xref: /linux/arch/arm64/kernel/process.c (revision 6fb44438a5e1897a72dd11139274735256be8069)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/process.c
4  *
5  * Original Copyright (C) 1995  Linus Torvalds
6  * Copyright (C) 1996-2000 Russell King - Converted to ARM.
7  * Copyright (C) 2012 ARM Ltd.
8  */
9 #include <linux/compat.h>
10 #include <linux/efi.h>
11 #include <linux/elf.h>
12 #include <linux/export.h>
13 #include <linux/sched.h>
14 #include <linux/sched/debug.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/kernel.h>
18 #include <linux/mman.h>
19 #include <linux/mm.h>
20 #include <linux/nospec.h>
21 #include <linux/stddef.h>
22 #include <linux/sysctl.h>
23 #include <linux/unistd.h>
24 #include <linux/user.h>
25 #include <linux/delay.h>
26 #include <linux/reboot.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <linux/cpu.h>
30 #include <linux/elfcore.h>
31 #include <linux/pm.h>
32 #include <linux/tick.h>
33 #include <linux/utsname.h>
34 #include <linux/uaccess.h>
35 #include <linux/random.h>
36 #include <linux/hw_breakpoint.h>
37 #include <linux/personality.h>
38 #include <linux/notifier.h>
39 #include <trace/events/power.h>
40 #include <linux/percpu.h>
41 #include <linux/thread_info.h>
42 #include <linux/prctl.h>
43 #include <linux/stacktrace.h>
44 
45 #include <asm/alternative.h>
46 #include <asm/arch_timer.h>
47 #include <asm/compat.h>
48 #include <asm/cpufeature.h>
49 #include <asm/cacheflush.h>
50 #include <asm/exec.h>
51 #include <asm/fpsimd.h>
52 #include <asm/gcs.h>
53 #include <asm/mmu_context.h>
54 #include <asm/mte.h>
55 #include <asm/processor.h>
56 #include <asm/pointer_auth.h>
57 #include <asm/stacktrace.h>
58 #include <asm/switch_to.h>
59 #include <asm/system_misc.h>
60 
61 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
62 #include <linux/stackprotector.h>
63 unsigned long __stack_chk_guard __ro_after_init;
64 EXPORT_SYMBOL(__stack_chk_guard);
65 #endif
66 
67 /*
68  * Function pointers to optional machine specific functions
69  */
70 void (*pm_power_off)(void);
71 EXPORT_SYMBOL_GPL(pm_power_off);
72 
73 #ifdef CONFIG_HOTPLUG_CPU
arch_cpu_idle_dead(void)74 void __noreturn arch_cpu_idle_dead(void)
75 {
76        cpu_die();
77 }
78 #endif
79 
80 /*
81  * Called by kexec, immediately prior to machine_kexec().
82  *
83  * This must completely disable all secondary CPUs; simply causing those CPUs
84  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
85  * kexec'd kernel to use any and all RAM as it sees fit, without having to
86  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
87  * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
88  */
machine_shutdown(void)89 void machine_shutdown(void)
90 {
91 	smp_shutdown_nonboot_cpus(reboot_cpu);
92 }
93 
94 /*
95  * Halting simply requires that the secondary CPUs stop performing any
96  * activity (executing tasks, handling interrupts). smp_send_stop()
97  * achieves this.
98  */
machine_halt(void)99 void machine_halt(void)
100 {
101 	local_irq_disable();
102 	smp_send_stop();
103 	while (1);
104 }
105 
106 /*
107  * Power-off simply requires that the secondary CPUs stop performing any
108  * activity (executing tasks, handling interrupts). smp_send_stop()
109  * achieves this. When the system power is turned off, it will take all CPUs
110  * with it.
111  */
machine_power_off(void)112 void machine_power_off(void)
113 {
114 	local_irq_disable();
115 	smp_send_stop();
116 	do_kernel_power_off();
117 }
118 
119 /*
120  * Restart requires that the secondary CPUs stop performing any activity
121  * while the primary CPU resets the system. Systems with multiple CPUs must
122  * provide a HW restart implementation, to ensure that all CPUs reset at once.
123  * This is required so that any code running after reset on the primary CPU
124  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
125  * executing pre-reset code, and using RAM that the primary CPU's code wishes
126  * to use. Implementing such co-ordination would be essentially impossible.
