xref: /linux/kernel/exit.c (revision c6439bfaabf25b736154ac5640c677da2c085db4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/freezer.h>
29 #include <linux/binfmts.h>
30 #include <linux/nsproxy.h>
31 #include <linux/pid_namespace.h>
32 #include <linux/ptrace.h>
33 #include <linux/profile.h>
34 #include <linux/mount.h>
35 #include <linux/proc_fs.h>
36 #include <linux/kthread.h>
37 #include <linux/mempolicy.h>
38 #include <linux/taskstats_kern.h>
39 #include <linux/delayacct.h>
40 #include <linux/cgroup.h>
41 #include <linux/syscalls.h>
42 #include <linux/signal.h>
43 #include <linux/posix-timers.h>
44 #include <linux/cn_proc.h>
45 #include <linux/mutex.h>
46 #include <linux/futex.h>
47 #include <linux/pipe_fs_i.h>
48 #include <linux/audit.h> /* for audit_free() */
49 #include <linux/resource.h>
50 #include <linux/task_io_accounting_ops.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_work.h>
53 #include <linux/fs_struct.h>
54 #include <linux/init_task.h>
55 #include <linux/perf_event.h>
56 #include <trace/events/sched.h>
57 #include <linux/hw_breakpoint.h>
58 #include <linux/oom.h>
59 #include <linux/writeback.h>
60 #include <linux/shm.h>
61 #include <linux/kcov.h>
62 #include <linux/kmsan.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/io_uring.h>
67 #include <linux/kprobes.h>
68 #include <linux/rethook.h>
69 #include <linux/sysfs.h>
70 #include <linux/user_events.h>
71 #include <linux/unwind_deferred.h>
72 #include <linux/uaccess.h>
73 #include <linux/pidfs.h>
74 
75 #include <uapi/linux/wait.h>
76 
77 #include <asm/unistd.h>
78 #include <asm/mmu_context.h>
79 
80 #include "exit.h"
81 
82 /*
83  * The default value should be high enough to not crash a system that randomly
84  * crashes its kernel from time to time, but low enough to at least not permit
85  * overflowing 32-bit refcounts or the ldsem writer count.
86  */
87 static unsigned int oops_limit = 10000;
88 
89 #ifdef CONFIG_SYSCTL
90 static const struct ctl_table kern_exit_table[] = {
91 	{
92 		.procname       = "oops_limit",
93 		.data           = &oops_limit,
94 		.maxlen         = sizeof(oops_limit),
95 		.mode           = 0644,
96 		.proc_handler   = proc_douintvec,
97 	},
98 };
99 
kernel_exit_sysctls_init(void)100 static __init int kernel_exit_sysctls_init(void)
101 {
102 	register_sysctl_init("kernel", kern_exit_table);
103 	return 0;
104 }
105 late_initcall(kernel_exit_sysctls_init);
106 #endif
107 
108 static atomic_t oops_count = ATOMIC_INIT(0);
109 
110 #ifdef CONFIG_SYSFS
oops_count_show(struct kobject * kobj,struct kobj_attribute * attr,char * page)111 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
112 			       char *page)
113 {
114 	return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
115 }
116 
117 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
118 
kernel_exit_sysfs_init(void)119 static __init int kernel_exit_sysfs_init(void)
120 {
121 	sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
122 	return 0;
123 }
124 late_initcall(kernel_exit_sysfs_init);
125 #endif
126 
127 /*
128  * For things release_task() would like to do *after* tasklist_lock is released.
129  */
130 struct release_task_post {
131 	struct pid *pids[PIDTYPE_MAX];
132 };
133 
__unhash_process(struct release_task_post * post,struct task_struct * p,bool group_dead)134 static void __unhash_process(struct release_task_post *post, struct task_struct *p,
135 			     bool group_dead)
136 {
137 	struct pid *pid = task_pid(p);
138 
139 	nr_threads--;
140 
141 	detach_pid(post->pids, p, PIDTYPE_PID);
142 	wake_up_all(&pid->wait_pidfd);
143 
144 	if (group_dead) {
145 		detach_pid(post->pids, p, PIDTYPE_TGID);
146 		detach_pid(post->pids, p, PIDTYPE_PGID);
147 		detach_pid(post->pids, p, PIDTYPE_SID);
148 
149 		list_del_rcu(&p->tasks);
150 		list_del_init(&p->sibling);
151 		__this_cpu_dec(process_counts);
152 	}
153 	list_del_rcu(&p->thread_node);
154 }
155 
156 /*
157  * This function expects the tasklist_lock write-locked.
158  */
__exit_signal(struct release_task_post * post,struct task_struct * tsk)159 static void __exit_signal(struct release_task_post *post, struct task_struct *tsk)
160 {
161 	struct signal_struct *sig = tsk->signal;
162 	bool group_dead = thread_group_leader(tsk);
163 	struct sighand_struct *sighand;
164 	struct tty_struct *tty;
165 	u64 utime, stime;
166 
167 	sighand = rcu_dereference_check(tsk->sighand,
168 					lockdep_tasklist_lock_is_held());
169 	spin_lock(&sighand->siglock);
170 
171 #ifdef CONFIG_POSIX_TIMERS
172 	posix_cpu_timers_exit(tsk);
173 	if (group_dead)
174 		posix_cpu_timers_exit_group(tsk);
175 #endif
176 
177 	if (group_dead) {
178 		tty = sig->tty;
179 		sig->tty = NULL;
180 	} else {
181 		/*
182 		 * If there is any task waiting for the group exit
183 		 * then notify it:
184 		 */
185 		if (sig->notify_count > 0 && !--sig->notify_count)
186 			wake_up_process(sig->group_exec_task);
187 
188 		if (tsk == sig->curr_target)
189 			sig->curr_target = next_thread(tsk);
190 	}
191 
192 	/*
193 	 * Accumulate here the counters for all threads as they die. We could
194 	 * skip the group leader because it is the last user of signal_struct,
195 	 * but we want to avoid the race with thread_group_cputime() which can
196 	 * see the empty ->thread_head list.
197 	 */
198 	task_cputime(tsk, &utime, &stime);
199 	write_seqlock(&sig->stats_lock);
200 	sig->utime += utime;
201 	sig->stime += stime;
202 	sig->gtime += task_gtime(tsk);
203 	sig->min_flt += tsk->min_flt;
204 	sig->maj_flt += tsk->maj_flt;
205 	sig->nvcsw += tsk->nvcsw;
206 	sig->nivcsw += tsk->nivcsw;
207 	sig->inblock += task_io_get_inblock(tsk);
208 	sig->oublock += task_io_get_oublock(tsk);
209 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
210 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
211 	sig->nr_threads--;
212 	__unhash_process(post, tsk, group_dead);
213 	write_sequnlock(&sig->stats_lock);
214 
215 	tsk->sighand = NULL;
216 	spin_unlock(&sighand->siglock);
217 
218 	__cleanup_sighand(sighand);
219 	if (group_dead)
220 		tty_kref_put(tty);
221 }
222 
delayed_put_task_struct(struct rcu_head * rhp)223 static void delayed_put_task_struct(struct rcu_head *rhp)
224 {
225 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
226 
227 	kprobe_flush_task(tsk);
228 	rethook_flush_task(tsk);
229 	perf_event_delayed_put(tsk);
230 	trace_sched_process_free(tsk);
231 	put_task_struct(tsk);
232 }
233 
put_task_struct_rcu_user(struct task_struct * task)234 void put_task_struct_rcu_user(struct task_struct *task)
235 {
236 	if (refcount_dec_and_test(&task->rcu_users))
237 		call_rcu(&task->rcu, delayed_put_task_struct);
238 }
239 
release_thread(struct task_struct * dead_task)240 void __weak release_thread(struct task_struct *dead_task)
241 {
242 }
243 
release_task(struct task_struct * p)244 void release_task(struct task_struct *p)
245 {
246 	struct release_task_post post;
247 	struct task_struct *leader;
248 	struct pid *thread_pid;
249 	int zap_leader;
250 repeat:
251 	memset(&post, 0, sizeof(post));
252 
253 	/* don't need to get the RCU readlock here - the process is dead and
254 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
255 	rcu_read_lock();
256 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
257 	rcu_read_unlock();
258 
259 	pidfs_exit(p);
260 	cgroup_release(p);
261 
262 	/* Retrieve @thread_pid before __unhash_process() may set it to NULL. */
263 	thread_pid = task_pid(p);
264 
265 	write_lock_irq(&tasklist_lock);
266 	ptrace_release_task(p);
267 	__exit_signal(&post, p);
268 
269 	/*
270 	 * If we are the last non-leader member of the thread
271 	 * group, and the leader is zombie, then notify the
272 	 * group leader's parent process. (if it wants notification.)
