1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 */
24
25 #include "dm_services.h"
26
27 #include "amdgpu.h"
28
29 #include "dc.h"
30
31 #include "core_status.h"
32 #include "core_types.h"
33 #include "hw_sequencer.h"
34 #include "dce/dce_hwseq.h"
35
36 #include "resource.h"
37 #include "dc_state.h"
38 #include "dc_state_priv.h"
39 #include "dc_plane.h"
40 #include "dc_plane_priv.h"
41 #include "dc_stream_priv.h"
42
43 #include "gpio_service_interface.h"
44 #include "clk_mgr.h"
45 #include "clock_source.h"
46 #include "dc_bios_types.h"
47
48 #include "bios_parser_interface.h"
49 #include "bios/bios_parser_helper.h"
50 #include "include/irq_service_interface.h"
51 #include "transform.h"
52 #include "dmcu.h"
53 #include "dpp.h"
54 #include "timing_generator.h"
55 #include "abm.h"
56 #include "virtual/virtual_link_encoder.h"
57 #include "hubp.h"
58
59 #include "link_hwss.h"
60 #include "link_encoder.h"
61 #include "link_enc_cfg.h"
62
63 #include "link.h"
64 #include "dm_helpers.h"
65 #include "mem_input.h"
66
67 #include "dc_dmub_srv.h"
68
69 #include "dsc.h"
70
71 #include "vm_helper.h"
72
73 #include "dce/dce_i2c.h"
74
75 #include "dmub/dmub_srv.h"
76
77 #include "dce/dmub_psr.h"
78
79 #include "dce/dmub_hw_lock_mgr.h"
80
81 #include "dc_trace.h"
82
83 #include "hw_sequencer_private.h"
84
85 #if defined(CONFIG_DRM_AMD_DC_FP)
86 #include "dml2/dml2_internal_types.h"
87 #endif
88
89 #include "dce/dmub_outbox.h"
90
91 #define CTX \
92 dc->ctx
93
94 #define DC_LOGGER \
95 dc->ctx->logger
96
97 static const char DC_BUILD_ID[] = "production-build";
98
99 /**
100 * DOC: Overview
101 *
102 * DC is the OS-agnostic component of the amdgpu DC driver.
103 *
104 * DC maintains and validates a set of structs representing the state of the
105 * driver and writes that state to AMD hardware
106 *
107 * Main DC HW structs:
108 *
109 * struct dc - The central struct. One per driver. Created on driver load,
110 * destroyed on driver unload.
111 *
112 * struct dc_context - One per driver.
113 * Used as a backpointer by most other structs in dc.
114 *
115 * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
116 * plugpoints). Created on driver load, destroyed on driver unload.
117 *
118 * struct dc_sink - One per display. Created on boot or hotplug.
119 * Destroyed on shutdown or hotunplug. A dc_link can have a local sink
120 * (the display directly attached). It may also have one or more remote
121 * sinks (in the Multi-Stream Transport case)
122 *
123 * struct resource_pool - One per driver. Represents the hw blocks not in the
124 * main pipeline. Not directly accessible by dm.
125 *
126 * Main dc state structs:
127 *
128 * These structs can be created and destroyed as needed. There is a full set of
129 * these structs in dc->current_state representing the currently programmed state.
130 *
131 * struct dc_state - The global DC state to track global state information,
132 * such as bandwidth values.
133 *
134 * struct dc_stream_state - Represents the hw configuration for the pipeline from
135 * a framebuffer to a display. Maps one-to-one with dc_sink.
136 *
137 * struct dc_plane_state - Represents a framebuffer. Each stream has at least one,
138 * and may have more in the Multi-Plane Overlay case.
139 *
140 * struct resource_context - Represents the programmable state of everything in
141 * the resource_pool. Not directly accessible by dm.
142 *
143 * struct pipe_ctx - A member of struct resource_context. Represents the
144 * internal hardware pipeline components. Each dc_plane_state has either
145 * one or two (in the pipe-split case).
146 */
147
148 /* Private functions */
149
elevate_update_type(enum surface_update_type * original,enum surface_update_type new)150 static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
151 {
152 if (new > *original)
153 *original = new;
154 }
155
destroy_links(struct dc * dc)156 static void destroy_links(struct dc *dc)
157 {
158 uint32_t i;
159
160 for (i = 0; i < dc->link_count; i++) {
161 if (NULL != dc->links[i])
162 dc->link_srv->destroy_link(&dc->links[i]);
163 }
164 }
165
get_num_of_internal_disp(struct dc_link ** links,uint32_t num_links)166 static uint32_t get_num_of_internal_disp(struct dc_link **links, uint32_t num_links)
167 {
168 int i;
169 uint32_t count = 0;
170
171 for (i = 0; i < num_links; i++) {
172 if (links[i]->connector_signal == SIGNAL_TYPE_EDP ||
173 links[i]->is_internal_display)
174 count++;
175 }
176
177 return count;
178 }
179
get_seamless_boot_stream_count(struct dc_state * ctx)180 static int get_seamless_boot_stream_count(struct dc_state *ctx)
181 {
182 uint8_t i;
183 uint8_t seamless_boot_stream_count = 0;
184
185 for (i = 0; i < ctx->stream_count; i++)
186 if (ctx->streams[i]->apply_seamless_boot_optimization)
187 seamless_boot_stream_count++;
188
189 return seamless_boot_stream_count;
190 }
191
create_links(struct dc * dc,uint32_t num_virtual_links)192 static bool create_links(
193 struct dc *dc,
194 uint32_t num_virtual_links)
195 {
196 int i;
197 int connectors_num;
198 struct dc_bios *bios = dc->ctx->dc_bios;
199
200 dc->link_count = 0;
201
202 connectors_num = bios->funcs->get_connectors_number(bios);
203
204 DC_LOG_DC("BIOS object table - number of connectors: %d", connectors_num);
205
206 if (connectors_num > ENUM_ID_COUNT) {
207 dm_error(
208 "DC: Number of connectors %d exceeds maximum of %d!\n",
209 connectors_num,
210 ENUM_ID_COUNT);
211 return false;
212 }
213
214 dm_output_to_console(
215 "DC: %s: connectors_num: physical:%d, virtual:%d\n",
216 __func__,
217 connectors_num,
218 num_virtual_links);
219
220 /* When getting the number of connectors, the VBIOS reports the number of valid indices,
221 * but it doesn't say which indices are valid, and not every index has an actual connector.
222 * So, if we don't find a connector on an index, that is not an error.
223 *
224 * - There is no guarantee that the first N indices will be valid
225 * - VBIOS may report a higher amount of valid indices than there are actual connectors
226 * - Some VBIOS have valid configurations for more connectors than there actually are
227 * on the card. This may be because the manufacturer used the same VBIOS for different
228 * variants of the same card.
229 */
230 for (i = 0; dc->link_count < connectors_num && i < MAX_LINKS; i++) {
231 struct graphics_object_id connector_id = bios->funcs->get_connector_id(bios, i);
232 struct link_init_data link_init_params = {0};
233 struct dc_link *link;
234
235 if (connector_id.id == CONNECTOR_ID_UNKNOWN)
236 continue;
237
238 DC_LOG_DC("BIOS object table - printing link object info for connector number: %d, link_index: %d", i, dc->link_count);
239
240 link_init_params.ctx = dc->ctx;
241 /* next BIOS object table connector */
242 link_init_params.connector_index = i;
243 link_init_params.link_index = dc->link_count;
244 link_init_params.dc = dc;
245 link = dc->link_srv->create_link(&link_init_params);
246
247 if (link) {
248 dc->links[dc->link_count] = link;
249 link->dc = dc;
250 ++dc->link_count;
251 }
252 }
253
254 DC_LOG_DC("BIOS object table - end");
255
256 /* Create a link for each usb4 dpia port */
257 dc->lowest_dpia_link_index = MAX_LINKS;
258 for (i = 0; i < dc->res_pool->usb4_dpia_count; i++) {
259 struct link_init_data link_init_params = {0};
260 struct dc_link *link;
261
262 link_init_params.ctx = dc->ctx;
263 link_init_params.connector_index = i;
264 link_init_params.link_index = dc->link_count;
265 link_init_params.dc = dc;
266 link_init_params.is_dpia_link = true;
267
268 link = dc->link_srv->create_link(&link_init_params);
269 if (link) {
270 if (dc->lowest_dpia_link_index > dc->link_count)
271 dc->lowest_dpia_link_index = dc->link_count;
272
273 dc->links[dc->link_count] = link;
274 link->dc = dc;
275 ++dc->link_count;
276 }
277 }
278
279 for (i = 0; i < num_virtual_links; i++) {
280 struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
281 struct encoder_init_data enc_init = {0};
282
283 if (link == NULL) {
284 BREAK_TO_DEBUGGER();
285 goto failed_alloc;
286 }
287
288 link->link_index = dc->link_count;
289 dc->links[dc->link_count] = link;
290 dc->link_count++;
291
292 link->ctx = dc->ctx;
293 link->dc = dc;
294 link->connector_signal = SIGNAL_TYPE_VIRTUAL;
295 link->link_id.type = OBJECT_TYPE_CONNECTOR;
296 link->link_id.id = CONNECTOR_ID_VIRTUAL;
297 link->link_id.enum_id = ENUM_ID_1;
298 link->psr_settings.psr_version = DC_PSR_VERSION_UNSUPPORTED;
299 link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
300
301 if (!link->link_enc) {
302 BREAK_TO_DEBUGGER();
303 goto failed_alloc;
304 }
305
306 link->link_status.dpcd_caps = &link->dpcd_caps;
307
308 enc_init.ctx = dc->ctx;
309 enc_init.channel = CHANNEL_ID_UNKNOWN;
310 enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
311 enc_init.transmitter = TRANSMITTER_UNKNOWN;
312 enc_init.connector = link->link_id;
313 enc_init.encoder.type = OBJECT_TYPE_ENCODER;
314 enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
315 enc_init.encoder.enum_id = ENUM_ID_1;
316 virtual_link_encoder_construct(link->link_enc, &enc_init);
317 }
318
319 dc->caps.num_of_internal_disp = get_num_of_internal_disp(dc->links, dc->link_count);
320
321 return true;
322
323 failed_alloc:
324 return false;
325 }
326
327 /* Create additional DIG link encoder objects if fewer than the platform
328 * supports were created during link construction. This can happen if the
329 * number of physical connectors is less than the number of DIGs.
330 */
create_link_encoders(struct dc * dc)331 static bool create_link_encoders(struct dc *dc)
332 {
333 bool res = true;
334 unsigned int num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
335 unsigned int num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
336 int i;
337
338 /* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
339 * link encoders and physical display endpoints and does not require
340 * additional link encoder objects.
341 */
342 if (num_usb4_dpia == 0)
343 return res;
344
345 /* Create as many link encoder objects as the platform supports. DPIA
346 * endpoints can be programmably mapped to any DIG.
347 */
348 if (num_dig_link_enc > dc->res_pool->dig_link_enc_count) {
349 for (i = 0; i < num_dig_link_enc; i++) {
350 struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
351
352 if (!link_enc && dc->res_pool->funcs->link_enc_create_minimal) {
353 link_enc = dc->res_pool->funcs->link_enc_create_minimal(dc->ctx,
354 (enum engine_id)(ENGINE_ID_DIGA + i));
355 if (link_enc) {
356 dc->res_pool->link_encoders[i] = link_enc;
357 dc->res_pool->dig_link_enc_count++;
358 } else {
359 res = false;
360 }
361 }
362 }
363 }
364
365 return res;
366 }
367
368 /* Destroy any additional DIG link encoder objects created by
369 * create_link_encoders().
370 * NB: Must only be called after destroy_links().
371 */
destroy_link_encoders(struct dc * dc)372 static void destroy_link_encoders(struct dc *dc)
373 {
374 unsigned int num_usb4_dpia;
375 unsigned int num_dig_link_enc;
376 int i;
377
378 if (!dc->res_pool)
379 return;
380
381 num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
382 num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
383
384 /* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
385 * link encoders and physical display endpoints and does not require
386 * additional link encoder objects.
387 */
388 if (num_usb4_dpia == 0)
389 return;
390
391 for (i = 0; i < num_dig_link_enc; i++) {
392 struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
393
394 if (link_enc) {
395 link_enc->funcs->destroy(&link_enc);
396 dc->res_pool->link_encoders[i] = NULL;
397 dc->res_pool->dig_link_enc_count--;
398 }
399 }
400 }
401
dc_perf_trace_create(void)402 static struct dc_perf_trace *dc_perf_trace_create(void)
403 {
404 return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
405 }
406
dc_perf_trace_destroy(struct dc_perf_trace ** perf_trace)407 static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
408 {
409 kfree(*perf_trace);
410 *perf_trace = NULL;
411 }
412
set_long_vtotal(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)413 static bool set_long_vtotal(struct dc *dc, struct dc_stream_state *stream, struct dc_crtc_timing_adjust *adjust)
414 {
415 if (!dc || !stream || !adjust)
416 return false;
417
418 if (!dc->current_state)
419 return false;
420
421 int i;
422
423 for (i = 0; i < MAX_PIPES; i++) {
424 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
425
426 if (pipe->stream == stream && pipe->stream_res.tg) {
427 if (dc->hwss.set_long_vtotal)
428 dc->hwss.set_long_vtotal(&pipe, 1, adjust->v_total_min, adjust->v_total_max);
429
430 return true;
431 }
432 }
433
434 return false;
435 }
436
437 /**
438 * dc_stream_adjust_vmin_vmax - look up pipe context & update parts of DRR
439 * @dc: dc reference
440 * @stream: Initial dc stream state
441 * @adjust: Updated parameters for vertical_total_min and vertical_total_max
442 *
443 * Looks up the pipe context of dc_stream_state and updates the
444 * vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
445 * Rate, which is a power-saving feature that targets reducing panel
446 * refresh rate while the screen is static
447 *
448 * Return: %true if the pipe context is found and adjusted;
449 * %false if the pipe context is not found.
450 */
dc_stream_adjust_vmin_vmax(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)451 bool dc_stream_adjust_vmin_vmax(struct dc *dc,
452 struct dc_stream_state *stream,
453 struct dc_crtc_timing_adjust *adjust)
454 {
455 int i;
456
457 /*
458 * Don't adjust DRR while there's bandwidth optimizations pending to
459 * avoid conflicting with firmware updates.
460 */
461 if (dc->ctx->dce_version > DCE_VERSION_MAX) {
462 if (dc->optimized_required || dc->wm_optimized_required) {
463 stream->adjust.timing_adjust_pending = true;
464 return false;
465 }
466 }
467
468 dc_exit_ips_for_hw_access(dc);
469
470 stream->adjust.v_total_max = adjust->v_total_max;
471 stream->adjust.v_total_mid = adjust->v_total_mid;
472 stream->adjust.v_total_mid_frame_num = adjust->v_total_mid_frame_num;
473 stream->adjust.v_total_min = adjust->v_total_min;
474 stream->adjust.allow_otg_v_count_halt = adjust->allow_otg_v_count_halt;
475
476 if (dc->caps.max_v_total != 0 &&
477 (adjust->v_total_max > dc->caps.max_v_total || adjust->v_total_min > dc->caps.max_v_total)) {
478 stream->adjust.timing_adjust_pending = false;
479 if (adjust->allow_otg_v_count_halt)
480 return set_long_vtotal(dc, stream, adjust);
481 else
482 return false;
483 }
484
485 for (i = 0; i < MAX_PIPES; i++) {
486 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
487
488 if (pipe->stream == stream && pipe->stream_res.tg) {
489 dc->hwss.set_drr(&pipe,
490 1,
491 *adjust);
492 stream->adjust.timing_adjust_pending = false;
493 return true;
494 }
495 }
496 return false;
497 }
498
499 /**
500 * dc_stream_get_last_used_drr_vtotal - Looks up the pipe context of
501 * dc_stream_state and gets the last VTOTAL used by DRR (Dynamic Refresh Rate)
502 *
503 * @dc: [in] dc reference
504 * @stream: [in] Initial dc stream state
505 * @refresh_rate: [in] new refresh_rate
506 *
507 * Return: %true if the pipe context is found and there is an associated
508 * timing_generator for the DC;
509 * %false if the pipe context is not found or there is no
510 * timing_generator for the DC.
511 */
dc_stream_get_last_used_drr_vtotal(struct dc * dc,struct dc_stream_state * stream,uint32_t * refresh_rate)512 bool dc_stream_get_last_used_drr_vtotal(struct dc *dc,
513 struct dc_stream_state *stream,
514 uint32_t *refresh_rate)
515 {
516 bool status = false;
517
518 int i = 0;
519
520 dc_exit_ips_for_hw_access(dc);
521
522 for (i = 0; i < MAX_PIPES; i++) {
523 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
524
525 if (pipe->stream == stream && pipe->stream_res.tg) {
526 /* Only execute if a function pointer has been defined for
527 * the DC version in question
528 */
529 if (pipe->stream_res.tg->funcs->get_last_used_drr_vtotal) {
530 pipe->stream_res.tg->funcs->get_last_used_drr_vtotal(pipe->stream_res.tg, refresh_rate);
531
532 status = true;
533
534 break;
535 }
536 }
537 }
538
539 return status;
540 }
541
542 #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
543 static inline void
dc_stream_forward_dmub_crc_window(struct dc_dmub_srv * dmub_srv,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)544 dc_stream_forward_dmub_crc_window(struct dc_dmub_srv *dmub_srv,
545 struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
546 {
547 union dmub_rb_cmd cmd = {0};
548
549 cmd.secure_display.roi_info.phy_id = mux_mapping->phy_output_num;
550 cmd.secure_display.roi_info.otg_id = mux_mapping->otg_output_num;
551
552 if (is_stop) {
553 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
554 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_STOP_UPDATE;
555 } else {
556 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
557 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_WIN_NOTIFY;
558 cmd.secure_display.roi_info.x_start = rect->x;
559 cmd.secure_display.roi_info.y_start = rect->y;
560 cmd.secure_display.roi_info.x_end = rect->x + rect->width;
561 cmd.secure_display.roi_info.y_end = rect->y + rect->height;
562 }
563
564 dc_wake_and_execute_dmub_cmd(dmub_srv->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
565 }
566
567 static inline void
dc_stream_forward_dmcu_crc_window(struct dmcu * dmcu,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)568 dc_stream_forward_dmcu_crc_window(struct dmcu *dmcu,
569 struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
570 {
571 if (is_stop)
572 dmcu->funcs->stop_crc_win_update(dmcu, mux_mapping);
573 else
574 dmcu->funcs->forward_crc_window(dmcu, rect, mux_mapping);
575 }
576
577 bool
dc_stream_forward_crc_window(struct dc_stream_state * stream,struct rect * rect,uint8_t phy_id,bool is_stop)578 dc_stream_forward_crc_window(struct dc_stream_state *stream,
579 struct rect *rect, uint8_t phy_id, bool is_stop)
580 {
581 struct dmcu *dmcu;
582 struct dc_dmub_srv *dmub_srv;
583 struct otg_phy_mux mux_mapping;
584 struct pipe_ctx *pipe;
585 int i;
586 struct dc *dc = stream->ctx->dc;
587
588 for (i = 0; i < MAX_PIPES; i++) {
589 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
590 if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
591 break;
592 }
593
594 /* Stream not found */
595 if (i == MAX_PIPES)
596 return false;
597
598 mux_mapping.phy_output_num = phy_id;
599 mux_mapping.otg_output_num = pipe->stream_res.tg->inst;
600
601 dmcu = dc->res_pool->dmcu;
602 dmub_srv = dc->ctx->dmub_srv;
603
604 /* forward to dmub */
605 if (dmub_srv)
606 dc_stream_forward_dmub_crc_window(dmub_srv, rect, &mux_mapping, is_stop);
607 /* forward to dmcu */
608 else if (dmcu && dmcu->funcs->is_dmcu_initialized(dmcu))
609 dc_stream_forward_dmcu_crc_window(dmcu, rect, &mux_mapping, is_stop);
610 else
611 return false;
612
613 return true;
614 }
615
616 static void
dc_stream_forward_dmub_multiple_crc_window(struct dc_dmub_srv * dmub_srv,struct crc_window * window,struct otg_phy_mux * mux_mapping,bool stop)617 dc_stream_forward_dmub_multiple_crc_window(struct dc_dmub_srv *dmub_srv,
618 struct crc_window *window, struct otg_phy_mux *mux_mapping, bool stop)
619 {
620 int i;
621 union dmub_rb_cmd cmd = {0};
622
623 cmd.secure_display.mul_roi_ctl.phy_id = mux_mapping->phy_output_num;
624 cmd.secure_display.mul_roi_ctl.otg_id = mux_mapping->otg_output_num;
625
626 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
627
628 if (stop) {
629 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_MULTIPLE_CRC_STOP_UPDATE;
630 } else {
631 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_MULTIPLE_CRC_WIN_NOTIFY;
632 for (i = 0; i < MAX_CRC_WINDOW_NUM; i++) {
633 cmd.secure_display.mul_roi_ctl.roi_ctl[i].x_start = window[i].rect.x;
634 cmd.secure_display.mul_roi_ctl.roi_ctl[i].y_start = window[i].rect.y;
635 cmd.secure_display.mul_roi_ctl.roi_ctl[i].x_end = window[i].rect.x + window[i].rect.width;
636 cmd.secure_display.mul_roi_ctl.roi_ctl[i].y_end = window[i].rect.y + window[i].rect.height;
637 cmd.secure_display.mul_roi_ctl.roi_ctl[i].enable = window[i].enable;
638 }
639 }
640
641 dc_wake_and_execute_dmub_cmd(dmub_srv->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
642 }
643
644 bool
dc_stream_forward_multiple_crc_window(struct dc_stream_state * stream,struct crc_window * window,uint8_t phy_id,bool stop)645 dc_stream_forward_multiple_crc_window(struct dc_stream_state *stream,
646 struct crc_window *window, uint8_t phy_id, bool stop)
647 {
648 struct dc_dmub_srv *dmub_srv;
649 struct otg_phy_mux mux_mapping;
650 struct pipe_ctx *pipe;
651 int i;
652 struct dc *dc = stream->ctx->dc;
653
654 for (i = 0; i < MAX_PIPES; i++) {
655 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
656 if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
657 break;
658 }
659
660 /* Stream not found */
661 if (i == MAX_PIPES)
662 return false;
663
664 mux_mapping.phy_output_num = phy_id;
665 mux_mapping.otg_output_num = pipe->stream_res.tg->inst;
666
667 dmub_srv = dc->ctx->dmub_srv;
668
669 /* forward to dmub only. no dmcu support*/
670 if (dmub_srv)
671 dc_stream_forward_dmub_multiple_crc_window(dmub_srv, window, &mux_mapping, stop);
672 else
673 return false;
674
675 return true;
676 }
677 #endif /* CONFIG_DRM_AMD_SECURE_DISPLAY */
678
679 /**
680 * dc_stream_configure_crc() - Configure CRC capture for the given stream.
681 * @dc: DC Object
682 * @stream: The stream to configure CRC on.
683 * @crc_window: CRC window (x/y start/end) information
684 * @enable: Enable CRC if true, disable otherwise.
685 * @continuous: Capture CRC on every frame if true. Otherwise, only capture
686 * once.
687 * @idx: Capture CRC on which CRC engine instance
688 * @reset: Reset CRC engine before the configuration
689 *
690 * By default, the entire frame is used to calculate the CRC.
691 *
692 * Return: %false if the stream is not found or CRC capture is not supported;
693 * %true if the stream has been configured.
694 */
dc_stream_configure_crc(struct dc * dc,struct dc_stream_state * stream,struct crc_params * crc_window,bool enable,bool continuous,uint8_t idx,bool reset)695 bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
696 struct crc_params *crc_window, bool enable, bool continuous,
697 uint8_t idx, bool reset)
698 {
699 struct pipe_ctx *pipe;
700 struct crc_params param;
701 struct timing_generator *tg;
702
703 pipe = resource_get_otg_master_for_stream(
704 &dc->current_state->res_ctx, stream);
705
706 /* Stream not found */
707 if (pipe == NULL)
708 return false;
709
710 dc_exit_ips_for_hw_access(dc);
711
712 /* By default, capture the full frame */
713 param.windowa_x_start = 0;
714 param.windowa_y_start = 0;
715 param.windowa_x_end = pipe->stream->timing.h_addressable;
716 param.windowa_y_end = pipe->stream->timing.v_addressable;
717 param.windowb_x_start = 0;
718 param.windowb_y_start = 0;
719 param.windowb_x_end = pipe->stream->timing.h_addressable;
720 param.windowb_y_end = pipe->stream->timing.v_addressable;
721
722 if (crc_window) {
723 param.windowa_x_start = crc_window->windowa_x_start;
724 param.windowa_y_start = crc_window->windowa_y_start;
725 param.windowa_x_end = crc_window->windowa_x_end;
726 param.windowa_y_end = crc_window->windowa_y_end;
727 param.windowb_x_start = crc_window->windowb_x_start;
728 param.windowb_y_start = crc_window->windowb_y_start;
729 param.windowb_x_end = crc_window->windowb_x_end;
730 param.windowb_y_end = crc_window->windowb_y_end;
731 }
732
733 param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0;
734 param.odm_mode = pipe->next_odm_pipe ? 1:0;
735
736 /* Default to the union of both windows */
737 param.selection = UNION_WINDOW_A_B;
738 param.continuous_mode = continuous;
739 param.enable = enable;
740
741 param.crc_eng_inst = idx;
742 param.reset = reset;
743
744 tg = pipe->stream_res.tg;
745
746 /* Only call if supported */
747 if (tg->funcs->configure_crc)
748 return tg->funcs->configure_crc(tg, ¶m);
749 DC_LOG_WARNING("CRC capture not supported.");
750 return false;
751 }
752
753 /**
754 * dc_stream_get_crc() - Get CRC values for the given stream.
755 *
756 * @dc: DC object.
757 * @stream: The DC stream state of the stream to get CRCs from.
758 * @idx: index of crc engine to get CRC from
759 * @r_cr: CRC value for the red component.
760 * @g_y: CRC value for the green component.
761 * @b_cb: CRC value for the blue component.
762 *
763 * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
764 *
765 * Return:
766 * %false if stream is not found, or if CRCs are not enabled.