127  */
machine_restart(char * cmd)128 void machine_restart(char *cmd)
129 {
130 	/* Disable interrupts first */
131 	local_irq_disable();
132 	smp_send_stop();
133 
134 	/*
135 	 * UpdateCapsule() depends on the system being reset via
136 	 * ResetSystem().
137 	 */
138 	if (efi_enabled(EFI_RUNTIME_SERVICES))
139 		efi_reboot(reboot_mode, NULL);
140 
141 	/* Now call the architecture specific reboot code. */
142 	do_kernel_restart(cmd);
143 
144 	/*
145 	 * Whoops - the architecture was unable to reboot.
146 	 */
147 	printk("Reboot failed -- System halted\n");
148 	while (1);
149 }
150 
151 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
152 static const char *const btypes[] = {
153 	bstr(NONE, "--"),
154 	bstr(  JC, "jc"),
155 	bstr(   C, "-c"),
156 	bstr(  J , "j-")
157 };
158 #undef bstr
159 
print_pstate(struct pt_regs * regs)160 static void print_pstate(struct pt_regs *regs)
161 {
162 	u64 pstate = regs->pstate;
163 
164 	if (compat_user_mode(regs)) {
165 		printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n",
166 			pstate,
167 			pstate & PSR_AA32_N_BIT ? 'N' : 'n',
168 			pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
169 			pstate & PSR_AA32_C_BIT ? 'C' : 'c',
170 			pstate & PSR_AA32_V_BIT ? 'V' : 'v',
171 			pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
172 			pstate & PSR_AA32_T_BIT ? "T32" : "A32",
173 			pstate & PSR_AA32_E_BIT ? "BE" : "LE",
174 			pstate & PSR_AA32_A_BIT ? 'A' : 'a',
175 			pstate & PSR_AA32_I_BIT ? 'I' : 'i',
176 			pstate & PSR_AA32_F_BIT ? 'F' : 'f',
177 			pstate & PSR_AA32_DIT_BIT ? '+' : '-',
178 			pstate & PSR_AA32_SSBS_BIT ? '+' : '-');
179 	} else {
180 		const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
181 					       PSR_BTYPE_SHIFT];
182 
183 		printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n",
184 			pstate,
185 			pstate & PSR_N_BIT ? 'N' : 'n',
186 			pstate & PSR_Z_BIT ? 'Z' : 'z',
187 			pstate & PSR_C_BIT ? 'C' : 'c',
188 			pstate & PSR_V_BIT ? 'V' : 'v',
189 			pstate & PSR_D_BIT ? 'D' : 'd',
190 			pstate & PSR_A_BIT ? 'A' : 'a',
191 			pstate & PSR_I_BIT ? 'I' : 'i',
192 			pstate & PSR_F_BIT ? 'F' : 'f',
193 			pstate & PSR_PAN_BIT ? '+' : '-',
194 			pstate & PSR_UAO_BIT ? '+' : '-',
195 			pstate & PSR_TCO_BIT ? '+' : '-',
196 			pstate & PSR_DIT_BIT ? '+' : '-',
197 			pstate & PSR_SSBS_BIT ? '+' : '-',
198 			btype_str);
199 	}
200 }
201 
__show_regs(struct pt_regs * regs)202 void __show_regs(struct pt_regs *regs)
203 {
204 	int i, top_reg;
205 	u64 lr, sp;
206 
207 	if (compat_user_mode(regs)) {
208 		lr = regs->compat_lr;
209 		sp = regs->compat_sp;
210 		top_reg = 12;
211 	} else {
212 		lr = regs->regs[30];
213 		sp = regs->sp;
214 		top_reg = 29;
215 	}
216 
217 	show_regs_print_info(KERN_DEFAULT);
218 	print_pstate(regs);
219 
220 	if (!user_mode(regs)) {
221 		printk("pc : %pS\n", (void *)regs->pc);
222 		printk("lr : %pS\n", (void *)ptrauth_strip_kernel_insn_pac(lr));
223 	} else {
224 		printk("pc : %016llx\n", regs->pc);
225 		printk("lr : %016llx\n", lr);
226 	}
227 
228 	printk("sp : %016llx\n", sp);
229 
230 	if (system_uses_irq_prio_masking())
231 		printk("pmr: %08x\n", regs->pmr);
232 
233 	i = top_reg;
234 
235 	while (i >= 0) {
236 		printk("x%-2d: %016llx", i, regs->regs[i]);
237 
238 		while (i-- % 3)
239 			pr_cont(" x%-2d: %016llx", i, regs->regs[i]);
240 
241 		pr_cont("\n");
242 	}
243 }
244 
show_regs(struct pt_regs * regs)245 void show_regs(struct pt_regs *regs)
246 {
247 	__show_regs(regs);
248 	dump_backtrace(regs, NULL, KERN_DEFAULT);
249 }
250 
tls_thread_flush(void)251 static void tls_thread_flush(void)
252 {
253 	write_sysreg(0, tpidr_el0);
254 	if (system_supports_tpidr2())
255 		write_sysreg_s(0, SYS_TPIDR2_EL0);
256 
257 	if (is_compat_task()) {
258 		current->thread.uw.tp_value = 0;
259 
260 		/*
261 		 * We need to ensure ordering between the shadow state and the
262 		 * hardware state, so that we don't corrupt the hardware state
263 		 * with a stale shadow state during context switch.
