1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 #include "ice.h"
5 #include "ice_base.h"
6 #include "ice_flow.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_type.h"
11 #include "ice_vsi_vlan_ops.h"
12
13 /**
14 * ice_vsi_type_str - maps VSI type enum to string equivalents
15 * @vsi_type: VSI type enum
16 */
ice_vsi_type_str(enum ice_vsi_type vsi_type)17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
18 {
19 switch (vsi_type) {
20 case ICE_VSI_PF:
21 return "ICE_VSI_PF";
22 case ICE_VSI_VF:
23 return "ICE_VSI_VF";
24 case ICE_VSI_SF:
25 return "ICE_VSI_SF";
26 case ICE_VSI_CTRL:
27 return "ICE_VSI_CTRL";
28 case ICE_VSI_CHNL:
29 return "ICE_VSI_CHNL";
30 case ICE_VSI_LB:
31 return "ICE_VSI_LB";
32 default:
33 return "unknown";
34 }
35 }
36
37 /**
38 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
39 * @vsi: the VSI being configured
40 * @ena: start or stop the Rx rings
41 *
42 * First enable/disable all of the Rx rings, flush any remaining writes, and
43 * then verify that they have all been enabled/disabled successfully. This will
44 * let all of the register writes complete when enabling/disabling the Rx rings
45 * before waiting for the change in hardware to complete.
46 */
ice_vsi_ctrl_all_rx_rings(struct ice_vsi * vsi,bool ena)47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
48 {
49 int ret = 0;
50 u16 i;
51
52 ice_for_each_rxq(vsi, i)
53 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
54
55 ice_flush(&vsi->back->hw);
56
57 ice_for_each_rxq(vsi, i) {
58 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
59 if (ret)
60 break;
61 }
62
63 return ret;
64 }
65
66 /**
67 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
68 * @vsi: VSI pointer
69 *
70 * On error: returns error code (negative)
71 * On success: returns 0
72 */
ice_vsi_alloc_arrays(struct ice_vsi * vsi)73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
74 {
75 struct ice_pf *pf = vsi->back;
76 struct device *dev;
77
78 dev = ice_pf_to_dev(pf);
79 if (vsi->type == ICE_VSI_CHNL)
80 return 0;
81
82 /* allocate memory for both Tx and Rx ring pointers */
83 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
84 sizeof(*vsi->tx_rings), GFP_KERNEL);
85 if (!vsi->tx_rings)
86 return -ENOMEM;
87
88 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
89 sizeof(*vsi->rx_rings), GFP_KERNEL);
90 if (!vsi->rx_rings)
91 goto err_rings;
92
93 /* txq_map needs to have enough space to track both Tx (stack) rings
94 * and XDP rings; at this point vsi->num_xdp_txq might not be set,
95 * so use num_possible_cpus() as we want to always provide XDP ring
96 * per CPU, regardless of queue count settings from user that might
97 * have come from ethtool's set_channels() callback;
98 */
99 vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
100 sizeof(*vsi->txq_map), GFP_KERNEL);
101
102 if (!vsi->txq_map)
103 goto err_txq_map;
104
105 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
106 sizeof(*vsi->rxq_map), GFP_KERNEL);
107 if (!vsi->rxq_map)
108 goto err_rxq_map;
109
110 /* There is no need to allocate q_vectors for a loopback VSI. */
111 if (vsi->type == ICE_VSI_LB)
112 return 0;
113
114 /* allocate memory for q_vector pointers */
115 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
116 sizeof(*vsi->q_vectors), GFP_KERNEL);
117 if (!vsi->q_vectors)
118 goto err_vectors;
119
120 return 0;
121
122 err_vectors:
123 devm_kfree(dev, vsi->rxq_map);
124 err_rxq_map:
125 devm_kfree(dev, vsi->txq_map);
126 err_txq_map:
127 devm_kfree(dev, vsi->rx_rings);
128 err_rings:
129 devm_kfree(dev, vsi->tx_rings);
130 return -ENOMEM;
131 }
132
133 /**
134 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
135 * @vsi: the VSI being configured
136 */
ice_vsi_set_num_desc(struct ice_vsi * vsi)137 static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
138 {
139 switch (vsi->type) {
140 case ICE_VSI_PF:
141 case ICE_VSI_SF:
142 case ICE_VSI_CTRL:
143 case ICE_VSI_LB:
144 /* a user could change the values of num_[tr]x_desc using
145 * ethtool -G so we should keep those values instead of
146 * overwriting them with the defaults.
147 */
148 if (!vsi->num_rx_desc)
149 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
150 if (!vsi->num_tx_desc)
151 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
152 break;
153 default:
154 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
155 vsi->type);
156 break;
157 }
158 }
159
ice_get_rxq_count(struct ice_pf * pf)160 static u16 ice_get_rxq_count(struct ice_pf *pf)
161 {
162 return min(ice_get_avail_rxq_count(pf), num_online_cpus());
163 }
164
ice_get_txq_count(struct ice_pf * pf)165 static u16 ice_get_txq_count(struct ice_pf *pf)
166 {
167 return min(ice_get_avail_txq_count(pf), num_online_cpus());
168 }
169
170 /**
171 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
172 * @vsi: the VSI being configured
173 *
174 * Return 0 on success and a negative value on error
175 */
ice_vsi_set_num_qs(struct ice_vsi * vsi)176 static void ice_vsi_set_num_qs(struct ice_vsi *vsi)
177 {
178 enum ice_vsi_type vsi_type = vsi->type;
179 struct ice_pf *pf = vsi->back;
180 struct ice_vf *vf = vsi->vf;
181
182 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
183 return;
184
185 switch (vsi_type) {
186 case ICE_VSI_PF:
187 if (vsi->req_txq) {
188 vsi->alloc_txq = vsi->req_txq;
189 vsi->num_txq = vsi->req_txq;
190 } else {
191 vsi->alloc_txq = ice_get_txq_count(pf);
192 }
193
194 pf->num_lan_tx = vsi->alloc_txq;
195
196 /* only 1 Rx queue unless RSS is enabled */
197 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
198 vsi->alloc_rxq = 1;
199 } else {
200 if (vsi->req_rxq) {
201 vsi->alloc_rxq = vsi->req_rxq;
202 vsi->num_rxq = vsi->req_rxq;
203 } else {
204 vsi->alloc_rxq = ice_get_rxq_count(pf);
205 }
206 }
207
208 pf->num_lan_rx = vsi->alloc_rxq;
209
210 vsi->num_q_vectors = max(vsi->alloc_rxq, vsi->alloc_txq);
211 break;
212 case ICE_VSI_SF:
213 vsi->alloc_txq = 1;
214 vsi->alloc_rxq = 1;
215 vsi->num_q_vectors = 1;
216 vsi->irq_dyn_alloc = true;
217 break;
218 case ICE_VSI_VF:
219 if (vf->num_req_qs)
220 vf->num_vf_qs = vf->num_req_qs;
221 vsi->alloc_txq = vf->num_vf_qs;
222 vsi->alloc_rxq = vf->num_vf_qs;
223 /* pf->vfs.num_msix_per includes (VF miscellaneous vector +
224 * data queue interrupts). Since vsi->num_q_vectors is number
225 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
226 * original vector count
227 */
228 vsi->num_q_vectors = vf->num_msix - ICE_NONQ_VECS_VF;
229 break;
230 case ICE_VSI_CTRL:
231 vsi->alloc_txq = 1;
232 vsi->alloc_rxq = 1;
233 vsi->num_q_vectors = 1;
234 break;
235 case ICE_VSI_CHNL:
236 vsi->alloc_txq = 0;
237 vsi->alloc_rxq = 0;
238 break;
239 case ICE_VSI_LB:
240 vsi->alloc_txq = 1;
241 vsi->alloc_rxq = 1;
242 break;
243 default:
244 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type);
245 break;
246 }
247
248 ice_vsi_set_num_desc(vsi);
249 }
250
251 /**
252 * ice_get_free_slot - get the next non-NULL location index in array
253 * @array: array to search
254 * @size: size of the array
255 * @curr: last known occupied index to be used as a search hint
256 *
257 * void * is being used to keep the functionality generic. This lets us use this
258 * function on any array of pointers.
259 */
ice_get_free_slot(void * array,int size,int curr)260 static int ice_get_free_slot(void *array, int size, int curr)
261 {
262 int **tmp_array = (int **)array;
263 int next;
264
265 if (curr < (size - 1) && !tmp_array[curr + 1]) {
266 next = curr + 1;
267 } else {
268 int i = 0;
269
270 while ((i < size) && (tmp_array[i]))
271 i++;
272 if (i == size)
273 next = ICE_NO_VSI;
274 else
275 next = i;
276 }
277 return next;
278 }
279
280 /**
281 * ice_vsi_delete_from_hw - delete a VSI from the switch
282 * @vsi: pointer to VSI being removed
283 */
ice_vsi_delete_from_hw(struct ice_vsi * vsi)284 static void ice_vsi_delete_from_hw(struct ice_vsi *vsi)
285 {
286 struct ice_pf *pf = vsi->back;
287 struct ice_vsi_ctx *ctxt;
288 int status;
289
290 ice_fltr_remove_all(vsi);
291 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
292 if (!ctxt)
293 return;
294
295 if (vsi->type == ICE_VSI_VF)
296 ctxt->vf_num = vsi->vf->vf_id;
297 ctxt->vsi_num = vsi->vsi_num;
298
299 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
300
301 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
302 if (status)
303 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n",
304 vsi->vsi_num, status);
305
306 kfree(ctxt);
307 }
308
309 /**
310 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
311 * @vsi: pointer to VSI being cleared
312 */
ice_vsi_free_arrays(struct ice_vsi * vsi)313 static void ice_vsi_free_arrays(struct ice_vsi *vsi)
314 {
315 struct ice_pf *pf = vsi->back;
316 struct device *dev;
317
318 dev = ice_pf_to_dev(pf);
319
320 /* free the ring and vector containers */
321 devm_kfree(dev, vsi->q_vectors);
322 vsi->q_vectors = NULL;
323 devm_kfree(dev, vsi->tx_rings);
324 vsi->tx_rings = NULL;
325 devm_kfree(dev, vsi->rx_rings);
326 vsi->rx_rings = NULL;
327 devm_kfree(dev, vsi->txq_map);
328 vsi->txq_map = NULL;
329 devm_kfree(dev, vsi->rxq_map);
330 vsi->rxq_map = NULL;
331 }
332
333 /**
334 * ice_vsi_free_stats - Free the ring statistics structures
335 * @vsi: VSI pointer
336 */
ice_vsi_free_stats(struct ice_vsi * vsi)337 static void ice_vsi_free_stats(struct ice_vsi *vsi)
338 {
339 struct ice_vsi_stats *vsi_stat;
340 struct ice_pf *pf = vsi->back;
341 int i;
342
343 if (vsi->type == ICE_VSI_CHNL)
344 return;
345 if (!pf->vsi_stats)
346 return;
347
348 vsi_stat = pf->vsi_stats[vsi->idx];
349 if (!vsi_stat)
350 return;
351
352 ice_for_each_alloc_txq(vsi, i) {
353 if (vsi_stat->tx_ring_stats[i]) {
354 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
355 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
356 }
357 }
358
359 ice_for_each_alloc_rxq(vsi, i) {
360 if (vsi_stat->rx_ring_stats[i]) {
361 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
362 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
363 }
364 }
365
366 kfree(vsi_stat->tx_ring_stats);
367 kfree(vsi_stat->rx_ring_stats);
368 kfree(vsi_stat);
369 pf->vsi_stats[vsi->idx] = NULL;
370 }
371
372 /**
373 * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI
374 * @vsi: VSI which is having stats allocated
375 */
ice_vsi_alloc_ring_stats(struct ice_vsi * vsi)376 static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi)
377 {
378 struct ice_ring_stats **tx_ring_stats;
379 struct ice_ring_stats **rx_ring_stats;
380 struct ice_vsi_stats *vsi_stats;
381 struct ice_pf *pf = vsi->back;
382 u16 i;
383
384 vsi_stats = pf->vsi_stats[vsi->idx];
385 tx_ring_stats = vsi_stats->tx_ring_stats;
386 rx_ring_stats = vsi_stats->rx_ring_stats;
387
388 /* Allocate Tx ring stats */
389 ice_for_each_alloc_txq(vsi, i) {
390 struct ice_ring_stats *ring_stats;
391 struct ice_tx_ring *ring;
392
393 ring = vsi->tx_rings[i];
394 ring_stats = tx_ring_stats[i];
395
396 if (!ring_stats) {
397 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
398 if (!ring_stats)
399 goto err_out;
400
401 u64_stats_init(&ring_stats->syncp);
402
403 WRITE_ONCE(tx_ring_stats[i], ring_stats);
404 }
405
406 ring->ring_stats = ring_stats;
407 }
408
409 /* Allocate Rx ring stats */
410 ice_for_each_alloc_rxq(vsi, i) {
411 struct ice_ring_stats *ring_stats;
412 struct ice_rx_ring *ring;
413
414 ring = vsi->rx_rings[i];
415 ring_stats = rx_ring_stats[i];
416
417 if (!ring_stats) {
418 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
419 if (!ring_stats)
420 goto err_out;
421
422 u64_stats_init(&ring_stats->syncp);
423
424 WRITE_ONCE(rx_ring_stats[i], ring_stats);
425 }
426
427 ring->ring_stats = ring_stats;
428 }
429
430 return 0;
431
432 err_out:
433 ice_vsi_free_stats(vsi);
434 return -ENOMEM;
435 }
436
437 /**
438 * ice_vsi_free - clean up and deallocate the provided VSI
439 * @vsi: pointer to VSI being cleared
440 *
441 * This deallocates the VSI's queue resources, removes it from the PF's
442 * VSI array if necessary, and deallocates the VSI
443 */
ice_vsi_free(struct ice_vsi * vsi)444 void ice_vsi_free(struct ice_vsi *vsi)
445 {
446 struct ice_pf *pf = NULL;
447 struct device *dev;
448
449 if (!vsi || !vsi->back)
450 return;
451
452 pf = vsi->back;
453 dev = ice_pf_to_dev(pf);
454
455 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
456 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
457 return;
458 }
459
460 mutex_lock(&pf->sw_mutex);
461 /* updates the PF for this cleared VSI */
462
463 pf->vsi[vsi->idx] = NULL;
464 pf->next_vsi = vsi->idx;
465
466 ice_vsi_free_stats(vsi);
467 ice_vsi_free_arrays(vsi);
468 mutex_destroy(&vsi->xdp_state_lock);
469 mutex_unlock(&pf->sw_mutex);
470 devm_kfree(dev, vsi);
471 }
472
ice_vsi_delete(struct ice_vsi * vsi)473 void ice_vsi_delete(struct ice_vsi *vsi)
474 {
475 ice_vsi_delete_from_hw(vsi);
476 ice_vsi_free(vsi);
477 }
478
479 /**
480 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
481 * @irq: interrupt number
482 * @data: pointer to a q_vector
483 */
ice_msix_clean_ctrl_vsi(int __always_unused irq,void * data)484 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
485 {
486 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
487
488 if (!q_vector->tx.tx_ring)
489 return IRQ_HANDLED;
490
491 ice_clean_ctrl_rx_irq(q_vector->rx.rx_ring);
492 ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring);
493
494 return IRQ_HANDLED;
495 }
496
497 /**
498 * ice_msix_clean_rings - MSIX mode Interrupt Handler
499 * @irq: interrupt number
500 * @data: pointer to a q_vector
501 */
ice_msix_clean_rings(int __always_unused irq,void * data)502 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
503 {
504 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
505
506 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
507 return IRQ_HANDLED;
508
509 q_vector->total_events++;
510
511 napi_schedule(&q_vector->napi);
512
513 return IRQ_HANDLED;
514 }
515
516 /**
517 * ice_vsi_alloc_stat_arrays - Allocate statistics arrays
518 * @vsi: VSI pointer
519 */
ice_vsi_alloc_stat_arrays(struct ice_vsi * vsi)520 static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi)
521 {
522 struct ice_vsi_stats *vsi_stat;
523 struct ice_pf *pf = vsi->back;
524
525 if (vsi->type == ICE_VSI_CHNL)
526 return 0;
527 if (!pf->vsi_stats)
528 return -ENOENT;
529
530 if (pf->vsi_stats[vsi->idx])
531 /* realloc will happen in rebuild path */
532 return 0;
533
534 vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL);
535 if (!vsi_stat)
536 return -ENOMEM;
537
538 vsi_stat->tx_ring_stats =
539 kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats),
540 GFP_KERNEL);
541 if (!vsi_stat->tx_ring_stats)
542 goto err_alloc_tx;
543
544 vsi_stat->rx_ring_stats =
545 kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats),
546 GFP_KERNEL);
547 if (!vsi_stat->rx_ring_stats)
548 goto err_alloc_rx;
549
550 pf->vsi_stats[vsi->idx] = vsi_stat;
551
552 return 0;
553
554 err_alloc_rx:
555 kfree(vsi_stat->rx_ring_stats);
556 err_alloc_tx:
557 kfree(vsi_stat->tx_ring_stats);
558 kfree(vsi_stat);
559 pf->vsi_stats[vsi->idx] = NULL;
560 return -ENOMEM;
561 }
562
563 /**
564 * ice_vsi_alloc_def - set default values for already allocated VSI
565 * @vsi: ptr to VSI
566 * @ch: ptr to channel
567 */
568 static int
ice_vsi_alloc_def(struct ice_vsi * vsi,struct ice_channel * ch)569 ice_vsi_alloc_def(struct ice_vsi *vsi, struct ice_channel *ch)
570 {
571 if (vsi->type != ICE_VSI_CHNL) {
572 ice_vsi_set_num_qs(vsi);
573 if (ice_vsi_alloc_arrays(vsi))
574 return -ENOMEM;
575 }
576
577 vsi->irq_dyn_alloc = pci_msix_can_alloc_dyn(vsi->back->pdev);
578
579 switch (vsi->type) {
580 case ICE_VSI_PF:
581 case ICE_VSI_SF:
582 /* Setup default MSIX irq handler for VSI */
583 vsi->irq_handler = ice_msix_clean_rings;
584 break;
585 case ICE_VSI_CTRL:
586 /* Setup ctrl VSI MSIX irq handler */
587 vsi->irq_handler = ice_msix_clean_ctrl_vsi;
588 break;
589 case ICE_VSI_CHNL:
590 if (!ch)
591 return -EINVAL;
592
593 vsi->num_rxq = ch->num_rxq;
594 vsi->num_txq = ch->num_txq;
595 vsi->next_base_q = ch->base_q;
596 break;
597 case ICE_VSI_VF:
598 case ICE_VSI_LB:
599 break;
600 default:
601 ice_vsi_free_arrays(vsi);
602 return -EINVAL;
603 }
604
605 return 0;
606 }
607
608 /**
609 * ice_vsi_alloc - Allocates the next available struct VSI in the PF
610 * @pf: board private structure
611 *
612 * Reserves a VSI index from the PF and allocates an empty VSI structure
613 * without a type. The VSI structure must later be initialized by calling
614 * ice_vsi_cfg().
