xref: /linux/kernel/events/core.c (revision c1ead4b4dfe0f643cfc66571ca7d2fa332eddd35)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58 #include <linux/percpu-rwsem.h>
59 
60 #include "internal.h"
61 
62 #include <asm/irq_regs.h>
63 
64 typedef int (*remote_function_f)(void *);
65 
66 struct remote_function_call {
67 	struct task_struct	*p;
68 	remote_function_f	func;
69 	void			*info;
70 	int			ret;
71 };
72 
remote_function(void * data)73 static void remote_function(void *data)
74 {
75 	struct remote_function_call *tfc = data;
76 	struct task_struct *p = tfc->p;
77 
78 	if (p) {
79 		/* -EAGAIN */
80 		if (task_cpu(p) != smp_processor_id())
81 			return;
82 
83 		/*
84 		 * Now that we're on right CPU with IRQs disabled, we can test
85 		 * if we hit the right task without races.
86 		 */
87 
88 		tfc->ret = -ESRCH; /* No such (running) process */
89 		if (p != current)
90 			return;
91 	}
92 
93 	tfc->ret = tfc->func(tfc->info);
94 }
95 
96 /**
97  * task_function_call - call a function on the cpu on which a task runs
98  * @p:		the task to evaluate
99  * @func:	the function to be called
100  * @info:	the function call argument
101  *
102  * Calls the function @func when the task is currently running. This might
103  * be on the current CPU, which just calls the function directly.  This will
104  * retry due to any failures in smp_call_function_single(), such as if the
105  * task_cpu() goes offline concurrently.
106  *
107  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
108  */
109 static int
task_function_call(struct task_struct * p,remote_function_f func,void * info)110 task_function_call(struct task_struct *p, remote_function_f func, void *info)
111 {
112 	struct remote_function_call data = {
113 		.p	= p,
114 		.func	= func,
115 		.info	= info,
116 		.ret	= -EAGAIN,
117 	};
118 	int ret;
119 
120 	for (;;) {
121 		ret = smp_call_function_single(task_cpu(p), remote_function,
122 					       &data, 1);
123 		if (!ret)
124 			ret = data.ret;
125 
126 		if (ret != -EAGAIN)
127 			break;
128 
129 		cond_resched();
130 	}
131 
132 	return ret;
133 }
134 
135 /**
136  * cpu_function_call - call a function on the cpu
137  * @cpu:	target cpu to queue this function
138  * @func:	the function to be called
139  * @info:	the function call argument
140  *
141  * Calls the function @func on the remote cpu.
142  *
143  * returns: @func return value or -ENXIO when the cpu is offline
144  */
cpu_function_call(int cpu,remote_function_f func,void * info)145 static int cpu_function_call(int cpu, remote_function_f func, void *info)
146 {
147 	struct remote_function_call data = {
148 		.p	= NULL,
149 		.func	= func,
150 		.info	= info,
151 		.ret	= -ENXIO, /* No such CPU */
152 	};
153 
154 	smp_call_function_single(cpu, remote_function, &data, 1);
155 
156 	return data.ret;
157 }
158 
159 enum event_type_t {
160 	EVENT_FLEXIBLE	= 0x01,
161 	EVENT_PINNED	= 0x02,
162 	EVENT_TIME	= 0x04,
163 	EVENT_FROZEN	= 0x08,
164 	/* see ctx_resched() for details */
165 	EVENT_CPU	= 0x10,
166 	EVENT_CGROUP	= 0x20,
167 
168 	/* compound helpers */
169 	EVENT_ALL         = EVENT_FLEXIBLE | EVENT_PINNED,
170 	EVENT_TIME_FROZEN = EVENT_TIME | EVENT_FROZEN,
171 };
172 
__perf_ctx_lock(struct perf_event_context * ctx)173 static inline void __perf_ctx_lock(struct perf_event_context *ctx)
174 {
175 	raw_spin_lock(&ctx->lock);
176 	WARN_ON_ONCE(ctx->is_active & EVENT_FROZEN);
177 }
178 
perf_ctx_lock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)179 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
180 			  struct perf_event_context *ctx)
181 {
182 	__perf_ctx_lock(&cpuctx->ctx);
183 	if (ctx)
184 		__perf_ctx_lock(ctx);
185 }
186 
__perf_ctx_unlock(struct perf_event_context * ctx)187 static inline void __perf_ctx_unlock(struct perf_event_context *ctx)
188 {
189 	/*
190 	 * If ctx_sched_in() didn't again set any ALL flags, clean up
191 	 * after ctx_sched_out() by clearing is_active.
192 	 */
193 	if (ctx->is_active & EVENT_FROZEN) {
194 		if (!(ctx->is_active & EVENT_ALL))
195 			ctx->is_active = 0;
196 		else
197 			ctx->is_active &= ~EVENT_FROZEN;
198 	}
199 	raw_spin_unlock(&ctx->lock);
200 }
201 
perf_ctx_unlock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)202 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
203 			    struct perf_event_context *ctx)
204 {
205 	if (ctx)
206 		__perf_ctx_unlock(ctx);
207 	__perf_ctx_unlock(&cpuctx->ctx);
208 }
209 
210 typedef struct {
211 	struct perf_cpu_context *cpuctx;
212 	struct perf_event_context *ctx;
213 } class_perf_ctx_lock_t;
214 
class_perf_ctx_lock_destructor(class_perf_ctx_lock_t * _T)215 static inline void class_perf_ctx_lock_destructor(class_perf_ctx_lock_t *_T)
216 { perf_ctx_unlock(_T->cpuctx, _T->ctx); }
217 
218 static inline class_perf_ctx_lock_t
class_perf_ctx_lock_constructor(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)219 class_perf_ctx_lock_constructor(struct perf_cpu_context *cpuctx,
220 				struct perf_event_context *ctx)
221 { perf_ctx_lock(cpuctx, ctx); return (class_perf_ctx_lock_t){ cpuctx, ctx }; }
222 
223 #define TASK_TOMBSTONE ((void *)-1L)
224 
is_kernel_event(struct perf_event * event)225 static bool is_kernel_event(struct perf_event *event)
226 {
227 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
228 }
229 
230 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
231 
perf_cpu_task_ctx(void)232 struct perf_event_context *perf_cpu_task_ctx(void)
233 {
234 	lockdep_assert_irqs_disabled();
235 	return this_cpu_ptr(&perf_cpu_context)->task_ctx;
236 }
237 
238 /*
239  * On task ctx scheduling...
240  *
241  * When !ctx->nr_events a task context will not be scheduled. This means
242  * we can disable the scheduler hooks (for performance) without leaving
243  * pending task ctx state.
244  *
245  * This however results in two special cases:
246  *
247  *  - removing the last event from a task ctx; this is relatively straight
248  *    forward and is done in __perf_remove_from_context.
249  *
250  *  - adding the first event to a task ctx; this is tricky because we cannot
251  *    rely on ctx->is_active and therefore cannot use event_function_call().
252  *    See perf_install_in_context().
253  *
254  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
255  */
256 
257 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
258 			struct perf_event_context *, void *);
259 
260 struct event_function_struct {
261 	struct perf_event *event;
262 	event_f func;
263 	void *data;
264 };
265 
event_function(void * info)266 static int event_function(void *info)
267 {
268 	struct event_function_struct *efs = info;
269 	struct perf_event *event = efs->event;
270 	struct perf_event_context *ctx = event->ctx;
271 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
272 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
273 	int ret = 0;
274 
275 	lockdep_assert_irqs_disabled();
276 
277 	perf_ctx_lock(cpuctx, task_ctx);
278 	/*
279 	 * Since we do the IPI call without holding ctx->lock things can have
280 	 * changed, double check we hit the task we set out to hit.
281 	 */
282 	if (ctx->task) {
283 		if (ctx->task != current) {
284 			ret = -ESRCH;
285 			goto unlock;
286 		}
287 
288 		/*
289 		 * We only use event_function_call() on established contexts,
290 		 * and event_function() is only ever called when active (or
291 		 * rather, we'll have bailed in task_function_call() or the
292 		 * above ctx->task != current test), therefore we must have
293 		 * ctx->is_active here.
294 		 */
295 		WARN_ON_ONCE(!ctx->is_active);
296 		/*
297 		 * And since we have ctx->is_active, cpuctx->task_ctx must
298 		 * match.
299 		 */
300 		WARN_ON_ONCE(task_ctx != ctx);
301 	} else {
302 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
303 	}
304 
305 	efs->func(event, cpuctx, ctx, efs->data);
306 unlock:
307 	perf_ctx_unlock(cpuctx, task_ctx);
308 
309 	return ret;
310 }
311 
event_function_call(struct perf_event * event,event_f func,void * data)312 static void event_function_call(struct perf_event *event, event_f func, void *data)
313 {
314 	struct perf_event_context *ctx = event->ctx;
315 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
316 	struct perf_cpu_context *cpuctx;
317 	struct event_function_struct efs = {
318 		.event = event,
319 		.func = func,
320 		.data = data,
321 	};
322 
323 	if (!event->parent) {
324 		/*
325 		 * If this is a !child event, we must hold ctx::mutex to
326 		 * stabilize the event->ctx relation. See
327 		 * perf_event_ctx_lock().
328 		 */
329 		lockdep_assert_held(&ctx->mutex);
330 	}
331 
332 	if (!task) {
333 		cpu_function_call(event->cpu, event_function, &efs);
334 		return;
335 	}
336 
337 	if (task == TASK_TOMBSTONE)
338 		return;
339 
340 again:
341 	if (!task_function_call(task, event_function, &efs))
342 		return;
343 
344 	local_irq_disable();
345 	cpuctx = this_cpu_ptr(&perf_cpu_context);
346 	perf_ctx_lock(cpuctx, ctx);
347 	/*
348 	 * Reload the task pointer, it might have been changed by
349 	 * a concurrent perf_event_context_sched_out().
350 	 */
351 	task = ctx->task;
352 	if (task == TASK_TOMBSTONE)
353 		goto unlock;
354 	if (ctx->is_active) {
355 		perf_ctx_unlock(cpuctx, ctx);
356 		local_irq_enable();
357 		goto again;
358 	}
359 	func(event, NULL, ctx, data);
360 unlock:
361 	perf_ctx_unlock(cpuctx, ctx);
362 	local_irq_enable();
363 }
364 
365 /*
366  * Similar to event_function_call() + event_function(), but hard assumes IRQs
367  * are already disabled and we're on the right CPU.
368  */
event_function_local(struct perf_event * event,event_f func,void * data)369 static void event_function_local(struct perf_event *event, event_f func, void *data)
370 {
371 	struct perf_event_context *ctx = event->ctx;
372 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
373 	struct task_struct *task = READ_ONCE(ctx->task);
374 	struct perf_event_context *task_ctx = NULL;
375 
376 	lockdep_assert_irqs_disabled();
377 
378 	if (task) {
379 		if (task == TASK_TOMBSTONE)
380 			return;
381 
382 		task_ctx = ctx;
383 	}
384 
385 	perf_ctx_lock(cpuctx, task_ctx);
386 
387 	task = ctx->task;
388 	if (task == TASK_TOMBSTONE)
389 		goto unlock;
390 
391 	if (task) {
392 		/*
393 		 * We must be either inactive or active and the right task,
394 		 * otherwise we're screwed, since we cannot IPI to somewhere
395 		 * else.
396 		 */
397 		if (ctx->is_active) {
398 			if (WARN_ON_ONCE(task != current))
399 				goto unlock;
400 
401 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
402 				goto unlock;
403 		}
404 	} else {
405 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
406 	}
407 
408 	func(event, cpuctx, ctx, data);
409 unlock:
410 	perf_ctx_unlock(cpuctx, task_ctx);
411 }
412 
413 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
414 		       PERF_FLAG_FD_OUTPUT  |\
415 		       PERF_FLAG_PID_CGROUP |\
416 		       PERF_FLAG_FD_CLOEXEC)
417 
418 /*
419  * branch priv levels that need permission checks
420  */
421 #define PERF_SAMPLE_BRANCH_PERM_PLM \
422 	(PERF_SAMPLE_BRANCH_KERNEL |\
423 	 PERF_SAMPLE_BRANCH_HV)
424 
425 /*
426  * perf_sched_events : >0 events exist
427  */
428 
429 static void perf_sched_delayed(struct work_struct *work);
430 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
431 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
432 static DEFINE_MUTEX(perf_sched_mutex);
433 static atomic_t perf_sched_count;
434 
435 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
436 
437 static atomic_t nr_mmap_events __read_mostly;
438 static atomic_t nr_comm_events __read_mostly;
439 static atomic_t nr_namespaces_events __read_mostly;
440 static atomic_t nr_task_events __read_mostly;
441 static atomic_t nr_freq_events __read_mostly;
442 static atomic_t nr_switch_events __read_mostly;
443 static atomic_t nr_ksymbol_events __read_mostly;
444 static atomic_t nr_bpf_events __read_mostly;
445 static atomic_t nr_cgroup_events __read_mostly;
446 static atomic_t nr_text_poke_events __read_mostly;
447 static atomic_t nr_build_id_events __read_mostly;
448 
449 static LIST_HEAD(pmus);
450 static DEFINE_MUTEX(pmus_lock);
451 static struct srcu_struct pmus_srcu;
452 static cpumask_var_t perf_online_mask;
453 static cpumask_var_t perf_online_core_mask;
454 static cpumask_var_t perf_online_die_mask;
455 static cpumask_var_t perf_online_cluster_mask;
456 static cpumask_var_t perf_online_pkg_mask;
457 static cpumask_var_t perf_online_sys_mask;
458 static struct kmem_cache *perf_event_cache;
459 
460 /*
461  * perf event paranoia level:
462  *  -1 - not paranoid at all
463  *   0 - disallow raw tracepoint access for unpriv
464  *   1 - disallow cpu events for unpriv
465  *   2 - disallow kernel profiling for unpriv
466  */
467 int sysctl_perf_event_paranoid __read_mostly = 2;
468 
469 /* Minimum for 512 kiB + 1 user control page. 'free' kiB per user. */
470 static int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024);
471 
472 /*
473  * max perf event sample rate
474  */
475 #define DEFAULT_MAX_SAMPLE_RATE		100000
476 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
477 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
478 
479 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
480 static int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
481 
482 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
483 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
484 
485 static int perf_sample_allowed_ns __read_mostly =
486 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
487 
update_perf_cpu_limits(void)488 static void update_perf_cpu_limits(void)
489 {
490 	u64 tmp = perf_sample_period_ns;
491 
492 	tmp *= sysctl_perf_cpu_time_max_percent;
493 	tmp = div_u64(tmp, 100);
494 	if (!tmp)
495 		tmp = 1;
496 
497 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
498 }
499 
500 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
501 
perf_event_max_sample_rate_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)502 static int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write,
503 				       void *buffer, size_t *lenp, loff_t *ppos)
504 {
505 	int ret;
506 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
507 	/*
508 	 * If throttling is disabled don't allow the write:
509 	 */
510 	if (write && (perf_cpu == 100 || perf_cpu == 0))
511 		return -EINVAL;
512 
513 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
514 	if (ret || !write)
515 		return ret;
516 
517 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
518 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
519 	update_perf_cpu_limits();
520 
521 	return 0;
522 }
523 
perf_cpu_time_max_percent_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)524 static int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write,
525 		void *buffer, size_t *lenp, loff_t *ppos)
526 {
527 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
528 
529 	if (ret || !write)
530 		return ret;
531 
532 	if (sysctl_perf_cpu_time_max_percent == 100 ||
533 	    sysctl_perf_cpu_time_max_percent == 0) {
534 		printk(KERN_WARNING
535 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
536 		WRITE_ONCE(perf_sample_allowed_ns, 0);
537 	} else {
538 		update_perf_cpu_limits();
539 	}
540 
541 	return 0;
542 }
543 
544 static const struct ctl_table events_core_sysctl_table[] = {
545 	/*
546 	 * User-space relies on this file as a feature check for
547 	 * perf_events being enabled. It's an ABI, do not remove!
548 	 */
549 	{
550 		.procname	= "perf_event_paranoid",
551 		.data		= &sysctl_perf_event_paranoid,
552 		.maxlen		= sizeof(sysctl_perf_event_paranoid),
553 		.mode		= 0644,
554 		.proc_handler	= proc_dointvec,
555 	},
556 	{
557 		.procname	= "perf_event_mlock_kb",
558 		.data		= &sysctl_perf_event_mlock,
559 		.maxlen		= sizeof(sysctl_perf_event_mlock),
560 		.mode		= 0644,
561 		.proc_handler	= proc_dointvec,
562 	},
563 	{
564 		.procname	= "perf_event_max_sample_rate",
565 		.data		= &sysctl_perf_event_sample_rate,
566 		.maxlen		= sizeof(sysctl_perf_event_sample_rate),
567 		.mode		= 0644,
568 		.proc_handler	= perf_event_max_sample_rate_handler,
569 		.extra1		= SYSCTL_ONE,
570 	},
571 	{
572 		.procname	= "perf_cpu_time_max_percent",
573 		.data		= &sysctl_perf_cpu_time_max_percent,
574 		.maxlen		= sizeof(sysctl_perf_cpu_time_max_percent),
575 		.mode		= 0644,
576 		.proc_handler	= perf_cpu_time_max_percent_handler,
577 		.extra1		= SYSCTL_ZERO,
578 		.extra2		= SYSCTL_ONE_HUNDRED,
579 	},
580 };
581 
init_events_core_sysctls(void)582 static int __init init_events_core_sysctls(void)
583 {
584 	register_sysctl_init("kernel", events_core_sysctl_table);
585 	return 0;
586 }
587 core_initcall(init_events_core_sysctls);
588 
589 
590 /*
591  * perf samples are done in some very critical code paths (NMIs).
592  * If they take too much CPU time, the system can lock up and not
593  * get any real work done.  This will drop the sample rate when
594  * we detect that events are taking too long.
595  */
596 #define NR_ACCUMULATED_SAMPLES 128
597 static DEFINE_PER_CPU(u64, running_sample_length);
598 
599 static u64 __report_avg;
600 static u64 __report_allowed;
601 
perf_duration_warn(struct irq_work * w)602 static void perf_duration_warn(struct irq_work *w)
603 {
604 	printk_ratelimited(KERN_INFO
605 		"perf: interrupt took too long (%lld > %lld), lowering "
606 		"kernel.perf_event_max_sample_rate to %d\n",
607 		__report_avg, __report_allowed,
608 		sysctl_perf_event_sample_rate);
609 }
610 
611 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
612 
perf_sample_event_took(u64 sample_len_ns)613 void perf_sample_event_took(u64 sample_len_ns)
614 {
615 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
616 	u64 running_len;
617 	u64 avg_len;
618 	u32 max;
619 
620 	if (max_len == 0)
621 		return;
622 
623 	/* Decay the counter by 1 average sample. */
624 	running_len = __this_cpu_read(running_sample_length);
625 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
626 	running_len += sample_len_ns;
627 	__this_cpu_write(running_sample_length, running_len);
628 
629 	/*
630 	 * Note: this will be biased artificially low until we have
631 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
632 	 * from having to maintain a count.
633 	 */
634 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
635 	if (avg_len <= max_len)
636 		return;
637 
638 	__report_avg = avg_len;
639 	__report_allowed = max_len;
640 
641 	/*
642 	 * Compute a throttle threshold 25% below the current duration.
643 	 */
644 	avg_len += avg_len / 4;
645 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
646 	if (avg_len < max)
647 		max /= (u32)avg_len;
648 	else
649 		max = 1;
650 
651 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
652 	WRITE_ONCE(max_samples_per_tick, max);
653 
654 	sysctl_perf_event_sample_rate = max * HZ;
655 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
656 
657 	if (!irq_work_queue(&perf_duration_work)) {
658 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
659 			     "kernel.perf_event_max_sample_rate to %d\n",
660 			     __report_avg, __report_allowed,
661 			     sysctl_perf_event_sample_rate);
662 	}
663 }
664 
665 static atomic64_t perf_event_id;
666 
667 static void update_context_time(struct perf_event_context *ctx);
668 static u64 perf_event_time(struct perf_event *event);
669 
perf_event_print_debug(void)670 void __weak perf_event_print_debug(void)	{ }
671 
perf_clock(void)672 static inline u64 perf_clock(void)
673 {
674 	return local_clock();
675 }
676 
perf_event_clock(struct perf_event * event)677 static inline u64 perf_event_clock(struct perf_event *event)
678 {
679 	return event->clock();
680 }
681 
682 /*
683  * State based event timekeeping...
684  *
685  * The basic idea is to use event->state to determine which (if any) time
686  * fields to increment with the current delta. This means we only need to
687  * update timestamps when we change state or when they are explicitly requested
688  * (read).
689  *
690  * Event groups make things a little more complicated, but not terribly so. The
691  * rules for a group are that if the group leader is OFF the entire group is
692  * OFF, irrespective of what the group member states are. This results in
693  * __perf_effective_state().
694  *
695  * A further ramification is that when a group leader flips between OFF and
696  * !OFF, we need to update all group member times.
697  *
698  *
699  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
700  * need to make sure the relevant context time is updated before we try and
701  * update our timestamps.
702  */
703 
704 static __always_inline enum perf_event_state
__perf_effective_state(struct perf_event * event)705 __perf_effective_state(struct perf_event *event)
706 {
707 	struct perf_event *leader = event->group_leader;
708 
709 	if (leader->state <= PERF_EVENT_STATE_OFF)
710 		return leader->state;
711 
712 	return event->state;
713 }
714 
715 static __always_inline void
__perf_update_times(struct perf_event * event,u64 now,u64 * enabled,u64 * running)716 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
717 {
718 	enum perf_event_state state = __perf_effective_state(event);
719 	u64 delta = now - event->tstamp;
720 
721 	*enabled = event->total_time_enabled;
722 	if (state >= PERF_EVENT_STATE_INACTIVE)
723 		*enabled += delta;
724 
725 	*running = event->total_time_running;
726 	if (state >= PERF_EVENT_STATE_ACTIVE)
727 		*running += delta;
728 }
729 
perf_event_update_time(struct perf_event * event)730 static void perf_event_update_time(struct perf_event *event)
731 {
732 	u64 now = perf_event_time(event);
733 
734 	__perf_update_times(event, now, &event->total_time_enabled,
735 					&event->total_time_running);
736 	event->tstamp = now;
737 }
738 
perf_event_update_sibling_time(struct perf_event * leader)739 static void perf_event_update_sibling_time(struct perf_event *leader)
740 {
741 	struct perf_event *sibling;
742 
743 	for_each_sibling_event(sibling, leader)
744 		perf_event_update_time(sibling);
745 }
746 
747 static void
perf_event_set_state(struct perf_event * event,enum perf_event_state state)748 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
749 {
750 	if (event->state == state)
751 		return;
752 
753 	perf_event_update_time(event);
754 	/*
755 	 * If a group leader gets enabled/disabled all its siblings
756 	 * are affected too.
757 	 */
758 	if ((event->state < 0) ^ (state < 0))
759 		perf_event_update_sibling_time(event);
760 
761 	WRITE_ONCE(event->state, state);
762 }
763 
764 /*
765  * UP store-release, load-acquire
766  */
767 
768 #define __store_release(ptr, val)					\
769 do {									\
770 	barrier();							\
771 	WRITE_ONCE(*(ptr), (val));					\
772 } while (0)
773 
774 #define __load_acquire(ptr)						\
775 ({									\
776 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
777 	barrier();							\
778 	___p;								\
779 })
780 
781 #define for_each_epc(_epc, _ctx, _pmu, _cgroup)				\
782 	list_for_each_entry(_epc, &((_ctx)->pmu_ctx_list), pmu_ctx_entry) \
783 		if (_cgroup && !_epc->nr_cgroups)			\
784 			continue;					\
785 		else if (_pmu && _epc->pmu != _pmu)			\
786 			continue;					\
787 		else
788 
perf_ctx_disable(struct perf_event_context * ctx,bool cgroup)789 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
790 {
791 	struct perf_event_pmu_context *pmu_ctx;
792 
793 	for_each_epc(pmu_ctx, ctx, NULL, cgroup)
794 		perf_pmu_disable(pmu_ctx->pmu);
795 }
796 
perf_ctx_enable(struct perf_event_context * ctx,bool cgroup)797 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
798 {
799 	struct perf_event_pmu_context *pmu_ctx;
800 
801 	for_each_epc(pmu_ctx, ctx, NULL, cgroup)
802 		perf_pmu_enable(pmu_ctx->pmu);
803 }
804 
805 static void ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
806 static void ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
807 
808 #ifdef CONFIG_CGROUP_PERF
809 
810 static inline bool
perf_cgroup_match(struct perf_event * event)811 perf_cgroup_match(struct perf_event *event)
812 {
813 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
814 
815 	/* @event doesn't care about cgroup */
816 	if (!event->cgrp)
817 		return true;
818 
819 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
820 	if (!cpuctx->cgrp)
821 		return false;
822 
823 	/*
824 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
825 	 * also enabled for all its descendant cgroups.  If @cpuctx's
826 	 * cgroup is a descendant of @event's (the test covers identity
827 	 * case), it's a match.
828 	 */
829 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
830 				    event->cgrp->css.cgroup);
831 }
832 
perf_detach_cgroup(struct perf_event * event)833 static inline void perf_detach_cgroup(struct perf_event *event)
834 {
835 	css_put(&event->cgrp->css);
836 	event->cgrp = NULL;
837 }
838 
is_cgroup_event(struct perf_event * event)839 static inline int is_cgroup_event(struct perf_event *event)
840 {
841 	return event->cgrp != NULL;
842 }
843 
perf_cgroup_event_time(struct perf_event * event)844 static inline u64 perf_cgroup_event_time(struct perf_event *event)
845 {
846 	struct perf_cgroup_info *t;
847 
848 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
849 	return t->time;
850 }
851 
perf_cgroup_event_time_now(struct perf_event * event,u64 now)852 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
853 {
854 	struct perf_cgroup_info *t;
855 
856 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
857 	if (!__load_acquire(&t->active))
858 		return t->time;
859 	now += READ_ONCE(t->timeoffset);
860 	return now;
861 }
862 
__update_cgrp_time(struct perf_cgroup_info * info,u64 now,bool adv)863 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
864 {
865 	if (adv)
866 		info->time += now - info->timestamp;
867 	info->timestamp = now;
868 	/*
869 	 * see update_context_time()
870 	 */
871 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
872 }
873 
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)874 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
875 {
876 	struct perf_cgroup *cgrp = cpuctx->cgrp;
877 	struct cgroup_subsys_state *css;
878 	struct perf_cgroup_info *info;
879 
880 	if (cgrp) {
881 		u64 now = perf_clock();
882 
883 		for (css = &cgrp->css; css; css = css->parent) {
884 			cgrp = container_of(css, struct perf_cgroup, css);
885 			info = this_cpu_ptr(cgrp->info);
886 
887 			__update_cgrp_time(info, now, true);
888 			if (final)
889 				__store_release(&info->active, 0);
890 		}
891 	}
892 }
893 
update_cgrp_time_from_event(struct perf_event * event)894 static inline void update_cgrp_time_from_event(struct perf_event *event)
895 {
896 	struct perf_cgroup_info *info;
897 
898 	/*
899 	 * ensure we access cgroup data only when needed and
900 	 * when we know the cgroup is pinned (css_get)
901 	 */
902 	if (!is_cgroup_event(event))
903 		return;
904 
905 	info = this_cpu_ptr(event->cgrp->info);
906 	/*
907 	 * Do not update time when cgroup is not active
908 	 */
909 	if (info->active)
910 		__update_cgrp_time(info, perf_clock(), true);
911 }
912 
913 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)914 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
915 {
916 	struct perf_event_context *ctx = &cpuctx->ctx;
917 	struct perf_cgroup *cgrp = cpuctx->cgrp;
918 	struct perf_cgroup_info *info;
919 	struct cgroup_subsys_state *css;
920 
921 	/*
922 	 * ctx->lock held by caller
923 	 * ensure we do not access cgroup data
924 	 * unless we have the cgroup pinned (css_get)
925 	 */
926 	if (!cgrp)
927 		return;
928 
929 	WARN_ON_ONCE(!ctx->nr_cgroups);
930 
931 	for (css = &cgrp->css; css; css = css->parent) {
932 		cgrp = container_of(css, struct perf_cgroup, css);
933 		info = this_cpu_ptr(cgrp->info);
934 		__update_cgrp_time(info, ctx->timestamp, false);
935 		__store_release(&info->active, 1);
936 	}
937 }
938 
939 /*
940  * reschedule events based on the cgroup constraint of task.
941  */
perf_cgroup_switch(struct task_struct * task)942 static void perf_cgroup_switch(struct task_struct *task)
943 {
944 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
945 	struct perf_cgroup *cgrp;
946 
947 	/*
948 	 * cpuctx->cgrp is set when the first cgroup event enabled,
949 	 * and is cleared when the last cgroup event disabled.
950 	 */
951 	if (READ_ONCE(cpuctx->cgrp) == NULL)
952 		return;
953 
954 	cgrp = perf_cgroup_from_task(task, NULL);
955 	if (READ_ONCE(cpuctx->cgrp) == cgrp)
956 		return;
957 
958 	guard(perf_ctx_lock)(cpuctx, cpuctx->task_ctx);
959 	/*
960 	 * Re-check, could've raced vs perf_remove_from_context().
961 	 */
962 	if (READ_ONCE(cpuctx->cgrp) == NULL)
963 		return;
964 
965 	WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
966 
967 	perf_ctx_disable(&cpuctx->ctx, true);
968 
969 	ctx_sched_out(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
970 	/*
971 	 * must not be done before ctxswout due
972 	 * to update_cgrp_time_from_cpuctx() in
973 	 * ctx_sched_out()
974 	 */
975 	cpuctx->cgrp = cgrp;
976 	/*
977 	 * set cgrp before ctxsw in to allow
978 	 * perf_cgroup_set_timestamp() in ctx_sched_in()
979 	 * to not have to pass task around
980 	 */
981 	ctx_sched_in(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
982 
983 	perf_ctx_enable(&cpuctx->ctx, true);
984 }
985 
perf_cgroup_ensure_storage(struct perf_event * event,struct cgroup_subsys_state * css)986 static int perf_cgroup_ensure_storage(struct perf_event *event,
987 				struct cgroup_subsys_state *css)
988 {
989 	struct perf_cpu_context *cpuctx;
990 	struct perf_event **storage;
991 	int cpu, heap_size, ret = 0;
992 
993 	/*
994 	 * Allow storage to have sufficient space for an iterator for each
995 	 * possibly nested cgroup plus an iterator for events with no cgroup.
996 	 */
997 	for (heap_size = 1; css; css = css->parent)
998 		heap_size++;
999 
1000 	for_each_possible_cpu(cpu) {
1001 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
1002 		if (heap_size <= cpuctx->heap_size)
1003 			continue;
1004 
1005 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
1006 				       GFP_KERNEL, cpu_to_node(cpu));
1007 		if (!storage) {
1008 			ret = -ENOMEM;
1009 			break;
1010 		}
1011 
1012 		raw_spin_lock_irq(&cpuctx->ctx.lock);
1013 		if (cpuctx->heap_size < heap_size) {
1014 			swap(cpuctx->heap, storage);
1015 			if (storage == cpuctx->heap_default)
1016 				storage = NULL;
1017 			cpuctx->heap_size = heap_size;
1018 		}
1019 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
1020 
1021 		kfree(storage);
1022 	}
1023 
1024 	return ret;
1025 }
1026 
perf_cgroup_connect(int fd,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)1027 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
1028 				      struct perf_event_attr *attr,
1029 				      struct perf_event *group_leader)
1030 {
1031 	struct perf_cgroup *cgrp;
1032 	struct cgroup_subsys_state *css;
1033 	CLASS(fd, f)(fd);
1034 	int ret = 0;
1035 
1036 	if (fd_empty(f))
1037 		return -EBADF;
1038 
1039 	css = css_tryget_online_from_dir(fd_file(f)->f_path.dentry,
1040 					 &perf_event_cgrp_subsys);
1041 	if (IS_ERR(css))
1042 		return PTR_ERR(css);
1043 
1044 	ret = perf_cgroup_ensure_storage(event, css);
1045 	if (ret)
1046 		return ret;
1047 
1048 	cgrp = container_of(css, struct perf_cgroup, css);
1049 	event->cgrp = cgrp;
1050 
1051 	/*
1052 	 * all events in a group must monitor
1053 	 * the same cgroup because a task belongs
1054 	 * to only one perf cgroup at a time
1055 	 */
1056 	if (group_leader && group_leader->cgrp != cgrp) {
1057 		perf_detach_cgroup(event);
1058 		ret = -EINVAL;
1059 	}
1060 	return ret;
1061 }
1062 
1063 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1064 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1065 {
1066 	struct perf_cpu_context *cpuctx;
1067 
1068 	if (!is_cgroup_event(event))
1069 		return;
1070 
1071 	event->pmu_ctx->nr_cgroups++;
1072 
1073 	/*
1074 	 * Because cgroup events are always per-cpu events,
1075 	 * @ctx == &cpuctx->ctx.
1076 	 */
1077 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1078 
1079 	if (ctx->nr_cgroups++)
1080 		return;
1081 
1082 	cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
1083 }
1084 
1085 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1086 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1087 {
1088 	struct perf_cpu_context *cpuctx;
1089 
1090 	if (!is_cgroup_event(event))
1091 		return;
1092 
1093 	event->pmu_ctx->nr_cgroups--;
1094 
1095 	/*
1096 	 * Because cgroup events are always per-cpu events,
1097 	 * @ctx == &cpuctx->ctx.
1098 	 */
1099 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1100 
1101 	if (--ctx->nr_cgroups)
1102 		return;
1103 
1104 	cpuctx->cgrp = NULL;
1105 }
1106 
1107 #else /* !CONFIG_CGROUP_PERF */
1108 
1109 static inline bool
perf_cgroup_match(struct perf_event * event)1110 perf_cgroup_match(struct perf_event *event)
1111 {
1112 	return true;
1113 }
1114 
perf_detach_cgroup(struct perf_event * event)1115 static inline void perf_detach_cgroup(struct perf_event *event)
1116 {}
1117 
is_cgroup_event(struct perf_event * event)1118 static inline int is_cgroup_event(struct perf_event *event)
1119 {
1120 	return 0;
1121 }
1122 
update_cgrp_time_from_event(struct perf_event * event)1123 static inline void update_cgrp_time_from_event(struct perf_event *event)
1124 {
1125 }
1126 
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)1127 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1128 						bool final)
1129 {
1130 }
1131 
perf_cgroup_connect(pid_t pid,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)1132 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1133 				      struct perf_event_attr *attr,
1134 				      struct perf_event *group_leader)
1135 {
1136 	return -EINVAL;
1137 }
1138 
1139 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)1140 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1141 {
1142 }
1143 
perf_cgroup_event_time(struct perf_event * event)1144 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1145 {
1146 	return 0;
1147 }
1148 
perf_cgroup_event_time_now(struct perf_event * event,u64 now)1149 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1150 {
1151 	return 0;
1152 }
1153 
1154 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1155 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1156 {
1157 }
1158 
1159 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1160 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1161 {
1162 }
1163 
perf_cgroup_switch(struct task_struct * task)1164 static void perf_cgroup_switch(struct task_struct *task)
1165 {
1166 }
1167 #endif
1168 
1169 /*
1170  * set default to be dependent on timer tick just
1171  * like original code
1172  */
1173 #define PERF_CPU_HRTIMER (1000 / HZ)
1174 /*
1175  * function must be called with interrupts disabled
1176  */
perf_mux_hrtimer_handler(struct hrtimer * hr)1177 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1178 {
1179 	struct perf_cpu_pmu_context *cpc;
1180 	bool rotations;
1181 
1182 	lockdep_assert_irqs_disabled();
1183 
1184 	cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1185 	rotations = perf_rotate_context(cpc);
1186 
1187 	raw_spin_lock(&cpc->hrtimer_lock);
1188 	if (rotations)
1189 		hrtimer_forward_now(hr, cpc->hrtimer_interval);
1190 	else
1191 		cpc->hrtimer_active = 0;
1192 	raw_spin_unlock(&cpc->hrtimer_lock);
1193 
1194 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1195 }
1196 
__perf_mux_hrtimer_init(struct perf_cpu_pmu_context * cpc,int cpu)1197 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1198 {
1199 	struct hrtimer *timer = &cpc->hrtimer;
1200 	struct pmu *pmu = cpc->epc.pmu;
1201 	u64 interval;
1202 
1203 	/*
1204 	 * check default is sane, if not set then force to
1205 	 * default interval (1/tick)
1206 	 */
1207 	interval = pmu->hrtimer_interval_ms;
1208 	if (interval < 1)
1209 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1210 
1211 	cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1212 
1213 	raw_spin_lock_init(&cpc->hrtimer_lock);
1214 	hrtimer_setup(timer, perf_mux_hrtimer_handler, CLOCK_MONOTONIC,
1215 		      HRTIMER_MODE_ABS_PINNED_HARD);
1216 }
1217 
perf_mux_hrtimer_restart(struct perf_cpu_pmu_context * cpc)1218 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1219 {
1220 	struct hrtimer *timer = &cpc->hrtimer;
1221 	unsigned long flags;
1222 
1223 	raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1224 	if (!cpc->hrtimer_active) {
1225 		cpc->hrtimer_active = 1;
1226 		hrtimer_forward_now(timer, cpc->hrtimer_interval);
1227 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1228 	}
1229 	raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1230 
1231 	return 0;
1232 }
1233 
perf_mux_hrtimer_restart_ipi(void * arg)1234 static int perf_mux_hrtimer_restart_ipi(void *arg)
1235 {
1236 	return perf_mux_hrtimer_restart(arg);
1237 }
1238 
this_cpc(struct pmu * pmu)1239 static __always_inline struct perf_cpu_pmu_context *this_cpc(struct pmu *pmu)
1240 {
1241 	return *this_cpu_ptr(pmu->cpu_pmu_context);
1242 }
1243 
perf_pmu_disable(struct pmu * pmu)1244 void perf_pmu_disable(struct pmu *pmu)
1245 {
1246 	int *count = &this_cpc(pmu)->pmu_disable_count;
1247 	if (!(*count)++)
1248 		pmu->pmu_disable(pmu);
1249 }
1250 
perf_pmu_enable(struct pmu * pmu)1251 void perf_pmu_enable(struct pmu *pmu)
1252 {
1253 	int *count = &this_cpc(pmu)->pmu_disable_count;
1254 	if (!--(*count))
1255 		pmu->pmu_enable(pmu);
1256 }
1257 
perf_assert_pmu_disabled(struct pmu * pmu)1258 static void perf_assert_pmu_disabled(struct pmu *pmu)
1259 {
1260 	int *count = &this_cpc(pmu)->pmu_disable_count;
1261 	WARN_ON_ONCE(*count == 0);
1262 }
1263 
perf_pmu_read(struct perf_event * event)1264 static inline void perf_pmu_read(struct perf_event *event)
1265 {
1266 	if (event->state == PERF_EVENT_STATE_ACTIVE)
1267 		event->pmu->read(event);
1268 }
1269 
get_ctx(struct perf_event_context * ctx)1270 static void get_ctx(struct perf_event_context *ctx)
1271 {
1272 	refcount_inc(&ctx->refcount);
1273 }
1274 
free_ctx(struct rcu_head * head)1275 static void free_ctx(struct rcu_head *head)
1276 {
1277 	struct perf_event_context *ctx;
1278 
1279 	ctx = container_of(head, struct perf_event_context, rcu_head);
1280 	kfree(ctx);
1281 }
1282 
put_ctx(struct perf_event_context * ctx)1283 static void put_ctx(struct perf_event_context *ctx)
1284 {
1285 	if (refcount_dec_and_test(&ctx->refcount)) {
1286 		if (ctx->parent_ctx)
1287 			put_ctx(ctx->parent_ctx);
1288 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1289 			put_task_struct(ctx->task);
1290 		call_rcu(&ctx->rcu_head, free_ctx);
1291 	} else {
1292 		smp_mb__after_atomic(); /* pairs with wait_var_event() */
1293 		if (ctx->task == TASK_TOMBSTONE)
1294 			wake_up_var(&ctx->refcount);
1295 	}
1296 }
1297 
1298 /*
1299  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1300  * perf_pmu_migrate_context() we need some magic.
