1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance events core code:
4 *
5 * Copyright (C) 2008 Linutronix GmbH, Thomas Gleixner <tglx@kernel.org>
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58 #include <linux/percpu-rwsem.h>
59 #include <linux/unwind_deferred.h>
60
61 #include "internal.h"
62
63 #include <asm/irq_regs.h>
64
65 typedef int (*remote_function_f)(void *);
66
67 struct remote_function_call {
68 struct task_struct *p;
69 remote_function_f func;
70 void *info;
71 int ret;
72 };
73
remote_function(void * data)74 static void remote_function(void *data)
75 {
76 struct remote_function_call *tfc = data;
77 struct task_struct *p = tfc->p;
78
79 if (p) {
80 /* -EAGAIN */
81 if (task_cpu(p) != smp_processor_id())
82 return;
83
84 /*
85 * Now that we're on right CPU with IRQs disabled, we can test
86 * if we hit the right task without races.
87 */
88
89 tfc->ret = -ESRCH; /* No such (running) process */
90 if (p != current)
91 return;
92 }
93
94 tfc->ret = tfc->func(tfc->info);
95 }
96
97 /**
98 * task_function_call - call a function on the cpu on which a task runs
99 * @p: the task to evaluate
100 * @func: the function to be called
101 * @info: the function call argument
102 *
103 * Calls the function @func when the task is currently running. This might
104 * be on the current CPU, which just calls the function directly. This will
105 * retry due to any failures in smp_call_function_single(), such as if the
106 * task_cpu() goes offline concurrently.
107 *
108 * returns @func return value or -ESRCH or -ENXIO when the process isn't running
109 */
110 static int
task_function_call(struct task_struct * p,remote_function_f func,void * info)111 task_function_call(struct task_struct *p, remote_function_f func, void *info)
112 {
113 struct remote_function_call data = {
114 .p = p,
115 .func = func,
116 .info = info,
117 .ret = -EAGAIN,
118 };
119 int ret;
120
121 for (;;) {
122 ret = smp_call_function_single(task_cpu(p), remote_function,
123 &data, 1);
124 if (!ret)
125 ret = data.ret;
126
127 if (ret != -EAGAIN)
128 break;
129
130 cond_resched();
131 }
132
133 return ret;
134 }
135
136 /**
137 * cpu_function_call - call a function on the cpu
138 * @cpu: target cpu to queue this function
139 * @func: the function to be called
140 * @info: the function call argument
141 *
142 * Calls the function @func on the remote cpu.
143 *
144 * returns: @func return value or -ENXIO when the cpu is offline
145 */
cpu_function_call(int cpu,remote_function_f func,void * info)146 static int cpu_function_call(int cpu, remote_function_f func, void *info)
147 {
148 struct remote_function_call data = {
149 .p = NULL,
150 .func = func,
151 .info = info,
152 .ret = -ENXIO, /* No such CPU */
153 };
154
155 smp_call_function_single(cpu, remote_function, &data, 1);
156
157 return data.ret;
158 }
159
160 enum event_type_t {
161 EVENT_FLEXIBLE = 0x01,
162 EVENT_PINNED = 0x02,
163 EVENT_TIME = 0x04,
164 EVENT_FROZEN = 0x08,
165 /* see ctx_resched() for details */
166 EVENT_CPU = 0x10,
167 EVENT_CGROUP = 0x20,
168
169 /* compound helpers */
170 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
171 EVENT_TIME_FROZEN = EVENT_TIME | EVENT_FROZEN,
172 };
173
__perf_ctx_lock(struct perf_event_context * ctx)174 static inline void __perf_ctx_lock(struct perf_event_context *ctx)
175 {
176 raw_spin_lock(&ctx->lock);
177 WARN_ON_ONCE(ctx->is_active & EVENT_FROZEN);
178 }
179
perf_ctx_lock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)180 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
181 struct perf_event_context *ctx)
182 {
183 __perf_ctx_lock(&cpuctx->ctx);
184 if (ctx)
185 __perf_ctx_lock(ctx);
186 }
187
__perf_ctx_unlock(struct perf_event_context * ctx)188 static inline void __perf_ctx_unlock(struct perf_event_context *ctx)
189 {
190 /*
191 * If ctx_sched_in() didn't again set any ALL flags, clean up
192 * after ctx_sched_out() by clearing is_active.
193 */
194 if (ctx->is_active & EVENT_FROZEN) {
195 if (!(ctx->is_active & EVENT_ALL))
196 ctx->is_active = 0;
197 else
198 ctx->is_active &= ~EVENT_FROZEN;
199 }
200 raw_spin_unlock(&ctx->lock);
201 }
202
perf_ctx_unlock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)203 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
204 struct perf_event_context *ctx)
205 {
206 if (ctx)
207 __perf_ctx_unlock(ctx);
208 __perf_ctx_unlock(&cpuctx->ctx);
209 }
210
211 typedef struct {
212 struct perf_cpu_context *cpuctx;
213 struct perf_event_context *ctx;
214 } class_perf_ctx_lock_t;
215
class_perf_ctx_lock_destructor(class_perf_ctx_lock_t * _T)216 static inline void class_perf_ctx_lock_destructor(class_perf_ctx_lock_t *_T)
217 { perf_ctx_unlock(_T->cpuctx, _T->ctx); }
218
219 static inline class_perf_ctx_lock_t
class_perf_ctx_lock_constructor(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)220 class_perf_ctx_lock_constructor(struct perf_cpu_context *cpuctx,
221 struct perf_event_context *ctx)
222 { perf_ctx_lock(cpuctx, ctx); return (class_perf_ctx_lock_t){ cpuctx, ctx }; }
223
224 #define TASK_TOMBSTONE ((void *)-1L)
225
is_kernel_event(struct perf_event * event)226 static bool is_kernel_event(struct perf_event *event)
227 {
228 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
229 }
230
231 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
232
perf_cpu_task_ctx(void)233 struct perf_event_context *perf_cpu_task_ctx(void)
234 {
235 lockdep_assert_irqs_disabled();
236 return this_cpu_ptr(&perf_cpu_context)->task_ctx;
237 }
238
239 /*
240 * On task ctx scheduling...
241 *
242 * When !ctx->nr_events a task context will not be scheduled. This means
243 * we can disable the scheduler hooks (for performance) without leaving
244 * pending task ctx state.
245 *
246 * This however results in two special cases:
247 *
248 * - removing the last event from a task ctx; this is relatively straight
249 * forward and is done in __perf_remove_from_context.
250 *
251 * - adding the first event to a task ctx; this is tricky because we cannot
252 * rely on ctx->is_active and therefore cannot use event_function_call().
253 * See perf_install_in_context().
254 *
255 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
256 */
257
258 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
259 struct perf_event_context *, void *);
260
261 struct event_function_struct {
262 struct perf_event *event;
263 event_f func;
264 void *data;
265 };
266
event_function(void * info)267 static int event_function(void *info)
268 {
269 struct event_function_struct *efs = info;
270 struct perf_event *event = efs->event;
271 struct perf_event_context *ctx = event->ctx;
272 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
273 struct perf_event_context *task_ctx = cpuctx->task_ctx;
274 int ret = 0;
275
276 lockdep_assert_irqs_disabled();
277
278 perf_ctx_lock(cpuctx, task_ctx);
279 /*
280 * Since we do the IPI call without holding ctx->lock things can have
281 * changed, double check we hit the task we set out to hit.
282 */
283 if (ctx->task) {
284 if (ctx->task != current) {
285 ret = -ESRCH;
286 goto unlock;
287 }
288
289 /*
290 * We only use event_function_call() on established contexts,
291 * and event_function() is only ever called when active (or
292 * rather, we'll have bailed in task_function_call() or the
293 * above ctx->task != current test), therefore we must have
294 * ctx->is_active here.
295 */
296 WARN_ON_ONCE(!ctx->is_active);
297 /*
298 * And since we have ctx->is_active, cpuctx->task_ctx must
299 * match.
300 */
301 WARN_ON_ONCE(task_ctx != ctx);
302 } else {
303 WARN_ON_ONCE(&cpuctx->ctx != ctx);
304 }
305
306 efs->func(event, cpuctx, ctx, efs->data);
307 unlock:
308 perf_ctx_unlock(cpuctx, task_ctx);
309
310 return ret;
311 }
312
event_function_call(struct perf_event * event,event_f func,void * data)313 static void event_function_call(struct perf_event *event, event_f func, void *data)
314 {
315 struct perf_event_context *ctx = event->ctx;
316 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
317 struct perf_cpu_context *cpuctx;
318 struct event_function_struct efs = {
319 .event = event,
320 .func = func,
321 .data = data,
322 };
323
324 if (!event->parent) {
325 /*
326 * If this is a !child event, we must hold ctx::mutex to
327 * stabilize the event->ctx relation. See
328 * perf_event_ctx_lock().
329 */
330 lockdep_assert_held(&ctx->mutex);
331 }
332
333 if (!task) {
334 cpu_function_call(event->cpu, event_function, &efs);
335 return;
336 }
337
338 if (task == TASK_TOMBSTONE)
339 return;
340
341 again:
342 if (!task_function_call(task, event_function, &efs))
343 return;
344
345 local_irq_disable();
346 cpuctx = this_cpu_ptr(&perf_cpu_context);
347 perf_ctx_lock(cpuctx, ctx);
348 /*
349 * Reload the task pointer, it might have been changed by
350 * a concurrent perf_event_context_sched_out().
351 */
352 task = ctx->task;
353 if (task == TASK_TOMBSTONE)
354 goto unlock;
355 if (ctx->is_active) {
356 perf_ctx_unlock(cpuctx, ctx);
357 local_irq_enable();
358 goto again;
359 }
360 func(event, NULL, ctx, data);
361 unlock:
362 perf_ctx_unlock(cpuctx, ctx);
363 local_irq_enable();
364 }
365
366 /*
367 * Similar to event_function_call() + event_function(), but hard assumes IRQs
368 * are already disabled and we're on the right CPU.
369 */
event_function_local(struct perf_event * event,event_f func,void * data)370 static void event_function_local(struct perf_event *event, event_f func, void *data)
371 {
372 struct perf_event_context *ctx = event->ctx;
373 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
374 struct task_struct *task = READ_ONCE(ctx->task);
375 struct perf_event_context *task_ctx = NULL;
376
377 lockdep_assert_irqs_disabled();
378
379 if (task) {
380 if (task == TASK_TOMBSTONE)
381 return;
382
383 task_ctx = ctx;
384 }
385
386 perf_ctx_lock(cpuctx, task_ctx);
387
388 task = ctx->task;
389 if (task == TASK_TOMBSTONE)
390 goto unlock;
391
392 if (task) {
393 /*
394 * We must be either inactive or active and the right task,
395 * otherwise we're screwed, since we cannot IPI to somewhere
396 * else.
397 */
398 if (ctx->is_active) {
399 if (WARN_ON_ONCE(task != current))
400 goto unlock;
401
402 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
403 goto unlock;
404 }
405 } else {
406 WARN_ON_ONCE(&cpuctx->ctx != ctx);
407 }
408
409 func(event, cpuctx, ctx, data);
410 unlock:
411 perf_ctx_unlock(cpuctx, task_ctx);
412 }
413
414 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
415 PERF_FLAG_FD_OUTPUT |\
416 PERF_FLAG_PID_CGROUP |\
417 PERF_FLAG_FD_CLOEXEC)
418
419 /*
420 * branch priv levels that need permission checks
421 */
422 #define PERF_SAMPLE_BRANCH_PERM_PLM \
423 (PERF_SAMPLE_BRANCH_KERNEL |\
424 PERF_SAMPLE_BRANCH_HV)
425
426 /*
427 * perf_sched_events : >0 events exist
428 */
429
430 static void perf_sched_delayed(struct work_struct *work);
431 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
432 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
433 static DEFINE_MUTEX(perf_sched_mutex);
434 static atomic_t perf_sched_count;
435
436 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
437
438 static atomic_t nr_mmap_events __read_mostly;
439 static atomic_t nr_comm_events __read_mostly;
440 static atomic_t nr_namespaces_events __read_mostly;
441 static atomic_t nr_task_events __read_mostly;
442 static atomic_t nr_freq_events __read_mostly;
443 static atomic_t nr_switch_events __read_mostly;
444 static atomic_t nr_ksymbol_events __read_mostly;
445 static atomic_t nr_bpf_events __read_mostly;
446 static atomic_t nr_cgroup_events __read_mostly;
447 static atomic_t nr_text_poke_events __read_mostly;
448 static atomic_t nr_build_id_events __read_mostly;
449
450 static LIST_HEAD(pmus);
451 static DEFINE_MUTEX(pmus_lock);
452 static struct srcu_struct pmus_srcu;
453 static cpumask_var_t perf_online_mask;
454 static cpumask_var_t perf_online_core_mask;
455 static cpumask_var_t perf_online_die_mask;
456 static cpumask_var_t perf_online_cluster_mask;
457 static cpumask_var_t perf_online_pkg_mask;
458 static cpumask_var_t perf_online_sys_mask;
459 static struct kmem_cache *perf_event_cache;
460
461 /*
462 * perf event paranoia level:
463 * -1 - not paranoid at all
464 * 0 - disallow raw tracepoint access for unpriv
465 * 1 - disallow cpu events for unpriv
466 * 2 - disallow kernel profiling for unpriv
467 */
468 int sysctl_perf_event_paranoid __read_mostly = 2;
469
470 /* Minimum for 512 kiB + 1 user control page. 'free' kiB per user. */
471 static int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024);
472
473 /*
474 * max perf event sample rate
475 */
476 #define DEFAULT_MAX_SAMPLE_RATE 100000
477 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
478 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
479
480 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
481 static int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
482
483 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
484 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
485
486 static int perf_sample_allowed_ns __read_mostly =
487 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
488
update_perf_cpu_limits(void)489 static void update_perf_cpu_limits(void)
490 {
491 u64 tmp = perf_sample_period_ns;
492
493 tmp *= sysctl_perf_cpu_time_max_percent;
494 tmp = div_u64(tmp, 100);
495 if (!tmp)
496 tmp = 1;
497
498 WRITE_ONCE(perf_sample_allowed_ns, tmp);
499 }
500
501 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
502
perf_event_max_sample_rate_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)503 static int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write,
504 void *buffer, size_t *lenp, loff_t *ppos)
505 {
506 int ret;
507 int perf_cpu = sysctl_perf_cpu_time_max_percent;
508 /*
509 * If throttling is disabled don't allow the write:
510 */
511 if (write && (perf_cpu == 100 || perf_cpu == 0))
512 return -EINVAL;
513
514 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
515 if (ret || !write)
516 return ret;
517
518 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
519 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
520 update_perf_cpu_limits();
521
522 return 0;
523 }
524
perf_cpu_time_max_percent_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)525 static int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write,
526 void *buffer, size_t *lenp, loff_t *ppos)
527 {
528 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
529
530 if (ret || !write)
531 return ret;
532
533 if (sysctl_perf_cpu_time_max_percent == 100 ||
534 sysctl_perf_cpu_time_max_percent == 0) {
535 printk(KERN_WARNING
536 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
537 WRITE_ONCE(perf_sample_allowed_ns, 0);
538 } else {
539 update_perf_cpu_limits();
540 }
541
542 return 0;
543 }
544
545 static const struct ctl_table events_core_sysctl_table[] = {
546 /*
547 * User-space relies on this file as a feature check for
548 * perf_events being enabled. It's an ABI, do not remove!
549 */
550 {
551 .procname = "perf_event_paranoid",
552 .data = &sysctl_perf_event_paranoid,
553 .maxlen = sizeof(sysctl_perf_event_paranoid),
554 .mode = 0644,
555 .proc_handler = proc_dointvec,
556 },
557 {
558 .procname = "perf_event_mlock_kb",
559 .data = &sysctl_perf_event_mlock,
560 .maxlen = sizeof(sysctl_perf_event_mlock),
561 .mode = 0644,
562 .proc_handler = proc_dointvec,
563 },
564 {
565 .procname = "perf_event_max_sample_rate",
566 .data = &sysctl_perf_event_sample_rate,
567 .maxlen = sizeof(sysctl_perf_event_sample_rate),
568 .mode = 0644,
569 .proc_handler = perf_event_max_sample_rate_handler,
570 .extra1 = SYSCTL_ONE,
571 },
572 {
573 .procname = "perf_cpu_time_max_percent",
574 .data = &sysctl_perf_cpu_time_max_percent,
575 .maxlen = sizeof(sysctl_perf_cpu_time_max_percent),
576 .mode = 0644,
577 .proc_handler = perf_cpu_time_max_percent_handler,
578 .extra1 = SYSCTL_ZERO,
579 .extra2 = SYSCTL_ONE_HUNDRED,
580 },
581 };
582
init_events_core_sysctls(void)583 static int __init init_events_core_sysctls(void)
584 {
585 register_sysctl_init("kernel", events_core_sysctl_table);
586 return 0;
587 }
588 core_initcall(init_events_core_sysctls);
589
590
591 /*
592 * perf samples are done in some very critical code paths (NMIs).
593 * If they take too much CPU time, the system can lock up and not
594 * get any real work done. This will drop the sample rate when
595 * we detect that events are taking too long.
596 */
597 #define NR_ACCUMULATED_SAMPLES 128
598 static DEFINE_PER_CPU(u64, running_sample_length);
599
600 static u64 __report_avg;
601 static u64 __report_allowed;
602
perf_duration_warn(struct irq_work * w)603 static void perf_duration_warn(struct irq_work *w)
604 {
605 printk_ratelimited(KERN_INFO
606 "perf: interrupt took too long (%lld > %lld), lowering "
607 "kernel.perf_event_max_sample_rate to %d\n",
608 __report_avg, __report_allowed,
609 sysctl_perf_event_sample_rate);
610 }
611
612 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
613
perf_sample_event_took(u64 sample_len_ns)614 void perf_sample_event_took(u64 sample_len_ns)
615 {
616 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
617 u64 running_len;
618 u64 avg_len;
619 u32 max;
620
621 if (max_len == 0)
622 return;
623
624 /* Decay the counter by 1 average sample. */
625 running_len = __this_cpu_read(running_sample_length);
626 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
627 running_len += sample_len_ns;
628 __this_cpu_write(running_sample_length, running_len);
629
630 /*
631 * Note: this will be biased artificially low until we have
632 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
633 * from having to maintain a count.
634 */
635 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
636 if (avg_len <= max_len)
637 return;
638
639 __report_avg = avg_len;
640 __report_allowed = max_len;
641
642 /*
643 * Compute a throttle threshold 25% below the current duration.
644 */
645 avg_len += avg_len / 4;
646 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
647 if (avg_len < max)
648 max /= (u32)avg_len;
649 else
650 max = 1;
651
652 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
653 WRITE_ONCE(max_samples_per_tick, max);
654
655 sysctl_perf_event_sample_rate = max * HZ;
656 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
657
658 if (!irq_work_queue(&perf_duration_work)) {
659 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
660 "kernel.perf_event_max_sample_rate to %d\n",
661 __report_avg, __report_allowed,
662 sysctl_perf_event_sample_rate);
663 }
664 }
665
666 static atomic64_t perf_event_id;
667
668 static void update_context_time(struct perf_event_context *ctx);
669 static u64 perf_event_time(struct perf_event *event);
670
perf_event_print_debug(void)671 void __weak perf_event_print_debug(void) { }
672
perf_clock(void)673 static inline u64 perf_clock(void)
674 {
675 return local_clock();
676 }
677
perf_event_clock(struct perf_event * event)678 static inline u64 perf_event_clock(struct perf_event *event)
679 {
680 return event->clock();
681 }
682
683 /*
684 * State based event timekeeping...
685 *
686 * The basic idea is to use event->state to determine which (if any) time
687 * fields to increment with the current delta. This means we only need to
688 * update timestamps when we change state or when they are explicitly requested
689 * (read).
690 *
691 * Event groups make things a little more complicated, but not terribly so. The
692 * rules for a group are that if the group leader is OFF the entire group is
693 * OFF, irrespective of what the group member states are. This results in
694 * __perf_effective_state().
695 *
696 * A further ramification is that when a group leader flips between OFF and
697 * !OFF, we need to update all group member times.
698 *
699 *
700 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
701 * need to make sure the relevant context time is updated before we try and
702 * update our timestamps.
703 */
704
705 static __always_inline enum perf_event_state
__perf_effective_state(struct perf_event * event)706 __perf_effective_state(struct perf_event *event)
707 {
708 struct perf_event *leader = event->group_leader;
709
710 if (leader->state <= PERF_EVENT_STATE_OFF)
711 return leader->state;
712
713 return event->state;
714 }
715
716 static __always_inline void
__perf_update_times(struct perf_event * event,u64 now,u64 * enabled,u64 * running)717 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
718 {
719 enum perf_event_state state = __perf_effective_state(event);
720 u64 delta = now - event->tstamp;
721
722 *enabled = event->total_time_enabled;
723 if (state >= PERF_EVENT_STATE_INACTIVE)
724 *enabled += delta;
725
726 *running = event->total_time_running;
727 if (state >= PERF_EVENT_STATE_ACTIVE)
728 *running += delta;
729 }
730
perf_event_update_time(struct perf_event * event)731 static void perf_event_update_time(struct perf_event *event)
732 {
733 u64 now = perf_event_time(event);
734
735 __perf_update_times(event, now, &event->total_time_enabled,
736 &event->total_time_running);
737 event->tstamp = now;
738 }
739
perf_event_update_sibling_time(struct perf_event * leader)740 static void perf_event_update_sibling_time(struct perf_event *leader)
741 {
742 struct perf_event *sibling;
743
744 for_each_sibling_event(sibling, leader)
745 perf_event_update_time(sibling);
746 }
747
748 static void
perf_event_set_state(struct perf_event * event,enum perf_event_state state)749 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
750 {
751 if (event->state == state)
752 return;
753
754 perf_event_update_time(event);
755 /*
756 * If a group leader gets enabled/disabled all its siblings
757 * are affected too.
758 */
759 if ((event->state < 0) ^ (state < 0))
760 perf_event_update_sibling_time(event);
761
762 WRITE_ONCE(event->state, state);
763 }
764
765 /*
766 * UP store-release, load-acquire
767 */
768
769 #define __store_release(ptr, val) \
770 do { \
771 barrier(); \
772 WRITE_ONCE(*(ptr), (val)); \
773 } while (0)
774
775 #define __load_acquire(ptr) \
776 ({ \
777 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \
778 barrier(); \
779 ___p; \
780 })
781
782 #define for_each_epc(_epc, _ctx, _pmu, _cgroup) \
783 list_for_each_entry(_epc, &((_ctx)->pmu_ctx_list), pmu_ctx_entry) \
784 if (_cgroup && !_epc->nr_cgroups) \
785 continue; \
786 else if (_pmu && _epc->pmu != _pmu) \
787 continue; \
788 else
789
perf_ctx_disable(struct perf_event_context * ctx,bool cgroup)790 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
791 {
792 struct perf_event_pmu_context *pmu_ctx;
793
794 for_each_epc(pmu_ctx, ctx, NULL, cgroup)
795 perf_pmu_disable(pmu_ctx->pmu);
796 }
797
perf_ctx_enable(struct perf_event_context * ctx,bool cgroup)798 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
799 {
800 struct perf_event_pmu_context *pmu_ctx;
801
802 for_each_epc(pmu_ctx, ctx, NULL, cgroup)
803 perf_pmu_enable(pmu_ctx->pmu);
804 }
805
806 static void ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
807 static void ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
808
809 #ifdef CONFIG_CGROUP_PERF
810
811 static inline bool
perf_cgroup_match(struct perf_event * event)812 perf_cgroup_match(struct perf_event *event)
813 {
814 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
815
816 /* @event doesn't care about cgroup */
817 if (!event->cgrp)
818 return true;
819
820 /* wants specific cgroup scope but @cpuctx isn't associated with any */
821 if (!cpuctx->cgrp)
822 return false;
823
824 /*
825 * Cgroup scoping is recursive. An event enabled for a cgroup is
826 * also enabled for all its descendant cgroups. If @cpuctx's
827 * cgroup is a descendant of @event's (the test covers identity
828 * case), it's a match.
829 */
830 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
831 event->cgrp->css.cgroup);
832 }
833
perf_detach_cgroup(struct perf_event * event)834 static inline void perf_detach_cgroup(struct perf_event *event)
835 {
836 css_put(&event->cgrp->css);
837 event->cgrp = NULL;
838 }
839
is_cgroup_event(struct perf_event * event)840 static inline int is_cgroup_event(struct perf_event *event)
841 {
842 return event->cgrp != NULL;
843 }
844
perf_cgroup_event_time(struct perf_event * event)845 static inline u64 perf_cgroup_event_time(struct perf_event *event)
846 {
847 struct perf_cgroup_info *t;
848
849 t = per_cpu_ptr(event->cgrp->info, event->cpu);
850 return t->time;
851 }
852
perf_cgroup_event_time_now(struct perf_event * event,u64 now)853 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
854 {
855 struct perf_cgroup_info *t;
856
857 t = per_cpu_ptr(event->cgrp->info, event->cpu);
858 if (!__load_acquire(&t->active))
859 return t->time;
860 now += READ_ONCE(t->timeoffset);
861 return now;
862 }
863
__update_cgrp_time(struct perf_cgroup_info * info,u64 now,bool adv)864 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
865 {
866 if (adv)
867 info->time += now - info->timestamp;
868 info->timestamp = now;
869 /*
870 * see update_context_time()
871 */
872 WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
873 }
874
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)875 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
876 {
877 struct perf_cgroup *cgrp = cpuctx->cgrp;
878 struct cgroup_subsys_state *css;
879 struct perf_cgroup_info *info;
880
881 if (cgrp) {
882 u64 now = perf_clock();
883
884 for (css = &cgrp->css; css; css = css->parent) {
885 cgrp = container_of(css, struct perf_cgroup, css);
886 info = this_cpu_ptr(cgrp->info);
887
888 __update_cgrp_time(info, now, true);
889 if (final)
890 __store_release(&info->active, 0);
891 }
892 }
893 }
894
update_cgrp_time_from_event(struct perf_event * event)895 static inline void update_cgrp_time_from_event(struct perf_event *event)
896 {
897 struct perf_cgroup_info *info;
898
899 /*
900 * ensure we access cgroup data only when needed and
901 * when we know the cgroup is pinned (css_get)
902 */
903 if (!is_cgroup_event(event))
904 return;
905
906 info = this_cpu_ptr(event->cgrp->info);
907 /*
908 * Do not update time when cgroup is not active
909 */
910 if (info->active)
911 __update_cgrp_time(info, perf_clock(), true);
912 }
913
914 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)915 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
916 {
917 struct perf_event_context *ctx = &cpuctx->ctx;
918 struct perf_cgroup *cgrp = cpuctx->cgrp;
919 struct perf_cgroup_info *info;
920 struct cgroup_subsys_state *css;
921
922 /*
923 * ctx->lock held by caller
924 * ensure we do not access cgroup data
925 * unless we have the cgroup pinned (css_get)
926 */
927 if (!cgrp)
928 return;
929
930 WARN_ON_ONCE(!ctx->nr_cgroups);
931
932 for (css = &cgrp->css; css; css = css->parent) {
933 cgrp = container_of(css, struct perf_cgroup, css);
934 info = this_cpu_ptr(cgrp->info);
935 __update_cgrp_time(info, ctx->timestamp, false);
936 __store_release(&info->active, 1);
937 }
938 }
939
940 /*
941 * reschedule events based on the cgroup constraint of task.
942 */
perf_cgroup_switch(struct task_struct * task)943 static void perf_cgroup_switch(struct task_struct *task)
944 {
945 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
946 struct perf_cgroup *cgrp;
947
948 /*
949 * cpuctx->cgrp is set when the first cgroup event enabled,
950 * and is cleared when the last cgroup event disabled.
951 */
952 if (READ_ONCE(cpuctx->cgrp) == NULL)
953 return;
954
955 cgrp = perf_cgroup_from_task(task, NULL);
956 if (READ_ONCE(cpuctx->cgrp) == cgrp)
957 return;
958
959 guard(perf_ctx_lock)(cpuctx, cpuctx->task_ctx);
960 /*
961 * Re-check, could've raced vs perf_remove_from_context().
962 */
963 if (READ_ONCE(cpuctx->cgrp) == NULL)
964 return;
965
966 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
967
968 perf_ctx_disable(&cpuctx->ctx, true);
969
970 ctx_sched_out(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
971 /*
972 * must not be done before ctxswout due
973 * to update_cgrp_time_from_cpuctx() in
974 * ctx_sched_out()
975 */
976 cpuctx->cgrp = cgrp;
977 /*
978 * set cgrp before ctxsw in to allow
979 * perf_cgroup_set_timestamp() in ctx_sched_in()
980 * to not have to pass task around
981 */
982 ctx_sched_in(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
983
984 perf_ctx_enable(&cpuctx->ctx, true);
985 }
986
perf_cgroup_ensure_storage(struct perf_event * event,struct cgroup_subsys_state * css)987 static int perf_cgroup_ensure_storage(struct perf_event *event,
988 struct cgroup_subsys_state *css)
989 {
990 struct perf_cpu_context *cpuctx;
991 struct perf_event **storage;
992 int cpu, heap_size, ret = 0;
993
994 /*
995 * Allow storage to have sufficient space for an iterator for each
996 * possibly nested cgroup plus an iterator for events with no cgroup.
997 */
998 for (heap_size = 1; css; css = css->parent)
999 heap_size++;
1000
1001 for_each_possible_cpu(cpu) {
1002 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
1003 if (heap_size <= cpuctx->heap_size)
1004 continue;
1005
1006 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
1007 GFP_KERNEL, cpu_to_node(cpu));
1008 if (!storage) {
1009 ret = -ENOMEM;
1010 break;
1011 }
1012
1013 raw_spin_lock_irq(&cpuctx->ctx.lock);
1014 if (cpuctx->heap_size < heap_size) {
1015 swap(cpuctx->heap, storage);
1016 if (storage == cpuctx->heap_default)
1017 storage = NULL;
1018 cpuctx->heap_size = heap_size;
1019 }
1020 raw_spin_unlock_irq(&cpuctx->ctx.lock);
1021
1022 kfree(storage);
1023 }
1024
1025 return ret;
1026 }
1027
perf_cgroup_connect(int fd,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)1028 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
1029 struct perf_event_attr *attr,
1030 struct perf_event *group_leader)
1031 {
1032 struct perf_cgroup *cgrp;
1033 struct cgroup_subsys_state *css;
1034 CLASS(fd, f)(fd);
1035 int ret = 0;
1036
1037 if (fd_empty(f))
1038 return -EBADF;
1039
1040 css = css_tryget_online_from_dir(fd_file(f)->f_path.dentry,
1041 &perf_event_cgrp_subsys);
1042 if (IS_ERR(css))
1043 return PTR_ERR(css);
1044
1045 ret = perf_cgroup_ensure_storage(event, css);
1046 if (ret)
1047 return ret;
1048
1049 cgrp = container_of(css, struct perf_cgroup, css);
1050 event->cgrp = cgrp;
1051
1052 /*
1053 * all events in a group must monitor
1054 * the same cgroup because a task belongs
1055 * to only one perf cgroup at a time
1056 */
1057 if (group_leader && group_leader->cgrp != cgrp) {
1058 perf_detach_cgroup(event);
1059 ret = -EINVAL;
1060 }
1061 return ret;
1062 }
1063
1064 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1065 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1066 {
1067 struct perf_cpu_context *cpuctx;
1068
1069 if (!is_cgroup_event(event))
1070 return;
1071
1072 event->pmu_ctx->nr_cgroups++;
1073
1074 /*
1075 * Because cgroup events are always per-cpu events,
1076 * @ctx == &cpuctx->ctx.
1077 */
1078 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1079
1080 if (ctx->nr_cgroups++)
1081 return;
1082
1083 cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
1084 }
1085
1086 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1087 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1088 {
1089 struct perf_cpu_context *cpuctx;
1090
1091 if (!is_cgroup_event(event))
1092 return;
1093
1094 event->pmu_ctx->nr_cgroups--;
1095
1096 /*
1097 * Because cgroup events are always per-cpu events,
1098 * @ctx == &cpuctx->ctx.
1099 */
1100 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1101
1102 if (--ctx->nr_cgroups)
1103 return;
1104
1105 cpuctx->cgrp = NULL;
1106 }
1107
1108 #else /* !CONFIG_CGROUP_PERF */
1109
1110 static inline bool
perf_cgroup_match(struct perf_event * event)1111 perf_cgroup_match(struct perf_event *event)
1112 {
1113 return true;
1114 }
1115
perf_detach_cgroup(struct perf_event * event)1116 static inline void perf_detach_cgroup(struct perf_event *event)
1117 {}
1118
is_cgroup_event(struct perf_event * event)1119 static inline int is_cgroup_event(struct perf_event *event)
1120 {
1121 return 0;
1122 }
1123
update_cgrp_time_from_event(struct perf_event * event)1124 static inline void update_cgrp_time_from_event(struct perf_event *event)
1125 {
1126 }
1127
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)1128 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1129 bool final)
1130 {
1131 }
1132
perf_cgroup_connect(pid_t pid,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)1133 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1134 struct perf_event_attr *attr,
1135 struct perf_event *group_leader)
1136 {
1137 return -EINVAL;
1138 }
1139
1140 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)1141 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1142 {
1143 }
1144
perf_cgroup_event_time(struct perf_event * event)1145 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1146 {
1147 return 0;
1148 }
1149
perf_cgroup_event_time_now(struct perf_event * event,u64 now)1150 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1151 {
1152 return 0;
1153 }
1154
1155 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1156 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1157 {
1158 }
1159
1160 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1161 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1162 {
1163 }
1164
perf_cgroup_switch(struct task_struct * task)1165 static void perf_cgroup_switch(struct task_struct *task)
1166 {
1167 }
1168 #endif
1169
1170 /*
1171 * set default to be dependent on timer tick just
1172 * like original code
1173 */
1174 #define PERF_CPU_HRTIMER (1000 / HZ)
1175 /*
1176 * function must be called with interrupts disabled
1177 */
perf_mux_hrtimer_handler(struct hrtimer * hr)1178 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1179 {
1180 struct perf_cpu_pmu_context *cpc;
1181 bool rotations;
1182
1183 lockdep_assert_irqs_disabled();
1184
1185 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1186 rotations = perf_rotate_context(cpc);
1187
1188 raw_spin_lock(&cpc->hrtimer_lock);
1189 if (rotations)
1190 hrtimer_forward_now(hr, cpc->hrtimer_interval);
1191 else
1192 cpc->hrtimer_active = 0;
1193 raw_spin_unlock(&cpc->hrtimer_lock);
1194
1195 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1196 }
1197
__perf_mux_hrtimer_init(struct perf_cpu_pmu_context * cpc,int cpu)1198 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1199 {
1200 struct hrtimer *timer = &cpc->hrtimer;
1201 struct pmu *pmu = cpc->epc.pmu;
1202 u64 interval;
1203
1204 /*
1205 * check default is sane, if not set then force to
1206 * default interval (1/tick)
1207 */
1208 interval = pmu->hrtimer_interval_ms;
1209 if (interval < 1)
1210 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1211
1212 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1213
1214 raw_spin_lock_init(&cpc->hrtimer_lock);
1215 hrtimer_setup(timer, perf_mux_hrtimer_handler, CLOCK_MONOTONIC,
1216 HRTIMER_MODE_ABS_PINNED_HARD);
1217 }
1218
perf_mux_hrtimer_restart(struct perf_cpu_pmu_context * cpc)1219 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1220 {
1221 struct hrtimer *timer = &cpc->hrtimer;
1222 unsigned long flags;
1223
1224 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1225 if (!cpc->hrtimer_active) {
1226 cpc->hrtimer_active = 1;
1227 hrtimer_forward_now(timer, cpc->hrtimer_interval);
1228 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1229 }
1230 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1231
1232 return 0;
1233 }
1234
perf_mux_hrtimer_restart_ipi(void * arg)1235 static int perf_mux_hrtimer_restart_ipi(void *arg)
1236 {
1237 return perf_mux_hrtimer_restart(arg);
1238 }
1239
this_cpc(struct pmu * pmu)1240 static __always_inline struct perf_cpu_pmu_context *this_cpc(struct pmu *pmu)
1241 {
1242 return *this_cpu_ptr(pmu->cpu_pmu_context);
1243 }
1244
perf_pmu_disable(struct pmu * pmu)1245 void perf_pmu_disable(struct pmu *pmu)
1246 {
1247 int *count = &this_cpc(pmu)->pmu_disable_count;
1248 if (!(*count)++)
1249 pmu->pmu_disable(pmu);
1250 }
1251
perf_pmu_enable(struct pmu * pmu)1252 void perf_pmu_enable(struct pmu *pmu)
1253 {
1254 int *count = &this_cpc(pmu)->pmu_disable_count;
1255 if (!--(*count))
1256 pmu->pmu_enable(pmu);
1257 }
1258
perf_assert_pmu_disabled(struct pmu * pmu)1259 static void perf_assert_pmu_disabled(struct pmu *pmu)
1260 {
1261 int *count = &this_cpc(pmu)->pmu_disable_count;
1262 WARN_ON_ONCE(*count == 0);
1263 }
1264
perf_pmu_read(struct perf_event * event)1265 static inline void perf_pmu_read(struct perf_event *event)
1266 {
1267 if (event->state == PERF_EVENT_STATE_ACTIVE)
1268 event->pmu->read(event);
1269 }
1270
get_ctx(struct perf_event_context * ctx)1271 static void get_ctx(struct perf_event_context *ctx)
1272 {
1273 refcount_inc(&ctx->refcount);
1274 }
1275
free_ctx(struct rcu_head * head)1276 static void free_ctx(struct rcu_head *head)
1277 {
1278 struct perf_event_context *ctx;
1279
1280 ctx = container_of(head, struct perf_event_context, rcu_head);
1281 kfree(ctx);
1282 }
1283
put_ctx(struct perf_event_context * ctx)1284 static void put_ctx(struct perf_event_context *ctx)
1285 {
1286 if (refcount_dec_and_test(&ctx->refcount)) {
1287 if (ctx->parent_ctx)
1288 put_ctx(ctx->parent_ctx);
1289 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1290 put_task_struct(ctx->task);
1291 call_rcu(&ctx->rcu_head, free_ctx);
1292 } else {
1293 smp_mb__after_atomic(); /* pairs with wait_var_event() */
1294 if (ctx->task == TASK_TOMBSTONE)
1295 wake_up_var(&ctx->refcount);
1296 }
1297 }
1298
1299 /*
1300 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1301 * perf_pmu_migrate_context() we need some magic.
1302 *
1303 * Those places that change perf_event::ctx will hold both
1304 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1305 *
1306 * Lock ordering is by mutex address. There are two other sites where
1307 * perf_event_context::mutex nests and those are:
1308 *
1309 * - perf_event_exit_task_context() [ child , 0 ]
1310 * perf_event_exit_event()
1311 * put_event() [ parent, 1 ]
1312 *
1313 * - perf_event_init_context() [ parent, 0 ]
1314 * inherit_task_group()
1315 * inherit_group()
1316 * inherit_event()
1317 * perf_event_alloc()
1318 * perf_init_event()
1319 * perf_try_init_event() [ child , 1 ]
1320 *
1321 * While it appears there is an obvious deadlock here -- the parent and child
1322 * nesting levels are inverted between the two. This is in fact safe because
1323 * life-time rules separate them. That is an exiting task cannot fork, and a
1324 * spawning task cannot (yet) exit.
1325 *
1326 * But remember that these are parent<->child context relations, and
1327 * migration does not affect children, therefore these two orderings should not
1328 * interact.
1329 *
1330 * The change in perf_event::ctx does not affect children (as claimed above)
1331 * because the sys_perf_event_open() case will install a new event and break
1332 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1333 * concerned with cpuctx and that doesn't have children.
1334 *
1335 * The places that change perf_event::ctx will issue:
1336 *
1337 * perf_remove_from_context();
1338 * synchronize_rcu();
1339 * perf_install_in_context();
1340 *
1341 * to affect the change. The remove_from_context() + synchronize_rcu() should
1342 * quiesce the event, after which we can install it in the new location. This
1343 * means that only external vectors (perf_fops, prctl) can perturb the event
1344 * while in transit. Therefore all such accessors should also acquire
1345 * perf_event_context::mutex to serialize against this.
1346 *
1347 * However; because event->ctx can change while we're waiting to acquire
1348 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1349 * function.
1350 *
1351 * Lock order:
1352 * exec_update_lock
1353 * task_struct::perf_event_mutex
1354 * perf_event_context::mutex
1355 * perf_event::child_mutex;
1356 * perf_event_context::lock
1357 * mmap_lock
1358 * perf_event::mmap_mutex
1359 * perf_buffer::aux_mutex
1360 * perf_addr_filters_head::lock
1361 *
1362 * cpu_hotplug_lock
1363 * pmus_lock
1364 * cpuctx->mutex / perf_event_context::mutex
1365 */
1366 static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event * event,int nesting)1367 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1368 {
1369 struct perf_event_context *ctx;
1370
1371 again:
1372 rcu_read_lock();
1373 ctx = READ_ONCE(event->ctx);
1374 if (!refcount_inc_not_zero(&ctx->refcount)) {
1375 rcu_read_unlock();
1376 goto again;
1377 }
1378 rcu_read_unlock();
1379
1380 mutex_lock_nested(&ctx->mutex, nesting);
1381 if (event->ctx != ctx) {
1382 mutex_unlock(&ctx->mutex);
1383 put_ctx(ctx);
1384 goto again;
1385 }
1386
1387 return ctx;
1388 }
1389
1390 static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event * event)1391 perf_event_ctx_lock(struct perf_event *event)
1392 {
1393 return perf_event_ctx_lock_nested(event, 0);
1394 }
1395
perf_event_ctx_unlock(struct perf_event * event,struct perf_event_context * ctx)1396 static void perf_event_ctx_unlock(struct perf_event *event,
1397 struct perf_event_context *ctx)
1398 {
1399 mutex_unlock(&ctx->mutex);
1400 put_ctx(ctx);
1401 }
1402
1403 /*
1404 * This must be done under the ctx->lock, such as to serialize against
1405 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1406 * calling scheduler related locks and ctx->lock nests inside those.
1407 */
1408 static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context * ctx)1409 unclone_ctx(struct perf_event_context *ctx)
1410 {
1411 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1412
1413 lockdep_assert_held(&ctx->lock);
1414
1415 if (parent_ctx)
1416 ctx->parent_ctx = NULL;
1417 ctx->generation++;
1418
1419 return parent_ctx;
1420 }
1421
perf_event_pid_type(struct perf_event * event,struct task_struct * p,enum pid_type type)1422 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1423 enum pid_type type)
1424 {
1425 u32 nr;
1426 /*
1427 * only top level events have the pid namespace they were created in
1428 */
1429 if (event->parent)
1430 event = event->parent;
1431
1432 nr = __task_pid_nr_ns(p, type, event->ns);
1433 /* avoid -1 if it is idle thread or runs in another ns */
1434 if (!nr && !pid_alive(p))
1435 nr = -1;
1436 return nr;
1437 }
1438
perf_event_pid(struct perf_event * event,struct task_struct * p)1439 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1440 {
1441 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1442 }
1443
perf_event_tid(struct perf_event * event,struct task_struct * p)1444 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1445 {
1446 return perf_event_pid_type(event, p, PIDTYPE_PID);
1447 }
1448
1449 /*
1450 * If we inherit events we want to return the parent event id
1451 * to userspace.
1452 */
primary_event_id(struct perf_event * event)1453 static u64 primary_event_id(struct perf_event *event)
1454 {
1455 u64 id = event->id;
1456
1457 if (event->parent)
1458 id = event->parent->id;
1459
1460 return id;
1461 }
1462
1463 /*
1464 * Get the perf_event_context for a task and lock it.
1465 *
1466 * This has to cope with the fact that until it is locked,
1467 * the context could get moved to another task.
1468 */
1469 static struct perf_event_context *
perf_lock_task_context(struct task_struct * task,unsigned long * flags)1470 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1471 {
1472 struct perf_event_context *ctx;
1473
1474 retry:
1475 /*
1476 * One of the few rules of preemptible RCU is that one cannot do
1477 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1478 * part of the read side critical section was irqs-enabled -- see
1479 * rcu_read_unlock_special().
1480 *
1481 * Since ctx->lock nests under rq->lock we must ensure the entire read
1482 * side critical section has interrupts disabled.
1483 */
1484 local_irq_save(*flags);
1485 rcu_read_lock();
1486 ctx = rcu_dereference(task->perf_event_ctxp);
1487 if (ctx) {
1488 /*
1489 * If this context is a clone of another, it might
1490 * get swapped for another underneath us by
1491 * perf_event_task_sched_out, though the
1492 * rcu_read_lock() protects us from any context
1493 * getting freed. Lock the context and check if it
1494 * got swapped before we could get the lock, and retry
1495 * if so. If we locked the right context, then it
1496 * can't get swapped on us any more.
1497 */
1498 raw_spin_lock(&ctx->lock);
1499 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1500 raw_spin_unlock(&ctx->lock);
1501 rcu_read_unlock();
1502 local_irq_restore(*flags);
1503 goto retry;
1504 }
1505
1506 if (ctx->task == TASK_TOMBSTONE ||
1507 !refcount_inc_not_zero(&ctx->refcount)) {
1508 raw_spin_unlock(&ctx->lock);
1509 ctx = NULL;
1510 } else {
1511 WARN_ON_ONCE(ctx->task != task);
1512 }
1513 }
1514 rcu_read_unlock();
1515 if (!ctx)
1516 local_irq_restore(*flags);
1517 return ctx;
1518 }
1519
1520 /*
1521 * Get the context for a task and increment its pin_count so it
1522 * can't get swapped to another task. This also increments its
1523 * reference count so that the context can't get freed.
1524 */
1525 static struct perf_event_context *
perf_pin_task_context(struct task_struct * task)1526 perf_pin_task_context(struct task_struct *task)
1527 {
1528 struct perf_event_context *ctx;
1529 unsigned long flags;
1530
1531 ctx = perf_lock_task_context(task, &flags);
1532 if (ctx) {
1533 ++ctx->pin_count;
1534 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1535 }
1536 return ctx;
1537 }
1538
perf_unpin_context(struct perf_event_context * ctx)1539 static void perf_unpin_context(struct perf_event_context *ctx)
1540 {
1541 unsigned long flags;
1542
1543 raw_spin_lock_irqsave(&ctx->lock, flags);
1544 --ctx->pin_count;
1545 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1546 }
1547
1548 /*
1549 * Update the record of the current time in a context.
1550 */
__update_context_time(struct perf_event_context * ctx,bool adv)1551 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1552 {
1553 u64 now = perf_clock();
1554
1555 lockdep_assert_held(&ctx->lock);
1556
1557 if (adv)
1558 ctx->time += now - ctx->timestamp;
1559 ctx->timestamp = now;
1560
1561 /*
1562 * The above: time' = time + (now - timestamp), can be re-arranged
1563 * into: time` = now + (time - timestamp), which gives a single value
1564 * offset to compute future time without locks on.
1565 *
1566 * See perf_event_time_now(), which can be used from NMI context where
1567 * it's (obviously) not possible to acquire ctx->lock in order to read
1568 * both the above values in a consistent manner.
1569 */
1570 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1571 }
1572
update_context_time(struct perf_event_context * ctx)1573 static void update_context_time(struct perf_event_context *ctx)
1574 {
1575 __update_context_time(ctx, true);
1576 }
1577
perf_event_time(struct perf_event * event)1578 static u64 perf_event_time(struct perf_event *event)
1579 {
1580 struct perf_event_context *ctx = event->ctx;
1581
1582 if (unlikely(!ctx))
1583 return 0;
1584
1585 if (is_cgroup_event(event))
1586 return perf_cgroup_event_time(event);
1587
1588 return ctx->time;
1589 }
1590
perf_event_time_now(struct perf_event * event,u64 now)1591 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1592 {
1593 struct perf_event_context *ctx = event->ctx;
1594
1595 if (unlikely(!ctx))
1596 return 0;
1597
1598 if (is_cgroup_event(event))
1599 return perf_cgroup_event_time_now(event, now);
1600
1601 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1602 return ctx->time;
1603
1604 now += READ_ONCE(ctx->timeoffset);
1605 return now;
1606 }
1607
get_event_type(struct perf_event * event)1608 static enum event_type_t get_event_type(struct perf_event *event)
1609 {
1610 struct perf_event_context *ctx = event->ctx;
1611 enum event_type_t event_type;
1612
1613 lockdep_assert_held(&ctx->lock);
1614
1615 /*
1616 * It's 'group type', really, because if our group leader is
1617 * pinned, so are we.
1618 */
1619 if (event->group_leader != event)
1620 event = event->group_leader;
1621
1622 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1623 if (!ctx->task)
1624 event_type |= EVENT_CPU;
1625
1626 return event_type;
1627 }
1628
1629 /*
1630 * Helper function to initialize event group nodes.
1631 */
init_event_group(struct perf_event * event)1632 static void init_event_group(struct perf_event *event)
1633 {
1634 RB_CLEAR_NODE(&event->group_node);
1635 event->group_index = 0;
1636 }
1637
1638 /*
1639 * Extract pinned or flexible groups from the context
1640 * based on event attrs bits.
1641 */
1642 static struct perf_event_groups *
get_event_groups(struct perf_event * event,struct perf_event_context * ctx)1643 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1644 {
1645 if (event->attr.pinned)
1646 return &ctx->pinned_groups;
1647 else
1648 return &ctx->flexible_groups;
1649 }
1650
1651 /*
1652 * Helper function to initializes perf_event_group trees.
1653 */
perf_event_groups_init(struct perf_event_groups * groups)1654 static void perf_event_groups_init(struct perf_event_groups *groups)
1655 {
1656 groups->tree = RB_ROOT;
1657 groups->index = 0;
1658 }
1659
event_cgroup(const struct perf_event * event)1660 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1661 {
1662 struct cgroup *cgroup = NULL;
1663
1664 #ifdef CONFIG_CGROUP_PERF
1665 if (event->cgrp)
1666 cgroup = event->cgrp->css.cgroup;
1667 #endif
1668
1669 return cgroup;
1670 }
1671
1672 /*
1673 * Compare function for event groups;
1674 *
1675 * Implements complex key that first sorts by CPU and then by virtual index
1676 * which provides ordering when rotating groups for the same CPU.
1677 */
1678 static __always_inline int
perf_event_groups_cmp(const int left_cpu,const struct pmu * left_pmu,const struct cgroup * left_cgroup,const u64 left_group_index,const struct perf_event * right)1679 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1680 const struct cgroup *left_cgroup, const u64 left_group_index,
1681 const struct perf_event *right)
1682 {
1683 if (left_cpu < right->cpu)
1684 return -1;
1685 if (left_cpu > right->cpu)
1686 return 1;
1687
1688 if (left_pmu) {
1689 if (left_pmu < right->pmu_ctx->pmu)
1690 return -1;
1691 if (left_pmu > right->pmu_ctx->pmu)
1692 return 1;
1693 }
1694
1695 #ifdef CONFIG_CGROUP_PERF
1696 {
1697 const struct cgroup *right_cgroup = event_cgroup(right);
1698
1699 if (left_cgroup != right_cgroup) {
1700 if (!left_cgroup) {
1701 /*
1702 * Left has no cgroup but right does, no
1703 * cgroups come first.
1704 */
1705 return -1;
1706 }
1707 if (!right_cgroup) {
1708 /*
1709 * Right has no cgroup but left does, no
1710 * cgroups come first.
1711 */
1712 return 1;
1713 }
1714 /* Two dissimilar cgroups, order by id. */
1715 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1716 return -1;
1717
1718 return 1;
1719 }
1720 }
1721 #endif
1722
1723 if (left_group_index < right->group_index)
1724 return -1;
1725 if (left_group_index > right->group_index)
1726 return 1;
1727
1728 return 0;
1729 }
1730
1731 #define __node_2_pe(node) \
1732 rb_entry((node), struct perf_event, group_node)
1733
__group_less(struct rb_node * a,const struct rb_node * b)1734 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1735 {
1736 struct perf_event *e = __node_2_pe(a);
1737 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1738 e->group_index, __node_2_pe(b)) < 0;
1739 }
1740
1741 struct __group_key {
1742 int cpu;
1743 struct pmu *pmu;
1744 struct cgroup *cgroup;
1745 };
1746
__group_cmp(const void * key,const struct rb_node * node)1747 static inline int __group_cmp(const void *key, const struct rb_node *node)
1748 {
1749 const struct __group_key *a = key;
1750 const struct perf_event *b = __node_2_pe(node);
1751
1752 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1753 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1754 }
1755
1756 static inline int
__group_cmp_ignore_cgroup(const void * key,const struct rb_node * node)1757 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1758 {
1759 const struct __group_key *a = key;
1760 const struct perf_event *b = __node_2_pe(node);
1761
1762 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1763 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1764 b->group_index, b);
1765 }
1766
1767 /*
1768 * Insert @event into @groups' tree; using
1769 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1770 * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1771 */
1772 static void
perf_event_groups_insert(struct perf_event_groups * groups,struct perf_event * event)1773 perf_event_groups_insert(struct perf_event_groups *groups,
1774 struct perf_event *event)
1775 {
1776 event->group_index = ++groups->index;
1777
1778 rb_add(&event->group_node, &groups->tree, __group_less);
1779 }
1780
1781 /*
1782 * Helper function to insert event into the pinned or flexible groups.
1783 */
1784 static void
add_event_to_groups(struct perf_event * event,struct perf_event_context * ctx)1785 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1786 {
1787 struct perf_event_groups *groups;
1788
1789 groups = get_event_groups(event, ctx);
1790 perf_event_groups_insert(groups, event);
1791 }
1792
1793 /*
1794 * Delete a group from a tree.
1795 */
1796 static void
perf_event_groups_delete(struct perf_event_groups * groups,struct perf_event * event)1797 perf_event_groups_delete(struct perf_event_groups *groups,
1798 struct perf_event *event)
1799 {
1800 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1801 RB_EMPTY_ROOT(&groups->tree));
1802
1803 rb_erase(&event->group_node, &groups->tree);
1804 init_event_group(event);
1805 }
1806
1807 /*
1808 * Helper function to delete event from its groups.
1809 */
1810 static void
del_event_from_groups(struct perf_event * event,struct perf_event_context * ctx)1811 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1812 {
1813 struct perf_event_groups *groups;
1814
1815 groups = get_event_groups(event, ctx);
1816 perf_event_groups_delete(groups, event);
1817 }
1818
1819 /*
1820 * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1821 */
1822 static struct perf_event *
perf_event_groups_first(struct perf_event_groups * groups,int cpu,struct pmu * pmu,struct cgroup * cgrp)1823 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1824 struct pmu *pmu, struct cgroup *cgrp)
1825 {
1826 struct __group_key key = {
1827 .cpu = cpu,
1828 .pmu = pmu,
1829 .cgroup = cgrp,
1830 };
1831 struct rb_node *node;
1832
1833 node = rb_find_first(&key, &groups->tree, __group_cmp);
1834 if (node)
1835 return __node_2_pe(node);
1836
1837 return NULL;
1838 }
1839
1840 static struct perf_event *
perf_event_groups_next(struct perf_event * event,struct pmu * pmu)1841 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1842 {
1843 struct __group_key key = {
1844 .cpu = event->cpu,
1845 .pmu = pmu,
1846 .cgroup = event_cgroup(event),
1847 };
1848 struct rb_node *next;
1849
1850 next = rb_next_match(&key, &event->group_node, __group_cmp);
1851 if (next)
1852 return __node_2_pe(next);
1853
1854 return NULL;
1855 }
1856
1857 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \
1858 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \
1859 event; event = perf_event_groups_next(event, pmu))
1860
1861 /*
1862 * Iterate through the whole groups tree.
1863 */
1864 #define perf_event_groups_for_each(event, groups) \
1865 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1866 typeof(*event), group_node); event; \
1867 event = rb_entry_safe(rb_next(&event->group_node), \
1868 typeof(*event), group_node))
1869
1870 /*
1871 * Does the event attribute request inherit with PERF_SAMPLE_READ
1872 */
has_inherit_and_sample_read(struct perf_event_attr * attr)1873 static inline bool has_inherit_and_sample_read(struct perf_event_attr *attr)
1874 {
1875 return attr->inherit && (attr->sample_type & PERF_SAMPLE_READ);
1876 }
1877
1878 /*
1879 * Add an event from the lists for its context.
1880 * Must be called with ctx->mutex and ctx->lock held.
1881 */
1882 static void
list_add_event(struct perf_event * event,struct perf_event_context * ctx)1883 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1884 {
1885 lockdep_assert_held(&ctx->lock);
1886
1887 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1888 event->attach_state |= PERF_ATTACH_CONTEXT;
1889
1890 event->tstamp = perf_event_time(event);
1891
1892 /*
1893 * If we're a stand alone event or group leader, we go to the context
1894 * list, group events are kept attached to the group so that
1895 * perf_group_detach can, at all times, locate all siblings.
1896 */
1897 if (event->group_leader == event) {
1898 event->group_caps = event->event_caps;
1899 add_event_to_groups(event, ctx);
1900 }
1901
1902 list_add_rcu(&event->event_entry, &ctx->event_list);
1903 ctx->nr_events++;
1904 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1905 ctx->nr_user++;
1906 if (event->attr.inherit_stat)
1907 ctx->nr_stat++;
1908 if (has_inherit_and_sample_read(&event->attr))
1909 local_inc(&ctx->nr_no_switch_fast);
1910
1911 if (event->state > PERF_EVENT_STATE_OFF)
1912 perf_cgroup_event_enable(event, ctx);
1913
1914 ctx->generation++;
1915 event->pmu_ctx->nr_events++;
1916 }
1917
1918 /*
1919 * Initialize event state based on the perf_event_attr::disabled.
1920 */
perf_event__state_init(struct perf_event * event)1921 static inline void perf_event__state_init(struct perf_event *event)
1922 {
1923 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1924 PERF_EVENT_STATE_INACTIVE;
1925 }
1926
__perf_event_read_size(u64 read_format,int nr_siblings)1927 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1928 {
1929 int entry = sizeof(u64); /* value */
1930 int size = 0;
1931 int nr = 1;
1932
1933 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1934 size += sizeof(u64);
1935
1936 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1937 size += sizeof(u64);
1938
1939 if (read_format & PERF_FORMAT_ID)
1940 entry += sizeof(u64);
1941
1942 if (read_format & PERF_FORMAT_LOST)
1943 entry += sizeof(u64);
1944
1945 if (read_format & PERF_FORMAT_GROUP) {
1946 nr += nr_siblings;
1947 size += sizeof(u64);
1948 }
1949
1950 /*
1951 * Since perf_event_validate_size() limits this to 16k and inhibits
1952 * adding more siblings, this will never overflow.
1953 */
1954 return size + nr * entry;
1955 }
1956
__perf_event_header_size(struct perf_event * event,u64 sample_type)1957 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1958 {
1959 struct perf_sample_data *data;
1960 u16 size = 0;
1961
1962 if (sample_type & PERF_SAMPLE_IP)
1963 size += sizeof(data->ip);
1964
1965 if (sample_type & PERF_SAMPLE_ADDR)
1966 size += sizeof(data->addr);
1967
1968 if (sample_type & PERF_SAMPLE_PERIOD)
1969 size += sizeof(data->period);
1970
1971 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1972 size += sizeof(data->weight.full);
1973
1974 if (sample_type & PERF_SAMPLE_READ)
1975 size += event->read_size;
1976
1977 if (sample_type & PERF_SAMPLE_DATA_SRC)
1978 size += sizeof(data->data_src.val);
1979
1980 if (sample_type & PERF_SAMPLE_TRANSACTION)
1981 size += sizeof(data->txn);
1982
1983 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1984 size += sizeof(data->phys_addr);
1985
1986 if (sample_type & PERF_SAMPLE_CGROUP)
1987 size += sizeof(data->cgroup);
1988
1989 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1990 size += sizeof(data->data_page_size);
1991
1992 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1993 size += sizeof(data->code_page_size);
1994
1995 event->header_size = size;
1996 }
1997
1998 /*
1999 * Called at perf_event creation and when events are attached/detached from a
2000 * group.