615 *
616 * returns a pointer to a VSI on success, NULL on failure.
617 */
ice_vsi_alloc(struct ice_pf * pf)618 struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf)
619 {
620 struct device *dev = ice_pf_to_dev(pf);
621 struct ice_vsi *vsi = NULL;
622
623 /* Need to protect the allocation of the VSIs at the PF level */
624 mutex_lock(&pf->sw_mutex);
625
626 /* If we have already allocated our maximum number of VSIs,
627 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
628 * is available to be populated
629 */
630 if (pf->next_vsi == ICE_NO_VSI) {
631 dev_dbg(dev, "out of VSI slots!\n");
632 goto unlock_pf;
633 }
634
635 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
636 if (!vsi)
637 goto unlock_pf;
638
639 vsi->back = pf;
640 set_bit(ICE_VSI_DOWN, vsi->state);
641
642 /* fill slot and make note of the index */
643 vsi->idx = pf->next_vsi;
644 pf->vsi[pf->next_vsi] = vsi;
645
646 /* prepare pf->next_vsi for next use */
647 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
648 pf->next_vsi);
649
650 mutex_init(&vsi->xdp_state_lock);
651
652 unlock_pf:
653 mutex_unlock(&pf->sw_mutex);
654 return vsi;
655 }
656
657 /**
658 * ice_alloc_fd_res - Allocate FD resource for a VSI
659 * @vsi: pointer to the ice_vsi
660 *
661 * This allocates the FD resources
662 *
663 * Returns 0 on success, -EPERM on no-op or -EIO on failure
664 */
ice_alloc_fd_res(struct ice_vsi * vsi)665 static int ice_alloc_fd_res(struct ice_vsi *vsi)
666 {
667 struct ice_pf *pf = vsi->back;
668 u32 g_val, b_val;
669
670 /* Flow Director filters are only allocated/assigned to the PF VSI or
671 * CHNL VSI which passes the traffic. The CTRL VSI is only used to
672 * add/delete filters so resources are not allocated to it
673 */
674 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
675 return -EPERM;
676
677 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF ||
678 vsi->type == ICE_VSI_CHNL))
679 return -EPERM;
680
681 /* FD filters from guaranteed pool per VSI */
682 g_val = pf->hw.func_caps.fd_fltr_guar;
683 if (!g_val)
684 return -EPERM;
685
686 /* FD filters from best effort pool */
687 b_val = pf->hw.func_caps.fd_fltr_best_effort;
688 if (!b_val)
689 return -EPERM;
690
691 /* PF main VSI gets only 64 FD resources from guaranteed pool
692 * when ADQ is configured.
693 */
694 #define ICE_PF_VSI_GFLTR 64
695
696 /* determine FD filter resources per VSI from shared(best effort) and
697 * dedicated pool
698 */
699 if (vsi->type == ICE_VSI_PF) {
700 vsi->num_gfltr = g_val;
701 /* if MQPRIO is configured, main VSI doesn't get all FD
702 * resources from guaranteed pool. PF VSI gets 64 FD resources
703 */
704 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
705 if (g_val < ICE_PF_VSI_GFLTR)
706 return -EPERM;
707 /* allow bare minimum entries for PF VSI */
708 vsi->num_gfltr = ICE_PF_VSI_GFLTR;
709 }
710
711 /* each VSI gets same "best_effort" quota */
712 vsi->num_bfltr = b_val;
713 } else if (vsi->type == ICE_VSI_VF) {
714 vsi->num_gfltr = 0;
715
716 /* each VSI gets same "best_effort" quota */
717 vsi->num_bfltr = b_val;
718 } else {
719 struct ice_vsi *main_vsi;
720 int numtc;
721
722 main_vsi = ice_get_main_vsi(pf);
723 if (!main_vsi)
724 return -EPERM;
725
726 if (!main_vsi->all_numtc)
727 return -EINVAL;
728
729 /* figure out ADQ numtc */
730 numtc = main_vsi->all_numtc - ICE_CHNL_START_TC;
731
732 /* only one TC but still asking resources for channels,
733 * invalid config
734 */
735 if (numtc < ICE_CHNL_START_TC)
736 return -EPERM;
737
738 g_val -= ICE_PF_VSI_GFLTR;
739 /* channel VSIs gets equal share from guaranteed pool */
740 vsi->num_gfltr = g_val / numtc;
741
742 /* each VSI gets same "best_effort" quota */
743 vsi->num_bfltr = b_val;
744 }
745
746 return 0;
747 }
748
749 /**
750 * ice_vsi_get_qs - Assign queues from PF to VSI
751 * @vsi: the VSI to assign queues to
752 *
753 * Returns 0 on success and a negative value on error
754 */
ice_vsi_get_qs(struct ice_vsi * vsi)755 static int ice_vsi_get_qs(struct ice_vsi *vsi)
756 {
757 struct ice_pf *pf = vsi->back;
758 struct ice_qs_cfg tx_qs_cfg = {
759 .qs_mutex = &pf->avail_q_mutex,
760 .pf_map = pf->avail_txqs,
761 .pf_map_size = pf->max_pf_txqs,
762 .q_count = vsi->alloc_txq,
763 .scatter_count = ICE_MAX_SCATTER_TXQS,
764 .vsi_map = vsi->txq_map,
765 .vsi_map_offset = 0,
766 .mapping_mode = ICE_VSI_MAP_CONTIG
767 };
768 struct ice_qs_cfg rx_qs_cfg = {
769 .qs_mutex = &pf->avail_q_mutex,
770 .pf_map = pf->avail_rxqs,
771 .pf_map_size = pf->max_pf_rxqs,
772 .q_count = vsi->alloc_rxq,
773 .scatter_count = ICE_MAX_SCATTER_RXQS,
774 .vsi_map = vsi->rxq_map,
775 .vsi_map_offset = 0,
776 .mapping_mode = ICE_VSI_MAP_CONTIG
777 };
778 int ret;
779
780 if (vsi->type == ICE_VSI_CHNL)
781 return 0;
782
783 ret = __ice_vsi_get_qs(&tx_qs_cfg);
784 if (ret)
785 return ret;
786 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
787
788 ret = __ice_vsi_get_qs(&rx_qs_cfg);
789 if (ret)
790 return ret;
791 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
792
793 return 0;
794 }
795
796 /**
797 * ice_vsi_put_qs - Release queues from VSI to PF
798 * @vsi: the VSI that is going to release queues
799 */
ice_vsi_put_qs(struct ice_vsi * vsi)800 static void ice_vsi_put_qs(struct ice_vsi *vsi)
801 {
802 struct ice_pf *pf = vsi->back;
803 int i;
804
805 mutex_lock(&pf->avail_q_mutex);
806
807 ice_for_each_alloc_txq(vsi, i) {
808 clear_bit(vsi->txq_map[i], pf->avail_txqs);
809 vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
810 }
811
812 ice_for_each_alloc_rxq(vsi, i) {
813 clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
814 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
815 }
816
817 mutex_unlock(&pf->avail_q_mutex);
818 }
819
820 /**
821 * ice_is_safe_mode
822 * @pf: pointer to the PF struct
823 *
824 * returns true if driver is in safe mode, false otherwise
825 */
ice_is_safe_mode(struct ice_pf * pf)826 bool ice_is_safe_mode(struct ice_pf *pf)
827 {
828 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
829 }
830
831 /**
832 * ice_is_rdma_ena
833 * @pf: pointer to the PF struct
834 *
835 * returns true if RDMA is currently supported, false otherwise
836 */
ice_is_rdma_ena(struct ice_pf * pf)837 bool ice_is_rdma_ena(struct ice_pf *pf)
838 {
839 union devlink_param_value value;
840 int err;
841
842 err = devl_param_driverinit_value_get(priv_to_devlink(pf),
843 DEVLINK_PARAM_GENERIC_ID_ENABLE_RDMA,
844 &value);
845 return err ? test_bit(ICE_FLAG_RDMA_ENA, pf->flags) : value.vbool;
846 }
847
848 /**
849 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
850 * @vsi: the VSI being cleaned up
851 *
852 * This function deletes RSS input set for all flows that were configured
853 * for this VSI
854 */
ice_vsi_clean_rss_flow_fld(struct ice_vsi * vsi)855 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
856 {
857 struct ice_pf *pf = vsi->back;
858 int status;
859
860 if (ice_is_safe_mode(pf))
861 return;
862
863 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
864 if (status)
865 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n",
866 vsi->vsi_num, status);
867 }
868
869 /**
870 * ice_rss_clean - Delete RSS related VSI structures and configuration
871 * @vsi: the VSI being removed
872 */
ice_rss_clean(struct ice_vsi * vsi)873 static void ice_rss_clean(struct ice_vsi *vsi)
874 {
875 struct ice_pf *pf = vsi->back;
876 struct device *dev;
877
878 dev = ice_pf_to_dev(pf);
879
880 devm_kfree(dev, vsi->rss_hkey_user);
881 devm_kfree(dev, vsi->rss_lut_user);
882
883 ice_vsi_clean_rss_flow_fld(vsi);
884 /* remove RSS replay list */
885 if (!ice_is_safe_mode(pf))
886 ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
887 }
888
889 /**
890 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
891 * @vsi: the VSI being configured
892 */
ice_vsi_set_rss_params(struct ice_vsi * vsi)893 static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
894 {
895 struct ice_hw_common_caps *cap;
896 struct ice_pf *pf = vsi->back;
897 u16 max_rss_size;
898
899 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
900 vsi->rss_size = 1;
901 return;
902 }
903
904 cap = &pf->hw.func_caps.common_cap;
905 max_rss_size = BIT(cap->rss_table_entry_width);
906 switch (vsi->type) {
907 case ICE_VSI_CHNL:
908 case ICE_VSI_PF:
909 /* PF VSI will inherit RSS instance of PF */
910 vsi->rss_table_size = (u16)cap->rss_table_size;
911 if (vsi->type == ICE_VSI_CHNL)
912 vsi->rss_size = min_t(u16, vsi->num_rxq, max_rss_size);
913 else
914 vsi->rss_size = min_t(u16, num_online_cpus(),
915 max_rss_size);
916 vsi->rss_lut_type = ICE_LUT_PF;
917 break;
918 case ICE_VSI_SF:
919 vsi->rss_table_size = ICE_LUT_VSI_SIZE;
920 vsi->rss_size = min_t(u16, num_online_cpus(), max_rss_size);
921 vsi->rss_lut_type = ICE_LUT_VSI;
922 break;
923 case ICE_VSI_VF:
924 /* VF VSI will get a small RSS table.
925 * For VSI_LUT, LUT size should be set to 64 bytes.
926 */
927 vsi->rss_table_size = ICE_LUT_VSI_SIZE;
928 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
929 vsi->rss_lut_type = ICE_LUT_VSI;
930 break;
931 case ICE_VSI_LB:
932 break;
933 default:
934 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
935 ice_vsi_type_str(vsi->type));
936 break;
937 }
938 }
939
940 /**
941 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
942 * @hw: HW structure used to determine the VLAN mode of the device
943 * @ctxt: the VSI context being set
944 *
945 * This initializes a default VSI context for all sections except the Queues.
946 */
ice_set_dflt_vsi_ctx(struct ice_hw * hw,struct ice_vsi_ctx * ctxt)947 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt)
948 {
949 u32 table = 0;
950
951 memset(&ctxt->info, 0, sizeof(ctxt->info));
952 /* VSI's should be allocated from shared pool */
953 ctxt->alloc_from_pool = true;
954 /* Src pruning enabled by default */
955 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
956 /* Traffic from VSI can be sent to LAN */
957 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
958 /* allow all untagged/tagged packets by default on Tx */
959 ctxt->info.inner_vlan_flags = FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_TX_MODE_M,
960 ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL);
961 /* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which
962 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor.
963 *
964 * DVM - leave inner VLAN in packet by default
965 */
966 if (ice_is_dvm_ena(hw)) {
967 ctxt->info.inner_vlan_flags |=
968 FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_EMODE_M,
969 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING);
970 ctxt->info.outer_vlan_flags =
971 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M,
972 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL);
973 ctxt->info.outer_vlan_flags |=
974 FIELD_PREP(ICE_AQ_VSI_OUTER_TAG_TYPE_M,
975 ICE_AQ_VSI_OUTER_TAG_VLAN_8100);
976 ctxt->info.outer_vlan_flags |=
977 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M,
978 ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING);
979 }
980 /* Have 1:1 UP mapping for both ingress/egress tables */
981 table |= ICE_UP_TABLE_TRANSLATE(0, 0);
982 table |= ICE_UP_TABLE_TRANSLATE(1, 1);
983 table |= ICE_UP_TABLE_TRANSLATE(2, 2);
984 table |= ICE_UP_TABLE_TRANSLATE(3, 3);
985 table |= ICE_UP_TABLE_TRANSLATE(4, 4);
986 table |= ICE_UP_TABLE_TRANSLATE(5, 5);
987 table |= ICE_UP_TABLE_TRANSLATE(6, 6);
988 table |= ICE_UP_TABLE_TRANSLATE(7, 7);
989 ctxt->info.ingress_table = cpu_to_le32(table);
990 ctxt->info.egress_table = cpu_to_le32(table);
991 /* Have 1:1 UP mapping for outer to inner UP table */
992 ctxt->info.outer_up_table = cpu_to_le32(table);
993 /* No Outer tag support outer_tag_flags remains to zero */
994 }
995
996 /**
997 * ice_vsi_setup_q_map - Setup a VSI queue map
998 * @vsi: the VSI being configured
999 * @ctxt: VSI context structure
1000 */
ice_vsi_setup_q_map(struct ice_vsi * vsi,struct ice_vsi_ctx * ctxt)1001 static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1002 {
1003 u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0;
1004 u16 num_txq_per_tc, num_rxq_per_tc;
1005 u16 qcount_tx = vsi->alloc_txq;
1006 u16 qcount_rx = vsi->alloc_rxq;
1007 u8 netdev_tc = 0;
1008 int i;
1009
1010 if (!vsi->tc_cfg.numtc) {
1011 /* at least TC0 should be enabled by default */
1012 vsi->tc_cfg.numtc = 1;
1013 vsi->tc_cfg.ena_tc = 1;
1014 }
1015
1016 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
1017 if (!num_rxq_per_tc)
1018 num_rxq_per_tc = 1;
1019 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
1020 if (!num_txq_per_tc)
1021 num_txq_per_tc = 1;
1022
1023 /* find the (rounded up) power-of-2 of qcount */
1024 pow = (u16)order_base_2(num_rxq_per_tc);
1025
1026 /* TC mapping is a function of the number of Rx queues assigned to the
1027 * VSI for each traffic class and the offset of these queues.
1028 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
1029 * queues allocated to TC0. No:of queues is a power-of-2.
1030 *
1031 * If TC is not enabled, the queue offset is set to 0, and allocate one
1032 * queue, this way, traffic for the given TC will be sent to the default
1033 * queue.