1301  *
1302  * Those places that change perf_event::ctx will hold both
1303  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1304  *
1305  * Lock ordering is by mutex address. There are two other sites where
1306  * perf_event_context::mutex nests and those are:
1307  *
1308  *  - perf_event_exit_task_context()	[ child , 0 ]
1309  *      perf_event_exit_event()
1310  *        put_event()			[ parent, 1 ]
1311  *
1312  *  - perf_event_init_context()		[ parent, 0 ]
1313  *      inherit_task_group()
1314  *        inherit_group()
1315  *          inherit_event()
1316  *            perf_event_alloc()
1317  *              perf_init_event()
1318  *                perf_try_init_event()	[ child , 1 ]
1319  *
1320  * While it appears there is an obvious deadlock here -- the parent and child
1321  * nesting levels are inverted between the two. This is in fact safe because
1322  * life-time rules separate them. That is an exiting task cannot fork, and a
1323  * spawning task cannot (yet) exit.
1324  *
1325  * But remember that these are parent<->child context relations, and
1326  * migration does not affect children, therefore these two orderings should not
1327  * interact.
1328  *
1329  * The change in perf_event::ctx does not affect children (as claimed above)
1330  * because the sys_perf_event_open() case will install a new event and break
1331  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1332  * concerned with cpuctx and that doesn't have children.
1333  *
1334  * The places that change perf_event::ctx will issue:
1335  *
1336  *   perf_remove_from_context();
1337  *   synchronize_rcu();
1338  *   perf_install_in_context();
1339  *
1340  * to affect the change. The remove_from_context() + synchronize_rcu() should
1341  * quiesce the event, after which we can install it in the new location. This
1342  * means that only external vectors (perf_fops, prctl) can perturb the event
1343  * while in transit. Therefore all such accessors should also acquire
1344  * perf_event_context::mutex to serialize against this.
1345  *
1346  * However; because event->ctx can change while we're waiting to acquire
1347  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1348  * function.
1349  *
1350  * Lock order:
1351  *    exec_update_lock
1352  *	task_struct::perf_event_mutex
1353  *	  perf_event_context::mutex
1354  *	    perf_event::child_mutex;
1355  *	      perf_event_context::lock
1356  *	    mmap_lock
1357  *	      perf_event::mmap_mutex
1358  *	        perf_buffer::aux_mutex
1359  *	      perf_addr_filters_head::lock
1360  *
1361  *    cpu_hotplug_lock
1362  *      pmus_lock
1363  *	  cpuctx->mutex / perf_event_context::mutex
1364  */
1365 static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event * event,int nesting)1366 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1367 {
1368 	struct perf_event_context *ctx;
1369 
1370 again:
1371 	rcu_read_lock();
1372 	ctx = READ_ONCE(event->ctx);
1373 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1374 		rcu_read_unlock();
1375 		goto again;
1376 	}
1377 	rcu_read_unlock();
1378 
1379 	mutex_lock_nested(&ctx->mutex, nesting);
1380 	if (event->ctx != ctx) {
1381 		mutex_unlock(&ctx->mutex);
1382 		put_ctx(ctx);
1383 		goto again;
1384 	}
1385 
1386 	return ctx;
1387 }
1388 
1389 static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event * event)1390 perf_event_ctx_lock(struct perf_event *event)
1391 {
1392 	return perf_event_ctx_lock_nested(event, 0);
1393 }
1394 
perf_event_ctx_unlock(struct perf_event * event,struct perf_event_context * ctx)1395 static void perf_event_ctx_unlock(struct perf_event *event,
1396 				  struct perf_event_context *ctx)
1397 {
1398 	mutex_unlock(&ctx->mutex);
1399 	put_ctx(ctx);
1400 }
1401 
1402 /*
1403  * This must be done under the ctx->lock, such as to serialize against
1404  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1405  * calling scheduler related locks and ctx->lock nests inside those.
1406  */
1407 static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context * ctx)1408 unclone_ctx(struct perf_event_context *ctx)
1409 {
1410 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1411 
1412 	lockdep_assert_held(&ctx->lock);
1413 
1414 	if (parent_ctx)
1415 		ctx->parent_ctx = NULL;
1416 	ctx->generation++;
1417 
1418 	return parent_ctx;
1419 }
1420 
perf_event_pid_type(struct perf_event * event,struct task_struct * p,enum pid_type type)1421 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1422 				enum pid_type type)
1423 {
1424 	u32 nr;
1425 	/*
1426 	 * only top level events have the pid namespace they were created in
1427 	 */
1428 	if (event->parent)
1429 		event = event->parent;
1430 
1431 	nr = __task_pid_nr_ns(p, type, event->ns);
1432 	/* avoid -1 if it is idle thread or runs in another ns */
1433 	if (!nr && !pid_alive(p))
1434 		nr = -1;
1435 	return nr;
1436 }
1437 
perf_event_pid(struct perf_event * event,struct task_struct * p)1438 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1439 {
1440 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1441 }
1442 
perf_event_tid(struct perf_event * event,struct task_struct * p)1443 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1444 {
1445 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1446 }
1447 
1448 /*
1449  * If we inherit events we want to return the parent event id
1450  * to userspace.
1451  */
primary_event_id(struct perf_event * event)1452 static u64 primary_event_id(struct perf_event *event)
1453 {
1454 	u64 id = event->id;
1455 
1456 	if (event->parent)
1457 		id = event->parent->id;
1458 
1459 	return id;
1460 }
1461 
1462 /*
1463  * Get the perf_event_context for a task and lock it.
1464  *
1465  * This has to cope with the fact that until it is locked,
1466  * the context could get moved to another task.
1467  */
1468 static struct perf_event_context *
perf_lock_task_context(struct task_struct * task,unsigned long * flags)1469 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1470 {
1471 	struct perf_event_context *ctx;
1472 
1473 retry:
1474 	/*
1475 	 * One of the few rules of preemptible RCU is that one cannot do
1476 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1477 	 * part of the read side critical section was irqs-enabled -- see
1478 	 * rcu_read_unlock_special().
1479 	 *
1480 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1481 	 * side critical section has interrupts disabled.
1482 	 */
1483 	local_irq_save(*flags);
1484 	rcu_read_lock();
1485 	ctx = rcu_dereference(task->perf_event_ctxp);
1486 	if (ctx) {
1487 		/*
1488 		 * If this context is a clone of another, it might
1489 		 * get swapped for another underneath us by
1490 		 * perf_event_task_sched_out, though the
1491 		 * rcu_read_lock() protects us from any context
1492 		 * getting freed.  Lock the context and check if it
1493 		 * got swapped before we could get the lock, and retry
1494 		 * if so.  If we locked the right context, then it
1495 		 * can't get swapped on us any more.
1496 		 */
1497 		raw_spin_lock(&ctx->lock);
1498 		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1499 			raw_spin_unlock(&ctx->lock);
1500 			rcu_read_unlock();
1501 			local_irq_restore(*flags);
1502 			goto retry;
1503 		}
1504 
1505 		if (ctx->task == TASK_TOMBSTONE ||
1506 		    !refcount_inc_not_zero(&ctx->refcount)) {
1507 			raw_spin_unlock(&ctx->lock);
1508 			ctx = NULL;
1509 		} else {
1510 			WARN_ON_ONCE(ctx->task != task);
1511 		}
1512 	}
1513 	rcu_read_unlock();
1514 	if (!ctx)
1515 		local_irq_restore(*flags);
1516 	return ctx;
1517 }
1518 
1519 /*
1520  * Get the context for a task and increment its pin_count so it
1521  * can't get swapped to another task.  This also increments its
1522  * reference count so that the context can't get freed.
1523  */
1524 static struct perf_event_context *
perf_pin_task_context(struct task_struct * task)1525 perf_pin_task_context(struct task_struct *task)
1526 {
1527 	struct perf_event_context *ctx;
1528 	unsigned long flags;
1529 
1530 	ctx = perf_lock_task_context(task, &flags);
1531 	if (ctx) {
1532 		++ctx->pin_count;
1533 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1534 	}
1535 	return ctx;
1536 }
1537 
perf_unpin_context(struct perf_event_context * ctx)1538 static void perf_unpin_context(struct perf_event_context *ctx)
1539 {
1540 	unsigned long flags;
1541 
1542 	raw_spin_lock_irqsave(&ctx->lock, flags);
1543 	--ctx->pin_count;
1544 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1545 }
1546 
1547 /*
1548  * Update the record of the current time in a context.
1549  */
__update_context_time(struct perf_event_context * ctx,bool adv)1550 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1551 {
1552 	u64 now = perf_clock();
1553 
1554 	lockdep_assert_held(&ctx->lock);
1555 
1556 	if (adv)
1557 		ctx->time += now - ctx->timestamp;
1558 	ctx->timestamp = now;
1559 
1560 	/*
1561 	 * The above: time' = time + (now - timestamp), can be re-arranged
1562 	 * into: time` = now + (time - timestamp), which gives a single value
1563 	 * offset to compute future time without locks on.
1564 	 *
1565 	 * See perf_event_time_now(), which can be used from NMI context where
1566 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1567 	 * both the above values in a consistent manner.
1568 	 */
1569 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1570 }
1571 
update_context_time(struct perf_event_context * ctx)1572 static void update_context_time(struct perf_event_context *ctx)
1573 {
1574 	__update_context_time(ctx, true);
1575 }
1576 
perf_event_time(struct perf_event * event)1577 static u64 perf_event_time(struct perf_event *event)
1578 {
1579 	struct perf_event_context *ctx = event->ctx;
1580 
1581 	if (unlikely(!ctx))
1582 		return 0;
1583 
1584 	if (is_cgroup_event(event))
1585 		return perf_cgroup_event_time(event);
1586 
1587 	return ctx->time;
1588 }
1589 
perf_event_time_now(struct perf_event * event,u64 now)1590 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1591 {
1592 	struct perf_event_context *ctx = event->ctx;
1593 
1594 	if (unlikely(!ctx))
1595 		return 0;
1596 
1597 	if (is_cgroup_event(event))
1598 		return perf_cgroup_event_time_now(event, now);
1599 
1600 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1601 		return ctx->time;
1602 
1603 	now += READ_ONCE(ctx->timeoffset);
1604 	return now;
1605 }
1606 
get_event_type(struct perf_event * event)1607 static enum event_type_t get_event_type(struct perf_event *event)
1608 {
1609 	struct perf_event_context *ctx = event->ctx;
1610 	enum event_type_t event_type;
1611 
1612 	lockdep_assert_held(&ctx->lock);
1613 
1614 	/*
1615 	 * It's 'group type', really, because if our group leader is
1616 	 * pinned, so are we.
1617 	 */
1618 	if (event->group_leader != event)
1619 		event = event->group_leader;
1620 
1621 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1622 	if (!ctx->task)
1623 		event_type |= EVENT_CPU;
1624 
1625 	return event_type;
1626 }
1627 
1628 /*
1629  * Helper function to initialize event group nodes.
1630  */
init_event_group(struct perf_event * event)1631 static void init_event_group(struct perf_event *event)
1632 {
1633 	RB_CLEAR_NODE(&event->group_node);
1634 	event->group_index = 0;
1635 }
1636 
1637 /*
1638  * Extract pinned or flexible groups from the context
1639  * based on event attrs bits.
1640  */
1641 static struct perf_event_groups *
get_event_groups(struct perf_event * event,struct perf_event_context * ctx)1642 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1643 {
1644 	if (event->attr.pinned)
1645 		return &ctx->pinned_groups;
1646 	else
1647 		return &ctx->flexible_groups;
1648 }
1649 
1650 /*
1651  * Helper function to initializes perf_event_group trees.
1652  */
perf_event_groups_init(struct perf_event_groups * groups)1653 static void perf_event_groups_init(struct perf_event_groups *groups)
1654 {
1655 	groups->tree = RB_ROOT;
1656 	groups->index = 0;
1657 }
1658 
event_cgroup(const struct perf_event * event)1659 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1660 {
1661 	struct cgroup *cgroup = NULL;
1662 
1663 #ifdef CONFIG_CGROUP_PERF
1664 	if (event->cgrp)
1665 		cgroup = event->cgrp->css.cgroup;
1666 #endif
1667 
1668 	return cgroup;
1669 }
1670 
1671 /*
1672  * Compare function for event groups;
1673  *
1674  * Implements complex key that first sorts by CPU and then by virtual index
1675  * which provides ordering when rotating groups for the same CPU.
1676  */
1677 static __always_inline int
perf_event_groups_cmp(const int left_cpu,const struct pmu * left_pmu,const struct cgroup * left_cgroup,const u64 left_group_index,const struct perf_event * right)1678 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1679 		      const struct cgroup *left_cgroup, const u64 left_group_index,
1680 		      const struct perf_event *right)
1681 {
1682 	if (left_cpu < right->cpu)
1683 		return -1;
1684 	if (left_cpu > right->cpu)
1685 		return 1;
1686 
1687 	if (left_pmu) {
1688 		if (left_pmu < right->pmu_ctx->pmu)
1689 			return -1;
1690 		if (left_pmu > right->pmu_ctx->pmu)
1691 			return 1;
1692 	}
1693 
1694 #ifdef CONFIG_CGROUP_PERF
1695 	{
1696 		const struct cgroup *right_cgroup = event_cgroup(right);
1697 
1698 		if (left_cgroup != right_cgroup) {
1699 			if (!left_cgroup) {
1700 				/*
1701 				 * Left has no cgroup but right does, no
1702 				 * cgroups come first.
1703 				 */
1704 				return -1;
1705 			}
1706 			if (!right_cgroup) {
1707 				/*
1708 				 * Right has no cgroup but left does, no
1709 				 * cgroups come first.
1710 				 */
1711 				return 1;
1712 			}
1713 			/* Two dissimilar cgroups, order by id. */
1714 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1715 				return -1;
1716 
1717 			return 1;
1718 		}
1719 	}
1720 #endif
1721 
1722 	if (left_group_index < right->group_index)
1723 		return -1;
1724 	if (left_group_index > right->group_index)
1725 		return 1;
1726 
1727 	return 0;
1728 }
1729 
1730 #define __node_2_pe(node) \
1731 	rb_entry((node), struct perf_event, group_node)
1732 
__group_less(struct rb_node * a,const struct rb_node * b)1733 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1734 {
1735 	struct perf_event *e = __node_2_pe(a);
1736 	return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1737 				     e->group_index, __node_2_pe(b)) < 0;
1738 }
1739 
1740 struct __group_key {
1741 	int cpu;
1742 	struct pmu *pmu;
1743 	struct cgroup *cgroup;
1744 };
1745 
__group_cmp(const void * key,const struct rb_node * node)1746 static inline int __group_cmp(const void *key, const struct rb_node *node)
1747 {
1748 	const struct __group_key *a = key;
1749 	const struct perf_event *b = __node_2_pe(node);
1750 
1751 	/* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1752 	return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1753 }
1754 
1755 static inline int
__group_cmp_ignore_cgroup(const void * key,const struct rb_node * node)1756 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1757 {
1758 	const struct __group_key *a = key;
1759 	const struct perf_event *b = __node_2_pe(node);
1760 
1761 	/* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1762 	return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1763 				     b->group_index, b);
1764 }
1765 
1766 /*
1767  * Insert @event into @groups' tree; using
1768  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1769  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1770  */
1771 static void
perf_event_groups_insert(struct perf_event_groups * groups,struct perf_event * event)1772 perf_event_groups_insert(struct perf_event_groups *groups,
1773 			 struct perf_event *event)
1774 {
1775 	event->group_index = ++groups->index;
1776 
1777 	rb_add(&event->group_node, &groups->tree, __group_less);
1778 }
1779 
1780 /*
1781  * Helper function to insert event into the pinned or flexible groups.
1782  */
1783 static void
add_event_to_groups(struct perf_event * event,struct perf_event_context * ctx)1784 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1785 {
1786 	struct perf_event_groups *groups;
1787 
1788 	groups = get_event_groups(event, ctx);
1789 	perf_event_groups_insert(groups, event);
1790 }
1791 
1792 /*
1793  * Delete a group from a tree.
1794  */
1795 static void
perf_event_groups_delete(struct perf_event_groups * groups,struct perf_event * event)1796 perf_event_groups_delete(struct perf_event_groups *groups,
1797 			 struct perf_event *event)
1798 {
1799 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1800 		     RB_EMPTY_ROOT(&groups->tree));
1801 
1802 	rb_erase(&event->group_node, &groups->tree);
1803 	init_event_group(event);
1804 }
1805 
1806 /*
1807  * Helper function to delete event from its groups.
1808  */
1809 static void
del_event_from_groups(struct perf_event * event,struct perf_event_context * ctx)1810 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1811 {
1812 	struct perf_event_groups *groups;
1813 
1814 	groups = get_event_groups(event, ctx);
1815 	perf_event_groups_delete(groups, event);
1816 }
1817 
1818 /*
1819  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1820  */
1821 static struct perf_event *
perf_event_groups_first(struct perf_event_groups * groups,int cpu,struct pmu * pmu,struct cgroup * cgrp)1822 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1823 			struct pmu *pmu, struct cgroup *cgrp)
1824 {
1825 	struct __group_key key = {
1826 		.cpu = cpu,
1827 		.pmu = pmu,
1828 		.cgroup = cgrp,
1829 	};
1830 	struct rb_node *node;
1831 
1832 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1833 	if (node)
1834 		return __node_2_pe(node);
1835 
1836 	return NULL;
1837 }
1838 
1839 static struct perf_event *
perf_event_groups_next(struct perf_event * event,struct pmu * pmu)1840 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1841 {
1842 	struct __group_key key = {
1843 		.cpu = event->cpu,
1844 		.pmu = pmu,
1845 		.cgroup = event_cgroup(event),
1846 	};
1847 	struct rb_node *next;
1848 
1849 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1850 	if (next)
1851 		return __node_2_pe(next);
1852 
1853 	return NULL;
1854 }
1855 
1856 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)		\
1857 	for (event = perf_event_groups_first(groups, cpu, pmu, NULL);	\
1858 	     event; event = perf_event_groups_next(event, pmu))
1859 
1860 /*
1861  * Iterate through the whole groups tree.
1862  */
1863 #define perf_event_groups_for_each(event, groups)			\
1864 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1865 				typeof(*event), group_node); event;	\
1866 		event = rb_entry_safe(rb_next(&event->group_node),	\
1867 				typeof(*event), group_node))
1868 
1869 /*
1870  * Does the event attribute request inherit with PERF_SAMPLE_READ
1871  */
has_inherit_and_sample_read(struct perf_event_attr * attr)1872 static inline bool has_inherit_and_sample_read(struct perf_event_attr *attr)
1873 {
1874 	return attr->inherit && (attr->sample_type & PERF_SAMPLE_READ);
1875 }
1876 
1877 /*
1878  * Add an event from the lists for its context.
1879  * Must be called with ctx->mutex and ctx->lock held.
1880  */
1881 static void
list_add_event(struct perf_event * event,struct perf_event_context * ctx)1882 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1883 {
1884 	lockdep_assert_held(&ctx->lock);
1885 
1886 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1887 	event->attach_state |= PERF_ATTACH_CONTEXT;
1888 
1889 	event->tstamp = perf_event_time(event);
1890 
1891 	/*
1892 	 * If we're a stand alone event or group leader, we go to the context
1893 	 * list, group events are kept attached to the group so that
1894 	 * perf_group_detach can, at all times, locate all siblings.
1895 	 */
1896 	if (event->group_leader == event) {
1897 		event->group_caps = event->event_caps;
1898 		add_event_to_groups(event, ctx);
1899 	}
1900 
1901 	list_add_rcu(&event->event_entry, &ctx->event_list);
1902 	ctx->nr_events++;
1903 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1904 		ctx->nr_user++;
1905 	if (event->attr.inherit_stat)
1906 		ctx->nr_stat++;
1907 	if (has_inherit_and_sample_read(&event->attr))
1908 		local_inc(&ctx->nr_no_switch_fast);
1909 
1910 	if (event->state > PERF_EVENT_STATE_OFF)
1911 		perf_cgroup_event_enable(event, ctx);
1912 
1913 	ctx->generation++;
1914 	event->pmu_ctx->nr_events++;
1915 }
1916 
1917 /*
1918  * Initialize event state based on the perf_event_attr::disabled.
1919  */
perf_event__state_init(struct perf_event * event)1920 static inline void perf_event__state_init(struct perf_event *event)
1921 {
1922 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1923 					      PERF_EVENT_STATE_INACTIVE;
1924 }
1925 
__perf_event_read_size(u64 read_format,int nr_siblings)1926 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1927 {
1928 	int entry = sizeof(u64); /* value */
1929 	int size = 0;
1930 	int nr = 1;
1931 
1932 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1933 		size += sizeof(u64);
1934 
1935 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1936 		size += sizeof(u64);
1937 
1938 	if (read_format & PERF_FORMAT_ID)
1939 		entry += sizeof(u64);
1940 
1941 	if (read_format & PERF_FORMAT_LOST)
1942 		entry += sizeof(u64);
1943 
1944 	if (read_format & PERF_FORMAT_GROUP) {
1945 		nr += nr_siblings;
1946 		size += sizeof(u64);
1947 	}
1948 
1949 	/*
1950 	 * Since perf_event_validate_size() limits this to 16k and inhibits
1951 	 * adding more siblings, this will never overflow.
1952 	 */
1953 	return size + nr * entry;
1954 }
1955 
__perf_event_header_size(struct perf_event * event,u64 sample_type)1956 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1957 {
1958 	struct perf_sample_data *data;
1959 	u16 size = 0;
1960 
1961 	if (sample_type & PERF_SAMPLE_IP)
1962 		size += sizeof(data->ip);
1963 
1964 	if (sample_type & PERF_SAMPLE_ADDR)
1965 		size += sizeof(data->addr);
1966 
1967 	if (sample_type & PERF_SAMPLE_PERIOD)
1968 		size += sizeof(data->period);
1969 
1970 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1971 		size += sizeof(data->weight.full);
1972 
1973 	if (sample_type & PERF_SAMPLE_READ)
1974 		size += event->read_size;
1975 
1976 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1977 		size += sizeof(data->data_src.val);
1978 
1979 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1980 		size += sizeof(data->txn);
1981 
1982 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1983 		size += sizeof(data->phys_addr);
1984 
1985 	if (sample_type & PERF_SAMPLE_CGROUP)
1986 		size += sizeof(data->cgroup);
1987 
1988 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1989 		size += sizeof(data->data_page_size);
1990 
1991 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1992 		size += sizeof(data->code_page_size);
1993 
1994 	event->header_size = size;
1995 }
1996 
1997 /*
1998  * Called at perf_event creation and when events are attached/detached from a
1999  * group.
2000  */
perf_event__header_size(struct perf_event * event)2001 static void perf_event__header_size(struct perf_event *event)
2002 {
2003 	event->read_size =
2004 		__perf_event_read_size(event->attr.read_format,
2005 				       event->group_leader->nr_siblings);
2006 	__perf_event_header_size(event, event->attr.sample_type);
2007 }
2008 
perf_event__id_header_size(struct perf_event * event)2009 static void perf_event__id_header_size(struct perf_event *event)
2010 {
2011 	struct perf_sample_data *data;
2012 	u64 sample_type = event->attr.sample_type;
2013 	u16 size = 0;
2014 
2015 	if (sample_type & PERF_SAMPLE_TID)
2016 		size += sizeof(data->tid_entry);
2017 
2018 	if (sample_type & PERF_SAMPLE_TIME)
2019 		size += sizeof(data->time);
2020 
2021 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
2022 		size += sizeof(data->id);
2023 
2024 	if (sample_type & PERF_SAMPLE_ID)
2025 		size += sizeof(data->id);
2026 
2027 	if (sample_type & PERF_SAMPLE_STREAM_ID)
2028 		size += sizeof(data->stream_id);
2029 
2030 	if (sample_type & PERF_SAMPLE_CPU)
2031 		size += sizeof(data->cpu_entry);
2032 
2033 	event->id_header_size = size;
2034 }
2035 
2036 /*
2037  * Check that adding an event to the group does not result in anybody
2038  * overflowing the 64k event limit imposed by the output buffer.
2039  *
2040  * Specifically, check that the read_size for the event does not exceed 16k,
2041  * read_size being the one term that grows with groups size. Since read_size
2042  * depends on per-event read_format, also (re)check the existing events.
2043  *
2044  * This leaves 48k for the constant size fields and things like callchains,
2045  * branch stacks and register sets.
2046  */
perf_event_validate_size(struct perf_event * event)2047 static bool perf_event_validate_size(struct perf_event *event)
2048 {
2049 	struct perf_event *sibling, *group_leader = event->group_leader;
2050 
2051 	if (__perf_event_read_size(event->attr.read_format,
2052 				   group_leader->nr_siblings + 1) > 16*1024)
2053 		return false;
2054 
2055 	if (__perf_event_read_size(group_leader->attr.read_format,
2056 				   group_leader->nr_siblings + 1) > 16*1024)
2057 		return false;
2058 
2059 	/*
2060 	 * When creating a new group leader, group_leader->ctx is initialized
2061 	 * after the size has been validated, but we cannot safely use
2062 	 * for_each_sibling_event() until group_leader->ctx is set. A new group
2063 	 * leader cannot have any siblings yet, so we can safely skip checking
2064 	 * the non-existent siblings.
2065 	 */
2066 	if (event == group_leader)
2067 		return true;
2068 
2069 	for_each_sibling_event(sibling, group_leader) {
2070 		if (__perf_event_read_size(sibling->attr.read_format,
2071 					   group_leader->nr_siblings + 1) > 16*1024)
2072 			return false;
2073 	}
2074 
2075 	return true;
2076 }
2077 
perf_group_attach(struct perf_event * event)2078 static void perf_group_attach(struct perf_event *event)
2079 {
2080 	struct perf_event *group_leader = event->group_leader, *pos;
2081 
2082 	lockdep_assert_held(&event->ctx->lock);
2083 
2084 	/*
2085 	 * We can have double attach due to group movement (move_group) in
2086 	 * perf_event_open().
2087 	 */
2088 	if (event->attach_state & PERF_ATTACH_GROUP)
2089 		return;
2090 
2091 	event->attach_state |= PERF_ATTACH_GROUP;
2092 
2093 	if (group_leader == event)
2094 		return;
2095 
2096 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
2097 
2098 	group_leader->group_caps &= event->event_caps;
2099 
2100 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
2101 	group_leader->nr_siblings++;
2102 	group_leader->group_generation++;
2103 
2104 	perf_event__header_size(group_leader);
2105 
2106 	for_each_sibling_event(pos, group_leader)
2107 		perf_event__header_size(pos);
2108 }
2109 
2110 /*
2111  * Remove an event from the lists for its context.
2112  * Must be called with ctx->mutex and ctx->lock held.
2113  */
2114 static void
list_del_event(struct perf_event * event,struct perf_event_context * ctx)2115 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2116 {
2117 	WARN_ON_ONCE(event->ctx != ctx);
2118 	lockdep_assert_held(&ctx->lock);
2119 
2120 	/*
2121 	 * We can have double detach due to exit/hot-unplug + close.
2122 	 */
2123 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2124 		return;
2125 
2126 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2127 
2128 	ctx->nr_events--;
2129 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2130 		ctx->nr_user--;
2131 	if (event->attr.inherit_stat)
2132 		ctx->nr_stat--;
2133 	if (has_inherit_and_sample_read(&event->attr))
2134 		local_dec(&ctx->nr_no_switch_fast);
2135 
2136 	list_del_rcu(&event->event_entry);
2137 
2138 	if (event->group_leader == event)
2139 		del_event_from_groups(event, ctx);
2140 
2141 	ctx->generation++;
2142 	event->pmu_ctx->nr_events--;
2143 }
2144 
2145 static int
perf_aux_output_match(struct perf_event * event,struct perf_event * aux_event)2146 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2147 {
2148 	if (!has_aux(aux_event))
2149 		return 0;
2150 
2151 	if (!event->pmu->aux_output_match)
2152 		return 0;
2153 
2154 	return event->pmu->aux_output_match(aux_event);
2155 }
2156 
2157 static void put_event(struct perf_event *event);
2158 static void __event_disable(struct perf_event *event,
2159 			    struct perf_event_context *ctx,
2160 			    enum perf_event_state state);
2161 
perf_put_aux_event(struct perf_event * event)2162 static void perf_put_aux_event(struct perf_event *event)
2163 {
2164 	struct perf_event_context *ctx = event->ctx;
2165 	struct perf_event *iter;
2166 
2167 	/*
2168 	 * If event uses aux_event tear down the link
2169 	 */
2170 	if (event->aux_event) {
2171 		iter = event->aux_event;
2172 		event->aux_event = NULL;
2173 		put_event(iter);
2174 		return;
2175 	}
2176 
2177 	/*
2178 	 * If the event is an aux_event, tear down all links to
2179 	 * it from other events.
2180 	 */
2181 	for_each_sibling_event(iter, event) {
2182 		if (iter->aux_event != event)
2183 			continue;
2184 
2185 		iter->aux_event = NULL;
2186 		put_event(event);
2187 
2188 		/*
2189 		 * If it's ACTIVE, schedule it out and put it into ERROR
2190 		 * state so that we don't try to schedule it again. Note
2191 		 * that perf_event_enable() will clear the ERROR status.
2192 		 */
2193 		__event_disable(iter, ctx, PERF_EVENT_STATE_ERROR);
2194 	}
2195 }
2196 
perf_need_aux_event(struct perf_event * event)2197 static bool perf_need_aux_event(struct perf_event *event)
2198 {
2199 	return event->attr.aux_output || has_aux_action(event);
2200 }
2201 
perf_get_aux_event(struct perf_event * event,struct perf_event * group_leader)2202 static int perf_get_aux_event(struct perf_event *event,
2203 			      struct perf_event *group_leader)
2204 {
2205 	/*
2206 	 * Our group leader must be an aux event if we want to be
2207 	 * an aux_output. This way, the aux event will precede its
2208 	 * aux_output events in the group, and therefore will always
2209 	 * schedule first.
2210 	 */
2211 	if (!group_leader)
2212 		return 0;
2213 
2214 	/*
2215 	 * aux_output and aux_sample_size are mutually exclusive.
2216 	 */
2217 	if (event->attr.aux_output && event->attr.aux_sample_size)
2218 		return 0;
2219 
2220 	if (event->attr.aux_output &&
2221 	    !perf_aux_output_match(event, group_leader))
2222 		return 0;
2223 
2224 	if ((event->attr.aux_pause || event->attr.aux_resume) &&
2225 	    !(group_leader->pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE))
2226 		return 0;
2227 
2228 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2229 		return 0;
2230 
2231 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2232 		return 0;
2233 
2234 	/*
2235 	 * Link aux_outputs to their aux event; this is undone in
2236 	 * perf_group_detach() by perf_put_aux_event(). When the
2237 	 * group in torn down, the aux_output events loose their
2238 	 * link to the aux_event and can't schedule any more.
2239 	 */
2240 	event->aux_event = group_leader;
2241 
2242 	return 1;
2243 }
2244 
get_event_list(struct perf_event * event)2245 static inline struct list_head *get_event_list(struct perf_event *event)
2246 {
2247 	return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2248 				    &event->pmu_ctx->flexible_active;
2249 }
2250 
perf_group_detach(struct perf_event * event)2251 static void perf_group_detach(struct perf_event *event)
2252 {
2253 	struct perf_event *leader = event->group_leader;
2254 	struct perf_event *sibling, *tmp;
2255 	struct perf_event_context *ctx = event->ctx;
2256 
2257 	lockdep_assert_held(&ctx->lock);
2258 
2259 	/*
2260 	 * We can have double detach due to exit/hot-unplug + close.
2261 	 */
2262 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2263 		return;
2264 
2265 	event->attach_state &= ~PERF_ATTACH_GROUP;
2266 
2267 	perf_put_aux_event(event);
2268 
2269 	/*
2270 	 * If this is a sibling, remove it from its group.
2271 	 */
2272 	if (leader != event) {
2273 		list_del_init(&event->sibling_list);
2274 		event->group_leader->nr_siblings--;
2275 		event->group_leader->group_generation++;
2276 		goto out;
2277 	}
2278 
2279 	/*
2280 	 * If this was a group event with sibling events then
2281 	 * upgrade the siblings to singleton events by adding them
2282 	 * to whatever list we are on.
2283 	 */
2284 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2285 
2286 		/*
2287 		 * Events that have PERF_EV_CAP_SIBLING require being part of
2288 		 * a group and cannot exist on their own, schedule them out
2289 		 * and move them into the ERROR state. Also see
2290 		 * _perf_event_enable(), it will not be able to recover this
2291 		 * ERROR state.
2292 		 */
2293 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2294 			__event_disable(sibling, ctx, PERF_EVENT_STATE_ERROR);
2295 
2296 		sibling->group_leader = sibling;
2297 		list_del_init(&sibling->sibling_list);
2298 
2299 		/* Inherit group flags from the previous leader */
2300 		sibling->group_caps = event->group_caps;
2301 
2302 		if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2303 			add_event_to_groups(sibling, event->ctx);
2304 
2305 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2306 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2307 		}
2308 
2309 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2310 	}
2311 
2312 out:
2313 	for_each_sibling_event(tmp, leader)
2314 		perf_event__header_size(tmp);
2315 
2316 	perf_event__header_size(leader);
2317 }
2318 
2319 static void sync_child_event(struct perf_event *child_event);
2320 
perf_child_detach(struct perf_event * event)2321 static void perf_child_detach(struct perf_event *event)
2322 {
2323 	struct perf_event *parent_event = event->parent;
2324 
2325 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2326 		return;
2327 
2328 	event->attach_state &= ~PERF_ATTACH_CHILD;
2329 
2330 	if (WARN_ON_ONCE(!parent_event))
2331 		return;
2332 
2333 	/*
2334 	 * Can't check this from an IPI, the holder is likey another CPU.
2335 	 *
2336 	lockdep_assert_held(&parent_event->child_mutex);
2337 	 */
2338 
2339 	sync_child_event(event);
2340 	list_del_init(&event->child_list);
2341 }
2342 
is_orphaned_event(struct perf_event * event)2343 static bool is_orphaned_event(struct perf_event *event)
2344 {
2345 	return event->state == PERF_EVENT_STATE_DEAD;
2346 }
2347 
2348 static inline int
event_filter_match(struct perf_event * event)2349 event_filter_match(struct perf_event *event)
2350 {
2351 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2352 	       perf_cgroup_match(event);
2353 }
2354 
is_event_in_freq_mode(struct perf_event * event)2355 static inline bool is_event_in_freq_mode(struct perf_event *event)
2356 {
2357 	return event->attr.freq && event->attr.sample_freq;
2358 }
2359 
2360 static void
event_sched_out(struct perf_event * event,struct perf_event_context * ctx)2361 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2362 {
2363 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2364 	struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu);
2365 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2366 
2367 	// XXX cpc serialization, probably per-cpu IRQ disabled
2368 
2369 	WARN_ON_ONCE(event->ctx != ctx);
2370 	lockdep_assert_held(&ctx->lock);
2371 
2372 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2373 		return;
2374 
2375 	/*
2376 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2377 	 * we can schedule events _OUT_ individually through things like
2378 	 * __perf_remove_from_context().
2379 	 */
2380 	list_del_init(&event->active_list);
2381 
2382 	perf_pmu_disable(event->pmu);
2383 
2384 	event->pmu->del(event, 0);
2385 	event->oncpu = -1;
2386 
2387 	if (event->pending_disable) {
2388 		event->pending_disable = 0;
2389 		perf_cgroup_event_disable(event, ctx);
2390 		state = PERF_EVENT_STATE_OFF;
2391 	}
2392 
2393 	perf_event_set_state(event, state);
2394 
2395 	if (!is_software_event(event))
2396 		cpc->active_oncpu--;
2397 	if (is_event_in_freq_mode(event)) {
2398 		ctx->nr_freq--;
2399 		epc->nr_freq--;
2400 	}
2401 	if (event->attr.exclusive || !cpc->active_oncpu)
2402 		cpc->exclusive = 0;
2403 
2404 	perf_pmu_enable(event->pmu);
2405 }
2406 
2407 static void
group_sched_out(struct perf_event * group_event,struct perf_event_context * ctx)2408 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2409 {
2410 	struct perf_event *event;
2411 
2412 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2413 		return;
2414 
2415 	perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2416 
2417 	event_sched_out(group_event, ctx);
2418 
2419 	/*
2420 	 * Schedule out siblings (if any):
2421 	 */
2422 	for_each_sibling_event(event, group_event)
2423 		event_sched_out(event, ctx);
2424 }
2425 
2426 static inline void
__ctx_time_update(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,bool final)2427 __ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, bool final)
2428 {
2429 	if (ctx->is_active & EVENT_TIME) {
2430 		if (ctx->is_active & EVENT_FROZEN)
2431 			return;
2432 		update_context_time(ctx);
2433 		update_cgrp_time_from_cpuctx(cpuctx, final);
2434 	}
2435 }
2436 
2437 static inline void
ctx_time_update(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2438 ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2439 {
2440 	__ctx_time_update(cpuctx, ctx, false);
2441 }
2442 
2443 /*
2444  * To be used inside perf_ctx_lock() / perf_ctx_unlock(). Lasts until perf_ctx_unlock().
2445  */
2446 static inline void
ctx_time_freeze(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2447 ctx_time_freeze(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2448 {
2449 	ctx_time_update(cpuctx, ctx);
2450 	if (ctx->is_active & EVENT_TIME)
2451 		ctx->is_active |= EVENT_FROZEN;
2452 }
2453 
2454 static inline void
ctx_time_update_event(struct perf_event_context * ctx,struct perf_event * event)2455 ctx_time_update_event(struct perf_event_context *ctx, struct perf_event *event)
2456 {
2457 	if (ctx->is_active & EVENT_TIME) {
2458 		if (ctx->is_active & EVENT_FROZEN)
2459 			return;
2460 		update_context_time(ctx);
2461 		update_cgrp_time_from_event(event);
2462 	}
2463 }
2464 
2465 #define DETACH_GROUP	0x01UL
2466 #define DETACH_CHILD	0x02UL
2467 #define DETACH_EXIT	0x04UL
2468 #define DETACH_REVOKE	0x08UL
2469 #define DETACH_DEAD	0x10UL
2470 
2471 /*
2472  * Cross CPU call to remove a performance event
2473  *
2474  * We disable the event on the hardware level first. After that we
2475  * remove it from the context list.
2476  */
2477 static void
__perf_remove_from_context(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2478 __perf_remove_from_context(struct perf_event *event,
2479 			   struct perf_cpu_context *cpuctx,
2480 			   struct perf_event_context *ctx,
2481 			   void *info)
2482 {
2483 	struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2484 	enum perf_event_state state = PERF_EVENT_STATE_OFF;
2485 	unsigned long flags = (unsigned long)info;
2486 
2487 	ctx_time_update(cpuctx, ctx);
2488 
2489 	/*
2490 	 * Ensure event_sched_out() switches to OFF, at the very least
2491 	 * this avoids raising perf_pending_task() at this time.
2492 	 */
2493 	if (flags & DETACH_EXIT)
2494 		state = PERF_EVENT_STATE_EXIT;
2495 	if (flags & DETACH_REVOKE)
2496 		state = PERF_EVENT_STATE_REVOKED;
2497 	if (flags & DETACH_DEAD)
2498 		state = PERF_EVENT_STATE_DEAD;
2499 
2500 	event_sched_out(event, ctx);
2501 
2502 	if (event->state > PERF_EVENT_STATE_OFF)
2503 		perf_cgroup_event_disable(event, ctx);
2504 
2505 	perf_event_set_state(event, min(event->state, state));
2506 
2507 	if (flags & DETACH_GROUP)
2508 		perf_group_detach(event);
2509 	if (flags & DETACH_CHILD)
2510 		perf_child_detach(event);
2511 	list_del_event(event, ctx);
2512 
2513 	if (!pmu_ctx->nr_events) {
2514 		pmu_ctx->rotate_necessary = 0;
2515 
2516 		if (ctx->task && ctx->is_active) {
2517 			struct perf_cpu_pmu_context *cpc = this_cpc(pmu_ctx->pmu);
2518 
2519 			WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2520 			cpc->task_epc = NULL;
2521 		}
2522 	}
2523 
2524 	if (!ctx->nr_events && ctx->is_active) {
2525 		if (ctx == &cpuctx->ctx)
2526 			update_cgrp_time_from_cpuctx(cpuctx, true);
2527 
2528 		ctx->is_active = 0;
2529 		if (ctx->task) {
2530 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2531 			cpuctx->task_ctx = NULL;
2532 		}
2533 	}
2534 }
2535 
2536 /*
2537  * Remove the event from a task's (or a CPU's) list of events.
2538  *
2539  * If event->ctx is a cloned context, callers must make sure that
2540  * every task struct that event->ctx->task could possibly point to
2541  * remains valid.  This is OK when called from perf_release since
2542  * that only calls us on the top-level context, which can't be a clone.
2543  * When called from perf_event_exit_task, it's OK because the
2544  * context has been detached from its task.