767 */
dc_stream_get_crc(struct dc * dc,struct dc_stream_state * stream,uint8_t idx,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)768 bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream, uint8_t idx,
769 uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
770 {
771 int i;
772 struct pipe_ctx *pipe;
773 struct timing_generator *tg;
774
775 dc_exit_ips_for_hw_access(dc);
776
777 for (i = 0; i < MAX_PIPES; i++) {
778 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
779 if (pipe->stream == stream)
780 break;
781 }
782 /* Stream not found */
783 if (i == MAX_PIPES)
784 return false;
785
786 tg = pipe->stream_res.tg;
787
788 if (tg->funcs->get_crc)
789 return tg->funcs->get_crc(tg, idx, r_cr, g_y, b_cb);
790 DC_LOG_WARNING("CRC capture not supported.");
791 return false;
792 }
793
dc_stream_set_dyn_expansion(struct dc * dc,struct dc_stream_state * stream,enum dc_dynamic_expansion option)794 void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
795 enum dc_dynamic_expansion option)
796 {
797 /* OPP FMT dyn expansion updates*/
798 int i;
799 struct pipe_ctx *pipe_ctx;
800
801 dc_exit_ips_for_hw_access(dc);
802
803 for (i = 0; i < MAX_PIPES; i++) {
804 if (dc->current_state->res_ctx.pipe_ctx[i].stream
805 == stream) {
806 pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
807 pipe_ctx->stream_res.opp->dyn_expansion = option;
808 pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
809 pipe_ctx->stream_res.opp,
810 COLOR_SPACE_YCBCR601,
811 stream->timing.display_color_depth,
812 stream->signal);
813 }
814 }
815 }
816
dc_stream_set_dither_option(struct dc_stream_state * stream,enum dc_dither_option option)817 void dc_stream_set_dither_option(struct dc_stream_state *stream,
818 enum dc_dither_option option)
819 {
820 struct bit_depth_reduction_params params;
821 struct dc_link *link = stream->link;
822 struct pipe_ctx *pipes = NULL;
823 int i;
824
825 for (i = 0; i < MAX_PIPES; i++) {
826 if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
827 stream) {
828 pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
829 break;
830 }
831 }
832
833 if (!pipes)
834 return;
835 if (option > DITHER_OPTION_MAX)
836 return;
837
838 dc_exit_ips_for_hw_access(stream->ctx->dc);
839
840 stream->dither_option = option;
841
842 memset(¶ms, 0, sizeof(params));
843 resource_build_bit_depth_reduction_params(stream, ¶ms);
844 stream->bit_depth_params = params;
845
846 if (pipes->plane_res.xfm &&
847 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
848 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
849 pipes->plane_res.xfm,
850 pipes->plane_res.scl_data.lb_params.depth,
851 &stream->bit_depth_params);
852 }
853
854 pipes->stream_res.opp->funcs->
855 opp_program_bit_depth_reduction(pipes->stream_res.opp, ¶ms);
856 }
857
dc_stream_set_gamut_remap(struct dc * dc,const struct dc_stream_state * stream)858 bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
859 {
860 int i;
861 bool ret = false;
862 struct pipe_ctx *pipes;
863
864 dc_exit_ips_for_hw_access(dc);
865
866 for (i = 0; i < MAX_PIPES; i++) {
867 if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
868 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
869 dc->hwss.program_gamut_remap(pipes);
870 ret = true;
871 }
872 }
873
874 return ret;
875 }
876
dc_stream_program_csc_matrix(struct dc * dc,struct dc_stream_state * stream)877 bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
878 {
879 int i;
880 bool ret = false;
881 struct pipe_ctx *pipes;
882
883 dc_exit_ips_for_hw_access(dc);
884
885 for (i = 0; i < MAX_PIPES; i++) {
886 if (dc->current_state->res_ctx.pipe_ctx[i].stream
887 == stream) {
888
889 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
890 dc->hwss.program_output_csc(dc,
891 pipes,
892 stream->output_color_space,
893 stream->csc_color_matrix.matrix,
894 pipes->stream_res.opp->inst);
895 ret = true;
896 }
897 }
898
899 return ret;
900 }
901
dc_stream_set_static_screen_params(struct dc * dc,struct dc_stream_state ** streams,int num_streams,const struct dc_static_screen_params * params)902 void dc_stream_set_static_screen_params(struct dc *dc,
903 struct dc_stream_state **streams,
904 int num_streams,
905 const struct dc_static_screen_params *params)
906 {
907 int i, j;
908 struct pipe_ctx *pipes_affected[MAX_PIPES];
909 int num_pipes_affected = 0;
910
911 dc_exit_ips_for_hw_access(dc);
912
913 for (i = 0; i < num_streams; i++) {
914 struct dc_stream_state *stream = streams[i];
915
916 for (j = 0; j < MAX_PIPES; j++) {
917 if (dc->current_state->res_ctx.pipe_ctx[j].stream
918 == stream) {
919 pipes_affected[num_pipes_affected++] =
920 &dc->current_state->res_ctx.pipe_ctx[j];
921 }
922 }
923 }
924
925 dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
926 }
927
dc_destruct(struct dc * dc)928 static void dc_destruct(struct dc *dc)
929 {
930 // reset link encoder assignment table on destruct
931 if (dc->res_pool && dc->res_pool->funcs->link_encs_assign &&
932 !dc->config.unify_link_enc_assignment)
933 link_enc_cfg_init(dc, dc->current_state);
934
935 if (dc->current_state) {
936 dc_state_release(dc->current_state);
937 dc->current_state = NULL;
938 }
939
940 destroy_links(dc);
941
942 destroy_link_encoders(dc);
943
944 if (dc->clk_mgr) {
945 dc_destroy_clk_mgr(dc->clk_mgr);
946 dc->clk_mgr = NULL;
947 }
948
949 dc_destroy_resource_pool(dc);
950
951 if (dc->link_srv)
952 link_destroy_link_service(&dc->link_srv);
953
954 if (dc->ctx) {
955 if (dc->ctx->gpio_service)
956 dal_gpio_service_destroy(&dc->ctx->gpio_service);
957
958 if (dc->ctx->created_bios)
959 dal_bios_parser_destroy(&dc->ctx->dc_bios);
960 kfree(dc->ctx->logger);
961 dc_perf_trace_destroy(&dc->ctx->perf_trace);
962
963 kfree(dc->ctx);
964 dc->ctx = NULL;
965 }
966
967 kfree(dc->bw_vbios);
968 dc->bw_vbios = NULL;
969
970 kfree(dc->bw_dceip);
971 dc->bw_dceip = NULL;
972
973 kfree(dc->dcn_soc);
974 dc->dcn_soc = NULL;
975
976 kfree(dc->dcn_ip);
977 dc->dcn_ip = NULL;
978
979 kfree(dc->vm_helper);
980 dc->vm_helper = NULL;
981
982 }
983
dc_construct_ctx(struct dc * dc,const struct dc_init_data * init_params)984 static bool dc_construct_ctx(struct dc *dc,
985 const struct dc_init_data *init_params)
986 {
987 struct dc_context *dc_ctx;
988
989 dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
990 if (!dc_ctx)
991 return false;
992
993 dc_stream_init_rmcm_3dlut(dc);
994
995 dc_ctx->cgs_device = init_params->cgs_device;
996 dc_ctx->driver_context = init_params->driver;
997 dc_ctx->dc = dc;
998 dc_ctx->asic_id = init_params->asic_id;
999 dc_ctx->dc_sink_id_count = 0;
1000 dc_ctx->dc_stream_id_count = 0;
1001 dc_ctx->dce_environment = init_params->dce_environment;
1002 dc_ctx->dcn_reg_offsets = init_params->dcn_reg_offsets;
1003 dc_ctx->nbio_reg_offsets = init_params->nbio_reg_offsets;
1004 dc_ctx->clk_reg_offsets = init_params->clk_reg_offsets;
1005
1006 /* Create logger */
1007 dc_ctx->logger = kmalloc(sizeof(*dc_ctx->logger), GFP_KERNEL);
1008
1009 if (!dc_ctx->logger) {
1010 kfree(dc_ctx);
1011 return false;
1012 }
1013
1014 dc_ctx->logger->dev = adev_to_drm(init_params->driver);
1015 dc->dml.logger = dc_ctx->logger;
1016
1017 dc_ctx->dce_version = resource_parse_asic_id(init_params->asic_id);
1018
1019 dc_ctx->perf_trace = dc_perf_trace_create();
1020 if (!dc_ctx->perf_trace) {
1021 kfree(dc_ctx);
1022 ASSERT_CRITICAL(false);
1023 return false;
1024 }
1025
1026 dc->ctx = dc_ctx;
1027
1028 dc->link_srv = link_create_link_service();
1029 if (!dc->link_srv)
1030 return false;
1031
1032 return true;
1033 }
1034
dc_construct(struct dc * dc,const struct dc_init_data * init_params)1035 static bool dc_construct(struct dc *dc,
1036 const struct dc_init_data *init_params)
1037 {
1038 struct dc_context *dc_ctx;
1039 struct bw_calcs_dceip *dc_dceip;
1040 struct bw_calcs_vbios *dc_vbios;
1041 struct dcn_soc_bounding_box *dcn_soc;
1042 struct dcn_ip_params *dcn_ip;
1043
1044 dc->config = init_params->flags;
1045
1046 // Allocate memory for the vm_helper
1047 dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
1048 if (!dc->vm_helper) {
1049 dm_error("%s: failed to create dc->vm_helper\n", __func__);
1050 goto fail;
1051 }
1052
1053 memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
1054
1055 dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
1056 if (!dc_dceip) {
1057 dm_error("%s: failed to create dceip\n", __func__);
1058 goto fail;
1059 }
1060
1061 dc->bw_dceip = dc_dceip;
1062
1063 dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
1064 if (!dc_vbios) {
1065 dm_error("%s: failed to create vbios\n", __func__);
1066 goto fail;
1067 }
1068
1069 dc->bw_vbios = dc_vbios;
1070 dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
1071 if (!dcn_soc) {
1072 dm_error("%s: failed to create dcn_soc\n", __func__);
1073 goto fail;
1074 }
1075
1076 dc->dcn_soc = dcn_soc;
1077
1078 dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
1079 if (!dcn_ip) {
1080 dm_error("%s: failed to create dcn_ip\n", __func__);
1081 goto fail;
1082 }
1083
1084 dc->dcn_ip = dcn_ip;
1085
1086 if (init_params->bb_from_dmub)
1087 dc->dml2_options.bb_from_dmub = init_params->bb_from_dmub;
1088 else
1089 dc->dml2_options.bb_from_dmub = NULL;
1090
1091 if (!dc_construct_ctx(dc, init_params)) {
1092 dm_error("%s: failed to create ctx\n", __func__);
1093 goto fail;
1094 }
1095
1096 dc_ctx = dc->ctx;
1097
1098 /* Resource should construct all asic specific resources.
1099 * This should be the only place where we need to parse the asic id
1100 */
1101 if (init_params->vbios_override)
1102 dc_ctx->dc_bios = init_params->vbios_override;
1103 else {
1104 /* Create BIOS parser */
1105 struct bp_init_data bp_init_data;
1106
1107 bp_init_data.ctx = dc_ctx;
1108 bp_init_data.bios = init_params->asic_id.atombios_base_address;
1109
1110 dc_ctx->dc_bios = dal_bios_parser_create(
1111 &bp_init_data, dc_ctx->dce_version);
1112
1113 if (!dc_ctx->dc_bios) {
1114 ASSERT_CRITICAL(false);
1115 goto fail;
1116 }
1117
1118 dc_ctx->created_bios = true;
1119 }
1120
1121 dc->vendor_signature = init_params->vendor_signature;
1122
1123 /* Create GPIO service */
1124 dc_ctx->gpio_service = dal_gpio_service_create(
1125 dc_ctx->dce_version,
1126 dc_ctx->dce_environment,
1127 dc_ctx);
1128
1129 if (!dc_ctx->gpio_service) {
1130 ASSERT_CRITICAL(false);
1131 goto fail;
1132 }
1133
1134 dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
1135 if (!dc->res_pool)
1136 goto fail;
1137
1138 /* set i2c speed if not done by the respective dcnxxx__resource.c */
1139 if (dc->caps.i2c_speed_in_khz_hdcp == 0)
1140 dc->caps.i2c_speed_in_khz_hdcp = dc->caps.i2c_speed_in_khz;
1141 if (dc->caps.max_optimizable_video_width == 0)
1142 dc->caps.max_optimizable_video_width = 5120;
1143 dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
1144 if (!dc->clk_mgr)
1145 goto fail;
1146 #ifdef CONFIG_DRM_AMD_DC_FP
1147 dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present;
1148
1149 if (dc->res_pool->funcs->update_bw_bounding_box) {
1150 DC_FP_START();
1151 dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
1152 DC_FP_END();
1153 }
1154 #endif
1155
1156 if (!create_links(dc, init_params->num_virtual_links))
1157 goto fail;
1158
1159 /* Create additional DIG link encoder objects if fewer than the platform
1160 * supports were created during link construction.
1161 */
1162 if (!create_link_encoders(dc))
1163 goto fail;
1164
1165 /* Creation of current_state must occur after dc->dml
1166 * is initialized in dc_create_resource_pool because
1167 * on creation it copies the contents of dc->dml
1168 */
1169 dc->current_state = dc_state_create(dc, NULL);
1170
1171 if (!dc->current_state) {
1172 dm_error("%s: failed to create validate ctx\n", __func__);
1173 goto fail;
1174 }
1175
1176 return true;
1177
1178 fail:
1179 return false;
1180 }
1181
disable_all_writeback_pipes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)1182 static void disable_all_writeback_pipes_for_stream(
1183 const struct dc *dc,
1184 struct dc_stream_state *stream,
1185 struct dc_state *context)
1186 {
1187 int i;
1188
1189 for (i = 0; i < stream->num_wb_info; i++)
1190 stream->writeback_info[i].wb_enabled = false;
1191 }
1192
apply_ctx_interdependent_lock(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,bool lock)1193 static void apply_ctx_interdependent_lock(struct dc *dc,
1194 struct dc_state *context,
1195 struct dc_stream_state *stream,
1196 bool lock)
1197 {
1198 int i;
1199
1200 /* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
1201 if (dc->hwss.interdependent_update_lock)
1202 dc->hwss.interdependent_update_lock(dc, context, lock);
1203 else {
1204 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1205 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1206 struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
1207
1208 // Copied conditions that were previously in dce110_apply_ctx_for_surface
1209 if (stream == pipe_ctx->stream) {
1210 if (resource_is_pipe_type(pipe_ctx, OPP_HEAD) &&
1211 (pipe_ctx->plane_state || old_pipe_ctx->plane_state))
1212 dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
1213 }
1214 }
1215 }
1216 }
1217
dc_update_visual_confirm_color(struct dc * dc,struct dc_state * context,struct pipe_ctx * pipe_ctx)1218 static void dc_update_visual_confirm_color(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
1219 {
1220 if (dc->debug.visual_confirm & VISUAL_CONFIRM_EXPLICIT) {
1221 memcpy(&pipe_ctx->visual_confirm_color, &pipe_ctx->plane_state->visual_confirm_color,
1222 sizeof(pipe_ctx->visual_confirm_color));
1223 return;
1224 }
1225
1226 if (dc->ctx->dce_version >= DCN_VERSION_1_0) {
1227 memset(&pipe_ctx->visual_confirm_color, 0, sizeof(struct tg_color));
1228
1229 if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR)
1230 get_hdr_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1231 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1232 get_surface_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1233 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SWIZZLE)
1234 get_surface_tile_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1235 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_HW_CURSOR)
1236 get_cursor_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1237 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_DCC)
1238 get_dcc_visual_confirm_color(dc, pipe_ctx, &(pipe_ctx->visual_confirm_color));
1239 else {
1240 if (dc->ctx->dce_version < DCN_VERSION_2_0)
1241 color_space_to_black_color(
1242 dc, pipe_ctx->stream->output_color_space, &(pipe_ctx->visual_confirm_color));
1243 }
1244 if (dc->ctx->dce_version >= DCN_VERSION_2_0) {
1245 if (dc->debug.visual_confirm == VISUAL_CONFIRM_MPCTREE)
1246 get_mpctree_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1247 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP)
1248 get_subvp_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1249 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH)
1250 get_mclk_switch_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1251 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_FAMS2)
1252 get_fams2_visual_confirm_color(dc, context, pipe_ctx, &(pipe_ctx->visual_confirm_color));
1253 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_VABC)
1254 get_vabc_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1255 }
1256 }
1257 }
1258
dc_get_visual_confirm_for_stream(struct dc * dc,struct dc_stream_state * stream_state,struct tg_color * color)1259 void dc_get_visual_confirm_for_stream(
1260 struct dc *dc,
1261 struct dc_stream_state *stream_state,
1262 struct tg_color *color)
1263 {
1264 struct dc_stream_status *stream_status = dc_stream_get_status(stream_state);
1265 struct pipe_ctx *pipe_ctx;
1266 int i;
1267 struct dc_plane_state *plane_state = NULL;
1268
1269 if (!stream_status)
1270 return;
1271
1272 switch (dc->debug.visual_confirm) {
1273 case VISUAL_CONFIRM_DISABLE:
1274 return;
1275 case VISUAL_CONFIRM_PSR:
1276 case VISUAL_CONFIRM_FAMS:
1277 pipe_ctx = dc_stream_get_pipe_ctx(stream_state);
1278 if (!pipe_ctx)
1279 return;
1280 dc_dmub_srv_get_visual_confirm_color_cmd(dc, pipe_ctx);
1281 memcpy(color, &dc->ctx->dmub_srv->dmub->visual_confirm_color, sizeof(struct tg_color));
1282 return;
1283
1284 default:
1285 /* find plane with highest layer_index */
1286 for (i = 0; i < stream_status->plane_count; i++) {
1287 if (stream_status->plane_states[i]->visible)
1288 plane_state = stream_status->plane_states[i];
1289 }
1290 if (!plane_state)
1291 return;
1292 /* find pipe that contains plane with highest layer index */
1293 for (i = 0; i < MAX_PIPES; i++) {
1294 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1295
1296 if (pipe->plane_state == plane_state) {
1297 memcpy(color, &pipe->visual_confirm_color, sizeof(struct tg_color));
1298 return;
1299 }
1300 }
1301 }
1302 }
1303
disable_dangling_plane(struct dc * dc,struct dc_state * context)1304 static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
1305 {
1306 int i, j;
1307 struct dc_state *dangling_context = dc_state_create_current_copy(dc);
1308 struct dc_state *current_ctx;
1309 struct pipe_ctx *pipe;
1310 struct timing_generator *tg;
1311
1312 if (dangling_context == NULL)
1313 return;
1314
1315 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1316 struct dc_stream_state *old_stream =
1317 dc->current_state->res_ctx.pipe_ctx[i].stream;
1318 bool should_disable = true;
1319 bool pipe_split_change = false;
1320
1321 if ((context->res_ctx.pipe_ctx[i].top_pipe) &&
1322 (dc->current_state->res_ctx.pipe_ctx[i].top_pipe))
1323 pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe->pipe_idx !=
1324 dc->current_state->res_ctx.pipe_ctx[i].top_pipe->pipe_idx;
1325 else
1326 pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe !=
1327 dc->current_state->res_ctx.pipe_ctx[i].top_pipe;
1328
1329 for (j = 0; j < context->stream_count; j++) {
1330 if (old_stream == context->streams[j]) {
1331 should_disable = false;
1332 break;
1333 }
1334 }
1335 if (!should_disable && pipe_split_change &&
1336 dc->current_state->stream_count != context->stream_count)
1337 should_disable = true;
1338
1339 if (old_stream && !dc->current_state->res_ctx.pipe_ctx[i].top_pipe &&
1340 !dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe) {
1341 struct pipe_ctx *old_pipe, *new_pipe;
1342
1343 old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1344 new_pipe = &context->res_ctx.pipe_ctx[i];
1345
1346 if (old_pipe->plane_state && !new_pipe->plane_state)
1347 should_disable = true;
1348 }
1349
1350 if (should_disable && old_stream) {
1351 bool is_phantom = dc_state_get_stream_subvp_type(dc->current_state, old_stream) == SUBVP_PHANTOM;
1352 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1353 tg = pipe->stream_res.tg;
1354 /* When disabling plane for a phantom pipe, we must turn on the
1355 * phantom OTG so the disable programming gets the double buffer
1356 * update. Otherwise the pipe will be left in a partially disabled
1357 * state that can result in underflow or hang when enabling it
1358 * again for different use.
1359 */
1360 if (is_phantom) {
1361 if (tg->funcs->enable_crtc) {
1362 if (dc->hwseq->funcs.blank_pixel_data)
1363 dc->hwseq->funcs.blank_pixel_data(dc, pipe, true);
1364 tg->funcs->enable_crtc(tg);
1365 }
1366 }
1367
1368 if (is_phantom)
1369 dc_state_rem_all_phantom_planes_for_stream(dc, old_stream, dangling_context, true);
1370 else
1371 dc_state_rem_all_planes_for_stream(dc, old_stream, dangling_context);
1372 disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
1373
1374 if (pipe->stream && pipe->plane_state) {
1375 if (!dc->debug.using_dml2)
1376 set_p_state_switch_method(dc, context, pipe);
1377 dc_update_visual_confirm_color(dc, context, pipe);
1378 }
1379
1380 if (dc->hwss.apply_ctx_for_surface) {
1381 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true);
1382 dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
1383 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false);
1384 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1385 }
1386
1387 if (dc->res_pool->funcs->prepare_mcache_programming)
1388 dc->res_pool->funcs->prepare_mcache_programming(dc, dangling_context);
1389 if (dc->hwss.program_front_end_for_ctx) {
1390 dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
1391 dc->hwss.program_front_end_for_ctx(dc, dangling_context);
1392 dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
1393 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1394 }
1395 /* We need to put the phantom OTG back into it's default (disabled) state or we
1396 * can get corruption when transition from one SubVP config to a different one.
1397 * The OTG is set to disable on falling edge of VUPDATE so the plane disable
1398 * will still get it's double buffer update.
1399 */
1400 if (is_phantom) {
1401 if (tg->funcs->disable_phantom_crtc)
1402 tg->funcs->disable_phantom_crtc(tg);
1403 }
1404 }
1405 }
1406
1407 current_ctx = dc->current_state;
1408 dc->current_state = dangling_context;
1409 dc_state_release(current_ctx);
1410 }
1411
disable_vbios_mode_if_required(struct dc * dc,struct dc_state * context)1412 static void disable_vbios_mode_if_required(
1413 struct dc *dc,
1414 struct dc_state *context)
1415 {
1416 unsigned int i, j;
1417
1418 /* check if timing_changed, disable stream*/
1419 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1420 struct dc_stream_state *stream = NULL;
1421 struct dc_link *link = NULL;
1422 struct pipe_ctx *pipe = NULL;
1423
1424 pipe = &context->res_ctx.pipe_ctx[i];
1425 stream = pipe->stream;
1426 if (stream == NULL)
1427 continue;
1428
1429 if (stream->apply_seamless_boot_optimization)
1430 continue;
1431
1432 // only looking for first odm pipe
1433 if (pipe->prev_odm_pipe)
1434 continue;
1435
1436 if (stream->link->local_sink &&
1437 stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1438 link = stream->link;
1439 }
1440
1441 if (link != NULL && link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
1442 unsigned int enc_inst, tg_inst = 0;
1443 unsigned int pix_clk_100hz = 0;
1444
1445 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1446 if (enc_inst != ENGINE_ID_UNKNOWN) {
1447 for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
1448 if (dc->res_pool->stream_enc[j]->id == enc_inst) {
1449 tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg(
1450 dc->res_pool->stream_enc[j]);
1451 break;
1452 }
1453 }
1454
1455 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1456 dc->res_pool->dp_clock_source,
1457 tg_inst, &pix_clk_100hz);
1458
1459 if (link->link_status.link_active) {
1460 uint32_t requested_pix_clk_100hz =
1461 pipe->stream_res.pix_clk_params.requested_pix_clk_100hz;
1462
1463 if (pix_clk_100hz != requested_pix_clk_100hz) {
1464 dc->link_srv->set_dpms_off(pipe);
1465 pipe->stream->dpms_off = false;
1466 }
1467 }
1468 }
1469 }
1470 }
1471 }
1472
1473 /* Public functions */
1474
dc_create(const struct dc_init_data * init_params)1475 struct dc *dc_create(const struct dc_init_data *init_params)
1476 {
1477 struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1478 unsigned int full_pipe_count;
1479
1480 if (!dc)
1481 return NULL;
1482
1483 if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
1484 dc->caps.linear_pitch_alignment = 64;
1485 if (!dc_construct_ctx(dc, init_params))
1486 goto destruct_dc;
1487 } else {
1488 if (!dc_construct(dc, init_params))
1489 goto destruct_dc;
1490
1491 full_pipe_count = dc->res_pool->pipe_count;
1492 if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
1493 full_pipe_count--;
1494 dc->caps.max_streams = min(
1495 full_pipe_count,
1496 dc->res_pool->stream_enc_count);
1497
1498 dc->caps.max_links = dc->link_count;
1499 dc->caps.max_audios = dc->res_pool->audio_count;
1500 dc->caps.linear_pitch_alignment = 64;
1501
1502 dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
1503
1504 dc->caps.max_otg_num = dc->res_pool->res_cap->num_timing_generator;
1505
1506 if (dc->res_pool->dmcu != NULL)
1507 dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
1508 }
1509
1510 dc->dcn_reg_offsets = init_params->dcn_reg_offsets;
1511 dc->nbio_reg_offsets = init_params->nbio_reg_offsets;
1512 dc->clk_reg_offsets = init_params->clk_reg_offsets;
1513
1514 /* Populate versioning information */
1515 dc->versions.dc_ver = DC_VER;
1516
1517 dc->build_id = DC_BUILD_ID;
1518
1519 DC_LOG_DC("Display Core initialized\n");
1520
1521 return dc;
1522
1523 destruct_dc:
1524 dc_destruct(dc);
1525 kfree(dc);
1526 return NULL;
1527 }
1528
detect_edp_presence(struct dc * dc)1529 static void detect_edp_presence(struct dc *dc)
1530 {
1531 struct dc_link *edp_links[MAX_NUM_EDP];
1532 struct dc_link *edp_link = NULL;
1533 enum dc_connection_type type;
1534 int i;
1535 int edp_num;
1536
1537 dc_get_edp_links(dc, edp_links, &edp_num);
1538 if (!edp_num)
1539 return;
1540
1541 for (i = 0; i < edp_num; i++) {
1542 edp_link = edp_links[i];
1543 if (dc->config.edp_not_connected) {
1544 edp_link->edp_sink_present = false;
1545 } else {
1546 dc_link_detect_connection_type(edp_link, &type);
1547 edp_link->edp_sink_present = (type != dc_connection_none);
1548 }
1549 }
1550 }
1551
dc_hardware_init(struct dc * dc)1552 void dc_hardware_init(struct dc *dc)
1553 {
1554
1555 detect_edp_presence(dc);
1556 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
1557 dc->hwss.init_hw(dc);
1558 dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, DC_ACPI_CM_POWER_STATE_D0);
1559 }
1560
dc_init_callbacks(struct dc * dc,const struct dc_callback_init * init_params)1561 void dc_init_callbacks(struct dc *dc,
1562 const struct dc_callback_init *init_params)
1563 {
1564 dc->ctx->cp_psp = init_params->cp_psp;
1565 }
1566
dc_deinit_callbacks(struct dc * dc)1567 void dc_deinit_callbacks(struct dc *dc)
1568 {
1569 memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
1570 }
1571
dc_destroy(struct dc ** dc)1572 void dc_destroy(struct dc **dc)
1573 {
1574 dc_destruct(*dc);
1575 kfree(*dc);
1576 *dc = NULL;
1577 }
1578
enable_timing_multisync(struct dc * dc,struct dc_state * ctx)1579 static void enable_timing_multisync(
1580 struct dc *dc,
1581 struct dc_state *ctx)
1582 {
1583 int i, multisync_count = 0;
1584 int pipe_count = dc->res_pool->pipe_count;
1585 struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
1586
1587 for (i = 0; i < pipe_count; i++) {
1588 if (!ctx->res_ctx.pipe_ctx[i].stream ||
1589 !ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
1590 continue;
1591 if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
1592 continue;
1593 multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
1594 multisync_count++;
1595 }
1596
1597 if (multisync_count > 0) {
1598 dc->hwss.enable_per_frame_crtc_position_reset(
1599 dc, multisync_count, multisync_pipes);
1600 }
1601 }
1602
program_timing_sync(struct dc * dc,struct dc_state * ctx)1603 static void program_timing_sync(
1604 struct dc *dc,
1605 struct dc_state *ctx)
1606 {
1607 int i, j, k;
1608 int group_index = 0;
1609 int num_group = 0;
1610 int pipe_count = dc->res_pool->pipe_count;
1611 struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
1612
1613 for (i = 0; i < pipe_count; i++) {
1614 if (!ctx->res_ctx.pipe_ctx[i].stream
1615 || ctx->res_ctx.pipe_ctx[i].top_pipe
1616 || ctx->res_ctx.pipe_ctx[i].prev_odm_pipe)
1617 continue;
1618
1619 unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
1620 }
1621
1622 for (i = 0; i < pipe_count; i++) {
1623 int group_size = 1;
1624 enum timing_synchronization_type sync_type = NOT_SYNCHRONIZABLE;
1625 struct pipe_ctx *pipe_set[MAX_PIPES];
1626
1627 if (!unsynced_pipes[i])
1628 continue;
1629
1630 pipe_set[0] = unsynced_pipes[i];
1631 unsynced_pipes[i] = NULL;
1632
1633 /* Add tg to the set, search rest of the tg's for ones with
1634 * same timing, add all tgs with same timing to the group
1635 */
1636 for (j = i + 1; j < pipe_count; j++) {
1637 if (!unsynced_pipes[j])
1638 continue;
1639 if (sync_type != TIMING_SYNCHRONIZABLE &&
1640 dc->hwss.enable_vblanks_synchronization &&
1641 unsynced_pipes[j]->stream_res.tg->funcs->align_vblanks &&
1642 resource_are_vblanks_synchronizable(
1643 unsynced_pipes[j]->stream,
1644 pipe_set[0]->stream)) {
1645 sync_type = VBLANK_SYNCHRONIZABLE;
1646 pipe_set[group_size] = unsynced_pipes[j];
1647 unsynced_pipes[j] = NULL;
1648 group_size++;
1649 } else
1650 if (sync_type != VBLANK_SYNCHRONIZABLE &&
1651 resource_are_streams_timing_synchronizable(
1652 unsynced_pipes[j]->stream,
1653 pipe_set[0]->stream)) {
1654 sync_type = TIMING_SYNCHRONIZABLE;
1655 pipe_set[group_size] = unsynced_pipes[j];
1656 unsynced_pipes[j] = NULL;
1657 group_size++;
1658 }
1659 }
1660
1661 /* set first unblanked pipe as master */
1662 for (j = 0; j < group_size; j++) {
1663 bool is_blanked;
1664
1665 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1666 is_blanked =
1667 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1668 else
1669 is_blanked =
1670 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1671 if (!is_blanked) {
1672 if (j == 0)
1673 break;
1674
1675 swap(pipe_set[0], pipe_set[j]);
1676 break;
1677 }
1678 }
1679
1680 for (k = 0; k < group_size; k++) {
1681 struct dc_stream_status *status = dc_state_get_stream_status(ctx, pipe_set[k]->stream);
1682
1683 if (!status)
1684 continue;
1685
1686 status->timing_sync_info.group_id = num_group;
1687 status->timing_sync_info.group_size = group_size;
1688 if (k == 0)
1689 status->timing_sync_info.master = true;
1690 else
1691 status->timing_sync_info.master = false;
1692
1693 }
1694
1695 /* remove any other unblanked pipes as they have already been synced */
1696 if (dc->config.use_pipe_ctx_sync_logic) {
1697 /* check pipe's syncd to decide which pipe to be removed */
1698 for (j = 1; j < group_size; j++) {
1699 if (pipe_set[j]->pipe_idx_syncd == pipe_set[0]->pipe_idx_syncd) {
1700 group_size--;
1701 pipe_set[j] = pipe_set[group_size];
1702 j--;
1703 } else
1704 /* link slave pipe's syncd with master pipe */
1705 pipe_set[j]->pipe_idx_syncd = pipe_set[0]->pipe_idx_syncd;
1706 }
1707 } else {
1708 /* remove any other pipes by checking valid plane */
1709 for (j = j + 1; j < group_size; j++) {
1710 bool is_blanked;
1711
1712 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1713 is_blanked =
1714 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1715 else
1716 is_blanked =
1717 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1718 if (!is_blanked) {
1719 group_size--;
1720 pipe_set[j] = pipe_set[group_size];
1721 j--;
1722 }
1723 }
1724 }
1725
1726 if (group_size > 1) {
1727 if (sync_type == TIMING_SYNCHRONIZABLE) {
1728 dc->hwss.enable_timing_synchronization(
1729 dc, ctx, group_index, group_size, pipe_set);
1730 } else
1731 if (sync_type == VBLANK_SYNCHRONIZABLE) {
1732 dc->hwss.enable_vblanks_synchronization(
1733 dc, group_index, group_size, pipe_set);
1734 }
1735 group_index++;
1736 }
1737 num_group++;
1738 }
1739 }
1740
streams_changed(struct dc * dc,struct dc_stream_state * streams[],uint8_t stream_count)1741 static bool streams_changed(struct dc *dc,
1742 struct dc_stream_state *streams[],
1743 uint8_t stream_count)
1744 {
1745 uint8_t i;
1746
1747 if (stream_count != dc->current_state->stream_count)
1748 return true;
1749
1750 for (i = 0; i < dc->current_state->stream_count; i++) {
1751 if (dc->current_state->streams[i] != streams[i])
1752 return true;
1753 if (!streams[i]->link->link_state_valid)
1754 return true;
1755 }
1756
1757 return false;
1758 }
1759
dc_validate_boot_timing(const struct dc * dc,const struct dc_sink * sink,struct dc_crtc_timing * crtc_timing)1760 bool dc_validate_boot_timing(const struct dc *dc,
1761 const struct dc_sink *sink,
1762 struct dc_crtc_timing *crtc_timing)
1763 {
1764 struct timing_generator *tg;
1765 struct stream_encoder *se = NULL;
1766
1767 struct dc_crtc_timing hw_crtc_timing = {0};
1768
1769 struct dc_link *link = sink->link;
1770 unsigned int i, enc_inst, tg_inst = 0;
1771
1772 /* Support seamless boot on EDP displays only */
1773 if (sink->sink_signal != SIGNAL_TYPE_EDP) {
1774 return false;
1775 }
1776
1777 if (dc->debug.force_odm_combine) {
1778 DC_LOG_DEBUG("boot timing validation failed due to force_odm_combine\n");
1779 return false;
1780 }
1781
1782 /* Check for enabled DIG to identify enabled display */
1783 if (!link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
1784 DC_LOG_DEBUG("boot timing validation failed due to disabled DIG\n");
1785 return false;
1786 }
1787
1788 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1789
1790 if (enc_inst == ENGINE_ID_UNKNOWN) {
1791 DC_LOG_DEBUG("boot timing validation failed due to unknown DIG engine ID\n");
1792 return false;
1793 }
1794
1795 for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1796 if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1797
1798 se = dc->res_pool->stream_enc[i];
1799
1800 tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1801 dc->res_pool->stream_enc[i]);
1802 break;
1803 }
1804 }
1805
1806 // tg_inst not found
1807 if (i == dc->res_pool->stream_enc_count) {
1808 DC_LOG_DEBUG("boot timing validation failed due to timing generator instance not found\n");
1809 return false;
1810 }
1811
1812 if (tg_inst >= dc->res_pool->timing_generator_count) {
1813 DC_LOG_DEBUG("boot timing validation failed due to invalid timing generator count\n");
1814 return false;
1815 }
1816
1817 if (tg_inst != link->link_enc->preferred_engine) {
1818 DC_LOG_DEBUG("boot timing validation failed due to non-preferred timing generator\n");
1819 return false;
1820 }
1821
1822 tg = dc->res_pool->timing_generators[tg_inst];
1823
1824 if (!tg->funcs->get_hw_timing) {
1825 DC_LOG_DEBUG("boot timing validation failed due to missing get_hw_timing callback\n");
1826 return false;
1827 }
1828
1829 if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing)) {
1830 DC_LOG_DEBUG("boot timing validation failed due to failed get_hw_timing return\n");
1831 return false;
1832 }
1833
1834 if (crtc_timing->h_total != hw_crtc_timing.h_total) {
1835 DC_LOG_DEBUG("boot timing validation failed due to h_total mismatch\n");
1836 return false;
1837 }
1838
1839 if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left) {
1840 DC_LOG_DEBUG("boot timing validation failed due to h_border_left mismatch\n");
1841 return false;
1842 }
1843
1844 if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable) {
1845 DC_LOG_DEBUG("boot timing validation failed due to h_addressable mismatch\n");
1846 return false;
1847 }
1848
1849 if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right) {
1850 DC_LOG_DEBUG("boot timing validation failed due to h_border_right mismatch\n");
1851 return false;
1852 }
1853
1854 if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch) {
1855 DC_LOG_DEBUG("boot timing validation failed due to h_front_porch mismatch\n");
1856 return false;
1857 }
1858
1859 if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width) {
1860 DC_LOG_DEBUG("boot timing validation failed due to h_sync_width mismatch\n");
1861 return false;
1862 }
1863
1864 if (crtc_timing->v_total != hw_crtc_timing.v_total) {
1865 DC_LOG_DEBUG("boot timing validation failed due to v_total mismatch\n");
1866 return false;
1867 }
1868
1869 if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top) {
1870 DC_LOG_DEBUG("boot timing validation failed due to v_border_top mismatch\n");
1871 return false;
1872 }
1873
1874 if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable) {
1875 DC_LOG_DEBUG("boot timing validation failed due to v_addressable mismatch\n");
1876 return false;
1877 }
1878
1879 if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom) {
1880 DC_LOG_DEBUG("boot timing validation failed due to v_border_bottom mismatch\n");
1881 return false;
1882 }
1883
1884 if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch) {
1885 DC_LOG_DEBUG("boot timing validation failed due to v_front_porch mismatch\n");
1886 return false;
1887 }
1888
1889 if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width) {
1890 DC_LOG_DEBUG("boot timing validation failed due to v_sync_width mismatch\n");
1891 return false;
1892 }
1893
1894 /* block DSC for now, as VBIOS does not currently support DSC timings */
1895 if (crtc_timing->flags.DSC) {
1896 DC_LOG_DEBUG("boot timing validation failed due to DSC\n");
1897 return false;
1898 }
1899
1900 if (dc_is_dp_signal(link->connector_signal)) {
1901 unsigned int pix_clk_100hz = 0;
1902 uint32_t numOdmPipes = 1;
1903 uint32_t id_src[4] = {0};
1904
1905 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1906 dc->res_pool->dp_clock_source,
1907 tg_inst, &pix_clk_100hz);
1908
1909 if (tg->funcs->get_optc_source)
1910 tg->funcs->get_optc_source(tg,
1911 &numOdmPipes, &id_src[0], &id_src[1]);
1912
1913 if (numOdmPipes == 2) {
1914 pix_clk_100hz *= 2;
1915 } else if (numOdmPipes == 4) {
1916 pix_clk_100hz *= 4;
1917 } else if (se && se->funcs->get_pixels_per_cycle) {
1918 uint32_t pixels_per_cycle = se->funcs->get_pixels_per_cycle(se);
1919
1920 if (pixels_per_cycle != 1 && !dc->debug.enable_dp_dig_pixel_rate_div_policy) {
1921 DC_LOG_DEBUG("boot timing validation failed due to pixels_per_cycle\n");
1922 return false;
1923 }
1924
1925 pix_clk_100hz *= pixels_per_cycle;
1926 }
1927
1928 // Note: In rare cases, HW pixclk may differ from crtc's pixclk
1929 // slightly due to rounding issues in 10 kHz units.
