dev = dev;
10704 hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10705 hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10706 ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10707 INIT_LIST_HEAD(&hba->clk_list_head);
10708 spin_lock_init(&hba->outstanding_lock);
10709
10710 *hba_handle = hba;
10711
10712 out_error:
10713 return err;
10714 }
10715 EXPORT_SYMBOL(ufshcd_alloc_host);
10716
10717 /* This function exists because blk_mq_alloc_tag_set() requires this. */
ufshcd_queue_tmf(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * qd)10718 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10719 const struct blk_mq_queue_data *qd)
10720 {
10721 WARN_ON_ONCE(true);
10722 return BLK_STS_NOTSUPP;
10723 }
10724
10725 static const struct blk_mq_ops ufshcd_tmf_ops = {
10726 .queue_rq = ufshcd_queue_tmf,
10727 };
10728
ufshcd_add_scsi_host(struct ufs_hba * hba)10729 static int ufshcd_add_scsi_host(struct ufs_hba *hba)
10730 {
10731 int err;
10732
10733 WARN_ON_ONCE(!hba->host->can_queue);
10734 WARN_ON_ONCE(!hba->host->cmd_per_lun);
10735
10736 if (is_mcq_supported(hba)) {
10737 ufshcd_mcq_enable(hba);
10738 err = ufshcd_alloc_mcq(hba);
10739 if (!err) {
10740 ufshcd_config_mcq(hba);
10741 } else {
10742 /* Continue with SDB mode */
10743 ufshcd_mcq_disable(hba);
10744 use_mcq_mode = false;
10745 dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
10746 err);
10747 }
10748 }
10749 if (!is_mcq_supported(hba) && !hba->lsdb_sup) {
10750 dev_err(hba->dev,
10751 "%s: failed to initialize (legacy doorbell mode not supported)\n",
10752 __func__);
10753 return -EINVAL;
10754 }
10755
10756 err = scsi_add_host(hba->host, hba->dev);
10757 if (err) {
10758 dev_err(hba->dev, "scsi_add_host failed\n");
10759 return err;
10760 }
10761 hba->scsi_host_added = true;
10762
10763 hba->tmf_tag_set = (struct blk_mq_tag_set) {
10764 .nr_hw_queues = 1,
10765 .queue_depth = hba->nutmrs,
10766 .ops = &ufshcd_tmf_ops,
10767 };
10768 err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10769 if (err < 0)
10770 goto remove_scsi_host;
10771 hba->tmf_queue = blk_mq_alloc_queue(&hba->tmf_tag_set, NULL, NULL);
10772 if (IS_ERR(hba->tmf_queue)) {
10773 err = PTR_ERR(hba->tmf_queue);
10774 goto free_tmf_tag_set;
10775 }
10776 hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10777 sizeof(*hba->tmf_rqs), GFP_KERNEL);
10778 if (!hba->tmf_rqs) {
10779 err = -ENOMEM;
10780 goto free_tmf_queue;
10781 }
10782
10783 return 0;
10784
10785 free_tmf_queue:
10786 blk_mq_destroy_queue(hba->tmf_queue);
10787 blk_put_queue(hba->tmf_queue);
10788
10789 free_tmf_tag_set:
10790 blk_mq_free_tag_set(&hba->tmf_tag_set);
10791
10792 remove_scsi_host:
10793 if (hba->scsi_host_added)
10794 scsi_remove_host(hba->host);
10795
10796 return err;
10797 }
10798
10799 /**
10800 * ufshcd_init - Driver initialization routine
10801 * @hba: per-adapter instance
10802 * @mmio_base: base register address
10803 * @irq: Interrupt line of device
10804 *
10805 * Return: 0 on success; < 0 on failure.