273 	 */
274 	zap_leader = 0;
275 	leader = p->group_leader;
276 	if (leader != p && thread_group_empty(leader)
277 			&& leader->exit_state == EXIT_ZOMBIE) {
278 		/* for pidfs_exit() and do_notify_parent() */
279 		if (leader->signal->flags & SIGNAL_GROUP_EXIT)
280 			leader->exit_code = leader->signal->group_exit_code;
281 		/*
282 		 * If we were the last child thread and the leader has
283 		 * exited already, and the leader's parent ignores SIGCHLD,
284 		 * then we are the one who should release the leader.
285 		 */
286 		zap_leader = do_notify_parent(leader, leader->exit_signal);
287 		if (zap_leader)
288 			leader->exit_state = EXIT_DEAD;
289 	}
290 
291 	write_unlock_irq(&tasklist_lock);
292 	/* @thread_pid can't go away until free_pids() below */
293 	proc_flush_pid(thread_pid);
294 	add_device_randomness(&p->se.sum_exec_runtime,
295 			      sizeof(p->se.sum_exec_runtime));
296 	free_pids(post.pids);
297 	release_thread(p);
298 	/*
299 	 * This task was already removed from the process/thread/pid lists
300 	 * and lock_task_sighand(p) can't succeed. Nobody else can touch
301 	 * ->pending or, if group dead, signal->shared_pending. We can call
302 	 * flush_sigqueue() lockless.
303 	 */
304 	flush_sigqueue(&p->pending);
305 	if (thread_group_leader(p))
306 		flush_sigqueue(&p->signal->shared_pending);
307 
308 	put_task_struct_rcu_user(p);
309 
310 	p = leader;
311 	if (unlikely(zap_leader))
312 		goto repeat;
313 }
314 
rcuwait_wake_up(struct rcuwait * w)315 int rcuwait_wake_up(struct rcuwait *w)
316 {
317 	int ret = 0;
318 	struct task_struct *task;
319 
320 	rcu_read_lock();
321 
322 	/*
323 	 * Order condition vs @task, such that everything prior to the load
324 	 * of @task is visible. This is the condition as to why the user called
325 	 * rcuwait_wake() in the first place. Pairs with set_current_state()
326 	 * barrier (A) in rcuwait_wait_event().
327 	 *
328 	 *    WAIT                WAKE
329 	 *    [S] tsk = current	  [S] cond = true
330 	 *        MB (A)	      MB (B)
331 	 *    [L] cond		  [L] tsk
332 	 */
333 	smp_mb(); /* (B) */
334 
335 	task = rcu_dereference(w->task);
336 	if (task)
337 		ret = wake_up_process(task);
338 	rcu_read_unlock();
339 
340 	return ret;
341 }
342 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
343 
344 /*
345  * Determine if a process group is "orphaned", according to the POSIX
346  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
347  * by terminal-generated stop signals.  Newly orphaned process groups are
348  * to receive a SIGHUP and a SIGCONT.
349  *
350  * "I ask you, have you ever known what it is to be an orphan?"
351  */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)352 static int will_become_orphaned_pgrp(struct pid *pgrp,
353 					struct task_struct *ignored_task)
354 {
355 	struct task_struct *p;
356 
357 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
358 		if ((p == ignored_task) ||
359 		    (p->exit_state && thread_group_empty(p)) ||
360 		    is_global_init(p->real_parent))
361 			continue;
362 
363 		if (task_pgrp(p->real_parent) != pgrp &&
364 		    task_session(p->real_parent) == task_session(p))
365 			return 0;
366 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
367 
368 	return 1;
369 }
370 
is_current_pgrp_orphaned(void)371 int is_current_pgrp_orphaned(void)
372 {
373 	int retval;
374 
375 	read_lock(&tasklist_lock);
376 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
377 	read_unlock(&tasklist_lock);
378 
379 	return retval;
380 }
381 
has_stopped_jobs(struct pid * pgrp)382 static bool has_stopped_jobs(struct pid *pgrp)
383 {
384 	struct task_struct *p;
385 
386 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
387 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
388 			return true;
389 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
390 
391 	return false;
392 }
393 
394 /*
395  * Check to see if any process groups have become orphaned as
396  * a result of our exiting, and if they have any stopped jobs,
397  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
398  */
399 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)400 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
401 {
402 	struct pid *pgrp = task_pgrp(tsk);
403 	struct task_struct *ignored_task = tsk;
404 
405 	if (!parent)
406 		/* exit: our father is in a different pgrp than
407 		 * we are and we were the only connection outside.
408 		 */
409 		parent = tsk->real_parent;
410 	else
411 		/* reparent: our child is in a different pgrp than
412 		 * we are, and it was the only connection outside.
413 		 */
414 		ignored_task = NULL;
415 
416 	if (task_pgrp(parent) != pgrp &&
417 	    task_session(parent) == task_session(tsk) &&
418 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
419 	    has_stopped_jobs(pgrp)) {
420 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
421 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
422 	}
423 }
424 
coredump_task_exit(struct task_struct * tsk,struct core_state * core_state)425 static void coredump_task_exit(struct task_struct *tsk,
426 			       struct core_state *core_state)
427 {
428 	struct core_thread self;
429 
430 	self.task = tsk;
431 	if (self.task->flags & PF_SIGNALED)
432 		self.next = xchg(&core_state->dumper.next, &self);
433 	else
434 		self.task = NULL;
435 	/*
436 	 * Implies mb(), the result of xchg() must be visible
437 	 * to core_state->dumper.
438 	 */
439 	if (atomic_dec_and_test(&core_state->nr_threads))
440 		complete(&core_state->startup);
441 
442 	for (;;) {
443 		set_current_state(TASK_IDLE|TASK_FREEZABLE);
444 		if (!self.task) /* see coredump_finish() */
445 			break;
446 		schedule();
447 	}
448 	__set_current_state(TASK_RUNNING);
449 }
450 
451 #ifdef CONFIG_MEMCG
452 /* drops tasklist_lock if succeeds */
__try_to_set_owner(struct task_struct * tsk,struct mm_struct * mm)453 static bool __try_to_set_owner(struct task_struct *tsk, struct mm_struct *mm)
454 {
455 	bool ret = false;
456 
457 	task_lock(tsk);
458 	if (likely(tsk->mm == mm)) {
459 		/* tsk can't pass exit_mm/exec_mmap and exit */
460 		read_unlock(&tasklist_lock);
461 		WRITE_ONCE(mm->owner, tsk);
462 		lru_gen_migrate_mm(mm);
463 		ret = true;
464 	}
465 	task_unlock(tsk);
466 	return ret;
467 }
468 
try_to_set_owner(struct task_struct * g,struct mm_struct * mm)469 static bool try_to_set_owner(struct task_struct *g, struct mm_struct *mm)
470 {
471 	struct task_struct *t;
472 
473 	for_each_thread(g, t) {
474 		struct mm_struct *t_mm = READ_ONCE(t->mm);
475 		if (t_mm == mm) {
476 			if (__try_to_set_owner(t, mm))
477 				return true;
478 		} else if (t_mm)
479 			break;
480 	}
481 
482 	return false;
483 }
484 
485 /*
486  * A task is exiting.   If it owned this mm, find a new owner for the mm.
487  */
mm_update_next_owner(struct mm_struct * mm)488 void mm_update_next_owner(struct mm_struct *mm)
489 {
490 	struct task_struct *g, *p = current;
491 
492 	/*
493 	 * If the exiting or execing task is not the owner, it's
494 	 * someone else's problem.
495 	 */
496 	if (mm->owner != p)
497 		return;
498 	/*
499 	 * The current owner is exiting/execing and there are no other
500 	 * candidates.  Do not leave the mm pointing to a possibly
501 	 * freed task structure.