2001 */
perf_event__header_size(struct perf_event * event)2002 static void perf_event__header_size(struct perf_event *event)
2003 {
2004 event->read_size =
2005 __perf_event_read_size(event->attr.read_format,
2006 event->group_leader->nr_siblings);
2007 __perf_event_header_size(event, event->attr.sample_type);
2008 }
2009
perf_event__id_header_size(struct perf_event * event)2010 static void perf_event__id_header_size(struct perf_event *event)
2011 {
2012 struct perf_sample_data *data;
2013 u64 sample_type = event->attr.sample_type;
2014 u16 size = 0;
2015
2016 if (sample_type & PERF_SAMPLE_TID)
2017 size += sizeof(data->tid_entry);
2018
2019 if (sample_type & PERF_SAMPLE_TIME)
2020 size += sizeof(data->time);
2021
2022 if (sample_type & PERF_SAMPLE_IDENTIFIER)
2023 size += sizeof(data->id);
2024
2025 if (sample_type & PERF_SAMPLE_ID)
2026 size += sizeof(data->id);
2027
2028 if (sample_type & PERF_SAMPLE_STREAM_ID)
2029 size += sizeof(data->stream_id);
2030
2031 if (sample_type & PERF_SAMPLE_CPU)
2032 size += sizeof(data->cpu_entry);
2033
2034 event->id_header_size = size;
2035 }
2036
2037 /*
2038 * Check that adding an event to the group does not result in anybody
2039 * overflowing the 64k event limit imposed by the output buffer.
2040 *
2041 * Specifically, check that the read_size for the event does not exceed 16k,
2042 * read_size being the one term that grows with groups size. Since read_size
2043 * depends on per-event read_format, also (re)check the existing events.
2044 *
2045 * This leaves 48k for the constant size fields and things like callchains,
2046 * branch stacks and register sets.
2047 */
perf_event_validate_size(struct perf_event * event)2048 static bool perf_event_validate_size(struct perf_event *event)
2049 {
2050 struct perf_event *sibling, *group_leader = event->group_leader;
2051
2052 if (__perf_event_read_size(event->attr.read_format,
2053 group_leader->nr_siblings + 1) > 16*1024)
2054 return false;
2055
2056 if (__perf_event_read_size(group_leader->attr.read_format,
2057 group_leader->nr_siblings + 1) > 16*1024)
2058 return false;
2059
2060 /*
2061 * When creating a new group leader, group_leader->ctx is initialized
2062 * after the size has been validated, but we cannot safely use
2063 * for_each_sibling_event() until group_leader->ctx is set. A new group
2064 * leader cannot have any siblings yet, so we can safely skip checking
2065 * the non-existent siblings.
2066 */
2067 if (event == group_leader)
2068 return true;
2069
2070 for_each_sibling_event(sibling, group_leader) {
2071 if (__perf_event_read_size(sibling->attr.read_format,
2072 group_leader->nr_siblings + 1) > 16*1024)
2073 return false;
2074 }
2075
2076 return true;
2077 }
2078
perf_group_attach(struct perf_event * event)2079 static void perf_group_attach(struct perf_event *event)
2080 {
2081 struct perf_event *group_leader = event->group_leader, *pos;
2082
2083 lockdep_assert_held(&event->ctx->lock);
2084
2085 /*
2086 * We can have double attach due to group movement (move_group) in
2087 * perf_event_open().
2088 */
2089 if (event->attach_state & PERF_ATTACH_GROUP)
2090 return;
2091
2092 event->attach_state |= PERF_ATTACH_GROUP;
2093
2094 if (group_leader == event)
2095 return;
2096
2097 WARN_ON_ONCE(group_leader->ctx != event->ctx);
2098
2099 group_leader->group_caps &= event->event_caps;
2100
2101 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
2102 group_leader->nr_siblings++;
2103 group_leader->group_generation++;
2104
2105 perf_event__header_size(group_leader);
2106
2107 for_each_sibling_event(pos, group_leader)
2108 perf_event__header_size(pos);
2109 }
2110
2111 /*
2112 * Remove an event from the lists for its context.
2113 * Must be called with ctx->mutex and ctx->lock held.
2114 */
2115 static void
list_del_event(struct perf_event * event,struct perf_event_context * ctx)2116 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2117 {
2118 WARN_ON_ONCE(event->ctx != ctx);
2119 lockdep_assert_held(&ctx->lock);
2120
2121 /*
2122 * We can have double detach due to exit/hot-unplug + close.
2123 */
2124 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2125 return;
2126
2127 event->attach_state &= ~PERF_ATTACH_CONTEXT;
2128
2129 ctx->nr_events--;
2130 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2131 ctx->nr_user--;
2132 if (event->attr.inherit_stat)
2133 ctx->nr_stat--;
2134 if (has_inherit_and_sample_read(&event->attr))
2135 local_dec(&ctx->nr_no_switch_fast);
2136
2137 list_del_rcu(&event->event_entry);
2138
2139 if (event->group_leader == event)
2140 del_event_from_groups(event, ctx);
2141
2142 ctx->generation++;
2143 event->pmu_ctx->nr_events--;
2144 }
2145
2146 static int
perf_aux_output_match(struct perf_event * event,struct perf_event * aux_event)2147 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2148 {
2149 if (!has_aux(aux_event))
2150 return 0;
2151
2152 if (!event->pmu->aux_output_match)
2153 return 0;
2154
2155 return event->pmu->aux_output_match(aux_event);
2156 }
2157
2158 static void put_event(struct perf_event *event);
2159 static void __event_disable(struct perf_event *event,
2160 struct perf_event_context *ctx,
2161 enum perf_event_state state);
2162
perf_put_aux_event(struct perf_event * event)2163 static void perf_put_aux_event(struct perf_event *event)
2164 {
2165 struct perf_event_context *ctx = event->ctx;
2166 struct perf_event *iter;
2167
2168 /*
2169 * If event uses aux_event tear down the link
2170 */
2171 if (event->aux_event) {
2172 iter = event->aux_event;
2173 event->aux_event = NULL;
2174 put_event(iter);
2175 return;
2176 }
2177
2178 /*
2179 * If the event is an aux_event, tear down all links to
2180 * it from other events.
2181 */
2182 for_each_sibling_event(iter, event) {
2183 if (iter->aux_event != event)
2184 continue;
2185
2186 iter->aux_event = NULL;
2187 put_event(event);
2188
2189 /*
2190 * If it's ACTIVE, schedule it out and put it into ERROR
2191 * state so that we don't try to schedule it again. Note
2192 * that perf_event_enable() will clear the ERROR status.
2193 */
2194 __event_disable(iter, ctx, PERF_EVENT_STATE_ERROR);
2195 }
2196 }
2197
perf_need_aux_event(struct perf_event * event)2198 static bool perf_need_aux_event(struct perf_event *event)
2199 {
2200 return event->attr.aux_output || has_aux_action(event);
2201 }
2202
perf_get_aux_event(struct perf_event * event,struct perf_event * group_leader)2203 static int perf_get_aux_event(struct perf_event *event,
2204 struct perf_event *group_leader)
2205 {
2206 /*
2207 * Our group leader must be an aux event if we want to be
2208 * an aux_output. This way, the aux event will precede its
2209 * aux_output events in the group, and therefore will always
2210 * schedule first.
2211 */
2212 if (!group_leader)
2213 return 0;
2214
2215 /*
2216 * aux_output and aux_sample_size are mutually exclusive.
2217 */
2218 if (event->attr.aux_output && event->attr.aux_sample_size)
2219 return 0;
2220
2221 if (event->attr.aux_output &&
2222 !perf_aux_output_match(event, group_leader))
2223 return 0;
2224
2225 if ((event->attr.aux_pause || event->attr.aux_resume) &&
2226 !(group_leader->pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE))
2227 return 0;
2228
2229 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2230 return 0;
2231
2232 if (!atomic_long_inc_not_zero(&group_leader->refcount))
2233 return 0;
2234
2235 /*
2236 * Link aux_outputs to their aux event; this is undone in
2237 * perf_group_detach() by perf_put_aux_event(). When the
2238 * group in torn down, the aux_output events loose their
2239 * link to the aux_event and can't schedule any more.
2240 */
2241 event->aux_event = group_leader;
2242
2243 return 1;
2244 }
2245
get_event_list(struct perf_event * event)2246 static inline struct list_head *get_event_list(struct perf_event *event)
2247 {
2248 return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2249 &event->pmu_ctx->flexible_active;
2250 }
2251
perf_group_detach(struct perf_event * event)2252 static void perf_group_detach(struct perf_event *event)
2253 {
2254 struct perf_event *leader = event->group_leader;
2255 struct perf_event *sibling, *tmp;
2256 struct perf_event_context *ctx = event->ctx;
2257
2258 lockdep_assert_held(&ctx->lock);
2259
2260 /*
2261 * We can have double detach due to exit/hot-unplug + close.
2262 */
2263 if (!(event->attach_state & PERF_ATTACH_GROUP))
2264 return;
2265
2266 event->attach_state &= ~PERF_ATTACH_GROUP;
2267
2268 perf_put_aux_event(event);
2269
2270 /*
2271 * If this is a sibling, remove it from its group.
2272 */
2273 if (leader != event) {
2274 list_del_init(&event->sibling_list);
2275 event->group_leader->nr_siblings--;
2276 event->group_leader->group_generation++;
2277 goto out;
2278 }
2279
2280 /*
2281 * If this was a group event with sibling events then
2282 * upgrade the siblings to singleton events by adding them
2283 * to whatever list we are on.
2284 */
2285 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2286
2287 /*
2288 * Events that have PERF_EV_CAP_SIBLING require being part of
2289 * a group and cannot exist on their own, schedule them out
2290 * and move them into the ERROR state. Also see
2291 * _perf_event_enable(), it will not be able to recover this
2292 * ERROR state.
2293 */
2294 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2295 __event_disable(sibling, ctx, PERF_EVENT_STATE_ERROR);
2296
2297 sibling->group_leader = sibling;
2298 list_del_init(&sibling->sibling_list);
2299
2300 /* Inherit group flags from the previous leader */
2301 sibling->group_caps = event->group_caps;
2302
2303 if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2304 add_event_to_groups(sibling, event->ctx);
2305
2306 if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2307 list_add_tail(&sibling->active_list, get_event_list(sibling));
2308 }
2309
2310 WARN_ON_ONCE(sibling->ctx != event->ctx);
2311 }
2312
2313 out:
2314 for_each_sibling_event(tmp, leader)
2315 perf_event__header_size(tmp);
2316
2317 perf_event__header_size(leader);
2318 }
2319
perf_child_detach(struct perf_event * event)2320 static void perf_child_detach(struct perf_event *event)
2321 {
2322 struct perf_event *parent_event = event->parent;
2323
2324 if (!(event->attach_state & PERF_ATTACH_CHILD))
2325 return;
2326
2327 event->attach_state &= ~PERF_ATTACH_CHILD;
2328
2329 if (WARN_ON_ONCE(!parent_event))
2330 return;
2331
2332 /*
2333 * Can't check this from an IPI, the holder is likey another CPU.
2334 *
2335 lockdep_assert_held(&parent_event->child_mutex);
2336 */
2337
2338 list_del_init(&event->child_list);
2339 }
2340
is_orphaned_event(struct perf_event * event)2341 static bool is_orphaned_event(struct perf_event *event)
2342 {
2343 return event->state == PERF_EVENT_STATE_DEAD;
2344 }
2345
2346 static inline int
event_filter_match(struct perf_event * event)2347 event_filter_match(struct perf_event *event)
2348 {
2349 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2350 perf_cgroup_match(event);
2351 }
2352
is_event_in_freq_mode(struct perf_event * event)2353 static inline bool is_event_in_freq_mode(struct perf_event *event)
2354 {
2355 return event->attr.freq && event->attr.sample_freq;
2356 }
2357
2358 static void
event_sched_out(struct perf_event * event,struct perf_event_context * ctx)2359 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2360 {
2361 struct perf_event_pmu_context *epc = event->pmu_ctx;
2362 struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu);
2363 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2364
2365 // XXX cpc serialization, probably per-cpu IRQ disabled
2366
2367 WARN_ON_ONCE(event->ctx != ctx);
2368 lockdep_assert_held(&ctx->lock);
2369
2370 if (event->state != PERF_EVENT_STATE_ACTIVE)
2371 return;
2372
2373 /*
2374 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2375 * we can schedule events _OUT_ individually through things like
2376 * __perf_remove_from_context().
2377 */
2378 list_del_init(&event->active_list);
2379
2380 perf_pmu_disable(event->pmu);
2381
2382 event->pmu->del(event, 0);
2383 event->oncpu = -1;
2384
2385 if (event->pending_disable) {
2386 event->pending_disable = 0;
2387 perf_cgroup_event_disable(event, ctx);
2388 state = PERF_EVENT_STATE_OFF;
2389 }
2390
2391 perf_event_set_state(event, state);
2392
2393 if (!is_software_event(event))
2394 cpc->active_oncpu--;
2395 if (is_event_in_freq_mode(event)) {
2396 ctx->nr_freq--;
2397 epc->nr_freq--;
2398 }
2399 if (event->attr.exclusive || !cpc->active_oncpu)
2400 cpc->exclusive = 0;
2401
2402 perf_pmu_enable(event->pmu);
2403 }
2404
2405 static void
group_sched_out(struct perf_event * group_event,struct perf_event_context * ctx)2406 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2407 {
2408 struct perf_event *event;
2409
2410 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2411 return;
2412
2413 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2414
2415 event_sched_out(group_event, ctx);
2416
2417 /*
2418 * Schedule out siblings (if any):
2419 */
2420 for_each_sibling_event(event, group_event)
2421 event_sched_out(event, ctx);
2422 }
2423
2424 static inline void
__ctx_time_update(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,bool final)2425 __ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, bool final)
2426 {
2427 if (ctx->is_active & EVENT_TIME) {
2428 if (ctx->is_active & EVENT_FROZEN)
2429 return;
2430 update_context_time(ctx);
2431 update_cgrp_time_from_cpuctx(cpuctx, final);
2432 }
2433 }
2434
2435 static inline void
ctx_time_update(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2436 ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2437 {
2438 __ctx_time_update(cpuctx, ctx, false);
2439 }
2440
2441 /*
2442 * To be used inside perf_ctx_lock() / perf_ctx_unlock(). Lasts until perf_ctx_unlock().
2443 */
2444 static inline void
ctx_time_freeze(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2445 ctx_time_freeze(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2446 {
2447 ctx_time_update(cpuctx, ctx);
2448 if (ctx->is_active & EVENT_TIME)
2449 ctx->is_active |= EVENT_FROZEN;
2450 }
2451
2452 static inline void
ctx_time_update_event(struct perf_event_context * ctx,struct perf_event * event)2453 ctx_time_update_event(struct perf_event_context *ctx, struct perf_event *event)
2454 {
2455 if (ctx->is_active & EVENT_TIME) {
2456 if (ctx->is_active & EVENT_FROZEN)
2457 return;
2458 update_context_time(ctx);
2459 update_cgrp_time_from_event(event);
2460 }
2461 }
2462
2463 #define DETACH_GROUP 0x01UL
2464 #define DETACH_CHILD 0x02UL
2465 #define DETACH_EXIT 0x04UL
2466 #define DETACH_REVOKE 0x08UL
2467 #define DETACH_DEAD 0x10UL
2468
2469 /*
2470 * Cross CPU call to remove a performance event
2471 *
2472 * We disable the event on the hardware level first. After that we
2473 * remove it from the context list.
2474 */
2475 static void
__perf_remove_from_context(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2476 __perf_remove_from_context(struct perf_event *event,
2477 struct perf_cpu_context *cpuctx,
2478 struct perf_event_context *ctx,
2479 void *info)
2480 {
2481 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2482 enum perf_event_state state = PERF_EVENT_STATE_OFF;
2483 unsigned long flags = (unsigned long)info;
2484
2485 ctx_time_update(cpuctx, ctx);
2486
2487 /*
2488 * Ensure event_sched_out() switches to OFF, at the very least
2489 * this avoids raising perf_pending_task() at this time.
2490 */
2491 if (flags & DETACH_EXIT)
2492 state = PERF_EVENT_STATE_EXIT;
2493 if (flags & DETACH_REVOKE)
2494 state = PERF_EVENT_STATE_REVOKED;
2495 if (flags & DETACH_DEAD)
2496 state = PERF_EVENT_STATE_DEAD;
2497
2498 event_sched_out(event, ctx);
2499
2500 if (event->state > PERF_EVENT_STATE_OFF)
2501 perf_cgroup_event_disable(event, ctx);
2502
2503 perf_event_set_state(event, min(event->state, state));
2504
2505 if (flags & DETACH_GROUP)
2506 perf_group_detach(event);
2507 if (flags & DETACH_CHILD)
2508 perf_child_detach(event);
2509 list_del_event(event, ctx);
2510
2511 if (!pmu_ctx->nr_events) {
2512 pmu_ctx->rotate_necessary = 0;
2513
2514 if (ctx->task && ctx->is_active) {
2515 struct perf_cpu_pmu_context *cpc = this_cpc(pmu_ctx->pmu);
2516
2517 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2518 cpc->task_epc = NULL;
2519 }
2520 }
2521
2522 if (!ctx->nr_events && ctx->is_active) {
2523 if (ctx == &cpuctx->ctx)
2524 update_cgrp_time_from_cpuctx(cpuctx, true);
2525
2526 ctx->is_active = 0;
2527 if (ctx->task) {
2528 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2529 cpuctx->task_ctx = NULL;
2530 }
2531 }
2532 }
2533
2534 /*
2535 * Remove the event from a task's (or a CPU's) list of events.
2536 *
2537 * If event->ctx is a cloned context, callers must make sure that
2538 * every task struct that event->ctx->task could possibly point to
2539 * remains valid. This is OK when called from perf_release since
2540 * that only calls us on the top-level context, which can't be a clone.
2541 * When called from perf_event_exit_task, it's OK because the
2542 * context has been detached from its task.
2543 */
perf_remove_from_context(struct perf_event * event,unsigned long flags)2544 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2545 {
2546 struct perf_event_context *ctx = event->ctx;
2547
2548 lockdep_assert_held(&ctx->mutex);
2549
2550 /*
2551 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2552 * to work in the face of TASK_TOMBSTONE, unlike every other
2553 * event_function_call() user.
2554 */
2555 raw_spin_lock_irq(&ctx->lock);
2556 if (!ctx->is_active) {
2557 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2558 ctx, (void *)flags);
2559 raw_spin_unlock_irq(&ctx->lock);
2560 return;
2561 }
2562 raw_spin_unlock_irq(&ctx->lock);
2563
2564 event_function_call(event, __perf_remove_from_context, (void *)flags);
2565 }
2566
__event_disable(struct perf_event * event,struct perf_event_context * ctx,enum perf_event_state state)2567 static void __event_disable(struct perf_event *event,
2568 struct perf_event_context *ctx,
2569 enum perf_event_state state)
2570 {
2571 event_sched_out(event, ctx);
2572 perf_cgroup_event_disable(event, ctx);
2573 perf_event_set_state(event, state);
2574 }
2575
2576 /*
2577 * Cross CPU call to disable a performance event
2578 */
__perf_event_disable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2579 static void __perf_event_disable(struct perf_event *event,
2580 struct perf_cpu_context *cpuctx,
2581 struct perf_event_context *ctx,
2582 void *info)
2583 {
2584 if (event->state < PERF_EVENT_STATE_INACTIVE)
2585 return;
2586
2587 perf_pmu_disable(event->pmu_ctx->pmu);
2588 ctx_time_update_event(ctx, event);
2589
2590 /*
2591 * When disabling a group leader, the whole group becomes ineligible
2592 * to run, so schedule out the full group.
2593 */
2594 if (event == event->group_leader)
2595 group_sched_out(event, ctx);
2596
2597 /*
2598 * But only mark the leader OFF; the siblings will remain
2599 * INACTIVE.
2600 */
2601 __event_disable(event, ctx, PERF_EVENT_STATE_OFF);
2602
2603 perf_pmu_enable(event->pmu_ctx->pmu);
2604 }
2605
2606 /*
2607 * Disable an event.
2608 *
2609 * If event->ctx is a cloned context, callers must make sure that
2610 * every task struct that event->ctx->task could possibly point to
2611 * remains valid. This condition is satisfied when called through
2612 * perf_event_for_each_child or perf_event_for_each because they
2613 * hold the top-level event's child_mutex, so any descendant that
2614 * goes to exit will block in perf_event_exit_event().
2615 *
2616 * When called from perf_pending_disable it's OK because event->ctx
2617 * is the current context on this CPU and preemption is disabled,
2618 * hence we can't get into perf_event_task_sched_out for this context.
2619 */
_perf_event_disable(struct perf_event * event)2620 static void _perf_event_disable(struct perf_event *event)
2621 {
2622 struct perf_event_context *ctx = event->ctx;
2623
2624 raw_spin_lock_irq(&ctx->lock);
2625 if (event->state <= PERF_EVENT_STATE_OFF) {
2626 raw_spin_unlock_irq(&ctx->lock);
2627 return;
2628 }
2629 raw_spin_unlock_irq(&ctx->lock);
2630
2631 event_function_call(event, __perf_event_disable, NULL);
2632 }
2633
perf_event_disable_local(struct perf_event * event)2634 void perf_event_disable_local(struct perf_event *event)
2635 {
2636 event_function_local(event, __perf_event_disable, NULL);
2637 }
2638
2639 /*
2640 * Strictly speaking kernel users cannot create groups and therefore this
2641 * interface does not need the perf_event_ctx_lock() magic.
2642 */
perf_event_disable(struct perf_event * event)2643 void perf_event_disable(struct perf_event *event)
2644 {
2645 struct perf_event_context *ctx;
2646
2647 ctx = perf_event_ctx_lock(event);
2648 _perf_event_disable(event);
2649 perf_event_ctx_unlock(event, ctx);
2650 }
2651 EXPORT_SYMBOL_GPL(perf_event_disable);
2652
perf_event_disable_inatomic(struct perf_event * event)2653 void perf_event_disable_inatomic(struct perf_event *event)
2654 {
2655 event->pending_disable = 1;
2656 irq_work_queue(&event->pending_disable_irq);
2657 }
2658
2659 #define MAX_INTERRUPTS (~0ULL)
2660
2661 static void perf_log_throttle(struct perf_event *event, int enable);
2662 static void perf_log_itrace_start(struct perf_event *event);
2663
perf_event_unthrottle(struct perf_event * event,bool start)2664 static void perf_event_unthrottle(struct perf_event *event, bool start)
2665 {
2666 if (event->state != PERF_EVENT_STATE_ACTIVE)
2667 return;
2668
2669 event->hw.interrupts = 0;
2670 if (start)
2671 event->pmu->start(event, 0);
2672 if (event == event->group_leader)
2673 perf_log_throttle(event, 1);
2674 }
2675
perf_event_throttle(struct perf_event * event)2676 static void perf_event_throttle(struct perf_event *event)
2677 {
2678 if (event->state != PERF_EVENT_STATE_ACTIVE)
2679 return;
2680
2681 event->hw.interrupts = MAX_INTERRUPTS;
2682 event->pmu->stop(event, 0);
2683 if (event == event->group_leader)
2684 perf_log_throttle(event, 0);
2685 }
2686
perf_event_unthrottle_group(struct perf_event * event,bool skip_start_event)2687 static void perf_event_unthrottle_group(struct perf_event *event, bool skip_start_event)
2688 {
2689 struct perf_event *sibling, *leader = event->group_leader;
2690
2691 perf_event_unthrottle(leader, skip_start_event ? leader != event : true);
2692 for_each_sibling_event(sibling, leader)
2693 perf_event_unthrottle(sibling, skip_start_event ? sibling != event : true);
2694 }
2695
perf_event_throttle_group(struct perf_event * event)2696 static void perf_event_throttle_group(struct perf_event *event)
2697 {
2698 struct perf_event *sibling, *leader = event->group_leader;
2699
2700 perf_event_throttle(leader);
2701 for_each_sibling_event(sibling, leader)
2702 perf_event_throttle(sibling);
2703 }
2704
2705 static int
event_sched_in(struct perf_event * event,struct perf_event_context * ctx)2706 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2707 {
2708 struct perf_event_pmu_context *epc = event->pmu_ctx;
2709 struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu);
2710 int ret = 0;
2711
2712 WARN_ON_ONCE(event->ctx != ctx);
2713
2714 lockdep_assert_held(&ctx->lock);
2715
2716 if (event->state <= PERF_EVENT_STATE_OFF)
2717 return 0;
2718
2719 WRITE_ONCE(event->oncpu, smp_processor_id());
2720 /*
2721 * Order event::oncpu write to happen before the ACTIVE state is
2722 * visible. This allows perf_event_{stop,read}() to observe the correct
2723 * ->oncpu if it sees ACTIVE.
2724 */
2725 smp_wmb();
2726 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2727
2728 /*
2729 * Unthrottle events, since we scheduled we might have missed several
2730 * ticks already, also for a heavily scheduling task there is little
2731 * guarantee it'll get a tick in a timely manner.
2732 */
2733 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS))
2734 perf_event_unthrottle(event, false);
2735
2736 perf_pmu_disable(event->pmu);
2737
2738 perf_log_itrace_start(event);
2739
2740 if (event->pmu->add(event, PERF_EF_START)) {
2741 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2742 event->oncpu = -1;
2743 ret = -EAGAIN;
2744 goto out;
2745 }
2746
2747 if (!is_software_event(event))
2748 cpc->active_oncpu++;
2749 if (is_event_in_freq_mode(event)) {
2750 ctx->nr_freq++;
2751 epc->nr_freq++;
2752 }
2753 if (event->attr.exclusive)
2754 cpc->exclusive = 1;
2755
2756 out:
2757 perf_pmu_enable(event->pmu);
2758
2759 return ret;
2760 }
2761
2762 static int
group_sched_in(struct perf_event * group_event,struct perf_event_context * ctx)2763 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2764 {
2765 struct perf_event *event, *partial_group = NULL;
2766 struct pmu *pmu = group_event->pmu_ctx->pmu;
2767
2768 if (group_event->state == PERF_EVENT_STATE_OFF)
2769 return 0;
2770
2771 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2772
2773 if (event_sched_in(group_event, ctx))
2774 goto error;
2775
2776 /*
2777 * Schedule in siblings as one group (if any):
2778 */
2779 for_each_sibling_event(event, group_event) {
2780 if (event_sched_in(event, ctx)) {
2781 partial_group = event;
2782 goto group_error;
2783 }
2784 }
2785
2786 if (!pmu->commit_txn(pmu))
2787 return 0;
2788
2789 group_error:
2790 /*
2791 * Groups can be scheduled in as one unit only, so undo any
2792 * partial group before returning:
2793 * The events up to the failed event are scheduled out normally.
2794 */
2795 for_each_sibling_event(event, group_event) {
2796 if (event == partial_group)
2797 break;
2798
2799 event_sched_out(event, ctx);
2800 }
2801 event_sched_out(group_event, ctx);
2802
2803 error:
2804 pmu->cancel_txn(pmu);
2805 return -EAGAIN;
2806 }
2807
2808 /*
2809 * Work out whether we can put this event group on the CPU now.
2810 */
group_can_go_on(struct perf_event * event,int can_add_hw)2811 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2812 {
2813 struct perf_event_pmu_context *epc = event->pmu_ctx;
2814 struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu);
2815
2816 /*
2817 * Groups consisting entirely of software events can always go on.
2818 */
2819 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2820 return 1;
2821 /*
2822 * If an exclusive group is already on, no other hardware
2823 * events can go on.
2824 */
2825 if (cpc->exclusive)
2826 return 0;
2827 /*
2828 * If this group is exclusive and there are already
2829 * events on the CPU, it can't go on.
2830 */
2831 if (event->attr.exclusive && !list_empty(get_event_list(event)))
2832 return 0;
2833 /*
2834 * Otherwise, try to add it if all previous groups were able
2835 * to go on.
2836 */
2837 return can_add_hw;
2838 }
2839
add_event_to_ctx(struct perf_event * event,struct perf_event_context * ctx)2840 static void add_event_to_ctx(struct perf_event *event,
2841 struct perf_event_context *ctx)
2842 {
2843 list_add_event(event, ctx);
2844 perf_group_attach(event);
2845 }
2846
task_ctx_sched_out(struct perf_event_context * ctx,struct pmu * pmu,enum event_type_t event_type)2847 static void task_ctx_sched_out(struct perf_event_context *ctx,
2848 struct pmu *pmu,
2849 enum event_type_t event_type)
2850 {
2851 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2852
2853 if (!cpuctx->task_ctx)
2854 return;
2855
2856 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2857 return;
2858
2859 ctx_sched_out(ctx, pmu, event_type);
2860 }
2861
perf_event_sched_in(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,struct pmu * pmu)2862 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2863 struct perf_event_context *ctx,
2864 struct pmu *pmu)
2865 {
2866 ctx_sched_in(&cpuctx->ctx, pmu, EVENT_PINNED);
2867 if (ctx)
2868 ctx_sched_in(ctx, pmu, EVENT_PINNED);
2869 ctx_sched_in(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2870 if (ctx)
2871 ctx_sched_in(ctx, pmu, EVENT_FLEXIBLE);
2872 }
2873
2874 /*
2875 * We want to maintain the following priority of scheduling:
2876 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2877 * - task pinned (EVENT_PINNED)
2878 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2879 * - task flexible (EVENT_FLEXIBLE).
2880 *
2881 * In order to avoid unscheduling and scheduling back in everything every
2882 * time an event is added, only do it for the groups of equal priority and
2883 * below.
2884 *
2885 * This can be called after a batch operation on task events, in which case
2886 * event_type is a bit mask of the types of events involved. For CPU events,
2887 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2888 */
ctx_resched(struct perf_cpu_context * cpuctx,struct perf_event_context * task_ctx,struct pmu * pmu,enum event_type_t event_type)2889 static void ctx_resched(struct perf_cpu_context *cpuctx,
2890 struct perf_event_context *task_ctx,
2891 struct pmu *pmu, enum event_type_t event_type)
2892 {
2893 bool cpu_event = !!(event_type & EVENT_CPU);
2894 struct perf_event_pmu_context *epc;
2895
2896 /*
2897 * If pinned groups are involved, flexible groups also need to be
2898 * scheduled out.
2899 */
2900 if (event_type & EVENT_PINNED)
2901 event_type |= EVENT_FLEXIBLE;
2902
2903 event_type &= EVENT_ALL;
2904
2905 for_each_epc(epc, &cpuctx->ctx, pmu, false)
2906 perf_pmu_disable(epc->pmu);
2907
2908 if (task_ctx) {
2909 for_each_epc(epc, task_ctx, pmu, false)
2910 perf_pmu_disable(epc->pmu);
2911
2912 task_ctx_sched_out(task_ctx, pmu, event_type);
2913 }
2914
2915 /*
2916 * Decide which cpu ctx groups to schedule out based on the types
2917 * of events that caused rescheduling:
2918 * - EVENT_CPU: schedule out corresponding groups;
2919 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2920 * - otherwise, do nothing more.
2921 */
2922 if (cpu_event)
2923 ctx_sched_out(&cpuctx->ctx, pmu, event_type);
2924 else if (event_type & EVENT_PINNED)
2925 ctx_sched_out(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2926
2927 perf_event_sched_in(cpuctx, task_ctx, pmu);
2928
2929 for_each_epc(epc, &cpuctx->ctx, pmu, false)
2930 perf_pmu_enable(epc->pmu);
2931
2932 if (task_ctx) {
2933 for_each_epc(epc, task_ctx, pmu, false)
2934 perf_pmu_enable(epc->pmu);
2935 }
2936 }
2937
perf_pmu_resched(struct pmu * pmu)2938 void perf_pmu_resched(struct pmu *pmu)
2939 {
2940 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2941 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2942
2943 perf_ctx_lock(cpuctx, task_ctx);
2944 ctx_resched(cpuctx, task_ctx, pmu, EVENT_ALL|EVENT_CPU);
2945 perf_ctx_unlock(cpuctx, task_ctx);
2946 }
2947
2948 /*
2949 * Cross CPU call to install and enable a performance event
2950 *
2951 * Very similar to remote_function() + event_function() but cannot assume that
2952 * things like ctx->is_active and cpuctx->task_ctx are set.
2953 */
__perf_install_in_context(void * info)2954 static int __perf_install_in_context(void *info)
2955 {
2956 struct perf_event *event = info;
2957 struct perf_event_context *ctx = event->ctx;
2958 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2959 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2960 bool reprogram = true;
2961 int ret = 0;
2962
2963 raw_spin_lock(&cpuctx->ctx.lock);
2964 if (ctx->task) {
2965 raw_spin_lock(&ctx->lock);
2966 task_ctx = ctx;
2967
2968 reprogram = (ctx->task == current);
2969
2970 /*
2971 * If the task is running, it must be running on this CPU,
2972 * otherwise we cannot reprogram things.
2973 *
2974 * If its not running, we don't care, ctx->lock will
2975 * serialize against it becoming runnable.
2976 */
2977 if (task_curr(ctx->task) && !reprogram) {
2978 ret = -ESRCH;
2979 goto unlock;
2980 }
2981
2982 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2983 } else if (task_ctx) {
2984 raw_spin_lock(&task_ctx->lock);
2985 }
2986
2987 #ifdef CONFIG_CGROUP_PERF
2988 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2989 /*
2990 * If the current cgroup doesn't match the event's
2991 * cgroup, we should not try to schedule it.
2992 */
2993 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2994 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2995 event->cgrp->css.cgroup);
2996 }
2997 #endif
2998
2999 if (reprogram) {
3000 ctx_time_freeze(cpuctx, ctx);
3001 add_event_to_ctx(event, ctx);
3002 ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu,
3003 get_event_type(event));
3004 } else {
3005 add_event_to_ctx(event, ctx);
3006 }
3007
3008 unlock:
3009 perf_ctx_unlock(cpuctx, task_ctx);
3010
3011 return ret;
3012 }
3013
3014 static bool exclusive_event_installable(struct perf_event *event,
3015 struct perf_event_context *ctx);
3016
3017 /*
3018 * Attach a performance event to a context.
3019 *
3020 * Very similar to event_function_call, see comment there.
3021 */
3022 static void
perf_install_in_context(struct perf_event_context * ctx,struct perf_event * event,int cpu)3023 perf_install_in_context(struct perf_event_context *ctx,
3024 struct perf_event *event,
3025 int cpu)
3026 {
3027 struct task_struct *task = READ_ONCE(ctx->task);
3028
3029 lockdep_assert_held(&ctx->mutex);
3030
3031 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
3032
3033 if (event->cpu != -1)
3034 WARN_ON_ONCE(event->cpu != cpu);
3035
3036 /*
3037 * Ensures that if we can observe event->ctx, both the event and ctx
3038 * will be 'complete'. See perf_iterate_sb_cpu().
3039 */
3040 smp_store_release(&event->ctx, ctx);
3041
3042 /*
3043 * perf_event_attr::disabled events will not run and can be initialized
3044 * without IPI. Except when this is the first event for the context, in
3045 * that case we need the magic of the IPI to set ctx->is_active.
3046 *
3047 * The IOC_ENABLE that is sure to follow the creation of a disabled
3048 * event will issue the IPI and reprogram the hardware.
3049 */
3050 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
3051 ctx->nr_events && !is_cgroup_event(event)) {
3052 raw_spin_lock_irq(&ctx->lock);
3053 if (ctx->task == TASK_TOMBSTONE) {
3054 raw_spin_unlock_irq(&ctx->lock);
3055 return;
3056 }
3057 add_event_to_ctx(event, ctx);
3058 raw_spin_unlock_irq(&ctx->lock);
3059 return;
3060 }
3061
3062 if (!task) {
3063 cpu_function_call(cpu, __perf_install_in_context, event);
3064 return;
3065 }
3066
3067 /*
3068 * Should not happen, we validate the ctx is still alive before calling.
3069 */
3070 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
3071 return;
3072
3073 /*
3074 * Installing events is tricky because we cannot rely on ctx->is_active
3075 * to be set in case this is the nr_events 0 -> 1 transition.
3076 *
3077 * Instead we use task_curr(), which tells us if the task is running.
3078 * However, since we use task_curr() outside of rq::lock, we can race
3079 * against the actual state. This means the result can be wrong.
3080 *
3081 * If we get a false positive, we retry, this is harmless.
3082 *
3083 * If we get a false negative, things are complicated. If we are after
3084 * perf_event_context_sched_in() ctx::lock will serialize us, and the
3085 * value must be correct. If we're before, it doesn't matter since
3086 * perf_event_context_sched_in() will program the counter.
3087 *
3088 * However, this hinges on the remote context switch having observed
3089 * our task->perf_event_ctxp[] store, such that it will in fact take
3090 * ctx::lock in perf_event_context_sched_in().
3091 *
3092 * We do this by task_function_call(), if the IPI fails to hit the task
3093 * we know any future context switch of task must see the
3094 * perf_event_ctpx[] store.
3095 */
3096
3097 /*
3098 * This smp_mb() orders the task->perf_event_ctxp[] store with the
3099 * task_cpu() load, such that if the IPI then does not find the task
3100 * running, a future context switch of that task must observe the
3101 * store.
3102 */
3103 smp_mb();
3104 again:
3105 if (!task_function_call(task, __perf_install_in_context, event))
3106 return;
3107
3108 raw_spin_lock_irq(&ctx->lock);
3109 task = ctx->task;
3110 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
3111 /*
3112 * Cannot happen because we already checked above (which also
3113 * cannot happen), and we hold ctx->mutex, which serializes us
3114 * against perf_event_exit_task_context().
3115 */
3116 raw_spin_unlock_irq(&ctx->lock);
3117 return;
3118 }
3119 /*
3120 * If the task is not running, ctx->lock will avoid it becoming so,
3121 * thus we can safely install the event.
3122 */
3123 if (task_curr(task)) {
3124 raw_spin_unlock_irq(&ctx->lock);
3125 goto again;
3126 }
3127 add_event_to_ctx(event, ctx);
3128 raw_spin_unlock_irq(&ctx->lock);
3129 }
3130
3131 /*
3132 * Cross CPU call to enable a performance event
3133 */
__perf_event_enable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)3134 static void __perf_event_enable(struct perf_event *event,
3135 struct perf_cpu_context *cpuctx,
3136 struct perf_event_context *ctx,
3137 void *info)
3138 {
3139 struct perf_event *leader = event->group_leader;
3140 struct perf_event_context *task_ctx;
3141
3142 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3143 event->state <= PERF_EVENT_STATE_ERROR)
3144 return;
3145
3146 ctx_time_freeze(cpuctx, ctx);
3147
3148 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3149 perf_cgroup_event_enable(event, ctx);
3150
3151 if (!ctx->is_active)
3152 return;
3153
3154 if (!event_filter_match(event))
3155 return;
3156
3157 /*
3158 * If the event is in a group and isn't the group leader,
3159 * then don't put it on unless the group is on.
3160 */
3161 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
3162 return;
3163
3164 task_ctx = cpuctx->task_ctx;
3165 if (ctx->task)
3166 WARN_ON_ONCE(task_ctx != ctx);
3167
3168 ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, get_event_type(event));
3169 }
3170
3171 /*
3172 * Enable an event.
3173 *
3174 * If event->ctx is a cloned context, callers must make sure that
3175 * every task struct that event->ctx->task could possibly point to
3176 * remains valid. This condition is satisfied when called through
3177 * perf_event_for_each_child or perf_event_for_each as described
3178 * for perf_event_disable.
3179 */
_perf_event_enable(struct perf_event * event)3180 static void _perf_event_enable(struct perf_event *event)
3181 {
3182 struct perf_event_context *ctx = event->ctx;
3183
3184 raw_spin_lock_irq(&ctx->lock);
3185 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3186 event->state < PERF_EVENT_STATE_ERROR) {
3187 out:
3188 raw_spin_unlock_irq(&ctx->lock);
3189 return;
3190 }
3191
3192 /*
3193 * If the event is in error state, clear that first.
3194 *
3195 * That way, if we see the event in error state below, we know that it
3196 * has gone back into error state, as distinct from the task having
3197 * been scheduled away before the cross-call arrived.
3198 */
3199 if (event->state == PERF_EVENT_STATE_ERROR) {
3200 /*
3201 * Detached SIBLING events cannot leave ERROR state.
3202 */
3203 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3204 event->group_leader == event)
3205 goto out;
3206
3207 event->state = PERF_EVENT_STATE_OFF;
3208 }
3209 raw_spin_unlock_irq(&ctx->lock);
3210
3211 event_function_call(event, __perf_event_enable, NULL);
3212 }
3213
3214 /*
3215 * See perf_event_disable();
3216 */
perf_event_enable(struct perf_event * event)3217 void perf_event_enable(struct perf_event *event)
3218 {
3219 struct perf_event_context *ctx;
3220
3221 ctx = perf_event_ctx_lock(event);
3222 _perf_event_enable(event);
3223 perf_event_ctx_unlock(event, ctx);
3224 }
3225 EXPORT_SYMBOL_GPL(perf_event_enable);
3226
3227 struct stop_event_data {
3228 struct perf_event *event;
3229 unsigned int restart;
3230 };
3231
__perf_event_stop(void * info)3232 static int __perf_event_stop(void *info)
3233 {
3234 struct stop_event_data *sd = info;
3235 struct perf_event *event = sd->event;
3236
3237 /* if it's already INACTIVE, do nothing */
3238 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3239 return 0;
3240
3241 /* matches smp_wmb() in event_sched_in() */
3242 smp_rmb();
3243
3244 /*
3245 * There is a window with interrupts enabled before we get here,
3246 * so we need to check again lest we try to stop another CPU's event.
3247 */
3248 if (READ_ONCE(event->oncpu) != smp_processor_id())
3249 return -EAGAIN;
3250
3251 event->pmu->stop(event, PERF_EF_UPDATE);
3252
3253 /*
3254 * May race with the actual stop (through perf_pmu_output_stop()),
3255 * but it is only used for events with AUX ring buffer, and such
3256 * events will refuse to restart because of rb::aux_mmap_count==0,
3257 * see comments in perf_aux_output_begin().
3258 *
3259 * Since this is happening on an event-local CPU, no trace is lost
3260 * while restarting.
3261 */
3262 if (sd->restart)
3263 event->pmu->start(event, 0);
3264
3265 return 0;
3266 }
3267
perf_event_stop(struct perf_event * event,int restart)3268 static int perf_event_stop(struct perf_event *event, int restart)
3269 {
3270 struct stop_event_data sd = {
3271 .event = event,
3272 .restart = restart,
3273 };
3274 int ret = 0;
3275
3276 do {
3277 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3278 return 0;
3279
3280 /* matches smp_wmb() in event_sched_in() */
3281 smp_rmb();
3282
3283 /*
3284 * We only want to restart ACTIVE events, so if the event goes
3285 * inactive here (event->oncpu==-1), there's nothing more to do;
3286 * fall through with ret==-ENXIO.
3287 */
3288 ret = cpu_function_call(READ_ONCE(event->oncpu),
3289 __perf_event_stop, &sd);
3290 } while (ret == -EAGAIN);
3291
3292 return ret;
3293 }
3294
3295 /*
3296 * In order to contain the amount of racy and tricky in the address filter
3297 * configuration management, it is a two part process:
3298 *
3299 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3300 * we update the addresses of corresponding vmas in
3301 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
3302 * (p2) when an event is scheduled in (pmu::add), it calls
3303 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3304 * if the generation has changed since the previous call.
3305 *
3306 * If (p1) happens while the event is active, we restart it to force (p2).
3307 *
3308 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3309 * pre-existing mappings, called once when new filters arrive via SET_FILTER
3310 * ioctl;
3311 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3312 * registered mapping, called for every new mmap(), with mm::mmap_lock down
3313 * for reading;
3314 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3315 * of exec.
3316 */
perf_event_addr_filters_sync(struct perf_event * event)3317 void perf_event_addr_filters_sync(struct perf_event *event)
3318 {
3319 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3320
3321 if (!has_addr_filter(event))
3322 return;
3323
3324 raw_spin_lock(&ifh->lock);
3325 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3326 event->pmu->addr_filters_sync(event);
3327 event->hw.addr_filters_gen = event->addr_filters_gen;
3328 }
3329 raw_spin_unlock(&ifh->lock);
3330 }
3331 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3332
_perf_event_refresh(struct perf_event * event,int refresh)3333 static int _perf_event_refresh(struct perf_event *event, int refresh)
3334 {
3335 /*
3336 * not supported on inherited events
3337 */
3338 if (event->attr.inherit || !is_sampling_event(event))
3339 return -EINVAL;
3340
3341 atomic_add(refresh, &event->event_limit);
3342 _perf_event_enable(event);
3343
3344 return 0;
3345 }
3346
3347 /*
3348 * See perf_event_disable()
3349 */
perf_event_refresh(struct perf_event * event,int refresh)3350 int perf_event_refresh(struct perf_event *event, int refresh)
3351 {
3352 struct perf_event_context *ctx;
3353 int ret;
3354
3355 ctx = perf_event_ctx_lock(event);
3356 ret = _perf_event_refresh(event, refresh);
3357 perf_event_ctx_unlock(event, ctx);
3358
3359 return ret;
3360 }
3361 EXPORT_SYMBOL_GPL(perf_event_refresh);
3362
perf_event_modify_breakpoint(struct perf_event * bp,struct perf_event_attr * attr)3363 static int perf_event_modify_breakpoint(struct perf_event *bp,
3364 struct perf_event_attr *attr)
3365 {
3366 int err;
3367
3368 _perf_event_disable(bp);
3369
3370 err = modify_user_hw_breakpoint_check(bp, attr, true);
3371
3372 if (!bp->attr.disabled)
3373 _perf_event_enable(bp);
3374
3375 return err;
3376 }
3377
3378 /*
3379 * Copy event-type-independent attributes that may be modified.
3380 */
perf_event_modify_copy_attr(struct perf_event_attr * to,const struct perf_event_attr * from)3381 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3382 const struct perf_event_attr *from)
3383 {
3384 to->sig_data = from->sig_data;
3385 }
3386
perf_event_modify_attr(struct perf_event * event,struct perf_event_attr * attr)3387 static int perf_event_modify_attr(struct perf_event *event,
3388 struct perf_event_attr *attr)
3389 {
3390 int (*func)(struct perf_event *, struct perf_event_attr *);
3391 struct perf_event *child;
3392 int err;
3393
3394 if (event->attr.type != attr->type)
3395 return -EINVAL;
3396
3397 switch (event->attr.type) {
3398 case PERF_TYPE_BREAKPOINT:
3399 func = perf_event_modify_breakpoint;
3400 break;
3401 default:
3402 /* Place holder for future additions. */
3403 return -EOPNOTSUPP;
3404 }
3405
3406 WARN_ON_ONCE(event->ctx->parent_ctx);
3407
3408 mutex_lock(&event->child_mutex);
3409 /*
3410 * Event-type-independent attributes must be copied before event-type
3411 * modification, which will validate that final attributes match the
3412 * source attributes after all relevant attributes have been copied.
3413 */
3414 perf_event_modify_copy_attr(&event->attr, attr);
3415 err = func(event, attr);
3416 if (err)
3417 goto out;
3418 list_for_each_entry(child, &event->child_list, child_list) {
3419 perf_event_modify_copy_attr(&child->attr, attr);
3420 err = func(child, attr);
3421 if (err)
3422 goto out;
3423 }
3424 out:
3425 mutex_unlock(&event->child_mutex);
3426 return err;
3427 }
3428
__pmu_ctx_sched_out(struct perf_event_pmu_context * pmu_ctx,enum event_type_t event_type)3429 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3430 enum event_type_t event_type)
3431 {
3432 struct perf_event_context *ctx = pmu_ctx->ctx;
3433 struct perf_event *event, *tmp;
3434 struct pmu *pmu = pmu_ctx->pmu;
3435
3436 if (ctx->task && !(ctx->is_active & EVENT_ALL)) {
3437 struct perf_cpu_pmu_context *cpc = this_cpc(pmu);
3438
3439 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3440 cpc->task_epc = NULL;
3441 }
3442
3443 if (!(event_type & EVENT_ALL))
3444 return;
3445
3446 perf_pmu_disable(pmu);
3447 if (event_type & EVENT_PINNED) {
3448 list_for_each_entry_safe(event, tmp,
3449 &pmu_ctx->pinned_active,
3450 active_list)
3451 group_sched_out(event, ctx);
3452 }
3453
3454 if (event_type & EVENT_FLEXIBLE) {
3455 list_for_each_entry_safe(event, tmp,
3456 &pmu_ctx->flexible_active,
3457 active_list)
3458 group_sched_out(event, ctx);
3459 /*
3460 * Since we cleared EVENT_FLEXIBLE, also clear
3461 * rotate_necessary, is will be reset by
3462 * ctx_flexible_sched_in() when needed.
3463 */
3464 pmu_ctx->rotate_necessary = 0;
3465 }
3466 perf_pmu_enable(pmu);
3467 }
3468
3469 /*
3470 * Be very careful with the @pmu argument since this will change ctx state.
3471 * The @pmu argument works for ctx_resched(), because that is symmetric in
3472 * ctx_sched_out() / ctx_sched_in() usage and the ctx state ends up invariant.
3473 *
3474 * However, if you were to be asymmetrical, you could end up with messed up
3475 * state, eg. ctx->is_active cleared even though most EPCs would still actually
3476 * be active.
3477 */
3478 static void
ctx_sched_out(struct perf_event_context * ctx,struct pmu * pmu,enum event_type_t event_type)3479 ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
3480 {
3481 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3482 struct perf_event_pmu_context *pmu_ctx;
3483 int is_active = ctx->is_active;
3484 bool cgroup = event_type & EVENT_CGROUP;
3485
3486 event_type &= ~EVENT_CGROUP;
3487
3488 lockdep_assert_held(&ctx->lock);
3489
3490 if (likely(!ctx->nr_events)) {
3491 /*
3492 * See __perf_remove_from_context().
3493 */
3494 WARN_ON_ONCE(ctx->is_active);
3495 if (ctx->task)
3496 WARN_ON_ONCE(cpuctx->task_ctx);
3497 return;
3498 }
3499
3500 /*
3501 * Always update time if it was set; not only when it changes.
3502 * Otherwise we can 'forget' to update time for any but the last
3503 * context we sched out. For example:
3504 *
3505 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3506 * ctx_sched_out(.event_type = EVENT_PINNED)
3507 *
3508 * would only update time for the pinned events.
3509 */
3510 __ctx_time_update(cpuctx, ctx, ctx == &cpuctx->ctx);
3511
3512 /*
3513 * CPU-release for the below ->is_active store,
3514 * see __load_acquire() in perf_event_time_now()
3515 */
3516 barrier();
3517 ctx->is_active &= ~event_type;
3518
3519 if (!(ctx->is_active & EVENT_ALL)) {
3520 /*
3521 * For FROZEN, preserve TIME|FROZEN such that perf_event_time_now()
3522 * does not observe a hole. perf_ctx_unlock() will clean up.
3523 */
3524 if (ctx->is_active & EVENT_FROZEN)
3525 ctx->is_active &= EVENT_TIME_FROZEN;
3526 else
3527 ctx->is_active = 0;
3528 }
3529
3530 if (ctx->task) {
3531 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3532 if (!(ctx->is_active & EVENT_ALL))
3533 cpuctx->task_ctx = NULL;
3534 }
3535
3536 is_active ^= ctx->is_active; /* changed bits */
3537
3538 for_each_epc(pmu_ctx, ctx, pmu, cgroup)
3539 __pmu_ctx_sched_out(pmu_ctx, is_active);
3540 }
3541
3542 /*
3543 * Test whether two contexts are equivalent, i.e. whether they have both been
3544 * cloned from the same version of the same context.
3545 *
3546 * Equivalence is measured using a generation number in the context that is
3547 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3548 * and list_del_event().
3549 */
context_equiv(struct perf_event_context * ctx1,struct perf_event_context * ctx2)3550 static int context_equiv(struct perf_event_context *ctx1,
3551 struct perf_event_context *ctx2)
3552 {
3553 lockdep_assert_held(&ctx1->lock);
3554 lockdep_assert_held(&ctx2->lock);
3555
3556 /* Pinning disables the swap optimization */
3557 if (ctx1->pin_count || ctx2->pin_count)
3558 return 0;
3559
3560 /* If ctx1 is the parent of ctx2 */
3561 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3562 return 1;
3563
3564 /* If ctx2 is the parent of ctx1 */
3565 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3566 return 1;
3567
3568 /*
3569 * If ctx1 and ctx2 have the same parent; we flatten the parent
3570 * hierarchy, see perf_event_init_context().
3571 */
3572 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3573 ctx1->parent_gen == ctx2->parent_gen)
3574 return 1;
3575
3576 /* Unmatched */
3577 return 0;
3578 }
3579
__perf_event_sync_stat(struct perf_event * event,struct perf_event * next_event)3580 static void __perf_event_sync_stat(struct perf_event *event,
3581 struct perf_event *next_event)
3582 {
3583 u64 value;
3584
3585 if (!event->attr.inherit_stat)
3586 return;
3587
3588 /*
3589 * Update the event value, we cannot use perf_event_read()
3590 * because we're in the middle of a context switch and have IRQs
3591 * disabled, which upsets smp_call_function_single(), however
3592 * we know the event must be on the current CPU, therefore we
3593 * don't need to use it.
3594 */
3595 perf_pmu_read(event);
3596
3597 perf_event_update_time(event);
3598
3599 /*
3600 * In order to keep per-task stats reliable we need to flip the event
3601 * values when we flip the contexts.
3602 */
3603 value = local64_read(&next_event->count);
3604 value = local64_xchg(&event->count, value);
3605 local64_set(&next_event->count, value);
3606
3607 swap(event->total_time_enabled, next_event->total_time_enabled);
3608 swap(event->total_time_running, next_event->total_time_running);
3609
3610 /*
3611 * Since we swizzled the values, update the user visible data too.
3612 */
3613 perf_event_update_userpage(event);
3614 perf_event_update_userpage(next_event);
3615 }
3616
perf_event_sync_stat(struct perf_event_context * ctx,struct perf_event_context * next_ctx)3617 static void perf_event_sync_stat(struct perf_event_context *ctx,
3618 struct perf_event_context *next_ctx)
3619 {
3620 struct perf_event *event, *next_event;
3621
3622 if (!ctx->nr_stat)
3623 return;
3624
3625 update_context_time(ctx);
3626
3627 event = list_first_entry(&ctx->event_list,
3628 struct perf_event, event_entry);
3629
3630 next_event = list_first_entry(&next_ctx->event_list,
3631 struct perf_event, event_entry);
3632
3633 while (&event->event_entry != &ctx->event_list &&
3634 &next_event->event_entry != &next_ctx->event_list) {
3635
3636 __perf_event_sync_stat(event, next_event);
3637
3638 event = list_next_entry(event, event_entry);
3639 next_event = list_next_entry(next_event, event_entry);
3640 }
3641 }
3642
perf_ctx_sched_task_cb(struct perf_event_context * ctx,struct task_struct * task,bool sched_in)3643 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx,
3644 struct task_struct *task, bool sched_in)
3645 {
3646 struct perf_event_pmu_context *pmu_ctx;
3647 struct perf_cpu_pmu_context *cpc;
3648
3649 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3650 cpc = this_cpc(pmu_ctx->pmu);
3651
3652 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3653 pmu_ctx->pmu->sched_task(pmu_ctx, task, sched_in);
3654 }
3655 }
3656
3657 static void
perf_event_context_sched_out(struct task_struct * task,struct task_struct * next)3658 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3659 {
3660 struct perf_event_context *ctx = task->perf_event_ctxp;
3661 struct perf_event_context *next_ctx;
3662 struct perf_event_context *parent, *next_parent;
3663 int do_switch = 1;
3664
3665 if (likely(!ctx))
3666 return;
3667
3668 rcu_read_lock();
3669 next_ctx = rcu_dereference(next->perf_event_ctxp);
3670 if (!next_ctx)
3671 goto unlock;
3672
3673 parent = rcu_dereference(ctx->parent_ctx);
3674 next_parent = rcu_dereference(next_ctx->parent_ctx);
3675
3676 /* If neither context have a parent context; they cannot be clones. */
3677 if (!parent && !next_parent)
3678 goto unlock;
3679
3680 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3681 /*
3682 * Looks like the two contexts are clones, so we might be
3683 * able to optimize the context switch. We lock both
3684 * contexts and check that they are clones under the
3685 * lock (including re-checking that neither has been
3686 * uncloned in the meantime). It doesn't matter which
3687 * order we take the locks because no other cpu could
3688 * be trying to lock both of these tasks.
3689 */
3690 raw_spin_lock(&ctx->lock);
3691 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3692 if (context_equiv(ctx, next_ctx)) {
3693
3694 perf_ctx_disable(ctx, false);
3695
3696 /* PMIs are disabled; ctx->nr_no_switch_fast is stable. */
3697 if (local_read(&ctx->nr_no_switch_fast) ||
3698 local_read(&next_ctx->nr_no_switch_fast)) {
3699 /*
3700 * Must not swap out ctx when there's pending
3701 * events that rely on the ctx->task relation.
3702 *
3703 * Likewise, when a context contains inherit +
3704 * SAMPLE_READ events they should be switched
3705 * out using the slow path so that they are
3706 * treated as if they were distinct contexts.
3707 */
3708 raw_spin_unlock(&next_ctx->lock);
3709 rcu_read_unlock();
3710 goto inside_switch;
3711 }
3712
3713 WRITE_ONCE(ctx->task, next);
3714 WRITE_ONCE(next_ctx->task, task);
3715
3716 perf_ctx_sched_task_cb(ctx, task, false);
3717
3718 perf_ctx_enable(ctx, false);
3719
3720 /*
3721 * RCU_INIT_POINTER here is safe because we've not
3722 * modified the ctx and the above modification of
3723 * ctx->task is immaterial since this value is
3724 * always verified under ctx->lock which we're now
3725 * holding.
3726 */
3727 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3728 RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3729
3730 do_switch = 0;
3731
3732 perf_event_sync_stat(ctx, next_ctx);
3733 }
3734 raw_spin_unlock(&next_ctx->lock);
3735 raw_spin_unlock(&ctx->lock);
3736 }
3737 unlock:
3738 rcu_read_unlock();
3739
3740 if (do_switch) {
3741 raw_spin_lock(&ctx->lock);
3742 perf_ctx_disable(ctx, false);
3743
3744 inside_switch:
3745 perf_ctx_sched_task_cb(ctx, task, false);
3746 task_ctx_sched_out(ctx, NULL, EVENT_ALL);
3747
3748 perf_ctx_enable(ctx, false);
3749 raw_spin_unlock(&ctx->lock);
3750 }
3751 }
3752
3753 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3754 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3755
perf_sched_cb_dec(struct pmu * pmu)3756 void perf_sched_cb_dec(struct pmu *pmu)
3757 {
3758 struct perf_cpu_pmu_context *cpc = this_cpc(pmu);
3759
3760 this_cpu_dec(perf_sched_cb_usages);
3761 barrier();
3762
3763 if (!--cpc->sched_cb_usage)
3764 list_del(&cpc->sched_cb_entry);
3765 }
3766
3767
perf_sched_cb_inc(struct pmu * pmu)3768 void perf_sched_cb_inc(struct pmu *pmu)
3769 {
3770 struct perf_cpu_pmu_context *cpc = this_cpc(pmu);
3771
3772 if (!cpc->sched_cb_usage++)
3773 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3774
3775 barrier();
3776 this_cpu_inc(perf_sched_cb_usages);
3777 }
3778
3779 /*
3780 * This function provides the context switch callback to the lower code
3781 * layer. It is invoked ONLY when the context switch callback is enabled.
3782 *
3783 * This callback is relevant even to per-cpu events; for example multi event
3784 * PEBS requires this to provide PID/TID information. This requires we flush
3785 * all queued PEBS records before we context switch to a new task.
3786 */
__perf_pmu_sched_task(struct perf_cpu_pmu_context * cpc,struct task_struct * task,bool sched_in)3787 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc,
3788 struct task_struct *task, bool sched_in)
3789 {
3790 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3791 struct pmu *pmu;
3792
3793 pmu = cpc->epc.pmu;
3794
3795 /* software PMUs will not have sched_task */
3796 if (WARN_ON_ONCE(!pmu->sched_task))
3797 return;
3798
3799 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3800 perf_pmu_disable(pmu);
3801
3802 pmu->sched_task(cpc->task_epc, task, sched_in);
3803
3804 perf_pmu_enable(pmu);
3805 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3806 }
3807
perf_pmu_sched_task(struct task_struct * prev,struct task_struct * next,bool sched_in)3808 static void perf_pmu_sched_task(struct task_struct *prev,
3809 struct task_struct *next,
3810 bool sched_in)
3811 {
3812 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3813 struct perf_cpu_pmu_context *cpc;
3814
3815 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3816 if (prev == next || cpuctx->task_ctx)
3817 return;
3818
3819 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3820 __perf_pmu_sched_task(cpc, sched_in ? next : prev, sched_in);
3821 }
3822
3823 static void perf_event_switch(struct task_struct *task,
3824 struct task_struct *next_prev, bool sched_in);
3825
3826 /*
3827 * Called from scheduler to remove the events of the current task,
3828 * with interrupts disabled.