10806 */
ufshcd_init(struct ufs_hba * hba,void __iomem * mmio_base,unsigned int irq)10807 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10808 {
10809 int err;
10810 struct Scsi_Host *host = hba->host;
10811 struct device *dev = hba->dev;
10812
10813 /*
10814 * dev_set_drvdata() must be called before any callbacks are registered
10815 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10816 * sysfs).
10817 */
10818 dev_set_drvdata(dev, hba);
10819
10820 if (!mmio_base) {
10821 dev_err(hba->dev,
10822 "Invalid memory reference for mmio_base is NULL\n");
10823 err = -ENODEV;
10824 goto out_error;
10825 }
10826
10827 hba->mmio_base = mmio_base;
10828 hba->irq = irq;
10829 hba->vps = &ufs_hba_vps;
10830
10831 /*
10832 * Initialize clk_gating.lock early since it is being used in
10833 * ufshcd_setup_clocks()
10834 */
10835 spin_lock_init(&hba->clk_gating.lock);
10836
10837 /* Initialize mutex for PM QoS request synchronization */
10838 mutex_init(&hba->pm_qos_mutex);
10839
10840 /*
10841 * Set the default power management level for runtime and system PM.
10842 * Host controller drivers can override them in their
10843 * 'ufs_hba_variant_ops::init' callback.
10844 *
10845 * Default power saving mode is to keep UFS link in Hibern8 state
10846 * and UFS device in sleep state.
10847 */
10848 hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10849 UFS_SLEEP_PWR_MODE,
10850 UIC_LINK_HIBERN8_STATE);
10851 hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10852 UFS_SLEEP_PWR_MODE,
10853 UIC_LINK_HIBERN8_STATE);
10854
10855 /*
10856 * Most ufs devices require 1ms delay after vcc is powered off before
10857 * it can be powered on again. Set the default to 2ms. The platform
10858 * drivers can override this setting as needed.
10859 */
10860 hba->vcc_off_delay_us = 2000;
10861
10862 err = ufshcd_hba_init(hba);
10863 if (err)
10864 goto out_error;
10865
10866 /* Read capabilities registers */
10867 err = ufshcd_hba_capabilities(hba);
10868 if (err)
10869 goto out_disable;
10870
10871 /* Get UFS version supported by the controller */
10872 hba->ufs_version = ufshcd_get_ufs_version(hba);
10873
10874 /* Get Interrupt bit mask per version */
10875 hba->intr_mask = ufshcd_get_intr_mask(hba);
10876
10877 err = ufshcd_set_dma_mask(hba);
10878 if (err) {
10879 dev_err(hba->dev, "set dma mask failed\n");
10880 goto out_disable;
10881 }
10882
10883 /* Allocate memory for host memory space */
10884 err = ufshcd_memory_alloc(hba);
10885 if (err) {
10886 dev_err(hba->dev, "Memory allocation failed\n");
10887 goto out_disable;
10888 }
10889
10890 /* Configure LRB */
10891 ufshcd_host_memory_configure(hba);
10892
10893 host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10894 /*
10895 * Set the queue depth for WLUNs. ufs_get_device_desc() will increase
10896 * host->cmd_per_lun to a larger value.
