xref: /linux/include/linux/pwm.h (revision f38b7512903a50eaeb300e9c8d9448187dd3959c)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_PWM_H
3 #define __LINUX_PWM_H
4 
5 #include <linux/cdev.h>
6 #include <linux/device.h>
7 #include <linux/err.h>
8 #include <linux/module.h>
9 #include <linux/mutex.h>
10 #include <linux/of.h>
11 
12 MODULE_IMPORT_NS("PWM");
13 
14 struct pwm_chip;
15 
16 /**
17  * enum pwm_polarity - polarity of a PWM signal
18  * @PWM_POLARITY_NORMAL: a high signal for the duration of the duty-
19  * cycle, followed by a low signal for the remainder of the pulse
20  * period
21  * @PWM_POLARITY_INVERSED: a low signal for the duration of the duty-
22  * cycle, followed by a high signal for the remainder of the pulse
23  * period
24  */
25 enum pwm_polarity {
26 	PWM_POLARITY_NORMAL,
27 	PWM_POLARITY_INVERSED,
28 };
29 
30 /**
31  * struct pwm_args - board-dependent PWM arguments
32  * @period: reference period
33  * @polarity: reference polarity
34  *
35  * This structure describes board-dependent arguments attached to a PWM
36  * device. These arguments are usually retrieved from the PWM lookup table or
37  * device tree.
38  *
39  * Do not confuse this with the PWM state: PWM arguments represent the initial
40  * configuration that users want to use on this PWM device rather than the
41  * current PWM hardware state.
42  */
43 struct pwm_args {
44 	u64 period;
45 	enum pwm_polarity polarity;
46 };
47 
48 enum {
49 	PWMF_REQUESTED = 0,
50 	PWMF_EXPORTED = 1,
51 };
52 
53 /**
54  * struct pwm_waveform - description of a PWM waveform
55  * @period_length_ns: PWM period
56  * @duty_length_ns: PWM duty cycle
57  * @duty_offset_ns: offset of the rising edge from the period's start
58  *
59  * This is a representation of a PWM waveform alternative to struct pwm_state
60  * below. It's more expressive than struct pwm_state as it contains a
61  * duty_offset_ns and so can represent offsets other than zero (with .polarity =
62  * PWM_POLARITY_NORMAL) and period - duty_cycle (.polarity =
63  * PWM_POLARITY_INVERSED).
64  *
65  * Note there is no explicit bool for enabled. A "disabled" PWM is represented
66  * by .period_length_ns = 0. Note further that the behaviour of a "disabled" PWM
67  * is undefined. Depending on the hardware's capabilities it might drive the
68  * active or inactive level, go high-z or even continue to toggle.
69  *
70  * The unit for all three members is nanoseconds.
71  */
72 struct pwm_waveform {
73 	u64 period_length_ns;
74 	u64 duty_length_ns;
75 	u64 duty_offset_ns;
76 };
77 
78 /*
79  * struct pwm_state - state of a PWM channel
80  * @period: PWM period (in nanoseconds)
81  * @duty_cycle: PWM duty cycle (in nanoseconds)
82  * @polarity: PWM polarity
83  * @enabled: PWM enabled status
84  * @usage_power: If set, the PWM driver is only required to maintain the power
85  *               output but has more freedom regarding signal form.
86  *               If supported, the signal can be optimized, for example to
87  *               improve EMI by phase shifting individual channels.