1930 if (crtc_timing->pix_clk_100hz != pix_clk_100hz) {
1931 DC_LOG_DEBUG("boot timing validation failed due to pix_clk_100hz mismatch\n");
1932 return false;
1933 }
1934
1935 if (!se || !se->funcs->dp_get_pixel_format) {
1936 DC_LOG_DEBUG("boot timing validation failed due to missing dp_get_pixel_format\n");
1937 return false;
1938 }
1939
1940 if (!se->funcs->dp_get_pixel_format(
1941 se,
1942 &hw_crtc_timing.pixel_encoding,
1943 &hw_crtc_timing.display_color_depth)) {
1944 DC_LOG_DEBUG("boot timing validation failed due to dp_get_pixel_format failure\n");
1945 return false;
1946 }
1947
1948 if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth) {
1949 DC_LOG_DEBUG("boot timing validation failed due to display_color_depth mismatch\n");
1950 return false;
1951 }
1952
1953 if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding) {
1954 DC_LOG_DEBUG("boot timing validation failed due to pixel_encoding mismatch\n");
1955 return false;
1956 }
1957 }
1958
1959
1960 if (link->dpcd_caps.dprx_feature.bits.VSC_SDP_COLORIMETRY_SUPPORTED) {
1961 DC_LOG_DEBUG("boot timing validation failed due to VSC SDP colorimetry\n");
1962 return false;
1963 }
1964
1965 if (link->dpcd_caps.channel_coding_cap.bits.DP_128b_132b_SUPPORTED) {
1966 DC_LOG_DEBUG("boot timing validation failed due to DP 128b/132b\n");
1967 return false;
1968 }
1969
1970 if (dc->link_srv->edp_is_ilr_optimization_required(link, crtc_timing)) {
1971 DC_LOG_EVENT_LINK_TRAINING("Seamless boot disabled to optimize eDP link rate\n");
1972 return false;
1973 }
1974
1975 return true;
1976 }
1977
should_update_pipe_for_stream(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)1978 static inline bool should_update_pipe_for_stream(
1979 struct dc_state *context,
1980 struct pipe_ctx *pipe_ctx,
1981 struct dc_stream_state *stream)
1982 {
1983 return (pipe_ctx->stream && pipe_ctx->stream == stream);
1984 }
1985
should_update_pipe_for_plane(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_plane_state * plane_state)1986 static inline bool should_update_pipe_for_plane(
1987 struct dc_state *context,
1988 struct pipe_ctx *pipe_ctx,
1989 struct dc_plane_state *plane_state)
1990 {
1991 return (pipe_ctx->plane_state == plane_state);
1992 }
1993
dc_enable_stereo(struct dc * dc,struct dc_state * context,struct dc_stream_state * streams[],uint8_t stream_count)1994 void dc_enable_stereo(
1995 struct dc *dc,
1996 struct dc_state *context,
1997 struct dc_stream_state *streams[],
1998 uint8_t stream_count)
1999 {
2000 int i, j;
2001 struct pipe_ctx *pipe;
2002
2003 dc_exit_ips_for_hw_access(dc);
2004
2005 for (i = 0; i < MAX_PIPES; i++) {
2006 if (context != NULL) {
2007 pipe = &context->res_ctx.pipe_ctx[i];
2008 } else {
2009 context = dc->current_state;
2010 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2011 }
2012
2013 for (j = 0; pipe && j < stream_count; j++) {
2014 if (should_update_pipe_for_stream(context, pipe, streams[j]) &&
2015 dc->hwss.setup_stereo)
2016 dc->hwss.setup_stereo(pipe, dc);
2017 }
2018 }
2019 }
2020
dc_trigger_sync(struct dc * dc,struct dc_state * context)2021 void dc_trigger_sync(struct dc *dc, struct dc_state *context)
2022 {
2023 if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
2024 dc_exit_ips_for_hw_access(dc);
2025
2026 enable_timing_multisync(dc, context);
2027 program_timing_sync(dc, context);
2028 }
2029 }
2030
get_stream_mask(struct dc * dc,struct dc_state * context)2031 static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context)
2032 {
2033 int i;
2034 unsigned int stream_mask = 0;
2035
2036 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2037 if (context->res_ctx.pipe_ctx[i].stream)
2038 stream_mask |= 1 << i;
2039 }
2040
2041 return stream_mask;
2042 }
2043
dc_z10_restore(const struct dc * dc)2044 void dc_z10_restore(const struct dc *dc)
2045 {
2046 if (dc->hwss.z10_restore)
2047 dc->hwss.z10_restore(dc);
2048 }
2049
dc_z10_save_init(struct dc * dc)2050 void dc_z10_save_init(struct dc *dc)
2051 {
2052 if (dc->hwss.z10_save_init)
2053 dc->hwss.z10_save_init(dc);
2054 }
2055
2056 /* Set a pipe unlock order based on the change in DET allocation and stores it in dc scratch memory
2057 * Prevents over allocation of DET during unlock process
2058 * e.g. 2 pipe config with different streams with a max of 20 DET segments
2059 * Before: After:
2060 * - Pipe0: 10 DET segments - Pipe0: 12 DET segments
2061 * - Pipe1: 10 DET segments - Pipe1: 8 DET segments
2062 * If Pipe0 gets updated first, 22 DET segments will be allocated
2063 */
determine_pipe_unlock_order(struct dc * dc,struct dc_state * context)2064 static void determine_pipe_unlock_order(struct dc *dc, struct dc_state *context)
2065 {
2066 unsigned int i = 0;
2067 struct pipe_ctx *pipe = NULL;
2068 struct timing_generator *tg = NULL;
2069
2070 if (!dc->config.set_pipe_unlock_order)
2071 return;
2072
2073 memset(dc->scratch.pipes_to_unlock_first, 0, sizeof(dc->scratch.pipes_to_unlock_first));
2074 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2075 pipe = &context->res_ctx.pipe_ctx[i];
2076 tg = pipe->stream_res.tg;
2077
2078 if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
2079 !tg->funcs->is_tg_enabled(tg) ||
2080 dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
2081 continue;
2082 }
2083
2084 if (resource_calculate_det_for_stream(context, pipe) <
2085 resource_calculate_det_for_stream(dc->current_state, &dc->current_state->res_ctx.pipe_ctx[i])) {
2086 dc->scratch.pipes_to_unlock_first[i] = true;
2087 }
2088 }
2089 }
2090
2091 /**
2092 * dc_commit_state_no_check - Apply context to the hardware
2093 *
2094 * @dc: DC object with the current status to be updated
2095 * @context: New state that will become the current status at the end of this function
2096 *
2097 * Applies given context to the hardware and copy it into current context.
2098 * It's up to the user to release the src context afterwards.
2099 *
2100 * Return: an enum dc_status result code for the operation
2101 */
dc_commit_state_no_check(struct dc * dc,struct dc_state * context)2102 static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
2103 {
2104 struct dc_bios *dcb = dc->ctx->dc_bios;
2105 enum dc_status result = DC_ERROR_UNEXPECTED;
2106 struct pipe_ctx *pipe;
2107 int i, k, l;
2108 struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
2109 struct dc_state *old_state;
2110 bool subvp_prev_use = false;
2111
2112 dc_z10_restore(dc);
2113 dc_allow_idle_optimizations(dc, false);
2114
2115 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2116 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2117
2118 /* Check old context for SubVP */
2119 subvp_prev_use |= (dc_state_get_pipe_subvp_type(dc->current_state, old_pipe) == SUBVP_PHANTOM);
2120 if (subvp_prev_use)
2121 break;
2122 }
2123
2124 for (i = 0; i < context->stream_count; i++)
2125 dc_streams[i] = context->streams[i];
2126
2127 if (!dcb->funcs->is_accelerated_mode(dcb)) {
2128 disable_vbios_mode_if_required(dc, context);
2129 dc->hwss.enable_accelerated_mode(dc, context);
2130 }
2131
2132 if (dc->hwseq->funcs.wait_for_pipe_update_if_needed) {
2133 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2134 pipe = &context->res_ctx.pipe_ctx[i];
2135 //Only delay otg master for a given config
2136 if (resource_is_pipe_type(pipe, OTG_MASTER)) {
2137 //dc_commit_state_no_check is always a full update
2138 dc->hwseq->funcs.wait_for_pipe_update_if_needed(dc, pipe, false);
2139 break;
2140 }
2141 }
2142 }
2143
2144 if (context->stream_count > get_seamless_boot_stream_count(context) ||
2145 context->stream_count == 0)
2146 dc->hwss.prepare_bandwidth(dc, context);
2147
2148 /* When SubVP is active, all HW programming must be done while
2149 * SubVP lock is acquired
2150 */
2151 if (dc->hwss.subvp_pipe_control_lock)
2152 dc->hwss.subvp_pipe_control_lock(dc, context, true, true, NULL, subvp_prev_use);
2153 if (dc->hwss.fams2_global_control_lock)
2154 dc->hwss.fams2_global_control_lock(dc, context, true);
2155
2156 if (dc->hwss.update_dsc_pg)
2157 dc->hwss.update_dsc_pg(dc, context, false);
2158
2159 disable_dangling_plane(dc, context);
2160 /* re-program planes for existing stream, in case we need to
2161 * free up plane resource for later use
2162 */
2163 if (dc->hwss.apply_ctx_for_surface) {
2164 for (i = 0; i < context->stream_count; i++) {
2165 if (context->streams[i]->mode_changed)
2166 continue;
2167 apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
2168 dc->hwss.apply_ctx_for_surface(
2169 dc, context->streams[i],
2170 context->stream_status[i].plane_count,
2171 context); /* use new pipe config in new context */
2172 apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
2173 dc->hwss.post_unlock_program_front_end(dc, context);
2174 }
2175 }
2176
2177 /* Program hardware */
2178 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2179 pipe = &context->res_ctx.pipe_ctx[i];
2180 dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
2181 }
2182
2183 result = dc->hwss.apply_ctx_to_hw(dc, context);
2184
2185 if (result != DC_OK) {
2186 /* Application of dc_state to hardware stopped. */
2187 dc->current_state->res_ctx.link_enc_cfg_ctx.mode = LINK_ENC_CFG_STEADY;
2188 return result;
2189 }
2190
2191 dc_trigger_sync(dc, context);
2192
2193 /* Full update should unconditionally be triggered when dc_commit_state_no_check is called */
2194 for (i = 0; i < context->stream_count; i++) {
2195 uint32_t prev_dsc_changed = context->streams[i]->update_flags.bits.dsc_changed;
2196
2197 context->streams[i]->update_flags.raw = 0xFFFFFFFF;
2198 context->streams[i]->update_flags.bits.dsc_changed = prev_dsc_changed;
2199 }
2200
2201 determine_pipe_unlock_order(dc, context);
2202 /* Program all planes within new context*/
2203 if (dc->res_pool->funcs->prepare_mcache_programming)
2204 dc->res_pool->funcs->prepare_mcache_programming(dc, context);
2205 if (dc->hwss.program_front_end_for_ctx) {
2206 dc->hwss.interdependent_update_lock(dc, context, true);
2207 dc->hwss.program_front_end_for_ctx(dc, context);
2208
2209 if (dc->hwseq->funcs.set_wait_for_update_needed_for_pipe) {
2210 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2211 pipe = &context->res_ctx.pipe_ctx[i];
2212 dc->hwseq->funcs.set_wait_for_update_needed_for_pipe(dc, pipe);
2213 }
2214 }
2215
2216 dc->hwss.interdependent_update_lock(dc, context, false);
2217 dc->hwss.post_unlock_program_front_end(dc, context);
2218 }
2219
2220 if (dc->hwss.commit_subvp_config)
2221 dc->hwss.commit_subvp_config(dc, context);
2222 if (dc->hwss.subvp_pipe_control_lock)
2223 dc->hwss.subvp_pipe_control_lock(dc, context, false, true, NULL, subvp_prev_use);
2224 if (dc->hwss.fams2_global_control_lock)
2225 dc->hwss.fams2_global_control_lock(dc, context, false);
2226
2227 for (i = 0; i < context->stream_count; i++) {
2228 const struct dc_link *link = context->streams[i]->link;
2229
2230 if (!context->streams[i]->mode_changed)
2231 continue;
2232
2233 if (dc->hwss.apply_ctx_for_surface) {
2234 apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
2235 dc->hwss.apply_ctx_for_surface(
2236 dc, context->streams[i],
2237 context->stream_status[i].plane_count,
2238 context);
2239 apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
2240 dc->hwss.post_unlock_program_front_end(dc, context);
2241 }
2242
2243 /*
2244 * enable stereo
2245 * TODO rework dc_enable_stereo call to work with validation sets?
2246 */
2247 for (k = 0; k < MAX_PIPES; k++) {
2248 pipe = &context->res_ctx.pipe_ctx[k];
2249
2250 for (l = 0 ; pipe && l < context->stream_count; l++) {
2251 if (context->streams[l] &&
2252 context->streams[l] == pipe->stream &&
2253 dc->hwss.setup_stereo)
2254 dc->hwss.setup_stereo(pipe, dc);
2255 }
2256 }
2257
2258 CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
2259 context->streams[i]->timing.h_addressable,
2260 context->streams[i]->timing.v_addressable,
2261 context->streams[i]->timing.h_total,
2262 context->streams[i]->timing.v_total,
2263 context->streams[i]->timing.pix_clk_100hz / 10);
2264 }
2265
2266 dc_enable_stereo(dc, context, dc_streams, context->stream_count);
2267
2268 if (get_seamless_boot_stream_count(context) == 0 ||
2269 context->stream_count == 0) {
2270 /* Must wait for no flips to be pending before doing optimize bw */
2271 hwss_wait_for_no_pipes_pending(dc, context);
2272 /*
2273 * optimized dispclk depends on ODM setup. Need to wait for ODM
2274 * update pending complete before optimizing bandwidth.
2275 */
2276 hwss_wait_for_odm_update_pending_complete(dc, context);
2277 /* pplib is notified if disp_num changed */
2278 dc->hwss.optimize_bandwidth(dc, context);
2279 /* Need to do otg sync again as otg could be out of sync due to otg
2280 * workaround applied during clock update
2281 */
2282 dc_trigger_sync(dc, context);
2283 }
2284
2285 if (dc->hwss.update_dsc_pg)
2286 dc->hwss.update_dsc_pg(dc, context, true);
2287
2288 if (dc->ctx->dce_version >= DCE_VERSION_MAX)
2289 TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2290 else
2291 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2292
2293 context->stream_mask = get_stream_mask(dc, context);
2294
2295 if (context->stream_mask != dc->current_state->stream_mask)
2296 dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask);
2297
2298 for (i = 0; i < context->stream_count; i++)
2299 context->streams[i]->mode_changed = false;
2300
2301 /* Clear update flags that were set earlier to avoid redundant programming */
2302 for (i = 0; i < context->stream_count; i++) {
2303 context->streams[i]->update_flags.raw = 0x0;
2304 }
2305
2306 old_state = dc->current_state;
2307 dc->current_state = context;
2308
2309 dc_state_release(old_state);
2310
2311 dc_state_retain(dc->current_state);
2312
2313 return result;
2314 }
2315
2316 static bool commit_minimal_transition_state(struct dc *dc,
2317 struct dc_state *transition_base_context);
2318
2319 /**
2320 * dc_commit_streams - Commit current stream state
2321 *
2322 * @dc: DC object with the commit state to be configured in the hardware
2323 * @params: Parameters for the commit, including the streams to be committed
2324 *
2325 * Function responsible for commit streams change to the hardware.
2326 *
2327 * Return:
2328 * Return DC_OK if everything work as expected, otherwise, return a dc_status
2329 * code.
2330 */
dc_commit_streams(struct dc * dc,struct dc_commit_streams_params * params)2331 enum dc_status dc_commit_streams(struct dc *dc, struct dc_commit_streams_params *params)
2332 {
2333 int i, j;
2334 struct dc_state *context;
2335 enum dc_status res = DC_OK;
2336 struct dc_validation_set set[MAX_STREAMS] = {0};
2337 struct pipe_ctx *pipe;
2338 bool handle_exit_odm2to1 = false;
2339
2340 if (!params)
2341 return DC_ERROR_UNEXPECTED;
2342
2343 if (dc->ctx->dce_environment == DCE_ENV_VIRTUAL_HW)
2344 return res;
2345
2346 if (!streams_changed(dc, params->streams, params->stream_count) &&
2347 dc->current_state->power_source == params->power_source)
2348 return res;
2349
2350 dc_exit_ips_for_hw_access(dc);
2351
2352 DC_LOG_DC("%s: %d streams\n", __func__, params->stream_count);
2353
2354 for (i = 0; i < params->stream_count; i++) {
2355 struct dc_stream_state *stream = params->streams[i];
2356 struct dc_stream_status *status = dc_stream_get_status(stream);
2357 struct dc_sink *sink = stream->sink;
2358
2359 /* revalidate streams */
2360 if (!dc_is_virtual_signal(sink->sink_signal)) {
2361 res = dc_validate_stream(dc, stream);
2362 if (res != DC_OK)
2363 return res;
2364 }
2365
2366
2367 dc_stream_log(dc, stream);
2368
2369 set[i].stream = stream;
2370
2371 if (status) {
2372 set[i].plane_count = status->plane_count;
2373 for (j = 0; j < status->plane_count; j++)
2374 set[i].plane_states[j] = status->plane_states[j];
2375 }
2376 }
2377
2378 /* ODM Combine 2:1 power optimization is only applied for single stream
2379 * scenario, it uses extra pipes than needed to reduce power consumption
2380 * We need to switch off this feature to make room for new streams.
2381 */
2382 if (params->stream_count > dc->current_state->stream_count &&
2383 dc->current_state->stream_count == 1) {
2384 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2385 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2386 if (pipe->next_odm_pipe)
2387 handle_exit_odm2to1 = true;
2388 }
2389 }
2390
2391 if (handle_exit_odm2to1)
2392 res = commit_minimal_transition_state(dc, dc->current_state);
2393
2394 context = dc_state_create_current_copy(dc);
2395 if (!context)
2396 goto context_alloc_fail;
2397
2398 context->power_source = params->power_source;
2399
2400 res = dc_validate_with_context(dc, set, params->stream_count, context, DC_VALIDATE_MODE_AND_PROGRAMMING);
2401
2402 /*
2403 * Only update link encoder to stream assignment after bandwidth validation passed.
2404 */
2405 if (res == DC_OK && dc->res_pool->funcs->link_encs_assign && !dc->config.unify_link_enc_assignment)
2406 dc->res_pool->funcs->link_encs_assign(
2407 dc, context, context->streams, context->stream_count);
2408
2409 if (res != DC_OK) {
2410 BREAK_TO_DEBUGGER();
2411 goto fail;
2412 }
2413
2414 res = dc_commit_state_no_check(dc, context);
2415
2416 for (i = 0; i < params->stream_count; i++) {
2417 for (j = 0; j < context->stream_count; j++) {
2418 if (params->streams[i]->stream_id == context->streams[j]->stream_id)
2419 params->streams[i]->out.otg_offset = context->stream_status[j].primary_otg_inst;
2420
2421 if (dc_is_embedded_signal(params->streams[i]->signal)) {
2422 struct dc_stream_status *status = dc_state_get_stream_status(context, params->streams[i]);
2423
2424 if (!status)
2425 continue;
2426
2427 if (dc->hwss.is_abm_supported)
2428 status->is_abm_supported = dc->hwss.is_abm_supported(dc, context, params->streams[i]);
2429 else
2430 status->is_abm_supported = true;
2431 }
2432 }
2433 }
2434
2435 fail:
2436 dc_state_release(context);
2437
2438 context_alloc_fail:
2439
2440 DC_LOG_DC("%s Finished.\n", __func__);
2441
2442 return res;
2443 }
2444
dc_acquire_release_mpc_3dlut(struct dc * dc,bool acquire,struct dc_stream_state * stream,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)2445 bool dc_acquire_release_mpc_3dlut(
2446 struct dc *dc, bool acquire,
2447 struct dc_stream_state *stream,
2448 struct dc_3dlut **lut,
2449 struct dc_transfer_func **shaper)
2450 {
2451 int pipe_idx;
2452 bool ret = false;
2453 bool found_pipe_idx = false;
2454 const struct resource_pool *pool = dc->res_pool;
2455 struct resource_context *res_ctx = &dc->current_state->res_ctx;
2456 int mpcc_id = 0;
2457
2458 if (pool && res_ctx) {
2459 if (acquire) {
2460 /*find pipe idx for the given stream*/
2461 for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) {
2462 if (res_ctx->pipe_ctx[pipe_idx].stream == stream) {
2463 found_pipe_idx = true;
2464 mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst;
2465 break;
2466 }
2467 }
2468 } else
2469 found_pipe_idx = true;/*for release pipe_idx is not required*/
2470
2471 if (found_pipe_idx) {
2472 if (acquire && pool->funcs->acquire_post_bldn_3dlut)
2473 ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper);
2474 else if (!acquire && pool->funcs->release_post_bldn_3dlut)
2475 ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper);
2476 }
2477 }
2478 return ret;
2479 }
2480
is_flip_pending_in_pipes(struct dc * dc,struct dc_state * context)2481 static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
2482 {
2483 int i;
2484 struct pipe_ctx *pipe;
2485
2486 for (i = 0; i < MAX_PIPES; i++) {
2487 pipe = &context->res_ctx.pipe_ctx[i];
2488
2489 // Don't check flip pending on phantom pipes
2490 if (!pipe->plane_state || (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM))
2491 continue;
2492
2493 /* Must set to false to start with, due to OR in update function */
2494 pipe->plane_state->status.is_flip_pending = false;
2495 dc->hwss.update_pending_status(pipe);
2496 if (pipe->plane_state->status.is_flip_pending)
2497 return true;
2498 }
2499 return false;
2500 }
2501
2502 /* Perform updates here which need to be deferred until next vupdate
2503 *
2504 * i.e. blnd lut, 3dlut, and shaper lut bypass regs are double buffered
2505 * but forcing lut memory to shutdown state is immediate. This causes
2506 * single frame corruption as lut gets disabled mid-frame unless shutdown
2507 * is deferred until after entering bypass.
2508 */
process_deferred_updates(struct dc * dc)2509 static void process_deferred_updates(struct dc *dc)
2510 {
2511 int i = 0;
2512
2513 if (dc->debug.enable_mem_low_power.bits.cm) {
2514 ASSERT(dc->dcn_ip->max_num_dpp);
2515 for (i = 0; i < dc->dcn_ip->max_num_dpp; i++)
2516 if (dc->res_pool->dpps[i]->funcs->dpp_deferred_update)
2517 dc->res_pool->dpps[i]->funcs->dpp_deferred_update(dc->res_pool->dpps[i]);
2518 }
2519 }
2520
dc_post_update_surfaces_to_stream(struct dc * dc)2521 void dc_post_update_surfaces_to_stream(struct dc *dc)
2522 {
2523 int i;
2524 struct dc_state *context = dc->current_state;
2525
2526 if ((!dc->optimized_required) || get_seamless_boot_stream_count(context) > 0)
2527 return;
2528
2529 post_surface_trace(dc);
2530
2531 /*
2532 * Only relevant for DCN behavior where we can guarantee the optimization
2533 * is safe to apply - retain the legacy behavior for DCE.
