xref: /linux/drivers/infiniband/hw/mlx5/odp.c (revision 55aa394a5ed871208eac11c5f4677cafd258c4dd)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <rdma/ib_umem_odp.h>
34 #include <linux/kernel.h>
35 #include <linux/dma-buf.h>
36 #include <linux/dma-resv.h>
37 #include <linux/hmm.h>
38 #include <linux/hmm-dma.h>
39 #include <linux/pci-p2pdma.h>
40 
41 #include "mlx5_ib.h"
42 #include "cmd.h"
43 #include "umr.h"
44 #include "qp.h"
45 
46 #include <linux/mlx5/eq.h>
47 
48 /* Contains the details of a pagefault. */
49 struct mlx5_pagefault {
50 	u32			bytes_committed;
51 	u64			token;
52 	u8			event_subtype;
53 	u8			type;
54 	union {
55 		/* Initiator or send message responder pagefault details. */
56 		struct {
57 			/* Received packet size, only valid for responders. */
58 			u32	packet_size;
59 			/*
60 			 * Number of resource holding WQE, depends on type.
61 			 */
62 			u32	wq_num;
63 			/*
64 			 * WQE index. Refers to either the send queue or
65 			 * receive queue, according to event_subtype.
66 			 */
67 			u16	wqe_index;
68 		} wqe;
69 		/* RDMA responder pagefault details */
70 		struct {
71 			u32	r_key;
72 			/*
73 			 * Received packet size, minimal size page fault
74 			 * resolution required for forward progress.
75 			 */
76 			u32	packet_size;
77 			u32	rdma_op_len;
78 			u64	rdma_va;
79 		} rdma;
80 		struct {
81 			u64	va;
82 			u32	mkey;
83 			u32	fault_byte_count;
84 			u32     prefetch_before_byte_count;
85 			u32     prefetch_after_byte_count;
86 			u8	flags;
87 		} memory;
88 	};
89 
90 	struct mlx5_ib_pf_eq	*eq;
91 	struct work_struct	work;
92 };
93 
94 #define MAX_PREFETCH_LEN (4*1024*1024U)
95 
96 /* Timeout in ms to wait for an active mmu notifier to complete when handling
97  * a pagefault. */
98 #define MMU_NOTIFIER_TIMEOUT 1000
99 
100 static u64 mlx5_imr_ksm_entries;
101 static u64 mlx5_imr_mtt_entries;
102 static u64 mlx5_imr_mtt_size;
103 static u8 mlx5_imr_mtt_shift;
104 static u8 mlx5_imr_ksm_page_shift;
105 
populate_ksm(struct mlx5_ksm * pksm,size_t idx,size_t nentries,struct mlx5_ib_mr * imr,int flags)106 static void populate_ksm(struct mlx5_ksm *pksm, size_t idx, size_t nentries,
107 			struct mlx5_ib_mr *imr, int flags)
108 {
109 	struct mlx5_core_dev *dev = mr_to_mdev(imr)->mdev;
110 	struct mlx5_ksm *end = pksm + nentries;
111 	u64 step = MLX5_CAP_ODP(dev, mem_page_fault) ? mlx5_imr_mtt_size : 0;
112 	__be32 key = MLX5_CAP_ODP(dev, mem_page_fault) ?
113 			     cpu_to_be32(imr->null_mmkey.key) :
114 			     mr_to_mdev(imr)->mkeys.null_mkey;
115 	u64 va =
116 		MLX5_CAP_ODP(dev, mem_page_fault) ? idx * mlx5_imr_mtt_size : 0;
117 
118 	if (flags & MLX5_IB_UPD_XLT_ZAP) {
119 		for (; pksm != end; pksm++, idx++, va += step) {
120 			pksm->key = key;
121 			pksm->va = cpu_to_be64(va);
122 		}
123 		return;
124 	}
125 
126 	/*
127 	 * The locking here is pretty subtle. Ideally the implicit_children
128 	 * xarray would be protected by the umem_mutex, however that is not
129 	 * possible. Instead this uses a weaker update-then-lock pattern:
130 	 *
131 	 *    xa_store()
132 	 *    mutex_lock(umem_mutex)
133 	 *     mlx5r_umr_update_xlt()
134 	 *    mutex_unlock(umem_mutex)
135 	 *    destroy lkey
136 	 *
137 	 * ie any change the xarray must be followed by the locked update_xlt
138 	 * before destroying.
139 	 *
140 	 * The umem_mutex provides the acquire/release semantic needed to make
141 	 * the xa_store() visible to a racing thread.
142 	 */
143 	lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex);
144 
145 	for (; pksm != end; pksm++, idx++, va += step) {
146 		struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx);
147 
148 		if (mtt) {
149 			pksm->key = cpu_to_be32(mtt->ibmr.lkey);
150 			pksm->va = cpu_to_be64(idx * mlx5_imr_mtt_size);
151 		} else {
152 			pksm->key = key;
153 			pksm->va = cpu_to_be64(va);
154 		}
155 	}
156 }
157 
populate_mtt(__be64 * pas,size_t start,size_t nentries,struct mlx5_ib_mr * mr,int flags)158 static int populate_mtt(__be64 *pas, size_t start, size_t nentries,
159 			struct mlx5_ib_mr *mr, int flags)
160 {
161 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
162 	bool downgrade = flags & MLX5_IB_UPD_XLT_DOWNGRADE;
163 	struct pci_p2pdma_map_state p2pdma_state = {};
164 	struct ib_device *dev = odp->umem.ibdev;
165 	size_t i;
166 
167 	if (flags & MLX5_IB_UPD_XLT_ZAP)
168 		return 0;
169 
170 	for (i = 0; i < nentries; i++) {
171 		unsigned long pfn = odp->map.pfn_list[start + i];
172 		dma_addr_t dma_addr;
173 
174 		pfn = odp->map.pfn_list[start + i];
175 		if (!(pfn & HMM_PFN_VALID))
176 			/* ODP initialization */
177 			continue;
178 
179 		dma_addr = hmm_dma_map_pfn(dev->dma_device, &odp->map,
180 					   start + i, &p2pdma_state);
181 		if (ib_dma_mapping_error(dev, dma_addr))
182 			return -EFAULT;
183 
184 		dma_addr |= MLX5_IB_MTT_READ;
185 		if ((pfn & HMM_PFN_WRITE) && !downgrade)
186 			dma_addr |= MLX5_IB_MTT_WRITE;
187 
188 		pas[i] = cpu_to_be64(dma_addr);
189 		odp->npages++;
190 	}
191 	return 0;
192 }
193 
mlx5_odp_populate_xlt(void * xlt,size_t idx,size_t nentries,struct mlx5_ib_mr * mr,int flags)194 int mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries,
195 			  struct mlx5_ib_mr *mr, int flags)
196 {
197 	if (flags & MLX5_IB_UPD_XLT_INDIRECT) {
198 		populate_ksm(xlt, idx, nentries, mr, flags);
199 		return 0;
200 	} else {
201 		return populate_mtt(xlt, idx, nentries, mr, flags);
202 	}
203 }
204 
205 /*
206  * This must be called after the mr has been removed from implicit_children.
207  * NOTE: The MR does not necessarily have to be
208  * empty here, parallel page faults could have raced with the free process and
209  * added pages to it.
210  */
free_implicit_child_mr_work(struct work_struct * work)211 static void free_implicit_child_mr_work(struct work_struct *work)
212 {
213 	struct mlx5_ib_mr *mr =
214 		container_of(work, struct mlx5_ib_mr, odp_destroy.work);
215 	struct mlx5_ib_mr *imr = mr->parent;
216 	struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
217 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
218 
219 	mlx5r_deref_wait_odp_mkey(&mr->mmkey);
220 
221 	mutex_lock(&odp_imr->umem_mutex);
222 	mlx5r_umr_update_xlt(mr->parent,
223 			     ib_umem_start(odp) >> mlx5_imr_mtt_shift, 1, 0,
224 			     MLX5_IB_UPD_XLT_INDIRECT | MLX5_IB_UPD_XLT_ATOMIC);
225 	mutex_unlock(&odp_imr->umem_mutex);
226 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
227 
228 	mlx5r_deref_odp_mkey(&imr->mmkey);
229 }
230 
destroy_unused_implicit_child_mr(struct mlx5_ib_mr * mr)231 static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr)
232 {
233 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
234 	unsigned long idx = ib_umem_start(odp) >> mlx5_imr_mtt_shift;
235 	struct mlx5_ib_mr *imr = mr->parent;
236 
237 	/*
238 	 * If userspace is racing freeing the parent implicit ODP MR then we can
239 	 * loose the race with parent destruction. In this case
240 	 * mlx5_ib_free_odp_mr() will free everything in the implicit_children
241 	 * xarray so NOP is fine. This child MR cannot be destroyed here because
242 	 * we are under its umem_mutex.
243 	 */
244 	if (!refcount_inc_not_zero(&imr->mmkey.usecount))
245 		return;
246 
247 	xa_lock(&imr->implicit_children);
248 	if (__xa_cmpxchg(&imr->implicit_children, idx, mr, NULL, GFP_KERNEL) !=
249 	    mr) {
250 		xa_unlock(&imr->implicit_children);
251 		mlx5r_deref_odp_mkey(&imr->mmkey);
252 		return;
253 	}
254 
255 	if (MLX5_CAP_ODP(mr_to_mdev(mr)->mdev, mem_page_fault))
256 		xa_erase(&mr_to_mdev(mr)->odp_mkeys,
257 			 mlx5_base_mkey(mr->mmkey.key));
258 	xa_unlock(&imr->implicit_children);
259 
260 	/* Freeing a MR is a sleeping operation, so bounce to a work queue */
261 	INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work);
262 	queue_work(system_dfl_wq, &mr->odp_destroy.work);
263 }
264 
mlx5_ib_invalidate_range(struct mmu_interval_notifier * mni,const struct mmu_notifier_range * range,unsigned long cur_seq)265 static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni,
266 				     const struct mmu_notifier_range *range,
267 				     unsigned long cur_seq)
268 {
269 	struct ib_umem_odp *umem_odp =
270 		container_of(mni, struct ib_umem_odp, notifier);
271 	struct mlx5_ib_mr *mr;
272 	const u64 umr_block_mask = MLX5_UMR_MTT_NUM_ENTRIES_ALIGNMENT - 1;
273 	u64 idx = 0, blk_start_idx = 0;
274 	u64 invalidations = 0;
275 	unsigned long start;
276 	unsigned long end;
277 	int in_block = 0;
278 	u64 addr;
279 
280 	if (!mmu_notifier_range_blockable(range))
281 		return false;
282 
283 	mutex_lock(&umem_odp->umem_mutex);
284 	mmu_interval_set_seq(mni, cur_seq);
285 	/*
286 	 * If npages is zero then umem_odp->private may not be setup yet. This
287 	 * does not complete until after the first page is mapped for DMA.
