1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Pressure stall information for CPU, memory and IO
4 *
5 * Copyright (c) 2018 Facebook, Inc.
6 * Author: Johannes Weiner <hannes@cmpxchg.org>
7 *
8 * Polling support by Suren Baghdasaryan <surenb@google.com>
9 * Copyright (c) 2018 Google, Inc.
10 *
11 * When CPU, memory and IO are contended, tasks experience delays that
12 * reduce throughput and introduce latencies into the workload. Memory
13 * and IO contention, in addition, can cause a full loss of forward
14 * progress in which the CPU goes idle.
15 *
16 * This code aggregates individual task delays into resource pressure
17 * metrics that indicate problems with both workload health and
18 * resource utilization.
19 *
20 * Model
21 *
22 * The time in which a task can execute on a CPU is our baseline for
23 * productivity. Pressure expresses the amount of time in which this
24 * potential cannot be realized due to resource contention.
25 *
26 * This concept of productivity has two components: the workload and
27 * the CPU. To measure the impact of pressure on both, we define two
28 * contention states for a resource: SOME and FULL.
29 *
30 * In the SOME state of a given resource, one or more tasks are
31 * delayed on that resource. This affects the workload's ability to
32 * perform work, but the CPU may still be executing other tasks.
33 *
34 * In the FULL state of a given resource, all non-idle tasks are
35 * delayed on that resource such that nobody is advancing and the CPU
36 * goes idle. This leaves both workload and CPU unproductive.
37 *
38 * SOME = nr_delayed_tasks != 0
39 * FULL = nr_delayed_tasks != 0 && nr_productive_tasks == 0
40 *
41 * What it means for a task to be productive is defined differently
42 * for each resource. For IO, productive means a running task. For
43 * memory, productive means a running task that isn't a reclaimer. For
44 * CPU, productive means an on-CPU task.
45 *
46 * Naturally, the FULL state doesn't exist for the CPU resource at the
47 * system level, but exist at the cgroup level. At the cgroup level,
48 * FULL means all non-idle tasks in the cgroup are delayed on the CPU
49 * resource which is being used by others outside of the cgroup or
50 * throttled by the cgroup cpu.max configuration.
51 *
52 * The percentage of wall clock time spent in those compound stall
53 * states gives pressure numbers between 0 and 100 for each resource,
54 * where the SOME percentage indicates workload slowdowns and the FULL
55 * percentage indicates reduced CPU utilization:
56 *
57 * %SOME = time(SOME) / period
58 * %FULL = time(FULL) / period
59 *
60 * Multiple CPUs
61 *
62 * The more tasks and available CPUs there are, the more work can be
63 * performed concurrently. This means that the potential that can go
64 * unrealized due to resource contention *also* scales with non-idle
65 * tasks and CPUs.
66 *
67 * Consider a scenario where 257 number crunching tasks are trying to
68 * run concurrently on 256 CPUs. If we simply aggregated the task
69 * states, we would have to conclude a CPU SOME pressure number of
70 * 100%, since *somebody* is waiting on a runqueue at all
71 * times. However, that is clearly not the amount of contention the
72 * workload is experiencing: only one out of 256 possible execution
73 * threads will be contended at any given time, or about 0.4%.
74 *
75 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
76 * given time *one* of the tasks is delayed due to a lack of memory.
77 * Again, looking purely at the task state would yield a memory FULL
78 * pressure number of 0%, since *somebody* is always making forward
79 * progress. But again this wouldn't capture the amount of execution
80 * potential lost, which is 1 out of 4 CPUs, or 25%.
81 *
82 * To calculate wasted potential (pressure) with multiple processors,
83 * we have to base our calculation on the number of non-idle tasks in
84 * conjunction with the number of available CPUs, which is the number
85 * of potential execution threads. SOME becomes then the proportion of
86 * delayed tasks to possible threads, and FULL is the share of possible
87 * threads that are unproductive due to delays:
88 *
89 * threads = min(nr_nonidle_tasks, nr_cpus)
90 * SOME = min(nr_delayed_tasks / threads, 1)
91 * FULL = (threads - min(nr_productive_tasks, threads)) / threads
92 *
93 * For the 257 number crunchers on 256 CPUs, this yields:
94 *
95 * threads = min(257, 256)
96 * SOME = min(1 / 256, 1) = 0.4%
97 * FULL = (256 - min(256, 256)) / 256 = 0%
98 *
99 * For the 1 out of 4 memory-delayed tasks, this yields:
100 *
101 * threads = min(4, 4)
102 * SOME = min(1 / 4, 1) = 25%
103 * FULL = (4 - min(3, 4)) / 4 = 25%
104 *
105 * [ Substitute nr_cpus with 1, and you can see that it's a natural
106 * extension of the single-CPU model. ]
107 *
108 * Implementation
109 *
110 * To assess the precise time spent in each such state, we would have
111 * to freeze the system on task changes and start/stop the state
112 * clocks accordingly. Obviously that doesn't scale in practice.
113 *
114 * Because the scheduler aims to distribute the compute load evenly
115 * among the available CPUs, we can track task state locally to each
116 * CPU and, at much lower frequency, extrapolate the global state for
117 * the cumulative stall times and the running averages.
118 *
119 * For each runqueue, we track:
120 *
121 * tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
122 * tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_productive_tasks[cpu])
123 * tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
124 *
125 * and then periodically aggregate:
126 *
127 * tNONIDLE = sum(tNONIDLE[i])
128 *
129 * tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
130 * tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
131 *
132 * %SOME = tSOME / period
133 * %FULL = tFULL / period
134 *
135 * This gives us an approximation of pressure that is practical
136 * cost-wise, yet way more sensitive and accurate than periodic
137 * sampling of the aggregate task states would be.