502 	 */
503 	if (atomic_read(&mm->mm_users) <= 1) {
504 		WRITE_ONCE(mm->owner, NULL);
505 		return;
506 	}
507 
508 	read_lock(&tasklist_lock);
509 	/*
510 	 * Search in the children
511 	 */
512 	list_for_each_entry(g, &p->children, sibling) {
513 		if (try_to_set_owner(g, mm))
514 			goto ret;
515 	}
516 	/*
517 	 * Search in the siblings
518 	 */
519 	list_for_each_entry(g, &p->real_parent->children, sibling) {
520 		if (try_to_set_owner(g, mm))
521 			goto ret;
522 	}
523 	/*
524 	 * Search through everything else, we should not get here often.
525 	 */
526 	for_each_process(g) {
527 		if (atomic_read(&mm->mm_users) <= 1)
528 			break;
529 		if (g->flags & PF_KTHREAD)
530 			continue;
531 		if (try_to_set_owner(g, mm))
532 			goto ret;
533 	}
534 	read_unlock(&tasklist_lock);
535 	/*
536 	 * We found no owner yet mm_users > 1: this implies that we are
537 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
538 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
539 	 */
540 	WRITE_ONCE(mm->owner, NULL);
541  ret:
542 	return;
543 
544 }
545 #endif /* CONFIG_MEMCG */
546 
547 /*
548  * Turn us into a lazy TLB process if we
549  * aren't already..
550  */
exit_mm(void)551 static void exit_mm(void)
552 {
553 	struct mm_struct *mm = current->mm;
554 
555 	exit_mm_release(current, mm);
556 	if (!mm)
557 		return;
558 	mmap_read_lock(mm);
559 	mmgrab_lazy_tlb(mm);
560 	BUG_ON(mm != current->active_mm);
561 	/* more a memory barrier than a real lock */
562 	task_lock(current);
563 	/*
564 	 * When a thread stops operating on an address space, the loop
565 	 * in membarrier_private_expedited() may not observe that
566 	 * tsk->mm, and the loop in membarrier_global_expedited() may
567 	 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
568 	 * rq->membarrier_state, so those would not issue an IPI.
569 	 * Membarrier requires a memory barrier after accessing
570 	 * user-space memory, before clearing tsk->mm or the
571 	 * rq->membarrier_state.
572 	 */
573 	smp_mb__after_spinlock();
574 	local_irq_disable();
575 	current->mm = NULL;
576 	membarrier_update_current_mm(NULL);
577 	enter_lazy_tlb(mm, current);
578 	local_irq_enable();
579 	task_unlock(current);
580 	mmap_read_unlock(mm);
581 	mm_update_next_owner(mm);
582 	mmput(mm);
583 	if (test_thread_flag(TIF_MEMDIE))
584 		exit_oom_victim();
585 }
586 
find_alive_thread(struct task_struct * p)587 static struct task_struct *find_alive_thread(struct task_struct *p)
588 {
589 	struct task_struct *t;
590 
591 	for_each_thread(p, t) {
592 		if (!(t->flags & PF_EXITING))
593 			return t;
594 	}
595 	return NULL;
596 }
597 
find_child_reaper(struct task_struct * father,struct list_head * dead)598 static struct task_struct *find_child_reaper(struct task_struct *father,
599 						struct list_head *dead)
600 	__releases(&tasklist_lock)
601 	__acquires(&tasklist_lock)
602 {
603 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
604 	struct task_struct *reaper = pid_ns->child_reaper;
605 	struct task_struct *p, *n;
606 
607 	if (likely(reaper != father))
608 		return reaper;
609 
610 	reaper = find_alive_thread(father);
611 	if (reaper) {
612 		pid_ns->child_reaper = reaper;
613 		return reaper;
614 	}
615 
616 	write_unlock_irq(&tasklist_lock);
617 
618 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
619 		list_del_init(&p->ptrace_entry);
620 		release_task(p);
621 	}
622 
623 	zap_pid_ns_processes(pid_ns);
624 	write_lock_irq(&tasklist_lock);
625 
626 	return father;
627 }
628 
629 /*
630  * When we die, we re-parent all our children, and try to:
631  * 1. give them to another thread in our thread group, if such a member exists
632  * 2. give it to the first ancestor process which prctl'd itself as a
633  *    child_subreaper for its children (like a service manager)
634  * 3. give it to the init process (PID 1) in our pid namespace
635  */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)636 static struct task_struct *find_new_reaper(struct task_struct *father,
637 					   struct task_struct *child_reaper)
638 {
639 	struct task_struct *thread, *reaper;
640 
641 	thread = find_alive_thread(father);
642 	if (thread)
643 		return thread;
644 
645 	if (father->signal->has_child_subreaper) {
646 		unsigned int ns_level = task_pid(father)->level;
647 		/*
648 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
649 		 * We can't check reaper != child_reaper to ensure we do not
650 		 * cross the namespaces, the exiting parent could be injected
651 		 * by setns() + fork().
652 		 * We check pid->level, this is slightly more efficient than
653 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
654 		 */
655 		for (reaper = father->real_parent;
656 		     task_pid(reaper)->level == ns_level;
657 		     reaper = reaper->real_parent) {
658 			if (reaper == &init_task)
659 				break;
660 			if (!reaper->signal->is_child_subreaper)
661 				continue;
662 			thread = find_alive_thread(reaper);
663 			if (thread)
664 				return thread;
665 		}
666 	}
667 
668 	return child_reaper;
669 }
670 
671 /*
672 * Any that need to be release_task'd are put on the @dead list.
673  */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)674 static void reparent_leader(struct task_struct *father, struct task_struct *p,
675 				struct list_head *dead)
676 {
677 	if (unlikely(p->exit_state == EXIT_DEAD))
678 		return;
679 
680 	/* We don't want people slaying init. */
681 	p->exit_signal = SIGCHLD;
682 
683 	/* If it has exited notify the new parent about this child's death. */
684 	if (!p->ptrace &&
685 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
686 		if (do_notify_parent(p, p->exit_signal)) {
687 			p->exit_state = EXIT_DEAD;
688 			list_add(&p->ptrace_entry, dead);
689 		}
690 	}
691 
692 	kill_orphaned_pgrp(p, father);
693 }
694 
695 /*
696  * This does two things:
697  *
698  * A.  Make init inherit all the child processes
699  * B.  Check to see if any process groups have become orphaned
700  *	as a result of our exiting, and if they have any stopped
701  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
702  */
forget_original_parent(struct task_struct * father,struct list_head * dead)703 static void forget_original_parent(struct task_struct *father,
704 					struct list_head *dead)
705 {
706 	struct task_struct *p, *t, *reaper;
707 
708 	if (unlikely(!list_empty(&father->ptraced)))
709 		exit_ptrace(father, dead);
710 
711 	/* Can drop and reacquire tasklist_lock */
712 	reaper = find_child_reaper(father, dead);
713 	if (list_empty(&father->children))
714 		return;
715 
716 	reaper = find_new_reaper(father, reaper);
717 	list_for_each_entry(p, &father->children, sibling) {
718 		for_each_thread(p, t) {
719 			RCU_INIT_POINTER(t->real_parent, reaper);
720 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
721 			if (likely(!t->ptrace))
722 				t->parent = t->real_parent;
723 			if (t->pdeath_signal)
724 				group_send_sig_info(t->pdeath_signal,
725 						    SEND_SIG_NOINFO, t,
726 						    PIDTYPE_TGID);
727 		}
728 		/*
729 		 * If this is a threaded reparent there is no need to
730 		 * notify anyone anything has happened.
731 		 */
732 		if (!same_thread_group(reaper, father))
733 			reparent_leader(father, p, dead);
734 	}
735 	list_splice_tail_init(&father->children, &reaper->children);
736 }
737 
738 /*
739  * Send signals to all our closest relatives so that they know
740  * to properly mourn us..
741  */
exit_notify(struct task_struct * tsk,int group_dead)742 static void exit_notify(struct task_struct *tsk, int group_dead)
743 {
744 	bool autoreap;
745 	struct task_struct *p, *n;
746 	LIST_HEAD(dead);
747 
748 	write_lock_irq(&tasklist_lock);
749 	forget_original_parent(tsk, &dead);
750 
751 	if (group_dead)
752 		kill_orphaned_pgrp(tsk->group_leader, NULL);
753 
754 	tsk->exit_state = EXIT_ZOMBIE;
755 
756 	if (unlikely(tsk->ptrace)) {
757 		int sig = thread_group_leader(tsk) &&
758 				thread_group_empty(tsk) &&
759 				!ptrace_reparented(tsk) ?