88  */
89 struct pwm_state {
90 	u64 period;
91 	u64 duty_cycle;
92 	enum pwm_polarity polarity;
93 	bool enabled;
94 	bool usage_power;
95 };
96 
97 /**
98  * struct pwm_device - PWM channel object
99  * @label: name of the PWM device
100  * @flags: flags associated with the PWM device
101  * @hwpwm: per-chip relative index of the PWM device
102  * @chip: PWM chip providing this PWM device
103  * @args: PWM arguments
104  * @state: last applied state
105  * @last: last implemented state (for PWM_DEBUG)
106  */
107 struct pwm_device {
108 	const char *label;
109 	unsigned long flags;
110 	unsigned int hwpwm;
111 	struct pwm_chip *chip;
112 
113 	struct pwm_args args;
114 	struct pwm_state state;
115 	struct pwm_state last;
116 };
117 
118 /**
119  * pwm_get_state() - retrieve the current PWM state
120  * @pwm: PWM device
121  * @state: state to fill with the current PWM state
122  *
123  * The returned PWM state represents the state that was applied by a previous call to
124  * pwm_apply_might_sleep(). Drivers may have to slightly tweak that state before programming it to
125  * hardware. If pwm_apply_might_sleep() was never called, this returns either the current hardware
126  * state (if supported) or the default settings.
127  */
pwm_get_state(const struct pwm_device * pwm,struct pwm_state * state)128 static inline void pwm_get_state(const struct pwm_device *pwm,
129 				 struct pwm_state *state)
130 {
131 	*state = pwm->state;
132 }
133 
pwm_is_enabled(const struct pwm_device * pwm)134 static inline bool pwm_is_enabled(const struct pwm_device *pwm)
135 {
136 	struct pwm_state state;
137 
138 	pwm_get_state(pwm, &state);
139 
140 	return state.enabled;
141 }
142 
pwm_get_period(const struct pwm_device * pwm)143 static inline u64 pwm_get_period(const struct pwm_device *pwm)
144 {
145 	struct pwm_state state;
146 
147 	pwm_get_state(pwm, &state);
148 
149 	return state.period;
150 }
151 
pwm_get_duty_cycle(const struct pwm_device * pwm)152 static inline u64 pwm_get_duty_cycle(const struct pwm_device *pwm)
153 {
154 	struct pwm_state state;
155 
156 	pwm_get_state(pwm, &state);
157 
158 	return state.duty_cycle;
159 }
160 
pwm_get_polarity(const struct pwm_device * pwm)161 static inline enum pwm_polarity pwm_get_polarity(const struct pwm_device *pwm)
162 {
163 	struct pwm_state state;
164 
165 	pwm_get_state(pwm, &state);
166 
167 	return state.polarity;
168 }
169 
pwm_get_args(const struct pwm_device * pwm,struct pwm_args * args)170 static inline void pwm_get_args(const struct pwm_device *pwm,
171 				struct pwm_args *args)
172 {
173 	*args = pwm->args;
174 }
175 
176 /**
177  * pwm_init_state() - prepare a new state to be applied with pwm_apply_might_sleep()
178  * @pwm: PWM device
179  * @state: state to fill with the prepared PWM state
180  *
181  * This functions prepares a state that can later be tweaked and applied
182  * to the PWM device with pwm_apply_might_sleep(). This is a convenient function
183  * that first retrieves the current PWM state and the replaces the period
184  * and polarity fields with the reference values defined in pwm->args.
185  * Once the function returns, you can adjust the ->enabled and ->duty_cycle
186  * fields according to your needs before calling pwm_apply_might_sleep().
187  *
188  * ->duty_cycle is initially set to zero to avoid cases where the current
189  * ->duty_cycle value exceed the pwm_args->period one, which would trigger
190  * an error if the user calls pwm_apply_might_sleep() without adjusting ->duty_cycle
191  * first.
192  */
pwm_init_state(const struct pwm_device * pwm,struct pwm_state * state)193 static inline void pwm_init_state(const struct pwm_device *pwm,
194 				  struct pwm_state *state)
195 {
196 	struct pwm_args args;
197 
198 	/* First get the current state. */
199 	pwm_get_state(pwm, state);
200 
201 	/* Then fill it with the reference config */
202 	pwm_get_args(pwm, &args);
203 
204 	state->period = args.period;
205 	state->polarity = args.polarity;
206 	state->duty_cycle = 0;
207 	state->usage_power = false;
208 }
209 
210 /**
211  * pwm_get_relative_duty_cycle() - Get a relative duty cycle value
212  * @state: PWM state to extract the duty cycle from
213  * @scale: target scale of the relative duty cycle
214  *
215  * This functions converts the absolute duty cycle stored in @state (expressed
216  * in nanosecond) into a value relative to the period.