264 		 */
265 		barrier();
266 		write_sysreg(0, tpidrro_el0);
267 	}
268 }
269 
flush_tagged_addr_state(void)270 static void flush_tagged_addr_state(void)
271 {
272 	if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
273 		clear_thread_flag(TIF_TAGGED_ADDR);
274 }
275 
flush_poe(void)276 static void flush_poe(void)
277 {
278 	if (!system_supports_poe())
279 		return;
280 
281 	write_sysreg_s(POR_EL0_INIT, SYS_POR_EL0);
282 }
283 
284 #ifdef CONFIG_ARM64_GCS
285 
flush_gcs(void)286 static void flush_gcs(void)
287 {
288 	if (!system_supports_gcs())
289 		return;
290 
291 	current->thread.gcspr_el0 = 0;
292 	current->thread.gcs_base = 0;
293 	current->thread.gcs_size = 0;
294 	current->thread.gcs_el0_mode = 0;
295 	write_sysreg_s(GCSCRE0_EL1_nTR, SYS_GCSCRE0_EL1);
296 	write_sysreg_s(0, SYS_GCSPR_EL0);
297 }
298 
copy_thread_gcs(struct task_struct * p,const struct kernel_clone_args * args)299 static int copy_thread_gcs(struct task_struct *p,
300 			   const struct kernel_clone_args *args)
301 {
302 	unsigned long gcs;
303 
304 	if (!system_supports_gcs())
305 		return 0;
306 
307 	p->thread.gcs_base = 0;
308 	p->thread.gcs_size = 0;
309 
310 	p->thread.gcs_el0_mode = current->thread.gcs_el0_mode;
311 	p->thread.gcs_el0_locked = current->thread.gcs_el0_locked;
312 
313 	gcs = gcs_alloc_thread_stack(p, args);
314 	if (IS_ERR_VALUE(gcs))
315 		return PTR_ERR((void *)gcs);
316 
317 	return 0;
318 }
319 
320 #else
321 
flush_gcs(void)322 static void flush_gcs(void) { }
copy_thread_gcs(struct task_struct * p,const struct kernel_clone_args * args)323 static int copy_thread_gcs(struct task_struct *p,
324 			   const struct kernel_clone_args *args)
325 {
326 	return 0;
327 }
328 
329 #endif
330 
flush_thread(void)331 void flush_thread(void)
332 {
333 	fpsimd_flush_thread();
334 	tls_thread_flush();
335 	flush_ptrace_hw_breakpoint(current);
336 	flush_tagged_addr_state();
337 	flush_poe();
338 	flush_gcs();
339 }
340 
arch_release_task_struct(struct task_struct * tsk)341 void arch_release_task_struct(struct task_struct *tsk)
342 {
343 	fpsimd_release_task(tsk);
344 }
345 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)346 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
347 {
348 	/*
349 	 * The current/src task's FPSIMD state may or may not be live, and may
350 	 * have been altered by ptrace after entry to the kernel. Save the
351 	 * effective FPSIMD state so that this will be copied into dst.
352 	 */
353 	fpsimd_save_and_flush_current_state();
354 	fpsimd_sync_from_effective_state(src);
355 
356 	*dst = *src;
357 
358 	/*
359 	 * Drop stale reference to src's sve_state and convert dst to
360 	 * non-streaming FPSIMD mode.
361 	 */
362 	dst->thread.fp_type = FP_STATE_FPSIMD;
363 	dst->thread.sve_state = NULL;
364 	clear_tsk_thread_flag(dst, TIF_SVE);
365 	task_smstop_sm(dst);
366 
367 	/*
368 	 * Drop stale reference to src's sme_state and ensure dst has ZA
369 	 * disabled.