138 */
139 #include <linux/sched/clock.h>
140 #include <linux/workqueue.h>
141 #include <linux/psi.h>
142 #include "sched.h"
143
144 static int psi_bug __read_mostly;
145
146 DEFINE_STATIC_KEY_FALSE(psi_disabled);
147 static DEFINE_STATIC_KEY_TRUE(psi_cgroups_enabled);
148
149 #ifdef CONFIG_PSI_DEFAULT_DISABLED
150 static bool psi_enable;
151 #else
152 static bool psi_enable = true;
153 #endif
setup_psi(char * str)154 static int __init setup_psi(char *str)
155 {
156 return kstrtobool(str, &psi_enable) == 0;
157 }
158 __setup("psi=", setup_psi);
159
160 /* Running averages - we need to be higher-res than loadavg */
161 #define PSI_FREQ (2*HZ+1) /* 2 sec intervals */
162 #define EXP_10s 1677 /* 1/exp(2s/10s) as fixed-point */
163 #define EXP_60s 1981 /* 1/exp(2s/60s) */
164 #define EXP_300s 2034 /* 1/exp(2s/300s) */
165
166 /* PSI trigger definitions */
167 #define WINDOW_MAX_US 10000000 /* Max window size is 10s */
168 #define UPDATES_PER_WINDOW 10 /* 10 updates per window */
169
170 /* Sampling frequency in nanoseconds */
171 static u64 psi_period __read_mostly;
172
173 /* System-level pressure and stall tracking */
174 static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
175 struct psi_group psi_system = {
176 .pcpu = &system_group_pcpu,
177 };
178
179 static DEFINE_PER_CPU(seqcount_t, psi_seq) = SEQCNT_ZERO(psi_seq);
180
psi_write_begin(int cpu)181 static inline void psi_write_begin(int cpu)
182 {
183 write_seqcount_begin(per_cpu_ptr(&psi_seq, cpu));
184 }
185
psi_write_end(int cpu)186 static inline void psi_write_end(int cpu)
187 {
188 write_seqcount_end(per_cpu_ptr(&psi_seq, cpu));
189 }
190
psi_read_begin(int cpu)191 static inline u32 psi_read_begin(int cpu)
192 {
193 return read_seqcount_begin(per_cpu_ptr(&psi_seq, cpu));
194 }
195
psi_read_retry(int cpu,u32 seq)196 static inline bool psi_read_retry(int cpu, u32 seq)
197 {
198 return read_seqcount_retry(per_cpu_ptr(&psi_seq, cpu), seq);
199 }
200
201 static void psi_avgs_work(struct work_struct *work);
202
203 static void poll_timer_fn(struct timer_list *t);
204
group_init(struct psi_group * group)205 static void group_init(struct psi_group *group)
206 {
207 group->enabled = true;
208 group->avg_last_update = sched_clock();
209 group->avg_next_update = group->avg_last_update + psi_period;
210 mutex_init(&group->avgs_lock);
211
212 /* Init avg trigger-related members */
213 INIT_LIST_HEAD(&group->avg_triggers);
214 memset(group->avg_nr_triggers, 0, sizeof(group->avg_nr_triggers));
215 INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work);
216
217 /* Init rtpoll trigger-related members */
218 atomic_set(&group->rtpoll_scheduled, 0);
219 mutex_init(&group->rtpoll_trigger_lock);
220 INIT_LIST_HEAD(&group->rtpoll_triggers);
221 group->rtpoll_min_period = U32_MAX;
222 group->rtpoll_next_update = ULLONG_MAX;
223 init_waitqueue_head(&group->rtpoll_wait);
224 timer_setup(&group->rtpoll_timer, poll_timer_fn, 0);
225 rcu_assign_pointer(group->rtpoll_task, NULL);
226 }
227
psi_init(void)228 void __init psi_init(void)
229 {
230 if (!psi_enable) {
231 static_branch_enable(&psi_disabled);
232 static_branch_disable(&psi_cgroups_enabled);
233 return;
234 }
235
236 if (!cgroup_psi_enabled())
237 static_branch_disable(&psi_cgroups_enabled);
238
239 psi_period = jiffies_to_nsecs(PSI_FREQ);
240 group_init(&psi_system);
241 }
242
test_states(unsigned int * tasks,u32 state_mask)243 static u32 test_states(unsigned int *tasks, u32 state_mask)
244 {
245 const bool oncpu = state_mask & PSI_ONCPU;
246
247 if (tasks[NR_IOWAIT]) {
248 state_mask |= BIT(PSI_IO_SOME);
249 if (!tasks[NR_RUNNING])
250 state_mask |= BIT(PSI_IO_FULL);
251 }
252
253 if (tasks[NR_MEMSTALL]) {
254 state_mask |= BIT(PSI_MEM_SOME);
255 if (tasks[NR_RUNNING] == tasks[NR_MEMSTALL_RUNNING])
256 state_mask |= BIT(PSI_MEM_FULL);
257 }
258
259 if (tasks[NR_RUNNING] > oncpu)
260 state_mask |= BIT(PSI_CPU_SOME);
261
262 if (tasks[NR_RUNNING] && !oncpu)
263 state_mask |= BIT(PSI_CPU_FULL);
264
265 if (tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] || tasks[NR_RUNNING])
266 state_mask |= BIT(PSI_NONIDLE);
267
268 return state_mask;
269 }
270
get_recent_times(struct psi_group * group,int cpu,enum psi_aggregators aggregator,u32 * times,u32 * pchanged_states)271 static void get_recent_times(struct psi_group *group, int cpu,
272 enum psi_aggregators aggregator, u32 *times,
273 u32 *pchanged_states)
274 {
275 struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
276 int current_cpu = raw_smp_processor_id();
277 unsigned int tasks[NR_PSI_TASK_COUNTS];
278 u64 now, state_start;
279 enum psi_states s;
280 unsigned int seq;
281 u32 state_mask;
282
283 *pchanged_states = 0;
284
285 /* Snapshot a coherent view of the CPU state */
286 do {
287 seq = psi_read_begin(cpu);
288 now = cpu_clock(cpu);
289 memcpy(times, groupc->times, sizeof(groupc->times));
290 state_mask = groupc->state_mask;
291 state_start = groupc->state_start;
292 if (cpu == current_cpu)
293 memcpy(tasks, groupc->tasks, sizeof(groupc->tasks));
294 } while (psi_read_retry(cpu, seq));
295
296 /* Calculate state time deltas against the previous snapshot */
297 for (s = 0; s < NR_PSI_STATES; s++) {
298 u32 delta;
299 /*
300 * In addition to already concluded states, we also
301 * incorporate currently active states on the CPU,
302 * since states may last for many sampling periods.
303 *
304 * This way we keep our delta sampling buckets small
305 * (u32) and our reported pressure close to what's
306 * actually happening.
307 */
308 if (state_mask & (1 << s))
309 times[s] += now - state_start;
310
311 delta = times[s] - groupc->times_prev[aggregator][s];
312 groupc->times_prev[aggregator][s] = times[s];
313
314 times[s] = delta;
315 if (delta)
316 *pchanged_states |= (1 << s);
317 }
318
319 /*
320 * When collect_percpu_times() from the avgs_work, we don't want to
321 * re-arm avgs_work when all CPUs are IDLE. But the current CPU running
322 * this avgs_work is never IDLE, cause avgs_work can't be shut off.
323 * So for the current CPU, we need to re-arm avgs_work only when
324 * (NR_RUNNING > 1 || NR_IOWAIT > 0 || NR_MEMSTALL > 0), for other CPUs
325 * we can just check PSI_NONIDLE delta.
326 */
327 if (current_work() == &group->avgs_work.work) {
328 bool reschedule;
329
330 if (cpu == current_cpu)
331 reschedule = tasks[NR_RUNNING] +
332 tasks[NR_IOWAIT] +
333 tasks[NR_MEMSTALL] > 1;
334 else
335 reschedule = *pchanged_states & (1 << PSI_NONIDLE);
336
337 if (reschedule)
338 *pchanged_states |= PSI_STATE_RESCHEDULE;
339 }
340 }
341
calc_avgs(unsigned long avg[3],int missed_periods,u64 time,u64 period)342 static void calc_avgs(unsigned long avg[3], int missed_periods,
343 u64 time, u64 period)
344 {
345 unsigned long pct;
346
347 /* Fill in zeroes for periods of no activity */
348 if (missed_periods) {
349 avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
350 avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
351 avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
352 }
353
354 /* Sample the most recent active period */
355 pct = div_u64(time * 100, period);
356 pct *= FIXED_1;
357 avg[0] = calc_load(avg[0], EXP_10s, pct);
358 avg[1] = calc_load(avg[1], EXP_60s, pct);
359 avg[2] = calc_load(avg[2], EXP_300s, pct);
360 }
361
collect_percpu_times(struct psi_group * group,enum psi_aggregators aggregator,u32 * pchanged_states)362 static void collect_percpu_times(struct psi_group *group,
363 enum psi_aggregators aggregator,
364 u32 *pchanged_states)
365 {
366 u64 deltas[NR_PSI_STATES - 1] = { 0, };
367 unsigned long nonidle_total = 0;
368 u32 changed_states = 0;
369 int cpu;
370 int s;
371
372 /*
373 * Collect the per-cpu time buckets and average them into a
374 * single time sample that is normalized to wall clock time.
375 *
376 * For averaging, each CPU is weighted by its non-idle time in
377 * the sampling period. This eliminates artifacts from uneven
378 * loading, or even entirely idle CPUs.
379 */
380 for_each_possible_cpu(cpu) {
381 u32 times[NR_PSI_STATES];
382 u32 nonidle;
383 u32 cpu_changed_states;
384
385 get_recent_times(group, cpu, aggregator, times,
386 &cpu_changed_states);
387 changed_states |= cpu_changed_states;
388
389 nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
390 nonidle_total += nonidle;
391
392 for (s = 0; s < PSI_NONIDLE; s++)
393 deltas[s] += (u64)times[s] * nonidle;
394 }
395
396 /*
397 * Integrate the sample into the running statistics that are
398 * reported to userspace: the cumulative stall times and the
399 * decaying averages.