1034 *
1035 * Setup number and offset of Rx queues for all TCs for the VSI
1036 */
1037 ice_for_each_traffic_class(i) {
1038 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
1039 /* TC is not enabled */
1040 vsi->tc_cfg.tc_info[i].qoffset = 0;
1041 vsi->tc_cfg.tc_info[i].qcount_rx = 1;
1042 vsi->tc_cfg.tc_info[i].qcount_tx = 1;
1043 vsi->tc_cfg.tc_info[i].netdev_tc = 0;
1044 ctxt->info.tc_mapping[i] = 0;
1045 continue;
1046 }
1047
1048 /* TC is enabled */
1049 vsi->tc_cfg.tc_info[i].qoffset = offset;
1050 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
1051 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
1052 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
1053
1054 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset);
1055 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
1056 offset += num_rxq_per_tc;
1057 tx_count += num_txq_per_tc;
1058 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
1059 }
1060
1061 /* if offset is non-zero, means it is calculated correctly based on
1062 * enabled TCs for a given VSI otherwise qcount_rx will always
1063 * be correct and non-zero because it is based off - VSI's
1064 * allocated Rx queues which is at least 1 (hence qcount_tx will be
1065 * at least 1)
1066 */
1067 if (offset)
1068 rx_count = offset;
1069 else
1070 rx_count = num_rxq_per_tc;
1071
1072 if (rx_count > vsi->alloc_rxq) {
1073 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
1074 rx_count, vsi->alloc_rxq);
1075 return -EINVAL;
1076 }
1077
1078 if (tx_count > vsi->alloc_txq) {
1079 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
1080 tx_count, vsi->alloc_txq);
1081 return -EINVAL;
1082 }
1083
1084 vsi->num_txq = tx_count;
1085 vsi->num_rxq = rx_count;
1086
1087 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
1088 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
1089 /* since there is a chance that num_rxq could have been changed
1090 * in the above for loop, make num_txq equal to num_rxq.
1091 */
1092 vsi->num_txq = vsi->num_rxq;
1093 }
1094
1095 /* Rx queue mapping */
1096 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1097 /* q_mapping buffer holds the info for the first queue allocated for
1098 * this VSI in the PF space and also the number of queues associated
1099 * with this VSI.
1100 */
1101 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
1102 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
1103
1104 return 0;
1105 }
1106
1107 /**
1108 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
1109 * @ctxt: the VSI context being set
1110 * @vsi: the VSI being configured
1111 */
ice_set_fd_vsi_ctx(struct ice_vsi_ctx * ctxt,struct ice_vsi * vsi)1112 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1113 {
1114 u8 dflt_q_group, dflt_q_prio;
1115 u16 dflt_q, report_q, val;
1116
1117 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
1118 vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL)
1119 return;
1120
1121 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
1122 ctxt->info.valid_sections |= cpu_to_le16(val);
1123 dflt_q = 0;
1124 dflt_q_group = 0;
1125 report_q = 0;
1126 dflt_q_prio = 0;
1127
1128 /* enable flow director filtering/programming */
1129 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
1130 ctxt->info.fd_options = cpu_to_le16(val);
1131 /* max of allocated flow director filters */
1132 ctxt->info.max_fd_fltr_dedicated =
1133 cpu_to_le16(vsi->num_gfltr);
1134 /* max of shared flow director filters any VSI may program */
1135 ctxt->info.max_fd_fltr_shared =
1136 cpu_to_le16(vsi->num_bfltr);
1137 /* default queue index within the VSI of the default FD */
1138 val = FIELD_PREP(ICE_AQ_VSI_FD_DEF_Q_M, dflt_q);
1139 /* target queue or queue group to the FD filter */
1140 val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_GRP_M, dflt_q_group);
1141 ctxt->info.fd_def_q = cpu_to_le16(val);
1142 /* queue index on which FD filter completion is reported */
1143 val = FIELD_PREP(ICE_AQ_VSI_FD_REPORT_Q_M, report_q);
1144 /* priority of the default qindex action */
1145 val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_PRIORITY_M, dflt_q_prio);
1146 ctxt->info.fd_report_opt = cpu_to_le16(val);
1147 }
1148
1149 /**
1150 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
1151 * @ctxt: the VSI context being set
1152 * @vsi: the VSI being configured
1153 */
ice_set_rss_vsi_ctx(struct ice_vsi_ctx * ctxt,struct ice_vsi * vsi)1154 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1155 {
1156 u8 lut_type, hash_type;
1157 struct device *dev;
1158 struct ice_pf *pf;
1159
1160 pf = vsi->back;
1161 dev = ice_pf_to_dev(pf);
1162
1163 switch (vsi->type) {
1164 case ICE_VSI_CHNL:
1165 case ICE_VSI_PF:
1166 /* PF VSI will inherit RSS instance of PF */
1167 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1168 break;
1169 case ICE_VSI_VF:
1170 case ICE_VSI_SF:
1171 /* VF VSI will gets a small RSS table which is a VSI LUT type */
1172 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1173 break;
1174 default:
1175 dev_dbg(dev, "Unsupported VSI type %s\n",
1176 ice_vsi_type_str(vsi->type));
1177 return;
1178 }
1179
1180 hash_type = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1181 vsi->rss_hfunc = hash_type;
1182
1183 ctxt->info.q_opt_rss =
1184 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
1185 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
1186 }
1187
1188 static void
ice_chnl_vsi_setup_q_map(struct ice_vsi * vsi,struct ice_vsi_ctx * ctxt)1189 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1190 {
1191 u16 qcount, qmap;
1192 u8 offset = 0;
1193 int pow;
1194
1195 qcount = vsi->num_rxq;
1196
1197 pow = order_base_2(qcount);
1198 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset);
1199 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
1200
1201 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
1202 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1203 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q);
1204 ctxt->info.q_mapping[1] = cpu_to_le16(qcount);
1205 }
1206
1207 /**
1208 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
1209 * @vsi: VSI to check whether or not VLAN pruning is enabled.
1210 *
1211 * returns true if Rx VLAN pruning is enabled and false otherwise.
1212 */
ice_vsi_is_vlan_pruning_ena(struct ice_vsi * vsi)1213 static bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
1214 {
1215 return vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1216 }
1217
1218 /**
1219 * ice_vsi_init - Create and initialize a VSI
1220 * @vsi: the VSI being configured
1221 * @vsi_flags: VSI configuration flags
1222 *
1223 * Set ICE_FLAG_VSI_INIT to initialize a new VSI context, clear it to
1224 * reconfigure an existing context.
1225 *
1226 * This initializes a VSI context depending on the VSI type to be added and
1227 * passes it down to the add_vsi aq command to create a new VSI.
1228 */
ice_vsi_init(struct ice_vsi * vsi,u32 vsi_flags)1229 static int ice_vsi_init(struct ice_vsi *vsi, u32 vsi_flags)
1230 {
1231 struct ice_pf *pf = vsi->back;
1232 struct ice_hw *hw = &pf->hw;
1233 struct ice_vsi_ctx *ctxt;
1234 struct device *dev;
1235 int ret = 0;
1236
1237 dev = ice_pf_to_dev(pf);
1238 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1239 if (!ctxt)
1240 return -ENOMEM;
1241
1242 switch (vsi->type) {
1243 case ICE_VSI_CTRL:
1244 case ICE_VSI_LB:
1245 case ICE_VSI_PF:
1246 ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1247 break;
1248 case ICE_VSI_SF:
1249 case ICE_VSI_CHNL:
1250 ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2;
1251 break;
1252 case ICE_VSI_VF:
1253 ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1254 /* VF number here is the absolute VF number (0-255) */
1255 ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id;
1256 break;
1257 default:
1258 ret = -ENODEV;
1259 goto out;
1260 }
1261
1262 /* Handle VLAN pruning for channel VSI if main VSI has VLAN
1263 * prune enabled
1264 */
1265 if (vsi->type == ICE_VSI_CHNL) {
1266 struct ice_vsi *main_vsi;
1267
1268 main_vsi = ice_get_main_vsi(pf);
1269 if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi))
1270 ctxt->info.sw_flags2 |=
1271 ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1272 else
1273 ctxt->info.sw_flags2 &=
1274 ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1275 }
1276
1277 ice_set_dflt_vsi_ctx(hw, ctxt);
1278 if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
1279 ice_set_fd_vsi_ctx(ctxt, vsi);
1280 /* if the switch is in VEB mode, allow VSI loopback */
1281 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1282 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1283
1284 /* Set LUT type and HASH type if RSS is enabled */
1285 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
1286 vsi->type != ICE_VSI_CTRL) {
1287 ice_set_rss_vsi_ctx(ctxt, vsi);
1288 /* if updating VSI context, make sure to set valid_section:
1289 * to indicate which section of VSI context being updated
1290 */
1291 if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1292 ctxt->info.valid_sections |=
1293 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1294 }
1295
1296 ctxt->info.sw_id = vsi->port_info->sw_id;
1297 if (vsi->type == ICE_VSI_CHNL) {
1298 ice_chnl_vsi_setup_q_map(vsi, ctxt);
1299 } else {
1300 ret = ice_vsi_setup_q_map(vsi, ctxt);
1301 if (ret)
1302 goto out;
1303
1304 if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1305 /* means VSI being updated */
1306 /* must to indicate which section of VSI context are
1307 * being modified
1308 */
1309 ctxt->info.valid_sections |=
1310 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1311 }
1312
1313 /* Allow control frames out of main VSI */
1314 if (vsi->type == ICE_VSI_PF) {
1315 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1316 ctxt->info.valid_sections |=
1317 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1318 }
1319
1320 if (vsi_flags & ICE_VSI_FLAG_INIT) {
1321 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1322 if (ret) {
1323 dev_err(dev, "Add VSI failed, err %d\n", ret);
1324 ret = -EIO;
1325 goto out;
1326 }
1327 } else {
1328 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1329 if (ret) {
1330 dev_err(dev, "Update VSI failed, err %d\n", ret);
1331 ret = -EIO;
1332 goto out;
1333 }
1334 }
1335
1336 /* keep context for update VSI operations */
1337 vsi->info = ctxt->info;
1338
1339 /* record VSI number returned */
1340 vsi->vsi_num = ctxt->vsi_num;
1341
1342 out:
1343 kfree(ctxt);
1344 return ret;
1345 }
1346
1347 /**
1348 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1349 * @vsi: the VSI having rings deallocated
1350 */
ice_vsi_clear_rings(struct ice_vsi * vsi)1351 static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1352 {
1353 int i;
1354
1355 /* Avoid stale references by clearing map from vector to ring */
1356 if (vsi->q_vectors) {
1357 ice_for_each_q_vector(vsi, i) {
1358 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1359
1360 if (q_vector) {
1361 q_vector->tx.tx_ring = NULL;
1362 q_vector->rx.rx_ring = NULL;
1363 }
1364 }
1365 }
1366
1367 if (vsi->tx_rings) {
1368 ice_for_each_alloc_txq(vsi, i) {
1369 if (vsi->tx_rings[i]) {
1370 kfree_rcu(vsi->tx_rings[i], rcu);
1371 WRITE_ONCE(vsi->tx_rings[i], NULL);
1372 }
1373 }
1374 }
1375 if (vsi->rx_rings) {
1376 ice_for_each_alloc_rxq(vsi, i) {
1377 if (vsi->rx_rings[i]) {
1378 kfree_rcu(vsi->rx_rings[i], rcu);
1379 WRITE_ONCE(vsi->rx_rings[i], NULL);
1380 }
1381 }
1382 }
1383 }
1384
1385 /**
1386 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1387 * @vsi: VSI which is having rings allocated
1388 */
ice_vsi_alloc_rings(struct ice_vsi * vsi)1389 static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1390 {
1391 bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw);
1392 struct ice_pf *pf = vsi->back;
1393 struct device *dev;
1394 u16 i;
1395
1396 dev = ice_pf_to_dev(pf);
1397 /* Allocate Tx rings */
1398 ice_for_each_alloc_txq(vsi, i) {
1399 struct ice_tx_ring *ring;
1400
1401 /* allocate with kzalloc(), free with kfree_rcu() */
1402 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1403
1404 if (!ring)
1405 goto err_out;
1406
1407 ring->q_index = i;
1408 ring->reg_idx = vsi->txq_map[i];
1409 ring->vsi = vsi;
1410 ring->tx_tstamps = &pf->ptp.port.tx;
1411 ring->dev = dev;
1412 ring->count = vsi->num_tx_desc;
1413 ring->txq_teid = ICE_INVAL_TEID;
1414 if (dvm_ena)
1415 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2;
1416 else
1417 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1;
1418 WRITE_ONCE(vsi->tx_rings[i], ring);
1419 }
1420
1421 /* Allocate Rx rings */
1422 ice_for_each_alloc_rxq(vsi, i) {
1423 struct ice_rx_ring *ring;
1424
1425 /* allocate with kzalloc(), free with kfree_rcu() */
1426 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1427 if (!ring)
1428 goto err_out;
1429
1430 ring->q_index = i;
1431 ring->reg_idx = vsi->rxq_map[i];
1432 ring->vsi = vsi;
1433 ring->netdev = vsi->netdev;
1434 ring->count = vsi->num_rx_desc;
1435 ring->cached_phctime = pf->ptp.cached_phc_time;
1436
1437 if (ice_is_feature_supported(pf, ICE_F_GCS))
1438 ring->flags |= ICE_RX_FLAGS_RING_GCS;
1439
1440 WRITE_ONCE(vsi->rx_rings[i], ring);
1441 }
1442
1443 return 0;
1444
1445 err_out:
1446 ice_vsi_clear_rings(vsi);
1447 return -ENOMEM;
1448 }
1449
1450 /**
1451 * ice_vsi_manage_rss_lut - disable/enable RSS
1452 * @vsi: the VSI being changed
1453 * @ena: boolean value indicating if this is an enable or disable request
1454 *
1455 * In the event of disable request for RSS, this function will zero out RSS
1456 * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1457 * LUT.
1458 */
ice_vsi_manage_rss_lut(struct ice_vsi * vsi,bool ena)1459 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1460 {
1461 u8 *lut;
1462
1463 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1464 if (!lut)
1465 return;
1466
1467 if (ena) {
1468 if (vsi->rss_lut_user)
1469 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1470 else
1471 ice_fill_rss_lut(lut, vsi->rss_table_size,
1472 vsi->rss_size);
1473 }
1474
1475 ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1476 kfree(lut);
1477 }
1478
1479 /**
1480 * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI
1481 * @vsi: VSI to be configured
1482 * @disable: set to true to have FCS / CRC in the frame data
1483 */
ice_vsi_cfg_crc_strip(struct ice_vsi * vsi,bool disable)1484 void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable)
1485 {
1486 int i;
1487
1488 ice_for_each_rxq(vsi, i)
1489 if (disable)
1490 vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
1491 else
1492 vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1493 }
1494
1495 /**
1496 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1497 * @vsi: VSI to be configured
1498 */
ice_vsi_cfg_rss_lut_key(struct ice_vsi * vsi)1499 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1500 {
1501 struct ice_pf *pf = vsi->back;
1502 struct device *dev;
1503 u8 *lut, *key;
1504 int err;
1505
1506 dev = ice_pf_to_dev(pf);
1507 if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size &&
1508 (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) {
1509 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size);
1510 } else {
1511 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1512
1513 /* If orig_rss_size is valid and it is less than determined
1514 * main VSI's rss_size, update main VSI's rss_size to be
1515 * orig_rss_size so that when tc-qdisc is deleted, main VSI
1516 * RSS table gets programmed to be correct (whatever it was
1517 * to begin with (prior to setup-tc for ADQ config)
1518 */
1519 if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size &&
1520 vsi->orig_rss_size <= vsi->num_rxq) {
1521 vsi->rss_size = vsi->orig_rss_size;
1522 /* now orig_rss_size is used, reset it to zero */
1523 vsi->orig_rss_size = 0;
1524 }
1525 }
1526
1527 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1528 if (!lut)
1529 return -ENOMEM;
1530
1531 if (vsi->rss_lut_user)
1532 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1533 else
1534 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1535
1536 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1537 if (err) {
1538 dev_err(dev, "set_rss_lut failed, error %d\n", err);
1539 goto ice_vsi_cfg_rss_exit;
1540 }
1541
1542 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
1543 if (!key) {
1544 err = -ENOMEM;
1545 goto ice_vsi_cfg_rss_exit;
1546 }
1547
1548 if (vsi->rss_hkey_user)
1549 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1550 else
1551 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1552
1553 err = ice_set_rss_key(vsi, key);
1554 if (err)
1555 dev_err(dev, "set_rss_key failed, error %d\n", err);
1556
1557 kfree(key);
1558 ice_vsi_cfg_rss_exit:
1559 kfree(lut);
1560 return err;
1561 }
1562
1563 /**
1564 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1565 * @vsi: VSI to be configured
1566 *
1567 * This function will only be called during the VF VSI setup. Upon successful
1568 * completion of package download, this function will configure default RSS
1569 * input sets for VF VSI.