760 			tsk->exit_signal : SIGCHLD;
761 		autoreap = do_notify_parent(tsk, sig);
762 	} else if (thread_group_leader(tsk)) {
763 		autoreap = thread_group_empty(tsk) &&
764 			do_notify_parent(tsk, tsk->exit_signal);
765 	} else {
766 		autoreap = true;
767 		/* untraced sub-thread */
768 		do_notify_pidfd(tsk);
769 	}
770 
771 	if (autoreap) {
772 		tsk->exit_state = EXIT_DEAD;
773 		list_add(&tsk->ptrace_entry, &dead);
774 	}
775 
776 	/* mt-exec, de_thread() is waiting for group leader */
777 	if (unlikely(tsk->signal->notify_count < 0))
778 		wake_up_process(tsk->signal->group_exec_task);
779 	write_unlock_irq(&tasklist_lock);
780 
781 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
782 		list_del_init(&p->ptrace_entry);
783 		release_task(p);
784 	}
785 }
786 
787 #ifdef CONFIG_DEBUG_STACK_USAGE
stack_not_used(struct task_struct * p)788 unsigned long stack_not_used(struct task_struct *p)
789 {
790 	unsigned long *n = end_of_stack(p);
791 
792 	do {	/* Skip over canary */
793 # ifdef CONFIG_STACK_GROWSUP
794 		n--;
795 # else
796 		n++;
797 # endif
798 	} while (!*n);
799 
800 # ifdef CONFIG_STACK_GROWSUP
801 	return (unsigned long)end_of_stack(p) - (unsigned long)n;
802 # else
803 	return (unsigned long)n - (unsigned long)end_of_stack(p);
804 # endif
805 }
806 
807 /* Count the maximum pages reached in kernel stacks */
kstack_histogram(unsigned long used_stack)808 static inline void kstack_histogram(unsigned long used_stack)
809 {
810 #ifdef CONFIG_VM_EVENT_COUNTERS
811 	if (used_stack <= 1024)
812 		count_vm_event(KSTACK_1K);
813 #if THREAD_SIZE > 1024
814 	else if (used_stack <= 2048)
815 		count_vm_event(KSTACK_2K);
816 #endif
817 #if THREAD_SIZE > 2048
818 	else if (used_stack <= 4096)
819 		count_vm_event(KSTACK_4K);
820 #endif
821 #if THREAD_SIZE > 4096
822 	else if (used_stack <= 8192)
823 		count_vm_event(KSTACK_8K);
824 #endif
825 #if THREAD_SIZE > 8192
826 	else if (used_stack <= 16384)
827 		count_vm_event(KSTACK_16K);
828 #endif
829 #if THREAD_SIZE > 16384
830 	else if (used_stack <= 32768)
831 		count_vm_event(KSTACK_32K);
832 #endif
833 #if THREAD_SIZE > 32768
834 	else if (used_stack <= 65536)
835 		count_vm_event(KSTACK_64K);
836 #endif
837 #if THREAD_SIZE > 65536
838 	else
839 		count_vm_event(KSTACK_REST);
840 #endif
841 #endif /* CONFIG_VM_EVENT_COUNTERS */
842 }
843 
check_stack_usage(void)844 static void check_stack_usage(void)
845 {
846 	static DEFINE_SPINLOCK(low_water_lock);
847 	static int lowest_to_date = THREAD_SIZE;
848 	unsigned long free;
849 
850 	free = stack_not_used(current);
851 	kstack_histogram(THREAD_SIZE - free);
852 
853 	if (free >= lowest_to_date)
854 		return;
855 
856 	spin_lock(&low_water_lock);
857 	if (free < lowest_to_date) {
858 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
859 			current->comm, task_pid_nr(current), free);
860 		lowest_to_date = free;
861 	}
862 	spin_unlock(&low_water_lock);
863 }
864 #else
check_stack_usage(void)865 static inline void check_stack_usage(void) {}
866 #endif
867 
synchronize_group_exit(struct task_struct * tsk,long code)868 static void synchronize_group_exit(struct task_struct *tsk, long code)
869 {
870 	struct sighand_struct *sighand = tsk->sighand;
871 	struct signal_struct *signal = tsk->signal;
872 	struct core_state *core_state;
873 
874 	spin_lock_irq(&sighand->siglock);
875 	signal->quick_threads--;
876 	if ((signal->quick_threads == 0) &&
877 	    !(signal->flags & SIGNAL_GROUP_EXIT)) {
878 		signal->flags = SIGNAL_GROUP_EXIT;
879 		signal->group_exit_code = code;
880 		signal->group_stop_count = 0;
881 	}
882 	/*
883 	 * Serialize with any possible pending coredump.
884 	 * We must hold siglock around checking core_state
885 	 * and setting PF_POSTCOREDUMP.  The core-inducing thread
886 	 * will increment ->nr_threads for each thread in the
887 	 * group without PF_POSTCOREDUMP set.
888 	 */
889 	tsk->flags |= PF_POSTCOREDUMP;
890 	core_state = signal->core_state;
891 	spin_unlock_irq(&sighand->siglock);
892 
893 	if (unlikely(core_state))
894 		coredump_task_exit(tsk, core_state);
895 }
896 
do_exit(long code)897 void __noreturn do_exit(long code)
898 {
899 	struct task_struct *tsk = current;
900 	int group_dead;
901 
902 	WARN_ON(irqs_disabled());
903 	WARN_ON(tsk->plug);
904 
905 	kcov_task_exit(tsk);
906 	kmsan_task_exit(tsk);
907 
908 	synchronize_group_exit(tsk, code);
909 	ptrace_event(PTRACE_EVENT_EXIT, code);
910 	user_events_exit(tsk);
911 
912 	io_uring_files_cancel();
913 	exit_signals(tsk);  /* sets PF_EXITING */
914 
915 	seccomp_filter_release(tsk);
916 
917 	acct_update_integrals(tsk);
918 	group_dead = atomic_dec_and_test(&tsk->signal->live);
919 	if (group_dead) {
920 		/*
921 		 * If the last thread of global init has exited, panic
922 		 * immediately to get a useable coredump.
923 		 */
924 		if (unlikely(is_global_init(tsk)))
925 			panic("Attempted to kill init! exitcode=0x%08x\n",
926 				tsk->signal->group_exit_code ?: (int)code);
927 
928 #ifdef CONFIG_POSIX_TIMERS
929 		hrtimer_cancel(&tsk->signal->real_timer);
930 		exit_itimers(tsk);
931 #endif
932 		if (tsk->mm)
933 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
934 	}
935 	acct_collect(code, group_dead);
936 	if (group_dead)
937 		tty_audit_exit();
938 	audit_free(tsk);
939 
940 	tsk->exit_code = code;
941 	taskstats_exit(tsk, group_dead);
942 	unwind_deferred_task_exit(tsk);
943 	trace_sched_process_exit(tsk, group_dead);
944 
945 	/*
946 	 * Since sampling can touch ->mm, make sure to stop everything before we
947 	 * tear it down.
948 	 *
949 	 * Also flushes inherited counters to the parent - before the parent
950 	 * gets woken up by child-exit notifications.