2534 */
2535
2536 if (dc->ctx->dce_version < DCE_VERSION_MAX)
2537 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2538 else {
2539 TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2540
2541 if (is_flip_pending_in_pipes(dc, context))
2542 return;
2543
2544 for (i = 0; i < dc->res_pool->pipe_count; i++)
2545 if (context->res_ctx.pipe_ctx[i].stream == NULL ||
2546 context->res_ctx.pipe_ctx[i].plane_state == NULL) {
2547 context->res_ctx.pipe_ctx[i].pipe_idx = i;
2548 dc->hwss.disable_plane(dc, context, &context->res_ctx.pipe_ctx[i]);
2549 }
2550
2551 process_deferred_updates(dc);
2552
2553 dc->hwss.optimize_bandwidth(dc, context);
2554
2555 if (dc->hwss.update_dsc_pg)
2556 dc->hwss.update_dsc_pg(dc, context, true);
2557 }
2558
2559 dc->optimized_required = false;
2560 dc->wm_optimized_required = false;
2561 }
2562
dc_set_generic_gpio_for_stereo(bool enable,struct gpio_service * gpio_service)2563 bool dc_set_generic_gpio_for_stereo(bool enable,
2564 struct gpio_service *gpio_service)
2565 {
2566 enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
2567 struct gpio_pin_info pin_info;
2568 struct gpio *generic;
2569 struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
2570 GFP_KERNEL);
2571
2572 if (!config)
2573 return false;
2574 pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
2575
2576 if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
2577 kfree(config);
2578 return false;
2579 } else {
2580 generic = dal_gpio_service_create_generic_mux(
2581 gpio_service,
2582 pin_info.offset,
2583 pin_info.mask);
2584 }
2585
2586 if (!generic) {
2587 kfree(config);
2588 return false;
2589 }
2590
2591 gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
2592
2593 config->enable_output_from_mux = enable;
2594 config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
2595
2596 if (gpio_result == GPIO_RESULT_OK)
2597 gpio_result = dal_mux_setup_config(generic, config);
2598
2599 if (gpio_result == GPIO_RESULT_OK) {
2600 dal_gpio_close(generic);
2601 dal_gpio_destroy_generic_mux(&generic);
2602 kfree(config);
2603 return true;
2604 } else {
2605 dal_gpio_close(generic);
2606 dal_gpio_destroy_generic_mux(&generic);
2607 kfree(config);
2608 return false;
2609 }
2610 }
2611
is_surface_in_context(const struct dc_state * context,const struct dc_plane_state * plane_state)2612 static bool is_surface_in_context(
2613 const struct dc_state *context,
2614 const struct dc_plane_state *plane_state)
2615 {
2616 int j;
2617
2618 for (j = 0; j < MAX_PIPES; j++) {
2619 const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2620
2621 if (plane_state == pipe_ctx->plane_state) {
2622 return true;
2623 }
2624 }
2625
2626 return false;
2627 }
2628
get_plane_info_update_type(const struct dc * dc,const struct dc_surface_update * u)2629 static enum surface_update_type get_plane_info_update_type(const struct dc *dc, const struct dc_surface_update *u)
2630 {
2631 union surface_update_flags *update_flags = &u->surface->update_flags;
2632 enum surface_update_type update_type = UPDATE_TYPE_FAST;
2633
2634 if (!u->plane_info)
2635 return UPDATE_TYPE_FAST;
2636
2637 if (u->plane_info->color_space != u->surface->color_space) {
2638 update_flags->bits.color_space_change = 1;
2639 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2640 }
2641
2642 if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
2643 update_flags->bits.horizontal_mirror_change = 1;
2644 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2645 }
2646
2647 if (u->plane_info->rotation != u->surface->rotation) {
2648 update_flags->bits.rotation_change = 1;
2649 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2650 }
2651
2652 if (u->plane_info->format != u->surface->format) {
2653 update_flags->bits.pixel_format_change = 1;
2654 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2655 }
2656
2657 if (u->plane_info->stereo_format != u->surface->stereo_format) {
2658 update_flags->bits.stereo_format_change = 1;
2659 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2660 }
2661
2662 if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
2663 update_flags->bits.per_pixel_alpha_change = 1;
2664 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2665 }
2666
2667 if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
2668 update_flags->bits.global_alpha_change = 1;
2669 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2670 }
2671
2672 if (u->plane_info->dcc.enable != u->surface->dcc.enable
2673 || u->plane_info->dcc.dcc_ind_blk != u->surface->dcc.dcc_ind_blk
2674 || u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
2675 /* During DCC on/off, stutter period is calculated before
2676 * DCC has fully transitioned. This results in incorrect
2677 * stutter period calculation. Triggering a full update will
2678 * recalculate stutter period.
2679 */
2680 update_flags->bits.dcc_change = 1;
2681 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2682 }
2683
2684 if (resource_pixel_format_to_bpp(u->plane_info->format) !=
2685 resource_pixel_format_to_bpp(u->surface->format)) {
2686 /* different bytes per element will require full bandwidth
2687 * and DML calculation
2688 */
2689 update_flags->bits.bpp_change = 1;
2690 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2691 }
2692
2693 if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
2694 || u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
2695 update_flags->bits.plane_size_change = 1;
2696 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2697 }
2698
2699
2700 if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
2701 sizeof(struct dc_tiling_info)) != 0) {
2702 update_flags->bits.swizzle_change = 1;
2703 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2704
2705 /* todo: below are HW dependent, we should add a hook to
2706 * DCE/N resource and validated there.
2707 */
2708 if (!dc->debug.skip_full_updated_if_possible) {
2709 /* swizzled mode requires RQ to be setup properly,
2710 * thus need to run DML to calculate RQ settings
2711 */
2712 update_flags->bits.bandwidth_change = 1;
2713 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2714 }
2715 }
2716
2717 /* This should be UPDATE_TYPE_FAST if nothing has changed. */
2718 return update_type;
2719 }
2720
get_scaling_info_update_type(const struct dc * dc,const struct dc_surface_update * u)2721 static enum surface_update_type get_scaling_info_update_type(
2722 const struct dc *dc,
2723 const struct dc_surface_update *u)
2724 {
2725 union surface_update_flags *update_flags = &u->surface->update_flags;
2726
2727 if (!u->scaling_info)
2728 return UPDATE_TYPE_FAST;
2729
2730 if (u->scaling_info->src_rect.width != u->surface->src_rect.width
2731 || u->scaling_info->src_rect.height != u->surface->src_rect.height
2732 || u->scaling_info->dst_rect.width != u->surface->dst_rect.width
2733 || u->scaling_info->dst_rect.height != u->surface->dst_rect.height
2734 || u->scaling_info->clip_rect.width != u->surface->clip_rect.width
2735 || u->scaling_info->clip_rect.height != u->surface->clip_rect.height
2736 || u->scaling_info->scaling_quality.integer_scaling !=
2737 u->surface->scaling_quality.integer_scaling) {
2738 update_flags->bits.scaling_change = 1;
2739
2740 if (u->scaling_info->src_rect.width > u->surface->src_rect.width
2741 || u->scaling_info->src_rect.height > u->surface->src_rect.height)
2742 /* Making src rect bigger requires a bandwidth change */
2743 update_flags->bits.clock_change = 1;
2744
2745 if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
2746 || u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
2747 && (u->scaling_info->dst_rect.width < u->surface->src_rect.width
2748 || u->scaling_info->dst_rect.height < u->surface->src_rect.height))
2749 /* Making dst rect smaller requires a bandwidth change */
2750 update_flags->bits.bandwidth_change = 1;
2751
2752 if (u->scaling_info->src_rect.width > dc->caps.max_optimizable_video_width &&
2753 (u->scaling_info->clip_rect.width > u->surface->clip_rect.width ||
2754 u->scaling_info->clip_rect.height > u->surface->clip_rect.height))
2755 /* Changing clip size of a large surface may result in MPC slice count change */
2756 update_flags->bits.bandwidth_change = 1;
2757 }
2758
2759 if (u->scaling_info->src_rect.x != u->surface->src_rect.x
2760 || u->scaling_info->src_rect.y != u->surface->src_rect.y
2761 || u->scaling_info->clip_rect.x != u->surface->clip_rect.x
2762 || u->scaling_info->clip_rect.y != u->surface->clip_rect.y
2763 || u->scaling_info->dst_rect.x != u->surface->dst_rect.x
2764 || u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
2765 update_flags->bits.position_change = 1;
2766
2767 /* process every update flag before returning */
2768 if (update_flags->bits.clock_change
2769 || update_flags->bits.bandwidth_change
2770 || update_flags->bits.scaling_change)
2771 return UPDATE_TYPE_FULL;
2772
2773 if (update_flags->bits.position_change)
2774 return UPDATE_TYPE_MED;
2775
2776 return UPDATE_TYPE_FAST;
2777 }
2778
det_surface_update(const struct dc * dc,const struct dc_surface_update * u)2779 static enum surface_update_type det_surface_update(const struct dc *dc,
2780 const struct dc_surface_update *u)
2781 {
2782 const struct dc_state *context = dc->current_state;
2783 enum surface_update_type type;
2784 enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2785 union surface_update_flags *update_flags = &u->surface->update_flags;
2786
2787 if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) {
2788 update_flags->raw = 0xFFFFFFFF;
2789 return UPDATE_TYPE_FULL;
2790 }
2791
2792 update_flags->raw = 0; // Reset all flags
2793
2794 type = get_plane_info_update_type(dc, u);
2795 elevate_update_type(&overall_type, type);
2796
2797 type = get_scaling_info_update_type(dc, u);
2798 elevate_update_type(&overall_type, type);
2799
2800 if (u->flip_addr) {
2801 update_flags->bits.addr_update = 1;
2802 if (u->flip_addr->address.tmz_surface != u->surface->address.tmz_surface) {
2803 update_flags->bits.tmz_changed = 1;
2804 elevate_update_type(&overall_type, UPDATE_TYPE_FULL);
2805 }
2806 }
2807 if (u->in_transfer_func)
2808 update_flags->bits.in_transfer_func_change = 1;
2809
2810 if (u->input_csc_color_matrix)
2811 update_flags->bits.input_csc_change = 1;
2812
2813 if (u->coeff_reduction_factor)
2814 update_flags->bits.coeff_reduction_change = 1;
2815
2816 if (u->gamut_remap_matrix)
2817 update_flags->bits.gamut_remap_change = 1;
2818
2819 if (u->blend_tf)
2820 update_flags->bits.gamma_change = 1;
2821
2822 if (u->gamma) {
2823 enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
2824
2825 if (u->plane_info)
2826 format = u->plane_info->format;
2827 else
2828 format = u->surface->format;
2829
2830 if (dce_use_lut(format))
2831 update_flags->bits.gamma_change = 1;
2832 }
2833
2834 if (u->lut3d_func || u->func_shaper)
2835 update_flags->bits.lut_3d = 1;
2836
2837 if (u->hdr_mult.value)
2838 if (u->hdr_mult.value != u->surface->hdr_mult.value) {
2839 update_flags->bits.hdr_mult = 1;
2840 elevate_update_type(&overall_type, UPDATE_TYPE_MED);
2841 }
2842
2843 if (u->sdr_white_level_nits)
2844 if (u->sdr_white_level_nits != u->surface->sdr_white_level_nits) {
2845 update_flags->bits.sdr_white_level_nits = 1;
2846 elevate_update_type(&overall_type, UPDATE_TYPE_FULL);
2847 }
2848
2849 if (u->cm2_params) {
2850 if ((u->cm2_params->component_settings.shaper_3dlut_setting
2851 != u->surface->mcm_shaper_3dlut_setting)
2852 || (u->cm2_params->component_settings.lut1d_enable
2853 != u->surface->mcm_lut1d_enable))
2854 update_flags->bits.mcm_transfer_function_enable_change = 1;
2855 if (u->cm2_params->cm2_luts.lut3d_data.lut3d_src
2856 != u->surface->mcm_luts.lut3d_data.lut3d_src)
2857 update_flags->bits.mcm_transfer_function_enable_change = 1;
2858 }
2859 if (update_flags->bits.in_transfer_func_change) {
2860 type = UPDATE_TYPE_MED;
2861 elevate_update_type(&overall_type, type);
2862 }
2863
2864 if (update_flags->bits.lut_3d &&
2865 u->surface->mcm_luts.lut3d_data.lut3d_src != DC_CM2_TRANSFER_FUNC_SOURCE_VIDMEM) {
2866 type = UPDATE_TYPE_FULL;
2867 elevate_update_type(&overall_type, type);
2868 }
2869 if (update_flags->bits.mcm_transfer_function_enable_change) {
2870 type = UPDATE_TYPE_FULL;
2871 elevate_update_type(&overall_type, type);
2872 }
2873
2874 if (dc->debug.enable_legacy_fast_update &&
2875 (update_flags->bits.gamma_change ||
2876 update_flags->bits.gamut_remap_change ||
2877 update_flags->bits.input_csc_change ||
2878 update_flags->bits.coeff_reduction_change)) {
2879 type = UPDATE_TYPE_FULL;
2880 elevate_update_type(&overall_type, type);
2881 }
2882 return overall_type;
2883 }
2884
2885 /* May need to flip the desktop plane in cases where MPO plane receives a flip but desktop plane doesn't
2886 * while both planes are flip_immediate
2887 */
force_immediate_gsl_plane_flip(struct dc * dc,struct dc_surface_update * updates,int surface_count)2888 static void force_immediate_gsl_plane_flip(struct dc *dc, struct dc_surface_update *updates, int surface_count)
2889 {
2890 bool has_flip_immediate_plane = false;
2891 int i;
2892
2893 for (i = 0; i < surface_count; i++) {
2894 if (updates[i].surface->flip_immediate) {
2895 has_flip_immediate_plane = true;
2896 break;
2897 }
2898 }
2899
2900 if (has_flip_immediate_plane && surface_count > 1) {
2901 for (i = 0; i < surface_count; i++) {
2902 if (updates[i].surface->flip_immediate)
2903 updates[i].surface->update_flags.bits.addr_update = 1;
2904 }
2905 }
2906 }
2907
check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2908 static enum surface_update_type check_update_surfaces_for_stream(
2909 struct dc *dc,
2910 struct dc_surface_update *updates,
2911 int surface_count,
2912 struct dc_stream_update *stream_update,
2913 const struct dc_stream_status *stream_status)
2914 {
2915 int i;
2916 enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2917
2918 if (dc->idle_optimizations_allowed || dc_can_clear_cursor_limit(dc))
2919 overall_type = UPDATE_TYPE_FULL;
2920
2921 if (stream_status == NULL || stream_status->plane_count != surface_count)
2922 overall_type = UPDATE_TYPE_FULL;
2923
2924 if (stream_update && stream_update->pending_test_pattern) {
2925 overall_type = UPDATE_TYPE_FULL;
2926 }
2927
2928 if (stream_update && stream_update->hw_cursor_req) {
2929 overall_type = UPDATE_TYPE_FULL;
2930 }
2931
2932 /* some stream updates require passive update */
2933 if (stream_update) {
2934 union stream_update_flags *su_flags = &stream_update->stream->update_flags;
2935
2936 if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
2937 (stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
2938 stream_update->integer_scaling_update)
2939 su_flags->bits.scaling = 1;
2940
2941 if (dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2942 su_flags->bits.out_tf = 1;
2943
2944 if (stream_update->abm_level)
2945 su_flags->bits.abm_level = 1;
2946
2947 if (stream_update->dpms_off)
2948 su_flags->bits.dpms_off = 1;
2949
2950 if (stream_update->gamut_remap)
2951 su_flags->bits.gamut_remap = 1;
2952
2953 if (stream_update->wb_update)
2954 su_flags->bits.wb_update = 1;
2955
2956 if (stream_update->dsc_config)
2957 su_flags->bits.dsc_changed = 1;
2958
2959 if (stream_update->mst_bw_update)
2960 su_flags->bits.mst_bw = 1;
2961
2962 if (stream_update->stream->freesync_on_desktop &&
2963 (stream_update->vrr_infopacket || stream_update->allow_freesync ||
2964 stream_update->vrr_active_variable || stream_update->vrr_active_fixed))
2965 su_flags->bits.fams_changed = 1;
2966
2967 if (stream_update->scaler_sharpener_update)
2968 su_flags->bits.scaler_sharpener = 1;
2969
2970 if (stream_update->sharpening_required)
2971 su_flags->bits.sharpening_required = 1;
2972
2973 if (stream_update->output_color_space)
2974 su_flags->bits.out_csc = 1;
2975
2976 if (su_flags->raw != 0)
2977 overall_type = UPDATE_TYPE_FULL;
2978
2979 if (stream_update->output_csc_transform)
2980 su_flags->bits.out_csc = 1;
2981
2982 /* Output transfer function changes do not require bandwidth recalculation,
2983 * so don't trigger a full update
2984 */
2985 if (!dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2986 su_flags->bits.out_tf = 1;
2987 }
2988
2989 for (i = 0 ; i < surface_count; i++) {
2990 enum surface_update_type type =
2991 det_surface_update(dc, &updates[i]);
2992
2993 elevate_update_type(&overall_type, type);
2994 }
2995
2996 return overall_type;
2997 }
2998
2999 /*
3000 * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
3001 *
3002 * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
3003 */
dc_check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)3004 enum surface_update_type dc_check_update_surfaces_for_stream(
3005 struct dc *dc,
3006 struct dc_surface_update *updates,
3007 int surface_count,
3008 struct dc_stream_update *stream_update,
3009 const struct dc_stream_status *stream_status)
3010 {
3011 int i;
3012 enum surface_update_type type;
3013
3014 if (stream_update)
3015 stream_update->stream->update_flags.raw = 0;
3016 for (i = 0; i < surface_count; i++)
3017 updates[i].surface->update_flags.raw = 0;
3018
3019 type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
3020 if (type == UPDATE_TYPE_FULL) {
3021 if (stream_update) {
3022 uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
3023 stream_update->stream->update_flags.raw = 0xFFFFFFFF;
3024 stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
3025 }
3026 for (i = 0; i < surface_count; i++)
3027 updates[i].surface->update_flags.raw = 0xFFFFFFFF;
3028 }
3029
3030 if (type == UPDATE_TYPE_FAST) {
3031 // If there's an available clock comparator, we use that.
3032 if (dc->clk_mgr->funcs->are_clock_states_equal) {
3033 if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
3034 dc->optimized_required = true;
3035 // Else we fallback to mem compare.
3036 } else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
3037 dc->optimized_required = true;
3038 }
3039
3040 dc->optimized_required |= dc->wm_optimized_required;
3041 }
3042
3043 return type;
3044 }
3045
stream_get_status(struct dc_state * ctx,struct dc_stream_state * stream)3046 static struct dc_stream_status *stream_get_status(
3047 struct dc_state *ctx,
3048 struct dc_stream_state *stream)
3049 {
3050 uint8_t i;
3051
3052 for (i = 0; i < ctx->stream_count; i++) {
3053 if (stream == ctx->streams[i]) {
3054 return &ctx->stream_status[i];
3055 }
3056 }
3057
3058 return NULL;
3059 }
3060
3061 static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
3062
copy_surface_update_to_plane(struct dc_plane_state * surface,struct dc_surface_update * srf_update)3063 static void copy_surface_update_to_plane(
3064 struct dc_plane_state *surface,
3065 struct dc_surface_update *srf_update)
3066 {
3067 if (srf_update->flip_addr) {
3068 surface->address = srf_update->flip_addr->address;
3069 surface->flip_immediate =
3070 srf_update->flip_addr->flip_immediate;
3071 surface->time.time_elapsed_in_us[surface->time.index] =
3072 srf_update->flip_addr->flip_timestamp_in_us -
3073 surface->time.prev_update_time_in_us;
3074 surface->time.prev_update_time_in_us =
3075 srf_update->flip_addr->flip_timestamp_in_us;
3076 surface->time.index++;
3077 if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
3078 surface->time.index = 0;
3079
3080 surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
3081 }
3082
3083 if (srf_update->scaling_info) {
3084 surface->scaling_quality =
3085 srf_update->scaling_info->scaling_quality;
3086 surface->dst_rect =
3087 srf_update->scaling_info->dst_rect;
3088 surface->src_rect =
3089 srf_update->scaling_info->src_rect;
3090 surface->clip_rect =
3091 srf_update->scaling_info->clip_rect;
3092 }
3093
3094 if (srf_update->plane_info) {
3095 surface->color_space =
3096 srf_update->plane_info->color_space;
3097 surface->format =
3098 srf_update->plane_info->format;
3099 surface->plane_size =
3100 srf_update->plane_info->plane_size;
3101 surface->rotation =
3102 srf_update->plane_info->rotation;
3103 surface->horizontal_mirror =
3104 srf_update->plane_info->horizontal_mirror;
3105 surface->stereo_format =
3106 srf_update->plane_info->stereo_format;
3107 surface->tiling_info =
3108 srf_update->plane_info->tiling_info;
3109 surface->visible =
3110 srf_update->plane_info->visible;
3111 surface->per_pixel_alpha =
3112 srf_update->plane_info->per_pixel_alpha;
3113 surface->global_alpha =
3114 srf_update->plane_info->global_alpha;
3115 surface->global_alpha_value =
3116 srf_update->plane_info->global_alpha_value;
3117 surface->dcc =
3118 srf_update->plane_info->dcc;
3119 surface->layer_index =
3120 srf_update->plane_info->layer_index;
3121 }
3122
3123 if (srf_update->gamma) {
3124 memcpy(&surface->gamma_correction.entries,
3125 &srf_update->gamma->entries,
3126 sizeof(struct dc_gamma_entries));
3127 surface->gamma_correction.is_identity =
3128 srf_update->gamma->is_identity;
3129 surface->gamma_correction.num_entries =
3130 srf_update->gamma->num_entries;
3131 surface->gamma_correction.type =
3132 srf_update->gamma->type;
3133 }
3134
3135 if (srf_update->in_transfer_func) {
3136 surface->in_transfer_func.sdr_ref_white_level =
3137 srf_update->in_transfer_func->sdr_ref_white_level;
3138 surface->in_transfer_func.tf =
3139 srf_update->in_transfer_func->tf;
3140 surface->in_transfer_func.type =
3141 srf_update->in_transfer_func->type;
3142 memcpy(&surface->in_transfer_func.tf_pts,
3143 &srf_update->in_transfer_func->tf_pts,
3144 sizeof(struct dc_transfer_func_distributed_points));
3145 }
3146
3147 if (srf_update->cm2_params) {
3148 surface->mcm_shaper_3dlut_setting = srf_update->cm2_params->component_settings.shaper_3dlut_setting;
3149 surface->mcm_lut1d_enable = srf_update->cm2_params->component_settings.lut1d_enable;
3150 surface->mcm_luts = srf_update->cm2_params->cm2_luts;
3151 }
3152
3153 if (srf_update->func_shaper) {
3154 memcpy(&surface->in_shaper_func, srf_update->func_shaper,
3155 sizeof(surface->in_shaper_func));
3156
3157 if (surface->mcm_shaper_3dlut_setting >= DC_CM2_SHAPER_3DLUT_SETTING_ENABLE_SHAPER)
3158 surface->mcm_luts.shaper = &surface->in_shaper_func;
3159 }
3160
3161 if (srf_update->lut3d_func)
3162 memcpy(&surface->lut3d_func, srf_update->lut3d_func,
3163 sizeof(surface->lut3d_func));
3164
3165 if (srf_update->hdr_mult.value)
3166 surface->hdr_mult =
3167 srf_update->hdr_mult;
3168
3169 if (srf_update->sdr_white_level_nits)
3170 surface->sdr_white_level_nits =
3171 srf_update->sdr_white_level_nits;
3172
3173 if (srf_update->blend_tf) {
3174 memcpy(&surface->blend_tf, srf_update->blend_tf,
3175 sizeof(surface->blend_tf));
3176
3177 if (surface->mcm_lut1d_enable)
3178 surface->mcm_luts.lut1d_func = &surface->blend_tf;
3179 }
3180
3181 if (srf_update->cm2_params || srf_update->blend_tf)
3182 surface->lut_bank_a = !surface->lut_bank_a;
3183
3184 if (srf_update->input_csc_color_matrix)
3185 surface->input_csc_color_matrix =
3186 *srf_update->input_csc_color_matrix;
3187
3188 if (srf_update->coeff_reduction_factor)
3189 surface->coeff_reduction_factor =
3190 *srf_update->coeff_reduction_factor;
3191
3192 if (srf_update->gamut_remap_matrix)
3193 surface->gamut_remap_matrix =
3194 *srf_update->gamut_remap_matrix;
3195
3196 if (srf_update->cursor_csc_color_matrix)
3197 surface->cursor_csc_color_matrix =
3198 *srf_update->cursor_csc_color_matrix;
3199
3200 if (srf_update->bias_and_scale.bias_and_scale_valid)
3201 surface->bias_and_scale =
3202 srf_update->bias_and_scale;
3203 }
3204
copy_stream_update_to_stream(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,struct dc_stream_update * update)3205 static void copy_stream_update_to_stream(struct dc *dc,
3206 struct dc_state *context,
3207 struct dc_stream_state *stream,
3208 struct dc_stream_update *update)
3209 {
3210 struct dc_context *dc_ctx = dc->ctx;
3211
3212 if (update == NULL || stream == NULL)
3213 return;
3214
3215 if (update->src.height && update->src.width)
3216 stream->src = update->src;
3217
3218 if (update->dst.height && update->dst.width)
3219 stream->dst = update->dst;
3220
3221 if (update->out_transfer_func) {
3222 stream->out_transfer_func.sdr_ref_white_level =
3223 update->out_transfer_func->sdr_ref_white_level;
3224 stream->out_transfer_func.tf = update->out_transfer_func->tf;
3225 stream->out_transfer_func.type =
3226 update->out_transfer_func->type;
3227 memcpy(&stream->out_transfer_func.tf_pts,
3228 &update->out_transfer_func->tf_pts,
3229 sizeof(struct dc_transfer_func_distributed_points));
3230 }
3231
3232 if (update->hdr_static_metadata)
3233 stream->hdr_static_metadata = *update->hdr_static_metadata;
3234
3235 if (update->abm_level)
3236 stream->abm_level = *update->abm_level;
3237
3238 if (update->periodic_interrupt)
3239 stream->periodic_interrupt = *update->periodic_interrupt;
3240
3241 if (update->gamut_remap)
3242 stream->gamut_remap_matrix = *update->gamut_remap;
3243
3244 /* Note: this being updated after mode set is currently not a use case
3245 * however if it arises OCSC would need to be reprogrammed at the
3246 * minimum
3247 */
3248 if (update->output_color_space)
3249 stream->output_color_space = *update->output_color_space;
3250
3251 if (update->output_csc_transform)
3252 stream->csc_color_matrix = *update->output_csc_transform;
3253
3254 if (update->vrr_infopacket)
3255 stream->vrr_infopacket = *update->vrr_infopacket;
3256
3257 if (update->hw_cursor_req)
3258 stream->hw_cursor_req = *update->hw_cursor_req;
3259
3260 if (update->allow_freesync)
3261 stream->allow_freesync = *update->allow_freesync;
3262
3263 if (update->vrr_active_variable)
3264 stream->vrr_active_variable = *update->vrr_active_variable;
3265
3266 if (update->vrr_active_fixed)
3267 stream->vrr_active_fixed = *update->vrr_active_fixed;
3268
3269 if (update->crtc_timing_adjust) {
3270 if (stream->adjust.v_total_min != update->crtc_timing_adjust->v_total_min ||
3271 stream->adjust.v_total_max != update->crtc_timing_adjust->v_total_max ||
3272 stream->adjust.timing_adjust_pending)
3273 update->crtc_timing_adjust->timing_adjust_pending = true;
3274 stream->adjust = *update->crtc_timing_adjust;
3275 update->crtc_timing_adjust->timing_adjust_pending = false;
3276 }
3277
3278 if (update->dpms_off)
3279 stream->dpms_off = *update->dpms_off;
3280
3281 if (update->hfvsif_infopacket)
3282 stream->hfvsif_infopacket = *update->hfvsif_infopacket;
3283
3284 if (update->vtem_infopacket)
3285 stream->vtem_infopacket = *update->vtem_infopacket;
3286
3287 if (update->vsc_infopacket)
3288 stream->vsc_infopacket = *update->vsc_infopacket;
3289
3290 if (update->vsp_infopacket)
3291 stream->vsp_infopacket = *update->vsp_infopacket;
3292
3293 if (update->adaptive_sync_infopacket)
3294 stream->adaptive_sync_infopacket = *update->adaptive_sync_infopacket;
3295
3296 if (update->dither_option)
3297 stream->dither_option = *update->dither_option;
3298
3299 if (update->pending_test_pattern)
3300 stream->test_pattern = *update->pending_test_pattern;
3301 /* update current stream with writeback info */
3302 if (update->wb_update) {
3303 int i;
3304
3305 stream->num_wb_info = update->wb_update->num_wb_info;
3306 ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
3307 for (i = 0; i < stream->num_wb_info; i++)
3308 stream->writeback_info[i] =
3309 update->wb_update->writeback_info[i];
3310 }
3311 if (update->dsc_config) {
3312 struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
3313 uint32_t old_dsc_enabled = stream->timing.flags.DSC;
3314 uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
3315 update->dsc_config->num_slices_v != 0);
3316
3317 /* Use temporarry context for validating new DSC config */
3318 struct dc_state *dsc_validate_context = dc_state_create_copy(dc->current_state);
3319
3320 if (dsc_validate_context) {
3321 stream->timing.dsc_cfg = *update->dsc_config;
3322 stream->timing.flags.DSC = enable_dsc;
3323 if (dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context,
3324 DC_VALIDATE_MODE_ONLY) != DC_OK) {
3325 stream->timing.dsc_cfg = old_dsc_cfg;
3326 stream->timing.flags.DSC = old_dsc_enabled;
3327 update->dsc_config = NULL;
3328 }
3329
3330 dc_state_release(dsc_validate_context);
3331 } else {
3332 DC_ERROR("Failed to allocate new validate context for DSC change\n");
3333 update->dsc_config = NULL;
3334 }
3335 }
3336 if (update->scaler_sharpener_update)
3337 stream->scaler_sharpener_update = *update->scaler_sharpener_update;
3338 if (update->sharpening_required)
3339 stream->sharpening_required = *update->sharpening_required;
3340 }
3341
backup_planes_and_stream_state(struct dc_scratch_space * scratch,struct dc_stream_state * stream)3342 static void backup_planes_and_stream_state(
3343 struct dc_scratch_space *scratch,
3344 struct dc_stream_state *stream)
3345 {
3346 int i;
3347 struct dc_stream_status *status = dc_stream_get_status(stream);
3348
3349 if (!status)
3350 return;
3351
3352 for (i = 0; i < status->plane_count; i++) {
3353 dc_plane_copy_config(&scratch->plane_states[i], status->plane_states[i]);
3354 }
3355 scratch->stream_state = *stream;
3356 }
3357
restore_planes_and_stream_state(struct dc_scratch_space * scratch,struct dc_stream_state * stream)3358 static void restore_planes_and_stream_state(
3359 struct dc_scratch_space *scratch,
3360 struct dc_stream_state *stream)
3361 {
3362 int i;
3363 struct dc_stream_status *status = dc_stream_get_status(stream);
3364
3365 if (!status)
3366 return;
3367
3368 for (i = 0; i < status->plane_count; i++) {
3369 dc_plane_copy_config(status->plane_states[i], &scratch->plane_states[i]);
3370 }
3371 *stream = scratch->stream_state;
3372 }
3373
3374 /**
3375 * update_seamless_boot_flags() - Helper function for updating seamless boot flags
3376 *
3377 * @dc: Current DC state
3378 * @context: New DC state to be programmed
3379 * @surface_count: Number of surfaces that have an updated
3380 * @stream: Corresponding stream to be updated in the current flip
3381 *
3382 * Updating seamless boot flags do not need to be part of the commit sequence. This
3383 * helper function will update the seamless boot flags on each flip (if required)
3384 * outside of the HW commit sequence (fast or slow).
