1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/kernel/process.c
4 *
5 * Original Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
7 * Copyright (C) 2012 ARM Ltd.
8 */
9 #include <linux/compat.h>
10 #include <linux/efi.h>
11 #include <linux/elf.h>
12 #include <linux/export.h>
13 #include <linux/sched.h>
14 #include <linux/sched/debug.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/kernel.h>
18 #include <linux/mman.h>
19 #include <linux/mm.h>
20 #include <linux/nospec.h>
21 #include <linux/stddef.h>
22 #include <linux/sysctl.h>
23 #include <linux/unistd.h>
24 #include <linux/user.h>
25 #include <linux/delay.h>
26 #include <linux/reboot.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <linux/cpu.h>
30 #include <linux/elfcore.h>
31 #include <linux/pm.h>
32 #include <linux/tick.h>
33 #include <linux/utsname.h>
34 #include <linux/uaccess.h>
35 #include <linux/random.h>
36 #include <linux/hw_breakpoint.h>
37 #include <linux/personality.h>
38 #include <linux/notifier.h>
39 #include <trace/events/power.h>
40 #include <linux/percpu.h>
41 #include <linux/thread_info.h>
42 #include <linux/prctl.h>
43 #include <linux/stacktrace.h>
44
45 #include <asm/alternative.h>
46 #include <asm/arch_timer.h>
47 #include <asm/compat.h>
48 #include <asm/cpufeature.h>
49 #include <asm/cacheflush.h>
50 #include <asm/exec.h>
51 #include <asm/fpsimd.h>
52 #include <asm/gcs.h>
53 #include <asm/mmu_context.h>
54 #include <asm/mte.h>
55 #include <asm/processor.h>
56 #include <asm/pointer_auth.h>
57 #include <asm/stacktrace.h>
58 #include <asm/switch_to.h>
59 #include <asm/system_misc.h>
60
61 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
62 #include <linux/stackprotector.h>
63 unsigned long __stack_chk_guard __ro_after_init;
64 EXPORT_SYMBOL(__stack_chk_guard);
65 #endif
66
67 /*
68 * Function pointers to optional machine specific functions
69 */
70 void (*pm_power_off)(void);
71 EXPORT_SYMBOL_GPL(pm_power_off);
72
73 #ifdef CONFIG_HOTPLUG_CPU
arch_cpu_idle_dead(void)74 void __noreturn arch_cpu_idle_dead(void)
75 {
76 cpu_die();
77 }
78 #endif
79
80 /*
81 * Called by kexec, immediately prior to machine_kexec().
82 *
83 * This must completely disable all secondary CPUs; simply causing those CPUs
84 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
85 * kexec'd kernel to use any and all RAM as it sees fit, without having to
86 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
87 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
88 */
machine_shutdown(void)89 void machine_shutdown(void)
90 {
91 smp_shutdown_nonboot_cpus(reboot_cpu);
92 }
93
94 /*
95 * Halting simply requires that the secondary CPUs stop performing any
96 * activity (executing tasks, handling interrupts). smp_send_stop()
97 * achieves this.
98 */
machine_halt(void)99 void machine_halt(void)
100 {
101 local_irq_disable();
102 smp_send_stop();
103 while (1);
104 }
105
106 /*
107 * Power-off simply requires that the secondary CPUs stop performing any
108 * activity (executing tasks, handling interrupts). smp_send_stop()
109 * achieves this. When the system power is turned off, it will take all CPUs
110 * with it.
111 */
machine_power_off(void)112 void machine_power_off(void)
113 {
114 local_irq_disable();
115 smp_send_stop();
116 do_kernel_power_off();
117 }
118
119 /*
120 * Restart requires that the secondary CPUs stop performing any activity
121 * while the primary CPU resets the system. Systems with multiple CPUs must
122 * provide a HW restart implementation, to ensure that all CPUs reset at once.
123 * This is required so that any code running after reset on the primary CPU
124 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
125 * executing pre-reset code, and using RAM that the primary CPU's code wishes
126 * to use. Implementing such co-ordination would be essentially impossible.