951 	 */
952 	perf_event_exit_task(tsk);
953 
954 	exit_mm();
955 
956 	if (group_dead)
957 		acct_process();
958 
959 	exit_sem(tsk);
960 	exit_shm(tsk);
961 	exit_files(tsk);
962 	exit_fs(tsk);
963 	if (group_dead)
964 		disassociate_ctty(1);
965 	exit_task_namespaces(tsk);
966 	exit_task_work(tsk);
967 	exit_thread(tsk);
968 
969 	sched_autogroup_exit_task(tsk);
970 	cgroup_exit(tsk);
971 
972 	/*
973 	 * FIXME: do that only when needed, using sched_exit tracepoint
974 	 */
975 	flush_ptrace_hw_breakpoint(tsk);
976 
977 	exit_tasks_rcu_start();
978 	exit_notify(tsk, group_dead);
979 	proc_exit_connector(tsk);
980 	mpol_put_task_policy(tsk);
981 #ifdef CONFIG_FUTEX
982 	if (unlikely(current->pi_state_cache))
983 		kfree(current->pi_state_cache);
984 #endif
985 	/*
986 	 * Make sure we are holding no locks:
987 	 */
988 	debug_check_no_locks_held();
989 
990 	if (tsk->io_context)
991 		exit_io_context(tsk);
992 
993 	if (tsk->splice_pipe)
994 		free_pipe_info(tsk->splice_pipe);
995 
996 	if (tsk->task_frag.page)
997 		put_page(tsk->task_frag.page);
998 
999 	exit_task_stack_account(tsk);
1000 
1001 	check_stack_usage();
1002 	preempt_disable();
1003 	if (tsk->nr_dirtied)
1004 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
1005 	exit_rcu();
1006 	exit_tasks_rcu_finish();
1007 
1008 	lockdep_free_task(tsk);
1009 	do_task_dead();
1010 }
1011 
make_task_dead(int signr)1012 void __noreturn make_task_dead(int signr)
1013 {
1014 	/*
1015 	 * Take the task off the cpu after something catastrophic has
1016 	 * happened.
1017 	 *
1018 	 * We can get here from a kernel oops, sometimes with preemption off.
1019 	 * Start by checking for critical errors.
1020 	 * Then fix up important state like USER_DS and preemption.
1021 	 * Then do everything else.
1022 	 */
1023 	struct task_struct *tsk = current;
1024 	unsigned int limit;
1025 
1026 	if (unlikely(in_interrupt()))
1027 		panic("Aiee, killing interrupt handler!");
1028 	if (unlikely(!tsk->pid))
1029 		panic("Attempted to kill the idle task!");
1030 
1031 	if (unlikely(irqs_disabled())) {
1032 		pr_info("note: %s[%d] exited with irqs disabled\n",
1033 			current->comm, task_pid_nr(current));
1034 		local_irq_enable();
1035 	}
1036 	if (unlikely(in_atomic())) {
1037 		pr_info("note: %s[%d] exited with preempt_count %d\n",
1038 			current->comm, task_pid_nr(current),
1039 			preempt_count());
1040 		preempt_count_set(PREEMPT_ENABLED);
1041 	}
1042 
1043 	/*
1044 	 * Every time the system oopses, if the oops happens while a reference
1045 	 * to an object was held, the reference leaks.
1046 	 * If the oops doesn't also leak memory, repeated oopsing can cause
1047 	 * reference counters to wrap around (if they're not using refcount_t).
1048 	 * This means that repeated oopsing can make unexploitable-looking bugs
1049 	 * exploitable through repeated oopsing.
1050 	 * To make sure this can't happen, place an upper bound on how often the
1051 	 * kernel may oops without panic().
1052 	 */
1053 	limit = READ_ONCE(oops_limit);
1054 	if (atomic_inc_return(&oops_count) >= limit && limit)
1055 		panic("Oopsed too often (kernel.oops_limit is %d)", limit);
1056 
1057 	/*
1058 	 * We're taking recursive faults here in make_task_dead. Safest is to just
1059 	 * leave this task alone and wait for reboot.
1060 	 */
1061 	if (unlikely(tsk->flags & PF_EXITING)) {
1062 		pr_alert("Fixing recursive fault but reboot is needed!\n");
1063 		futex_exit_recursive(tsk);
1064 		tsk->exit_state = EXIT_DEAD;
1065 		refcount_inc(&tsk->rcu_users);
1066 		do_task_dead();
1067 	}
1068 
1069 	do_exit(signr);
1070 }
1071 
SYSCALL_DEFINE1(exit,int,error_code)1072 SYSCALL_DEFINE1(exit, int, error_code)
1073 {
1074 	do_exit((error_code&0xff)<<8);
1075 }
1076 
1077 /*
1078  * Take down every thread in the group.  This is called by fatal signals
1079  * as well as by sys_exit_group (below).
1080  */
1081 void __noreturn
do_group_exit(int exit_code)1082 do_group_exit(int exit_code)
1083 {
1084 	struct signal_struct *sig = current->signal;
1085 
1086 	if (sig->flags & SIGNAL_GROUP_EXIT)
1087 		exit_code = sig->group_exit_code;
1088 	else if (sig->group_exec_task)
1089 		exit_code = 0;
1090 	else {
1091 		struct sighand_struct *const sighand = current->sighand;
1092 
1093 		spin_lock_irq(&sighand->siglock);
1094 		if (sig->flags & SIGNAL_GROUP_EXIT)
1095 			/* Another thread got here before we took the lock.  */
1096 			exit_code = sig->group_exit_code;
1097 		else if (sig->group_exec_task)
1098 			exit_code = 0;
1099 		else {
1100 			sig->group_exit_code = exit_code;
1101 			sig->flags = SIGNAL_GROUP_EXIT;
1102 			zap_other_threads(current);
1103 		}
1104 		spin_unlock_irq(&sighand->siglock);
1105 	}
1106 
1107 	do_exit(exit_code);
1108 	/* NOTREACHED */
1109 }
1110 
1111 /*
1112  * this kills every thread in the thread group. Note that any externally
1113  * wait4()-ing process will get the correct exit code - even if this
1114  * thread is not the thread group leader.
1115  */
SYSCALL_DEFINE1(exit_group,int,error_code)1116 SYSCALL_DEFINE1(exit_group, int, error_code)
1117 {
1118 	do_group_exit((error_code & 0xff) << 8);
1119 	/* NOTREACHED */
1120 	return 0;
1121 }
1122 
eligible_pid(struct wait_opts * wo,struct task_struct * p)1123 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1124 {
1125 	return	wo->wo_type == PIDTYPE_MAX ||
1126 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1127 }
1128 
1129 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)1130 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1131 {
1132 	if (!eligible_pid(wo, p))
1133 		return 0;
1134 
1135 	/*
1136 	 * Wait for all children (clone and not) if __WALL is set or
1137 	 * if it is traced by us.
1138 	 */
1139 	if (ptrace || (wo->wo_flags & __WALL))
1140 		return 1;
1141 
1142 	/*
1143 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1144 	 * otherwise, wait for non-clone children *only*.
1145 	 *
1146 	 * Note: a "clone" child here is one that reports to its parent
1147 	 * using a signal other than SIGCHLD, or a non-leader thread which
1148 	 * we can only see if it is traced by us.
1149 	 */
1150 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1151 		return 0;
1152 
1153 	return 1;
1154 }
1155 
1156 /*
1157  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1158  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1159  * the lock and this task is uninteresting.  If we return nonzero, we have
1160  * released the lock and the system call should return.
1161  */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)1162 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1163 {
1164 	int state, status;
1165 	pid_t pid = task_pid_vnr(p);
1166 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1167 	struct waitid_info *infop;
1168 
1169 	if (!likely(wo->wo_flags & WEXITED))
1170 		return 0;
1171 
1172 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1173 		status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1174 			? p->signal->group_exit_code : p->exit_code;
1175 		get_task_struct(p);
1176 		read_unlock(&tasklist_lock);
1177 		sched_annotate_sleep();
1178 		if (wo->wo_rusage)
1179 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1180 		put_task_struct(p);
1181 		goto out_info;
1182 	}
1183 	/*
1184 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1185 	 */
1186 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1187 		EXIT_TRACE : EXIT_DEAD;
1188 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1189 		return 0;
1190 	/*
1191 	 * We own this thread, nobody else can reap it.
1192 	 */
1193 	read_unlock(&tasklist_lock);
1194 	sched_annotate_sleep();
1195 
1196 	/*
1197 	 * Check thread_group_leader() to exclude the traced sub-threads.
1198 	 */
1199 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1200 		struct signal_struct *sig = p->signal;
1201 		struct signal_struct *psig = current->signal;
1202 		unsigned long maxrss;
1203 		u64 tgutime, tgstime;
1204 
1205 		/*
1206 		 * The resource counters for the group leader are in its
1207 		 * own task_struct.  Those for dead threads in the group
1208 		 * are in its signal_struct, as are those for the child
1209 		 * processes it has previously reaped.  All these
1210 		 * accumulate in the parent's signal_struct c* fields.