288 	 */
289 	if (!umem_odp->npages)
290 		goto out;
291 	mr = umem_odp->private;
292 	if (!mr)
293 		goto out;
294 
295 	start = max_t(u64, ib_umem_start(umem_odp), range->start);
296 	end = min_t(u64, ib_umem_end(umem_odp), range->end);
297 
298 	/*
299 	 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
300 	 * while we are doing the invalidation, no page fault will attempt to
301 	 * overwrite the same MTTs.  Concurent invalidations might race us,
302 	 * but they will write 0s as well, so no difference in the end result.
303 	 */
304 	for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
305 		idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
306 		/*
307 		 * Strive to write the MTTs in chunks, but avoid overwriting
308 		 * non-existing MTTs. The huristic here can be improved to
309 		 * estimate the cost of another UMR vs. the cost of bigger
310 		 * UMR.
311 		 */
312 		if (umem_odp->map.pfn_list[idx] & HMM_PFN_VALID) {
313 			if (!in_block) {
314 				blk_start_idx = idx;
315 				in_block = 1;
316 			}
317 		} else {
318 			u64 umr_offset = idx & umr_block_mask;
319 
320 			if (in_block && umr_offset == 0) {
321 				mlx5r_umr_update_xlt(mr, blk_start_idx,
322 						     idx - blk_start_idx, 0,
323 						     MLX5_IB_UPD_XLT_ZAP |
324 						     MLX5_IB_UPD_XLT_ATOMIC);
325 				in_block = 0;
326 				/* Count page invalidations */
327 				invalidations += idx - blk_start_idx + 1;
328 			}
329 		}
330 	}
331 	if (in_block) {
332 		mlx5r_umr_update_xlt(mr, blk_start_idx,
333 				     idx - blk_start_idx + 1, 0,
334 				     MLX5_IB_UPD_XLT_ZAP |
335 				     MLX5_IB_UPD_XLT_ATOMIC);
336 		/* Count page invalidations */
337 		invalidations += idx - blk_start_idx + 1;
338 	}
339 
340 	mlx5_update_odp_stats_with_handled(mr, invalidations, invalidations);
341 
342 	/*
343 	 * We are now sure that the device will not access the
344 	 * memory. We can safely unmap it, and mark it as dirty if
345 	 * needed.
346 	 */
347 
348 	ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
349 
350 	if (unlikely(!umem_odp->npages && mr->parent))
351 		destroy_unused_implicit_child_mr(mr);
352 out:
353 	mutex_unlock(&umem_odp->umem_mutex);
354 	return true;
355 }
356 
357 const struct mmu_interval_notifier_ops mlx5_mn_ops = {
358 	.invalidate = mlx5_ib_invalidate_range,
359 };
360 
internal_fill_odp_caps(struct mlx5_ib_dev * dev)361 static void internal_fill_odp_caps(struct mlx5_ib_dev *dev)
362 {
363 	struct ib_odp_caps *caps = &dev->odp_caps;
364 
365 	memset(caps, 0, sizeof(*caps));
366 
367 	if (!MLX5_CAP_GEN(dev->mdev, pg) || !mlx5r_umr_can_load_pas(dev, 0))
368 		return;
369 
370 	caps->general_caps = IB_ODP_SUPPORT;
371 
372 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
373 		dev->odp_max_size = U64_MAX;
374 	else
375 		dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
376 
377 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, ud_odp_caps.send))
378 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
379 
380 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, ud_odp_caps.srq_receive))
381 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
382 
383 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.send))
384 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
385 
386 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.receive))
387 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
388 
389 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.write))
390 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
391 
392 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.read))
393 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
394 
395 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.atomic))
396 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
397 
398 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.srq_receive))
399 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
400 
401 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.send))
402 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
403 
404 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.receive))
405 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
406 
407 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.write))
408 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
409 
410 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.read))
411 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
412 
413 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.atomic))
414 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
415 
416 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.srq_receive))
417 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
418 
419 	if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
420 	    MLX5_CAP_GEN(dev->mdev, null_mkey) &&
421 	    MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) &&
422 	    !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled) &&
423 	    mlx5_imr_ksm_entries != 0 &&
424 	    !(mlx5_imr_ksm_page_shift >
425 	      get_max_log_entity_size_cap(dev, MLX5_MKC_ACCESS_MODE_KSM)))
426 		caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
427 }
428 
mlx5_ib_page_fault_resume(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault,int error)429 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
430 				      struct mlx5_pagefault *pfault,
431 				      int error)
432 {
433 	int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
434 		     pfault->wqe.wq_num : pfault->token;
435 	u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = {};
436 	void *info;
437 	int err;
438 
439 	MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
440 
441 	if (pfault->event_subtype == MLX5_PFAULT_SUBTYPE_MEMORY) {
442 		info = MLX5_ADDR_OF(page_fault_resume_in, in,
443 				    page_fault_info.mem_page_fault_info);
444 		MLX5_SET(mem_page_fault_info, info, fault_token_31_0,
445 			 pfault->token & 0xffffffff);
446 		MLX5_SET(mem_page_fault_info, info, fault_token_47_32,
447 			 (pfault->token >> 32) & 0xffff);
448 		MLX5_SET(mem_page_fault_info, info, error, !!error);
449 	} else {
450 		info = MLX5_ADDR_OF(page_fault_resume_in, in,
451 				    page_fault_info.trans_page_fault_info);
452 		MLX5_SET(trans_page_fault_info, info, page_fault_type,
453 			 pfault->type);
454 		MLX5_SET(trans_page_fault_info, info, fault_token,
455 			 pfault->token);
456 		MLX5_SET(trans_page_fault_info, info, wq_number, wq_num);
457 		MLX5_SET(trans_page_fault_info, info, error, !!error);
458 	}
459 
460 	err = mlx5_cmd_exec_in(dev->mdev, page_fault_resume, in);
461 	if (err)
462 		mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
463 			    wq_num, err);
464 }
465 
implicit_get_child_mr(struct mlx5_ib_mr * imr,unsigned long idx)466 static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr,
467 						unsigned long idx)
468 {
469 	struct mlx5_ib_dev *dev = mr_to_mdev(imr);
470 	struct ib_umem_odp *odp;
471 	struct mlx5_ib_mr *mr;
472 	struct mlx5_ib_mr *ret;
473 	int err;
474 
475 	odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem),
476 				      idx * mlx5_imr_mtt_size,
477 				      mlx5_imr_mtt_size, &mlx5_mn_ops);
478 	if (IS_ERR(odp))
479 		return ERR_CAST(odp);
480 
481 	mr = mlx5_mr_cache_alloc(dev, imr->access_flags,
482 				 MLX5_MKC_ACCESS_MODE_MTT,
483 				 mlx5_imr_mtt_entries);
484 	if (IS_ERR(mr)) {
485 		ib_umem_odp_release(odp);
486 		return mr;
487 	}
488 
489 	mr->access_flags = imr->access_flags;
490 	mr->ibmr.pd = imr->ibmr.pd;
491 	mr->ibmr.device = &mr_to_mdev(imr)->ib_dev;
492 	mr->umem = &odp->umem;
493 	mr->ibmr.lkey = mr->mmkey.key;
494 	mr->ibmr.rkey = mr->mmkey.key;
495 	mr->ibmr.iova = idx * mlx5_imr_mtt_size;
496 	mr->parent = imr;
497 	odp->private = mr;
498 
499 	/*
500 	 * First refcount is owned by the xarray and second refconut
501 	 * is returned to the caller.
502 	 */
503 	refcount_set(&mr->mmkey.usecount, 2);
504 
505 	err = mlx5r_umr_update_xlt(mr, 0,
506 				   mlx5_imr_mtt_entries,
507 				   PAGE_SHIFT,
508 				   MLX5_IB_UPD_XLT_ZAP |
509 				   MLX5_IB_UPD_XLT_ENABLE);
510 	if (err) {
511 		ret = ERR_PTR(err);
512 		goto out_mr;
513 	}
514 
515 	xa_lock(&imr->implicit_children);
516 	ret = __xa_cmpxchg(&imr->implicit_children, idx, NULL, mr,
517 			   GFP_KERNEL);
518 	if (unlikely(ret)) {
519 		if (xa_is_err(ret)) {
520 			ret = ERR_PTR(xa_err(ret));
521 			goto out_lock;
522 		}
523 		/*
524 		 * Another thread beat us to creating the child mr, use
525 		 * theirs.
526 		 */
527 		refcount_inc(&ret->mmkey.usecount);
528 		goto out_lock;
529 	}
530 
531 	if (MLX5_CAP_ODP(dev->mdev, mem_page_fault)) {
532 		ret = xa_store(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key),
533 			       &mr->mmkey, GFP_KERNEL);
534 		if (xa_is_err(ret)) {
535 			ret = ERR_PTR(xa_err(ret));
536 			__xa_erase(&imr->implicit_children, idx);
537 			goto out_lock;
538 		}
539 		mr->mmkey.type = MLX5_MKEY_IMPLICIT_CHILD;
540 	}
541 	xa_unlock(&imr->implicit_children);
542 	mlx5_ib_dbg(mr_to_mdev(imr), "key %x mr %p\n", mr->mmkey.key, mr);
543 	return mr;
544 
545 out_lock:
546 	xa_unlock(&imr->implicit_children);
547 out_mr:
548 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
549 	return ret;
550 }
551 
552 /*
553  * When using memory scheme ODP, implicit MRs can't use the reserved null mkey
554  * and each implicit MR needs to assign a private null mkey to get the page
555  * faults on.