370 	 *
371 	 * When necessary, ZA will be inherited later in copy_thread_za().
372 	 */
373 	dst->thread.sme_state = NULL;
374 	clear_tsk_thread_flag(dst, TIF_SME);
375 	dst->thread.svcr &= ~SVCR_ZA_MASK;
376 
377 	/* clear any pending asynchronous tag fault raised by the parent */
378 	clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
379 
380 	return 0;
381 }
382 
copy_thread_za(struct task_struct * dst,struct task_struct * src)383 static int copy_thread_za(struct task_struct *dst, struct task_struct *src)
384 {
385 	if (!thread_za_enabled(&src->thread))
386 		return 0;
387 
388 	dst->thread.sve_state = kzalloc(sve_state_size(src),
389 					GFP_KERNEL);
390 	if (!dst->thread.sve_state)
391 		return -ENOMEM;
392 
393 	dst->thread.sme_state = kmemdup(src->thread.sme_state,
394 					sme_state_size(src),
395 					GFP_KERNEL);
396 	if (!dst->thread.sme_state) {
397 		kfree(dst->thread.sve_state);
398 		dst->thread.sve_state = NULL;
399 		return -ENOMEM;
400 	}
401 
402 	set_tsk_thread_flag(dst, TIF_SME);
403 	dst->thread.svcr |= SVCR_ZA_MASK;
404 
405 	return 0;
406 }
407 
408 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
409 
copy_thread(struct task_struct * p,const struct kernel_clone_args * args)410 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
411 {
412 	unsigned long clone_flags = args->flags;
413 	unsigned long stack_start = args->stack;
414 	unsigned long tls = args->tls;
415 	struct pt_regs *childregs = task_pt_regs(p);
416 	int ret;
417 
418 	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
419 
420 	/*
421 	 * In case p was allocated the same task_struct pointer as some
422 	 * other recently-exited task, make sure p is disassociated from
423 	 * any cpu that may have run that now-exited task recently.
424 	 * Otherwise we could erroneously skip reloading the FPSIMD
425 	 * registers for p.
426 	 */
427 	fpsimd_flush_task_state(p);
428 
429 	ptrauth_thread_init_kernel(p);
430 
431 	if (likely(!args->fn)) {
432 		*childregs = *current_pt_regs();
433 		childregs->regs[0] = 0;
434 
435 		/*
436 		 * Read the current TLS pointer from tpidr_el0 as it may be
437 		 * out-of-sync with the saved value.
438 		 */
439 		*task_user_tls(p) = read_sysreg(tpidr_el0);
440 
441 		if (system_supports_poe())
442 			p->thread.por_el0 = read_sysreg_s(SYS_POR_EL0);
443 
444 		if (stack_start) {
445 			if (is_compat_thread(task_thread_info(p)))
446 				childregs->compat_sp = stack_start;
447 			else
448 				childregs->sp = stack_start;
449 		}
450 
451 		/*
452 		 * Due to the AAPCS64 "ZA lazy saving scheme", PSTATE.ZA and
453 		 * TPIDR2 need to be manipulated as a pair, and either both
454 		 * need to be inherited or both need to be reset.
455 		 *
456 		 * Within a process, child threads must not inherit their
457 		 * parent's TPIDR2 value or they may clobber their parent's
458 		 * stack at some later point.
459 		 *
460 		 * When a process is fork()'d, the child must inherit ZA and
461 		 * TPIDR2 from its parent in case there was dormant ZA state.
462 		 *
463 		 * Use CLONE_VM to determine when the child will share the
464 		 * address space with the parent, and cannot safely inherit the
465 		 * state.
466 		 */
467 		if (system_supports_sme()) {
468 			if (!(clone_flags & CLONE_VM)) {
469 				p->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
470 				ret = copy_thread_za(p, current);
471 				if (ret)
472 					return ret;
473 			} else {
474 				p->thread.tpidr2_el0 = 0;
475 				WARN_ON_ONCE(p->thread.svcr & SVCR_ZA_MASK);
476 			}
477 		}
478 
479 		/*
480 		 * If a TLS pointer was passed to clone, use it for the new
481 		 * thread.
482 		 */
483 		if (clone_flags & CLONE_SETTLS)
484 			p->thread.uw.tp_value = tls;
485 
486 		ret = copy_thread_gcs(p, args);
487 		if (ret != 0)
488 			return ret;
489 	} else {
490 		/*
491 		 * A kthread has no context to ERET to, so ensure any buggy
492 		 * ERET is treated as an illegal exception return.