2545  */
perf_remove_from_context(struct perf_event * event,unsigned long flags)2546 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2547 {
2548 	struct perf_event_context *ctx = event->ctx;
2549 
2550 	lockdep_assert_held(&ctx->mutex);
2551 
2552 	/*
2553 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2554 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2555 	 * event_function_call() user.
2556 	 */
2557 	raw_spin_lock_irq(&ctx->lock);
2558 	if (!ctx->is_active) {
2559 		__perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2560 					   ctx, (void *)flags);
2561 		raw_spin_unlock_irq(&ctx->lock);
2562 		return;
2563 	}
2564 	raw_spin_unlock_irq(&ctx->lock);
2565 
2566 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2567 }
2568 
__event_disable(struct perf_event * event,struct perf_event_context * ctx,enum perf_event_state state)2569 static void __event_disable(struct perf_event *event,
2570 			    struct perf_event_context *ctx,
2571 			    enum perf_event_state state)
2572 {
2573 	event_sched_out(event, ctx);
2574 	perf_cgroup_event_disable(event, ctx);
2575 	perf_event_set_state(event, state);
2576 }
2577 
2578 /*
2579  * Cross CPU call to disable a performance event
2580  */
__perf_event_disable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2581 static void __perf_event_disable(struct perf_event *event,
2582 				 struct perf_cpu_context *cpuctx,
2583 				 struct perf_event_context *ctx,
2584 				 void *info)
2585 {
2586 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2587 		return;
2588 
2589 	perf_pmu_disable(event->pmu_ctx->pmu);
2590 	ctx_time_update_event(ctx, event);
2591 
2592 	/*
2593 	 * When disabling a group leader, the whole group becomes ineligible
2594 	 * to run, so schedule out the full group.
2595 	 */
2596 	if (event == event->group_leader)
2597 		group_sched_out(event, ctx);
2598 
2599 	/*
2600 	 * But only mark the leader OFF; the siblings will remain
2601 	 * INACTIVE.
2602 	 */
2603 	__event_disable(event, ctx, PERF_EVENT_STATE_OFF);
2604 
2605 	perf_pmu_enable(event->pmu_ctx->pmu);
2606 }
2607 
2608 /*
2609  * Disable an event.
2610  *
2611  * If event->ctx is a cloned context, callers must make sure that
2612  * every task struct that event->ctx->task could possibly point to
2613  * remains valid.  This condition is satisfied when called through
2614  * perf_event_for_each_child or perf_event_for_each because they
2615  * hold the top-level event's child_mutex, so any descendant that
2616  * goes to exit will block in perf_event_exit_event().
2617  *
2618  * When called from perf_pending_disable it's OK because event->ctx
2619  * is the current context on this CPU and preemption is disabled,
2620  * hence we can't get into perf_event_task_sched_out for this context.
2621  */
_perf_event_disable(struct perf_event * event)2622 static void _perf_event_disable(struct perf_event *event)
2623 {
2624 	struct perf_event_context *ctx = event->ctx;
2625 
2626 	raw_spin_lock_irq(&ctx->lock);
2627 	if (event->state <= PERF_EVENT_STATE_OFF) {
2628 		raw_spin_unlock_irq(&ctx->lock);
2629 		return;
2630 	}
2631 	raw_spin_unlock_irq(&ctx->lock);
2632 
2633 	event_function_call(event, __perf_event_disable, NULL);
2634 }
2635 
perf_event_disable_local(struct perf_event * event)2636 void perf_event_disable_local(struct perf_event *event)
2637 {
2638 	event_function_local(event, __perf_event_disable, NULL);
2639 }
2640 
2641 /*
2642  * Strictly speaking kernel users cannot create groups and therefore this
2643  * interface does not need the perf_event_ctx_lock() magic.
2644  */
perf_event_disable(struct perf_event * event)2645 void perf_event_disable(struct perf_event *event)
2646 {
2647 	struct perf_event_context *ctx;
2648 
2649 	ctx = perf_event_ctx_lock(event);
2650 	_perf_event_disable(event);
2651 	perf_event_ctx_unlock(event, ctx);
2652 }
2653 EXPORT_SYMBOL_GPL(perf_event_disable);
2654 
perf_event_disable_inatomic(struct perf_event * event)2655 void perf_event_disable_inatomic(struct perf_event *event)
2656 {
2657 	event->pending_disable = 1;
2658 	irq_work_queue(&event->pending_disable_irq);
2659 }
2660 
2661 #define MAX_INTERRUPTS (~0ULL)
2662 
2663 static void perf_log_throttle(struct perf_event *event, int enable);
2664 static void perf_log_itrace_start(struct perf_event *event);
2665 
perf_event_unthrottle(struct perf_event * event,bool start)2666 static void perf_event_unthrottle(struct perf_event *event, bool start)
2667 {
2668 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2669 		return;
2670 
2671 	event->hw.interrupts = 0;
2672 	if (start)
2673 		event->pmu->start(event, 0);
2674 	if (event == event->group_leader)
2675 		perf_log_throttle(event, 1);
2676 }
2677 
perf_event_throttle(struct perf_event * event)2678 static void perf_event_throttle(struct perf_event *event)
2679 {
2680 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2681 		return;
2682 
2683 	event->hw.interrupts = MAX_INTERRUPTS;
2684 	event->pmu->stop(event, 0);
2685 	if (event == event->group_leader)
2686 		perf_log_throttle(event, 0);
2687 }
2688 
perf_event_unthrottle_group(struct perf_event * event,bool skip_start_event)2689 static void perf_event_unthrottle_group(struct perf_event *event, bool skip_start_event)
2690 {
2691 	struct perf_event *sibling, *leader = event->group_leader;
2692 
2693 	perf_event_unthrottle(leader, skip_start_event ? leader != event : true);
2694 	for_each_sibling_event(sibling, leader)
2695 		perf_event_unthrottle(sibling, skip_start_event ? sibling != event : true);
2696 }
2697 
perf_event_throttle_group(struct perf_event * event)2698 static void perf_event_throttle_group(struct perf_event *event)
2699 {
2700 	struct perf_event *sibling, *leader = event->group_leader;
2701 
2702 	perf_event_throttle(leader);
2703 	for_each_sibling_event(sibling, leader)
2704 		perf_event_throttle(sibling);
2705 }
2706 
2707 static int
event_sched_in(struct perf_event * event,struct perf_event_context * ctx)2708 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2709 {
2710 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2711 	struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu);
2712 	int ret = 0;
2713 
2714 	WARN_ON_ONCE(event->ctx != ctx);
2715 
2716 	lockdep_assert_held(&ctx->lock);
2717 
2718 	if (event->state <= PERF_EVENT_STATE_OFF)
2719 		return 0;
2720 
2721 	WRITE_ONCE(event->oncpu, smp_processor_id());
2722 	/*
2723 	 * Order event::oncpu write to happen before the ACTIVE state is
2724 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2725 	 * ->oncpu if it sees ACTIVE.
2726 	 */
2727 	smp_wmb();
2728 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2729 
2730 	/*
2731 	 * Unthrottle events, since we scheduled we might have missed several
2732 	 * ticks already, also for a heavily scheduling task there is little
2733 	 * guarantee it'll get a tick in a timely manner.
2734 	 */
2735 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS))
2736 		perf_event_unthrottle(event, false);
2737 
2738 	perf_pmu_disable(event->pmu);
2739 
2740 	perf_log_itrace_start(event);
2741 
2742 	if (event->pmu->add(event, PERF_EF_START)) {
2743 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2744 		event->oncpu = -1;
2745 		ret = -EAGAIN;
2746 		goto out;
2747 	}
2748 
2749 	if (!is_software_event(event))
2750 		cpc->active_oncpu++;
2751 	if (is_event_in_freq_mode(event)) {
2752 		ctx->nr_freq++;
2753 		epc->nr_freq++;
2754 	}
2755 	if (event->attr.exclusive)
2756 		cpc->exclusive = 1;
2757 
2758 out:
2759 	perf_pmu_enable(event->pmu);
2760 
2761 	return ret;
2762 }
2763 
2764 static int
group_sched_in(struct perf_event * group_event,struct perf_event_context * ctx)2765 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2766 {
2767 	struct perf_event *event, *partial_group = NULL;
2768 	struct pmu *pmu = group_event->pmu_ctx->pmu;
2769 
2770 	if (group_event->state == PERF_EVENT_STATE_OFF)
2771 		return 0;
2772 
2773 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2774 
2775 	if (event_sched_in(group_event, ctx))
2776 		goto error;
2777 
2778 	/*
2779 	 * Schedule in siblings as one group (if any):
2780 	 */
2781 	for_each_sibling_event(event, group_event) {
2782 		if (event_sched_in(event, ctx)) {
2783 			partial_group = event;
2784 			goto group_error;
2785 		}
2786 	}
2787 
2788 	if (!pmu->commit_txn(pmu))
2789 		return 0;
2790 
2791 group_error:
2792 	/*
2793 	 * Groups can be scheduled in as one unit only, so undo any
2794 	 * partial group before returning:
2795 	 * The events up to the failed event are scheduled out normally.
2796 	 */
2797 	for_each_sibling_event(event, group_event) {
2798 		if (event == partial_group)
2799 			break;
2800 
2801 		event_sched_out(event, ctx);
2802 	}
2803 	event_sched_out(group_event, ctx);
2804 
2805 error:
2806 	pmu->cancel_txn(pmu);
2807 	return -EAGAIN;
2808 }
2809 
2810 /*
2811  * Work out whether we can put this event group on the CPU now.
2812  */
group_can_go_on(struct perf_event * event,int can_add_hw)2813 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2814 {
2815 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2816 	struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu);
2817 
2818 	/*
2819 	 * Groups consisting entirely of software events can always go on.
2820 	 */
2821 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2822 		return 1;
2823 	/*
2824 	 * If an exclusive group is already on, no other hardware
2825 	 * events can go on.
2826 	 */
2827 	if (cpc->exclusive)
2828 		return 0;
2829 	/*
2830 	 * If this group is exclusive and there are already
2831 	 * events on the CPU, it can't go on.
2832 	 */
2833 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2834 		return 0;
2835 	/*
2836 	 * Otherwise, try to add it if all previous groups were able
2837 	 * to go on.
2838 	 */
2839 	return can_add_hw;
2840 }
2841 
add_event_to_ctx(struct perf_event * event,struct perf_event_context * ctx)2842 static void add_event_to_ctx(struct perf_event *event,
2843 			       struct perf_event_context *ctx)
2844 {
2845 	list_add_event(event, ctx);
2846 	perf_group_attach(event);
2847 }
2848 
task_ctx_sched_out(struct perf_event_context * ctx,struct pmu * pmu,enum event_type_t event_type)2849 static void task_ctx_sched_out(struct perf_event_context *ctx,
2850 			       struct pmu *pmu,
2851 			       enum event_type_t event_type)
2852 {
2853 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2854 
2855 	if (!cpuctx->task_ctx)
2856 		return;
2857 
2858 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2859 		return;
2860 
2861 	ctx_sched_out(ctx, pmu, event_type);
2862 }
2863 
perf_event_sched_in(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,struct pmu * pmu)2864 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2865 				struct perf_event_context *ctx,
2866 				struct pmu *pmu)
2867 {
2868 	ctx_sched_in(&cpuctx->ctx, pmu, EVENT_PINNED);
2869 	if (ctx)
2870 		 ctx_sched_in(ctx, pmu, EVENT_PINNED);
2871 	ctx_sched_in(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2872 	if (ctx)
2873 		 ctx_sched_in(ctx, pmu, EVENT_FLEXIBLE);
2874 }
2875 
2876 /*
2877  * We want to maintain the following priority of scheduling:
2878  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2879  *  - task pinned (EVENT_PINNED)
2880  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2881  *  - task flexible (EVENT_FLEXIBLE).
2882  *
2883  * In order to avoid unscheduling and scheduling back in everything every
2884  * time an event is added, only do it for the groups of equal priority and
2885  * below.
2886  *
2887  * This can be called after a batch operation on task events, in which case
2888  * event_type is a bit mask of the types of events involved. For CPU events,
2889  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2890  */
ctx_resched(struct perf_cpu_context * cpuctx,struct perf_event_context * task_ctx,struct pmu * pmu,enum event_type_t event_type)2891 static void ctx_resched(struct perf_cpu_context *cpuctx,
2892 			struct perf_event_context *task_ctx,
2893 			struct pmu *pmu, enum event_type_t event_type)
2894 {
2895 	bool cpu_event = !!(event_type & EVENT_CPU);
2896 	struct perf_event_pmu_context *epc;
2897 
2898 	/*
2899 	 * If pinned groups are involved, flexible groups also need to be
2900 	 * scheduled out.
2901 	 */
2902 	if (event_type & EVENT_PINNED)
2903 		event_type |= EVENT_FLEXIBLE;
2904 
2905 	event_type &= EVENT_ALL;
2906 
2907 	for_each_epc(epc, &cpuctx->ctx, pmu, false)
2908 		perf_pmu_disable(epc->pmu);
2909 
2910 	if (task_ctx) {
2911 		for_each_epc(epc, task_ctx, pmu, false)
2912 			perf_pmu_disable(epc->pmu);
2913 
2914 		task_ctx_sched_out(task_ctx, pmu, event_type);
2915 	}
2916 
2917 	/*
2918 	 * Decide which cpu ctx groups to schedule out based on the types
2919 	 * of events that caused rescheduling:
2920 	 *  - EVENT_CPU: schedule out corresponding groups;
2921 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2922 	 *  - otherwise, do nothing more.
2923 	 */
2924 	if (cpu_event)
2925 		ctx_sched_out(&cpuctx->ctx, pmu, event_type);
2926 	else if (event_type & EVENT_PINNED)
2927 		ctx_sched_out(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2928 
2929 	perf_event_sched_in(cpuctx, task_ctx, pmu);
2930 
2931 	for_each_epc(epc, &cpuctx->ctx, pmu, false)
2932 		perf_pmu_enable(epc->pmu);
2933 
2934 	if (task_ctx) {
2935 		for_each_epc(epc, task_ctx, pmu, false)
2936 			perf_pmu_enable(epc->pmu);
2937 	}
2938 }
2939 
perf_pmu_resched(struct pmu * pmu)2940 void perf_pmu_resched(struct pmu *pmu)
2941 {
2942 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2943 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2944 
2945 	perf_ctx_lock(cpuctx, task_ctx);
2946 	ctx_resched(cpuctx, task_ctx, pmu, EVENT_ALL|EVENT_CPU);
2947 	perf_ctx_unlock(cpuctx, task_ctx);
2948 }
2949 
2950 /*
2951  * Cross CPU call to install and enable a performance event
2952  *
2953  * Very similar to remote_function() + event_function() but cannot assume that
2954  * things like ctx->is_active and cpuctx->task_ctx are set.
2955  */
__perf_install_in_context(void * info)2956 static int  __perf_install_in_context(void *info)
2957 {
2958 	struct perf_event *event = info;
2959 	struct perf_event_context *ctx = event->ctx;
2960 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2961 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2962 	bool reprogram = true;
2963 	int ret = 0;
2964 
2965 	raw_spin_lock(&cpuctx->ctx.lock);
2966 	if (ctx->task) {
2967 		raw_spin_lock(&ctx->lock);
2968 		task_ctx = ctx;
2969 
2970 		reprogram = (ctx->task == current);
2971 
2972 		/*
2973 		 * If the task is running, it must be running on this CPU,
2974 		 * otherwise we cannot reprogram things.
2975 		 *
2976 		 * If its not running, we don't care, ctx->lock will
2977 		 * serialize against it becoming runnable.
2978 		 */
2979 		if (task_curr(ctx->task) && !reprogram) {
2980 			ret = -ESRCH;
2981 			goto unlock;
2982 		}
2983 
2984 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2985 	} else if (task_ctx) {
2986 		raw_spin_lock(&task_ctx->lock);
2987 	}
2988 
2989 #ifdef CONFIG_CGROUP_PERF
2990 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2991 		/*
2992 		 * If the current cgroup doesn't match the event's
2993 		 * cgroup, we should not try to schedule it.
2994 		 */
2995 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2996 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2997 					event->cgrp->css.cgroup);
2998 	}
2999 #endif
3000 
3001 	if (reprogram) {
3002 		ctx_time_freeze(cpuctx, ctx);
3003 		add_event_to_ctx(event, ctx);
3004 		ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu,
3005 			    get_event_type(event));
3006 	} else {
3007 		add_event_to_ctx(event, ctx);
3008 	}
3009 
3010 unlock:
3011 	perf_ctx_unlock(cpuctx, task_ctx);
3012 
3013 	return ret;
3014 }
3015 
3016 static bool exclusive_event_installable(struct perf_event *event,
3017 					struct perf_event_context *ctx);
3018 
3019 /*
3020  * Attach a performance event to a context.
3021  *
3022  * Very similar to event_function_call, see comment there.
3023  */
3024 static void
perf_install_in_context(struct perf_event_context * ctx,struct perf_event * event,int cpu)3025 perf_install_in_context(struct perf_event_context *ctx,
3026 			struct perf_event *event,
3027 			int cpu)
3028 {
3029 	struct task_struct *task = READ_ONCE(ctx->task);
3030 
3031 	lockdep_assert_held(&ctx->mutex);
3032 
3033 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
3034 
3035 	if (event->cpu != -1)
3036 		WARN_ON_ONCE(event->cpu != cpu);
3037 
3038 	/*
3039 	 * Ensures that if we can observe event->ctx, both the event and ctx
3040 	 * will be 'complete'. See perf_iterate_sb_cpu().
3041 	 */
3042 	smp_store_release(&event->ctx, ctx);
3043 
3044 	/*
3045 	 * perf_event_attr::disabled events will not run and can be initialized
3046 	 * without IPI. Except when this is the first event for the context, in
3047 	 * that case we need the magic of the IPI to set ctx->is_active.
3048 	 *
3049 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
3050 	 * event will issue the IPI and reprogram the hardware.
3051 	 */
3052 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
3053 	    ctx->nr_events && !is_cgroup_event(event)) {
3054 		raw_spin_lock_irq(&ctx->lock);
3055 		if (ctx->task == TASK_TOMBSTONE) {
3056 			raw_spin_unlock_irq(&ctx->lock);
3057 			return;
3058 		}
3059 		add_event_to_ctx(event, ctx);
3060 		raw_spin_unlock_irq(&ctx->lock);
3061 		return;
3062 	}
3063 
3064 	if (!task) {
3065 		cpu_function_call(cpu, __perf_install_in_context, event);
3066 		return;
3067 	}
3068 
3069 	/*
3070 	 * Should not happen, we validate the ctx is still alive before calling.
3071 	 */
3072 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
3073 		return;
3074 
3075 	/*
3076 	 * Installing events is tricky because we cannot rely on ctx->is_active
3077 	 * to be set in case this is the nr_events 0 -> 1 transition.
3078 	 *
3079 	 * Instead we use task_curr(), which tells us if the task is running.
3080 	 * However, since we use task_curr() outside of rq::lock, we can race
3081 	 * against the actual state. This means the result can be wrong.
3082 	 *
3083 	 * If we get a false positive, we retry, this is harmless.
3084 	 *
3085 	 * If we get a false negative, things are complicated. If we are after
3086 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
3087 	 * value must be correct. If we're before, it doesn't matter since
3088 	 * perf_event_context_sched_in() will program the counter.
3089 	 *
3090 	 * However, this hinges on the remote context switch having observed
3091 	 * our task->perf_event_ctxp[] store, such that it will in fact take
3092 	 * ctx::lock in perf_event_context_sched_in().
3093 	 *
3094 	 * We do this by task_function_call(), if the IPI fails to hit the task
3095 	 * we know any future context switch of task must see the
3096 	 * perf_event_ctpx[] store.
3097 	 */
3098 
3099 	/*
3100 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
3101 	 * task_cpu() load, such that if the IPI then does not find the task
3102 	 * running, a future context switch of that task must observe the
3103 	 * store.
3104 	 */
3105 	smp_mb();
3106 again:
3107 	if (!task_function_call(task, __perf_install_in_context, event))
3108 		return;
3109 
3110 	raw_spin_lock_irq(&ctx->lock);
3111 	task = ctx->task;
3112 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
3113 		/*
3114 		 * Cannot happen because we already checked above (which also
3115 		 * cannot happen), and we hold ctx->mutex, which serializes us
3116 		 * against perf_event_exit_task_context().
3117 		 */
3118 		raw_spin_unlock_irq(&ctx->lock);
3119 		return;
3120 	}
3121 	/*
3122 	 * If the task is not running, ctx->lock will avoid it becoming so,
3123 	 * thus we can safely install the event.
3124 	 */
3125 	if (task_curr(task)) {
3126 		raw_spin_unlock_irq(&ctx->lock);
3127 		goto again;
3128 	}
3129 	add_event_to_ctx(event, ctx);
3130 	raw_spin_unlock_irq(&ctx->lock);
3131 }
3132 
3133 /*
3134  * Cross CPU call to enable a performance event
3135  */
__perf_event_enable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)3136 static void __perf_event_enable(struct perf_event *event,
3137 				struct perf_cpu_context *cpuctx,
3138 				struct perf_event_context *ctx,
3139 				void *info)
3140 {
3141 	struct perf_event *leader = event->group_leader;
3142 	struct perf_event_context *task_ctx;
3143 
3144 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3145 	    event->state <= PERF_EVENT_STATE_ERROR)
3146 		return;
3147 
3148 	ctx_time_freeze(cpuctx, ctx);
3149 
3150 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3151 	perf_cgroup_event_enable(event, ctx);
3152 
3153 	if (!ctx->is_active)
3154 		return;
3155 
3156 	if (!event_filter_match(event))
3157 		return;
3158 
3159 	/*
3160 	 * If the event is in a group and isn't the group leader,
3161 	 * then don't put it on unless the group is on.
3162 	 */
3163 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
3164 		return;
3165 
3166 	task_ctx = cpuctx->task_ctx;
3167 	if (ctx->task)
3168 		WARN_ON_ONCE(task_ctx != ctx);
3169 
3170 	ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, get_event_type(event));
3171 }
3172 
3173 /*
3174  * Enable an event.
3175  *
3176  * If event->ctx is a cloned context, callers must make sure that
3177  * every task struct that event->ctx->task could possibly point to
3178  * remains valid.  This condition is satisfied when called through
3179  * perf_event_for_each_child or perf_event_for_each as described
3180  * for perf_event_disable.
3181  */
_perf_event_enable(struct perf_event * event)3182 static void _perf_event_enable(struct perf_event *event)
3183 {
3184 	struct perf_event_context *ctx = event->ctx;
3185 
3186 	raw_spin_lock_irq(&ctx->lock);
3187 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3188 	    event->state <  PERF_EVENT_STATE_ERROR) {
3189 out:
3190 		raw_spin_unlock_irq(&ctx->lock);
3191 		return;
3192 	}
3193 
3194 	/*
3195 	 * If the event is in error state, clear that first.
3196 	 *
3197 	 * That way, if we see the event in error state below, we know that it
3198 	 * has gone back into error state, as distinct from the task having
3199 	 * been scheduled away before the cross-call arrived.
3200 	 */
3201 	if (event->state == PERF_EVENT_STATE_ERROR) {
3202 		/*
3203 		 * Detached SIBLING events cannot leave ERROR state.
3204 		 */
3205 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3206 		    event->group_leader == event)
3207 			goto out;
3208 
3209 		event->state = PERF_EVENT_STATE_OFF;
3210 	}
3211 	raw_spin_unlock_irq(&ctx->lock);
3212 
3213 	event_function_call(event, __perf_event_enable, NULL);
3214 }
3215 
3216 /*
3217  * See perf_event_disable();
3218  */
perf_event_enable(struct perf_event * event)3219 void perf_event_enable(struct perf_event *event)
3220 {
3221 	struct perf_event_context *ctx;
3222 
3223 	ctx = perf_event_ctx_lock(event);
3224 	_perf_event_enable(event);
3225 	perf_event_ctx_unlock(event, ctx);
3226 }
3227 EXPORT_SYMBOL_GPL(perf_event_enable);
3228 
3229 struct stop_event_data {
3230 	struct perf_event	*event;
3231 	unsigned int		restart;
3232 };
3233 
__perf_event_stop(void * info)3234 static int __perf_event_stop(void *info)
3235 {
3236 	struct stop_event_data *sd = info;
3237 	struct perf_event *event = sd->event;
3238 
3239 	/* if it's already INACTIVE, do nothing */
3240 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3241 		return 0;
3242 
3243 	/* matches smp_wmb() in event_sched_in() */
3244 	smp_rmb();
3245 
3246 	/*
3247 	 * There is a window with interrupts enabled before we get here,
3248 	 * so we need to check again lest we try to stop another CPU's event.
3249 	 */
3250 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3251 		return -EAGAIN;
3252 
3253 	event->pmu->stop(event, PERF_EF_UPDATE);
3254 
3255 	/*
3256 	 * May race with the actual stop (through perf_pmu_output_stop()),
3257 	 * but it is only used for events with AUX ring buffer, and such
3258 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3259 	 * see comments in perf_aux_output_begin().
3260 	 *
3261 	 * Since this is happening on an event-local CPU, no trace is lost
3262 	 * while restarting.
3263 	 */
3264 	if (sd->restart)
3265 		event->pmu->start(event, 0);
3266 
3267 	return 0;
3268 }
3269 
perf_event_stop(struct perf_event * event,int restart)3270 static int perf_event_stop(struct perf_event *event, int restart)
3271 {
3272 	struct stop_event_data sd = {
3273 		.event		= event,
3274 		.restart	= restart,
3275 	};
3276 	int ret = 0;
3277 
3278 	do {
3279 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3280 			return 0;
3281 
3282 		/* matches smp_wmb() in event_sched_in() */
3283 		smp_rmb();
3284 
3285 		/*
3286 		 * We only want to restart ACTIVE events, so if the event goes
3287 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3288 		 * fall through with ret==-ENXIO.
3289 		 */
3290 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3291 					__perf_event_stop, &sd);
3292 	} while (ret == -EAGAIN);
3293 
3294 	return ret;
3295 }
3296 
3297 /*
3298  * In order to contain the amount of racy and tricky in the address filter
3299  * configuration management, it is a two part process:
3300  *
3301  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3302  *      we update the addresses of corresponding vmas in
3303  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3304  * (p2) when an event is scheduled in (pmu::add), it calls
3305  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3306  *      if the generation has changed since the previous call.
3307  *
3308  * If (p1) happens while the event is active, we restart it to force (p2).
3309  *
3310  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3311  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3312  *     ioctl;
3313  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3314  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3315  *     for reading;
3316  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3317  *     of exec.
3318  */
perf_event_addr_filters_sync(struct perf_event * event)3319 void perf_event_addr_filters_sync(struct perf_event *event)
3320 {
3321 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3322 
3323 	if (!has_addr_filter(event))
3324 		return;
3325 
3326 	raw_spin_lock(&ifh->lock);
3327 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3328 		event->pmu->addr_filters_sync(event);
3329 		event->hw.addr_filters_gen = event->addr_filters_gen;
3330 	}
3331 	raw_spin_unlock(&ifh->lock);
3332 }
3333 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3334 
_perf_event_refresh(struct perf_event * event,int refresh)3335 static int _perf_event_refresh(struct perf_event *event, int refresh)
3336 {
3337 	/*
3338 	 * not supported on inherited events
3339 	 */
3340 	if (event->attr.inherit || !is_sampling_event(event))
3341 		return -EINVAL;
3342 
3343 	atomic_add(refresh, &event->event_limit);
3344 	_perf_event_enable(event);
3345 
3346 	return 0;
3347 }
3348 
3349 /*
3350  * See perf_event_disable()
3351  */
perf_event_refresh(struct perf_event * event,int refresh)3352 int perf_event_refresh(struct perf_event *event, int refresh)
3353 {
3354 	struct perf_event_context *ctx;
3355 	int ret;
3356 
3357 	ctx = perf_event_ctx_lock(event);
3358 	ret = _perf_event_refresh(event, refresh);
3359 	perf_event_ctx_unlock(event, ctx);
3360 
3361 	return ret;
3362 }
3363 EXPORT_SYMBOL_GPL(perf_event_refresh);
3364 
perf_event_modify_breakpoint(struct perf_event * bp,struct perf_event_attr * attr)3365 static int perf_event_modify_breakpoint(struct perf_event *bp,
3366 					 struct perf_event_attr *attr)
3367 {
3368 	int err;
3369 
3370 	_perf_event_disable(bp);
3371 
3372 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3373 
3374 	if (!bp->attr.disabled)
3375 		_perf_event_enable(bp);
3376 
3377 	return err;
3378 }
3379 
3380 /*
3381  * Copy event-type-independent attributes that may be modified.
3382  */
perf_event_modify_copy_attr(struct perf_event_attr * to,const struct perf_event_attr * from)3383 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3384 					const struct perf_event_attr *from)
3385 {
3386 	to->sig_data = from->sig_data;
3387 }
3388 
perf_event_modify_attr(struct perf_event * event,struct perf_event_attr * attr)3389 static int perf_event_modify_attr(struct perf_event *event,
3390 				  struct perf_event_attr *attr)
3391 {
3392 	int (*func)(struct perf_event *, struct perf_event_attr *);
3393 	struct perf_event *child;
3394 	int err;
3395 
3396 	if (event->attr.type != attr->type)
3397 		return -EINVAL;
3398 
3399 	switch (event->attr.type) {
3400 	case PERF_TYPE_BREAKPOINT:
3401 		func = perf_event_modify_breakpoint;
3402 		break;
3403 	default:
3404 		/* Place holder for future additions. */
3405 		return -EOPNOTSUPP;
3406 	}
3407 
3408 	WARN_ON_ONCE(event->ctx->parent_ctx);
3409 
3410 	mutex_lock(&event->child_mutex);
3411 	/*
3412 	 * Event-type-independent attributes must be copied before event-type
3413 	 * modification, which will validate that final attributes match the
3414 	 * source attributes after all relevant attributes have been copied.
3415 	 */
3416 	perf_event_modify_copy_attr(&event->attr, attr);
3417 	err = func(event, attr);
3418 	if (err)
3419 		goto out;
3420 	list_for_each_entry(child, &event->child_list, child_list) {
3421 		perf_event_modify_copy_attr(&child->attr, attr);
3422 		err = func(child, attr);
3423 		if (err)
3424 			goto out;
3425 	}
3426 out:
3427 	mutex_unlock(&event->child_mutex);
3428 	return err;
3429 }
3430 
__pmu_ctx_sched_out(struct perf_event_pmu_context * pmu_ctx,enum event_type_t event_type)3431 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3432 				enum event_type_t event_type)
3433 {
3434 	struct perf_event_context *ctx = pmu_ctx->ctx;
3435 	struct perf_event *event, *tmp;
3436 	struct pmu *pmu = pmu_ctx->pmu;
3437 
3438 	if (ctx->task && !(ctx->is_active & EVENT_ALL)) {
3439 		struct perf_cpu_pmu_context *cpc = this_cpc(pmu);
3440 
3441 		WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3442 		cpc->task_epc = NULL;
3443 	}
3444 
3445 	if (!(event_type & EVENT_ALL))
3446 		return;
3447 
3448 	perf_pmu_disable(pmu);
3449 	if (event_type & EVENT_PINNED) {
3450 		list_for_each_entry_safe(event, tmp,
3451 					 &pmu_ctx->pinned_active,
3452 					 active_list)
3453 			group_sched_out(event, ctx);
3454 	}
3455 
3456 	if (event_type & EVENT_FLEXIBLE) {
3457 		list_for_each_entry_safe(event, tmp,
3458 					 &pmu_ctx->flexible_active,
3459 					 active_list)
3460 			group_sched_out(event, ctx);
3461 		/*
3462 		 * Since we cleared EVENT_FLEXIBLE, also clear
3463 		 * rotate_necessary, is will be reset by
3464 		 * ctx_flexible_sched_in() when needed.
3465 		 */
3466 		pmu_ctx->rotate_necessary = 0;
3467 	}
3468 	perf_pmu_enable(pmu);
3469 }
3470 
3471 /*
3472  * Be very careful with the @pmu argument since this will change ctx state.
3473  * The @pmu argument works for ctx_resched(), because that is symmetric in
3474  * ctx_sched_out() / ctx_sched_in() usage and the ctx state ends up invariant.
3475  *
3476  * However, if you were to be asymmetrical, you could end up with messed up
3477  * state, eg. ctx->is_active cleared even though most EPCs would still actually
3478  * be active.
3479  */
3480 static void
ctx_sched_out(struct perf_event_context * ctx,struct pmu * pmu,enum event_type_t event_type)3481 ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
3482 {
3483 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3484 	struct perf_event_pmu_context *pmu_ctx;
3485 	int is_active = ctx->is_active;
3486 	bool cgroup = event_type & EVENT_CGROUP;
3487 
3488 	event_type &= ~EVENT_CGROUP;
3489 
3490 	lockdep_assert_held(&ctx->lock);
3491 
3492 	if (likely(!ctx->nr_events)) {
3493 		/*
3494 		 * See __perf_remove_from_context().
3495 		 */
3496 		WARN_ON_ONCE(ctx->is_active);
3497 		if (ctx->task)
3498 			WARN_ON_ONCE(cpuctx->task_ctx);
3499 		return;
3500 	}
3501 
3502 	/*
3503 	 * Always update time if it was set; not only when it changes.
3504 	 * Otherwise we can 'forget' to update time for any but the last
3505 	 * context we sched out. For example:
3506 	 *
3507 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3508 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3509 	 *
3510 	 * would only update time for the pinned events.
3511 	 */
3512 	__ctx_time_update(cpuctx, ctx, ctx == &cpuctx->ctx);
3513 
3514 	/*
3515 	 * CPU-release for the below ->is_active store,
3516 	 * see __load_acquire() in perf_event_time_now()
3517 	 */
3518 	barrier();
3519 	ctx->is_active &= ~event_type;
3520 
3521 	if (!(ctx->is_active & EVENT_ALL)) {
3522 		/*
3523 		 * For FROZEN, preserve TIME|FROZEN such that perf_event_time_now()
3524 		 * does not observe a hole. perf_ctx_unlock() will clean up.
3525 		 */
3526 		if (ctx->is_active & EVENT_FROZEN)
3527 			ctx->is_active &= EVENT_TIME_FROZEN;
3528 		else
3529 			ctx->is_active = 0;
3530 	}
3531 
3532 	if (ctx->task) {
3533 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3534 		if (!(ctx->is_active & EVENT_ALL))
3535 			cpuctx->task_ctx = NULL;
3536 	}
3537 
3538 	is_active ^= ctx->is_active; /* changed bits */
3539 
3540 	for_each_epc(pmu_ctx, ctx, pmu, cgroup)
3541 		__pmu_ctx_sched_out(pmu_ctx, is_active);
3542 }
3543 
3544 /*
3545  * Test whether two contexts are equivalent, i.e. whether they have both been
3546  * cloned from the same version of the same context.
3547  *
3548  * Equivalence is measured using a generation number in the context that is
3549  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3550  * and list_del_event().
3551  */
context_equiv(struct perf_event_context * ctx1,struct perf_event_context * ctx2)3552 static int context_equiv(struct perf_event_context *ctx1,
3553 			 struct perf_event_context *ctx2)
3554 {
3555 	lockdep_assert_held(&ctx1->lock);
3556 	lockdep_assert_held(&ctx2->lock);
3557 
3558 	/* Pinning disables the swap optimization */
3559 	if (ctx1->pin_count || ctx2->pin_count)
3560 		return 0;
3561 
3562 	/* If ctx1 is the parent of ctx2 */
3563 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3564 		return 1;
3565 
3566 	/* If ctx2 is the parent of ctx1 */
3567 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3568 		return 1;
3569 
3570 	/*
3571 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3572 	 * hierarchy, see perf_event_init_context().
3573 	 */
3574 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3575 			ctx1->parent_gen == ctx2->parent_gen)
3576 		return 1;
3577 
3578 	/* Unmatched */
3579 	return 0;
3580 }
3581 
__perf_event_sync_stat(struct perf_event * event,struct perf_event * next_event)3582 static void __perf_event_sync_stat(struct perf_event *event,
3583 				     struct perf_event *next_event)
3584 {
3585 	u64 value;
3586 
3587 	if (!event->attr.inherit_stat)
3588 		return;
3589 
3590 	/*
3591 	 * Update the event value, we cannot use perf_event_read()
3592 	 * because we're in the middle of a context switch and have IRQs
3593 	 * disabled, which upsets smp_call_function_single(), however
3594 	 * we know the event must be on the current CPU, therefore we
3595 	 * don't need to use it.
3596 	 */
3597 	perf_pmu_read(event);
3598 
3599 	perf_event_update_time(event);
3600 
3601 	/*
3602 	 * In order to keep per-task stats reliable we need to flip the event
3603 	 * values when we flip the contexts.
3604 	 */
3605 	value = local64_read(&next_event->count);
3606 	value = local64_xchg(&event->count, value);
3607 	local64_set(&next_event->count, value);
3608 
3609 	swap(event->total_time_enabled, next_event->total_time_enabled);
3610 	swap(event->total_time_running, next_event->total_time_running);
3611 
3612 	/*
3613 	 * Since we swizzled the values, update the user visible data too.
3614 	 */
3615 	perf_event_update_userpage(event);
3616 	perf_event_update_userpage(next_event);
3617 }
3618 
perf_event_sync_stat(struct perf_event_context * ctx,struct perf_event_context * next_ctx)3619 static void perf_event_sync_stat(struct perf_event_context *ctx,
3620 				   struct perf_event_context *next_ctx)
3621 {
3622 	struct perf_event *event, *next_event;
3623 
3624 	if (!ctx->nr_stat)
3625 		return;
3626 
3627 	update_context_time(ctx);
3628 
3629 	event = list_first_entry(&ctx->event_list,
3630 				   struct perf_event, event_entry);
3631 
3632 	next_event = list_first_entry(&next_ctx->event_list,
3633 					struct perf_event, event_entry);
3634 
3635 	while (&event->event_entry != &ctx->event_list &&
3636 	       &next_event->event_entry != &next_ctx->event_list) {
3637 
3638 		__perf_event_sync_stat(event, next_event);
3639 
3640 		event = list_next_entry(event, event_entry);
3641 		next_event = list_next_entry(next_event, event_entry);
3642 	}
3643 }
3644 
perf_ctx_sched_task_cb(struct perf_event_context * ctx,struct task_struct * task,bool sched_in)3645 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx,
3646 				   struct task_struct *task, bool sched_in)
3647 {
3648 	struct perf_event_pmu_context *pmu_ctx;
3649 	struct perf_cpu_pmu_context *cpc;
3650 
3651 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3652 		cpc = this_cpc(pmu_ctx->pmu);
3653 
3654 		if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3655 			pmu_ctx->pmu->sched_task(pmu_ctx, task, sched_in);
3656 	}
3657 }
3658 
3659 static void
perf_event_context_sched_out(struct task_struct * task,struct task_struct * next)3660 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3661 {
3662 	struct perf_event_context *ctx = task->perf_event_ctxp;
3663 	struct perf_event_context *next_ctx;
3664 	struct perf_event_context *parent, *next_parent;
3665 	int do_switch = 1;
3666 
3667 	if (likely(!ctx))
3668 		return;
3669 
3670 	rcu_read_lock();
3671 	next_ctx = rcu_dereference(next->perf_event_ctxp);
3672 	if (!next_ctx)
3673 		goto unlock;
3674 
3675 	parent = rcu_dereference(ctx->parent_ctx);
3676 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3677 
3678 	/* If neither context have a parent context; they cannot be clones. */
3679 	if (!parent && !next_parent)
3680 		goto unlock;
3681 
3682 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3683 		/*
3684 		 * Looks like the two contexts are clones, so we might be
3685 		 * able to optimize the context switch.  We lock both
3686 		 * contexts and check that they are clones under the
3687 		 * lock (including re-checking that neither has been
3688 		 * uncloned in the meantime).  It doesn't matter which
3689 		 * order we take the locks because no other cpu could
3690 		 * be trying to lock both of these tasks.
3691 		 */
3692 		raw_spin_lock(&ctx->lock);
3693 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3694 		if (context_equiv(ctx, next_ctx)) {
3695 
3696 			perf_ctx_disable(ctx, false);
3697 
3698 			/* PMIs are disabled; ctx->nr_no_switch_fast is stable. */
3699 			if (local_read(&ctx->nr_no_switch_fast) ||
3700 			    local_read(&next_ctx->nr_no_switch_fast)) {
3701 				/*
3702 				 * Must not swap out ctx when there's pending
3703 				 * events that rely on the ctx->task relation.
3704 				 *
3705 				 * Likewise, when a context contains inherit +
3706 				 * SAMPLE_READ events they should be switched
3707 				 * out using the slow path so that they are
3708 				 * treated as if they were distinct contexts.