217  *
218  * For example if you want to get the duty_cycle expressed in percent, call:
219  *
220  * pwm_get_state(pwm, &state);
221  * duty = pwm_get_relative_duty_cycle(&state, 100);
222  *
223  * Returns: rounded relative duty cycle multiplied by @scale
224  */
225 static inline unsigned int
pwm_get_relative_duty_cycle(const struct pwm_state * state,unsigned int scale)226 pwm_get_relative_duty_cycle(const struct pwm_state *state, unsigned int scale)
227 {
228 	if (!state->period)
229 		return 0;
230 
231 	return DIV_ROUND_CLOSEST_ULL((u64)state->duty_cycle * scale,
232 				     state->period);
233 }
234 
235 /**
236  * pwm_set_relative_duty_cycle() - Set a relative duty cycle value
237  * @state: PWM state to fill
238  * @duty_cycle: relative duty cycle value
239  * @scale: scale in which @duty_cycle is expressed
240  *
241  * This functions converts a relative into an absolute duty cycle (expressed
242  * in nanoseconds), and puts the result in state->duty_cycle.
243  *
244  * For example if you want to configure a 50% duty cycle, call:
245  *
246  * pwm_init_state(pwm, &state);
247  * pwm_set_relative_duty_cycle(&state, 50, 100);
248  * pwm_apply_might_sleep(pwm, &state);
249  *
250  * Returns: 0 on success or ``-EINVAL`` if @duty_cycle and/or @scale are
251  * inconsistent (@scale == 0 or @duty_cycle > @scale)
252  */
253 static inline int
pwm_set_relative_duty_cycle(struct pwm_state * state,unsigned int duty_cycle,unsigned int scale)254 pwm_set_relative_duty_cycle(struct pwm_state *state, unsigned int duty_cycle,
255 			    unsigned int scale)
256 {
257 	if (!scale || duty_cycle > scale)
258 		return -EINVAL;
259 
260 	state->duty_cycle = DIV_ROUND_CLOSEST_ULL((u64)duty_cycle *
261 						  state->period,
262 						  scale);
263 
264 	return 0;
265 }
266 
267 /**
268  * struct pwm_capture - PWM capture data
269  * @period: period of the PWM signal (in nanoseconds)
270  * @duty_cycle: duty cycle of the PWM signal (in nanoseconds)
271  */
272 struct pwm_capture {
273 	unsigned int period;
274 	unsigned int duty_cycle;
275 };
276 
277 #define PWM_WFHWSIZE 20
278 
279 /**
280  * struct pwm_ops - PWM controller operations
281  * @request: optional hook for requesting a PWM
282  * @free: optional hook for freeing a PWM
283  * @capture: capture and report PWM signal
284  * @sizeof_wfhw: size (in bytes) of driver specific waveform presentation
285  * @round_waveform_tohw: convert a struct pwm_waveform to driver specific presentation
286  * @round_waveform_fromhw: convert a driver specific waveform presentation to struct pwm_waveform
287  * @read_waveform: read driver specific waveform presentation from hardware
288  * @write_waveform: write driver specific waveform presentation to hardware
289  * @apply: atomically apply a new PWM config
290  * @get_state: get the current PWM state.