1570 */
ice_vsi_set_vf_rss_flow_fld(struct ice_vsi * vsi)1571 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1572 {
1573 struct ice_pf *pf = vsi->back;
1574 struct device *dev;
1575 int status;
1576
1577 dev = ice_pf_to_dev(pf);
1578 if (ice_is_safe_mode(pf)) {
1579 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1580 vsi->vsi_num);
1581 return;
1582 }
1583
1584 status = ice_add_avf_rss_cfg(&pf->hw, vsi, ICE_DEFAULT_RSS_HASHCFG);
1585 if (status)
1586 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n",
1587 vsi->vsi_num, status);
1588 }
1589
1590 static const struct ice_rss_hash_cfg default_rss_cfgs[] = {
1591 /* configure RSS for IPv4 with input set IP src/dst */
1592 {ICE_FLOW_SEG_HDR_IPV4, ICE_FLOW_HASH_IPV4, ICE_RSS_ANY_HEADERS, false},
1593 /* configure RSS for IPv6 with input set IPv6 src/dst */
1594 {ICE_FLOW_SEG_HDR_IPV6, ICE_FLOW_HASH_IPV6, ICE_RSS_ANY_HEADERS, false},
1595 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1596 {ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4,
1597 ICE_HASH_TCP_IPV4, ICE_RSS_ANY_HEADERS, false},
1598 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1599 {ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4,
1600 ICE_HASH_UDP_IPV4, ICE_RSS_ANY_HEADERS, false},
1601 /* configure RSS for sctp4 with input set IP src/dst - only support
1602 * RSS on SCTPv4 on outer headers (non-tunneled)
1603 */
1604 {ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4,
1605 ICE_HASH_SCTP_IPV4, ICE_RSS_OUTER_HEADERS, false},
1606 /* configure RSS for gtpc4 with input set IPv4 src/dst */
1607 {ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV4,
1608 ICE_FLOW_HASH_IPV4, ICE_RSS_OUTER_HEADERS, false},
1609 /* configure RSS for gtpc4t with input set IPv4 src/dst */
1610 {ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV4,
1611 ICE_FLOW_HASH_GTP_C_IPV4_TEID, ICE_RSS_OUTER_HEADERS, false},
1612 /* configure RSS for gtpu4 with input set IPv4 src/dst */
1613 {ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV4,
1614 ICE_FLOW_HASH_GTP_U_IPV4_TEID, ICE_RSS_OUTER_HEADERS, false},
1615 /* configure RSS for gtpu4e with input set IPv4 src/dst */
1616 {ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV4,
1617 ICE_FLOW_HASH_GTP_U_IPV4_EH, ICE_RSS_OUTER_HEADERS, false},
1618 /* configure RSS for gtpu4u with input set IPv4 src/dst */
1619 { ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV4,
1620 ICE_FLOW_HASH_GTP_U_IPV4_UP, ICE_RSS_OUTER_HEADERS, false},
1621 /* configure RSS for gtpu4d with input set IPv4 src/dst */
1622 {ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV4,
1623 ICE_FLOW_HASH_GTP_U_IPV4_DWN, ICE_RSS_OUTER_HEADERS, false},
1624
1625 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1626 {ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6,
1627 ICE_HASH_TCP_IPV6, ICE_RSS_ANY_HEADERS, false},
1628 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1629 {ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6,
1630 ICE_HASH_UDP_IPV6, ICE_RSS_ANY_HEADERS, false},
1631 /* configure RSS for sctp6 with input set IPv6 src/dst - only support
1632 * RSS on SCTPv6 on outer headers (non-tunneled)
1633 */
1634 {ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6,
1635 ICE_HASH_SCTP_IPV6, ICE_RSS_OUTER_HEADERS, false},
1636 /* configure RSS for IPSEC ESP SPI with input set MAC_IPV4_SPI */
1637 {ICE_FLOW_SEG_HDR_ESP,
1638 ICE_FLOW_HASH_ESP_SPI, ICE_RSS_OUTER_HEADERS, false},
1639 /* configure RSS for gtpc6 with input set IPv6 src/dst */
1640 {ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV6,
1641 ICE_FLOW_HASH_IPV6, ICE_RSS_OUTER_HEADERS, false},
1642 /* configure RSS for gtpc6t with input set IPv6 src/dst */
1643 {ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV6,
1644 ICE_FLOW_HASH_GTP_C_IPV6_TEID, ICE_RSS_OUTER_HEADERS, false},
1645 /* configure RSS for gtpu6 with input set IPv6 src/dst */
1646 {ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV6,
1647 ICE_FLOW_HASH_GTP_U_IPV6_TEID, ICE_RSS_OUTER_HEADERS, false},
1648 /* configure RSS for gtpu6e with input set IPv6 src/dst */
1649 {ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV6,
1650 ICE_FLOW_HASH_GTP_U_IPV6_EH, ICE_RSS_OUTER_HEADERS, false},
1651 /* configure RSS for gtpu6u with input set IPv6 src/dst */
1652 { ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV6,
1653 ICE_FLOW_HASH_GTP_U_IPV6_UP, ICE_RSS_OUTER_HEADERS, false},
1654 /* configure RSS for gtpu6d with input set IPv6 src/dst */
1655 {ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV6,
1656 ICE_FLOW_HASH_GTP_U_IPV6_DWN, ICE_RSS_OUTER_HEADERS, false},
1657 };
1658
1659 /**
1660 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1661 * @vsi: VSI to be configured
1662 *
1663 * This function will only be called after successful download package call
1664 * during initialization of PF. Since the downloaded package will erase the
1665 * RSS section, this function will configure RSS input sets for different
1666 * flow types. The last profile added has the highest priority, therefore 2
1667 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1668 * (i.e. IPv4 src/dst TCP src/dst port).
1669 */
ice_vsi_set_rss_flow_fld(struct ice_vsi * vsi)1670 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1671 {
1672 u16 vsi_num = vsi->vsi_num;
1673 struct ice_pf *pf = vsi->back;
1674 struct ice_hw *hw = &pf->hw;
1675 struct device *dev;
1676 int status;
1677 u32 i;
1678
1679 dev = ice_pf_to_dev(pf);
1680 if (ice_is_safe_mode(pf)) {
1681 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1682 vsi_num);
1683 return;
1684 }
1685 for (i = 0; i < ARRAY_SIZE(default_rss_cfgs); i++) {
1686 const struct ice_rss_hash_cfg *cfg = &default_rss_cfgs[i];
1687
1688 status = ice_add_rss_cfg(hw, vsi, cfg);
1689 if (status)
1690 dev_dbg(dev, "ice_add_rss_cfg failed, addl_hdrs = %x, hash_flds = %llx, hdr_type = %d, symm = %d\n",
1691 cfg->addl_hdrs, cfg->hash_flds,
1692 cfg->hdr_type, cfg->symm);
1693 }
1694 }
1695
1696 /**
1697 * ice_pf_state_is_nominal - checks the PF for nominal state
1698 * @pf: pointer to PF to check
1699 *
1700 * Check the PF's state for a collection of bits that would indicate
1701 * the PF is in a state that would inhibit normal operation for
1702 * driver functionality.
1703 *
1704 * Returns true if PF is in a nominal state, false otherwise
1705 */
ice_pf_state_is_nominal(struct ice_pf * pf)1706 bool ice_pf_state_is_nominal(struct ice_pf *pf)
1707 {
1708 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
1709
1710 if (!pf)
1711 return false;
1712
1713 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
1714 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
1715 return false;
1716
1717 return true;
1718 }
1719
1720 #define ICE_FW_MODE_REC_M BIT(1)
ice_is_recovery_mode(struct ice_hw * hw)1721 bool ice_is_recovery_mode(struct ice_hw *hw)
1722 {
1723 return rd32(hw, GL_MNG_FWSM) & ICE_FW_MODE_REC_M;
1724 }
1725
1726 /**
1727 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1728 * @vsi: the VSI to be updated
1729 */
ice_update_eth_stats(struct ice_vsi * vsi)1730 void ice_update_eth_stats(struct ice_vsi *vsi)
1731 {
1732 struct ice_eth_stats *prev_es, *cur_es;
1733 struct ice_hw *hw = &vsi->back->hw;
1734 struct ice_pf *pf = vsi->back;
1735 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */
1736
1737 prev_es = &vsi->eth_stats_prev;
1738 cur_es = &vsi->eth_stats;
1739
1740 if (ice_is_reset_in_progress(pf->state))
1741 vsi->stat_offsets_loaded = false;
1742
1743 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1744 &prev_es->rx_bytes, &cur_es->rx_bytes);
1745
1746 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1747 &prev_es->rx_unicast, &cur_es->rx_unicast);
1748
1749 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1750 &prev_es->rx_multicast, &cur_es->rx_multicast);
1751
1752 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1753 &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1754
1755 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1756 &prev_es->rx_discards, &cur_es->rx_discards);
1757
1758 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1759 &prev_es->tx_bytes, &cur_es->tx_bytes);
1760
1761 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1762 &prev_es->tx_unicast, &cur_es->tx_unicast);
1763
1764 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1765 &prev_es->tx_multicast, &cur_es->tx_multicast);
1766
1767 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1768 &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1769
1770 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1771 &prev_es->tx_errors, &cur_es->tx_errors);
1772
1773 vsi->stat_offsets_loaded = true;
1774 }
1775
1776 /**
1777 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1778 * @hw: HW pointer
1779 * @pf_q: index of the Rx queue in the PF's queue space
1780 * @rxdid: flexible descriptor RXDID
1781 * @prio: priority for the RXDID for this queue
1782 * @ena_ts: true to enable timestamp and false to disable timestamp
1783 */
ice_write_qrxflxp_cntxt(struct ice_hw * hw,u16 pf_q,u32 rxdid,u32 prio,bool ena_ts)1784 void ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
1785 bool ena_ts)
1786 {
1787 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1788
1789 /* clear any previous values */
1790 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1791 QRXFLXP_CNTXT_RXDID_PRIO_M |
1792 QRXFLXP_CNTXT_TS_M);
1793
1794 regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_IDX_M, rxdid);
1795 regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_PRIO_M, prio);
1796
1797 if (ena_ts)
1798 /* Enable TimeSync on this queue */
1799 regval |= QRXFLXP_CNTXT_TS_M;
1800
1801 wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1802 }
1803
1804 /**
1805 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1806 * @intrl: interrupt rate limit in usecs
1807 * @gran: interrupt rate limit granularity in usecs
1808 *
1809 * This function converts a decimal interrupt rate limit in usecs to the format
1810 * expected by firmware.
1811 */
ice_intrl_usec_to_reg(u8 intrl,u8 gran)1812 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1813 {
1814 u32 val = intrl / gran;
1815
1816 if (val)
1817 return val | GLINT_RATE_INTRL_ENA_M;
1818 return 0;
1819 }
1820
1821 /**
1822 * ice_write_intrl - write throttle rate limit to interrupt specific register
1823 * @q_vector: pointer to interrupt specific structure
1824 * @intrl: throttle rate limit in microseconds to write
1825 */
ice_write_intrl(struct ice_q_vector * q_vector,u8 intrl)1826 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
1827 {
1828 struct ice_hw *hw = &q_vector->vsi->back->hw;
1829
1830 wr32(hw, GLINT_RATE(q_vector->reg_idx),
1831 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
1832 }
1833
ice_pull_qvec_from_rc(struct ice_ring_container * rc)1834 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc)
1835 {
1836 switch (rc->type) {
1837 case ICE_RX_CONTAINER:
1838 if (rc->rx_ring)
1839 return rc->rx_ring->q_vector;
1840 break;
1841 case ICE_TX_CONTAINER:
1842 if (rc->tx_ring)
1843 return rc->tx_ring->q_vector;
1844 break;
1845 default:
1846 break;
1847 }
1848
1849 return NULL;
1850 }
1851
1852 /**
1853 * __ice_write_itr - write throttle rate to register
1854 * @q_vector: pointer to interrupt data structure
1855 * @rc: pointer to ring container
1856 * @itr: throttle rate in microseconds to write
1857 */
__ice_write_itr(struct ice_q_vector * q_vector,struct ice_ring_container * rc,u16 itr)1858 static void __ice_write_itr(struct ice_q_vector *q_vector,
1859 struct ice_ring_container *rc, u16 itr)
1860 {
1861 struct ice_hw *hw = &q_vector->vsi->back->hw;
1862
1863 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1864 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
1865 }
1866
1867 /**
1868 * ice_write_itr - write throttle rate to queue specific register
1869 * @rc: pointer to ring container
1870 * @itr: throttle rate in microseconds to write
1871 */
ice_write_itr(struct ice_ring_container * rc,u16 itr)1872 void ice_write_itr(struct ice_ring_container *rc, u16 itr)
1873 {
1874 struct ice_q_vector *q_vector;
1875
1876 q_vector = ice_pull_qvec_from_rc(rc);
1877 if (!q_vector)
1878 return;
1879
1880 __ice_write_itr(q_vector, rc, itr);
1881 }
1882
1883 /**
1884 * ice_set_q_vector_intrl - set up interrupt rate limiting
1885 * @q_vector: the vector to be configured
1886 *
1887 * Interrupt rate limiting is local to the vector, not per-queue so we must
1888 * detect if either ring container has dynamic moderation enabled to decide
1889 * what to set the interrupt rate limit to via INTRL settings. In the case that
1890 * dynamic moderation is disabled on both, write the value with the cached
1891 * setting to make sure INTRL register matches the user visible value.
1892 */
ice_set_q_vector_intrl(struct ice_q_vector * q_vector)1893 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector)
1894 {
1895 if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) {
1896 /* in the case of dynamic enabled, cap each vector to no more
1897 * than (4 us) 250,000 ints/sec, which allows low latency
1898 * but still less than 500,000 interrupts per second, which
1899 * reduces CPU a bit in the case of the lowest latency
1900 * setting. The 4 here is a value in microseconds.
1901 */
1902 ice_write_intrl(q_vector, 4);
1903 } else {
1904 ice_write_intrl(q_vector, q_vector->intrl);
1905 }
1906 }
1907
1908 /**
1909 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1910 * @vsi: the VSI being configured
1911 *
1912 * This configures MSIX mode interrupts for the PF VSI, and should not be used
1913 * for the VF VSI.
1914 */
ice_vsi_cfg_msix(struct ice_vsi * vsi)1915 void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1916 {
1917 struct ice_pf *pf = vsi->back;
1918 struct ice_hw *hw = &pf->hw;
1919 u16 txq = 0, rxq = 0;
1920 int i, q;
1921
1922 ice_for_each_q_vector(vsi, i) {
1923 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1924 u16 reg_idx = q_vector->reg_idx;
1925
1926 ice_cfg_itr(hw, q_vector);
1927
1928 /* Both Transmit Queue Interrupt Cause Control register
1929 * and Receive Queue Interrupt Cause control register
1930 * expects MSIX_INDX field to be the vector index
1931 * within the function space and not the absolute
1932 * vector index across PF or across device.
1933 * For SR-IOV VF VSIs queue vector index always starts
1934 * with 1 since first vector index(0) is used for OICR
1935 * in VF space. Since VMDq and other PF VSIs are within
1936 * the PF function space, use the vector index that is
1937 * tracked for this PF.
1938 */
1939 for (q = 0; q < q_vector->num_ring_tx; q++) {
1940 ice_cfg_txq_interrupt(vsi, txq, reg_idx,
1941 q_vector->tx.itr_idx);
1942 txq++;
1943 }
1944
1945 for (q = 0; q < q_vector->num_ring_rx; q++) {
1946 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
1947 q_vector->rx.itr_idx);
1948 rxq++;
1949 }
1950 }
1951 }
1952
1953 /**
1954 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
1955 * @vsi: the VSI whose rings are to be enabled
1956 *
1957 * Returns 0 on success and a negative value on error
1958 */
ice_vsi_start_all_rx_rings(struct ice_vsi * vsi)1959 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
1960 {
1961 return ice_vsi_ctrl_all_rx_rings(vsi, true);
1962 }
1963
1964 /**
1965 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
1966 * @vsi: the VSI whose rings are to be disabled
1967 *
1968 * Returns 0 on success and a negative value on error
1969 */
ice_vsi_stop_all_rx_rings(struct ice_vsi * vsi)1970 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
1971 {
1972 return ice_vsi_ctrl_all_rx_rings(vsi, false);
1973 }
1974
1975 /**
1976 * ice_vsi_stop_tx_rings - Disable Tx rings
1977 * @vsi: the VSI being configured
1978 * @rst_src: reset source
1979 * @rel_vmvf_num: Relative ID of VF/VM
1980 * @rings: Tx ring array to be stopped
1981 * @count: number of Tx ring array elements
1982 */
1983 static int
ice_vsi_stop_tx_rings(struct ice_vsi * vsi,enum ice_disq_rst_src rst_src,u16 rel_vmvf_num,struct ice_tx_ring ** rings,u16 count)1984 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1985 u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count)
1986 {
1987 u16 q_idx;
1988
1989 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
1990 return -EINVAL;
1991
1992 for (q_idx = 0; q_idx < count; q_idx++) {
1993 struct ice_txq_meta txq_meta = { };
1994 int status;
1995
1996 if (!rings || !rings[q_idx])
1997 return -EINVAL;
1998
1999 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
2000 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
2001 rings[q_idx], &txq_meta);
2002
2003 if (status)
2004 return status;
2005 }
2006
2007 return 0;
2008 }
2009
2010 /**
2011 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2012 * @vsi: the VSI being configured
2013 * @rst_src: reset source
2014 * @rel_vmvf_num: Relative ID of VF/VM
2015 */
2016 int
ice_vsi_stop_lan_tx_rings(struct ice_vsi * vsi,enum ice_disq_rst_src rst_src,u16 rel_vmvf_num)2017 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2018 u16 rel_vmvf_num)
2019 {
2020 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
2021 }
2022
2023 /**
2024 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2025 * @vsi: the VSI being configured
2026 */
ice_vsi_stop_xdp_tx_rings(struct ice_vsi * vsi)2027 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2028 {
2029 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2030 }
2031
2032 /**
2033 * ice_vsi_is_rx_queue_active
2034 * @vsi: the VSI being configured
2035 *
2036 * Return true if at least one queue is active.