400 *
401 * Pressure percentages are sampled at PSI_FREQ. We might be
402 * called more often when the user polls more frequently than
403 * that; we might be called less often when there is no task
404 * activity, thus no data, and clock ticks are sporadic. The
405 * below handles both.
406 */
407
408 /* total= */
409 for (s = 0; s < NR_PSI_STATES - 1; s++)
410 group->total[aggregator][s] +=
411 div_u64(deltas[s], max(nonidle_total, 1UL));
412
413 if (pchanged_states)
414 *pchanged_states = changed_states;
415 }
416
417 /* Trigger tracking window manipulations */
window_reset(struct psi_window * win,u64 now,u64 value,u64 prev_growth)418 static void window_reset(struct psi_window *win, u64 now, u64 value,
419 u64 prev_growth)
420 {
421 win->start_time = now;
422 win->start_value = value;
423 win->prev_growth = prev_growth;
424 }
425
426 /*
427 * PSI growth tracking window update and growth calculation routine.
428 *
429 * This approximates a sliding tracking window by interpolating
430 * partially elapsed windows using historical growth data from the
431 * previous intervals. This minimizes memory requirements (by not storing
432 * all the intermediate values in the previous window) and simplifies
433 * the calculations. It works well because PSI signal changes only in
434 * positive direction and over relatively small window sizes the growth
435 * is close to linear.
436 */
window_update(struct psi_window * win,u64 now,u64 value)437 static u64 window_update(struct psi_window *win, u64 now, u64 value)
438 {
439 u64 elapsed;
440 u64 growth;
441
442 elapsed = now - win->start_time;
443 growth = value - win->start_value;
444 /*
445 * After each tracking window passes win->start_value and
446 * win->start_time get reset and win->prev_growth stores
447 * the average per-window growth of the previous window.
448 * win->prev_growth is then used to interpolate additional
449 * growth from the previous window assuming it was linear.
450 */
451 if (elapsed > win->size)
452 window_reset(win, now, value, growth);
453 else {
454 u32 remaining;
455
456 remaining = win->size - elapsed;
457 growth += div64_u64(win->prev_growth * remaining, win->size);
458 }
459
460 return growth;
461 }
462
update_triggers(struct psi_group * group,u64 now,enum psi_aggregators aggregator)463 static void update_triggers(struct psi_group *group, u64 now,
464 enum psi_aggregators aggregator)
465 {
466 struct psi_trigger *t;
467 u64 *total = group->total[aggregator];
468 struct list_head *triggers;
469 u64 *aggregator_total;
470
471 if (aggregator == PSI_AVGS) {
472 triggers = &group->avg_triggers;
473 aggregator_total = group->avg_total;
474 } else {
475 triggers = &group->rtpoll_triggers;
476 aggregator_total = group->rtpoll_total;
477 }
478
479 /*
480 * On subsequent updates, calculate growth deltas and let
481 * watchers know when their specified thresholds are exceeded.
482 */
483 list_for_each_entry(t, triggers, node) {
484 u64 growth;
485 bool new_stall;
486
487 new_stall = aggregator_total[t->state] != total[t->state];
488
489 /* Check for stall activity or a previous threshold breach */
490 if (!new_stall && !t->pending_event)
491 continue;
492 /*
493 * Check for new stall activity, as well as deferred
494 * events that occurred in the last window after the
495 * trigger had already fired (we want to ratelimit
496 * events without dropping any).
497 */
498 if (new_stall) {
499 /* Calculate growth since last update */
500 growth = window_update(&t->win, now, total[t->state]);
501 if (!t->pending_event) {
502 if (growth < t->threshold)
503 continue;
504
505 t->pending_event = true;
506 }
507 }
508 /* Limit event signaling to once per window */
509 if (now < t->last_event_time + t->win.size)
510 continue;
511
512 /* Generate an event */
513 if (cmpxchg(&t->event, 0, 1) == 0) {
514 if (t->of)
515 kernfs_notify(t->of->kn);
516 else
517 wake_up_interruptible(&t->event_wait);
518 }
519 t->last_event_time = now;
520 /* Reset threshold breach flag once event got generated */
521 t->pending_event = false;
522 }
523 }
524
update_averages(struct psi_group * group,u64 now)525 static u64 update_averages(struct psi_group *group, u64 now)
526 {
527 unsigned long missed_periods = 0;
528 u64 expires, period;
529 u64 avg_next_update;
530 int s;
531
532 /* avgX= */
533 expires = group->avg_next_update;
534 if (now - expires >= psi_period)
535 missed_periods = div_u64(now - expires, psi_period);
536
537 /*
538 * The periodic clock tick can get delayed for various
539 * reasons, especially on loaded systems. To avoid clock
540 * drift, we schedule the clock in fixed psi_period intervals.
541 * But the deltas we sample out of the per-cpu buckets above
542 * are based on the actual time elapsing between clock ticks.
543 */
544 avg_next_update = expires + ((1 + missed_periods) * psi_period);
545 period = now - (group->avg_last_update + (missed_periods * psi_period));
546 group->avg_last_update = now;
547
548 for (s = 0; s < NR_PSI_STATES - 1; s++) {
549 u32 sample;
550
551 sample = group->total[PSI_AVGS][s] - group->avg_total[s];
552 /*
553 * Due to the lockless sampling of the time buckets,
554 * recorded time deltas can slip into the next period,
555 * which under full pressure can result in samples in
556 * excess of the period length.
557 *
558 * We don't want to report non-sensical pressures in
559 * excess of 100%, nor do we want to drop such events
560 * on the floor. Instead we punt any overage into the
561 * future until pressure subsides. By doing this we
562 * don't underreport the occurring pressure curve, we
563 * just report it delayed by one period length.
564 *
565 * The error isn't cumulative. As soon as another
566 * delta slips from a period P to P+1, by definition
567 * it frees up its time T in P.
568 */
569 if (sample > period)
570 sample = period;
571 group->avg_total[s] += sample;
572 calc_avgs(group->avg[s], missed_periods, sample, period);
573 }
574
575 return avg_next_update;
576 }
577
psi_avgs_work(struct work_struct * work)578 static void psi_avgs_work(struct work_struct *work)
579 {
580 struct delayed_work *dwork;
581 struct psi_group *group;
582 u32 changed_states;
583 u64 now;
584
585 dwork = to_delayed_work(work);
586 group = container_of(dwork, struct psi_group, avgs_work);
587
588 mutex_lock(&group->avgs_lock);
589
590 now = sched_clock();
591
592 collect_percpu_times(group, PSI_AVGS, &changed_states);
593 /*
594 * If there is task activity, periodically fold the per-cpu
595 * times and feed samples into the running averages. If things
596 * are idle and there is no data to process, stop the clock.
597 * Once restarted, we'll catch up the running averages in one
598 * go - see calc_avgs() and missed_periods.
599 */
600 if (now >= group->avg_next_update) {
601 update_triggers(group, now, PSI_AVGS);
602 group->avg_next_update = update_averages(group, now);
603 }
604
605 if (changed_states & PSI_STATE_RESCHEDULE) {
606 schedule_delayed_work(dwork, nsecs_to_jiffies(
607 group->avg_next_update - now) + 1);
608 }
609
610 mutex_unlock(&group->avgs_lock);
611 }
612
init_rtpoll_triggers(struct psi_group * group,u64 now)613 static void init_rtpoll_triggers(struct psi_group *group, u64 now)
614 {
615 struct psi_trigger *t;
616
617 list_for_each_entry(t, &group->rtpoll_triggers, node)
618 window_reset(&t->win, now,
619 group->total[PSI_POLL][t->state], 0);
620 memcpy(group->rtpoll_total, group->total[PSI_POLL],
621 sizeof(group->rtpoll_total));
622 group->rtpoll_next_update = now + group->rtpoll_min_period;
623 }
624
625 /* Schedule rtpolling if it's not already scheduled or forced. */
psi_schedule_rtpoll_work(struct psi_group * group,unsigned long delay,bool force)626 static void psi_schedule_rtpoll_work(struct psi_group *group, unsigned long delay,
627 bool force)
628 {
629 struct task_struct *task;
630
631 /*
632 * atomic_xchg should be called even when !force to provide a
633 * full memory barrier (see the comment inside psi_rtpoll_work).