493 		 *
494 		 * When a user task is created from a kthread, childregs will
495 		 * be initialized by start_thread() or start_compat_thread().
496 		 */
497 		memset(childregs, 0, sizeof(struct pt_regs));
498 		childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT;
499 		childregs->stackframe.type = FRAME_META_TYPE_FINAL;
500 
501 		p->thread.cpu_context.x19 = (unsigned long)args->fn;
502 		p->thread.cpu_context.x20 = (unsigned long)args->fn_arg;
503 
504 		if (system_supports_poe())
505 			p->thread.por_el0 = POR_EL0_INIT;
506 	}
507 	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
508 	p->thread.cpu_context.sp = (unsigned long)childregs;
509 	/*
510 	 * For the benefit of the unwinder, set up childregs->stackframe
511 	 * as the final frame for the new task.
512 	 */
513 	p->thread.cpu_context.fp = (unsigned long)&childregs->stackframe;
514 
515 	ptrace_hw_copy_thread(p);
516 
517 	return 0;
518 }
519 
tls_preserve_current_state(void)520 void tls_preserve_current_state(void)
521 {
522 	*task_user_tls(current) = read_sysreg(tpidr_el0);
523 	if (system_supports_tpidr2() && !is_compat_task())
524 		current->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
525 }
526 
tls_thread_switch(struct task_struct * next)527 static void tls_thread_switch(struct task_struct *next)
528 {
529 	tls_preserve_current_state();
530 
531 	if (is_compat_thread(task_thread_info(next)))
532 		write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
533 	else
534 		write_sysreg(0, tpidrro_el0);
535 
536 	write_sysreg(*task_user_tls(next), tpidr_el0);
537 	if (system_supports_tpidr2())
538 		write_sysreg_s(next->thread.tpidr2_el0, SYS_TPIDR2_EL0);
539 }
540 
541 /*
542  * Force SSBS state on context-switch, since it may be lost after migrating
543  * from a CPU which treats the bit as RES0 in a heterogeneous system.
544  */
ssbs_thread_switch(struct task_struct * next)545 static void ssbs_thread_switch(struct task_struct *next)
546 {
547 	/*
548 	 * Nothing to do for kernel threads, but 'regs' may be junk
549 	 * (e.g. idle task) so check the flags and bail early.
550 	 */
551 	if (unlikely(next->flags & PF_KTHREAD))
552 		return;
553 
554 	/*
555 	 * If all CPUs implement the SSBS extension, then we just need to
556 	 * context-switch the PSTATE field.
557 	 */
558 	if (alternative_has_cap_unlikely(ARM64_SSBS))
559 		return;
560 
561 	spectre_v4_enable_task_mitigation(next);
562 }
563 
564 /*
565  * We store our current task in sp_el0, which is clobbered by userspace. Keep a
566  * shadow copy so that we can restore this upon entry from userspace.
567  *
568  * This is *only* for exception entry from EL0, and is not valid until we
569  * __switch_to() a user task.
570  */
571 DEFINE_PER_CPU(struct task_struct *, __entry_task);
572 
entry_task_switch(struct task_struct * next)573 static void entry_task_switch(struct task_struct *next)
574 {
575 	__this_cpu_write(__entry_task, next);
576 }
577 
578 #ifdef CONFIG_ARM64_GCS
579 
gcs_preserve_current_state(void)580 void gcs_preserve_current_state(void)
581 {
582 	current->thread.gcspr_el0 = read_sysreg_s(SYS_GCSPR_EL0);
583 }
584 
gcs_thread_switch(struct task_struct * next)585 static void gcs_thread_switch(struct task_struct *next)
586 {
587 	if (!system_supports_gcs())
588 		return;
589 
590 	/* GCSPR_EL0 is always readable */
591 	gcs_preserve_current_state();
592 	write_sysreg_s(next->thread.gcspr_el0, SYS_GCSPR_EL0);
593 
594 	if (current->thread.gcs_el0_mode != next->thread.gcs_el0_mode)
595 		gcs_set_el0_mode(next);
596 
597 	/*
598 	 * Ensure that GCS memory effects of the 'prev' thread are
599 	 * ordered before other memory accesses with release semantics
600 	 * (or preceded by a DMB) on the current PE. In addition, any
601 	 * memory accesses with acquire semantics (or succeeded by a
602 	 * DMB) are ordered before GCS memory effects of the 'next'
603 	 * thread. This will ensure that the GCS memory effects are
604 	 * visible to other PEs in case of migration.