2037 */
ice_vsi_is_rx_queue_active(struct ice_vsi * vsi)2038 bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi)
2039 {
2040 struct ice_pf *pf = vsi->back;
2041 struct ice_hw *hw = &pf->hw;
2042 int i;
2043
2044 ice_for_each_rxq(vsi, i) {
2045 u32 rx_reg;
2046 int pf_q;
2047
2048 pf_q = vsi->rxq_map[i];
2049 rx_reg = rd32(hw, QRX_CTRL(pf_q));
2050 if (rx_reg & QRX_CTRL_QENA_STAT_M)
2051 return true;
2052 }
2053
2054 return false;
2055 }
2056
ice_vsi_set_tc_cfg(struct ice_vsi * vsi)2057 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2058 {
2059 if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) {
2060 vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS;
2061 vsi->tc_cfg.numtc = 1;
2062 return;
2063 }
2064
2065 /* set VSI TC information based on DCB config */
2066 ice_vsi_set_dcb_tc_cfg(vsi);
2067 }
2068
2069 /**
2070 * ice_vsi_cfg_sw_lldp - Config switch rules for LLDP packet handling
2071 * @vsi: the VSI being configured
2072 * @tx: bool to determine Tx or Rx rule
2073 * @create: bool to determine create or remove Rule
2074 *
2075 * Adding an ethtype Tx rule to the uplink VSI results in it being applied
2076 * to the whole port, so LLDP transmission for VFs will be blocked too.
2077 */
ice_vsi_cfg_sw_lldp(struct ice_vsi * vsi,bool tx,bool create)2078 void ice_vsi_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2079 {
2080 int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2081 enum ice_sw_fwd_act_type act);
2082 struct ice_pf *pf = vsi->back;
2083 struct device *dev;
2084 int status;
2085
2086 dev = ice_pf_to_dev(pf);
2087 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2088
2089 if (tx) {
2090 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2091 ICE_DROP_PACKET);
2092 } else {
2093 if (!test_bit(ICE_FLAG_LLDP_AQ_FLTR, pf->flags)) {
2094 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
2095 ICE_FWD_TO_VSI);
2096 if (!status || !create)
2097 goto report;
2098
2099 dev_info(dev,
2100 "Failed to add generic LLDP Rx filter on VSI %i error: %d, falling back to specialized AQ control\n",
2101 vsi->vsi_num, status);
2102 }
2103
2104 status = ice_lldp_fltr_add_remove(&pf->hw, vsi, create);
2105 if (!status)
2106 set_bit(ICE_FLAG_LLDP_AQ_FLTR, pf->flags);
2107
2108 }
2109
2110 report:
2111 if (status)
2112 dev_warn(dev, "Failed to %s %s LLDP rule on VSI %i error: %d\n",
2113 create ? "add" : "remove", tx ? "Tx" : "Rx",
2114 vsi->vsi_num, status);
2115 }
2116
2117 /**
2118 * ice_cfg_sw_rx_lldp - Enable/disable software handling of LLDP
2119 * @pf: the PF being configured
2120 * @enable: enable or disable
2121 *
2122 * Configure switch rules to enable/disable LLDP handling by software
2123 * across PF.
2124 */
ice_cfg_sw_rx_lldp(struct ice_pf * pf,bool enable)2125 void ice_cfg_sw_rx_lldp(struct ice_pf *pf, bool enable)
2126 {
2127 struct ice_vsi *vsi;
2128 struct ice_vf *vf;
2129 unsigned int bkt;
2130
2131 vsi = ice_get_main_vsi(pf);
2132 ice_vsi_cfg_sw_lldp(vsi, false, enable);
2133
2134 if (!test_bit(ICE_FLAG_SRIOV_ENA, pf->flags))
2135 return;
2136
2137 ice_for_each_vf(pf, bkt, vf) {
2138 vsi = ice_get_vf_vsi(vf);
2139
2140 if (WARN_ON(!vsi))
2141 continue;
2142
2143 if (ice_vf_is_lldp_ena(vf))
2144 ice_vsi_cfg_sw_lldp(vsi, false, enable);
2145 }
2146 }
2147
2148 /**
2149 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
2150 * @vsi: pointer to the VSI
2151 *
2152 * This function will allocate new scheduler aggregator now if needed and will
2153 * move specified VSI into it.
2154 */
ice_set_agg_vsi(struct ice_vsi * vsi)2155 static void ice_set_agg_vsi(struct ice_vsi *vsi)
2156 {
2157 struct device *dev = ice_pf_to_dev(vsi->back);
2158 struct ice_agg_node *agg_node_iter = NULL;
2159 u32 agg_id = ICE_INVALID_AGG_NODE_ID;
2160 struct ice_agg_node *agg_node = NULL;
2161 int node_offset, max_agg_nodes = 0;
2162 struct ice_port_info *port_info;
2163 struct ice_pf *pf = vsi->back;
2164 u32 agg_node_id_start = 0;
2165 int status;
2166
2167 /* create (as needed) scheduler aggregator node and move VSI into
2168 * corresponding aggregator node
2169 * - PF aggregator node to contains VSIs of type _PF and _CTRL
2170 * - VF aggregator nodes will contain VF VSI
2171 */
2172 port_info = pf->hw.port_info;
2173 if (!port_info)
2174 return;
2175
2176 switch (vsi->type) {
2177 case ICE_VSI_CTRL:
2178 case ICE_VSI_CHNL:
2179 case ICE_VSI_LB:
2180 case ICE_VSI_PF:
2181 case ICE_VSI_SF:
2182 max_agg_nodes = ICE_MAX_PF_AGG_NODES;
2183 agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
2184 agg_node_iter = &pf->pf_agg_node[0];
2185 break;
2186 case ICE_VSI_VF:
2187 /* user can create 'n' VFs on a given PF, but since max children
2188 * per aggregator node can be only 64. Following code handles
2189 * aggregator(s) for VF VSIs, either selects a agg_node which
2190 * was already created provided num_vsis < 64, otherwise
2191 * select next available node, which will be created
2192 */
2193 max_agg_nodes = ICE_MAX_VF_AGG_NODES;
2194 agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
2195 agg_node_iter = &pf->vf_agg_node[0];
2196 break;
2197 default:
2198 /* other VSI type, handle later if needed */
2199 dev_dbg(dev, "unexpected VSI type %s\n",
2200 ice_vsi_type_str(vsi->type));
2201 return;
2202 }
2203
2204 /* find the appropriate aggregator node */
2205 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
2206 /* see if we can find space in previously created
2207 * node if num_vsis < 64, otherwise skip
2208 */
2209 if (agg_node_iter->num_vsis &&
2210 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
2211 agg_node_iter++;
2212 continue;
2213 }
2214
2215 if (agg_node_iter->valid &&
2216 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
2217 agg_id = agg_node_iter->agg_id;
2218 agg_node = agg_node_iter;
2219 break;
2220 }
2221
2222 /* find unclaimed agg_id */
2223 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
2224 agg_id = node_offset + agg_node_id_start;
2225 agg_node = agg_node_iter;
2226 break;
2227 }
2228 /* move to next agg_node */
2229 agg_node_iter++;
2230 }
2231
2232 if (!agg_node)
2233 return;
2234
2235 /* if selected aggregator node was not created, create it */
2236 if (!agg_node->valid) {
2237 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
2238 (u8)vsi->tc_cfg.ena_tc);
2239 if (status) {
2240 dev_err(dev, "unable to create aggregator node with agg_id %u\n",
2241 agg_id);
2242 return;
2243 }
2244 /* aggregator node is created, store the needed info */
2245 agg_node->valid = true;
2246 agg_node->agg_id = agg_id;
2247 }
2248
2249 /* move VSI to corresponding aggregator node */
2250 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
2251 (u8)vsi->tc_cfg.ena_tc);
2252 if (status) {
2253 dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
2254 vsi->idx, agg_id);
2255 return;
2256 }
2257
2258 /* keep active children count for aggregator node */
2259 agg_node->num_vsis++;
2260
2261 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
2262 * to aggregator node
2263 */
2264 vsi->agg_node = agg_node;
2265 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
2266 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
2267 vsi->agg_node->num_vsis);
2268 }
2269
ice_vsi_cfg_tc_lan(struct ice_pf * pf,struct ice_vsi * vsi)2270 static int ice_vsi_cfg_tc_lan(struct ice_pf *pf, struct ice_vsi *vsi)
2271 {
2272 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2273 struct device *dev = ice_pf_to_dev(pf);
2274 int ret, i;
2275
2276 /* configure VSI nodes based on number of queues and TC's */
2277 ice_for_each_traffic_class(i) {
2278 if (!(vsi->tc_cfg.ena_tc & BIT(i)))
2279 continue;
2280
2281 if (vsi->type == ICE_VSI_CHNL) {
2282 if (!vsi->alloc_txq && vsi->num_txq)
2283 max_txqs[i] = vsi->num_txq;
2284 else
2285 max_txqs[i] = pf->num_lan_tx;
2286 } else {
2287 max_txqs[i] = vsi->alloc_txq;
2288 }
2289
2290 if (vsi->type == ICE_VSI_PF)
2291 max_txqs[i] += vsi->num_xdp_txq;
2292 }
2293
2294 dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc);
2295 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2296 max_txqs);
2297 if (ret) {
2298 dev_err(dev, "VSI %d failed lan queue config, error %d\n",
2299 vsi->vsi_num, ret);
2300 return ret;
2301 }
2302
2303 return 0;
2304 }
2305
2306 /**
2307 * ice_vsi_cfg_def - configure default VSI based on the type
2308 * @vsi: pointer to VSI
2309 */
ice_vsi_cfg_def(struct ice_vsi * vsi)2310 static int ice_vsi_cfg_def(struct ice_vsi *vsi)
2311 {
2312 struct device *dev = ice_pf_to_dev(vsi->back);
2313 struct ice_pf *pf = vsi->back;
2314 int ret;
2315
2316 vsi->vsw = pf->first_sw;
2317
2318 ret = ice_vsi_alloc_def(vsi, vsi->ch);
2319 if (ret)
2320 return ret;
2321
2322 /* allocate memory for Tx/Rx ring stat pointers */
2323 ret = ice_vsi_alloc_stat_arrays(vsi);
2324 if (ret)
2325 goto unroll_vsi_alloc;
2326
2327 ice_alloc_fd_res(vsi);
2328
2329 ret = ice_vsi_get_qs(vsi);
2330 if (ret) {
2331 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2332 vsi->idx);
2333 goto unroll_vsi_alloc_stat;
2334 }
2335
2336 /* set RSS capabilities */
2337 ice_vsi_set_rss_params(vsi);
2338
2339 /* set TC configuration */
2340 ice_vsi_set_tc_cfg(vsi);
2341
2342 /* create the VSI */
2343 ret = ice_vsi_init(vsi, vsi->flags);
2344 if (ret)
2345 goto unroll_get_qs;
2346
2347 ice_vsi_init_vlan_ops(vsi);
2348
2349 switch (vsi->type) {
2350 case ICE_VSI_CTRL:
2351 case ICE_VSI_SF:
2352 case ICE_VSI_PF:
2353 ret = ice_vsi_alloc_q_vectors(vsi);
2354 if (ret)
2355 goto unroll_vsi_init;
2356
2357 ret = ice_vsi_alloc_rings(vsi);
2358 if (ret)
2359 goto unroll_vector_base;
2360
2361 ret = ice_vsi_alloc_ring_stats(vsi);
2362 if (ret)
2363 goto unroll_vector_base;
2364
2365 if (ice_is_xdp_ena_vsi(vsi)) {
2366 ret = ice_vsi_determine_xdp_res(vsi);
2367 if (ret)
2368 goto unroll_vector_base;
2369 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog,
2370 ICE_XDP_CFG_PART);
2371 if (ret)
2372 goto unroll_vector_base;
2373 }
2374
2375 ice_vsi_map_rings_to_vectors(vsi);
2376
2377 vsi->stat_offsets_loaded = false;
2378
2379 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2380 if (vsi->type != ICE_VSI_CTRL)
2381 /* Do not exit if configuring RSS had an issue, at
2382 * least receive traffic on first queue. Hence no
2383 * need to capture return value
2384 */
2385 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2386 ice_vsi_cfg_rss_lut_key(vsi);
2387 ice_vsi_set_rss_flow_fld(vsi);
2388 }
2389 ice_init_arfs(vsi);
2390 break;
2391 case ICE_VSI_CHNL:
2392 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2393 ice_vsi_cfg_rss_lut_key(vsi);
2394 ice_vsi_set_rss_flow_fld(vsi);
2395 }
2396 break;
2397 case ICE_VSI_VF:
2398 /* VF driver will take care of creating netdev for this type and
2399 * map queues to vectors through Virtchnl, PF driver only
2400 * creates a VSI and corresponding structures for bookkeeping
2401 * purpose
2402 */
2403 ret = ice_vsi_alloc_q_vectors(vsi);
2404 if (ret)
2405 goto unroll_vsi_init;
2406
2407 ret = ice_vsi_alloc_rings(vsi);
2408 if (ret)
2409 goto unroll_alloc_q_vector;
2410
2411 ret = ice_vsi_alloc_ring_stats(vsi);
2412 if (ret)
2413 goto unroll_vector_base;
2414
2415 vsi->stat_offsets_loaded = false;
2416
2417 /* Do not exit if configuring RSS had an issue, at least
2418 * receive traffic on first queue. Hence no need to capture
2419 * return value
2420 */
2421 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2422 ice_vsi_cfg_rss_lut_key(vsi);
2423 ice_vsi_set_vf_rss_flow_fld(vsi);
2424 }
2425 break;
2426 case ICE_VSI_LB:
2427 ret = ice_vsi_alloc_rings(vsi);
2428 if (ret)
2429 goto unroll_vsi_init;
2430
2431 ret = ice_vsi_alloc_ring_stats(vsi);
2432 if (ret)
2433 goto unroll_vector_base;
2434
2435 break;
2436 default:
2437 /* clean up the resources and exit */
2438 ret = -EINVAL;
2439 goto unroll_vsi_init;
2440 }
2441
2442 return 0;
2443
2444 unroll_vector_base:
2445 /* reclaim SW interrupts back to the common pool */
2446 unroll_alloc_q_vector:
2447 ice_vsi_free_q_vectors(vsi);
2448 unroll_vsi_init:
2449 ice_vsi_delete_from_hw(vsi);
2450 unroll_get_qs:
2451 ice_vsi_put_qs(vsi);
2452 unroll_vsi_alloc_stat:
2453 ice_vsi_free_stats(vsi);
2454 unroll_vsi_alloc:
2455 ice_vsi_free_arrays(vsi);
2456 return ret;
2457 }
2458
2459 /**
2460 * ice_vsi_cfg - configure a previously allocated VSI
2461 * @vsi: pointer to VSI
2462 */
ice_vsi_cfg(struct ice_vsi * vsi)2463 int ice_vsi_cfg(struct ice_vsi *vsi)
2464 {
2465 struct ice_pf *pf = vsi->back;
2466 int ret;
2467
2468 if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf))
2469 return -EINVAL;
2470
2471 ret = ice_vsi_cfg_def(vsi);
2472 if (ret)
2473 return ret;
2474
2475 ret = ice_vsi_cfg_tc_lan(vsi->back, vsi);
2476 if (ret)
2477 ice_vsi_decfg(vsi);
2478
2479 if (vsi->type == ICE_VSI_CTRL) {
2480 if (vsi->vf) {
2481 WARN_ON(vsi->vf->ctrl_vsi_idx != ICE_NO_VSI);
2482 vsi->vf->ctrl_vsi_idx = vsi->idx;
2483 } else {
2484 WARN_ON(pf->ctrl_vsi_idx != ICE_NO_VSI);
2485 pf->ctrl_vsi_idx = vsi->idx;
2486 }
2487 }
2488
2489 return ret;
2490 }
2491
2492 /**
2493 * ice_vsi_decfg - remove all VSI configuration
2494 * @vsi: pointer to VSI
2495 */
ice_vsi_decfg(struct ice_vsi * vsi)2496 void ice_vsi_decfg(struct ice_vsi *vsi)
2497 {
2498 struct ice_pf *pf = vsi->back;
2499 int err;
2500
2501 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2502 err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
2503 if (err)
2504 dev_err(ice_pf_to_dev(pf), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
2505 vsi->vsi_num, err);
2506
2507 if (vsi->xdp_rings)
2508 /* return value check can be skipped here, it always returns
2509 * 0 if reset is in progress
2510 */
2511 ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_PART);
2512
2513 ice_vsi_clear_rings(vsi);
2514 ice_vsi_free_q_vectors(vsi);
2515 ice_vsi_put_qs(vsi);
2516 ice_vsi_free_arrays(vsi);
2517
2518 /* SR-IOV determines needed MSIX resources all at once instead of per
2519 * VSI since when VFs are spawned we know how many VFs there are and how
2520 * many interrupts each VF needs. SR-IOV MSIX resources are also
2521 * cleared in the same manner.