556  * The null mkey is created with the properties to enable getting the page
557  * fault for every time it is accessed and having all relevant access flags.
558  */
alloc_implicit_mr_null_mkey(struct mlx5_ib_dev * dev,struct mlx5_ib_mr * imr,struct mlx5_ib_pd * pd)559 static int alloc_implicit_mr_null_mkey(struct mlx5_ib_dev *dev,
560 				       struct mlx5_ib_mr *imr,
561 				       struct mlx5_ib_pd *pd)
562 {
563 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in) + 64;
564 	void *mkc;
565 	u32 *in;
566 	int err;
567 
568 	in = kzalloc(inlen, GFP_KERNEL);
569 	if (!in)
570 		return -ENOMEM;
571 
572 	MLX5_SET(create_mkey_in, in, translations_octword_actual_size, 4);
573 	MLX5_SET(create_mkey_in, in, pg_access, 1);
574 
575 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
576 	MLX5_SET(mkc, mkc, a, 1);
577 	MLX5_SET(mkc, mkc, rw, 1);
578 	MLX5_SET(mkc, mkc, rr, 1);
579 	MLX5_SET(mkc, mkc, lw, 1);
580 	MLX5_SET(mkc, mkc, lr, 1);
581 	MLX5_SET(mkc, mkc, free, 0);
582 	MLX5_SET(mkc, mkc, umr_en, 0);
583 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
584 
585 	MLX5_SET(mkc, mkc, translations_octword_size, 4);
586 	MLX5_SET(mkc, mkc, log_page_size, 61);
587 	MLX5_SET(mkc, mkc, length64, 1);
588 	MLX5_SET(mkc, mkc, pd, pd->pdn);
589 	MLX5_SET64(mkc, mkc, start_addr, 0);
590 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
591 
592 	err = mlx5_core_create_mkey(dev->mdev, &imr->null_mmkey.key, in, inlen);
593 	if (err)
594 		goto free_in;
595 
596 	imr->null_mmkey.type = MLX5_MKEY_NULL;
597 
598 free_in:
599 	kfree(in);
600 	return err;
601 }
602 
mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd * pd,int access_flags)603 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
604 					     int access_flags)
605 {
606 	struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device);
607 	struct ib_umem_odp *umem_odp;
608 	struct mlx5_ib_mr *imr;
609 	int err;
610 
611 	if (!mlx5r_umr_can_load_pas(dev, mlx5_imr_mtt_entries * PAGE_SIZE))
612 		return ERR_PTR(-EOPNOTSUPP);
613 
614 	umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags);
615 	if (IS_ERR(umem_odp))
616 		return ERR_CAST(umem_odp);
617 
618 	imr = mlx5_mr_cache_alloc(dev, access_flags, MLX5_MKC_ACCESS_MODE_KSM,
619 				  mlx5_imr_ksm_entries);
620 	if (IS_ERR(imr)) {
621 		ib_umem_odp_release(umem_odp);
622 		return imr;
623 	}
624 
625 	imr->access_flags = access_flags;
626 	imr->ibmr.pd = &pd->ibpd;
627 	imr->ibmr.iova = 0;
628 	imr->umem = &umem_odp->umem;
629 	imr->ibmr.lkey = imr->mmkey.key;
630 	imr->ibmr.rkey = imr->mmkey.key;
631 	imr->ibmr.device = &dev->ib_dev;
632 	imr->is_odp_implicit = true;
633 	xa_init(&imr->implicit_children);
634 
635 	if (MLX5_CAP_ODP(dev->mdev, mem_page_fault)) {
636 		err = alloc_implicit_mr_null_mkey(dev, imr, pd);
637 		if (err)
638 			goto out_mr;
639 
640 		err = mlx5r_store_odp_mkey(dev, &imr->null_mmkey);
641 		if (err)
642 			goto out_mr;
643 	}
644 
645 	err = mlx5r_umr_update_xlt(imr, 0,
646 				   mlx5_imr_ksm_entries,
647 				   mlx5_imr_ksm_page_shift,
648 				   MLX5_IB_UPD_XLT_INDIRECT |
649 				   MLX5_IB_UPD_XLT_ZAP |
650 				   MLX5_IB_UPD_XLT_ENABLE);
651 	if (err)
652 		goto out_mr;
653 
654 	err = mlx5r_store_odp_mkey(dev, &imr->mmkey);
655 	if (err)
656 		goto out_mr;
657 
658 	mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr);
659 	return imr;
660 out_mr:
661 	mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
662 	mlx5_ib_dereg_mr(&imr->ibmr, NULL);
663 	return ERR_PTR(err);
664 }
665 
mlx5_ib_free_odp_mr(struct mlx5_ib_mr * mr)666 void mlx5_ib_free_odp_mr(struct mlx5_ib_mr *mr)
667 {
668 	struct mlx5_ib_mr *mtt;
669 	unsigned long idx;
670 
671 	/*
672 	 * If this is an implicit MR it is already invalidated so we can just
673 	 * delete the children mkeys.
674 	 */
675 	xa_for_each(&mr->implicit_children, idx, mtt) {
676 		xa_erase(&mr->implicit_children, idx);
677 		mlx5_ib_dereg_mr(&mtt->ibmr, NULL);
678 	}
679 
680 	if (mr->null_mmkey.key) {
681 		xa_erase(&mr_to_mdev(mr)->odp_mkeys,
682 			 mlx5_base_mkey(mr->null_mmkey.key));
683 
684 		mlx5_core_destroy_mkey(mr_to_mdev(mr)->mdev,
685 				       mr->null_mmkey.key);
686 	}
687 }
688 
689 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
690 #define MLX5_PF_FLAGS_SNAPSHOT BIT(2)
691 #define MLX5_PF_FLAGS_ENABLE BIT(3)
pagefault_real_mr(struct mlx5_ib_mr * mr,struct ib_umem_odp * odp,u64 user_va,size_t bcnt,u32 * bytes_mapped,u32 flags)692 static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp,
693 			     u64 user_va, size_t bcnt, u32 *bytes_mapped,
694 			     u32 flags)
695 {
696 	int page_shift, ret, np;
697 	bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
698 	u64 access_mask = 0;
699 	u64 start_idx;
700 	bool fault = !(flags & MLX5_PF_FLAGS_SNAPSHOT);
701 	u32 xlt_flags = MLX5_IB_UPD_XLT_ATOMIC;
702 
703 	if (flags & MLX5_PF_FLAGS_ENABLE)
704 		xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
705 
706 	if (flags & MLX5_PF_FLAGS_DOWNGRADE)
707 		xlt_flags |= MLX5_IB_UPD_XLT_DOWNGRADE;
708 
709 	page_shift = odp->page_shift;
710 	start_idx = (user_va - ib_umem_start(odp)) >> page_shift;
711 
712 	if (odp->umem.writable && !downgrade)
713 		access_mask |= HMM_PFN_WRITE;
714 
715 	np = ib_umem_odp_map_dma_and_lock(odp, user_va, bcnt, access_mask, fault);
716 	if (np < 0)
717 		return np;
718 
719 	/*
720 	 * No need to check whether the MTTs really belong to this MR, since
721 	 * ib_umem_odp_map_dma_and_lock already checks this.
722 	 */
723 	ret = mlx5r_umr_update_xlt(mr, start_idx, np, page_shift, xlt_flags);
724 	mutex_unlock(&odp->umem_mutex);
725 
726 	if (ret < 0) {
727 		if (ret != -EAGAIN)
728 			mlx5_ib_err(mr_to_mdev(mr),
729 				    "Failed to update mkey page tables\n");
730 		goto out;
731 	}
732 
733 	if (bytes_mapped) {
734 		u32 new_mappings = (np << page_shift) -
735 			(user_va - round_down(user_va, 1 << page_shift));
736 
737 		*bytes_mapped += min_t(u32, new_mappings, bcnt);
738 	}
739 
740 	return np << (page_shift - PAGE_SHIFT);
741 
742 out:
743 	return ret;
744 }
745 
pagefault_implicit_mr(struct mlx5_ib_mr * imr,struct ib_umem_odp * odp_imr,u64 user_va,size_t bcnt,u32 * bytes_mapped,u32 flags)746 static int pagefault_implicit_mr(struct mlx5_ib_mr *imr,
747 				 struct ib_umem_odp *odp_imr, u64 user_va,
748 				 size_t bcnt, u32 *bytes_mapped, u32 flags)
749 {
750 	unsigned long end_idx = (user_va + bcnt - 1) >> mlx5_imr_mtt_shift;
751 	unsigned long upd_start_idx = end_idx + 1;
752 	unsigned long upd_len = 0;
753 	unsigned long npages = 0;
754 	int err;
755 	int ret;
756 
757 	if (unlikely(user_va >= mlx5_imr_ksm_entries * mlx5_imr_mtt_size ||
758 		     mlx5_imr_ksm_entries * mlx5_imr_mtt_size - user_va < bcnt))
759 		return -EFAULT;
760 
761 	/* Fault each child mr that intersects with our interval. */
762 	while (bcnt) {
763 		unsigned long idx = user_va >> mlx5_imr_mtt_shift;
764 		struct ib_umem_odp *umem_odp;
765 		struct mlx5_ib_mr *mtt;
766 		u64 len;
767 
768 		xa_lock(&imr->implicit_children);
769 		mtt = xa_load(&imr->implicit_children, idx);
770 		if (unlikely(!mtt)) {
771 			xa_unlock(&imr->implicit_children);
772 			mtt = implicit_get_child_mr(imr, idx);
773 			if (IS_ERR(mtt)) {
774 				ret = PTR_ERR(mtt);
775 				goto out;
776 			}
777 			upd_start_idx = min(upd_start_idx, idx);
778 			upd_len = idx - upd_start_idx + 1;
779 		} else {
780 			refcount_inc(&mtt->mmkey.usecount);
781 			xa_unlock(&imr->implicit_children);
782 		}
783 
784 		umem_odp = to_ib_umem_odp(mtt->umem);
785 		len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) -
786 		      user_va;
787 
788 		ret = pagefault_real_mr(mtt, umem_odp, user_va, len,
789 					bytes_mapped, flags);
790 
791 		mlx5r_deref_odp_mkey(&mtt->mmkey);
792 
793 		if (ret < 0)
794 			goto out;
795 		user_va += len;
796 		bcnt -= len;
797 		npages += ret;
798 	}
799 
800 	ret = npages;
801 
802 	/*
803 	 * Any time the implicit_children are changed we must perform an
804 	 * update of the xlt before exiting to ensure the HW and the
805 	 * implicit_children remains synchronized.