127 */
machine_restart(char * cmd)128 void machine_restart(char *cmd)
129 {
130 /* Disable interrupts first */
131 local_irq_disable();
132 smp_send_stop();
133
134 /*
135 * UpdateCapsule() depends on the system being reset via
136 * ResetSystem().
137 */
138 if (efi_enabled(EFI_RUNTIME_SERVICES))
139 efi_reboot(reboot_mode, NULL);
140
141 /* Now call the architecture specific reboot code. */
142 do_kernel_restart(cmd);
143
144 /*
145 * Whoops - the architecture was unable to reboot.
146 */
147 printk("Reboot failed -- System halted\n");
148 while (1);
149 }
150
151 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
152 static const char *const btypes[] = {
153 bstr(NONE, "--"),
154 bstr( JC, "jc"),
155 bstr( C, "-c"),
156 bstr( J , "j-")
157 };
158 #undef bstr
159
print_pstate(struct pt_regs * regs)160 static void print_pstate(struct pt_regs *regs)
161 {
162 u64 pstate = regs->pstate;
163
164 if (compat_user_mode(regs)) {
165 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n",
166 pstate,
167 pstate & PSR_AA32_N_BIT ? 'N' : 'n',
168 pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
169 pstate & PSR_AA32_C_BIT ? 'C' : 'c',
170 pstate & PSR_AA32_V_BIT ? 'V' : 'v',
171 pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
172 pstate & PSR_AA32_T_BIT ? "T32" : "A32",
173 pstate & PSR_AA32_E_BIT ? "BE" : "LE",
174 pstate & PSR_AA32_A_BIT ? 'A' : 'a',
175 pstate & PSR_AA32_I_BIT ? 'I' : 'i',
176 pstate & PSR_AA32_F_BIT ? 'F' : 'f',
177 pstate & PSR_AA32_DIT_BIT ? '+' : '-',
178 pstate & PSR_AA32_SSBS_BIT ? '+' : '-');
179 } else {
180 const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
181 PSR_BTYPE_SHIFT];
182
183 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n",
184 pstate,
185 pstate & PSR_N_BIT ? 'N' : 'n',
186 pstate & PSR_Z_BIT ? 'Z' : 'z',
187 pstate & PSR_C_BIT ? 'C' : 'c',
188 pstate & PSR_V_BIT ? 'V' : 'v',
189 pstate & PSR_D_BIT ? 'D' : 'd',
190 pstate & PSR_A_BIT ? 'A' : 'a',
191 pstate & PSR_I_BIT ? 'I' : 'i',
192 pstate & PSR_F_BIT ? 'F' : 'f',
193 pstate & PSR_PAN_BIT ? '+' : '-',
194 pstate & PSR_UAO_BIT ? '+' : '-',
195 pstate & PSR_TCO_BIT ? '+' : '-',
196 pstate & PSR_DIT_BIT ? '+' : '-',
197 pstate & PSR_SSBS_BIT ? '+' : '-',
198 btype_str);
199 }
200 }
201
__show_regs(struct pt_regs * regs)202 void __show_regs(struct pt_regs *regs)
203 {
204 int i, top_reg;
205 u64 lr, sp;
206
207 if (compat_user_mode(regs)) {
208 lr = regs->compat_lr;
209 sp = regs->compat_sp;
210 top_reg = 12;
211 } else {
212 lr = regs->regs[30];
213 sp = regs->sp;
214 top_reg = 29;
215 }
216
217 show_regs_print_info(KERN_DEFAULT);
218 print_pstate(regs);
219
220 if (!user_mode(regs)) {
221 printk("pc : %pS\n", (void *)regs->pc);
222 printk("lr : %pS\n", (void *)ptrauth_strip_kernel_insn_pac(lr));
223 } else {
224 printk("pc : %016llx\n", regs->pc);
225 printk("lr : %016llx\n", lr);
226 }
227
228 printk("sp : %016llx\n", sp);
229
230 if (system_uses_irq_prio_masking())
231 printk("pmr: %08x\n", regs->pmr);
232
233 i = top_reg;
234
235 while (i >= 0) {
236 printk("x%-2d: %016llx", i, regs->regs[i]);
237
238 while (i-- % 3)
239 pr_cont(" x%-2d: %016llx", i, regs->regs[i]);
240
241 pr_cont("\n");
242 }
243 }
244
show_regs(struct pt_regs * regs)245 void show_regs(struct pt_regs *regs)
246 {
247 __show_regs(regs);
248 dump_backtrace(regs, NULL, KERN_DEFAULT);
249 }
250
tls_thread_flush(void)251 static void tls_thread_flush(void)
252 {
253 write_sysreg(0, tpidr_el0);
254 if (system_supports_tpidr2())
255 write_sysreg_s(0, SYS_TPIDR2_EL0);
256
257 if (is_compat_task()) {
258 current->thread.uw.tp_value = 0;
259
260 /*
261 * We need to ensure ordering between the shadow state and the
262 * hardware state, so that we don't corrupt the hardware state
263 * with a stale shadow state during context switch.