3385 *
3386 * Return: void
3387 */
update_seamless_boot_flags(struct dc * dc,struct dc_state * context,int surface_count,struct dc_stream_state * stream)3388 static void update_seamless_boot_flags(struct dc *dc,
3389 struct dc_state *context,
3390 int surface_count,
3391 struct dc_stream_state *stream)
3392 {
3393 if (get_seamless_boot_stream_count(context) > 0 && surface_count > 0) {
3394 /* Optimize seamless boot flag keeps clocks and watermarks high until
3395 * first flip. After first flip, optimization is required to lower
3396 * bandwidth. Important to note that it is expected UEFI will
3397 * only light up a single display on POST, therefore we only expect
3398 * one stream with seamless boot flag set.
3399 */
3400 if (stream->apply_seamless_boot_optimization) {
3401 stream->apply_seamless_boot_optimization = false;
3402
3403 if (get_seamless_boot_stream_count(context) == 0)
3404 dc->optimized_required = true;
3405 }
3406 }
3407 }
3408
3409 /**
3410 * update_planes_and_stream_state() - The function takes planes and stream
3411 * updates as inputs and determines the appropriate update type. If update type
3412 * is FULL, the function allocates a new context, populates and validates it.
3413 * Otherwise, it updates current dc context. The function will return both
3414 * new_context and new_update_type back to the caller. The function also backs
3415 * up both current and new contexts into corresponding dc state scratch memory.
3416 * TODO: The function does too many things, and even conditionally allocates dc
3417 * context memory implicitly. We should consider to break it down.
3418 *
3419 * @dc: Current DC state
3420 * @srf_updates: an array of surface updates
3421 * @surface_count: surface update count
3422 * @stream: Corresponding stream to be updated
3423 * @stream_update: stream update
3424 * @new_update_type: [out] determined update type by the function
3425 * @new_context: [out] new context allocated and validated if update type is
3426 * FULL, reference to current context if update type is less than FULL.
3427 *
3428 * Return: true if a valid update is populated into new_context, false
3429 * otherwise.
3430 */
update_planes_and_stream_state(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type * new_update_type,struct dc_state ** new_context)3431 static bool update_planes_and_stream_state(struct dc *dc,
3432 struct dc_surface_update *srf_updates, int surface_count,
3433 struct dc_stream_state *stream,
3434 struct dc_stream_update *stream_update,
3435 enum surface_update_type *new_update_type,
3436 struct dc_state **new_context)
3437 {
3438 struct dc_state *context;
3439 int i, j;
3440 enum surface_update_type update_type;
3441 const struct dc_stream_status *stream_status;
3442 struct dc_context *dc_ctx = dc->ctx;
3443
3444 stream_status = dc_stream_get_status(stream);
3445
3446 if (!stream_status) {
3447 if (surface_count) /* Only an error condition if surf_count non-zero*/
3448 ASSERT(false);
3449
3450 return false; /* Cannot commit surface to stream that is not committed */
3451 }
3452
3453 context = dc->current_state;
3454 update_type = dc_check_update_surfaces_for_stream(
3455 dc, srf_updates, surface_count, stream_update, stream_status);
3456 /* It is possible to receive a flip for one plane while there are multiple flip_immediate planes in the same stream.
3457 * E.g. Desktop and MPO plane are flip_immediate but only the MPO plane received a flip
3458 * Force the other flip_immediate planes to flip so GSL doesn't wait for a flip that won't come.
3459 */
3460 force_immediate_gsl_plane_flip(dc, srf_updates, surface_count);
3461 if (update_type == UPDATE_TYPE_FULL)
3462 backup_planes_and_stream_state(&dc->scratch.current_state, stream);
3463
3464 /* update current stream with the new updates */
3465 copy_stream_update_to_stream(dc, context, stream, stream_update);
3466
3467 /* do not perform surface update if surface has invalid dimensions
3468 * (all zero) and no scaling_info is provided
3469 */
3470 if (surface_count > 0) {
3471 for (i = 0; i < surface_count; i++) {
3472 if ((srf_updates[i].surface->src_rect.width == 0 ||
3473 srf_updates[i].surface->src_rect.height == 0 ||
3474 srf_updates[i].surface->dst_rect.width == 0 ||
3475 srf_updates[i].surface->dst_rect.height == 0) &&
3476 (!srf_updates[i].scaling_info ||
3477 srf_updates[i].scaling_info->src_rect.width == 0 ||
3478 srf_updates[i].scaling_info->src_rect.height == 0 ||
3479 srf_updates[i].scaling_info->dst_rect.width == 0 ||
3480 srf_updates[i].scaling_info->dst_rect.height == 0)) {
3481 DC_ERROR("Invalid src/dst rects in surface update!\n");
3482 return false;
3483 }
3484 }
3485 }
3486
3487 if (update_type >= update_surface_trace_level)
3488 update_surface_trace(dc, srf_updates, surface_count);
3489
3490 for (i = 0; i < surface_count; i++)
3491 copy_surface_update_to_plane(srf_updates[i].surface, &srf_updates[i]);
3492
3493 if (update_type >= UPDATE_TYPE_FULL) {
3494 struct dc_plane_state *new_planes[MAX_SURFACES] = {0};
3495
3496 for (i = 0; i < surface_count; i++)
3497 new_planes[i] = srf_updates[i].surface;
3498
3499 /* initialize scratch memory for building context */
3500 context = dc_state_create_copy(dc->current_state);
3501 if (context == NULL) {
3502 DC_ERROR("Failed to allocate new validate context!\n");
3503 return false;
3504 }
3505
3506 /* For each full update, remove all existing phantom pipes first.
3507 * Ensures that we have enough pipes for newly added MPO planes
3508 */
3509 dc_state_remove_phantom_streams_and_planes(dc, context);
3510 dc_state_release_phantom_streams_and_planes(dc, context);
3511
3512 /*remove old surfaces from context */
3513 if (!dc_state_rem_all_planes_for_stream(dc, stream, context)) {
3514
3515 BREAK_TO_DEBUGGER();
3516 goto fail;
3517 }
3518
3519 /* add surface to context */
3520 if (!dc_state_add_all_planes_for_stream(dc, stream, new_planes, surface_count, context)) {
3521
3522 BREAK_TO_DEBUGGER();
3523 goto fail;
3524 }
3525 }
3526
3527 /* save update parameters into surface */
3528 for (i = 0; i < surface_count; i++) {
3529 struct dc_plane_state *surface = srf_updates[i].surface;
3530
3531 if (update_type != UPDATE_TYPE_MED)
3532 continue;
3533 if (surface->update_flags.bits.position_change) {
3534 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3535 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3536
3537 if (pipe_ctx->plane_state != surface)
3538 continue;
3539
3540 resource_build_scaling_params(pipe_ctx);
3541 }
3542 }
3543 }
3544
3545 if (update_type == UPDATE_TYPE_FULL) {
3546 if (dc->res_pool->funcs->validate_bandwidth(dc, context, DC_VALIDATE_MODE_AND_PROGRAMMING) != DC_OK) {
3547 BREAK_TO_DEBUGGER();
3548 goto fail;
3549 }
3550 }
3551 update_seamless_boot_flags(dc, context, surface_count, stream);
3552
3553 *new_context = context;
3554 *new_update_type = update_type;
3555 if (update_type == UPDATE_TYPE_FULL)
3556 backup_planes_and_stream_state(&dc->scratch.new_state, stream);
3557
3558 return true;
3559
3560 fail:
3561 dc_state_release(context);
3562
3563 return false;
3564
3565 }
3566
commit_planes_do_stream_update(struct dc * dc,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3567 static void commit_planes_do_stream_update(struct dc *dc,
3568 struct dc_stream_state *stream,
3569 struct dc_stream_update *stream_update,
3570 enum surface_update_type update_type,
3571 struct dc_state *context)
3572 {
3573 int j;
3574
3575 // Stream updates
3576 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3577 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3578
3579 if (resource_is_pipe_type(pipe_ctx, OTG_MASTER) && pipe_ctx->stream == stream) {
3580
3581 if (stream_update->periodic_interrupt && dc->hwss.setup_periodic_interrupt)
3582 dc->hwss.setup_periodic_interrupt(dc, pipe_ctx);
3583
3584 if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
3585 stream_update->vrr_infopacket ||
3586 stream_update->vsc_infopacket ||
3587 stream_update->vsp_infopacket ||
3588 stream_update->hfvsif_infopacket ||
3589 stream_update->adaptive_sync_infopacket ||
3590 stream_update->vtem_infopacket) {
3591 resource_build_info_frame(pipe_ctx);
3592 dc->hwss.update_info_frame(pipe_ctx);
3593
3594 if (dc_is_dp_signal(pipe_ctx->stream->signal))
3595 dc->link_srv->dp_trace_source_sequence(
3596 pipe_ctx->stream->link,
3597 DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME);
3598 }
3599
3600 if (stream_update->hdr_static_metadata &&
3601 stream->use_dynamic_meta &&
3602 dc->hwss.set_dmdata_attributes &&
3603 pipe_ctx->stream->dmdata_address.quad_part != 0)
3604 dc->hwss.set_dmdata_attributes(pipe_ctx);
3605
3606 if (stream_update->gamut_remap)
3607 dc_stream_set_gamut_remap(dc, stream);
3608
3609 if (stream_update->output_csc_transform)
3610 dc_stream_program_csc_matrix(dc, stream);
3611
3612 if (stream_update->dither_option) {
3613 struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
3614 resource_build_bit_depth_reduction_params(pipe_ctx->stream,
3615 &pipe_ctx->stream->bit_depth_params);
3616 pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
3617 &stream->bit_depth_params,
3618 &stream->clamping);
3619 while (odm_pipe) {
3620 odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
3621 &stream->bit_depth_params,
3622 &stream->clamping);
3623 odm_pipe = odm_pipe->next_odm_pipe;
3624 }
3625 }
3626
3627 if (stream_update->cursor_attributes)
3628 program_cursor_attributes(dc, stream);
3629
3630 if (stream_update->cursor_position)
3631 program_cursor_position(dc, stream);
3632
3633 /* Full fe update*/
3634 if (update_type == UPDATE_TYPE_FAST)
3635 continue;
3636
3637 if (stream_update->dsc_config)
3638 dc->link_srv->update_dsc_config(pipe_ctx);
3639
3640 if (stream_update->mst_bw_update) {
3641 if (stream_update->mst_bw_update->is_increase)
3642 dc->link_srv->increase_mst_payload(pipe_ctx,
3643 stream_update->mst_bw_update->mst_stream_bw);
3644 else
3645 dc->link_srv->reduce_mst_payload(pipe_ctx,
3646 stream_update->mst_bw_update->mst_stream_bw);
3647 }
3648
3649 if (stream_update->pending_test_pattern) {
3650 /*
3651 * test pattern params depends on ODM topology
3652 * changes that we could be applying to front
3653 * end. Since at the current stage front end
3654 * changes are not yet applied. We can only
3655 * apply test pattern in hw based on current
3656 * state and populate the final test pattern
3657 * params in new state. If current and new test
3658 * pattern params are different as result of
3659 * different ODM topology being used, it will be
3660 * detected and handle during front end
3661 * programming update.
3662 */
3663 dc->link_srv->dp_set_test_pattern(stream->link,
3664 stream->test_pattern.type,
3665 stream->test_pattern.color_space,
3666 stream->test_pattern.p_link_settings,
3667 stream->test_pattern.p_custom_pattern,
3668 stream->test_pattern.cust_pattern_size);
3669 resource_build_test_pattern_params(&context->res_ctx, pipe_ctx);
3670 }
3671
3672 if (stream_update->dpms_off) {
3673 if (*stream_update->dpms_off) {
3674 dc->link_srv->set_dpms_off(pipe_ctx);
3675 /* for dpms, keep acquired resources*/
3676 if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
3677 pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
3678
3679 dc->optimized_required = true;
3680
3681 } else {
3682 if (get_seamless_boot_stream_count(context) == 0)
3683 dc->hwss.prepare_bandwidth(dc, dc->current_state);
3684 dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3685 }
3686 } else if (pipe_ctx->stream->link->wa_flags.blank_stream_on_ocs_change && stream_update->output_color_space
3687 && !stream->dpms_off && dc_is_dp_signal(pipe_ctx->stream->signal)) {
3688 /*
3689 * Workaround for firmware issue in some receivers where they don't pick up
3690 * correct output color space unless DP link is disabled/re-enabled
3691 */
3692 dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3693 }
3694
3695 if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
3696 bool should_program_abm = true;
3697
3698 // if otg funcs defined check if blanked before programming
3699 if (pipe_ctx->stream_res.tg->funcs->is_blanked)
3700 if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
3701 should_program_abm = false;
3702
3703 if (should_program_abm) {
3704 if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
3705 dc->hwss.set_abm_immediate_disable(pipe_ctx);
3706 } else {
3707 pipe_ctx->stream_res.abm->funcs->set_abm_level(
3708 pipe_ctx->stream_res.abm, stream->abm_level);
3709 }
3710 }
3711 }
3712 }
3713 }
3714 }
3715
dc_dmub_should_send_dirty_rect_cmd(struct dc * dc,struct dc_stream_state * stream)3716 static bool dc_dmub_should_send_dirty_rect_cmd(struct dc *dc, struct dc_stream_state *stream)
3717 {
3718 if ((stream->link->psr_settings.psr_version == DC_PSR_VERSION_SU_1
3719 || stream->link->psr_settings.psr_version == DC_PSR_VERSION_1)
3720 && stream->ctx->dce_version >= DCN_VERSION_3_1)
3721 return true;
3722
3723 if (stream->link->replay_settings.config.replay_supported)
3724 return true;
3725
3726 if (stream->ctx->dce_version >= DCN_VERSION_3_5 && stream->abm_level)
3727 return true;
3728
3729 return false;
3730 }
3731
dc_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context)3732 void dc_dmub_update_dirty_rect(struct dc *dc,
3733 int surface_count,
3734 struct dc_stream_state *stream,
3735 struct dc_surface_update *srf_updates,
3736 struct dc_state *context)
3737 {
3738 union dmub_rb_cmd cmd;
3739 struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3740 unsigned int i, j;
3741 unsigned int panel_inst = 0;
3742
3743 if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3744 return;
3745
3746 if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3747 return;
3748
3749 memset(&cmd, 0x0, sizeof(cmd));
3750 cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3751 cmd.update_dirty_rect.header.sub_type = 0;
3752 cmd.update_dirty_rect.header.payload_bytes =
3753 sizeof(cmd.update_dirty_rect) -
3754 sizeof(cmd.update_dirty_rect.header);
3755 update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3756 for (i = 0; i < surface_count; i++) {
3757 struct dc_plane_state *plane_state = srf_updates[i].surface;
3758 const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3759
3760 if (!srf_updates[i].surface || !flip_addr)
3761 continue;
3762 /* Do not send in immediate flip mode */
3763 if (srf_updates[i].surface->flip_immediate)
3764 continue;
3765
3766 update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1;
3767 update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3768 memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3769 sizeof(flip_addr->dirty_rects));
3770 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3771 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3772
3773 if (pipe_ctx->stream != stream)
3774 continue;
3775 if (pipe_ctx->plane_state != plane_state)
3776 continue;
3777
3778 update_dirty_rect->panel_inst = panel_inst;
3779 update_dirty_rect->pipe_idx = j;
3780 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
3781 }
3782 }
3783 }
3784
build_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3785 static void build_dmub_update_dirty_rect(
3786 struct dc *dc,
3787 int surface_count,
3788 struct dc_stream_state *stream,
3789 struct dc_surface_update *srf_updates,
3790 struct dc_state *context,
3791 struct dc_dmub_cmd dc_dmub_cmd[],
3792 unsigned int *dmub_cmd_count)
3793 {
3794 union dmub_rb_cmd cmd;
3795 struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3796 unsigned int i, j;
3797 unsigned int panel_inst = 0;
3798
3799 if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3800 return;
3801
3802 if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3803 return;
3804
3805 memset(&cmd, 0x0, sizeof(cmd));
3806 cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3807 cmd.update_dirty_rect.header.sub_type = 0;
3808 cmd.update_dirty_rect.header.payload_bytes =
3809 sizeof(cmd.update_dirty_rect) -
3810 sizeof(cmd.update_dirty_rect.header);
3811 update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3812 for (i = 0; i < surface_count; i++) {
3813 struct dc_plane_state *plane_state = srf_updates[i].surface;
3814 const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3815
3816 if (!srf_updates[i].surface || !flip_addr)
3817 continue;
3818 /* Do not send in immediate flip mode */
3819 if (srf_updates[i].surface->flip_immediate)
3820 continue;
3821 update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1;
3822 update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3823 memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3824 sizeof(flip_addr->dirty_rects));
3825 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3826 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3827
3828 if (pipe_ctx->stream != stream)
3829 continue;
3830 if (pipe_ctx->plane_state != plane_state)
3831 continue;
3832 update_dirty_rect->panel_inst = panel_inst;
3833 update_dirty_rect->pipe_idx = j;
3834 dc_dmub_cmd[*dmub_cmd_count].dmub_cmd = cmd;
3835 dc_dmub_cmd[*dmub_cmd_count].wait_type = DM_DMUB_WAIT_TYPE_NO_WAIT;
3836 (*dmub_cmd_count)++;
3837 }
3838 }
3839 }
3840
check_address_only_update(union surface_update_flags update_flags)3841 static bool check_address_only_update(union surface_update_flags update_flags)
3842 {
3843 union surface_update_flags addr_only_update_flags;
3844 addr_only_update_flags.raw = 0;
3845 addr_only_update_flags.bits.addr_update = 1;
3846
3847 return update_flags.bits.addr_update &&
3848 !(update_flags.raw & ~addr_only_update_flags.raw);
3849 }
3850
3851 /**
3852 * build_dmub_cmd_list() - Build an array of DMCUB commands to be sent to DMCUB
3853 *
3854 * @dc: Current DC state
3855 * @srf_updates: Array of surface updates
3856 * @surface_count: Number of surfaces that have an updated
3857 * @stream: Corresponding stream to be updated in the current flip
3858 * @context: New DC state to be programmed
3859 *
3860 * @dc_dmub_cmd: Array of DMCUB commands to be sent to DMCUB
3861 * @dmub_cmd_count: Count indicating the number of DMCUB commands in dc_dmub_cmd array
3862 *
3863 * This function builds an array of DMCUB commands to be sent to DMCUB. This function is required
3864 * to build an array of commands and have them sent while the OTG lock is acquired.
3865 *
3866 * Return: void
3867 */
build_dmub_cmd_list(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3868 static void build_dmub_cmd_list(struct dc *dc,
3869 struct dc_surface_update *srf_updates,
3870 int surface_count,
3871 struct dc_stream_state *stream,
3872 struct dc_state *context,
3873 struct dc_dmub_cmd dc_dmub_cmd[],
3874 unsigned int *dmub_cmd_count)
3875 {
3876 // Initialize cmd count to 0
3877 *dmub_cmd_count = 0;
3878 build_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context, dc_dmub_cmd, dmub_cmd_count);
3879 }
3880
commit_plane_for_stream_offload_fams2_flip(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_state * context)3881 static void commit_plane_for_stream_offload_fams2_flip(struct dc *dc,
3882 struct dc_surface_update *srf_updates,
3883 int surface_count,
3884 struct dc_stream_state *stream,
3885 struct dc_state *context)
3886 {
3887 int i, j;
3888
3889 /* update dirty rect for PSR */
3890 dc_dmub_update_dirty_rect(dc, surface_count, stream,
3891 srf_updates, context);
3892
3893 /* Perform requested Updates */
3894 for (i = 0; i < surface_count; i++) {
3895 struct dc_plane_state *plane_state = srf_updates[i].surface;
3896
3897 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3898 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3899
3900 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3901 continue;
3902
3903 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3904 continue;
3905
3906 /* update pipe context for plane */
3907 if (pipe_ctx->plane_state->update_flags.bits.addr_update)
3908 dc->hwss.update_plane_addr(dc, pipe_ctx);
3909 }
3910 }
3911
3912 /* Send commands to DMCUB */
3913 dc_dmub_srv_fams2_passthrough_flip(dc,
3914 context,
3915 stream,
3916 srf_updates,
3917 surface_count);
3918 }
3919
commit_planes_for_stream_fast(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3920 static void commit_planes_for_stream_fast(struct dc *dc,
3921 struct dc_surface_update *srf_updates,
3922 int surface_count,
3923 struct dc_stream_state *stream,
3924 struct dc_stream_update *stream_update,
3925 enum surface_update_type update_type,
3926 struct dc_state *context)
3927 {
3928 int i, j;
3929 struct pipe_ctx *top_pipe_to_program = NULL;
3930 struct dc_stream_status *stream_status = NULL;
3931 bool should_offload_fams2_flip = false;
3932 bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST);
3933
3934 if (should_lock_all_pipes)
3935 determine_pipe_unlock_order(dc, context);
3936
3937 if (dc->debug.fams2_config.bits.enable &&
3938 dc->debug.fams2_config.bits.enable_offload_flip &&
3939 dc_state_is_fams2_in_use(dc, context)) {
3940 /* if not offloading to HWFQ, offload to FAMS2 if needed */
3941 should_offload_fams2_flip = true;
3942 for (i = 0; i < surface_count; i++) {
3943 if (srf_updates[i].surface &&
3944 srf_updates[i].surface->update_flags.raw &&
3945 !check_address_only_update(srf_updates[i].surface->update_flags)) {
3946 /* more than address update, need to acquire FAMS2 lock */
3947 should_offload_fams2_flip = false;
3948 break;
3949 }
3950 }
3951 if (stream_update) {
3952 /* more than address update, need to acquire FAMS2 lock */
3953 should_offload_fams2_flip = false;
3954 }
3955 }
3956
3957 dc_exit_ips_for_hw_access(dc);
3958
3959 dc_z10_restore(dc);
3960
3961 top_pipe_to_program = resource_get_otg_master_for_stream(
3962 &context->res_ctx,
3963 stream);
3964
3965 if (!top_pipe_to_program)
3966 return;
3967
3968 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3969 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3970
3971 if (pipe->stream && pipe->plane_state) {
3972 if (!dc->debug.using_dml2)
3973 set_p_state_switch_method(dc, context, pipe);
3974
3975 if (dc->debug.visual_confirm)
3976 dc_update_visual_confirm_color(dc, context, pipe);
3977 }
3978 }
3979
3980 for (i = 0; i < surface_count; i++) {
3981 struct dc_plane_state *plane_state = srf_updates[i].surface;
3982 /*set logical flag for lock/unlock use*/
3983 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3984 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3985
3986 if (!pipe_ctx->plane_state)
3987 continue;
3988 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3989 continue;
3990
3991 pipe_ctx->plane_state->triplebuffer_flips = false;
3992 if (update_type == UPDATE_TYPE_FAST &&
3993 dc->hwss.program_triplebuffer != NULL &&
3994 !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3995 /*triple buffer for VUpdate only*/
3996 pipe_ctx->plane_state->triplebuffer_flips = true;
3997 }
3998 }
3999 }
4000
4001 stream_status = dc_state_get_stream_status(context, stream);
4002
4003 if (should_offload_fams2_flip) {
4004 commit_plane_for_stream_offload_fams2_flip(dc,
4005 srf_updates,
4006 surface_count,
4007 stream,
4008 context);
4009 } else if (stream_status) {
4010 build_dmub_cmd_list(dc,
4011 srf_updates,
4012 surface_count,
4013 stream,
4014 context,
4015 context->dc_dmub_cmd,
4016 &(context->dmub_cmd_count));
4017 hwss_build_fast_sequence(dc,
4018 context->dc_dmub_cmd,
4019 context->dmub_cmd_count,
4020 context->block_sequence,
4021 &(context->block_sequence_steps),
4022 top_pipe_to_program,
4023 stream_status,
4024 context);
4025 hwss_execute_sequence(dc,
4026 context->block_sequence,
4027 context->block_sequence_steps);
4028 }
4029
4030 /* Clear update flags so next flip doesn't have redundant programming
4031 * (if there's no stream update, the update flags are not cleared).
4032 * Surface updates are cleared unconditionally at the beginning of each flip,
4033 * so no need to clear here.
4034 */
4035 if (top_pipe_to_program->stream)
4036 top_pipe_to_program->stream->update_flags.raw = 0;
4037 }
4038
commit_planes_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)4039 static void commit_planes_for_stream(struct dc *dc,
4040 struct dc_surface_update *srf_updates,
4041 int surface_count,
4042 struct dc_stream_state *stream,
4043 struct dc_stream_update *stream_update,
4044 enum surface_update_type update_type,
4045 struct dc_state *context)
4046 {
4047 int i, j;
4048 struct pipe_ctx *top_pipe_to_program = NULL;
4049 bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST);
4050 bool subvp_prev_use = false;
4051 bool subvp_curr_use = false;
4052 uint8_t current_stream_mask = 0;
4053
4054 if (should_lock_all_pipes)
4055 determine_pipe_unlock_order(dc, context);
4056 // Once we apply the new subvp context to hardware it won't be in the
4057 // dc->current_state anymore, so we have to cache it before we apply
4058 // the new SubVP context
4059 subvp_prev_use = false;
4060 dc_exit_ips_for_hw_access(dc);
4061
4062 dc_z10_restore(dc);
4063 if (update_type == UPDATE_TYPE_FULL && dc->optimized_required)
4064 hwss_process_outstanding_hw_updates(dc, dc->current_state);
4065
4066 if (update_type != UPDATE_TYPE_FAST && dc->res_pool->funcs->prepare_mcache_programming)
4067 dc->res_pool->funcs->prepare_mcache_programming(dc, context);
4068
4069 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4070 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
4071
4072 if (pipe->stream && pipe->plane_state) {
4073 if (!dc->debug.using_dml2)
4074 set_p_state_switch_method(dc, context, pipe);
4075
4076 if (dc->debug.visual_confirm)
4077 dc_update_visual_confirm_color(dc, context, pipe);
4078 }
4079 }
4080
4081 if (update_type == UPDATE_TYPE_FULL) {
4082 dc_allow_idle_optimizations(dc, false);
4083
4084 if (get_seamless_boot_stream_count(context) == 0)
4085 dc->hwss.prepare_bandwidth(dc, context);
4086
4087 if (dc->hwss.update_dsc_pg)
4088 dc->hwss.update_dsc_pg(dc, context, false);
4089
4090 context_clock_trace(dc, context);
4091 }
4092
4093 if (update_type == UPDATE_TYPE_FULL)
4094 hwss_wait_for_outstanding_hw_updates(dc, dc->current_state);
4095
4096 top_pipe_to_program = resource_get_otg_master_for_stream(
4097 &context->res_ctx,
4098 stream);
4099 ASSERT(top_pipe_to_program != NULL);
4100
4101 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4102 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4103
4104 // Check old context for SubVP
4105 subvp_prev_use |= (dc_state_get_pipe_subvp_type(dc->current_state, old_pipe) == SUBVP_PHANTOM);
4106 if (subvp_prev_use)
4107 break;
4108 }
4109
4110 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4111 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
4112
4113 if (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
4114 subvp_curr_use = true;
4115 break;
4116 }
4117 }
4118
4119 if (stream->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE) {
4120 struct pipe_ctx *mpcc_pipe;
4121 struct pipe_ctx *odm_pipe;
4122
4123 for (mpcc_pipe = top_pipe_to_program; mpcc_pipe; mpcc_pipe = mpcc_pipe->bottom_pipe)
4124 for (odm_pipe = mpcc_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
4125 odm_pipe->ttu_regs.min_ttu_vblank = MAX_TTU;
4126 }
4127
4128 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
4129 if (top_pipe_to_program &&
4130 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
4131 if (should_use_dmub_lock(stream->link)) {
4132 union dmub_hw_lock_flags hw_locks = { 0 };
4133 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
4134
4135 hw_locks.bits.lock_dig = 1;
4136 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
4137
4138 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
4139 true,
4140 &hw_locks,
4141 &inst_flags);
4142 } else
4143 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
4144 top_pipe_to_program->stream_res.tg);
4145 }
4146
4147 if (dc->hwss.wait_for_dcc_meta_propagation) {
4148 dc->hwss.wait_for_dcc_meta_propagation(dc, top_pipe_to_program);
4149 }
4150
4151 if (dc->hwseq->funcs.wait_for_pipe_update_if_needed)
4152 dc->hwseq->funcs.wait_for_pipe_update_if_needed(dc, top_pipe_to_program, update_type == UPDATE_TYPE_FAST);
4153
4154 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4155 if (dc->hwss.subvp_pipe_control_lock)
4156 dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, NULL, subvp_prev_use);
4157
4158 if (dc->hwss.fams2_global_control_lock)
4159 dc->hwss.fams2_global_control_lock(dc, context, true);
4160
4161 dc->hwss.interdependent_update_lock(dc, context, true);
4162 } else {
4163 if (dc->hwss.subvp_pipe_control_lock)
4164 dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
4165
4166 if (dc->hwss.fams2_global_control_lock)
4167 dc->hwss.fams2_global_control_lock(dc, context, true);
4168
4169 /* Lock the top pipe while updating plane addrs, since freesync requires
4170 * plane addr update event triggers to be synchronized.