10897 */
10898 host->cmd_per_lun = 1;
10899 host->max_id = UFSHCD_MAX_ID;
10900 host->max_lun = UFS_MAX_LUNS;
10901 host->max_channel = UFSHCD_MAX_CHANNEL;
10902 host->unique_id = host->host_no;
10903 host->max_cmd_len = UFS_CDB_SIZE;
10904 host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10905
10906 /* Use default RPM delay if host not set */
10907 if (host->rpm_autosuspend_delay == 0)
10908 host->rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS;
10909
10910 hba->max_pwr_info.is_valid = false;
10911
10912 /* Initialize work queues */
10913 hba->eh_wq = alloc_ordered_workqueue("ufs_eh_wq_%d", WQ_MEM_RECLAIM,
10914 hba->host->host_no);
10915 if (!hba->eh_wq) {
10916 dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10917 __func__);
10918 err = -ENOMEM;
10919 goto out_disable;
10920 }
10921 INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10922 INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10923
10924 sema_init(&hba->host_sem, 1);
10925
10926 /* Initialize UIC command mutex */
10927 mutex_init(&hba->uic_cmd_mutex);
10928
10929 /* Initialize mutex for device management commands */
10930 mutex_init(&hba->dev_cmd.lock);
10931
10932 /* Initialize mutex for exception event control */
10933 mutex_init(&hba->ee_ctrl_mutex);
10934
10935 mutex_init(&hba->wb_mutex);
10936
10937 init_rwsem(&hba->clk_scaling_lock);
10938
10939 ufshcd_init_clk_gating(hba);
10940
10941 ufshcd_init_clk_scaling(hba);
10942
10943 /*
10944 * In order to avoid any spurious interrupt immediately after
10945 * registering UFS controller interrupt handler, clear any pending UFS
10946 * interrupt status and disable all the UFS interrupts.
10947 */
10948 ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10949 REG_INTERRUPT_STATUS);
10950 ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10951 /*
10952 * Make sure that UFS interrupts are disabled and any pending interrupt
10953 * status is cleared before registering UFS interrupt handler.
10954 */
10955 ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
10956
10957 /* IRQ registration */
10958 err = devm_request_threaded_irq(dev, irq, ufshcd_intr, ufshcd_threaded_intr,
10959 IRQF_ONESHOT | IRQF_SHARED, UFSHCD, hba);
10960 if (err) {
10961 dev_err(hba->dev, "request irq failed\n");
10962 goto out_disable;
10963 } else {
10964 hba->is_irq_enabled = true;
10965 }
10966
10967 /* Reset the attached device */
10968 ufshcd_device_reset(hba);
10969
10970 ufshcd_init_crypto(hba);
10971
10972 /* Host controller enable */
10973 err = ufshcd_hba_enable(hba);
10974 if (err) {
10975 dev_err(hba->dev, "Host controller enable failed\n");
10976 ufshcd_print_evt_hist(hba);
10977 ufshcd_print_host_state(hba);
10978 goto out_disable;
10979 }
10980
10981 INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work);
10982 INIT_DELAYED_WORK(&hba->ufs_rtc_update_work, ufshcd_rtc_work);
10983
10984 /* Set the default auto-hiberate idle timer value to 150 ms */
10985 if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10986 hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10987 FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10988 }
10989
10990 err = ufshcd_add_scsi_host(hba);
10991 if (err)
10992 goto out_disable;
10993
10994 /* Hold auto suspend until async scan completes */
10995 pm_runtime_get_sync(dev);
10996
10997 /*
10998 * We are assuming that device wasn't put in sleep/power-down
10999 * state exclusively during the boot stage before kernel.
11000 * This assumption helps avoid doing link startup twice during
11001 * ufshcd_probe_hba().