291  */
292 struct pwm_ops {
293 	int (*request)(struct pwm_chip *chip, struct pwm_device *pwm);
294 	void (*free)(struct pwm_chip *chip, struct pwm_device *pwm);
295 	int (*capture)(struct pwm_chip *chip, struct pwm_device *pwm,
296 		       struct pwm_capture *result, unsigned long timeout);
297 
298 	size_t sizeof_wfhw;
299 	int (*round_waveform_tohw)(struct pwm_chip *chip, struct pwm_device *pwm,
300 				   const struct pwm_waveform *wf, void *wfhw);
301 	int (*round_waveform_fromhw)(struct pwm_chip *chip, struct pwm_device *pwm,
302 				     const void *wfhw, struct pwm_waveform *wf);
303 	int (*read_waveform)(struct pwm_chip *chip, struct pwm_device *pwm,
304 			    void *wfhw);
305 	int (*write_waveform)(struct pwm_chip *chip, struct pwm_device *pwm,
306 			      const void *wfhw);
307 
308 	int (*apply)(struct pwm_chip *chip, struct pwm_device *pwm,
309 		     const struct pwm_state *state);
310 	int (*get_state)(struct pwm_chip *chip, struct pwm_device *pwm,
311 			 struct pwm_state *state);
312 };
313 
314 /**
315  * struct pwm_chip - abstract a PWM controller
316  * @dev: device providing the PWMs
317  * @cdev: &struct cdev for this device
318  * @ops: callbacks for this PWM controller
319  * @owner: module providing this chip
320  * @id: unique number of this PWM chip
321  * @npwm: number of PWMs controlled by this chip
322  * @of_xlate: request a PWM device given a device tree PWM specifier
323  * @atomic: can the driver's ->apply() be called in atomic context
324  * @uses_pwmchip_alloc: signals if pwmchip_allow was used to allocate this chip
325  * @operational: signals if the chip can be used (or is already deregistered)
326  * @nonatomic_lock: mutex for nonatomic chips
327  * @atomic_lock: mutex for atomic chips
328  * @pwms: array of PWM devices allocated by the framework
329  */
330 struct pwm_chip {
331 	struct device dev;
332 	struct cdev cdev;
333 	const struct pwm_ops *ops;
334 	struct module *owner;
335 	unsigned int id;
336 	unsigned int npwm;
337 
338 	struct pwm_device * (*of_xlate)(struct pwm_chip *chip,
339 					const struct of_phandle_args *args);
340 	bool atomic;
341 
342 	/* only used internally by the PWM framework */
343 	bool uses_pwmchip_alloc;
344 	bool operational;
345 	union {
346 		/*
347 		 * depending on the chip being atomic or not either the mutex or
348 		 * the spinlock is used. It protects .operational and
349 		 * synchronizes the callbacks in .ops
350 		 */
351 		struct mutex nonatomic_lock;
352 		spinlock_t atomic_lock;
353 	};
354 	struct pwm_device pwms[] __counted_by(npwm);
355 };
356 
357 /**
358  * pwmchip_supports_waveform() - checks if the given chip supports waveform callbacks
359  * @chip: The pwm_chip to test
360  *
361  * Returns: true iff the pwm chip support the waveform functions like
362  * pwm_set_waveform_might_sleep() and pwm_round_waveform_might_sleep()
363  */
pwmchip_supports_waveform(struct pwm_chip * chip)364 static inline bool pwmchip_supports_waveform(struct pwm_chip *chip)
365 {
366 	/*
367 	 * only check for .write_waveform(). If that is available,
368 	 * .round_waveform_tohw() and .round_waveform_fromhw() asserted to be
369 	 * available, too, in pwmchip_add().