634 */
635 if (atomic_xchg(&group->rtpoll_scheduled, 1) && !force)
636 return;
637
638 rcu_read_lock();
639
640 task = rcu_dereference(group->rtpoll_task);
641 /*
642 * kworker might be NULL in case psi_trigger_destroy races with
643 * psi_task_change (hotpath) which can't use locks
644 */
645 if (likely(task))
646 mod_timer(&group->rtpoll_timer, jiffies + delay);
647 else
648 atomic_set(&group->rtpoll_scheduled, 0);
649
650 rcu_read_unlock();
651 }
652
psi_rtpoll_work(struct psi_group * group)653 static void psi_rtpoll_work(struct psi_group *group)
654 {
655 bool force_reschedule = false;
656 u32 changed_states;
657 u64 now;
658
659 mutex_lock(&group->rtpoll_trigger_lock);
660
661 now = sched_clock();
662
663 if (now > group->rtpoll_until) {
664 /*
665 * We are either about to start or might stop rtpolling if no
666 * state change was recorded. Resetting rtpoll_scheduled leaves
667 * a small window for psi_group_change to sneak in and schedule
668 * an immediate rtpoll_work before we get to rescheduling. One
669 * potential extra wakeup at the end of the rtpolling window
670 * should be negligible and rtpoll_next_update still keeps
671 * updates correctly on schedule.
672 */
673 atomic_set(&group->rtpoll_scheduled, 0);
674 /*
675 * A task change can race with the rtpoll worker that is supposed to
676 * report on it. To avoid missing events, ensure ordering between
677 * rtpoll_scheduled and the task state accesses, such that if the
678 * rtpoll worker misses the state update, the task change is
679 * guaranteed to reschedule the rtpoll worker:
680 *
681 * rtpoll worker:
682 * atomic_set(rtpoll_scheduled, 0)
683 * smp_mb()
684 * LOAD states
685 *
686 * task change:
687 * STORE states
688 * if atomic_xchg(rtpoll_scheduled, 1) == 0:
689 * schedule rtpoll worker
690 *
691 * The atomic_xchg() implies a full barrier.
692 */
693 smp_mb();
694 } else {
695 /* The rtpolling window is not over, keep rescheduling */
696 force_reschedule = true;
697 }
698
699
700 collect_percpu_times(group, PSI_POLL, &changed_states);
701
702 if (changed_states & group->rtpoll_states) {
703 /* Initialize trigger windows when entering rtpolling mode */
704 if (now > group->rtpoll_until)
705 init_rtpoll_triggers(group, now);
706
707 /*
708 * Keep the monitor active for at least the duration of the
709 * minimum tracking window as long as monitor states are
710 * changing.
711 */
712 group->rtpoll_until = now +
713 group->rtpoll_min_period * UPDATES_PER_WINDOW;
714 }
715
716 if (now > group->rtpoll_until) {
717 group->rtpoll_next_update = ULLONG_MAX;
718 goto out;
719 }
720
721 if (now >= group->rtpoll_next_update) {
722 if (changed_states & group->rtpoll_states) {
723 update_triggers(group, now, PSI_POLL);
724 memcpy(group->rtpoll_total, group->total[PSI_POLL],
725 sizeof(group->rtpoll_total));
726 }
727 group->rtpoll_next_update = now + group->rtpoll_min_period;
728 }
729
730 psi_schedule_rtpoll_work(group,
731 nsecs_to_jiffies(group->rtpoll_next_update - now) + 1,
732 force_reschedule);
733
734 out:
735 mutex_unlock(&group->rtpoll_trigger_lock);
736 }
737
psi_rtpoll_worker(void * data)738 static int psi_rtpoll_worker(void *data)
739 {
740 struct psi_group *group = (struct psi_group *)data;
741
742 sched_set_fifo_low(current);
743
744 while (true) {
745 wait_event_interruptible(group->rtpoll_wait,
746 atomic_cmpxchg(&group->rtpoll_wakeup, 1, 0) ||
747 kthread_should_stop());
748 if (kthread_should_stop())
749 break;
750
751 psi_rtpoll_work(group);
752 }
753 return 0;
754 }
755
poll_timer_fn(struct timer_list * t)756 static void poll_timer_fn(struct timer_list *t)
757 {
758 struct psi_group *group = timer_container_of(group, t, rtpoll_timer);
759
760 atomic_set(&group->rtpoll_wakeup, 1);
761 wake_up_interruptible(&group->rtpoll_wait);
762 }
763
record_times(struct psi_group_cpu * groupc,u64 now)764 static void record_times(struct psi_group_cpu *groupc, u64 now)
765 {
766 u32 delta;
767
768 delta = now - groupc->state_start;
769 groupc->state_start = now;
770
771 if (groupc->state_mask & (1 << PSI_IO_SOME)) {
772 groupc->times[PSI_IO_SOME] += delta;
773 if (groupc->state_mask & (1 << PSI_IO_FULL))
774 groupc->times[PSI_IO_FULL] += delta;
775 }
776
777 if (groupc->state_mask & (1 << PSI_MEM_SOME)) {
778 groupc->times[PSI_MEM_SOME] += delta;
779 if (groupc->state_mask & (1 << PSI_MEM_FULL))
780 groupc->times[PSI_MEM_FULL] += delta;
781 }
782
783 if (groupc->state_mask & (1 << PSI_CPU_SOME)) {
784 groupc->times[PSI_CPU_SOME] += delta;
785 if (groupc->state_mask & (1 << PSI_CPU_FULL))
786 groupc->times[PSI_CPU_FULL] += delta;
787 }
788
789 if (groupc->state_mask & (1 << PSI_NONIDLE))
790 groupc->times[PSI_NONIDLE] += delta;
791 }
792
793 #define for_each_group(iter, group) \
794 for (typeof(group) iter = group; iter; iter = iter->parent)
795
psi_group_change(struct psi_group * group,int cpu,unsigned int clear,unsigned int set,u64 now,bool wake_clock)796 static void psi_group_change(struct psi_group *group, int cpu,
797 unsigned int clear, unsigned int set,
798 u64 now, bool wake_clock)
799 {
800 struct psi_group_cpu *groupc;
801 unsigned int t, m;
802 u32 state_mask;
803
804 lockdep_assert_rq_held(cpu_rq(cpu));
805 groupc = per_cpu_ptr(group->pcpu, cpu);
806
807 /*
808 * Start with TSK_ONCPU, which doesn't have a corresponding
809 * task count - it's just a boolean flag directly encoded in
810 * the state mask. Clear, set, or carry the current state if
811 * no changes are requested.
812 */
813 if (unlikely(clear & TSK_ONCPU)) {
814 state_mask = 0;
815 clear &= ~TSK_ONCPU;
816 } else if (unlikely(set & TSK_ONCPU)) {
817 state_mask = PSI_ONCPU;
818 set &= ~TSK_ONCPU;
819 } else {
820 state_mask = groupc->state_mask & PSI_ONCPU;
821 }
822
823 /*
824 * The rest of the state mask is calculated based on the task
825 * counts. Update those first, then construct the mask.
826 */
827 for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
828 if (!(m & (1 << t)))
829 continue;
830 if (groupc->tasks[t]) {
831 groupc->tasks[t]--;
832 } else if (!psi_bug) {
833 printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u] clear=%x set=%x\n",
834 cpu, t, groupc->tasks[0],
835 groupc->tasks[1], groupc->tasks[2],
836 groupc->tasks[3], clear, set);
837 psi_bug = 1;
838 }
839 }
840
841 for (t = 0; set; set &= ~(1 << t), t++)
842 if (set & (1 << t))
843 groupc->tasks[t]++;
844
845 if (!group->enabled) {
846 /*
847 * On the first group change after disabling PSI, conclude
848 * the current state and flush its time. This is unlikely
849 * to matter to the user, but aggregation (get_recent_times)
850 * may have already incorporated the live state into times_prev;
851 * avoid a delta sample underflow when PSI is later re-enabled.