2522 */
2523
2524 if (vsi->type == ICE_VSI_VF &&
2525 vsi->agg_node && vsi->agg_node->valid)
2526 vsi->agg_node->num_vsis--;
2527 }
2528
2529 /**
2530 * ice_vsi_setup - Set up a VSI by a given type
2531 * @pf: board private structure
2532 * @params: parameters to use when creating the VSI
2533 *
2534 * This allocates the sw VSI structure and its queue resources.
2535 *
2536 * Returns pointer to the successfully allocated and configured VSI sw struct on
2537 * success, NULL on failure.
2538 */
2539 struct ice_vsi *
ice_vsi_setup(struct ice_pf * pf,struct ice_vsi_cfg_params * params)2540 ice_vsi_setup(struct ice_pf *pf, struct ice_vsi_cfg_params *params)
2541 {
2542 struct device *dev = ice_pf_to_dev(pf);
2543 struct ice_vsi *vsi;
2544 int ret;
2545
2546 /* ice_vsi_setup can only initialize a new VSI, and we must have
2547 * a port_info structure for it.
2548 */
2549 if (WARN_ON(!(params->flags & ICE_VSI_FLAG_INIT)) ||
2550 WARN_ON(!params->port_info))
2551 return NULL;
2552
2553 vsi = ice_vsi_alloc(pf);
2554 if (!vsi) {
2555 dev_err(dev, "could not allocate VSI\n");
2556 return NULL;
2557 }
2558
2559 vsi->params = *params;
2560 ret = ice_vsi_cfg(vsi);
2561 if (ret)
2562 goto err_vsi_cfg;
2563
2564 /* Add switch rule to drop all Tx Flow Control Frames, of look up
2565 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2566 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2567 * The rule is added once for PF VSI in order to create appropriate
2568 * recipe, since VSI/VSI list is ignored with drop action...
2569 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to
2570 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2571 * settings in the HW.
2572 */
2573 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF) {
2574 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2575 ICE_DROP_PACKET);
2576 ice_vsi_cfg_sw_lldp(vsi, true, true);
2577 }
2578
2579 if (!vsi->agg_node)
2580 ice_set_agg_vsi(vsi);
2581
2582 return vsi;
2583
2584 err_vsi_cfg:
2585 ice_vsi_free(vsi);
2586
2587 return NULL;
2588 }
2589
2590 /**
2591 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2592 * @vsi: the VSI being cleaned up
2593 */
ice_vsi_release_msix(struct ice_vsi * vsi)2594 static void ice_vsi_release_msix(struct ice_vsi *vsi)
2595 {
2596 struct ice_pf *pf = vsi->back;
2597 struct ice_hw *hw = &pf->hw;
2598 u32 txq = 0;
2599 u32 rxq = 0;
2600 int i, q;
2601
2602 ice_for_each_q_vector(vsi, i) {
2603 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2604
2605 ice_write_intrl(q_vector, 0);
2606 for (q = 0; q < q_vector->num_ring_tx; q++) {
2607 ice_write_itr(&q_vector->tx, 0);
2608 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2609 if (vsi->xdp_rings) {
2610 u32 xdp_txq = txq + vsi->num_xdp_txq;
2611
2612 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2613 }
2614 txq++;
2615 }
2616
2617 for (q = 0; q < q_vector->num_ring_rx; q++) {
2618 ice_write_itr(&q_vector->rx, 0);
2619 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2620 rxq++;
2621 }
2622 }
2623
2624 ice_flush(hw);
2625 }
2626
2627 /**
2628 * ice_vsi_free_irq - Free the IRQ association with the OS
2629 * @vsi: the VSI being configured
2630 */
ice_vsi_free_irq(struct ice_vsi * vsi)2631 void ice_vsi_free_irq(struct ice_vsi *vsi)
2632 {
2633 struct ice_pf *pf = vsi->back;
2634 int i;
2635
2636 if (!vsi->q_vectors || !vsi->irqs_ready)
2637 return;
2638
2639 ice_vsi_release_msix(vsi);
2640 if (vsi->type == ICE_VSI_VF)
2641 return;
2642
2643 vsi->irqs_ready = false;
2644
2645 ice_for_each_q_vector(vsi, i) {
2646 int irq_num;
2647
2648 irq_num = vsi->q_vectors[i]->irq.virq;
2649
2650 /* free only the irqs that were actually requested */
2651 if (!vsi->q_vectors[i] ||
2652 !(vsi->q_vectors[i]->num_ring_tx ||
2653 vsi->q_vectors[i]->num_ring_rx))
2654 continue;
2655
2656 synchronize_irq(irq_num);
2657 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2658 }
2659 }
2660
2661 /**
2662 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2663 * @vsi: the VSI having resources freed
2664 */
ice_vsi_free_tx_rings(struct ice_vsi * vsi)2665 void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2666 {
2667 int i;
2668
2669 if (!vsi->tx_rings)
2670 return;
2671
2672 ice_for_each_txq(vsi, i)
2673 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2674 ice_free_tx_ring(vsi->tx_rings[i]);
2675 }
2676
2677 /**
2678 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2679 * @vsi: the VSI having resources freed
2680 */
ice_vsi_free_rx_rings(struct ice_vsi * vsi)2681 void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2682 {
2683 int i;
2684
2685 if (!vsi->rx_rings)
2686 return;
2687
2688 ice_for_each_rxq(vsi, i)
2689 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2690 ice_free_rx_ring(vsi->rx_rings[i]);
2691 }
2692
2693 /**
2694 * ice_vsi_close - Shut down a VSI
2695 * @vsi: the VSI being shut down
2696 */
ice_vsi_close(struct ice_vsi * vsi)2697 void ice_vsi_close(struct ice_vsi *vsi)
2698 {
2699 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
2700 ice_down(vsi);
2701
2702 ice_vsi_clear_napi_queues(vsi);
2703 ice_vsi_free_irq(vsi);
2704 ice_vsi_free_tx_rings(vsi);
2705 ice_vsi_free_rx_rings(vsi);
2706 }
2707
2708 /**
2709 * ice_ena_vsi - resume a VSI
2710 * @vsi: the VSI being resume
2711 * @locked: is the rtnl_lock already held
2712 */
ice_ena_vsi(struct ice_vsi * vsi,bool locked)2713 int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2714 {
2715 int err = 0;
2716
2717 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
2718 return 0;
2719
2720 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2721
2722 if (vsi->netdev && (vsi->type == ICE_VSI_PF ||
2723 vsi->type == ICE_VSI_SF)) {
2724 if (netif_running(vsi->netdev)) {
2725 if (!locked)
2726 rtnl_lock();
2727
2728 err = ice_open_internal(vsi->netdev);
2729
2730 if (!locked)
2731 rtnl_unlock();
2732 }
2733 } else if (vsi->type == ICE_VSI_CTRL) {
2734 err = ice_vsi_open_ctrl(vsi);
2735 }
2736
2737 return err;
2738 }
2739
2740 /**
2741 * ice_dis_vsi - pause a VSI
2742 * @vsi: the VSI being paused
2743 * @locked: is the rtnl_lock already held
2744 */
ice_dis_vsi(struct ice_vsi * vsi,bool locked)2745 void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2746 {
2747 bool already_down = test_bit(ICE_VSI_DOWN, vsi->state);
2748
2749 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2750
2751 if (vsi->netdev && (vsi->type == ICE_VSI_PF ||
2752 vsi->type == ICE_VSI_SF)) {
2753 if (netif_running(vsi->netdev)) {
2754 if (!locked)
2755 rtnl_lock();
2756 already_down = test_bit(ICE_VSI_DOWN, vsi->state);
2757 if (!already_down)
2758 ice_vsi_close(vsi);
2759
2760 if (!locked)
2761 rtnl_unlock();
2762 } else if (!already_down) {
2763 ice_vsi_close(vsi);
2764 }
2765 } else if (vsi->type == ICE_VSI_CTRL && !already_down) {
2766 ice_vsi_close(vsi);
2767 }
2768 }
2769
2770 /**
2771 * ice_vsi_set_napi_queues - associate netdev queues with napi
2772 * @vsi: VSI pointer
2773 *
2774 * Associate queue[s] with napi for all vectors.
2775 */
ice_vsi_set_napi_queues(struct ice_vsi * vsi)2776 void ice_vsi_set_napi_queues(struct ice_vsi *vsi)
2777 {
2778 struct net_device *netdev = vsi->netdev;
2779 int q_idx, v_idx;
2780
2781 if (!netdev)
2782 return;
2783
2784 ASSERT_RTNL();
2785 ice_for_each_rxq(vsi, q_idx)
2786 netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_RX,
2787 &vsi->rx_rings[q_idx]->q_vector->napi);
2788
2789 ice_for_each_txq(vsi, q_idx)
2790 netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_TX,
2791 &vsi->tx_rings[q_idx]->q_vector->napi);
2792 /* Also set the interrupt number for the NAPI */
2793 ice_for_each_q_vector(vsi, v_idx) {
2794 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2795
2796 netif_napi_set_irq(&q_vector->napi, q_vector->irq.virq);
2797 }
2798 }
2799
2800 /**
2801 * ice_vsi_clear_napi_queues - dissociate netdev queues from napi
2802 * @vsi: VSI pointer
2803 *
2804 * Clear the association between all VSI queues queue[s] and napi.
2805 */
ice_vsi_clear_napi_queues(struct ice_vsi * vsi)2806 void ice_vsi_clear_napi_queues(struct ice_vsi *vsi)
2807 {
2808 struct net_device *netdev = vsi->netdev;
2809 int q_idx, v_idx;
2810
2811 if (!netdev)
2812 return;
2813
2814 ASSERT_RTNL();
2815 /* Clear the NAPI's interrupt number */
2816 ice_for_each_q_vector(vsi, v_idx) {
2817 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2818
2819 netif_napi_set_irq(&q_vector->napi, -1);
2820 }
2821
2822 ice_for_each_txq(vsi, q_idx)
2823 netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_TX, NULL);
2824
2825 ice_for_each_rxq(vsi, q_idx)
2826 netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_RX, NULL);
2827 }
2828
2829 /**
2830 * ice_napi_add - register NAPI handler for the VSI
2831 * @vsi: VSI for which NAPI handler is to be registered
2832 *
2833 * This function is only called in the driver's load path. Registering the NAPI
2834 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
2835 * reset/rebuild, etc.)
2836 */
ice_napi_add(struct ice_vsi * vsi)2837 void ice_napi_add(struct ice_vsi *vsi)
2838 {
2839 int v_idx;
2840
2841 if (!vsi->netdev)
2842 return;
2843
2844 ice_for_each_q_vector(vsi, v_idx)
2845 netif_napi_add_config(vsi->netdev,
2846 &vsi->q_vectors[v_idx]->napi,
2847 ice_napi_poll,
2848 v_idx);
2849 }
2850
2851 /**
2852 * ice_vsi_release - Delete a VSI and free its resources
2853 * @vsi: the VSI being removed
2854 *
2855 * Returns 0 on success or < 0 on error
2856 */
ice_vsi_release(struct ice_vsi * vsi)2857 int ice_vsi_release(struct ice_vsi *vsi)
2858 {
2859 struct ice_pf *pf;
2860
2861 if (!vsi->back)
2862 return -ENODEV;
2863 pf = vsi->back;
2864
2865 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2866 ice_rss_clean(vsi);
2867
2868 ice_vsi_close(vsi);
2869
2870 /* The Rx rule will only exist to remove if the LLDP FW
2871 * engine is currently stopped
2872 */
2873 if (!ice_is_safe_mode(pf) &&
2874 !test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags) &&
2875 (vsi->type == ICE_VSI_PF || (vsi->type == ICE_VSI_VF &&
2876 ice_vf_is_lldp_ena(vsi->vf))))
2877 ice_vsi_cfg_sw_lldp(vsi, false, false);
2878
2879 ice_vsi_decfg(vsi);
2880
2881 /* retain SW VSI data structure since it is needed to unregister and
2882 * free VSI netdev when PF is not in reset recovery pending state,\
2883 * for ex: during rmmod.
2884 */
2885 if (!ice_is_reset_in_progress(pf->state))
2886 ice_vsi_delete(vsi);
2887
2888 return 0;
2889 }
2890
2891 /**
2892 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
2893 * @vsi: VSI connected with q_vectors
2894 * @coalesce: array of struct with stored coalesce
2895 *
2896 * Returns array size.
2897 */
2898 static int
ice_vsi_rebuild_get_coalesce(struct ice_vsi * vsi,struct ice_coalesce_stored * coalesce)2899 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
2900 struct ice_coalesce_stored *coalesce)
2901 {
2902 int i;
2903
2904 ice_for_each_q_vector(vsi, i) {
2905 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2906
2907 coalesce[i].itr_tx = q_vector->tx.itr_settings;
2908 coalesce[i].itr_rx = q_vector->rx.itr_settings;
2909 coalesce[i].intrl = q_vector->intrl;
2910
2911 if (i < vsi->num_txq)
2912 coalesce[i].tx_valid = true;
2913 if (i < vsi->num_rxq)
2914 coalesce[i].rx_valid = true;
2915 }
2916
2917 return vsi->num_q_vectors;
2918 }
2919
2920 /**
2921 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
2922 * @vsi: VSI connected with q_vectors
2923 * @coalesce: pointer to array of struct with stored coalesce
2924 * @size: size of coalesce array
2925 *
2926 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
2927 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
2928 * to default value.
2929 */
2930 static void
ice_vsi_rebuild_set_coalesce(struct ice_vsi * vsi,struct ice_coalesce_stored * coalesce,int size)2931 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
2932 struct ice_coalesce_stored *coalesce, int size)
2933 {
2934 struct ice_ring_container *rc;
2935 int i;
2936
2937 if ((size && !coalesce) || !vsi)
2938 return;
2939
2940 /* There are a couple of cases that have to be handled here:
2941 * 1. The case where the number of queue vectors stays the same, but
2942 * the number of Tx or Rx rings changes (the first for loop)
2943 * 2. The case where the number of queue vectors increased (the
2944 * second for loop)
2945 */
2946 for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
2947 /* There are 2 cases to handle here and they are the same for
2948 * both Tx and Rx:
2949 * if the entry was valid previously (coalesce[i].[tr]x_valid
2950 * and the loop variable is less than the number of rings
2951 * allocated, then write the previous values
2952 *
2953 * if the entry was not valid previously, but the number of
2954 * rings is less than are allocated (this means the number of
2955 * rings increased from previously), then write out the
2956 * values in the first element
2957 *
2958 * Also, always write the ITR, even if in ITR_IS_DYNAMIC
2959 * as there is no harm because the dynamic algorithm
2960 * will just overwrite.
2961 */
2962 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
2963 rc = &vsi->q_vectors[i]->rx;
2964 rc->itr_settings = coalesce[i].itr_rx;
2965 ice_write_itr(rc, rc->itr_setting);
2966 } else if (i < vsi->alloc_rxq) {
2967 rc = &vsi->q_vectors[i]->rx;
2968 rc->itr_settings = coalesce[0].itr_rx;
2969 ice_write_itr(rc, rc->itr_setting);
2970 }
2971
2972 if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
2973 rc = &vsi->q_vectors[i]->tx;
2974 rc->itr_settings = coalesce[i].itr_tx;
2975 ice_write_itr(rc, rc->itr_setting);
2976 } else if (i < vsi->alloc_txq) {
2977 rc = &vsi->q_vectors[i]->tx;
2978 rc->itr_settings = coalesce[0].itr_tx;
2979 ice_write_itr(rc, rc->itr_setting);
2980 }
2981
2982 vsi->q_vectors[i]->intrl = coalesce[i].intrl;
2983 ice_set_q_vector_intrl(vsi->q_vectors[i]);
2984 }
2985
2986 /* the number of queue vectors increased so write whatever is in
2987 * the first element
2988 */
2989 for (; i < vsi->num_q_vectors; i++) {
2990 /* transmit */
2991 rc = &vsi->q_vectors[i]->tx;
2992 rc->itr_settings = coalesce[0].itr_tx;
2993 ice_write_itr(rc, rc->itr_setting);
2994
2995 /* receive */
2996 rc = &vsi->q_vectors[i]->rx;
2997 rc->itr_settings = coalesce[0].itr_rx;
2998 ice_write_itr(rc, rc->itr_setting);
2999
3000 vsi->q_vectors[i]->intrl = coalesce[0].intrl;
3001 ice_set_q_vector_intrl(vsi->q_vectors[i]);
3002 }
3003 }
3004
3005 /**
3006 * ice_vsi_realloc_stat_arrays - Frees unused stat structures or alloc new ones
3007 * @vsi: VSI pointer
3008 */
3009 static int
ice_vsi_realloc_stat_arrays(struct ice_vsi * vsi)3010 ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi)
3011 {
3012 u16 req_txq = vsi->req_txq ? vsi->req_txq : vsi->alloc_txq;
3013 u16 req_rxq = vsi->req_rxq ? vsi->req_rxq : vsi->alloc_rxq;
3014 struct ice_ring_stats **tx_ring_stats;
3015 struct ice_ring_stats **rx_ring_stats;
3016 struct ice_vsi_stats *vsi_stat;
3017 struct ice_pf *pf = vsi->back;
3018 u16 prev_txq = vsi->alloc_txq;
3019 u16 prev_rxq = vsi->alloc_rxq;
3020 int i;
3021
3022 vsi_stat = pf->vsi_stats[vsi->idx];
3023
3024 if (req_txq < prev_txq) {
3025 for (i = req_txq; i < prev_txq; i++) {
3026 if (vsi_stat->tx_ring_stats[i]) {
3027 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
3028 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
3029 }
3030 }
3031 }
3032
3033 tx_ring_stats = vsi_stat->tx_ring_stats;
3034 vsi_stat->tx_ring_stats =
3035 krealloc_array(vsi_stat->tx_ring_stats, req_txq,
3036 sizeof(*vsi_stat->tx_ring_stats),
3037 GFP_KERNEL | __GFP_ZERO);
3038 if (!vsi_stat->tx_ring_stats) {
3039 vsi_stat->tx_ring_stats = tx_ring_stats;
3040 return -ENOMEM;
3041 }
3042
3043 if (req_rxq < prev_rxq) {
3044 for (i = req_rxq; i < prev_rxq; i++) {
3045 if (vsi_stat->rx_ring_stats[i]) {
3046 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
3047 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
3048 }
3049 }
3050 }
3051
3052 rx_ring_stats = vsi_stat->rx_ring_stats;
3053 vsi_stat->rx_ring_stats =
3054 krealloc_array(vsi_stat->rx_ring_stats, req_rxq,
3055 sizeof(*vsi_stat->rx_ring_stats),
3056 GFP_KERNEL | __GFP_ZERO);
3057 if (!vsi_stat->rx_ring_stats) {
3058 vsi_stat->rx_ring_stats = rx_ring_stats;
3059 return -ENOMEM;
3060 }
3061
3062 return 0;
3063 }
3064
3065 /**
3066 * ice_vsi_rebuild - Rebuild VSI after reset
3067 * @vsi: VSI to be rebuild
3068 * @vsi_flags: flags used for VSI rebuild flow
3069 *
3070 * Set vsi_flags to ICE_VSI_FLAG_INIT to initialize a new VSI, or
3071 * ICE_VSI_FLAG_NO_INIT to rebuild an existing VSI in hardware.