11002 */
11003 ufshcd_set_ufs_dev_active(hba);
11004
11005 /* Initialize hba, detect and initialize UFS device */
11006 ktime_t probe_start = ktime_get();
11007
11008 hba->ufshcd_state = UFSHCD_STATE_RESET;
11009
11010 err = ufshcd_link_startup(hba);
11011 if (err)
11012 goto out_disable;
11013
11014 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
11015 goto initialized;
11016
11017 /* Debug counters initialization */
11018 ufshcd_clear_dbg_ufs_stats(hba);
11019
11020 /* UniPro link is active now */
11021 ufshcd_set_link_active(hba);
11022
11023 /* Verify device initialization by sending NOP OUT UPIU */
11024 err = ufshcd_verify_dev_init(hba);
11025 if (err)
11026 goto out_disable;
11027
11028 /* Initiate UFS initialization, and waiting until completion */
11029 err = ufshcd_complete_dev_init(hba);
11030 if (err)
11031 goto out_disable;
11032
11033 err = ufshcd_device_params_init(hba);
11034 if (err)
11035 goto out_disable;
11036
11037 err = ufshcd_post_device_init(hba);
11038
11039 initialized:
11040 ufshcd_process_probe_result(hba, probe_start, err);
11041 if (err)
11042 goto out_disable;
11043
11044 ufs_sysfs_add_nodes(hba->dev);
11045 async_schedule(ufshcd_async_scan, hba);
11046
11047 device_enable_async_suspend(dev);
11048 ufshcd_pm_qos_init(hba);
11049 return 0;
11050
11051 out_disable:
11052 hba->is_irq_enabled = false;
11053 ufshcd_hba_exit(hba);
11054 out_error:
11055 return err > 0 ? -EIO : err;
11056 }
11057 EXPORT_SYMBOL_GPL(ufshcd_init);
11058
ufshcd_resume_complete(struct device * dev)11059 void ufshcd_resume_complete(struct device *dev)
11060 {
11061 struct ufs_hba *hba = dev_get_drvdata(dev);
11062
11063 if (hba->complete_put) {
11064 ufshcd_rpm_put(hba);
11065 hba->complete_put = false;
11066 }
11067 }
11068 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
11069
ufshcd_rpm_ok_for_spm(struct ufs_hba * hba)11070 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
11071 {
11072 struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
11073 enum ufs_dev_pwr_mode dev_pwr_mode;
11074 enum uic_link_state link_state;
11075 unsigned long flags;
11076 bool res;
11077
11078 spin_lock_irqsave(&dev->power.lock, flags);
11079 dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
11080 link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
11081 res = pm_runtime_suspended(dev) &&
11082 hba->curr_dev_pwr_mode == dev_pwr_mode &&
11083 hba->uic_link_state == link_state &&
11084 !hba->dev_info.b_rpm_dev_flush_capable;
11085 spin_unlock_irqrestore(&dev->power.lock, flags);
11086
11087 return res;
11088 }
11089
__ufshcd_suspend_prepare(struct device * dev,bool rpm_ok_for_spm)11090 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
11091 {
11092 struct ufs_hba *hba = dev_get_drvdata(dev);
11093 int ret;
11094
11095 /*
11096 * SCSI assumes that runtime-pm and system-pm for scsi drivers
11097 * are same. And it doesn't wake up the device for system-suspend
11098 * if it's runtime suspended. But ufs doesn't follow that.
11099 * Refer ufshcd_resume_complete()
11100 */
11101 if (hba->ufs_device_wlun) {
11102 /* Prevent runtime suspend */
11103 ufshcd_rpm_get_noresume(hba);
11104 /*
11105 * Check if already runtime suspended in same state as system
11106 * suspend would be.
11107 */
11108 if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
11109 /* RPM state is not ok for SPM, so runtime resume */
11110 ret = ufshcd_rpm_resume(hba);
11111 if (ret < 0 && ret != -EACCES) {
11112 ufshcd_rpm_put(hba);
11113 return ret;
11114 }
11115 }
11116 hba->complete_put = true;
11117 }
11118 return 0;
11119 }
11120 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
11121
ufshcd_suspend_prepare(struct device * dev)11122 int ufshcd_suspend_prepare(struct device *dev)
11123 {
11124 return __ufshcd_suspend_prepare(dev, true);
11125 }
11126 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
11127
11128 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_poweroff(struct device * dev)11129 static int ufshcd_wl_poweroff(struct device *dev)
11130 {
11131 struct scsi_device *sdev = to_scsi_device(dev);