806 	 */
807 out:
808 	if (likely(!upd_len))
809 		return ret;
810 
811 	/*
812 	 * Notice this is not strictly ordered right, the KSM is updated after
813 	 * the implicit_children is updated, so a parallel page fault could
814 	 * see a MR that is not yet visible in the KSM.  This is similar to a
815 	 * parallel page fault seeing a MR that is being concurrently removed
816 	 * from the KSM. Both of these improbable situations are resolved
817 	 * safely by resuming the HW and then taking another page fault. The
818 	 * next pagefault handler will see the new information.
819 	 */
820 	mutex_lock(&odp_imr->umem_mutex);
821 	err = mlx5r_umr_update_xlt(imr, upd_start_idx, upd_len, 0,
822 				   MLX5_IB_UPD_XLT_INDIRECT |
823 					  MLX5_IB_UPD_XLT_ATOMIC);
824 	mutex_unlock(&odp_imr->umem_mutex);
825 	if (err) {
826 		mlx5_ib_err(mr_to_mdev(imr), "Failed to update PAS\n");
827 		return err;
828 	}
829 	return ret;
830 }
831 
pagefault_dmabuf_mr(struct mlx5_ib_mr * mr,size_t bcnt,u32 * bytes_mapped,u32 flags)832 static int pagefault_dmabuf_mr(struct mlx5_ib_mr *mr, size_t bcnt,
833 			       u32 *bytes_mapped, u32 flags)
834 {
835 	struct ib_umem_dmabuf *umem_dmabuf = to_ib_umem_dmabuf(mr->umem);
836 	int access_mode = mr->data_direct ? MLX5_MKC_ACCESS_MODE_KSM :
837 					    MLX5_MKC_ACCESS_MODE_MTT;
838 	unsigned int old_page_shift = mr->page_shift;
839 	unsigned int page_shift;
840 	unsigned long page_size;
841 	u32 xlt_flags = 0;
842 	int err;
843 
844 	if (flags & MLX5_PF_FLAGS_ENABLE)
845 		xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
846 
847 	dma_resv_lock(umem_dmabuf->attach->dmabuf->resv, NULL);
848 	err = ib_umem_dmabuf_map_pages(umem_dmabuf);
849 	if (err) {
850 		dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
851 		return err;
852 	}
853 
854 	page_size = mlx5_umem_dmabuf_find_best_pgsz(umem_dmabuf, access_mode);
855 	if (!page_size) {
856 		ib_umem_dmabuf_unmap_pages(umem_dmabuf);
857 		err = -EINVAL;
858 	} else {
859 		page_shift = order_base_2(page_size);
860 		if (page_shift != mr->page_shift && mr->dmabuf_faulted) {
861 			err = mlx5r_umr_dmabuf_update_pgsz(mr, xlt_flags,
862 							   page_shift);
863 		} else {
864 			mr->page_shift = page_shift;
865 			if (mr->data_direct)
866 				err = mlx5r_umr_update_data_direct_ksm_pas(
867 					mr, xlt_flags);
868 			else
869 				err = mlx5r_umr_update_mr_pas(mr,
870 							      xlt_flags);
871 		}
872 	}
873 	dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
874 
875 	if (err) {
876 		mr->page_shift = old_page_shift;
877 		return err;
878 	}
879 
880 	mr->dmabuf_faulted = 1;
881 
882 	if (bytes_mapped)
883 		*bytes_mapped += bcnt;
884 
885 	return ib_umem_num_pages(mr->umem);
886 }
887 
888 /*
889  * Returns:
890  *  -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are
891  *           not accessible, or the MR is no longer valid.
892  *  -EAGAIN/-ENOMEM: The operation should be retried
893  *
894  *  -EINVAL/others: General internal malfunction
895  *  >0: Number of pages mapped
896  */
pagefault_mr(struct mlx5_ib_mr * mr,u64 io_virt,size_t bcnt,u32 * bytes_mapped,u32 flags,bool permissive_fault)897 static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt,
898 			u32 *bytes_mapped, u32 flags, bool permissive_fault)
899 {
900 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
901 
902 	if (unlikely(io_virt < mr->ibmr.iova) && !permissive_fault)
903 		return -EFAULT;
904 
905 	if (mr->umem->is_dmabuf)
906 		return pagefault_dmabuf_mr(mr, bcnt, bytes_mapped, flags);
907 
908 	if (!odp->is_implicit_odp) {
909 		u64 offset = io_virt < mr->ibmr.iova ? 0 : io_virt - mr->ibmr.iova;
910 		u64 user_va;
911 
912 		if (check_add_overflow(offset, (u64)odp->umem.address,
913 				       &user_va))
914 			return -EFAULT;
915 
916 		if (permissive_fault) {
917 			if (user_va < ib_umem_start(odp))
918 				user_va = ib_umem_start(odp);
919 			if ((user_va + bcnt) > ib_umem_end(odp))
920 				bcnt = ib_umem_end(odp) - user_va;
921 		} else if (unlikely(user_va >= ib_umem_end(odp) ||
922 				    ib_umem_end(odp) - user_va < bcnt))
923 			return -EFAULT;
924 		return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped,
925 					 flags);
926 	}
927 	return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped,
928 				     flags);
929 }
930 
mlx5_ib_init_odp_mr(struct mlx5_ib_mr * mr)931 int mlx5_ib_init_odp_mr(struct mlx5_ib_mr *mr)
932 {
933 	int ret;
934 
935 	ret = pagefault_real_mr(mr, to_ib_umem_odp(mr->umem), mr->umem->address,
936 				mr->umem->length, NULL,
937 				MLX5_PF_FLAGS_SNAPSHOT | MLX5_PF_FLAGS_ENABLE);
938 	return ret >= 0 ? 0 : ret;
939 }
940 
mlx5_ib_init_dmabuf_mr(struct mlx5_ib_mr * mr)941 int mlx5_ib_init_dmabuf_mr(struct mlx5_ib_mr *mr)
942 {
943 	int ret;
944 
945 	ret = pagefault_dmabuf_mr(mr, mr->umem->length, NULL,
946 				  MLX5_PF_FLAGS_ENABLE);
947 
948 	return ret >= 0 ? 0 : ret;
949 }
950 
951 struct pf_frame {
952 	struct pf_frame *next;
953 	u32 key;
954 	u64 io_virt;
955 	size_t bcnt;
956 	int depth;
957 };
958 
mkey_is_eq(struct mlx5_ib_mkey * mmkey,u32 key)959 static bool mkey_is_eq(struct mlx5_ib_mkey *mmkey, u32 key)
960 {
961 	if (!mmkey)
962 		return false;
963 	if (mmkey->type == MLX5_MKEY_MW ||
964 	    mmkey->type == MLX5_MKEY_INDIRECT_DEVX)
965 		return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
966 	return mmkey->key == key;
967 }
968 
find_odp_mkey(struct mlx5_ib_dev * dev,u32 key)969 static struct mlx5_ib_mkey *find_odp_mkey(struct mlx5_ib_dev *dev, u32 key)
970 {
971 	struct mlx5_ib_mkey *mmkey;
972 
973 	xa_lock(&dev->odp_mkeys);
974 	mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key));
975 	if (!mmkey) {
976 		mmkey = ERR_PTR(-ENOENT);
977 		goto out;
978 	}
979 	if (!mkey_is_eq(mmkey, key)) {
980 		mmkey = ERR_PTR(-EFAULT);
981 		goto out;
982 	}
983 	refcount_inc(&mmkey->usecount);
984 out:
985 	xa_unlock(&dev->odp_mkeys);
986 
987 	return mmkey;
988 }
989 
990 /*
991  * Handle a single data segment in a page-fault WQE or RDMA region.
992  *
993  * Returns zero on success. The caller may continue to the next data segment.
994  * Can return the following error codes:
995  * -EAGAIN to designate a temporary error. The caller will abort handling the
996  *  page fault and resolve it.
997  * -EFAULT when there's an error mapping the requested pages. The caller will
998  *  abort the page fault handling.
999  */
pagefault_single_data_segment(struct mlx5_ib_dev * dev,struct ib_pd * pd,u32 key,u64 io_virt,size_t bcnt,u32 * bytes_committed,u32 * bytes_mapped)1000 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
1001 					 struct ib_pd *pd, u32 key,
1002 					 u64 io_virt, size_t bcnt,
1003 					 u32 *bytes_committed,
1004 					 u32 *bytes_mapped)
1005 {
1006 	int ret, i, outlen, cur_outlen = 0, depth = 0, pages_in_range;
1007 	struct pf_frame *head = NULL, *frame;
1008 	struct mlx5_ib_mkey *mmkey;
1009 	struct mlx5_ib_mr *mr;
1010 	struct mlx5_klm *pklm;
1011 	u32 *out = NULL;
1012 	size_t offset;
1013 
1014 	io_virt += *bytes_committed;
1015 	bcnt -= *bytes_committed;
1016 next_mr:
1017 	mmkey = find_odp_mkey(dev, key);
1018 	if (IS_ERR(mmkey)) {
1019 		ret = PTR_ERR(mmkey);
1020 		if (ret == -ENOENT) {
1021 			mlx5_ib_dbg(
1022 				dev,
1023 				"skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
1024 				key);
1025 			if (bytes_mapped)
1026 				*bytes_mapped += bcnt;
1027 			/*
1028 			 * The user could specify a SGL with multiple lkeys and
1029 			 * only some of them are ODP. Treat the non-ODP ones as
1030 			 * fully faulted.