852 */
853 if (unlikely(groupc->state_mask & (1 << PSI_NONIDLE)))
854 record_times(groupc, now);
855
856 groupc->state_mask = state_mask;
857
858 return;
859 }
860
861 state_mask = test_states(groupc->tasks, state_mask);
862
863 /*
864 * Since we care about lost potential, a memstall is FULL
865 * when there are no other working tasks, but also when
866 * the CPU is actively reclaiming and nothing productive
867 * could run even if it were runnable. So when the current
868 * task in a cgroup is in_memstall, the corresponding groupc
869 * on that cpu is in PSI_MEM_FULL state.
870 */
871 if (unlikely((state_mask & PSI_ONCPU) && cpu_curr(cpu)->in_memstall))
872 state_mask |= (1 << PSI_MEM_FULL);
873
874 record_times(groupc, now);
875
876 groupc->state_mask = state_mask;
877
878 if (state_mask & group->rtpoll_states)
879 psi_schedule_rtpoll_work(group, 1, false);
880
881 if (wake_clock && !delayed_work_pending(&group->avgs_work))
882 schedule_delayed_work(&group->avgs_work, PSI_FREQ);
883 }
884
task_psi_group(struct task_struct * task)885 static inline struct psi_group *task_psi_group(struct task_struct *task)
886 {
887 #ifdef CONFIG_CGROUPS
888 if (static_branch_likely(&psi_cgroups_enabled))
889 return cgroup_psi(task_dfl_cgroup(task));
890 #endif
891 return &psi_system;
892 }
893
psi_flags_change(struct task_struct * task,int clear,int set)894 static void psi_flags_change(struct task_struct *task, int clear, int set)
895 {
896 if (((task->psi_flags & set) ||
897 (task->psi_flags & clear) != clear) &&
898 !psi_bug) {
899 printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
900 task->pid, task->comm, task_cpu(task),
901 task->psi_flags, clear, set);
902 psi_bug = 1;
903 }
904
905 task->psi_flags &= ~clear;
906 task->psi_flags |= set;
907 }
908
psi_task_change(struct task_struct * task,int clear,int set)909 void psi_task_change(struct task_struct *task, int clear, int set)
910 {
911 int cpu = task_cpu(task);
912 u64 now;
913
914 if (!task->pid)
915 return;
916
917 psi_flags_change(task, clear, set);
918
919 psi_write_begin(cpu);
920 now = cpu_clock(cpu);
921 for_each_group(group, task_psi_group(task))
922 psi_group_change(group, cpu, clear, set, now, true);
923 psi_write_end(cpu);
924 }
925
psi_task_switch(struct task_struct * prev,struct task_struct * next,bool sleep)926 void psi_task_switch(struct task_struct *prev, struct task_struct *next,
927 bool sleep)
928 {
929 struct psi_group *common = NULL;
930 int cpu = task_cpu(prev);
931 u64 now;
932
933 psi_write_begin(cpu);
934 now = cpu_clock(cpu);
935
936 if (next->pid) {
937 psi_flags_change(next, 0, TSK_ONCPU);
938 /*
939 * Set TSK_ONCPU on @next's cgroups. If @next shares any
940 * ancestors with @prev, those will already have @prev's
941 * TSK_ONCPU bit set, and we can stop the iteration there.
942 */
943 for_each_group(group, task_psi_group(next)) {
944 struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
945
946 if (groupc->state_mask & PSI_ONCPU) {
947 common = group;
948 break;
949 }
950 psi_group_change(group, cpu, 0, TSK_ONCPU, now, true);
951 }
952 }
953
954 if (prev->pid) {
955 int clear = TSK_ONCPU, set = 0;
956 bool wake_clock = true;
957
958 /*
959 * When we're going to sleep, psi_dequeue() lets us
960 * handle TSK_RUNNING, TSK_MEMSTALL_RUNNING and
961 * TSK_IOWAIT here, where we can combine it with
962 * TSK_ONCPU and save walking common ancestors twice.
963 */
964 if (sleep) {
965 clear |= TSK_RUNNING;
966 if (prev->in_memstall)
967 clear |= TSK_MEMSTALL_RUNNING;
968 if (prev->in_iowait)
969 set |= TSK_IOWAIT;
970
971 /*
972 * Periodic aggregation shuts off if there is a period of no
973 * task changes, so we wake it back up if necessary. However,
974 * don't do this if the task change is the aggregation worker
975 * itself going to sleep, or we'll ping-pong forever.
976 */
977 if (unlikely((prev->flags & PF_WQ_WORKER) &&
978 wq_worker_last_func(prev) == psi_avgs_work))
979 wake_clock = false;
980 }
981
982 psi_flags_change(prev, clear, set);
983
984 for_each_group(group, task_psi_group(prev)) {
985 if (group == common)
986 break;
987 psi_group_change(group, cpu, clear, set, now, wake_clock);
988 }
989
990 /*
991 * TSK_ONCPU is handled up to the common ancestor. If there are
992 * any other differences between the two tasks (e.g. prev goes
993 * to sleep, or only one task is memstall), finish propagating
994 * those differences all the way up to the root.
995 */
996 if ((prev->psi_flags ^ next->psi_flags) & ~TSK_ONCPU) {
997 clear &= ~TSK_ONCPU;
998 for_each_group(group, common)
999 psi_group_change(group, cpu, clear, set, now, wake_clock);
1000 }
1001 }
1002 psi_write_end(cpu);
1003 }
1004
1005 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
psi_account_irqtime(struct rq * rq,struct task_struct * curr,struct task_struct * prev)1006 void psi_account_irqtime(struct rq *rq, struct task_struct *curr, struct task_struct *prev)
1007 {
1008 int cpu = task_cpu(curr);
1009 struct psi_group_cpu *groupc;
1010 s64 delta;
1011 u64 irq;
1012 u64 now;
1013
1014 if (static_branch_likely(&psi_disabled) || !irqtime_enabled())
1015 return;
1016
1017 if (!curr->pid)
1018 return;
1019
1020 lockdep_assert_rq_held(rq);
1021 if (prev && task_psi_group(prev) == task_psi_group(curr))
1022 return;
1023
1024 irq = irq_time_read(cpu);
1025 delta = (s64)(irq - rq->psi_irq_time);
1026 if (delta < 0)
1027 return;
1028 rq->psi_irq_time = irq;
1029
1030 psi_write_begin(cpu);
1031 now = cpu_clock(cpu);
1032
1033 for_each_group(group, task_psi_group(curr)) {
1034 if (!group->enabled)
1035 continue;
1036
1037 groupc = per_cpu_ptr(group->pcpu, cpu);
1038
1039 record_times(groupc, now);
1040 groupc->times[PSI_IRQ_FULL] += delta;
1041
1042 if (group->rtpoll_states & (1 << PSI_IRQ_FULL))
1043 psi_schedule_rtpoll_work(group, 1, false);
1044 }
1045 psi_write_end(cpu);
1046 }
1047 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1048
1049 /**
1050 * psi_memstall_enter - mark the beginning of a memory stall section
1051 * @flags: flags to handle nested sections
1052 *
1053 * Marks the calling task as being stalled due to a lack of memory,
1054 * such as waiting for a refault or performing reclaim.
1055 */
psi_memstall_enter(unsigned long * flags)1056 void psi_memstall_enter(unsigned long *flags)
1057 {
1058 struct rq_flags rf;
1059 struct rq *rq;
1060
1061 if (static_branch_likely(&psi_disabled))
1062 return;
1063
1064 *flags = current->in_memstall;
1065 if (*flags)
1066 return;
1067 /*
1068 * in_memstall setting & accounting needs to be atomic wrt
1069 * changes to the task's scheduling state, otherwise we can
1070 * race with CPU migration.