3829 *
3830 * We stop each event and update the event value in event->count.
3831 *
3832 * This does not protect us against NMI, but disable()
3833 * sets the disabled bit in the control field of event _before_
3834 * accessing the event control register. If a NMI hits, then it will
3835 * not restart the event.
3836 */
__perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)3837 void __perf_event_task_sched_out(struct task_struct *task,
3838 struct task_struct *next)
3839 {
3840 if (__this_cpu_read(perf_sched_cb_usages))
3841 perf_pmu_sched_task(task, next, false);
3842
3843 if (atomic_read(&nr_switch_events))
3844 perf_event_switch(task, next, false);
3845
3846 perf_event_context_sched_out(task, next);
3847
3848 /*
3849 * if cgroup events exist on this CPU, then we need
3850 * to check if we have to switch out PMU state.
3851 * cgroup event are system-wide mode only
3852 */
3853 perf_cgroup_switch(next);
3854 }
3855
perf_less_group_idx(const void * l,const void * r,void __always_unused * args)3856 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args)
3857 {
3858 const struct perf_event *le = *(const struct perf_event **)l;
3859 const struct perf_event *re = *(const struct perf_event **)r;
3860
3861 return le->group_index < re->group_index;
3862 }
3863
3864 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap);
3865
3866 static const struct min_heap_callbacks perf_min_heap = {
3867 .less = perf_less_group_idx,
3868 .swp = NULL,
3869 };
3870
__heap_add(struct perf_event_min_heap * heap,struct perf_event * event)3871 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event)
3872 {
3873 struct perf_event **itrs = heap->data;
3874
3875 if (event) {
3876 itrs[heap->nr] = event;
3877 heap->nr++;
3878 }
3879 }
3880
__link_epc(struct perf_event_pmu_context * pmu_ctx)3881 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3882 {
3883 struct perf_cpu_pmu_context *cpc;
3884
3885 if (!pmu_ctx->ctx->task)
3886 return;
3887
3888 cpc = this_cpc(pmu_ctx->pmu);
3889 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3890 cpc->task_epc = pmu_ctx;
3891 }
3892
visit_groups_merge(struct perf_event_context * ctx,struct perf_event_groups * groups,int cpu,struct pmu * pmu,int (* func)(struct perf_event *,void *),void * data)3893 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3894 struct perf_event_groups *groups, int cpu,
3895 struct pmu *pmu,
3896 int (*func)(struct perf_event *, void *),
3897 void *data)
3898 {
3899 #ifdef CONFIG_CGROUP_PERF
3900 struct cgroup_subsys_state *css = NULL;
3901 #endif
3902 struct perf_cpu_context *cpuctx = NULL;
3903 /* Space for per CPU and/or any CPU event iterators. */
3904 struct perf_event *itrs[2];
3905 struct perf_event_min_heap event_heap;
3906 struct perf_event **evt;
3907 int ret;
3908
3909 if (pmu->filter && pmu->filter(pmu, cpu))
3910 return 0;
3911
3912 if (!ctx->task) {
3913 cpuctx = this_cpu_ptr(&perf_cpu_context);
3914 event_heap = (struct perf_event_min_heap){
3915 .data = cpuctx->heap,
3916 .nr = 0,
3917 .size = cpuctx->heap_size,
3918 };
3919
3920 lockdep_assert_held(&cpuctx->ctx.lock);
3921
3922 #ifdef CONFIG_CGROUP_PERF
3923 if (cpuctx->cgrp)
3924 css = &cpuctx->cgrp->css;
3925 #endif
3926 } else {
3927 event_heap = (struct perf_event_min_heap){
3928 .data = itrs,
3929 .nr = 0,
3930 .size = ARRAY_SIZE(itrs),
3931 };
3932 /* Events not within a CPU context may be on any CPU. */
3933 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3934 }
3935 evt = event_heap.data;
3936
3937 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3938
3939 #ifdef CONFIG_CGROUP_PERF
3940 for (; css; css = css->parent)
3941 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3942 #endif
3943
3944 if (event_heap.nr) {
3945 __link_epc((*evt)->pmu_ctx);
3946 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3947 }
3948
3949 min_heapify_all_inline(&event_heap, &perf_min_heap, NULL);
3950
3951 while (event_heap.nr) {
3952 ret = func(*evt, data);
3953 if (ret)
3954 return ret;
3955
3956 *evt = perf_event_groups_next(*evt, pmu);
3957 if (*evt)
3958 min_heap_sift_down_inline(&event_heap, 0, &perf_min_heap, NULL);
3959 else
3960 min_heap_pop_inline(&event_heap, &perf_min_heap, NULL);
3961 }
3962
3963 return 0;
3964 }
3965
3966 /*
3967 * Because the userpage is strictly per-event (there is no concept of context,
3968 * so there cannot be a context indirection), every userpage must be updated
3969 * when context time starts :-(
3970 *
3971 * IOW, we must not miss EVENT_TIME edges.
3972 */
event_update_userpage(struct perf_event * event)3973 static inline bool event_update_userpage(struct perf_event *event)
3974 {
3975 if (likely(!refcount_read(&event->mmap_count)))
3976 return false;
3977
3978 perf_event_update_time(event);
3979 perf_event_update_userpage(event);
3980
3981 return true;
3982 }
3983
group_update_userpage(struct perf_event * group_event)3984 static inline void group_update_userpage(struct perf_event *group_event)
3985 {
3986 struct perf_event *event;
3987
3988 if (!event_update_userpage(group_event))
3989 return;
3990
3991 for_each_sibling_event(event, group_event)
3992 event_update_userpage(event);
3993 }
3994
merge_sched_in(struct perf_event * event,void * data)3995 static int merge_sched_in(struct perf_event *event, void *data)
3996 {
3997 struct perf_event_context *ctx = event->ctx;
3998 int *can_add_hw = data;
3999
4000 if (event->state <= PERF_EVENT_STATE_OFF)
4001 return 0;
4002
4003 if (!event_filter_match(event))
4004 return 0;
4005
4006 if (group_can_go_on(event, *can_add_hw)) {
4007 if (!group_sched_in(event, ctx))
4008 list_add_tail(&event->active_list, get_event_list(event));
4009 }
4010
4011 if (event->state == PERF_EVENT_STATE_INACTIVE) {
4012 *can_add_hw = 0;
4013 if (event->attr.pinned) {
4014 perf_cgroup_event_disable(event, ctx);
4015 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
4016
4017 if (*perf_event_fasync(event))
4018 event->pending_kill = POLL_ERR;
4019
4020 perf_event_wakeup(event);
4021 } else {
4022 struct perf_cpu_pmu_context *cpc = this_cpc(event->pmu_ctx->pmu);
4023
4024 event->pmu_ctx->rotate_necessary = 1;
4025 perf_mux_hrtimer_restart(cpc);
4026 group_update_userpage(event);
4027 }
4028 }
4029
4030 return 0;
4031 }
4032
pmu_groups_sched_in(struct perf_event_context * ctx,struct perf_event_groups * groups,struct pmu * pmu)4033 static void pmu_groups_sched_in(struct perf_event_context *ctx,
4034 struct perf_event_groups *groups,
4035 struct pmu *pmu)
4036 {
4037 int can_add_hw = 1;
4038 visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
4039 merge_sched_in, &can_add_hw);
4040 }
4041
__pmu_ctx_sched_in(struct perf_event_pmu_context * pmu_ctx,enum event_type_t event_type)4042 static void __pmu_ctx_sched_in(struct perf_event_pmu_context *pmu_ctx,
4043 enum event_type_t event_type)
4044 {
4045 struct perf_event_context *ctx = pmu_ctx->ctx;
4046
4047 if (event_type & EVENT_PINNED)
4048 pmu_groups_sched_in(ctx, &ctx->pinned_groups, pmu_ctx->pmu);
4049 if (event_type & EVENT_FLEXIBLE)
4050 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu_ctx->pmu);
4051 }
4052
4053 static void
ctx_sched_in(struct perf_event_context * ctx,struct pmu * pmu,enum event_type_t event_type)4054 ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
4055 {
4056 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4057 struct perf_event_pmu_context *pmu_ctx;
4058 int is_active = ctx->is_active;
4059 bool cgroup = event_type & EVENT_CGROUP;
4060
4061 event_type &= ~EVENT_CGROUP;
4062
4063 lockdep_assert_held(&ctx->lock);
4064
4065 if (likely(!ctx->nr_events))
4066 return;
4067
4068 if (!(is_active & EVENT_TIME)) {
4069 /* start ctx time */
4070 __update_context_time(ctx, false);
4071 perf_cgroup_set_timestamp(cpuctx);
4072 /*
4073 * CPU-release for the below ->is_active store,
4074 * see __load_acquire() in perf_event_time_now()
4075 */
4076 barrier();
4077 }
4078
4079 ctx->is_active |= (event_type | EVENT_TIME);
4080 if (ctx->task) {
4081 if (!(is_active & EVENT_ALL))
4082 cpuctx->task_ctx = ctx;
4083 else
4084 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
4085 }
4086
4087 is_active ^= ctx->is_active; /* changed bits */
4088
4089 /*
4090 * First go through the list and put on any pinned groups
4091 * in order to give them the best chance of going on.
4092 */
4093 if (is_active & EVENT_PINNED) {
4094 for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4095 __pmu_ctx_sched_in(pmu_ctx, EVENT_PINNED);
4096 }
4097
4098 /* Then walk through the lower prio flexible groups */
4099 if (is_active & EVENT_FLEXIBLE) {
4100 for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4101 __pmu_ctx_sched_in(pmu_ctx, EVENT_FLEXIBLE);
4102 }
4103 }
4104
perf_event_context_sched_in(struct task_struct * task)4105 static void perf_event_context_sched_in(struct task_struct *task)
4106 {
4107 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4108 struct perf_event_context *ctx;
4109
4110 rcu_read_lock();
4111 ctx = rcu_dereference(task->perf_event_ctxp);
4112 if (!ctx)
4113 goto rcu_unlock;
4114
4115 if (cpuctx->task_ctx == ctx) {
4116 perf_ctx_lock(cpuctx, ctx);
4117 perf_ctx_disable(ctx, false);
4118
4119 perf_ctx_sched_task_cb(ctx, task, true);
4120
4121 perf_ctx_enable(ctx, false);
4122 perf_ctx_unlock(cpuctx, ctx);
4123 goto rcu_unlock;
4124 }
4125
4126 perf_ctx_lock(cpuctx, ctx);
4127 /*
4128 * We must check ctx->nr_events while holding ctx->lock, such
4129 * that we serialize against perf_install_in_context().
4130 */
4131 if (!ctx->nr_events)
4132 goto unlock;
4133
4134 perf_ctx_disable(ctx, false);
4135 /*
4136 * We want to keep the following priority order:
4137 * cpu pinned (that don't need to move), task pinned,
4138 * cpu flexible, task flexible.
4139 *
4140 * However, if task's ctx is not carrying any pinned
4141 * events, no need to flip the cpuctx's events around.
4142 */
4143 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
4144 perf_ctx_disable(&cpuctx->ctx, false);
4145 ctx_sched_out(&cpuctx->ctx, NULL, EVENT_FLEXIBLE);
4146 }
4147
4148 perf_event_sched_in(cpuctx, ctx, NULL);
4149
4150 perf_ctx_sched_task_cb(cpuctx->task_ctx, task, true);
4151
4152 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
4153 perf_ctx_enable(&cpuctx->ctx, false);
4154
4155 perf_ctx_enable(ctx, false);
4156
4157 unlock:
4158 perf_ctx_unlock(cpuctx, ctx);
4159 rcu_unlock:
4160 rcu_read_unlock();
4161 }
4162
4163 /*
4164 * Called from scheduler to add the events of the current task
4165 * with interrupts disabled.
4166 *
4167 * We restore the event value and then enable it.
4168 *
4169 * This does not protect us against NMI, but enable()
4170 * sets the enabled bit in the control field of event _before_
4171 * accessing the event control register. If a NMI hits, then it will
4172 * keep the event running.
4173 */
__perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)4174 void __perf_event_task_sched_in(struct task_struct *prev,
4175 struct task_struct *task)
4176 {
4177 perf_event_context_sched_in(task);
4178
4179 if (atomic_read(&nr_switch_events))
4180 perf_event_switch(task, prev, true);
4181
4182 if (__this_cpu_read(perf_sched_cb_usages))
4183 perf_pmu_sched_task(prev, task, true);
4184 }
4185
perf_calculate_period(struct perf_event * event,u64 nsec,u64 count)4186 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4187 {
4188 u64 frequency = event->attr.sample_freq;
4189 u64 sec = NSEC_PER_SEC;
4190 u64 divisor, dividend;
4191
4192 int count_fls, nsec_fls, frequency_fls, sec_fls;
4193
4194 count_fls = fls64(count);
4195 nsec_fls = fls64(nsec);
4196 frequency_fls = fls64(frequency);
4197 sec_fls = 30;
4198
4199 /*
4200 * We got @count in @nsec, with a target of sample_freq HZ
4201 * the target period becomes:
4202 *
4203 * @count * 10^9
4204 * period = -------------------
4205 * @nsec * sample_freq
4206 *
4207 */
4208
4209 /*
4210 * Reduce accuracy by one bit such that @a and @b converge
4211 * to a similar magnitude.
4212 */
4213 #define REDUCE_FLS(a, b) \
4214 do { \
4215 if (a##_fls > b##_fls) { \
4216 a >>= 1; \
4217 a##_fls--; \
4218 } else { \
4219 b >>= 1; \
4220 b##_fls--; \
4221 } \
4222 } while (0)
4223
4224 /*
4225 * Reduce accuracy until either term fits in a u64, then proceed with
4226 * the other, so that finally we can do a u64/u64 division.
4227 */
4228 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4229 REDUCE_FLS(nsec, frequency);
4230 REDUCE_FLS(sec, count);
4231 }
4232
4233 if (count_fls + sec_fls > 64) {
4234 divisor = nsec * frequency;
4235
4236 while (count_fls + sec_fls > 64) {
4237 REDUCE_FLS(count, sec);
4238 divisor >>= 1;
4239 }
4240
4241 dividend = count * sec;
4242 } else {
4243 dividend = count * sec;
4244
4245 while (nsec_fls + frequency_fls > 64) {
4246 REDUCE_FLS(nsec, frequency);
4247 dividend >>= 1;
4248 }
4249
4250 divisor = nsec * frequency;
4251 }
4252
4253 if (!divisor)
4254 return dividend;
4255
4256 return div64_u64(dividend, divisor);
4257 }
4258
4259 static DEFINE_PER_CPU(int, perf_throttled_count);
4260 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4261
perf_adjust_period(struct perf_event * event,u64 nsec,u64 count,bool disable)4262 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4263 {
4264 struct hw_perf_event *hwc = &event->hw;
4265 s64 period, sample_period;
4266 s64 delta;
4267
4268 period = perf_calculate_period(event, nsec, count);
4269
4270 delta = (s64)(period - hwc->sample_period);
4271 if (delta >= 0)
4272 delta += 7;
4273 else
4274 delta -= 7;
4275 delta /= 8; /* low pass filter */
4276
4277 sample_period = hwc->sample_period + delta;
4278
4279 if (!sample_period)
4280 sample_period = 1;
4281
4282 hwc->sample_period = sample_period;
4283
4284 if (local64_read(&hwc->period_left) > 8*sample_period) {
4285 if (disable)
4286 event->pmu->stop(event, PERF_EF_UPDATE);
4287
4288 local64_set(&hwc->period_left, 0);
4289
4290 if (disable)
4291 event->pmu->start(event, PERF_EF_RELOAD);
4292 }
4293 }
4294
perf_adjust_freq_unthr_events(struct list_head * event_list)4295 static void perf_adjust_freq_unthr_events(struct list_head *event_list)
4296 {
4297 struct perf_event *event;
4298 struct hw_perf_event *hwc;
4299 u64 now, period = TICK_NSEC;
4300 s64 delta;
4301
4302 list_for_each_entry(event, event_list, active_list) {
4303 if (event->state != PERF_EVENT_STATE_ACTIVE)
4304 continue;
4305
4306 // XXX use visit thingy to avoid the -1,cpu match
4307 if (!event_filter_match(event))
4308 continue;
4309
4310 hwc = &event->hw;
4311
4312 if (hwc->interrupts == MAX_INTERRUPTS)
4313 perf_event_unthrottle_group(event, is_event_in_freq_mode(event));
4314
4315 if (!is_event_in_freq_mode(event))
4316 continue;
4317
4318 /*
4319 * stop the event and update event->count
4320 */
4321 event->pmu->stop(event, PERF_EF_UPDATE);
4322
4323 now = local64_read(&event->count);
4324 delta = now - hwc->freq_count_stamp;
4325 hwc->freq_count_stamp = now;
4326
4327 /*
4328 * restart the event
4329 * reload only if value has changed
4330 * we have stopped the event so tell that
4331 * to perf_adjust_period() to avoid stopping it
4332 * twice.
4333 */
4334 if (delta > 0)
4335 perf_adjust_period(event, period, delta, false);
4336
4337 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4338 }
4339 }
4340
4341 /*
4342 * combine freq adjustment with unthrottling to avoid two passes over the
4343 * events. At the same time, make sure, having freq events does not change
4344 * the rate of unthrottling as that would introduce bias.
4345 */
4346 static void
perf_adjust_freq_unthr_context(struct perf_event_context * ctx,bool unthrottle)4347 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4348 {
4349 struct perf_event_pmu_context *pmu_ctx;
4350
4351 /*
4352 * only need to iterate over all events iff:
4353 * - context have events in frequency mode (needs freq adjust)
4354 * - there are events to unthrottle on this cpu
4355 */
4356 if (!(ctx->nr_freq || unthrottle))
4357 return;
4358
4359 raw_spin_lock(&ctx->lock);
4360
4361 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4362 if (!(pmu_ctx->nr_freq || unthrottle))
4363 continue;
4364 if (!perf_pmu_ctx_is_active(pmu_ctx))
4365 continue;
4366 if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT)
4367 continue;
4368
4369 perf_pmu_disable(pmu_ctx->pmu);
4370 perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active);
4371 perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active);
4372 perf_pmu_enable(pmu_ctx->pmu);
4373 }
4374
4375 raw_spin_unlock(&ctx->lock);
4376 }
4377
4378 /*
4379 * Move @event to the tail of the @ctx's elegible events.
4380 */
rotate_ctx(struct perf_event_context * ctx,struct perf_event * event)4381 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4382 {
4383 /*
4384 * Rotate the first entry last of non-pinned groups. Rotation might be
4385 * disabled by the inheritance code.
4386 */
4387 if (ctx->rotate_disable)
4388 return;
4389
4390 perf_event_groups_delete(&ctx->flexible_groups, event);
4391 perf_event_groups_insert(&ctx->flexible_groups, event);
4392 }
4393
4394 /* pick an event from the flexible_groups to rotate */
4395 static inline struct perf_event *
ctx_event_to_rotate(struct perf_event_pmu_context * pmu_ctx)4396 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4397 {
4398 struct perf_event *event;
4399 struct rb_node *node;
4400 struct rb_root *tree;
4401 struct __group_key key = {
4402 .pmu = pmu_ctx->pmu,
4403 };
4404
4405 /* pick the first active flexible event */
4406 event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4407 struct perf_event, active_list);
4408 if (event)
4409 goto out;
4410
4411 /* if no active flexible event, pick the first event */
4412 tree = &pmu_ctx->ctx->flexible_groups.tree;
4413
4414 if (!pmu_ctx->ctx->task) {
4415 key.cpu = smp_processor_id();
4416
4417 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4418 if (node)
4419 event = __node_2_pe(node);
4420 goto out;
4421 }
4422
4423 key.cpu = -1;
4424 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4425 if (node) {
4426 event = __node_2_pe(node);
4427 goto out;
4428 }
4429
4430 key.cpu = smp_processor_id();
4431 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4432 if (node)
4433 event = __node_2_pe(node);
4434
4435 out:
4436 /*
4437 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4438 * finds there are unschedulable events, it will set it again.
4439 */
4440 pmu_ctx->rotate_necessary = 0;
4441
4442 return event;
4443 }
4444
perf_rotate_context(struct perf_cpu_pmu_context * cpc)4445 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4446 {
4447 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4448 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4449 struct perf_event *cpu_event = NULL, *task_event = NULL;
4450 int cpu_rotate, task_rotate;
4451 struct pmu *pmu;
4452
4453 /*
4454 * Since we run this from IRQ context, nobody can install new
4455 * events, thus the event count values are stable.
4456 */
4457
4458 cpu_epc = &cpc->epc;
4459 pmu = cpu_epc->pmu;
4460 task_epc = cpc->task_epc;
4461
4462 cpu_rotate = cpu_epc->rotate_necessary;
4463 task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4464
4465 if (!(cpu_rotate || task_rotate))
4466 return false;
4467
4468 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4469 perf_pmu_disable(pmu);
4470
4471 if (task_rotate)
4472 task_event = ctx_event_to_rotate(task_epc);
4473 if (cpu_rotate)
4474 cpu_event = ctx_event_to_rotate(cpu_epc);
4475
4476 /*
4477 * As per the order given at ctx_resched() first 'pop' task flexible
4478 * and then, if needed CPU flexible.
4479 */
4480 if (task_event || (task_epc && cpu_event)) {
4481 update_context_time(task_epc->ctx);
4482 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4483 }
4484
4485 if (cpu_event) {
4486 update_context_time(&cpuctx->ctx);
4487 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4488 rotate_ctx(&cpuctx->ctx, cpu_event);
4489 __pmu_ctx_sched_in(cpu_epc, EVENT_FLEXIBLE);
4490 }
4491
4492 if (task_event)
4493 rotate_ctx(task_epc->ctx, task_event);
4494
4495 if (task_event || (task_epc && cpu_event))
4496 __pmu_ctx_sched_in(task_epc, EVENT_FLEXIBLE);
4497
4498 perf_pmu_enable(pmu);
4499 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4500
4501 return true;
4502 }
4503
perf_event_task_tick(void)4504 void perf_event_task_tick(void)
4505 {
4506 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4507 struct perf_event_context *ctx;
4508 int throttled;
4509
4510 lockdep_assert_irqs_disabled();
4511
4512 __this_cpu_inc(perf_throttled_seq);
4513 throttled = __this_cpu_xchg(perf_throttled_count, 0);
4514 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4515
4516 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4517
4518 rcu_read_lock();
4519 ctx = rcu_dereference(current->perf_event_ctxp);
4520 if (ctx)
4521 perf_adjust_freq_unthr_context(ctx, !!throttled);
4522 rcu_read_unlock();
4523 }
4524
event_enable_on_exec(struct perf_event * event,struct perf_event_context * ctx)4525 static int event_enable_on_exec(struct perf_event *event,
4526 struct perf_event_context *ctx)
4527 {
4528 if (!event->attr.enable_on_exec)
4529 return 0;
4530
4531 event->attr.enable_on_exec = 0;
4532 if (event->state >= PERF_EVENT_STATE_INACTIVE)
4533 return 0;
4534
4535 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4536
4537 return 1;
4538 }
4539
4540 /*
4541 * Enable all of a task's events that have been marked enable-on-exec.
4542 * This expects task == current.
4543 */
perf_event_enable_on_exec(struct perf_event_context * ctx)4544 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4545 {
4546 struct perf_event_context *clone_ctx = NULL;
4547 enum event_type_t event_type = 0;
4548 struct perf_cpu_context *cpuctx;
4549 struct perf_event *event;
4550 unsigned long flags;
4551 int enabled = 0;
4552
4553 local_irq_save(flags);
4554 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4555 goto out;
4556
4557 if (!ctx->nr_events)
4558 goto out;
4559
4560 cpuctx = this_cpu_ptr(&perf_cpu_context);
4561 perf_ctx_lock(cpuctx, ctx);
4562 ctx_time_freeze(cpuctx, ctx);
4563
4564 list_for_each_entry(event, &ctx->event_list, event_entry) {
4565 enabled |= event_enable_on_exec(event, ctx);
4566 event_type |= get_event_type(event);
4567 }
4568
4569 /*
4570 * Unclone and reschedule this context if we enabled any event.
4571 */
4572 if (enabled) {
4573 clone_ctx = unclone_ctx(ctx);
4574 ctx_resched(cpuctx, ctx, NULL, event_type);
4575 }
4576 perf_ctx_unlock(cpuctx, ctx);
4577
4578 out:
4579 local_irq_restore(flags);
4580
4581 if (clone_ctx)
4582 put_ctx(clone_ctx);
4583 }
4584
4585 static void perf_remove_from_owner(struct perf_event *event);
4586 static void perf_event_exit_event(struct perf_event *event,
4587 struct perf_event_context *ctx,
4588 struct task_struct *task,
4589 bool revoke);
4590
4591 /*
4592 * Removes all events from the current task that have been marked
4593 * remove-on-exec, and feeds their values back to parent events.
4594 */
perf_event_remove_on_exec(struct perf_event_context * ctx)4595 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4596 {
4597 struct perf_event_context *clone_ctx = NULL;
4598 struct perf_event *event, *next;
4599 unsigned long flags;
4600 bool modified = false;
4601
4602 mutex_lock(&ctx->mutex);
4603
4604 if (WARN_ON_ONCE(ctx->task != current))
4605 goto unlock;
4606
4607 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4608 if (!event->attr.remove_on_exec)
4609 continue;
4610
4611 if (!is_kernel_event(event))
4612 perf_remove_from_owner(event);
4613
4614 modified = true;
4615
4616 perf_event_exit_event(event, ctx, ctx->task, false);
4617 }
4618
4619 raw_spin_lock_irqsave(&ctx->lock, flags);
4620 if (modified)
4621 clone_ctx = unclone_ctx(ctx);
4622 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4623
4624 unlock:
4625 mutex_unlock(&ctx->mutex);
4626
4627 if (clone_ctx)
4628 put_ctx(clone_ctx);
4629 }
4630
4631 struct perf_read_data {
4632 struct perf_event *event;
4633 bool group;
4634 int ret;
4635 };
4636
4637 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu);
4638
__perf_event_read_cpu(struct perf_event * event,int event_cpu)4639 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4640 {
4641 int local_cpu = smp_processor_id();
4642 u16 local_pkg, event_pkg;
4643
4644 if ((unsigned)event_cpu >= nr_cpu_ids)
4645 return event_cpu;
4646
4647 if (event->group_caps & PERF_EV_CAP_READ_SCOPE) {
4648 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(event->pmu->scope, event_cpu);
4649
4650 if (cpumask && cpumask_test_cpu(local_cpu, cpumask))
4651 return local_cpu;
4652 }
4653
4654 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4655 event_pkg = topology_physical_package_id(event_cpu);
4656 local_pkg = topology_physical_package_id(local_cpu);
4657
4658 if (event_pkg == local_pkg)
4659 return local_cpu;
4660 }
4661
4662 return event_cpu;
4663 }
4664
4665 /*
4666 * Cross CPU call to read the hardware event
4667 */
__perf_event_read(void * info)4668 static void __perf_event_read(void *info)
4669 {
4670 struct perf_read_data *data = info;
4671 struct perf_event *sub, *event = data->event;
4672 struct perf_event_context *ctx = event->ctx;
4673 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4674 struct pmu *pmu = event->pmu;
4675
4676 /*
4677 * If this is a task context, we need to check whether it is
4678 * the current task context of this cpu. If not it has been
4679 * scheduled out before the smp call arrived. In that case
4680 * event->count would have been updated to a recent sample
4681 * when the event was scheduled out.
4682 */
4683 if (ctx->task && cpuctx->task_ctx != ctx)
4684 return;
4685
4686 raw_spin_lock(&ctx->lock);
4687 ctx_time_update_event(ctx, event);
4688
4689 perf_event_update_time(event);
4690 if (data->group)
4691 perf_event_update_sibling_time(event);
4692
4693 if (event->state != PERF_EVENT_STATE_ACTIVE)
4694 goto unlock;
4695
4696 if (!data->group) {
4697 pmu->read(event);
4698 data->ret = 0;
4699 goto unlock;
4700 }
4701
4702 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4703
4704 pmu->read(event);
4705
4706 for_each_sibling_event(sub, event)
4707 perf_pmu_read(sub);
4708
4709 data->ret = pmu->commit_txn(pmu);
4710
4711 unlock:
4712 raw_spin_unlock(&ctx->lock);
4713 }
4714
perf_event_count(struct perf_event * event,bool self)4715 static inline u64 perf_event_count(struct perf_event *event, bool self)
4716 {
4717 if (self)
4718 return local64_read(&event->count);
4719
4720 return local64_read(&event->count) + atomic64_read(&event->child_count);
4721 }
4722
calc_timer_values(struct perf_event * event,u64 * now,u64 * enabled,u64 * running)4723 static void calc_timer_values(struct perf_event *event,
4724 u64 *now,
4725 u64 *enabled,
4726 u64 *running)
4727 {
4728 u64 ctx_time;
4729
4730 *now = perf_clock();
4731 ctx_time = perf_event_time_now(event, *now);
4732 __perf_update_times(event, ctx_time, enabled, running);
4733 }
4734
4735 /*
4736 * NMI-safe method to read a local event, that is an event that
4737 * is:
4738 * - either for the current task, or for this CPU
4739 * - does not have inherit set, for inherited task events
4740 * will not be local and we cannot read them atomically
4741 * - must not have a pmu::count method
4742 */
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)4743 int perf_event_read_local(struct perf_event *event, u64 *value,
4744 u64 *enabled, u64 *running)
4745 {
4746 unsigned long flags;
4747 int event_oncpu;
4748 int event_cpu;
4749 int ret = 0;
4750
4751 /*
4752 * Disabling interrupts avoids all counter scheduling (context
4753 * switches, timer based rotation and IPIs).
4754 */
4755 local_irq_save(flags);
4756
4757 /*
4758 * It must not be an event with inherit set, we cannot read
4759 * all child counters from atomic context.
4760 */
4761 if (event->attr.inherit) {
4762 ret = -EOPNOTSUPP;
4763 goto out;
4764 }
4765
4766 /* If this is a per-task event, it must be for current */
4767 if ((event->attach_state & PERF_ATTACH_TASK) &&
4768 event->hw.target != current) {
4769 ret = -EINVAL;
4770 goto out;
4771 }
4772
4773 /*
4774 * Get the event CPU numbers, and adjust them to local if the event is
4775 * a per-package event that can be read locally
4776 */
4777 event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4778 event_cpu = __perf_event_read_cpu(event, event->cpu);
4779
4780 /* If this is a per-CPU event, it must be for this CPU */
4781 if (!(event->attach_state & PERF_ATTACH_TASK) &&
4782 event_cpu != smp_processor_id()) {
4783 ret = -EINVAL;
4784 goto out;
4785 }
4786
4787 /* If this is a pinned event it must be running on this CPU */
4788 if (event->attr.pinned && event_oncpu != smp_processor_id()) {
4789 ret = -EBUSY;
4790 goto out;
4791 }
4792
4793 /*
4794 * If the event is currently on this CPU, its either a per-task event,
4795 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4796 * oncpu == -1).
4797 */
4798 if (event_oncpu == smp_processor_id())
4799 event->pmu->read(event);
4800
4801 *value = local64_read(&event->count);
4802 if (enabled || running) {
4803 u64 __enabled, __running, __now;
4804
4805 calc_timer_values(event, &__now, &__enabled, &__running);
4806 if (enabled)
4807 *enabled = __enabled;
4808 if (running)
4809 *running = __running;
4810 }
4811 out:
4812 local_irq_restore(flags);
4813
4814 return ret;
4815 }
4816
perf_event_read(struct perf_event * event,bool group)4817 static int perf_event_read(struct perf_event *event, bool group)
4818 {
4819 enum perf_event_state state = READ_ONCE(event->state);
4820 int event_cpu, ret = 0;
4821
4822 /*
4823 * If event is enabled and currently active on a CPU, update the
4824 * value in the event structure:
4825 */
4826 again:
4827 if (state == PERF_EVENT_STATE_ACTIVE) {
4828 struct perf_read_data data;
4829
4830 /*
4831 * Orders the ->state and ->oncpu loads such that if we see
4832 * ACTIVE we must also see the right ->oncpu.
4833 *
4834 * Matches the smp_wmb() from event_sched_in().
4835 */
4836 smp_rmb();
4837
4838 event_cpu = READ_ONCE(event->oncpu);
4839 if ((unsigned)event_cpu >= nr_cpu_ids)
4840 return 0;
4841
4842 data = (struct perf_read_data){
4843 .event = event,
4844 .group = group,
4845 .ret = 0,
4846 };
4847
4848 preempt_disable();
4849 event_cpu = __perf_event_read_cpu(event, event_cpu);
4850
4851 /*
4852 * Purposely ignore the smp_call_function_single() return
4853 * value.
4854 *
4855 * If event_cpu isn't a valid CPU it means the event got
4856 * scheduled out and that will have updated the event count.
4857 *
4858 * Therefore, either way, we'll have an up-to-date event count
4859 * after this.
4860 */
4861 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4862 preempt_enable();
4863 ret = data.ret;
4864
4865 } else if (state == PERF_EVENT_STATE_INACTIVE) {
4866 struct perf_event_context *ctx = event->ctx;
4867 unsigned long flags;
4868
4869 raw_spin_lock_irqsave(&ctx->lock, flags);
4870 state = event->state;
4871 if (state != PERF_EVENT_STATE_INACTIVE) {
4872 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4873 goto again;
4874 }
4875
4876 /*
4877 * May read while context is not active (e.g., thread is
4878 * blocked), in that case we cannot update context time
4879 */
4880 ctx_time_update_event(ctx, event);
4881
4882 perf_event_update_time(event);
4883 if (group)
4884 perf_event_update_sibling_time(event);
4885 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4886 }
4887
4888 return ret;
4889 }
4890
4891 /*
4892 * Initialize the perf_event context in a task_struct:
4893 */
__perf_event_init_context(struct perf_event_context * ctx)4894 static void __perf_event_init_context(struct perf_event_context *ctx)
4895 {
4896 raw_spin_lock_init(&ctx->lock);
4897 mutex_init(&ctx->mutex);
4898 INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4899 perf_event_groups_init(&ctx->pinned_groups);
4900 perf_event_groups_init(&ctx->flexible_groups);
4901 INIT_LIST_HEAD(&ctx->event_list);
4902 refcount_set(&ctx->refcount, 1);
4903 }
4904
4905 static void
__perf_init_event_pmu_context(struct perf_event_pmu_context * epc,struct pmu * pmu)4906 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4907 {
4908 epc->pmu = pmu;
4909 INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4910 INIT_LIST_HEAD(&epc->pinned_active);
4911 INIT_LIST_HEAD(&epc->flexible_active);
4912 atomic_set(&epc->refcount, 1);
4913 }
4914
4915 static struct perf_event_context *
alloc_perf_context(struct task_struct * task)4916 alloc_perf_context(struct task_struct *task)
4917 {
4918 struct perf_event_context *ctx;
4919
4920 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4921 if (!ctx)
4922 return NULL;
4923
4924 __perf_event_init_context(ctx);
4925 if (task)
4926 ctx->task = get_task_struct(task);
4927
4928 return ctx;
4929 }
4930
4931 static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)4932 find_lively_task_by_vpid(pid_t vpid)
4933 {
4934 struct task_struct *task;
4935
4936 rcu_read_lock();
4937 if (!vpid)
4938 task = current;
4939 else
4940 task = find_task_by_vpid(vpid);
4941 if (task)
4942 get_task_struct(task);
4943 rcu_read_unlock();
4944
4945 if (!task)
4946 return ERR_PTR(-ESRCH);
4947
4948 return task;
4949 }
4950
4951 /*
4952 * Returns a matching context with refcount and pincount.
4953 */
4954 static struct perf_event_context *
find_get_context(struct task_struct * task,struct perf_event * event)4955 find_get_context(struct task_struct *task, struct perf_event *event)
4956 {
4957 struct perf_event_context *ctx, *clone_ctx = NULL;
4958 struct perf_cpu_context *cpuctx;
4959 unsigned long flags;
4960 int err;
4961
4962 if (!task) {
4963 /* Must be root to operate on a CPU event: */
4964 err = perf_allow_cpu();
4965 if (err)
4966 return ERR_PTR(err);
4967
4968 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4969 ctx = &cpuctx->ctx;
4970 get_ctx(ctx);
4971 raw_spin_lock_irqsave(&ctx->lock, flags);
4972 ++ctx->pin_count;
4973 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4974
4975 return ctx;
4976 }
4977
4978 err = -EINVAL;
4979 retry:
4980 ctx = perf_lock_task_context(task, &flags);
4981 if (ctx) {
4982 clone_ctx = unclone_ctx(ctx);
4983 ++ctx->pin_count;
4984
4985 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4986
4987 if (clone_ctx)
4988 put_ctx(clone_ctx);
4989 } else {
4990 ctx = alloc_perf_context(task);
4991 err = -ENOMEM;
4992 if (!ctx)
4993 goto errout;
4994
4995 err = 0;
4996 mutex_lock(&task->perf_event_mutex);
4997 /*
4998 * If it has already passed perf_event_exit_task().
4999 * we must see PF_EXITING, it takes this mutex too.
5000 */
5001 if (task->flags & PF_EXITING)
5002 err = -ESRCH;
5003 else if (task->perf_event_ctxp)
5004 err = -EAGAIN;
5005 else {
5006 get_ctx(ctx);
5007 ++ctx->pin_count;
5008 rcu_assign_pointer(task->perf_event_ctxp, ctx);
5009 }
5010 mutex_unlock(&task->perf_event_mutex);
5011
5012 if (unlikely(err)) {
5013 put_ctx(ctx);
5014
5015 if (err == -EAGAIN)
5016 goto retry;
5017 goto errout;
5018 }
5019 }
5020
5021 return ctx;
5022
5023 errout:
5024 return ERR_PTR(err);
5025 }
5026
5027 static struct perf_event_pmu_context *
find_get_pmu_context(struct pmu * pmu,struct perf_event_context * ctx,struct perf_event * event)5028 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
5029 struct perf_event *event)
5030 {
5031 struct perf_event_pmu_context *new = NULL, *pos = NULL, *epc;
5032
5033 if (!ctx->task) {
5034 /*
5035 * perf_pmu_migrate_context() / __perf_pmu_install_event()
5036 * relies on the fact that find_get_pmu_context() cannot fail
5037 * for CPU contexts.
5038 */
5039 struct perf_cpu_pmu_context *cpc;
5040
5041 cpc = *per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
5042 epc = &cpc->epc;
5043 raw_spin_lock_irq(&ctx->lock);
5044 if (!epc->ctx) {
5045 /*
5046 * One extra reference for the pmu; see perf_pmu_free().
5047 */
5048 atomic_set(&epc->refcount, 2);
5049 epc->embedded = 1;
5050 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
5051 epc->ctx = ctx;
5052 } else {
5053 WARN_ON_ONCE(epc->ctx != ctx);
5054 atomic_inc(&epc->refcount);
5055 }
5056 raw_spin_unlock_irq(&ctx->lock);
5057 return epc;
5058 }
5059
5060 new = kzalloc(sizeof(*epc), GFP_KERNEL);
5061 if (!new)
5062 return ERR_PTR(-ENOMEM);
5063
5064 __perf_init_event_pmu_context(new, pmu);
5065
5066 /*
5067 * XXX
5068 *
5069 * lockdep_assert_held(&ctx->mutex);
5070 *
5071 * can't because perf_event_init_task() doesn't actually hold the
5072 * child_ctx->mutex.
5073 */
5074
5075 raw_spin_lock_irq(&ctx->lock);
5076 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
5077 if (epc->pmu == pmu) {
5078 WARN_ON_ONCE(epc->ctx != ctx);
5079 atomic_inc(&epc->refcount);
5080 goto found_epc;
5081 }
5082 /* Make sure the pmu_ctx_list is sorted by PMU type: */
5083 if (!pos && epc->pmu->type > pmu->type)
5084 pos = epc;
5085 }
5086
5087 epc = new;
5088 new = NULL;
5089
5090 if (!pos)
5091 list_add_tail(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
5092 else
5093 list_add(&epc->pmu_ctx_entry, pos->pmu_ctx_entry.prev);
5094
5095 epc->ctx = ctx;
5096
5097 found_epc:
5098 raw_spin_unlock_irq(&ctx->lock);
5099 kfree(new);
5100
5101 return epc;
5102 }
5103
get_pmu_ctx(struct perf_event_pmu_context * epc)5104 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
5105 {
5106 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
5107 }
5108
free_cpc_rcu(struct rcu_head * head)5109 static void free_cpc_rcu(struct rcu_head *head)
5110 {
5111 struct perf_cpu_pmu_context *cpc =
5112 container_of(head, typeof(*cpc), epc.rcu_head);
5113
5114 kfree(cpc);
5115 }
5116
free_epc_rcu(struct rcu_head * head)5117 static void free_epc_rcu(struct rcu_head *head)
5118 {
5119 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
5120
5121 kfree(epc);
5122 }
5123
put_pmu_ctx(struct perf_event_pmu_context * epc)5124 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
5125 {
5126 struct perf_event_context *ctx = epc->ctx;
5127 unsigned long flags;
5128
5129 /*
5130 * XXX
5131 *
5132 * lockdep_assert_held(&ctx->mutex);
5133 *
5134 * can't because of the call-site in _free_event()/put_event()
5135 * which isn't always called under ctx->mutex.
5136 */
5137 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
5138 return;
5139
5140 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
5141
5142 list_del_init(&epc->pmu_ctx_entry);
5143 epc->ctx = NULL;
5144
5145 WARN_ON_ONCE(!list_empty(&epc->pinned_active));
5146 WARN_ON_ONCE(!list_empty(&epc->flexible_active));
5147
5148 raw_spin_unlock_irqrestore(&ctx->lock, flags);
5149
5150 if (epc->embedded) {
5151 call_rcu(&epc->rcu_head, free_cpc_rcu);
5152 return;
5153 }
5154
5155 call_rcu(&epc->rcu_head, free_epc_rcu);
5156 }
5157
5158 static void perf_event_free_filter(struct perf_event *event);
5159
free_event_rcu(struct rcu_head * head)5160 static void free_event_rcu(struct rcu_head *head)
5161 {
5162 struct perf_event *event = container_of(head, typeof(*event), rcu_head);
5163
5164 if (event->ns)
5165 put_pid_ns(event->ns);
5166 perf_event_free_filter(event);
5167 kmem_cache_free(perf_event_cache, event);
5168 }
5169
5170 static void ring_buffer_attach(struct perf_event *event,
5171 struct perf_buffer *rb);
5172
detach_sb_event(struct perf_event * event)5173 static void detach_sb_event(struct perf_event *event)
5174 {
5175 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
5176
5177 raw_spin_lock(&pel->lock);
5178 list_del_rcu(&event->sb_list);
5179 raw_spin_unlock(&pel->lock);
5180 }
5181
is_sb_event(struct perf_event * event)5182 static bool is_sb_event(struct perf_event *event)
5183 {
5184 struct perf_event_attr *attr = &event->attr;
5185
5186 if (event->parent)
5187 return false;
5188
5189 if (event->attach_state & PERF_ATTACH_TASK)
5190 return false;
5191
5192 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5193 attr->comm || attr->comm_exec ||
5194 attr->task || attr->ksymbol ||
5195 attr->context_switch || attr->text_poke ||
5196 attr->bpf_event)
5197 return true;
5198
5199 return false;
5200 }
5201
unaccount_pmu_sb_event(struct perf_event * event)5202 static void unaccount_pmu_sb_event(struct perf_event *event)
5203 {
5204 if (is_sb_event(event))
5205 detach_sb_event(event);
5206 }
5207
5208 #ifdef CONFIG_NO_HZ_FULL
5209 static DEFINE_SPINLOCK(nr_freq_lock);
5210 #endif
5211
unaccount_freq_event_nohz(void)5212 static void unaccount_freq_event_nohz(void)
5213 {
5214 #ifdef CONFIG_NO_HZ_FULL
5215 spin_lock(&nr_freq_lock);
5216 if (atomic_dec_and_test(&nr_freq_events))
5217 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5218 spin_unlock(&nr_freq_lock);
5219 #endif
5220 }
5221
unaccount_freq_event(void)5222 static void unaccount_freq_event(void)
5223 {
5224 if (tick_nohz_full_enabled())
5225 unaccount_freq_event_nohz();
5226 else
5227 atomic_dec(&nr_freq_events);
5228 }
5229
5230
5231 static struct perf_ctx_data *
alloc_perf_ctx_data(struct kmem_cache * ctx_cache,bool global)5232 alloc_perf_ctx_data(struct kmem_cache *ctx_cache, bool global)
5233 {
5234 struct perf_ctx_data *cd;
5235
5236 cd = kzalloc(sizeof(*cd), GFP_KERNEL);
5237 if (!cd)
5238 return NULL;
5239
5240 cd->data = kmem_cache_zalloc(ctx_cache, GFP_KERNEL);
5241 if (!cd->data) {
5242 kfree(cd);
5243 return NULL;
5244 }
5245
5246 cd->global = global;
5247 cd->ctx_cache = ctx_cache;
5248 refcount_set(&cd->refcount, 1);
5249
5250 return cd;
5251 }
5252
free_perf_ctx_data(struct perf_ctx_data * cd)5253 static void free_perf_ctx_data(struct perf_ctx_data *cd)
5254 {
5255 kmem_cache_free(cd->ctx_cache, cd->data);
5256 kfree(cd);
5257 }
5258
__free_perf_ctx_data_rcu(struct rcu_head * rcu_head)5259 static void __free_perf_ctx_data_rcu(struct rcu_head *rcu_head)
5260 {
5261 struct perf_ctx_data *cd;
5262
5263 cd = container_of(rcu_head, struct perf_ctx_data, rcu_head);
5264 free_perf_ctx_data(cd);
5265 }
5266
perf_free_ctx_data_rcu(struct perf_ctx_data * cd)5267 static inline void perf_free_ctx_data_rcu(struct perf_ctx_data *cd)
5268 {
5269 call_rcu(&cd->rcu_head, __free_perf_ctx_data_rcu);
5270 }
5271
5272 static int
attach_task_ctx_data(struct task_struct * task,struct kmem_cache * ctx_cache,bool global)5273 attach_task_ctx_data(struct task_struct *task, struct kmem_cache *ctx_cache,
5274 bool global)
5275 {
5276 struct perf_ctx_data *cd, *old = NULL;
5277
5278 cd = alloc_perf_ctx_data(ctx_cache, global);
5279 if (!cd)
5280 return -ENOMEM;
5281
5282 for (;;) {
5283 if (try_cmpxchg((struct perf_ctx_data **)&task->perf_ctx_data, &old, cd)) {
5284 if (old)
5285 perf_free_ctx_data_rcu(old);
5286 return 0;
5287 }
5288
5289 if (!old) {
5290 /*
5291 * After seeing a dead @old, we raced with
5292 * removal and lost, try again to install @cd.
5293 */
5294 continue;
5295 }
5296
5297 if (refcount_inc_not_zero(&old->refcount)) {
5298 free_perf_ctx_data(cd); /* unused */
5299 return 0;
5300 }
5301
5302 /*
5303 * @old is a dead object, refcount==0 is stable, try and
5304 * replace it with @cd.
5305 */
5306 }
5307 return 0;
5308 }
5309
5310 static void __detach_global_ctx_data(void);
5311 DEFINE_STATIC_PERCPU_RWSEM(global_ctx_data_rwsem);
5312 static refcount_t global_ctx_data_ref;
5313
5314 static int
attach_global_ctx_data(struct kmem_cache * ctx_cache)5315 attach_global_ctx_data(struct kmem_cache *ctx_cache)
5316 {
5317 struct task_struct *g, *p;
5318 struct perf_ctx_data *cd;
5319 int ret;
5320
5321 if (refcount_inc_not_zero(&global_ctx_data_ref))
5322 return 0;
5323
5324 guard(percpu_write)(&global_ctx_data_rwsem);
5325 if (refcount_inc_not_zero(&global_ctx_data_ref))
5326 return 0;
5327 again:
5328 /* Allocate everything */
5329 scoped_guard (rcu) {
5330 for_each_process_thread(g, p) {
5331 cd = rcu_dereference(p->perf_ctx_data);
5332 if (cd && !cd->global) {
5333 cd->global = 1;
5334 if (!refcount_inc_not_zero(&cd->refcount))
5335 cd = NULL;
5336 }
5337 if (!cd) {
5338 get_task_struct(p);
5339 goto alloc;
5340 }
5341 }
5342 }
5343
5344 refcount_set(&global_ctx_data_ref, 1);
5345
5346 return 0;
5347 alloc:
5348 ret = attach_task_ctx_data(p, ctx_cache, true);
5349 put_task_struct(p);
5350 if (ret) {
5351 __detach_global_ctx_data();
5352 return ret;
5353 }
5354 goto again;
5355 }
5356
5357 static int
attach_perf_ctx_data(struct perf_event * event)5358 attach_perf_ctx_data(struct perf_event *event)
5359 {
5360 struct task_struct *task = event->hw.target;
5361 struct kmem_cache *ctx_cache = event->pmu->task_ctx_cache;
5362 int ret;
5363
5364 if (!ctx_cache)
5365 return -ENOMEM;
5366
5367 if (task)
5368 return attach_task_ctx_data(task, ctx_cache, false);
5369
5370 ret = attach_global_ctx_data(ctx_cache);
5371 if (ret)
5372 return ret;
5373
5374 event->attach_state |= PERF_ATTACH_GLOBAL_DATA;
5375 return 0;
5376 }
5377
5378 static void
detach_task_ctx_data(struct task_struct * p)5379 detach_task_ctx_data(struct task_struct *p)
5380 {
5381 struct perf_ctx_data *cd;
5382
5383 scoped_guard (rcu) {
5384 cd = rcu_dereference(p->perf_ctx_data);
5385 if (!cd || !refcount_dec_and_test(&cd->refcount))
5386 return;
5387 }
5388
5389 /*
5390 * The old ctx_data may be lost because of the race.
5391 * Nothing is required to do for the case.
5392 * See attach_task_ctx_data().
5393 */
5394 if (try_cmpxchg((struct perf_ctx_data **)&p->perf_ctx_data, &cd, NULL))
5395 perf_free_ctx_data_rcu(cd);
5396 }
5397
__detach_global_ctx_data(void)5398 static void __detach_global_ctx_data(void)
5399 {
5400 struct task_struct *g, *p;
5401 struct perf_ctx_data *cd;
5402
5403 again:
5404 scoped_guard (rcu) {
5405 for_each_process_thread(g, p) {
5406 cd = rcu_dereference(p->perf_ctx_data);
5407 if (!cd || !cd->global)
5408 continue;
5409 cd->global = 0;
5410 get_task_struct(p);
5411 goto detach;
5412 }
5413 }
5414 return;
5415 detach:
5416 detach_task_ctx_data(p);
5417 put_task_struct(p);
5418 goto again;
5419 }
5420
detach_global_ctx_data(void)5421 static void detach_global_ctx_data(void)
5422 {
5423 if (refcount_dec_not_one(&global_ctx_data_ref))
5424 return;
5425
5426 guard(percpu_write)(&global_ctx_data_rwsem);
5427 if (!refcount_dec_and_test(&global_ctx_data_ref))
5428 return;
5429
5430 /* remove everything */
5431 __detach_global_ctx_data();
5432 }
5433
detach_perf_ctx_data(struct perf_event * event)5434 static void detach_perf_ctx_data(struct perf_event *event)
5435 {
5436 struct task_struct *task = event->hw.target;
5437
5438 event->attach_state &= ~PERF_ATTACH_TASK_DATA;
5439
5440 if (task)
5441 return detach_task_ctx_data(task);
5442
5443 if (event->attach_state & PERF_ATTACH_GLOBAL_DATA) {
5444 detach_global_ctx_data();
5445 event->attach_state &= ~PERF_ATTACH_GLOBAL_DATA;
5446 }
5447 }
5448
unaccount_event(struct perf_event * event)5449 static void unaccount_event(struct perf_event *event)
5450 {
5451 bool dec = false;
5452
5453 if (event->parent)
5454 return;
5455
5456 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5457 dec = true;
5458 if (event->attr.mmap || event->attr.mmap_data)
5459 atomic_dec(&nr_mmap_events);
5460 if (event->attr.build_id)
5461 atomic_dec(&nr_build_id_events);
5462 if (event->attr.comm)
5463 atomic_dec(&nr_comm_events);
5464 if (event->attr.namespaces)
5465 atomic_dec(&nr_namespaces_events);
5466 if (event->attr.cgroup)
5467 atomic_dec(&nr_cgroup_events);
5468 if (event->attr.task)
5469 atomic_dec(&nr_task_events);
5470 if (event->attr.freq)
5471 unaccount_freq_event();
5472 if (event->attr.context_switch) {
5473 dec = true;
5474 atomic_dec(&nr_switch_events);
5475 }
5476 if (is_cgroup_event(event))
5477 dec = true;
5478 if (has_branch_stack(event))
5479 dec = true;
5480 if (event->attr.ksymbol)
5481 atomic_dec(&nr_ksymbol_events);
5482 if (event->attr.bpf_event)
5483 atomic_dec(&nr_bpf_events);
5484 if (event->attr.text_poke)
5485 atomic_dec(&nr_text_poke_events);
5486
5487 if (dec) {
5488 if (!atomic_add_unless(&perf_sched_count, -1, 1))
5489 schedule_delayed_work(&perf_sched_work, HZ);
5490 }
5491
5492 unaccount_pmu_sb_event(event);
5493 }
5494
perf_sched_delayed(struct work_struct * work)5495 static void perf_sched_delayed(struct work_struct *work)
5496 {
5497 mutex_lock(&perf_sched_mutex);
5498 if (atomic_dec_and_test(&perf_sched_count))
5499 static_branch_disable(&perf_sched_events);
5500 mutex_unlock(&perf_sched_mutex);
5501 }
5502
5503 /*
5504 * The following implement mutual exclusion of events on "exclusive" pmus
5505 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5506 * at a time, so we disallow creating events that might conflict, namely:
5507 *
5508 * 1) cpu-wide events in the presence of per-task events,
5509 * 2) per-task events in the presence of cpu-wide events,
5510 * 3) two matching events on the same perf_event_context.
5511 *
5512 * The former two cases are handled in the allocation path (perf_event_alloc(),
5513 * _free_event()), the latter -- before the first perf_install_in_context().
5514 */
exclusive_event_init(struct perf_event * event)5515 static int exclusive_event_init(struct perf_event *event)
5516 {
5517 struct pmu *pmu = event->pmu;
5518
5519 if (!is_exclusive_pmu(pmu))
5520 return 0;
5521
5522 /*
5523 * Prevent co-existence of per-task and cpu-wide events on the
5524 * same exclusive pmu.
5525 *
5526 * Negative pmu::exclusive_cnt means there are cpu-wide
5527 * events on this "exclusive" pmu, positive means there are
5528 * per-task events.
5529 *
5530 * Since this is called in perf_event_alloc() path, event::ctx
5531 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5532 * to mean "per-task event", because unlike other attach states it
5533 * never gets cleared.
5534 */
5535 if (event->attach_state & PERF_ATTACH_TASK) {
5536 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5537 return -EBUSY;
5538 } else {
5539 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5540 return -EBUSY;
5541 }
5542
5543 event->attach_state |= PERF_ATTACH_EXCLUSIVE;
5544
5545 return 0;
5546 }
5547
exclusive_event_destroy(struct perf_event * event)5548 static void exclusive_event_destroy(struct perf_event *event)
5549 {
5550 struct pmu *pmu = event->pmu;
5551
5552 /* see comment in exclusive_event_init() */
5553 if (event->attach_state & PERF_ATTACH_TASK)
5554 atomic_dec(&pmu->exclusive_cnt);
5555 else
5556 atomic_inc(&pmu->exclusive_cnt);
5557
5558 event->attach_state &= ~PERF_ATTACH_EXCLUSIVE;
5559 }
5560
exclusive_event_match(struct perf_event * e1,struct perf_event * e2)5561 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5562 {
5563 if ((e1->pmu == e2->pmu) &&
5564 (e1->cpu == e2->cpu ||
5565 e1->cpu == -1 ||
5566 e2->cpu == -1))
5567 return true;
5568 return false;
5569 }
5570
exclusive_event_installable(struct perf_event * event,struct perf_event_context * ctx)5571 static bool exclusive_event_installable(struct perf_event *event,
5572 struct perf_event_context *ctx)
5573 {
5574 struct perf_event *iter_event;
5575 struct pmu *pmu = event->pmu;
5576
5577 lockdep_assert_held(&ctx->mutex);
5578
5579 if (!is_exclusive_pmu(pmu))
5580 return true;
5581
5582 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5583 if (exclusive_event_match(iter_event, event))
5584 return false;
5585 }
5586
5587 return true;
5588 }
5589
5590 static void perf_free_addr_filters(struct perf_event *event);
5591
5592 /* vs perf_event_alloc() error */
__free_event(struct perf_event * event)5593 static void __free_event(struct perf_event *event)
5594 {
5595 struct pmu *pmu = event->pmu;
5596
5597 if (event->attach_state & PERF_ATTACH_CALLCHAIN)
5598 put_callchain_buffers();
5599
5600 kfree(event->addr_filter_ranges);
5601
5602 if (event->attach_state & PERF_ATTACH_EXCLUSIVE)
5603 exclusive_event_destroy(event);
5604
5605 if (is_cgroup_event(event))
5606 perf_detach_cgroup(event);
5607
5608 if (event->attach_state & PERF_ATTACH_TASK_DATA)
5609 detach_perf_ctx_data(event);
5610
5611 if (event->destroy)
5612 event->destroy(event);
5613
5614 /*
5615 * Must be after ->destroy(), due to uprobe_perf_close() using
5616 * hw.target.
5617 */
5618 if (event->hw.target)
5619 put_task_struct(event->hw.target);
5620
5621 if (event->pmu_ctx) {
5622 /*
5623 * put_pmu_ctx() needs an event->ctx reference, because of
5624 * epc->ctx.
5625 */
5626 WARN_ON_ONCE(!pmu);
5627 WARN_ON_ONCE(!event->ctx);
5628 WARN_ON_ONCE(event->pmu_ctx->ctx != event->ctx);
5629 put_pmu_ctx(event->pmu_ctx);
5630 }
5631
5632 /*
5633 * perf_event_free_task() relies on put_ctx() being 'last', in
5634 * particular all task references must be cleaned up.
5635 */
5636 if (event->ctx)
5637 put_ctx(event->ctx);
5638
5639 if (pmu) {
5640 module_put(pmu->module);
5641 scoped_guard (spinlock, &pmu->events_lock) {
5642 list_del(&event->pmu_list);
5643 wake_up_var(pmu);
5644 }
5645 }
5646
5647 call_rcu(&event->rcu_head, free_event_rcu);
5648 }
5649
DEFINE_FREE(__free_event,struct perf_event *,if (_T)__free_event (_T))5650 DEFINE_FREE(__free_event, struct perf_event *, if (_T) __free_event(_T))
5651
5652 /* vs perf_event_alloc() success */
5653 static void _free_event(struct perf_event *event)
5654 {
5655 irq_work_sync(&event->pending_irq);
5656 irq_work_sync(&event->pending_disable_irq);
5657
5658 unaccount_event(event);
5659
5660 security_perf_event_free(event);
5661
5662 if (event->rb) {
5663 /*
5664 * Can happen when we close an event with re-directed output.
5665 *
5666 * Since we have a 0 refcount, perf_mmap_close() will skip
5667 * over us; possibly making our ring_buffer_put() the last.
5668 */
5669 mutex_lock(&event->mmap_mutex);
5670 ring_buffer_attach(event, NULL);
5671 mutex_unlock(&event->mmap_mutex);
5672 }
5673
5674 perf_event_free_bpf_prog(event);
5675 perf_free_addr_filters(event);
5676
5677 __free_event(event);
5678 }
5679
5680 /*
5681 * Used to free events which have a known refcount of 1, such as in error paths
5682 * of inherited events.