4171 * top_pipe_to_program is expected to never be NULL
4172 */
4173 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
4174 }
4175
4176 dc_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context);
4177
4178 // Stream updates
4179 if (stream_update)
4180 commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
4181
4182 if (surface_count == 0) {
4183 /*
4184 * In case of turning off screen, no need to program front end a second time.
4185 * just return after program blank.
4186 */
4187 if (dc->hwss.apply_ctx_for_surface)
4188 dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
4189 if (dc->hwss.program_front_end_for_ctx)
4190 dc->hwss.program_front_end_for_ctx(dc, context);
4191
4192 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4193 dc->hwss.interdependent_update_lock(dc, context, false);
4194 } else {
4195 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
4196 }
4197 dc->hwss.post_unlock_program_front_end(dc, context);
4198
4199 if (update_type != UPDATE_TYPE_FAST)
4200 if (dc->hwss.commit_subvp_config)
4201 dc->hwss.commit_subvp_config(dc, context);
4202
4203 /* Since phantom pipe programming is moved to post_unlock_program_front_end,
4204 * move the SubVP lock to after the phantom pipes have been setup
4205 */
4206 if (dc->hwss.subvp_pipe_control_lock)
4207 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes,
4208 NULL, subvp_prev_use);
4209
4210 if (dc->hwss.fams2_global_control_lock)
4211 dc->hwss.fams2_global_control_lock(dc, context, false);
4212
4213 return;
4214 }
4215
4216 if (update_type != UPDATE_TYPE_FAST) {
4217 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4218 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4219
4220 if ((dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP ||
4221 dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH) &&
4222 pipe_ctx->stream && pipe_ctx->plane_state) {
4223 /* Only update visual confirm for SUBVP and Mclk switching here.
4224 * The bar appears on all pipes, so we need to update the bar on all displays,
4225 * so the information doesn't get stale.
4226 */
4227 dc->hwss.update_visual_confirm_color(dc, pipe_ctx,
4228 pipe_ctx->plane_res.hubp->inst);
4229 }
4230 }
4231 }
4232
4233 for (i = 0; i < surface_count; i++) {
4234 struct dc_plane_state *plane_state = srf_updates[i].surface;
4235
4236 /*set logical flag for lock/unlock use*/
4237 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4238 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4239 if (!pipe_ctx->plane_state)
4240 continue;
4241 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
4242 continue;
4243 pipe_ctx->plane_state->triplebuffer_flips = false;
4244 if (update_type == UPDATE_TYPE_FAST &&
4245 dc->hwss.program_triplebuffer != NULL &&
4246 !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
4247 /*triple buffer for VUpdate only*/
4248 pipe_ctx->plane_state->triplebuffer_flips = true;
4249 }
4250 }
4251 if (update_type == UPDATE_TYPE_FULL) {
4252 /* force vsync flip when reconfiguring pipes to prevent underflow */
4253 plane_state->flip_immediate = false;
4254 plane_state->triplebuffer_flips = false;
4255 }
4256 }
4257
4258 // Update Type FULL, Surface updates
4259 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4260 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4261
4262 if (!pipe_ctx->top_pipe &&
4263 !pipe_ctx->prev_odm_pipe &&
4264 should_update_pipe_for_stream(context, pipe_ctx, stream)) {
4265 struct dc_stream_status *stream_status = NULL;
4266
4267 if (!pipe_ctx->plane_state)
4268 continue;
4269
4270 /* Full fe update*/
4271 if (update_type == UPDATE_TYPE_FAST)
4272 continue;
4273
4274 stream_status =
4275 stream_get_status(context, pipe_ctx->stream);
4276
4277 if (dc->hwss.apply_ctx_for_surface && stream_status)
4278 dc->hwss.apply_ctx_for_surface(
4279 dc, pipe_ctx->stream, stream_status->plane_count, context);
4280 }
4281 }
4282
4283 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4284 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4285
4286 if (!pipe_ctx->plane_state)
4287 continue;
4288
4289 /* Full fe update*/
4290 if (update_type == UPDATE_TYPE_FAST)
4291 continue;
4292
4293 ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
4294 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
4295 /*turn off triple buffer for full update*/
4296 dc->hwss.program_triplebuffer(
4297 dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
4298 }
4299 }
4300
4301 if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
4302 dc->hwss.program_front_end_for_ctx(dc, context);
4303
4304 //Pipe busy until some frame and line #
4305 if (dc->hwseq->funcs.set_wait_for_update_needed_for_pipe && update_type == UPDATE_TYPE_FULL) {
4306 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4307 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4308
4309 dc->hwseq->funcs.set_wait_for_update_needed_for_pipe(dc, pipe_ctx);
4310 }
4311 }
4312
4313 if (dc->debug.validate_dml_output) {
4314 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4315 struct pipe_ctx *cur_pipe = &context->res_ctx.pipe_ctx[i];
4316 if (cur_pipe->stream == NULL)
4317 continue;
4318
4319 cur_pipe->plane_res.hubp->funcs->validate_dml_output(
4320 cur_pipe->plane_res.hubp, dc->ctx,
4321 &context->res_ctx.pipe_ctx[i].rq_regs,
4322 &context->res_ctx.pipe_ctx[i].dlg_regs,
4323 &context->res_ctx.pipe_ctx[i].ttu_regs);
4324 }
4325 }
4326 }
4327
4328 // Update Type FAST, Surface updates
4329 if (update_type == UPDATE_TYPE_FAST) {
4330 if (dc->hwss.set_flip_control_gsl)
4331 for (i = 0; i < surface_count; i++) {
4332 struct dc_plane_state *plane_state = srf_updates[i].surface;
4333
4334 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4335 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4336
4337 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
4338 continue;
4339
4340 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
4341 continue;
4342
4343 // GSL has to be used for flip immediate
4344 dc->hwss.set_flip_control_gsl(pipe_ctx,
4345 pipe_ctx->plane_state->flip_immediate);
4346 }
4347 }
4348
4349 /* Perform requested Updates */
4350 for (i = 0; i < surface_count; i++) {
4351 struct dc_plane_state *plane_state = srf_updates[i].surface;
4352
4353 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4354 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4355
4356 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
4357 continue;
4358
4359 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
4360 continue;
4361
4362 if (srf_updates[i].cm2_params &&
4363 srf_updates[i].cm2_params->cm2_luts.lut3d_data.lut3d_src ==
4364 DC_CM2_TRANSFER_FUNC_SOURCE_VIDMEM &&
4365 srf_updates[i].cm2_params->component_settings.shaper_3dlut_setting ==
4366 DC_CM2_SHAPER_3DLUT_SETTING_ENABLE_SHAPER_3DLUT &&
4367 dc->hwss.trigger_3dlut_dma_load)
4368 dc->hwss.trigger_3dlut_dma_load(dc, pipe_ctx);
4369
4370 /*program triple buffer after lock based on flip type*/
4371 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
4372 /*only enable triplebuffer for fast_update*/
4373 dc->hwss.program_triplebuffer(
4374 dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
4375 }
4376 if (pipe_ctx->plane_state->update_flags.bits.addr_update)
4377 dc->hwss.update_plane_addr(dc, pipe_ctx);
4378 }
4379 }
4380 }
4381
4382 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4383 dc->hwss.interdependent_update_lock(dc, context, false);
4384 } else {
4385 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
4386 }
4387
4388 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
4389 if (top_pipe_to_program &&
4390 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
4391 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
4392 top_pipe_to_program->stream_res.tg,
4393 CRTC_STATE_VACTIVE);
4394 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
4395 top_pipe_to_program->stream_res.tg,
4396 CRTC_STATE_VBLANK);
4397 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
4398 top_pipe_to_program->stream_res.tg,
4399 CRTC_STATE_VACTIVE);
4400
4401 if (should_use_dmub_lock(stream->link)) {
4402 union dmub_hw_lock_flags hw_locks = { 0 };
4403 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
4404
4405 hw_locks.bits.lock_dig = 1;
4406 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
4407
4408 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
4409 false,
4410 &hw_locks,
4411 &inst_flags);
4412 } else
4413 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
4414 top_pipe_to_program->stream_res.tg);
4415 }
4416
4417 if (subvp_curr_use) {
4418 /* If enabling subvp or transitioning from subvp->subvp, enable the
4419 * phantom streams before we program front end for the phantom pipes.
4420 */
4421 if (update_type != UPDATE_TYPE_FAST) {
4422 if (dc->hwss.enable_phantom_streams)
4423 dc->hwss.enable_phantom_streams(dc, context);
4424 }
4425 }
4426
4427 if (update_type != UPDATE_TYPE_FAST)
4428 dc->hwss.post_unlock_program_front_end(dc, context);
4429
4430 if (subvp_prev_use && !subvp_curr_use) {
4431 /* If disabling subvp, disable phantom streams after front end
4432 * programming has completed (we turn on phantom OTG in order
4433 * to complete the plane disable for phantom pipes).
4434 */
4435
4436 if (dc->hwss.disable_phantom_streams)
4437 dc->hwss.disable_phantom_streams(dc, context);
4438 }
4439
4440 if (update_type != UPDATE_TYPE_FAST)
4441 if (dc->hwss.commit_subvp_config)
4442 dc->hwss.commit_subvp_config(dc, context);
4443 /* Since phantom pipe programming is moved to post_unlock_program_front_end,
4444 * move the SubVP lock to after the phantom pipes have been setup
4445 */
4446 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4447 if (dc->hwss.subvp_pipe_control_lock)
4448 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, NULL, subvp_prev_use);
4449 if (dc->hwss.fams2_global_control_lock)
4450 dc->hwss.fams2_global_control_lock(dc, context, false);
4451 } else {
4452 if (dc->hwss.subvp_pipe_control_lock)
4453 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
4454 if (dc->hwss.fams2_global_control_lock)
4455 dc->hwss.fams2_global_control_lock(dc, context, false);
4456 }
4457
4458 // Fire manual trigger only when bottom plane is flipped
4459 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4460 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4461
4462 if (!pipe_ctx->plane_state)
4463 continue;
4464
4465 if (pipe_ctx->bottom_pipe || pipe_ctx->next_odm_pipe ||
4466 !pipe_ctx->stream || !should_update_pipe_for_stream(context, pipe_ctx, stream) ||
4467 !pipe_ctx->plane_state->update_flags.bits.addr_update ||
4468 pipe_ctx->plane_state->skip_manual_trigger)
4469 continue;
4470
4471 if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
4472 pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
4473 }
4474
4475 current_stream_mask = get_stream_mask(dc, context);
4476 if (current_stream_mask != context->stream_mask) {
4477 context->stream_mask = current_stream_mask;
4478 dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, current_stream_mask);
4479 }
4480 }
4481
4482 /**
4483 * could_mpcc_tree_change_for_active_pipes - Check if an OPP associated with MPCC might change
4484 *
4485 * @dc: Used to get the current state status
4486 * @stream: Target stream, which we want to remove the attached planes
4487 * @srf_updates: Array of surface updates
4488 * @surface_count: Number of surface update
4489 * @is_plane_addition: [in] Fill out with true if it is a plane addition case
4490 *
4491 * DCN32x and newer support a feature named Dynamic ODM which can conflict with
4492 * the MPO if used simultaneously in some specific configurations (e.g.,
4493 * 4k@144). This function checks if the incoming context requires applying a
4494 * transition state with unnecessary pipe splitting and ODM disabled to
4495 * circumvent our hardware limitations to prevent this edge case. If the OPP
4496 * associated with an MPCC might change due to plane additions, this function
4497 * returns true.
4498 *
4499 * Return:
4500 * Return true if OPP and MPCC might change, otherwise, return false.
4501 */
could_mpcc_tree_change_for_active_pipes(struct dc * dc,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count,bool * is_plane_addition)4502 static bool could_mpcc_tree_change_for_active_pipes(struct dc *dc,
4503 struct dc_stream_state *stream,
4504 struct dc_surface_update *srf_updates,
4505 int surface_count,
4506 bool *is_plane_addition)
4507 {
4508
4509 struct dc_stream_status *cur_stream_status = stream_get_status(dc->current_state, stream);
4510 bool force_minimal_pipe_splitting = false;
4511 bool subvp_active = false;
4512 uint32_t i;
4513
4514 *is_plane_addition = false;
4515
4516 if (cur_stream_status &&
4517 dc->current_state->stream_count > 0 &&
4518 dc->debug.pipe_split_policy != MPC_SPLIT_AVOID) {
4519 /* determine if minimal transition is required due to MPC*/
4520 if (surface_count > 0) {
4521 if (cur_stream_status->plane_count > surface_count) {
4522 force_minimal_pipe_splitting = true;
4523 } else if (cur_stream_status->plane_count < surface_count) {
4524 force_minimal_pipe_splitting = true;
4525 *is_plane_addition = true;
4526 }
4527 }
4528 }
4529
4530 if (cur_stream_status &&
4531 dc->current_state->stream_count == 1 &&
4532 dc->debug.enable_single_display_2to1_odm_policy) {
4533 /* determine if minimal transition is required due to dynamic ODM*/
4534 if (surface_count > 0) {
4535 if (cur_stream_status->plane_count > 2 && cur_stream_status->plane_count > surface_count) {
4536 force_minimal_pipe_splitting = true;
4537 } else if (surface_count > 2 && cur_stream_status->plane_count < surface_count) {
4538 force_minimal_pipe_splitting = true;
4539 *is_plane_addition = true;
4540 }
4541 }
4542 }
4543
4544 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4545 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4546
4547 if (dc_state_get_pipe_subvp_type(dc->current_state, pipe) != SUBVP_NONE) {
4548 subvp_active = true;
4549 break;
4550 }
4551 }
4552
4553 /* For SubVP when adding or removing planes we need to add a minimal transition
4554 * (even when disabling all planes). Whenever disabling a phantom pipe, we
4555 * must use the minimal transition path to disable the pipe correctly.
4556 *
4557 * We want to use the minimal transition whenever subvp is active, not only if
4558 * a plane is being added / removed from a subvp stream (MPO plane can be added
4559 * to a DRR pipe of SubVP + DRR config, in which case we still want to run through
4560 * a min transition to disable subvp.
4561 */
4562 if (cur_stream_status && subvp_active) {
4563 /* determine if minimal transition is required due to SubVP*/
4564 if (cur_stream_status->plane_count > surface_count) {
4565 force_minimal_pipe_splitting = true;
4566 } else if (cur_stream_status->plane_count < surface_count) {
4567 force_minimal_pipe_splitting = true;
4568 *is_plane_addition = true;
4569 }
4570 }
4571
4572 return force_minimal_pipe_splitting;
4573 }
4574
4575 struct pipe_split_policy_backup {
4576 bool dynamic_odm_policy;
4577 bool subvp_policy;
4578 enum pipe_split_policy mpc_policy;
4579 char force_odm[MAX_PIPES];
4580 };
4581
backup_and_set_minimal_pipe_split_policy(struct dc * dc,struct dc_state * context,struct pipe_split_policy_backup * policy)4582 static void backup_and_set_minimal_pipe_split_policy(struct dc *dc,
4583 struct dc_state *context,
4584 struct pipe_split_policy_backup *policy)
4585 {
4586 int i;
4587
4588 if (!dc->config.is_vmin_only_asic) {
4589 policy->mpc_policy = dc->debug.pipe_split_policy;
4590 dc->debug.pipe_split_policy = MPC_SPLIT_AVOID;
4591 }
4592 policy->dynamic_odm_policy = dc->debug.enable_single_display_2to1_odm_policy;
4593 dc->debug.enable_single_display_2to1_odm_policy = false;
4594 policy->subvp_policy = dc->debug.force_disable_subvp;
4595 dc->debug.force_disable_subvp = true;
4596 for (i = 0; i < context->stream_count; i++) {
4597 policy->force_odm[i] = context->streams[i]->debug.force_odm_combine_segments;
4598 if (context->streams[i]->debug.allow_transition_for_forced_odm)
4599 context->streams[i]->debug.force_odm_combine_segments = 0;
4600 }
4601 }
4602
restore_minimal_pipe_split_policy(struct dc * dc,struct dc_state * context,struct pipe_split_policy_backup * policy)4603 static void restore_minimal_pipe_split_policy(struct dc *dc,
4604 struct dc_state *context,
4605 struct pipe_split_policy_backup *policy)
4606 {
4607 uint8_t i;
4608
4609 if (!dc->config.is_vmin_only_asic)
4610 dc->debug.pipe_split_policy = policy->mpc_policy;
4611 dc->debug.enable_single_display_2to1_odm_policy =
4612 policy->dynamic_odm_policy;
4613 dc->debug.force_disable_subvp = policy->subvp_policy;
4614 for (i = 0; i < context->stream_count; i++)
4615 context->streams[i]->debug.force_odm_combine_segments = policy->force_odm[i];
4616 }
4617
release_minimal_transition_state(struct dc * dc,struct dc_state * minimal_transition_context,struct dc_state * base_context,struct pipe_split_policy_backup * policy)4618 static void release_minimal_transition_state(struct dc *dc,
4619 struct dc_state *minimal_transition_context,
4620 struct dc_state *base_context,
4621 struct pipe_split_policy_backup *policy)
4622 {
4623 restore_minimal_pipe_split_policy(dc, base_context, policy);
4624 dc_state_release(minimal_transition_context);
4625 }
4626
force_vsync_flip_in_minimal_transition_context(struct dc_state * context)4627 static void force_vsync_flip_in_minimal_transition_context(struct dc_state *context)
4628 {
4629 uint8_t i;
4630 int j;
4631 struct dc_stream_status *stream_status;
4632
4633 for (i = 0; i < context->stream_count; i++) {
4634 stream_status = &context->stream_status[i];
4635
4636 for (j = 0; j < stream_status->plane_count; j++)
4637 stream_status->plane_states[j]->flip_immediate = false;
4638 }
4639 }
4640
create_minimal_transition_state(struct dc * dc,struct dc_state * base_context,struct pipe_split_policy_backup * policy)4641 static struct dc_state *create_minimal_transition_state(struct dc *dc,
4642 struct dc_state *base_context, struct pipe_split_policy_backup *policy)
4643 {
4644 struct dc_state *minimal_transition_context = NULL;
4645
4646 minimal_transition_context = dc_state_create_copy(base_context);
4647 if (!minimal_transition_context)
4648 return NULL;
4649
4650 backup_and_set_minimal_pipe_split_policy(dc, base_context, policy);
4651 /* commit minimal state */
4652 if (dc->res_pool->funcs->validate_bandwidth(dc, minimal_transition_context,
4653 DC_VALIDATE_MODE_AND_PROGRAMMING) == DC_OK) {
4654 /* prevent underflow and corruption when reconfiguring pipes */
4655 force_vsync_flip_in_minimal_transition_context(minimal_transition_context);
4656 } else {
4657 /*
4658 * This should never happen, minimal transition state should
4659 * always be validated first before adding pipe split features.
4660 */
4661 release_minimal_transition_state(dc, minimal_transition_context, base_context, policy);
4662 BREAK_TO_DEBUGGER();
4663 minimal_transition_context = NULL;
4664 }
4665 return minimal_transition_context;
4666 }
4667
is_pipe_topology_transition_seamless_with_intermediate_step(struct dc * dc,struct dc_state * initial_state,struct dc_state * intermediate_state,struct dc_state * final_state)4668 static bool is_pipe_topology_transition_seamless_with_intermediate_step(
4669 struct dc *dc,
4670 struct dc_state *initial_state,
4671 struct dc_state *intermediate_state,
4672 struct dc_state *final_state)
4673 {
4674 return dc->hwss.is_pipe_topology_transition_seamless(dc, initial_state,
4675 intermediate_state) &&
4676 dc->hwss.is_pipe_topology_transition_seamless(dc,
4677 intermediate_state, final_state);
4678 }
4679
swap_and_release_current_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream)4680 static void swap_and_release_current_context(struct dc *dc,
4681 struct dc_state *new_context, struct dc_stream_state *stream)
4682 {
4683
4684 int i;
4685 struct dc_state *old = dc->current_state;
4686 struct pipe_ctx *pipe_ctx;
4687
4688 /* Since memory free requires elevated IRQ, an interrupt
4689 * request is generated by mem free. If this happens
4690 * between freeing and reassigning the context, our vsync
4691 * interrupt will call into dc and cause a memory
4692 * corruption. Hence, we first reassign the context,
4693 * then free the old context.
4694 */
4695 dc->current_state = new_context;
4696 dc_state_release(old);
4697
4698 // clear any forced full updates
4699 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4700 pipe_ctx = &new_context->res_ctx.pipe_ctx[i];
4701
4702 if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4703 pipe_ctx->plane_state->force_full_update = false;
4704 }
4705 }
4706
initialize_empty_surface_updates(struct dc_stream_state * stream,struct dc_surface_update * srf_updates)4707 static int initialize_empty_surface_updates(
4708 struct dc_stream_state *stream,
4709 struct dc_surface_update *srf_updates)
4710 {
4711 struct dc_stream_status *status = dc_stream_get_status(stream);
4712 int i;
4713
4714 if (!status)
4715 return 0;
4716
4717 for (i = 0; i < status->plane_count; i++)
4718 srf_updates[i].surface = status->plane_states[i];
4719
4720 return status->plane_count;
4721 }
4722
commit_minimal_transition_based_on_new_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count)4723 static bool commit_minimal_transition_based_on_new_context(struct dc *dc,
4724 struct dc_state *new_context,
4725 struct dc_stream_state *stream,
4726 struct dc_surface_update *srf_updates,
4727 int surface_count)
4728 {
4729 bool success = false;
4730 struct pipe_split_policy_backup policy;
4731 struct dc_state *intermediate_context =
4732 create_minimal_transition_state(dc, new_context,
4733 &policy);
4734
4735 if (intermediate_context) {
4736 if (is_pipe_topology_transition_seamless_with_intermediate_step(
4737 dc,
4738 dc->current_state,
4739 intermediate_context,
4740 new_context)) {
4741 DC_LOG_DC("commit minimal transition state: base = new state\n");
4742 commit_planes_for_stream(dc, srf_updates,
4743 surface_count, stream, NULL,
4744 UPDATE_TYPE_FULL, intermediate_context);
4745 swap_and_release_current_context(
4746 dc, intermediate_context, stream);
4747 dc_state_retain(dc->current_state);
4748 success = true;
4749 }
4750 release_minimal_transition_state(
4751 dc, intermediate_context, new_context, &policy);
4752 }
4753 return success;
4754 }
4755
commit_minimal_transition_based_on_current_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream)4756 static bool commit_minimal_transition_based_on_current_context(struct dc *dc,
4757 struct dc_state *new_context, struct dc_stream_state *stream)
4758 {
4759 bool success = false;
4760 struct pipe_split_policy_backup policy;
4761 struct dc_state *intermediate_context;
4762 struct dc_state *old_current_state = dc->current_state;
4763 struct dc_surface_update srf_updates[MAX_SURFACES] = {0};
4764 int surface_count;
4765
4766 /*
4767 * Both current and new contexts share the same stream and plane state
4768 * pointers. When new context is validated, stream and planes get
4769 * populated with new updates such as new plane addresses. This makes
4770 * the current context no longer valid because stream and planes are
4771 * modified from the original. We backup current stream and plane states
4772 * into scratch space whenever we are populating new context. So we can
4773 * restore the original values back by calling the restore function now.
4774 * This restores back the original stream and plane states associated
4775 * with the current state.
4776 */
4777 restore_planes_and_stream_state(&dc->scratch.current_state, stream);
4778 dc_state_retain(old_current_state);
4779 intermediate_context = create_minimal_transition_state(dc,
4780 old_current_state, &policy);
4781
4782 if (intermediate_context) {
4783 if (is_pipe_topology_transition_seamless_with_intermediate_step(
4784 dc,
4785 dc->current_state,
4786 intermediate_context,
4787 new_context)) {
4788 DC_LOG_DC("commit minimal transition state: base = current state\n");
4789 surface_count = initialize_empty_surface_updates(
4790 stream, srf_updates);
4791 commit_planes_for_stream(dc, srf_updates,
4792 surface_count, stream, NULL,
4793 UPDATE_TYPE_FULL, intermediate_context);
4794 swap_and_release_current_context(
4795 dc, intermediate_context, stream);
4796 dc_state_retain(dc->current_state);
4797 success = true;
4798 }
4799 release_minimal_transition_state(dc, intermediate_context,
4800 old_current_state, &policy);
4801 }
4802 dc_state_release(old_current_state);
4803 /*
4804 * Restore stream and plane states back to the values associated with
4805 * new context.
4806 */
4807 restore_planes_and_stream_state(&dc->scratch.new_state, stream);
4808 return success;
4809 }
4810
4811 /**
4812 * commit_minimal_transition_state_in_dc_update - Commit a minimal state based
4813 * on current or new context
4814 *
4815 * @dc: DC structure, used to get the current state
4816 * @new_context: New context
4817 * @stream: Stream getting the update for the flip
4818 * @srf_updates: Surface updates
4819 * @surface_count: Number of surfaces
4820 *
4821 * The function takes in current state and new state and determine a minimal
4822 * transition state as the intermediate step which could make the transition
4823 * between current and new states seamless. If found, it will commit the minimal
4824 * transition state and update current state to this minimal transition state
4825 * and return true, if not, it will return false.
4826 *
4827 * Return:
4828 * Return True if the minimal transition succeeded, false otherwise
4829 */
commit_minimal_transition_state_in_dc_update(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count)4830 static bool commit_minimal_transition_state_in_dc_update(struct dc *dc,
4831 struct dc_state *new_context,
4832 struct dc_stream_state *stream,
4833 struct dc_surface_update *srf_updates,
4834 int surface_count)
4835 {
4836 bool success = commit_minimal_transition_based_on_new_context(
4837 dc, new_context, stream, srf_updates,
4838 surface_count);
4839 if (!success)
4840 success = commit_minimal_transition_based_on_current_context(dc,
4841 new_context, stream);
4842 if (!success)
4843 DC_LOG_ERROR("Fail to commit a seamless minimal transition state between current and new states.\nThis pipe topology update is non-seamless!\n");
4844 return success;
4845 }
4846
4847 /**
4848 * commit_minimal_transition_state - Create a transition pipe split state
4849 *
4850 * @dc: Used to get the current state status
4851 * @transition_base_context: New transition state
4852 *
4853 * In some specific configurations, such as pipe split on multi-display with
4854 * MPO and/or Dynamic ODM, removing a plane may cause unsupported pipe
4855 * programming when moving to new planes. To mitigate those types of problems,
4856 * this function adds a transition state that minimizes pipe usage before
4857 * programming the new configuration. When adding a new plane, the current
4858 * state requires the least pipes, so it is applied without splitting. When
4859 * removing a plane, the new state requires the least pipes, so it is applied
4860 * without splitting.
4861 *
4862 * Return:
4863 * Return false if something is wrong in the transition state.
4864 */
commit_minimal_transition_state(struct dc * dc,struct dc_state * transition_base_context)4865 static bool commit_minimal_transition_state(struct dc *dc,
4866 struct dc_state *transition_base_context)
4867 {
4868 struct dc_state *transition_context;
4869 struct pipe_split_policy_backup policy;
4870 enum dc_status ret = DC_ERROR_UNEXPECTED;
4871 unsigned int i, j;
4872 unsigned int pipe_in_use = 0;
4873 bool subvp_in_use = false;
4874 bool odm_in_use = false;
4875
4876 /* check current pipes in use*/
4877 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4878 struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4879
4880 if (pipe->plane_state)
4881 pipe_in_use++;
4882 }
4883
4884 /* If SubVP is enabled and we are adding or removing planes from any main subvp
4885 * pipe, we must use the minimal transition.
4886 */
4887 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4888 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4889
4890 if (pipe->stream && dc_state_get_pipe_subvp_type(dc->current_state, pipe) == SUBVP_PHANTOM) {
4891 subvp_in_use = true;
4892 break;
4893 }
4894 }
4895
4896 /* If ODM is enabled and we are adding or removing planes from any ODM
4897 * pipe, we must use the minimal transition.
4898 */
4899 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4900 struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4901
4902 if (resource_is_pipe_type(pipe, OTG_MASTER)) {
4903 odm_in_use = resource_get_odm_slice_count(pipe) > 1;
4904 break;
4905 }
4906 }
4907
4908 /* When the OS add a new surface if we have been used all of pipes with odm combine
4909 * and mpc split feature, it need use commit_minimal_transition_state to transition safely.
4910 * After OS exit MPO, it will back to use odm and mpc split with all of pipes, we need
4911 * call it again. Otherwise return true to skip.
4912 *
4913 * Reduce the scenarios to use dc_commit_state_no_check in the stage of flip. Especially
4914 * enter/exit MPO when DCN still have enough resources.