1071 */
1072 rq = this_rq_lock_irq(&rf);
1073
1074 current->in_memstall = 1;
1075 psi_task_change(current, 0, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING);
1076
1077 rq_unlock_irq(rq, &rf);
1078 }
1079 EXPORT_SYMBOL_GPL(psi_memstall_enter);
1080
1081 /**
1082 * psi_memstall_leave - mark the end of an memory stall section
1083 * @flags: flags to handle nested memdelay sections
1084 *
1085 * Marks the calling task as no longer stalled due to lack of memory.
1086 */
psi_memstall_leave(unsigned long * flags)1087 void psi_memstall_leave(unsigned long *flags)
1088 {
1089 struct rq_flags rf;
1090 struct rq *rq;
1091
1092 if (static_branch_likely(&psi_disabled))
1093 return;
1094
1095 if (*flags)
1096 return;
1097 /*
1098 * in_memstall clearing & accounting needs to be atomic wrt
1099 * changes to the task's scheduling state, otherwise we could
1100 * race with CPU migration.
1101 */
1102 rq = this_rq_lock_irq(&rf);
1103
1104 current->in_memstall = 0;
1105 psi_task_change(current, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING, 0);
1106
1107 rq_unlock_irq(rq, &rf);
1108 }
1109 EXPORT_SYMBOL_GPL(psi_memstall_leave);
1110
1111 #ifdef CONFIG_CGROUPS
psi_cgroup_alloc(struct cgroup * cgroup)1112 int psi_cgroup_alloc(struct cgroup *cgroup)
1113 {
1114 if (!static_branch_likely(&psi_cgroups_enabled))
1115 return 0;
1116
1117 cgroup->psi = kzalloc(sizeof(struct psi_group), GFP_KERNEL);
1118 if (!cgroup->psi)
1119 return -ENOMEM;
1120
1121 cgroup->psi->pcpu = alloc_percpu(struct psi_group_cpu);
1122 if (!cgroup->psi->pcpu) {
1123 kfree(cgroup->psi);
1124 return -ENOMEM;
1125 }
1126 group_init(cgroup->psi);
1127 cgroup->psi->parent = cgroup_psi(cgroup_parent(cgroup));
1128 return 0;
1129 }
1130
psi_cgroup_free(struct cgroup * cgroup)1131 void psi_cgroup_free(struct cgroup *cgroup)
1132 {
1133 if (!static_branch_likely(&psi_cgroups_enabled))
1134 return;
1135
1136 cancel_delayed_work_sync(&cgroup->psi->avgs_work);
1137 free_percpu(cgroup->psi->pcpu);
1138 /* All triggers must be removed by now */
1139 WARN_ONCE(cgroup->psi->rtpoll_states, "psi: trigger leak\n");
1140 kfree(cgroup->psi);
1141 }
1142
1143 /**
1144 * cgroup_move_task - move task to a different cgroup
1145 * @task: the task
1146 * @to: the target css_set
1147 *
1148 * Move task to a new cgroup and safely migrate its associated stall
1149 * state between the different groups.
1150 *
1151 * This function acquires the task's rq lock to lock out concurrent
1152 * changes to the task's scheduling state and - in case the task is
1153 * running - concurrent changes to its stall state.
1154 */
cgroup_move_task(struct task_struct * task,struct css_set * to)1155 void cgroup_move_task(struct task_struct *task, struct css_set *to)
1156 {
1157 unsigned int task_flags;
1158 struct rq_flags rf;
1159 struct rq *rq;
1160
1161 if (!static_branch_likely(&psi_cgroups_enabled)) {
1162 /*
1163 * Lame to do this here, but the scheduler cannot be locked
1164 * from the outside, so we move cgroups from inside sched/.
1165 */
1166 rcu_assign_pointer(task->cgroups, to);
1167 return;
1168 }
1169
1170 rq = task_rq_lock(task, &rf);
1171
1172 /*
1173 * We may race with schedule() dropping the rq lock between
1174 * deactivating prev and switching to next. Because the psi
1175 * updates from the deactivation are deferred to the switch
1176 * callback to save cgroup tree updates, the task's scheduling
1177 * state here is not coherent with its psi state:
1178 *
1179 * schedule() cgroup_move_task()
1180 * rq_lock()
1181 * deactivate_task()
1182 * p->on_rq = 0
1183 * psi_dequeue() // defers TSK_RUNNING & TSK_IOWAIT updates
1184 * pick_next_task()
1185 * rq_unlock()
1186 * rq_lock()
1187 * psi_task_change() // old cgroup
1188 * task->cgroups = to
1189 * psi_task_change() // new cgroup
1190 * rq_unlock()
1191 * rq_lock()
1192 * psi_sched_switch() // does deferred updates in new cgroup
1193 *
1194 * Don't rely on the scheduling state. Use psi_flags instead.
1195 */
1196 task_flags = task->psi_flags;
1197
1198 if (task_flags)
1199 psi_task_change(task, task_flags, 0);
1200
1201 /* See comment above */
1202 rcu_assign_pointer(task->cgroups, to);
1203
1204 if (task_flags)
1205 psi_task_change(task, 0, task_flags);
1206
1207 task_rq_unlock(rq, task, &rf);
1208 }
1209
psi_cgroup_restart(struct psi_group * group)1210 void psi_cgroup_restart(struct psi_group *group)
1211 {
1212 int cpu;
1213
1214 /*
1215 * After we disable psi_group->enabled, we don't actually
1216 * stop percpu tasks accounting in each psi_group_cpu,
1217 * instead only stop test_states() loop, record_times()
1218 * and averaging worker, see psi_group_change() for details.
1219 *
1220 * When disable cgroup PSI, this function has nothing to sync
1221 * since cgroup pressure files are hidden and percpu psi_group_cpu
1222 * would see !psi_group->enabled and only do task accounting.
1223 *
1224 * When re-enable cgroup PSI, this function use psi_group_change()
1225 * to get correct state mask from test_states() loop on tasks[],
1226 * and restart groupc->state_start from now, use .clear = .set = 0
1227 * here since no task status really changed.
1228 */
1229 if (!group->enabled)
1230 return;
1231
1232 for_each_possible_cpu(cpu) {
1233 u64 now;
1234
1235 guard(rq_lock_irq)(cpu_rq(cpu));
1236
1237 psi_write_begin(cpu);
1238 now = cpu_clock(cpu);
1239 psi_group_change(group, cpu, 0, 0, now, true);
1240 psi_write_end(cpu);
1241 }
1242 }
1243 #endif /* CONFIG_CGROUPS */
1244
psi_show(struct seq_file * m,struct psi_group * group,enum psi_res res)1245 int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
1246 {
1247 bool only_full = false;
1248 int full;
1249 u64 now;
1250
1251 if (static_branch_likely(&psi_disabled))
1252 return -EOPNOTSUPP;
1253
1254 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1255 if (!irqtime_enabled() && res == PSI_IRQ)
1256 return -EOPNOTSUPP;
1257 #endif
1258
1259 /* Update averages before reporting them */
1260 mutex_lock(&group->avgs_lock);
1261 now = sched_clock();
1262 collect_percpu_times(group, PSI_AVGS, NULL);
1263 if (now >= group->avg_next_update)
1264 group->avg_next_update = update_averages(group, now);
1265 mutex_unlock(&group->avgs_lock);
1266
1267 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1268 only_full = res == PSI_IRQ;
1269 #endif
1270
1271 for (full = 0; full < 2 - only_full; full++) {
1272 unsigned long avg[3] = { 0, };
1273 u64 total = 0;
1274 int w;
1275
1276 /* CPU FULL is undefined at the system level */
1277 if (!(group == &psi_system && res == PSI_CPU && full)) {
1278 for (w = 0; w < 3; w++)
1279 avg[w] = group->avg[res * 2 + full][w];
1280 total = div_u64(group->total[PSI_AVGS][res * 2 + full],
1281 NSEC_PER_USEC);
1282 }
1283
1284 seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
1285 full || only_full ? "full" : "some",
1286 LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
1287 LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
1288 LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
1289 total);
1290 }
1291
1292 return 0;
1293 }
1294
psi_trigger_create(struct psi_group * group,char * buf,enum psi_res res,struct file * file,struct kernfs_open_file * of)1295 struct psi_trigger *psi_trigger_create(struct psi_group *group, char *buf,
1296 enum psi_res res, struct file *file,
1297 struct kernfs_open_file *of)
1298 {
1299 struct psi_trigger *t;
1300 enum psi_states state;
1301 u32 threshold_us;
1302 bool privileged;
1303 u32 window_us;
1304
1305 if (static_branch_likely(&psi_disabled))
1306 return ERR_PTR(-EOPNOTSUPP);
1307
1308 /*
1309 * Checking the privilege here on file->f_cred implies that a privileged user
1310 * could open the file and delegate the write to an unprivileged one.