11132 struct ufs_hba *hba = shost_priv(sdev->host);
11133
11134 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
11135 return 0;
11136 }
11137 #endif
11138
ufshcd_wl_probe(struct device * dev)11139 static int ufshcd_wl_probe(struct device *dev)
11140 {
11141 struct scsi_device *sdev = to_scsi_device(dev);
11142
11143 if (!is_device_wlun(sdev))
11144 return -ENODEV;
11145
11146 blk_pm_runtime_init(sdev->request_queue, dev);
11147 pm_runtime_set_autosuspend_delay(dev, 0);
11148 pm_runtime_allow(dev);
11149
11150 return 0;
11151 }
11152
ufshcd_wl_remove(struct device * dev)11153 static int ufshcd_wl_remove(struct device *dev)
11154 {
11155 pm_runtime_forbid(dev);
11156 return 0;
11157 }
11158
11159 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
11160 #ifdef CONFIG_PM_SLEEP
11161 .suspend = ufshcd_wl_suspend,
11162 .resume = ufshcd_wl_resume,
11163 .freeze = ufshcd_wl_suspend,
11164 .thaw = ufshcd_wl_resume,
11165 .poweroff = ufshcd_wl_poweroff,
11166 .restore = ufshcd_wl_resume,
11167 #endif
11168 SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
11169 };
11170
ufshcd_check_header_layout(void)11171 static void ufshcd_check_header_layout(void)
11172 {
11173 /*
11174 * gcc compilers before version 10 cannot do constant-folding for
11175 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
11176 * before.
11177 */
11178 if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
11179 return;
11180
11181 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11182 .cci = 3})[0] != 3);
11183
11184 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11185 .ehs_length = 2})[1] != 2);
11186
11187 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11188 .enable_crypto = 1})[2]
11189 != 0x80);
11190
11191 BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
11192 .command_type = 5,
11193 .data_direction = 3,
11194 .interrupt = 1,
11195 })[3]) != ((5 << 4) | (3 << 1) | 1));
11196
11197 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
11198 .dunl = cpu_to_le32(0xdeadbeef)})[1] !=
11199 cpu_to_le32(0xdeadbeef));
11200
11201 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11202 .ocs = 4})[8] != 4);
11203
11204 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
11205 .cds = 5})[9] != 5);
11206
11207 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
11208 .dunu = cpu_to_le32(0xbadcafe)})[3] !=
11209 cpu_to_le32(0xbadcafe));
11210
11211 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
11212 .iid = 0xf })[4] != 0xf0);
11213
11214 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
11215 .command_set_type = 0xf })[4] != 0xf);
11216 }
11217
11218 /*
11219 * ufs_dev_wlun_template - describes ufs device wlun
11220 * ufs-device wlun - used to send pm commands
11221 * All luns are consumers of ufs-device wlun.
11222 *
11223 * Currently, no sd driver is present for wluns.
11224 * Hence the no specific pm operations are performed.
11225 * With ufs design, SSU should be sent to ufs-device wlun.
11226 * Hence register a scsi driver for ufs wluns only.
11227 */
11228 static struct scsi_driver ufs_dev_wlun_template = {
11229 .gendrv = {
11230 .name = "ufs_device_wlun",
11231 .probe = ufshcd_wl_probe,
11232 .remove = ufshcd_wl_remove,
11233 .pm = &ufshcd_wl_pm_ops,
11234 .shutdown = ufshcd_wl_shutdown,
11235 },
11236 };
11237
ufshcd_core_init(void)11238 static int __init ufshcd_core_init(void)
11239 {
11240 int ret;
11241
11242 ufshcd_check_header_layout();
11243
11244 ufs_debugfs_init();
11245
11246 ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
11247 if (ret)
11248 ufs_debugfs_exit();
11249 return ret;
11250 }
11251
ufshcd_core_exit(void)11252 static void __exit ufshcd_core_exit(void)
11253 {
11254 ufs_debugfs_exit();
11255 scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
11256 }
11257
11258 module_init(ufshcd_core_init);
11259 module_exit(ufshcd_core_exit);
11260
11261 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
11262 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
11263 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
11264 MODULE_SOFTDEP("pre: governor_simpleondemand");
11265 MODULE_LICENSE("GPL");
11266