605 	 */
606 	if (task_gcs_el0_enabled(current) || task_gcs_el0_enabled(next))
607 		gcsb_dsync();
608 }
609 
610 #else
611 
gcs_thread_switch(struct task_struct * next)612 static void gcs_thread_switch(struct task_struct *next)
613 {
614 }
615 
616 #endif
617 
618 /*
619  * Handle sysreg updates for ARM erratum 1418040 which affects the 32bit view of
620  * CNTVCT, various other errata which require trapping all CNTVCT{,_EL0}
621  * accesses and prctl(PR_SET_TSC). Ensure access is disabled iff a workaround is
622  * required or PR_TSC_SIGSEGV is set.
623  */
update_cntkctl_el1(struct task_struct * next)624 static void update_cntkctl_el1(struct task_struct *next)
625 {
626 	struct thread_info *ti = task_thread_info(next);
627 
628 	if (test_ti_thread_flag(ti, TIF_TSC_SIGSEGV) ||
629 	    has_erratum_handler(read_cntvct_el0) ||
630 	    (IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) &&
631 	     this_cpu_has_cap(ARM64_WORKAROUND_1418040) &&
632 	     is_compat_thread(ti)))
633 		sysreg_clear_set(cntkctl_el1, ARCH_TIMER_USR_VCT_ACCESS_EN, 0);
634 	else
635 		sysreg_clear_set(cntkctl_el1, 0, ARCH_TIMER_USR_VCT_ACCESS_EN);
636 }
637 
cntkctl_thread_switch(struct task_struct * prev,struct task_struct * next)638 static void cntkctl_thread_switch(struct task_struct *prev,
639 				  struct task_struct *next)
640 {
641 	if ((read_ti_thread_flags(task_thread_info(prev)) &
642 	     (_TIF_32BIT | _TIF_TSC_SIGSEGV)) !=
643 	    (read_ti_thread_flags(task_thread_info(next)) &
644 	     (_TIF_32BIT | _TIF_TSC_SIGSEGV)))
645 		update_cntkctl_el1(next);
646 }
647 
do_set_tsc_mode(unsigned int val)648 static int do_set_tsc_mode(unsigned int val)
649 {
650 	bool tsc_sigsegv;
651 
652 	if (val == PR_TSC_SIGSEGV)
653 		tsc_sigsegv = true;
654 	else if (val == PR_TSC_ENABLE)
655 		tsc_sigsegv = false;
656 	else
657 		return -EINVAL;
658 
659 	preempt_disable();
660 	update_thread_flag(TIF_TSC_SIGSEGV, tsc_sigsegv);
661 	update_cntkctl_el1(current);
662 	preempt_enable();
663 
664 	return 0;
665 }
666 
permission_overlay_switch(struct task_struct * next)667 static void permission_overlay_switch(struct task_struct *next)
668 {
669 	if (!system_supports_poe())
670 		return;
671 
672 	current->thread.por_el0 = read_sysreg_s(SYS_POR_EL0);
673 	if (current->thread.por_el0 != next->thread.por_el0) {
674 		write_sysreg_s(next->thread.por_el0, SYS_POR_EL0);
675 		/*
676 		 * No ISB required as we can tolerate spurious Overlay faults -
677 		 * the fault handler will check again based on the new value
678 		 * of POR_EL0.
679 		 */
680 	}
681 }
682 
683 /*
684  * __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore
685  * this function must be called with preemption disabled and the update to
686  * sctlr_user must be made in the same preemption disabled block so that
687  * __switch_to() does not see the variable update before the SCTLR_EL1 one.
688  */
update_sctlr_el1(u64 sctlr)689 void update_sctlr_el1(u64 sctlr)
690 {
691 	/*
692 	 * EnIA must not be cleared while in the kernel as this is necessary for
693 	 * in-kernel PAC. It will be cleared on kernel exit if needed.
694 	 */
695 	sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr);
696 
697 	/* ISB required for the kernel uaccess routines when setting TCF0. */
698 	isb();
699 }
700 
701 /*
702  * Thread switching.