3072 *
3073 * Returns 0 on success and negative value on failure
3074 */
ice_vsi_rebuild(struct ice_vsi * vsi,u32 vsi_flags)3075 int ice_vsi_rebuild(struct ice_vsi *vsi, u32 vsi_flags)
3076 {
3077 struct ice_coalesce_stored *coalesce;
3078 int prev_num_q_vectors;
3079 struct ice_pf *pf;
3080 int ret;
3081
3082 if (!vsi)
3083 return -EINVAL;
3084
3085 vsi->flags = vsi_flags;
3086 pf = vsi->back;
3087 if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf))
3088 return -EINVAL;
3089
3090 mutex_lock(&vsi->xdp_state_lock);
3091
3092 ret = ice_vsi_realloc_stat_arrays(vsi);
3093 if (ret)
3094 goto unlock;
3095
3096 ice_vsi_decfg(vsi);
3097 ret = ice_vsi_cfg_def(vsi);
3098 if (ret)
3099 goto unlock;
3100
3101 coalesce = kcalloc(vsi->num_q_vectors,
3102 sizeof(struct ice_coalesce_stored), GFP_KERNEL);
3103 if (!coalesce) {
3104 ret = -ENOMEM;
3105 goto decfg;
3106 }
3107
3108 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
3109
3110 ret = ice_vsi_cfg_tc_lan(pf, vsi);
3111 if (ret) {
3112 if (vsi_flags & ICE_VSI_FLAG_INIT) {
3113 ret = -EIO;
3114 goto free_coalesce;
3115 }
3116
3117 ret = ice_schedule_reset(pf, ICE_RESET_PFR);
3118 goto free_coalesce;
3119 }
3120
3121 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
3122 clear_bit(ICE_VSI_REBUILD_PENDING, vsi->state);
3123
3124 free_coalesce:
3125 kfree(coalesce);
3126 decfg:
3127 if (ret)
3128 ice_vsi_decfg(vsi);
3129 unlock:
3130 mutex_unlock(&vsi->xdp_state_lock);
3131 return ret;
3132 }
3133
3134 /**
3135 * ice_is_reset_in_progress - check for a reset in progress
3136 * @state: PF state field
3137 */
ice_is_reset_in_progress(unsigned long * state)3138 bool ice_is_reset_in_progress(unsigned long *state)
3139 {
3140 return test_bit(ICE_RESET_OICR_RECV, state) ||
3141 test_bit(ICE_PFR_REQ, state) ||
3142 test_bit(ICE_CORER_REQ, state) ||
3143 test_bit(ICE_GLOBR_REQ, state);
3144 }
3145
3146 /**
3147 * ice_wait_for_reset - Wait for driver to finish reset and rebuild
3148 * @pf: pointer to the PF structure
3149 * @timeout: length of time to wait, in jiffies
3150 *
3151 * Wait (sleep) for a short time until the driver finishes cleaning up from
3152 * a device reset. The caller must be able to sleep. Use this to delay
3153 * operations that could fail while the driver is cleaning up after a device
3154 * reset.
3155 *
3156 * Returns 0 on success, -EBUSY if the reset is not finished within the
3157 * timeout, and -ERESTARTSYS if the thread was interrupted.
3158 */
ice_wait_for_reset(struct ice_pf * pf,unsigned long timeout)3159 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
3160 {
3161 long ret;
3162
3163 ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
3164 !ice_is_reset_in_progress(pf->state),
3165 timeout);
3166 if (ret < 0)
3167 return ret;
3168 else if (!ret)
3169 return -EBUSY;
3170 else
3171 return 0;
3172 }
3173
3174 /**
3175 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3176 * @vsi: VSI being configured
3177 * @ctx: the context buffer returned from AQ VSI update command
3178 */
ice_vsi_update_q_map(struct ice_vsi * vsi,struct ice_vsi_ctx * ctx)3179 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3180 {
3181 vsi->info.mapping_flags = ctx->info.mapping_flags;
3182 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3183 sizeof(vsi->info.q_mapping));
3184 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3185 sizeof(vsi->info.tc_mapping));
3186 }
3187
3188 /**
3189 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
3190 * @vsi: the VSI being configured
3191 * @ena_tc: TC map to be enabled
3192 */
ice_vsi_cfg_netdev_tc(struct ice_vsi * vsi,u8 ena_tc)3193 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
3194 {
3195 struct net_device *netdev = vsi->netdev;
3196 struct ice_pf *pf = vsi->back;
3197 int numtc = vsi->tc_cfg.numtc;
3198 struct ice_dcbx_cfg *dcbcfg;
3199 u8 netdev_tc;
3200 int i;
3201
3202 if (!netdev)
3203 return;
3204
3205 /* CHNL VSI doesn't have its own netdev, hence, no netdev_tc */
3206 if (vsi->type == ICE_VSI_CHNL)
3207 return;
3208
3209 if (!ena_tc) {
3210 netdev_reset_tc(netdev);
3211 return;
3212 }
3213
3214 if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf))
3215 numtc = vsi->all_numtc;
3216
3217 if (netdev_set_num_tc(netdev, numtc))
3218 return;
3219
3220 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
3221
3222 ice_for_each_traffic_class(i)
3223 if (vsi->tc_cfg.ena_tc & BIT(i))
3224 netdev_set_tc_queue(netdev,
3225 vsi->tc_cfg.tc_info[i].netdev_tc,
3226 vsi->tc_cfg.tc_info[i].qcount_tx,
3227 vsi->tc_cfg.tc_info[i].qoffset);
3228 /* setup TC queue map for CHNL TCs */
3229 ice_for_each_chnl_tc(i) {
3230 if (!(vsi->all_enatc & BIT(i)))
3231 break;
3232 if (!vsi->mqprio_qopt.qopt.count[i])
3233 break;
3234 netdev_set_tc_queue(netdev, i,
3235 vsi->mqprio_qopt.qopt.count[i],
3236 vsi->mqprio_qopt.qopt.offset[i]);
3237 }
3238
3239 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3240 return;
3241
3242 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
3243 u8 ets_tc = dcbcfg->etscfg.prio_table[i];
3244
3245 /* Get the mapped netdev TC# for the UP */
3246 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
3247 netdev_set_prio_tc_map(netdev, i, netdev_tc);
3248 }
3249 }
3250
3251 /**
3252 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config
3253 * @vsi: the VSI being configured,
3254 * @ctxt: VSI context structure
3255 * @ena_tc: number of traffic classes to enable
3256 *
3257 * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
3258 */
3259 static int
ice_vsi_setup_q_map_mqprio(struct ice_vsi * vsi,struct ice_vsi_ctx * ctxt,u8 ena_tc)3260 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt,
3261 u8 ena_tc)
3262 {
3263 u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap;
3264 u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0];
3265 int tc0_qcount = vsi->mqprio_qopt.qopt.count[0];
3266 u16 new_txq, new_rxq;
3267 u8 netdev_tc = 0;
3268 int i;
3269
3270 vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1;
3271
3272 pow = order_base_2(tc0_qcount);
3273 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, tc0_offset);
3274 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
3275
3276 ice_for_each_traffic_class(i) {
3277 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
3278 /* TC is not enabled */
3279 vsi->tc_cfg.tc_info[i].qoffset = 0;
3280 vsi->tc_cfg.tc_info[i].qcount_rx = 1;
3281 vsi->tc_cfg.tc_info[i].qcount_tx = 1;
3282 vsi->tc_cfg.tc_info[i].netdev_tc = 0;
3283 ctxt->info.tc_mapping[i] = 0;
3284 continue;
3285 }
3286
3287 offset = vsi->mqprio_qopt.qopt.offset[i];
3288 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3289 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3290 vsi->tc_cfg.tc_info[i].qoffset = offset;
3291 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
3292 vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx;
3293 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
3294 }
3295
3296 if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) {
3297 ice_for_each_chnl_tc(i) {
3298 if (!(vsi->all_enatc & BIT(i)))
3299 continue;
3300 offset = vsi->mqprio_qopt.qopt.offset[i];
3301 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3302 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3303 }
3304 }
3305
3306 new_txq = offset + qcount_tx;
3307 if (new_txq > vsi->alloc_txq) {
3308 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
3309 new_txq, vsi->alloc_txq);
3310 return -EINVAL;
3311 }
3312
3313 new_rxq = offset + qcount_rx;
3314 if (new_rxq > vsi->alloc_rxq) {
3315 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
3316 new_rxq, vsi->alloc_rxq);
3317 return -EINVAL;
3318 }
3319
3320 /* Set actual Tx/Rx queue pairs */
3321 vsi->num_txq = new_txq;
3322 vsi->num_rxq = new_rxq;
3323
3324 /* Setup queue TC[0].qmap for given VSI context */
3325 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
3326 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
3327 ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount);
3328
3329 /* Find queue count available for channel VSIs and starting offset
3330 * for channel VSIs
3331 */
3332 if (tc0_qcount && tc0_qcount < vsi->num_rxq) {
3333 vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount;
3334 vsi->next_base_q = tc0_qcount;
3335 }
3336 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq);
3337 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq);
3338 dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n",
3339 vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc);
3340
3341 return 0;
3342 }
3343
3344 /**
3345 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3346 * @vsi: VSI to be configured
3347 * @ena_tc: TC bitmap
3348 *
3349 * VSI queues expected to be quiesced before calling this function
3350 */
ice_vsi_cfg_tc(struct ice_vsi * vsi,u8 ena_tc)3351 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3352 {
3353 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3354 struct ice_pf *pf = vsi->back;
3355 struct ice_tc_cfg old_tc_cfg;
3356 struct ice_vsi_ctx *ctx;
3357 struct device *dev;
3358 int i, ret = 0;
3359 u8 num_tc = 0;
3360
3361 dev = ice_pf_to_dev(pf);
3362 if (vsi->tc_cfg.ena_tc == ena_tc &&
3363 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
3364 return 0;
3365
3366 ice_for_each_traffic_class(i) {
3367 /* build bitmap of enabled TCs */
3368 if (ena_tc & BIT(i))
3369 num_tc++;
3370 /* populate max_txqs per TC */
3371 max_txqs[i] = vsi->alloc_txq;
3372 /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are
3373 * zero for CHNL VSI, hence use num_txq instead as max_txqs
3374 */
3375 if (vsi->type == ICE_VSI_CHNL &&
3376 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3377 max_txqs[i] = vsi->num_txq;
3378 }
3379
3380 memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg));
3381 vsi->tc_cfg.ena_tc = ena_tc;
3382 vsi->tc_cfg.numtc = num_tc;
3383
3384 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3385 if (!ctx)
3386 return -ENOMEM;
3387
3388 ctx->vf_num = 0;
3389 ctx->info = vsi->info;
3390
3391 if (vsi->type == ICE_VSI_PF &&
3392 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3393 ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc);
3394 else
3395 ret = ice_vsi_setup_q_map(vsi, ctx);
3396
3397 if (ret) {
3398 memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg));
3399 goto out;
3400 }
3401
3402 /* must to indicate which section of VSI context are being modified */
3403 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3404 ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3405 if (ret) {
3406 dev_info(dev, "Failed VSI Update\n");
3407 goto out;
3408 }
3409
3410 if (vsi->type == ICE_VSI_PF &&
3411 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3412 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3413 else
3414 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3415 vsi->tc_cfg.ena_tc, max_txqs);
3416
3417 if (ret) {
3418 dev_err(dev, "VSI %d failed TC config, error %d\n",
3419 vsi->vsi_num, ret);
3420 goto out;
3421 }
3422 ice_vsi_update_q_map(vsi, ctx);
3423 vsi->info.valid_sections = 0;
3424
3425 ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3426 out:
3427 kfree(ctx);
3428 return ret;
3429 }
3430
3431 /**
3432 * ice_update_ring_stats - Update ring statistics
3433 * @stats: stats to be updated
3434 * @pkts: number of processed packets
3435 * @bytes: number of processed bytes
3436 *
3437 * This function assumes that caller has acquired a u64_stats_sync lock.
3438 */
ice_update_ring_stats(struct ice_q_stats * stats,u64 pkts,u64 bytes)3439 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes)
3440 {
3441 stats->bytes += bytes;
3442 stats->pkts += pkts;
3443 }
3444
3445 /**
3446 * ice_update_tx_ring_stats - Update Tx ring specific counters
3447 * @tx_ring: ring to update
3448 * @pkts: number of processed packets
3449 * @bytes: number of processed bytes
3450 */
ice_update_tx_ring_stats(struct ice_tx_ring * tx_ring,u64 pkts,u64 bytes)3451 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes)
3452 {
3453 u64_stats_update_begin(&tx_ring->ring_stats->syncp);
3454 ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes);
3455 u64_stats_update_end(&tx_ring->ring_stats->syncp);
3456 }
3457
3458 /**
3459 * ice_update_rx_ring_stats - Update Rx ring specific counters
3460 * @rx_ring: ring to update
3461 * @pkts: number of processed packets
3462 * @bytes: number of processed bytes
3463 */
ice_update_rx_ring_stats(struct ice_rx_ring * rx_ring,u64 pkts,u64 bytes)3464 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes)
3465 {
3466 u64_stats_update_begin(&rx_ring->ring_stats->syncp);
3467 ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes);
3468 u64_stats_update_end(&rx_ring->ring_stats->syncp);
3469 }
3470
3471 /**
3472 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3473 * @pi: port info of the switch with default VSI
3474 *
3475 * Return true if the there is a single VSI in default forwarding VSI list
3476 */
ice_is_dflt_vsi_in_use(struct ice_port_info * pi)3477 bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi)
3478 {
3479 bool exists = false;
3480
3481 ice_check_if_dflt_vsi(pi, 0, &exists);
3482 return exists;
3483 }
3484
3485 /**
3486 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3487 * @vsi: VSI to compare against default forwarding VSI
3488 *
3489 * If this VSI passed in is the default forwarding VSI then return true, else
3490 * return false
3491 */
ice_is_vsi_dflt_vsi(struct ice_vsi * vsi)3492 bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi)
3493 {
3494 return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL);
3495 }
3496
3497 /**
3498 * ice_set_dflt_vsi - set the default forwarding VSI
3499 * @vsi: VSI getting set as the default forwarding VSI on the switch
3500 *
3501 * If the VSI passed in is already the default VSI and it's enabled just return
3502 * success.
3503 *
3504 * Otherwise try to set the VSI passed in as the switch's default VSI and
3505 * return the result.