1311 */
1312 privileged = cap_raised(file->f_cred->cap_effective, CAP_SYS_RESOURCE);
1313
1314 if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2)
1315 state = PSI_IO_SOME + res * 2;
1316 else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2)
1317 state = PSI_IO_FULL + res * 2;
1318 else
1319 return ERR_PTR(-EINVAL);
1320
1321 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1322 if (res == PSI_IRQ && --state != PSI_IRQ_FULL)
1323 return ERR_PTR(-EINVAL);
1324 #endif
1325
1326 if (state >= PSI_NONIDLE)
1327 return ERR_PTR(-EINVAL);
1328
1329 if (window_us == 0 || window_us > WINDOW_MAX_US)
1330 return ERR_PTR(-EINVAL);
1331
1332 /*
1333 * Unprivileged users can only use 2s windows so that averages aggregation
1334 * work is used, and no RT threads need to be spawned.
1335 */
1336 if (!privileged && window_us % 2000000)
1337 return ERR_PTR(-EINVAL);
1338
1339 /* Check threshold */
1340 if (threshold_us == 0 || threshold_us > window_us)
1341 return ERR_PTR(-EINVAL);
1342
1343 t = kmalloc(sizeof(*t), GFP_KERNEL);
1344 if (!t)
1345 return ERR_PTR(-ENOMEM);
1346
1347 t->group = group;
1348 t->state = state;
1349 t->threshold = threshold_us * NSEC_PER_USEC;
1350 t->win.size = window_us * NSEC_PER_USEC;
1351 window_reset(&t->win, sched_clock(),
1352 group->total[PSI_POLL][t->state], 0);
1353
1354 t->event = 0;
1355 t->last_event_time = 0;
1356 t->of = of;
1357 if (!of)
1358 init_waitqueue_head(&t->event_wait);
1359 t->pending_event = false;
1360 t->aggregator = privileged ? PSI_POLL : PSI_AVGS;
1361
1362 if (privileged) {
1363 mutex_lock(&group->rtpoll_trigger_lock);
1364
1365 if (!rcu_access_pointer(group->rtpoll_task)) {
1366 struct task_struct *task;
1367
1368 task = kthread_create(psi_rtpoll_worker, group, "psimon");
1369 if (IS_ERR(task)) {
1370 kfree(t);
1371 mutex_unlock(&group->rtpoll_trigger_lock);
1372 return ERR_CAST(task);
1373 }
1374 atomic_set(&group->rtpoll_wakeup, 0);
1375 wake_up_process(task);
1376 rcu_assign_pointer(group->rtpoll_task, task);
1377 }
1378
1379 list_add(&t->node, &group->rtpoll_triggers);
1380 group->rtpoll_min_period = min(group->rtpoll_min_period,
1381 div_u64(t->win.size, UPDATES_PER_WINDOW));
1382 group->rtpoll_nr_triggers[t->state]++;
1383 group->rtpoll_states |= (1 << t->state);
1384
1385 mutex_unlock(&group->rtpoll_trigger_lock);
1386 } else {
1387 mutex_lock(&group->avgs_lock);
1388
1389 list_add(&t->node, &group->avg_triggers);
1390 group->avg_nr_triggers[t->state]++;
1391
1392 mutex_unlock(&group->avgs_lock);
1393 }
1394 return t;
1395 }
1396
psi_trigger_destroy(struct psi_trigger * t)1397 void psi_trigger_destroy(struct psi_trigger *t)
1398 {
1399 struct psi_group *group;
1400 struct task_struct *task_to_destroy = NULL;
1401
1402 /*
1403 * We do not check psi_disabled since it might have been disabled after
1404 * the trigger got created.
1405 */
1406 if (!t)
1407 return;
1408
1409 group = t->group;
1410 /*
1411 * Wakeup waiters to stop polling and clear the queue to prevent it from
1412 * being accessed later. Can happen if cgroup is deleted from under a
1413 * polling process.
1414 */
1415 if (t->of)
1416 kernfs_notify(t->of->kn);
1417 else
1418 wake_up_interruptible(&t->event_wait);
1419
1420 if (t->aggregator == PSI_AVGS) {
1421 mutex_lock(&group->avgs_lock);
1422 if (!list_empty(&t->node)) {
1423 list_del(&t->node);
1424 group->avg_nr_triggers[t->state]--;
1425 }
1426 mutex_unlock(&group->avgs_lock);
1427 } else {
1428 mutex_lock(&group->rtpoll_trigger_lock);
1429 if (!list_empty(&t->node)) {
1430 struct psi_trigger *tmp;
1431 u64 period = ULLONG_MAX;
1432
1433 list_del(&t->node);
1434 group->rtpoll_nr_triggers[t->state]--;
1435 if (!group->rtpoll_nr_triggers[t->state])
1436 group->rtpoll_states &= ~(1 << t->state);
1437 /*
1438 * Reset min update period for the remaining triggers
1439 * iff the destroying trigger had the min window size.
1440 */
1441 if (group->rtpoll_min_period == div_u64(t->win.size, UPDATES_PER_WINDOW)) {
1442 list_for_each_entry(tmp, &group->rtpoll_triggers, node)
1443 period = min(period, div_u64(tmp->win.size,
1444 UPDATES_PER_WINDOW));
1445 group->rtpoll_min_period = period;
1446 }
1447 /* Destroy rtpoll_task when the last trigger is destroyed */
1448 if (group->rtpoll_states == 0) {
1449 group->rtpoll_until = 0;
1450 task_to_destroy = rcu_dereference_protected(
1451 group->rtpoll_task,
1452 lockdep_is_held(&group->rtpoll_trigger_lock));
1453 rcu_assign_pointer(group->rtpoll_task, NULL);
1454 timer_delete(&group->rtpoll_timer);
1455 }
1456 }
1457 mutex_unlock(&group->rtpoll_trigger_lock);
1458 }
1459
1460 /*
1461 * Wait for psi_schedule_rtpoll_work RCU to complete its read-side
1462 * critical section before destroying the trigger and optionally the
1463 * rtpoll_task.
1464 */
1465 synchronize_rcu();
1466 /*
1467 * Stop kthread 'psimon' after releasing rtpoll_trigger_lock to prevent
1468 * a deadlock while waiting for psi_rtpoll_work to acquire
1469 * rtpoll_trigger_lock
1470 */
1471 if (task_to_destroy) {
1472 /*
1473 * After the RCU grace period has expired, the worker
1474 * can no longer be found through group->rtpoll_task.