3709 				 */
3710 				raw_spin_unlock(&next_ctx->lock);
3711 				rcu_read_unlock();
3712 				goto inside_switch;
3713 			}
3714 
3715 			WRITE_ONCE(ctx->task, next);
3716 			WRITE_ONCE(next_ctx->task, task);
3717 
3718 			perf_ctx_sched_task_cb(ctx, task, false);
3719 
3720 			perf_ctx_enable(ctx, false);
3721 
3722 			/*
3723 			 * RCU_INIT_POINTER here is safe because we've not
3724 			 * modified the ctx and the above modification of
3725 			 * ctx->task is immaterial since this value is
3726 			 * always verified under ctx->lock which we're now
3727 			 * holding.
3728 			 */
3729 			RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3730 			RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3731 
3732 			do_switch = 0;
3733 
3734 			perf_event_sync_stat(ctx, next_ctx);
3735 		}
3736 		raw_spin_unlock(&next_ctx->lock);
3737 		raw_spin_unlock(&ctx->lock);
3738 	}
3739 unlock:
3740 	rcu_read_unlock();
3741 
3742 	if (do_switch) {
3743 		raw_spin_lock(&ctx->lock);
3744 		perf_ctx_disable(ctx, false);
3745 
3746 inside_switch:
3747 		perf_ctx_sched_task_cb(ctx, task, false);
3748 		task_ctx_sched_out(ctx, NULL, EVENT_ALL);
3749 
3750 		perf_ctx_enable(ctx, false);
3751 		raw_spin_unlock(&ctx->lock);
3752 	}
3753 }
3754 
3755 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3756 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3757 
perf_sched_cb_dec(struct pmu * pmu)3758 void perf_sched_cb_dec(struct pmu *pmu)
3759 {
3760 	struct perf_cpu_pmu_context *cpc = this_cpc(pmu);
3761 
3762 	this_cpu_dec(perf_sched_cb_usages);
3763 	barrier();
3764 
3765 	if (!--cpc->sched_cb_usage)
3766 		list_del(&cpc->sched_cb_entry);
3767 }
3768 
3769 
perf_sched_cb_inc(struct pmu * pmu)3770 void perf_sched_cb_inc(struct pmu *pmu)
3771 {
3772 	struct perf_cpu_pmu_context *cpc = this_cpc(pmu);
3773 
3774 	if (!cpc->sched_cb_usage++)
3775 		list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3776 
3777 	barrier();
3778 	this_cpu_inc(perf_sched_cb_usages);
3779 }
3780 
3781 /*
3782  * This function provides the context switch callback to the lower code
3783  * layer. It is invoked ONLY when the context switch callback is enabled.
3784  *
3785  * This callback is relevant even to per-cpu events; for example multi event
3786  * PEBS requires this to provide PID/TID information. This requires we flush
3787  * all queued PEBS records before we context switch to a new task.
3788  */
__perf_pmu_sched_task(struct perf_cpu_pmu_context * cpc,struct task_struct * task,bool sched_in)3789 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc,
3790 				  struct task_struct *task, bool sched_in)
3791 {
3792 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3793 	struct pmu *pmu;
3794 
3795 	pmu = cpc->epc.pmu;
3796 
3797 	/* software PMUs will not have sched_task */
3798 	if (WARN_ON_ONCE(!pmu->sched_task))
3799 		return;
3800 
3801 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3802 	perf_pmu_disable(pmu);
3803 
3804 	pmu->sched_task(cpc->task_epc, task, sched_in);
3805 
3806 	perf_pmu_enable(pmu);
3807 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3808 }
3809 
perf_pmu_sched_task(struct task_struct * prev,struct task_struct * next,bool sched_in)3810 static void perf_pmu_sched_task(struct task_struct *prev,
3811 				struct task_struct *next,
3812 				bool sched_in)
3813 {
3814 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3815 	struct perf_cpu_pmu_context *cpc;
3816 
3817 	/* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3818 	if (prev == next || cpuctx->task_ctx)
3819 		return;
3820 
3821 	list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3822 		__perf_pmu_sched_task(cpc, sched_in ? next : prev, sched_in);
3823 }
3824 
3825 static void perf_event_switch(struct task_struct *task,
3826 			      struct task_struct *next_prev, bool sched_in);
3827 
3828 /*
3829  * Called from scheduler to remove the events of the current task,
3830  * with interrupts disabled.
3831  *
3832  * We stop each event and update the event value in event->count.
3833  *
3834  * This does not protect us against NMI, but disable()
3835  * sets the disabled bit in the control field of event _before_
3836  * accessing the event control register. If a NMI hits, then it will
3837  * not restart the event.
3838  */
__perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)3839 void __perf_event_task_sched_out(struct task_struct *task,
3840 				 struct task_struct *next)
3841 {
3842 	if (__this_cpu_read(perf_sched_cb_usages))
3843 		perf_pmu_sched_task(task, next, false);
3844 
3845 	if (atomic_read(&nr_switch_events))
3846 		perf_event_switch(task, next, false);
3847 
3848 	perf_event_context_sched_out(task, next);
3849 
3850 	/*
3851 	 * if cgroup events exist on this CPU, then we need
3852 	 * to check if we have to switch out PMU state.
3853 	 * cgroup event are system-wide mode only
3854 	 */
3855 	perf_cgroup_switch(next);
3856 }
3857 
perf_less_group_idx(const void * l,const void * r,void __always_unused * args)3858 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args)
3859 {
3860 	const struct perf_event *le = *(const struct perf_event **)l;
3861 	const struct perf_event *re = *(const struct perf_event **)r;
3862 
3863 	return le->group_index < re->group_index;
3864 }
3865 
3866 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap);
3867 
3868 static const struct min_heap_callbacks perf_min_heap = {
3869 	.less = perf_less_group_idx,
3870 	.swp = NULL,
3871 };
3872 
__heap_add(struct perf_event_min_heap * heap,struct perf_event * event)3873 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event)
3874 {
3875 	struct perf_event **itrs = heap->data;
3876 
3877 	if (event) {
3878 		itrs[heap->nr] = event;
3879 		heap->nr++;
3880 	}
3881 }
3882 
__link_epc(struct perf_event_pmu_context * pmu_ctx)3883 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3884 {
3885 	struct perf_cpu_pmu_context *cpc;
3886 
3887 	if (!pmu_ctx->ctx->task)
3888 		return;
3889 
3890 	cpc = this_cpc(pmu_ctx->pmu);
3891 	WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3892 	cpc->task_epc = pmu_ctx;
3893 }
3894 
visit_groups_merge(struct perf_event_context * ctx,struct perf_event_groups * groups,int cpu,struct pmu * pmu,int (* func)(struct perf_event *,void *),void * data)3895 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3896 				struct perf_event_groups *groups, int cpu,
3897 				struct pmu *pmu,
3898 				int (*func)(struct perf_event *, void *),
3899 				void *data)
3900 {
3901 #ifdef CONFIG_CGROUP_PERF
3902 	struct cgroup_subsys_state *css = NULL;
3903 #endif
3904 	struct perf_cpu_context *cpuctx = NULL;
3905 	/* Space for per CPU and/or any CPU event iterators. */
3906 	struct perf_event *itrs[2];
3907 	struct perf_event_min_heap event_heap;
3908 	struct perf_event **evt;
3909 	int ret;
3910 
3911 	if (pmu->filter && pmu->filter(pmu, cpu))
3912 		return 0;
3913 
3914 	if (!ctx->task) {
3915 		cpuctx = this_cpu_ptr(&perf_cpu_context);
3916 		event_heap = (struct perf_event_min_heap){
3917 			.data = cpuctx->heap,
3918 			.nr = 0,
3919 			.size = cpuctx->heap_size,
3920 		};
3921 
3922 		lockdep_assert_held(&cpuctx->ctx.lock);
3923 
3924 #ifdef CONFIG_CGROUP_PERF
3925 		if (cpuctx->cgrp)
3926 			css = &cpuctx->cgrp->css;
3927 #endif
3928 	} else {
3929 		event_heap = (struct perf_event_min_heap){
3930 			.data = itrs,
3931 			.nr = 0,
3932 			.size = ARRAY_SIZE(itrs),
3933 		};
3934 		/* Events not within a CPU context may be on any CPU. */
3935 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3936 	}
3937 	evt = event_heap.data;
3938 
3939 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3940 
3941 #ifdef CONFIG_CGROUP_PERF
3942 	for (; css; css = css->parent)
3943 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3944 #endif
3945 
3946 	if (event_heap.nr) {
3947 		__link_epc((*evt)->pmu_ctx);
3948 		perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3949 	}
3950 
3951 	min_heapify_all_inline(&event_heap, &perf_min_heap, NULL);
3952 
3953 	while (event_heap.nr) {
3954 		ret = func(*evt, data);
3955 		if (ret)
3956 			return ret;
3957 
3958 		*evt = perf_event_groups_next(*evt, pmu);
3959 		if (*evt)
3960 			min_heap_sift_down_inline(&event_heap, 0, &perf_min_heap, NULL);
3961 		else
3962 			min_heap_pop_inline(&event_heap, &perf_min_heap, NULL);
3963 	}
3964 
3965 	return 0;
3966 }
3967 
3968 /*
3969  * Because the userpage is strictly per-event (there is no concept of context,
3970  * so there cannot be a context indirection), every userpage must be updated
3971  * when context time starts :-(
3972  *
3973  * IOW, we must not miss EVENT_TIME edges.
3974  */
event_update_userpage(struct perf_event * event)3975 static inline bool event_update_userpage(struct perf_event *event)
3976 {
3977 	if (likely(!refcount_read(&event->mmap_count)))
3978 		return false;
3979 
3980 	perf_event_update_time(event);
3981 	perf_event_update_userpage(event);
3982 
3983 	return true;
3984 }
3985 
group_update_userpage(struct perf_event * group_event)3986 static inline void group_update_userpage(struct perf_event *group_event)
3987 {
3988 	struct perf_event *event;
3989 
3990 	if (!event_update_userpage(group_event))
3991 		return;
3992 
3993 	for_each_sibling_event(event, group_event)
3994 		event_update_userpage(event);
3995 }
3996 
merge_sched_in(struct perf_event * event,void * data)3997 static int merge_sched_in(struct perf_event *event, void *data)
3998 {
3999 	struct perf_event_context *ctx = event->ctx;
4000 	int *can_add_hw = data;
4001 
4002 	if (event->state <= PERF_EVENT_STATE_OFF)
4003 		return 0;
4004 
4005 	if (!event_filter_match(event))
4006 		return 0;
4007 
4008 	if (group_can_go_on(event, *can_add_hw)) {
4009 		if (!group_sched_in(event, ctx))
4010 			list_add_tail(&event->active_list, get_event_list(event));
4011 	}
4012 
4013 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
4014 		*can_add_hw = 0;
4015 		if (event->attr.pinned) {
4016 			perf_cgroup_event_disable(event, ctx);
4017 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
4018 
4019 			if (*perf_event_fasync(event))
4020 				event->pending_kill = POLL_ERR;
4021 
4022 			perf_event_wakeup(event);
4023 		} else {
4024 			struct perf_cpu_pmu_context *cpc = this_cpc(event->pmu_ctx->pmu);
4025 
4026 			event->pmu_ctx->rotate_necessary = 1;
4027 			perf_mux_hrtimer_restart(cpc);
4028 			group_update_userpage(event);
4029 		}
4030 	}
4031 
4032 	return 0;
4033 }
4034 
pmu_groups_sched_in(struct perf_event_context * ctx,struct perf_event_groups * groups,struct pmu * pmu)4035 static void pmu_groups_sched_in(struct perf_event_context *ctx,
4036 				struct perf_event_groups *groups,
4037 				struct pmu *pmu)
4038 {
4039 	int can_add_hw = 1;
4040 	visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
4041 			   merge_sched_in, &can_add_hw);
4042 }
4043 
__pmu_ctx_sched_in(struct perf_event_pmu_context * pmu_ctx,enum event_type_t event_type)4044 static void __pmu_ctx_sched_in(struct perf_event_pmu_context *pmu_ctx,
4045 			       enum event_type_t event_type)
4046 {
4047 	struct perf_event_context *ctx = pmu_ctx->ctx;
4048 
4049 	if (event_type & EVENT_PINNED)
4050 		pmu_groups_sched_in(ctx, &ctx->pinned_groups, pmu_ctx->pmu);
4051 	if (event_type & EVENT_FLEXIBLE)
4052 		pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu_ctx->pmu);
4053 }
4054 
4055 static void
ctx_sched_in(struct perf_event_context * ctx,struct pmu * pmu,enum event_type_t event_type)4056 ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
4057 {
4058 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4059 	struct perf_event_pmu_context *pmu_ctx;
4060 	int is_active = ctx->is_active;
4061 	bool cgroup = event_type & EVENT_CGROUP;
4062 
4063 	event_type &= ~EVENT_CGROUP;
4064 
4065 	lockdep_assert_held(&ctx->lock);
4066 
4067 	if (likely(!ctx->nr_events))
4068 		return;
4069 
4070 	if (!(is_active & EVENT_TIME)) {
4071 		/* start ctx time */
4072 		__update_context_time(ctx, false);
4073 		perf_cgroup_set_timestamp(cpuctx);
4074 		/*
4075 		 * CPU-release for the below ->is_active store,
4076 		 * see __load_acquire() in perf_event_time_now()
4077 		 */
4078 		barrier();
4079 	}
4080 
4081 	ctx->is_active |= (event_type | EVENT_TIME);
4082 	if (ctx->task) {
4083 		if (!(is_active & EVENT_ALL))
4084 			cpuctx->task_ctx = ctx;
4085 		else
4086 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
4087 	}
4088 
4089 	is_active ^= ctx->is_active; /* changed bits */
4090 
4091 	/*
4092 	 * First go through the list and put on any pinned groups
4093 	 * in order to give them the best chance of going on.
4094 	 */
4095 	if (is_active & EVENT_PINNED) {
4096 		for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4097 			__pmu_ctx_sched_in(pmu_ctx, EVENT_PINNED);
4098 	}
4099 
4100 	/* Then walk through the lower prio flexible groups */
4101 	if (is_active & EVENT_FLEXIBLE) {
4102 		for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4103 			__pmu_ctx_sched_in(pmu_ctx, EVENT_FLEXIBLE);
4104 	}
4105 }
4106 
perf_event_context_sched_in(struct task_struct * task)4107 static void perf_event_context_sched_in(struct task_struct *task)
4108 {
4109 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4110 	struct perf_event_context *ctx;
4111 
4112 	rcu_read_lock();
4113 	ctx = rcu_dereference(task->perf_event_ctxp);
4114 	if (!ctx)
4115 		goto rcu_unlock;
4116 
4117 	if (cpuctx->task_ctx == ctx) {
4118 		perf_ctx_lock(cpuctx, ctx);
4119 		perf_ctx_disable(ctx, false);
4120 
4121 		perf_ctx_sched_task_cb(ctx, task, true);
4122 
4123 		perf_ctx_enable(ctx, false);
4124 		perf_ctx_unlock(cpuctx, ctx);
4125 		goto rcu_unlock;
4126 	}
4127 
4128 	perf_ctx_lock(cpuctx, ctx);
4129 	/*
4130 	 * We must check ctx->nr_events while holding ctx->lock, such
4131 	 * that we serialize against perf_install_in_context().
4132 	 */
4133 	if (!ctx->nr_events)
4134 		goto unlock;
4135 
4136 	perf_ctx_disable(ctx, false);
4137 	/*
4138 	 * We want to keep the following priority order:
4139 	 * cpu pinned (that don't need to move), task pinned,
4140 	 * cpu flexible, task flexible.
4141 	 *
4142 	 * However, if task's ctx is not carrying any pinned
4143 	 * events, no need to flip the cpuctx's events around.
4144 	 */
4145 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
4146 		perf_ctx_disable(&cpuctx->ctx, false);
4147 		ctx_sched_out(&cpuctx->ctx, NULL, EVENT_FLEXIBLE);
4148 	}
4149 
4150 	perf_event_sched_in(cpuctx, ctx, NULL);
4151 
4152 	perf_ctx_sched_task_cb(cpuctx->task_ctx, task, true);
4153 
4154 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
4155 		perf_ctx_enable(&cpuctx->ctx, false);
4156 
4157 	perf_ctx_enable(ctx, false);
4158 
4159 unlock:
4160 	perf_ctx_unlock(cpuctx, ctx);
4161 rcu_unlock:
4162 	rcu_read_unlock();
4163 }
4164 
4165 /*
4166  * Called from scheduler to add the events of the current task
4167  * with interrupts disabled.
4168  *
4169  * We restore the event value and then enable it.
4170  *
4171  * This does not protect us against NMI, but enable()
4172  * sets the enabled bit in the control field of event _before_
4173  * accessing the event control register. If a NMI hits, then it will
4174  * keep the event running.
4175  */
__perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)4176 void __perf_event_task_sched_in(struct task_struct *prev,
4177 				struct task_struct *task)
4178 {
4179 	perf_event_context_sched_in(task);
4180 
4181 	if (atomic_read(&nr_switch_events))
4182 		perf_event_switch(task, prev, true);
4183 
4184 	if (__this_cpu_read(perf_sched_cb_usages))
4185 		perf_pmu_sched_task(prev, task, true);
4186 }
4187 
perf_calculate_period(struct perf_event * event,u64 nsec,u64 count)4188 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4189 {
4190 	u64 frequency = event->attr.sample_freq;
4191 	u64 sec = NSEC_PER_SEC;
4192 	u64 divisor, dividend;
4193 
4194 	int count_fls, nsec_fls, frequency_fls, sec_fls;
4195 
4196 	count_fls = fls64(count);
4197 	nsec_fls = fls64(nsec);
4198 	frequency_fls = fls64(frequency);
4199 	sec_fls = 30;
4200 
4201 	/*
4202 	 * We got @count in @nsec, with a target of sample_freq HZ
4203 	 * the target period becomes:
4204 	 *
4205 	 *             @count * 10^9
4206 	 * period = -------------------
4207 	 *          @nsec * sample_freq
4208 	 *
4209 	 */
4210 
4211 	/*
4212 	 * Reduce accuracy by one bit such that @a and @b converge
4213 	 * to a similar magnitude.
4214 	 */
4215 #define REDUCE_FLS(a, b)		\
4216 do {					\
4217 	if (a##_fls > b##_fls) {	\
4218 		a >>= 1;		\
4219 		a##_fls--;		\
4220 	} else {			\
4221 		b >>= 1;		\
4222 		b##_fls--;		\
4223 	}				\
4224 } while (0)
4225 
4226 	/*
4227 	 * Reduce accuracy until either term fits in a u64, then proceed with
4228 	 * the other, so that finally we can do a u64/u64 division.
4229 	 */
4230 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4231 		REDUCE_FLS(nsec, frequency);
4232 		REDUCE_FLS(sec, count);
4233 	}
4234 
4235 	if (count_fls + sec_fls > 64) {
4236 		divisor = nsec * frequency;
4237 
4238 		while (count_fls + sec_fls > 64) {
4239 			REDUCE_FLS(count, sec);
4240 			divisor >>= 1;
4241 		}
4242 
4243 		dividend = count * sec;
4244 	} else {
4245 		dividend = count * sec;
4246 
4247 		while (nsec_fls + frequency_fls > 64) {
4248 			REDUCE_FLS(nsec, frequency);
4249 			dividend >>= 1;
4250 		}
4251 
4252 		divisor = nsec * frequency;
4253 	}
4254 
4255 	if (!divisor)
4256 		return dividend;
4257 
4258 	return div64_u64(dividend, divisor);
4259 }
4260 
4261 static DEFINE_PER_CPU(int, perf_throttled_count);
4262 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4263 
perf_adjust_period(struct perf_event * event,u64 nsec,u64 count,bool disable)4264 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4265 {
4266 	struct hw_perf_event *hwc = &event->hw;
4267 	s64 period, sample_period;
4268 	s64 delta;
4269 
4270 	period = perf_calculate_period(event, nsec, count);
4271 
4272 	delta = (s64)(period - hwc->sample_period);
4273 	if (delta >= 0)
4274 		delta += 7;
4275 	else
4276 		delta -= 7;
4277 	delta /= 8; /* low pass filter */
4278 
4279 	sample_period = hwc->sample_period + delta;
4280 
4281 	if (!sample_period)
4282 		sample_period = 1;
4283 
4284 	hwc->sample_period = sample_period;
4285 
4286 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4287 		if (disable)
4288 			event->pmu->stop(event, PERF_EF_UPDATE);
4289 
4290 		local64_set(&hwc->period_left, 0);
4291 
4292 		if (disable)
4293 			event->pmu->start(event, PERF_EF_RELOAD);
4294 	}
4295 }
4296 
perf_adjust_freq_unthr_events(struct list_head * event_list)4297 static void perf_adjust_freq_unthr_events(struct list_head *event_list)
4298 {
4299 	struct perf_event *event;
4300 	struct hw_perf_event *hwc;
4301 	u64 now, period = TICK_NSEC;
4302 	s64 delta;
4303 
4304 	list_for_each_entry(event, event_list, active_list) {
4305 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4306 			continue;
4307 
4308 		// XXX use visit thingy to avoid the -1,cpu match
4309 		if (!event_filter_match(event))
4310 			continue;
4311 
4312 		hwc = &event->hw;
4313 
4314 		if (hwc->interrupts == MAX_INTERRUPTS)
4315 			perf_event_unthrottle_group(event, is_event_in_freq_mode(event));
4316 
4317 		if (!is_event_in_freq_mode(event))
4318 			continue;
4319 
4320 		/*
4321 		 * stop the event and update event->count
4322 		 */
4323 		event->pmu->stop(event, PERF_EF_UPDATE);
4324 
4325 		now = local64_read(&event->count);
4326 		delta = now - hwc->freq_count_stamp;
4327 		hwc->freq_count_stamp = now;
4328 
4329 		/*
4330 		 * restart the event
4331 		 * reload only if value has changed
4332 		 * we have stopped the event so tell that
4333 		 * to perf_adjust_period() to avoid stopping it
4334 		 * twice.
4335 		 */
4336 		if (delta > 0)
4337 			perf_adjust_period(event, period, delta, false);
4338 
4339 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4340 	}
4341 }
4342 
4343 /*
4344  * combine freq adjustment with unthrottling to avoid two passes over the
4345  * events. At the same time, make sure, having freq events does not change
4346  * the rate of unthrottling as that would introduce bias.
4347  */
4348 static void
perf_adjust_freq_unthr_context(struct perf_event_context * ctx,bool unthrottle)4349 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4350 {
4351 	struct perf_event_pmu_context *pmu_ctx;
4352 
4353 	/*
4354 	 * only need to iterate over all events iff:
4355 	 * - context have events in frequency mode (needs freq adjust)
4356 	 * - there are events to unthrottle on this cpu
4357 	 */
4358 	if (!(ctx->nr_freq || unthrottle))
4359 		return;
4360 
4361 	raw_spin_lock(&ctx->lock);
4362 
4363 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4364 		if (!(pmu_ctx->nr_freq || unthrottle))
4365 			continue;
4366 		if (!perf_pmu_ctx_is_active(pmu_ctx))
4367 			continue;
4368 		if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT)
4369 			continue;
4370 
4371 		perf_pmu_disable(pmu_ctx->pmu);
4372 		perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active);
4373 		perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active);
4374 		perf_pmu_enable(pmu_ctx->pmu);
4375 	}
4376 
4377 	raw_spin_unlock(&ctx->lock);
4378 }
4379 
4380 /*
4381  * Move @event to the tail of the @ctx's elegible events.
4382  */
rotate_ctx(struct perf_event_context * ctx,struct perf_event * event)4383 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4384 {
4385 	/*
4386 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4387 	 * disabled by the inheritance code.
4388 	 */
4389 	if (ctx->rotate_disable)
4390 		return;
4391 
4392 	perf_event_groups_delete(&ctx->flexible_groups, event);
4393 	perf_event_groups_insert(&ctx->flexible_groups, event);
4394 }
4395 
4396 /* pick an event from the flexible_groups to rotate */
4397 static inline struct perf_event *
ctx_event_to_rotate(struct perf_event_pmu_context * pmu_ctx)4398 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4399 {
4400 	struct perf_event *event;
4401 	struct rb_node *node;
4402 	struct rb_root *tree;
4403 	struct __group_key key = {
4404 		.pmu = pmu_ctx->pmu,
4405 	};
4406 
4407 	/* pick the first active flexible event */
4408 	event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4409 					 struct perf_event, active_list);
4410 	if (event)
4411 		goto out;
4412 
4413 	/* if no active flexible event, pick the first event */
4414 	tree = &pmu_ctx->ctx->flexible_groups.tree;
4415 
4416 	if (!pmu_ctx->ctx->task) {
4417 		key.cpu = smp_processor_id();
4418 
4419 		node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4420 		if (node)
4421 			event = __node_2_pe(node);
4422 		goto out;
4423 	}
4424 
4425 	key.cpu = -1;
4426 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4427 	if (node) {
4428 		event = __node_2_pe(node);
4429 		goto out;
4430 	}
4431 
4432 	key.cpu = smp_processor_id();
4433 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4434 	if (node)
4435 		event = __node_2_pe(node);
4436 
4437 out:
4438 	/*
4439 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4440 	 * finds there are unschedulable events, it will set it again.
4441 	 */
4442 	pmu_ctx->rotate_necessary = 0;
4443 
4444 	return event;
4445 }
4446 
perf_rotate_context(struct perf_cpu_pmu_context * cpc)4447 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4448 {
4449 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4450 	struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4451 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4452 	int cpu_rotate, task_rotate;
4453 	struct pmu *pmu;
4454 
4455 	/*
4456 	 * Since we run this from IRQ context, nobody can install new
4457 	 * events, thus the event count values are stable.
4458 	 */
4459 
4460 	cpu_epc = &cpc->epc;
4461 	pmu = cpu_epc->pmu;
4462 	task_epc = cpc->task_epc;
4463 
4464 	cpu_rotate = cpu_epc->rotate_necessary;
4465 	task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4466 
4467 	if (!(cpu_rotate || task_rotate))
4468 		return false;
4469 
4470 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4471 	perf_pmu_disable(pmu);
4472 
4473 	if (task_rotate)
4474 		task_event = ctx_event_to_rotate(task_epc);
4475 	if (cpu_rotate)
4476 		cpu_event = ctx_event_to_rotate(cpu_epc);
4477 
4478 	/*
4479 	 * As per the order given at ctx_resched() first 'pop' task flexible
4480 	 * and then, if needed CPU flexible.
4481 	 */
4482 	if (task_event || (task_epc && cpu_event)) {
4483 		update_context_time(task_epc->ctx);
4484 		__pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4485 	}
4486 
4487 	if (cpu_event) {
4488 		update_context_time(&cpuctx->ctx);
4489 		__pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4490 		rotate_ctx(&cpuctx->ctx, cpu_event);
4491 		__pmu_ctx_sched_in(cpu_epc, EVENT_FLEXIBLE);
4492 	}
4493 
4494 	if (task_event)
4495 		rotate_ctx(task_epc->ctx, task_event);
4496 
4497 	if (task_event || (task_epc && cpu_event))
4498 		__pmu_ctx_sched_in(task_epc, EVENT_FLEXIBLE);
4499 
4500 	perf_pmu_enable(pmu);
4501 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4502 
4503 	return true;
4504 }
4505 
perf_event_task_tick(void)4506 void perf_event_task_tick(void)
4507 {
4508 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4509 	struct perf_event_context *ctx;
4510 	int throttled;
4511 
4512 	lockdep_assert_irqs_disabled();
4513 
4514 	__this_cpu_inc(perf_throttled_seq);
4515 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4516 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4517 
4518 	perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4519 
4520 	rcu_read_lock();
4521 	ctx = rcu_dereference(current->perf_event_ctxp);
4522 	if (ctx)
4523 		perf_adjust_freq_unthr_context(ctx, !!throttled);
4524 	rcu_read_unlock();
4525 }
4526 
event_enable_on_exec(struct perf_event * event,struct perf_event_context * ctx)4527 static int event_enable_on_exec(struct perf_event *event,
4528 				struct perf_event_context *ctx)
4529 {
4530 	if (!event->attr.enable_on_exec)
4531 		return 0;
4532 
4533 	event->attr.enable_on_exec = 0;
4534 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4535 		return 0;
4536 
4537 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4538 
4539 	return 1;
4540 }
4541 
4542 /*
4543  * Enable all of a task's events that have been marked enable-on-exec.
4544  * This expects task == current.
4545  */
perf_event_enable_on_exec(struct perf_event_context * ctx)4546 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4547 {
4548 	struct perf_event_context *clone_ctx = NULL;
4549 	enum event_type_t event_type = 0;
4550 	struct perf_cpu_context *cpuctx;
4551 	struct perf_event *event;
4552 	unsigned long flags;
4553 	int enabled = 0;
4554 
4555 	local_irq_save(flags);
4556 	if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4557 		goto out;
4558 
4559 	if (!ctx->nr_events)
4560 		goto out;
4561 
4562 	cpuctx = this_cpu_ptr(&perf_cpu_context);
4563 	perf_ctx_lock(cpuctx, ctx);
4564 	ctx_time_freeze(cpuctx, ctx);
4565 
4566 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4567 		enabled |= event_enable_on_exec(event, ctx);
4568 		event_type |= get_event_type(event);
4569 	}
4570 
4571 	/*
4572 	 * Unclone and reschedule this context if we enabled any event.
4573 	 */
4574 	if (enabled) {
4575 		clone_ctx = unclone_ctx(ctx);
4576 		ctx_resched(cpuctx, ctx, NULL, event_type);
4577 	}
4578 	perf_ctx_unlock(cpuctx, ctx);
4579 
4580 out:
4581 	local_irq_restore(flags);
4582 
4583 	if (clone_ctx)
4584 		put_ctx(clone_ctx);
4585 }
4586 
4587 static void perf_remove_from_owner(struct perf_event *event);
4588 static void perf_event_exit_event(struct perf_event *event,
4589 				  struct perf_event_context *ctx,
4590 				  bool revoke);
4591 
4592 /*
4593  * Removes all events from the current task that have been marked
4594  * remove-on-exec, and feeds their values back to parent events.
4595  */
perf_event_remove_on_exec(struct perf_event_context * ctx)4596 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4597 {
4598 	struct perf_event_context *clone_ctx = NULL;
4599 	struct perf_event *event, *next;
4600 	unsigned long flags;
4601 	bool modified = false;
4602 
4603 	mutex_lock(&ctx->mutex);
4604 
4605 	if (WARN_ON_ONCE(ctx->task != current))
4606 		goto unlock;
4607 
4608 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4609 		if (!event->attr.remove_on_exec)
4610 			continue;
4611 
4612 		if (!is_kernel_event(event))
4613 			perf_remove_from_owner(event);
4614 
4615 		modified = true;
4616 
4617 		perf_event_exit_event(event, ctx, false);
4618 	}
4619 
4620 	raw_spin_lock_irqsave(&ctx->lock, flags);
4621 	if (modified)
4622 		clone_ctx = unclone_ctx(ctx);
4623 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4624 
4625 unlock:
4626 	mutex_unlock(&ctx->mutex);
4627 
4628 	if (clone_ctx)
4629 		put_ctx(clone_ctx);
4630 }
4631 
4632 struct perf_read_data {
4633 	struct perf_event *event;
4634 	bool group;
4635 	int ret;
4636 };
4637 
4638 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu);
4639 
__perf_event_read_cpu(struct perf_event * event,int event_cpu)4640 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4641 {
4642 	int local_cpu = smp_processor_id();
4643 	u16 local_pkg, event_pkg;
4644 
4645 	if ((unsigned)event_cpu >= nr_cpu_ids)
4646 		return event_cpu;
4647 
4648 	if (event->group_caps & PERF_EV_CAP_READ_SCOPE) {
4649 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(event->pmu->scope, event_cpu);
4650 
4651 		if (cpumask && cpumask_test_cpu(local_cpu, cpumask))
4652 			return local_cpu;
4653 	}
4654 
4655 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4656 		event_pkg = topology_physical_package_id(event_cpu);
4657 		local_pkg = topology_physical_package_id(local_cpu);
4658 
4659 		if (event_pkg == local_pkg)
4660 			return local_cpu;
4661 	}
4662 
4663 	return event_cpu;
4664 }
4665 
4666 /*
4667  * Cross CPU call to read the hardware event
4668  */
__perf_event_read(void * info)4669 static void __perf_event_read(void *info)
4670 {
4671 	struct perf_read_data *data = info;
4672 	struct perf_event *sub, *event = data->event;
4673 	struct perf_event_context *ctx = event->ctx;
4674 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4675 	struct pmu *pmu = event->pmu;
4676 
4677 	/*
4678 	 * If this is a task context, we need to check whether it is
4679 	 * the current task context of this cpu.  If not it has been
4680 	 * scheduled out before the smp call arrived.  In that case
4681 	 * event->count would have been updated to a recent sample
4682 	 * when the event was scheduled out.
4683 	 */
4684 	if (ctx->task && cpuctx->task_ctx != ctx)
4685 		return;
4686 
4687 	raw_spin_lock(&ctx->lock);
4688 	ctx_time_update_event(ctx, event);
4689 
4690 	perf_event_update_time(event);
4691 	if (data->group)
4692 		perf_event_update_sibling_time(event);
4693 
4694 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4695 		goto unlock;
4696 
4697 	if (!data->group) {
4698 		pmu->read(event);
4699 		data->ret = 0;
4700 		goto unlock;
4701 	}
4702 
4703 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4704 
4705 	pmu->read(event);
4706 
4707 	for_each_sibling_event(sub, event)
4708 		perf_pmu_read(sub);
4709 
4710 	data->ret = pmu->commit_txn(pmu);
4711 
4712 unlock:
4713 	raw_spin_unlock(&ctx->lock);
4714 }
4715 
perf_event_count(struct perf_event * event,bool self)4716 static inline u64 perf_event_count(struct perf_event *event, bool self)
4717 {
4718 	if (self)
4719 		return local64_read(&event->count);
4720 
4721 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4722 }
4723 
calc_timer_values(struct perf_event * event,u64 * now,u64 * enabled,u64 * running)4724 static void calc_timer_values(struct perf_event *event,
4725 				u64 *now,
4726 				u64 *enabled,
4727 				u64 *running)
4728 {
4729 	u64 ctx_time;
4730 
4731 	*now = perf_clock();
4732 	ctx_time = perf_event_time_now(event, *now);
4733 	__perf_update_times(event, ctx_time, enabled, running);
4734 }
4735 
4736 /*
4737  * NMI-safe method to read a local event, that is an event that
4738  * is:
4739  *   - either for the current task, or for this CPU
4740  *   - does not have inherit set, for inherited task events
4741  *     will not be local and we cannot read them atomically
4742  *   - must not have a pmu::count method
4743  */
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)4744 int perf_event_read_local(struct perf_event *event, u64 *value,
4745 			  u64 *enabled, u64 *running)
4746 {
4747 	unsigned long flags;
4748 	int event_oncpu;
4749 	int event_cpu;
4750 	int ret = 0;
4751 
4752 	/*
4753 	 * Disabling interrupts avoids all counter scheduling (context
4754 	 * switches, timer based rotation and IPIs).
4755 	 */
4756 	local_irq_save(flags);
4757 
4758 	/*
4759 	 * It must not be an event with inherit set, we cannot read
4760 	 * all child counters from atomic context.
4761 	 */
4762 	if (event->attr.inherit) {
4763 		ret = -EOPNOTSUPP;
4764 		goto out;
4765 	}
4766 
4767 	/* If this is a per-task event, it must be for current */
4768 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4769 	    event->hw.target != current) {
4770 		ret = -EINVAL;
4771 		goto out;
4772 	}
4773 
4774 	/*
4775 	 * Get the event CPU numbers, and adjust them to local if the event is
4776 	 * a per-package event that can be read locally
4777 	 */
4778 	event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4779 	event_cpu = __perf_event_read_cpu(event, event->cpu);
4780 
4781 	/* If this is a per-CPU event, it must be for this CPU */
4782 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4783 	    event_cpu != smp_processor_id()) {
4784 		ret = -EINVAL;
4785 		goto out;
4786 	}
4787 
4788 	/* If this is a pinned event it must be running on this CPU */
4789 	if (event->attr.pinned && event_oncpu != smp_processor_id()) {
4790 		ret = -EBUSY;
4791 		goto out;
4792 	}
4793 
4794 	/*
4795 	 * If the event is currently on this CPU, its either a per-task event,
4796 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4797 	 * oncpu == -1).
4798 	 */
4799 	if (event_oncpu == smp_processor_id())
4800 		event->pmu->read(event);
4801 
4802 	*value = local64_read(&event->count);
4803 	if (enabled || running) {
4804 		u64 __enabled, __running, __now;
4805 
4806 		calc_timer_values(event, &__now, &__enabled, &__running);
4807 		if (enabled)
4808 			*enabled = __enabled;
4809 		if (running)
4810 			*running = __running;
4811 	}
4812 out:
4813 	local_irq_restore(flags);
4814 
4815 	return ret;
4816 }
4817 
perf_event_read(struct perf_event * event,bool group)4818 static int perf_event_read(struct perf_event *event, bool group)
4819 {
4820 	enum perf_event_state state = READ_ONCE(event->state);
4821 	int event_cpu, ret = 0;
4822 
4823 	/*
4824 	 * If event is enabled and currently active on a CPU, update the
4825 	 * value in the event structure:
4826 	 */
4827 again:
4828 	if (state == PERF_EVENT_STATE_ACTIVE) {
4829 		struct perf_read_data data;
4830 
4831 		/*
4832 		 * Orders the ->state and ->oncpu loads such that if we see
4833 		 * ACTIVE we must also see the right ->oncpu.
4834 		 *
4835 		 * Matches the smp_wmb() from event_sched_in().
4836 		 */
4837 		smp_rmb();
4838 
4839 		event_cpu = READ_ONCE(event->oncpu);
4840 		if ((unsigned)event_cpu >= nr_cpu_ids)
4841 			return 0;
4842 
4843 		data = (struct perf_read_data){
4844 			.event = event,
4845 			.group = group,
4846 			.ret = 0,
4847 		};
4848 
4849 		preempt_disable();
4850 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4851 
4852 		/*
4853 		 * Purposely ignore the smp_call_function_single() return
4854 		 * value.
4855 		 *
4856 		 * If event_cpu isn't a valid CPU it means the event got
4857 		 * scheduled out and that will have updated the event count.
4858 		 *
4859 		 * Therefore, either way, we'll have an up-to-date event count
4860 		 * after this.
4861 		 */
4862 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4863 		preempt_enable();
4864 		ret = data.ret;
4865 
4866 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4867 		struct perf_event_context *ctx = event->ctx;
4868 		unsigned long flags;
4869 
4870 		raw_spin_lock_irqsave(&ctx->lock, flags);
4871 		state = event->state;
4872 		if (state != PERF_EVENT_STATE_INACTIVE) {
4873 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4874 			goto again;
4875 		}
4876 
4877 		/*
4878 		 * May read while context is not active (e.g., thread is
4879 		 * blocked), in that case we cannot update context time
4880 		 */
4881 		ctx_time_update_event(ctx, event);
4882 
4883 		perf_event_update_time(event);
4884 		if (group)
4885 			perf_event_update_sibling_time(event);
4886 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4887 	}
4888 
4889 	return ret;
4890 }
4891 
4892 /*
4893  * Initialize the perf_event context in a task_struct:
4894  */
__perf_event_init_context(struct perf_event_context * ctx)4895 static void __perf_event_init_context(struct perf_event_context *ctx)
4896 {
4897 	raw_spin_lock_init(&ctx->lock);
4898 	mutex_init(&ctx->mutex);
4899 	INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4900 	perf_event_groups_init(&ctx->pinned_groups);
4901 	perf_event_groups_init(&ctx->flexible_groups);
4902 	INIT_LIST_HEAD(&ctx->event_list);
4903 	refcount_set(&ctx->refcount, 1);
4904 }
4905 
4906 static void
__perf_init_event_pmu_context(struct perf_event_pmu_context * epc,struct pmu * pmu)4907 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4908 {
4909 	epc->pmu = pmu;
4910 	INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4911 	INIT_LIST_HEAD(&epc->pinned_active);
4912 	INIT_LIST_HEAD(&epc->flexible_active);
4913 	atomic_set(&epc->refcount, 1);
4914 }
4915 
4916 static struct perf_event_context *
alloc_perf_context(struct task_struct * task)4917 alloc_perf_context(struct task_struct *task)
4918 {
4919 	struct perf_event_context *ctx;
4920 
4921 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4922 	if (!ctx)
4923 		return NULL;
4924 
4925 	__perf_event_init_context(ctx);
4926 	if (task)
4927 		ctx->task = get_task_struct(task);
4928 
4929 	return ctx;
4930 }
4931 
4932 static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)4933 find_lively_task_by_vpid(pid_t vpid)
4934 {
4935 	struct task_struct *task;
4936 
4937 	rcu_read_lock();
4938 	if (!vpid)
4939 		task = current;
4940 	else
4941 		task = find_task_by_vpid(vpid);
4942 	if (task)
4943 		get_task_struct(task);
4944 	rcu_read_unlock();
4945 
4946 	if (!task)
4947 		return ERR_PTR(-ESRCH);
4948 
4949 	return task;
4950 }
4951 
4952 /*
4953  * Returns a matching context with refcount and pincount.