1031 			 */
1032 			ret = 0;
1033 		}
1034 		goto end;
1035 	}
1036 
1037 	switch (mmkey->type) {
1038 	case MLX5_MKEY_MR:
1039 		mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1040 
1041 		pages_in_range = (ALIGN(io_virt + bcnt, PAGE_SIZE) -
1042 				  (io_virt & PAGE_MASK)) >>
1043 				 PAGE_SHIFT;
1044 		ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0, false);
1045 		if (ret < 0)
1046 			goto end;
1047 
1048 		mlx5_update_odp_stats_with_handled(mr, faults, ret);
1049 
1050 		if (ret < pages_in_range) {
1051 			ret = -EFAULT;
1052 			goto end;
1053 		}
1054 
1055 		ret = 0;
1056 		break;
1057 
1058 	case MLX5_MKEY_MW:
1059 	case MLX5_MKEY_INDIRECT_DEVX:
1060 		if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
1061 			mlx5_ib_dbg(dev, "indirection level exceeded\n");
1062 			ret = -EFAULT;
1063 			goto end;
1064 		}
1065 
1066 		outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
1067 			sizeof(*pklm) * (mmkey->ndescs - 2);
1068 
1069 		if (outlen > cur_outlen) {
1070 			kfree(out);
1071 			out = kzalloc(outlen, GFP_KERNEL);
1072 			if (!out) {
1073 				ret = -ENOMEM;
1074 				goto end;
1075 			}
1076 			cur_outlen = outlen;
1077 		}
1078 
1079 		pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
1080 						       bsf0_klm0_pas_mtt0_1);
1081 
1082 		ret = mlx5_core_query_mkey(dev->mdev, mmkey->key, out, outlen);
1083 		if (ret)
1084 			goto end;
1085 
1086 		offset = io_virt - MLX5_GET64(query_mkey_out, out,
1087 					      memory_key_mkey_entry.start_addr);
1088 
1089 		for (i = 0; bcnt && i < mmkey->ndescs; i++, pklm++) {
1090 			if (offset >= be32_to_cpu(pklm->bcount)) {
1091 				offset -= be32_to_cpu(pklm->bcount);
1092 				continue;
1093 			}
1094 
1095 			frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1096 			if (!frame) {
1097 				ret = -ENOMEM;
1098 				goto end;
1099 			}
1100 
1101 			frame->key = be32_to_cpu(pklm->key);
1102 			frame->io_virt = be64_to_cpu(pklm->va) + offset;
1103 			frame->bcnt = min_t(size_t, bcnt,
1104 					    be32_to_cpu(pklm->bcount) - offset);
1105 			frame->depth = depth + 1;
1106 			frame->next = head;
1107 			head = frame;
1108 
1109 			bcnt -= frame->bcnt;
1110 			offset = 0;
1111 		}
1112 		break;
1113 
1114 	default:
1115 		mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
1116 		ret = -EFAULT;
1117 		goto end;
1118 	}
1119 
1120 	if (head) {
1121 		frame = head;
1122 		head = frame->next;
1123 
1124 		key = frame->key;
1125 		io_virt = frame->io_virt;
1126 		bcnt = frame->bcnt;
1127 		depth = frame->depth;
1128 		kfree(frame);
1129 
1130 		mlx5r_deref_odp_mkey(mmkey);
1131 		goto next_mr;
1132 	}
1133 
1134 end:
1135 	if (!IS_ERR(mmkey))
1136 		mlx5r_deref_odp_mkey(mmkey);
1137 	while (head) {
1138 		frame = head;
1139 		head = frame->next;
1140 		kfree(frame);
1141 	}
1142 	kfree(out);
1143 
1144 	*bytes_committed = 0;
1145 	return ret;
1146 }
1147 
1148 /*
1149  * Parse a series of data segments for page fault handling.
1150  *
1151  * @dev:  Pointer to mlx5 IB device
1152  * @pfault: contains page fault information.
1153  * @wqe: points at the first data segment in the WQE.
1154  * @wqe_end: points after the end of the WQE.
1155  * @bytes_mapped: receives the number of bytes that the function was able to
1156  *                map. This allows the caller to decide intelligently whether
1157  *                enough memory was mapped to resolve the page fault
1158  *                successfully (e.g. enough for the next MTU, or the entire
1159  *                WQE).
1160  * @total_wqe_bytes: receives the total data size of this WQE in bytes (minus
1161  *                   the committed bytes).
1162  * @receive_queue: receive WQE end of sg list
1163  *
1164  * Returns zero for success or a negative error code.
1165  */
pagefault_data_segments(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault,void * wqe,void * wqe_end,u32 * bytes_mapped,u32 * total_wqe_bytes,bool receive_queue)1166 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
1167 				   struct mlx5_pagefault *pfault,
1168 				   void *wqe,
1169 				   void *wqe_end, u32 *bytes_mapped,
1170 				   u32 *total_wqe_bytes, bool receive_queue)
1171 {
1172 	int ret = 0;
1173 	u64 io_virt;
1174 	__be32 key;
1175 	u32 byte_count;
1176 	size_t bcnt;
1177 	int inline_segment;
1178 
1179 	if (bytes_mapped)
1180 		*bytes_mapped = 0;
1181 	if (total_wqe_bytes)
1182 		*total_wqe_bytes = 0;
1183 
1184 	while (wqe < wqe_end) {
1185 		struct mlx5_wqe_data_seg *dseg = wqe;
1186 
1187 		io_virt = be64_to_cpu(dseg->addr);
1188 		key = dseg->lkey;
1189 		byte_count = be32_to_cpu(dseg->byte_count);
1190 		inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
1191 		bcnt	       = byte_count & ~MLX5_INLINE_SEG;
1192 
1193 		if (inline_segment) {
1194 			bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
1195 			wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
1196 				     16);
1197 		} else {
1198 			wqe += sizeof(*dseg);
1199 		}
1200 
1201 		/* receive WQE end of sg list. */
1202 		if (receive_queue && bcnt == 0 &&
1203 		    key == dev->mkeys.terminate_scatter_list_mkey &&
1204 		    io_virt == 0)
1205 			break;
1206 
1207 		if (!inline_segment && total_wqe_bytes) {
1208 			*total_wqe_bytes += bcnt - min_t(size_t, bcnt,
1209 					pfault->bytes_committed);
1210 		}
1211 
1212 		/* A zero length data segment designates a length of 2GB. */
1213 		if (bcnt == 0)
1214 			bcnt = 1U << 31;
1215 
1216 		if (inline_segment || bcnt <= pfault->bytes_committed) {
1217 			pfault->bytes_committed -=
1218 				min_t(size_t, bcnt,
1219 				      pfault->bytes_committed);
1220 			continue;
1221 		}
1222 
1223 		ret = pagefault_single_data_segment(dev, NULL, be32_to_cpu(key),
1224 						    io_virt, bcnt,
1225 						    &pfault->bytes_committed,
1226 						    bytes_mapped);
1227 		if (ret < 0)
1228 			break;
1229 	}
1230 
1231 	return ret;
1232 }
1233 
1234 /*
1235  * Parse initiator WQE. Advances the wqe pointer to point at the
1236  * scatter-gather list, and set wqe_end to the end of the WQE.
1237  */
mlx5_ib_mr_initiator_pfault_handler(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault,struct mlx5_ib_qp * qp,void ** wqe,void ** wqe_end,int wqe_length)1238 static int mlx5_ib_mr_initiator_pfault_handler(
1239 	struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1240 	struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1241 {
1242 	struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1243 	u16 wqe_index = pfault->wqe.wqe_index;
1244 	struct mlx5_base_av *av;
1245 	unsigned ds, opcode;
1246 	u32 qpn = qp->trans_qp.base.mqp.qpn;
1247 
1248 	ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1249 	if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1250 		mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1251 			    ds, wqe_length);
1252 		return -EFAULT;
1253 	}
1254 
1255 	if (ds == 0) {
1256 		mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1257 			    wqe_index, qpn);
1258 		return -EFAULT;
1259 	}
1260 
1261 	*wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1262 	*wqe += sizeof(*ctrl);
1263 
1264 	opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1265 		 MLX5_WQE_CTRL_OPCODE_MASK;
1266 
1267 	if (qp->type == IB_QPT_XRC_INI)
1268 		*wqe += sizeof(struct mlx5_wqe_xrc_seg);
1269 
1270 	if (qp->type == IB_QPT_UD || qp->type == MLX5_IB_QPT_DCI) {
1271 		av = *wqe;
1272 		if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1273 			*wqe += sizeof(struct mlx5_av);
1274 		else
1275 			*wqe += sizeof(struct mlx5_base_av);
1276 	}
1277 
1278 	switch (opcode) {
1279 	case MLX5_OPCODE_RDMA_WRITE:
1280 	case MLX5_OPCODE_RDMA_WRITE_IMM:
1281 	case MLX5_OPCODE_RDMA_READ:
1282 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1283 		break;
1284 	case MLX5_OPCODE_ATOMIC_CS:
1285 	case MLX5_OPCODE_ATOMIC_FA:
1286 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1287 		*wqe += sizeof(struct mlx5_wqe_atomic_seg);
1288 		break;
1289 	}
1290 
1291 	return 0;
1292 }
1293 
1294 /*
1295  * Parse responder WQE and set wqe_end to the end of the WQE.