1211 		 *
1212 		 * We don't bother to take a lock here to protect these
1213 		 * p->signal fields because the whole thread group is dead
1214 		 * and nobody can change them.
1215 		 *
1216 		 * psig->stats_lock also protects us from our sub-threads
1217 		 * which can reap other children at the same time.
1218 		 *
1219 		 * We use thread_group_cputime_adjusted() to get times for
1220 		 * the thread group, which consolidates times for all threads
1221 		 * in the group including the group leader.
1222 		 */
1223 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1224 		write_seqlock_irq(&psig->stats_lock);
1225 		psig->cutime += tgutime + sig->cutime;
1226 		psig->cstime += tgstime + sig->cstime;
1227 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1228 		psig->cmin_flt +=
1229 			p->min_flt + sig->min_flt + sig->cmin_flt;
1230 		psig->cmaj_flt +=
1231 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1232 		psig->cnvcsw +=
1233 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1234 		psig->cnivcsw +=
1235 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1236 		psig->cinblock +=
1237 			task_io_get_inblock(p) +
1238 			sig->inblock + sig->cinblock;
1239 		psig->coublock +=
1240 			task_io_get_oublock(p) +
1241 			sig->oublock + sig->coublock;
1242 		maxrss = max(sig->maxrss, sig->cmaxrss);
1243 		if (psig->cmaxrss < maxrss)
1244 			psig->cmaxrss = maxrss;
1245 		task_io_accounting_add(&psig->ioac, &p->ioac);
1246 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1247 		write_sequnlock_irq(&psig->stats_lock);
1248 	}
1249 
1250 	if (wo->wo_rusage)
1251 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1252 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1253 		? p->signal->group_exit_code : p->exit_code;
1254 	wo->wo_stat = status;
1255 
1256 	if (state == EXIT_TRACE) {
1257 		write_lock_irq(&tasklist_lock);
1258 		/* We dropped tasklist, ptracer could die and untrace */
1259 		ptrace_unlink(p);
1260 
1261 		/* If parent wants a zombie, don't release it now */
1262 		state = EXIT_ZOMBIE;
1263 		if (do_notify_parent(p, p->exit_signal))
1264 			state = EXIT_DEAD;
1265 		p->exit_state = state;
1266 		write_unlock_irq(&tasklist_lock);
1267 	}
1268 	if (state == EXIT_DEAD)
1269 		release_task(p);
1270 
1271 out_info:
1272 	infop = wo->wo_info;
1273 	if (infop) {
1274 		if ((status & 0x7f) == 0) {
1275 			infop->cause = CLD_EXITED;
1276 			infop->status = status >> 8;
1277 		} else {
1278 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1279 			infop->status = status & 0x7f;
1280 		}
1281 		infop->pid = pid;
1282 		infop->uid = uid;
1283 	}
1284 
1285 	return pid;
1286 }
1287 
task_stopped_code(struct task_struct * p,bool ptrace)1288 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1289 {
1290 	if (ptrace) {
1291 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1292 			return &p->exit_code;
1293 	} else {
1294 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1295 			return &p->signal->group_exit_code;
1296 	}
1297 	return NULL;
1298 }
1299 
1300 /**
1301  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1302  * @wo: wait options
1303  * @ptrace: is the wait for ptrace
1304  * @p: task to wait for
1305  *
1306  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1307  *
1308  * CONTEXT:
1309  * read_lock(&tasklist_lock), which is released if return value is
1310  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1311  *
1312  * RETURNS:
1313  * 0 if wait condition didn't exist and search for other wait conditions
1314  * should continue.  Non-zero return, -errno on failure and @p's pid on
1315  * success, implies that tasklist_lock is released and wait condition
1316  * search should terminate.
1317  */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1318 static int wait_task_stopped(struct wait_opts *wo,
1319 				int ptrace, struct task_struct *p)
1320 {
1321 	struct waitid_info *infop;
1322 	int exit_code, *p_code, why;
1323 	uid_t uid = 0; /* unneeded, required by compiler */
1324 	pid_t pid;
1325 
1326 	/*
1327 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1328 	 */
1329 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1330 		return 0;
1331 
1332 	if (!task_stopped_code(p, ptrace))
1333 		return 0;
1334 
1335 	exit_code = 0;
1336 	spin_lock_irq(&p->sighand->siglock);
1337 
1338 	p_code = task_stopped_code(p, ptrace);
1339 	if (unlikely(!p_code))
1340 		goto unlock_sig;
1341 
1342 	exit_code = *p_code;
1343 	if (!exit_code)
1344 		goto unlock_sig;
1345 
1346 	if (!unlikely(wo->wo_flags & WNOWAIT))
1347 		*p_code = 0;
1348 
1349 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1350 unlock_sig:
1351 	spin_unlock_irq(&p->sighand->siglock);
1352 	if (!exit_code)
1353 		return 0;
1354 
1355 	/*
1356 	 * Now we are pretty sure this task is interesting.
1357 	 * Make sure it doesn't get reaped out from under us while we
1358 	 * give up the lock and then examine it below.  We don't want to
1359 	 * keep holding onto the tasklist_lock while we call getrusage and
1360 	 * possibly take page faults for user memory.
1361 	 */
1362 	get_task_struct(p);
1363 	pid = task_pid_vnr(p);
1364 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1365 	read_unlock(&tasklist_lock);
1366 	sched_annotate_sleep();
1367 	if (wo->wo_rusage)
1368 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1369 	put_task_struct(p);
1370 
1371 	if (likely(!(wo->wo_flags & WNOWAIT)))
1372 		wo->wo_stat = (exit_code << 8) | 0x7f;
1373 
1374 	infop = wo->wo_info;
1375 	if (infop) {
1376 		infop->cause = why;
1377 		infop->status = exit_code;
1378 		infop->pid = pid;
1379 		infop->uid = uid;
1380 	}
1381 	return pid;
1382 }
1383 
1384 /*
1385  * Handle do_wait work for one task in a live, non-stopped state.
1386  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1387  * the lock and this task is uninteresting.  If we return nonzero, we have
1388  * released the lock and the system call should return.
1389  */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1390 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1391 {
1392 	struct waitid_info *infop;
1393 	pid_t pid;
1394 	uid_t uid;
1395 
1396 	if (!unlikely(wo->wo_flags & WCONTINUED))
1397 		return 0;
1398 
1399 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1400 		return 0;
1401 
1402 	spin_lock_irq(&p->sighand->siglock);
1403 	/* Re-check with the lock held.  */
1404 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1405 		spin_unlock_irq(&p->sighand->siglock);
1406 		return 0;
1407 	}
1408 	if (!unlikely(wo->wo_flags & WNOWAIT))
1409 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1410 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1411 	spin_unlock_irq(&p->sighand->siglock);
1412 
1413 	pid = task_pid_vnr(p);
1414 	get_task_struct(p);
1415 	read_unlock(&tasklist_lock);
1416 	sched_annotate_sleep();
1417 	if (wo->wo_rusage)
1418 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1419 	put_task_struct(p);
1420 
1421 	infop = wo->wo_info;
1422 	if (!infop) {
1423 		wo->wo_stat = 0xffff;
1424 	} else {
1425 		infop->cause = CLD_CONTINUED;
1426 		infop->pid = pid;
1427 		infop->uid = uid;
1428 		infop->status = SIGCONT;
1429 	}
1430 	return pid;
1431 }
1432 
1433 /*
1434  * Consider @p for a wait by @parent.
1435  *
1436  * -ECHILD should be in ->notask_error before the first call.
1437  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1438  * Returns zero if the search for a child should continue;
1439  * then ->notask_error is 0 if @p is an eligible child,
1440  * or still -ECHILD.
1441  */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1442 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1443 				struct task_struct *p)
1444 {
1445 	/*
1446 	 * We can race with wait_task_zombie() from another thread.
1447 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1448 	 * can't confuse the checks below.
1449 	 */
1450 	int exit_state = READ_ONCE(p->exit_state);
1451 	int ret;
1452 
1453 	if (unlikely(exit_state == EXIT_DEAD))
1454 		return 0;
1455 
1456 	ret = eligible_child(wo, ptrace, p);
1457 	if (!ret)
1458 		return ret;
1459 
1460 	if (unlikely(exit_state == EXIT_TRACE)) {
1461 		/*
1462 		 * ptrace == 0 means we are the natural parent. In this case
1463 		 * we should clear notask_error, debugger will notify us.