264 */
265 barrier();
266 write_sysreg(0, tpidrro_el0);
267 }
268 }
269
flush_tagged_addr_state(void)270 static void flush_tagged_addr_state(void)
271 {
272 if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
273 clear_thread_flag(TIF_TAGGED_ADDR);
274 }
275
flush_poe(void)276 static void flush_poe(void)
277 {
278 if (!system_supports_poe())
279 return;
280
281 write_sysreg_s(POR_EL0_INIT, SYS_POR_EL0);
282 }
283
284 #ifdef CONFIG_ARM64_GCS
285
flush_gcs(void)286 static void flush_gcs(void)
287 {
288 if (!system_supports_gcs())
289 return;
290
291 current->thread.gcspr_el0 = 0;
292 current->thread.gcs_base = 0;
293 current->thread.gcs_size = 0;
294 current->thread.gcs_el0_mode = 0;
295 write_sysreg_s(GCSCRE0_EL1_nTR, SYS_GCSCRE0_EL1);
296 write_sysreg_s(0, SYS_GCSPR_EL0);
297 }
298
copy_thread_gcs(struct task_struct * p,const struct kernel_clone_args * args)299 static int copy_thread_gcs(struct task_struct *p,
300 const struct kernel_clone_args *args)
301 {
302 unsigned long gcs;
303
304 if (!system_supports_gcs())
305 return 0;
306
307 p->thread.gcs_base = 0;
308 p->thread.gcs_size = 0;
309
310 p->thread.gcs_el0_mode = current->thread.gcs_el0_mode;
311 p->thread.gcs_el0_locked = current->thread.gcs_el0_locked;
312
313 gcs = gcs_alloc_thread_stack(p, args);
314 if (IS_ERR_VALUE(gcs))
315 return PTR_ERR((void *)gcs);
316
317 return 0;
318 }
319
320 #else
321
flush_gcs(void)322 static void flush_gcs(void) { }
copy_thread_gcs(struct task_struct * p,const struct kernel_clone_args * args)323 static int copy_thread_gcs(struct task_struct *p,
324 const struct kernel_clone_args *args)
325 {
326 return 0;
327 }
328
329 #endif
330
flush_thread(void)331 void flush_thread(void)
332 {
333 fpsimd_flush_thread();
334 tls_thread_flush();
335 flush_ptrace_hw_breakpoint(current);
336 flush_tagged_addr_state();
337 flush_poe();
338 flush_gcs();
339 }
340
arch_release_task_struct(struct task_struct * tsk)341 void arch_release_task_struct(struct task_struct *tsk)
342 {
343 fpsimd_release_task(tsk);
344 }
345
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)346 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
347 {
348 /*
349 * The current/src task's FPSIMD state may or may not be live, and may
350 * have been altered by ptrace after entry to the kernel. Save the
351 * effective FPSIMD state so that this will be copied into dst.
352 */
353 fpsimd_save_and_flush_current_state();
354 fpsimd_sync_from_effective_state(src);
355
356 *dst = *src;
357
358 /*
359 * Drop stale reference to src's sve_state and convert dst to
360 * non-streaming FPSIMD mode.
361 */
362 dst->thread.fp_type = FP_STATE_FPSIMD;
363 dst->thread.sve_state = NULL;
364 clear_tsk_thread_flag(dst, TIF_SVE);
365 task_smstop_sm(dst);
366
367 /*
368 * Drop stale reference to src's sme_state and ensure dst has ZA
369 * disabled.