1296  */
mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev * dev,struct mlx5_ib_srq * srq,void ** wqe,void ** wqe_end,int wqe_length)1297 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1298 						   struct mlx5_ib_srq *srq,
1299 						   void **wqe, void **wqe_end,
1300 						   int wqe_length)
1301 {
1302 	int wqe_size = 1 << srq->msrq.wqe_shift;
1303 
1304 	if (wqe_size > wqe_length) {
1305 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1306 		return -EFAULT;
1307 	}
1308 
1309 	*wqe_end = *wqe + wqe_size;
1310 	*wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1311 
1312 	return 0;
1313 }
1314 
mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev * dev,struct mlx5_ib_qp * qp,void * wqe,void ** wqe_end,int wqe_length)1315 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1316 						  struct mlx5_ib_qp *qp,
1317 						  void *wqe, void **wqe_end,
1318 						  int wqe_length)
1319 {
1320 	struct mlx5_ib_wq *wq = &qp->rq;
1321 	int wqe_size = 1 << wq->wqe_shift;
1322 
1323 	if (qp->flags_en & MLX5_QP_FLAG_SIGNATURE) {
1324 		mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1325 		return -EFAULT;
1326 	}
1327 
1328 	if (wqe_size > wqe_length) {
1329 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1330 		return -EFAULT;
1331 	}
1332 
1333 	*wqe_end = wqe + wqe_size;
1334 
1335 	return 0;
1336 }
1337 
odp_get_rsc(struct mlx5_ib_dev * dev,u32 wq_num,int pf_type)1338 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1339 						       u32 wq_num, int pf_type)
1340 {
1341 	struct mlx5_core_rsc_common *common = NULL;
1342 	struct mlx5_core_srq *srq;
1343 
1344 	switch (pf_type) {
1345 	case MLX5_WQE_PF_TYPE_RMP:
1346 		srq = mlx5_cmd_get_srq(dev, wq_num);
1347 		if (srq)
1348 			common = &srq->common;
1349 		break;
1350 	case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1351 	case MLX5_WQE_PF_TYPE_RESP:
1352 	case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1353 		common = mlx5_core_res_hold(dev, wq_num, MLX5_RES_QP);
1354 		break;
1355 	default:
1356 		break;
1357 	}
1358 
1359 	return common;
1360 }
1361 
res_to_qp(struct mlx5_core_rsc_common * res)1362 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1363 {
1364 	struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1365 
1366 	return to_mibqp(mqp);
1367 }
1368 
res_to_srq(struct mlx5_core_rsc_common * res)1369 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1370 {
1371 	struct mlx5_core_srq *msrq =
1372 		container_of(res, struct mlx5_core_srq, common);
1373 
1374 	return to_mibsrq(msrq);
1375 }
1376 
mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault)1377 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1378 					  struct mlx5_pagefault *pfault)
1379 {
1380 	bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
1381 	u16 wqe_index = pfault->wqe.wqe_index;
1382 	void *wqe, *wqe_start = NULL, *wqe_end = NULL;
1383 	u32 bytes_mapped, total_wqe_bytes;
1384 	struct mlx5_core_rsc_common *res;
1385 	int resume_with_error = 1;
1386 	struct mlx5_ib_qp *qp;
1387 	size_t bytes_copied;
1388 	int ret = 0;
1389 
1390 	res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1391 	if (!res) {
1392 		mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1393 		return;
1394 	}
1395 
1396 	if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
1397 	    res->res != MLX5_RES_XSRQ) {
1398 		mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
1399 			    pfault->type);
1400 		goto resolve_page_fault;
1401 	}
1402 
1403 	wqe_start = (void *)__get_free_page(GFP_KERNEL);
1404 	if (!wqe_start) {
1405 		mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1406 		goto resolve_page_fault;
1407 	}
1408 
1409 	wqe = wqe_start;
1410 	qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
1411 	if (qp && sq) {
1412 		ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
1413 					  &bytes_copied);
1414 		if (ret)
1415 			goto read_user;
1416 		ret = mlx5_ib_mr_initiator_pfault_handler(
1417 			dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
1418 	} else if (qp && !sq) {
1419 		ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
1420 					  &bytes_copied);
1421 		if (ret)
1422 			goto read_user;
1423 		ret = mlx5_ib_mr_responder_pfault_handler_rq(
1424 			dev, qp, wqe, &wqe_end, bytes_copied);
1425 	} else if (!qp) {
1426 		struct mlx5_ib_srq *srq = res_to_srq(res);
1427 
1428 		ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
1429 					   &bytes_copied);
1430 		if (ret)
1431 			goto read_user;
1432 		ret = mlx5_ib_mr_responder_pfault_handler_srq(
1433 			dev, srq, &wqe, &wqe_end, bytes_copied);
1434 	}
1435 
1436 	if (ret < 0 || wqe >= wqe_end)
1437 		goto resolve_page_fault;
1438 
1439 	ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
1440 				      &total_wqe_bytes, !sq);
1441 	if (ret == -EAGAIN)
1442 		goto out;
1443 
1444 	if (ret < 0 || total_wqe_bytes > bytes_mapped)
1445 		goto resolve_page_fault;
1446 
1447 out:
1448 	ret = 0;
1449 	resume_with_error = 0;
1450 
1451 read_user:
1452 	if (ret)
1453 		mlx5_ib_err(
1454 			dev,
1455 			"Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %llx\n",
1456 			ret, wqe_index, pfault->token);
1457 
1458 resolve_page_fault:
1459 	mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1460 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1461 		    pfault->wqe.wq_num, resume_with_error,
1462 		    pfault->type);
1463 	mlx5_core_res_put(res);
1464 	free_page((unsigned long)wqe_start);
1465 }
1466 
mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault)1467 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1468 					   struct mlx5_pagefault *pfault)
1469 {
1470 	u64 address;
1471 	u32 length;
1472 	u32 prefetch_len = pfault->bytes_committed;
1473 	int prefetch_activated = 0;
1474 	u32 rkey = pfault->rdma.r_key;
1475 	int ret;
1476 
1477 	/* The RDMA responder handler handles the page fault in two parts.
1478 	 * First it brings the necessary pages for the current packet
1479 	 * (and uses the pfault context), and then (after resuming the QP)
1480 	 * prefetches more pages. The second operation cannot use the pfault
1481 	 * context and therefore uses the dummy_pfault context allocated on
1482 	 * the stack */
1483 	pfault->rdma.rdma_va += pfault->bytes_committed;
1484 	pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1485 					 pfault->rdma.rdma_op_len);
1486 	pfault->bytes_committed = 0;
1487 
1488 	address = pfault->rdma.rdma_va;
1489 	length  = pfault->rdma.rdma_op_len;
1490 
1491 	/* For some operations, the hardware cannot tell the exact message
1492 	 * length, and in those cases it reports zero. Use prefetch
1493 	 * logic. */
1494 	if (length == 0) {
1495 		prefetch_activated = 1;
1496 		length = pfault->rdma.packet_size;
1497 		prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1498 	}
1499 
1500 	ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1501 					    &pfault->bytes_committed, NULL);
1502 	if (ret == -EAGAIN) {
1503 		/* We're racing with an invalidation, don't prefetch */
1504 		prefetch_activated = 0;
1505 	} else if (ret < 0) {
1506 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1507 		if (ret != -ENOENT)
1508 			mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%llx, type: 0x%x\n",
1509 				    ret, pfault->token, pfault->type);
1510 		return;
1511 	}
1512 
1513 	mlx5_ib_page_fault_resume(dev, pfault, 0);
1514 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%llx, type: 0x%x, prefetch_activated: %d\n",
1515 		    pfault->token, pfault->type,
1516 		    prefetch_activated);
1517 
1518 	/* At this point, there might be a new pagefault already arriving in
1519 	 * the eq, switch to the dummy pagefault for the rest of the
1520 	 * processing. We're still OK with the objects being alive as the
1521 	 * work-queue is being fenced. */
1522 
1523 	if (prefetch_activated) {
1524 		u32 bytes_committed = 0;
1525 
1526 		ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1527 						    prefetch_len,
1528 						    &bytes_committed, NULL);
1529 		if (ret < 0 && ret != -EAGAIN) {
1530 			mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%llx, address: 0x%.16llx, length = 0x%.16x\n",
1531 				    ret, pfault->token, address, prefetch_len);
1532 		}
1533 	}
1534 }
1535 
1536 #define MLX5_MEMORY_PAGE_FAULT_FLAGS_LAST BIT(7)
mlx5_ib_mr_memory_pfault_handler(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault)1537 static void mlx5_ib_mr_memory_pfault_handler(struct mlx5_ib_dev *dev,
1538 					     struct mlx5_pagefault *pfault)
1539 {
1540 	u64 prefetch_va =
1541 		pfault->memory.va - pfault->memory.prefetch_before_byte_count;
1542 	size_t prefetch_size = pfault->memory.prefetch_before_byte_count +
1543 			       pfault->memory.fault_byte_count +
1544 			       pfault->memory.prefetch_after_byte_count;
1545 	struct mlx5_ib_mkey *mmkey;
1546 	struct mlx5_ib_mr *mr, *child_mr;
1547 	int ret = 0;
1548 
1549 	mmkey = find_odp_mkey(dev, pfault->memory.mkey);
1550 	if (IS_ERR(mmkey))
1551 		goto err;
1552 
1553 	switch (mmkey->type) {
1554 	case MLX5_MKEY_IMPLICIT_CHILD:
1555 		child_mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1556 		mr = child_mr->parent;
1557 		break;
1558 	case MLX5_MKEY_NULL:
1559 		mr = container_of(mmkey, struct mlx5_ib_mr, null_mmkey);
1560 		break;
1561 	default:
1562 		mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1563 		break;
1564 	}
1565 
1566 	/* If prefetch fails, handle only demanded page fault */
1567 	ret = pagefault_mr(mr, prefetch_va, prefetch_size, NULL, 0, true);
1568 	if (ret < 0) {
1569 		ret = pagefault_mr(mr, pfault->memory.va,
1570 				   pfault->memory.fault_byte_count, NULL, 0,
1571 				   true);
1572 		if (ret < 0)
1573 			goto err;
1574 	}
1575 
1576 	mlx5_update_odp_stats_with_handled(mr, faults, ret);
1577 	mlx5r_deref_odp_mkey(mmkey);
1578 
1579 	if (pfault->memory.flags & MLX5_MEMORY_PAGE_FAULT_FLAGS_LAST)
1580 		mlx5_ib_page_fault_resume(dev, pfault, 0);
1581 
1582 	mlx5_ib_dbg(
1583 		dev,
1584 		"PAGE FAULT completed %s. token 0x%llx, mkey: 0x%x, va: 0x%llx, byte_count: 0x%x\n",
1585 		pfault->memory.flags & MLX5_MEMORY_PAGE_FAULT_FLAGS_LAST ?