1464 		 */
1465 		if (likely(!ptrace))
1466 			wo->notask_error = 0;
1467 		return 0;
1468 	}
1469 
1470 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1471 		/*
1472 		 * If it is traced by its real parent's group, just pretend
1473 		 * the caller is ptrace_do_wait() and reap this child if it
1474 		 * is zombie.
1475 		 *
1476 		 * This also hides group stop state from real parent; otherwise
1477 		 * a single stop can be reported twice as group and ptrace stop.
1478 		 * If a ptracer wants to distinguish these two events for its
1479 		 * own children it should create a separate process which takes
1480 		 * the role of real parent.
1481 		 */
1482 		if (!ptrace_reparented(p))
1483 			ptrace = 1;
1484 	}
1485 
1486 	/* slay zombie? */
1487 	if (exit_state == EXIT_ZOMBIE) {
1488 		/* we don't reap group leaders with subthreads */
1489 		if (!delay_group_leader(p)) {
1490 			/*
1491 			 * A zombie ptracee is only visible to its ptracer.
1492 			 * Notification and reaping will be cascaded to the
1493 			 * real parent when the ptracer detaches.
1494 			 */
1495 			if (unlikely(ptrace) || likely(!p->ptrace))
1496 				return wait_task_zombie(wo, p);
1497 		}
1498 
1499 		/*
1500 		 * Allow access to stopped/continued state via zombie by
1501 		 * falling through.  Clearing of notask_error is complex.
1502 		 *
1503 		 * When !@ptrace:
1504 		 *
1505 		 * If WEXITED is set, notask_error should naturally be
1506 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1507 		 * so, if there are live subthreads, there are events to
1508 		 * wait for.  If all subthreads are dead, it's still safe
1509 		 * to clear - this function will be called again in finite
1510 		 * amount time once all the subthreads are released and
1511 		 * will then return without clearing.
1512 		 *
1513 		 * When @ptrace:
1514 		 *
1515 		 * Stopped state is per-task and thus can't change once the
1516 		 * target task dies.  Only continued and exited can happen.
1517 		 * Clear notask_error if WCONTINUED | WEXITED.
1518 		 */
1519 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1520 			wo->notask_error = 0;
1521 	} else {
1522 		/*
1523 		 * @p is alive and it's gonna stop, continue or exit, so
1524 		 * there always is something to wait for.
1525 		 */
1526 		wo->notask_error = 0;
1527 	}
1528 
1529 	/*
1530 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1531 	 * is used and the two don't interact with each other.
1532 	 */
1533 	ret = wait_task_stopped(wo, ptrace, p);
1534 	if (ret)
1535 		return ret;
1536 
1537 	/*
1538 	 * Wait for continued.  There's only one continued state and the
1539 	 * ptracer can consume it which can confuse the real parent.  Don't
1540 	 * use WCONTINUED from ptracer.  You don't need or want it.
1541 	 */
1542 	return wait_task_continued(wo, p);
1543 }
1544 
1545 /*
1546  * Do the work of do_wait() for one thread in the group, @tsk.
1547  *
1548  * -ECHILD should be in ->notask_error before the first call.
1549  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1550  * Returns zero if the search for a child should continue; then
1551  * ->notask_error is 0 if there were any eligible children,
1552  * or still -ECHILD.
1553  */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1554 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1555 {
1556 	struct task_struct *p;
1557 
1558 	list_for_each_entry(p, &tsk->children, sibling) {
1559 		int ret = wait_consider_task(wo, 0, p);
1560 
1561 		if (ret)
1562 			return ret;
1563 	}
1564 
1565 	return 0;
1566 }
1567 
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1568 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1569 {
1570 	struct task_struct *p;
1571 
1572 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1573 		int ret = wait_consider_task(wo, 1, p);
1574 
1575 		if (ret)
1576 			return ret;
1577 	}
1578 
1579 	return 0;
1580 }
1581 
pid_child_should_wake(struct wait_opts * wo,struct task_struct * p)1582 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p)
1583 {
1584 	if (!eligible_pid(wo, p))
1585 		return false;
1586 
1587 	if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent)
1588 		return false;
1589 
1590 	return true;
1591 }
1592 
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1593 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1594 				int sync, void *key)
1595 {
1596 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1597 						child_wait);
1598 	struct task_struct *p = key;
1599 
1600 	if (pid_child_should_wake(wo, p))
1601 		return default_wake_function(wait, mode, sync, key);
1602 
1603 	return 0;
1604 }
1605 
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1606 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1607 {
1608 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1609 			   TASK_INTERRUPTIBLE, p);
1610 }
1611 
is_effectively_child(struct wait_opts * wo,bool ptrace,struct task_struct * target)1612 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1613 				 struct task_struct *target)
1614 {
1615 	struct task_struct *parent =
1616 		!ptrace ? target->real_parent : target->parent;
1617 
1618 	return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1619 				     same_thread_group(current, parent));
1620 }
1621 
1622 /*
1623  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1624  * and tracee lists to find the target task.
1625  */
do_wait_pid(struct wait_opts * wo)1626 static int do_wait_pid(struct wait_opts *wo)
1627 {
1628 	bool ptrace;
1629 	struct task_struct *target;
1630 	int retval;
1631 
1632 	ptrace = false;
1633 	target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1634 	if (target && is_effectively_child(wo, ptrace, target)) {
1635 		retval = wait_consider_task(wo, ptrace, target);
1636 		if (retval)
1637 			return retval;
1638 	}
1639 
1640 	ptrace = true;
1641 	target = pid_task(wo->wo_pid, PIDTYPE_PID);
1642 	if (target && target->ptrace &&
1643 	    is_effectively_child(wo, ptrace, target)) {
1644 		retval = wait_consider_task(wo, ptrace, target);
1645 		if (retval)
1646 			return retval;
1647 	}
1648 
1649 	return 0;
1650 }
1651 
__do_wait(struct wait_opts * wo)1652 long __do_wait(struct wait_opts *wo)
1653 {
1654 	long retval;
1655 
1656 	/*
1657 	 * If there is nothing that can match our criteria, just get out.
1658 	 * We will clear ->notask_error to zero if we see any child that
1659 	 * might later match our criteria, even if we are not able to reap
1660 	 * it yet.