370 *
371 * When necessary, ZA will be inherited later in copy_thread_za().
372 */
373 dst->thread.sme_state = NULL;
374 clear_tsk_thread_flag(dst, TIF_SME);
375 dst->thread.svcr &= ~SVCR_ZA_MASK;
376
377 /* clear any pending asynchronous tag fault raised by the parent */
378 clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
379
380 return 0;
381 }
382
copy_thread_za(struct task_struct * dst,struct task_struct * src)383 static int copy_thread_za(struct task_struct *dst, struct task_struct *src)
384 {
385 if (!thread_za_enabled(&src->thread))
386 return 0;
387
388 dst->thread.sve_state = kzalloc(sve_state_size(src),
389 GFP_KERNEL);
390 if (!dst->thread.sve_state)
391 return -ENOMEM;
392
393 dst->thread.sme_state = kmemdup(src->thread.sme_state,
394 sme_state_size(src),
395 GFP_KERNEL);
396 if (!dst->thread.sme_state) {
397 kfree(dst->thread.sve_state);
398 dst->thread.sve_state = NULL;
399 return -ENOMEM;
400 }
401
402 set_tsk_thread_flag(dst, TIF_SME);
403 dst->thread.svcr |= SVCR_ZA_MASK;
404
405 return 0;
406 }
407
408 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
409
copy_thread(struct task_struct * p,const struct kernel_clone_args * args)410 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
411 {
412 unsigned long clone_flags = args->flags;
413 unsigned long stack_start = args->stack;
414 unsigned long tls = args->tls;
415 struct pt_regs *childregs = task_pt_regs(p);
416 int ret;
417
418 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
419
420 /*
421 * In case p was allocated the same task_struct pointer as some
422 * other recently-exited task, make sure p is disassociated from
423 * any cpu that may have run that now-exited task recently.
424 * Otherwise we could erroneously skip reloading the FPSIMD
425 * registers for p.
426 */
427 fpsimd_flush_task_state(p);
428
429 ptrauth_thread_init_kernel(p);
430
431 if (likely(!args->fn)) {
432 *childregs = *current_pt_regs();
433 childregs->regs[0] = 0;
434
435 /*
436 * Read the current TLS pointer from tpidr_el0 as it may be
437 * out-of-sync with the saved value.
438 */
439 *task_user_tls(p) = read_sysreg(tpidr_el0);
440
441 if (system_supports_poe())
442 p->thread.por_el0 = read_sysreg_s(SYS_POR_EL0);
443
444 if (stack_start) {
445 if (is_compat_thread(task_thread_info(p)))
446 childregs->compat_sp = stack_start;
447 else
448 childregs->sp = stack_start;
449 }
450
451 /*
452 * Due to the AAPCS64 "ZA lazy saving scheme", PSTATE.ZA and
453 * TPIDR2 need to be manipulated as a pair, and either both
454 * need to be inherited or both need to be reset.
455 *
456 * Within a process, child threads must not inherit their
457 * parent's TPIDR2 value or they may clobber their parent's
458 * stack at some later point.
459 *
460 * When a process is fork()'d, the child must inherit ZA and
461 * TPIDR2 from its parent in case there was dormant ZA state.
462 *
463 * Use CLONE_VM to determine when the child will share the
464 * address space with the parent, and cannot safely inherit the
465 * state.
466 */
467 if (system_supports_sme()) {
468 if (!(clone_flags & CLONE_VM)) {
469 p->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
470 ret = copy_thread_za(p, current);
471 if (ret)
472 return ret;
473 } else {
474 p->thread.tpidr2_el0 = 0;
475 WARN_ON_ONCE(p->thread.svcr & SVCR_ZA_MASK);
476 }
477 }
478
479 /*
480 * If a TLS pointer was passed to clone, use it for the new
481 * thread.
482 */
483 if (clone_flags & CLONE_SETTLS)
484 p->thread.uw.tp_value = tls;
485
486 ret = copy_thread_gcs(p, args);
487 if (ret != 0)
488 return ret;
489 } else {
490 /*
491 * A kthread has no context to ERET to, so ensure any buggy
492 * ERET is treated as an illegal exception return.