5683 */
free_event(struct perf_event * event)5684 static void free_event(struct perf_event *event)
5685 {
5686 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5687 "unexpected event refcount: %ld; ptr=%p\n",
5688 atomic_long_read(&event->refcount), event)) {
5689 /* leak to avoid use-after-free */
5690 return;
5691 }
5692
5693 _free_event(event);
5694 }
5695
5696 /*
5697 * Remove user event from the owner task.
5698 */
perf_remove_from_owner(struct perf_event * event)5699 static void perf_remove_from_owner(struct perf_event *event)
5700 {
5701 struct task_struct *owner;
5702
5703 rcu_read_lock();
5704 /*
5705 * Matches the smp_store_release() in perf_event_exit_task(). If we
5706 * observe !owner it means the list deletion is complete and we can
5707 * indeed free this event, otherwise we need to serialize on
5708 * owner->perf_event_mutex.
5709 */
5710 owner = READ_ONCE(event->owner);
5711 if (owner) {
5712 /*
5713 * Since delayed_put_task_struct() also drops the last
5714 * task reference we can safely take a new reference
5715 * while holding the rcu_read_lock().
5716 */
5717 get_task_struct(owner);
5718 }
5719 rcu_read_unlock();
5720
5721 if (owner) {
5722 /*
5723 * If we're here through perf_event_exit_task() we're already
5724 * holding ctx->mutex which would be an inversion wrt. the
5725 * normal lock order.
5726 *
5727 * However we can safely take this lock because its the child
5728 * ctx->mutex.
5729 */
5730 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5731
5732 /*
5733 * We have to re-check the event->owner field, if it is cleared
5734 * we raced with perf_event_exit_task(), acquiring the mutex
5735 * ensured they're done, and we can proceed with freeing the
5736 * event.
5737 */
5738 if (event->owner) {
5739 list_del_init(&event->owner_entry);
5740 smp_store_release(&event->owner, NULL);
5741 }
5742 mutex_unlock(&owner->perf_event_mutex);
5743 put_task_struct(owner);
5744 }
5745 }
5746
put_event(struct perf_event * event)5747 static void put_event(struct perf_event *event)
5748 {
5749 struct perf_event *parent;
5750
5751 if (!atomic_long_dec_and_test(&event->refcount))
5752 return;
5753
5754 parent = event->parent;
5755 _free_event(event);
5756
5757 /* Matches the refcount bump in inherit_event() */
5758 if (parent)
5759 put_event(parent);
5760 }
5761
5762 /*
5763 * Kill an event dead; while event:refcount will preserve the event
5764 * object, it will not preserve its functionality. Once the last 'user'
5765 * gives up the object, we'll destroy the thing.
5766 */
perf_event_release_kernel(struct perf_event * event)5767 int perf_event_release_kernel(struct perf_event *event)
5768 {
5769 struct perf_event_context *ctx = event->ctx;
5770 struct perf_event *child, *tmp;
5771
5772 /*
5773 * If we got here through err_alloc: free_event(event); we will not
5774 * have attached to a context yet.
5775 */
5776 if (!ctx) {
5777 WARN_ON_ONCE(event->attach_state &
5778 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5779 goto no_ctx;
5780 }
5781
5782 if (!is_kernel_event(event))
5783 perf_remove_from_owner(event);
5784
5785 ctx = perf_event_ctx_lock(event);
5786 WARN_ON_ONCE(ctx->parent_ctx);
5787
5788 /*
5789 * Mark this event as STATE_DEAD, there is no external reference to it
5790 * anymore.
5791 *
5792 * Anybody acquiring event->child_mutex after the below loop _must_
5793 * also see this, most importantly inherit_event() which will avoid
5794 * placing more children on the list.
5795 *
5796 * Thus this guarantees that we will in fact observe and kill _ALL_
5797 * child events.
5798 */
5799 if (event->state > PERF_EVENT_STATE_REVOKED) {
5800 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5801 } else {
5802 event->state = PERF_EVENT_STATE_DEAD;
5803 }
5804
5805 perf_event_ctx_unlock(event, ctx);
5806
5807 again:
5808 mutex_lock(&event->child_mutex);
5809 list_for_each_entry(child, &event->child_list, child_list) {
5810 /*
5811 * Cannot change, child events are not migrated, see the
5812 * comment with perf_event_ctx_lock_nested().
5813 */
5814 ctx = READ_ONCE(child->ctx);
5815 /*
5816 * Since child_mutex nests inside ctx::mutex, we must jump
5817 * through hoops. We start by grabbing a reference on the ctx.
5818 *
5819 * Since the event cannot get freed while we hold the
5820 * child_mutex, the context must also exist and have a !0
5821 * reference count.
5822 */
5823 get_ctx(ctx);
5824
5825 /*
5826 * Now that we have a ctx ref, we can drop child_mutex, and
5827 * acquire ctx::mutex without fear of it going away. Then we
5828 * can re-acquire child_mutex.
5829 */
5830 mutex_unlock(&event->child_mutex);
5831 mutex_lock(&ctx->mutex);
5832 mutex_lock(&event->child_mutex);
5833
5834 /*
5835 * Now that we hold ctx::mutex and child_mutex, revalidate our
5836 * state, if child is still the first entry, it didn't get freed
5837 * and we can continue doing so.
5838 */
5839 tmp = list_first_entry_or_null(&event->child_list,
5840 struct perf_event, child_list);
5841 if (tmp == child) {
5842 perf_remove_from_context(child, DETACH_GROUP | DETACH_CHILD);
5843 } else {
5844 child = NULL;
5845 }
5846
5847 mutex_unlock(&event->child_mutex);
5848 mutex_unlock(&ctx->mutex);
5849
5850 if (child) {
5851 /* Last reference unless ->pending_task work is pending */
5852 put_event(child);
5853 }
5854 put_ctx(ctx);
5855
5856 goto again;
5857 }
5858 mutex_unlock(&event->child_mutex);
5859
5860 no_ctx:
5861 /*
5862 * Last reference unless ->pending_task work is pending on this event
5863 * or any of its children.
5864 */
5865 put_event(event);
5866 return 0;
5867 }
5868 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5869
5870 /*
5871 * Called when the last reference to the file is gone.
5872 */
perf_release(struct inode * inode,struct file * file)5873 static int perf_release(struct inode *inode, struct file *file)
5874 {
5875 perf_event_release_kernel(file->private_data);
5876 return 0;
5877 }
5878
__perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5879 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5880 {
5881 struct perf_event *child;
5882 u64 total = 0;
5883
5884 *enabled = 0;
5885 *running = 0;
5886
5887 mutex_lock(&event->child_mutex);
5888
5889 (void)perf_event_read(event, false);
5890 total += perf_event_count(event, false);
5891
5892 *enabled += event->total_time_enabled +
5893 atomic64_read(&event->child_total_time_enabled);
5894 *running += event->total_time_running +
5895 atomic64_read(&event->child_total_time_running);
5896
5897 list_for_each_entry(child, &event->child_list, child_list) {
5898 (void)perf_event_read(child, false);
5899 total += perf_event_count(child, false);
5900 *enabled += child->total_time_enabled;
5901 *running += child->total_time_running;
5902 }
5903 mutex_unlock(&event->child_mutex);
5904
5905 return total;
5906 }
5907
perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5908 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5909 {
5910 struct perf_event_context *ctx;
5911 u64 count;
5912
5913 ctx = perf_event_ctx_lock(event);
5914 count = __perf_event_read_value(event, enabled, running);
5915 perf_event_ctx_unlock(event, ctx);
5916
5917 return count;
5918 }
5919 EXPORT_SYMBOL_GPL(perf_event_read_value);
5920
__perf_read_group_add(struct perf_event * leader,u64 read_format,u64 * values)5921 static int __perf_read_group_add(struct perf_event *leader,
5922 u64 read_format, u64 *values)
5923 {
5924 struct perf_event_context *ctx = leader->ctx;
5925 struct perf_event *sub, *parent;
5926 unsigned long flags;
5927 int n = 1; /* skip @nr */
5928 int ret;
5929
5930 ret = perf_event_read(leader, true);
5931 if (ret)
5932 return ret;
5933
5934 raw_spin_lock_irqsave(&ctx->lock, flags);
5935 /*
5936 * Verify the grouping between the parent and child (inherited)
5937 * events is still in tact.
5938 *
5939 * Specifically:
5940 * - leader->ctx->lock pins leader->sibling_list
5941 * - parent->child_mutex pins parent->child_list
5942 * - parent->ctx->mutex pins parent->sibling_list
5943 *
5944 * Because parent->ctx != leader->ctx (and child_list nests inside
5945 * ctx->mutex), group destruction is not atomic between children, also
5946 * see perf_event_release_kernel(). Additionally, parent can grow the
5947 * group.
5948 *
5949 * Therefore it is possible to have parent and child groups in a
5950 * different configuration and summing over such a beast makes no sense
5951 * what so ever.
5952 *
5953 * Reject this.
5954 */
5955 parent = leader->parent;
5956 if (parent &&
5957 (parent->group_generation != leader->group_generation ||
5958 parent->nr_siblings != leader->nr_siblings)) {
5959 ret = -ECHILD;
5960 goto unlock;
5961 }
5962
5963 /*
5964 * Since we co-schedule groups, {enabled,running} times of siblings
5965 * will be identical to those of the leader, so we only publish one
5966 * set.
5967 */
5968 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5969 values[n++] += leader->total_time_enabled +
5970 atomic64_read(&leader->child_total_time_enabled);
5971 }
5972
5973 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5974 values[n++] += leader->total_time_running +
5975 atomic64_read(&leader->child_total_time_running);
5976 }
5977
5978 /*
5979 * Write {count,id} tuples for every sibling.
5980 */
5981 values[n++] += perf_event_count(leader, false);
5982 if (read_format & PERF_FORMAT_ID)
5983 values[n++] = primary_event_id(leader);
5984 if (read_format & PERF_FORMAT_LOST)
5985 values[n++] = atomic64_read(&leader->lost_samples);
5986
5987 for_each_sibling_event(sub, leader) {
5988 values[n++] += perf_event_count(sub, false);
5989 if (read_format & PERF_FORMAT_ID)
5990 values[n++] = primary_event_id(sub);
5991 if (read_format & PERF_FORMAT_LOST)
5992 values[n++] = atomic64_read(&sub->lost_samples);
5993 }
5994
5995 unlock:
5996 raw_spin_unlock_irqrestore(&ctx->lock, flags);
5997 return ret;
5998 }
5999
perf_read_group(struct perf_event * event,u64 read_format,char __user * buf)6000 static int perf_read_group(struct perf_event *event,
6001 u64 read_format, char __user *buf)
6002 {
6003 struct perf_event *leader = event->group_leader, *child;
6004 struct perf_event_context *ctx = leader->ctx;
6005 int ret;
6006 u64 *values;
6007
6008 lockdep_assert_held(&ctx->mutex);
6009
6010 values = kzalloc(event->read_size, GFP_KERNEL);
6011 if (!values)
6012 return -ENOMEM;
6013
6014 values[0] = 1 + leader->nr_siblings;
6015
6016 mutex_lock(&leader->child_mutex);
6017
6018 ret = __perf_read_group_add(leader, read_format, values);
6019 if (ret)
6020 goto unlock;
6021
6022 list_for_each_entry(child, &leader->child_list, child_list) {
6023 ret = __perf_read_group_add(child, read_format, values);
6024 if (ret)
6025 goto unlock;
6026 }
6027
6028 mutex_unlock(&leader->child_mutex);
6029
6030 ret = event->read_size;
6031 if (copy_to_user(buf, values, event->read_size))
6032 ret = -EFAULT;
6033 goto out;
6034
6035 unlock:
6036 mutex_unlock(&leader->child_mutex);
6037 out:
6038 kfree(values);
6039 return ret;
6040 }
6041
perf_read_one(struct perf_event * event,u64 read_format,char __user * buf)6042 static int perf_read_one(struct perf_event *event,
6043 u64 read_format, char __user *buf)
6044 {
6045 u64 enabled, running;
6046 u64 values[5];
6047 int n = 0;
6048
6049 values[n++] = __perf_event_read_value(event, &enabled, &running);
6050 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6051 values[n++] = enabled;
6052 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6053 values[n++] = running;
6054 if (read_format & PERF_FORMAT_ID)
6055 values[n++] = primary_event_id(event);
6056 if (read_format & PERF_FORMAT_LOST)
6057 values[n++] = atomic64_read(&event->lost_samples);
6058
6059 if (copy_to_user(buf, values, n * sizeof(u64)))
6060 return -EFAULT;
6061
6062 return n * sizeof(u64);
6063 }
6064
is_event_hup(struct perf_event * event)6065 static bool is_event_hup(struct perf_event *event)
6066 {
6067 bool no_children;
6068
6069 if (event->state > PERF_EVENT_STATE_EXIT)
6070 return false;
6071
6072 mutex_lock(&event->child_mutex);
6073 no_children = list_empty(&event->child_list);
6074 mutex_unlock(&event->child_mutex);
6075 return no_children;
6076 }
6077
6078 /*
6079 * Read the performance event - simple non blocking version for now
6080 */
6081 static ssize_t
__perf_read(struct perf_event * event,char __user * buf,size_t count)6082 __perf_read(struct perf_event *event, char __user *buf, size_t count)
6083 {
6084 u64 read_format = event->attr.read_format;
6085 int ret;
6086
6087 /*
6088 * Return end-of-file for a read on an event that is in
6089 * error state (i.e. because it was pinned but it couldn't be
6090 * scheduled on to the CPU at some point).
6091 */
6092 if (event->state == PERF_EVENT_STATE_ERROR)
6093 return 0;
6094
6095 if (count < event->read_size)
6096 return -ENOSPC;
6097
6098 WARN_ON_ONCE(event->ctx->parent_ctx);
6099 if (read_format & PERF_FORMAT_GROUP)
6100 ret = perf_read_group(event, read_format, buf);
6101 else
6102 ret = perf_read_one(event, read_format, buf);
6103
6104 return ret;
6105 }
6106
6107 static ssize_t
perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)6108 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
6109 {
6110 struct perf_event *event = file->private_data;
6111 struct perf_event_context *ctx;
6112 int ret;
6113
6114 ret = security_perf_event_read(event);
6115 if (ret)
6116 return ret;
6117
6118 ctx = perf_event_ctx_lock(event);
6119 ret = __perf_read(event, buf, count);
6120 perf_event_ctx_unlock(event, ctx);
6121
6122 return ret;
6123 }
6124
perf_poll(struct file * file,poll_table * wait)6125 static __poll_t perf_poll(struct file *file, poll_table *wait)
6126 {
6127 struct perf_event *event = file->private_data;
6128 struct perf_buffer *rb;
6129 __poll_t events = EPOLLHUP;
6130
6131 if (event->state <= PERF_EVENT_STATE_REVOKED)
6132 return EPOLLERR;
6133
6134 poll_wait(file, &event->waitq, wait);
6135
6136 if (event->state <= PERF_EVENT_STATE_REVOKED)
6137 return EPOLLERR;
6138
6139 if (is_event_hup(event))
6140 return events;
6141
6142 if (unlikely(READ_ONCE(event->state) == PERF_EVENT_STATE_ERROR &&
6143 event->attr.pinned))
6144 return EPOLLERR;
6145
6146 /*
6147 * Pin the event->rb by taking event->mmap_mutex; otherwise
6148 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
6149 */
6150 mutex_lock(&event->mmap_mutex);
6151 rb = event->rb;
6152 if (rb)
6153 events = atomic_xchg(&rb->poll, 0);
6154 mutex_unlock(&event->mmap_mutex);
6155 return events;
6156 }
6157
_perf_event_reset(struct perf_event * event)6158 static void _perf_event_reset(struct perf_event *event)
6159 {
6160 (void)perf_event_read(event, false);
6161 local64_set(&event->count, 0);
6162 perf_event_update_userpage(event);
6163 }
6164
6165 /* Assume it's not an event with inherit set. */
perf_event_pause(struct perf_event * event,bool reset)6166 u64 perf_event_pause(struct perf_event *event, bool reset)
6167 {
6168 struct perf_event_context *ctx;
6169 u64 count;
6170
6171 ctx = perf_event_ctx_lock(event);
6172 WARN_ON_ONCE(event->attr.inherit);
6173 _perf_event_disable(event);
6174 count = local64_read(&event->count);
6175 if (reset)
6176 local64_set(&event->count, 0);
6177 perf_event_ctx_unlock(event, ctx);
6178
6179 return count;
6180 }
6181 EXPORT_SYMBOL_GPL(perf_event_pause);
6182
6183 /*
6184 * Holding the top-level event's child_mutex means that any
6185 * descendant process that has inherited this event will block
6186 * in perf_event_exit_event() if it goes to exit, thus satisfying the
6187 * task existence requirements of perf_event_enable/disable.
6188 */
perf_event_for_each_child(struct perf_event * event,void (* func)(struct perf_event *))6189 static void perf_event_for_each_child(struct perf_event *event,
6190 void (*func)(struct perf_event *))
6191 {
6192 struct perf_event *child;
6193
6194 WARN_ON_ONCE(event->ctx->parent_ctx);
6195
6196 mutex_lock(&event->child_mutex);
6197 func(event);
6198 list_for_each_entry(child, &event->child_list, child_list)
6199 func(child);
6200 mutex_unlock(&event->child_mutex);
6201 }
6202
perf_event_for_each(struct perf_event * event,void (* func)(struct perf_event *))6203 static void perf_event_for_each(struct perf_event *event,
6204 void (*func)(struct perf_event *))
6205 {
6206 struct perf_event_context *ctx = event->ctx;
6207 struct perf_event *sibling;
6208
6209 lockdep_assert_held(&ctx->mutex);
6210
6211 event = event->group_leader;
6212
6213 perf_event_for_each_child(event, func);
6214 for_each_sibling_event(sibling, event)
6215 perf_event_for_each_child(sibling, func);
6216 }
6217
__perf_event_period(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)6218 static void __perf_event_period(struct perf_event *event,
6219 struct perf_cpu_context *cpuctx,
6220 struct perf_event_context *ctx,
6221 void *info)
6222 {
6223 u64 value = *((u64 *)info);
6224 bool active;
6225
6226 if (event->attr.freq) {
6227 event->attr.sample_freq = value;
6228 } else {
6229 event->attr.sample_period = value;
6230 event->hw.sample_period = value;
6231 }
6232
6233 active = (event->state == PERF_EVENT_STATE_ACTIVE);
6234 if (active) {
6235 perf_pmu_disable(event->pmu);
6236 event->pmu->stop(event, PERF_EF_UPDATE);
6237 }
6238
6239 local64_set(&event->hw.period_left, 0);
6240
6241 if (active) {
6242 event->pmu->start(event, PERF_EF_RELOAD);
6243 /*
6244 * Once the period is force-reset, the event starts immediately.
6245 * But the event/group could be throttled. Unthrottle the
6246 * event/group now to avoid the next tick trying to unthrottle
6247 * while we already re-started the event/group.
6248 */
6249 if (event->hw.interrupts == MAX_INTERRUPTS)
6250 perf_event_unthrottle_group(event, true);
6251 perf_pmu_enable(event->pmu);
6252 }
6253 }
6254
perf_event_check_period(struct perf_event * event,u64 value)6255 static int perf_event_check_period(struct perf_event *event, u64 value)
6256 {
6257 return event->pmu->check_period(event, value);
6258 }
6259
_perf_event_period(struct perf_event * event,u64 value)6260 static int _perf_event_period(struct perf_event *event, u64 value)
6261 {
6262 if (!is_sampling_event(event))
6263 return -EINVAL;
6264
6265 if (!value)
6266 return -EINVAL;
6267
6268 if (event->attr.freq) {
6269 if (value > sysctl_perf_event_sample_rate)
6270 return -EINVAL;
6271 } else {
6272 if (perf_event_check_period(event, value))
6273 return -EINVAL;
6274 if (value & (1ULL << 63))
6275 return -EINVAL;
6276 }
6277
6278 event_function_call(event, __perf_event_period, &value);
6279
6280 return 0;
6281 }
6282
perf_event_period(struct perf_event * event,u64 value)6283 int perf_event_period(struct perf_event *event, u64 value)
6284 {
6285 struct perf_event_context *ctx;
6286 int ret;
6287
6288 ctx = perf_event_ctx_lock(event);
6289 ret = _perf_event_period(event, value);
6290 perf_event_ctx_unlock(event, ctx);
6291
6292 return ret;
6293 }
6294 EXPORT_SYMBOL_GPL(perf_event_period);
6295
6296 static const struct file_operations perf_fops;
6297
is_perf_file(struct fd f)6298 static inline bool is_perf_file(struct fd f)
6299 {
6300 return !fd_empty(f) && fd_file(f)->f_op == &perf_fops;
6301 }
6302
6303 static int perf_event_set_output(struct perf_event *event,
6304 struct perf_event *output_event);
6305 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
6306 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6307 struct perf_event_attr *attr);
6308 static int __perf_event_set_bpf_prog(struct perf_event *event,
6309 struct bpf_prog *prog,
6310 u64 bpf_cookie);
6311
_perf_ioctl(struct perf_event * event,unsigned int cmd,unsigned long arg)6312 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
6313 {
6314 void (*func)(struct perf_event *);
6315 u32 flags = arg;
6316
6317 if (event->state <= PERF_EVENT_STATE_REVOKED)
6318 return -ENODEV;
6319
6320 switch (cmd) {
6321 case PERF_EVENT_IOC_ENABLE:
6322 func = _perf_event_enable;
6323 break;
6324 case PERF_EVENT_IOC_DISABLE:
6325 func = _perf_event_disable;
6326 break;
6327 case PERF_EVENT_IOC_RESET:
6328 func = _perf_event_reset;
6329 break;
6330
6331 case PERF_EVENT_IOC_REFRESH:
6332 return _perf_event_refresh(event, arg);
6333
6334 case PERF_EVENT_IOC_PERIOD:
6335 {
6336 u64 value;
6337
6338 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
6339 return -EFAULT;
6340
6341 return _perf_event_period(event, value);
6342 }
6343 case PERF_EVENT_IOC_ID:
6344 {
6345 u64 id = primary_event_id(event);
6346
6347 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
6348 return -EFAULT;
6349 return 0;
6350 }
6351
6352 case PERF_EVENT_IOC_SET_OUTPUT:
6353 {
6354 CLASS(fd, output)(arg); // arg == -1 => empty
6355 struct perf_event *output_event = NULL;
6356 if (arg != -1) {
6357 if (!is_perf_file(output))
6358 return -EBADF;
6359 output_event = fd_file(output)->private_data;
6360 }
6361 return perf_event_set_output(event, output_event);
6362 }
6363
6364 case PERF_EVENT_IOC_SET_FILTER:
6365 return perf_event_set_filter(event, (void __user *)arg);
6366
6367 case PERF_EVENT_IOC_SET_BPF:
6368 {
6369 struct bpf_prog *prog;
6370 int err;
6371
6372 prog = bpf_prog_get(arg);
6373 if (IS_ERR(prog))
6374 return PTR_ERR(prog);
6375
6376 err = __perf_event_set_bpf_prog(event, prog, 0);
6377 if (err) {
6378 bpf_prog_put(prog);
6379 return err;
6380 }
6381
6382 return 0;
6383 }
6384
6385 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
6386 struct perf_buffer *rb;
6387
6388 rcu_read_lock();
6389 rb = rcu_dereference(event->rb);
6390 if (!rb || !rb->nr_pages) {
6391 rcu_read_unlock();
6392 return -EINVAL;
6393 }
6394 rb_toggle_paused(rb, !!arg);
6395 rcu_read_unlock();
6396 return 0;
6397 }
6398
6399 case PERF_EVENT_IOC_QUERY_BPF:
6400 return perf_event_query_prog_array(event, (void __user *)arg);
6401
6402 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
6403 struct perf_event_attr new_attr;
6404 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
6405 &new_attr);
6406
6407 if (err)
6408 return err;
6409
6410 return perf_event_modify_attr(event, &new_attr);
6411 }
6412 default:
6413 return -ENOTTY;
6414 }
6415
6416 if (flags & PERF_IOC_FLAG_GROUP)
6417 perf_event_for_each(event, func);
6418 else
6419 perf_event_for_each_child(event, func);
6420
6421 return 0;
6422 }
6423
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6424 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6425 {
6426 struct perf_event *event = file->private_data;
6427 struct perf_event_context *ctx;
6428 long ret;
6429
6430 /* Treat ioctl like writes as it is likely a mutating operation. */
6431 ret = security_perf_event_write(event);
6432 if (ret)
6433 return ret;
6434
6435 ctx = perf_event_ctx_lock(event);
6436 ret = _perf_ioctl(event, cmd, arg);
6437 perf_event_ctx_unlock(event, ctx);
6438
6439 return ret;
6440 }
6441
6442 #ifdef CONFIG_COMPAT
perf_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6443 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6444 unsigned long arg)
6445 {
6446 switch (_IOC_NR(cmd)) {
6447 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6448 case _IOC_NR(PERF_EVENT_IOC_ID):
6449 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6450 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6451 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6452 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6453 cmd &= ~IOCSIZE_MASK;
6454 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6455 }
6456 break;
6457 }
6458 return perf_ioctl(file, cmd, arg);
6459 }
6460 #else
6461 # define perf_compat_ioctl NULL
6462 #endif
6463
perf_event_task_enable(void)6464 int perf_event_task_enable(void)
6465 {
6466 struct perf_event_context *ctx;
6467 struct perf_event *event;
6468
6469 mutex_lock(¤t->perf_event_mutex);
6470 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
6471 ctx = perf_event_ctx_lock(event);
6472 perf_event_for_each_child(event, _perf_event_enable);
6473 perf_event_ctx_unlock(event, ctx);
6474 }
6475 mutex_unlock(¤t->perf_event_mutex);
6476
6477 return 0;
6478 }
6479
perf_event_task_disable(void)6480 int perf_event_task_disable(void)
6481 {
6482 struct perf_event_context *ctx;
6483 struct perf_event *event;
6484
6485 mutex_lock(¤t->perf_event_mutex);
6486 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
6487 ctx = perf_event_ctx_lock(event);
6488 perf_event_for_each_child(event, _perf_event_disable);
6489 perf_event_ctx_unlock(event, ctx);
6490 }
6491 mutex_unlock(¤t->perf_event_mutex);
6492
6493 return 0;
6494 }
6495
perf_event_index(struct perf_event * event)6496 static int perf_event_index(struct perf_event *event)
6497 {
6498 if (event->hw.state & PERF_HES_STOPPED)
6499 return 0;
6500
6501 if (event->state != PERF_EVENT_STATE_ACTIVE)
6502 return 0;
6503
6504 return event->pmu->event_idx(event);
6505 }
6506
perf_event_init_userpage(struct perf_event * event)6507 static void perf_event_init_userpage(struct perf_event *event)
6508 {
6509 struct perf_event_mmap_page *userpg;
6510 struct perf_buffer *rb;
6511
6512 rcu_read_lock();
6513 rb = rcu_dereference(event->rb);
6514 if (!rb)
6515 goto unlock;
6516
6517 userpg = rb->user_page;
6518
6519 /* Allow new userspace to detect that bit 0 is deprecated */
6520 userpg->cap_bit0_is_deprecated = 1;
6521 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6522 userpg->data_offset = PAGE_SIZE;
6523 userpg->data_size = perf_data_size(rb);
6524
6525 unlock:
6526 rcu_read_unlock();
6527 }
6528
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)6529 void __weak arch_perf_update_userpage(
6530 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6531 {
6532 }
6533
6534 /*
6535 * Callers need to ensure there can be no nesting of this function, otherwise
6536 * the seqlock logic goes bad. We can not serialize this because the arch
6537 * code calls this from NMI context.
6538 */
perf_event_update_userpage(struct perf_event * event)6539 void perf_event_update_userpage(struct perf_event *event)
6540 {
6541 struct perf_event_mmap_page *userpg;
6542 struct perf_buffer *rb;
6543 u64 enabled, running, now;
6544
6545 rcu_read_lock();
6546 rb = rcu_dereference(event->rb);
6547 if (!rb)
6548 goto unlock;
6549
6550 /*
6551 * compute total_time_enabled, total_time_running
6552 * based on snapshot values taken when the event
6553 * was last scheduled in.
6554 *
6555 * we cannot simply called update_context_time()
6556 * because of locking issue as we can be called in
6557 * NMI context
6558 */
6559 calc_timer_values(event, &now, &enabled, &running);
6560
6561 userpg = rb->user_page;
6562 /*
6563 * Disable preemption to guarantee consistent time stamps are stored to
6564 * the user page.
6565 */
6566 preempt_disable();
6567 ++userpg->lock;
6568 barrier();
6569 userpg->index = perf_event_index(event);
6570 userpg->offset = perf_event_count(event, false);
6571 if (userpg->index)
6572 userpg->offset -= local64_read(&event->hw.prev_count);
6573
6574 userpg->time_enabled = enabled +
6575 atomic64_read(&event->child_total_time_enabled);
6576
6577 userpg->time_running = running +
6578 atomic64_read(&event->child_total_time_running);
6579
6580 arch_perf_update_userpage(event, userpg, now);
6581
6582 barrier();
6583 ++userpg->lock;
6584 preempt_enable();
6585 unlock:
6586 rcu_read_unlock();
6587 }
6588 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6589
ring_buffer_attach(struct perf_event * event,struct perf_buffer * rb)6590 static void ring_buffer_attach(struct perf_event *event,
6591 struct perf_buffer *rb)
6592 {
6593 struct perf_buffer *old_rb = NULL;
6594 unsigned long flags;
6595
6596 WARN_ON_ONCE(event->parent);
6597
6598 if (event->rb) {
6599 /*
6600 * Should be impossible, we set this when removing
6601 * event->rb_entry and wait/clear when adding event->rb_entry.
6602 */
6603 WARN_ON_ONCE(event->rcu_pending);
6604
6605 old_rb = event->rb;
6606 spin_lock_irqsave(&old_rb->event_lock, flags);
6607 list_del_rcu(&event->rb_entry);
6608 spin_unlock_irqrestore(&old_rb->event_lock, flags);
6609
6610 event->rcu_batches = get_state_synchronize_rcu();
6611 event->rcu_pending = 1;
6612 }
6613
6614 if (rb) {
6615 if (event->rcu_pending) {
6616 cond_synchronize_rcu(event->rcu_batches);
6617 event->rcu_pending = 0;
6618 }
6619
6620 spin_lock_irqsave(&rb->event_lock, flags);
6621 list_add_rcu(&event->rb_entry, &rb->event_list);
6622 spin_unlock_irqrestore(&rb->event_lock, flags);
6623 }
6624
6625 /*
6626 * Avoid racing with perf_mmap_close(AUX): stop the event
6627 * before swizzling the event::rb pointer; if it's getting
6628 * unmapped, its aux_mmap_count will be 0 and it won't
6629 * restart. See the comment in __perf_pmu_output_stop().
6630 *
6631 * Data will inevitably be lost when set_output is done in
6632 * mid-air, but then again, whoever does it like this is
6633 * not in for the data anyway.
6634 */
6635 if (has_aux(event))
6636 perf_event_stop(event, 0);
6637
6638 rcu_assign_pointer(event->rb, rb);
6639
6640 if (old_rb) {
6641 ring_buffer_put(old_rb);
6642 /*
6643 * Since we detached before setting the new rb, so that we
6644 * could attach the new rb, we could have missed a wakeup.
6645 * Provide it now.
6646 */
6647 wake_up_all(&event->waitq);
6648 }
6649 }
6650
ring_buffer_wakeup(struct perf_event * event)6651 static void ring_buffer_wakeup(struct perf_event *event)
6652 {
6653 struct perf_buffer *rb;
6654
6655 if (event->parent)
6656 event = event->parent;
6657
6658 rcu_read_lock();
6659 rb = rcu_dereference(event->rb);
6660 if (rb) {
6661 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6662 wake_up_all(&event->waitq);
6663 }
6664 rcu_read_unlock();
6665 }
6666
ring_buffer_get(struct perf_event * event)6667 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6668 {
6669 struct perf_buffer *rb;
6670
6671 if (event->parent)
6672 event = event->parent;
6673
6674 rcu_read_lock();
6675 rb = rcu_dereference(event->rb);
6676 if (rb) {
6677 if (!refcount_inc_not_zero(&rb->refcount))
6678 rb = NULL;
6679 }
6680 rcu_read_unlock();
6681
6682 return rb;
6683 }
6684
ring_buffer_put(struct perf_buffer * rb)6685 void ring_buffer_put(struct perf_buffer *rb)
6686 {
6687 if (!refcount_dec_and_test(&rb->refcount))
6688 return;
6689
6690 WARN_ON_ONCE(!list_empty(&rb->event_list));
6691
6692 call_rcu(&rb->rcu_head, rb_free_rcu);
6693 }
6694
6695 typedef void (*mapped_f)(struct perf_event *event, struct mm_struct *mm);
6696
6697 #define get_mapped(event, func) \
6698 ({ struct pmu *pmu; \
6699 mapped_f f = NULL; \
6700 guard(rcu)(); \
6701 pmu = READ_ONCE(event->pmu); \
6702 if (pmu) \
6703 f = pmu->func; \
6704 f; \
6705 })
6706
perf_mmap_open(struct vm_area_struct * vma)6707 static void perf_mmap_open(struct vm_area_struct *vma)
6708 {
6709 struct perf_event *event = vma->vm_file->private_data;
6710 mapped_f mapped = get_mapped(event, event_mapped);
6711
6712 refcount_inc(&event->mmap_count);
6713 refcount_inc(&event->rb->mmap_count);
6714
6715 if (vma->vm_pgoff)
6716 refcount_inc(&event->rb->aux_mmap_count);
6717
6718 if (mapped)
6719 mapped(event, vma->vm_mm);
6720 }
6721
6722 static void perf_pmu_output_stop(struct perf_event *event);
6723
6724 /*
6725 * A buffer can be mmap()ed multiple times; either directly through the same
6726 * event, or through other events by use of perf_event_set_output().
6727 *
6728 * In order to undo the VM accounting done by perf_mmap() we need to destroy
6729 * the buffer here, where we still have a VM context. This means we need
6730 * to detach all events redirecting to us.
6731 */
perf_mmap_close(struct vm_area_struct * vma)6732 static void perf_mmap_close(struct vm_area_struct *vma)
6733 {
6734 struct perf_event *event = vma->vm_file->private_data;
6735 mapped_f unmapped = get_mapped(event, event_unmapped);
6736 struct perf_buffer *rb = ring_buffer_get(event);
6737 struct user_struct *mmap_user = rb->mmap_user;
6738 int mmap_locked = rb->mmap_locked;
6739 unsigned long size = perf_data_size(rb);
6740 bool detach_rest = false;
6741
6742 /* FIXIES vs perf_pmu_unregister() */
6743 if (unmapped)
6744 unmapped(event, vma->vm_mm);
6745
6746 /*
6747 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex
6748 * to avoid complications.
6749 */
6750 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6751 refcount_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) {
6752 /*
6753 * Stop all AUX events that are writing to this buffer,
6754 * so that we can free its AUX pages and corresponding PMU
6755 * data. Note that after rb::aux_mmap_count dropped to zero,
6756 * they won't start any more (see perf_aux_output_begin()).
6757 */
6758 perf_pmu_output_stop(event);
6759
6760 /* now it's safe to free the pages */
6761 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6762 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6763
6764 /* this has to be the last one */
6765 rb_free_aux(rb);
6766 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6767
6768 mutex_unlock(&rb->aux_mutex);
6769 }
6770
6771 if (refcount_dec_and_test(&rb->mmap_count))
6772 detach_rest = true;
6773
6774 if (!refcount_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6775 goto out_put;
6776
6777 ring_buffer_attach(event, NULL);
6778 mutex_unlock(&event->mmap_mutex);
6779
6780 /* If there's still other mmap()s of this buffer, we're done. */
6781 if (!detach_rest)
6782 goto out_put;
6783
6784 /*
6785 * No other mmap()s, detach from all other events that might redirect
6786 * into the now unreachable buffer. Somewhat complicated by the
6787 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6788 */
6789 again:
6790 rcu_read_lock();
6791 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6792 if (!atomic_long_inc_not_zero(&event->refcount)) {
6793 /*
6794 * This event is en-route to free_event() which will
6795 * detach it and remove it from the list.
6796 */
6797 continue;
6798 }
6799 rcu_read_unlock();
6800
6801 mutex_lock(&event->mmap_mutex);
6802 /*
6803 * Check we didn't race with perf_event_set_output() which can
6804 * swizzle the rb from under us while we were waiting to
6805 * acquire mmap_mutex.
6806 *
6807 * If we find a different rb; ignore this event, a next
6808 * iteration will no longer find it on the list. We have to
6809 * still restart the iteration to make sure we're not now
6810 * iterating the wrong list.
6811 */
6812 if (event->rb == rb)
6813 ring_buffer_attach(event, NULL);
6814
6815 mutex_unlock(&event->mmap_mutex);
6816 put_event(event);
6817
6818 /*
6819 * Restart the iteration; either we're on the wrong list or
6820 * destroyed its integrity by doing a deletion.
6821 */
6822 goto again;
6823 }
6824 rcu_read_unlock();
6825
6826 /*
6827 * It could be there's still a few 0-ref events on the list; they'll
6828 * get cleaned up by free_event() -- they'll also still have their
6829 * ref on the rb and will free it whenever they are done with it.
6830 *
6831 * Aside from that, this buffer is 'fully' detached and unmapped,
6832 * undo the VM accounting.
6833 */
6834
6835 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6836 &mmap_user->locked_vm);
6837 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6838 free_uid(mmap_user);
6839
6840 out_put:
6841 ring_buffer_put(rb); /* could be last */
6842 }
6843
perf_mmap_pfn_mkwrite(struct vm_fault * vmf)6844 static vm_fault_t perf_mmap_pfn_mkwrite(struct vm_fault *vmf)
6845 {
6846 /* The first page is the user control page, others are read-only. */
6847 return vmf->pgoff == 0 ? 0 : VM_FAULT_SIGBUS;
6848 }
6849
perf_mmap_may_split(struct vm_area_struct * vma,unsigned long addr)6850 static int perf_mmap_may_split(struct vm_area_struct *vma, unsigned long addr)
6851 {
6852 /*
6853 * Forbid splitting perf mappings to prevent refcount leaks due to
6854 * the resulting non-matching offsets and sizes. See open()/close().
6855 */
6856 return -EINVAL;
6857 }
6858
6859 static const struct vm_operations_struct perf_mmap_vmops = {
6860 .open = perf_mmap_open,
6861 .close = perf_mmap_close, /* non mergeable */
6862 .pfn_mkwrite = perf_mmap_pfn_mkwrite,
6863 .may_split = perf_mmap_may_split,
6864 };
6865
map_range(struct perf_buffer * rb,struct vm_area_struct * vma)6866 static int map_range(struct perf_buffer *rb, struct vm_area_struct *vma)
6867 {
6868 unsigned long nr_pages = vma_pages(vma);
6869 int err = 0;
6870 unsigned long pagenum;
6871
6872 /*
6873 * We map this as a VM_PFNMAP VMA.
6874 *
6875 * This is not ideal as this is designed broadly for mappings of PFNs
6876 * referencing memory-mapped I/O ranges or non-system RAM i.e. for which
6877 * !pfn_valid(pfn).
6878 *
6879 * We are mapping kernel-allocated memory (memory we manage ourselves)
6880 * which would more ideally be mapped using vm_insert_page() or a
6881 * similar mechanism, that is as a VM_MIXEDMAP mapping.
6882 *
6883 * However this won't work here, because:
6884 *
6885 * 1. It uses vma->vm_page_prot, but this field has not been completely
6886 * setup at the point of the f_op->mmp() hook, so we are unable to
6887 * indicate that this should be mapped CoW in order that the
6888 * mkwrite() hook can be invoked to make the first page R/W and the
6889 * rest R/O as desired.
6890 *
6891 * 2. Anything other than a VM_PFNMAP of valid PFNs will result in
6892 * vm_normal_page() returning a struct page * pointer, which means
6893 * vm_ops->page_mkwrite() will be invoked rather than
6894 * vm_ops->pfn_mkwrite(), and this means we have to set page->mapping
6895 * to work around retry logic in the fault handler, however this
6896 * field is no longer allowed to be used within struct page.
6897 *
6898 * 3. Having a struct page * made available in the fault logic also
6899 * means that the page gets put on the rmap and becomes
6900 * inappropriately accessible and subject to map and ref counting.
6901 *
6902 * Ideally we would have a mechanism that could explicitly express our
6903 * desires, but this is not currently the case, so we instead use
6904 * VM_PFNMAP.
6905 *
6906 * We manage the lifetime of these mappings with internal refcounts (see
6907 * perf_mmap_open() and perf_mmap_close()) so we ensure the lifetime of
6908 * this mapping is maintained correctly.
6909 */
6910 for (pagenum = 0; pagenum < nr_pages; pagenum++) {
6911 unsigned long va = vma->vm_start + PAGE_SIZE * pagenum;
6912 struct page *page = perf_mmap_to_page(rb, vma->vm_pgoff + pagenum);
6913
6914 if (page == NULL) {
6915 err = -EINVAL;
6916 break;
6917 }
6918
6919 /* Map readonly, perf_mmap_pfn_mkwrite() called on write fault. */
6920 err = remap_pfn_range(vma, va, page_to_pfn(page), PAGE_SIZE,
6921 vm_get_page_prot(vma->vm_flags & ~VM_SHARED));
6922 if (err)
6923 break;
6924 }
6925
6926 #ifdef CONFIG_MMU
6927 /* Clear any partial mappings on error. */
6928 if (err)
6929 zap_page_range_single(vma, vma->vm_start, nr_pages * PAGE_SIZE, NULL);
6930 #endif
6931
6932 return err;
6933 }
6934
perf_mmap_calc_limits(struct vm_area_struct * vma,long * user_extra,long * extra)6935 static bool perf_mmap_calc_limits(struct vm_area_struct *vma, long *user_extra, long *extra)
6936 {
6937 unsigned long user_locked, user_lock_limit, locked, lock_limit;
6938 struct user_struct *user = current_user();
6939
6940 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6941 /* Increase the limit linearly with more CPUs */
6942 user_lock_limit *= num_online_cpus();
6943
6944 user_locked = atomic_long_read(&user->locked_vm);
6945
6946 /*
6947 * sysctl_perf_event_mlock may have changed, so that
6948 * user->locked_vm > user_lock_limit
6949 */
6950 if (user_locked > user_lock_limit)
6951 user_locked = user_lock_limit;
6952 user_locked += *user_extra;
6953
6954 if (user_locked > user_lock_limit) {
6955 /*
6956 * charge locked_vm until it hits user_lock_limit;
6957 * charge the rest from pinned_vm
6958 */
6959 *extra = user_locked - user_lock_limit;
6960 *user_extra -= *extra;
6961 }
6962
6963 lock_limit = rlimit(RLIMIT_MEMLOCK);
6964 lock_limit >>= PAGE_SHIFT;
6965 locked = atomic64_read(&vma->vm_mm->pinned_vm) + *extra;
6966
6967 return locked <= lock_limit || !perf_is_paranoid() || capable(CAP_IPC_LOCK);
6968 }
6969
perf_mmap_account(struct vm_area_struct * vma,long user_extra,long extra)6970 static void perf_mmap_account(struct vm_area_struct *vma, long user_extra, long extra)
6971 {
6972 struct user_struct *user = current_user();
6973
6974 atomic_long_add(user_extra, &user->locked_vm);
6975 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6976 }
6977
perf_mmap_rb(struct vm_area_struct * vma,struct perf_event * event,unsigned long nr_pages)6978 static int perf_mmap_rb(struct vm_area_struct *vma, struct perf_event *event,
6979 unsigned long nr_pages)
6980 {
6981 long extra = 0, user_extra = nr_pages;
6982 struct perf_buffer *rb;
6983 int rb_flags = 0;
6984
6985 nr_pages -= 1;
6986
6987 /*
6988 * If we have rb pages ensure they're a power-of-two number, so we
6989 * can do bitmasks instead of modulo.
6990 */
6991 if (nr_pages != 0 && !is_power_of_2(nr_pages))
6992 return -EINVAL;
6993
6994 WARN_ON_ONCE(event->ctx->parent_ctx);
6995
6996 if (event->rb) {
6997 if (data_page_nr(event->rb) != nr_pages)
6998 return -EINVAL;
6999
7000 /*
7001 * If this event doesn't have mmap_count, we're attempting to
7002 * create an alias of another event's mmap(); this would mean
7003 * both events will end up scribbling the same user_page;
7004 * which makes no sense.
7005 */
7006 if (!refcount_read(&event->mmap_count))
7007 return -EBUSY;
7008
7009 if (refcount_inc_not_zero(&event->rb->mmap_count)) {
7010 /*
7011 * Success -- managed to mmap() the same buffer
7012 * multiple times.
7013 */
7014 perf_mmap_account(vma, user_extra, extra);
7015 refcount_inc(&event->mmap_count);
7016 return 0;
7017 }
7018
7019 /*
7020 * Raced against perf_mmap_close()'s
7021 * refcount_dec_and_mutex_lock() remove the
7022 * event and continue as if !event->rb
7023 */
7024 ring_buffer_attach(event, NULL);
7025 }
7026
7027 if (!perf_mmap_calc_limits(vma, &user_extra, &extra))
7028 return -EPERM;
7029
7030 if (vma->vm_flags & VM_WRITE)
7031 rb_flags |= RING_BUFFER_WRITABLE;
7032
7033 rb = rb_alloc(nr_pages,
7034 event->attr.watermark ? event->attr.wakeup_watermark : 0,
7035 event->cpu, rb_flags);
7036
7037 if (!rb)
7038 return -ENOMEM;
7039
7040 refcount_set(&rb->mmap_count, 1);
7041 rb->mmap_user = get_current_user();
7042 rb->mmap_locked = extra;
7043
7044 ring_buffer_attach(event, rb);
7045
7046 perf_event_update_time(event);
7047 perf_event_init_userpage(event);
7048 perf_event_update_userpage(event);
7049
7050 perf_mmap_account(vma, user_extra, extra);
7051 refcount_set(&event->mmap_count, 1);
7052
7053 return 0;
7054 }
7055
perf_mmap_aux(struct vm_area_struct * vma,struct perf_event * event,unsigned long nr_pages)7056 static int perf_mmap_aux(struct vm_area_struct *vma, struct perf_event *event,
7057 unsigned long nr_pages)
7058 {
7059 long extra = 0, user_extra = nr_pages;
7060 u64 aux_offset, aux_size;
7061 struct perf_buffer *rb;
7062 int ret, rb_flags = 0;
7063
7064 rb = event->rb;
7065 if (!rb)
7066 return -EINVAL;
7067
7068 guard(mutex)(&rb->aux_mutex);
7069
7070 /*
7071 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
7072 * mapped, all subsequent mappings should have the same size
7073 * and offset. Must be above the normal perf buffer.
7074 */
7075 aux_offset = READ_ONCE(rb->user_page->aux_offset);
7076 aux_size = READ_ONCE(rb->user_page->aux_size);
7077
7078 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
7079 return -EINVAL;
7080
7081 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
7082 return -EINVAL;
7083
7084 /* already mapped with a different offset */
7085 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
7086 return -EINVAL;
7087
7088 if (aux_size != nr_pages * PAGE_SIZE)
7089 return -EINVAL;
7090
7091 /* already mapped with a different size */
7092 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
7093 return -EINVAL;
7094
7095 if (!is_power_of_2(nr_pages))
7096 return -EINVAL;
7097
7098 if (!refcount_inc_not_zero(&rb->mmap_count))
7099 return -EINVAL;
7100
7101 if (rb_has_aux(rb)) {
7102 refcount_inc(&rb->aux_mmap_count);
7103
7104 } else {
7105 if (!perf_mmap_calc_limits(vma, &user_extra, &extra)) {
7106 refcount_dec(&rb->mmap_count);
7107 return -EPERM;
7108 }
7109
7110 WARN_ON(!rb && event->rb);
7111
7112 if (vma->vm_flags & VM_WRITE)
7113 rb_flags |= RING_BUFFER_WRITABLE;
7114
7115 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
7116 event->attr.aux_watermark, rb_flags);
7117 if (ret) {
7118 refcount_dec(&rb->mmap_count);
7119 return ret;
7120 }
7121
7122 refcount_set(&rb->aux_mmap_count, 1);
7123 rb->aux_mmap_locked = extra;
7124 }
7125
7126 perf_mmap_account(vma, user_extra, extra);
7127 refcount_inc(&event->mmap_count);
7128
7129 return 0;
7130 }
7131
perf_mmap(struct file * file,struct vm_area_struct * vma)7132 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
7133 {
7134 struct perf_event *event = file->private_data;
7135 unsigned long vma_size, nr_pages;
7136 mapped_f mapped;
7137 int ret;
7138
7139 /*
7140 * Don't allow mmap() of inherited per-task counters. This would
7141 * create a performance issue due to all children writing to the
7142 * same rb.
7143 */
7144 if (event->cpu == -1 && event->attr.inherit)
7145 return -EINVAL;
7146
7147 if (!(vma->vm_flags & VM_SHARED))
7148 return -EINVAL;
7149
7150 ret = security_perf_event_read(event);
7151 if (ret)
7152 return ret;
7153
7154 vma_size = vma->vm_end - vma->vm_start;
7155 nr_pages = vma_size / PAGE_SIZE;
7156
7157 if (nr_pages > INT_MAX)
7158 return -ENOMEM;
7159
7160 if (vma_size != PAGE_SIZE * nr_pages)
7161 return -EINVAL;
7162
7163 scoped_guard (mutex, &event->mmap_mutex) {
7164 /*
7165 * This relies on __pmu_detach_event() taking mmap_mutex after marking
7166 * the event REVOKED. Either we observe the state, or __pmu_detach_event()
7167 * will detach the rb created here.
7168 */
7169 if (event->state <= PERF_EVENT_STATE_REVOKED)
7170 return -ENODEV;
7171
7172 if (vma->vm_pgoff == 0)
7173 ret = perf_mmap_rb(vma, event, nr_pages);
7174 else
7175 ret = perf_mmap_aux(vma, event, nr_pages);
7176 if (ret)
7177 return ret;
7178 }
7179
7180 /*
7181 * Since pinned accounting is per vm we cannot allow fork() to copy our
7182 * vma.
7183 */
7184 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
7185 vma->vm_ops = &perf_mmap_vmops;
7186
7187 mapped = get_mapped(event, event_mapped);
7188 if (mapped)
7189 mapped(event, vma->vm_mm);
7190
7191 /*
7192 * Try to map it into the page table. On fail, invoke
7193 * perf_mmap_close() to undo the above, as the callsite expects
7194 * full cleanup in this case and therefore does not invoke
7195 * vmops::close().
7196 */
7197 ret = map_range(event->rb, vma);
7198 if (ret)
7199 perf_mmap_close(vma);
7200
7201 return ret;
7202 }
7203
perf_fasync(int fd,struct file * filp,int on)7204 static int perf_fasync(int fd, struct file *filp, int on)
7205 {
7206 struct inode *inode = file_inode(filp);
7207 struct perf_event *event = filp->private_data;
7208 int retval;
7209
7210 if (event->state <= PERF_EVENT_STATE_REVOKED)
7211 return -ENODEV;
7212
7213 inode_lock(inode);
7214 retval = fasync_helper(fd, filp, on, &event->fasync);
7215 inode_unlock(inode);
7216
7217 if (retval < 0)
7218 return retval;
7219
7220 return 0;
7221 }
7222
7223 static const struct file_operations perf_fops = {
7224 .release = perf_release,
7225 .read = perf_read,
7226 .poll = perf_poll,
7227 .unlocked_ioctl = perf_ioctl,
7228 .compat_ioctl = perf_compat_ioctl,
7229 .mmap = perf_mmap,
7230 .fasync = perf_fasync,
7231 };
7232
7233 /*
7234 * Perf event wakeup
7235 *
7236 * If there's data, ensure we set the poll() state and publish everything
7237 * to user-space before waking everybody up.
7238 */
7239
perf_event_wakeup(struct perf_event * event)7240 void perf_event_wakeup(struct perf_event *event)
7241 {
7242 ring_buffer_wakeup(event);
7243
7244 if (event->pending_kill) {
7245 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
7246 event->pending_kill = 0;
7247 }
7248 }
7249
perf_sigtrap(struct perf_event * event)7250 static void perf_sigtrap(struct perf_event *event)
7251 {
7252 /*
7253 * Both perf_pending_task() and perf_pending_irq() can race with the
7254 * task exiting.
7255 */
7256 if (current->flags & PF_EXITING)
7257 return;
7258
7259 /*
7260 * We'd expect this to only occur if the irq_work is delayed and either
7261 * ctx->task or current has changed in the meantime. This can be the
7262 * case on architectures that do not implement arch_irq_work_raise().
7263 */
7264 if (WARN_ON_ONCE(event->ctx->task != current))
7265 return;
7266
7267 send_sig_perf((void __user *)event->pending_addr,
7268 event->orig_type, event->attr.sig_data);
7269 }
7270
7271 /*
7272 * Deliver the pending work in-event-context or follow the context.
7273 */
__perf_pending_disable(struct perf_event * event)7274 static void __perf_pending_disable(struct perf_event *event)
7275 {
7276 int cpu = READ_ONCE(event->oncpu);
7277
7278 /*
7279 * If the event isn't running; we done. event_sched_out() will have
7280 * taken care of things.
7281 */
7282 if (cpu < 0)
7283 return;
7284
7285 /*
7286 * Yay, we hit home and are in the context of the event.
7287 */
7288 if (cpu == smp_processor_id()) {
7289 if (event->pending_disable) {
7290 event->pending_disable = 0;
7291 perf_event_disable_local(event);
7292 }
7293 return;
7294 }
7295
7296 /*
7297 * CPU-A CPU-B
7298 *
7299 * perf_event_disable_inatomic()
7300 * @pending_disable = 1;
7301 * irq_work_queue();
7302 *
7303 * sched-out
7304 * @pending_disable = 0;
7305 *
7306 * sched-in
7307 * perf_event_disable_inatomic()
7308 * @pending_disable = 1;
7309 * irq_work_queue(); // FAILS
7310 *
7311 * irq_work_run()
7312 * perf_pending_disable()
7313 *
7314 * But the event runs on CPU-B and wants disabling there.
7315 */
7316 irq_work_queue_on(&event->pending_disable_irq, cpu);
7317 }
7318
perf_pending_disable(struct irq_work * entry)7319 static void perf_pending_disable(struct irq_work *entry)
7320 {
7321 struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq);
7322 int rctx;
7323
7324 /*
7325 * If we 'fail' here, that's OK, it means recursion is already disabled
7326 * and we won't recurse 'further'.
7327 */
7328 rctx = perf_swevent_get_recursion_context();
7329 __perf_pending_disable(event);
7330 if (rctx >= 0)
7331 perf_swevent_put_recursion_context(rctx);
7332 }
7333
perf_pending_irq(struct irq_work * entry)7334 static void perf_pending_irq(struct irq_work *entry)
7335 {
7336 struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
7337 int rctx;
7338
7339 /*
7340 * If we 'fail' here, that's OK, it means recursion is already disabled
7341 * and we won't recurse 'further'.
7342 */
7343 rctx = perf_swevent_get_recursion_context();
7344
7345 /*
7346 * The wakeup isn't bound to the context of the event -- it can happen
7347 * irrespective of where the event is.
7348 */
7349 if (event->pending_wakeup) {
7350 event->pending_wakeup = 0;
7351 perf_event_wakeup(event);
7352 }
7353
7354 if (rctx >= 0)
7355 perf_swevent_put_recursion_context(rctx);
7356 }
7357
perf_pending_task(struct callback_head * head)7358 static void perf_pending_task(struct callback_head *head)
7359 {
7360 struct perf_event *event = container_of(head, struct perf_event, pending_task);
7361 int rctx;
7362
7363 /*
7364 * If we 'fail' here, that's OK, it means recursion is already disabled
7365 * and we won't recurse 'further'.
7366 */
7367 rctx = perf_swevent_get_recursion_context();
7368
7369 if (event->pending_work) {
7370 event->pending_work = 0;
7371 perf_sigtrap(event);
7372 local_dec(&event->ctx->nr_no_switch_fast);
7373 }
7374 put_event(event);
7375
7376 if (rctx >= 0)
7377 perf_swevent_put_recursion_context(rctx);
7378 }
7379
7380 #ifdef CONFIG_GUEST_PERF_EVENTS
7381 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
7382
7383 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
7384 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
7385 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
7386
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)7387 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
7388 {
7389 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
7390 return;
7391
7392 rcu_assign_pointer(perf_guest_cbs, cbs);
7393 static_call_update(__perf_guest_state, cbs->state);
7394 static_call_update(__perf_guest_get_ip, cbs->get_ip);
7395
7396 /* Implementing ->handle_intel_pt_intr is optional. */
7397 if (cbs->handle_intel_pt_intr)
7398 static_call_update(__perf_guest_handle_intel_pt_intr,
7399 cbs->handle_intel_pt_intr);
7400 }
7401 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
7402
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)7403 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
7404 {
7405 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
7406 return;
7407
7408 rcu_assign_pointer(perf_guest_cbs, NULL);
7409 static_call_update(__perf_guest_state, (void *)&__static_call_return0);
7410 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
7411 static_call_update(__perf_guest_handle_intel_pt_intr,
7412 (void *)&__static_call_return0);
7413 synchronize_rcu();
7414 }
7415 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
7416 #endif
7417
should_sample_guest(struct perf_event * event)7418 static bool should_sample_guest(struct perf_event *event)
7419 {
7420 return !event->attr.exclude_guest && perf_guest_state();
7421 }
7422
perf_misc_flags(struct perf_event * event,struct pt_regs * regs)7423 unsigned long perf_misc_flags(struct perf_event *event,
7424 struct pt_regs *regs)
7425 {
7426 if (should_sample_guest(event))
7427 return perf_arch_guest_misc_flags(regs);
7428
7429 return perf_arch_misc_flags(regs);
7430 }
7431
perf_instruction_pointer(struct perf_event * event,struct pt_regs * regs)7432 unsigned long perf_instruction_pointer(struct perf_event *event,
7433 struct pt_regs *regs)
7434 {
7435 if (should_sample_guest(event))
7436 return perf_guest_get_ip();
7437
7438 return perf_arch_instruction_pointer(regs);
7439 }
7440
7441 static void
perf_output_sample_regs(struct perf_output_handle * handle,struct pt_regs * regs,u64 mask)7442 perf_output_sample_regs(struct perf_output_handle *handle,
7443 struct pt_regs *regs, u64 mask)
7444 {
7445 int bit;
7446 DECLARE_BITMAP(_mask, 64);
7447
7448 bitmap_from_u64(_mask, mask);
7449 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
7450 u64 val;
7451
7452 val = perf_reg_value(regs, bit);
7453 perf_output_put(handle, val);
7454 }
7455 }
7456
perf_sample_regs_user(struct perf_regs * regs_user,struct pt_regs * regs)7457 static void perf_sample_regs_user(struct perf_regs *regs_user,
7458 struct pt_regs *regs)
7459 {
7460 if (user_mode(regs)) {
7461 regs_user->abi = perf_reg_abi(current);
7462 regs_user->regs = regs;
7463 } else if (!(current->flags & (PF_KTHREAD | PF_USER_WORKER))) {
7464 perf_get_regs_user(regs_user, regs);
7465 } else {
7466 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
7467 regs_user->regs = NULL;
7468 }
7469 }
7470
perf_sample_regs_intr(struct perf_regs * regs_intr,struct pt_regs * regs)7471 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
7472 struct pt_regs *regs)
7473 {
7474 regs_intr->regs = regs;
7475 regs_intr->abi = perf_reg_abi(current);
7476 }
7477
7478
7479 /*
7480 * Get remaining task size from user stack pointer.
7481 *
7482 * It'd be better to take stack vma map and limit this more
7483 * precisely, but there's no way to get it safely under interrupt,
7484 * so using TASK_SIZE as limit.