370 	 */
371 	return chip->ops->write_waveform != NULL;
372 }
373 
pwmchip_parent(const struct pwm_chip * chip)374 static inline struct device *pwmchip_parent(const struct pwm_chip *chip)
375 {
376 	return chip->dev.parent;
377 }
378 
pwmchip_get_drvdata(const struct pwm_chip * chip)379 static inline void *pwmchip_get_drvdata(const struct pwm_chip *chip)
380 {
381 	return dev_get_drvdata(&chip->dev);
382 }
383 
pwmchip_set_drvdata(struct pwm_chip * chip,void * data)384 static inline void pwmchip_set_drvdata(struct pwm_chip *chip, void *data)
385 {
386 	dev_set_drvdata(&chip->dev, data);
387 }
388 
389 #if IS_REACHABLE(CONFIG_PWM)
390 
391 /* PWM consumer APIs */
392 int pwm_round_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf);
393 int pwm_get_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf);
394 int pwm_set_waveform_might_sleep(struct pwm_device *pwm, const struct pwm_waveform *wf, bool exact);
395 int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state);
396 int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state);
397 int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state);
398 int pwm_adjust_config(struct pwm_device *pwm);
399 
400 /**
401  * pwm_config() - change a PWM device configuration
402  * @pwm: PWM device
403  * @duty_ns: "on" time (in nanoseconds)
404  * @period_ns: duration (in nanoseconds) of one cycle
405  *
406  * Returns: 0 on success or a negative error code on failure.
407  */
pwm_config(struct pwm_device * pwm,int duty_ns,int period_ns)408 static inline int pwm_config(struct pwm_device *pwm, int duty_ns,
409 			     int period_ns)
410 {
411 	struct pwm_state state;
412 
413 	if (!pwm)
414 		return -EINVAL;
415 
416 	if (duty_ns < 0 || period_ns < 0)
417 		return -EINVAL;
418 
419 	pwm_get_state(pwm, &state);
420 	if (state.duty_cycle == duty_ns && state.period == period_ns)
421 		return 0;
422 
423 	state.duty_cycle = duty_ns;
424 	state.period = period_ns;
425 	return pwm_apply_might_sleep(pwm, &state);
426 }
427 
428 /**
429  * pwm_enable() - start a PWM output toggling
430  * @pwm: PWM device
431  *
432  * Returns: 0 on success or a negative error code on failure.
433  */
pwm_enable(struct pwm_device * pwm)434 static inline int pwm_enable(struct pwm_device *pwm)
435 {
436 	struct pwm_state state;
437 
438 	if (!pwm)
439 		return -EINVAL;
440 
441 	pwm_get_state(pwm, &state);
442 	if (state.enabled)
443 		return 0;
444 
445 	state.enabled = true;
446 	return pwm_apply_might_sleep(pwm, &state);
447 }
448 
449 /**
450  * pwm_disable() - stop a PWM output toggling
451  * @pwm: PWM device
452  */
pwm_disable(struct pwm_device * pwm)453 static inline void pwm_disable(struct pwm_device *pwm)
454 {
455 	struct pwm_state state;
456 
457 	if (!pwm)
458 		return;
459 
460 	pwm_get_state(pwm, &state);
461 	if (!state.enabled)
462 		return;
463 
464 	state.enabled = false;
465 	pwm_apply_might_sleep(pwm, &state);
466 }
467 
468 /**
469  * pwm_might_sleep() - is pwm_apply_atomic() supported?
470  * @pwm: PWM device
471  *
472  * Returns: false if pwm_apply_atomic() can be called from atomic context.