4954  */
4955 static struct perf_event_context *
find_get_context(struct task_struct * task,struct perf_event * event)4956 find_get_context(struct task_struct *task, struct perf_event *event)
4957 {
4958 	struct perf_event_context *ctx, *clone_ctx = NULL;
4959 	struct perf_cpu_context *cpuctx;
4960 	unsigned long flags;
4961 	int err;
4962 
4963 	if (!task) {
4964 		/* Must be root to operate on a CPU event: */
4965 		err = perf_allow_cpu();
4966 		if (err)
4967 			return ERR_PTR(err);
4968 
4969 		cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4970 		ctx = &cpuctx->ctx;
4971 		get_ctx(ctx);
4972 		raw_spin_lock_irqsave(&ctx->lock, flags);
4973 		++ctx->pin_count;
4974 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4975 
4976 		return ctx;
4977 	}
4978 
4979 	err = -EINVAL;
4980 retry:
4981 	ctx = perf_lock_task_context(task, &flags);
4982 	if (ctx) {
4983 		clone_ctx = unclone_ctx(ctx);
4984 		++ctx->pin_count;
4985 
4986 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4987 
4988 		if (clone_ctx)
4989 			put_ctx(clone_ctx);
4990 	} else {
4991 		ctx = alloc_perf_context(task);
4992 		err = -ENOMEM;
4993 		if (!ctx)
4994 			goto errout;
4995 
4996 		err = 0;
4997 		mutex_lock(&task->perf_event_mutex);
4998 		/*
4999 		 * If it has already passed perf_event_exit_task().
5000 		 * we must see PF_EXITING, it takes this mutex too.
5001 		 */
5002 		if (task->flags & PF_EXITING)
5003 			err = -ESRCH;
5004 		else if (task->perf_event_ctxp)
5005 			err = -EAGAIN;
5006 		else {
5007 			get_ctx(ctx);
5008 			++ctx->pin_count;
5009 			rcu_assign_pointer(task->perf_event_ctxp, ctx);
5010 		}
5011 		mutex_unlock(&task->perf_event_mutex);
5012 
5013 		if (unlikely(err)) {
5014 			put_ctx(ctx);
5015 
5016 			if (err == -EAGAIN)
5017 				goto retry;
5018 			goto errout;
5019 		}
5020 	}
5021 
5022 	return ctx;
5023 
5024 errout:
5025 	return ERR_PTR(err);
5026 }
5027 
5028 static struct perf_event_pmu_context *
find_get_pmu_context(struct pmu * pmu,struct perf_event_context * ctx,struct perf_event * event)5029 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
5030 		     struct perf_event *event)
5031 {
5032 	struct perf_event_pmu_context *new = NULL, *pos = NULL, *epc;
5033 
5034 	if (!ctx->task) {
5035 		/*
5036 		 * perf_pmu_migrate_context() / __perf_pmu_install_event()
5037 		 * relies on the fact that find_get_pmu_context() cannot fail
5038 		 * for CPU contexts.
5039 		 */
5040 		struct perf_cpu_pmu_context *cpc;
5041 
5042 		cpc = *per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
5043 		epc = &cpc->epc;
5044 		raw_spin_lock_irq(&ctx->lock);
5045 		if (!epc->ctx) {
5046 			/*
5047 			 * One extra reference for the pmu; see perf_pmu_free().
5048 			 */
5049 			atomic_set(&epc->refcount, 2);
5050 			epc->embedded = 1;
5051 			list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
5052 			epc->ctx = ctx;
5053 		} else {
5054 			WARN_ON_ONCE(epc->ctx != ctx);
5055 			atomic_inc(&epc->refcount);
5056 		}
5057 		raw_spin_unlock_irq(&ctx->lock);
5058 		return epc;
5059 	}
5060 
5061 	new = kzalloc(sizeof(*epc), GFP_KERNEL);
5062 	if (!new)
5063 		return ERR_PTR(-ENOMEM);
5064 
5065 	__perf_init_event_pmu_context(new, pmu);
5066 
5067 	/*
5068 	 * XXX
5069 	 *
5070 	 * lockdep_assert_held(&ctx->mutex);
5071 	 *
5072 	 * can't because perf_event_init_task() doesn't actually hold the
5073 	 * child_ctx->mutex.
5074 	 */
5075 
5076 	raw_spin_lock_irq(&ctx->lock);
5077 	list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
5078 		if (epc->pmu == pmu) {
5079 			WARN_ON_ONCE(epc->ctx != ctx);
5080 			atomic_inc(&epc->refcount);
5081 			goto found_epc;
5082 		}
5083 		/* Make sure the pmu_ctx_list is sorted by PMU type: */
5084 		if (!pos && epc->pmu->type > pmu->type)
5085 			pos = epc;
5086 	}
5087 
5088 	epc = new;
5089 	new = NULL;
5090 
5091 	if (!pos)
5092 		list_add_tail(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
5093 	else
5094 		list_add(&epc->pmu_ctx_entry, pos->pmu_ctx_entry.prev);
5095 
5096 	epc->ctx = ctx;
5097 
5098 found_epc:
5099 	raw_spin_unlock_irq(&ctx->lock);
5100 	kfree(new);
5101 
5102 	return epc;
5103 }
5104 
get_pmu_ctx(struct perf_event_pmu_context * epc)5105 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
5106 {
5107 	WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
5108 }
5109 
free_cpc_rcu(struct rcu_head * head)5110 static void free_cpc_rcu(struct rcu_head *head)
5111 {
5112 	struct perf_cpu_pmu_context *cpc =
5113 		container_of(head, typeof(*cpc), epc.rcu_head);
5114 
5115 	kfree(cpc);
5116 }
5117 
free_epc_rcu(struct rcu_head * head)5118 static void free_epc_rcu(struct rcu_head *head)
5119 {
5120 	struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
5121 
5122 	kfree(epc);
5123 }
5124 
put_pmu_ctx(struct perf_event_pmu_context * epc)5125 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
5126 {
5127 	struct perf_event_context *ctx = epc->ctx;
5128 	unsigned long flags;
5129 
5130 	/*
5131 	 * XXX
5132 	 *
5133 	 * lockdep_assert_held(&ctx->mutex);
5134 	 *
5135 	 * can't because of the call-site in _free_event()/put_event()
5136 	 * which isn't always called under ctx->mutex.
5137 	 */
5138 	if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
5139 		return;
5140 
5141 	WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
5142 
5143 	list_del_init(&epc->pmu_ctx_entry);
5144 	epc->ctx = NULL;
5145 
5146 	WARN_ON_ONCE(!list_empty(&epc->pinned_active));
5147 	WARN_ON_ONCE(!list_empty(&epc->flexible_active));
5148 
5149 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5150 
5151 	if (epc->embedded) {
5152 		call_rcu(&epc->rcu_head, free_cpc_rcu);
5153 		return;
5154 	}
5155 
5156 	call_rcu(&epc->rcu_head, free_epc_rcu);
5157 }
5158 
5159 static void perf_event_free_filter(struct perf_event *event);
5160 
free_event_rcu(struct rcu_head * head)5161 static void free_event_rcu(struct rcu_head *head)
5162 {
5163 	struct perf_event *event = container_of(head, typeof(*event), rcu_head);
5164 
5165 	if (event->ns)
5166 		put_pid_ns(event->ns);
5167 	perf_event_free_filter(event);
5168 	kmem_cache_free(perf_event_cache, event);
5169 }
5170 
5171 static void ring_buffer_attach(struct perf_event *event,
5172 			       struct perf_buffer *rb);
5173 
detach_sb_event(struct perf_event * event)5174 static void detach_sb_event(struct perf_event *event)
5175 {
5176 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
5177 
5178 	raw_spin_lock(&pel->lock);
5179 	list_del_rcu(&event->sb_list);
5180 	raw_spin_unlock(&pel->lock);
5181 }
5182 
is_sb_event(struct perf_event * event)5183 static bool is_sb_event(struct perf_event *event)
5184 {
5185 	struct perf_event_attr *attr = &event->attr;
5186 
5187 	if (event->parent)
5188 		return false;
5189 
5190 	if (event->attach_state & PERF_ATTACH_TASK)
5191 		return false;
5192 
5193 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5194 	    attr->comm || attr->comm_exec ||
5195 	    attr->task || attr->ksymbol ||
5196 	    attr->context_switch || attr->text_poke ||
5197 	    attr->bpf_event)
5198 		return true;
5199 
5200 	return false;
5201 }
5202 
unaccount_pmu_sb_event(struct perf_event * event)5203 static void unaccount_pmu_sb_event(struct perf_event *event)
5204 {
5205 	if (is_sb_event(event))
5206 		detach_sb_event(event);
5207 }
5208 
5209 #ifdef CONFIG_NO_HZ_FULL
5210 static DEFINE_SPINLOCK(nr_freq_lock);
5211 #endif
5212 
unaccount_freq_event_nohz(void)5213 static void unaccount_freq_event_nohz(void)
5214 {
5215 #ifdef CONFIG_NO_HZ_FULL
5216 	spin_lock(&nr_freq_lock);
5217 	if (atomic_dec_and_test(&nr_freq_events))
5218 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5219 	spin_unlock(&nr_freq_lock);
5220 #endif
5221 }
5222 
unaccount_freq_event(void)5223 static void unaccount_freq_event(void)
5224 {
5225 	if (tick_nohz_full_enabled())
5226 		unaccount_freq_event_nohz();
5227 	else
5228 		atomic_dec(&nr_freq_events);
5229 }
5230 
5231 
5232 static struct perf_ctx_data *
alloc_perf_ctx_data(struct kmem_cache * ctx_cache,bool global)5233 alloc_perf_ctx_data(struct kmem_cache *ctx_cache, bool global)
5234 {
5235 	struct perf_ctx_data *cd;
5236 
5237 	cd = kzalloc(sizeof(*cd), GFP_KERNEL);
5238 	if (!cd)
5239 		return NULL;
5240 
5241 	cd->data = kmem_cache_zalloc(ctx_cache, GFP_KERNEL);
5242 	if (!cd->data) {
5243 		kfree(cd);
5244 		return NULL;
5245 	}
5246 
5247 	cd->global = global;
5248 	cd->ctx_cache = ctx_cache;
5249 	refcount_set(&cd->refcount, 1);
5250 
5251 	return cd;
5252 }
5253 
free_perf_ctx_data(struct perf_ctx_data * cd)5254 static void free_perf_ctx_data(struct perf_ctx_data *cd)
5255 {
5256 	kmem_cache_free(cd->ctx_cache, cd->data);
5257 	kfree(cd);
5258 }
5259 
__free_perf_ctx_data_rcu(struct rcu_head * rcu_head)5260 static void __free_perf_ctx_data_rcu(struct rcu_head *rcu_head)
5261 {
5262 	struct perf_ctx_data *cd;
5263 
5264 	cd = container_of(rcu_head, struct perf_ctx_data, rcu_head);
5265 	free_perf_ctx_data(cd);
5266 }
5267 
perf_free_ctx_data_rcu(struct perf_ctx_data * cd)5268 static inline void perf_free_ctx_data_rcu(struct perf_ctx_data *cd)
5269 {
5270 	call_rcu(&cd->rcu_head, __free_perf_ctx_data_rcu);
5271 }
5272 
5273 static int
attach_task_ctx_data(struct task_struct * task,struct kmem_cache * ctx_cache,bool global)5274 attach_task_ctx_data(struct task_struct *task, struct kmem_cache *ctx_cache,
5275 		     bool global)
5276 {
5277 	struct perf_ctx_data *cd, *old = NULL;
5278 
5279 	cd = alloc_perf_ctx_data(ctx_cache, global);
5280 	if (!cd)
5281 		return -ENOMEM;
5282 
5283 	for (;;) {
5284 		if (try_cmpxchg((struct perf_ctx_data **)&task->perf_ctx_data, &old, cd)) {
5285 			if (old)
5286 				perf_free_ctx_data_rcu(old);
5287 			return 0;
5288 		}
5289 
5290 		if (!old) {
5291 			/*
5292 			 * After seeing a dead @old, we raced with
5293 			 * removal and lost, try again to install @cd.
5294 			 */
5295 			continue;
5296 		}
5297 
5298 		if (refcount_inc_not_zero(&old->refcount)) {
5299 			free_perf_ctx_data(cd); /* unused */
5300 			return 0;
5301 		}
5302 
5303 		/*
5304 		 * @old is a dead object, refcount==0 is stable, try and
5305 		 * replace it with @cd.
5306 		 */
5307 	}
5308 	return 0;
5309 }
5310 
5311 static void __detach_global_ctx_data(void);
5312 DEFINE_STATIC_PERCPU_RWSEM(global_ctx_data_rwsem);
5313 static refcount_t global_ctx_data_ref;
5314 
5315 static int
attach_global_ctx_data(struct kmem_cache * ctx_cache)5316 attach_global_ctx_data(struct kmem_cache *ctx_cache)
5317 {
5318 	struct task_struct *g, *p;
5319 	struct perf_ctx_data *cd;
5320 	int ret;
5321 
5322 	if (refcount_inc_not_zero(&global_ctx_data_ref))
5323 		return 0;
5324 
5325 	guard(percpu_write)(&global_ctx_data_rwsem);
5326 	if (refcount_inc_not_zero(&global_ctx_data_ref))
5327 		return 0;
5328 again:
5329 	/* Allocate everything */
5330 	scoped_guard (rcu) {
5331 		for_each_process_thread(g, p) {
5332 			cd = rcu_dereference(p->perf_ctx_data);
5333 			if (cd && !cd->global) {
5334 				cd->global = 1;
5335 				if (!refcount_inc_not_zero(&cd->refcount))
5336 					cd = NULL;
5337 			}
5338 			if (!cd) {
5339 				get_task_struct(p);
5340 				goto alloc;
5341 			}
5342 		}
5343 	}
5344 
5345 	refcount_set(&global_ctx_data_ref, 1);
5346 
5347 	return 0;
5348 alloc:
5349 	ret = attach_task_ctx_data(p, ctx_cache, true);
5350 	put_task_struct(p);
5351 	if (ret) {
5352 		__detach_global_ctx_data();
5353 		return ret;
5354 	}
5355 	goto again;
5356 }
5357 
5358 static int
attach_perf_ctx_data(struct perf_event * event)5359 attach_perf_ctx_data(struct perf_event *event)
5360 {
5361 	struct task_struct *task = event->hw.target;
5362 	struct kmem_cache *ctx_cache = event->pmu->task_ctx_cache;
5363 	int ret;
5364 
5365 	if (!ctx_cache)
5366 		return -ENOMEM;
5367 
5368 	if (task)
5369 		return attach_task_ctx_data(task, ctx_cache, false);
5370 
5371 	ret = attach_global_ctx_data(ctx_cache);
5372 	if (ret)
5373 		return ret;
5374 
5375 	event->attach_state |= PERF_ATTACH_GLOBAL_DATA;
5376 	return 0;
5377 }
5378 
5379 static void
detach_task_ctx_data(struct task_struct * p)5380 detach_task_ctx_data(struct task_struct *p)
5381 {
5382 	struct perf_ctx_data *cd;
5383 
5384 	scoped_guard (rcu) {
5385 		cd = rcu_dereference(p->perf_ctx_data);
5386 		if (!cd || !refcount_dec_and_test(&cd->refcount))
5387 			return;
5388 	}
5389 
5390 	/*
5391 	 * The old ctx_data may be lost because of the race.
5392 	 * Nothing is required to do for the case.
5393 	 * See attach_task_ctx_data().
5394 	 */
5395 	if (try_cmpxchg((struct perf_ctx_data **)&p->perf_ctx_data, &cd, NULL))
5396 		perf_free_ctx_data_rcu(cd);
5397 }
5398 
__detach_global_ctx_data(void)5399 static void __detach_global_ctx_data(void)
5400 {
5401 	struct task_struct *g, *p;
5402 	struct perf_ctx_data *cd;
5403 
5404 again:
5405 	scoped_guard (rcu) {
5406 		for_each_process_thread(g, p) {
5407 			cd = rcu_dereference(p->perf_ctx_data);
5408 			if (!cd || !cd->global)
5409 				continue;
5410 			cd->global = 0;
5411 			get_task_struct(p);
5412 			goto detach;
5413 		}
5414 	}
5415 	return;
5416 detach:
5417 	detach_task_ctx_data(p);
5418 	put_task_struct(p);
5419 	goto again;
5420 }
5421 
detach_global_ctx_data(void)5422 static void detach_global_ctx_data(void)
5423 {
5424 	if (refcount_dec_not_one(&global_ctx_data_ref))
5425 		return;
5426 
5427 	guard(percpu_write)(&global_ctx_data_rwsem);
5428 	if (!refcount_dec_and_test(&global_ctx_data_ref))
5429 		return;
5430 
5431 	/* remove everything */
5432 	__detach_global_ctx_data();
5433 }
5434 
detach_perf_ctx_data(struct perf_event * event)5435 static void detach_perf_ctx_data(struct perf_event *event)
5436 {
5437 	struct task_struct *task = event->hw.target;
5438 
5439 	event->attach_state &= ~PERF_ATTACH_TASK_DATA;
5440 
5441 	if (task)
5442 		return detach_task_ctx_data(task);
5443 
5444 	if (event->attach_state & PERF_ATTACH_GLOBAL_DATA) {
5445 		detach_global_ctx_data();
5446 		event->attach_state &= ~PERF_ATTACH_GLOBAL_DATA;
5447 	}
5448 }
5449 
unaccount_event(struct perf_event * event)5450 static void unaccount_event(struct perf_event *event)
5451 {
5452 	bool dec = false;
5453 
5454 	if (event->parent)
5455 		return;
5456 
5457 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5458 		dec = true;
5459 	if (event->attr.mmap || event->attr.mmap_data)
5460 		atomic_dec(&nr_mmap_events);
5461 	if (event->attr.build_id)
5462 		atomic_dec(&nr_build_id_events);
5463 	if (event->attr.comm)
5464 		atomic_dec(&nr_comm_events);
5465 	if (event->attr.namespaces)
5466 		atomic_dec(&nr_namespaces_events);
5467 	if (event->attr.cgroup)
5468 		atomic_dec(&nr_cgroup_events);
5469 	if (event->attr.task)
5470 		atomic_dec(&nr_task_events);
5471 	if (event->attr.freq)
5472 		unaccount_freq_event();
5473 	if (event->attr.context_switch) {
5474 		dec = true;
5475 		atomic_dec(&nr_switch_events);
5476 	}
5477 	if (is_cgroup_event(event))
5478 		dec = true;
5479 	if (has_branch_stack(event))
5480 		dec = true;
5481 	if (event->attr.ksymbol)
5482 		atomic_dec(&nr_ksymbol_events);
5483 	if (event->attr.bpf_event)
5484 		atomic_dec(&nr_bpf_events);
5485 	if (event->attr.text_poke)
5486 		atomic_dec(&nr_text_poke_events);
5487 
5488 	if (dec) {
5489 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
5490 			schedule_delayed_work(&perf_sched_work, HZ);
5491 	}
5492 
5493 	unaccount_pmu_sb_event(event);
5494 }
5495 
perf_sched_delayed(struct work_struct * work)5496 static void perf_sched_delayed(struct work_struct *work)
5497 {
5498 	mutex_lock(&perf_sched_mutex);
5499 	if (atomic_dec_and_test(&perf_sched_count))
5500 		static_branch_disable(&perf_sched_events);
5501 	mutex_unlock(&perf_sched_mutex);
5502 }
5503 
5504 /*
5505  * The following implement mutual exclusion of events on "exclusive" pmus
5506  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5507  * at a time, so we disallow creating events that might conflict, namely:
5508  *
5509  *  1) cpu-wide events in the presence of per-task events,
5510  *  2) per-task events in the presence of cpu-wide events,
5511  *  3) two matching events on the same perf_event_context.
5512  *
5513  * The former two cases are handled in the allocation path (perf_event_alloc(),
5514  * _free_event()), the latter -- before the first perf_install_in_context().
5515  */
exclusive_event_init(struct perf_event * event)5516 static int exclusive_event_init(struct perf_event *event)
5517 {
5518 	struct pmu *pmu = event->pmu;
5519 
5520 	if (!is_exclusive_pmu(pmu))
5521 		return 0;
5522 
5523 	/*
5524 	 * Prevent co-existence of per-task and cpu-wide events on the
5525 	 * same exclusive pmu.
5526 	 *
5527 	 * Negative pmu::exclusive_cnt means there are cpu-wide
5528 	 * events on this "exclusive" pmu, positive means there are
5529 	 * per-task events.
5530 	 *
5531 	 * Since this is called in perf_event_alloc() path, event::ctx
5532 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5533 	 * to mean "per-task event", because unlike other attach states it
5534 	 * never gets cleared.
5535 	 */
5536 	if (event->attach_state & PERF_ATTACH_TASK) {
5537 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5538 			return -EBUSY;
5539 	} else {
5540 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5541 			return -EBUSY;
5542 	}
5543 
5544 	event->attach_state |= PERF_ATTACH_EXCLUSIVE;
5545 
5546 	return 0;
5547 }
5548 
exclusive_event_destroy(struct perf_event * event)5549 static void exclusive_event_destroy(struct perf_event *event)
5550 {
5551 	struct pmu *pmu = event->pmu;
5552 
5553 	/* see comment in exclusive_event_init() */
5554 	if (event->attach_state & PERF_ATTACH_TASK)
5555 		atomic_dec(&pmu->exclusive_cnt);
5556 	else
5557 		atomic_inc(&pmu->exclusive_cnt);
5558 
5559 	event->attach_state &= ~PERF_ATTACH_EXCLUSIVE;
5560 }
5561 
exclusive_event_match(struct perf_event * e1,struct perf_event * e2)5562 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5563 {
5564 	if ((e1->pmu == e2->pmu) &&
5565 	    (e1->cpu == e2->cpu ||
5566 	     e1->cpu == -1 ||
5567 	     e2->cpu == -1))
5568 		return true;
5569 	return false;
5570 }
5571 
exclusive_event_installable(struct perf_event * event,struct perf_event_context * ctx)5572 static bool exclusive_event_installable(struct perf_event *event,
5573 					struct perf_event_context *ctx)
5574 {
5575 	struct perf_event *iter_event;
5576 	struct pmu *pmu = event->pmu;
5577 
5578 	lockdep_assert_held(&ctx->mutex);
5579 
5580 	if (!is_exclusive_pmu(pmu))
5581 		return true;
5582 
5583 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5584 		if (exclusive_event_match(iter_event, event))
5585 			return false;
5586 	}
5587 
5588 	return true;
5589 }
5590 
5591 static void perf_free_addr_filters(struct perf_event *event);
5592 
5593 /* vs perf_event_alloc() error */
__free_event(struct perf_event * event)5594 static void __free_event(struct perf_event *event)
5595 {
5596 	struct pmu *pmu = event->pmu;
5597 
5598 	if (event->attach_state & PERF_ATTACH_CALLCHAIN)
5599 		put_callchain_buffers();
5600 
5601 	kfree(event->addr_filter_ranges);
5602 
5603 	if (event->attach_state & PERF_ATTACH_EXCLUSIVE)
5604 		exclusive_event_destroy(event);
5605 
5606 	if (is_cgroup_event(event))
5607 		perf_detach_cgroup(event);
5608 
5609 	if (event->attach_state & PERF_ATTACH_TASK_DATA)
5610 		detach_perf_ctx_data(event);
5611 
5612 	if (event->destroy)
5613 		event->destroy(event);
5614 
5615 	/*
5616 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5617 	 * hw.target.
5618 	 */
5619 	if (event->hw.target)
5620 		put_task_struct(event->hw.target);
5621 
5622 	if (event->pmu_ctx) {
5623 		/*
5624 		 * put_pmu_ctx() needs an event->ctx reference, because of
5625 		 * epc->ctx.
5626 		 */
5627 		WARN_ON_ONCE(!pmu);
5628 		WARN_ON_ONCE(!event->ctx);
5629 		WARN_ON_ONCE(event->pmu_ctx->ctx != event->ctx);
5630 		put_pmu_ctx(event->pmu_ctx);
5631 	}
5632 
5633 	/*
5634 	 * perf_event_free_task() relies on put_ctx() being 'last', in
5635 	 * particular all task references must be cleaned up.
5636 	 */
5637 	if (event->ctx)
5638 		put_ctx(event->ctx);
5639 
5640 	if (pmu) {
5641 		module_put(pmu->module);
5642 		scoped_guard (spinlock, &pmu->events_lock) {
5643 			list_del(&event->pmu_list);
5644 			wake_up_var(pmu);
5645 		}
5646 	}
5647 
5648 	call_rcu(&event->rcu_head, free_event_rcu);
5649 }
5650 
DEFINE_FREE(__free_event,struct perf_event *,if (_T)__free_event (_T))5651 DEFINE_FREE(__free_event, struct perf_event *, if (_T) __free_event(_T))
5652 
5653 /* vs perf_event_alloc() success */
5654 static void _free_event(struct perf_event *event)
5655 {
5656 	irq_work_sync(&event->pending_irq);
5657 	irq_work_sync(&event->pending_disable_irq);
5658 
5659 	unaccount_event(event);
5660 
5661 	security_perf_event_free(event);
5662 
5663 	if (event->rb) {
5664 		/*
5665 		 * Can happen when we close an event with re-directed output.
5666 		 *
5667 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5668 		 * over us; possibly making our ring_buffer_put() the last.
5669 		 */
5670 		mutex_lock(&event->mmap_mutex);
5671 		ring_buffer_attach(event, NULL);
5672 		mutex_unlock(&event->mmap_mutex);
5673 	}
5674 
5675 	perf_event_free_bpf_prog(event);
5676 	perf_free_addr_filters(event);
5677 
5678 	__free_event(event);
5679 }
5680 
5681 /*
5682  * Used to free events which have a known refcount of 1, such as in error paths
5683  * of inherited events.
5684  */
free_event(struct perf_event * event)5685 static void free_event(struct perf_event *event)
5686 {
5687 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5688 				     "unexpected event refcount: %ld; ptr=%p\n",
5689 				     atomic_long_read(&event->refcount), event)) {
5690 		/* leak to avoid use-after-free */
5691 		return;
5692 	}
5693 
5694 	_free_event(event);
5695 }
5696 
5697 /*
5698  * Remove user event from the owner task.
5699  */
perf_remove_from_owner(struct perf_event * event)5700 static void perf_remove_from_owner(struct perf_event *event)
5701 {
5702 	struct task_struct *owner;
5703 
5704 	rcu_read_lock();
5705 	/*
5706 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5707 	 * observe !owner it means the list deletion is complete and we can
5708 	 * indeed free this event, otherwise we need to serialize on
5709 	 * owner->perf_event_mutex.
5710 	 */
5711 	owner = READ_ONCE(event->owner);
5712 	if (owner) {
5713 		/*
5714 		 * Since delayed_put_task_struct() also drops the last
5715 		 * task reference we can safely take a new reference
5716 		 * while holding the rcu_read_lock().
5717 		 */
5718 		get_task_struct(owner);
5719 	}
5720 	rcu_read_unlock();
5721 
5722 	if (owner) {
5723 		/*
5724 		 * If we're here through perf_event_exit_task() we're already
5725 		 * holding ctx->mutex which would be an inversion wrt. the
5726 		 * normal lock order.
5727 		 *
5728 		 * However we can safely take this lock because its the child
5729 		 * ctx->mutex.
5730 		 */
5731 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5732 
5733 		/*
5734 		 * We have to re-check the event->owner field, if it is cleared
5735 		 * we raced with perf_event_exit_task(), acquiring the mutex
5736 		 * ensured they're done, and we can proceed with freeing the
5737 		 * event.
5738 		 */
5739 		if (event->owner) {
5740 			list_del_init(&event->owner_entry);
5741 			smp_store_release(&event->owner, NULL);
5742 		}
5743 		mutex_unlock(&owner->perf_event_mutex);
5744 		put_task_struct(owner);
5745 	}
5746 }
5747 
put_event(struct perf_event * event)5748 static void put_event(struct perf_event *event)
5749 {
5750 	struct perf_event *parent;
5751 
5752 	if (!atomic_long_dec_and_test(&event->refcount))
5753 		return;
5754 
5755 	parent = event->parent;
5756 	_free_event(event);
5757 
5758 	/* Matches the refcount bump in inherit_event() */
5759 	if (parent)
5760 		put_event(parent);
5761 }
5762 
5763 /*
5764  * Kill an event dead; while event:refcount will preserve the event
5765  * object, it will not preserve its functionality. Once the last 'user'
5766  * gives up the object, we'll destroy the thing.
5767  */
perf_event_release_kernel(struct perf_event * event)5768 int perf_event_release_kernel(struct perf_event *event)
5769 {
5770 	struct perf_event_context *ctx = event->ctx;
5771 	struct perf_event *child, *tmp;
5772 
5773 	/*
5774 	 * If we got here through err_alloc: free_event(event); we will not
5775 	 * have attached to a context yet.
5776 	 */
5777 	if (!ctx) {
5778 		WARN_ON_ONCE(event->attach_state &
5779 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5780 		goto no_ctx;
5781 	}
5782 
5783 	if (!is_kernel_event(event))
5784 		perf_remove_from_owner(event);
5785 
5786 	ctx = perf_event_ctx_lock(event);
5787 	WARN_ON_ONCE(ctx->parent_ctx);
5788 
5789 	/*
5790 	 * Mark this event as STATE_DEAD, there is no external reference to it
5791 	 * anymore.
5792 	 *
5793 	 * Anybody acquiring event->child_mutex after the below loop _must_
5794 	 * also see this, most importantly inherit_event() which will avoid
5795 	 * placing more children on the list.
5796 	 *
5797 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5798 	 * child events.
5799 	 */
5800 	if (event->state > PERF_EVENT_STATE_REVOKED) {
5801 		perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5802 	} else {
5803 		event->state = PERF_EVENT_STATE_DEAD;
5804 	}
5805 
5806 	perf_event_ctx_unlock(event, ctx);
5807 
5808 again:
5809 	mutex_lock(&event->child_mutex);
5810 	list_for_each_entry(child, &event->child_list, child_list) {
5811 		/*
5812 		 * Cannot change, child events are not migrated, see the
5813 		 * comment with perf_event_ctx_lock_nested().
5814 		 */
5815 		ctx = READ_ONCE(child->ctx);
5816 		/*
5817 		 * Since child_mutex nests inside ctx::mutex, we must jump
5818 		 * through hoops. We start by grabbing a reference on the ctx.
5819 		 *
5820 		 * Since the event cannot get freed while we hold the
5821 		 * child_mutex, the context must also exist and have a !0
5822 		 * reference count.
5823 		 */
5824 		get_ctx(ctx);
5825 
5826 		/*
5827 		 * Now that we have a ctx ref, we can drop child_mutex, and
5828 		 * acquire ctx::mutex without fear of it going away. Then we
5829 		 * can re-acquire child_mutex.
5830 		 */
5831 		mutex_unlock(&event->child_mutex);
5832 		mutex_lock(&ctx->mutex);
5833 		mutex_lock(&event->child_mutex);
5834 
5835 		/*
5836 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5837 		 * state, if child is still the first entry, it didn't get freed
5838 		 * and we can continue doing so.
5839 		 */
5840 		tmp = list_first_entry_or_null(&event->child_list,
5841 					       struct perf_event, child_list);
5842 		if (tmp == child) {
5843 			perf_remove_from_context(child, DETACH_GROUP | DETACH_CHILD);
5844 		} else {
5845 			child = NULL;
5846 		}
5847 
5848 		mutex_unlock(&event->child_mutex);
5849 		mutex_unlock(&ctx->mutex);
5850 
5851 		if (child) {
5852 			/* Last reference unless ->pending_task work is pending */
5853 			put_event(child);
5854 		}
5855 		put_ctx(ctx);
5856 
5857 		goto again;
5858 	}
5859 	mutex_unlock(&event->child_mutex);
5860 
5861 no_ctx:
5862 	/*
5863 	 * Last reference unless ->pending_task work is pending on this event
5864 	 * or any of its children.
5865 	 */
5866 	put_event(event);
5867 	return 0;
5868 }
5869 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5870 
5871 /*
5872  * Called when the last reference to the file is gone.
5873  */
perf_release(struct inode * inode,struct file * file)5874 static int perf_release(struct inode *inode, struct file *file)
5875 {
5876 	perf_event_release_kernel(file->private_data);
5877 	return 0;
5878 }
5879 
__perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5880 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5881 {
5882 	struct perf_event *child;
5883 	u64 total = 0;
5884 
5885 	*enabled = 0;
5886 	*running = 0;
5887 
5888 	mutex_lock(&event->child_mutex);
5889 
5890 	(void)perf_event_read(event, false);
5891 	total += perf_event_count(event, false);
5892 
5893 	*enabled += event->total_time_enabled +
5894 			atomic64_read(&event->child_total_time_enabled);
5895 	*running += event->total_time_running +
5896 			atomic64_read(&event->child_total_time_running);
5897 
5898 	list_for_each_entry(child, &event->child_list, child_list) {
5899 		(void)perf_event_read(child, false);
5900 		total += perf_event_count(child, false);
5901 		*enabled += child->total_time_enabled;
5902 		*running += child->total_time_running;
5903 	}
5904 	mutex_unlock(&event->child_mutex);
5905 
5906 	return total;
5907 }
5908 
perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5909 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5910 {
5911 	struct perf_event_context *ctx;
5912 	u64 count;
5913 
5914 	ctx = perf_event_ctx_lock(event);
5915 	count = __perf_event_read_value(event, enabled, running);
5916 	perf_event_ctx_unlock(event, ctx);
5917 
5918 	return count;
5919 }
5920 EXPORT_SYMBOL_GPL(perf_event_read_value);
5921 
__perf_read_group_add(struct perf_event * leader,u64 read_format,u64 * values)5922 static int __perf_read_group_add(struct perf_event *leader,
5923 					u64 read_format, u64 *values)
5924 {
5925 	struct perf_event_context *ctx = leader->ctx;
5926 	struct perf_event *sub, *parent;
5927 	unsigned long flags;
5928 	int n = 1; /* skip @nr */
5929 	int ret;
5930 
5931 	ret = perf_event_read(leader, true);
5932 	if (ret)
5933 		return ret;
5934 
5935 	raw_spin_lock_irqsave(&ctx->lock, flags);
5936 	/*
5937 	 * Verify the grouping between the parent and child (inherited)
5938 	 * events is still in tact.
5939 	 *
5940 	 * Specifically:
5941 	 *  - leader->ctx->lock pins leader->sibling_list
5942 	 *  - parent->child_mutex pins parent->child_list
5943 	 *  - parent->ctx->mutex pins parent->sibling_list
5944 	 *
5945 	 * Because parent->ctx != leader->ctx (and child_list nests inside
5946 	 * ctx->mutex), group destruction is not atomic between children, also
5947 	 * see perf_event_release_kernel(). Additionally, parent can grow the
5948 	 * group.
5949 	 *
5950 	 * Therefore it is possible to have parent and child groups in a
5951 	 * different configuration and summing over such a beast makes no sense
5952 	 * what so ever.
5953 	 *
5954 	 * Reject this.
5955 	 */
5956 	parent = leader->parent;
5957 	if (parent &&
5958 	    (parent->group_generation != leader->group_generation ||
5959 	     parent->nr_siblings != leader->nr_siblings)) {
5960 		ret = -ECHILD;
5961 		goto unlock;
5962 	}
5963 
5964 	/*
5965 	 * Since we co-schedule groups, {enabled,running} times of siblings
5966 	 * will be identical to those of the leader, so we only publish one
5967 	 * set.
5968 	 */
5969 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5970 		values[n++] += leader->total_time_enabled +
5971 			atomic64_read(&leader->child_total_time_enabled);
5972 	}
5973 
5974 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5975 		values[n++] += leader->total_time_running +
5976 			atomic64_read(&leader->child_total_time_running);
5977 	}
5978 
5979 	/*
5980 	 * Write {count,id} tuples for every sibling.
5981 	 */
5982 	values[n++] += perf_event_count(leader, false);
5983 	if (read_format & PERF_FORMAT_ID)
5984 		values[n++] = primary_event_id(leader);
5985 	if (read_format & PERF_FORMAT_LOST)
5986 		values[n++] = atomic64_read(&leader->lost_samples);
5987 
5988 	for_each_sibling_event(sub, leader) {
5989 		values[n++] += perf_event_count(sub, false);
5990 		if (read_format & PERF_FORMAT_ID)
5991 			values[n++] = primary_event_id(sub);
5992 		if (read_format & PERF_FORMAT_LOST)
5993 			values[n++] = atomic64_read(&sub->lost_samples);
5994 	}
5995 
5996 unlock:
5997 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5998 	return ret;
5999 }
6000 
perf_read_group(struct perf_event * event,u64 read_format,char __user * buf)6001 static int perf_read_group(struct perf_event *event,
6002 				   u64 read_format, char __user *buf)
6003 {
6004 	struct perf_event *leader = event->group_leader, *child;
6005 	struct perf_event_context *ctx = leader->ctx;
6006 	int ret;
6007 	u64 *values;
6008 
6009 	lockdep_assert_held(&ctx->mutex);
6010 
6011 	values = kzalloc(event->read_size, GFP_KERNEL);
6012 	if (!values)
6013 		return -ENOMEM;
6014 
6015 	values[0] = 1 + leader->nr_siblings;
6016 
6017 	mutex_lock(&leader->child_mutex);
6018 
6019 	ret = __perf_read_group_add(leader, read_format, values);
6020 	if (ret)
6021 		goto unlock;
6022 
6023 	list_for_each_entry(child, &leader->child_list, child_list) {
6024 		ret = __perf_read_group_add(child, read_format, values);
6025 		if (ret)
6026 			goto unlock;
6027 	}
6028 
6029 	mutex_unlock(&leader->child_mutex);
6030 
6031 	ret = event->read_size;
6032 	if (copy_to_user(buf, values, event->read_size))
6033 		ret = -EFAULT;
6034 	goto out;
6035 
6036 unlock:
6037 	mutex_unlock(&leader->child_mutex);
6038 out:
6039 	kfree(values);
6040 	return ret;
6041 }
6042 
perf_read_one(struct perf_event * event,u64 read_format,char __user * buf)6043 static int perf_read_one(struct perf_event *event,
6044 				 u64 read_format, char __user *buf)
6045 {
6046 	u64 enabled, running;
6047 	u64 values[5];
6048 	int n = 0;
6049 
6050 	values[n++] = __perf_event_read_value(event, &enabled, &running);
6051 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6052 		values[n++] = enabled;
6053 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6054 		values[n++] = running;
6055 	if (read_format & PERF_FORMAT_ID)
6056 		values[n++] = primary_event_id(event);
6057 	if (read_format & PERF_FORMAT_LOST)
6058 		values[n++] = atomic64_read(&event->lost_samples);
6059 
6060 	if (copy_to_user(buf, values, n * sizeof(u64)))
6061 		return -EFAULT;
6062 
6063 	return n * sizeof(u64);
6064 }
6065 
is_event_hup(struct perf_event * event)6066 static bool is_event_hup(struct perf_event *event)
6067 {
6068 	bool no_children;
6069 
6070 	if (event->state > PERF_EVENT_STATE_EXIT)
6071 		return false;
6072 
6073 	mutex_lock(&event->child_mutex);
6074 	no_children = list_empty(&event->child_list);
6075 	mutex_unlock(&event->child_mutex);
6076 	return no_children;
6077 }
6078 
6079 /*
6080  * Read the performance event - simple non blocking version for now
6081  */
6082 static ssize_t
__perf_read(struct perf_event * event,char __user * buf,size_t count)6083 __perf_read(struct perf_event *event, char __user *buf, size_t count)
6084 {
6085 	u64 read_format = event->attr.read_format;
6086 	int ret;
6087 
6088 	/*
6089 	 * Return end-of-file for a read on an event that is in
6090 	 * error state (i.e. because it was pinned but it couldn't be
6091 	 * scheduled on to the CPU at some point).