493 *
494 * When a user task is created from a kthread, childregs will
495 * be initialized by start_thread() or start_compat_thread().
496 */
497 memset(childregs, 0, sizeof(struct pt_regs));
498 childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT;
499 childregs->stackframe.type = FRAME_META_TYPE_FINAL;
500
501 p->thread.cpu_context.x19 = (unsigned long)args->fn;
502 p->thread.cpu_context.x20 = (unsigned long)args->fn_arg;
503
504 if (system_supports_poe())
505 p->thread.por_el0 = POR_EL0_INIT;
506 }
507 p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
508 p->thread.cpu_context.sp = (unsigned long)childregs;
509 /*
510 * For the benefit of the unwinder, set up childregs->stackframe
511 * as the final frame for the new task.
512 */
513 p->thread.cpu_context.fp = (unsigned long)&childregs->stackframe;
514
515 ptrace_hw_copy_thread(p);
516
517 return 0;
518 }
519
tls_preserve_current_state(void)520 void tls_preserve_current_state(void)
521 {
522 *task_user_tls(current) = read_sysreg(tpidr_el0);
523 if (system_supports_tpidr2() && !is_compat_task())
524 current->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
525 }
526
tls_thread_switch(struct task_struct * next)527 static void tls_thread_switch(struct task_struct *next)
528 {
529 tls_preserve_current_state();
530
531 if (is_compat_thread(task_thread_info(next)))
532 write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
533 else
534 write_sysreg(0, tpidrro_el0);
535
536 write_sysreg(*task_user_tls(next), tpidr_el0);
537 if (system_supports_tpidr2())
538 write_sysreg_s(next->thread.tpidr2_el0, SYS_TPIDR2_EL0);
539 }
540
541 /*
542 * Force SSBS state on context-switch, since it may be lost after migrating
543 * from a CPU which treats the bit as RES0 in a heterogeneous system.
544 */
ssbs_thread_switch(struct task_struct * next)545 static void ssbs_thread_switch(struct task_struct *next)
546 {
547 /*
548 * Nothing to do for kernel threads, but 'regs' may be junk
549 * (e.g. idle task) so check the flags and bail early.
550 */
551 if (unlikely(next->flags & PF_KTHREAD))
552 return;
553
554 /*
555 * If all CPUs implement the SSBS extension, then we just need to
556 * context-switch the PSTATE field.
557 */
558 if (alternative_has_cap_unlikely(ARM64_SSBS))
559 return;
560
561 spectre_v4_enable_task_mitigation(next);
562 }
563
564 /*
565 * We store our current task in sp_el0, which is clobbered by userspace. Keep a
566 * shadow copy so that we can restore this upon entry from userspace.
567 *
568 * This is *only* for exception entry from EL0, and is not valid until we
569 * __switch_to() a user task.
570 */
571 DEFINE_PER_CPU(struct task_struct *, __entry_task);
572
entry_task_switch(struct task_struct * next)573 static void entry_task_switch(struct task_struct *next)
574 {
575 __this_cpu_write(__entry_task, next);
576 }
577
578 #ifdef CONFIG_ARM64_GCS
579
gcs_preserve_current_state(void)580 void gcs_preserve_current_state(void)
581 {
582 current->thread.gcspr_el0 = read_sysreg_s(SYS_GCSPR_EL0);
583 }
584
gcs_thread_switch(struct task_struct * next)585 static void gcs_thread_switch(struct task_struct *next)
586 {
587 if (!system_supports_gcs())
588 return;
589
590 /* GCSPR_EL0 is always readable */
591 gcs_preserve_current_state();
592 write_sysreg_s(next->thread.gcspr_el0, SYS_GCSPR_EL0);
593
594 if (current->thread.gcs_el0_mode != next->thread.gcs_el0_mode)
595 gcs_set_el0_mode(next);
596
597 /*
598 * Ensure that GCS memory effects of the 'prev' thread are
599 * ordered before other memory accesses with release semantics
600 * (or preceded by a DMB) on the current PE. In addition, any
601 * memory accesses with acquire semantics (or succeeded by a
602 * DMB) are ordered before GCS memory effects of the 'next'
603 * thread. This will ensure that the GCS memory effects are
604 * visible to other PEs in case of migration.