703  */
704 __notrace_funcgraph __sched
__switch_to(struct task_struct * prev,struct task_struct * next)705 struct task_struct *__switch_to(struct task_struct *prev,
706 				struct task_struct *next)
707 {
708 	struct task_struct *last;
709 
710 	fpsimd_thread_switch(next);
711 	tls_thread_switch(next);
712 	hw_breakpoint_thread_switch(next);
713 	contextidr_thread_switch(next);
714 	entry_task_switch(next);
715 	ssbs_thread_switch(next);
716 	cntkctl_thread_switch(prev, next);
717 	ptrauth_thread_switch_user(next);
718 	permission_overlay_switch(next);
719 	gcs_thread_switch(next);
720 
721 	/*
722 	 * Complete any pending TLB or cache maintenance on this CPU in case the
723 	 * thread migrates to a different CPU. This full barrier is also
724 	 * required by the membarrier system call. Additionally it makes any
725 	 * in-progress pgtable writes visible to the table walker; See
726 	 * emit_pte_barriers().
727 	 */
728 	dsb(ish);
729 
730 	/*
731 	 * MTE thread switching must happen after the DSB above to ensure that
732 	 * any asynchronous tag check faults have been logged in the TFSR*_EL1
733 	 * registers.
734 	 */
735 	mte_thread_switch(next);
736 	/* avoid expensive SCTLR_EL1 accesses if no change */
737 	if (prev->thread.sctlr_user != next->thread.sctlr_user)
738 		update_sctlr_el1(next->thread.sctlr_user);
739 
740 	/* the actual thread switch */
741 	last = cpu_switch_to(prev, next);
742 
743 	return last;
744 }
745 
746 struct wchan_info {
747 	unsigned long	pc;
748 	int		count;
749 };
750 
get_wchan_cb(void * arg,unsigned long pc)751 static bool get_wchan_cb(void *arg, unsigned long pc)
752 {
753 	struct wchan_info *wchan_info = arg;
754 
755 	if (!in_sched_functions(pc)) {
756 		wchan_info->pc = pc;
757 		return false;
758 	}
759 	return wchan_info->count++ < 16;
760 }
761 
__get_wchan(struct task_struct * p)762 unsigned long __get_wchan(struct task_struct *p)
763 {
764 	struct wchan_info wchan_info = {
765 		.pc = 0,
766 		.count = 0,
767 	};
768 
769 	if (!try_get_task_stack(p))
770 		return 0;
771 
772 	arch_stack_walk(get_wchan_cb, &wchan_info, p, NULL);
773 
774 	put_task_stack(p);
775 
776 	return wchan_info.pc;
777 }
778 
arch_align_stack(unsigned long sp)779 unsigned long arch_align_stack(unsigned long sp)
780 {
781 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
782 		sp -= get_random_u32_below(PAGE_SIZE);
783 	return sp & ~0xf;
784 }
785 
786 #ifdef CONFIG_COMPAT
compat_elf_check_arch(const struct elf32_hdr * hdr)787 int compat_elf_check_arch(const struct elf32_hdr *hdr)
788 {
789 	if (!system_supports_32bit_el0())
790 		return false;
791 
792 	if ((hdr)->e_machine != EM_ARM)
793 		return false;
794 
795 	if (!((hdr)->e_flags & EF_ARM_EABI_MASK))
796 		return false;
797 
798 	/*
799 	 * Prevent execve() of a 32-bit program from a deadline task
800 	 * if the restricted affinity mask would be inadmissible on an
801 	 * asymmetric system.
802 	 */
803 	return !static_branch_unlikely(&arm64_mismatched_32bit_el0) ||
804 	       !dl_task_check_affinity(current, system_32bit_el0_cpumask());
805 }
806 #endif
807 
808 /*
809  * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
810  */
arch_setup_new_exec(void)811 void arch_setup_new_exec(void)
812 {
813 	unsigned long mmflags = 0;
814 
815 	if (is_compat_task()) {
816 		mmflags = MMCF_AARCH32;
817 
818 		/*
819 		 * Restrict the CPU affinity mask for a 32-bit task so that
820 		 * it contains only 32-bit-capable CPUs.
821 		 *
822 		 * From the perspective of the task, this looks similar to
823 		 * what would happen if the 64-bit-only CPUs were hot-unplugged
824 		 * at the point of execve(), although we try a bit harder to
825 		 * honour the cpuset hierarchy.
826 		 */
827 		if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
828 			force_compatible_cpus_allowed_ptr(current);
829 	} else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) {
830 		relax_compatible_cpus_allowed_ptr(current);
831 	}
832 
833 	current->mm->context.flags = mmflags;
834 	ptrauth_thread_init_user();
835 	mte_thread_init_user();
836 	do_set_tsc_mode(PR_TSC_ENABLE);
837 
838 	if (task_spec_ssb_noexec(current)) {
839 		arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
840 					 PR_SPEC_ENABLE);
841 	}
842 }
843 
844 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
845 /*
846  * Control the relaxed ABI allowing tagged user addresses into the kernel.