7485 */
perf_ustack_task_size(struct pt_regs * regs)7486 static u64 perf_ustack_task_size(struct pt_regs *regs)
7487 {
7488 unsigned long addr = perf_user_stack_pointer(regs);
7489
7490 if (!addr || addr >= TASK_SIZE)
7491 return 0;
7492
7493 return TASK_SIZE - addr;
7494 }
7495
7496 static u16
perf_sample_ustack_size(u16 stack_size,u16 header_size,struct pt_regs * regs)7497 perf_sample_ustack_size(u16 stack_size, u16 header_size,
7498 struct pt_regs *regs)
7499 {
7500 u64 task_size;
7501
7502 /* No regs, no stack pointer, no dump. */
7503 if (!regs)
7504 return 0;
7505
7506 /* No mm, no stack, no dump. */
7507 if (!current->mm)
7508 return 0;
7509
7510 /*
7511 * Check if we fit in with the requested stack size into the:
7512 * - TASK_SIZE
7513 * If we don't, we limit the size to the TASK_SIZE.
7514 *
7515 * - remaining sample size
7516 * If we don't, we customize the stack size to
7517 * fit in to the remaining sample size.
7518 */
7519
7520 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
7521 stack_size = min(stack_size, (u16) task_size);
7522
7523 /* Current header size plus static size and dynamic size. */
7524 header_size += 2 * sizeof(u64);
7525
7526 /* Do we fit in with the current stack dump size? */
7527 if ((u16) (header_size + stack_size) < header_size) {
7528 /*
7529 * If we overflow the maximum size for the sample,
7530 * we customize the stack dump size to fit in.
7531 */
7532 stack_size = USHRT_MAX - header_size - sizeof(u64);
7533 stack_size = round_up(stack_size, sizeof(u64));
7534 }
7535
7536 return stack_size;
7537 }
7538
7539 static void
perf_output_sample_ustack(struct perf_output_handle * handle,u64 dump_size,struct pt_regs * regs)7540 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
7541 struct pt_regs *regs)
7542 {
7543 /* Case of a kernel thread, nothing to dump */
7544 if (!regs) {
7545 u64 size = 0;
7546 perf_output_put(handle, size);
7547 } else {
7548 unsigned long sp;
7549 unsigned int rem;
7550 u64 dyn_size;
7551
7552 /*
7553 * We dump:
7554 * static size
7555 * - the size requested by user or the best one we can fit
7556 * in to the sample max size
7557 * data
7558 * - user stack dump data
7559 * dynamic size
7560 * - the actual dumped size
7561 */
7562
7563 /* Static size. */
7564 perf_output_put(handle, dump_size);
7565
7566 /* Data. */
7567 sp = perf_user_stack_pointer(regs);
7568 rem = __output_copy_user(handle, (void *) sp, dump_size);
7569 dyn_size = dump_size - rem;
7570
7571 perf_output_skip(handle, rem);
7572
7573 /* Dynamic size. */
7574 perf_output_put(handle, dyn_size);
7575 }
7576 }
7577
perf_prepare_sample_aux(struct perf_event * event,struct perf_sample_data * data,size_t size)7578 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7579 struct perf_sample_data *data,
7580 size_t size)
7581 {
7582 struct perf_event *sampler = event->aux_event;
7583 struct perf_buffer *rb;
7584
7585 data->aux_size = 0;
7586
7587 if (!sampler)
7588 goto out;
7589
7590 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7591 goto out;
7592
7593 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7594 goto out;
7595
7596 rb = ring_buffer_get(sampler);
7597 if (!rb)
7598 goto out;
7599
7600 /*
7601 * If this is an NMI hit inside sampling code, don't take
7602 * the sample. See also perf_aux_sample_output().
7603 */
7604 if (READ_ONCE(rb->aux_in_sampling)) {
7605 data->aux_size = 0;
7606 } else {
7607 size = min_t(size_t, size, perf_aux_size(rb));
7608 data->aux_size = ALIGN(size, sizeof(u64));
7609 }
7610 ring_buffer_put(rb);
7611
7612 out:
7613 return data->aux_size;
7614 }
7615
perf_pmu_snapshot_aux(struct perf_buffer * rb,struct perf_event * event,struct perf_output_handle * handle,unsigned long size)7616 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7617 struct perf_event *event,
7618 struct perf_output_handle *handle,
7619 unsigned long size)
7620 {
7621 unsigned long flags;
7622 long ret;
7623
7624 /*
7625 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7626 * paths. If we start calling them in NMI context, they may race with
7627 * the IRQ ones, that is, for example, re-starting an event that's just
7628 * been stopped, which is why we're using a separate callback that
7629 * doesn't change the event state.
7630 *
7631 * IRQs need to be disabled to prevent IPIs from racing with us.
7632 */
7633 local_irq_save(flags);
7634 /*
7635 * Guard against NMI hits inside the critical section;
7636 * see also perf_prepare_sample_aux().
7637 */
7638 WRITE_ONCE(rb->aux_in_sampling, 1);
7639 barrier();
7640
7641 ret = event->pmu->snapshot_aux(event, handle, size);
7642
7643 barrier();
7644 WRITE_ONCE(rb->aux_in_sampling, 0);
7645 local_irq_restore(flags);
7646
7647 return ret;
7648 }
7649
perf_aux_sample_output(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * data)7650 static void perf_aux_sample_output(struct perf_event *event,
7651 struct perf_output_handle *handle,
7652 struct perf_sample_data *data)
7653 {
7654 struct perf_event *sampler = event->aux_event;
7655 struct perf_buffer *rb;
7656 unsigned long pad;
7657 long size;
7658
7659 if (WARN_ON_ONCE(!sampler || !data->aux_size))
7660 return;
7661
7662 rb = ring_buffer_get(sampler);
7663 if (!rb)
7664 return;
7665
7666 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7667
7668 /*
7669 * An error here means that perf_output_copy() failed (returned a
7670 * non-zero surplus that it didn't copy), which in its current
7671 * enlightened implementation is not possible. If that changes, we'd
7672 * like to know.
7673 */
7674 if (WARN_ON_ONCE(size < 0))
7675 goto out_put;
7676
7677 /*
7678 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7679 * perf_prepare_sample_aux(), so should not be more than that.
7680 */
7681 pad = data->aux_size - size;
7682 if (WARN_ON_ONCE(pad >= sizeof(u64)))
7683 pad = 8;
7684
7685 if (pad) {
7686 u64 zero = 0;
7687 perf_output_copy(handle, &zero, pad);
7688 }
7689
7690 out_put:
7691 ring_buffer_put(rb);
7692 }
7693
7694 /*
7695 * A set of common sample data types saved even for non-sample records
7696 * when event->attr.sample_id_all is set.
7697 */
7698 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \
7699 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \
7700 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7701
__perf_event_header__init_id(struct perf_sample_data * data,struct perf_event * event,u64 sample_type)7702 static void __perf_event_header__init_id(struct perf_sample_data *data,
7703 struct perf_event *event,
7704 u64 sample_type)
7705 {
7706 data->type = event->attr.sample_type;
7707 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7708
7709 if (sample_type & PERF_SAMPLE_TID) {
7710 /* namespace issues */
7711 data->tid_entry.pid = perf_event_pid(event, current);
7712 data->tid_entry.tid = perf_event_tid(event, current);
7713 }
7714
7715 if (sample_type & PERF_SAMPLE_TIME)
7716 data->time = perf_event_clock(event);
7717
7718 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7719 data->id = primary_event_id(event);
7720
7721 if (sample_type & PERF_SAMPLE_STREAM_ID)
7722 data->stream_id = event->id;
7723
7724 if (sample_type & PERF_SAMPLE_CPU) {
7725 data->cpu_entry.cpu = raw_smp_processor_id();
7726 data->cpu_entry.reserved = 0;
7727 }
7728 }
7729
perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7730 void perf_event_header__init_id(struct perf_event_header *header,
7731 struct perf_sample_data *data,
7732 struct perf_event *event)
7733 {
7734 if (event->attr.sample_id_all) {
7735 header->size += event->id_header_size;
7736 __perf_event_header__init_id(data, event, event->attr.sample_type);
7737 }
7738 }
7739
__perf_event__output_id_sample(struct perf_output_handle * handle,struct perf_sample_data * data)7740 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7741 struct perf_sample_data *data)
7742 {
7743 u64 sample_type = data->type;
7744
7745 if (sample_type & PERF_SAMPLE_TID)
7746 perf_output_put(handle, data->tid_entry);
7747
7748 if (sample_type & PERF_SAMPLE_TIME)
7749 perf_output_put(handle, data->time);
7750
7751 if (sample_type & PERF_SAMPLE_ID)
7752 perf_output_put(handle, data->id);
7753
7754 if (sample_type & PERF_SAMPLE_STREAM_ID)
7755 perf_output_put(handle, data->stream_id);
7756
7757 if (sample_type & PERF_SAMPLE_CPU)
7758 perf_output_put(handle, data->cpu_entry);
7759
7760 if (sample_type & PERF_SAMPLE_IDENTIFIER)
7761 perf_output_put(handle, data->id);
7762 }
7763
perf_event__output_id_sample(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * sample)7764 void perf_event__output_id_sample(struct perf_event *event,
7765 struct perf_output_handle *handle,
7766 struct perf_sample_data *sample)
7767 {
7768 if (event->attr.sample_id_all)
7769 __perf_event__output_id_sample(handle, sample);
7770 }
7771
perf_output_read_one(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7772 static void perf_output_read_one(struct perf_output_handle *handle,
7773 struct perf_event *event,
7774 u64 enabled, u64 running)
7775 {
7776 u64 read_format = event->attr.read_format;
7777 u64 values[5];
7778 int n = 0;
7779
7780 values[n++] = perf_event_count(event, has_inherit_and_sample_read(&event->attr));
7781 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7782 values[n++] = enabled +
7783 atomic64_read(&event->child_total_time_enabled);
7784 }
7785 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7786 values[n++] = running +
7787 atomic64_read(&event->child_total_time_running);
7788 }
7789 if (read_format & PERF_FORMAT_ID)
7790 values[n++] = primary_event_id(event);
7791 if (read_format & PERF_FORMAT_LOST)
7792 values[n++] = atomic64_read(&event->lost_samples);
7793
7794 __output_copy(handle, values, n * sizeof(u64));
7795 }
7796
perf_output_read_group(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7797 static void perf_output_read_group(struct perf_output_handle *handle,
7798 struct perf_event *event,
7799 u64 enabled, u64 running)
7800 {
7801 struct perf_event *leader = event->group_leader, *sub;
7802 u64 read_format = event->attr.read_format;
7803 unsigned long flags;
7804 u64 values[6];
7805 int n = 0;
7806 bool self = has_inherit_and_sample_read(&event->attr);
7807
7808 /*
7809 * Disabling interrupts avoids all counter scheduling
7810 * (context switches, timer based rotation and IPIs).
7811 */
7812 local_irq_save(flags);
7813
7814 values[n++] = 1 + leader->nr_siblings;
7815
7816 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7817 values[n++] = enabled;
7818
7819 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7820 values[n++] = running;
7821
7822 if ((leader != event) && !handle->skip_read)
7823 perf_pmu_read(leader);
7824
7825 values[n++] = perf_event_count(leader, self);
7826 if (read_format & PERF_FORMAT_ID)
7827 values[n++] = primary_event_id(leader);
7828 if (read_format & PERF_FORMAT_LOST)
7829 values[n++] = atomic64_read(&leader->lost_samples);
7830
7831 __output_copy(handle, values, n * sizeof(u64));
7832
7833 for_each_sibling_event(sub, leader) {
7834 n = 0;
7835
7836 if ((sub != event) && !handle->skip_read)
7837 perf_pmu_read(sub);
7838
7839 values[n++] = perf_event_count(sub, self);
7840 if (read_format & PERF_FORMAT_ID)
7841 values[n++] = primary_event_id(sub);
7842 if (read_format & PERF_FORMAT_LOST)
7843 values[n++] = atomic64_read(&sub->lost_samples);
7844
7845 __output_copy(handle, values, n * sizeof(u64));
7846 }
7847
7848 local_irq_restore(flags);
7849 }
7850
7851 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7852 PERF_FORMAT_TOTAL_TIME_RUNNING)
7853
7854 /*
7855 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7856 *
7857 * The problem is that its both hard and excessively expensive to iterate the
7858 * child list, not to mention that its impossible to IPI the children running
7859 * on another CPU, from interrupt/NMI context.
7860 *
7861 * Instead the combination of PERF_SAMPLE_READ and inherit will track per-thread
7862 * counts rather than attempting to accumulate some value across all children on
7863 * all cores.
7864 */
perf_output_read(struct perf_output_handle * handle,struct perf_event * event)7865 static void perf_output_read(struct perf_output_handle *handle,
7866 struct perf_event *event)
7867 {
7868 u64 enabled = 0, running = 0, now;
7869 u64 read_format = event->attr.read_format;
7870
7871 /*
7872 * compute total_time_enabled, total_time_running
7873 * based on snapshot values taken when the event
7874 * was last scheduled in.
7875 *
7876 * we cannot simply called update_context_time()
7877 * because of locking issue as we are called in
7878 * NMI context
7879 */
7880 if (read_format & PERF_FORMAT_TOTAL_TIMES)
7881 calc_timer_values(event, &now, &enabled, &running);
7882
7883 if (event->attr.read_format & PERF_FORMAT_GROUP)
7884 perf_output_read_group(handle, event, enabled, running);
7885 else
7886 perf_output_read_one(handle, event, enabled, running);
7887 }
7888
perf_output_sample(struct perf_output_handle * handle,struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7889 void perf_output_sample(struct perf_output_handle *handle,
7890 struct perf_event_header *header,
7891 struct perf_sample_data *data,
7892 struct perf_event *event)
7893 {
7894 u64 sample_type = data->type;
7895
7896 if (data->sample_flags & PERF_SAMPLE_READ)
7897 handle->skip_read = 1;
7898
7899 perf_output_put(handle, *header);
7900
7901 if (sample_type & PERF_SAMPLE_IDENTIFIER)
7902 perf_output_put(handle, data->id);
7903
7904 if (sample_type & PERF_SAMPLE_IP)
7905 perf_output_put(handle, data->ip);
7906
7907 if (sample_type & PERF_SAMPLE_TID)
7908 perf_output_put(handle, data->tid_entry);
7909
7910 if (sample_type & PERF_SAMPLE_TIME)
7911 perf_output_put(handle, data->time);
7912
7913 if (sample_type & PERF_SAMPLE_ADDR)
7914 perf_output_put(handle, data->addr);
7915
7916 if (sample_type & PERF_SAMPLE_ID)
7917 perf_output_put(handle, data->id);
7918
7919 if (sample_type & PERF_SAMPLE_STREAM_ID)
7920 perf_output_put(handle, data->stream_id);
7921
7922 if (sample_type & PERF_SAMPLE_CPU)
7923 perf_output_put(handle, data->cpu_entry);
7924
7925 if (sample_type & PERF_SAMPLE_PERIOD)
7926 perf_output_put(handle, data->period);
7927
7928 if (sample_type & PERF_SAMPLE_READ)
7929 perf_output_read(handle, event);
7930
7931 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7932 int size = 1;
7933
7934 size += data->callchain->nr;
7935 size *= sizeof(u64);
7936 __output_copy(handle, data->callchain, size);
7937 }
7938
7939 if (sample_type & PERF_SAMPLE_RAW) {
7940 struct perf_raw_record *raw = data->raw;
7941
7942 if (raw) {
7943 struct perf_raw_frag *frag = &raw->frag;
7944
7945 perf_output_put(handle, raw->size);
7946 do {
7947 if (frag->copy) {
7948 __output_custom(handle, frag->copy,
7949 frag->data, frag->size);
7950 } else {
7951 __output_copy(handle, frag->data,
7952 frag->size);
7953 }
7954 if (perf_raw_frag_last(frag))
7955 break;
7956 frag = frag->next;
7957 } while (1);
7958 if (frag->pad)
7959 __output_skip(handle, NULL, frag->pad);
7960 } else {
7961 struct {
7962 u32 size;
7963 u32 data;
7964 } raw = {
7965 .size = sizeof(u32),
7966 .data = 0,
7967 };
7968 perf_output_put(handle, raw);
7969 }
7970 }
7971
7972 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7973 if (data->br_stack) {
7974 size_t size;
7975
7976 size = data->br_stack->nr
7977 * sizeof(struct perf_branch_entry);
7978
7979 perf_output_put(handle, data->br_stack->nr);
7980 if (branch_sample_hw_index(event))
7981 perf_output_put(handle, data->br_stack->hw_idx);
7982 perf_output_copy(handle, data->br_stack->entries, size);
7983 /*
7984 * Add the extension space which is appended
7985 * right after the struct perf_branch_stack.
7986 */
7987 if (data->br_stack_cntr) {
7988 size = data->br_stack->nr * sizeof(u64);
7989 perf_output_copy(handle, data->br_stack_cntr, size);
7990 }
7991 } else {
7992 /*
7993 * we always store at least the value of nr
7994 */
7995 u64 nr = 0;
7996 perf_output_put(handle, nr);
7997 }
7998 }
7999
8000 if (sample_type & PERF_SAMPLE_REGS_USER) {
8001 u64 abi = data->regs_user.abi;
8002
8003 /*
8004 * If there are no regs to dump, notice it through
8005 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
8006 */
8007 perf_output_put(handle, abi);
8008
8009 if (abi) {
8010 u64 mask = event->attr.sample_regs_user;
8011 perf_output_sample_regs(handle,
8012 data->regs_user.regs,
8013 mask);
8014 }
8015 }
8016
8017 if (sample_type & PERF_SAMPLE_STACK_USER) {
8018 perf_output_sample_ustack(handle,
8019 data->stack_user_size,
8020 data->regs_user.regs);
8021 }
8022
8023 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
8024 perf_output_put(handle, data->weight.full);
8025
8026 if (sample_type & PERF_SAMPLE_DATA_SRC)
8027 perf_output_put(handle, data->data_src.val);
8028
8029 if (sample_type & PERF_SAMPLE_TRANSACTION)
8030 perf_output_put(handle, data->txn);
8031
8032 if (sample_type & PERF_SAMPLE_REGS_INTR) {
8033 u64 abi = data->regs_intr.abi;
8034 /*
8035 * If there are no regs to dump, notice it through
8036 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
8037 */
8038 perf_output_put(handle, abi);
8039
8040 if (abi) {
8041 u64 mask = event->attr.sample_regs_intr;
8042
8043 perf_output_sample_regs(handle,
8044 data->regs_intr.regs,
8045 mask);
8046 }
8047 }
8048
8049 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
8050 perf_output_put(handle, data->phys_addr);
8051
8052 if (sample_type & PERF_SAMPLE_CGROUP)
8053 perf_output_put(handle, data->cgroup);
8054
8055 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
8056 perf_output_put(handle, data->data_page_size);
8057
8058 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
8059 perf_output_put(handle, data->code_page_size);
8060
8061 if (sample_type & PERF_SAMPLE_AUX) {
8062 perf_output_put(handle, data->aux_size);
8063
8064 if (data->aux_size)
8065 perf_aux_sample_output(event, handle, data);
8066 }
8067
8068 if (!event->attr.watermark) {
8069 int wakeup_events = event->attr.wakeup_events;
8070
8071 if (wakeup_events) {
8072 struct perf_buffer *rb = handle->rb;
8073 int events = local_inc_return(&rb->events);
8074
8075 if (events >= wakeup_events) {
8076 local_sub(wakeup_events, &rb->events);
8077 local_inc(&rb->wakeup);
8078 }
8079 }
8080 }
8081 }
8082
perf_virt_to_phys(u64 virt)8083 static u64 perf_virt_to_phys(u64 virt)
8084 {
8085 u64 phys_addr = 0;
8086
8087 if (!virt)
8088 return 0;
8089
8090 if (virt >= TASK_SIZE) {
8091 /* If it's vmalloc()d memory, leave phys_addr as 0 */
8092 if (virt_addr_valid((void *)(uintptr_t)virt) &&
8093 !(virt >= VMALLOC_START && virt < VMALLOC_END))
8094 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
8095 } else {
8096 /*
8097 * Walking the pages tables for user address.
8098 * Interrupts are disabled, so it prevents any tear down
8099 * of the page tables.
8100 * Try IRQ-safe get_user_page_fast_only first.
8101 * If failed, leave phys_addr as 0.
8102 */
8103 if (!(current->flags & (PF_KTHREAD | PF_USER_WORKER))) {
8104 struct page *p;
8105
8106 pagefault_disable();
8107 if (get_user_page_fast_only(virt, 0, &p)) {
8108 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
8109 put_page(p);
8110 }
8111 pagefault_enable();
8112 }
8113 }
8114
8115 return phys_addr;
8116 }
8117
8118 /*
8119 * Return the pagetable size of a given virtual address.
8120 */
perf_get_pgtable_size(struct mm_struct * mm,unsigned long addr)8121 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
8122 {
8123 u64 size = 0;
8124
8125 #ifdef CONFIG_HAVE_GUP_FAST
8126 pgd_t *pgdp, pgd;
8127 p4d_t *p4dp, p4d;
8128 pud_t *pudp, pud;
8129 pmd_t *pmdp, pmd;
8130 pte_t *ptep, pte;
8131
8132 pgdp = pgd_offset(mm, addr);
8133 pgd = READ_ONCE(*pgdp);
8134 if (pgd_none(pgd))
8135 return 0;
8136
8137 if (pgd_leaf(pgd))
8138 return pgd_leaf_size(pgd);
8139
8140 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
8141 p4d = READ_ONCE(*p4dp);
8142 if (!p4d_present(p4d))
8143 return 0;
8144
8145 if (p4d_leaf(p4d))
8146 return p4d_leaf_size(p4d);
8147
8148 pudp = pud_offset_lockless(p4dp, p4d, addr);
8149 pud = READ_ONCE(*pudp);
8150 if (!pud_present(pud))
8151 return 0;
8152
8153 if (pud_leaf(pud))
8154 return pud_leaf_size(pud);
8155
8156 pmdp = pmd_offset_lockless(pudp, pud, addr);
8157 again:
8158 pmd = pmdp_get_lockless(pmdp);
8159 if (!pmd_present(pmd))
8160 return 0;
8161
8162 if (pmd_leaf(pmd))
8163 return pmd_leaf_size(pmd);
8164
8165 ptep = pte_offset_map(&pmd, addr);
8166 if (!ptep)
8167 goto again;
8168
8169 pte = ptep_get_lockless(ptep);
8170 if (pte_present(pte))
8171 size = __pte_leaf_size(pmd, pte);
8172 pte_unmap(ptep);
8173 #endif /* CONFIG_HAVE_GUP_FAST */
8174
8175 return size;
8176 }
8177
perf_get_page_size(unsigned long addr)8178 static u64 perf_get_page_size(unsigned long addr)
8179 {
8180 struct mm_struct *mm;
8181 unsigned long flags;
8182 u64 size;
8183
8184 if (!addr)
8185 return 0;
8186
8187 /*
8188 * Software page-table walkers must disable IRQs,
8189 * which prevents any tear down of the page tables.
8190 */
8191 local_irq_save(flags);
8192
8193 mm = current->mm;
8194 if (!mm) {
8195 /*
8196 * For kernel threads and the like, use init_mm so that
8197 * we can find kernel memory.
8198 */
8199 mm = &init_mm;
8200 }
8201
8202 size = perf_get_pgtable_size(mm, addr);
8203
8204 local_irq_restore(flags);
8205
8206 return size;
8207 }
8208
8209 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
8210
8211 static struct unwind_work perf_unwind_work;
8212
8213 struct perf_callchain_entry *
perf_callchain(struct perf_event * event,struct pt_regs * regs)8214 perf_callchain(struct perf_event *event, struct pt_regs *regs)
8215 {
8216 bool kernel = !event->attr.exclude_callchain_kernel;
8217 bool user = !event->attr.exclude_callchain_user &&
8218 !(current->flags & (PF_KTHREAD | PF_USER_WORKER));
8219 /* Disallow cross-task user callchains. */
8220 bool crosstask = event->ctx->task && event->ctx->task != current;
8221 bool defer_user = IS_ENABLED(CONFIG_UNWIND_USER) && user &&
8222 event->attr.defer_callchain;
8223 const u32 max_stack = event->attr.sample_max_stack;
8224 struct perf_callchain_entry *callchain;
8225 u64 defer_cookie;
8226
8227 if (!current->mm)
8228 user = false;
8229
8230 if (!kernel && !user)
8231 return &__empty_callchain;
8232
8233 if (!(user && defer_user && !crosstask &&
8234 unwind_deferred_request(&perf_unwind_work, &defer_cookie) >= 0))
8235 defer_cookie = 0;
8236
8237 callchain = get_perf_callchain(regs, kernel, user, max_stack,
8238 crosstask, true, defer_cookie);
8239
8240 return callchain ?: &__empty_callchain;
8241 }
8242
__cond_set(u64 flags,u64 s,u64 d)8243 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
8244 {
8245 return d * !!(flags & s);
8246 }
8247
perf_prepare_sample(struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)8248 void perf_prepare_sample(struct perf_sample_data *data,
8249 struct perf_event *event,
8250 struct pt_regs *regs)
8251 {
8252 u64 sample_type = event->attr.sample_type;
8253 u64 filtered_sample_type;
8254
8255 /*
8256 * Add the sample flags that are dependent to others. And clear the
8257 * sample flags that have already been done by the PMU driver.
8258 */
8259 filtered_sample_type = sample_type;
8260 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
8261 PERF_SAMPLE_IP);
8262 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
8263 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
8264 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
8265 PERF_SAMPLE_REGS_USER);
8266 filtered_sample_type &= ~data->sample_flags;
8267
8268 if (filtered_sample_type == 0) {
8269 /* Make sure it has the correct data->type for output */
8270 data->type = event->attr.sample_type;
8271 return;
8272 }
8273
8274 __perf_event_header__init_id(data, event, filtered_sample_type);
8275
8276 if (filtered_sample_type & PERF_SAMPLE_IP) {
8277 data->ip = perf_instruction_pointer(event, regs);
8278 data->sample_flags |= PERF_SAMPLE_IP;
8279 }
8280
8281 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
8282 perf_sample_save_callchain(data, event, regs);
8283
8284 if (filtered_sample_type & PERF_SAMPLE_RAW) {
8285 data->raw = NULL;
8286 data->dyn_size += sizeof(u64);
8287 data->sample_flags |= PERF_SAMPLE_RAW;
8288 }
8289
8290 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
8291 data->br_stack = NULL;
8292 data->dyn_size += sizeof(u64);
8293 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
8294 }
8295
8296 if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
8297 perf_sample_regs_user(&data->regs_user, regs);
8298
8299 /*
8300 * It cannot use the filtered_sample_type here as REGS_USER can be set
8301 * by STACK_USER (using __cond_set() above) and we don't want to update
8302 * the dyn_size if it's not requested by users.
8303 */
8304 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
8305 /* regs dump ABI info */
8306 int size = sizeof(u64);
8307
8308 if (data->regs_user.regs) {
8309 u64 mask = event->attr.sample_regs_user;
8310 size += hweight64(mask) * sizeof(u64);
8311 }
8312
8313 data->dyn_size += size;
8314 data->sample_flags |= PERF_SAMPLE_REGS_USER;
8315 }
8316
8317 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
8318 /*
8319 * Either we need PERF_SAMPLE_STACK_USER bit to be always
8320 * processed as the last one or have additional check added
8321 * in case new sample type is added, because we could eat
8322 * up the rest of the sample size.
8323 */
8324 u16 stack_size = event->attr.sample_stack_user;
8325 u16 header_size = perf_sample_data_size(data, event);
8326 u16 size = sizeof(u64);
8327
8328 stack_size = perf_sample_ustack_size(stack_size, header_size,
8329 data->regs_user.regs);
8330
8331 /*
8332 * If there is something to dump, add space for the dump
8333 * itself and for the field that tells the dynamic size,
8334 * which is how many have been actually dumped.
8335 */
8336 if (stack_size)
8337 size += sizeof(u64) + stack_size;
8338
8339 data->stack_user_size = stack_size;
8340 data->dyn_size += size;
8341 data->sample_flags |= PERF_SAMPLE_STACK_USER;
8342 }
8343
8344 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
8345 data->weight.full = 0;
8346 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
8347 }
8348
8349 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
8350 data->data_src.val = PERF_MEM_NA;
8351 data->sample_flags |= PERF_SAMPLE_DATA_SRC;
8352 }
8353
8354 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
8355 data->txn = 0;
8356 data->sample_flags |= PERF_SAMPLE_TRANSACTION;
8357 }
8358
8359 if (filtered_sample_type & PERF_SAMPLE_ADDR) {
8360 data->addr = 0;
8361 data->sample_flags |= PERF_SAMPLE_ADDR;
8362 }
8363
8364 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
8365 /* regs dump ABI info */
8366 int size = sizeof(u64);
8367
8368 perf_sample_regs_intr(&data->regs_intr, regs);
8369
8370 if (data->regs_intr.regs) {
8371 u64 mask = event->attr.sample_regs_intr;
8372
8373 size += hweight64(mask) * sizeof(u64);
8374 }
8375
8376 data->dyn_size += size;
8377 data->sample_flags |= PERF_SAMPLE_REGS_INTR;
8378 }
8379
8380 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
8381 data->phys_addr = perf_virt_to_phys(data->addr);
8382 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
8383 }
8384
8385 #ifdef CONFIG_CGROUP_PERF
8386 if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
8387 struct cgroup *cgrp;
8388
8389 /* protected by RCU */
8390 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
8391 data->cgroup = cgroup_id(cgrp);
8392 data->sample_flags |= PERF_SAMPLE_CGROUP;
8393 }
8394 #endif
8395
8396 /*
8397 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
8398 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
8399 * but the value will not dump to the userspace.
8400 */
8401 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
8402 data->data_page_size = perf_get_page_size(data->addr);
8403 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
8404 }
8405
8406 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
8407 data->code_page_size = perf_get_page_size(data->ip);
8408 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
8409 }
8410
8411 if (filtered_sample_type & PERF_SAMPLE_AUX) {
8412 u64 size;
8413 u16 header_size = perf_sample_data_size(data, event);
8414
8415 header_size += sizeof(u64); /* size */
8416
8417 /*
8418 * Given the 16bit nature of header::size, an AUX sample can
8419 * easily overflow it, what with all the preceding sample bits.
8420 * Make sure this doesn't happen by using up to U16_MAX bytes
8421 * per sample in total (rounded down to 8 byte boundary).
8422 */
8423 size = min_t(size_t, U16_MAX - header_size,
8424 event->attr.aux_sample_size);
8425 size = rounddown(size, 8);
8426 size = perf_prepare_sample_aux(event, data, size);
8427
8428 WARN_ON_ONCE(size + header_size > U16_MAX);
8429 data->dyn_size += size + sizeof(u64); /* size above */
8430 data->sample_flags |= PERF_SAMPLE_AUX;
8431 }
8432 }
8433
perf_prepare_header(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)8434 void perf_prepare_header(struct perf_event_header *header,
8435 struct perf_sample_data *data,
8436 struct perf_event *event,
8437 struct pt_regs *regs)
8438 {
8439 header->type = PERF_RECORD_SAMPLE;
8440 header->size = perf_sample_data_size(data, event);
8441 header->misc = perf_misc_flags(event, regs);
8442
8443 /*
8444 * If you're adding more sample types here, you likely need to do
8445 * something about the overflowing header::size, like repurpose the
8446 * lowest 3 bits of size, which should be always zero at the moment.
8447 * This raises a more important question, do we really need 512k sized
8448 * samples and why, so good argumentation is in order for whatever you
8449 * do here next.
8450 */
8451 WARN_ON_ONCE(header->size & 7);
8452 }
8453
__perf_event_aux_pause(struct perf_event * event,bool pause)8454 static void __perf_event_aux_pause(struct perf_event *event, bool pause)
8455 {
8456 if (pause) {
8457 if (!event->hw.aux_paused) {
8458 event->hw.aux_paused = 1;
8459 event->pmu->stop(event, PERF_EF_PAUSE);
8460 }
8461 } else {
8462 if (event->hw.aux_paused) {
8463 event->hw.aux_paused = 0;
8464 event->pmu->start(event, PERF_EF_RESUME);
8465 }
8466 }
8467 }
8468
perf_event_aux_pause(struct perf_event * event,bool pause)8469 static void perf_event_aux_pause(struct perf_event *event, bool pause)
8470 {
8471 struct perf_buffer *rb;
8472
8473 if (WARN_ON_ONCE(!event))
8474 return;
8475
8476 rb = ring_buffer_get(event);
8477 if (!rb)
8478 return;
8479
8480 scoped_guard (irqsave) {
8481 /*
8482 * Guard against self-recursion here. Another event could trip
8483 * this same from NMI context.
8484 */
8485 if (READ_ONCE(rb->aux_in_pause_resume))
8486 break;
8487
8488 WRITE_ONCE(rb->aux_in_pause_resume, 1);
8489 barrier();
8490 __perf_event_aux_pause(event, pause);
8491 barrier();
8492 WRITE_ONCE(rb->aux_in_pause_resume, 0);
8493 }
8494 ring_buffer_put(rb);
8495 }
8496
8497 static __always_inline int
__perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs,int (* output_begin)(struct perf_output_handle *,struct perf_sample_data *,struct perf_event *,unsigned int))8498 __perf_event_output(struct perf_event *event,
8499 struct perf_sample_data *data,
8500 struct pt_regs *regs,
8501 int (*output_begin)(struct perf_output_handle *,
8502 struct perf_sample_data *,
8503 struct perf_event *,
8504 unsigned int))
8505 {
8506 struct perf_output_handle handle;
8507 struct perf_event_header header;
8508 int err;
8509
8510 /* protect the callchain buffers */
8511 rcu_read_lock();
8512
8513 perf_prepare_sample(data, event, regs);
8514 perf_prepare_header(&header, data, event, regs);
8515
8516 err = output_begin(&handle, data, event, header.size);
8517 if (err)
8518 goto exit;
8519
8520 perf_output_sample(&handle, &header, data, event);
8521
8522 perf_output_end(&handle);
8523
8524 exit:
8525 rcu_read_unlock();
8526 return err;
8527 }
8528
8529 void
perf_event_output_forward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8530 perf_event_output_forward(struct perf_event *event,
8531 struct perf_sample_data *data,
8532 struct pt_regs *regs)
8533 {
8534 __perf_event_output(event, data, regs, perf_output_begin_forward);
8535 }
8536
8537 void
perf_event_output_backward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8538 perf_event_output_backward(struct perf_event *event,
8539 struct perf_sample_data *data,
8540 struct pt_regs *regs)
8541 {
8542 __perf_event_output(event, data, regs, perf_output_begin_backward);
8543 }
8544
8545 int
perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8546 perf_event_output(struct perf_event *event,
8547 struct perf_sample_data *data,
8548 struct pt_regs *regs)
8549 {
8550 return __perf_event_output(event, data, regs, perf_output_begin);
8551 }
8552
8553 /*
8554 * read event_id
8555 */
8556
8557 struct perf_read_event {
8558 struct perf_event_header header;
8559
8560 u32 pid;
8561 u32 tid;
8562 };
8563
8564 static void
perf_event_read_event(struct perf_event * event,struct task_struct * task)8565 perf_event_read_event(struct perf_event *event,
8566 struct task_struct *task)
8567 {
8568 struct perf_output_handle handle;
8569 struct perf_sample_data sample;
8570 struct perf_read_event read_event = {
8571 .header = {
8572 .type = PERF_RECORD_READ,
8573 .misc = 0,
8574 .size = sizeof(read_event) + event->read_size,
8575 },
8576 .pid = perf_event_pid(event, task),
8577 .tid = perf_event_tid(event, task),
8578 };
8579 int ret;
8580
8581 perf_event_header__init_id(&read_event.header, &sample, event);
8582 ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
8583 if (ret)
8584 return;
8585
8586 perf_output_put(&handle, read_event);
8587 perf_output_read(&handle, event);
8588 perf_event__output_id_sample(event, &handle, &sample);
8589
8590 perf_output_end(&handle);
8591 }
8592
8593 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
8594
8595 static void
perf_iterate_ctx(struct perf_event_context * ctx,perf_iterate_f output,void * data,bool all)8596 perf_iterate_ctx(struct perf_event_context *ctx,
8597 perf_iterate_f output,
8598 void *data, bool all)
8599 {
8600 struct perf_event *event;
8601
8602 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8603 if (!all) {
8604 if (event->state < PERF_EVENT_STATE_INACTIVE)
8605 continue;
8606 if (!event_filter_match(event))
8607 continue;
8608 }
8609
8610 output(event, data);
8611 }
8612 }
8613
perf_iterate_sb_cpu(perf_iterate_f output,void * data)8614 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
8615 {
8616 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
8617 struct perf_event *event;
8618
8619 list_for_each_entry_rcu(event, &pel->list, sb_list) {
8620 /*
8621 * Skip events that are not fully formed yet; ensure that
8622 * if we observe event->ctx, both event and ctx will be
8623 * complete enough. See perf_install_in_context().
8624 */
8625 if (!smp_load_acquire(&event->ctx))
8626 continue;
8627
8628 if (event->state < PERF_EVENT_STATE_INACTIVE)
8629 continue;
8630 if (!event_filter_match(event))
8631 continue;
8632 output(event, data);
8633 }
8634 }
8635
8636 /*
8637 * Iterate all events that need to receive side-band events.
8638 *
8639 * For new callers; ensure that account_pmu_sb_event() includes
8640 * your event, otherwise it might not get delivered.
8641 */
8642 static void
perf_iterate_sb(perf_iterate_f output,void * data,struct perf_event_context * task_ctx)8643 perf_iterate_sb(perf_iterate_f output, void *data,
8644 struct perf_event_context *task_ctx)
8645 {
8646 struct perf_event_context *ctx;
8647
8648 rcu_read_lock();
8649 preempt_disable();
8650
8651 /*
8652 * If we have task_ctx != NULL we only notify the task context itself.
8653 * The task_ctx is set only for EXIT events before releasing task
8654 * context.
8655 */
8656 if (task_ctx) {
8657 perf_iterate_ctx(task_ctx, output, data, false);
8658 goto done;
8659 }
8660
8661 perf_iterate_sb_cpu(output, data);
8662
8663 ctx = rcu_dereference(current->perf_event_ctxp);
8664 if (ctx)
8665 perf_iterate_ctx(ctx, output, data, false);
8666 done:
8667 preempt_enable();
8668 rcu_read_unlock();
8669 }
8670
8671 /*
8672 * Clear all file-based filters at exec, they'll have to be
8673 * re-instated when/if these objects are mmapped again.
8674 */
perf_event_addr_filters_exec(struct perf_event * event,void * data)8675 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8676 {
8677 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8678 struct perf_addr_filter *filter;
8679 unsigned int restart = 0, count = 0;
8680 unsigned long flags;
8681
8682 if (!has_addr_filter(event))
8683 return;
8684
8685 raw_spin_lock_irqsave(&ifh->lock, flags);
8686 list_for_each_entry(filter, &ifh->list, entry) {
8687 if (filter->path.dentry) {
8688 event->addr_filter_ranges[count].start = 0;
8689 event->addr_filter_ranges[count].size = 0;
8690 restart++;
8691 }
8692
8693 count++;
8694 }
8695
8696 if (restart)
8697 event->addr_filters_gen++;
8698 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8699
8700 if (restart)
8701 perf_event_stop(event, 1);
8702 }
8703
perf_event_exec(void)8704 void perf_event_exec(void)
8705 {
8706 struct perf_event_context *ctx;
8707
8708 ctx = perf_pin_task_context(current);
8709 if (!ctx)
8710 return;
8711
8712 perf_event_enable_on_exec(ctx);
8713 perf_event_remove_on_exec(ctx);
8714 scoped_guard(rcu)
8715 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8716
8717 perf_unpin_context(ctx);
8718 put_ctx(ctx);
8719 }
8720
8721 struct remote_output {
8722 struct perf_buffer *rb;
8723 int err;
8724 };
8725
__perf_event_output_stop(struct perf_event * event,void * data)8726 static void __perf_event_output_stop(struct perf_event *event, void *data)
8727 {
8728 struct perf_event *parent = event->parent;
8729 struct remote_output *ro = data;
8730 struct perf_buffer *rb = ro->rb;
8731 struct stop_event_data sd = {
8732 .event = event,
8733 };
8734
8735 if (!has_aux(event))
8736 return;
8737
8738 if (!parent)
8739 parent = event;
8740
8741 /*
8742 * In case of inheritance, it will be the parent that links to the
8743 * ring-buffer, but it will be the child that's actually using it.
8744 *
8745 * We are using event::rb to determine if the event should be stopped,
8746 * however this may race with ring_buffer_attach() (through set_output),
8747 * which will make us skip the event that actually needs to be stopped.
8748 * So ring_buffer_attach() has to stop an aux event before re-assigning
8749 * its rb pointer.
8750 */
8751 if (rcu_dereference(parent->rb) == rb)
8752 ro->err = __perf_event_stop(&sd);
8753 }
8754
__perf_pmu_output_stop(void * info)8755 static int __perf_pmu_output_stop(void *info)
8756 {
8757 struct perf_event *event = info;
8758 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8759 struct remote_output ro = {
8760 .rb = event->rb,
8761 };
8762
8763 rcu_read_lock();
8764 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8765 if (cpuctx->task_ctx)
8766 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8767 &ro, false);
8768 rcu_read_unlock();
8769
8770 return ro.err;
8771 }
8772
perf_pmu_output_stop(struct perf_event * event)8773 static void perf_pmu_output_stop(struct perf_event *event)
8774 {
8775 struct perf_event *iter;
8776 int err, cpu;
8777
8778 restart:
8779 rcu_read_lock();
8780 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8781 /*
8782 * For per-CPU events, we need to make sure that neither they
8783 * nor their children are running; for cpu==-1 events it's
8784 * sufficient to stop the event itself if it's active, since
8785 * it can't have children.
8786 */
8787 cpu = iter->cpu;
8788 if (cpu == -1)
8789 cpu = READ_ONCE(iter->oncpu);
8790
8791 if (cpu == -1)
8792 continue;
8793
8794 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8795 if (err == -EAGAIN) {
8796 rcu_read_unlock();
8797 goto restart;
8798 }
8799 }
8800 rcu_read_unlock();
8801 }
8802
8803 /*
8804 * task tracking -- fork/exit
8805 *
8806 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8807 */
8808
8809 struct perf_task_event {
8810 struct task_struct *task;
8811 struct perf_event_context *task_ctx;
8812
8813 struct {
8814 struct perf_event_header header;
8815
8816 u32 pid;
8817 u32 ppid;
8818 u32 tid;
8819 u32 ptid;
8820 u64 time;
8821 } event_id;
8822 };
8823
perf_event_task_match(struct perf_event * event)8824 static int perf_event_task_match(struct perf_event *event)
8825 {
8826 return event->attr.comm || event->attr.mmap ||
8827 event->attr.mmap2 || event->attr.mmap_data ||
8828 event->attr.task;
8829 }
8830
perf_event_task_output(struct perf_event * event,void * data)8831 static void perf_event_task_output(struct perf_event *event,
8832 void *data)
8833 {
8834 struct perf_task_event *task_event = data;
8835 struct perf_output_handle handle;
8836 struct perf_sample_data sample;
8837 struct task_struct *task = task_event->task;
8838 int ret, size = task_event->event_id.header.size;
8839
8840 if (!perf_event_task_match(event))
8841 return;
8842
8843 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8844
8845 ret = perf_output_begin(&handle, &sample, event,
8846 task_event->event_id.header.size);
8847 if (ret)
8848 goto out;
8849
8850 task_event->event_id.pid = perf_event_pid(event, task);
8851 task_event->event_id.tid = perf_event_tid(event, task);
8852
8853 if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8854 task_event->event_id.ppid = perf_event_pid(event,
8855 task->real_parent);
8856 task_event->event_id.ptid = perf_event_pid(event,
8857 task->real_parent);
8858 } else { /* PERF_RECORD_FORK */
8859 task_event->event_id.ppid = perf_event_pid(event, current);
8860 task_event->event_id.ptid = perf_event_tid(event, current);
8861 }
8862
8863 task_event->event_id.time = perf_event_clock(event);
8864
8865 perf_output_put(&handle, task_event->event_id);
8866
8867 perf_event__output_id_sample(event, &handle, &sample);
8868
8869 perf_output_end(&handle);
8870 out:
8871 task_event->event_id.header.size = size;
8872 }
8873
perf_event_task(struct task_struct * task,struct perf_event_context * task_ctx,int new)8874 static void perf_event_task(struct task_struct *task,
8875 struct perf_event_context *task_ctx,
8876 int new)
8877 {
8878 struct perf_task_event task_event;
8879
8880 if (!atomic_read(&nr_comm_events) &&
8881 !atomic_read(&nr_mmap_events) &&
8882 !atomic_read(&nr_task_events))
8883 return;
8884
8885 task_event = (struct perf_task_event){
8886 .task = task,
8887 .task_ctx = task_ctx,
8888 .event_id = {
8889 .header = {
8890 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8891 .misc = 0,
8892 .size = sizeof(task_event.event_id),
8893 },
8894 /* .pid */
8895 /* .ppid */
8896 /* .tid */
8897 /* .ptid */
8898 /* .time */
8899 },
8900 };
8901
8902 perf_iterate_sb(perf_event_task_output,
8903 &task_event,
8904 task_ctx);
8905 }
8906
8907 /*
8908 * Allocate data for a new task when profiling system-wide
8909 * events which require PMU specific data
8910 */
8911 static void
perf_event_alloc_task_data(struct task_struct * child,struct task_struct * parent)8912 perf_event_alloc_task_data(struct task_struct *child,
8913 struct task_struct *parent)
8914 {
8915 struct kmem_cache *ctx_cache = NULL;
8916 struct perf_ctx_data *cd;
8917
8918 if (!refcount_read(&global_ctx_data_ref))
8919 return;
8920
8921 scoped_guard (rcu) {
8922 cd = rcu_dereference(parent->perf_ctx_data);
8923 if (cd)
8924 ctx_cache = cd->ctx_cache;
8925 }
8926
8927 if (!ctx_cache)
8928 return;
8929
8930 guard(percpu_read)(&global_ctx_data_rwsem);
8931 scoped_guard (rcu) {
8932 cd = rcu_dereference(child->perf_ctx_data);
8933 if (!cd) {
8934 /*
8935 * A system-wide event may be unaccount,
8936 * when attaching the perf_ctx_data.
8937 */
8938 if (!refcount_read(&global_ctx_data_ref))
8939 return;
8940 goto attach;
8941 }
8942
8943 if (!cd->global) {
8944 cd->global = 1;
8945 refcount_inc(&cd->refcount);
8946 }
8947 }
8948
8949 return;
8950 attach:
8951 attach_task_ctx_data(child, ctx_cache, true);
8952 }
8953
perf_event_fork(struct task_struct * task)8954 void perf_event_fork(struct task_struct *task)
8955 {
8956 perf_event_task(task, NULL, 1);
8957 perf_event_namespaces(task);
8958 perf_event_alloc_task_data(task, current);
8959 }
8960
8961 /*
8962 * comm tracking
8963 */
8964
8965 struct perf_comm_event {
8966 struct task_struct *task;
8967 char *comm;
8968 int comm_size;
8969
8970 struct {
8971 struct perf_event_header header;
8972
8973 u32 pid;
8974 u32 tid;
8975 } event_id;
8976 };
8977
perf_event_comm_match(struct perf_event * event)8978 static int perf_event_comm_match(struct perf_event *event)
8979 {
8980 return event->attr.comm;
8981 }
8982
perf_event_comm_output(struct perf_event * event,void * data)8983 static void perf_event_comm_output(struct perf_event *event,
8984 void *data)
8985 {
8986 struct perf_comm_event *comm_event = data;
8987 struct perf_output_handle handle;
8988 struct perf_sample_data sample;
8989 int size = comm_event->event_id.header.size;
8990 int ret;
8991
8992 if (!perf_event_comm_match(event))
8993 return;
8994
8995 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8996 ret = perf_output_begin(&handle, &sample, event,
8997 comm_event->event_id.header.size);
8998
8999 if (ret)
9000 goto out;
9001
9002 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
9003 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
9004
9005 perf_output_put(&handle, comm_event->event_id);
9006 __output_copy(&handle, comm_event->comm,
9007 comm_event->comm_size);
9008
9009 perf_event__output_id_sample(event, &handle, &sample);
9010
9011 perf_output_end(&handle);
9012 out:
9013 comm_event->event_id.header.size = size;
9014 }
9015
perf_event_comm_event(struct perf_comm_event * comm_event)9016 static void perf_event_comm_event(struct perf_comm_event *comm_event)
9017 {
9018 char comm[TASK_COMM_LEN];
9019 unsigned int size;
9020
9021 memset(comm, 0, sizeof(comm));
9022 strscpy(comm, comm_event->task->comm);
9023 size = ALIGN(strlen(comm)+1, sizeof(u64));
9024
9025 comm_event->comm = comm;
9026 comm_event->comm_size = size;
9027
9028 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
9029
9030 perf_iterate_sb(perf_event_comm_output,
9031 comm_event,
9032 NULL);
9033 }
9034
perf_event_comm(struct task_struct * task,bool exec)9035 void perf_event_comm(struct task_struct *task, bool exec)
9036 {
9037 struct perf_comm_event comm_event;
9038
9039 if (!atomic_read(&nr_comm_events))
9040 return;
9041
9042 comm_event = (struct perf_comm_event){
9043 .task = task,
9044 /* .comm */
9045 /* .comm_size */
9046 .event_id = {
9047 .header = {
9048 .type = PERF_RECORD_COMM,
9049 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
9050 /* .size */
9051 },
9052 /* .pid */
9053 /* .tid */
9054 },
9055 };
9056
9057 perf_event_comm_event(&comm_event);
9058 }
9059
9060 /*
9061 * namespaces tracking
9062 */
9063
9064 struct perf_namespaces_event {
9065 struct task_struct *task;
9066
9067 struct {
9068 struct perf_event_header header;
9069
9070 u32 pid;
9071 u32 tid;
9072 u64 nr_namespaces;
9073 struct perf_ns_link_info link_info[NR_NAMESPACES];
9074 } event_id;
9075 };
9076
perf_event_namespaces_match(struct perf_event * event)9077 static int perf_event_namespaces_match(struct perf_event *event)
9078 {
9079 return event->attr.namespaces;
9080 }
9081
perf_event_namespaces_output(struct perf_event * event,void * data)9082 static void perf_event_namespaces_output(struct perf_event *event,
9083 void *data)
9084 {
9085 struct perf_namespaces_event *namespaces_event = data;
9086 struct perf_output_handle handle;
9087 struct perf_sample_data sample;
9088 u16 header_size = namespaces_event->event_id.header.size;
9089 int ret;
9090
9091 if (!perf_event_namespaces_match(event))
9092 return;
9093
9094 perf_event_header__init_id(&namespaces_event->event_id.header,
9095 &sample, event);
9096 ret = perf_output_begin(&handle, &sample, event,
9097 namespaces_event->event_id.header.size);
9098 if (ret)
9099 goto out;
9100
9101 namespaces_event->event_id.pid = perf_event_pid(event,
9102 namespaces_event->task);
9103 namespaces_event->event_id.tid = perf_event_tid(event,
9104 namespaces_event->task);
9105
9106 perf_output_put(&handle, namespaces_event->event_id);
9107
9108 perf_event__output_id_sample(event, &handle, &sample);
9109
9110 perf_output_end(&handle);
9111 out:
9112 namespaces_event->event_id.header.size = header_size;
9113 }
9114
perf_fill_ns_link_info(struct perf_ns_link_info * ns_link_info,struct task_struct * task,const struct proc_ns_operations * ns_ops)9115 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
9116 struct task_struct *task,
9117 const struct proc_ns_operations *ns_ops)
9118 {
9119 struct path ns_path;
9120 struct inode *ns_inode;
9121 int error;
9122
9123 error = ns_get_path(&ns_path, task, ns_ops);
9124 if (!error) {
9125 ns_inode = ns_path.dentry->d_inode;
9126 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
9127 ns_link_info->ino = ns_inode->i_ino;
9128 path_put(&ns_path);
9129 }
9130 }
9131
perf_event_namespaces(struct task_struct * task)9132 void perf_event_namespaces(struct task_struct *task)
9133 {
9134 struct perf_namespaces_event namespaces_event;
9135 struct perf_ns_link_info *ns_link_info;
9136
9137 if (!atomic_read(&nr_namespaces_events))
9138 return;
9139
9140 namespaces_event = (struct perf_namespaces_event){
9141 .task = task,
9142 .event_id = {
9143 .header = {
9144 .type = PERF_RECORD_NAMESPACES,
9145 .misc = 0,
9146 .size = sizeof(namespaces_event.event_id),
9147 },
9148 /* .pid */
9149 /* .tid */
9150 .nr_namespaces = NR_NAMESPACES,
9151 /* .link_info[NR_NAMESPACES] */
9152 },
9153 };
9154
9155 ns_link_info = namespaces_event.event_id.link_info;
9156
9157 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
9158 task, &mntns_operations);
9159
9160 #ifdef CONFIG_USER_NS
9161 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
9162 task, &userns_operations);
9163 #endif
9164 #ifdef CONFIG_NET_NS
9165 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
9166 task, &netns_operations);
9167 #endif
9168 #ifdef CONFIG_UTS_NS
9169 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
9170 task, &utsns_operations);
9171 #endif
9172 #ifdef CONFIG_IPC_NS
9173 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
9174 task, &ipcns_operations);
9175 #endif
9176 #ifdef CONFIG_PID_NS
9177 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
9178 task, &pidns_operations);
9179 #endif
9180 #ifdef CONFIG_CGROUPS
9181 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
9182 task, &cgroupns_operations);
9183 #endif
9184
9185 perf_iterate_sb(perf_event_namespaces_output,
9186 &namespaces_event,
9187 NULL);
9188 }
9189
9190 /*
9191 * cgroup tracking
9192 */
9193 #ifdef CONFIG_CGROUP_PERF
9194
9195 struct perf_cgroup_event {
9196 char *path;
9197 int path_size;
9198 struct {
9199 struct perf_event_header header;
9200 u64 id;
9201 char path[];
9202 } event_id;
9203 };
9204
perf_event_cgroup_match(struct perf_event * event)9205 static int perf_event_cgroup_match(struct perf_event *event)
9206 {
9207 return event->attr.cgroup;
9208 }
9209
perf_event_cgroup_output(struct perf_event * event,void * data)9210 static void perf_event_cgroup_output(struct perf_event *event, void *data)
9211 {
9212 struct perf_cgroup_event *cgroup_event = data;
9213 struct perf_output_handle handle;
9214 struct perf_sample_data sample;
9215 u16 header_size = cgroup_event->event_id.header.size;
9216 int ret;
9217
9218 if (!perf_event_cgroup_match(event))
9219 return;
9220
9221 perf_event_header__init_id(&cgroup_event->event_id.header,
9222 &sample, event);
9223 ret = perf_output_begin(&handle, &sample, event,
9224 cgroup_event->event_id.header.size);
9225 if (ret)
9226 goto out;
9227
9228 perf_output_put(&handle, cgroup_event->event_id);
9229 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
9230
9231 perf_event__output_id_sample(event, &handle, &sample);
9232
9233 perf_output_end(&handle);
9234 out:
9235 cgroup_event->event_id.header.size = header_size;
9236 }
9237
perf_event_cgroup(struct cgroup * cgrp)9238 static void perf_event_cgroup(struct cgroup *cgrp)
9239 {
9240 struct perf_cgroup_event cgroup_event;
9241 char path_enomem[16] = "//enomem";
9242 char *pathname;
9243 size_t size;
9244
9245 if (!atomic_read(&nr_cgroup_events))
9246 return;
9247
9248 cgroup_event = (struct perf_cgroup_event){
9249 .event_id = {
9250 .header = {
9251 .type = PERF_RECORD_CGROUP,
9252 .misc = 0,
9253 .size = sizeof(cgroup_event.event_id),
9254 },
9255 .id = cgroup_id(cgrp),
9256 },
9257 };
9258
9259 pathname = kmalloc(PATH_MAX, GFP_KERNEL);
9260 if (pathname == NULL) {
9261 cgroup_event.path = path_enomem;
9262 } else {
9263 /* just to be sure to have enough space for alignment */
9264 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
9265 cgroup_event.path = pathname;
9266 }
9267
9268 /*
9269 * Since our buffer works in 8 byte units we need to align our string
9270 * size to a multiple of 8. However, we must guarantee the tail end is
9271 * zero'd out to avoid leaking random bits to userspace.
9272 */
9273 size = strlen(cgroup_event.path) + 1;
9274 while (!IS_ALIGNED(size, sizeof(u64)))
9275 cgroup_event.path[size++] = '\0';
9276
9277 cgroup_event.event_id.header.size += size;
9278 cgroup_event.path_size = size;
9279
9280 perf_iterate_sb(perf_event_cgroup_output,
9281 &cgroup_event,
9282 NULL);
9283
9284 kfree(pathname);
9285 }
9286
9287 #endif
9288
9289 /*
9290 * mmap tracking
9291 */
9292
9293 struct perf_mmap_event {
9294 struct vm_area_struct *vma;
9295
9296 const char *file_name;
9297 int file_size;
9298 int maj, min;
9299 u64 ino;
9300 u64 ino_generation;
9301 u32 prot, flags;
9302 u8 build_id[BUILD_ID_SIZE_MAX];
9303 u32 build_id_size;
9304
9305 struct {
9306 struct perf_event_header header;
9307
9308 u32 pid;
9309 u32 tid;
9310 u64 start;
9311 u64 len;
9312 u64 pgoff;
9313 } event_id;
9314 };
9315
perf_event_mmap_match(struct perf_event * event,void * data)9316 static int perf_event_mmap_match(struct perf_event *event,
9317 void *data)
9318 {
9319 struct perf_mmap_event *mmap_event = data;
9320 struct vm_area_struct *vma = mmap_event->vma;
9321 int executable = vma->vm_flags & VM_EXEC;
9322
9323 return (!executable && event->attr.mmap_data) ||
9324 (executable && (event->attr.mmap || event->attr.mmap2));
9325 }
9326
perf_event_mmap_output(struct perf_event * event,void * data)9327 static void perf_event_mmap_output(struct perf_event *event,
9328 void *data)
9329 {
9330 struct perf_mmap_event *mmap_event = data;
9331 struct perf_output_handle handle;
9332 struct perf_sample_data sample;
9333 int size = mmap_event->event_id.header.size;
9334 u32 type = mmap_event->event_id.header.type;
9335 bool use_build_id;
9336 int ret;
9337
9338 if (!perf_event_mmap_match(event, data))
9339 return;
9340
9341 if (event->attr.mmap2) {
9342 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
9343 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
9344 mmap_event->event_id.header.size += sizeof(mmap_event->min);
9345 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
9346 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
9347 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
9348 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
9349 }
9350
9351 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
9352 ret = perf_output_begin(&handle, &sample, event,
9353 mmap_event->event_id.header.size);
9354 if (ret)
9355 goto out;
9356
9357 mmap_event->event_id.pid = perf_event_pid(event, current);
9358 mmap_event->event_id.tid = perf_event_tid(event, current);
9359
9360 use_build_id = event->attr.build_id && mmap_event->build_id_size;
9361
9362 if (event->attr.mmap2 && use_build_id)
9363 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
9364
9365 perf_output_put(&handle, mmap_event->event_id);
9366
9367 if (event->attr.mmap2) {
9368 if (use_build_id) {
9369 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
9370
9371 __output_copy(&handle, size, 4);
9372 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
9373 } else {
9374 perf_output_put(&handle, mmap_event->maj);
9375 perf_output_put(&handle, mmap_event->min);
9376 perf_output_put(&handle, mmap_event->ino);
9377 perf_output_put(&handle, mmap_event->ino_generation);
9378 }
9379 perf_output_put(&handle, mmap_event->prot);
9380 perf_output_put(&handle, mmap_event->flags);
9381 }
9382
9383 __output_copy(&handle, mmap_event->file_name,
9384 mmap_event->file_size);
9385
9386 perf_event__output_id_sample(event, &handle, &sample);
9387
9388 perf_output_end(&handle);
9389 out:
9390 mmap_event->event_id.header.size = size;
9391 mmap_event->event_id.header.type = type;
9392 }
9393
perf_event_mmap_event(struct perf_mmap_event * mmap_event)9394 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
9395 {
9396 struct vm_area_struct *vma = mmap_event->vma;
9397 struct file *file = vma->vm_file;
9398 int maj = 0, min = 0;
9399 u64 ino = 0, gen = 0;
9400 u32 prot = 0, flags = 0;
9401 unsigned int size;
9402 char tmp[16];
9403 char *buf = NULL;
9404 char *name = NULL;
9405
9406 if (vma->vm_flags & VM_READ)
9407 prot |= PROT_READ;
9408 if (vma->vm_flags & VM_WRITE)
9409 prot |= PROT_WRITE;
9410 if (vma->vm_flags & VM_EXEC)
9411 prot |= PROT_EXEC;
9412
9413 if (vma->vm_flags & VM_MAYSHARE)
9414 flags = MAP_SHARED;
9415 else
9416 flags = MAP_PRIVATE;
9417
9418 if (vma->vm_flags & VM_LOCKED)
9419 flags |= MAP_LOCKED;
9420 if (is_vm_hugetlb_page(vma))
9421 flags |= MAP_HUGETLB;
9422
9423 if (file) {
9424 const struct inode *inode;
9425 dev_t dev;
9426
9427 buf = kmalloc(PATH_MAX, GFP_KERNEL);
9428 if (!buf) {
9429 name = "//enomem";
9430 goto cpy_name;
9431 }
9432 /*
9433 * d_path() works from the end of the rb backwards, so we
9434 * need to add enough zero bytes after the string to handle
9435 * the 64bit alignment we do later.