473  */
pwm_might_sleep(struct pwm_device * pwm)474 static inline bool pwm_might_sleep(struct pwm_device *pwm)
475 {
476 	return !pwm->chip->atomic;
477 }
478 
479 /* PWM provider APIs */
480 void pwmchip_put(struct pwm_chip *chip);
481 struct pwm_chip *pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv);
482 struct pwm_chip *devm_pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv);
483 
484 int __pwmchip_add(struct pwm_chip *chip, struct module *owner);
485 #define pwmchip_add(chip) __pwmchip_add(chip, THIS_MODULE)
486 void pwmchip_remove(struct pwm_chip *chip);
487 
488 int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner);
489 #define devm_pwmchip_add(dev, chip) __devm_pwmchip_add(dev, chip, THIS_MODULE)
490 
491 struct pwm_device *of_pwm_xlate_with_flags(struct pwm_chip *chip,
492 		const struct of_phandle_args *args);
493 struct pwm_device *of_pwm_single_xlate(struct pwm_chip *chip,
494 				       const struct of_phandle_args *args);
495 
496 struct pwm_device *pwm_get(struct device *dev, const char *con_id);
497 void pwm_put(struct pwm_device *pwm);
498 
499 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id);
500 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
501 				       struct fwnode_handle *fwnode,
502 				       const char *con_id);
503 #else
pwm_might_sleep(struct pwm_device * pwm)504 static inline bool pwm_might_sleep(struct pwm_device *pwm)
505 {
506 	return true;
507 }
508 
pwm_apply_might_sleep(struct pwm_device * pwm,const struct pwm_state * state)509 static inline int pwm_apply_might_sleep(struct pwm_device *pwm,
510 					const struct pwm_state *state)
511 {
512 	might_sleep();
513 	return -EOPNOTSUPP;
514 }
515 
pwm_apply_atomic(struct pwm_device * pwm,const struct pwm_state * state)516 static inline int pwm_apply_atomic(struct pwm_device *pwm,
517 				   const struct pwm_state *state)
518 {
519 	return -EOPNOTSUPP;
520 }
521 
pwm_get_state_hw(struct pwm_device * pwm,struct pwm_state * state)522 static inline int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state)
523 {
524 	return -EOPNOTSUPP;
525 }
526 
pwm_adjust_config(struct pwm_device * pwm)527 static inline int pwm_adjust_config(struct pwm_device *pwm)
528 {
529 	return -EOPNOTSUPP;
530 }
531 
pwm_config(struct pwm_device * pwm,int duty_ns,int period_ns)532 static inline int pwm_config(struct pwm_device *pwm, int duty_ns,
533 			     int period_ns)
534 {
535 	might_sleep();
536 	return -EINVAL;
537 }
538 
pwm_enable(struct pwm_device * pwm)539 static inline int pwm_enable(struct pwm_device *pwm)
540 {
541 	might_sleep();
542 	return -EINVAL;
543 }
544 
pwm_disable(struct pwm_device * pwm)545 static inline void pwm_disable(struct pwm_device *pwm)
546 {
547 	might_sleep();
548 }
549 
pwmchip_put(struct pwm_chip * chip)550 static inline void pwmchip_put(struct pwm_chip *chip)
551 {
552 }
553 
pwmchip_alloc(struct device * parent,unsigned int npwm,size_t sizeof_priv)554 static inline struct pwm_chip *pwmchip_alloc(struct device *parent,
555 					     unsigned int npwm,
556 					     size_t sizeof_priv)
557 {
558 	return ERR_PTR(-EINVAL);
559 }
560 
devm_pwmchip_alloc(struct device * parent,unsigned int npwm,size_t sizeof_priv)561 static inline struct pwm_chip *devm_pwmchip_alloc(struct device *parent,
562 						  unsigned int npwm,
563 						  size_t sizeof_priv)
564 {
565 	return pwmchip_alloc(parent, npwm, sizeof_priv);
566 }
567 
pwmchip_add(struct pwm_chip * chip)568 static inline int pwmchip_add(struct pwm_chip *chip)
569 {
570 	return -EINVAL;
571 }
572 
pwmchip_remove(struct pwm_chip * chip)573 static inline int pwmchip_remove(struct pwm_chip *chip)
574 {
575 	return -EINVAL;
576 }
577 