6092 	 */
6093 	if (event->state == PERF_EVENT_STATE_ERROR)
6094 		return 0;
6095 
6096 	if (count < event->read_size)
6097 		return -ENOSPC;
6098 
6099 	WARN_ON_ONCE(event->ctx->parent_ctx);
6100 	if (read_format & PERF_FORMAT_GROUP)
6101 		ret = perf_read_group(event, read_format, buf);
6102 	else
6103 		ret = perf_read_one(event, read_format, buf);
6104 
6105 	return ret;
6106 }
6107 
6108 static ssize_t
perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)6109 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
6110 {
6111 	struct perf_event *event = file->private_data;
6112 	struct perf_event_context *ctx;
6113 	int ret;
6114 
6115 	ret = security_perf_event_read(event);
6116 	if (ret)
6117 		return ret;
6118 
6119 	ctx = perf_event_ctx_lock(event);
6120 	ret = __perf_read(event, buf, count);
6121 	perf_event_ctx_unlock(event, ctx);
6122 
6123 	return ret;
6124 }
6125 
perf_poll(struct file * file,poll_table * wait)6126 static __poll_t perf_poll(struct file *file, poll_table *wait)
6127 {
6128 	struct perf_event *event = file->private_data;
6129 	struct perf_buffer *rb;
6130 	__poll_t events = EPOLLHUP;
6131 
6132 	if (event->state <= PERF_EVENT_STATE_REVOKED)
6133 		return EPOLLERR;
6134 
6135 	poll_wait(file, &event->waitq, wait);
6136 
6137 	if (event->state <= PERF_EVENT_STATE_REVOKED)
6138 		return EPOLLERR;
6139 
6140 	if (is_event_hup(event))
6141 		return events;
6142 
6143 	if (unlikely(READ_ONCE(event->state) == PERF_EVENT_STATE_ERROR &&
6144 		     event->attr.pinned))
6145 		return EPOLLERR;
6146 
6147 	/*
6148 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
6149 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
6150 	 */
6151 	mutex_lock(&event->mmap_mutex);
6152 	rb = event->rb;
6153 	if (rb)
6154 		events = atomic_xchg(&rb->poll, 0);
6155 	mutex_unlock(&event->mmap_mutex);
6156 	return events;
6157 }
6158 
_perf_event_reset(struct perf_event * event)6159 static void _perf_event_reset(struct perf_event *event)
6160 {
6161 	(void)perf_event_read(event, false);
6162 	local64_set(&event->count, 0);
6163 	perf_event_update_userpage(event);
6164 }
6165 
6166 /* Assume it's not an event with inherit set. */
perf_event_pause(struct perf_event * event,bool reset)6167 u64 perf_event_pause(struct perf_event *event, bool reset)
6168 {
6169 	struct perf_event_context *ctx;
6170 	u64 count;
6171 
6172 	ctx = perf_event_ctx_lock(event);
6173 	WARN_ON_ONCE(event->attr.inherit);
6174 	_perf_event_disable(event);
6175 	count = local64_read(&event->count);
6176 	if (reset)
6177 		local64_set(&event->count, 0);
6178 	perf_event_ctx_unlock(event, ctx);
6179 
6180 	return count;
6181 }
6182 EXPORT_SYMBOL_GPL(perf_event_pause);
6183 
6184 /*
6185  * Holding the top-level event's child_mutex means that any
6186  * descendant process that has inherited this event will block
6187  * in perf_event_exit_event() if it goes to exit, thus satisfying the
6188  * task existence requirements of perf_event_enable/disable.
6189  */
perf_event_for_each_child(struct perf_event * event,void (* func)(struct perf_event *))6190 static void perf_event_for_each_child(struct perf_event *event,
6191 					void (*func)(struct perf_event *))
6192 {
6193 	struct perf_event *child;
6194 
6195 	WARN_ON_ONCE(event->ctx->parent_ctx);
6196 
6197 	mutex_lock(&event->child_mutex);
6198 	func(event);
6199 	list_for_each_entry(child, &event->child_list, child_list)
6200 		func(child);
6201 	mutex_unlock(&event->child_mutex);
6202 }
6203 
perf_event_for_each(struct perf_event * event,void (* func)(struct perf_event *))6204 static void perf_event_for_each(struct perf_event *event,
6205 				  void (*func)(struct perf_event *))
6206 {
6207 	struct perf_event_context *ctx = event->ctx;
6208 	struct perf_event *sibling;
6209 
6210 	lockdep_assert_held(&ctx->mutex);
6211 
6212 	event = event->group_leader;
6213 
6214 	perf_event_for_each_child(event, func);
6215 	for_each_sibling_event(sibling, event)
6216 		perf_event_for_each_child(sibling, func);
6217 }
6218 
__perf_event_period(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)6219 static void __perf_event_period(struct perf_event *event,
6220 				struct perf_cpu_context *cpuctx,
6221 				struct perf_event_context *ctx,
6222 				void *info)
6223 {
6224 	u64 value = *((u64 *)info);
6225 	bool active;
6226 
6227 	if (event->attr.freq) {
6228 		event->attr.sample_freq = value;
6229 	} else {
6230 		event->attr.sample_period = value;
6231 		event->hw.sample_period = value;
6232 	}
6233 
6234 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
6235 	if (active) {
6236 		perf_pmu_disable(event->pmu);
6237 		event->pmu->stop(event, PERF_EF_UPDATE);
6238 	}
6239 
6240 	local64_set(&event->hw.period_left, 0);
6241 
6242 	if (active) {
6243 		event->pmu->start(event, PERF_EF_RELOAD);
6244 		/*
6245 		 * Once the period is force-reset, the event starts immediately.
6246 		 * But the event/group could be throttled. Unthrottle the
6247 		 * event/group now to avoid the next tick trying to unthrottle
6248 		 * while we already re-started the event/group.
6249 		 */
6250 		if (event->hw.interrupts == MAX_INTERRUPTS)
6251 			perf_event_unthrottle_group(event, true);
6252 		perf_pmu_enable(event->pmu);
6253 	}
6254 }
6255 
perf_event_check_period(struct perf_event * event,u64 value)6256 static int perf_event_check_period(struct perf_event *event, u64 value)
6257 {
6258 	return event->pmu->check_period(event, value);
6259 }
6260 
_perf_event_period(struct perf_event * event,u64 value)6261 static int _perf_event_period(struct perf_event *event, u64 value)
6262 {
6263 	if (!is_sampling_event(event))
6264 		return -EINVAL;
6265 
6266 	if (!value)
6267 		return -EINVAL;
6268 
6269 	if (event->attr.freq) {
6270 		if (value > sysctl_perf_event_sample_rate)
6271 			return -EINVAL;
6272 	} else {
6273 		if (perf_event_check_period(event, value))
6274 			return -EINVAL;
6275 		if (value & (1ULL << 63))
6276 			return -EINVAL;
6277 	}
6278 
6279 	event_function_call(event, __perf_event_period, &value);
6280 
6281 	return 0;
6282 }
6283 
perf_event_period(struct perf_event * event,u64 value)6284 int perf_event_period(struct perf_event *event, u64 value)
6285 {
6286 	struct perf_event_context *ctx;
6287 	int ret;
6288 
6289 	ctx = perf_event_ctx_lock(event);
6290 	ret = _perf_event_period(event, value);
6291 	perf_event_ctx_unlock(event, ctx);
6292 
6293 	return ret;
6294 }
6295 EXPORT_SYMBOL_GPL(perf_event_period);
6296 
6297 static const struct file_operations perf_fops;
6298 
is_perf_file(struct fd f)6299 static inline bool is_perf_file(struct fd f)
6300 {
6301 	return !fd_empty(f) && fd_file(f)->f_op == &perf_fops;
6302 }
6303 
6304 static int perf_event_set_output(struct perf_event *event,
6305 				 struct perf_event *output_event);
6306 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
6307 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6308 			  struct perf_event_attr *attr);
6309 static int __perf_event_set_bpf_prog(struct perf_event *event,
6310 				     struct bpf_prog *prog,
6311 				     u64 bpf_cookie);
6312 
_perf_ioctl(struct perf_event * event,unsigned int cmd,unsigned long arg)6313 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
6314 {
6315 	void (*func)(struct perf_event *);
6316 	u32 flags = arg;
6317 
6318 	if (event->state <= PERF_EVENT_STATE_REVOKED)
6319 		return -ENODEV;
6320 
6321 	switch (cmd) {
6322 	case PERF_EVENT_IOC_ENABLE:
6323 		func = _perf_event_enable;
6324 		break;
6325 	case PERF_EVENT_IOC_DISABLE:
6326 		func = _perf_event_disable;
6327 		break;
6328 	case PERF_EVENT_IOC_RESET:
6329 		func = _perf_event_reset;
6330 		break;
6331 
6332 	case PERF_EVENT_IOC_REFRESH:
6333 		return _perf_event_refresh(event, arg);
6334 
6335 	case PERF_EVENT_IOC_PERIOD:
6336 	{
6337 		u64 value;
6338 
6339 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
6340 			return -EFAULT;
6341 
6342 		return _perf_event_period(event, value);
6343 	}
6344 	case PERF_EVENT_IOC_ID:
6345 	{
6346 		u64 id = primary_event_id(event);
6347 
6348 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
6349 			return -EFAULT;
6350 		return 0;
6351 	}
6352 
6353 	case PERF_EVENT_IOC_SET_OUTPUT:
6354 	{
6355 		CLASS(fd, output)(arg);	     // arg == -1 => empty
6356 		struct perf_event *output_event = NULL;
6357 		if (arg != -1) {
6358 			if (!is_perf_file(output))
6359 				return -EBADF;
6360 			output_event = fd_file(output)->private_data;
6361 		}
6362 		return perf_event_set_output(event, output_event);
6363 	}
6364 
6365 	case PERF_EVENT_IOC_SET_FILTER:
6366 		return perf_event_set_filter(event, (void __user *)arg);
6367 
6368 	case PERF_EVENT_IOC_SET_BPF:
6369 	{
6370 		struct bpf_prog *prog;
6371 		int err;
6372 
6373 		prog = bpf_prog_get(arg);
6374 		if (IS_ERR(prog))
6375 			return PTR_ERR(prog);
6376 
6377 		err = __perf_event_set_bpf_prog(event, prog, 0);
6378 		if (err) {
6379 			bpf_prog_put(prog);
6380 			return err;
6381 		}
6382 
6383 		return 0;
6384 	}
6385 
6386 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
6387 		struct perf_buffer *rb;
6388 
6389 		rcu_read_lock();
6390 		rb = rcu_dereference(event->rb);
6391 		if (!rb || !rb->nr_pages) {
6392 			rcu_read_unlock();
6393 			return -EINVAL;
6394 		}
6395 		rb_toggle_paused(rb, !!arg);
6396 		rcu_read_unlock();
6397 		return 0;
6398 	}
6399 
6400 	case PERF_EVENT_IOC_QUERY_BPF:
6401 		return perf_event_query_prog_array(event, (void __user *)arg);
6402 
6403 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
6404 		struct perf_event_attr new_attr;
6405 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
6406 					 &new_attr);
6407 
6408 		if (err)
6409 			return err;
6410 
6411 		return perf_event_modify_attr(event,  &new_attr);
6412 	}
6413 	default:
6414 		return -ENOTTY;
6415 	}
6416 
6417 	if (flags & PERF_IOC_FLAG_GROUP)
6418 		perf_event_for_each(event, func);
6419 	else
6420 		perf_event_for_each_child(event, func);
6421 
6422 	return 0;
6423 }
6424 
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6425 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6426 {
6427 	struct perf_event *event = file->private_data;
6428 	struct perf_event_context *ctx;
6429 	long ret;
6430 
6431 	/* Treat ioctl like writes as it is likely a mutating operation. */
6432 	ret = security_perf_event_write(event);
6433 	if (ret)
6434 		return ret;
6435 
6436 	ctx = perf_event_ctx_lock(event);
6437 	ret = _perf_ioctl(event, cmd, arg);
6438 	perf_event_ctx_unlock(event, ctx);
6439 
6440 	return ret;
6441 }
6442 
6443 #ifdef CONFIG_COMPAT
perf_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6444 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6445 				unsigned long arg)
6446 {
6447 	switch (_IOC_NR(cmd)) {
6448 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6449 	case _IOC_NR(PERF_EVENT_IOC_ID):
6450 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6451 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6452 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6453 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6454 			cmd &= ~IOCSIZE_MASK;
6455 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6456 		}
6457 		break;
6458 	}
6459 	return perf_ioctl(file, cmd, arg);
6460 }
6461 #else
6462 # define perf_compat_ioctl NULL
6463 #endif
6464 
perf_event_task_enable(void)6465 int perf_event_task_enable(void)
6466 {
6467 	struct perf_event_context *ctx;
6468 	struct perf_event *event;
6469 
6470 	mutex_lock(&current->perf_event_mutex);
6471 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6472 		ctx = perf_event_ctx_lock(event);
6473 		perf_event_for_each_child(event, _perf_event_enable);
6474 		perf_event_ctx_unlock(event, ctx);
6475 	}
6476 	mutex_unlock(&current->perf_event_mutex);
6477 
6478 	return 0;
6479 }
6480 
perf_event_task_disable(void)6481 int perf_event_task_disable(void)
6482 {
6483 	struct perf_event_context *ctx;
6484 	struct perf_event *event;
6485 
6486 	mutex_lock(&current->perf_event_mutex);
6487 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6488 		ctx = perf_event_ctx_lock(event);
6489 		perf_event_for_each_child(event, _perf_event_disable);
6490 		perf_event_ctx_unlock(event, ctx);
6491 	}
6492 	mutex_unlock(&current->perf_event_mutex);
6493 
6494 	return 0;
6495 }
6496 
perf_event_index(struct perf_event * event)6497 static int perf_event_index(struct perf_event *event)
6498 {
6499 	if (event->hw.state & PERF_HES_STOPPED)
6500 		return 0;
6501 
6502 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6503 		return 0;
6504 
6505 	return event->pmu->event_idx(event);
6506 }
6507 
perf_event_init_userpage(struct perf_event * event)6508 static void perf_event_init_userpage(struct perf_event *event)
6509 {
6510 	struct perf_event_mmap_page *userpg;
6511 	struct perf_buffer *rb;
6512 
6513 	rcu_read_lock();
6514 	rb = rcu_dereference(event->rb);
6515 	if (!rb)
6516 		goto unlock;
6517 
6518 	userpg = rb->user_page;
6519 
6520 	/* Allow new userspace to detect that bit 0 is deprecated */
6521 	userpg->cap_bit0_is_deprecated = 1;
6522 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6523 	userpg->data_offset = PAGE_SIZE;
6524 	userpg->data_size = perf_data_size(rb);
6525 
6526 unlock:
6527 	rcu_read_unlock();
6528 }
6529 
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)6530 void __weak arch_perf_update_userpage(
6531 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6532 {
6533 }
6534 
6535 /*
6536  * Callers need to ensure there can be no nesting of this function, otherwise
6537  * the seqlock logic goes bad. We can not serialize this because the arch
6538  * code calls this from NMI context.
6539  */
perf_event_update_userpage(struct perf_event * event)6540 void perf_event_update_userpage(struct perf_event *event)
6541 {
6542 	struct perf_event_mmap_page *userpg;
6543 	struct perf_buffer *rb;
6544 	u64 enabled, running, now;
6545 
6546 	rcu_read_lock();
6547 	rb = rcu_dereference(event->rb);
6548 	if (!rb)
6549 		goto unlock;
6550 
6551 	/*
6552 	 * compute total_time_enabled, total_time_running
6553 	 * based on snapshot values taken when the event
6554 	 * was last scheduled in.
6555 	 *
6556 	 * we cannot simply called update_context_time()
6557 	 * because of locking issue as we can be called in
6558 	 * NMI context
6559 	 */
6560 	calc_timer_values(event, &now, &enabled, &running);
6561 
6562 	userpg = rb->user_page;
6563 	/*
6564 	 * Disable preemption to guarantee consistent time stamps are stored to
6565 	 * the user page.
6566 	 */
6567 	preempt_disable();
6568 	++userpg->lock;
6569 	barrier();
6570 	userpg->index = perf_event_index(event);
6571 	userpg->offset = perf_event_count(event, false);
6572 	if (userpg->index)
6573 		userpg->offset -= local64_read(&event->hw.prev_count);
6574 
6575 	userpg->time_enabled = enabled +
6576 			atomic64_read(&event->child_total_time_enabled);
6577 
6578 	userpg->time_running = running +
6579 			atomic64_read(&event->child_total_time_running);
6580 
6581 	arch_perf_update_userpage(event, userpg, now);
6582 
6583 	barrier();
6584 	++userpg->lock;
6585 	preempt_enable();
6586 unlock:
6587 	rcu_read_unlock();
6588 }
6589 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6590 
ring_buffer_attach(struct perf_event * event,struct perf_buffer * rb)6591 static void ring_buffer_attach(struct perf_event *event,
6592 			       struct perf_buffer *rb)
6593 {
6594 	struct perf_buffer *old_rb = NULL;
6595 	unsigned long flags;
6596 
6597 	WARN_ON_ONCE(event->parent);
6598 
6599 	if (event->rb) {
6600 		/*
6601 		 * Should be impossible, we set this when removing
6602 		 * event->rb_entry and wait/clear when adding event->rb_entry.
6603 		 */
6604 		WARN_ON_ONCE(event->rcu_pending);
6605 
6606 		old_rb = event->rb;
6607 		spin_lock_irqsave(&old_rb->event_lock, flags);
6608 		list_del_rcu(&event->rb_entry);
6609 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6610 
6611 		event->rcu_batches = get_state_synchronize_rcu();
6612 		event->rcu_pending = 1;
6613 	}
6614 
6615 	if (rb) {
6616 		if (event->rcu_pending) {
6617 			cond_synchronize_rcu(event->rcu_batches);
6618 			event->rcu_pending = 0;
6619 		}
6620 
6621 		spin_lock_irqsave(&rb->event_lock, flags);
6622 		list_add_rcu(&event->rb_entry, &rb->event_list);
6623 		spin_unlock_irqrestore(&rb->event_lock, flags);
6624 	}
6625 
6626 	/*
6627 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6628 	 * before swizzling the event::rb pointer; if it's getting
6629 	 * unmapped, its aux_mmap_count will be 0 and it won't
6630 	 * restart. See the comment in __perf_pmu_output_stop().
6631 	 *
6632 	 * Data will inevitably be lost when set_output is done in
6633 	 * mid-air, but then again, whoever does it like this is
6634 	 * not in for the data anyway.
6635 	 */
6636 	if (has_aux(event))
6637 		perf_event_stop(event, 0);
6638 
6639 	rcu_assign_pointer(event->rb, rb);
6640 
6641 	if (old_rb) {
6642 		ring_buffer_put(old_rb);
6643 		/*
6644 		 * Since we detached before setting the new rb, so that we
6645 		 * could attach the new rb, we could have missed a wakeup.
6646 		 * Provide it now.
6647 		 */
6648 		wake_up_all(&event->waitq);
6649 	}
6650 }
6651 
ring_buffer_wakeup(struct perf_event * event)6652 static void ring_buffer_wakeup(struct perf_event *event)
6653 {
6654 	struct perf_buffer *rb;
6655 
6656 	if (event->parent)
6657 		event = event->parent;
6658 
6659 	rcu_read_lock();
6660 	rb = rcu_dereference(event->rb);
6661 	if (rb) {
6662 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6663 			wake_up_all(&event->waitq);
6664 	}
6665 	rcu_read_unlock();
6666 }
6667 
ring_buffer_get(struct perf_event * event)6668 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6669 {
6670 	struct perf_buffer *rb;
6671 
6672 	if (event->parent)
6673 		event = event->parent;
6674 
6675 	rcu_read_lock();
6676 	rb = rcu_dereference(event->rb);
6677 	if (rb) {
6678 		if (!refcount_inc_not_zero(&rb->refcount))
6679 			rb = NULL;
6680 	}
6681 	rcu_read_unlock();
6682 
6683 	return rb;
6684 }
6685 
ring_buffer_put(struct perf_buffer * rb)6686 void ring_buffer_put(struct perf_buffer *rb)
6687 {
6688 	if (!refcount_dec_and_test(&rb->refcount))
6689 		return;
6690 
6691 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6692 
6693 	call_rcu(&rb->rcu_head, rb_free_rcu);
6694 }
6695 
6696 typedef void (*mapped_f)(struct perf_event *event, struct mm_struct *mm);
6697 
6698 #define get_mapped(event, func)			\
6699 ({	struct pmu *pmu;			\
6700 	mapped_f f = NULL;			\
6701 	guard(rcu)();				\
6702 	pmu = READ_ONCE(event->pmu);		\
6703 	if (pmu)				\
6704 		f = pmu->func;			\
6705 	f;					\
6706 })
6707 
perf_mmap_open(struct vm_area_struct * vma)6708 static void perf_mmap_open(struct vm_area_struct *vma)
6709 {
6710 	struct perf_event *event = vma->vm_file->private_data;
6711 	mapped_f mapped = get_mapped(event, event_mapped);
6712 
6713 	refcount_inc(&event->mmap_count);
6714 	refcount_inc(&event->rb->mmap_count);
6715 
6716 	if (vma->vm_pgoff)
6717 		refcount_inc(&event->rb->aux_mmap_count);
6718 
6719 	if (mapped)
6720 		mapped(event, vma->vm_mm);
6721 }
6722 
6723 static void perf_pmu_output_stop(struct perf_event *event);
6724 
6725 /*
6726  * A buffer can be mmap()ed multiple times; either directly through the same
6727  * event, or through other events by use of perf_event_set_output().
6728  *
6729  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6730  * the buffer here, where we still have a VM context. This means we need
6731  * to detach all events redirecting to us.
6732  */
perf_mmap_close(struct vm_area_struct * vma)6733 static void perf_mmap_close(struct vm_area_struct *vma)
6734 {
6735 	struct perf_event *event = vma->vm_file->private_data;
6736 	mapped_f unmapped = get_mapped(event, event_unmapped);
6737 	struct perf_buffer *rb = ring_buffer_get(event);
6738 	struct user_struct *mmap_user = rb->mmap_user;
6739 	int mmap_locked = rb->mmap_locked;
6740 	unsigned long size = perf_data_size(rb);
6741 	bool detach_rest = false;
6742 
6743 	/* FIXIES vs perf_pmu_unregister() */
6744 	if (unmapped)
6745 		unmapped(event, vma->vm_mm);
6746 
6747 	/*
6748 	 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex
6749 	 * to avoid complications.
6750 	 */
6751 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6752 	    refcount_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) {
6753 		/*
6754 		 * Stop all AUX events that are writing to this buffer,
6755 		 * so that we can free its AUX pages and corresponding PMU
6756 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6757 		 * they won't start any more (see perf_aux_output_begin()).
6758 		 */
6759 		perf_pmu_output_stop(event);
6760 
6761 		/* now it's safe to free the pages */
6762 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6763 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6764 
6765 		/* this has to be the last one */
6766 		rb_free_aux(rb);
6767 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6768 
6769 		mutex_unlock(&rb->aux_mutex);
6770 	}
6771 
6772 	if (refcount_dec_and_test(&rb->mmap_count))
6773 		detach_rest = true;
6774 
6775 	if (!refcount_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6776 		goto out_put;
6777 
6778 	ring_buffer_attach(event, NULL);
6779 	mutex_unlock(&event->mmap_mutex);
6780 
6781 	/* If there's still other mmap()s of this buffer, we're done. */
6782 	if (!detach_rest)
6783 		goto out_put;
6784 
6785 	/*
6786 	 * No other mmap()s, detach from all other events that might redirect
6787 	 * into the now unreachable buffer. Somewhat complicated by the
6788 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6789 	 */
6790 again:
6791 	rcu_read_lock();
6792 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6793 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6794 			/*
6795 			 * This event is en-route to free_event() which will
6796 			 * detach it and remove it from the list.
6797 			 */
6798 			continue;
6799 		}
6800 		rcu_read_unlock();
6801 
6802 		mutex_lock(&event->mmap_mutex);
6803 		/*
6804 		 * Check we didn't race with perf_event_set_output() which can
6805 		 * swizzle the rb from under us while we were waiting to
6806 		 * acquire mmap_mutex.
6807 		 *
6808 		 * If we find a different rb; ignore this event, a next
6809 		 * iteration will no longer find it on the list. We have to
6810 		 * still restart the iteration to make sure we're not now
6811 		 * iterating the wrong list.
6812 		 */
6813 		if (event->rb == rb)
6814 			ring_buffer_attach(event, NULL);
6815 
6816 		mutex_unlock(&event->mmap_mutex);
6817 		put_event(event);
6818 
6819 		/*
6820 		 * Restart the iteration; either we're on the wrong list or
6821 		 * destroyed its integrity by doing a deletion.
6822 		 */
6823 		goto again;
6824 	}
6825 	rcu_read_unlock();
6826 
6827 	/*
6828 	 * It could be there's still a few 0-ref events on the list; they'll
6829 	 * get cleaned up by free_event() -- they'll also still have their
6830 	 * ref on the rb and will free it whenever they are done with it.
6831 	 *
6832 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6833 	 * undo the VM accounting.
6834 	 */
6835 
6836 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6837 			&mmap_user->locked_vm);
6838 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6839 	free_uid(mmap_user);
6840 
6841 out_put:
6842 	ring_buffer_put(rb); /* could be last */
6843 }
6844 
perf_mmap_pfn_mkwrite(struct vm_fault * vmf)6845 static vm_fault_t perf_mmap_pfn_mkwrite(struct vm_fault *vmf)
6846 {
6847 	/* The first page is the user control page, others are read-only. */
6848 	return vmf->pgoff == 0 ? 0 : VM_FAULT_SIGBUS;
6849 }
6850 
perf_mmap_may_split(struct vm_area_struct * vma,unsigned long addr)6851 static int perf_mmap_may_split(struct vm_area_struct *vma, unsigned long addr)
6852 {
6853 	/*
6854 	 * Forbid splitting perf mappings to prevent refcount leaks due to
6855 	 * the resulting non-matching offsets and sizes. See open()/close().
6856 	 */
6857 	return -EINVAL;
6858 }
6859 
6860 static const struct vm_operations_struct perf_mmap_vmops = {
6861 	.open		= perf_mmap_open,
6862 	.close		= perf_mmap_close, /* non mergeable */
6863 	.pfn_mkwrite	= perf_mmap_pfn_mkwrite,
6864 	.may_split	= perf_mmap_may_split,
6865 };
6866 
map_range(struct perf_buffer * rb,struct vm_area_struct * vma)6867 static int map_range(struct perf_buffer *rb, struct vm_area_struct *vma)
6868 {
6869 	unsigned long nr_pages = vma_pages(vma);
6870 	int err = 0;
6871 	unsigned long pagenum;
6872 
6873 	/*
6874 	 * We map this as a VM_PFNMAP VMA.
6875 	 *
6876 	 * This is not ideal as this is designed broadly for mappings of PFNs
6877 	 * referencing memory-mapped I/O ranges or non-system RAM i.e. for which
6878 	 * !pfn_valid(pfn).
6879 	 *
6880 	 * We are mapping kernel-allocated memory (memory we manage ourselves)
6881 	 * which would more ideally be mapped using vm_insert_page() or a
6882 	 * similar mechanism, that is as a VM_MIXEDMAP mapping.
6883 	 *
6884 	 * However this won't work here, because:
6885 	 *
6886 	 * 1. It uses vma->vm_page_prot, but this field has not been completely
6887 	 *    setup at the point of the f_op->mmp() hook, so we are unable to
6888 	 *    indicate that this should be mapped CoW in order that the
6889 	 *    mkwrite() hook can be invoked to make the first page R/W and the
6890 	 *    rest R/O as desired.
6891 	 *
6892 	 * 2. Anything other than a VM_PFNMAP of valid PFNs will result in
6893 	 *    vm_normal_page() returning a struct page * pointer, which means
6894 	 *    vm_ops->page_mkwrite() will be invoked rather than
6895 	 *    vm_ops->pfn_mkwrite(), and this means we have to set page->mapping
6896 	 *    to work around retry logic in the fault handler, however this
6897 	 *    field is no longer allowed to be used within struct page.
6898 	 *
6899 	 * 3. Having a struct page * made available in the fault logic also
6900 	 *    means that the page gets put on the rmap and becomes
6901 	 *    inappropriately accessible and subject to map and ref counting.
6902 	 *
6903 	 * Ideally we would have a mechanism that could explicitly express our
6904 	 * desires, but this is not currently the case, so we instead use
6905 	 * VM_PFNMAP.
6906 	 *
6907 	 * We manage the lifetime of these mappings with internal refcounts (see
6908 	 * perf_mmap_open() and perf_mmap_close()) so we ensure the lifetime of
6909 	 * this mapping is maintained correctly.
6910 	 */
6911 	for (pagenum = 0; pagenum < nr_pages; pagenum++) {
6912 		unsigned long va = vma->vm_start + PAGE_SIZE * pagenum;
6913 		struct page *page = perf_mmap_to_page(rb, vma->vm_pgoff + pagenum);
6914 
6915 		if (page == NULL) {
6916 			err = -EINVAL;
6917 			break;
6918 		}
6919 
6920 		/* Map readonly, perf_mmap_pfn_mkwrite() called on write fault. */
6921 		err = remap_pfn_range(vma, va, page_to_pfn(page), PAGE_SIZE,
6922 				      vm_get_page_prot(vma->vm_flags & ~VM_SHARED));
6923 		if (err)
6924 			break;
6925 	}
6926 
6927 #ifdef CONFIG_MMU
6928 	/* Clear any partial mappings on error. */
6929 	if (err)
6930 		zap_page_range_single(vma, vma->vm_start, nr_pages * PAGE_SIZE, NULL);
6931 #endif
6932 
6933 	return err;
6934 }
6935 
perf_mmap_calc_limits(struct vm_area_struct * vma,long * user_extra,long * extra)6936 static bool perf_mmap_calc_limits(struct vm_area_struct *vma, long *user_extra, long *extra)
6937 {
6938 	unsigned long user_locked, user_lock_limit, locked, lock_limit;
6939 	struct user_struct *user = current_user();
6940 
6941 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6942 	/* Increase the limit linearly with more CPUs */
6943 	user_lock_limit *= num_online_cpus();
6944 
6945 	user_locked = atomic_long_read(&user->locked_vm);
6946 
6947 	/*
6948 	 * sysctl_perf_event_mlock may have changed, so that
6949 	 *     user->locked_vm > user_lock_limit
6950 	 */
6951 	if (user_locked > user_lock_limit)
6952 		user_locked = user_lock_limit;
6953 	user_locked += *user_extra;
6954 
6955 	if (user_locked > user_lock_limit) {
6956 		/*
6957 		 * charge locked_vm until it hits user_lock_limit;
6958 		 * charge the rest from pinned_vm
6959 		 */
6960 		*extra = user_locked - user_lock_limit;
6961 		*user_extra -= *extra;
6962 	}
6963 
6964 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6965 	lock_limit >>= PAGE_SHIFT;
6966 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + *extra;
6967 
6968 	return locked <= lock_limit || !perf_is_paranoid() || capable(CAP_IPC_LOCK);
6969 }
6970 
perf_mmap_account(struct vm_area_struct * vma,long user_extra,long extra)6971 static void perf_mmap_account(struct vm_area_struct *vma, long user_extra, long extra)
6972 {
6973 	struct user_struct *user = current_user();
6974 
6975 	atomic_long_add(user_extra, &user->locked_vm);
6976 	atomic64_add(extra, &vma->vm_mm->pinned_vm);
6977 }
6978 
perf_mmap_rb(struct vm_area_struct * vma,struct perf_event * event,unsigned long nr_pages)6979 static int perf_mmap_rb(struct vm_area_struct *vma, struct perf_event *event,
6980 			unsigned long nr_pages)
6981 {
6982 	long extra = 0, user_extra = nr_pages;
6983 	struct perf_buffer *rb;
6984 	int rb_flags = 0;
6985 
6986 	nr_pages -= 1;
6987 
6988 	/*
6989 	 * If we have rb pages ensure they're a power-of-two number, so we
6990 	 * can do bitmasks instead of modulo.
6991 	 */
6992 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6993 		return -EINVAL;
6994 
6995 	WARN_ON_ONCE(event->ctx->parent_ctx);
6996 
6997 	if (event->rb) {
6998 		if (data_page_nr(event->rb) != nr_pages)
6999 			return -EINVAL;
7000 
7001 		if (refcount_inc_not_zero(&event->rb->mmap_count)) {
7002 			/*
7003 			 * Success -- managed to mmap() the same buffer
7004 			 * multiple times.
7005 			 */
7006 			perf_mmap_account(vma, user_extra, extra);
7007 			refcount_inc(&event->mmap_count);
7008 			return 0;
7009 		}
7010 
7011 		/*
7012 		 * Raced against perf_mmap_close()'s
7013 		 * refcount_dec_and_mutex_lock() remove the
7014 		 * event and continue as if !event->rb
7015 		 */
7016 		ring_buffer_attach(event, NULL);
7017 	}
7018 
7019 	if (!perf_mmap_calc_limits(vma, &user_extra, &extra))
7020 		return -EPERM;
7021 
7022 	if (vma->vm_flags & VM_WRITE)
7023 		rb_flags |= RING_BUFFER_WRITABLE;
7024 
7025 	rb = rb_alloc(nr_pages,
7026 		      event->attr.watermark ? event->attr.wakeup_watermark : 0,
7027 		      event->cpu, rb_flags);
7028 
7029 	if (!rb)
7030 		return -ENOMEM;
7031 
7032 	refcount_set(&rb->mmap_count, 1);
7033 	rb->mmap_user = get_current_user();
7034 	rb->mmap_locked = extra;
7035 
7036 	ring_buffer_attach(event, rb);
7037 
7038 	perf_event_update_time(event);
7039 	perf_event_init_userpage(event);
7040 	perf_event_update_userpage(event);
7041 
7042 	perf_mmap_account(vma, user_extra, extra);
7043 	refcount_set(&event->mmap_count, 1);
7044 
7045 	return 0;
7046 }
7047 
perf_mmap_aux(struct vm_area_struct * vma,struct perf_event * event,unsigned long nr_pages)7048 static int perf_mmap_aux(struct vm_area_struct *vma, struct perf_event *event,
7049 			 unsigned long nr_pages)
7050 {
7051 	long extra = 0, user_extra = nr_pages;
7052 	u64 aux_offset, aux_size;
7053 	struct perf_buffer *rb;
7054 	int ret, rb_flags = 0;
7055 
7056 	rb = event->rb;
7057 	if (!rb)
7058 		return -EINVAL;
7059 
7060 	guard(mutex)(&rb->aux_mutex);
7061 
7062 	/*
7063 	 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
7064 	 * mapped, all subsequent mappings should have the same size
7065 	 * and offset. Must be above the normal perf buffer.
7066 	 */
7067 	aux_offset = READ_ONCE(rb->user_page->aux_offset);
7068 	aux_size = READ_ONCE(rb->user_page->aux_size);
7069 
7070 	if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
7071 		return -EINVAL;
7072 
7073 	if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
7074 		return -EINVAL;
7075 
7076 	/* already mapped with a different offset */
7077 	if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
7078 		return -EINVAL;
7079 
7080 	if (aux_size != nr_pages * PAGE_SIZE)
7081 		return -EINVAL;
7082 
7083 	/* already mapped with a different size */
7084 	if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
7085 		return -EINVAL;
7086 
7087 	if (!is_power_of_2(nr_pages))
7088 		return -EINVAL;
7089 
7090 	if (!refcount_inc_not_zero(&rb->mmap_count))
7091 		return -EINVAL;
7092 
7093 	if (rb_has_aux(rb)) {
7094 		refcount_inc(&rb->aux_mmap_count);
7095 
7096 	} else {
7097 		if (!perf_mmap_calc_limits(vma, &user_extra, &extra)) {
7098 			refcount_dec(&rb->mmap_count);
7099 			return -EPERM;
7100 		}
7101 
7102 		WARN_ON(!rb && event->rb);
7103 
7104 		if (vma->vm_flags & VM_WRITE)
7105 			rb_flags |= RING_BUFFER_WRITABLE;
7106 
7107 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
7108 				   event->attr.aux_watermark, rb_flags);
7109 		if (ret) {
7110 			refcount_dec(&rb->mmap_count);
7111 			return ret;
7112 		}
7113 
7114 		refcount_set(&rb->aux_mmap_count, 1);
7115 		rb->aux_mmap_locked = extra;
7116 	}
7117 
7118 	perf_mmap_account(vma, user_extra, extra);
7119 	refcount_inc(&event->mmap_count);
7120 
7121 	return 0;
7122 }
7123 
perf_mmap(struct file * file,struct vm_area_struct * vma)7124 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
7125 {
7126 	struct perf_event *event = file->private_data;
7127 	unsigned long vma_size, nr_pages;
7128 	mapped_f mapped;
7129 	int ret;
7130 
7131 	/*
7132 	 * Don't allow mmap() of inherited per-task counters. This would
7133 	 * create a performance issue due to all children writing to the
7134 	 * same rb.
7135 	 */
7136 	if (event->cpu == -1 && event->attr.inherit)
7137 		return -EINVAL;
7138 
7139 	if (!(vma->vm_flags & VM_SHARED))
7140 		return -EINVAL;
7141 
7142 	ret = security_perf_event_read(event);
7143 	if (ret)
7144 		return ret;
7145 
7146 	vma_size = vma->vm_end - vma->vm_start;
7147 	nr_pages = vma_size / PAGE_SIZE;
7148 
7149 	if (nr_pages > INT_MAX)
7150 		return -ENOMEM;
7151 
7152 	if (vma_size != PAGE_SIZE * nr_pages)
7153 		return -EINVAL;
7154 
7155 	scoped_guard (mutex, &event->mmap_mutex) {
7156 		/*
7157 		 * This relies on __pmu_detach_event() taking mmap_mutex after marking
7158 		 * the event REVOKED. Either we observe the state, or __pmu_detach_event()
7159 		 * will detach the rb created here.
7160 		 */
7161 		if (event->state <= PERF_EVENT_STATE_REVOKED)
7162 			return -ENODEV;
7163 
7164 		if (vma->vm_pgoff == 0)
7165 			ret = perf_mmap_rb(vma, event, nr_pages);
7166 		else
7167 			ret = perf_mmap_aux(vma, event, nr_pages);
7168 		if (ret)
7169 			return ret;
7170 	}
7171 
7172 	/*
7173 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
7174 	 * vma.
7175 	 */
7176 	vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
7177 	vma->vm_ops = &perf_mmap_vmops;
7178 
7179 	mapped = get_mapped(event, event_mapped);
7180 	if (mapped)
7181 		mapped(event, vma->vm_mm);
7182 
7183 	/*
7184 	 * Try to map it into the page table. On fail, invoke
7185 	 * perf_mmap_close() to undo the above, as the callsite expects
7186 	 * full cleanup in this case and therefore does not invoke
7187 	 * vmops::close().
7188 	 */
7189 	ret = map_range(event->rb, vma);
7190 	if (ret)
7191 		perf_mmap_close(vma);
7192 
7193 	return ret;
7194 }
7195 
perf_fasync(int fd,struct file * filp,int on)7196 static int perf_fasync(int fd, struct file *filp, int on)
7197 {
7198 	struct inode *inode = file_inode(filp);
7199 	struct perf_event *event = filp->private_data;
7200 	int retval;
7201 
7202 	if (event->state <= PERF_EVENT_STATE_REVOKED)
7203 		return -ENODEV;
7204 
7205 	inode_lock(inode);
7206 	retval = fasync_helper(fd, filp, on, &event->fasync);
7207 	inode_unlock(inode);
7208 
7209 	if (retval < 0)
7210 		return retval;
7211 
7212 	return 0;
7213 }
7214 
7215 static const struct file_operations perf_fops = {
7216 	.release		= perf_release,
7217 	.read			= perf_read,
7218 	.poll			= perf_poll,
7219 	.unlocked_ioctl		= perf_ioctl,
7220 	.compat_ioctl		= perf_compat_ioctl,
7221 	.mmap			= perf_mmap,
7222 	.fasync			= perf_fasync,
7223 };
7224 
7225 /*
7226  * Perf event wakeup
7227  *
7228  * If there's data, ensure we set the poll() state and publish everything
7229  * to user-space before waking everybody up.
7230  */
7231 
perf_event_wakeup(struct perf_event * event)7232 void perf_event_wakeup(struct perf_event *event)
7233 {
7234 	ring_buffer_wakeup(event);
7235 
7236 	if (event->pending_kill) {
7237 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
7238 		event->pending_kill = 0;
7239 	}
7240 }
7241 
perf_sigtrap(struct perf_event * event)7242 static void perf_sigtrap(struct perf_event *event)
7243 {
7244 	/*
7245 	 * Both perf_pending_task() and perf_pending_irq() can race with the
7246 	 * task exiting.