9436 */
9437 name = d_path(file_user_path(file), buf, PATH_MAX - sizeof(u64));
9438 if (IS_ERR(name)) {
9439 name = "//toolong";
9440 goto cpy_name;
9441 }
9442 inode = file_user_inode(vma->vm_file);
9443 dev = inode->i_sb->s_dev;
9444 ino = inode->i_ino;
9445 gen = inode->i_generation;
9446 maj = MAJOR(dev);
9447 min = MINOR(dev);
9448
9449 goto got_name;
9450 } else {
9451 if (vma->vm_ops && vma->vm_ops->name)
9452 name = (char *) vma->vm_ops->name(vma);
9453 if (!name)
9454 name = (char *)arch_vma_name(vma);
9455 if (!name) {
9456 if (vma_is_initial_heap(vma))
9457 name = "[heap]";
9458 else if (vma_is_initial_stack(vma))
9459 name = "[stack]";
9460 else
9461 name = "//anon";
9462 }
9463 }
9464
9465 cpy_name:
9466 strscpy(tmp, name);
9467 name = tmp;
9468 got_name:
9469 /*
9470 * Since our buffer works in 8 byte units we need to align our string
9471 * size to a multiple of 8. However, we must guarantee the tail end is
9472 * zero'd out to avoid leaking random bits to userspace.
9473 */
9474 size = strlen(name)+1;
9475 while (!IS_ALIGNED(size, sizeof(u64)))
9476 name[size++] = '\0';
9477
9478 mmap_event->file_name = name;
9479 mmap_event->file_size = size;
9480 mmap_event->maj = maj;
9481 mmap_event->min = min;
9482 mmap_event->ino = ino;
9483 mmap_event->ino_generation = gen;
9484 mmap_event->prot = prot;
9485 mmap_event->flags = flags;
9486
9487 if (!(vma->vm_flags & VM_EXEC))
9488 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
9489
9490 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
9491
9492 if (atomic_read(&nr_build_id_events))
9493 build_id_parse_nofault(vma, mmap_event->build_id, &mmap_event->build_id_size);
9494
9495 perf_iterate_sb(perf_event_mmap_output,
9496 mmap_event,
9497 NULL);
9498
9499 kfree(buf);
9500 }
9501
9502 /*
9503 * Check whether inode and address range match filter criteria.
9504 */
perf_addr_filter_match(struct perf_addr_filter * filter,struct file * file,unsigned long offset,unsigned long size)9505 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
9506 struct file *file, unsigned long offset,
9507 unsigned long size)
9508 {
9509 /* d_inode(NULL) won't be equal to any mapped user-space file */
9510 if (!filter->path.dentry)
9511 return false;
9512
9513 if (d_inode(filter->path.dentry) != file_user_inode(file))
9514 return false;
9515
9516 if (filter->offset > offset + size)
9517 return false;
9518
9519 if (filter->offset + filter->size < offset)
9520 return false;
9521
9522 return true;
9523 }
9524
perf_addr_filter_vma_adjust(struct perf_addr_filter * filter,struct vm_area_struct * vma,struct perf_addr_filter_range * fr)9525 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
9526 struct vm_area_struct *vma,
9527 struct perf_addr_filter_range *fr)
9528 {
9529 unsigned long vma_size = vma->vm_end - vma->vm_start;
9530 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
9531 struct file *file = vma->vm_file;
9532
9533 if (!perf_addr_filter_match(filter, file, off, vma_size))
9534 return false;
9535
9536 if (filter->offset < off) {
9537 fr->start = vma->vm_start;
9538 fr->size = min(vma_size, filter->size - (off - filter->offset));
9539 } else {
9540 fr->start = vma->vm_start + filter->offset - off;
9541 fr->size = min(vma->vm_end - fr->start, filter->size);
9542 }
9543
9544 return true;
9545 }
9546
__perf_addr_filters_adjust(struct perf_event * event,void * data)9547 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
9548 {
9549 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9550 struct vm_area_struct *vma = data;
9551 struct perf_addr_filter *filter;
9552 unsigned int restart = 0, count = 0;
9553 unsigned long flags;
9554
9555 if (!has_addr_filter(event))
9556 return;
9557
9558 if (!vma->vm_file)
9559 return;
9560
9561 raw_spin_lock_irqsave(&ifh->lock, flags);
9562 list_for_each_entry(filter, &ifh->list, entry) {
9563 if (perf_addr_filter_vma_adjust(filter, vma,
9564 &event->addr_filter_ranges[count]))
9565 restart++;
9566
9567 count++;
9568 }
9569
9570 if (restart)
9571 event->addr_filters_gen++;
9572 raw_spin_unlock_irqrestore(&ifh->lock, flags);
9573
9574 if (restart)
9575 perf_event_stop(event, 1);
9576 }
9577
9578 /*
9579 * Adjust all task's events' filters to the new vma
9580 */
perf_addr_filters_adjust(struct vm_area_struct * vma)9581 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
9582 {
9583 struct perf_event_context *ctx;
9584
9585 /*
9586 * Data tracing isn't supported yet and as such there is no need
9587 * to keep track of anything that isn't related to executable code:
9588 */
9589 if (!(vma->vm_flags & VM_EXEC))
9590 return;
9591
9592 rcu_read_lock();
9593 ctx = rcu_dereference(current->perf_event_ctxp);
9594 if (ctx)
9595 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
9596 rcu_read_unlock();
9597 }
9598
perf_event_mmap(struct vm_area_struct * vma)9599 void perf_event_mmap(struct vm_area_struct *vma)
9600 {
9601 struct perf_mmap_event mmap_event;
9602
9603 if (!atomic_read(&nr_mmap_events))
9604 return;
9605
9606 mmap_event = (struct perf_mmap_event){
9607 .vma = vma,
9608 /* .file_name */
9609 /* .file_size */
9610 .event_id = {
9611 .header = {
9612 .type = PERF_RECORD_MMAP,
9613 .misc = PERF_RECORD_MISC_USER,
9614 /* .size */
9615 },
9616 /* .pid */
9617 /* .tid */
9618 .start = vma->vm_start,
9619 .len = vma->vm_end - vma->vm_start,
9620 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
9621 },
9622 /* .maj (attr_mmap2 only) */
9623 /* .min (attr_mmap2 only) */
9624 /* .ino (attr_mmap2 only) */
9625 /* .ino_generation (attr_mmap2 only) */
9626 /* .prot (attr_mmap2 only) */
9627 /* .flags (attr_mmap2 only) */
9628 };
9629
9630 perf_addr_filters_adjust(vma);
9631 perf_event_mmap_event(&mmap_event);
9632 }
9633
perf_event_aux_event(struct perf_event * event,unsigned long head,unsigned long size,u64 flags)9634 void perf_event_aux_event(struct perf_event *event, unsigned long head,
9635 unsigned long size, u64 flags)
9636 {
9637 struct perf_output_handle handle;
9638 struct perf_sample_data sample;
9639 struct perf_aux_event {
9640 struct perf_event_header header;
9641 u64 offset;
9642 u64 size;
9643 u64 flags;
9644 } rec = {
9645 .header = {
9646 .type = PERF_RECORD_AUX,
9647 .misc = 0,
9648 .size = sizeof(rec),
9649 },
9650 .offset = head,
9651 .size = size,
9652 .flags = flags,
9653 };
9654 int ret;
9655
9656 perf_event_header__init_id(&rec.header, &sample, event);
9657 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9658
9659 if (ret)
9660 return;
9661
9662 perf_output_put(&handle, rec);
9663 perf_event__output_id_sample(event, &handle, &sample);
9664
9665 perf_output_end(&handle);
9666 }
9667
9668 /*
9669 * Lost/dropped samples logging
9670 */
perf_log_lost_samples(struct perf_event * event,u64 lost)9671 void perf_log_lost_samples(struct perf_event *event, u64 lost)
9672 {
9673 struct perf_output_handle handle;
9674 struct perf_sample_data sample;
9675 int ret;
9676
9677 struct {
9678 struct perf_event_header header;
9679 u64 lost;
9680 } lost_samples_event = {
9681 .header = {
9682 .type = PERF_RECORD_LOST_SAMPLES,
9683 .misc = 0,
9684 .size = sizeof(lost_samples_event),
9685 },
9686 .lost = lost,
9687 };
9688
9689 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9690
9691 ret = perf_output_begin(&handle, &sample, event,
9692 lost_samples_event.header.size);
9693 if (ret)
9694 return;
9695
9696 perf_output_put(&handle, lost_samples_event);
9697 perf_event__output_id_sample(event, &handle, &sample);
9698 perf_output_end(&handle);
9699 }
9700
9701 /*
9702 * context_switch tracking
9703 */
9704
9705 struct perf_switch_event {
9706 struct task_struct *task;
9707 struct task_struct *next_prev;
9708
9709 struct {
9710 struct perf_event_header header;
9711 u32 next_prev_pid;
9712 u32 next_prev_tid;
9713 } event_id;
9714 };
9715
perf_event_switch_match(struct perf_event * event)9716 static int perf_event_switch_match(struct perf_event *event)
9717 {
9718 return event->attr.context_switch;
9719 }
9720
perf_event_switch_output(struct perf_event * event,void * data)9721 static void perf_event_switch_output(struct perf_event *event, void *data)
9722 {
9723 struct perf_switch_event *se = data;
9724 struct perf_output_handle handle;
9725 struct perf_sample_data sample;
9726 int ret;
9727
9728 if (!perf_event_switch_match(event))
9729 return;
9730
9731 /* Only CPU-wide events are allowed to see next/prev pid/tid */
9732 if (event->ctx->task) {
9733 se->event_id.header.type = PERF_RECORD_SWITCH;
9734 se->event_id.header.size = sizeof(se->event_id.header);
9735 } else {
9736 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9737 se->event_id.header.size = sizeof(se->event_id);
9738 se->event_id.next_prev_pid =
9739 perf_event_pid(event, se->next_prev);
9740 se->event_id.next_prev_tid =
9741 perf_event_tid(event, se->next_prev);
9742 }
9743
9744 perf_event_header__init_id(&se->event_id.header, &sample, event);
9745
9746 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9747 if (ret)
9748 return;
9749
9750 if (event->ctx->task)
9751 perf_output_put(&handle, se->event_id.header);
9752 else
9753 perf_output_put(&handle, se->event_id);
9754
9755 perf_event__output_id_sample(event, &handle, &sample);
9756
9757 perf_output_end(&handle);
9758 }
9759
perf_event_switch(struct task_struct * task,struct task_struct * next_prev,bool sched_in)9760 static void perf_event_switch(struct task_struct *task,
9761 struct task_struct *next_prev, bool sched_in)
9762 {
9763 struct perf_switch_event switch_event;
9764
9765 /* N.B. caller checks nr_switch_events != 0 */
9766
9767 switch_event = (struct perf_switch_event){
9768 .task = task,
9769 .next_prev = next_prev,
9770 .event_id = {
9771 .header = {
9772 /* .type */
9773 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9774 /* .size */
9775 },
9776 /* .next_prev_pid */
9777 /* .next_prev_tid */
9778 },
9779 };
9780
9781 if (!sched_in && task_is_runnable(task)) {
9782 switch_event.event_id.header.misc |=
9783 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9784 }
9785
9786 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9787 }
9788
9789 /*
9790 * IRQ throttle logging
9791 */
9792
perf_log_throttle(struct perf_event * event,int enable)9793 static void perf_log_throttle(struct perf_event *event, int enable)
9794 {
9795 struct perf_output_handle handle;
9796 struct perf_sample_data sample;
9797 int ret;
9798
9799 struct {
9800 struct perf_event_header header;
9801 u64 time;
9802 u64 id;
9803 u64 stream_id;
9804 } throttle_event = {
9805 .header = {
9806 .type = PERF_RECORD_THROTTLE,
9807 .misc = 0,
9808 .size = sizeof(throttle_event),
9809 },
9810 .time = perf_event_clock(event),
9811 .id = primary_event_id(event),
9812 .stream_id = event->id,
9813 };
9814
9815 if (enable)
9816 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9817
9818 perf_event_header__init_id(&throttle_event.header, &sample, event);
9819
9820 ret = perf_output_begin(&handle, &sample, event,
9821 throttle_event.header.size);
9822 if (ret)
9823 return;
9824
9825 perf_output_put(&handle, throttle_event);
9826 perf_event__output_id_sample(event, &handle, &sample);
9827 perf_output_end(&handle);
9828 }
9829
9830 /*
9831 * ksymbol register/unregister tracking
9832 */
9833
9834 struct perf_ksymbol_event {
9835 const char *name;
9836 int name_len;
9837 struct {
9838 struct perf_event_header header;
9839 u64 addr;
9840 u32 len;
9841 u16 ksym_type;
9842 u16 flags;
9843 } event_id;
9844 };
9845
perf_event_ksymbol_match(struct perf_event * event)9846 static int perf_event_ksymbol_match(struct perf_event *event)
9847 {
9848 return event->attr.ksymbol;
9849 }
9850
perf_event_ksymbol_output(struct perf_event * event,void * data)9851 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9852 {
9853 struct perf_ksymbol_event *ksymbol_event = data;
9854 struct perf_output_handle handle;
9855 struct perf_sample_data sample;
9856 int ret;
9857
9858 if (!perf_event_ksymbol_match(event))
9859 return;
9860
9861 perf_event_header__init_id(&ksymbol_event->event_id.header,
9862 &sample, event);
9863 ret = perf_output_begin(&handle, &sample, event,
9864 ksymbol_event->event_id.header.size);
9865 if (ret)
9866 return;
9867
9868 perf_output_put(&handle, ksymbol_event->event_id);
9869 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9870 perf_event__output_id_sample(event, &handle, &sample);
9871
9872 perf_output_end(&handle);
9873 }
9874
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)9875 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9876 const char *sym)
9877 {
9878 struct perf_ksymbol_event ksymbol_event;
9879 char name[KSYM_NAME_LEN];
9880 u16 flags = 0;
9881 int name_len;
9882
9883 if (!atomic_read(&nr_ksymbol_events))
9884 return;
9885
9886 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9887 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9888 goto err;
9889
9890 strscpy(name, sym);
9891 name_len = strlen(name) + 1;
9892 while (!IS_ALIGNED(name_len, sizeof(u64)))
9893 name[name_len++] = '\0';
9894 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9895
9896 if (unregister)
9897 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9898
9899 ksymbol_event = (struct perf_ksymbol_event){
9900 .name = name,
9901 .name_len = name_len,
9902 .event_id = {
9903 .header = {
9904 .type = PERF_RECORD_KSYMBOL,
9905 .size = sizeof(ksymbol_event.event_id) +
9906 name_len,
9907 },
9908 .addr = addr,
9909 .len = len,
9910 .ksym_type = ksym_type,
9911 .flags = flags,
9912 },
9913 };
9914
9915 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9916 return;
9917 err:
9918 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9919 }
9920
9921 /*
9922 * bpf program load/unload tracking
9923 */
9924
9925 struct perf_bpf_event {
9926 struct bpf_prog *prog;
9927 struct {
9928 struct perf_event_header header;
9929 u16 type;
9930 u16 flags;
9931 u32 id;
9932 u8 tag[BPF_TAG_SIZE];
9933 } event_id;
9934 };
9935
perf_event_bpf_match(struct perf_event * event)9936 static int perf_event_bpf_match(struct perf_event *event)
9937 {
9938 return event->attr.bpf_event;
9939 }
9940
perf_event_bpf_output(struct perf_event * event,void * data)9941 static void perf_event_bpf_output(struct perf_event *event, void *data)
9942 {
9943 struct perf_bpf_event *bpf_event = data;
9944 struct perf_output_handle handle;
9945 struct perf_sample_data sample;
9946 int ret;
9947
9948 if (!perf_event_bpf_match(event))
9949 return;
9950
9951 perf_event_header__init_id(&bpf_event->event_id.header,
9952 &sample, event);
9953 ret = perf_output_begin(&handle, &sample, event,
9954 bpf_event->event_id.header.size);
9955 if (ret)
9956 return;
9957
9958 perf_output_put(&handle, bpf_event->event_id);
9959 perf_event__output_id_sample(event, &handle, &sample);
9960
9961 perf_output_end(&handle);
9962 }
9963
perf_event_bpf_emit_ksymbols(struct bpf_prog * prog,enum perf_bpf_event_type type)9964 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9965 enum perf_bpf_event_type type)
9966 {
9967 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9968 int i;
9969
9970 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9971 (u64)(unsigned long)prog->bpf_func,
9972 prog->jited_len, unregister,
9973 prog->aux->ksym.name);
9974
9975 for (i = 1; i < prog->aux->func_cnt; i++) {
9976 struct bpf_prog *subprog = prog->aux->func[i];
9977
9978 perf_event_ksymbol(
9979 PERF_RECORD_KSYMBOL_TYPE_BPF,
9980 (u64)(unsigned long)subprog->bpf_func,
9981 subprog->jited_len, unregister,
9982 subprog->aux->ksym.name);
9983 }
9984 }
9985
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)9986 void perf_event_bpf_event(struct bpf_prog *prog,
9987 enum perf_bpf_event_type type,
9988 u16 flags)
9989 {
9990 struct perf_bpf_event bpf_event;
9991
9992 switch (type) {
9993 case PERF_BPF_EVENT_PROG_LOAD:
9994 case PERF_BPF_EVENT_PROG_UNLOAD:
9995 if (atomic_read(&nr_ksymbol_events))
9996 perf_event_bpf_emit_ksymbols(prog, type);
9997 break;
9998 default:
9999 return;
10000 }
10001
10002 if (!atomic_read(&nr_bpf_events))
10003 return;
10004
10005 bpf_event = (struct perf_bpf_event){
10006 .prog = prog,
10007 .event_id = {
10008 .header = {
10009 .type = PERF_RECORD_BPF_EVENT,
10010 .size = sizeof(bpf_event.event_id),
10011 },
10012 .type = type,
10013 .flags = flags,
10014 .id = prog->aux->id,
10015 },
10016 };
10017
10018 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
10019
10020 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
10021 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
10022 }
10023
10024 struct perf_callchain_deferred_event {
10025 struct unwind_stacktrace *trace;
10026 struct {
10027 struct perf_event_header header;
10028 u64 cookie;
10029 u64 nr;
10030 u64 ips[];
10031 } event;
10032 };
10033
perf_callchain_deferred_output(struct perf_event * event,void * data)10034 static void perf_callchain_deferred_output(struct perf_event *event, void *data)
10035 {
10036 struct perf_callchain_deferred_event *deferred_event = data;
10037 struct perf_output_handle handle;
10038 struct perf_sample_data sample;
10039 int ret, size = deferred_event->event.header.size;
10040
10041 if (!event->attr.defer_output)
10042 return;
10043
10044 /* XXX do we really need sample_id_all for this ??? */
10045 perf_event_header__init_id(&deferred_event->event.header, &sample, event);
10046
10047 ret = perf_output_begin(&handle, &sample, event,
10048 deferred_event->event.header.size);
10049 if (ret)
10050 goto out;
10051
10052 perf_output_put(&handle, deferred_event->event);
10053 for (int i = 0; i < deferred_event->trace->nr; i++) {
10054 u64 entry = deferred_event->trace->entries[i];
10055 perf_output_put(&handle, entry);
10056 }
10057 perf_event__output_id_sample(event, &handle, &sample);
10058
10059 perf_output_end(&handle);
10060 out:
10061 deferred_event->event.header.size = size;
10062 }
10063
perf_unwind_deferred_callback(struct unwind_work * work,struct unwind_stacktrace * trace,u64 cookie)10064 static void perf_unwind_deferred_callback(struct unwind_work *work,
10065 struct unwind_stacktrace *trace, u64 cookie)
10066 {
10067 struct perf_callchain_deferred_event deferred_event = {
10068 .trace = trace,
10069 .event = {
10070 .header = {
10071 .type = PERF_RECORD_CALLCHAIN_DEFERRED,
10072 .misc = PERF_RECORD_MISC_USER,
10073 .size = sizeof(deferred_event.event) +
10074 (trace->nr * sizeof(u64)),
10075 },
10076 .cookie = cookie,
10077 .nr = trace->nr,
10078 },
10079 };
10080
10081 perf_iterate_sb(perf_callchain_deferred_output, &deferred_event, NULL);
10082 }
10083
10084 struct perf_text_poke_event {
10085 const void *old_bytes;
10086 const void *new_bytes;
10087 size_t pad;
10088 u16 old_len;
10089 u16 new_len;
10090
10091 struct {
10092 struct perf_event_header header;
10093
10094 u64 addr;
10095 } event_id;
10096 };
10097
perf_event_text_poke_match(struct perf_event * event)10098 static int perf_event_text_poke_match(struct perf_event *event)
10099 {
10100 return event->attr.text_poke;
10101 }
10102
perf_event_text_poke_output(struct perf_event * event,void * data)10103 static void perf_event_text_poke_output(struct perf_event *event, void *data)
10104 {
10105 struct perf_text_poke_event *text_poke_event = data;
10106 struct perf_output_handle handle;
10107 struct perf_sample_data sample;
10108 u64 padding = 0;
10109 int ret;
10110
10111 if (!perf_event_text_poke_match(event))
10112 return;
10113
10114 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
10115
10116 ret = perf_output_begin(&handle, &sample, event,
10117 text_poke_event->event_id.header.size);
10118 if (ret)
10119 return;
10120
10121 perf_output_put(&handle, text_poke_event->event_id);
10122 perf_output_put(&handle, text_poke_event->old_len);
10123 perf_output_put(&handle, text_poke_event->new_len);
10124
10125 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
10126 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
10127
10128 if (text_poke_event->pad)
10129 __output_copy(&handle, &padding, text_poke_event->pad);
10130
10131 perf_event__output_id_sample(event, &handle, &sample);
10132
10133 perf_output_end(&handle);
10134 }
10135
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)10136 void perf_event_text_poke(const void *addr, const void *old_bytes,
10137 size_t old_len, const void *new_bytes, size_t new_len)
10138 {
10139 struct perf_text_poke_event text_poke_event;
10140 size_t tot, pad;
10141
10142 if (!atomic_read(&nr_text_poke_events))
10143 return;
10144
10145 tot = sizeof(text_poke_event.old_len) + old_len;
10146 tot += sizeof(text_poke_event.new_len) + new_len;
10147 pad = ALIGN(tot, sizeof(u64)) - tot;
10148
10149 text_poke_event = (struct perf_text_poke_event){
10150 .old_bytes = old_bytes,
10151 .new_bytes = new_bytes,
10152 .pad = pad,
10153 .old_len = old_len,
10154 .new_len = new_len,
10155 .event_id = {
10156 .header = {
10157 .type = PERF_RECORD_TEXT_POKE,
10158 .misc = PERF_RECORD_MISC_KERNEL,
10159 .size = sizeof(text_poke_event.event_id) + tot + pad,
10160 },
10161 .addr = (unsigned long)addr,
10162 },
10163 };
10164
10165 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
10166 }
10167
perf_event_itrace_started(struct perf_event * event)10168 void perf_event_itrace_started(struct perf_event *event)
10169 {
10170 WRITE_ONCE(event->attach_state, event->attach_state | PERF_ATTACH_ITRACE);
10171 }
10172
perf_log_itrace_start(struct perf_event * event)10173 static void perf_log_itrace_start(struct perf_event *event)
10174 {
10175 struct perf_output_handle handle;
10176 struct perf_sample_data sample;
10177 struct perf_aux_event {
10178 struct perf_event_header header;
10179 u32 pid;
10180 u32 tid;
10181 } rec;
10182 int ret;
10183
10184 if (event->parent)
10185 event = event->parent;
10186
10187 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
10188 event->attach_state & PERF_ATTACH_ITRACE)
10189 return;
10190
10191 rec.header.type = PERF_RECORD_ITRACE_START;
10192 rec.header.misc = 0;
10193 rec.header.size = sizeof(rec);
10194 rec.pid = perf_event_pid(event, current);
10195 rec.tid = perf_event_tid(event, current);
10196
10197 perf_event_header__init_id(&rec.header, &sample, event);
10198 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
10199
10200 if (ret)
10201 return;
10202
10203 perf_output_put(&handle, rec);
10204 perf_event__output_id_sample(event, &handle, &sample);
10205
10206 perf_output_end(&handle);
10207 }
10208
perf_report_aux_output_id(struct perf_event * event,u64 hw_id)10209 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
10210 {
10211 struct perf_output_handle handle;
10212 struct perf_sample_data sample;
10213 struct perf_aux_event {
10214 struct perf_event_header header;
10215 u64 hw_id;
10216 } rec;
10217 int ret;
10218
10219 if (event->parent)
10220 event = event->parent;
10221
10222 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID;
10223 rec.header.misc = 0;
10224 rec.header.size = sizeof(rec);
10225 rec.hw_id = hw_id;
10226
10227 perf_event_header__init_id(&rec.header, &sample, event);
10228 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
10229
10230 if (ret)
10231 return;
10232
10233 perf_output_put(&handle, rec);
10234 perf_event__output_id_sample(event, &handle, &sample);
10235
10236 perf_output_end(&handle);
10237 }
10238 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
10239
10240 static int
__perf_event_account_interrupt(struct perf_event * event,int throttle)10241 __perf_event_account_interrupt(struct perf_event *event, int throttle)
10242 {
10243 struct hw_perf_event *hwc = &event->hw;
10244 int ret = 0;
10245 u64 seq;
10246
10247 seq = __this_cpu_read(perf_throttled_seq);
10248 if (seq != hwc->interrupts_seq) {
10249 hwc->interrupts_seq = seq;
10250 hwc->interrupts = 1;
10251 } else {
10252 hwc->interrupts++;
10253 }
10254
10255 if (unlikely(throttle && hwc->interrupts >= max_samples_per_tick)) {
10256 __this_cpu_inc(perf_throttled_count);
10257 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
10258 perf_event_throttle_group(event);
10259 ret = 1;
10260 }
10261
10262 if (event->attr.freq) {
10263 u64 now = perf_clock();
10264 s64 delta = now - hwc->freq_time_stamp;
10265
10266 hwc->freq_time_stamp = now;
10267
10268 if (delta > 0 && delta < 2*TICK_NSEC)
10269 perf_adjust_period(event, delta, hwc->last_period, true);
10270 }
10271
10272 return ret;
10273 }
10274
perf_event_account_interrupt(struct perf_event * event)10275 int perf_event_account_interrupt(struct perf_event *event)
10276 {
10277 return __perf_event_account_interrupt(event, 1);
10278 }
10279
sample_is_allowed(struct perf_event * event,struct pt_regs * regs)10280 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
10281 {
10282 /*
10283 * Due to interrupt latency (AKA "skid"), we may enter the
10284 * kernel before taking an overflow, even if the PMU is only
10285 * counting user events.
10286 */
10287 if (event->attr.exclude_kernel && !user_mode(regs))
10288 return false;
10289
10290 return true;
10291 }
10292
10293 #ifdef CONFIG_BPF_SYSCALL
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)10294 static int bpf_overflow_handler(struct perf_event *event,
10295 struct perf_sample_data *data,
10296 struct pt_regs *regs)
10297 {
10298 struct bpf_perf_event_data_kern ctx = {
10299 .data = data,
10300 .event = event,
10301 };
10302 struct bpf_prog *prog;
10303 int ret = 0;
10304
10305 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10306 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10307 goto out;
10308 rcu_read_lock();
10309 prog = READ_ONCE(event->prog);
10310 if (prog) {
10311 perf_prepare_sample(data, event, regs);
10312 ret = bpf_prog_run(prog, &ctx);
10313 }
10314 rcu_read_unlock();
10315 out:
10316 __this_cpu_dec(bpf_prog_active);
10317
10318 return ret;
10319 }
10320
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10321 static inline int perf_event_set_bpf_handler(struct perf_event *event,
10322 struct bpf_prog *prog,
10323 u64 bpf_cookie)
10324 {
10325 if (event->overflow_handler_context)
10326 /* hw breakpoint or kernel counter */
10327 return -EINVAL;
10328
10329 if (event->prog)
10330 return -EEXIST;
10331
10332 if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10333 return -EINVAL;
10334
10335 if (event->attr.precise_ip &&
10336 prog->call_get_stack &&
10337 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10338 event->attr.exclude_callchain_kernel ||
10339 event->attr.exclude_callchain_user)) {
10340 /*
10341 * On perf_event with precise_ip, calling bpf_get_stack()
10342 * may trigger unwinder warnings and occasional crashes.
10343 * bpf_get_[stack|stackid] works around this issue by using
10344 * callchain attached to perf_sample_data. If the
10345 * perf_event does not full (kernel and user) callchain
10346 * attached to perf_sample_data, do not allow attaching BPF
10347 * program that calls bpf_get_[stack|stackid].
10348 */
10349 return -EPROTO;
10350 }
10351
10352 event->prog = prog;
10353 event->bpf_cookie = bpf_cookie;
10354 return 0;
10355 }
10356
perf_event_free_bpf_handler(struct perf_event * event)10357 static inline void perf_event_free_bpf_handler(struct perf_event *event)
10358 {
10359 struct bpf_prog *prog = event->prog;
10360
10361 if (!prog)
10362 return;
10363
10364 event->prog = NULL;
10365 bpf_prog_put(prog);
10366 }
10367 #else
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)10368 static inline int bpf_overflow_handler(struct perf_event *event,
10369 struct perf_sample_data *data,
10370 struct pt_regs *regs)
10371 {
10372 return 1;
10373 }
10374
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10375 static inline int perf_event_set_bpf_handler(struct perf_event *event,
10376 struct bpf_prog *prog,
10377 u64 bpf_cookie)
10378 {
10379 return -EOPNOTSUPP;
10380 }
10381
perf_event_free_bpf_handler(struct perf_event * event)10382 static inline void perf_event_free_bpf_handler(struct perf_event *event)
10383 {
10384 }
10385 #endif
10386
10387 /*
10388 * Generic event overflow handling, sampling.
10389 */
10390
__perf_event_overflow(struct perf_event * event,int throttle,struct perf_sample_data * data,struct pt_regs * regs)10391 static int __perf_event_overflow(struct perf_event *event,
10392 int throttle, struct perf_sample_data *data,
10393 struct pt_regs *regs)
10394 {
10395 int events = atomic_read(&event->event_limit);
10396 int ret = 0;
10397
10398 /*
10399 * Non-sampling counters might still use the PMI to fold short
10400 * hardware counters, ignore those.
10401 */
10402 if (unlikely(!is_sampling_event(event)))
10403 return 0;
10404
10405 ret = __perf_event_account_interrupt(event, throttle);
10406
10407 if (event->attr.aux_pause)
10408 perf_event_aux_pause(event->aux_event, true);
10409
10410 if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT &&
10411 !bpf_overflow_handler(event, data, regs))
10412 goto out;
10413
10414 /*
10415 * XXX event_limit might not quite work as expected on inherited
10416 * events
10417 */
10418
10419 event->pending_kill = POLL_IN;
10420 if (events && atomic_dec_and_test(&event->event_limit)) {
10421 ret = 1;
10422 event->pending_kill = POLL_HUP;
10423 perf_event_disable_inatomic(event);
10424 event->pmu->stop(event, 0);
10425 }
10426
10427 if (event->attr.sigtrap) {
10428 /*
10429 * The desired behaviour of sigtrap vs invalid samples is a bit
10430 * tricky; on the one hand, one should not loose the SIGTRAP if
10431 * it is the first event, on the other hand, we should also not
10432 * trigger the WARN or override the data address.
10433 */
10434 bool valid_sample = sample_is_allowed(event, regs);
10435 unsigned int pending_id = 1;
10436 enum task_work_notify_mode notify_mode;
10437
10438 if (regs)
10439 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
10440
10441 notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME;
10442
10443 if (!event->pending_work &&
10444 !task_work_add(current, &event->pending_task, notify_mode)) {
10445 event->pending_work = pending_id;
10446 local_inc(&event->ctx->nr_no_switch_fast);
10447 WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
10448
10449 event->pending_addr = 0;
10450 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
10451 event->pending_addr = data->addr;
10452
10453 } else if (event->attr.exclude_kernel && valid_sample) {
10454 /*
10455 * Should not be able to return to user space without
10456 * consuming pending_work; with exceptions:
10457 *
10458 * 1. Where !exclude_kernel, events can overflow again
10459 * in the kernel without returning to user space.
10460 *
10461 * 2. Events that can overflow again before the IRQ-
10462 * work without user space progress (e.g. hrtimer).
10463 * To approximate progress (with false negatives),
10464 * check 32-bit hash of the current IP.
10465 */
10466 WARN_ON_ONCE(event->pending_work != pending_id);
10467 }
10468 }
10469
10470 READ_ONCE(event->overflow_handler)(event, data, regs);
10471
10472 if (*perf_event_fasync(event) && event->pending_kill) {
10473 event->pending_wakeup = 1;
10474 irq_work_queue(&event->pending_irq);
10475 }
10476 out:
10477 if (event->attr.aux_resume)
10478 perf_event_aux_pause(event->aux_event, false);
10479
10480 return ret;
10481 }
10482
perf_event_overflow(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)10483 int perf_event_overflow(struct perf_event *event,
10484 struct perf_sample_data *data,
10485 struct pt_regs *regs)
10486 {
10487 return __perf_event_overflow(event, 1, data, regs);
10488 }
10489
10490 /*
10491 * Generic software event infrastructure
10492 */
10493
10494 struct swevent_htable {
10495 struct swevent_hlist *swevent_hlist;
10496 struct mutex hlist_mutex;
10497 int hlist_refcount;
10498 };
10499 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
10500
10501 /*
10502 * We directly increment event->count and keep a second value in
10503 * event->hw.period_left to count intervals. This period event
10504 * is kept in the range [-sample_period, 0] so that we can use the
10505 * sign as trigger.
10506 */
10507
perf_swevent_set_period(struct perf_event * event)10508 u64 perf_swevent_set_period(struct perf_event *event)
10509 {
10510 struct hw_perf_event *hwc = &event->hw;
10511 u64 period = hwc->last_period;
10512 u64 nr, offset;
10513 s64 old, val;
10514
10515 hwc->last_period = hwc->sample_period;
10516
10517 old = local64_read(&hwc->period_left);
10518 do {
10519 val = old;
10520 if (val < 0)
10521 return 0;
10522
10523 nr = div64_u64(period + val, period);
10524 offset = nr * period;
10525 val -= offset;
10526 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
10527
10528 return nr;
10529 }
10530
perf_swevent_overflow(struct perf_event * event,u64 overflow,struct perf_sample_data * data,struct pt_regs * regs)10531 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
10532 struct perf_sample_data *data,
10533 struct pt_regs *regs)
10534 {
10535 struct hw_perf_event *hwc = &event->hw;
10536 int throttle = 0;
10537
10538 if (!overflow)
10539 overflow = perf_swevent_set_period(event);
10540
10541 if (hwc->interrupts == MAX_INTERRUPTS)
10542 return;
10543
10544 for (; overflow; overflow--) {
10545 if (__perf_event_overflow(event, throttle,
10546 data, regs)) {
10547 /*
10548 * We inhibit the overflow from happening when
10549 * hwc->interrupts == MAX_INTERRUPTS.
10550 */
10551 break;
10552 }
10553 throttle = 1;
10554 }
10555 }
10556
perf_swevent_event(struct perf_event * event,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)10557 static void perf_swevent_event(struct perf_event *event, u64 nr,
10558 struct perf_sample_data *data,
10559 struct pt_regs *regs)
10560 {
10561 struct hw_perf_event *hwc = &event->hw;
10562
10563 local64_add(nr, &event->count);
10564
10565 if (!regs)
10566 return;
10567
10568 if (!is_sampling_event(event))
10569 return;
10570
10571 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
10572 data->period = nr;
10573 return perf_swevent_overflow(event, 1, data, regs);
10574 } else
10575 data->period = event->hw.last_period;
10576
10577 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
10578 return perf_swevent_overflow(event, 1, data, regs);
10579
10580 if (local64_add_negative(nr, &hwc->period_left))
10581 return;
10582
10583 perf_swevent_overflow(event, 0, data, regs);
10584 }
10585
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)10586 int perf_exclude_event(struct perf_event *event, struct pt_regs *regs)
10587 {
10588 if (event->hw.state & PERF_HES_STOPPED)
10589 return 1;
10590
10591 if (regs) {
10592 if (event->attr.exclude_user && user_mode(regs))
10593 return 1;
10594
10595 if (event->attr.exclude_kernel && !user_mode(regs))
10596 return 1;
10597 }
10598
10599 return 0;
10600 }
10601
perf_swevent_match(struct perf_event * event,enum perf_type_id type,u32 event_id,struct perf_sample_data * data,struct pt_regs * regs)10602 static int perf_swevent_match(struct perf_event *event,
10603 enum perf_type_id type,
10604 u32 event_id,
10605 struct perf_sample_data *data,
10606 struct pt_regs *regs)
10607 {
10608 if (event->attr.type != type)
10609 return 0;
10610
10611 if (event->attr.config != event_id)
10612 return 0;
10613
10614 if (perf_exclude_event(event, regs))
10615 return 0;
10616
10617 return 1;
10618 }
10619
swevent_hash(u64 type,u32 event_id)10620 static inline u64 swevent_hash(u64 type, u32 event_id)
10621 {
10622 u64 val = event_id | (type << 32);
10623
10624 return hash_64(val, SWEVENT_HLIST_BITS);
10625 }
10626
10627 static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist * hlist,u64 type,u32 event_id)10628 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
10629 {
10630 u64 hash = swevent_hash(type, event_id);
10631
10632 return &hlist->heads[hash];
10633 }
10634
10635 /* For the read side: events when they trigger */
10636 static inline struct hlist_head *
find_swevent_head_rcu(struct swevent_htable * swhash,u64 type,u32 event_id)10637 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
10638 {
10639 struct swevent_hlist *hlist;
10640
10641 hlist = rcu_dereference(swhash->swevent_hlist);
10642 if (!hlist)
10643 return NULL;
10644
10645 return __find_swevent_head(hlist, type, event_id);
10646 }
10647
10648 /* For the event head insertion and removal in the hlist */
10649 static inline struct hlist_head *
find_swevent_head(struct swevent_htable * swhash,struct perf_event * event)10650 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
10651 {
10652 struct swevent_hlist *hlist;
10653 u32 event_id = event->attr.config;
10654 u64 type = event->attr.type;
10655
10656 /*
10657 * Event scheduling is always serialized against hlist allocation
10658 * and release. Which makes the protected version suitable here.
10659 * The context lock guarantees that.
10660 */
10661 hlist = rcu_dereference_protected(swhash->swevent_hlist,
10662 lockdep_is_held(&event->ctx->lock));
10663 if (!hlist)
10664 return NULL;
10665
10666 return __find_swevent_head(hlist, type, event_id);
10667 }
10668
do_perf_sw_event(enum perf_type_id type,u32 event_id,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)10669 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
10670 u64 nr,
10671 struct perf_sample_data *data,
10672 struct pt_regs *regs)
10673 {
10674 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10675 struct perf_event *event;
10676 struct hlist_head *head;
10677
10678 rcu_read_lock();
10679 head = find_swevent_head_rcu(swhash, type, event_id);
10680 if (!head)
10681 goto end;
10682
10683 hlist_for_each_entry_rcu(event, head, hlist_entry) {
10684 if (perf_swevent_match(event, type, event_id, data, regs))
10685 perf_swevent_event(event, nr, data, regs);
10686 }
10687 end:
10688 rcu_read_unlock();
10689 }
10690
10691 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
10692
perf_swevent_get_recursion_context(void)10693 int perf_swevent_get_recursion_context(void)
10694 {
10695 return get_recursion_context(current->perf_recursion);
10696 }
10697 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
10698
perf_swevent_put_recursion_context(int rctx)10699 void perf_swevent_put_recursion_context(int rctx)
10700 {
10701 put_recursion_context(current->perf_recursion, rctx);
10702 }
10703
___perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)10704 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10705 {
10706 struct perf_sample_data data;
10707
10708 if (WARN_ON_ONCE(!regs))
10709 return;
10710
10711 perf_sample_data_init(&data, addr, 0);
10712 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
10713 }
10714
__perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)10715 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10716 {
10717 int rctx;
10718
10719 preempt_disable_notrace();
10720 rctx = perf_swevent_get_recursion_context();
10721 if (unlikely(rctx < 0))
10722 goto fail;
10723
10724 ___perf_sw_event(event_id, nr, regs, addr);
10725
10726 perf_swevent_put_recursion_context(rctx);
10727 fail:
10728 preempt_enable_notrace();
10729 }
10730
perf_swevent_read(struct perf_event * event)10731 static void perf_swevent_read(struct perf_event *event)
10732 {
10733 }
10734
perf_swevent_add(struct perf_event * event,int flags)10735 static int perf_swevent_add(struct perf_event *event, int flags)
10736 {
10737 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10738 struct hw_perf_event *hwc = &event->hw;
10739 struct hlist_head *head;
10740
10741 if (is_sampling_event(event)) {
10742 hwc->last_period = hwc->sample_period;
10743 perf_swevent_set_period(event);
10744 }
10745
10746 hwc->state = !(flags & PERF_EF_START);
10747
10748 head = find_swevent_head(swhash, event);
10749 if (WARN_ON_ONCE(!head))
10750 return -EINVAL;
10751
10752 hlist_add_head_rcu(&event->hlist_entry, head);
10753 perf_event_update_userpage(event);
10754
10755 return 0;
10756 }
10757
perf_swevent_del(struct perf_event * event,int flags)10758 static void perf_swevent_del(struct perf_event *event, int flags)
10759 {
10760 hlist_del_rcu(&event->hlist_entry);
10761 }
10762
perf_swevent_start(struct perf_event * event,int flags)10763 static void perf_swevent_start(struct perf_event *event, int flags)
10764 {
10765 event->hw.state = 0;
10766 }
10767
perf_swevent_stop(struct perf_event * event,int flags)10768 static void perf_swevent_stop(struct perf_event *event, int flags)
10769 {
10770 event->hw.state = PERF_HES_STOPPED;
10771 }
10772
10773 /* Deref the hlist from the update side */
10774 static inline struct swevent_hlist *
swevent_hlist_deref(struct swevent_htable * swhash)10775 swevent_hlist_deref(struct swevent_htable *swhash)
10776 {
10777 return rcu_dereference_protected(swhash->swevent_hlist,
10778 lockdep_is_held(&swhash->hlist_mutex));
10779 }
10780
swevent_hlist_release(struct swevent_htable * swhash)10781 static void swevent_hlist_release(struct swevent_htable *swhash)
10782 {
10783 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
10784
10785 if (!hlist)
10786 return;
10787
10788 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
10789 kfree_rcu(hlist, rcu_head);
10790 }
10791
swevent_hlist_put_cpu(int cpu)10792 static void swevent_hlist_put_cpu(int cpu)
10793 {
10794 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10795
10796 mutex_lock(&swhash->hlist_mutex);
10797
10798 if (!--swhash->hlist_refcount)
10799 swevent_hlist_release(swhash);
10800
10801 mutex_unlock(&swhash->hlist_mutex);
10802 }
10803
swevent_hlist_put(void)10804 static void swevent_hlist_put(void)
10805 {
10806 int cpu;
10807
10808 for_each_possible_cpu(cpu)
10809 swevent_hlist_put_cpu(cpu);
10810 }
10811
swevent_hlist_get_cpu(int cpu)10812 static int swevent_hlist_get_cpu(int cpu)
10813 {
10814 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10815 int err = 0;
10816
10817 mutex_lock(&swhash->hlist_mutex);
10818 if (!swevent_hlist_deref(swhash) &&
10819 cpumask_test_cpu(cpu, perf_online_mask)) {
10820 struct swevent_hlist *hlist;
10821
10822 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
10823 if (!hlist) {
10824 err = -ENOMEM;
10825 goto exit;
10826 }
10827 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10828 }
10829 swhash->hlist_refcount++;
10830 exit:
10831 mutex_unlock(&swhash->hlist_mutex);
10832
10833 return err;
10834 }
10835
swevent_hlist_get(void)10836 static int swevent_hlist_get(void)
10837 {
10838 int err, cpu, failed_cpu;
10839
10840 mutex_lock(&pmus_lock);
10841 for_each_possible_cpu(cpu) {
10842 err = swevent_hlist_get_cpu(cpu);
10843 if (err) {
10844 failed_cpu = cpu;
10845 goto fail;
10846 }
10847 }
10848 mutex_unlock(&pmus_lock);
10849 return 0;
10850 fail:
10851 for_each_possible_cpu(cpu) {
10852 if (cpu == failed_cpu)
10853 break;
10854 swevent_hlist_put_cpu(cpu);
10855 }
10856 mutex_unlock(&pmus_lock);
10857 return err;
10858 }
10859
10860 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10861
sw_perf_event_destroy(struct perf_event * event)10862 static void sw_perf_event_destroy(struct perf_event *event)
10863 {
10864 u64 event_id = event->attr.config;
10865
10866 WARN_ON(event->parent);
10867
10868 static_key_slow_dec(&perf_swevent_enabled[event_id]);
10869 swevent_hlist_put();
10870 }
10871
10872 static struct pmu perf_cpu_clock; /* fwd declaration */
10873 static struct pmu perf_task_clock;
10874
perf_swevent_init(struct perf_event * event)10875 static int perf_swevent_init(struct perf_event *event)
10876 {
10877 u64 event_id = event->attr.config;
10878
10879 if (event->attr.type != PERF_TYPE_SOFTWARE)
10880 return -ENOENT;
10881
10882 /*
10883 * no branch sampling for software events
10884 */
10885 if (has_branch_stack(event))
10886 return -EOPNOTSUPP;
10887
10888 switch (event_id) {
10889 case PERF_COUNT_SW_CPU_CLOCK:
10890 event->attr.type = perf_cpu_clock.type;
10891 return -ENOENT;
10892 case PERF_COUNT_SW_TASK_CLOCK:
10893 event->attr.type = perf_task_clock.type;
10894 return -ENOENT;
10895
10896 default:
10897 break;
10898 }
10899
10900 if (event_id >= PERF_COUNT_SW_MAX)
10901 return -ENOENT;
10902
10903 if (!event->parent) {
10904 int err;
10905
10906 err = swevent_hlist_get();
10907 if (err)
10908 return err;
10909
10910 static_key_slow_inc(&perf_swevent_enabled[event_id]);
10911 event->destroy = sw_perf_event_destroy;
10912 }
10913
10914 return 0;
10915 }
10916
10917 static struct pmu perf_swevent = {
10918 .task_ctx_nr = perf_sw_context,
10919
10920 .capabilities = PERF_PMU_CAP_NO_NMI,
10921
10922 .event_init = perf_swevent_init,
10923 .add = perf_swevent_add,
10924 .del = perf_swevent_del,
10925 .start = perf_swevent_start,
10926 .stop = perf_swevent_stop,
10927 .read = perf_swevent_read,
10928 };
10929
10930 #ifdef CONFIG_EVENT_TRACING
10931
tp_perf_event_destroy(struct perf_event * event)10932 static void tp_perf_event_destroy(struct perf_event *event)
10933 {
10934 perf_trace_destroy(event);
10935 }
10936
perf_tp_event_init(struct perf_event * event)10937 static int perf_tp_event_init(struct perf_event *event)
10938 {
10939 int err;
10940
10941 if (event->attr.type != PERF_TYPE_TRACEPOINT)
10942 return -ENOENT;
10943
10944 /*
10945 * no branch sampling for tracepoint events
10946 */
10947 if (has_branch_stack(event))
10948 return -EOPNOTSUPP;
10949
10950 err = perf_trace_init(event);
10951 if (err)
10952 return err;
10953
10954 event->destroy = tp_perf_event_destroy;
10955
10956 return 0;
10957 }
10958
10959 static struct pmu perf_tracepoint = {
10960 .task_ctx_nr = perf_sw_context,
10961
10962 .event_init = perf_tp_event_init,
10963 .add = perf_trace_add,
10964 .del = perf_trace_del,
10965 .start = perf_swevent_start,
10966 .stop = perf_swevent_stop,
10967 .read = perf_swevent_read,
10968 };
10969
perf_tp_filter_match(struct perf_event * event,struct perf_raw_record * raw)10970 static int perf_tp_filter_match(struct perf_event *event,
10971 struct perf_raw_record *raw)
10972 {
10973 void *record = raw->frag.data;
10974
10975 /* only top level events have filters set */
10976 if (event->parent)
10977 event = event->parent;
10978
10979 if (likely(!event->filter) || filter_match_preds(event->filter, record))
10980 return 1;
10981 return 0;
10982 }
10983
perf_tp_event_match(struct perf_event * event,struct perf_raw_record * raw,struct pt_regs * regs)10984 static int perf_tp_event_match(struct perf_event *event,
10985 struct perf_raw_record *raw,
10986 struct pt_regs *regs)
10987 {
10988 if (event->hw.state & PERF_HES_STOPPED)
10989 return 0;
10990 /*
10991 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10992 */
10993 if (event->attr.exclude_kernel && !user_mode(regs))
10994 return 0;
10995
10996 if (!perf_tp_filter_match(event, raw))
10997 return 0;
10998
10999 return 1;
11000 }
11001
perf_trace_run_bpf_submit(void * raw_data,int size,int rctx,struct trace_event_call * call,u64 count,struct pt_regs * regs,struct hlist_head * head,struct task_struct * task)11002 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
11003 struct trace_event_call *call, u64 count,
11004 struct pt_regs *regs, struct hlist_head *head,
11005 struct task_struct *task)
11006 {
11007 if (bpf_prog_array_valid(call)) {
11008 *(struct pt_regs **)raw_data = regs;
11009 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
11010 perf_swevent_put_recursion_context(rctx);
11011 return;
11012 }
11013 }
11014 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
11015 rctx, task);
11016 }
11017 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
11018
__perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_raw_record * raw,struct perf_event * event)11019 static void __perf_tp_event_target_task(u64 count, void *record,
11020 struct pt_regs *regs,
11021 struct perf_sample_data *data,
11022 struct perf_raw_record *raw,
11023 struct perf_event *event)
11024 {
11025 struct trace_entry *entry = record;
11026
11027 if (event->attr.config != entry->type)
11028 return;
11029 /* Cannot deliver synchronous signal to other task. */
11030 if (event->attr.sigtrap)
11031 return;
11032 if (perf_tp_event_match(event, raw, regs)) {
11033 perf_sample_data_init(data, 0, 0);
11034 perf_sample_save_raw_data(data, event, raw);
11035 perf_swevent_event(event, count, data, regs);
11036 }
11037 }
11038
perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_raw_record * raw,struct perf_event_context * ctx)11039 static void perf_tp_event_target_task(u64 count, void *record,
11040 struct pt_regs *regs,
11041 struct perf_sample_data *data,
11042 struct perf_raw_record *raw,
11043 struct perf_event_context *ctx)
11044 {
11045 unsigned int cpu = smp_processor_id();
11046 struct pmu *pmu = &perf_tracepoint;
11047 struct perf_event *event, *sibling;
11048
11049 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
11050 __perf_tp_event_target_task(count, record, regs, data, raw, event);
11051 for_each_sibling_event(sibling, event)
11052 __perf_tp_event_target_task(count, record, regs, data, raw, sibling);
11053 }
11054
11055 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
11056 __perf_tp_event_target_task(count, record, regs, data, raw, event);
11057 for_each_sibling_event(sibling, event)
11058 __perf_tp_event_target_task(count, record, regs, data, raw, sibling);
11059 }
11060 }
11061
perf_tp_event(u16 event_type,u64 count,void * record,int entry_size,struct pt_regs * regs,struct hlist_head * head,int rctx,struct task_struct * task)11062 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
11063 struct pt_regs *regs, struct hlist_head *head, int rctx,
11064 struct task_struct *task)
11065 {
11066 struct perf_sample_data data;
11067 struct perf_event *event;
11068
11069 struct perf_raw_record raw = {
11070 .frag = {
11071 .size = entry_size,
11072 .data = record,
11073 },
11074 };
11075
11076 perf_trace_buf_update(record, event_type);
11077
11078 hlist_for_each_entry_rcu(event, head, hlist_entry) {
11079 if (perf_tp_event_match(event, &raw, regs)) {
11080 /*
11081 * Here use the same on-stack perf_sample_data,
11082 * some members in data are event-specific and
11083 * need to be re-computed for different sweveents.
11084 * Re-initialize data->sample_flags safely to avoid
11085 * the problem that next event skips preparing data
11086 * because data->sample_flags is set.
11087 */
11088 perf_sample_data_init(&data, 0, 0);
11089 perf_sample_save_raw_data(&data, event, &raw);
11090 perf_swevent_event(event, count, &data, regs);
11091 }
11092 }
11093
11094 /*
11095 * If we got specified a target task, also iterate its context and
11096 * deliver this event there too.
11097 */
11098 if (task && task != current) {
11099 struct perf_event_context *ctx;
11100
11101 rcu_read_lock();
11102 ctx = rcu_dereference(task->perf_event_ctxp);
11103 if (!ctx)
11104 goto unlock;
11105
11106 raw_spin_lock(&ctx->lock);
11107 perf_tp_event_target_task(count, record, regs, &data, &raw, ctx);
11108 raw_spin_unlock(&ctx->lock);
11109 unlock:
11110 rcu_read_unlock();
11111 }
11112
11113 perf_swevent_put_recursion_context(rctx);
11114 }
11115 EXPORT_SYMBOL_GPL(perf_tp_event);
11116
11117 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
11118 /*
11119 * Flags in config, used by dynamic PMU kprobe and uprobe
11120 * The flags should match following PMU_FORMAT_ATTR().
11121 *
11122 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
11123 * if not set, create kprobe/uprobe
11124 *
11125 * The following values specify a reference counter (or semaphore in the
11126 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
11127 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
11128 *
11129 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
11130 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
11131 */
11132 enum perf_probe_config {
11133 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
11134 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
11135 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
11136 };
11137
11138 PMU_FORMAT_ATTR(retprobe, "config:0");
11139 #endif
11140
11141 #ifdef CONFIG_KPROBE_EVENTS
11142 static struct attribute *kprobe_attrs[] = {
11143 &format_attr_retprobe.attr,
11144 NULL,
11145 };
11146
11147 static struct attribute_group kprobe_format_group = {
11148 .name = "format",
11149 .attrs = kprobe_attrs,
11150 };
11151
11152 static const struct attribute_group *kprobe_attr_groups[] = {
11153 &kprobe_format_group,
11154 NULL,
11155 };
11156
11157 static int perf_kprobe_event_init(struct perf_event *event);
11158 static struct pmu perf_kprobe = {
11159 .task_ctx_nr = perf_sw_context,
11160 .event_init = perf_kprobe_event_init,
11161 .add = perf_trace_add,
11162 .del = perf_trace_del,
11163 .start = perf_swevent_start,
11164 .stop = perf_swevent_stop,
11165 .read = perf_swevent_read,
11166 .attr_groups = kprobe_attr_groups,
11167 };
11168
perf_kprobe_event_init(struct perf_event * event)11169 static int perf_kprobe_event_init(struct perf_event *event)
11170 {
11171 int err;
11172 bool is_retprobe;
11173
11174 if (event->attr.type != perf_kprobe.type)
11175 return -ENOENT;
11176
11177 if (!perfmon_capable())
11178 return -EACCES;
11179
11180 /*
11181 * no branch sampling for probe events
11182 */
11183 if (has_branch_stack(event))
11184 return -EOPNOTSUPP;
11185
11186 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
11187 err = perf_kprobe_init(event, is_retprobe);
11188 if (err)
11189 return err;
11190
11191 event->destroy = perf_kprobe_destroy;
11192
11193 return 0;
11194 }
11195 #endif /* CONFIG_KPROBE_EVENTS */
11196
11197 #ifdef CONFIG_UPROBE_EVENTS
11198 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
11199
11200 static struct attribute *uprobe_attrs[] = {
11201 &format_attr_retprobe.attr,
11202 &format_attr_ref_ctr_offset.attr,
11203 NULL,
11204 };
11205
11206 static struct attribute_group uprobe_format_group = {
11207 .name = "format",
11208 .attrs = uprobe_attrs,
11209 };
11210
11211 static const struct attribute_group *uprobe_attr_groups[] = {
11212 &uprobe_format_group,
11213 NULL,
11214 };
11215
11216 static int perf_uprobe_event_init(struct perf_event *event);
11217 static struct pmu perf_uprobe = {
11218 .task_ctx_nr = perf_sw_context,
11219 .event_init = perf_uprobe_event_init,
11220 .add = perf_trace_add,
11221 .del = perf_trace_del,
11222 .start = perf_swevent_start,
11223 .stop = perf_swevent_stop,
11224 .read = perf_swevent_read,
11225 .attr_groups = uprobe_attr_groups,
11226 };
11227
perf_uprobe_event_init(struct perf_event * event)11228 static int perf_uprobe_event_init(struct perf_event *event)
11229 {
11230 int err;
11231 unsigned long ref_ctr_offset;
11232 bool is_retprobe;
11233
11234 if (event->attr.type != perf_uprobe.type)
11235 return -ENOENT;
11236
11237 if (!capable(CAP_SYS_ADMIN))
11238 return -EACCES;
11239
11240 /*
11241 * no branch sampling for probe events
11242 */
11243 if (has_branch_stack(event))
11244 return -EOPNOTSUPP;
11245
11246 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
11247 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
11248 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
11249 if (err)
11250 return err;
11251
11252 event->destroy = perf_uprobe_destroy;
11253
11254 return 0;
11255 }
11256 #endif /* CONFIG_UPROBE_EVENTS */
11257
perf_tp_register(void)11258 static inline void perf_tp_register(void)
11259 {
11260 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
11261 #ifdef CONFIG_KPROBE_EVENTS
11262 perf_pmu_register(&perf_kprobe, "kprobe", -1);
11263 #endif
11264 #ifdef CONFIG_UPROBE_EVENTS
11265 perf_pmu_register(&perf_uprobe, "uprobe", -1);
11266 #endif
11267 }
11268
perf_event_free_filter(struct perf_event * event)11269 static void perf_event_free_filter(struct perf_event *event)
11270 {
11271 ftrace_profile_free_filter(event);
11272 }
11273
11274 /*
11275 * returns true if the event is a tracepoint, or a kprobe/upprobe created
11276 * with perf_event_open()
11277 */
perf_event_is_tracing(struct perf_event * event)11278 static inline bool perf_event_is_tracing(struct perf_event *event)
11279 {
11280 if (event->pmu == &perf_tracepoint)
11281 return true;
11282 #ifdef CONFIG_KPROBE_EVENTS
11283 if (event->pmu == &perf_kprobe)
11284 return true;
11285 #endif
11286 #ifdef CONFIG_UPROBE_EVENTS
11287 if (event->pmu == &perf_uprobe)
11288 return true;
11289 #endif
11290 return false;
11291 }
11292
__perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)11293 static int __perf_event_set_bpf_prog(struct perf_event *event,
11294 struct bpf_prog *prog,
11295 u64 bpf_cookie)
11296 {
11297 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
11298
11299 if (event->state <= PERF_EVENT_STATE_REVOKED)
11300 return -ENODEV;
11301
11302 if (!perf_event_is_tracing(event))
11303 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
11304
11305 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
11306 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
11307 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
11308 is_syscall_tp = is_syscall_trace_event(event->tp_event);
11309 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
11310 /* bpf programs can only be attached to u/kprobe or tracepoint */
11311 return -EINVAL;
11312
11313 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
11314 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
11315 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
11316 return -EINVAL;
11317
11318 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe)
11319 /* only uprobe programs are allowed to be sleepable */
11320 return -EINVAL;
11321
11322 /* Kprobe override only works for kprobes, not uprobes. */
11323 if (prog->kprobe_override && !is_kprobe)
11324 return -EINVAL;
11325
11326 /* Writing to context allowed only for uprobes. */
11327 if (prog->aux->kprobe_write_ctx && !is_uprobe)
11328 return -EINVAL;
11329
11330 if (is_tracepoint || is_syscall_tp) {
11331 int off = trace_event_get_offsets(event->tp_event);
11332
11333 if (prog->aux->max_ctx_offset > off)
11334 return -EACCES;
11335 }
11336
11337 return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
11338 }
11339
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)11340 int perf_event_set_bpf_prog(struct perf_event *event,
11341 struct bpf_prog *prog,
11342 u64 bpf_cookie)
11343 {
11344 struct perf_event_context *ctx;
11345 int ret;
11346
11347 ctx = perf_event_ctx_lock(event);
11348 ret = __perf_event_set_bpf_prog(event, prog, bpf_cookie);
11349 perf_event_ctx_unlock(event, ctx);
11350
11351 return ret;
11352 }
11353
perf_event_free_bpf_prog(struct perf_event * event)11354 void perf_event_free_bpf_prog(struct perf_event *event)
11355 {
11356 if (!event->prog)
11357 return;
11358
11359 if (!perf_event_is_tracing(event)) {
11360 perf_event_free_bpf_handler(event);
11361 return;
11362 }
11363 perf_event_detach_bpf_prog(event);
11364 }
11365
11366 #else
11367
perf_tp_register(void)11368 static inline void perf_tp_register(void)
11369 {
11370 }
11371
perf_event_free_filter(struct perf_event * event)11372 static void perf_event_free_filter(struct perf_event *event)
11373 {
11374 }
11375
__perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)11376 static int __perf_event_set_bpf_prog(struct perf_event *event,
11377 struct bpf_prog *prog,
11378 u64 bpf_cookie)
11379 {
11380 return -ENOENT;
11381 }
11382
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)11383 int perf_event_set_bpf_prog(struct perf_event *event,
11384 struct bpf_prog *prog,
11385 u64 bpf_cookie)
11386 {
11387 return -ENOENT;
11388 }
11389
perf_event_free_bpf_prog(struct perf_event * event)11390 void perf_event_free_bpf_prog(struct perf_event *event)
11391 {
11392 }
11393 #endif /* CONFIG_EVENT_TRACING */
11394
11395 #ifdef CONFIG_HAVE_HW_BREAKPOINT
perf_bp_event(struct perf_event * bp,void * data)11396 void perf_bp_event(struct perf_event *bp, void *data)
11397 {
11398 struct perf_sample_data sample;
11399 struct pt_regs *regs = data;
11400
11401 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
11402
11403 if (!bp->hw.state && !perf_exclude_event(bp, regs))
11404 perf_swevent_event(bp, 1, &sample, regs);
11405 }
11406 #endif
11407
11408 /*
11409 * Allocate a new address filter
11410 */
11411 static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event * event,struct list_head * filters)11412 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
11413 {
11414 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
11415 struct perf_addr_filter *filter;
11416
11417 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
11418 if (!filter)
11419 return NULL;
11420
11421 INIT_LIST_HEAD(&filter->entry);
11422 list_add_tail(&filter->entry, filters);
11423
11424 return filter;
11425 }
11426
free_filters_list(struct list_head * filters)11427 static void free_filters_list(struct list_head *filters)
11428 {
11429 struct perf_addr_filter *filter, *iter;
11430
11431 list_for_each_entry_safe(filter, iter, filters, entry) {
11432 path_put(&filter->path);
11433 list_del(&filter->entry);
11434 kfree(filter);
11435 }
11436 }
11437
11438 /*
11439 * Free existing address filters and optionally install new ones
11440 */
perf_addr_filters_splice(struct perf_event * event,struct list_head * head)11441 static void perf_addr_filters_splice(struct perf_event *event,
11442 struct list_head *head)
11443 {
11444 unsigned long flags;
11445 LIST_HEAD(list);
11446
11447 if (!has_addr_filter(event))
11448 return;
11449
11450 /* don't bother with children, they don't have their own filters */
11451 if (event->parent)
11452 return;
11453
11454 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
11455
11456 list_splice_init(&event->addr_filters.list, &list);
11457 if (head)
11458 list_splice(head, &event->addr_filters.list);
11459
11460 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
11461
11462 free_filters_list(&list);
11463 }
11464
perf_free_addr_filters(struct perf_event * event)11465 static void perf_free_addr_filters(struct perf_event *event)
11466 {
11467 /*
11468 * Used during free paths, there is no concurrency.