1661 	 */
1662 	wo->notask_error = -ECHILD;
1663 	if ((wo->wo_type < PIDTYPE_MAX) &&
1664 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1665 		goto notask;
1666 
1667 	read_lock(&tasklist_lock);
1668 
1669 	if (wo->wo_type == PIDTYPE_PID) {
1670 		retval = do_wait_pid(wo);
1671 		if (retval)
1672 			return retval;
1673 	} else {
1674 		struct task_struct *tsk = current;
1675 
1676 		do {
1677 			retval = do_wait_thread(wo, tsk);
1678 			if (retval)
1679 				return retval;
1680 
1681 			retval = ptrace_do_wait(wo, tsk);
1682 			if (retval)
1683 				return retval;
1684 
1685 			if (wo->wo_flags & __WNOTHREAD)
1686 				break;
1687 		} while_each_thread(current, tsk);
1688 	}
1689 	read_unlock(&tasklist_lock);
1690 
1691 notask:
1692 	retval = wo->notask_error;
1693 	if (!retval && !(wo->wo_flags & WNOHANG))
1694 		return -ERESTARTSYS;
1695 
1696 	return retval;
1697 }
1698 
do_wait(struct wait_opts * wo)1699 static long do_wait(struct wait_opts *wo)
1700 {
1701 	int retval;
1702 
1703 	trace_sched_process_wait(wo->wo_pid);
1704 
1705 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1706 	wo->child_wait.private = current;
1707 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1708 
1709 	do {
1710 		set_current_state(TASK_INTERRUPTIBLE);
1711 		retval = __do_wait(wo);
1712 		if (retval != -ERESTARTSYS)
1713 			break;
1714 		if (signal_pending(current))
1715 			break;
1716 		schedule();
1717 	} while (1);
1718 
1719 	__set_current_state(TASK_RUNNING);
1720 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1721 	return retval;
1722 }
1723 
kernel_waitid_prepare(struct wait_opts * wo,int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1724 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid,
1725 			  struct waitid_info *infop, int options,
1726 			  struct rusage *ru)
1727 {
1728 	unsigned int f_flags = 0;
1729 	struct pid *pid = NULL;
1730 	enum pid_type type;
1731 
1732 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1733 			__WNOTHREAD|__WCLONE|__WALL))
1734 		return -EINVAL;
1735 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1736 		return -EINVAL;
1737 
1738 	switch (which) {
1739 	case P_ALL:
1740 		type = PIDTYPE_MAX;
1741 		break;
1742 	case P_PID:
1743 		type = PIDTYPE_PID;
1744 		if (upid <= 0)
1745 			return -EINVAL;
1746 
1747 		pid = find_get_pid(upid);
1748 		break;
1749 	case P_PGID:
1750 		type = PIDTYPE_PGID;
1751 		if (upid < 0)
1752 			return -EINVAL;
1753 
1754 		if (upid)
1755 			pid = find_get_pid(upid);
1756 		else
1757 			pid = get_task_pid(current, PIDTYPE_PGID);
1758 		break;
1759 	case P_PIDFD:
1760 		type = PIDTYPE_PID;
1761 		if (upid < 0)
1762 			return -EINVAL;
1763 
1764 		pid = pidfd_get_pid(upid, &f_flags);
1765 		if (IS_ERR(pid))
1766 			return PTR_ERR(pid);
1767 
1768 		break;
1769 	default:
1770 		return -EINVAL;
1771 	}
1772 
1773 	wo->wo_type	= type;
1774 	wo->wo_pid	= pid;
1775 	wo->wo_flags	= options;
1776 	wo->wo_info	= infop;
1777 	wo->wo_rusage	= ru;
1778 	if (f_flags & O_NONBLOCK)
1779 		wo->wo_flags |= WNOHANG;
1780 
1781 	return 0;
1782 }
1783 
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1784 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1785 			  int options, struct rusage *ru)
1786 {
1787 	struct wait_opts wo;
1788 	long ret;
1789 
1790 	ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru);
1791 	if (ret)
1792 		return ret;
1793 
1794 	ret = do_wait(&wo);
1795 	if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG))
1796 		ret = -EAGAIN;
1797 
1798 	put_pid(wo.wo_pid);
1799 	return ret;
1800 }
1801 
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1802 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1803 		infop, int, options, struct rusage __user *, ru)
1804 {
1805 	struct rusage r;
1806 	struct waitid_info info = {.status = 0};
1807 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1808 	int signo = 0;
1809 
1810 	if (err > 0) {
1811 		signo = SIGCHLD;
1812 		err = 0;
1813 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1814 			return -EFAULT;
1815 	}
1816 	if (!infop)
1817 		return err;
1818 
1819 	if (!user_write_access_begin(infop, sizeof(*infop)))
1820 		return -EFAULT;
1821 
1822 	unsafe_put_user(signo, &infop->si_signo, Efault);
1823 	unsafe_put_user(0, &infop->si_errno, Efault);
1824 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1825 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1826 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1827 	unsafe_put_user(info.status, &infop->si_status, Efault);
1828 	user_write_access_end();
1829 	return err;
1830 Efault:
1831 	user_write_access_end();
1832 	return -EFAULT;
1833 }
1834 
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1835 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1836 		  struct rusage *ru)
1837 {
1838 	struct wait_opts wo;
1839 	struct pid *pid = NULL;
1840 	enum pid_type type;
1841 	long ret;
1842 
1843 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1844 			__WNOTHREAD|__WCLONE|__WALL))
1845 		return -EINVAL;
1846 
1847 	/* -INT_MIN is not defined */
1848 	if (upid == INT_MIN)
1849 		return -ESRCH;
1850 
1851 	if (upid == -1)
1852 		type = PIDTYPE_MAX;
1853 	else if (upid < 0) {
1854 		type = PIDTYPE_PGID;
1855 		pid = find_get_pid(-upid);
1856 	} else if (upid == 0) {
1857 		type = PIDTYPE_PGID;
1858 		pid = get_task_pid(current, PIDTYPE_PGID);
1859 	} else /* upid > 0 */ {
1860 		type = PIDTYPE_PID;
1861 		pid = find_get_pid(upid);
1862 	}
1863 
1864 	wo.wo_type	= type;
1865 	wo.wo_pid	= pid;
1866 	wo.wo_flags	= options | WEXITED;
1867 	wo.wo_info	= NULL;
1868 	wo.wo_stat	= 0;
1869 	wo.wo_rusage	= ru;
1870 	ret = do_wait(&wo);
1871 	put_pid(pid);
1872 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1873 		ret = -EFAULT;
1874 
1875 	return ret;
1876 }
1877 
kernel_wait(pid_t pid,int * stat)1878 int kernel_wait(pid_t pid, int *stat)
1879 {
1880 	struct wait_opts wo = {
1881 		.wo_type	= PIDTYPE_PID,
1882 		.wo_pid		= find_get_pid(pid),
1883 		.wo_flags	= WEXITED,
1884 	};
1885 	int ret;
1886 
1887 	ret = do_wait(&wo);
1888 	if (ret > 0 && wo.wo_stat)
1889 		*stat = wo.wo_stat;
1890 	put_pid(wo.wo_pid);
1891 	return ret;
1892 }
1893 
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1894 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1895 		int, options, struct rusage __user *, ru)
1896 {
1897 	struct rusage r;
1898 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1899 
1900 	if (err > 0) {
1901 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1902 			return -EFAULT;
1903 	}
1904 	return err;
1905 }
1906 
1907 #ifdef __ARCH_WANT_SYS_WAITPID
1908 
1909 /*
1910  * sys_waitpid() remains for compatibility. waitpid() should be
1911  * implemented by calling sys_wait4() from libc.a.
1912  */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1913 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1914 {
1915 	return kernel_wait4(pid, stat_addr, options, NULL);
1916 }
1917 
1918 #endif
1919 
1920 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1921 COMPAT_SYSCALL_DEFINE4(wait4,
1922 	compat_pid_t, pid,
1923 	compat_uint_t __user *, stat_addr,
1924 	int, options,
1925 	struct compat_rusage __user *, ru)
1926 {
1927 	struct rusage r;
1928 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1929 	if (err > 0) {
1930 		if (ru && put_compat_rusage(&r, ru))
1931 			return -EFAULT;
1932 	}
1933 	return err;
1934 }
1935 
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1936 COMPAT_SYSCALL_DEFINE5(waitid,
1937 		int, which, compat_pid_t, pid,
1938 		struct compat_siginfo __user *, infop, int, options,
1939 		struct compat_rusage __user *, uru)
1940 {
1941 	struct rusage ru;
1942 	struct waitid_info info = {.status = 0};
1943 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1944 	int signo = 0;
1945 	if (err > 0) {
1946 		signo = SIGCHLD;
1947 		err = 0;
1948 		if (uru) {
1949 			/* kernel_waitid() overwrites everything in ru */
1950 			if (COMPAT_USE_64BIT_TIME)
1951 				err = copy_to_user(uru, &ru, sizeof(ru));
1952 			else
1953 				err = put_compat_rusage(&ru, uru);
1954 			if (err)
1955 				return -EFAULT;
1956 		}
1957 	}
1958 
1959 	if (!infop)
1960 		return err;
1961 
1962 	if (!user_write_access_begin(infop, sizeof(*infop)))
1963 		return -EFAULT;
1964 
1965 	unsafe_put_user(signo, &infop->si_signo, Efault);
1966 	unsafe_put_user(0, &infop->si_errno, Efault);
1967 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1968 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1969 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1970 	unsafe_put_user(info.status, &infop->si_status, Efault);
1971 	user_write_access_end();
1972 	return err;
1973 Efault:
1974 	user_write_access_end();
1975 	return -EFAULT;
1976 }
1977 #endif
1978 
1979 /*
1980  * This needs to be __function_aligned as GCC implicitly makes any
1981  * implementation of abort() cold and drops alignment specified by
1982  * -falign-functions=N.
1983  *
1984  * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1985  */
abort(void)1986 __weak __function_aligned void abort(void)
1987 {
1988 	BUG();
1989 
1990 	/* if that doesn't kill us, halt */
1991 	panic("Oops failed to kill thread");
1992 }
1993 EXPORT_SYMBOL(abort);
1994