7247 	 */
7248 	if (current->flags & PF_EXITING)
7249 		return;
7250 
7251 	/*
7252 	 * We'd expect this to only occur if the irq_work is delayed and either
7253 	 * ctx->task or current has changed in the meantime. This can be the
7254 	 * case on architectures that do not implement arch_irq_work_raise().
7255 	 */
7256 	if (WARN_ON_ONCE(event->ctx->task != current))
7257 		return;
7258 
7259 	send_sig_perf((void __user *)event->pending_addr,
7260 		      event->orig_type, event->attr.sig_data);
7261 }
7262 
7263 /*
7264  * Deliver the pending work in-event-context or follow the context.
7265  */
__perf_pending_disable(struct perf_event * event)7266 static void __perf_pending_disable(struct perf_event *event)
7267 {
7268 	int cpu = READ_ONCE(event->oncpu);
7269 
7270 	/*
7271 	 * If the event isn't running; we done. event_sched_out() will have
7272 	 * taken care of things.
7273 	 */
7274 	if (cpu < 0)
7275 		return;
7276 
7277 	/*
7278 	 * Yay, we hit home and are in the context of the event.
7279 	 */
7280 	if (cpu == smp_processor_id()) {
7281 		if (event->pending_disable) {
7282 			event->pending_disable = 0;
7283 			perf_event_disable_local(event);
7284 		}
7285 		return;
7286 	}
7287 
7288 	/*
7289 	 *  CPU-A			CPU-B
7290 	 *
7291 	 *  perf_event_disable_inatomic()
7292 	 *    @pending_disable = 1;
7293 	 *    irq_work_queue();
7294 	 *
7295 	 *  sched-out
7296 	 *    @pending_disable = 0;
7297 	 *
7298 	 *				sched-in
7299 	 *				perf_event_disable_inatomic()
7300 	 *				  @pending_disable = 1;
7301 	 *				  irq_work_queue(); // FAILS
7302 	 *
7303 	 *  irq_work_run()
7304 	 *    perf_pending_disable()
7305 	 *
7306 	 * But the event runs on CPU-B and wants disabling there.
7307 	 */
7308 	irq_work_queue_on(&event->pending_disable_irq, cpu);
7309 }
7310 
perf_pending_disable(struct irq_work * entry)7311 static void perf_pending_disable(struct irq_work *entry)
7312 {
7313 	struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq);
7314 	int rctx;
7315 
7316 	/*
7317 	 * If we 'fail' here, that's OK, it means recursion is already disabled
7318 	 * and we won't recurse 'further'.
7319 	 */
7320 	rctx = perf_swevent_get_recursion_context();
7321 	__perf_pending_disable(event);
7322 	if (rctx >= 0)
7323 		perf_swevent_put_recursion_context(rctx);
7324 }
7325 
perf_pending_irq(struct irq_work * entry)7326 static void perf_pending_irq(struct irq_work *entry)
7327 {
7328 	struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
7329 	int rctx;
7330 
7331 	/*
7332 	 * If we 'fail' here, that's OK, it means recursion is already disabled
7333 	 * and we won't recurse 'further'.
7334 	 */
7335 	rctx = perf_swevent_get_recursion_context();
7336 
7337 	/*
7338 	 * The wakeup isn't bound to the context of the event -- it can happen
7339 	 * irrespective of where the event is.
7340 	 */
7341 	if (event->pending_wakeup) {
7342 		event->pending_wakeup = 0;
7343 		perf_event_wakeup(event);
7344 	}
7345 
7346 	if (rctx >= 0)
7347 		perf_swevent_put_recursion_context(rctx);
7348 }
7349 
perf_pending_task(struct callback_head * head)7350 static void perf_pending_task(struct callback_head *head)
7351 {
7352 	struct perf_event *event = container_of(head, struct perf_event, pending_task);
7353 	int rctx;
7354 
7355 	/*
7356 	 * If we 'fail' here, that's OK, it means recursion is already disabled
7357 	 * and we won't recurse 'further'.
7358 	 */
7359 	rctx = perf_swevent_get_recursion_context();
7360 
7361 	if (event->pending_work) {
7362 		event->pending_work = 0;
7363 		perf_sigtrap(event);
7364 		local_dec(&event->ctx->nr_no_switch_fast);
7365 	}
7366 	put_event(event);
7367 
7368 	if (rctx >= 0)
7369 		perf_swevent_put_recursion_context(rctx);
7370 }
7371 
7372 #ifdef CONFIG_GUEST_PERF_EVENTS
7373 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
7374 
7375 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
7376 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
7377 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
7378 
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)7379 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
7380 {
7381 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
7382 		return;
7383 
7384 	rcu_assign_pointer(perf_guest_cbs, cbs);
7385 	static_call_update(__perf_guest_state, cbs->state);
7386 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
7387 
7388 	/* Implementing ->handle_intel_pt_intr is optional. */
7389 	if (cbs->handle_intel_pt_intr)
7390 		static_call_update(__perf_guest_handle_intel_pt_intr,
7391 				   cbs->handle_intel_pt_intr);
7392 }
7393 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
7394 
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)7395 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
7396 {
7397 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
7398 		return;
7399 
7400 	rcu_assign_pointer(perf_guest_cbs, NULL);
7401 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
7402 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
7403 	static_call_update(__perf_guest_handle_intel_pt_intr,
7404 			   (void *)&__static_call_return0);
7405 	synchronize_rcu();
7406 }
7407 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
7408 #endif
7409 
should_sample_guest(struct perf_event * event)7410 static bool should_sample_guest(struct perf_event *event)
7411 {
7412 	return !event->attr.exclude_guest && perf_guest_state();
7413 }
7414 
perf_misc_flags(struct perf_event * event,struct pt_regs * regs)7415 unsigned long perf_misc_flags(struct perf_event *event,
7416 			      struct pt_regs *regs)
7417 {
7418 	if (should_sample_guest(event))
7419 		return perf_arch_guest_misc_flags(regs);
7420 
7421 	return perf_arch_misc_flags(regs);
7422 }
7423 
perf_instruction_pointer(struct perf_event * event,struct pt_regs * regs)7424 unsigned long perf_instruction_pointer(struct perf_event *event,
7425 				       struct pt_regs *regs)
7426 {
7427 	if (should_sample_guest(event))
7428 		return perf_guest_get_ip();
7429 
7430 	return perf_arch_instruction_pointer(regs);
7431 }
7432 
7433 static void
perf_output_sample_regs(struct perf_output_handle * handle,struct pt_regs * regs,u64 mask)7434 perf_output_sample_regs(struct perf_output_handle *handle,
7435 			struct pt_regs *regs, u64 mask)
7436 {
7437 	int bit;
7438 	DECLARE_BITMAP(_mask, 64);
7439 
7440 	bitmap_from_u64(_mask, mask);
7441 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
7442 		u64 val;
7443 
7444 		val = perf_reg_value(regs, bit);
7445 		perf_output_put(handle, val);
7446 	}
7447 }
7448 
perf_sample_regs_user(struct perf_regs * regs_user,struct pt_regs * regs)7449 static void perf_sample_regs_user(struct perf_regs *regs_user,
7450 				  struct pt_regs *regs)
7451 {
7452 	if (user_mode(regs)) {
7453 		regs_user->abi = perf_reg_abi(current);
7454 		regs_user->regs = regs;
7455 	} else if (!(current->flags & (PF_KTHREAD | PF_USER_WORKER))) {
7456 		perf_get_regs_user(regs_user, regs);
7457 	} else {
7458 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
7459 		regs_user->regs = NULL;
7460 	}
7461 }
7462 
perf_sample_regs_intr(struct perf_regs * regs_intr,struct pt_regs * regs)7463 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
7464 				  struct pt_regs *regs)
7465 {
7466 	regs_intr->regs = regs;
7467 	regs_intr->abi  = perf_reg_abi(current);
7468 }
7469 
7470 
7471 /*
7472  * Get remaining task size from user stack pointer.
7473  *
7474  * It'd be better to take stack vma map and limit this more
7475  * precisely, but there's no way to get it safely under interrupt,
7476  * so using TASK_SIZE as limit.
7477  */
perf_ustack_task_size(struct pt_regs * regs)7478 static u64 perf_ustack_task_size(struct pt_regs *regs)
7479 {
7480 	unsigned long addr = perf_user_stack_pointer(regs);
7481 
7482 	if (!addr || addr >= TASK_SIZE)
7483 		return 0;
7484 
7485 	return TASK_SIZE - addr;
7486 }
7487 
7488 static u16
perf_sample_ustack_size(u16 stack_size,u16 header_size,struct pt_regs * regs)7489 perf_sample_ustack_size(u16 stack_size, u16 header_size,
7490 			struct pt_regs *regs)
7491 {
7492 	u64 task_size;
7493 
7494 	/* No regs, no stack pointer, no dump. */
7495 	if (!regs)
7496 		return 0;
7497 
7498 	/* No mm, no stack, no dump. */
7499 	if (!current->mm)
7500 		return 0;
7501 
7502 	/*
7503 	 * Check if we fit in with the requested stack size into the:
7504 	 * - TASK_SIZE
7505 	 *   If we don't, we limit the size to the TASK_SIZE.
7506 	 *
7507 	 * - remaining sample size
7508 	 *   If we don't, we customize the stack size to
7509 	 *   fit in to the remaining sample size.
7510 	 */
7511 
7512 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
7513 	stack_size = min(stack_size, (u16) task_size);
7514 
7515 	/* Current header size plus static size and dynamic size. */
7516 	header_size += 2 * sizeof(u64);
7517 
7518 	/* Do we fit in with the current stack dump size? */
7519 	if ((u16) (header_size + stack_size) < header_size) {
7520 		/*
7521 		 * If we overflow the maximum size for the sample,
7522 		 * we customize the stack dump size to fit in.
7523 		 */
7524 		stack_size = USHRT_MAX - header_size - sizeof(u64);
7525 		stack_size = round_up(stack_size, sizeof(u64));
7526 	}
7527 
7528 	return stack_size;
7529 }
7530 
7531 static void
perf_output_sample_ustack(struct perf_output_handle * handle,u64 dump_size,struct pt_regs * regs)7532 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
7533 			  struct pt_regs *regs)
7534 {
7535 	/* Case of a kernel thread, nothing to dump */
7536 	if (!regs) {
7537 		u64 size = 0;
7538 		perf_output_put(handle, size);
7539 	} else {
7540 		unsigned long sp;
7541 		unsigned int rem;
7542 		u64 dyn_size;
7543 
7544 		/*
7545 		 * We dump:
7546 		 * static size
7547 		 *   - the size requested by user or the best one we can fit
7548 		 *     in to the sample max size
7549 		 * data
7550 		 *   - user stack dump data
7551 		 * dynamic size
7552 		 *   - the actual dumped size
7553 		 */
7554 
7555 		/* Static size. */
7556 		perf_output_put(handle, dump_size);
7557 
7558 		/* Data. */
7559 		sp = perf_user_stack_pointer(regs);
7560 		rem = __output_copy_user(handle, (void *) sp, dump_size);
7561 		dyn_size = dump_size - rem;
7562 
7563 		perf_output_skip(handle, rem);
7564 
7565 		/* Dynamic size. */
7566 		perf_output_put(handle, dyn_size);
7567 	}
7568 }
7569 
perf_prepare_sample_aux(struct perf_event * event,struct perf_sample_data * data,size_t size)7570 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7571 					  struct perf_sample_data *data,
7572 					  size_t size)
7573 {
7574 	struct perf_event *sampler = event->aux_event;
7575 	struct perf_buffer *rb;
7576 
7577 	data->aux_size = 0;
7578 
7579 	if (!sampler)
7580 		goto out;
7581 
7582 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7583 		goto out;
7584 
7585 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7586 		goto out;
7587 
7588 	rb = ring_buffer_get(sampler);
7589 	if (!rb)
7590 		goto out;
7591 
7592 	/*
7593 	 * If this is an NMI hit inside sampling code, don't take
7594 	 * the sample. See also perf_aux_sample_output().
7595 	 */
7596 	if (READ_ONCE(rb->aux_in_sampling)) {
7597 		data->aux_size = 0;
7598 	} else {
7599 		size = min_t(size_t, size, perf_aux_size(rb));
7600 		data->aux_size = ALIGN(size, sizeof(u64));
7601 	}
7602 	ring_buffer_put(rb);
7603 
7604 out:
7605 	return data->aux_size;
7606 }
7607 
perf_pmu_snapshot_aux(struct perf_buffer * rb,struct perf_event * event,struct perf_output_handle * handle,unsigned long size)7608 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7609                                  struct perf_event *event,
7610                                  struct perf_output_handle *handle,
7611                                  unsigned long size)
7612 {
7613 	unsigned long flags;
7614 	long ret;
7615 
7616 	/*
7617 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7618 	 * paths. If we start calling them in NMI context, they may race with
7619 	 * the IRQ ones, that is, for example, re-starting an event that's just
7620 	 * been stopped, which is why we're using a separate callback that
7621 	 * doesn't change the event state.
7622 	 *
7623 	 * IRQs need to be disabled to prevent IPIs from racing with us.
7624 	 */
7625 	local_irq_save(flags);
7626 	/*
7627 	 * Guard against NMI hits inside the critical section;
7628 	 * see also perf_prepare_sample_aux().
7629 	 */
7630 	WRITE_ONCE(rb->aux_in_sampling, 1);
7631 	barrier();
7632 
7633 	ret = event->pmu->snapshot_aux(event, handle, size);
7634 
7635 	barrier();
7636 	WRITE_ONCE(rb->aux_in_sampling, 0);
7637 	local_irq_restore(flags);
7638 
7639 	return ret;
7640 }
7641 
perf_aux_sample_output(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * data)7642 static void perf_aux_sample_output(struct perf_event *event,
7643 				   struct perf_output_handle *handle,
7644 				   struct perf_sample_data *data)
7645 {
7646 	struct perf_event *sampler = event->aux_event;
7647 	struct perf_buffer *rb;
7648 	unsigned long pad;
7649 	long size;
7650 
7651 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
7652 		return;
7653 
7654 	rb = ring_buffer_get(sampler);
7655 	if (!rb)
7656 		return;
7657 
7658 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7659 
7660 	/*
7661 	 * An error here means that perf_output_copy() failed (returned a
7662 	 * non-zero surplus that it didn't copy), which in its current
7663 	 * enlightened implementation is not possible. If that changes, we'd
7664 	 * like to know.
7665 	 */
7666 	if (WARN_ON_ONCE(size < 0))
7667 		goto out_put;
7668 
7669 	/*
7670 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7671 	 * perf_prepare_sample_aux(), so should not be more than that.
7672 	 */
7673 	pad = data->aux_size - size;
7674 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
7675 		pad = 8;
7676 
7677 	if (pad) {
7678 		u64 zero = 0;
7679 		perf_output_copy(handle, &zero, pad);
7680 	}
7681 
7682 out_put:
7683 	ring_buffer_put(rb);
7684 }
7685 
7686 /*
7687  * A set of common sample data types saved even for non-sample records
7688  * when event->attr.sample_id_all is set.
7689  */
7690 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |	\
7691 			     PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |	\
7692 			     PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7693 
__perf_event_header__init_id(struct perf_sample_data * data,struct perf_event * event,u64 sample_type)7694 static void __perf_event_header__init_id(struct perf_sample_data *data,
7695 					 struct perf_event *event,
7696 					 u64 sample_type)
7697 {
7698 	data->type = event->attr.sample_type;
7699 	data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7700 
7701 	if (sample_type & PERF_SAMPLE_TID) {
7702 		/* namespace issues */
7703 		data->tid_entry.pid = perf_event_pid(event, current);
7704 		data->tid_entry.tid = perf_event_tid(event, current);
7705 	}
7706 
7707 	if (sample_type & PERF_SAMPLE_TIME)
7708 		data->time = perf_event_clock(event);
7709 
7710 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7711 		data->id = primary_event_id(event);
7712 
7713 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7714 		data->stream_id = event->id;
7715 
7716 	if (sample_type & PERF_SAMPLE_CPU) {
7717 		data->cpu_entry.cpu	 = raw_smp_processor_id();
7718 		data->cpu_entry.reserved = 0;
7719 	}
7720 }
7721 
perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7722 void perf_event_header__init_id(struct perf_event_header *header,
7723 				struct perf_sample_data *data,
7724 				struct perf_event *event)
7725 {
7726 	if (event->attr.sample_id_all) {
7727 		header->size += event->id_header_size;
7728 		__perf_event_header__init_id(data, event, event->attr.sample_type);
7729 	}
7730 }
7731 
__perf_event__output_id_sample(struct perf_output_handle * handle,struct perf_sample_data * data)7732 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7733 					   struct perf_sample_data *data)
7734 {
7735 	u64 sample_type = data->type;
7736 
7737 	if (sample_type & PERF_SAMPLE_TID)
7738 		perf_output_put(handle, data->tid_entry);
7739 
7740 	if (sample_type & PERF_SAMPLE_TIME)
7741 		perf_output_put(handle, data->time);
7742 
7743 	if (sample_type & PERF_SAMPLE_ID)
7744 		perf_output_put(handle, data->id);
7745 
7746 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7747 		perf_output_put(handle, data->stream_id);
7748 
7749 	if (sample_type & PERF_SAMPLE_CPU)
7750 		perf_output_put(handle, data->cpu_entry);
7751 
7752 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7753 		perf_output_put(handle, data->id);
7754 }
7755 
perf_event__output_id_sample(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * sample)7756 void perf_event__output_id_sample(struct perf_event *event,
7757 				  struct perf_output_handle *handle,
7758 				  struct perf_sample_data *sample)
7759 {
7760 	if (event->attr.sample_id_all)
7761 		__perf_event__output_id_sample(handle, sample);
7762 }
7763 
perf_output_read_one(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7764 static void perf_output_read_one(struct perf_output_handle *handle,
7765 				 struct perf_event *event,
7766 				 u64 enabled, u64 running)
7767 {
7768 	u64 read_format = event->attr.read_format;
7769 	u64 values[5];
7770 	int n = 0;
7771 
7772 	values[n++] = perf_event_count(event, has_inherit_and_sample_read(&event->attr));
7773 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7774 		values[n++] = enabled +
7775 			atomic64_read(&event->child_total_time_enabled);
7776 	}
7777 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7778 		values[n++] = running +
7779 			atomic64_read(&event->child_total_time_running);
7780 	}
7781 	if (read_format & PERF_FORMAT_ID)
7782 		values[n++] = primary_event_id(event);
7783 	if (read_format & PERF_FORMAT_LOST)
7784 		values[n++] = atomic64_read(&event->lost_samples);
7785 
7786 	__output_copy(handle, values, n * sizeof(u64));
7787 }
7788 
perf_output_read_group(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7789 static void perf_output_read_group(struct perf_output_handle *handle,
7790 				   struct perf_event *event,
7791 				   u64 enabled, u64 running)
7792 {
7793 	struct perf_event *leader = event->group_leader, *sub;
7794 	u64 read_format = event->attr.read_format;
7795 	unsigned long flags;
7796 	u64 values[6];
7797 	int n = 0;
7798 	bool self = has_inherit_and_sample_read(&event->attr);
7799 
7800 	/*
7801 	 * Disabling interrupts avoids all counter scheduling
7802 	 * (context switches, timer based rotation and IPIs).
7803 	 */
7804 	local_irq_save(flags);
7805 
7806 	values[n++] = 1 + leader->nr_siblings;
7807 
7808 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7809 		values[n++] = enabled;
7810 
7811 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7812 		values[n++] = running;
7813 
7814 	if ((leader != event) && !handle->skip_read)
7815 		perf_pmu_read(leader);
7816 
7817 	values[n++] = perf_event_count(leader, self);
7818 	if (read_format & PERF_FORMAT_ID)
7819 		values[n++] = primary_event_id(leader);
7820 	if (read_format & PERF_FORMAT_LOST)
7821 		values[n++] = atomic64_read(&leader->lost_samples);
7822 
7823 	__output_copy(handle, values, n * sizeof(u64));
7824 
7825 	for_each_sibling_event(sub, leader) {
7826 		n = 0;
7827 
7828 		if ((sub != event) && !handle->skip_read)
7829 			perf_pmu_read(sub);
7830 
7831 		values[n++] = perf_event_count(sub, self);
7832 		if (read_format & PERF_FORMAT_ID)
7833 			values[n++] = primary_event_id(sub);
7834 		if (read_format & PERF_FORMAT_LOST)
7835 			values[n++] = atomic64_read(&sub->lost_samples);
7836 
7837 		__output_copy(handle, values, n * sizeof(u64));
7838 	}
7839 
7840 	local_irq_restore(flags);
7841 }
7842 
7843 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7844 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7845 
7846 /*
7847  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7848  *
7849  * The problem is that its both hard and excessively expensive to iterate the
7850  * child list, not to mention that its impossible to IPI the children running
7851  * on another CPU, from interrupt/NMI context.
7852  *
7853  * Instead the combination of PERF_SAMPLE_READ and inherit will track per-thread
7854  * counts rather than attempting to accumulate some value across all children on
7855  * all cores.
7856  */
perf_output_read(struct perf_output_handle * handle,struct perf_event * event)7857 static void perf_output_read(struct perf_output_handle *handle,
7858 			     struct perf_event *event)
7859 {
7860 	u64 enabled = 0, running = 0, now;
7861 	u64 read_format = event->attr.read_format;
7862 
7863 	/*
7864 	 * compute total_time_enabled, total_time_running
7865 	 * based on snapshot values taken when the event
7866 	 * was last scheduled in.
7867 	 *
7868 	 * we cannot simply called update_context_time()
7869 	 * because of locking issue as we are called in
7870 	 * NMI context
7871 	 */
7872 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7873 		calc_timer_values(event, &now, &enabled, &running);
7874 
7875 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7876 		perf_output_read_group(handle, event, enabled, running);
7877 	else
7878 		perf_output_read_one(handle, event, enabled, running);
7879 }
7880 
perf_output_sample(struct perf_output_handle * handle,struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7881 void perf_output_sample(struct perf_output_handle *handle,
7882 			struct perf_event_header *header,
7883 			struct perf_sample_data *data,
7884 			struct perf_event *event)
7885 {
7886 	u64 sample_type = data->type;
7887 
7888 	if (data->sample_flags & PERF_SAMPLE_READ)
7889 		handle->skip_read = 1;
7890 
7891 	perf_output_put(handle, *header);
7892 
7893 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7894 		perf_output_put(handle, data->id);
7895 
7896 	if (sample_type & PERF_SAMPLE_IP)
7897 		perf_output_put(handle, data->ip);
7898 
7899 	if (sample_type & PERF_SAMPLE_TID)
7900 		perf_output_put(handle, data->tid_entry);
7901 
7902 	if (sample_type & PERF_SAMPLE_TIME)
7903 		perf_output_put(handle, data->time);
7904 
7905 	if (sample_type & PERF_SAMPLE_ADDR)
7906 		perf_output_put(handle, data->addr);
7907 
7908 	if (sample_type & PERF_SAMPLE_ID)
7909 		perf_output_put(handle, data->id);
7910 
7911 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7912 		perf_output_put(handle, data->stream_id);
7913 
7914 	if (sample_type & PERF_SAMPLE_CPU)
7915 		perf_output_put(handle, data->cpu_entry);
7916 
7917 	if (sample_type & PERF_SAMPLE_PERIOD)
7918 		perf_output_put(handle, data->period);
7919 
7920 	if (sample_type & PERF_SAMPLE_READ)
7921 		perf_output_read(handle, event);
7922 
7923 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7924 		int size = 1;
7925 
7926 		size += data->callchain->nr;
7927 		size *= sizeof(u64);
7928 		__output_copy(handle, data->callchain, size);
7929 	}
7930 
7931 	if (sample_type & PERF_SAMPLE_RAW) {
7932 		struct perf_raw_record *raw = data->raw;
7933 
7934 		if (raw) {
7935 			struct perf_raw_frag *frag = &raw->frag;
7936 
7937 			perf_output_put(handle, raw->size);
7938 			do {
7939 				if (frag->copy) {
7940 					__output_custom(handle, frag->copy,
7941 							frag->data, frag->size);
7942 				} else {
7943 					__output_copy(handle, frag->data,
7944 						      frag->size);
7945 				}
7946 				if (perf_raw_frag_last(frag))
7947 					break;
7948 				frag = frag->next;
7949 			} while (1);
7950 			if (frag->pad)
7951 				__output_skip(handle, NULL, frag->pad);
7952 		} else {
7953 			struct {
7954 				u32	size;
7955 				u32	data;
7956 			} raw = {
7957 				.size = sizeof(u32),
7958 				.data = 0,
7959 			};
7960 			perf_output_put(handle, raw);
7961 		}
7962 	}
7963 
7964 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7965 		if (data->br_stack) {
7966 			size_t size;
7967 
7968 			size = data->br_stack->nr
7969 			     * sizeof(struct perf_branch_entry);
7970 
7971 			perf_output_put(handle, data->br_stack->nr);
7972 			if (branch_sample_hw_index(event))
7973 				perf_output_put(handle, data->br_stack->hw_idx);
7974 			perf_output_copy(handle, data->br_stack->entries, size);
7975 			/*
7976 			 * Add the extension space which is appended
7977 			 * right after the struct perf_branch_stack.
7978 			 */
7979 			if (data->br_stack_cntr) {
7980 				size = data->br_stack->nr * sizeof(u64);
7981 				perf_output_copy(handle, data->br_stack_cntr, size);
7982 			}
7983 		} else {
7984 			/*
7985 			 * we always store at least the value of nr
7986 			 */
7987 			u64 nr = 0;
7988 			perf_output_put(handle, nr);
7989 		}
7990 	}
7991 
7992 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7993 		u64 abi = data->regs_user.abi;
7994 
7995 		/*
7996 		 * If there are no regs to dump, notice it through
7997 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7998 		 */
7999 		perf_output_put(handle, abi);
8000 
8001 		if (abi) {
8002 			u64 mask = event->attr.sample_regs_user;
8003 			perf_output_sample_regs(handle,
8004 						data->regs_user.regs,
8005 						mask);
8006 		}
8007 	}
8008 
8009 	if (sample_type & PERF_SAMPLE_STACK_USER) {
8010 		perf_output_sample_ustack(handle,
8011 					  data->stack_user_size,
8012 					  data->regs_user.regs);
8013 	}
8014 
8015 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
8016 		perf_output_put(handle, data->weight.full);
8017 
8018 	if (sample_type & PERF_SAMPLE_DATA_SRC)
8019 		perf_output_put(handle, data->data_src.val);
8020 
8021 	if (sample_type & PERF_SAMPLE_TRANSACTION)
8022 		perf_output_put(handle, data->txn);
8023 
8024 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
8025 		u64 abi = data->regs_intr.abi;
8026 		/*
8027 		 * If there are no regs to dump, notice it through
8028 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
8029 		 */
8030 		perf_output_put(handle, abi);
8031 
8032 		if (abi) {
8033 			u64 mask = event->attr.sample_regs_intr;
8034 
8035 			perf_output_sample_regs(handle,
8036 						data->regs_intr.regs,
8037 						mask);
8038 		}
8039 	}
8040 
8041 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
8042 		perf_output_put(handle, data->phys_addr);
8043 
8044 	if (sample_type & PERF_SAMPLE_CGROUP)
8045 		perf_output_put(handle, data->cgroup);
8046 
8047 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
8048 		perf_output_put(handle, data->data_page_size);
8049 
8050 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
8051 		perf_output_put(handle, data->code_page_size);
8052 
8053 	if (sample_type & PERF_SAMPLE_AUX) {
8054 		perf_output_put(handle, data->aux_size);
8055 
8056 		if (data->aux_size)
8057 			perf_aux_sample_output(event, handle, data);
8058 	}
8059 
8060 	if (!event->attr.watermark) {
8061 		int wakeup_events = event->attr.wakeup_events;
8062 
8063 		if (wakeup_events) {
8064 			struct perf_buffer *rb = handle->rb;
8065 			int events = local_inc_return(&rb->events);
8066 
8067 			if (events >= wakeup_events) {
8068 				local_sub(wakeup_events, &rb->events);
8069 				local_inc(&rb->wakeup);
8070 			}
8071 		}
8072 	}
8073 }
8074 
perf_virt_to_phys(u64 virt)8075 static u64 perf_virt_to_phys(u64 virt)
8076 {
8077 	u64 phys_addr = 0;
8078 
8079 	if (!virt)
8080 		return 0;
8081 
8082 	if (virt >= TASK_SIZE) {
8083 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
8084 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
8085 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
8086 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
8087 	} else {
8088 		/*
8089 		 * Walking the pages tables for user address.
8090 		 * Interrupts are disabled, so it prevents any tear down
8091 		 * of the page tables.
8092 		 * Try IRQ-safe get_user_page_fast_only first.
8093 		 * If failed, leave phys_addr as 0.
8094 		 */
8095 		if (!(current->flags & (PF_KTHREAD | PF_USER_WORKER))) {
8096 			struct page *p;
8097 
8098 			pagefault_disable();
8099 			if (get_user_page_fast_only(virt, 0, &p)) {
8100 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
8101 				put_page(p);
8102 			}
8103 			pagefault_enable();
8104 		}
8105 	}
8106 
8107 	return phys_addr;
8108 }
8109 
8110 /*
8111  * Return the pagetable size of a given virtual address.
8112  */
perf_get_pgtable_size(struct mm_struct * mm,unsigned long addr)8113 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
8114 {
8115 	u64 size = 0;
8116 
8117 #ifdef CONFIG_HAVE_GUP_FAST
8118 	pgd_t *pgdp, pgd;
8119 	p4d_t *p4dp, p4d;
8120 	pud_t *pudp, pud;
8121 	pmd_t *pmdp, pmd;
8122 	pte_t *ptep, pte;
8123 
8124 	pgdp = pgd_offset(mm, addr);
8125 	pgd = READ_ONCE(*pgdp);
8126 	if (pgd_none(pgd))
8127 		return 0;
8128 
8129 	if (pgd_leaf(pgd))
8130 		return pgd_leaf_size(pgd);
8131 
8132 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
8133 	p4d = READ_ONCE(*p4dp);
8134 	if (!p4d_present(p4d))
8135 		return 0;
8136 
8137 	if (p4d_leaf(p4d))
8138 		return p4d_leaf_size(p4d);
8139 
8140 	pudp = pud_offset_lockless(p4dp, p4d, addr);
8141 	pud = READ_ONCE(*pudp);
8142 	if (!pud_present(pud))
8143 		return 0;
8144 
8145 	if (pud_leaf(pud))
8146 		return pud_leaf_size(pud);
8147 
8148 	pmdp = pmd_offset_lockless(pudp, pud, addr);
8149 again:
8150 	pmd = pmdp_get_lockless(pmdp);
8151 	if (!pmd_present(pmd))
8152 		return 0;
8153 
8154 	if (pmd_leaf(pmd))
8155 		return pmd_leaf_size(pmd);
8156 
8157 	ptep = pte_offset_map(&pmd, addr);
8158 	if (!ptep)
8159 		goto again;
8160 
8161 	pte = ptep_get_lockless(ptep);
8162 	if (pte_present(pte))
8163 		size = __pte_leaf_size(pmd, pte);
8164 	pte_unmap(ptep);
8165 #endif /* CONFIG_HAVE_GUP_FAST */
8166 
8167 	return size;
8168 }
8169 
perf_get_page_size(unsigned long addr)8170 static u64 perf_get_page_size(unsigned long addr)
8171 {
8172 	struct mm_struct *mm;
8173 	unsigned long flags;
8174 	u64 size;
8175 
8176 	if (!addr)
8177 		return 0;
8178 
8179 	/*
8180 	 * Software page-table walkers must disable IRQs,
8181 	 * which prevents any tear down of the page tables.
8182 	 */
8183 	local_irq_save(flags);
8184 
8185 	mm = current->mm;
8186 	if (!mm) {
8187 		/*
8188 		 * For kernel threads and the like, use init_mm so that
8189 		 * we can find kernel memory.
8190 		 */
8191 		mm = &init_mm;
8192 	}
8193 
8194 	size = perf_get_pgtable_size(mm, addr);
8195 
8196 	local_irq_restore(flags);
8197 
8198 	return size;
8199 }
8200 
8201 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
8202 
8203 struct perf_callchain_entry *
perf_callchain(struct perf_event * event,struct pt_regs * regs)8204 perf_callchain(struct perf_event *event, struct pt_regs *regs)
8205 {
8206 	bool kernel = !event->attr.exclude_callchain_kernel;
8207 	bool user   = !event->attr.exclude_callchain_user &&
8208 		!(current->flags & (PF_KTHREAD | PF_USER_WORKER));
8209 	/* Disallow cross-task user callchains. */
8210 	bool crosstask = event->ctx->task && event->ctx->task != current;
8211 	const u32 max_stack = event->attr.sample_max_stack;
8212 	struct perf_callchain_entry *callchain;
8213 
8214 	if (!current->mm)
8215 		user = false;
8216 
8217 	if (!kernel && !user)
8218 		return &__empty_callchain;
8219 
8220 	callchain = get_perf_callchain(regs, kernel, user,
8221 				       max_stack, crosstask, true);
8222 	return callchain ?: &__empty_callchain;
8223 }
8224 
__cond_set(u64 flags,u64 s,u64 d)8225 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
8226 {
8227 	return d * !!(flags & s);
8228 }
8229 
perf_prepare_sample(struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)8230 void perf_prepare_sample(struct perf_sample_data *data,
8231 			 struct perf_event *event,
8232 			 struct pt_regs *regs)
8233 {
8234 	u64 sample_type = event->attr.sample_type;
8235 	u64 filtered_sample_type;
8236 
8237 	/*
8238 	 * Add the sample flags that are dependent to others.  And clear the
8239 	 * sample flags that have already been done by the PMU driver.
8240 	 */
8241 	filtered_sample_type = sample_type;
8242 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
8243 					   PERF_SAMPLE_IP);
8244 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
8245 					   PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
8246 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
8247 					   PERF_SAMPLE_REGS_USER);
8248 	filtered_sample_type &= ~data->sample_flags;
8249 
8250 	if (filtered_sample_type == 0) {
8251 		/* Make sure it has the correct data->type for output */
8252 		data->type = event->attr.sample_type;
8253 		return;
8254 	}
8255 
8256 	__perf_event_header__init_id(data, event, filtered_sample_type);
8257 
8258 	if (filtered_sample_type & PERF_SAMPLE_IP) {
8259 		data->ip = perf_instruction_pointer(event, regs);
8260 		data->sample_flags |= PERF_SAMPLE_IP;
8261 	}
8262 
8263 	if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
8264 		perf_sample_save_callchain(data, event, regs);
8265 
8266 	if (filtered_sample_type & PERF_SAMPLE_RAW) {
8267 		data->raw = NULL;
8268 		data->dyn_size += sizeof(u64);
8269 		data->sample_flags |= PERF_SAMPLE_RAW;
8270 	}
8271 
8272 	if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
8273 		data->br_stack = NULL;
8274 		data->dyn_size += sizeof(u64);
8275 		data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
8276 	}
8277 
8278 	if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
8279 		perf_sample_regs_user(&data->regs_user, regs);
8280 
8281 	/*
8282 	 * It cannot use the filtered_sample_type here as REGS_USER can be set
8283 	 * by STACK_USER (using __cond_set() above) and we don't want to update
8284 	 * the dyn_size if it's not requested by users.
8285 	 */
8286 	if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
8287 		/* regs dump ABI info */
8288 		int size = sizeof(u64);
8289 
8290 		if (data->regs_user.regs) {
8291 			u64 mask = event->attr.sample_regs_user;
8292 			size += hweight64(mask) * sizeof(u64);
8293 		}
8294 
8295 		data->dyn_size += size;
8296 		data->sample_flags |= PERF_SAMPLE_REGS_USER;
8297 	}
8298 
8299 	if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
8300 		/*
8301 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
8302 		 * processed as the last one or have additional check added
8303 		 * in case new sample type is added, because we could eat
8304 		 * up the rest of the sample size.
8305 		 */
8306 		u16 stack_size = event->attr.sample_stack_user;
8307 		u16 header_size = perf_sample_data_size(data, event);
8308 		u16 size = sizeof(u64);
8309 
8310 		stack_size = perf_sample_ustack_size(stack_size, header_size,
8311 						     data->regs_user.regs);
8312 
8313 		/*
8314 		 * If there is something to dump, add space for the dump
8315 		 * itself and for the field that tells the dynamic size,
8316 		 * which is how many have been actually dumped.
8317 		 */
8318 		if (stack_size)
8319 			size += sizeof(u64) + stack_size;
8320 
8321 		data->stack_user_size = stack_size;
8322 		data->dyn_size += size;
8323 		data->sample_flags |= PERF_SAMPLE_STACK_USER;
8324 	}
8325 
8326 	if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
8327 		data->weight.full = 0;
8328 		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
8329 	}
8330 
8331 	if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
8332 		data->data_src.val = PERF_MEM_NA;
8333 		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
8334 	}
8335 
8336 	if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
8337 		data->txn = 0;
8338 		data->sample_flags |= PERF_SAMPLE_TRANSACTION;
8339 	}
8340 
8341 	if (filtered_sample_type & PERF_SAMPLE_ADDR) {
8342 		data->addr = 0;
8343 		data->sample_flags |= PERF_SAMPLE_ADDR;
8344 	}
8345 
8346 	if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
8347 		/* regs dump ABI info */
8348 		int size = sizeof(u64);
8349 
8350 		perf_sample_regs_intr(&data->regs_intr, regs);
8351 
8352 		if (data->regs_intr.regs) {
8353 			u64 mask = event->attr.sample_regs_intr;
8354 
8355 			size += hweight64(mask) * sizeof(u64);
8356 		}
8357 
8358 		data->dyn_size += size;
8359 		data->sample_flags |= PERF_SAMPLE_REGS_INTR;
8360 	}
8361 
8362 	if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
8363 		data->phys_addr = perf_virt_to_phys(data->addr);
8364 		data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
8365 	}
8366 
8367 #ifdef CONFIG_CGROUP_PERF
8368 	if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
8369 		struct cgroup *cgrp;
8370 
8371 		/* protected by RCU */
8372 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
8373 		data->cgroup = cgroup_id(cgrp);
8374 		data->sample_flags |= PERF_SAMPLE_CGROUP;
8375 	}
8376 #endif
8377 
8378 	/*
8379 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
8380 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
8381 	 * but the value will not dump to the userspace.
8382 	 */
8383 	if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
8384 		data->data_page_size = perf_get_page_size(data->addr);
8385 		data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
8386 	}
8387 
8388 	if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
8389 		data->code_page_size = perf_get_page_size(data->ip);
8390 		data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
8391 	}
8392 
8393 	if (filtered_sample_type & PERF_SAMPLE_AUX) {
8394 		u64 size;
8395 		u16 header_size = perf_sample_data_size(data, event);
8396 
8397 		header_size += sizeof(u64); /* size */
8398 
8399 		/*
8400 		 * Given the 16bit nature of header::size, an AUX sample can
8401 		 * easily overflow it, what with all the preceding sample bits.
8402 		 * Make sure this doesn't happen by using up to U16_MAX bytes
8403 		 * per sample in total (rounded down to 8 byte boundary).
8404 		 */
8405 		size = min_t(size_t, U16_MAX - header_size,
8406 			     event->attr.aux_sample_size);
8407 		size = rounddown(size, 8);
8408 		size = perf_prepare_sample_aux(event, data, size);
8409 
8410 		WARN_ON_ONCE(size + header_size > U16_MAX);
8411 		data->dyn_size += size + sizeof(u64); /* size above */
8412 		data->sample_flags |= PERF_SAMPLE_AUX;
8413 	}
8414 }
8415 
perf_prepare_header(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)8416 void perf_prepare_header(struct perf_event_header *header,
8417 			 struct perf_sample_data *data,
8418 			 struct perf_event *event,
8419 			 struct pt_regs *regs)
8420 {
8421 	header->type = PERF_RECORD_SAMPLE;
8422 	header->size = perf_sample_data_size(data, event);
8423 	header->misc = perf_misc_flags(event, regs);
8424 
8425 	/*
8426 	 * If you're adding more sample types here, you likely need to do
8427 	 * something about the overflowing header::size, like repurpose the
8428 	 * lowest 3 bits of size, which should be always zero at the moment.
8429 	 * This raises a more important question, do we really need 512k sized
8430 	 * samples and why, so good argumentation is in order for whatever you
8431 	 * do here next.