11469 */
11470 if (list_empty(&event->addr_filters.list))
11471 return;
11472
11473 perf_addr_filters_splice(event, NULL);
11474 }
11475
11476 /*
11477 * Scan through mm's vmas and see if one of them matches the
11478 * @filter; if so, adjust filter's address range.
11479 * Called with mm::mmap_lock down for reading.
11480 */
perf_addr_filter_apply(struct perf_addr_filter * filter,struct mm_struct * mm,struct perf_addr_filter_range * fr)11481 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
11482 struct mm_struct *mm,
11483 struct perf_addr_filter_range *fr)
11484 {
11485 struct vm_area_struct *vma;
11486 VMA_ITERATOR(vmi, mm, 0);
11487
11488 for_each_vma(vmi, vma) {
11489 if (!vma->vm_file)
11490 continue;
11491
11492 if (perf_addr_filter_vma_adjust(filter, vma, fr))
11493 return;
11494 }
11495 }
11496
11497 /*
11498 * Update event's address range filters based on the
11499 * task's existing mappings, if any.
11500 */
perf_event_addr_filters_apply(struct perf_event * event)11501 static void perf_event_addr_filters_apply(struct perf_event *event)
11502 {
11503 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11504 struct task_struct *task = READ_ONCE(event->ctx->task);
11505 struct perf_addr_filter *filter;
11506 struct mm_struct *mm = NULL;
11507 unsigned int count = 0;
11508 unsigned long flags;
11509
11510 /*
11511 * We may observe TASK_TOMBSTONE, which means that the event tear-down
11512 * will stop on the parent's child_mutex that our caller is also holding
11513 */
11514 if (task == TASK_TOMBSTONE)
11515 return;
11516
11517 if (ifh->nr_file_filters) {
11518 mm = get_task_mm(task);
11519 if (!mm)
11520 goto restart;
11521
11522 mmap_read_lock(mm);
11523 }
11524
11525 raw_spin_lock_irqsave(&ifh->lock, flags);
11526 list_for_each_entry(filter, &ifh->list, entry) {
11527 if (filter->path.dentry) {
11528 /*
11529 * Adjust base offset if the filter is associated to a
11530 * binary that needs to be mapped:
11531 */
11532 event->addr_filter_ranges[count].start = 0;
11533 event->addr_filter_ranges[count].size = 0;
11534
11535 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
11536 } else {
11537 event->addr_filter_ranges[count].start = filter->offset;
11538 event->addr_filter_ranges[count].size = filter->size;
11539 }
11540
11541 count++;
11542 }
11543
11544 event->addr_filters_gen++;
11545 raw_spin_unlock_irqrestore(&ifh->lock, flags);
11546
11547 if (ifh->nr_file_filters) {
11548 mmap_read_unlock(mm);
11549
11550 mmput(mm);
11551 }
11552
11553 restart:
11554 perf_event_stop(event, 1);
11555 }
11556
11557 /*
11558 * Address range filtering: limiting the data to certain
11559 * instruction address ranges. Filters are ioctl()ed to us from
11560 * userspace as ascii strings.
11561 *
11562 * Filter string format:
11563 *
11564 * ACTION RANGE_SPEC
11565 * where ACTION is one of the
11566 * * "filter": limit the trace to this region
11567 * * "start": start tracing from this address
11568 * * "stop": stop tracing at this address/region;
11569 * RANGE_SPEC is
11570 * * for kernel addresses: <start address>[/<size>]
11571 * * for object files: <start address>[/<size>]@</path/to/object/file>
11572 *
11573 * if <size> is not specified or is zero, the range is treated as a single
11574 * address; not valid for ACTION=="filter".
11575 */
11576 enum {
11577 IF_ACT_NONE = -1,
11578 IF_ACT_FILTER,
11579 IF_ACT_START,
11580 IF_ACT_STOP,
11581 IF_SRC_FILE,
11582 IF_SRC_KERNEL,
11583 IF_SRC_FILEADDR,
11584 IF_SRC_KERNELADDR,
11585 };
11586
11587 enum {
11588 IF_STATE_ACTION = 0,
11589 IF_STATE_SOURCE,
11590 IF_STATE_END,
11591 };
11592
11593 static const match_table_t if_tokens = {
11594 { IF_ACT_FILTER, "filter" },
11595 { IF_ACT_START, "start" },
11596 { IF_ACT_STOP, "stop" },
11597 { IF_SRC_FILE, "%u/%u@%s" },
11598 { IF_SRC_KERNEL, "%u/%u" },
11599 { IF_SRC_FILEADDR, "%u@%s" },
11600 { IF_SRC_KERNELADDR, "%u" },
11601 { IF_ACT_NONE, NULL },
11602 };
11603
11604 /*
11605 * Address filter string parser
11606 */
11607 static int
perf_event_parse_addr_filter(struct perf_event * event,char * fstr,struct list_head * filters)11608 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
11609 struct list_head *filters)
11610 {
11611 struct perf_addr_filter *filter = NULL;
11612 char *start, *orig, *filename = NULL;
11613 substring_t args[MAX_OPT_ARGS];
11614 int state = IF_STATE_ACTION, token;
11615 unsigned int kernel = 0;
11616 int ret = -EINVAL;
11617
11618 orig = fstr = kstrdup(fstr, GFP_KERNEL);
11619 if (!fstr)
11620 return -ENOMEM;
11621
11622 while ((start = strsep(&fstr, " ,\n")) != NULL) {
11623 static const enum perf_addr_filter_action_t actions[] = {
11624 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
11625 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
11626 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
11627 };
11628 ret = -EINVAL;
11629
11630 if (!*start)
11631 continue;
11632
11633 /* filter definition begins */
11634 if (state == IF_STATE_ACTION) {
11635 filter = perf_addr_filter_new(event, filters);
11636 if (!filter)
11637 goto fail;
11638 }
11639
11640 token = match_token(start, if_tokens, args);
11641 switch (token) {
11642 case IF_ACT_FILTER:
11643 case IF_ACT_START:
11644 case IF_ACT_STOP:
11645 if (state != IF_STATE_ACTION)
11646 goto fail;
11647
11648 filter->action = actions[token];
11649 state = IF_STATE_SOURCE;
11650 break;
11651
11652 case IF_SRC_KERNELADDR:
11653 case IF_SRC_KERNEL:
11654 kernel = 1;
11655 fallthrough;
11656
11657 case IF_SRC_FILEADDR:
11658 case IF_SRC_FILE:
11659 if (state != IF_STATE_SOURCE)
11660 goto fail;
11661
11662 *args[0].to = 0;
11663 ret = kstrtoul(args[0].from, 0, &filter->offset);
11664 if (ret)
11665 goto fail;
11666
11667 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
11668 *args[1].to = 0;
11669 ret = kstrtoul(args[1].from, 0, &filter->size);
11670 if (ret)
11671 goto fail;
11672 }
11673
11674 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
11675 int fpos = token == IF_SRC_FILE ? 2 : 1;
11676
11677 kfree(filename);
11678 filename = match_strdup(&args[fpos]);
11679 if (!filename) {
11680 ret = -ENOMEM;
11681 goto fail;
11682 }
11683 }
11684
11685 state = IF_STATE_END;
11686 break;
11687
11688 default:
11689 goto fail;
11690 }
11691
11692 /*
11693 * Filter definition is fully parsed, validate and install it.
11694 * Make sure that it doesn't contradict itself or the event's
11695 * attribute.
11696 */
11697 if (state == IF_STATE_END) {
11698 ret = -EINVAL;
11699
11700 /*
11701 * ACTION "filter" must have a non-zero length region
11702 * specified.
11703 */
11704 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
11705 !filter->size)
11706 goto fail;
11707
11708 if (!kernel) {
11709 if (!filename)
11710 goto fail;
11711
11712 /*
11713 * For now, we only support file-based filters
11714 * in per-task events; doing so for CPU-wide
11715 * events requires additional context switching
11716 * trickery, since same object code will be
11717 * mapped at different virtual addresses in
11718 * different processes.
11719 */
11720 ret = -EOPNOTSUPP;
11721 if (!event->ctx->task)
11722 goto fail;
11723
11724 /* look up the path and grab its inode */
11725 ret = kern_path(filename, LOOKUP_FOLLOW,
11726 &filter->path);
11727 if (ret)
11728 goto fail;
11729
11730 ret = -EINVAL;
11731 if (!filter->path.dentry ||
11732 !S_ISREG(d_inode(filter->path.dentry)
11733 ->i_mode))
11734 goto fail;
11735
11736 event->addr_filters.nr_file_filters++;
11737 }
11738
11739 /* ready to consume more filters */
11740 kfree(filename);
11741 filename = NULL;
11742 state = IF_STATE_ACTION;
11743 filter = NULL;
11744 kernel = 0;
11745 }
11746 }
11747
11748 if (state != IF_STATE_ACTION)
11749 goto fail;
11750
11751 kfree(filename);
11752 kfree(orig);
11753
11754 return 0;
11755
11756 fail:
11757 kfree(filename);
11758 free_filters_list(filters);
11759 kfree(orig);
11760
11761 return ret;
11762 }
11763
11764 static int
perf_event_set_addr_filter(struct perf_event * event,char * filter_str)11765 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
11766 {
11767 LIST_HEAD(filters);
11768 int ret;
11769
11770 /*
11771 * Since this is called in perf_ioctl() path, we're already holding
11772 * ctx::mutex.
11773 */
11774 lockdep_assert_held(&event->ctx->mutex);
11775
11776 if (WARN_ON_ONCE(event->parent))
11777 return -EINVAL;
11778
11779 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
11780 if (ret)
11781 goto fail_clear_files;
11782
11783 ret = event->pmu->addr_filters_validate(&filters);
11784 if (ret)
11785 goto fail_free_filters;
11786
11787 /* remove existing filters, if any */
11788 perf_addr_filters_splice(event, &filters);
11789
11790 /* install new filters */
11791 perf_event_for_each_child(event, perf_event_addr_filters_apply);
11792
11793 return ret;
11794
11795 fail_free_filters:
11796 free_filters_list(&filters);
11797
11798 fail_clear_files:
11799 event->addr_filters.nr_file_filters = 0;
11800
11801 return ret;
11802 }
11803
perf_event_set_filter(struct perf_event * event,void __user * arg)11804 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11805 {
11806 int ret = -EINVAL;
11807 char *filter_str;
11808
11809 filter_str = strndup_user(arg, PAGE_SIZE);
11810 if (IS_ERR(filter_str))
11811 return PTR_ERR(filter_str);
11812
11813 #ifdef CONFIG_EVENT_TRACING
11814 if (perf_event_is_tracing(event)) {
11815 struct perf_event_context *ctx = event->ctx;
11816
11817 /*
11818 * Beware, here be dragons!!
11819 *
11820 * the tracepoint muck will deadlock against ctx->mutex, but
11821 * the tracepoint stuff does not actually need it. So
11822 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11823 * already have a reference on ctx.
11824 *
11825 * This can result in event getting moved to a different ctx,
11826 * but that does not affect the tracepoint state.
11827 */
11828 mutex_unlock(&ctx->mutex);
11829 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11830 mutex_lock(&ctx->mutex);
11831 } else
11832 #endif
11833 if (has_addr_filter(event))
11834 ret = perf_event_set_addr_filter(event, filter_str);
11835
11836 kfree(filter_str);
11837 return ret;
11838 }
11839
11840 /*
11841 * hrtimer based swevent callback
11842 */
11843
perf_swevent_hrtimer(struct hrtimer * hrtimer)11844 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11845 {
11846 enum hrtimer_restart ret = HRTIMER_RESTART;
11847 struct perf_sample_data data;
11848 struct pt_regs *regs;
11849 struct perf_event *event;
11850 u64 period;
11851
11852 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11853
11854 if (event->state != PERF_EVENT_STATE_ACTIVE ||
11855 event->hw.state & PERF_HES_STOPPED)
11856 return HRTIMER_NORESTART;
11857
11858 event->pmu->read(event);
11859
11860 perf_sample_data_init(&data, 0, event->hw.last_period);
11861 regs = get_irq_regs();
11862
11863 if (regs && !perf_exclude_event(event, regs)) {
11864 if (!(event->attr.exclude_idle && is_idle_task(current)))
11865 if (__perf_event_overflow(event, 1, &data, regs))
11866 ret = HRTIMER_NORESTART;
11867 }
11868
11869 period = max_t(u64, 10000, event->hw.sample_period);
11870 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11871
11872 return ret;
11873 }
11874
perf_swevent_start_hrtimer(struct perf_event * event)11875 static void perf_swevent_start_hrtimer(struct perf_event *event)
11876 {
11877 struct hw_perf_event *hwc = &event->hw;
11878 s64 period;
11879
11880 if (!is_sampling_event(event))
11881 return;
11882
11883 period = local64_read(&hwc->period_left);
11884 if (period) {
11885 if (period < 0)
11886 period = 10000;
11887
11888 local64_set(&hwc->period_left, 0);
11889 } else {
11890 period = max_t(u64, 10000, hwc->sample_period);
11891 }
11892 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11893 HRTIMER_MODE_REL_PINNED_HARD);
11894 }
11895
perf_swevent_cancel_hrtimer(struct perf_event * event)11896 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11897 {
11898 struct hw_perf_event *hwc = &event->hw;
11899
11900 /*
11901 * Careful: this function can be triggered in the hrtimer handler,
11902 * for cpu-clock events, so hrtimer_cancel() would cause a
11903 * deadlock.
11904 *
11905 * So use hrtimer_try_to_cancel() to try to stop the hrtimer,
11906 * and the cpu-clock handler also sets the PERF_HES_STOPPED flag,
11907 * which guarantees that perf_swevent_hrtimer() will stop the
11908 * hrtimer once it sees the PERF_HES_STOPPED flag.
11909 */
11910 if (is_sampling_event(event) && (hwc->interrupts != MAX_INTERRUPTS)) {
11911 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11912 local64_set(&hwc->period_left, ktime_to_ns(remaining));
11913
11914 hrtimer_try_to_cancel(&hwc->hrtimer);
11915 }
11916 }
11917
perf_swevent_destroy_hrtimer(struct perf_event * event)11918 static void perf_swevent_destroy_hrtimer(struct perf_event *event)
11919 {
11920 hrtimer_cancel(&event->hw.hrtimer);
11921 }
11922
perf_swevent_init_hrtimer(struct perf_event * event)11923 static void perf_swevent_init_hrtimer(struct perf_event *event)
11924 {
11925 struct hw_perf_event *hwc = &event->hw;
11926
11927 if (!is_sampling_event(event))
11928 return;
11929
11930 hrtimer_setup(&hwc->hrtimer, perf_swevent_hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11931 event->destroy = perf_swevent_destroy_hrtimer;
11932
11933 /*
11934 * Since hrtimers have a fixed rate, we can do a static freq->period
11935 * mapping and avoid the whole period adjust feedback stuff.
11936 */
11937 if (event->attr.freq) {
11938 long freq = event->attr.sample_freq;
11939
11940 event->attr.sample_period = NSEC_PER_SEC / freq;
11941 hwc->sample_period = event->attr.sample_period;
11942 local64_set(&hwc->period_left, hwc->sample_period);
11943 hwc->last_period = hwc->sample_period;
11944 event->attr.freq = 0;
11945 }
11946 }
11947
11948 /*
11949 * Software event: cpu wall time clock
11950 */
11951
cpu_clock_event_update(struct perf_event * event)11952 static void cpu_clock_event_update(struct perf_event *event)
11953 {
11954 s64 prev;
11955 u64 now;
11956
11957 now = local_clock();
11958 prev = local64_xchg(&event->hw.prev_count, now);
11959 local64_add(now - prev, &event->count);
11960 }
11961
cpu_clock_event_start(struct perf_event * event,int flags)11962 static void cpu_clock_event_start(struct perf_event *event, int flags)
11963 {
11964 event->hw.state = 0;
11965 local64_set(&event->hw.prev_count, local_clock());
11966 perf_swevent_start_hrtimer(event);
11967 }
11968
cpu_clock_event_stop(struct perf_event * event,int flags)11969 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11970 {
11971 event->hw.state = PERF_HES_STOPPED;
11972 perf_swevent_cancel_hrtimer(event);
11973 if (flags & PERF_EF_UPDATE)
11974 cpu_clock_event_update(event);
11975 }
11976
cpu_clock_event_add(struct perf_event * event,int flags)11977 static int cpu_clock_event_add(struct perf_event *event, int flags)
11978 {
11979 if (flags & PERF_EF_START)
11980 cpu_clock_event_start(event, flags);
11981 perf_event_update_userpage(event);
11982
11983 return 0;
11984 }
11985
cpu_clock_event_del(struct perf_event * event,int flags)11986 static void cpu_clock_event_del(struct perf_event *event, int flags)
11987 {
11988 cpu_clock_event_stop(event, PERF_EF_UPDATE);
11989 }
11990
cpu_clock_event_read(struct perf_event * event)11991 static void cpu_clock_event_read(struct perf_event *event)
11992 {
11993 cpu_clock_event_update(event);
11994 }
11995
cpu_clock_event_init(struct perf_event * event)11996 static int cpu_clock_event_init(struct perf_event *event)
11997 {
11998 if (event->attr.type != perf_cpu_clock.type)
11999 return -ENOENT;
12000
12001 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
12002 return -ENOENT;
12003
12004 /*
12005 * no branch sampling for software events
12006 */
12007 if (has_branch_stack(event))
12008 return -EOPNOTSUPP;
12009
12010 perf_swevent_init_hrtimer(event);
12011
12012 return 0;
12013 }
12014
12015 static struct pmu perf_cpu_clock = {
12016 .task_ctx_nr = perf_sw_context,
12017
12018 .capabilities = PERF_PMU_CAP_NO_NMI,
12019 .dev = PMU_NULL_DEV,
12020
12021 .event_init = cpu_clock_event_init,
12022 .add = cpu_clock_event_add,
12023 .del = cpu_clock_event_del,
12024 .start = cpu_clock_event_start,
12025 .stop = cpu_clock_event_stop,
12026 .read = cpu_clock_event_read,
12027 };
12028
12029 /*
12030 * Software event: task time clock
12031 */
12032
task_clock_event_update(struct perf_event * event,u64 now)12033 static void task_clock_event_update(struct perf_event *event, u64 now)
12034 {
12035 u64 prev;
12036 s64 delta;
12037
12038 prev = local64_xchg(&event->hw.prev_count, now);
12039 delta = now - prev;
12040 local64_add(delta, &event->count);
12041 }
12042
task_clock_event_start(struct perf_event * event,int flags)12043 static void task_clock_event_start(struct perf_event *event, int flags)
12044 {
12045 event->hw.state = 0;
12046 local64_set(&event->hw.prev_count, event->ctx->time);
12047 perf_swevent_start_hrtimer(event);
12048 }
12049
task_clock_event_stop(struct perf_event * event,int flags)12050 static void task_clock_event_stop(struct perf_event *event, int flags)
12051 {
12052 event->hw.state = PERF_HES_STOPPED;
12053 perf_swevent_cancel_hrtimer(event);
12054 if (flags & PERF_EF_UPDATE)
12055 task_clock_event_update(event, event->ctx->time);
12056 }
12057
task_clock_event_add(struct perf_event * event,int flags)12058 static int task_clock_event_add(struct perf_event *event, int flags)
12059 {
12060 if (flags & PERF_EF_START)
12061 task_clock_event_start(event, flags);
12062 perf_event_update_userpage(event);
12063
12064 return 0;
12065 }
12066
task_clock_event_del(struct perf_event * event,int flags)12067 static void task_clock_event_del(struct perf_event *event, int flags)
12068 {
12069 task_clock_event_stop(event, PERF_EF_UPDATE);
12070 }
12071
task_clock_event_read(struct perf_event * event)12072 static void task_clock_event_read(struct perf_event *event)
12073 {
12074 u64 now = perf_clock();
12075 u64 delta = now - event->ctx->timestamp;
12076 u64 time = event->ctx->time + delta;
12077
12078 task_clock_event_update(event, time);
12079 }
12080
task_clock_event_init(struct perf_event * event)12081 static int task_clock_event_init(struct perf_event *event)
12082 {
12083 if (event->attr.type != perf_task_clock.type)
12084 return -ENOENT;
12085
12086 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
12087 return -ENOENT;
12088
12089 /*
12090 * no branch sampling for software events
12091 */
12092 if (has_branch_stack(event))
12093 return -EOPNOTSUPP;
12094
12095 perf_swevent_init_hrtimer(event);
12096
12097 return 0;
12098 }
12099
12100 static struct pmu perf_task_clock = {
12101 .task_ctx_nr = perf_sw_context,
12102
12103 .capabilities = PERF_PMU_CAP_NO_NMI,
12104 .dev = PMU_NULL_DEV,
12105
12106 .event_init = task_clock_event_init,
12107 .add = task_clock_event_add,
12108 .del = task_clock_event_del,
12109 .start = task_clock_event_start,
12110 .stop = task_clock_event_stop,
12111 .read = task_clock_event_read,
12112 };
12113
perf_pmu_nop_void(struct pmu * pmu)12114 static void perf_pmu_nop_void(struct pmu *pmu)
12115 {
12116 }
12117
perf_pmu_nop_txn(struct pmu * pmu,unsigned int flags)12118 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
12119 {
12120 }
12121
perf_pmu_nop_int(struct pmu * pmu)12122 static int perf_pmu_nop_int(struct pmu *pmu)
12123 {
12124 return 0;
12125 }
12126
perf_event_nop_int(struct perf_event * event,u64 value)12127 static int perf_event_nop_int(struct perf_event *event, u64 value)
12128 {
12129 return 0;
12130 }
12131
12132 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
12133
perf_pmu_start_txn(struct pmu * pmu,unsigned int flags)12134 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
12135 {
12136 __this_cpu_write(nop_txn_flags, flags);
12137
12138 if (flags & ~PERF_PMU_TXN_ADD)
12139 return;
12140
12141 perf_pmu_disable(pmu);
12142 }
12143
perf_pmu_commit_txn(struct pmu * pmu)12144 static int perf_pmu_commit_txn(struct pmu *pmu)
12145 {
12146 unsigned int flags = __this_cpu_read(nop_txn_flags);
12147
12148 __this_cpu_write(nop_txn_flags, 0);
12149
12150 if (flags & ~PERF_PMU_TXN_ADD)
12151 return 0;
12152
12153 perf_pmu_enable(pmu);
12154 return 0;
12155 }
12156
perf_pmu_cancel_txn(struct pmu * pmu)12157 static void perf_pmu_cancel_txn(struct pmu *pmu)
12158 {
12159 unsigned int flags = __this_cpu_read(nop_txn_flags);
12160
12161 __this_cpu_write(nop_txn_flags, 0);
12162
12163 if (flags & ~PERF_PMU_TXN_ADD)
12164 return;
12165
12166 perf_pmu_enable(pmu);
12167 }
12168
perf_event_idx_default(struct perf_event * event)12169 static int perf_event_idx_default(struct perf_event *event)
12170 {
12171 return 0;
12172 }
12173
12174 /*
12175 * Let userspace know that this PMU supports address range filtering:
12176 */
nr_addr_filters_show(struct device * dev,struct device_attribute * attr,char * page)12177 static ssize_t nr_addr_filters_show(struct device *dev,
12178 struct device_attribute *attr,
12179 char *page)
12180 {
12181 struct pmu *pmu = dev_get_drvdata(dev);
12182
12183 return sysfs_emit(page, "%d\n", pmu->nr_addr_filters);
12184 }
12185 DEVICE_ATTR_RO(nr_addr_filters);
12186
12187 static struct idr pmu_idr;
12188
12189 static ssize_t
type_show(struct device * dev,struct device_attribute * attr,char * page)12190 type_show(struct device *dev, struct device_attribute *attr, char *page)
12191 {
12192 struct pmu *pmu = dev_get_drvdata(dev);
12193
12194 return sysfs_emit(page, "%d\n", pmu->type);
12195 }
12196 static DEVICE_ATTR_RO(type);
12197
12198 static ssize_t
perf_event_mux_interval_ms_show(struct device * dev,struct device_attribute * attr,char * page)12199 perf_event_mux_interval_ms_show(struct device *dev,
12200 struct device_attribute *attr,
12201 char *page)
12202 {
12203 struct pmu *pmu = dev_get_drvdata(dev);
12204
12205 return sysfs_emit(page, "%d\n", pmu->hrtimer_interval_ms);
12206 }
12207
12208 static DEFINE_MUTEX(mux_interval_mutex);
12209
12210 static ssize_t
perf_event_mux_interval_ms_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)12211 perf_event_mux_interval_ms_store(struct device *dev,
12212 struct device_attribute *attr,
12213 const char *buf, size_t count)
12214 {
12215 struct pmu *pmu = dev_get_drvdata(dev);
12216 int timer, cpu, ret;
12217
12218 ret = kstrtoint(buf, 0, &timer);
12219 if (ret)
12220 return ret;
12221
12222 if (timer < 1)
12223 return -EINVAL;
12224
12225 /* same value, noting to do */
12226 if (timer == pmu->hrtimer_interval_ms)
12227 return count;
12228
12229 mutex_lock(&mux_interval_mutex);
12230 pmu->hrtimer_interval_ms = timer;
12231
12232 /* update all cpuctx for this PMU */
12233 cpus_read_lock();
12234 for_each_online_cpu(cpu) {
12235 struct perf_cpu_pmu_context *cpc;
12236 cpc = *per_cpu_ptr(pmu->cpu_pmu_context, cpu);
12237 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
12238
12239 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
12240 }
12241 cpus_read_unlock();
12242 mutex_unlock(&mux_interval_mutex);
12243
12244 return count;
12245 }
12246 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
12247
perf_scope_cpu_topology_cpumask(unsigned int scope,int cpu)12248 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu)
12249 {
12250 switch (scope) {
12251 case PERF_PMU_SCOPE_CORE:
12252 return topology_sibling_cpumask(cpu);
12253 case PERF_PMU_SCOPE_DIE:
12254 return topology_die_cpumask(cpu);
12255 case PERF_PMU_SCOPE_CLUSTER:
12256 return topology_cluster_cpumask(cpu);
12257 case PERF_PMU_SCOPE_PKG:
12258 return topology_core_cpumask(cpu);
12259 case PERF_PMU_SCOPE_SYS_WIDE:
12260 return cpu_online_mask;
12261 }
12262
12263 return NULL;
12264 }
12265
perf_scope_cpumask(unsigned int scope)12266 static inline struct cpumask *perf_scope_cpumask(unsigned int scope)
12267 {
12268 switch (scope) {
12269 case PERF_PMU_SCOPE_CORE:
12270 return perf_online_core_mask;
12271 case PERF_PMU_SCOPE_DIE:
12272 return perf_online_die_mask;
12273 case PERF_PMU_SCOPE_CLUSTER:
12274 return perf_online_cluster_mask;
12275 case PERF_PMU_SCOPE_PKG:
12276 return perf_online_pkg_mask;
12277 case PERF_PMU_SCOPE_SYS_WIDE:
12278 return perf_online_sys_mask;
12279 }
12280
12281 return NULL;
12282 }
12283
cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)12284 static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr,
12285 char *buf)
12286 {
12287 struct pmu *pmu = dev_get_drvdata(dev);
12288 struct cpumask *mask = perf_scope_cpumask(pmu->scope);
12289
12290 if (mask)
12291 return cpumap_print_to_pagebuf(true, buf, mask);
12292 return 0;
12293 }
12294
12295 static DEVICE_ATTR_RO(cpumask);
12296
12297 static struct attribute *pmu_dev_attrs[] = {
12298 &dev_attr_type.attr,
12299 &dev_attr_perf_event_mux_interval_ms.attr,
12300 &dev_attr_nr_addr_filters.attr,
12301 &dev_attr_cpumask.attr,
12302 NULL,
12303 };
12304
pmu_dev_is_visible(struct kobject * kobj,struct attribute * a,int n)12305 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
12306 {
12307 struct device *dev = kobj_to_dev(kobj);
12308 struct pmu *pmu = dev_get_drvdata(dev);
12309
12310 if (n == 2 && !pmu->nr_addr_filters)
12311 return 0;
12312
12313 /* cpumask */
12314 if (n == 3 && pmu->scope == PERF_PMU_SCOPE_NONE)
12315 return 0;
12316
12317 return a->mode;
12318 }
12319
12320 static struct attribute_group pmu_dev_attr_group = {
12321 .is_visible = pmu_dev_is_visible,
12322 .attrs = pmu_dev_attrs,
12323 };
12324
12325 static const struct attribute_group *pmu_dev_groups[] = {
12326 &pmu_dev_attr_group,
12327 NULL,
12328 };
12329
12330 static int pmu_bus_running;
12331 static const struct bus_type pmu_bus = {
12332 .name = "event_source",
12333 .dev_groups = pmu_dev_groups,
12334 };
12335
pmu_dev_release(struct device * dev)12336 static void pmu_dev_release(struct device *dev)
12337 {
12338 kfree(dev);
12339 }
12340
pmu_dev_alloc(struct pmu * pmu)12341 static int pmu_dev_alloc(struct pmu *pmu)
12342 {
12343 int ret = -ENOMEM;
12344
12345 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
12346 if (!pmu->dev)
12347 goto out;
12348
12349 pmu->dev->groups = pmu->attr_groups;
12350 device_initialize(pmu->dev);
12351
12352 dev_set_drvdata(pmu->dev, pmu);
12353 pmu->dev->bus = &pmu_bus;
12354 pmu->dev->parent = pmu->parent;
12355 pmu->dev->release = pmu_dev_release;
12356
12357 ret = dev_set_name(pmu->dev, "%s", pmu->name);
12358 if (ret)
12359 goto free_dev;
12360
12361 ret = device_add(pmu->dev);
12362 if (ret)
12363 goto free_dev;
12364
12365 if (pmu->attr_update) {
12366 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
12367 if (ret)
12368 goto del_dev;
12369 }
12370
12371 out:
12372 return ret;
12373
12374 del_dev:
12375 device_del(pmu->dev);
12376
12377 free_dev:
12378 put_device(pmu->dev);
12379 pmu->dev = NULL;
12380 goto out;
12381 }
12382
12383 static struct lock_class_key cpuctx_mutex;
12384 static struct lock_class_key cpuctx_lock;
12385
idr_cmpxchg(struct idr * idr,unsigned long id,void * old,void * new)12386 static bool idr_cmpxchg(struct idr *idr, unsigned long id, void *old, void *new)
12387 {
12388 void *tmp, *val = idr_find(idr, id);
12389
12390 if (val != old)
12391 return false;
12392
12393 tmp = idr_replace(idr, new, id);
12394 if (IS_ERR(tmp))
12395 return false;
12396
12397 WARN_ON_ONCE(tmp != val);
12398 return true;
12399 }
12400
perf_pmu_free(struct pmu * pmu)12401 static void perf_pmu_free(struct pmu *pmu)
12402 {
12403 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
12404 if (pmu->nr_addr_filters)
12405 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
12406 device_del(pmu->dev);
12407 put_device(pmu->dev);
12408 }
12409
12410 if (pmu->cpu_pmu_context) {
12411 int cpu;
12412
12413 for_each_possible_cpu(cpu) {
12414 struct perf_cpu_pmu_context *cpc;
12415
12416 cpc = *per_cpu_ptr(pmu->cpu_pmu_context, cpu);
12417 if (!cpc)
12418 continue;
12419 if (cpc->epc.embedded) {
12420 /* refcount managed */
12421 put_pmu_ctx(&cpc->epc);
12422 continue;
12423 }
12424 kfree(cpc);
12425 }
12426 free_percpu(pmu->cpu_pmu_context);
12427 }
12428 }
12429
DEFINE_FREE(pmu_unregister,struct pmu *,if (_T)perf_pmu_free (_T))12430 DEFINE_FREE(pmu_unregister, struct pmu *, if (_T) perf_pmu_free(_T))
12431
12432 int perf_pmu_register(struct pmu *_pmu, const char *name, int type)
12433 {
12434 int cpu, max = PERF_TYPE_MAX;
12435
12436 struct pmu *pmu __free(pmu_unregister) = _pmu;
12437 guard(mutex)(&pmus_lock);
12438
12439 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n"))
12440 return -EINVAL;
12441
12442 if (WARN_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE,
12443 "Can not register a pmu with an invalid scope.\n"))
12444 return -EINVAL;
12445
12446 pmu->name = name;
12447
12448 if (type >= 0)
12449 max = type;
12450
12451 CLASS(idr_alloc, pmu_type)(&pmu_idr, NULL, max, 0, GFP_KERNEL);
12452 if (pmu_type.id < 0)
12453 return pmu_type.id;
12454
12455 WARN_ON(type >= 0 && pmu_type.id != type);
12456
12457 pmu->type = pmu_type.id;
12458 atomic_set(&pmu->exclusive_cnt, 0);
12459
12460 if (pmu_bus_running && !pmu->dev) {
12461 int ret = pmu_dev_alloc(pmu);
12462 if (ret)
12463 return ret;
12464 }
12465
12466 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context *);
12467 if (!pmu->cpu_pmu_context)
12468 return -ENOMEM;
12469
12470 for_each_possible_cpu(cpu) {
12471 struct perf_cpu_pmu_context *cpc =
12472 kmalloc_node(sizeof(struct perf_cpu_pmu_context),
12473 GFP_KERNEL | __GFP_ZERO,
12474 cpu_to_node(cpu));
12475
12476 if (!cpc)
12477 return -ENOMEM;
12478
12479 *per_cpu_ptr(pmu->cpu_pmu_context, cpu) = cpc;
12480 __perf_init_event_pmu_context(&cpc->epc, pmu);
12481 __perf_mux_hrtimer_init(cpc, cpu);
12482 }
12483
12484 if (!pmu->start_txn) {
12485 if (pmu->pmu_enable) {
12486 /*
12487 * If we have pmu_enable/pmu_disable calls, install
12488 * transaction stubs that use that to try and batch
12489 * hardware accesses.
12490 */
12491 pmu->start_txn = perf_pmu_start_txn;
12492 pmu->commit_txn = perf_pmu_commit_txn;
12493 pmu->cancel_txn = perf_pmu_cancel_txn;
12494 } else {
12495 pmu->start_txn = perf_pmu_nop_txn;
12496 pmu->commit_txn = perf_pmu_nop_int;
12497 pmu->cancel_txn = perf_pmu_nop_void;
12498 }
12499 }
12500
12501 if (!pmu->pmu_enable) {
12502 pmu->pmu_enable = perf_pmu_nop_void;
12503 pmu->pmu_disable = perf_pmu_nop_void;
12504 }
12505
12506 if (!pmu->check_period)
12507 pmu->check_period = perf_event_nop_int;
12508
12509 if (!pmu->event_idx)
12510 pmu->event_idx = perf_event_idx_default;
12511
12512 INIT_LIST_HEAD(&pmu->events);
12513 spin_lock_init(&pmu->events_lock);
12514
12515 /*
12516 * Now that the PMU is complete, make it visible to perf_try_init_event().
12517 */
12518 if (!idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu))
12519 return -EINVAL;
12520 list_add_rcu(&pmu->entry, &pmus);
12521
12522 take_idr_id(pmu_type);
12523 _pmu = no_free_ptr(pmu); // let it rip
12524 return 0;
12525 }
12526 EXPORT_SYMBOL_GPL(perf_pmu_register);
12527
__pmu_detach_event(struct pmu * pmu,struct perf_event * event,struct perf_event_context * ctx)12528 static void __pmu_detach_event(struct pmu *pmu, struct perf_event *event,
12529 struct perf_event_context *ctx)
12530 {
12531 /*
12532 * De-schedule the event and mark it REVOKED.
12533 */
12534 perf_event_exit_event(event, ctx, ctx->task, true);
12535
12536 /*
12537 * All _free_event() bits that rely on event->pmu:
12538 *
12539 * Notably, perf_mmap() relies on the ordering here.
12540 */
12541 scoped_guard (mutex, &event->mmap_mutex) {
12542 WARN_ON_ONCE(pmu->event_unmapped);
12543 /*
12544 * Mostly an empty lock sequence, such that perf_mmap(), which
12545 * relies on mmap_mutex, is sure to observe the state change.
12546 */
12547 }
12548
12549 perf_event_free_bpf_prog(event);
12550 perf_free_addr_filters(event);
12551
12552 if (event->destroy) {
12553 event->destroy(event);
12554 event->destroy = NULL;
12555 }
12556
12557 if (event->pmu_ctx) {
12558 put_pmu_ctx(event->pmu_ctx);
12559 event->pmu_ctx = NULL;
12560 }
12561
12562 exclusive_event_destroy(event);
12563 module_put(pmu->module);
12564
12565 event->pmu = NULL; /* force fault instead of UAF */
12566 }
12567
pmu_detach_event(struct pmu * pmu,struct perf_event * event)12568 static void pmu_detach_event(struct pmu *pmu, struct perf_event *event)
12569 {
12570 struct perf_event_context *ctx;
12571
12572 ctx = perf_event_ctx_lock(event);
12573 __pmu_detach_event(pmu, event, ctx);
12574 perf_event_ctx_unlock(event, ctx);
12575
12576 scoped_guard (spinlock, &pmu->events_lock)
12577 list_del(&event->pmu_list);
12578 }
12579
pmu_get_event(struct pmu * pmu)12580 static struct perf_event *pmu_get_event(struct pmu *pmu)
12581 {
12582 struct perf_event *event;
12583
12584 guard(spinlock)(&pmu->events_lock);
12585 list_for_each_entry(event, &pmu->events, pmu_list) {
12586 if (atomic_long_inc_not_zero(&event->refcount))
12587 return event;
12588 }
12589
12590 return NULL;
12591 }
12592
pmu_empty(struct pmu * pmu)12593 static bool pmu_empty(struct pmu *pmu)
12594 {
12595 guard(spinlock)(&pmu->events_lock);
12596 return list_empty(&pmu->events);
12597 }
12598
pmu_detach_events(struct pmu * pmu)12599 static void pmu_detach_events(struct pmu *pmu)
12600 {
12601 struct perf_event *event;
12602
12603 for (;;) {
12604 event = pmu_get_event(pmu);
12605 if (!event)
12606 break;
12607
12608 pmu_detach_event(pmu, event);
12609 put_event(event);
12610 }
12611
12612 /*
12613 * wait for pending _free_event()s
12614 */
12615 wait_var_event(pmu, pmu_empty(pmu));
12616 }
12617
perf_pmu_unregister(struct pmu * pmu)12618 int perf_pmu_unregister(struct pmu *pmu)
12619 {
12620 scoped_guard (mutex, &pmus_lock) {
12621 if (!idr_cmpxchg(&pmu_idr, pmu->type, pmu, NULL))
12622 return -EINVAL;
12623
12624 list_del_rcu(&pmu->entry);
12625 }
12626
12627 /*
12628 * We dereference the pmu list under both SRCU and regular RCU, so
12629 * synchronize against both of those.
12630 *
12631 * Notably, the entirety of event creation, from perf_init_event()
12632 * (which will now fail, because of the above) until
12633 * perf_install_in_context() should be under SRCU such that
12634 * this synchronizes against event creation. This avoids trying to
12635 * detach events that are not fully formed.
12636 */
12637 synchronize_srcu(&pmus_srcu);
12638 synchronize_rcu();
12639
12640 if (pmu->event_unmapped && !pmu_empty(pmu)) {
12641 /*
12642 * Can't force remove events when pmu::event_unmapped()
12643 * is used in perf_mmap_close().
12644 */
12645 guard(mutex)(&pmus_lock);
12646 idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu);
12647 list_add_rcu(&pmu->entry, &pmus);
12648 return -EBUSY;
12649 }
12650
12651 scoped_guard (mutex, &pmus_lock)
12652 idr_remove(&pmu_idr, pmu->type);
12653
12654 /*
12655 * PMU is removed from the pmus list, so no new events will
12656 * be created, now take care of the existing ones.
12657 */
12658 pmu_detach_events(pmu);
12659
12660 /*
12661 * PMU is unused, make it go away.
12662 */
12663 perf_pmu_free(pmu);
12664 return 0;
12665 }
12666 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
12667
has_extended_regs(struct perf_event * event)12668 static inline bool has_extended_regs(struct perf_event *event)
12669 {
12670 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
12671 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
12672 }
12673
perf_try_init_event(struct pmu * pmu,struct perf_event * event)12674 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
12675 {
12676 struct perf_event_context *ctx = NULL;
12677 int ret;
12678
12679 if (!try_module_get(pmu->module))
12680 return -ENODEV;
12681
12682 /*
12683 * A number of pmu->event_init() methods iterate the sibling_list to,
12684 * for example, validate if the group fits on the PMU. Therefore,
12685 * if this is a sibling event, acquire the ctx->mutex to protect
12686 * the sibling_list.
12687 */
12688 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
12689 /*
12690 * This ctx->mutex can nest when we're called through
12691 * inheritance. See the perf_event_ctx_lock_nested() comment.
12692 */
12693 ctx = perf_event_ctx_lock_nested(event->group_leader,
12694 SINGLE_DEPTH_NESTING);
12695 BUG_ON(!ctx);
12696 }
12697
12698 event->pmu = pmu;
12699 ret = pmu->event_init(event);
12700
12701 if (ctx)
12702 perf_event_ctx_unlock(event->group_leader, ctx);
12703
12704 if (ret)
12705 goto err_pmu;
12706
12707 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
12708 has_extended_regs(event)) {
12709 ret = -EOPNOTSUPP;
12710 goto err_destroy;
12711 }
12712
12713 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
12714 event_has_any_exclude_flag(event)) {
12715 ret = -EINVAL;
12716 goto err_destroy;
12717 }
12718
12719 if (pmu->scope != PERF_PMU_SCOPE_NONE && event->cpu >= 0) {
12720 const struct cpumask *cpumask;
12721 struct cpumask *pmu_cpumask;
12722 int cpu;
12723
12724 cpumask = perf_scope_cpu_topology_cpumask(pmu->scope, event->cpu);
12725 pmu_cpumask = perf_scope_cpumask(pmu->scope);
12726
12727 ret = -ENODEV;
12728 if (!pmu_cpumask || !cpumask)
12729 goto err_destroy;
12730
12731 cpu = cpumask_any_and(pmu_cpumask, cpumask);
12732 if (cpu >= nr_cpu_ids)
12733 goto err_destroy;
12734
12735 event->event_caps |= PERF_EV_CAP_READ_SCOPE;
12736 }
12737
12738 return 0;
12739
12740 err_destroy:
12741 if (event->destroy) {
12742 event->destroy(event);
12743 event->destroy = NULL;
12744 }
12745
12746 err_pmu:
12747 event->pmu = NULL;
12748 module_put(pmu->module);
12749 return ret;
12750 }
12751
perf_init_event(struct perf_event * event)12752 static struct pmu *perf_init_event(struct perf_event *event)
12753 {
12754 bool extended_type = false;
12755 struct pmu *pmu;
12756 int type, ret;
12757
12758 guard(srcu)(&pmus_srcu); /* pmu idr/list access */
12759
12760 /*
12761 * Save original type before calling pmu->event_init() since certain
12762 * pmus overwrites event->attr.type to forward event to another pmu.
12763 */
12764 event->orig_type = event->attr.type;
12765
12766 /* Try parent's PMU first: */
12767 if (event->parent && event->parent->pmu) {
12768 pmu = event->parent->pmu;
12769 ret = perf_try_init_event(pmu, event);
12770 if (!ret)
12771 return pmu;
12772 }
12773
12774 /*
12775 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
12776 * are often aliases for PERF_TYPE_RAW.
12777 */
12778 type = event->attr.type;
12779 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
12780 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
12781 if (!type) {
12782 type = PERF_TYPE_RAW;
12783 } else {
12784 extended_type = true;
12785 event->attr.config &= PERF_HW_EVENT_MASK;
12786 }
12787 }
12788
12789 again:
12790 scoped_guard (rcu)
12791 pmu = idr_find(&pmu_idr, type);
12792 if (pmu) {
12793 if (event->attr.type != type && type != PERF_TYPE_RAW &&
12794 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
12795 return ERR_PTR(-ENOENT);
12796
12797 ret = perf_try_init_event(pmu, event);
12798 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
12799 type = event->attr.type;
12800 goto again;
12801 }
12802
12803 if (ret)
12804 return ERR_PTR(ret);
12805
12806 return pmu;
12807 }
12808
12809 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
12810 ret = perf_try_init_event(pmu, event);
12811 if (!ret)
12812 return pmu;
12813
12814 if (ret != -ENOENT)
12815 return ERR_PTR(ret);
12816 }
12817
12818 return ERR_PTR(-ENOENT);
12819 }
12820
attach_sb_event(struct perf_event * event)12821 static void attach_sb_event(struct perf_event *event)
12822 {
12823 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
12824
12825 raw_spin_lock(&pel->lock);
12826 list_add_rcu(&event->sb_list, &pel->list);
12827 raw_spin_unlock(&pel->lock);
12828 }
12829
12830 /*
12831 * We keep a list of all !task (and therefore per-cpu) events
12832 * that need to receive side-band records.
12833 *
12834 * This avoids having to scan all the various PMU per-cpu contexts
12835 * looking for them.
12836 */
account_pmu_sb_event(struct perf_event * event)12837 static void account_pmu_sb_event(struct perf_event *event)
12838 {
12839 if (is_sb_event(event))
12840 attach_sb_event(event);
12841 }
12842
12843 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
account_freq_event_nohz(void)12844 static void account_freq_event_nohz(void)
12845 {
12846 #ifdef CONFIG_NO_HZ_FULL
12847 /* Lock so we don't race with concurrent unaccount */
12848 spin_lock(&nr_freq_lock);
12849 if (atomic_inc_return(&nr_freq_events) == 1)
12850 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
12851 spin_unlock(&nr_freq_lock);
12852 #endif
12853 }
12854
account_freq_event(void)12855 static void account_freq_event(void)
12856 {
12857 if (tick_nohz_full_enabled())
12858 account_freq_event_nohz();
12859 else
12860 atomic_inc(&nr_freq_events);
12861 }
12862
12863
account_event(struct perf_event * event)12864 static void account_event(struct perf_event *event)
12865 {
12866 bool inc = false;
12867
12868 if (event->parent)
12869 return;
12870
12871 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
12872 inc = true;
12873 if (event->attr.mmap || event->attr.mmap_data)
12874 atomic_inc(&nr_mmap_events);
12875 if (event->attr.build_id)
12876 atomic_inc(&nr_build_id_events);
12877 if (event->attr.comm)
12878 atomic_inc(&nr_comm_events);
12879 if (event->attr.namespaces)
12880 atomic_inc(&nr_namespaces_events);
12881 if (event->attr.cgroup)
12882 atomic_inc(&nr_cgroup_events);
12883 if (event->attr.task)
12884 atomic_inc(&nr_task_events);
12885 if (event->attr.freq)
12886 account_freq_event();
12887 if (event->attr.context_switch) {
12888 atomic_inc(&nr_switch_events);
12889 inc = true;
12890 }
12891 if (has_branch_stack(event))
12892 inc = true;
12893 if (is_cgroup_event(event))
12894 inc = true;
12895 if (event->attr.ksymbol)
12896 atomic_inc(&nr_ksymbol_events);
12897 if (event->attr.bpf_event)
12898 atomic_inc(&nr_bpf_events);
12899 if (event->attr.text_poke)
12900 atomic_inc(&nr_text_poke_events);
12901
12902 if (inc) {
12903 /*
12904 * We need the mutex here because static_branch_enable()
12905 * must complete *before* the perf_sched_count increment
12906 * becomes visible.
12907 */
12908 if (atomic_inc_not_zero(&perf_sched_count))
12909 goto enabled;
12910
12911 mutex_lock(&perf_sched_mutex);
12912 if (!atomic_read(&perf_sched_count)) {
12913 static_branch_enable(&perf_sched_events);
12914 /*
12915 * Guarantee that all CPUs observe they key change and
12916 * call the perf scheduling hooks before proceeding to
12917 * install events that need them.
12918 */
12919 synchronize_rcu();
12920 }
12921 /*
12922 * Now that we have waited for the sync_sched(), allow further
12923 * increments to by-pass the mutex.
12924 */
12925 atomic_inc(&perf_sched_count);
12926 mutex_unlock(&perf_sched_mutex);
12927 }
12928 enabled:
12929
12930 account_pmu_sb_event(event);
12931 }
12932
12933 /*
12934 * Allocate and initialize an event structure
12935 */
12936 static struct perf_event *
perf_event_alloc(struct perf_event_attr * attr,int cpu,struct task_struct * task,struct perf_event * group_leader,struct perf_event * parent_event,perf_overflow_handler_t overflow_handler,void * context,int cgroup_fd)12937 perf_event_alloc(struct perf_event_attr *attr, int cpu,
12938 struct task_struct *task,
12939 struct perf_event *group_leader,
12940 struct perf_event *parent_event,
12941 perf_overflow_handler_t overflow_handler,
12942 void *context, int cgroup_fd)
12943 {
12944 struct pmu *pmu;
12945 struct hw_perf_event *hwc;
12946 long err = -EINVAL;
12947 int node;
12948
12949 if ((unsigned)cpu >= nr_cpu_ids) {
12950 if (!task || cpu != -1)
12951 return ERR_PTR(-EINVAL);
12952 }
12953 if (attr->sigtrap && !task) {
12954 /* Requires a task: avoid signalling random tasks. */
12955 return ERR_PTR(-EINVAL);
12956 }
12957
12958 node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
12959 struct perf_event *event __free(__free_event) =
12960 kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, node);
12961 if (!event)
12962 return ERR_PTR(-ENOMEM);
12963
12964 /*
12965 * Single events are their own group leaders, with an
12966 * empty sibling list:
12967 */
12968 if (!group_leader)
12969 group_leader = event;
12970
12971 mutex_init(&event->child_mutex);
12972 INIT_LIST_HEAD(&event->child_list);
12973
12974 INIT_LIST_HEAD(&event->event_entry);
12975 INIT_LIST_HEAD(&event->sibling_list);
12976 INIT_LIST_HEAD(&event->active_list);
12977 init_event_group(event);
12978 INIT_LIST_HEAD(&event->rb_entry);
12979 INIT_LIST_HEAD(&event->active_entry);
12980 INIT_LIST_HEAD(&event->addr_filters.list);
12981 INIT_HLIST_NODE(&event->hlist_entry);
12982 INIT_LIST_HEAD(&event->pmu_list);
12983
12984
12985 init_waitqueue_head(&event->waitq);
12986 init_irq_work(&event->pending_irq, perf_pending_irq);
12987 event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable);
12988 init_task_work(&event->pending_task, perf_pending_task);
12989
12990 mutex_init(&event->mmap_mutex);
12991 raw_spin_lock_init(&event->addr_filters.lock);
12992
12993 atomic_long_set(&event->refcount, 1);
12994 event->cpu = cpu;
12995 event->attr = *attr;
12996 event->group_leader = group_leader;
12997 event->pmu = NULL;
12998 event->oncpu = -1;
12999
13000 event->parent = parent_event;
13001
13002 event->ns = get_pid_ns(task_active_pid_ns(current));
13003 event->id = atomic64_inc_return(&perf_event_id);
13004
13005 event->state = PERF_EVENT_STATE_INACTIVE;
13006
13007 if (parent_event)
13008 event->event_caps = parent_event->event_caps;
13009
13010 if (task) {
13011 event->attach_state = PERF_ATTACH_TASK;
13012 /*
13013 * XXX pmu::event_init needs to know what task to account to
13014 * and we cannot use the ctx information because we need the
13015 * pmu before we get a ctx.
13016 */
13017 event->hw.target = get_task_struct(task);
13018 }
13019
13020 event->clock = &local_clock;
13021 if (parent_event)
13022 event->clock = parent_event->clock;
13023
13024 if (!overflow_handler && parent_event) {
13025 overflow_handler = parent_event->overflow_handler;
13026 context = parent_event->overflow_handler_context;
13027 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
13028 if (parent_event->prog) {
13029 struct bpf_prog *prog = parent_event->prog;
13030
13031 bpf_prog_inc(prog);
13032 event->prog = prog;
13033 }
13034 #endif
13035 }
13036
13037 if (overflow_handler) {
13038 event->overflow_handler = overflow_handler;
13039 event->overflow_handler_context = context;
13040 } else if (is_write_backward(event)){
13041 event->overflow_handler = perf_event_output_backward;
13042 event->overflow_handler_context = NULL;
13043 } else {
13044 event->overflow_handler = perf_event_output_forward;
13045 event->overflow_handler_context = NULL;
13046 }
13047
13048 perf_event__state_init(event);
13049
13050 pmu = NULL;
13051
13052 hwc = &event->hw;
13053 hwc->sample_period = attr->sample_period;
13054 if (is_event_in_freq_mode(event))
13055 hwc->sample_period = 1;
13056 hwc->last_period = hwc->sample_period;
13057
13058 local64_set(&hwc->period_left, hwc->sample_period);
13059
13060 /*
13061 * We do not support PERF_SAMPLE_READ on inherited events unless
13062 * PERF_SAMPLE_TID is also selected, which allows inherited events to
13063 * collect per-thread samples.
13064 * See perf_output_read().
13065 */
13066 if (has_inherit_and_sample_read(attr) && !(attr->sample_type & PERF_SAMPLE_TID))
13067 return ERR_PTR(-EINVAL);
13068
13069 if (!has_branch_stack(event))
13070 event->attr.branch_sample_type = 0;
13071
13072 pmu = perf_init_event(event);
13073 if (IS_ERR(pmu))
13074 return (void*)pmu;
13075
13076 /*
13077 * The PERF_ATTACH_TASK_DATA is set in the event_init()->hw_config().
13078 * The attach should be right after the perf_init_event().
13079 * Otherwise, the __free_event() would mistakenly detach the non-exist
13080 * perf_ctx_data because of the other errors between them.
13081 */
13082 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
13083 err = attach_perf_ctx_data(event);
13084 if (err)
13085 return ERR_PTR(err);
13086 }
13087
13088 /*
13089 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
13090 * events (they don't make sense as the cgroup will be different
13091 * on other CPUs in the uncore mask).
13092 */
13093 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1))
13094 return ERR_PTR(-EINVAL);
13095
13096 if (event->attr.aux_output &&
13097 (!(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT) ||
13098 event->attr.aux_pause || event->attr.aux_resume))
13099 return ERR_PTR(-EOPNOTSUPP);
13100
13101 if (event->attr.aux_pause && event->attr.aux_resume)
13102 return ERR_PTR(-EINVAL);
13103
13104 if (event->attr.aux_start_paused) {
13105 if (!(pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE))
13106 return ERR_PTR(-EOPNOTSUPP);
13107 event->hw.aux_paused = 1;
13108 }
13109
13110 if (cgroup_fd != -1) {
13111 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
13112 if (err)
13113 return ERR_PTR(err);
13114 }
13115
13116 err = exclusive_event_init(event);
13117 if (err)
13118 return ERR_PTR(err);
13119
13120 if (has_addr_filter(event)) {
13121 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
13122 sizeof(struct perf_addr_filter_range),
13123 GFP_KERNEL);
13124 if (!event->addr_filter_ranges)
13125 return ERR_PTR(-ENOMEM);
13126
13127 /*
13128 * Clone the parent's vma offsets: they are valid until exec()
13129 * even if the mm is not shared with the parent.