4915 */
4916 if (pipe_in_use != dc->res_pool->pipe_count && !subvp_in_use && !odm_in_use)
4917 return true;
4918
4919 DC_LOG_DC("%s base = %s state, reason = %s\n", __func__,
4920 dc->current_state == transition_base_context ? "current" : "new",
4921 subvp_in_use ? "Subvp In Use" :
4922 odm_in_use ? "ODM in Use" :
4923 dc->debug.pipe_split_policy != MPC_SPLIT_AVOID ? "MPC in Use" :
4924 "Unknown");
4925
4926 dc_state_retain(transition_base_context);
4927 transition_context = create_minimal_transition_state(dc,
4928 transition_base_context, &policy);
4929 if (transition_context) {
4930 ret = dc_commit_state_no_check(dc, transition_context);
4931 release_minimal_transition_state(dc, transition_context, transition_base_context, &policy);
4932 }
4933 dc_state_release(transition_base_context);
4934
4935 if (ret != DC_OK) {
4936 /* this should never happen */
4937 BREAK_TO_DEBUGGER();
4938 return false;
4939 }
4940
4941 /* force full surface update */
4942 for (i = 0; i < dc->current_state->stream_count; i++) {
4943 for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) {
4944 dc->current_state->stream_status[i].plane_states[j]->update_flags.raw = 0xFFFFFFFF;
4945 }
4946 }
4947
4948 return true;
4949 }
4950
populate_fast_updates(struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update)4951 void populate_fast_updates(struct dc_fast_update *fast_update,
4952 struct dc_surface_update *srf_updates,
4953 int surface_count,
4954 struct dc_stream_update *stream_update)
4955 {
4956 int i = 0;
4957
4958 if (stream_update) {
4959 fast_update[0].out_transfer_func = stream_update->out_transfer_func;
4960 fast_update[0].output_csc_transform = stream_update->output_csc_transform;
4961 } else {
4962 fast_update[0].out_transfer_func = NULL;
4963 fast_update[0].output_csc_transform = NULL;
4964 }
4965
4966 for (i = 0; i < surface_count; i++) {
4967 fast_update[i].flip_addr = srf_updates[i].flip_addr;
4968 fast_update[i].gamma = srf_updates[i].gamma;
4969 fast_update[i].gamut_remap_matrix = srf_updates[i].gamut_remap_matrix;
4970 fast_update[i].input_csc_color_matrix = srf_updates[i].input_csc_color_matrix;
4971 fast_update[i].coeff_reduction_factor = srf_updates[i].coeff_reduction_factor;
4972 fast_update[i].cursor_csc_color_matrix = srf_updates[i].cursor_csc_color_matrix;
4973 }
4974 }
4975
fast_updates_exist(struct dc_fast_update * fast_update,int surface_count)4976 static bool fast_updates_exist(struct dc_fast_update *fast_update, int surface_count)
4977 {
4978 int i;
4979
4980 if (fast_update[0].out_transfer_func ||
4981 fast_update[0].output_csc_transform)
4982 return true;
4983
4984 for (i = 0; i < surface_count; i++) {
4985 if (fast_update[i].flip_addr ||
4986 fast_update[i].gamma ||
4987 fast_update[i].gamut_remap_matrix ||
4988 fast_update[i].input_csc_color_matrix ||
4989 fast_update[i].cursor_csc_color_matrix ||
4990 fast_update[i].coeff_reduction_factor)
4991 return true;
4992 }
4993
4994 return false;
4995 }
4996
fast_nonaddr_updates_exist(struct dc_fast_update * fast_update,int surface_count)4997 bool fast_nonaddr_updates_exist(struct dc_fast_update *fast_update, int surface_count)
4998 {
4999 int i;
5000
5001 if (fast_update[0].out_transfer_func ||
5002 fast_update[0].output_csc_transform)
5003 return true;
5004
5005 for (i = 0; i < surface_count; i++) {
5006 if (fast_update[i].input_csc_color_matrix ||
5007 fast_update[i].gamma ||
5008 fast_update[i].gamut_remap_matrix ||
5009 fast_update[i].coeff_reduction_factor ||
5010 fast_update[i].cursor_csc_color_matrix)
5011 return true;
5012 }
5013
5014 return false;
5015 }
5016
full_update_required(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)5017 static bool full_update_required(struct dc *dc,
5018 struct dc_surface_update *srf_updates,
5019 int surface_count,
5020 struct dc_stream_update *stream_update,
5021 struct dc_stream_state *stream)
5022 {
5023
5024 int i;
5025 struct dc_stream_status *stream_status;
5026 const struct dc_state *context = dc->current_state;
5027
5028 for (i = 0; i < surface_count; i++) {
5029 if (srf_updates &&
5030 (srf_updates[i].plane_info ||
5031 srf_updates[i].scaling_info ||
5032 (srf_updates[i].hdr_mult.value &&
5033 srf_updates[i].hdr_mult.value != srf_updates->surface->hdr_mult.value) ||
5034 (srf_updates[i].sdr_white_level_nits &&
5035 srf_updates[i].sdr_white_level_nits != srf_updates->surface->sdr_white_level_nits) ||
5036 srf_updates[i].in_transfer_func ||
5037 srf_updates[i].func_shaper ||
5038 srf_updates[i].lut3d_func ||
5039 srf_updates[i].surface->force_full_update ||
5040 (srf_updates[i].flip_addr &&
5041 srf_updates[i].flip_addr->address.tmz_surface != srf_updates[i].surface->address.tmz_surface) ||
5042 (srf_updates[i].cm2_params &&
5043 (srf_updates[i].cm2_params->component_settings.shaper_3dlut_setting != srf_updates[i].surface->mcm_shaper_3dlut_setting ||
5044 srf_updates[i].cm2_params->component_settings.lut1d_enable != srf_updates[i].surface->mcm_lut1d_enable)) ||
5045 !is_surface_in_context(context, srf_updates[i].surface)))
5046 return true;
5047 }
5048
5049 if (stream_update &&
5050 (((stream_update->src.height != 0 && stream_update->src.width != 0) ||
5051 (stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
5052 stream_update->integer_scaling_update) ||
5053 stream_update->hdr_static_metadata ||
5054 stream_update->abm_level ||
5055 stream_update->periodic_interrupt ||
5056 stream_update->vrr_infopacket ||
5057 stream_update->vsc_infopacket ||
5058 stream_update->vsp_infopacket ||
5059 stream_update->hfvsif_infopacket ||
5060 stream_update->vtem_infopacket ||
5061 stream_update->adaptive_sync_infopacket ||
5062 stream_update->dpms_off ||
5063 stream_update->allow_freesync ||
5064 stream_update->vrr_active_variable ||
5065 stream_update->vrr_active_fixed ||
5066 stream_update->gamut_remap ||
5067 stream_update->output_color_space ||
5068 stream_update->dither_option ||
5069 stream_update->wb_update ||
5070 stream_update->dsc_config ||
5071 stream_update->mst_bw_update ||
5072 stream_update->func_shaper ||
5073 stream_update->lut3d_func ||
5074 stream_update->pending_test_pattern ||
5075 stream_update->crtc_timing_adjust ||
5076 stream_update->scaler_sharpener_update ||
5077 stream_update->hw_cursor_req))
5078 return true;
5079
5080 if (stream) {
5081 stream_status = dc_stream_get_status(stream);
5082 if (stream_status == NULL || stream_status->plane_count != surface_count)
5083 return true;
5084 }
5085 if (dc->idle_optimizations_allowed)
5086 return true;
5087
5088 if (dc_can_clear_cursor_limit(dc))
5089 return true;
5090
5091 return false;
5092 }
5093
fast_update_only(struct dc * dc,struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)5094 static bool fast_update_only(struct dc *dc,
5095 struct dc_fast_update *fast_update,
5096 struct dc_surface_update *srf_updates,
5097 int surface_count,
5098 struct dc_stream_update *stream_update,
5099 struct dc_stream_state *stream)
5100 {
5101 return fast_updates_exist(fast_update, surface_count)
5102 && !full_update_required(dc, srf_updates, surface_count, stream_update, stream);
5103 }
5104
update_planes_and_stream_v1(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)5105 static bool update_planes_and_stream_v1(struct dc *dc,
5106 struct dc_surface_update *srf_updates, int surface_count,
5107 struct dc_stream_state *stream,
5108 struct dc_stream_update *stream_update,
5109 struct dc_state *state)
5110 {
5111 const struct dc_stream_status *stream_status;
5112 enum surface_update_type update_type;
5113 struct dc_state *context;
5114 struct dc_context *dc_ctx = dc->ctx;
5115 int i, j;
5116 struct dc_fast_update fast_update[MAX_SURFACES] = {0};
5117
5118 dc_exit_ips_for_hw_access(dc);
5119
5120 populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
5121 stream_status = dc_stream_get_status(stream);
5122 context = dc->current_state;
5123
5124 update_type = dc_check_update_surfaces_for_stream(
5125 dc, srf_updates, surface_count, stream_update, stream_status);
5126 /* It is possible to receive a flip for one plane while there are multiple flip_immediate planes in the same stream.
5127 * E.g. Desktop and MPO plane are flip_immediate but only the MPO plane received a flip
5128 * Force the other flip_immediate planes to flip so GSL doesn't wait for a flip that won't come.
5129 */
5130 force_immediate_gsl_plane_flip(dc, srf_updates, surface_count);
5131
5132 if (update_type >= UPDATE_TYPE_FULL) {
5133
5134 /* initialize scratch memory for building context */
5135 context = dc_state_create_copy(state);
5136 if (context == NULL) {
5137 DC_ERROR("Failed to allocate new validate context!\n");
5138 return false;
5139 }
5140
5141 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5142 struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
5143 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
5144
5145 if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
5146 new_pipe->plane_state->force_full_update = true;
5147 }
5148 } else if (update_type == UPDATE_TYPE_FAST) {
5149 /*
5150 * Previous frame finished and HW is ready for optimization.
5151 */
5152 dc_post_update_surfaces_to_stream(dc);
5153 }
5154
5155 for (i = 0; i < surface_count; i++) {
5156 struct dc_plane_state *surface = srf_updates[i].surface;
5157
5158 copy_surface_update_to_plane(surface, &srf_updates[i]);
5159
5160 if (update_type >= UPDATE_TYPE_MED) {
5161 for (j = 0; j < dc->res_pool->pipe_count; j++) {
5162 struct pipe_ctx *pipe_ctx =
5163 &context->res_ctx.pipe_ctx[j];
5164
5165 if (pipe_ctx->plane_state != surface)
5166 continue;
5167
5168 resource_build_scaling_params(pipe_ctx);
5169 }
5170 }
5171 }
5172
5173 copy_stream_update_to_stream(dc, context, stream, stream_update);
5174
5175 if (update_type >= UPDATE_TYPE_FULL) {
5176 if (dc->res_pool->funcs->validate_bandwidth(dc, context, DC_VALIDATE_MODE_AND_PROGRAMMING) != DC_OK) {
5177 DC_ERROR("Mode validation failed for stream update!\n");
5178 dc_state_release(context);
5179 return false;
5180 }
5181 }
5182
5183 TRACE_DC_PIPE_STATE(pipe_ctx, i, MAX_PIPES);
5184
5185 if (fast_update_only(dc, fast_update, srf_updates, surface_count, stream_update, stream) &&
5186 !dc->debug.enable_legacy_fast_update) {
5187 commit_planes_for_stream_fast(dc,
5188 srf_updates,
5189 surface_count,
5190 stream,
5191 stream_update,
5192 update_type,
5193 context);
5194 } else {
5195 commit_planes_for_stream(
5196 dc,
5197 srf_updates,
5198 surface_count,
5199 stream,
5200 stream_update,
5201 update_type,
5202 context);
5203 }
5204 /*update current_State*/
5205 if (dc->current_state != context) {
5206
5207 struct dc_state *old = dc->current_state;
5208
5209 dc->current_state = context;
5210 dc_state_release(old);
5211
5212 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5213 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
5214
5215 if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
5216 pipe_ctx->plane_state->force_full_update = false;
5217 }
5218 }
5219
5220 /* Legacy optimization path for DCE. */
5221 if (update_type >= UPDATE_TYPE_FULL && dc_ctx->dce_version < DCE_VERSION_MAX) {
5222 dc_post_update_surfaces_to_stream(dc);
5223 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
5224 }
5225 return true;
5226 }
5227
update_planes_and_stream_v2(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)5228 static bool update_planes_and_stream_v2(struct dc *dc,
5229 struct dc_surface_update *srf_updates, int surface_count,
5230 struct dc_stream_state *stream,
5231 struct dc_stream_update *stream_update)
5232 {
5233 struct dc_state *context;
5234 enum surface_update_type update_type;
5235 struct dc_fast_update fast_update[MAX_SURFACES] = {0};
5236
5237 /* In cases where MPO and split or ODM are used transitions can
5238 * cause underflow. Apply stream configuration with minimal pipe
5239 * split first to avoid unsupported transitions for active pipes.
5240 */
5241 bool force_minimal_pipe_splitting = 0;
5242 bool is_plane_addition = 0;
5243 bool is_fast_update_only;
5244
5245 populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
5246 is_fast_update_only = fast_update_only(dc, fast_update, srf_updates,
5247 surface_count, stream_update, stream);
5248 force_minimal_pipe_splitting = could_mpcc_tree_change_for_active_pipes(
5249 dc,
5250 stream,
5251 srf_updates,
5252 surface_count,
5253 &is_plane_addition);
5254
5255 /* on plane addition, minimal state is the current one */
5256 if (force_minimal_pipe_splitting && is_plane_addition &&
5257 !commit_minimal_transition_state(dc, dc->current_state))
5258 return false;
5259
5260 if (!update_planes_and_stream_state(
5261 dc,
5262 srf_updates,
5263 surface_count,
5264 stream,
5265 stream_update,
5266 &update_type,
5267 &context))
5268 return false;
5269
5270 /* on plane removal, minimal state is the new one */
5271 if (force_minimal_pipe_splitting && !is_plane_addition) {
5272 if (!commit_minimal_transition_state(dc, context)) {
5273 dc_state_release(context);
5274 return false;
5275 }
5276 update_type = UPDATE_TYPE_FULL;
5277 }
5278
5279 if (dc->hwss.is_pipe_topology_transition_seamless &&
5280 !dc->hwss.is_pipe_topology_transition_seamless(
5281 dc, dc->current_state, context))
5282 commit_minimal_transition_state_in_dc_update(dc, context, stream,
5283 srf_updates, surface_count);
5284
5285 if (is_fast_update_only && !dc->debug.enable_legacy_fast_update) {
5286 commit_planes_for_stream_fast(dc,
5287 srf_updates,
5288 surface_count,
5289 stream,
5290 stream_update,
5291 update_type,
5292 context);
5293 } else {
5294 if (!stream_update &&
5295 dc->hwss.is_pipe_topology_transition_seamless &&
5296 !dc->hwss.is_pipe_topology_transition_seamless(
5297 dc, dc->current_state, context)) {
5298 DC_LOG_ERROR("performing non-seamless pipe topology transition with surface only update!\n");
5299 BREAK_TO_DEBUGGER();
5300 }
5301 commit_planes_for_stream(
5302 dc,
5303 srf_updates,
5304 surface_count,
5305 stream,
5306 stream_update,
5307 update_type,
5308 context);
5309 }
5310 if (dc->current_state != context)
5311 swap_and_release_current_context(dc, context, stream);
5312 return true;
5313 }
5314
commit_planes_and_stream_update_on_current_context(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type)5315 static void commit_planes_and_stream_update_on_current_context(struct dc *dc,
5316 struct dc_surface_update *srf_updates, int surface_count,
5317 struct dc_stream_state *stream,
5318 struct dc_stream_update *stream_update,
5319 enum surface_update_type update_type)
5320 {
5321 struct dc_fast_update fast_update[MAX_SURFACES] = {0};
5322
5323 ASSERT(update_type < UPDATE_TYPE_FULL);
5324 populate_fast_updates(fast_update, srf_updates, surface_count,
5325 stream_update);
5326 if (fast_update_only(dc, fast_update, srf_updates, surface_count,
5327 stream_update, stream) &&
5328 !dc->debug.enable_legacy_fast_update)
5329 commit_planes_for_stream_fast(dc,
5330 srf_updates,
5331 surface_count,
5332 stream,
5333 stream_update,
5334 update_type,
5335 dc->current_state);
5336 else
5337 commit_planes_for_stream(
5338 dc,
5339 srf_updates,
5340 surface_count,
5341 stream,
5342 stream_update,
5343 update_type,
5344 dc->current_state);
5345 }
5346
commit_planes_and_stream_update_with_new_context(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * new_context)5347 static void commit_planes_and_stream_update_with_new_context(struct dc *dc,
5348 struct dc_surface_update *srf_updates, int surface_count,
5349 struct dc_stream_state *stream,
5350 struct dc_stream_update *stream_update,
5351 enum surface_update_type update_type,
5352 struct dc_state *new_context)
5353 {
5354 ASSERT(update_type >= UPDATE_TYPE_FULL);
5355 if (!dc->hwss.is_pipe_topology_transition_seamless(dc,
5356 dc->current_state, new_context))
5357 /*
5358 * It is required by the feature design that all pipe topologies
5359 * using extra free pipes for power saving purposes such as
5360 * dynamic ODM or SubVp shall only be enabled when it can be
5361 * transitioned seamlessly to AND from its minimal transition
5362 * state. A minimal transition state is defined as the same dc
5363 * state but with all power saving features disabled. So it uses
5364 * the minimum pipe topology. When we can't seamlessly
5365 * transition from state A to state B, we will insert the
5366 * minimal transition state A' or B' in between so seamless
5367 * transition between A and B can be made possible.
5368 */
5369 commit_minimal_transition_state_in_dc_update(dc, new_context,
5370 stream, srf_updates, surface_count);
5371
5372 commit_planes_for_stream(
5373 dc,
5374 srf_updates,
5375 surface_count,
5376 stream,
5377 stream_update,
5378 update_type,
5379 new_context);
5380 }
5381
update_planes_and_stream_v3(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)5382 static bool update_planes_and_stream_v3(struct dc *dc,
5383 struct dc_surface_update *srf_updates, int surface_count,
5384 struct dc_stream_state *stream,
5385 struct dc_stream_update *stream_update)
5386 {
5387 struct dc_state *new_context;
5388 enum surface_update_type update_type;
5389
5390 /*
5391 * When this function returns true and new_context is not equal to
5392 * current state, the function allocates and validates a new dc state
5393 * and assigns it to new_context. The function expects that the caller
5394 * is responsible to free this memory when new_context is no longer
5395 * used. We swap current with new context and free current instead. So
5396 * new_context's memory will live until the next full update after it is
5397 * replaced by a newer context. Refer to the use of
5398 * swap_and_free_current_context below.
5399 */
5400 if (!update_planes_and_stream_state(dc, srf_updates, surface_count,
5401 stream, stream_update, &update_type,
5402 &new_context))
5403 return false;
5404
5405 if (new_context == dc->current_state) {
5406 commit_planes_and_stream_update_on_current_context(dc,
5407 srf_updates, surface_count, stream,
5408 stream_update, update_type);
5409 } else {
5410 commit_planes_and_stream_update_with_new_context(dc,
5411 srf_updates, surface_count, stream,
5412 stream_update, update_type, new_context);
5413 swap_and_release_current_context(dc, new_context, stream);
5414 }
5415
5416 return true;
5417 }
5418
clear_update_flags(struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream)5419 static void clear_update_flags(struct dc_surface_update *srf_updates,
5420 int surface_count, struct dc_stream_state *stream)
5421 {
5422 int i;
5423
5424 if (stream)
5425 stream->update_flags.raw = 0;
5426
5427 for (i = 0; i < surface_count; i++)
5428 if (srf_updates[i].surface)
5429 srf_updates[i].surface->update_flags.raw = 0;
5430 }
5431
dc_update_planes_and_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)5432 bool dc_update_planes_and_stream(struct dc *dc,
5433 struct dc_surface_update *srf_updates, int surface_count,
5434 struct dc_stream_state *stream,
5435 struct dc_stream_update *stream_update)
5436 {
5437 bool ret = false;
5438
5439 dc_exit_ips_for_hw_access(dc);
5440 /*
5441 * update planes and stream version 3 separates FULL and FAST updates
5442 * to their own sequences. It aims to clean up frequent checks for
5443 * update type resulting unnecessary branching in logic flow. It also
5444 * adds a new commit minimal transition sequence, which detects the need
5445 * for minimal transition based on the actual comparison of current and
5446 * new states instead of "predicting" it based on per feature software
5447 * policy.i.e could_mpcc_tree_change_for_active_pipes. The new commit
5448 * minimal transition sequence is made universal to any power saving
5449 * features that would use extra free pipes such as Dynamic ODM/MPC
5450 * Combine, MPO or SubVp. Therefore there is no longer a need to
5451 * specially handle compatibility problems with transitions among those
5452 * features as they are now transparent to the new sequence.
5453 */
5454 if (dc->ctx->dce_version >= DCN_VERSION_4_01)
5455 ret = update_planes_and_stream_v3(dc, srf_updates,
5456 surface_count, stream, stream_update);
5457 else
5458 ret = update_planes_and_stream_v2(dc, srf_updates,
5459 surface_count, stream, stream_update);
5460 if (ret && (dc->ctx->dce_version >= DCN_VERSION_3_2 ||
5461 dc->ctx->dce_version == DCN_VERSION_3_01))
5462 clear_update_flags(srf_updates, surface_count, stream);
5463
5464 return ret;
5465 }
5466
dc_commit_updates_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)5467 void dc_commit_updates_for_stream(struct dc *dc,
5468 struct dc_surface_update *srf_updates,
5469 int surface_count,
5470 struct dc_stream_state *stream,
5471 struct dc_stream_update *stream_update,
5472 struct dc_state *state)
5473 {
5474 bool ret = false;
5475
5476 dc_exit_ips_for_hw_access(dc);
5477 /* TODO: Since change commit sequence can have a huge impact,
5478 * we decided to only enable it for DCN3x. However, as soon as
5479 * we get more confident about this change we'll need to enable
5480 * the new sequence for all ASICs.
5481 */
5482 if (dc->ctx->dce_version >= DCN_VERSION_4_01) {
5483 ret = update_planes_and_stream_v3(dc, srf_updates, surface_count,
5484 stream, stream_update);
5485 } else if (dc->ctx->dce_version >= DCN_VERSION_3_2) {
5486 ret = update_planes_and_stream_v2(dc, srf_updates, surface_count,
5487 stream, stream_update);
5488 } else
5489 ret = update_planes_and_stream_v1(dc, srf_updates, surface_count, stream,
5490 stream_update, state);
5491
5492 if (ret && dc->ctx->dce_version >= DCN_VERSION_3_2)
5493 clear_update_flags(srf_updates, surface_count, stream);
5494 }
5495
dc_get_current_stream_count(struct dc * dc)5496 uint8_t dc_get_current_stream_count(struct dc *dc)
5497 {
5498 return dc->current_state->stream_count;
5499 }
5500
dc_get_stream_at_index(struct dc * dc,uint8_t i)5501 struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
5502 {
5503 if (i < dc->current_state->stream_count)
5504 return dc->current_state->streams[i];
5505 return NULL;
5506 }
5507
dc_interrupt_to_irq_source(struct dc * dc,uint32_t src_id,uint32_t ext_id)5508 enum dc_irq_source dc_interrupt_to_irq_source(
5509 struct dc *dc,
5510 uint32_t src_id,
5511 uint32_t ext_id)
5512 {
5513 return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
5514 }
5515
5516 /*
5517 * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
5518 */
dc_interrupt_set(struct dc * dc,enum dc_irq_source src,bool enable)5519 bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
5520 {
5521
5522 if (dc == NULL)
5523 return false;
5524
5525 return dal_irq_service_set(dc->res_pool->irqs, src, enable);
5526 }
5527
dc_interrupt_ack(struct dc * dc,enum dc_irq_source src)5528 void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
5529 {
5530 dal_irq_service_ack(dc->res_pool->irqs, src);
5531 }
5532
dc_power_down_on_boot(struct dc * dc)5533 void dc_power_down_on_boot(struct dc *dc)
5534 {
5535 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW &&
5536 dc->hwss.power_down_on_boot) {
5537 if (dc->caps.ips_support)
5538 dc_exit_ips_for_hw_access(dc);
5539 dc->hwss.power_down_on_boot(dc);
5540 }
5541 }
5542
dc_set_power_state(struct dc * dc,enum dc_acpi_cm_power_state power_state)5543 void dc_set_power_state(struct dc *dc, enum dc_acpi_cm_power_state power_state)
5544 {
5545 if (!dc->current_state)
5546 return;
5547
5548 switch (power_state) {
5549 case DC_ACPI_CM_POWER_STATE_D0:
5550 dc_state_construct(dc, dc->current_state);
5551
5552 dc_exit_ips_for_hw_access(dc);
5553
5554 dc_z10_restore(dc);
5555
5556 dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, power_state);
5557
5558 dc->hwss.init_hw(dc);
5559
5560 if (dc->hwss.init_sys_ctx != NULL &&
5561 dc->vm_pa_config.valid) {
5562 dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
5563 }
5564 break;
5565 case DC_ACPI_CM_POWER_STATE_D3:
5566 if (dc->caps.ips_support)
5567 dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, DC_ACPI_CM_POWER_STATE_D3);
5568
5569 if (dc->caps.ips_v2_support) {
5570 if (dc->clk_mgr->funcs->set_low_power_state)
5571 dc->clk_mgr->funcs->set_low_power_state(dc->clk_mgr);
5572 }
5573 break;
5574 default:
5575 ASSERT(dc->current_state->stream_count == 0);
5576 dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, power_state);
5577
5578 dc_state_destruct(dc->current_state);
5579
5580 break;
5581 }
5582 }
5583
dc_resume(struct dc * dc)5584 void dc_resume(struct dc *dc)
5585 {
5586 uint32_t i;
5587
5588 for (i = 0; i < dc->link_count; i++)
5589 dc->link_srv->resume(dc->links[i]);
5590 }
5591
dc_is_dmcu_initialized(struct dc * dc)5592 bool dc_is_dmcu_initialized(struct dc *dc)
5593 {
5594 struct dmcu *dmcu = dc->res_pool->dmcu;
5595
5596 if (dmcu)
5597 return dmcu->funcs->is_dmcu_initialized(dmcu);
5598 return false;
5599 }
5600
dc_set_clock(struct dc * dc,enum dc_clock_type clock_type,uint32_t clk_khz,uint32_t stepping)5601 enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
5602 {
5603 if (dc->hwss.set_clock)
5604 return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
5605 return DC_ERROR_UNEXPECTED;
5606 }
dc_get_clock(struct dc * dc,enum dc_clock_type clock_type,struct dc_clock_config * clock_cfg)5607 void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
5608 {
5609 if (dc->hwss.get_clock)
5610 dc->hwss.get_clock(dc, clock_type, clock_cfg);
5611 }
5612
5613 /* enable/disable eDP PSR without specify stream for eDP */
dc_set_psr_allow_active(struct dc * dc,bool enable)5614 bool dc_set_psr_allow_active(struct dc *dc, bool enable)
5615 {
5616 int i;
5617 bool allow_active;
5618
5619 for (i = 0; i < dc->current_state->stream_count ; i++) {
5620 struct dc_link *link;
5621 struct dc_stream_state *stream = dc->current_state->streams[i];
5622
5623 link = stream->link;
5624 if (!link)
5625 continue;
5626
5627 if (link->psr_settings.psr_feature_enabled) {
5628 if (enable && !link->psr_settings.psr_allow_active) {
5629 allow_active = true;
5630 if (!dc_link_set_psr_allow_active(link, &allow_active, false, false, NULL))
5631 return false;
5632 } else if (!enable && link->psr_settings.psr_allow_active) {
5633 allow_active = false;
5634 if (!dc_link_set_psr_allow_active(link, &allow_active, true, false, NULL))
5635 return false;
5636 }
5637 }
5638 }
5639
5640 return true;
5641 }
5642
5643 /* enable/disable eDP Replay without specify stream for eDP */
dc_set_replay_allow_active(struct dc * dc,bool active)5644 bool dc_set_replay_allow_active(struct dc *dc, bool active)
5645 {
5646 int i;
5647 bool allow_active;
5648
5649 for (i = 0; i < dc->current_state->stream_count; i++) {
5650 struct dc_link *link;
5651 struct dc_stream_state *stream = dc->current_state->streams[i];
5652
5653 link = stream->link;
5654 if (!link)
5655 continue;
5656
5657 if (link->replay_settings.replay_feature_enabled) {
5658 if (active && !link->replay_settings.replay_allow_active) {
5659 allow_active = true;
5660 if (!dc_link_set_replay_allow_active(link, &allow_active,
5661 false, false, NULL))
5662 return false;
5663 } else if (!active && link->replay_settings.replay_allow_active) {
5664 allow_active = false;
5665 if (!dc_link_set_replay_allow_active(link, &allow_active,
5666 true, false, NULL))
5667 return false;
5668 }
5669 }
5670 }
5671
5672 return true;
5673 }
5674
5675 /* set IPS disable state */
dc_set_ips_disable(struct dc * dc,unsigned int disable_ips)5676 bool dc_set_ips_disable(struct dc *dc, unsigned int disable_ips)
5677 {
5678 dc_exit_ips_for_hw_access(dc);
5679
5680 dc->config.disable_ips = disable_ips;
5681
5682 return true;
5683 }
5684
dc_allow_idle_optimizations_internal(struct dc * dc,bool allow,char const * caller_name)5685 void dc_allow_idle_optimizations_internal(struct dc *dc, bool allow, char const *caller_name)
5686 {
5687 int idle_fclk_khz = 0, idle_dramclk_khz = 0, i = 0;
5688 enum mall_stream_type subvp_pipe_type[MAX_PIPES] = {0};
5689 struct pipe_ctx *pipe = NULL;
5690 struct dc_state *context = dc->current_state;
5691
5692 if (dc->debug.disable_idle_power_optimizations) {
5693 DC_LOG_DEBUG("%s: disabled\n", __func__);
5694 return;
5695 }
5696
5697 if (allow != dc->idle_optimizations_allowed)
5698 DC_LOG_IPS("%s: allow_idle old=%d new=%d (caller=%s)\n", __func__,
5699 dc->idle_optimizations_allowed, allow, caller_name);
5700
5701 if (dc->caps.ips_support && (dc->config.disable_ips == DMUB_IPS_DISABLE_ALL))
5702 return;
5703
5704 if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->is_smu_present)
5705 if (!dc->clk_mgr->funcs->is_smu_present(dc->clk_mgr))
5706 return;
5707
5708 if (allow == dc->idle_optimizations_allowed)
5709 return;
5710
5711 if (dc->hwss.apply_idle_power_optimizations && dc->clk_mgr != NULL &&
5712 dc->hwss.apply_idle_power_optimizations(dc, allow)) {
5713 dc->idle_optimizations_allowed = allow;
5714 DC_LOG_DEBUG("%s: %s\n", __func__, allow ? "enabled" : "disabled");
5715 }
5716
5717 // log idle clocks and sub vp pipe types at idle optimization time
5718 if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->get_hard_min_fclk)
5719 idle_fclk_khz = dc->clk_mgr->funcs->get_hard_min_fclk(dc->clk_mgr);
5720
5721 if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->get_hard_min_memclk)
5722 idle_dramclk_khz = dc->clk_mgr->funcs->get_hard_min_memclk(dc->clk_mgr);
5723
5724 if (dc->res_pool && context) {
5725 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5726 pipe = &context->res_ctx.pipe_ctx[i];
5727 subvp_pipe_type[i] = dc_state_get_pipe_subvp_type(context, pipe);
5728 }
5729 }
5730
5731 DC_LOG_DC("%s: allow_idle=%d\n HardMinUClk_Khz=%d HardMinDramclk_Khz=%d\n Pipe_0=%d Pipe_1=%d Pipe_2=%d Pipe_3=%d Pipe_4=%d Pipe_5=%d (caller=%s)\n",
5732 __func__, allow, idle_fclk_khz, idle_dramclk_khz, subvp_pipe_type[0], subvp_pipe_type[1], subvp_pipe_type[2],
5733 subvp_pipe_type[3], subvp_pipe_type[4], subvp_pipe_type[5], caller_name);
5734
5735 }
5736
dc_exit_ips_for_hw_access_internal(struct dc * dc,const char * caller_name)5737 void dc_exit_ips_for_hw_access_internal(struct dc *dc, const char *caller_name)
5738 {
5739 if (dc->caps.ips_support)
5740 dc_allow_idle_optimizations_internal(dc, false, caller_name);
5741 }
5742
dc_dmub_is_ips_idle_state(struct dc * dc)5743 bool dc_dmub_is_ips_idle_state(struct dc *dc)
5744 {
5745 if (dc->debug.disable_idle_power_optimizations)
5746 return false;
5747
5748 if (!dc->caps.ips_support || (dc->config.disable_ips == DMUB_IPS_DISABLE_ALL))
5749 return false;
5750
5751 if (!dc->ctx->dmub_srv)
5752 return false;
5753
5754 return dc->ctx->dmub_srv->idle_allowed;
5755 }
5756
5757 /* set min and max memory clock to lowest and highest DPM level, respectively */
dc_unlock_memory_clock_frequency(struct dc * dc)5758 void dc_unlock_memory_clock_frequency(struct dc *dc)
5759 {
5760 if (dc->clk_mgr->funcs->set_hard_min_memclk)
5761 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false);
5762
5763 if (dc->clk_mgr->funcs->set_hard_max_memclk)
5764 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
5765 }
5766
5767 /* set min memory clock to the min required for current mode, max to maxDPM */
dc_lock_memory_clock_frequency(struct dc * dc)5768 void dc_lock_memory_clock_frequency(struct dc *dc)
5769 {
5770 if (dc->clk_mgr->funcs->get_memclk_states_from_smu)
5771 dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr);
5772
5773 if (dc->clk_mgr->funcs->set_hard_min_memclk)
5774 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true);
5775
5776 if (dc->clk_mgr->funcs->set_hard_max_memclk)
5777 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
5778 }
5779
blank_and_force_memclk(struct dc * dc,bool apply,unsigned int memclk_mhz)5780 static void blank_and_force_memclk(struct dc *dc, bool apply, unsigned int memclk_mhz)
5781 {
5782 struct dc_state *context = dc->current_state;
5783 struct hubp *hubp;
5784 struct pipe_ctx *pipe;
5785 int i;
5786
5787 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5788 pipe = &context->res_ctx.pipe_ctx[i];
5789
5790 if (pipe->stream != NULL) {
5791 dc->hwss.disable_pixel_data(dc, pipe, true);
5792
5793 // wait for double buffer
5794 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
5795 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK);
5796 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
5797
5798 hubp = pipe->plane_res.hubp;
5799 hubp->funcs->set_blank_regs(hubp, true);
5800 }
5801 }
5802 if (dc->clk_mgr->funcs->set_max_memclk)
5803 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, memclk_mhz);
5804 if (dc->clk_mgr->funcs->set_min_memclk)
5805 dc->clk_mgr->funcs->set_min_memclk(dc->clk_mgr, memclk_mhz);
5806
5807 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5808 pipe = &context->res_ctx.pipe_ctx[i];
5809
5810 if (pipe->stream != NULL) {
5811 dc->hwss.disable_pixel_data(dc, pipe, false);
5812
5813 hubp = pipe->plane_res.hubp;
5814 hubp->funcs->set_blank_regs(hubp, false);
5815 }
5816 }
5817 }
5818
5819
5820 /**
5821 * dc_enable_dcmode_clk_limit() - lower clocks in dc (battery) mode
5822 * @dc: pointer to dc of the dm calling this
5823 * @enable: True = transition to DC mode, false = transition back to AC mode
5824 *
5825 * Some SoCs define additional clock limits when in DC mode, DM should
5826 * invoke this function when the platform undergoes a power source transition
5827 * so DC can apply/unapply the limit. This interface may be disruptive to
5828 * the onscreen content.