605 */
606 if (task_gcs_el0_enabled(current) || task_gcs_el0_enabled(next))
607 gcsb_dsync();
608 }
609
610 #else
611
gcs_thread_switch(struct task_struct * next)612 static void gcs_thread_switch(struct task_struct *next)
613 {
614 }
615
616 #endif
617
618 /*
619 * Handle sysreg updates for ARM erratum 1418040 which affects the 32bit view of
620 * CNTVCT, various other errata which require trapping all CNTVCT{,_EL0}
621 * accesses and prctl(PR_SET_TSC). Ensure access is disabled iff a workaround is
622 * required or PR_TSC_SIGSEGV is set.
623 */
update_cntkctl_el1(struct task_struct * next)624 static void update_cntkctl_el1(struct task_struct *next)
625 {
626 struct thread_info *ti = task_thread_info(next);
627
628 if (test_ti_thread_flag(ti, TIF_TSC_SIGSEGV) ||
629 has_erratum_handler(read_cntvct_el0) ||
630 (IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) &&
631 this_cpu_has_cap(ARM64_WORKAROUND_1418040) &&
632 is_compat_thread(ti)))
633 sysreg_clear_set(cntkctl_el1, ARCH_TIMER_USR_VCT_ACCESS_EN, 0);
634 else
635 sysreg_clear_set(cntkctl_el1, 0, ARCH_TIMER_USR_VCT_ACCESS_EN);
636 }
637
cntkctl_thread_switch(struct task_struct * prev,struct task_struct * next)638 static void cntkctl_thread_switch(struct task_struct *prev,
639 struct task_struct *next)
640 {
641 if ((read_ti_thread_flags(task_thread_info(prev)) &
642 (_TIF_32BIT | _TIF_TSC_SIGSEGV)) !=
643 (read_ti_thread_flags(task_thread_info(next)) &
644 (_TIF_32BIT | _TIF_TSC_SIGSEGV)))
645 update_cntkctl_el1(next);
646 }
647
do_set_tsc_mode(unsigned int val)648 static int do_set_tsc_mode(unsigned int val)
649 {
650 bool tsc_sigsegv;
651
652 if (val == PR_TSC_SIGSEGV)
653 tsc_sigsegv = true;
654 else if (val == PR_TSC_ENABLE)
655 tsc_sigsegv = false;
656 else
657 return -EINVAL;
658
659 preempt_disable();
660 update_thread_flag(TIF_TSC_SIGSEGV, tsc_sigsegv);
661 update_cntkctl_el1(current);
662 preempt_enable();
663
664 return 0;
665 }
666
permission_overlay_switch(struct task_struct * next)667 static void permission_overlay_switch(struct task_struct *next)
668 {
669 if (!system_supports_poe())
670 return;
671
672 current->thread.por_el0 = read_sysreg_s(SYS_POR_EL0);
673 if (current->thread.por_el0 != next->thread.por_el0) {
674 write_sysreg_s(next->thread.por_el0, SYS_POR_EL0);
675 /*
676 * No ISB required as we can tolerate spurious Overlay faults -
677 * the fault handler will check again based on the new value
678 * of POR_EL0.
679 */
680 }
681 }
682
683 /*
684 * __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore
685 * this function must be called with preemption disabled and the update to
686 * sctlr_user must be made in the same preemption disabled block so that
687 * __switch_to() does not see the variable update before the SCTLR_EL1 one.
688 */
update_sctlr_el1(u64 sctlr)689 void update_sctlr_el1(u64 sctlr)
690 {
691 /*
692 * EnIA must not be cleared while in the kernel as this is necessary for
693 * in-kernel PAC. It will be cleared on kernel exit if needed.
694 */
695 sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr);
696
697 /* ISB required for the kernel uaccess routines when setting TCF0. */
698 isb();
699 }
700
701 /*
702 * Thread switching.