13130 */
13131 if (event->parent) {
13132 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
13133
13134 raw_spin_lock_irq(&ifh->lock);
13135 memcpy(event->addr_filter_ranges,
13136 event->parent->addr_filter_ranges,
13137 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
13138 raw_spin_unlock_irq(&ifh->lock);
13139 }
13140
13141 /* force hw sync on the address filters */
13142 event->addr_filters_gen = 1;
13143 }
13144
13145 if (!event->parent) {
13146 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
13147 err = get_callchain_buffers(attr->sample_max_stack);
13148 if (err)
13149 return ERR_PTR(err);
13150 event->attach_state |= PERF_ATTACH_CALLCHAIN;
13151 }
13152 }
13153
13154 err = security_perf_event_alloc(event);
13155 if (err)
13156 return ERR_PTR(err);
13157
13158 /* symmetric to unaccount_event() in _free_event() */
13159 account_event(event);
13160
13161 /*
13162 * Event creation should be under SRCU, see perf_pmu_unregister().
13163 */
13164 lockdep_assert_held(&pmus_srcu);
13165 scoped_guard (spinlock, &pmu->events_lock)
13166 list_add(&event->pmu_list, &pmu->events);
13167
13168 return_ptr(event);
13169 }
13170
perf_copy_attr(struct perf_event_attr __user * uattr,struct perf_event_attr * attr)13171 static int perf_copy_attr(struct perf_event_attr __user *uattr,
13172 struct perf_event_attr *attr)
13173 {
13174 u32 size;
13175 int ret;
13176
13177 /* Zero the full structure, so that a short copy will be nice. */
13178 memset(attr, 0, sizeof(*attr));
13179
13180 ret = get_user(size, &uattr->size);
13181 if (ret)
13182 return ret;
13183
13184 /* ABI compatibility quirk: */
13185 if (!size)
13186 size = PERF_ATTR_SIZE_VER0;
13187 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
13188 goto err_size;
13189
13190 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
13191 if (ret) {
13192 if (ret == -E2BIG)
13193 goto err_size;
13194 return ret;
13195 }
13196
13197 attr->size = size;
13198
13199 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
13200 return -EINVAL;
13201
13202 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
13203 return -EINVAL;
13204
13205 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
13206 return -EINVAL;
13207
13208 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
13209 u64 mask = attr->branch_sample_type;
13210
13211 /* only using defined bits */
13212 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
13213 return -EINVAL;
13214
13215 /* at least one branch bit must be set */
13216 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
13217 return -EINVAL;
13218
13219 /* propagate priv level, when not set for branch */
13220 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
13221
13222 /* exclude_kernel checked on syscall entry */
13223 if (!attr->exclude_kernel)
13224 mask |= PERF_SAMPLE_BRANCH_KERNEL;
13225
13226 if (!attr->exclude_user)
13227 mask |= PERF_SAMPLE_BRANCH_USER;
13228
13229 if (!attr->exclude_hv)
13230 mask |= PERF_SAMPLE_BRANCH_HV;
13231 /*
13232 * adjust user setting (for HW filter setup)
13233 */
13234 attr->branch_sample_type = mask;
13235 }
13236 /* privileged levels capture (kernel, hv): check permissions */
13237 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
13238 ret = perf_allow_kernel();
13239 if (ret)
13240 return ret;
13241 }
13242 }
13243
13244 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
13245 ret = perf_reg_validate(attr->sample_regs_user);
13246 if (ret)
13247 return ret;
13248 }
13249
13250 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
13251 if (!arch_perf_have_user_stack_dump())
13252 return -ENOSYS;
13253
13254 /*
13255 * We have __u32 type for the size, but so far
13256 * we can only use __u16 as maximum due to the
13257 * __u16 sample size limit.
13258 */
13259 if (attr->sample_stack_user >= USHRT_MAX)
13260 return -EINVAL;
13261 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
13262 return -EINVAL;
13263 }
13264
13265 if (!attr->sample_max_stack)
13266 attr->sample_max_stack = sysctl_perf_event_max_stack;
13267
13268 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
13269 ret = perf_reg_validate(attr->sample_regs_intr);
13270
13271 #ifndef CONFIG_CGROUP_PERF
13272 if (attr->sample_type & PERF_SAMPLE_CGROUP)
13273 return -EINVAL;
13274 #endif
13275 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
13276 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
13277 return -EINVAL;
13278
13279 if (!attr->inherit && attr->inherit_thread)
13280 return -EINVAL;
13281
13282 if (attr->remove_on_exec && attr->enable_on_exec)
13283 return -EINVAL;
13284
13285 if (attr->sigtrap && !attr->remove_on_exec)
13286 return -EINVAL;
13287
13288 out:
13289 return ret;
13290
13291 err_size:
13292 put_user(sizeof(*attr), &uattr->size);
13293 ret = -E2BIG;
13294 goto out;
13295 }
13296
mutex_lock_double(struct mutex * a,struct mutex * b)13297 static void mutex_lock_double(struct mutex *a, struct mutex *b)
13298 {
13299 if (b < a)
13300 swap(a, b);
13301
13302 mutex_lock(a);
13303 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
13304 }
13305
13306 static int
perf_event_set_output(struct perf_event * event,struct perf_event * output_event)13307 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
13308 {
13309 struct perf_buffer *rb = NULL;
13310 int ret = -EINVAL;
13311
13312 if (!output_event) {
13313 mutex_lock(&event->mmap_mutex);
13314 goto set;
13315 }
13316
13317 /* don't allow circular references */
13318 if (event == output_event)
13319 goto out;
13320
13321 /*
13322 * Don't allow cross-cpu buffers
13323 */
13324 if (output_event->cpu != event->cpu)
13325 goto out;
13326
13327 /*
13328 * If its not a per-cpu rb, it must be the same task.
13329 */
13330 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
13331 goto out;
13332
13333 /*
13334 * Mixing clocks in the same buffer is trouble you don't need.
13335 */
13336 if (output_event->clock != event->clock)
13337 goto out;
13338
13339 /*
13340 * Either writing ring buffer from beginning or from end.
13341 * Mixing is not allowed.
13342 */
13343 if (is_write_backward(output_event) != is_write_backward(event))
13344 goto out;
13345
13346 /*
13347 * If both events generate aux data, they must be on the same PMU
13348 */
13349 if (has_aux(event) && has_aux(output_event) &&
13350 event->pmu != output_event->pmu)
13351 goto out;
13352
13353 /*
13354 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since
13355 * output_event is already on rb->event_list, and the list iteration
13356 * restarts after every removal, it is guaranteed this new event is
13357 * observed *OR* if output_event is already removed, it's guaranteed we
13358 * observe !rb->mmap_count.
13359 */
13360 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
13361 set:
13362 /* Can't redirect output if we've got an active mmap() */
13363 if (refcount_read(&event->mmap_count))
13364 goto unlock;
13365
13366 if (output_event) {
13367 if (output_event->state <= PERF_EVENT_STATE_REVOKED)
13368 goto unlock;
13369
13370 /* get the rb we want to redirect to */
13371 rb = ring_buffer_get(output_event);
13372 if (!rb)
13373 goto unlock;
13374
13375 /* did we race against perf_mmap_close() */
13376 if (!refcount_read(&rb->mmap_count)) {
13377 ring_buffer_put(rb);
13378 goto unlock;
13379 }
13380 }
13381
13382 ring_buffer_attach(event, rb);
13383
13384 ret = 0;
13385 unlock:
13386 mutex_unlock(&event->mmap_mutex);
13387 if (output_event)
13388 mutex_unlock(&output_event->mmap_mutex);
13389
13390 out:
13391 return ret;
13392 }
13393
perf_event_set_clock(struct perf_event * event,clockid_t clk_id)13394 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
13395 {
13396 bool nmi_safe = false;
13397
13398 switch (clk_id) {
13399 case CLOCK_MONOTONIC:
13400 event->clock = &ktime_get_mono_fast_ns;
13401 nmi_safe = true;
13402 break;
13403
13404 case CLOCK_MONOTONIC_RAW:
13405 event->clock = &ktime_get_raw_fast_ns;
13406 nmi_safe = true;
13407 break;
13408
13409 case CLOCK_REALTIME:
13410 event->clock = &ktime_get_real_ns;
13411 break;
13412
13413 case CLOCK_BOOTTIME:
13414 event->clock = &ktime_get_boottime_ns;
13415 break;
13416
13417 case CLOCK_TAI:
13418 event->clock = &ktime_get_clocktai_ns;
13419 break;
13420
13421 default:
13422 return -EINVAL;
13423 }
13424
13425 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
13426 return -EINVAL;
13427
13428 return 0;
13429 }
13430
13431 static bool
perf_check_permission(struct perf_event_attr * attr,struct task_struct * task)13432 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
13433 {
13434 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
13435 bool is_capable = perfmon_capable();
13436
13437 if (attr->sigtrap) {
13438 /*
13439 * perf_event_attr::sigtrap sends signals to the other task.
13440 * Require the current task to also have CAP_KILL.
13441 */
13442 rcu_read_lock();
13443 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
13444 rcu_read_unlock();
13445
13446 /*
13447 * If the required capabilities aren't available, checks for
13448 * ptrace permissions: upgrade to ATTACH, since sending signals
13449 * can effectively change the target task.
13450 */
13451 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
13452 }
13453
13454 /*
13455 * Preserve ptrace permission check for backwards compatibility. The
13456 * ptrace check also includes checks that the current task and other
13457 * task have matching uids, and is therefore not done here explicitly.
13458 */
13459 return is_capable || ptrace_may_access(task, ptrace_mode);
13460 }
13461
13462 /**
13463 * sys_perf_event_open - open a performance event, associate it to a task/cpu
13464 *
13465 * @attr_uptr: event_id type attributes for monitoring/sampling
13466 * @pid: target pid
13467 * @cpu: target cpu
13468 * @group_fd: group leader event fd
13469 * @flags: perf event open flags
13470 */
SYSCALL_DEFINE5(perf_event_open,struct perf_event_attr __user *,attr_uptr,pid_t,pid,int,cpu,int,group_fd,unsigned long,flags)13471 SYSCALL_DEFINE5(perf_event_open,
13472 struct perf_event_attr __user *, attr_uptr,
13473 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
13474 {
13475 struct perf_event *group_leader = NULL, *output_event = NULL;
13476 struct perf_event_pmu_context *pmu_ctx;
13477 struct perf_event *event, *sibling;
13478 struct perf_event_attr attr;
13479 struct perf_event_context *ctx;
13480 struct file *event_file = NULL;
13481 struct task_struct *task = NULL;
13482 struct pmu *pmu;
13483 int event_fd;
13484 int move_group = 0;
13485 int err;
13486 int f_flags = O_RDWR;
13487 int cgroup_fd = -1;
13488
13489 /* for future expandability... */
13490 if (flags & ~PERF_FLAG_ALL)
13491 return -EINVAL;
13492
13493 err = perf_copy_attr(attr_uptr, &attr);
13494 if (err)
13495 return err;
13496
13497 /* Do we allow access to perf_event_open(2) ? */
13498 err = security_perf_event_open(PERF_SECURITY_OPEN);
13499 if (err)
13500 return err;
13501
13502 if (!attr.exclude_kernel) {
13503 err = perf_allow_kernel();
13504 if (err)
13505 return err;
13506 }
13507
13508 if (attr.namespaces) {
13509 if (!perfmon_capable())
13510 return -EACCES;
13511 }
13512
13513 if (attr.freq) {
13514 if (attr.sample_freq > sysctl_perf_event_sample_rate)
13515 return -EINVAL;
13516 } else {
13517 if (attr.sample_period & (1ULL << 63))
13518 return -EINVAL;
13519 }
13520
13521 /* Only privileged users can get physical addresses */
13522 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
13523 err = perf_allow_kernel();
13524 if (err)
13525 return err;
13526 }
13527
13528 /* REGS_INTR can leak data, lockdown must prevent this */
13529 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
13530 err = security_locked_down(LOCKDOWN_PERF);
13531 if (err)
13532 return err;
13533 }
13534
13535 /*
13536 * In cgroup mode, the pid argument is used to pass the fd
13537 * opened to the cgroup directory in cgroupfs. The cpu argument
13538 * designates the cpu on which to monitor threads from that
13539 * cgroup.
13540 */
13541 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
13542 return -EINVAL;
13543
13544 if (flags & PERF_FLAG_FD_CLOEXEC)
13545 f_flags |= O_CLOEXEC;
13546
13547 event_fd = get_unused_fd_flags(f_flags);
13548 if (event_fd < 0)
13549 return event_fd;
13550
13551 /*
13552 * Event creation should be under SRCU, see perf_pmu_unregister().
13553 */
13554 guard(srcu)(&pmus_srcu);
13555
13556 CLASS(fd, group)(group_fd); // group_fd == -1 => empty
13557 if (group_fd != -1) {
13558 if (!is_perf_file(group)) {
13559 err = -EBADF;
13560 goto err_fd;
13561 }
13562 group_leader = fd_file(group)->private_data;
13563 if (group_leader->state <= PERF_EVENT_STATE_REVOKED) {
13564 err = -ENODEV;
13565 goto err_fd;
13566 }
13567 if (flags & PERF_FLAG_FD_OUTPUT)
13568 output_event = group_leader;
13569 if (flags & PERF_FLAG_FD_NO_GROUP)
13570 group_leader = NULL;
13571 }
13572
13573 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
13574 task = find_lively_task_by_vpid(pid);
13575 if (IS_ERR(task)) {
13576 err = PTR_ERR(task);
13577 goto err_fd;
13578 }
13579 }
13580
13581 if (task && group_leader &&
13582 group_leader->attr.inherit != attr.inherit) {
13583 err = -EINVAL;
13584 goto err_task;
13585 }
13586
13587 if (flags & PERF_FLAG_PID_CGROUP)
13588 cgroup_fd = pid;
13589
13590 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
13591 NULL, NULL, cgroup_fd);
13592 if (IS_ERR(event)) {
13593 err = PTR_ERR(event);
13594 goto err_task;
13595 }
13596
13597 if (is_sampling_event(event)) {
13598 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
13599 err = -EOPNOTSUPP;
13600 goto err_alloc;
13601 }
13602 }
13603
13604 /*
13605 * Special case software events and allow them to be part of
13606 * any hardware group.
13607 */
13608 pmu = event->pmu;
13609
13610 if (attr.use_clockid) {
13611 err = perf_event_set_clock(event, attr.clockid);
13612 if (err)
13613 goto err_alloc;
13614 }
13615
13616 if (pmu->task_ctx_nr == perf_sw_context)
13617 event->event_caps |= PERF_EV_CAP_SOFTWARE;
13618
13619 if (task) {
13620 err = down_read_interruptible(&task->signal->exec_update_lock);
13621 if (err)
13622 goto err_alloc;
13623
13624 /*
13625 * We must hold exec_update_lock across this and any potential
13626 * perf_install_in_context() call for this new event to
13627 * serialize against exec() altering our credentials (and the
13628 * perf_event_exit_task() that could imply).
13629 */
13630 err = -EACCES;
13631 if (!perf_check_permission(&attr, task))
13632 goto err_cred;
13633 }
13634
13635 /*
13636 * Get the target context (task or percpu):
13637 */
13638 ctx = find_get_context(task, event);
13639 if (IS_ERR(ctx)) {
13640 err = PTR_ERR(ctx);
13641 goto err_cred;
13642 }
13643
13644 mutex_lock(&ctx->mutex);
13645
13646 if (ctx->task == TASK_TOMBSTONE) {
13647 err = -ESRCH;
13648 goto err_locked;
13649 }
13650
13651 if (!task) {
13652 /*
13653 * Check if the @cpu we're creating an event for is online.
13654 *
13655 * We use the perf_cpu_context::ctx::mutex to serialize against
13656 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
13657 */
13658 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
13659
13660 if (!cpuctx->online) {
13661 err = -ENODEV;
13662 goto err_locked;
13663 }
13664 }
13665
13666 if (group_leader) {
13667 err = -EINVAL;
13668
13669 /*
13670 * Do not allow a recursive hierarchy (this new sibling
13671 * becoming part of another group-sibling):
13672 */
13673 if (group_leader->group_leader != group_leader)
13674 goto err_locked;
13675
13676 /* All events in a group should have the same clock */
13677 if (group_leader->clock != event->clock)
13678 goto err_locked;
13679
13680 /*
13681 * Make sure we're both events for the same CPU;
13682 * grouping events for different CPUs is broken; since
13683 * you can never concurrently schedule them anyhow.
13684 */
13685 if (group_leader->cpu != event->cpu)
13686 goto err_locked;
13687
13688 /*
13689 * Make sure we're both on the same context; either task or cpu.
13690 */
13691 if (group_leader->ctx != ctx)
13692 goto err_locked;
13693
13694 /*
13695 * Only a group leader can be exclusive or pinned
13696 */
13697 if (attr.exclusive || attr.pinned)
13698 goto err_locked;
13699
13700 if (is_software_event(event) &&
13701 !in_software_context(group_leader)) {
13702 /*
13703 * If the event is a sw event, but the group_leader
13704 * is on hw context.
13705 *
13706 * Allow the addition of software events to hw
13707 * groups, this is safe because software events
13708 * never fail to schedule.
13709 *
13710 * Note the comment that goes with struct
13711 * perf_event_pmu_context.
13712 */
13713 pmu = group_leader->pmu_ctx->pmu;
13714 } else if (!is_software_event(event)) {
13715 if (is_software_event(group_leader) &&
13716 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
13717 /*
13718 * In case the group is a pure software group, and we
13719 * try to add a hardware event, move the whole group to
13720 * the hardware context.
13721 */
13722 move_group = 1;
13723 }
13724
13725 /* Don't allow group of multiple hw events from different pmus */
13726 if (!in_software_context(group_leader) &&
13727 group_leader->pmu_ctx->pmu != pmu)
13728 goto err_locked;
13729 }
13730 }
13731
13732 /*
13733 * Now that we're certain of the pmu; find the pmu_ctx.
13734 */
13735 pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13736 if (IS_ERR(pmu_ctx)) {
13737 err = PTR_ERR(pmu_ctx);
13738 goto err_locked;
13739 }
13740 event->pmu_ctx = pmu_ctx;
13741
13742 if (output_event) {
13743 err = perf_event_set_output(event, output_event);
13744 if (err)
13745 goto err_context;
13746 }
13747
13748 if (!perf_event_validate_size(event)) {
13749 err = -E2BIG;
13750 goto err_context;
13751 }
13752
13753 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
13754 err = -EINVAL;
13755 goto err_context;
13756 }
13757
13758 /*
13759 * Must be under the same ctx::mutex as perf_install_in_context(),
13760 * because we need to serialize with concurrent event creation.
13761 */
13762 if (!exclusive_event_installable(event, ctx)) {
13763 err = -EBUSY;
13764 goto err_context;
13765 }
13766
13767 WARN_ON_ONCE(ctx->parent_ctx);
13768
13769 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
13770 if (IS_ERR(event_file)) {
13771 err = PTR_ERR(event_file);
13772 event_file = NULL;
13773 goto err_context;
13774 }
13775
13776 /*
13777 * This is the point on no return; we cannot fail hereafter. This is
13778 * where we start modifying current state.
13779 */
13780
13781 if (move_group) {
13782 perf_remove_from_context(group_leader, 0);
13783 put_pmu_ctx(group_leader->pmu_ctx);
13784
13785 for_each_sibling_event(sibling, group_leader) {
13786 perf_remove_from_context(sibling, 0);
13787 put_pmu_ctx(sibling->pmu_ctx);
13788 }
13789
13790 /*
13791 * Install the group siblings before the group leader.
13792 *
13793 * Because a group leader will try and install the entire group
13794 * (through the sibling list, which is still in-tact), we can
13795 * end up with siblings installed in the wrong context.
13796 *
13797 * By installing siblings first we NO-OP because they're not
13798 * reachable through the group lists.
13799 */
13800 for_each_sibling_event(sibling, group_leader) {
13801 sibling->pmu_ctx = pmu_ctx;
13802 get_pmu_ctx(pmu_ctx);
13803 perf_event__state_init(sibling);
13804 perf_install_in_context(ctx, sibling, sibling->cpu);
13805 }
13806
13807 /*
13808 * Removing from the context ends up with disabled
13809 * event. What we want here is event in the initial
13810 * startup state, ready to be add into new context.
13811 */
13812 group_leader->pmu_ctx = pmu_ctx;
13813 get_pmu_ctx(pmu_ctx);
13814 perf_event__state_init(group_leader);
13815 perf_install_in_context(ctx, group_leader, group_leader->cpu);
13816 }
13817
13818 /*
13819 * Precalculate sample_data sizes; do while holding ctx::mutex such
13820 * that we're serialized against further additions and before
13821 * perf_install_in_context() which is the point the event is active and
13822 * can use these values.
13823 */
13824 perf_event__header_size(event);
13825 perf_event__id_header_size(event);
13826
13827 event->owner = current;
13828
13829 perf_install_in_context(ctx, event, event->cpu);
13830 perf_unpin_context(ctx);
13831
13832 mutex_unlock(&ctx->mutex);
13833
13834 if (task) {
13835 up_read(&task->signal->exec_update_lock);
13836 put_task_struct(task);
13837 }
13838
13839 mutex_lock(¤t->perf_event_mutex);
13840 list_add_tail(&event->owner_entry, ¤t->perf_event_list);
13841 mutex_unlock(¤t->perf_event_mutex);
13842
13843 /*
13844 * File reference in group guarantees that group_leader has been
13845 * kept alive until we place the new event on the sibling_list.
13846 * This ensures destruction of the group leader will find
13847 * the pointer to itself in perf_group_detach().
13848 */
13849 fd_install(event_fd, event_file);
13850 return event_fd;
13851
13852 err_context:
13853 put_pmu_ctx(event->pmu_ctx);
13854 event->pmu_ctx = NULL; /* _free_event() */
13855 err_locked:
13856 mutex_unlock(&ctx->mutex);
13857 perf_unpin_context(ctx);
13858 put_ctx(ctx);
13859 err_cred:
13860 if (task)
13861 up_read(&task->signal->exec_update_lock);
13862 err_alloc:
13863 put_event(event);
13864 err_task:
13865 if (task)
13866 put_task_struct(task);
13867 err_fd:
13868 put_unused_fd(event_fd);
13869 return err;
13870 }
13871
13872 /**
13873 * perf_event_create_kernel_counter
13874 *
13875 * @attr: attributes of the counter to create
13876 * @cpu: cpu in which the counter is bound
13877 * @task: task to profile (NULL for percpu)
13878 * @overflow_handler: callback to trigger when we hit the event
13879 * @context: context data could be used in overflow_handler callback
13880 */
13881 struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr * attr,int cpu,struct task_struct * task,perf_overflow_handler_t overflow_handler,void * context)13882 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
13883 struct task_struct *task,
13884 perf_overflow_handler_t overflow_handler,
13885 void *context)
13886 {
13887 struct perf_event_pmu_context *pmu_ctx;
13888 struct perf_event_context *ctx;
13889 struct perf_event *event;
13890 struct pmu *pmu;
13891 int err;
13892
13893 /*
13894 * Grouping is not supported for kernel events, neither is 'AUX',
13895 * make sure the caller's intentions are adjusted.
13896 */
13897 if (attr->aux_output || attr->aux_action)
13898 return ERR_PTR(-EINVAL);
13899
13900 /*
13901 * Event creation should be under SRCU, see perf_pmu_unregister().
13902 */
13903 guard(srcu)(&pmus_srcu);
13904
13905 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
13906 overflow_handler, context, -1);
13907 if (IS_ERR(event)) {
13908 err = PTR_ERR(event);
13909 goto err;
13910 }
13911
13912 /* Mark owner so we could distinguish it from user events. */
13913 event->owner = TASK_TOMBSTONE;
13914 pmu = event->pmu;
13915
13916 if (pmu->task_ctx_nr == perf_sw_context)
13917 event->event_caps |= PERF_EV_CAP_SOFTWARE;
13918
13919 /*
13920 * Get the target context (task or percpu):
13921 */
13922 ctx = find_get_context(task, event);
13923 if (IS_ERR(ctx)) {
13924 err = PTR_ERR(ctx);
13925 goto err_alloc;
13926 }
13927
13928 WARN_ON_ONCE(ctx->parent_ctx);
13929 mutex_lock(&ctx->mutex);
13930 if (ctx->task == TASK_TOMBSTONE) {
13931 err = -ESRCH;
13932 goto err_unlock;
13933 }
13934
13935 pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13936 if (IS_ERR(pmu_ctx)) {
13937 err = PTR_ERR(pmu_ctx);
13938 goto err_unlock;
13939 }
13940 event->pmu_ctx = pmu_ctx;
13941
13942 if (!task) {
13943 /*
13944 * Check if the @cpu we're creating an event for is online.
13945 *
13946 * We use the perf_cpu_context::ctx::mutex to serialize against
13947 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
13948 */
13949 struct perf_cpu_context *cpuctx =
13950 container_of(ctx, struct perf_cpu_context, ctx);
13951 if (!cpuctx->online) {
13952 err = -ENODEV;
13953 goto err_pmu_ctx;
13954 }
13955 }
13956
13957 if (!exclusive_event_installable(event, ctx)) {
13958 err = -EBUSY;
13959 goto err_pmu_ctx;
13960 }
13961
13962 perf_install_in_context(ctx, event, event->cpu);
13963 perf_unpin_context(ctx);
13964 mutex_unlock(&ctx->mutex);
13965
13966 return event;
13967
13968 err_pmu_ctx:
13969 put_pmu_ctx(pmu_ctx);
13970 event->pmu_ctx = NULL; /* _free_event() */
13971 err_unlock:
13972 mutex_unlock(&ctx->mutex);
13973 perf_unpin_context(ctx);
13974 put_ctx(ctx);
13975 err_alloc:
13976 put_event(event);
13977 err:
13978 return ERR_PTR(err);
13979 }
13980 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
13981
__perf_pmu_remove(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct perf_event_groups * groups,struct list_head * events)13982 static void __perf_pmu_remove(struct perf_event_context *ctx,
13983 int cpu, struct pmu *pmu,
13984 struct perf_event_groups *groups,
13985 struct list_head *events)
13986 {
13987 struct perf_event *event, *sibling;
13988
13989 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
13990 perf_remove_from_context(event, 0);
13991 put_pmu_ctx(event->pmu_ctx);
13992 list_add(&event->migrate_entry, events);
13993
13994 for_each_sibling_event(sibling, event) {
13995 perf_remove_from_context(sibling, 0);
13996 put_pmu_ctx(sibling->pmu_ctx);
13997 list_add(&sibling->migrate_entry, events);
13998 }
13999 }
14000 }
14001
__perf_pmu_install_event(struct pmu * pmu,struct perf_event_context * ctx,int cpu,struct perf_event * event)14002 static void __perf_pmu_install_event(struct pmu *pmu,
14003 struct perf_event_context *ctx,
14004 int cpu, struct perf_event *event)
14005 {
14006 struct perf_event_pmu_context *epc;
14007 struct perf_event_context *old_ctx = event->ctx;
14008
14009 get_ctx(ctx); /* normally find_get_context() */
14010
14011 event->cpu = cpu;
14012 epc = find_get_pmu_context(pmu, ctx, event);
14013 event->pmu_ctx = epc;
14014
14015 if (event->state >= PERF_EVENT_STATE_OFF)
14016 event->state = PERF_EVENT_STATE_INACTIVE;
14017 perf_install_in_context(ctx, event, cpu);
14018
14019 /*
14020 * Now that event->ctx is updated and visible, put the old ctx.
14021 */
14022 put_ctx(old_ctx);
14023 }
14024
__perf_pmu_install(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct list_head * events)14025 static void __perf_pmu_install(struct perf_event_context *ctx,
14026 int cpu, struct pmu *pmu, struct list_head *events)
14027 {
14028 struct perf_event *event, *tmp;
14029
14030 /*
14031 * Re-instate events in 2 passes.
14032 *
14033 * Skip over group leaders and only install siblings on this first
14034 * pass, siblings will not get enabled without a leader, however a
14035 * leader will enable its siblings, even if those are still on the old
14036 * context.
14037 */
14038 list_for_each_entry_safe(event, tmp, events, migrate_entry) {
14039 if (event->group_leader == event)
14040 continue;
14041
14042 list_del(&event->migrate_entry);
14043 __perf_pmu_install_event(pmu, ctx, cpu, event);
14044 }
14045
14046 /*
14047 * Once all the siblings are setup properly, install the group leaders
14048 * to make it go.
14049 */
14050 list_for_each_entry_safe(event, tmp, events, migrate_entry) {
14051 list_del(&event->migrate_entry);
14052 __perf_pmu_install_event(pmu, ctx, cpu, event);
14053 }
14054 }
14055
perf_pmu_migrate_context(struct pmu * pmu,int src_cpu,int dst_cpu)14056 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
14057 {
14058 struct perf_event_context *src_ctx, *dst_ctx;
14059 LIST_HEAD(events);
14060
14061 /*
14062 * Since per-cpu context is persistent, no need to grab an extra
14063 * reference.
14064 */
14065 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
14066 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
14067
14068 /*
14069 * See perf_event_ctx_lock() for comments on the details
14070 * of swizzling perf_event::ctx.
14071 */
14072 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
14073
14074 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
14075 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
14076
14077 if (!list_empty(&events)) {
14078 /*
14079 * Wait for the events to quiesce before re-instating them.
14080 */
14081 synchronize_rcu();
14082
14083 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
14084 }
14085
14086 mutex_unlock(&dst_ctx->mutex);
14087 mutex_unlock(&src_ctx->mutex);
14088 }
14089 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
14090
sync_child_event(struct perf_event * child_event,struct task_struct * task)14091 static void sync_child_event(struct perf_event *child_event,
14092 struct task_struct *task)
14093 {
14094 struct perf_event *parent_event = child_event->parent;
14095 u64 child_val;
14096
14097 if (child_event->attr.inherit_stat) {
14098 if (task && task != TASK_TOMBSTONE)
14099 perf_event_read_event(child_event, task);
14100 }
14101
14102 child_val = perf_event_count(child_event, false);
14103
14104 /*
14105 * Add back the child's count to the parent's count:
14106 */
14107 atomic64_add(child_val, &parent_event->child_count);
14108 atomic64_add(child_event->total_time_enabled,
14109 &parent_event->child_total_time_enabled);
14110 atomic64_add(child_event->total_time_running,
14111 &parent_event->child_total_time_running);
14112 }
14113
14114 static void
perf_event_exit_event(struct perf_event * event,struct perf_event_context * ctx,struct task_struct * task,bool revoke)14115 perf_event_exit_event(struct perf_event *event,
14116 struct perf_event_context *ctx,
14117 struct task_struct *task,
14118 bool revoke)
14119 {
14120 struct perf_event *parent_event = event->parent;
14121 unsigned long detach_flags = DETACH_EXIT;
14122 unsigned int attach_state;
14123
14124 if (parent_event) {
14125 /*
14126 * Do not destroy the 'original' grouping; because of the
14127 * context switch optimization the original events could've
14128 * ended up in a random child task.
14129 *
14130 * If we were to destroy the original group, all group related
14131 * operations would cease to function properly after this
14132 * random child dies.
14133 *
14134 * Do destroy all inherited groups, we don't care about those
14135 * and being thorough is better.
14136 */
14137 detach_flags |= DETACH_GROUP | DETACH_CHILD;
14138 mutex_lock(&parent_event->child_mutex);
14139 /* PERF_ATTACH_ITRACE might be set concurrently */
14140 attach_state = READ_ONCE(event->attach_state);
14141
14142 if (attach_state & PERF_ATTACH_CHILD)
14143 sync_child_event(event, task);
14144 }
14145
14146 if (revoke)
14147 detach_flags |= DETACH_GROUP | DETACH_REVOKE;
14148
14149 perf_remove_from_context(event, detach_flags);
14150 /*
14151 * Child events can be freed.
14152 */
14153 if (parent_event) {
14154 mutex_unlock(&parent_event->child_mutex);
14155
14156 /*
14157 * Match the refcount initialization. Make sure it doesn't happen
14158 * twice if pmu_detach_event() calls it on an already exited task.
14159 */
14160 if (attach_state & PERF_ATTACH_CHILD) {
14161 /*
14162 * Kick perf_poll() for is_event_hup();
14163 */
14164 perf_event_wakeup(parent_event);
14165 /*
14166 * pmu_detach_event() will have an extra refcount.
14167 * perf_pending_task() might have one too.
14168 */
14169 put_event(event);
14170 }
14171
14172 return;
14173 }
14174
14175 /*
14176 * Parent events are governed by their filedesc, retain them.
14177 */
14178 perf_event_wakeup(event);
14179 }
14180
perf_event_exit_task_context(struct task_struct * task,bool exit)14181 static void perf_event_exit_task_context(struct task_struct *task, bool exit)
14182 {
14183 struct perf_event_context *ctx, *clone_ctx = NULL;
14184 struct perf_event *child_event, *next;
14185
14186 ctx = perf_pin_task_context(task);
14187 if (!ctx)
14188 return;
14189
14190 /*
14191 * In order to reduce the amount of tricky in ctx tear-down, we hold
14192 * ctx::mutex over the entire thing. This serializes against almost
14193 * everything that wants to access the ctx.
14194 *
14195 * The exception is sys_perf_event_open() /
14196 * perf_event_create_kernel_count() which does find_get_context()
14197 * without ctx::mutex (it cannot because of the move_group double mutex
14198 * lock thing). See the comments in perf_install_in_context().
14199 */
14200 mutex_lock(&ctx->mutex);
14201
14202 /*
14203 * In a single ctx::lock section, de-schedule the events and detach the
14204 * context from the task such that we cannot ever get it scheduled back
14205 * in.
14206 */
14207 raw_spin_lock_irq(&ctx->lock);
14208 if (exit)
14209 task_ctx_sched_out(ctx, NULL, EVENT_ALL);
14210
14211 /*
14212 * Now that the context is inactive, destroy the task <-> ctx relation
14213 * and mark the context dead.
14214 */
14215 RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
14216 put_ctx(ctx); /* cannot be last */
14217 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
14218 put_task_struct(task); /* cannot be last */
14219
14220 clone_ctx = unclone_ctx(ctx);
14221 raw_spin_unlock_irq(&ctx->lock);
14222
14223 if (clone_ctx)
14224 put_ctx(clone_ctx);
14225
14226 /*
14227 * Report the task dead after unscheduling the events so that we
14228 * won't get any samples after PERF_RECORD_EXIT. We can however still
14229 * get a few PERF_RECORD_READ events.
14230 */
14231 if (exit)
14232 perf_event_task(task, ctx, 0);
14233
14234 list_for_each_entry_safe(child_event, next, &ctx->event_list, event_entry)
14235 perf_event_exit_event(child_event, ctx, exit ? task : NULL, false);
14236
14237 mutex_unlock(&ctx->mutex);
14238
14239 if (!exit) {
14240 /*
14241 * perf_event_release_kernel() could still have a reference on
14242 * this context. In that case we must wait for these events to
14243 * have been freed (in particular all their references to this
14244 * task must've been dropped).
14245 *
14246 * Without this copy_process() will unconditionally free this
14247 * task (irrespective of its reference count) and
14248 * _free_event()'s put_task_struct(event->hw.target) will be a
14249 * use-after-free.
14250 *
14251 * Wait for all events to drop their context reference.
14252 */
14253 wait_var_event(&ctx->refcount,
14254 refcount_read(&ctx->refcount) == 1);
14255 }
14256 put_ctx(ctx);
14257 }
14258
14259 /*
14260 * When a task exits, feed back event values to parent events.
14261 *
14262 * Can be called with exec_update_lock held when called from
14263 * setup_new_exec().
14264 */
perf_event_exit_task(struct task_struct * task)14265 void perf_event_exit_task(struct task_struct *task)
14266 {
14267 struct perf_event *event, *tmp;
14268
14269 WARN_ON_ONCE(task != current);
14270
14271 mutex_lock(&task->perf_event_mutex);
14272 list_for_each_entry_safe(event, tmp, &task->perf_event_list,
14273 owner_entry) {
14274 list_del_init(&event->owner_entry);
14275
14276 /*
14277 * Ensure the list deletion is visible before we clear
14278 * the owner, closes a race against perf_release() where
14279 * we need to serialize on the owner->perf_event_mutex.
14280 */
14281 smp_store_release(&event->owner, NULL);
14282 }
14283 mutex_unlock(&task->perf_event_mutex);
14284
14285 perf_event_exit_task_context(task, true);
14286
14287 /*
14288 * The perf_event_exit_task_context calls perf_event_task
14289 * with task's task_ctx, which generates EXIT events for
14290 * task contexts and sets task->perf_event_ctxp[] to NULL.
14291 * At this point we need to send EXIT events to cpu contexts.
14292 */
14293 perf_event_task(task, NULL, 0);
14294
14295 /*
14296 * Detach the perf_ctx_data for the system-wide event.
14297 */
14298 guard(percpu_read)(&global_ctx_data_rwsem);
14299 detach_task_ctx_data(task);
14300 }
14301
14302 /*
14303 * Free a context as created by inheritance by perf_event_init_task() below,
14304 * used by fork() in case of fail.
14305 *
14306 * Even though the task has never lived, the context and events have been
14307 * exposed through the child_list, so we must take care tearing it all down.
14308 */
perf_event_free_task(struct task_struct * task)14309 void perf_event_free_task(struct task_struct *task)
14310 {
14311 perf_event_exit_task_context(task, false);
14312 }
14313
perf_event_delayed_put(struct task_struct * task)14314 void perf_event_delayed_put(struct task_struct *task)
14315 {
14316 WARN_ON_ONCE(task->perf_event_ctxp);
14317 }
14318
perf_event_get(unsigned int fd)14319 struct file *perf_event_get(unsigned int fd)
14320 {
14321 struct file *file = fget(fd);
14322 if (!file)
14323 return ERR_PTR(-EBADF);
14324
14325 if (file->f_op != &perf_fops) {
14326 fput(file);
14327 return ERR_PTR(-EBADF);
14328 }
14329
14330 return file;
14331 }
14332
perf_get_event(struct file * file)14333 const struct perf_event *perf_get_event(struct file *file)
14334 {
14335 if (file->f_op != &perf_fops)
14336 return ERR_PTR(-EINVAL);
14337
14338 return file->private_data;
14339 }
14340
perf_event_attrs(struct perf_event * event)14341 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
14342 {
14343 if (!event)
14344 return ERR_PTR(-EINVAL);
14345
14346 return &event->attr;
14347 }
14348
perf_allow_kernel(void)14349 int perf_allow_kernel(void)
14350 {
14351 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
14352 return -EACCES;
14353
14354 return security_perf_event_open(PERF_SECURITY_KERNEL);
14355 }
14356 EXPORT_SYMBOL_GPL(perf_allow_kernel);
14357
14358 /*
14359 * Inherit an event from parent task to child task.
14360 *
14361 * Returns:
14362 * - valid pointer on success
14363 * - NULL for orphaned events
14364 * - IS_ERR() on error
14365 */
14366 static struct perf_event *
inherit_event(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event * group_leader,struct perf_event_context * child_ctx)14367 inherit_event(struct perf_event *parent_event,
14368 struct task_struct *parent,
14369 struct perf_event_context *parent_ctx,
14370 struct task_struct *child,
14371 struct perf_event *group_leader,
14372 struct perf_event_context *child_ctx)
14373 {
14374 enum perf_event_state parent_state = parent_event->state;
14375 struct perf_event_pmu_context *pmu_ctx;
14376 struct perf_event *child_event;
14377 unsigned long flags;
14378
14379 /*
14380 * Instead of creating recursive hierarchies of events,
14381 * we link inherited events back to the original parent,
14382 * which has a filp for sure, which we use as the reference
14383 * count:
14384 */
14385 if (parent_event->parent)
14386 parent_event = parent_event->parent;
14387
14388 if (parent_event->state <= PERF_EVENT_STATE_REVOKED)
14389 return NULL;
14390
14391 /*
14392 * Event creation should be under SRCU, see perf_pmu_unregister().
14393 */
14394 guard(srcu)(&pmus_srcu);
14395
14396 child_event = perf_event_alloc(&parent_event->attr,
14397 parent_event->cpu,
14398 child,
14399 group_leader, parent_event,
14400 NULL, NULL, -1);
14401 if (IS_ERR(child_event))
14402 return child_event;
14403
14404 get_ctx(child_ctx);
14405 child_event->ctx = child_ctx;
14406
14407 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
14408 if (IS_ERR(pmu_ctx)) {
14409 free_event(child_event);
14410 return ERR_CAST(pmu_ctx);
14411 }
14412 child_event->pmu_ctx = pmu_ctx;
14413
14414 /*
14415 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
14416 * must be under the same lock in order to serialize against
14417 * perf_event_release_kernel(), such that either we must observe
14418 * is_orphaned_event() or they will observe us on the child_list.
14419 */
14420 mutex_lock(&parent_event->child_mutex);
14421 if (is_orphaned_event(parent_event) ||
14422 !atomic_long_inc_not_zero(&parent_event->refcount)) {
14423 mutex_unlock(&parent_event->child_mutex);
14424 free_event(child_event);
14425 return NULL;
14426 }
14427
14428 /*
14429 * Make the child state follow the state of the parent event,
14430 * not its attr.disabled bit. We hold the parent's mutex,
14431 * so we won't race with perf_event_{en, dis}able_family.
14432 */
14433 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
14434 child_event->state = PERF_EVENT_STATE_INACTIVE;
14435 else
14436 child_event->state = PERF_EVENT_STATE_OFF;
14437
14438 if (parent_event->attr.freq) {
14439 u64 sample_period = parent_event->hw.sample_period;
14440 struct hw_perf_event *hwc = &child_event->hw;
14441
14442 hwc->sample_period = sample_period;
14443 hwc->last_period = sample_period;
14444
14445 local64_set(&hwc->period_left, sample_period);
14446 }
14447
14448 child_event->overflow_handler = parent_event->overflow_handler;
14449 child_event->overflow_handler_context
14450 = parent_event->overflow_handler_context;
14451
14452 /*
14453 * Precalculate sample_data sizes
14454 */
14455 perf_event__header_size(child_event);
14456 perf_event__id_header_size(child_event);
14457
14458 /*
14459 * Link it up in the child's context:
14460 */
14461 raw_spin_lock_irqsave(&child_ctx->lock, flags);
14462 add_event_to_ctx(child_event, child_ctx);
14463 child_event->attach_state |= PERF_ATTACH_CHILD;
14464 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
14465
14466 /*
14467 * Link this into the parent event's child list
14468 */
14469 list_add_tail(&child_event->child_list, &parent_event->child_list);
14470 mutex_unlock(&parent_event->child_mutex);
14471
14472 return child_event;
14473 }
14474
14475 /*
14476 * Inherits an event group.
14477 *
14478 * This will quietly suppress orphaned events; !inherit_event() is not an error.
14479 * This matches with perf_event_release_kernel() removing all child events.
14480 *
14481 * Returns:
14482 * - 0 on success
14483 * - <0 on error
14484 */
inherit_group(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event_context * child_ctx)14485 static int inherit_group(struct perf_event *parent_event,
14486 struct task_struct *parent,
14487 struct perf_event_context *parent_ctx,
14488 struct task_struct *child,
14489 struct perf_event_context *child_ctx)
14490 {
14491 struct perf_event *leader;
14492 struct perf_event *sub;
14493 struct perf_event *child_ctr;
14494
14495 leader = inherit_event(parent_event, parent, parent_ctx,
14496 child, NULL, child_ctx);
14497 if (IS_ERR(leader))
14498 return PTR_ERR(leader);
14499 /*
14500 * @leader can be NULL here because of is_orphaned_event(). In this
14501 * case inherit_event() will create individual events, similar to what
14502 * perf_group_detach() would do anyway.
14503 */
14504 for_each_sibling_event(sub, parent_event) {
14505 child_ctr = inherit_event(sub, parent, parent_ctx,
14506 child, leader, child_ctx);
14507 if (IS_ERR(child_ctr))
14508 return PTR_ERR(child_ctr);
14509
14510 if (sub->aux_event == parent_event && child_ctr &&
14511 !perf_get_aux_event(child_ctr, leader))
14512 return -EINVAL;
14513 }
14514 if (leader)
14515 leader->group_generation = parent_event->group_generation;
14516 return 0;
14517 }
14518
14519 /*
14520 * Creates the child task context and tries to inherit the event-group.
14521 *
14522 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
14523 * inherited_all set when we 'fail' to inherit an orphaned event; this is
14524 * consistent with perf_event_release_kernel() removing all child events.
14525 *
14526 * Returns:
14527 * - 0 on success
14528 * - <0 on error
14529 */
14530 static int
inherit_task_group(struct perf_event * event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,u64 clone_flags,int * inherited_all)14531 inherit_task_group(struct perf_event *event, struct task_struct *parent,
14532 struct perf_event_context *parent_ctx,
14533 struct task_struct *child,
14534 u64 clone_flags, int *inherited_all)
14535 {
14536 struct perf_event_context *child_ctx;
14537 int ret;
14538
14539 if (!event->attr.inherit ||
14540 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
14541 /* Do not inherit if sigtrap and signal handlers were cleared. */
14542 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
14543 *inherited_all = 0;
14544 return 0;
14545 }
14546
14547 child_ctx = child->perf_event_ctxp;
14548 if (!child_ctx) {
14549 /*
14550 * This is executed from the parent task context, so
14551 * inherit events that have been marked for cloning.
14552 * First allocate and initialize a context for the
14553 * child.
14554 */
14555 child_ctx = alloc_perf_context(child);
14556 if (!child_ctx)
14557 return -ENOMEM;
14558
14559 child->perf_event_ctxp = child_ctx;
14560 }
14561
14562 ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
14563 if (ret)
14564 *inherited_all = 0;
14565
14566 return ret;
14567 }
14568
14569 /*
14570 * Initialize the perf_event context in task_struct
14571 */
perf_event_init_context(struct task_struct * child,u64 clone_flags)14572 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
14573 {
14574 struct perf_event_context *child_ctx, *parent_ctx;
14575 struct perf_event_context *cloned_ctx;
14576 struct perf_event *event;
14577 struct task_struct *parent = current;
14578 int inherited_all = 1;
14579 unsigned long flags;
14580 int ret = 0;
14581
14582 if (likely(!parent->perf_event_ctxp))
14583 return 0;
14584
14585 /*
14586 * If the parent's context is a clone, pin it so it won't get
14587 * swapped under us.
14588 */
14589 parent_ctx = perf_pin_task_context(parent);
14590 if (!parent_ctx)
14591 return 0;
14592
14593 /*
14594 * No need to check if parent_ctx != NULL here; since we saw
14595 * it non-NULL earlier, the only reason for it to become NULL
14596 * is if we exit, and since we're currently in the middle of
14597 * a fork we can't be exiting at the same time.
14598 */
14599
14600 /*
14601 * Lock the parent list. No need to lock the child - not PID
14602 * hashed yet and not running, so nobody can access it.
14603 */
14604 mutex_lock(&parent_ctx->mutex);
14605
14606 /*
14607 * We dont have to disable NMIs - we are only looking at
14608 * the list, not manipulating it:
14609 */
14610 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
14611 ret = inherit_task_group(event, parent, parent_ctx,
14612 child, clone_flags, &inherited_all);
14613 if (ret)
14614 goto out_unlock;
14615 }
14616
14617 /*
14618 * We can't hold ctx->lock when iterating the ->flexible_group list due
14619 * to allocations, but we need to prevent rotation because
14620 * rotate_ctx() will change the list from interrupt context.
14621 */
14622 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
14623 parent_ctx->rotate_disable = 1;
14624 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
14625
14626 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
14627 ret = inherit_task_group(event, parent, parent_ctx,
14628 child, clone_flags, &inherited_all);
14629 if (ret)
14630 goto out_unlock;
14631 }
14632
14633 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
14634 parent_ctx->rotate_disable = 0;
14635
14636 child_ctx = child->perf_event_ctxp;
14637
14638 if (child_ctx && inherited_all) {
14639 /*
14640 * Mark the child context as a clone of the parent
14641 * context, or of whatever the parent is a clone of.
14642 *
14643 * Note that if the parent is a clone, the holding of
14644 * parent_ctx->lock avoids it from being uncloned.
14645 */
14646 cloned_ctx = parent_ctx->parent_ctx;
14647 if (cloned_ctx) {
14648 child_ctx->parent_ctx = cloned_ctx;
14649 child_ctx->parent_gen = parent_ctx->parent_gen;
14650 } else {
14651 child_ctx->parent_ctx = parent_ctx;
14652 child_ctx->parent_gen = parent_ctx->generation;
14653 }
14654 get_ctx(child_ctx->parent_ctx);
14655 }
14656
14657 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
14658 out_unlock:
14659 mutex_unlock(&parent_ctx->mutex);
14660
14661 perf_unpin_context(parent_ctx);
14662 put_ctx(parent_ctx);
14663
14664 return ret;
14665 }
14666
14667 /*
14668 * Initialize the perf_event context in task_struct
14669 */
perf_event_init_task(struct task_struct * child,u64 clone_flags)14670 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
14671 {
14672 int ret;
14673
14674 memset(child->perf_recursion, 0, sizeof(child->perf_recursion));
14675 child->perf_event_ctxp = NULL;
14676 mutex_init(&child->perf_event_mutex);
14677 INIT_LIST_HEAD(&child->perf_event_list);
14678 child->perf_ctx_data = NULL;
14679
14680 ret = perf_event_init_context(child, clone_flags);
14681 if (ret) {
14682 perf_event_free_task(child);
14683 return ret;
14684 }
14685
14686 return 0;
14687 }
14688
perf_event_init_all_cpus(void)14689 static void __init perf_event_init_all_cpus(void)
14690 {
14691 struct swevent_htable *swhash;
14692 struct perf_cpu_context *cpuctx;
14693 int cpu;
14694
14695 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
14696 zalloc_cpumask_var(&perf_online_core_mask, GFP_KERNEL);
14697 zalloc_cpumask_var(&perf_online_die_mask, GFP_KERNEL);
14698 zalloc_cpumask_var(&perf_online_cluster_mask, GFP_KERNEL);
14699 zalloc_cpumask_var(&perf_online_pkg_mask, GFP_KERNEL);
14700 zalloc_cpumask_var(&perf_online_sys_mask, GFP_KERNEL);
14701
14702
14703 for_each_possible_cpu(cpu) {
14704 swhash = &per_cpu(swevent_htable, cpu);
14705 mutex_init(&swhash->hlist_mutex);
14706
14707 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
14708 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
14709
14710 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
14711
14712 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14713 __perf_event_init_context(&cpuctx->ctx);
14714 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
14715 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
14716 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
14717 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
14718 cpuctx->heap = cpuctx->heap_default;
14719 }
14720 }
14721
perf_swevent_init_cpu(unsigned int cpu)14722 static void perf_swevent_init_cpu(unsigned int cpu)
14723 {
14724 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
14725
14726 mutex_lock(&swhash->hlist_mutex);
14727 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
14728 struct swevent_hlist *hlist;
14729
14730 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
14731 WARN_ON(!hlist);
14732 rcu_assign_pointer(swhash->swevent_hlist, hlist);
14733 }
14734 mutex_unlock(&swhash->hlist_mutex);
14735 }
14736
14737 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
__perf_event_exit_context(void * __info)14738 static void __perf_event_exit_context(void *__info)
14739 {
14740 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
14741 struct perf_event_context *ctx = __info;
14742 struct perf_event *event;
14743
14744 raw_spin_lock(&ctx->lock);
14745 ctx_sched_out(ctx, NULL, EVENT_TIME);
14746 list_for_each_entry(event, &ctx->event_list, event_entry)
14747 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
14748 raw_spin_unlock(&ctx->lock);
14749 }
14750
perf_event_clear_cpumask(unsigned int cpu)14751 static void perf_event_clear_cpumask(unsigned int cpu)
14752 {
14753 int target[PERF_PMU_MAX_SCOPE];
14754 unsigned int scope;
14755 struct pmu *pmu;
14756
14757 cpumask_clear_cpu(cpu, perf_online_mask);
14758
14759 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14760 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14761 struct cpumask *pmu_cpumask = perf_scope_cpumask(scope);
14762
14763 target[scope] = -1;
14764 if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14765 continue;
14766
14767 if (!cpumask_test_and_clear_cpu(cpu, pmu_cpumask))
14768 continue;
14769 target[scope] = cpumask_any_but(cpumask, cpu);
14770 if (target[scope] < nr_cpu_ids)
14771 cpumask_set_cpu(target[scope], pmu_cpumask);
14772 }
14773
14774 /* migrate */
14775 list_for_each_entry(pmu, &pmus, entry) {
14776 if (pmu->scope == PERF_PMU_SCOPE_NONE ||
14777 WARN_ON_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE))
14778 continue;
14779
14780 if (target[pmu->scope] >= 0 && target[pmu->scope] < nr_cpu_ids)
14781 perf_pmu_migrate_context(pmu, cpu, target[pmu->scope]);
14782 }
14783 }
14784
perf_event_exit_cpu_context(int cpu)14785 static void perf_event_exit_cpu_context(int cpu)
14786 {
14787 struct perf_cpu_context *cpuctx;
14788 struct perf_event_context *ctx;
14789
14790 // XXX simplify cpuctx->online
14791 mutex_lock(&pmus_lock);
14792 /*
14793 * Clear the cpumasks, and migrate to other CPUs if possible.
14794 * Must be invoked before the __perf_event_exit_context.
14795 */
14796 perf_event_clear_cpumask(cpu);
14797 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14798 ctx = &cpuctx->ctx;
14799
14800 mutex_lock(&ctx->mutex);
14801 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
14802 cpuctx->online = 0;
14803 mutex_unlock(&ctx->mutex);
14804 mutex_unlock(&pmus_lock);
14805 }
14806 #else
14807
perf_event_exit_cpu_context(int cpu)14808 static void perf_event_exit_cpu_context(int cpu) { }
14809
14810 #endif
14811
perf_event_setup_cpumask(unsigned int cpu)14812 static void perf_event_setup_cpumask(unsigned int cpu)
14813 {
14814 struct cpumask *pmu_cpumask;
14815 unsigned int scope;
14816
14817 /*
14818 * Early boot stage, the cpumask hasn't been set yet.
14819 * The perf_online_<domain>_masks includes the first CPU of each domain.
14820 * Always unconditionally set the boot CPU for the perf_online_<domain>_masks.
14821 */
14822 if (cpumask_empty(perf_online_mask)) {
14823 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14824 pmu_cpumask = perf_scope_cpumask(scope);
14825 if (WARN_ON_ONCE(!pmu_cpumask))
14826 continue;
14827 cpumask_set_cpu(cpu, pmu_cpumask);
14828 }
14829 goto end;
14830 }
14831
14832 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14833 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14834
14835 pmu_cpumask = perf_scope_cpumask(scope);
14836
14837 if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14838 continue;
14839
14840 if (!cpumask_empty(cpumask) &&
14841 cpumask_any_and(pmu_cpumask, cpumask) >= nr_cpu_ids)
14842 cpumask_set_cpu(cpu, pmu_cpumask);
14843 }
14844 end:
14845 cpumask_set_cpu(cpu, perf_online_mask);
14846 }
14847
perf_event_init_cpu(unsigned int cpu)14848 int perf_event_init_cpu(unsigned int cpu)
14849 {
14850 struct perf_cpu_context *cpuctx;
14851 struct perf_event_context *ctx;
14852
14853 perf_swevent_init_cpu(cpu);
14854
14855 mutex_lock(&pmus_lock);
14856 perf_event_setup_cpumask(cpu);
14857 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14858 ctx = &cpuctx->ctx;
14859
14860 mutex_lock(&ctx->mutex);
14861 cpuctx->online = 1;
14862 mutex_unlock(&ctx->mutex);
14863 mutex_unlock(&pmus_lock);
14864
14865 return 0;
14866 }
14867
perf_event_exit_cpu(unsigned int cpu)14868 int perf_event_exit_cpu(unsigned int cpu)
14869 {
14870 perf_event_exit_cpu_context(cpu);
14871 return 0;
14872 }
14873
14874 static int
perf_reboot(struct notifier_block * notifier,unsigned long val,void * v)14875 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
14876 {
14877 int cpu;
14878
14879 for_each_online_cpu(cpu)
14880 perf_event_exit_cpu(cpu);
14881
14882 return NOTIFY_OK;
14883 }
14884
14885 /*
14886 * Run the perf reboot notifier at the very last possible moment so that
14887 * the generic watchdog code runs as long as possible.
14888 */
14889 static struct notifier_block perf_reboot_notifier = {
14890 .notifier_call = perf_reboot,
14891 .priority = INT_MIN,
14892 };
14893
perf_event_init(void)14894 void __init perf_event_init(void)
14895 {
14896 int ret;
14897
14898 idr_init(&pmu_idr);
14899
14900 unwind_deferred_init(&perf_unwind_work,
14901 perf_unwind_deferred_callback);
14902
14903 perf_event_init_all_cpus();
14904 init_srcu_struct(&pmus_srcu);
14905 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
14906 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
14907 perf_pmu_register(&perf_task_clock, "task_clock", -1);
14908 perf_tp_register();
14909 perf_event_init_cpu(smp_processor_id());
14910 register_reboot_notifier(&perf_reboot_notifier);
14911
14912 ret = init_hw_breakpoint();
14913 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
14914
14915 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
14916
14917 /*
14918 * Build time assertion that we keep the data_head at the intended
14919 * location. IOW, validation we got the __reserved[] size right.
14920 */
14921 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
14922 != 1024);
14923 }
14924
perf_event_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)14925 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
14926 char *page)
14927 {
14928 struct perf_pmu_events_attr *pmu_attr =
14929 container_of(attr, struct perf_pmu_events_attr, attr);
14930
14931 if (pmu_attr->event_str)
14932 return sprintf(page, "%s\n", pmu_attr->event_str);
14933
14934 return 0;
14935 }
14936 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
14937
perf_event_sysfs_init(void)14938 static int __init perf_event_sysfs_init(void)
14939 {
14940 struct pmu *pmu;
14941 int ret;
14942
14943 mutex_lock(&pmus_lock);
14944
14945 ret = bus_register(&pmu_bus);
14946 if (ret)
14947 goto unlock;
14948
14949 list_for_each_entry(pmu, &pmus, entry) {
14950 if (pmu->dev)
14951 continue;
14952
14953 ret = pmu_dev_alloc(pmu);
14954 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
14955 }
14956 pmu_bus_running = 1;
14957 ret = 0;
14958
14959 unlock:
14960 mutex_unlock(&pmus_lock);
14961
14962 return ret;
14963 }
14964 device_initcall(perf_event_sysfs_init);
14965
14966 #ifdef CONFIG_CGROUP_PERF
14967 static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)14968 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
14969 {
14970 struct perf_cgroup *jc;
14971
14972 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
14973 if (!jc)
14974 return ERR_PTR(-ENOMEM);
14975
14976 jc->info = alloc_percpu(struct perf_cgroup_info);
14977 if (!jc->info) {
14978 kfree(jc);
14979 return ERR_PTR(-ENOMEM);
14980 }
14981
14982 return &jc->css;
14983 }
14984
perf_cgroup_css_free(struct cgroup_subsys_state * css)14985 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
14986 {
14987 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
14988
14989 free_percpu(jc->info);
14990 kfree(jc);
14991 }
14992
perf_cgroup_css_online(struct cgroup_subsys_state * css)14993 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
14994 {
14995 perf_event_cgroup(css->cgroup);
14996 return 0;
14997 }
14998
__perf_cgroup_move(void * info)14999 static int __perf_cgroup_move(void *info)
15000 {
15001 struct task_struct *task = info;
15002
15003 preempt_disable();
15004 perf_cgroup_switch(task);
15005 preempt_enable();
15006
15007 return 0;
15008 }
15009
perf_cgroup_attach(struct cgroup_taskset * tset)15010 static void perf_cgroup_attach(struct cgroup_taskset *tset)
15011 {
15012 struct task_struct *task;
15013 struct cgroup_subsys_state *css;
15014
15015 cgroup_taskset_for_each(task, css, tset)
15016 task_function_call(task, __perf_cgroup_move, task);
15017 }
15018
15019 struct cgroup_subsys perf_event_cgrp_subsys = {
15020 .css_alloc = perf_cgroup_css_alloc,
15021 .css_free = perf_cgroup_css_free,
15022 .css_online = perf_cgroup_css_online,
15023 .attach = perf_cgroup_attach,
15024 /*
15025 * Implicitly enable on dfl hierarchy so that perf events can
15026 * always be filtered by cgroup2 path as long as perf_event
15027 * controller is not mounted on a legacy hierarchy.
15028 */
15029 .implicit_on_dfl = true,
15030 .threaded = true,
15031 };
15032 #endif /* CONFIG_CGROUP_PERF */
15033
15034 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
15035