1586 			"" :
1587 			"without resume cmd",
1588 		pfault->token, pfault->memory.mkey, pfault->memory.va,
1589 		pfault->memory.fault_byte_count);
1590 
1591 	return;
1592 
1593 err:
1594 	if (!IS_ERR(mmkey))
1595 		mlx5r_deref_odp_mkey(mmkey);
1596 	mlx5_ib_page_fault_resume(dev, pfault, 1);
1597 	mlx5_ib_dbg(
1598 		dev,
1599 		"PAGE FAULT error. token 0x%llx, mkey: 0x%x, va: 0x%llx, byte_count: 0x%x, err: %d\n",
1600 		pfault->token, pfault->memory.mkey, pfault->memory.va,
1601 		pfault->memory.fault_byte_count, ret);
1602 }
1603 
mlx5_ib_pfault(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault)1604 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1605 {
1606 	u8 event_subtype = pfault->event_subtype;
1607 
1608 	switch (event_subtype) {
1609 	case MLX5_PFAULT_SUBTYPE_WQE:
1610 		mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1611 		break;
1612 	case MLX5_PFAULT_SUBTYPE_RDMA:
1613 		mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1614 		break;
1615 	case MLX5_PFAULT_SUBTYPE_MEMORY:
1616 		mlx5_ib_mr_memory_pfault_handler(dev, pfault);
1617 		break;
1618 	default:
1619 		mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1620 			    event_subtype);
1621 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1622 	}
1623 }
1624 
mlx5_ib_eqe_pf_action(struct work_struct * work)1625 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1626 {
1627 	struct mlx5_pagefault *pfault = container_of(work,
1628 						     struct mlx5_pagefault,
1629 						     work);
1630 	struct mlx5_ib_pf_eq *eq = pfault->eq;
1631 
1632 	mlx5_ib_pfault(eq->dev, pfault);
1633 	mempool_free(pfault, eq->pool);
1634 }
1635 
1636 #define MEMORY_SCHEME_PAGE_FAULT_GRANULARITY 4096
mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq * eq)1637 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1638 {
1639 	struct mlx5_eqe_page_fault *pf_eqe;
1640 	struct mlx5_pagefault *pfault;
1641 	struct mlx5_eqe *eqe;
1642 	int cc = 0;
1643 
1644 	while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1645 		pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1646 		if (!pfault) {
1647 			schedule_work(&eq->work);
1648 			break;
1649 		}
1650 
1651 		pf_eqe = &eqe->data.page_fault;
1652 		pfault->event_subtype = eqe->sub_type;
1653 
1654 		switch (eqe->sub_type) {
1655 		case MLX5_PFAULT_SUBTYPE_RDMA:
1656 			/* RDMA based event */
1657 			pfault->bytes_committed =
1658 				be32_to_cpu(pf_eqe->rdma.bytes_committed);
1659 			pfault->type =
1660 				be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1661 			pfault->token =
1662 				be32_to_cpu(pf_eqe->rdma.pftype_token) &
1663 				MLX5_24BIT_MASK;
1664 			pfault->rdma.r_key =
1665 				be32_to_cpu(pf_eqe->rdma.r_key);
1666 			pfault->rdma.packet_size =
1667 				be16_to_cpu(pf_eqe->rdma.packet_length);
1668 			pfault->rdma.rdma_op_len =
1669 				be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1670 			pfault->rdma.rdma_va =
1671 				be64_to_cpu(pf_eqe->rdma.rdma_va);
1672 			mlx5_ib_dbg(
1673 				eq->dev,
1674 				"PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x, type:0x%x, token: 0x%06llx, r_key: 0x%08x\n",
1675 				eqe->sub_type, pfault->bytes_committed,
1676 				pfault->type, pfault->token,
1677 				pfault->rdma.r_key);
1678 			mlx5_ib_dbg(eq->dev,
1679 				    "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1680 				    pfault->rdma.rdma_op_len,
1681 				    pfault->rdma.rdma_va);
1682 			break;
1683 
1684 		case MLX5_PFAULT_SUBTYPE_WQE:
1685 			/* WQE based event */
1686 			pfault->bytes_committed =
1687 				be32_to_cpu(pf_eqe->wqe.bytes_committed);
1688 			pfault->type =
1689 				(be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1690 			pfault->token =
1691 				be32_to_cpu(pf_eqe->wqe.token);
1692 			pfault->wqe.wq_num =
1693 				be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1694 				MLX5_24BIT_MASK;
1695 			pfault->wqe.wqe_index =
1696 				be16_to_cpu(pf_eqe->wqe.wqe_index);
1697 			pfault->wqe.packet_size =
1698 				be16_to_cpu(pf_eqe->wqe.packet_length);
1699 			mlx5_ib_dbg(
1700 				eq->dev,
1701 				"PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x, type:0x%x, token: 0x%06llx, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1702 				eqe->sub_type, pfault->bytes_committed,
1703 				pfault->type, pfault->token, pfault->wqe.wq_num,
1704 				pfault->wqe.wqe_index);
1705 			break;
1706 
1707 		case MLX5_PFAULT_SUBTYPE_MEMORY:
1708 			/* Memory based event */
1709 			pfault->bytes_committed = 0;
1710 			pfault->token =
1711 				be32_to_cpu(pf_eqe->memory.token31_0) |
1712 				((u64)be16_to_cpu(pf_eqe->memory.token47_32)
1713 				 << 32);
1714 			pfault->memory.va = be64_to_cpu(pf_eqe->memory.va);
1715 			pfault->memory.mkey = be32_to_cpu(pf_eqe->memory.mkey);
1716 			pfault->memory.fault_byte_count = (be32_to_cpu(
1717 				pf_eqe->memory.demand_fault_pages) >> 12) *
1718 				MEMORY_SCHEME_PAGE_FAULT_GRANULARITY;
1719 			pfault->memory.prefetch_before_byte_count =
1720 				be16_to_cpu(
1721 					pf_eqe->memory.pre_demand_fault_pages) *
1722 				MEMORY_SCHEME_PAGE_FAULT_GRANULARITY;
1723 			pfault->memory.prefetch_after_byte_count =
1724 				be16_to_cpu(
1725 					pf_eqe->memory.post_demand_fault_pages) *
1726 				MEMORY_SCHEME_PAGE_FAULT_GRANULARITY;
1727 			pfault->memory.flags = pf_eqe->memory.flags;
1728 			mlx5_ib_dbg(
1729 				eq->dev,
1730 				"PAGE_FAULT: subtype: 0x%02x, token: 0x%06llx, mkey: 0x%06x, fault_byte_count: 0x%06x, va: 0x%016llx, flags: 0x%02x\n",
1731 				eqe->sub_type, pfault->token,
1732 				pfault->memory.mkey,
1733 				pfault->memory.fault_byte_count,
1734 				pfault->memory.va, pfault->memory.flags);
1735 			mlx5_ib_dbg(
1736 				eq->dev,
1737 				"PAGE_FAULT: prefetch size: before: 0x%06x, after 0x%06x\n",
1738 				pfault->memory.prefetch_before_byte_count,
1739 				pfault->memory.prefetch_after_byte_count);
1740 			break;
1741 
1742 		default:
1743 			mlx5_ib_warn(eq->dev,
1744 				     "Unsupported page fault event sub-type: 0x%02hhx\n",
1745 				     eqe->sub_type);
1746 			/* Unsupported page faults should still be
1747 			 * resolved by the page fault handler
1748 			 */
1749 		}
1750 
1751 		pfault->eq = eq;
1752 		INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1753 		queue_work(eq->wq, &pfault->work);
1754 
1755 		cc = mlx5_eq_update_cc(eq->core, ++cc);
1756 	}
1757 
1758 	mlx5_eq_update_ci(eq->core, cc, 1);
1759 }
1760 
mlx5_ib_eq_pf_int(struct notifier_block * nb,unsigned long type,void * data)1761 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
1762 			     void *data)
1763 {
1764 	struct mlx5_ib_pf_eq *eq =
1765 		container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
1766 	unsigned long flags;
1767 
1768 	if (spin_trylock_irqsave(&eq->lock, flags)) {
1769 		mlx5_ib_eq_pf_process(eq);
1770 		spin_unlock_irqrestore(&eq->lock, flags);
1771 	} else {
1772 		schedule_work(&eq->work);
1773 	}
1774 
1775 	return IRQ_HANDLED;
1776 }
1777 
1778 /* mempool_refill() was proposed but unfortunately wasn't accepted
1779  * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1780  * Cheap workaround.