devm_pwmchip_add(struct device * dev,struct pwm_chip * chip)578 static inline int devm_pwmchip_add(struct device *dev, struct pwm_chip *chip)
579 {
580 	return -EINVAL;
581 }
582 
pwm_get(struct device * dev,const char * consumer)583 static inline struct pwm_device *pwm_get(struct device *dev,
584 					 const char *consumer)
585 {
586 	might_sleep();
587 	return ERR_PTR(-ENODEV);
588 }
589 
pwm_put(struct pwm_device * pwm)590 static inline void pwm_put(struct pwm_device *pwm)
591 {
592 	might_sleep();
593 }
594 
devm_pwm_get(struct device * dev,const char * consumer)595 static inline struct pwm_device *devm_pwm_get(struct device *dev,
596 					      const char *consumer)
597 {
598 	might_sleep();
599 	return ERR_PTR(-ENODEV);
600 }
601 
602 static inline struct pwm_device *
devm_fwnode_pwm_get(struct device * dev,struct fwnode_handle * fwnode,const char * con_id)603 devm_fwnode_pwm_get(struct device *dev, struct fwnode_handle *fwnode,
604 		    const char *con_id)
605 {
606 	might_sleep();
607 	return ERR_PTR(-ENODEV);
608 }
609 #endif
610 
pwm_apply_args(struct pwm_device * pwm)611 static inline void pwm_apply_args(struct pwm_device *pwm)
612 {
613 	struct pwm_state state = { };
614 
615 	/*
616 	 * PWM users calling pwm_apply_args() expect to have a fresh config
617 	 * where the polarity and period are set according to pwm_args info.
618 	 * The problem is, polarity can only be changed when the PWM is
619 	 * disabled.
620 	 *
621 	 * PWM drivers supporting hardware readout may declare the PWM device
622 	 * as enabled, and prevent polarity setting, which changes from the
623 	 * existing behavior, where all PWM devices are declared as disabled
624 	 * at startup (even if they are actually enabled), thus authorizing
625 	 * polarity setting.
626 	 *
627 	 * To fulfill this requirement, we apply a new state which disables
628 	 * the PWM device and set the reference period and polarity config.
629 	 *
630 	 * Note that PWM users requiring a smooth handover between the
631 	 * bootloader and the kernel (like critical regulators controlled by
632 	 * PWM devices) will have to switch to the atomic API and avoid calling
633 	 * pwm_apply_args().
634 	 */
635 
636 	state.enabled = false;
637 	state.polarity = pwm->args.polarity;
638 	state.period = pwm->args.period;
639 	state.usage_power = false;
640 
641 	pwm_apply_might_sleep(pwm, &state);
642 }
643 
644 struct pwm_lookup {
645 	struct list_head list;
646 	const char *provider;
647 	unsigned int index;
648 	const char *dev_id;
649 	const char *con_id;
650 	unsigned int period;
651 	enum pwm_polarity polarity;
652 	const char *module; /* optional, may be NULL */
653 };
654 
655 #define PWM_LOOKUP_WITH_MODULE(_provider, _index, _dev_id, _con_id,	\
656 			       _period, _polarity, _module)		\
657 	{								\
658 		.provider = _provider,					\
659 		.index = _index,					\
660 		.dev_id = _dev_id,					\
661 		.con_id = _con_id,					\
662 		.period = _period,					\
663 		.polarity = _polarity,					\
664 		.module = _module,					\
665 	}
666 
667 #define PWM_LOOKUP(_provider, _index, _dev_id, _con_id, _period, _polarity) \
668 	PWM_LOOKUP_WITH_MODULE(_provider, _index, _dev_id, _con_id, _period, \
669 			       _polarity, NULL)
670 
671 #if IS_REACHABLE(CONFIG_PWM)
672 void pwm_add_table(struct pwm_lookup *table, size_t num);
673 void pwm_remove_table(struct pwm_lookup *table, size_t num);
674 #else
pwm_add_table(struct pwm_lookup * table,size_t num)675 static inline void pwm_add_table(struct pwm_lookup *table, size_t num)
676 {
677 }
678 
pwm_remove_table(struct pwm_lookup * table,size_t num)679 static inline void pwm_remove_table(struct pwm_lookup *table, size_t num)
680 {
681 }
682 #endif
683 
684 #endif /* __LINUX_PWM_H */
685