847  */
848 static unsigned int tagged_addr_disabled;
849 
set_tagged_addr_ctrl(struct task_struct * task,unsigned long arg)850 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
851 {
852 	unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
853 	struct thread_info *ti = task_thread_info(task);
854 
855 	if (is_compat_thread(ti))
856 		return -EINVAL;
857 
858 	if (system_supports_mte()) {
859 		valid_mask |= PR_MTE_TCF_SYNC | PR_MTE_TCF_ASYNC \
860 			| PR_MTE_TAG_MASK;
861 
862 		if (cpus_have_cap(ARM64_MTE_STORE_ONLY))
863 			valid_mask |= PR_MTE_STORE_ONLY;
864 	}
865 
866 	if (arg & ~valid_mask)
867 		return -EINVAL;
868 
869 	/*
870 	 * Do not allow the enabling of the tagged address ABI if globally
871 	 * disabled via sysctl abi.tagged_addr_disabled.
872 	 */
873 	if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
874 		return -EINVAL;
875 
876 	if (set_mte_ctrl(task, arg) != 0)
877 		return -EINVAL;
878 
879 	update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
880 
881 	return 0;
882 }
883 
get_tagged_addr_ctrl(struct task_struct * task)884 long get_tagged_addr_ctrl(struct task_struct *task)
885 {
886 	long ret = 0;
887 	struct thread_info *ti = task_thread_info(task);
888 
889 	if (is_compat_thread(ti))
890 		return -EINVAL;
891 
892 	if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
893 		ret = PR_TAGGED_ADDR_ENABLE;
894 
895 	ret |= get_mte_ctrl(task);
896 
897 	return ret;
898 }
899 
900 /*
901  * Global sysctl to disable the tagged user addresses support. This control
902  * only prevents the tagged address ABI enabling via prctl() and does not
903  * disable it for tasks that already opted in to the relaxed ABI.
904  */
905 
906 static const struct ctl_table tagged_addr_sysctl_table[] = {
907 	{
908 		.procname	= "tagged_addr_disabled",
909 		.mode		= 0644,
910 		.data		= &tagged_addr_disabled,
911 		.maxlen		= sizeof(int),
912 		.proc_handler	= proc_dointvec_minmax,
913 		.extra1		= SYSCTL_ZERO,
914 		.extra2		= SYSCTL_ONE,
915 	},
916 };
917 
tagged_addr_init(void)918 static int __init tagged_addr_init(void)
919 {
920 	if (!register_sysctl("abi", tagged_addr_sysctl_table))
921 		return -EINVAL;
922 	return 0;
923 }
924 
925 core_initcall(tagged_addr_init);
926 #endif	/* CONFIG_ARM64_TAGGED_ADDR_ABI */
927 
928 #ifdef CONFIG_BINFMT_ELF
arch_elf_adjust_prot(int prot,const struct arch_elf_state * state,bool has_interp,bool is_interp)929 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
930 			 bool has_interp, bool is_interp)
931 {
932 	/*
933 	 * For dynamically linked executables the interpreter is
934 	 * responsible for setting PROT_BTI on everything except
935 	 * itself.
936 	 */
937 	if (is_interp != has_interp)
938 		return prot;
939 
940 	if (!(state->flags & ARM64_ELF_BTI))
941 		return prot;
942 
943 	if (prot & PROT_EXEC)
944 		prot |= PROT_BTI;
945 
946 	return prot;
947 }
948 #endif
949 
get_tsc_mode(unsigned long adr)950 int get_tsc_mode(unsigned long adr)
951 {
952 	unsigned int val;
953 
954 	if (is_compat_task())
955 		return -EINVAL;
956 
957 	if (test_thread_flag(TIF_TSC_SIGSEGV))
958 		val = PR_TSC_SIGSEGV;
959 	else
960 		val = PR_TSC_ENABLE;
961 
962 	return put_user(val, (unsigned int __user *)adr);
963 }
964 
set_tsc_mode(unsigned int val)965 int set_tsc_mode(unsigned int val)
966 {
967 	if (is_compat_task())
968 		return -EINVAL;
969 
970 	return do_set_tsc_mode(val);
971 }
972