703 */
704 __notrace_funcgraph __sched
__switch_to(struct task_struct * prev,struct task_struct * next)705 struct task_struct *__switch_to(struct task_struct *prev,
706 struct task_struct *next)
707 {
708 struct task_struct *last;
709
710 fpsimd_thread_switch(next);
711 tls_thread_switch(next);
712 hw_breakpoint_thread_switch(next);
713 contextidr_thread_switch(next);
714 entry_task_switch(next);
715 ssbs_thread_switch(next);
716 cntkctl_thread_switch(prev, next);
717 ptrauth_thread_switch_user(next);
718 permission_overlay_switch(next);
719 gcs_thread_switch(next);
720
721 /*
722 * Complete any pending TLB or cache maintenance on this CPU in case the
723 * thread migrates to a different CPU. This full barrier is also
724 * required by the membarrier system call. Additionally it makes any
725 * in-progress pgtable writes visible to the table walker; See
726 * emit_pte_barriers().
727 */
728 dsb(ish);
729
730 /*
731 * MTE thread switching must happen after the DSB above to ensure that
732 * any asynchronous tag check faults have been logged in the TFSR*_EL1
733 * registers.
734 */
735 mte_thread_switch(next);
736 /* avoid expensive SCTLR_EL1 accesses if no change */
737 if (prev->thread.sctlr_user != next->thread.sctlr_user)
738 update_sctlr_el1(next->thread.sctlr_user);
739
740 /* the actual thread switch */
741 last = cpu_switch_to(prev, next);
742
743 return last;
744 }
745
746 struct wchan_info {
747 unsigned long pc;
748 int count;
749 };
750
get_wchan_cb(void * arg,unsigned long pc)751 static bool get_wchan_cb(void *arg, unsigned long pc)
752 {
753 struct wchan_info *wchan_info = arg;
754
755 if (!in_sched_functions(pc)) {
756 wchan_info->pc = pc;
757 return false;
758 }
759 return wchan_info->count++ < 16;
760 }
761
__get_wchan(struct task_struct * p)762 unsigned long __get_wchan(struct task_struct *p)
763 {
764 struct wchan_info wchan_info = {
765 .pc = 0,
766 .count = 0,
767 };
768
769 if (!try_get_task_stack(p))
770 return 0;
771
772 arch_stack_walk(get_wchan_cb, &wchan_info, p, NULL);
773
774 put_task_stack(p);
775
776 return wchan_info.pc;
777 }
778
arch_align_stack(unsigned long sp)779 unsigned long arch_align_stack(unsigned long sp)
780 {
781 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
782 sp -= get_random_u32_below(PAGE_SIZE);
783 return sp & ~0xf;
784 }
785
786 #ifdef CONFIG_COMPAT
compat_elf_check_arch(const struct elf32_hdr * hdr)787 int compat_elf_check_arch(const struct elf32_hdr *hdr)
788 {
789 if (!system_supports_32bit_el0())
790 return false;
791
792 if ((hdr)->e_machine != EM_ARM)
793 return false;
794
795 if (!((hdr)->e_flags & EF_ARM_EABI_MASK))
796 return false;
797
798 /*
799 * Prevent execve() of a 32-bit program from a deadline task
800 * if the restricted affinity mask would be inadmissible on an
801 * asymmetric system.
802 */
803 return !static_branch_unlikely(&arm64_mismatched_32bit_el0) ||
804 !dl_task_check_affinity(current, system_32bit_el0_cpumask());
805 }
806 #endif
807
808 /*
809 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
810 */
arch_setup_new_exec(void)811 void arch_setup_new_exec(void)
812 {
813 unsigned long mmflags = 0;
814
815 if (is_compat_task()) {
816 mmflags = MMCF_AARCH32;
817
818 /*
819 * Restrict the CPU affinity mask for a 32-bit task so that
820 * it contains only 32-bit-capable CPUs.
821 *
822 * From the perspective of the task, this looks similar to
823 * what would happen if the 64-bit-only CPUs were hot-unplugged
824 * at the point of execve(), although we try a bit harder to
825 * honour the cpuset hierarchy.