1781  */
mempool_refill(mempool_t * pool)1782 static void mempool_refill(mempool_t *pool)
1783 {
1784 	while (pool->curr_nr < pool->min_nr)
1785 		mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1786 }
1787 
mlx5_ib_eq_pf_action(struct work_struct * work)1788 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1789 {
1790 	struct mlx5_ib_pf_eq *eq =
1791 		container_of(work, struct mlx5_ib_pf_eq, work);
1792 
1793 	mempool_refill(eq->pool);
1794 
1795 	spin_lock_irq(&eq->lock);
1796 	mlx5_ib_eq_pf_process(eq);
1797 	spin_unlock_irq(&eq->lock);
1798 }
1799 
1800 enum {
1801 	MLX5_IB_NUM_PF_EQE	= 0x1000,
1802 	MLX5_IB_NUM_PF_DRAIN	= 64,
1803 };
1804 
mlx5r_odp_create_eq(struct mlx5_ib_dev * dev,struct mlx5_ib_pf_eq * eq)1805 int mlx5r_odp_create_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1806 {
1807 	struct mlx5_eq_param param = {};
1808 	int err = 0;
1809 
1810 	mutex_lock(&dev->odp_eq_mutex);
1811 	if (eq->core)
1812 		goto unlock;
1813 	INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1814 	spin_lock_init(&eq->lock);
1815 	eq->dev = dev;
1816 
1817 	eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1818 					       sizeof(struct mlx5_pagefault));
1819 	if (!eq->pool) {
1820 		err = -ENOMEM;
1821 		goto unlock;
1822 	}
1823 
1824 	eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1825 				 WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1826 				 MLX5_NUM_CMD_EQE);
1827 	if (!eq->wq) {
1828 		err = -ENOMEM;
1829 		goto err_mempool;
1830 	}
1831 
1832 	eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
1833 	param = (struct mlx5_eq_param) {
1834 		.nent = MLX5_IB_NUM_PF_EQE,
1835 	};
1836 	param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
1837 	eq->core = mlx5_eq_create_generic(dev->mdev, &param);
1838 	if (IS_ERR(eq->core)) {
1839 		err = PTR_ERR(eq->core);
1840 		goto err_wq;
1841 	}
1842 	err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
1843 	if (err) {
1844 		mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
1845 		goto err_eq;
1846 	}
1847 
1848 	mutex_unlock(&dev->odp_eq_mutex);
1849 	return 0;
1850 err_eq:
1851 	mlx5_eq_destroy_generic(dev->mdev, eq->core);
1852 err_wq:
1853 	eq->core = NULL;
1854 	destroy_workqueue(eq->wq);
1855 err_mempool:
1856 	mempool_destroy(eq->pool);
1857 unlock:
1858 	mutex_unlock(&dev->odp_eq_mutex);
1859 	return err;
1860 }
1861 
1862 static int
mlx5_ib_odp_destroy_eq(struct mlx5_ib_dev * dev,struct mlx5_ib_pf_eq * eq)1863 mlx5_ib_odp_destroy_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1864 {
1865 	int err;
1866 
1867 	if (!eq->core)
1868 		return 0;
1869 	mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
1870 	err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1871 	cancel_work_sync(&eq->work);
1872 	destroy_workqueue(eq->wq);
1873 	mempool_destroy(eq->pool);
1874 
1875 	return err;
1876 }
1877 
mlx5_odp_init_mkey_cache(struct mlx5_ib_dev * dev)1878 int mlx5_odp_init_mkey_cache(struct mlx5_ib_dev *dev)
1879 {
1880 	struct mlx5r_cache_rb_key rb_key = {
1881 		.access_mode = MLX5_MKC_ACCESS_MODE_KSM,
1882 		.ndescs = mlx5_imr_ksm_entries,
1883 		.ph = MLX5_IB_NO_PH,
1884 	};
1885 	struct mlx5_cache_ent *ent;
1886 
1887 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1888 		return 0;
1889 
1890 	ent = mlx5r_cache_create_ent_locked(dev, rb_key, true);
1891 	if (IS_ERR(ent))
1892 		return PTR_ERR(ent);
1893 
1894 	return 0;
1895 }
1896 
1897 static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1898 	.advise_mr = mlx5_ib_advise_mr,
1899 };
1900 
mlx5_ib_odp_init_one(struct mlx5_ib_dev * dev)1901 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1902 {
1903 	internal_fill_odp_caps(dev);
1904 
1905 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1906 		return 0;
1907 
1908 	ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1909 
1910 	mutex_init(&dev->odp_eq_mutex);
1911 	return 0;
1912 }
1913 
mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev * dev)1914 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1915 {
1916 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1917 		return;
1918 
1919 	mlx5_ib_odp_destroy_eq(dev, &dev->odp_pf_eq);
1920 }
1921 
mlx5_ib_odp_init(void)1922 int mlx5_ib_odp_init(void)
1923 {
1924 	u32 log_va_pages = ilog2(TASK_SIZE) - PAGE_SHIFT;
1925 	u8 mlx5_imr_mtt_bits;
1926 
1927 	/* 48 is default ARM64 VA space and covers X86 4-level paging which is 47 */
1928 	if (log_va_pages <= 48 - PAGE_SHIFT)
1929 		mlx5_imr_mtt_shift = 30;
1930 	/* 56 is x86-64, 5-level paging */
1931 	else if (log_va_pages <= 56 - PAGE_SHIFT)
1932 		mlx5_imr_mtt_shift = 34;
1933 	else
1934 		return 0;
1935 
1936 	mlx5_imr_mtt_size = BIT_ULL(mlx5_imr_mtt_shift);
1937 	mlx5_imr_mtt_bits = mlx5_imr_mtt_shift - PAGE_SHIFT;
1938 	mlx5_imr_mtt_entries = BIT_ULL(mlx5_imr_mtt_bits);
1939 	mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1940 				       mlx5_imr_mtt_bits);
1941 
1942 	mlx5_imr_ksm_page_shift = mlx5_imr_mtt_shift;
1943 	return 0;
1944 }
1945 
1946 struct prefetch_mr_work {
1947 	struct work_struct work;
1948 	u32 pf_flags;
1949 	u32 num_sge;
1950 	struct {
1951 		u64 io_virt;
1952 		struct mlx5_ib_mr *mr;
1953 		size_t length;
1954 	} frags[];
1955 };
1956 
destroy_prefetch_work(struct prefetch_mr_work * work)1957 static void destroy_prefetch_work(struct prefetch_mr_work *work)
1958 {
1959 	u32 i;
1960 
1961 	for (i = 0; i < work->num_sge; ++i)
1962 		mlx5r_deref_odp_mkey(&work->frags[i].mr->mmkey);
1963 
1964 	kvfree(work);
1965 }
1966 
1967 static struct mlx5_ib_mr *
get_prefetchable_mr(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 lkey)1968 get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
1969 		    u32 lkey)
1970 {
1971 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1972 	struct mlx5_ib_mr *mr = NULL;
1973 	struct mlx5_ib_mkey *mmkey;
1974 
1975 	xa_lock(&dev->odp_mkeys);
1976 	mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey));
1977 	if (!mmkey || mmkey->key != lkey) {
1978 		mr = ERR_PTR(-ENOENT);
1979 		goto end;
1980 	}
1981 	if (mmkey->type != MLX5_MKEY_MR) {
1982 		mr = ERR_PTR(-EINVAL);
1983 		goto end;
1984 	}
1985 
1986 	mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1987 
1988 	if (mr->ibmr.pd != pd) {
1989 		mr = ERR_PTR(-EPERM);
1990 		goto end;
1991 	}
1992 
1993 	/* prefetch with write-access must be supported by the MR */
1994 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1995 	    !mr->umem->writable) {
1996 		mr = ERR_PTR(-EPERM);
1997 		goto end;
1998 	}
1999 
2000 	refcount_inc(&mmkey->usecount);
2001 end:
2002 	xa_unlock(&dev->odp_mkeys);
2003 	return mr;
2004 }
2005 
mlx5_ib_prefetch_mr_work(struct work_struct * w)2006 static void mlx5_ib_prefetch_mr_work(struct work_struct *w)
2007 {
2008 	struct prefetch_mr_work *work =
2009 		container_of(w, struct prefetch_mr_work, work);
2010 	u32 bytes_mapped = 0;
2011 	int ret;
2012 	u32 i;
2013 
2014 	/* We rely on IB/core that work is executed if we have num_sge != 0 only. */
2015 	WARN_ON(!work->num_sge);
2016 	for (i = 0; i < work->num_sge; ++i) {
2017 		ret = pagefault_mr(work->frags[i].mr, work->frags[i].io_virt,
2018 				   work->frags[i].length, &bytes_mapped,
2019 				   work->pf_flags, false);
2020 		if (ret <= 0)
2021 			continue;
2022 		mlx5_update_odp_stats(work->frags[i].mr, prefetch, ret);
2023 	}
2024 
2025 	destroy_prefetch_work(work);
2026 }
2027 
init_prefetch_work(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 pf_flags,struct prefetch_mr_work * work,struct ib_sge * sg_list,u32 num_sge)2028 static int init_prefetch_work(struct ib_pd *pd,
2029 			       enum ib_uverbs_advise_mr_advice advice,
2030 			       u32 pf_flags, struct prefetch_mr_work *work,
2031 			       struct ib_sge *sg_list, u32 num_sge)
2032 {
2033 	u32 i;
2034 
2035 	INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
2036 	work->pf_flags = pf_flags;
2037 
2038 	for (i = 0; i < num_sge; ++i) {
2039 		struct mlx5_ib_mr *mr;
2040 
2041 		mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
2042 		if (IS_ERR(mr)) {
2043 			work->num_sge = i;
2044 			return PTR_ERR(mr);
2045 		}
2046 		work->frags[i].io_virt = sg_list[i].addr;
2047 		work->frags[i].length = sg_list[i].length;
2048 		work->frags[i].mr = mr;
2049 	}
2050 	work->num_sge = num_sge;
2051 	return 0;
2052 }
2053 
mlx5_ib_prefetch_sg_list(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 pf_flags,struct ib_sge * sg_list,u32 num_sge)2054 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd,
2055 				    enum ib_uverbs_advise_mr_advice advice,
2056 				    u32 pf_flags, struct ib_sge *sg_list,
2057 				    u32 num_sge)
2058 {
2059 	u32 bytes_mapped = 0;
2060 	int ret = 0;
2061 	u32 i;
2062 
2063 	for (i = 0; i < num_sge; ++i) {
2064 		struct mlx5_ib_mr *mr;
2065 
2066 		mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
2067 		if (IS_ERR(mr))
2068 			return PTR_ERR(mr);
2069 		ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length,
2070 				   &bytes_mapped, pf_flags, false);
2071 		if (ret < 0) {
2072 			mlx5r_deref_odp_mkey(&mr->mmkey);
2073 			return ret;
2074 		}
2075 		mlx5_update_odp_stats(mr, prefetch, ret);
2076 		mlx5r_deref_odp_mkey(&mr->mmkey);
2077 	}
2078 
2079 	return 0;
2080 }
2081 
mlx5_ib_advise_mr_prefetch(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 flags,struct ib_sge * sg_list,u32 num_sge)2082 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
2083 			       enum ib_uverbs_advise_mr_advice advice,
2084 			       u32 flags, struct ib_sge *sg_list, u32 num_sge)
2085 {
2086 	u32 pf_flags = 0;
2087 	struct prefetch_mr_work *work;
2088 	int rc;
2089 
2090 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
2091 		pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
2092 
2093 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
2094 		pf_flags |= MLX5_PF_FLAGS_SNAPSHOT;
2095 
2096 	if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
2097 		return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list,
2098 						num_sge);
2099 
2100 	work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL);
2101 	if (!work)
2102 		return -ENOMEM;
2103 
2104 	rc = init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge);
2105 	if (rc) {
2106 		destroy_prefetch_work(work);
2107 		return rc;
2108 	}
2109 	queue_work(system_dfl_wq, &work->work);
2110 	return 0;
2111 }
2112