1475 */
1476 kthread_stop(task_to_destroy);
1477 atomic_set(&group->rtpoll_scheduled, 0);
1478 }
1479 kfree(t);
1480 }
1481
psi_trigger_poll(void ** trigger_ptr,struct file * file,poll_table * wait)1482 __poll_t psi_trigger_poll(void **trigger_ptr,
1483 struct file *file, poll_table *wait)
1484 {
1485 __poll_t ret = DEFAULT_POLLMASK;
1486 struct psi_trigger *t;
1487
1488 if (static_branch_likely(&psi_disabled))
1489 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1490
1491 t = smp_load_acquire(trigger_ptr);
1492 if (!t)
1493 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1494
1495 if (t->of)
1496 kernfs_generic_poll(t->of, wait);
1497 else
1498 poll_wait(file, &t->event_wait, wait);
1499
1500 if (cmpxchg(&t->event, 1, 0) == 1)
1501 ret |= EPOLLPRI;
1502
1503 return ret;
1504 }
1505
1506 #ifdef CONFIG_PROC_FS
psi_io_show(struct seq_file * m,void * v)1507 static int psi_io_show(struct seq_file *m, void *v)
1508 {
1509 return psi_show(m, &psi_system, PSI_IO);
1510 }
1511
psi_memory_show(struct seq_file * m,void * v)1512 static int psi_memory_show(struct seq_file *m, void *v)
1513 {
1514 return psi_show(m, &psi_system, PSI_MEM);
1515 }
1516
psi_cpu_show(struct seq_file * m,void * v)1517 static int psi_cpu_show(struct seq_file *m, void *v)
1518 {
1519 return psi_show(m, &psi_system, PSI_CPU);
1520 }
1521
psi_io_open(struct inode * inode,struct file * file)1522 static int psi_io_open(struct inode *inode, struct file *file)
1523 {
1524 return single_open(file, psi_io_show, NULL);
1525 }
1526
psi_memory_open(struct inode * inode,struct file * file)1527 static int psi_memory_open(struct inode *inode, struct file *file)
1528 {
1529 return single_open(file, psi_memory_show, NULL);
1530 }
1531
psi_cpu_open(struct inode * inode,struct file * file)1532 static int psi_cpu_open(struct inode *inode, struct file *file)
1533 {
1534 return single_open(file, psi_cpu_show, NULL);
1535 }
1536
psi_write(struct file * file,const char __user * user_buf,size_t nbytes,enum psi_res res)1537 static ssize_t psi_write(struct file *file, const char __user *user_buf,
1538 size_t nbytes, enum psi_res res)
1539 {
1540 char buf[32];
1541 size_t buf_size;
1542 struct seq_file *seq;
1543 struct psi_trigger *new;
1544
1545 if (static_branch_likely(&psi_disabled))
1546 return -EOPNOTSUPP;
1547
1548 if (!nbytes)
1549 return -EINVAL;
1550
1551 buf_size = min(nbytes, sizeof(buf));
1552 if (copy_from_user(buf, user_buf, buf_size))
1553 return -EFAULT;
1554
1555 buf[buf_size - 1] = '\0';
1556
1557 seq = file->private_data;
1558
1559 /* Take seq->lock to protect seq->private from concurrent writes */
1560 mutex_lock(&seq->lock);
1561
1562 /* Allow only one trigger per file descriptor */
1563 if (seq->private) {
1564 mutex_unlock(&seq->lock);
1565 return -EBUSY;
1566 }
1567
1568 new = psi_trigger_create(&psi_system, buf, res, file, NULL);
1569 if (IS_ERR(new)) {
1570 mutex_unlock(&seq->lock);
1571 return PTR_ERR(new);
1572 }
1573
1574 smp_store_release(&seq->private, new);
1575 mutex_unlock(&seq->lock);
1576
1577 return nbytes;
1578 }
1579
psi_io_write(struct file * file,const char __user * user_buf,size_t nbytes,loff_t * ppos)1580 static ssize_t psi_io_write(struct file *file, const char __user *user_buf,
1581 size_t nbytes, loff_t *ppos)
1582 {
1583 return psi_write(file, user_buf, nbytes, PSI_IO);
1584 }
1585
psi_memory_write(struct file * file,const char __user * user_buf,size_t nbytes,loff_t * ppos)1586 static ssize_t psi_memory_write(struct file *file, const char __user *user_buf,
1587 size_t nbytes, loff_t *ppos)
1588 {
1589 return psi_write(file, user_buf, nbytes, PSI_MEM);
1590 }
1591
psi_cpu_write(struct file * file,const char __user * user_buf,size_t nbytes,loff_t * ppos)1592 static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf,
1593 size_t nbytes, loff_t *ppos)
1594 {
1595 return psi_write(file, user_buf, nbytes, PSI_CPU);
1596 }
1597
psi_fop_poll(struct file * file,poll_table * wait)1598 static __poll_t psi_fop_poll(struct file *file, poll_table *wait)
1599 {
1600 struct seq_file *seq = file->private_data;
1601
1602 return psi_trigger_poll(&seq->private, file, wait);
1603 }
1604
psi_fop_release(struct inode * inode,struct file * file)1605 static int psi_fop_release(struct inode *inode, struct file *file)
1606 {
1607 struct seq_file *seq = file->private_data;
1608
1609 psi_trigger_destroy(seq->private);
1610 return single_release(inode, file);
1611 }
1612
1613 static const struct proc_ops psi_io_proc_ops = {
1614 .proc_open = psi_io_open,
1615 .proc_read = seq_read,
1616 .proc_lseek = seq_lseek,
1617 .proc_write = psi_io_write,
1618 .proc_poll = psi_fop_poll,
1619 .proc_release = psi_fop_release,
1620 };
1621
1622 static const struct proc_ops psi_memory_proc_ops = {
1623 .proc_open = psi_memory_open,
1624 .proc_read = seq_read,
1625 .proc_lseek = seq_lseek,
1626 .proc_write = psi_memory_write,
1627 .proc_poll = psi_fop_poll,
1628 .proc_release = psi_fop_release,
1629 };
1630
1631 static const struct proc_ops psi_cpu_proc_ops = {
1632 .proc_open = psi_cpu_open,
1633 .proc_read = seq_read,
1634 .proc_lseek = seq_lseek,
1635 .proc_write = psi_cpu_write,
1636 .proc_poll = psi_fop_poll,
1637 .proc_release = psi_fop_release,
1638 };
1639
1640 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
psi_irq_show(struct seq_file * m,void * v)1641 static int psi_irq_show(struct seq_file *m, void *v)
1642 {
1643 return psi_show(m, &psi_system, PSI_IRQ);
1644 }
1645
psi_irq_open(struct inode * inode,struct file * file)1646 static int psi_irq_open(struct inode *inode, struct file *file)
1647 {
1648 return single_open(file, psi_irq_show, NULL);
1649 }
1650
psi_irq_write(struct file * file,const char __user * user_buf,size_t nbytes,loff_t * ppos)1651 static ssize_t psi_irq_write(struct file *file, const char __user *user_buf,
1652 size_t nbytes, loff_t *ppos)
1653 {
1654 return psi_write(file, user_buf, nbytes, PSI_IRQ);
1655 }
1656
1657 static const struct proc_ops psi_irq_proc_ops = {
1658 .proc_open = psi_irq_open,
1659 .proc_read = seq_read,
1660 .proc_lseek = seq_lseek,
1661 .proc_write = psi_irq_write,
1662 .proc_poll = psi_fop_poll,
1663 .proc_release = psi_fop_release,
1664 };
1665 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1666
psi_proc_init(void)1667 static int __init psi_proc_init(void)
1668 {
1669 if (psi_enable) {
1670 proc_mkdir("pressure", NULL);
1671 proc_create("pressure/io", 0666, NULL, &psi_io_proc_ops);
1672 proc_create("pressure/memory", 0666, NULL, &psi_memory_proc_ops);
1673 proc_create("pressure/cpu", 0666, NULL, &psi_cpu_proc_ops);
1674 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1675 proc_create("pressure/irq", 0666, NULL, &psi_irq_proc_ops);
1676 #endif
1677 }
1678 return 0;
1679 }
1680 module_init(psi_proc_init);
1681
1682 #endif /* CONFIG_PROC_FS */
1683