5829 *
5830 * Context: Triggered by OS through DM interface, or manually by escape calls.
5831 * Need to hold a dclock when doing so.
5832 *
5833 * Return: none (void function)
5834 *
5835 */
dc_enable_dcmode_clk_limit(struct dc * dc,bool enable)5836 void dc_enable_dcmode_clk_limit(struct dc *dc, bool enable)
5837 {
5838 unsigned int softMax = 0, maxDPM = 0, funcMin = 0, i;
5839 bool p_state_change_support;
5840
5841 if (!dc->config.dc_mode_clk_limit_support)
5842 return;
5843
5844 softMax = dc->clk_mgr->bw_params->dc_mode_softmax_memclk;
5845 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries; i++) {
5846 if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz > maxDPM)
5847 maxDPM = dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz;
5848 }
5849 funcMin = (dc->clk_mgr->clks.dramclk_khz + 999) / 1000;
5850 p_state_change_support = dc->clk_mgr->clks.p_state_change_support;
5851
5852 if (enable && !dc->clk_mgr->dc_mode_softmax_enabled) {
5853 if (p_state_change_support) {
5854 if (funcMin <= softMax && dc->clk_mgr->funcs->set_max_memclk)
5855 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, softMax);
5856 // else: No-Op
5857 } else {
5858 if (funcMin <= softMax)
5859 blank_and_force_memclk(dc, true, softMax);
5860 // else: No-Op
5861 }
5862 } else if (!enable && dc->clk_mgr->dc_mode_softmax_enabled) {
5863 if (p_state_change_support) {
5864 if (funcMin <= softMax && dc->clk_mgr->funcs->set_max_memclk)
5865 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, maxDPM);
5866 // else: No-Op
5867 } else {
5868 if (funcMin <= softMax)
5869 blank_and_force_memclk(dc, true, maxDPM);
5870 // else: No-Op
5871 }
5872 }
5873 dc->clk_mgr->dc_mode_softmax_enabled = enable;
5874 }
dc_is_plane_eligible_for_idle_optimizations(struct dc * dc,unsigned int pitch,unsigned int height,enum surface_pixel_format format,struct dc_cursor_attributes * cursor_attr)5875 bool dc_is_plane_eligible_for_idle_optimizations(struct dc *dc,
5876 unsigned int pitch,
5877 unsigned int height,
5878 enum surface_pixel_format format,
5879 struct dc_cursor_attributes *cursor_attr)
5880 {
5881 if (dc->hwss.does_plane_fit_in_mall && dc->hwss.does_plane_fit_in_mall(dc, pitch, height, format, cursor_attr))
5882 return true;
5883 return false;
5884 }
5885
5886 /* cleanup on driver unload */
dc_hardware_release(struct dc * dc)5887 void dc_hardware_release(struct dc *dc)
5888 {
5889 dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(dc);
5890
5891 if (dc->hwss.hardware_release)
5892 dc->hwss.hardware_release(dc);
5893 }
5894
dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc * dc)5895 void dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc *dc)
5896 {
5897 if (dc->current_state)
5898 dc->current_state->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down = true;
5899 }
5900
5901 /**
5902 * dc_is_dmub_outbox_supported - Check if DMUB firmware support outbox notification
5903 *
5904 * @dc: [in] dc structure
5905 *
5906 * Checks whether DMUB FW supports outbox notifications, if supported DM
5907 * should register outbox interrupt prior to actually enabling interrupts
5908 * via dc_enable_dmub_outbox
5909 *
5910 * Return:
5911 * True if DMUB FW supports outbox notifications, False otherwise
5912 */
dc_is_dmub_outbox_supported(struct dc * dc)5913 bool dc_is_dmub_outbox_supported(struct dc *dc)
5914 {
5915 if (!dc->caps.dmcub_support)
5916 return false;
5917
5918 switch (dc->ctx->asic_id.chip_family) {
5919
5920 case FAMILY_YELLOW_CARP:
5921 /* DCN31 B0 USB4 DPIA needs dmub notifications for interrupts */
5922 if (dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0 &&
5923 !dc->debug.dpia_debug.bits.disable_dpia)
5924 return true;
5925 break;
5926
5927 case AMDGPU_FAMILY_GC_11_0_1:
5928 case AMDGPU_FAMILY_GC_11_5_0:
5929 if (!dc->debug.dpia_debug.bits.disable_dpia)
5930 return true;
5931 break;
5932
5933 default:
5934 break;
5935 }
5936
5937 /* dmub aux needs dmub notifications to be enabled */
5938 return dc->debug.enable_dmub_aux_for_legacy_ddc;
5939
5940 }
5941
5942 /**
5943 * dc_enable_dmub_notifications - Check if dmub fw supports outbox
5944 *
5945 * @dc: [in] dc structure
5946 *
5947 * Calls dc_is_dmub_outbox_supported to check if dmub fw supports outbox
5948 * notifications. All DMs shall switch to dc_is_dmub_outbox_supported. This
5949 * API shall be removed after switching.
5950 *
5951 * Return:
5952 * True if DMUB FW supports outbox notifications, False otherwise
5953 */
dc_enable_dmub_notifications(struct dc * dc)5954 bool dc_enable_dmub_notifications(struct dc *dc)
5955 {
5956 return dc_is_dmub_outbox_supported(dc);
5957 }
5958
5959 /**
5960 * dc_enable_dmub_outbox - Enables DMUB unsolicited notification
5961 *
5962 * @dc: [in] dc structure
5963 *
5964 * Enables DMUB unsolicited notifications to x86 via outbox.
5965 */
dc_enable_dmub_outbox(struct dc * dc)5966 void dc_enable_dmub_outbox(struct dc *dc)
5967 {
5968 struct dc_context *dc_ctx = dc->ctx;
5969
5970 dmub_enable_outbox_notification(dc_ctx->dmub_srv);
5971 DC_LOG_DC("%s: dmub outbox notifications enabled\n", __func__);
5972 }
5973
5974 /**
5975 * dc_process_dmub_aux_transfer_async - Submits aux command to dmub via inbox message
5976 * Sets port index appropriately for legacy DDC
5977 * @dc: dc structure
5978 * @link_index: link index
5979 * @payload: aux payload
5980 *
5981 * Returns: True if successful, False if failure
5982 */
dc_process_dmub_aux_transfer_async(struct dc * dc,uint32_t link_index,struct aux_payload * payload)5983 bool dc_process_dmub_aux_transfer_async(struct dc *dc,
5984 uint32_t link_index,
5985 struct aux_payload *payload)
5986 {
5987 uint8_t action;
5988 union dmub_rb_cmd cmd = {0};
5989
5990 ASSERT(payload->length <= 16);
5991
5992 cmd.dp_aux_access.header.type = DMUB_CMD__DP_AUX_ACCESS;
5993 cmd.dp_aux_access.header.payload_bytes = 0;
5994 /* For dpia, ddc_pin is set to NULL */
5995 if (!dc->links[link_index]->ddc->ddc_pin)
5996 cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_DPIA;
5997 else
5998 cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_LEGACY_DDC;
5999
6000 cmd.dp_aux_access.aux_control.instance = dc->links[link_index]->ddc_hw_inst;
6001 cmd.dp_aux_access.aux_control.sw_crc_enabled = 0;
6002 cmd.dp_aux_access.aux_control.timeout = 0;
6003 cmd.dp_aux_access.aux_control.dpaux.address = payload->address;
6004 cmd.dp_aux_access.aux_control.dpaux.is_i2c_over_aux = payload->i2c_over_aux;
6005 cmd.dp_aux_access.aux_control.dpaux.length = payload->length;
6006
6007 /* set aux action */
6008 if (payload->i2c_over_aux) {
6009 if (payload->write) {
6010 if (payload->mot)
6011 action = DP_AUX_REQ_ACTION_I2C_WRITE_MOT;
6012 else
6013 action = DP_AUX_REQ_ACTION_I2C_WRITE;
6014 } else {
6015 if (payload->mot)
6016 action = DP_AUX_REQ_ACTION_I2C_READ_MOT;
6017 else
6018 action = DP_AUX_REQ_ACTION_I2C_READ;
6019 }
6020 } else {
6021 if (payload->write)
6022 action = DP_AUX_REQ_ACTION_DPCD_WRITE;
6023 else
6024 action = DP_AUX_REQ_ACTION_DPCD_READ;
6025 }
6026
6027 cmd.dp_aux_access.aux_control.dpaux.action = action;
6028
6029 if (payload->length && payload->write) {
6030 memcpy(cmd.dp_aux_access.aux_control.dpaux.data,
6031 payload->data,
6032 payload->length
6033 );
6034 }
6035
6036 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
6037
6038 return true;
6039 }
6040
get_link_index_from_dpia_port_index(const struct dc * dc,uint8_t dpia_port_index)6041 uint8_t get_link_index_from_dpia_port_index(const struct dc *dc,
6042 uint8_t dpia_port_index)
6043 {
6044 uint8_t index, link_index = 0xFF;
6045
6046 for (index = 0; index < dc->link_count; index++) {
6047 /* ddc_hw_inst has dpia port index for dpia links
6048 * and ddc instance for legacy links
6049 */
6050 if (!dc->links[index]->ddc->ddc_pin) {
6051 if (dc->links[index]->ddc_hw_inst == dpia_port_index) {
6052 link_index = index;
6053 break;
6054 }
6055 }
6056 }
6057 ASSERT(link_index != 0xFF);
6058 return link_index;
6059 }
6060
6061 /**
6062 * dc_process_dmub_set_config_async - Submits set_config command
6063 *
6064 * @dc: [in] dc structure
6065 * @link_index: [in] link_index: link index
6066 * @payload: [in] aux payload
6067 * @notify: [out] set_config immediate reply
6068 *
6069 * Submits set_config command to dmub via inbox message.
6070 *
6071 * Return:
6072 * True if successful, False if failure
6073 */
dc_process_dmub_set_config_async(struct dc * dc,uint32_t link_index,struct set_config_cmd_payload * payload,struct dmub_notification * notify)6074 bool dc_process_dmub_set_config_async(struct dc *dc,
6075 uint32_t link_index,
6076 struct set_config_cmd_payload *payload,
6077 struct dmub_notification *notify)
6078 {
6079 union dmub_rb_cmd cmd = {0};
6080 bool is_cmd_complete = true;
6081
6082 /* prepare SET_CONFIG command */
6083 cmd.set_config_access.header.type = DMUB_CMD__DPIA;
6084 cmd.set_config_access.header.sub_type = DMUB_CMD__DPIA_SET_CONFIG_ACCESS;
6085
6086 cmd.set_config_access.set_config_control.instance = dc->links[link_index]->ddc_hw_inst;
6087 cmd.set_config_access.set_config_control.cmd_pkt.msg_type = payload->msg_type;
6088 cmd.set_config_access.set_config_control.cmd_pkt.msg_data = payload->msg_data;
6089
6090 if (!dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY)) {
6091 /* command is not processed by dmub */
6092 notify->sc_status = SET_CONFIG_UNKNOWN_ERROR;
6093 return is_cmd_complete;
6094 }
6095
6096 /* command processed by dmub, if ret_status is 1, it is completed instantly */
6097 if (cmd.set_config_access.header.ret_status == 1)
6098 notify->sc_status = cmd.set_config_access.set_config_control.immed_status;
6099 else
6100 /* cmd pending, will receive notification via outbox */
6101 is_cmd_complete = false;
6102
6103 return is_cmd_complete;
6104 }
6105
6106 /**
6107 * dc_process_dmub_set_mst_slots - Submits MST solt allocation
6108 *
6109 * @dc: [in] dc structure
6110 * @link_index: [in] link index
6111 * @mst_alloc_slots: [in] mst slots to be allotted
6112 * @mst_slots_in_use: [out] mst slots in use returned in failure case
6113 *
6114 * Submits mst slot allocation command to dmub via inbox message
6115 *
6116 * Return:
6117 * DC_OK if successful, DC_ERROR if failure
6118 */
dc_process_dmub_set_mst_slots(const struct dc * dc,uint32_t link_index,uint8_t mst_alloc_slots,uint8_t * mst_slots_in_use)6119 enum dc_status dc_process_dmub_set_mst_slots(const struct dc *dc,
6120 uint32_t link_index,
6121 uint8_t mst_alloc_slots,
6122 uint8_t *mst_slots_in_use)
6123 {
6124 union dmub_rb_cmd cmd = {0};
6125
6126 /* prepare MST_ALLOC_SLOTS command */
6127 cmd.set_mst_alloc_slots.header.type = DMUB_CMD__DPIA;
6128 cmd.set_mst_alloc_slots.header.sub_type = DMUB_CMD__DPIA_MST_ALLOC_SLOTS;
6129
6130 cmd.set_mst_alloc_slots.mst_slots_control.instance = dc->links[link_index]->ddc_hw_inst;
6131 cmd.set_mst_alloc_slots.mst_slots_control.mst_alloc_slots = mst_alloc_slots;
6132
6133 if (!dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY))
6134 /* command is not processed by dmub */
6135 return DC_ERROR_UNEXPECTED;
6136
6137 /* command processed by dmub, if ret_status is 1 */
6138 if (cmd.set_config_access.header.ret_status != 1)
6139 /* command processing error */
6140 return DC_ERROR_UNEXPECTED;
6141
6142 /* command processed and we have a status of 2, mst not enabled in dpia */
6143 if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 2)
6144 return DC_FAIL_UNSUPPORTED_1;
6145
6146 /* previously configured mst alloc and used slots did not match */
6147 if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 3) {
6148 *mst_slots_in_use = cmd.set_mst_alloc_slots.mst_slots_control.mst_slots_in_use;
6149 return DC_NOT_SUPPORTED;
6150 }
6151
6152 return DC_OK;
6153 }
6154
6155 /**
6156 * dc_process_dmub_dpia_set_tps_notification - Submits tps notification
6157 *
6158 * @dc: [in] dc structure
6159 * @link_index: [in] link index
6160 * @tps: [in] request tps
6161 *
6162 * Submits set_tps_notification command to dmub via inbox message
6163 */
dc_process_dmub_dpia_set_tps_notification(const struct dc * dc,uint32_t link_index,uint8_t tps)6164 void dc_process_dmub_dpia_set_tps_notification(const struct dc *dc, uint32_t link_index, uint8_t tps)
6165 {
6166 union dmub_rb_cmd cmd = {0};
6167
6168 cmd.set_tps_notification.header.type = DMUB_CMD__DPIA;
6169 cmd.set_tps_notification.header.sub_type = DMUB_CMD__DPIA_SET_TPS_NOTIFICATION;
6170 cmd.set_tps_notification.tps_notification.instance = dc->links[link_index]->ddc_hw_inst;
6171 cmd.set_tps_notification.tps_notification.tps = tps;
6172
6173 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
6174 }
6175
6176 /**
6177 * dc_process_dmub_dpia_hpd_int_enable - Submits DPIA DPD interruption
6178 *
6179 * @dc: [in] dc structure
6180 * @hpd_int_enable: [in] 1 for hpd int enable, 0 to disable
6181 *
6182 * Submits dpia hpd int enable command to dmub via inbox message
6183 */
dc_process_dmub_dpia_hpd_int_enable(const struct dc * dc,uint32_t hpd_int_enable)6184 void dc_process_dmub_dpia_hpd_int_enable(const struct dc *dc,
6185 uint32_t hpd_int_enable)
6186 {
6187 union dmub_rb_cmd cmd = {0};
6188
6189 cmd.dpia_hpd_int_enable.header.type = DMUB_CMD__DPIA_HPD_INT_ENABLE;
6190 cmd.dpia_hpd_int_enable.enable = hpd_int_enable;
6191
6192 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
6193
6194 DC_LOG_DEBUG("%s: hpd_int_enable(%d)\n", __func__, hpd_int_enable);
6195 }
6196
6197 /**
6198 * dc_print_dmub_diagnostic_data - Print DMUB diagnostic data for debugging
6199 *
6200 * @dc: [in] dc structure
6201 *
6202 *
6203 */
dc_print_dmub_diagnostic_data(const struct dc * dc)6204 void dc_print_dmub_diagnostic_data(const struct dc *dc)
6205 {
6206 dc_dmub_srv_log_diagnostic_data(dc->ctx->dmub_srv);
6207 }
6208
6209 /**
6210 * dc_disable_accelerated_mode - disable accelerated mode
6211 * @dc: dc structure
6212 */
dc_disable_accelerated_mode(struct dc * dc)6213 void dc_disable_accelerated_mode(struct dc *dc)
6214 {
6215 bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 0);
6216 }
6217
6218
6219 /**
6220 * dc_notify_vsync_int_state - notifies vsync enable/disable state
6221 * @dc: dc structure
6222 * @stream: stream where vsync int state changed
6223 * @enable: whether vsync is enabled or disabled
6224 *
6225 * Called when vsync is enabled/disabled Will notify DMUB to start/stop ABM
6226 * interrupts after steady state is reached.
6227 */
dc_notify_vsync_int_state(struct dc * dc,struct dc_stream_state * stream,bool enable)6228 void dc_notify_vsync_int_state(struct dc *dc, struct dc_stream_state *stream, bool enable)
6229 {
6230 int i;
6231 int edp_num;
6232 struct pipe_ctx *pipe = NULL;
6233 struct dc_link *link = stream->sink->link;
6234 struct dc_link *edp_links[MAX_NUM_EDP];
6235
6236
6237 if (link->psr_settings.psr_feature_enabled)
6238 return;
6239
6240 if (link->replay_settings.replay_feature_enabled)
6241 return;
6242
6243 /*find primary pipe associated with stream*/
6244 for (i = 0; i < MAX_PIPES; i++) {
6245 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
6246
6247 if (pipe->stream == stream && pipe->stream_res.tg)
6248 break;
6249 }
6250
6251 if (i == MAX_PIPES) {
6252 ASSERT(0);
6253 return;
6254 }
6255
6256 dc_get_edp_links(dc, edp_links, &edp_num);
6257
6258 /* Determine panel inst */
6259 for (i = 0; i < edp_num; i++) {
6260 if (edp_links[i] == link)
6261 break;
6262 }
6263
6264 if (i == edp_num) {
6265 return;
6266 }
6267
6268 if (pipe->stream_res.abm && pipe->stream_res.abm->funcs->set_abm_pause)
6269 pipe->stream_res.abm->funcs->set_abm_pause(pipe->stream_res.abm, !enable, i, pipe->stream_res.tg->inst);
6270 }
6271
6272 /*****************************************************************************
6273 * dc_abm_save_restore() - Interface to DC for save+pause and restore+un-pause
6274 * ABM
6275 * @dc: dc structure
6276 * @stream: stream where vsync int state changed
6277 * @pData: abm hw states
6278 *
6279 ****************************************************************************/
dc_abm_save_restore(struct dc * dc,struct dc_stream_state * stream,struct abm_save_restore * pData)6280 bool dc_abm_save_restore(
6281 struct dc *dc,
6282 struct dc_stream_state *stream,
6283 struct abm_save_restore *pData)
6284 {
6285 int i;
6286 int edp_num;
6287 struct pipe_ctx *pipe = NULL;
6288 struct dc_link *link = stream->sink->link;
6289 struct dc_link *edp_links[MAX_NUM_EDP];
6290
6291 if (link->replay_settings.replay_feature_enabled)
6292 return false;
6293
6294 /*find primary pipe associated with stream*/
6295 for (i = 0; i < MAX_PIPES; i++) {
6296 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
6297
6298 if (pipe->stream == stream && pipe->stream_res.tg)
6299 break;
6300 }
6301
6302 if (i == MAX_PIPES) {
6303 ASSERT(0);
6304 return false;
6305 }
6306
6307 dc_get_edp_links(dc, edp_links, &edp_num);
6308
6309 /* Determine panel inst */
6310 for (i = 0; i < edp_num; i++)
6311 if (edp_links[i] == link)
6312 break;
6313
6314 if (i == edp_num)
6315 return false;
6316
6317 if (pipe->stream_res.abm &&
6318 pipe->stream_res.abm->funcs->save_restore)
6319 return pipe->stream_res.abm->funcs->save_restore(
6320 pipe->stream_res.abm,
6321 i,
6322 pData);
6323 return false;
6324 }
6325
dc_query_current_properties(struct dc * dc,struct dc_current_properties * properties)6326 void dc_query_current_properties(struct dc *dc, struct dc_current_properties *properties)
6327 {
6328 unsigned int i;
6329 unsigned int max_cursor_size = dc->caps.max_cursor_size;
6330 unsigned int stream_cursor_size;
6331
6332 if (dc->debug.allow_sw_cursor_fallback && dc->res_pool->funcs->get_max_hw_cursor_size) {
6333 for (i = 0; i < dc->current_state->stream_count; i++) {
6334 stream_cursor_size = dc->res_pool->funcs->get_max_hw_cursor_size(dc,
6335 dc->current_state,
6336 dc->current_state->streams[i]);
6337
6338 if (stream_cursor_size < max_cursor_size) {
6339 max_cursor_size = stream_cursor_size;
6340 }
6341 }
6342 }
6343
6344 properties->cursor_size_limit = max_cursor_size;
6345 }
6346
6347 /**
6348 * dc_set_edp_power() - DM controls eDP power to be ON/OFF
6349 *
6350 * Called when DM wants to power on/off eDP.
6351 * Only work on links with flag skip_implict_edp_power_control is set.
6352 *
6353 * @dc: Current DC state
6354 * @edp_link: a link with eDP connector signal type
6355 * @powerOn: power on/off eDP
6356 *
6357 * Return: void
6358 */
dc_set_edp_power(const struct dc * dc,struct dc_link * edp_link,bool powerOn)6359 void dc_set_edp_power(const struct dc *dc, struct dc_link *edp_link,
6360 bool powerOn)
6361 {
6362 if (edp_link->connector_signal != SIGNAL_TYPE_EDP)
6363 return;
6364
6365 if (edp_link->skip_implict_edp_power_control == false)
6366 return;
6367
6368 edp_link->dc->link_srv->edp_set_panel_power(edp_link, powerOn);
6369 }
6370
6371 /**
6372 * dc_get_power_profile_for_dc_state() - extracts power profile from dc state
6373 *
6374 * Called when DM wants to make power policy decisions based on dc_state
6375 *
6376 * @context: Pointer to the dc_state from which the power profile is extracted.
6377 *
6378 * Return: The power profile structure containing the power level information.
6379 */
dc_get_power_profile_for_dc_state(const struct dc_state * context)6380 struct dc_power_profile dc_get_power_profile_for_dc_state(const struct dc_state *context)
6381 {
6382 struct dc_power_profile profile = { 0 };
6383
6384 profile.power_level = !context->bw_ctx.bw.dcn.clk.p_state_change_support;
6385 if (!context->clk_mgr || !context->clk_mgr->ctx || !context->clk_mgr->ctx->dc)
6386 return profile;
6387 struct dc *dc = context->clk_mgr->ctx->dc;
6388
6389 if (dc->res_pool->funcs->get_power_profile)
6390 profile.power_level = dc->res_pool->funcs->get_power_profile(context);
6391 return profile;
6392 }
6393
6394 /**
6395 * dc_get_det_buffer_size_from_state() - extracts detile buffer size from dc state
6396 *
6397 * This function is called to log the detile buffer size from the dc_state.
6398 *
6399 * @context: a pointer to the dc_state from which the detile buffer size is extracted.
6400 *
6401 * Return: the size of the detile buffer, or 0 if not available.
6402 */
dc_get_det_buffer_size_from_state(const struct dc_state * context)6403 unsigned int dc_get_det_buffer_size_from_state(const struct dc_state *context)
6404 {
6405 struct dc *dc = context->clk_mgr->ctx->dc;
6406
6407 if (dc->res_pool->funcs->get_det_buffer_size)
6408 return dc->res_pool->funcs->get_det_buffer_size(context);
6409 else
6410 return 0;
6411 }
6412
6413 /**
6414 * dc_get_host_router_index: Get index of host router from a dpia link
6415 *
6416 * This function return a host router index of the target link. If the target link is dpia link.
6417 *
6418 * @link: Pointer to the target link (input)
6419 * @host_router_index: Pointer to store the host router index of the target link (output).
6420 *
6421 * Return: true if the host router index is found and valid.
6422 *
6423 */
dc_get_host_router_index(const struct dc_link * link,unsigned int * host_router_index)6424 bool dc_get_host_router_index(const struct dc_link *link, unsigned int *host_router_index)
6425 {
6426 struct dc *dc;
6427
6428 if (!link || !host_router_index || link->ep_type != DISPLAY_ENDPOINT_USB4_DPIA)
6429 return false;
6430
6431 dc = link->ctx->dc;
6432
6433 if (link->link_index < dc->lowest_dpia_link_index)
6434 return false;
6435
6436 *host_router_index = (link->link_index - dc->lowest_dpia_link_index) / dc->caps.num_of_dpias_per_host_router;
6437 if (*host_router_index < dc->caps.num_of_host_routers)
6438 return true;
6439 else
6440 return false;
6441 }
6442
dc_is_cursor_limit_pending(struct dc * dc)6443 bool dc_is_cursor_limit_pending(struct dc *dc)
6444 {
6445 uint32_t i;
6446
6447 for (i = 0; i < dc->current_state->stream_count; i++) {
6448 if (dc_stream_is_cursor_limit_pending(dc, dc->current_state->streams[i]))
6449 return true;
6450 }
6451
6452 return false;
6453 }
6454
dc_can_clear_cursor_limit(struct dc * dc)6455 bool dc_can_clear_cursor_limit(struct dc *dc)
6456 {
6457 uint32_t i;
6458
6459 for (i = 0; i < dc->current_state->stream_count; i++) {
6460 if (dc_state_can_clear_stream_cursor_subvp_limit(dc->current_state->streams[i], dc->current_state))
6461 return true;
6462 }
6463
6464 return false;
6465 }
6466