3506 */
ice_set_dflt_vsi(struct ice_vsi * vsi)3507 int ice_set_dflt_vsi(struct ice_vsi *vsi)
3508 {
3509 struct device *dev;
3510 int status;
3511
3512 if (!vsi)
3513 return -EINVAL;
3514
3515 dev = ice_pf_to_dev(vsi->back);
3516
3517 if (ice_lag_is_switchdev_running(vsi->back)) {
3518 dev_dbg(dev, "VSI %d passed is a part of LAG containing interfaces in switchdev mode, nothing to do\n",
3519 vsi->vsi_num);
3520 return 0;
3521 }
3522
3523 /* the VSI passed in is already the default VSI */
3524 if (ice_is_vsi_dflt_vsi(vsi)) {
3525 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3526 vsi->vsi_num);
3527 return 0;
3528 }
3529
3530 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX);
3531 if (status) {
3532 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n",
3533 vsi->vsi_num, status);
3534 return status;
3535 }
3536
3537 return 0;
3538 }
3539
3540 /**
3541 * ice_clear_dflt_vsi - clear the default forwarding VSI
3542 * @vsi: VSI to remove from filter list
3543 *
3544 * If the switch has no default VSI or it's not enabled then return error.
3545 *
3546 * Otherwise try to clear the default VSI and return the result.
3547 */
ice_clear_dflt_vsi(struct ice_vsi * vsi)3548 int ice_clear_dflt_vsi(struct ice_vsi *vsi)
3549 {
3550 struct device *dev;
3551 int status;
3552
3553 if (!vsi)
3554 return -EINVAL;
3555
3556 dev = ice_pf_to_dev(vsi->back);
3557
3558 /* there is no default VSI configured */
3559 if (!ice_is_dflt_vsi_in_use(vsi->port_info))
3560 return -ENODEV;
3561
3562 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false,
3563 ICE_FLTR_RX);
3564 if (status) {
3565 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n",
3566 vsi->vsi_num, status);
3567 return -EIO;
3568 }
3569
3570 return 0;
3571 }
3572
3573 /**
3574 * ice_get_link_speed_mbps - get link speed in Mbps
3575 * @vsi: the VSI whose link speed is being queried
3576 *
3577 * Return current VSI link speed and 0 if the speed is unknown.
3578 */
ice_get_link_speed_mbps(struct ice_vsi * vsi)3579 int ice_get_link_speed_mbps(struct ice_vsi *vsi)
3580 {
3581 unsigned int link_speed;
3582
3583 link_speed = vsi->port_info->phy.link_info.link_speed;
3584
3585 return (int)ice_get_link_speed(fls(link_speed) - 1);
3586 }
3587
3588 /**
3589 * ice_get_link_speed_kbps - get link speed in Kbps
3590 * @vsi: the VSI whose link speed is being queried
3591 *
3592 * Return current VSI link speed and 0 if the speed is unknown.
3593 */
ice_get_link_speed_kbps(struct ice_vsi * vsi)3594 int ice_get_link_speed_kbps(struct ice_vsi *vsi)
3595 {
3596 int speed_mbps;
3597
3598 speed_mbps = ice_get_link_speed_mbps(vsi);
3599
3600 return speed_mbps * 1000;
3601 }
3602
3603 /**
3604 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate
3605 * @vsi: VSI to be configured
3606 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit
3607 *
3608 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit
3609 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI
3610 * on TC 0.
3611 */
ice_set_min_bw_limit(struct ice_vsi * vsi,u64 min_tx_rate)3612 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate)
3613 {
3614 struct ice_pf *pf = vsi->back;
3615 struct device *dev;
3616 int status;
3617 int speed;
3618
3619 dev = ice_pf_to_dev(pf);
3620 if (!vsi->port_info) {
3621 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3622 vsi->idx, vsi->type);
3623 return -EINVAL;
3624 }
3625
3626 speed = ice_get_link_speed_kbps(vsi);
3627 if (min_tx_rate > (u64)speed) {
3628 dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3629 min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3630 speed);
3631 return -EINVAL;
3632 }
3633
3634 /* Configure min BW for VSI limit */
3635 if (min_tx_rate) {
3636 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3637 ICE_MIN_BW, min_tx_rate);
3638 if (status) {
3639 dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n",
3640 min_tx_rate, ice_vsi_type_str(vsi->type),
3641 vsi->idx);
3642 return status;
3643 }
3644
3645 dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n",
3646 min_tx_rate, ice_vsi_type_str(vsi->type));
3647 } else {
3648 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3649 vsi->idx, 0,
3650 ICE_MIN_BW);
3651 if (status) {
3652 dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n",
3653 ice_vsi_type_str(vsi->type), vsi->idx);
3654 return status;
3655 }
3656
3657 dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n",
3658 ice_vsi_type_str(vsi->type), vsi->idx);
3659 }
3660
3661 return 0;
3662 }
3663
3664 /**
3665 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate
3666 * @vsi: VSI to be configured
3667 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit
3668 *
3669 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit
3670 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI
3671 * on TC 0.
3672 */
ice_set_max_bw_limit(struct ice_vsi * vsi,u64 max_tx_rate)3673 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate)
3674 {
3675 struct ice_pf *pf = vsi->back;
3676 struct device *dev;
3677 int status;
3678 int speed;
3679
3680 dev = ice_pf_to_dev(pf);
3681 if (!vsi->port_info) {
3682 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3683 vsi->idx, vsi->type);
3684 return -EINVAL;
3685 }
3686
3687 speed = ice_get_link_speed_kbps(vsi);
3688 if (max_tx_rate > (u64)speed) {
3689 dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3690 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3691 speed);
3692 return -EINVAL;
3693 }
3694
3695 /* Configure max BW for VSI limit */
3696 if (max_tx_rate) {
3697 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3698 ICE_MAX_BW, max_tx_rate);
3699 if (status) {
3700 dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n",
3701 max_tx_rate, ice_vsi_type_str(vsi->type),
3702 vsi->idx);
3703 return status;
3704 }
3705
3706 dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n",
3707 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx);
3708 } else {
3709 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3710 vsi->idx, 0,
3711 ICE_MAX_BW);
3712 if (status) {
3713 dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n",
3714 ice_vsi_type_str(vsi->type), vsi->idx);
3715 return status;
3716 }
3717
3718 dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n",
3719 ice_vsi_type_str(vsi->type), vsi->idx);
3720 }
3721
3722 return 0;
3723 }
3724
3725 /**
3726 * ice_set_link - turn on/off physical link
3727 * @vsi: VSI to modify physical link on
3728 * @ena: turn on/off physical link
3729 */
ice_set_link(struct ice_vsi * vsi,bool ena)3730 int ice_set_link(struct ice_vsi *vsi, bool ena)
3731 {
3732 struct device *dev = ice_pf_to_dev(vsi->back);
3733 struct ice_port_info *pi = vsi->port_info;
3734 struct ice_hw *hw = pi->hw;
3735 int status;
3736
3737 if (vsi->type != ICE_VSI_PF)
3738 return -EINVAL;
3739
3740 status = ice_aq_set_link_restart_an(pi, ena, NULL);
3741
3742 /* if link is owned by manageability, FW will return LIBIE_AQ_RC_EMODE.
3743 * this is not a fatal error, so print a warning message and return
3744 * a success code. Return an error if FW returns an error code other
3745 * than LIBIE_AQ_RC_EMODE
3746 */
3747 if (status == -EIO) {
3748 if (hw->adminq.sq_last_status == LIBIE_AQ_RC_EMODE)
3749 dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n",
3750 (ena ? "ON" : "OFF"), status,
3751 libie_aq_str(hw->adminq.sq_last_status));
3752 } else if (status) {
3753 dev_err(dev, "can't set link to %s, err %d aq_err %s\n",
3754 (ena ? "ON" : "OFF"), status,
3755 libie_aq_str(hw->adminq.sq_last_status));
3756 return status;
3757 }
3758
3759 return 0;
3760 }
3761
3762 /**
3763 * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI
3764 * @vsi: VSI used to add VLAN filters
3765 *
3766 * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based
3767 * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't
3768 * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via
3769 * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID.
3770 *
3771 * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic
3772 * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged
3773 * traffic in SVM, since the VLAN TPID isn't part of filtering.
3774 *
3775 * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be
3776 * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is
3777 * part of filtering.
3778 */
ice_vsi_add_vlan_zero(struct ice_vsi * vsi)3779 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi)
3780 {
3781 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3782 struct ice_vlan vlan;
3783 int err;
3784
3785 vlan = ICE_VLAN(0, 0, 0);
3786 err = vlan_ops->add_vlan(vsi, &vlan);
3787 if (err && err != -EEXIST)
3788 return err;
3789
3790 /* in SVM both VLAN 0 filters are identical */
3791 if (!ice_is_dvm_ena(&vsi->back->hw))
3792 return 0;
3793
3794 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3795 err = vlan_ops->add_vlan(vsi, &vlan);
3796 if (err && err != -EEXIST)
3797 return err;
3798
3799 return 0;
3800 }
3801
3802 /**
3803 * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI
3804 * @vsi: VSI used to add VLAN filters
3805 *
3806 * Delete the VLAN 0 filters in the same manner that they were added in
3807 * ice_vsi_add_vlan_zero.
3808 */
ice_vsi_del_vlan_zero(struct ice_vsi * vsi)3809 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi)
3810 {
3811 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3812 struct ice_pf *pf = vsi->back;
3813 struct ice_vlan vlan;
3814 int err;
3815
3816 if (pf->lag && pf->lag->primary) {
3817 dev_dbg(ice_pf_to_dev(pf), "Interface is primary in aggregate - not deleting prune list\n");
3818 } else {
3819 vlan = ICE_VLAN(0, 0, 0);
3820 err = vlan_ops->del_vlan(vsi, &vlan);
3821 if (err && err != -EEXIST)
3822 return err;
3823 }
3824
3825 /* in SVM both VLAN 0 filters are identical */
3826 if (!ice_is_dvm_ena(&vsi->back->hw))
3827 return 0;
3828
3829 if (pf->lag && pf->lag->primary) {
3830 dev_dbg(ice_pf_to_dev(pf), "Interface is primary in aggregate - not deleting QinQ prune list\n");
3831 } else {
3832 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3833 err = vlan_ops->del_vlan(vsi, &vlan);
3834 if (err && err != -EEXIST)
3835 return err;
3836 }
3837
3838 /* when deleting the last VLAN filter, make sure to disable the VLAN
3839 * promisc mode so the filter isn't left by accident
3840 */
3841 return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3842 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3843 }
3844
3845 /**
3846 * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode
3847 * @vsi: VSI used to get the VLAN mode
3848 *
3849 * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled
3850 * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details.
3851 */
ice_vsi_num_zero_vlans(struct ice_vsi * vsi)3852 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi)
3853 {
3854 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS 2
3855 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS 1
3856 /* no VLAN 0 filter is created when a port VLAN is active */
3857 if (vsi->type == ICE_VSI_VF) {
3858 if (WARN_ON(!vsi->vf))
3859 return 0;
3860
3861 if (ice_vf_is_port_vlan_ena(vsi->vf))
3862 return 0;
3863 }
3864
3865 if (ice_is_dvm_ena(&vsi->back->hw))
3866 return ICE_DVM_NUM_ZERO_VLAN_FLTRS;
3867 else
3868 return ICE_SVM_NUM_ZERO_VLAN_FLTRS;
3869 }
3870
3871 /**
3872 * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs
3873 * @vsi: VSI used to determine if any non-zero VLANs have been added
3874 */
ice_vsi_has_non_zero_vlans(struct ice_vsi * vsi)3875 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi)
3876 {
3877 return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi));
3878 }
3879
3880 /**
3881 * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI
3882 * @vsi: VSI used to get the number of non-zero VLANs added
3883 */
ice_vsi_num_non_zero_vlans(struct ice_vsi * vsi)3884 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi)
3885 {
3886 return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi));
3887 }
3888
3889 /**
3890 * ice_is_feature_supported
3891 * @pf: pointer to the struct ice_pf instance
3892 * @f: feature enum to be checked
3893 *
3894 * returns true if feature is supported, false otherwise
3895 */
ice_is_feature_supported(struct ice_pf * pf,enum ice_feature f)3896 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f)
3897 {
3898 if (f < 0 || f >= ICE_F_MAX)
3899 return false;
3900
3901 return test_bit(f, pf->features);
3902 }
3903
3904 /**
3905 * ice_set_feature_support
3906 * @pf: pointer to the struct ice_pf instance
3907 * @f: feature enum to set
3908 */
ice_set_feature_support(struct ice_pf * pf,enum ice_feature f)3909 void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f)
3910 {
3911 if (f < 0 || f >= ICE_F_MAX)
3912 return;
3913
3914 set_bit(f, pf->features);
3915 }
3916
3917 /**
3918 * ice_clear_feature_support
3919 * @pf: pointer to the struct ice_pf instance
3920 * @f: feature enum to clear
3921 */
ice_clear_feature_support(struct ice_pf * pf,enum ice_feature f)3922 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f)
3923 {
3924 if (f < 0 || f >= ICE_F_MAX)
3925 return;
3926
3927 clear_bit(f, pf->features);
3928 }
3929
3930 /**
3931 * ice_init_feature_support
3932 * @pf: pointer to the struct ice_pf instance
3933 *
3934 * called during init to setup supported feature
3935 */
ice_init_feature_support(struct ice_pf * pf)3936 void ice_init_feature_support(struct ice_pf *pf)
3937 {
3938 switch (pf->hw.device_id) {
3939 case ICE_DEV_ID_E810C_BACKPLANE:
3940 case ICE_DEV_ID_E810C_QSFP:
3941 case ICE_DEV_ID_E810C_SFP:
3942 case ICE_DEV_ID_E810_XXV_BACKPLANE:
3943 case ICE_DEV_ID_E810_XXV_QSFP:
3944 case ICE_DEV_ID_E810_XXV_SFP:
3945 ice_set_feature_support(pf, ICE_F_DSCP);
3946 if (ice_is_phy_rclk_in_netlist(&pf->hw))
3947 ice_set_feature_support(pf, ICE_F_PHY_RCLK);
3948 /* If we don't own the timer - don't enable other caps */
3949 if (!ice_pf_src_tmr_owned(pf))
3950 break;
3951 if (ice_is_cgu_in_netlist(&pf->hw))
3952 ice_set_feature_support(pf, ICE_F_CGU);
3953 if (ice_is_clock_mux_in_netlist(&pf->hw))
3954 ice_set_feature_support(pf, ICE_F_SMA_CTRL);
3955 if (ice_gnss_is_module_present(&pf->hw))
3956 ice_set_feature_support(pf, ICE_F_GNSS);
3957 break;
3958 default:
3959 break;
3960 }
3961
3962 if (pf->hw.mac_type == ICE_MAC_E830) {
3963 ice_set_feature_support(pf, ICE_F_MBX_LIMIT);
3964 ice_set_feature_support(pf, ICE_F_GCS);
3965 ice_set_feature_support(pf, ICE_F_TXTIME);
3966 }
3967 }
3968
3969 /**
3970 * ice_vsi_update_security - update security block in VSI
3971 * @vsi: pointer to VSI structure
3972 * @fill: function pointer to fill ctx
3973 */
3974 int
ice_vsi_update_security(struct ice_vsi * vsi,void (* fill)(struct ice_vsi_ctx *))3975 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *))
3976 {
3977 struct ice_vsi_ctx ctx = { 0 };
3978
3979 ctx.info = vsi->info;
3980 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
3981 fill(&ctx);
3982
3983 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
3984 return -ENODEV;
3985
3986 vsi->info = ctx.info;
3987 return 0;
3988 }
3989
3990 /**
3991 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx
3992 * @ctx: pointer to VSI ctx structure
3993 */
ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx * ctx)3994 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx)
3995 {
3996 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
3997 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3998 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3999 }
4000
4001 /**
4002 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx
4003 * @ctx: pointer to VSI ctx structure
4004 */
ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx * ctx)4005 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx)
4006 {
4007 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF &
4008 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4009 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4010 }
4011
4012 /**
4013 * ice_vsi_update_local_lb - update sw block in VSI with local loopback bit
4014 * @vsi: pointer to VSI structure
4015 * @set: set or unset the bit
4016 */
4017 int
ice_vsi_update_local_lb(struct ice_vsi * vsi,bool set)4018 ice_vsi_update_local_lb(struct ice_vsi *vsi, bool set)
4019 {
4020 struct ice_vsi_ctx ctx = {
4021 .info = vsi->info,
4022 };
4023
4024 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
4025 if (set)
4026 ctx.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
4027 else
4028 ctx.info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
4029
4030 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4031 return -ENODEV;
4032
4033 vsi->info = ctx.info;
4034 return 0;
4035 }
4036
4037 /**
4038 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
4039 * @vsi: VSI used to update l2tsel on
4040 * @l2tsel: l2tsel setting requested
4041 *
4042 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
4043 * This will modify which descriptor field the first offloaded VLAN will be
4044 * stripped into.
4045 */
ice_vsi_update_l2tsel(struct ice_vsi * vsi,enum ice_l2tsel l2tsel)4046 void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
4047 {
4048 struct ice_hw *hw = &vsi->back->hw;
4049 u32 l2tsel_bit;
4050 int i;
4051
4052 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
4053 l2tsel_bit = 0;
4054 else
4055 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
4056
4057 for (i = 0; i < vsi->alloc_rxq; i++) {
4058 u16 pfq = vsi->rxq_map[i];
4059 u32 qrx_context_offset;
4060 u32 regval;
4061
4062 qrx_context_offset =
4063 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
4064
4065 regval = rd32(hw, qrx_context_offset);
4066 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
4067 regval |= l2tsel_bit;
4068 wr32(hw, qrx_context_offset, regval);
4069 }
4070 }
4071