826 */
827 if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
828 force_compatible_cpus_allowed_ptr(current);
829 } else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) {
830 relax_compatible_cpus_allowed_ptr(current);
831 }
832
833 current->mm->context.flags = mmflags;
834 ptrauth_thread_init_user();
835 mte_thread_init_user();
836 do_set_tsc_mode(PR_TSC_ENABLE);
837
838 if (task_spec_ssb_noexec(current)) {
839 arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
840 PR_SPEC_ENABLE);
841 }
842 }
843
844 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
845 /*
846 * Control the relaxed ABI allowing tagged user addresses into the kernel.
847 */
848 static unsigned int tagged_addr_disabled;
849
set_tagged_addr_ctrl(struct task_struct * task,unsigned long arg)850 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
851 {
852 unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
853 struct thread_info *ti = task_thread_info(task);
854
855 if (is_compat_thread(ti))
856 return -EINVAL;
857
858 if (system_supports_mte()) {
859 valid_mask |= PR_MTE_TCF_SYNC | PR_MTE_TCF_ASYNC \
860 | PR_MTE_TAG_MASK;
861
862 if (cpus_have_cap(ARM64_MTE_STORE_ONLY))
863 valid_mask |= PR_MTE_STORE_ONLY;
864 }
865
866 if (arg & ~valid_mask)
867 return -EINVAL;
868
869 /*
870 * Do not allow the enabling of the tagged address ABI if globally
871 * disabled via sysctl abi.tagged_addr_disabled.
872 */
873 if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
874 return -EINVAL;
875
876 if (set_mte_ctrl(task, arg) != 0)
877 return -EINVAL;
878
879 update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
880
881 return 0;
882 }
883
get_tagged_addr_ctrl(struct task_struct * task)884 long get_tagged_addr_ctrl(struct task_struct *task)
885 {
886 long ret = 0;
887 struct thread_info *ti = task_thread_info(task);
888
889 if (is_compat_thread(ti))
890 return -EINVAL;
891
892 if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
893 ret = PR_TAGGED_ADDR_ENABLE;
894
895 ret |= get_mte_ctrl(task);
896
897 return ret;
898 }
899
900 /*
901 * Global sysctl to disable the tagged user addresses support. This control
902 * only prevents the tagged address ABI enabling via prctl() and does not
903 * disable it for tasks that already opted in to the relaxed ABI.
904 */
905
906 static const struct ctl_table tagged_addr_sysctl_table[] = {
907 {
908 .procname = "tagged_addr_disabled",
909 .mode = 0644,
910 .data = &tagged_addr_disabled,
911 .maxlen = sizeof(int),
912 .proc_handler = proc_dointvec_minmax,
913 .extra1 = SYSCTL_ZERO,
914 .extra2 = SYSCTL_ONE,
915 },
916 };
917
tagged_addr_init(void)918 static int __init tagged_addr_init(void)
919 {
920 if (!register_sysctl("abi", tagged_addr_sysctl_table))
921 return -EINVAL;
922 return 0;
923 }
924
925 core_initcall(tagged_addr_init);
926 #endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */
927
928 #ifdef CONFIG_BINFMT_ELF
arch_elf_adjust_prot(int prot,const struct arch_elf_state * state,bool has_interp,bool is_interp)929 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
930 bool has_interp, bool is_interp)
931 {
932 /*
933 * For dynamically linked executables the interpreter is
934 * responsible for setting PROT_BTI on everything except
935 * itself.
936 */
937 if (is_interp != has_interp)
938 return prot;
939
940 if (!(state->flags & ARM64_ELF_BTI))
941 return prot;
942
943 if (prot & PROT_EXEC)
944 prot |= PROT_BTI;
945
946 return prot;
947 }
948 #endif
949
get_tsc_mode(unsigned long adr)950 int get_tsc_mode(unsigned long adr)
951 {
952 unsigned int val;
953
954 if (is_compat_task())
955 return -EINVAL;
956
957 if (test_thread_flag(TIF_TSC_SIGSEGV))
958 val = PR_TSC_SIGSEGV;
959 else
960 val = PR_TSC_ENABLE;
961
962 return put_user(val, (unsigned int __user *)adr);
963 }
964
set_tsc_mode(unsigned int val)965 int set_tsc_mode(unsigned int val)
966 {
967 if (is_compat_task())
968 return -EINVAL;
969
970 return do_set_tsc_mode(val);
971 }
972