8432 	 */
8433 	WARN_ON_ONCE(header->size & 7);
8434 }
8435 
__perf_event_aux_pause(struct perf_event * event,bool pause)8436 static void __perf_event_aux_pause(struct perf_event *event, bool pause)
8437 {
8438 	if (pause) {
8439 		if (!event->hw.aux_paused) {
8440 			event->hw.aux_paused = 1;
8441 			event->pmu->stop(event, PERF_EF_PAUSE);
8442 		}
8443 	} else {
8444 		if (event->hw.aux_paused) {
8445 			event->hw.aux_paused = 0;
8446 			event->pmu->start(event, PERF_EF_RESUME);
8447 		}
8448 	}
8449 }
8450 
perf_event_aux_pause(struct perf_event * event,bool pause)8451 static void perf_event_aux_pause(struct perf_event *event, bool pause)
8452 {
8453 	struct perf_buffer *rb;
8454 
8455 	if (WARN_ON_ONCE(!event))
8456 		return;
8457 
8458 	rb = ring_buffer_get(event);
8459 	if (!rb)
8460 		return;
8461 
8462 	scoped_guard (irqsave) {
8463 		/*
8464 		 * Guard against self-recursion here. Another event could trip
8465 		 * this same from NMI context.
8466 		 */
8467 		if (READ_ONCE(rb->aux_in_pause_resume))
8468 			break;
8469 
8470 		WRITE_ONCE(rb->aux_in_pause_resume, 1);
8471 		barrier();
8472 		__perf_event_aux_pause(event, pause);
8473 		barrier();
8474 		WRITE_ONCE(rb->aux_in_pause_resume, 0);
8475 	}
8476 	ring_buffer_put(rb);
8477 }
8478 
8479 static __always_inline int
__perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs,int (* output_begin)(struct perf_output_handle *,struct perf_sample_data *,struct perf_event *,unsigned int))8480 __perf_event_output(struct perf_event *event,
8481 		    struct perf_sample_data *data,
8482 		    struct pt_regs *regs,
8483 		    int (*output_begin)(struct perf_output_handle *,
8484 					struct perf_sample_data *,
8485 					struct perf_event *,
8486 					unsigned int))
8487 {
8488 	struct perf_output_handle handle;
8489 	struct perf_event_header header;
8490 	int err;
8491 
8492 	/* protect the callchain buffers */
8493 	rcu_read_lock();
8494 
8495 	perf_prepare_sample(data, event, regs);
8496 	perf_prepare_header(&header, data, event, regs);
8497 
8498 	err = output_begin(&handle, data, event, header.size);
8499 	if (err)
8500 		goto exit;
8501 
8502 	perf_output_sample(&handle, &header, data, event);
8503 
8504 	perf_output_end(&handle);
8505 
8506 exit:
8507 	rcu_read_unlock();
8508 	return err;
8509 }
8510 
8511 void
perf_event_output_forward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8512 perf_event_output_forward(struct perf_event *event,
8513 			 struct perf_sample_data *data,
8514 			 struct pt_regs *regs)
8515 {
8516 	__perf_event_output(event, data, regs, perf_output_begin_forward);
8517 }
8518 
8519 void
perf_event_output_backward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8520 perf_event_output_backward(struct perf_event *event,
8521 			   struct perf_sample_data *data,
8522 			   struct pt_regs *regs)
8523 {
8524 	__perf_event_output(event, data, regs, perf_output_begin_backward);
8525 }
8526 
8527 int
perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8528 perf_event_output(struct perf_event *event,
8529 		  struct perf_sample_data *data,
8530 		  struct pt_regs *regs)
8531 {
8532 	return __perf_event_output(event, data, regs, perf_output_begin);
8533 }
8534 
8535 /*
8536  * read event_id
8537  */
8538 
8539 struct perf_read_event {
8540 	struct perf_event_header	header;
8541 
8542 	u32				pid;
8543 	u32				tid;
8544 };
8545 
8546 static void
perf_event_read_event(struct perf_event * event,struct task_struct * task)8547 perf_event_read_event(struct perf_event *event,
8548 			struct task_struct *task)
8549 {
8550 	struct perf_output_handle handle;
8551 	struct perf_sample_data sample;
8552 	struct perf_read_event read_event = {
8553 		.header = {
8554 			.type = PERF_RECORD_READ,
8555 			.misc = 0,
8556 			.size = sizeof(read_event) + event->read_size,
8557 		},
8558 		.pid = perf_event_pid(event, task),
8559 		.tid = perf_event_tid(event, task),
8560 	};
8561 	int ret;
8562 
8563 	perf_event_header__init_id(&read_event.header, &sample, event);
8564 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
8565 	if (ret)
8566 		return;
8567 
8568 	perf_output_put(&handle, read_event);
8569 	perf_output_read(&handle, event);
8570 	perf_event__output_id_sample(event, &handle, &sample);
8571 
8572 	perf_output_end(&handle);
8573 }
8574 
8575 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
8576 
8577 static void
perf_iterate_ctx(struct perf_event_context * ctx,perf_iterate_f output,void * data,bool all)8578 perf_iterate_ctx(struct perf_event_context *ctx,
8579 		   perf_iterate_f output,
8580 		   void *data, bool all)
8581 {
8582 	struct perf_event *event;
8583 
8584 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8585 		if (!all) {
8586 			if (event->state < PERF_EVENT_STATE_INACTIVE)
8587 				continue;
8588 			if (!event_filter_match(event))
8589 				continue;
8590 		}
8591 
8592 		output(event, data);
8593 	}
8594 }
8595 
perf_iterate_sb_cpu(perf_iterate_f output,void * data)8596 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
8597 {
8598 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
8599 	struct perf_event *event;
8600 
8601 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
8602 		/*
8603 		 * Skip events that are not fully formed yet; ensure that
8604 		 * if we observe event->ctx, both event and ctx will be
8605 		 * complete enough. See perf_install_in_context().
8606 		 */
8607 		if (!smp_load_acquire(&event->ctx))
8608 			continue;
8609 
8610 		if (event->state < PERF_EVENT_STATE_INACTIVE)
8611 			continue;
8612 		if (!event_filter_match(event))
8613 			continue;
8614 		output(event, data);
8615 	}
8616 }
8617 
8618 /*
8619  * Iterate all events that need to receive side-band events.
8620  *
8621  * For new callers; ensure that account_pmu_sb_event() includes
8622  * your event, otherwise it might not get delivered.
8623  */
8624 static void
perf_iterate_sb(perf_iterate_f output,void * data,struct perf_event_context * task_ctx)8625 perf_iterate_sb(perf_iterate_f output, void *data,
8626 	       struct perf_event_context *task_ctx)
8627 {
8628 	struct perf_event_context *ctx;
8629 
8630 	rcu_read_lock();
8631 	preempt_disable();
8632 
8633 	/*
8634 	 * If we have task_ctx != NULL we only notify the task context itself.
8635 	 * The task_ctx is set only for EXIT events before releasing task
8636 	 * context.
8637 	 */
8638 	if (task_ctx) {
8639 		perf_iterate_ctx(task_ctx, output, data, false);
8640 		goto done;
8641 	}
8642 
8643 	perf_iterate_sb_cpu(output, data);
8644 
8645 	ctx = rcu_dereference(current->perf_event_ctxp);
8646 	if (ctx)
8647 		perf_iterate_ctx(ctx, output, data, false);
8648 done:
8649 	preempt_enable();
8650 	rcu_read_unlock();
8651 }
8652 
8653 /*
8654  * Clear all file-based filters at exec, they'll have to be
8655  * re-instated when/if these objects are mmapped again.
8656  */
perf_event_addr_filters_exec(struct perf_event * event,void * data)8657 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8658 {
8659 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8660 	struct perf_addr_filter *filter;
8661 	unsigned int restart = 0, count = 0;
8662 	unsigned long flags;
8663 
8664 	if (!has_addr_filter(event))
8665 		return;
8666 
8667 	raw_spin_lock_irqsave(&ifh->lock, flags);
8668 	list_for_each_entry(filter, &ifh->list, entry) {
8669 		if (filter->path.dentry) {
8670 			event->addr_filter_ranges[count].start = 0;
8671 			event->addr_filter_ranges[count].size = 0;
8672 			restart++;
8673 		}
8674 
8675 		count++;
8676 	}
8677 
8678 	if (restart)
8679 		event->addr_filters_gen++;
8680 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8681 
8682 	if (restart)
8683 		perf_event_stop(event, 1);
8684 }
8685 
perf_event_exec(void)8686 void perf_event_exec(void)
8687 {
8688 	struct perf_event_context *ctx;
8689 
8690 	ctx = perf_pin_task_context(current);
8691 	if (!ctx)
8692 		return;
8693 
8694 	perf_event_enable_on_exec(ctx);
8695 	perf_event_remove_on_exec(ctx);
8696 	scoped_guard(rcu)
8697 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8698 
8699 	perf_unpin_context(ctx);
8700 	put_ctx(ctx);
8701 }
8702 
8703 struct remote_output {
8704 	struct perf_buffer	*rb;
8705 	int			err;
8706 };
8707 
__perf_event_output_stop(struct perf_event * event,void * data)8708 static void __perf_event_output_stop(struct perf_event *event, void *data)
8709 {
8710 	struct perf_event *parent = event->parent;
8711 	struct remote_output *ro = data;
8712 	struct perf_buffer *rb = ro->rb;
8713 	struct stop_event_data sd = {
8714 		.event	= event,
8715 	};
8716 
8717 	if (!has_aux(event))
8718 		return;
8719 
8720 	if (!parent)
8721 		parent = event;
8722 
8723 	/*
8724 	 * In case of inheritance, it will be the parent that links to the
8725 	 * ring-buffer, but it will be the child that's actually using it.
8726 	 *
8727 	 * We are using event::rb to determine if the event should be stopped,
8728 	 * however this may race with ring_buffer_attach() (through set_output),
8729 	 * which will make us skip the event that actually needs to be stopped.
8730 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
8731 	 * its rb pointer.
8732 	 */
8733 	if (rcu_dereference(parent->rb) == rb)
8734 		ro->err = __perf_event_stop(&sd);
8735 }
8736 
__perf_pmu_output_stop(void * info)8737 static int __perf_pmu_output_stop(void *info)
8738 {
8739 	struct perf_event *event = info;
8740 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8741 	struct remote_output ro = {
8742 		.rb	= event->rb,
8743 	};
8744 
8745 	rcu_read_lock();
8746 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8747 	if (cpuctx->task_ctx)
8748 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8749 				   &ro, false);
8750 	rcu_read_unlock();
8751 
8752 	return ro.err;
8753 }
8754 
perf_pmu_output_stop(struct perf_event * event)8755 static void perf_pmu_output_stop(struct perf_event *event)
8756 {
8757 	struct perf_event *iter;
8758 	int err, cpu;
8759 
8760 restart:
8761 	rcu_read_lock();
8762 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8763 		/*
8764 		 * For per-CPU events, we need to make sure that neither they
8765 		 * nor their children are running; for cpu==-1 events it's
8766 		 * sufficient to stop the event itself if it's active, since
8767 		 * it can't have children.
8768 		 */
8769 		cpu = iter->cpu;
8770 		if (cpu == -1)
8771 			cpu = READ_ONCE(iter->oncpu);
8772 
8773 		if (cpu == -1)
8774 			continue;
8775 
8776 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8777 		if (err == -EAGAIN) {
8778 			rcu_read_unlock();
8779 			goto restart;
8780 		}
8781 	}
8782 	rcu_read_unlock();
8783 }
8784 
8785 /*
8786  * task tracking -- fork/exit
8787  *
8788  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8789  */
8790 
8791 struct perf_task_event {
8792 	struct task_struct		*task;
8793 	struct perf_event_context	*task_ctx;
8794 
8795 	struct {
8796 		struct perf_event_header	header;
8797 
8798 		u32				pid;
8799 		u32				ppid;
8800 		u32				tid;
8801 		u32				ptid;
8802 		u64				time;
8803 	} event_id;
8804 };
8805 
perf_event_task_match(struct perf_event * event)8806 static int perf_event_task_match(struct perf_event *event)
8807 {
8808 	return event->attr.comm  || event->attr.mmap ||
8809 	       event->attr.mmap2 || event->attr.mmap_data ||
8810 	       event->attr.task;
8811 }
8812 
perf_event_task_output(struct perf_event * event,void * data)8813 static void perf_event_task_output(struct perf_event *event,
8814 				   void *data)
8815 {
8816 	struct perf_task_event *task_event = data;
8817 	struct perf_output_handle handle;
8818 	struct perf_sample_data	sample;
8819 	struct task_struct *task = task_event->task;
8820 	int ret, size = task_event->event_id.header.size;
8821 
8822 	if (!perf_event_task_match(event))
8823 		return;
8824 
8825 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8826 
8827 	ret = perf_output_begin(&handle, &sample, event,
8828 				task_event->event_id.header.size);
8829 	if (ret)
8830 		goto out;
8831 
8832 	task_event->event_id.pid = perf_event_pid(event, task);
8833 	task_event->event_id.tid = perf_event_tid(event, task);
8834 
8835 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8836 		task_event->event_id.ppid = perf_event_pid(event,
8837 							task->real_parent);
8838 		task_event->event_id.ptid = perf_event_pid(event,
8839 							task->real_parent);
8840 	} else {  /* PERF_RECORD_FORK */
8841 		task_event->event_id.ppid = perf_event_pid(event, current);
8842 		task_event->event_id.ptid = perf_event_tid(event, current);
8843 	}
8844 
8845 	task_event->event_id.time = perf_event_clock(event);
8846 
8847 	perf_output_put(&handle, task_event->event_id);
8848 
8849 	perf_event__output_id_sample(event, &handle, &sample);
8850 
8851 	perf_output_end(&handle);
8852 out:
8853 	task_event->event_id.header.size = size;
8854 }
8855 
perf_event_task(struct task_struct * task,struct perf_event_context * task_ctx,int new)8856 static void perf_event_task(struct task_struct *task,
8857 			      struct perf_event_context *task_ctx,
8858 			      int new)
8859 {
8860 	struct perf_task_event task_event;
8861 
8862 	if (!atomic_read(&nr_comm_events) &&
8863 	    !atomic_read(&nr_mmap_events) &&
8864 	    !atomic_read(&nr_task_events))
8865 		return;
8866 
8867 	task_event = (struct perf_task_event){
8868 		.task	  = task,
8869 		.task_ctx = task_ctx,
8870 		.event_id    = {
8871 			.header = {
8872 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8873 				.misc = 0,
8874 				.size = sizeof(task_event.event_id),
8875 			},
8876 			/* .pid  */
8877 			/* .ppid */
8878 			/* .tid  */
8879 			/* .ptid */
8880 			/* .time */
8881 		},
8882 	};
8883 
8884 	perf_iterate_sb(perf_event_task_output,
8885 		       &task_event,
8886 		       task_ctx);
8887 }
8888 
8889 /*
8890  * Allocate data for a new task when profiling system-wide
8891  * events which require PMU specific data
8892  */
8893 static void
perf_event_alloc_task_data(struct task_struct * child,struct task_struct * parent)8894 perf_event_alloc_task_data(struct task_struct *child,
8895 			   struct task_struct *parent)
8896 {
8897 	struct kmem_cache *ctx_cache = NULL;
8898 	struct perf_ctx_data *cd;
8899 
8900 	if (!refcount_read(&global_ctx_data_ref))
8901 		return;
8902 
8903 	scoped_guard (rcu) {
8904 		cd = rcu_dereference(parent->perf_ctx_data);
8905 		if (cd)
8906 			ctx_cache = cd->ctx_cache;
8907 	}
8908 
8909 	if (!ctx_cache)
8910 		return;
8911 
8912 	guard(percpu_read)(&global_ctx_data_rwsem);
8913 	scoped_guard (rcu) {
8914 		cd = rcu_dereference(child->perf_ctx_data);
8915 		if (!cd) {
8916 			/*
8917 			 * A system-wide event may be unaccount,
8918 			 * when attaching the perf_ctx_data.
8919 			 */
8920 			if (!refcount_read(&global_ctx_data_ref))
8921 				return;
8922 			goto attach;
8923 		}
8924 
8925 		if (!cd->global) {
8926 			cd->global = 1;
8927 			refcount_inc(&cd->refcount);
8928 		}
8929 	}
8930 
8931 	return;
8932 attach:
8933 	attach_task_ctx_data(child, ctx_cache, true);
8934 }
8935 
perf_event_fork(struct task_struct * task)8936 void perf_event_fork(struct task_struct *task)
8937 {
8938 	perf_event_task(task, NULL, 1);
8939 	perf_event_namespaces(task);
8940 	perf_event_alloc_task_data(task, current);
8941 }
8942 
8943 /*
8944  * comm tracking
8945  */
8946 
8947 struct perf_comm_event {
8948 	struct task_struct	*task;
8949 	char			*comm;
8950 	int			comm_size;
8951 
8952 	struct {
8953 		struct perf_event_header	header;
8954 
8955 		u32				pid;
8956 		u32				tid;
8957 	} event_id;
8958 };
8959 
perf_event_comm_match(struct perf_event * event)8960 static int perf_event_comm_match(struct perf_event *event)
8961 {
8962 	return event->attr.comm;
8963 }
8964 
perf_event_comm_output(struct perf_event * event,void * data)8965 static void perf_event_comm_output(struct perf_event *event,
8966 				   void *data)
8967 {
8968 	struct perf_comm_event *comm_event = data;
8969 	struct perf_output_handle handle;
8970 	struct perf_sample_data sample;
8971 	int size = comm_event->event_id.header.size;
8972 	int ret;
8973 
8974 	if (!perf_event_comm_match(event))
8975 		return;
8976 
8977 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8978 	ret = perf_output_begin(&handle, &sample, event,
8979 				comm_event->event_id.header.size);
8980 
8981 	if (ret)
8982 		goto out;
8983 
8984 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8985 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8986 
8987 	perf_output_put(&handle, comm_event->event_id);
8988 	__output_copy(&handle, comm_event->comm,
8989 				   comm_event->comm_size);
8990 
8991 	perf_event__output_id_sample(event, &handle, &sample);
8992 
8993 	perf_output_end(&handle);
8994 out:
8995 	comm_event->event_id.header.size = size;
8996 }
8997 
perf_event_comm_event(struct perf_comm_event * comm_event)8998 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8999 {
9000 	char comm[TASK_COMM_LEN];
9001 	unsigned int size;
9002 
9003 	memset(comm, 0, sizeof(comm));
9004 	strscpy(comm, comm_event->task->comm);
9005 	size = ALIGN(strlen(comm)+1, sizeof(u64));
9006 
9007 	comm_event->comm = comm;
9008 	comm_event->comm_size = size;
9009 
9010 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
9011 
9012 	perf_iterate_sb(perf_event_comm_output,
9013 		       comm_event,
9014 		       NULL);
9015 }
9016 
perf_event_comm(struct task_struct * task,bool exec)9017 void perf_event_comm(struct task_struct *task, bool exec)
9018 {
9019 	struct perf_comm_event comm_event;
9020 
9021 	if (!atomic_read(&nr_comm_events))
9022 		return;
9023 
9024 	comm_event = (struct perf_comm_event){
9025 		.task	= task,
9026 		/* .comm      */
9027 		/* .comm_size */
9028 		.event_id  = {
9029 			.header = {
9030 				.type = PERF_RECORD_COMM,
9031 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
9032 				/* .size */
9033 			},
9034 			/* .pid */
9035 			/* .tid */
9036 		},
9037 	};
9038 
9039 	perf_event_comm_event(&comm_event);
9040 }
9041 
9042 /*
9043  * namespaces tracking
9044  */
9045 
9046 struct perf_namespaces_event {
9047 	struct task_struct		*task;
9048 
9049 	struct {
9050 		struct perf_event_header	header;
9051 
9052 		u32				pid;
9053 		u32				tid;
9054 		u64				nr_namespaces;
9055 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
9056 	} event_id;
9057 };
9058 
perf_event_namespaces_match(struct perf_event * event)9059 static int perf_event_namespaces_match(struct perf_event *event)
9060 {
9061 	return event->attr.namespaces;
9062 }
9063 
perf_event_namespaces_output(struct perf_event * event,void * data)9064 static void perf_event_namespaces_output(struct perf_event *event,
9065 					 void *data)
9066 {
9067 	struct perf_namespaces_event *namespaces_event = data;
9068 	struct perf_output_handle handle;
9069 	struct perf_sample_data sample;
9070 	u16 header_size = namespaces_event->event_id.header.size;
9071 	int ret;
9072 
9073 	if (!perf_event_namespaces_match(event))
9074 		return;
9075 
9076 	perf_event_header__init_id(&namespaces_event->event_id.header,
9077 				   &sample, event);
9078 	ret = perf_output_begin(&handle, &sample, event,
9079 				namespaces_event->event_id.header.size);
9080 	if (ret)
9081 		goto out;
9082 
9083 	namespaces_event->event_id.pid = perf_event_pid(event,
9084 							namespaces_event->task);
9085 	namespaces_event->event_id.tid = perf_event_tid(event,
9086 							namespaces_event->task);
9087 
9088 	perf_output_put(&handle, namespaces_event->event_id);
9089 
9090 	perf_event__output_id_sample(event, &handle, &sample);
9091 
9092 	perf_output_end(&handle);
9093 out:
9094 	namespaces_event->event_id.header.size = header_size;
9095 }
9096 
perf_fill_ns_link_info(struct perf_ns_link_info * ns_link_info,struct task_struct * task,const struct proc_ns_operations * ns_ops)9097 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
9098 				   struct task_struct *task,
9099 				   const struct proc_ns_operations *ns_ops)
9100 {
9101 	struct path ns_path;
9102 	struct inode *ns_inode;
9103 	int error;
9104 
9105 	error = ns_get_path(&ns_path, task, ns_ops);
9106 	if (!error) {
9107 		ns_inode = ns_path.dentry->d_inode;
9108 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
9109 		ns_link_info->ino = ns_inode->i_ino;
9110 		path_put(&ns_path);
9111 	}
9112 }
9113 
perf_event_namespaces(struct task_struct * task)9114 void perf_event_namespaces(struct task_struct *task)
9115 {
9116 	struct perf_namespaces_event namespaces_event;
9117 	struct perf_ns_link_info *ns_link_info;
9118 
9119 	if (!atomic_read(&nr_namespaces_events))
9120 		return;
9121 
9122 	namespaces_event = (struct perf_namespaces_event){
9123 		.task	= task,
9124 		.event_id  = {
9125 			.header = {
9126 				.type = PERF_RECORD_NAMESPACES,
9127 				.misc = 0,
9128 				.size = sizeof(namespaces_event.event_id),
9129 			},
9130 			/* .pid */
9131 			/* .tid */
9132 			.nr_namespaces = NR_NAMESPACES,
9133 			/* .link_info[NR_NAMESPACES] */
9134 		},
9135 	};
9136 
9137 	ns_link_info = namespaces_event.event_id.link_info;
9138 
9139 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
9140 			       task, &mntns_operations);
9141 
9142 #ifdef CONFIG_USER_NS
9143 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
9144 			       task, &userns_operations);
9145 #endif
9146 #ifdef CONFIG_NET_NS
9147 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
9148 			       task, &netns_operations);
9149 #endif
9150 #ifdef CONFIG_UTS_NS
9151 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
9152 			       task, &utsns_operations);
9153 #endif
9154 #ifdef CONFIG_IPC_NS
9155 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
9156 			       task, &ipcns_operations);
9157 #endif
9158 #ifdef CONFIG_PID_NS
9159 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
9160 			       task, &pidns_operations);
9161 #endif
9162 #ifdef CONFIG_CGROUPS
9163 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
9164 			       task, &cgroupns_operations);
9165 #endif
9166 
9167 	perf_iterate_sb(perf_event_namespaces_output,
9168 			&namespaces_event,
9169 			NULL);
9170 }
9171 
9172 /*
9173  * cgroup tracking
9174  */
9175 #ifdef CONFIG_CGROUP_PERF
9176 
9177 struct perf_cgroup_event {
9178 	char				*path;
9179 	int				path_size;
9180 	struct {
9181 		struct perf_event_header	header;
9182 		u64				id;
9183 		char				path[];
9184 	} event_id;
9185 };
9186 
perf_event_cgroup_match(struct perf_event * event)9187 static int perf_event_cgroup_match(struct perf_event *event)
9188 {
9189 	return event->attr.cgroup;
9190 }
9191 
perf_event_cgroup_output(struct perf_event * event,void * data)9192 static void perf_event_cgroup_output(struct perf_event *event, void *data)
9193 {
9194 	struct perf_cgroup_event *cgroup_event = data;
9195 	struct perf_output_handle handle;
9196 	struct perf_sample_data sample;
9197 	u16 header_size = cgroup_event->event_id.header.size;
9198 	int ret;
9199 
9200 	if (!perf_event_cgroup_match(event))
9201 		return;
9202 
9203 	perf_event_header__init_id(&cgroup_event->event_id.header,
9204 				   &sample, event);
9205 	ret = perf_output_begin(&handle, &sample, event,
9206 				cgroup_event->event_id.header.size);
9207 	if (ret)
9208 		goto out;
9209 
9210 	perf_output_put(&handle, cgroup_event->event_id);
9211 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
9212 
9213 	perf_event__output_id_sample(event, &handle, &sample);
9214 
9215 	perf_output_end(&handle);
9216 out:
9217 	cgroup_event->event_id.header.size = header_size;
9218 }
9219 
perf_event_cgroup(struct cgroup * cgrp)9220 static void perf_event_cgroup(struct cgroup *cgrp)
9221 {
9222 	struct perf_cgroup_event cgroup_event;
9223 	char path_enomem[16] = "//enomem";
9224 	char *pathname;
9225 	size_t size;
9226 
9227 	if (!atomic_read(&nr_cgroup_events))
9228 		return;
9229 
9230 	cgroup_event = (struct perf_cgroup_event){
9231 		.event_id  = {
9232 			.header = {
9233 				.type = PERF_RECORD_CGROUP,
9234 				.misc = 0,
9235 				.size = sizeof(cgroup_event.event_id),
9236 			},
9237 			.id = cgroup_id(cgrp),
9238 		},
9239 	};
9240 
9241 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
9242 	if (pathname == NULL) {
9243 		cgroup_event.path = path_enomem;
9244 	} else {
9245 		/* just to be sure to have enough space for alignment */
9246 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
9247 		cgroup_event.path = pathname;
9248 	}
9249 
9250 	/*
9251 	 * Since our buffer works in 8 byte units we need to align our string
9252 	 * size to a multiple of 8. However, we must guarantee the tail end is
9253 	 * zero'd out to avoid leaking random bits to userspace.
9254 	 */
9255 	size = strlen(cgroup_event.path) + 1;
9256 	while (!IS_ALIGNED(size, sizeof(u64)))
9257 		cgroup_event.path[size++] = '\0';
9258 
9259 	cgroup_event.event_id.header.size += size;
9260 	cgroup_event.path_size = size;
9261 
9262 	perf_iterate_sb(perf_event_cgroup_output,
9263 			&cgroup_event,
9264 			NULL);
9265 
9266 	kfree(pathname);
9267 }
9268 
9269 #endif
9270 
9271 /*
9272  * mmap tracking
9273  */
9274 
9275 struct perf_mmap_event {
9276 	struct vm_area_struct	*vma;
9277 
9278 	const char		*file_name;
9279 	int			file_size;
9280 	int			maj, min;
9281 	u64			ino;
9282 	u64			ino_generation;
9283 	u32			prot, flags;
9284 	u8			build_id[BUILD_ID_SIZE_MAX];
9285 	u32			build_id_size;
9286 
9287 	struct {
9288 		struct perf_event_header	header;
9289 
9290 		u32				pid;
9291 		u32				tid;
9292 		u64				start;
9293 		u64				len;
9294 		u64				pgoff;
9295 	} event_id;
9296 };
9297 
perf_event_mmap_match(struct perf_event * event,void * data)9298 static int perf_event_mmap_match(struct perf_event *event,
9299 				 void *data)
9300 {
9301 	struct perf_mmap_event *mmap_event = data;
9302 	struct vm_area_struct *vma = mmap_event->vma;
9303 	int executable = vma->vm_flags & VM_EXEC;
9304 
9305 	return (!executable && event->attr.mmap_data) ||
9306 	       (executable && (event->attr.mmap || event->attr.mmap2));
9307 }
9308 
perf_event_mmap_output(struct perf_event * event,void * data)9309 static void perf_event_mmap_output(struct perf_event *event,
9310 				   void *data)
9311 {
9312 	struct perf_mmap_event *mmap_event = data;
9313 	struct perf_output_handle handle;
9314 	struct perf_sample_data sample;
9315 	int size = mmap_event->event_id.header.size;
9316 	u32 type = mmap_event->event_id.header.type;
9317 	bool use_build_id;
9318 	int ret;
9319 
9320 	if (!perf_event_mmap_match(event, data))
9321 		return;
9322 
9323 	if (event->attr.mmap2) {
9324 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
9325 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
9326 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
9327 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
9328 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
9329 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
9330 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
9331 	}
9332 
9333 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
9334 	ret = perf_output_begin(&handle, &sample, event,
9335 				mmap_event->event_id.header.size);
9336 	if (ret)
9337 		goto out;
9338 
9339 	mmap_event->event_id.pid = perf_event_pid(event, current);
9340 	mmap_event->event_id.tid = perf_event_tid(event, current);
9341 
9342 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
9343 
9344 	if (event->attr.mmap2 && use_build_id)
9345 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
9346 
9347 	perf_output_put(&handle, mmap_event->event_id);
9348 
9349 	if (event->attr.mmap2) {
9350 		if (use_build_id) {
9351 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
9352 
9353 			__output_copy(&handle, size, 4);
9354 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
9355 		} else {
9356 			perf_output_put(&handle, mmap_event->maj);
9357 			perf_output_put(&handle, mmap_event->min);
9358 			perf_output_put(&handle, mmap_event->ino);
9359 			perf_output_put(&handle, mmap_event->ino_generation);
9360 		}
9361 		perf_output_put(&handle, mmap_event->prot);
9362 		perf_output_put(&handle, mmap_event->flags);
9363 	}
9364 
9365 	__output_copy(&handle, mmap_event->file_name,
9366 				   mmap_event->file_size);
9367 
9368 	perf_event__output_id_sample(event, &handle, &sample);
9369 
9370 	perf_output_end(&handle);
9371 out:
9372 	mmap_event->event_id.header.size = size;
9373 	mmap_event->event_id.header.type = type;
9374 }
9375 
perf_event_mmap_event(struct perf_mmap_event * mmap_event)9376 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
9377 {
9378 	struct vm_area_struct *vma = mmap_event->vma;
9379 	struct file *file = vma->vm_file;
9380 	int maj = 0, min = 0;
9381 	u64 ino = 0, gen = 0;
9382 	u32 prot = 0, flags = 0;
9383 	unsigned int size;
9384 	char tmp[16];
9385 	char *buf = NULL;
9386 	char *name = NULL;
9387 
9388 	if (vma->vm_flags & VM_READ)
9389 		prot |= PROT_READ;
9390 	if (vma->vm_flags & VM_WRITE)
9391 		prot |= PROT_WRITE;
9392 	if (vma->vm_flags & VM_EXEC)
9393 		prot |= PROT_EXEC;
9394 
9395 	if (vma->vm_flags & VM_MAYSHARE)
9396 		flags = MAP_SHARED;
9397 	else
9398 		flags = MAP_PRIVATE;
9399 
9400 	if (vma->vm_flags & VM_LOCKED)
9401 		flags |= MAP_LOCKED;
9402 	if (is_vm_hugetlb_page(vma))
9403 		flags |= MAP_HUGETLB;
9404 
9405 	if (file) {
9406 		struct inode *inode;
9407 		dev_t dev;
9408 
9409 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
9410 		if (!buf) {
9411 			name = "//enomem";
9412 			goto cpy_name;
9413 		}
9414 		/*
9415 		 * d_path() works from the end of the rb backwards, so we
9416 		 * need to add enough zero bytes after the string to handle
9417 		 * the 64bit alignment we do later.
9418 		 */
9419 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
9420 		if (IS_ERR(name)) {
9421 			name = "//toolong";
9422 			goto cpy_name;
9423 		}
9424 		inode = file_inode(vma->vm_file);
9425 		dev = inode->i_sb->s_dev;
9426 		ino = inode->i_ino;
9427 		gen = inode->i_generation;
9428 		maj = MAJOR(dev);
9429 		min = MINOR(dev);
9430 
9431 		goto got_name;
9432 	} else {
9433 		if (vma->vm_ops && vma->vm_ops->name)
9434 			name = (char *) vma->vm_ops->name(vma);
9435 		if (!name)
9436 			name = (char *)arch_vma_name(vma);
9437 		if (!name) {
9438 			if (vma_is_initial_heap(vma))
9439 				name = "[heap]";
9440 			else if (vma_is_initial_stack(vma))
9441 				name = "[stack]";
9442 			else
9443 				name = "//anon";
9444 		}
9445 	}
9446 
9447 cpy_name:
9448 	strscpy(tmp, name);
9449 	name = tmp;
9450 got_name:
9451 	/*
9452 	 * Since our buffer works in 8 byte units we need to align our string
9453 	 * size to a multiple of 8. However, we must guarantee the tail end is
9454 	 * zero'd out to avoid leaking random bits to userspace.
9455 	 */
9456 	size = strlen(name)+1;
9457 	while (!IS_ALIGNED(size, sizeof(u64)))
9458 		name[size++] = '\0';
9459 
9460 	mmap_event->file_name = name;
9461 	mmap_event->file_size = size;
9462 	mmap_event->maj = maj;
9463 	mmap_event->min = min;
9464 	mmap_event->ino = ino;
9465 	mmap_event->ino_generation = gen;
9466 	mmap_event->prot = prot;
9467 	mmap_event->flags = flags;
9468 
9469 	if (!(vma->vm_flags & VM_EXEC))
9470 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
9471 
9472 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
9473 
9474 	if (atomic_read(&nr_build_id_events))
9475 		build_id_parse_nofault(vma, mmap_event->build_id, &mmap_event->build_id_size);
9476 
9477 	perf_iterate_sb(perf_event_mmap_output,
9478 		       mmap_event,
9479 		       NULL);
9480 
9481 	kfree(buf);
9482 }
9483 
9484 /*
9485  * Check whether inode and address range match filter criteria.
9486  */
perf_addr_filter_match(struct perf_addr_filter * filter,struct file * file,unsigned long offset,unsigned long size)9487 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
9488 				     struct file *file, unsigned long offset,
9489 				     unsigned long size)
9490 {
9491 	/* d_inode(NULL) won't be equal to any mapped user-space file */
9492 	if (!filter->path.dentry)
9493 		return false;
9494 
9495 	if (d_inode(filter->path.dentry) != file_inode(file))
9496 		return false;
9497 
9498 	if (filter->offset > offset + size)
9499 		return false;
9500 
9501 	if (filter->offset + filter->size < offset)
9502 		return false;
9503 
9504 	return true;
9505 }
9506 
perf_addr_filter_vma_adjust(struct perf_addr_filter * filter,struct vm_area_struct * vma,struct perf_addr_filter_range * fr)9507 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
9508 					struct vm_area_struct *vma,
9509 					struct perf_addr_filter_range *fr)
9510 {
9511 	unsigned long vma_size = vma->vm_end - vma->vm_start;
9512 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
9513 	struct file *file = vma->vm_file;
9514 
9515 	if (!perf_addr_filter_match(filter, file, off, vma_size))
9516 		return false;
9517 
9518 	if (filter->offset < off) {
9519 		fr->start = vma->vm_start;
9520 		fr->size = min(vma_size, filter->size - (off - filter->offset));
9521 	} else {
9522 		fr->start = vma->vm_start + filter->offset - off;
9523 		fr->size = min(vma->vm_end - fr->start, filter->size);
9524 	}
9525 
9526 	return true;
9527 }
9528 
__perf_addr_filters_adjust(struct perf_event * event,void * data)9529 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
9530 {
9531 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9532 	struct vm_area_struct *vma = data;
9533 	struct perf_addr_filter *filter;
9534 	unsigned int restart = 0, count = 0;
9535 	unsigned long flags;
9536 
9537 	if (!has_addr_filter(event))
9538 		return;
9539 
9540 	if (!vma->vm_file)
9541 		return;
9542 
9543 	raw_spin_lock_irqsave(&ifh->lock, flags);
9544 	list_for_each_entry(filter, &ifh->list, entry) {
9545 		if (perf_addr_filter_vma_adjust(filter, vma,
9546 						&event->addr_filter_ranges[count]))
9547 			restart++;
9548 
9549 		count++;
9550 	}
9551 
9552 	if (restart)
9553 		event->addr_filters_gen++;
9554 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
9555 
9556 	if (restart)
9557 		perf_event_stop(event, 1);
9558 }
9559 
9560 /*
9561  * Adjust all task's events' filters to the new vma
9562  */
perf_addr_filters_adjust(struct vm_area_struct * vma)9563 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
9564 {
9565 	struct perf_event_context *ctx;
9566 
9567 	/*
9568 	 * Data tracing isn't supported yet and as such there is no need
9569 	 * to keep track of anything that isn't related to executable code:
9570 	 */
9571 	if (!(vma->vm_flags & VM_EXEC))
9572 		return;
9573 
9574 	rcu_read_lock();
9575 	ctx = rcu_dereference(current->perf_event_ctxp);
9576 	if (ctx)
9577 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
9578 	rcu_read_unlock();
9579 }
9580 
perf_event_mmap(struct vm_area_struct * vma)9581 void perf_event_mmap(struct vm_area_struct *vma)
9582 {
9583 	struct perf_mmap_event mmap_event;
9584 
9585 	if (!atomic_read(&nr_mmap_events))
9586 		return;
9587 
9588 	mmap_event = (struct perf_mmap_event){
9589 		.vma	= vma,
9590 		/* .file_name */
9591 		/* .file_size */
9592 		.event_id  = {
9593 			.header = {
9594 				.type = PERF_RECORD_MMAP,
9595 				.misc = PERF_RECORD_MISC_USER,
9596 				/* .size */
9597 			},
9598 			/* .pid */
9599 			/* .tid */
9600 			.start  = vma->vm_start,
9601 			.len    = vma->vm_end - vma->vm_start,
9602 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
9603 		},
9604 		/* .maj (attr_mmap2 only) */
9605 		/* .min (attr_mmap2 only) */
9606 		/* .ino (attr_mmap2 only) */
9607 		/* .ino_generation (attr_mmap2 only) */
9608 		/* .prot (attr_mmap2 only) */
9609 		/* .flags (attr_mmap2 only) */
9610 	};
9611 
9612 	perf_addr_filters_adjust(vma);
9613 	perf_event_mmap_event(&mmap_event);
9614 }
9615 
perf_event_aux_event(struct perf_event * event,unsigned long head,unsigned long size,u64 flags)9616 void perf_event_aux_event(struct perf_event *event, unsigned long head,
9617 			  unsigned long size, u64 flags)
9618 {
9619 	struct perf_output_handle handle;
9620 	struct perf_sample_data sample;
9621 	struct perf_aux_event {
9622 		struct perf_event_header	header;
9623 		u64				offset;
9624 		u64				size;
9625 		u64				flags;
9626 	} rec = {
9627 		.header = {
9628 			.type = PERF_RECORD_AUX,
9629 			.misc = 0,
9630 			.size = sizeof(rec),
9631 		},
9632 		.offset		= head,
9633 		.size		= size,
9634 		.flags		= flags,
9635 	};
9636 	int ret;
9637 
9638 	perf_event_header__init_id(&rec.header, &sample, event);
9639 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9640 
9641 	if (ret)
9642 		return;
9643 
9644 	perf_output_put(&handle, rec);
9645 	perf_event__output_id_sample(event, &handle, &sample);
9646 
9647 	perf_output_end(&handle);
9648 }
9649 
9650 /*
9651  * Lost/dropped samples logging
9652  */
perf_log_lost_samples(struct perf_event * event,u64 lost)9653 void perf_log_lost_samples(struct perf_event *event, u64 lost)
9654 {
9655 	struct perf_output_handle handle;
9656 	struct perf_sample_data sample;
9657 	int ret;
9658 
9659 	struct {
9660 		struct perf_event_header	header;
9661 		u64				lost;
9662 	} lost_samples_event = {
9663 		.header = {
9664 			.type = PERF_RECORD_LOST_SAMPLES,
9665 			.misc = 0,
9666 			.size = sizeof(lost_samples_event),
9667 		},
9668 		.lost		= lost,
9669 	};
9670 
9671 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9672 
9673 	ret = perf_output_begin(&handle, &sample, event,
9674 				lost_samples_event.header.size);
9675 	if (ret)
9676 		return;
9677 
9678 	perf_output_put(&handle, lost_samples_event);
9679 	perf_event__output_id_sample(event, &handle, &sample);
9680 	perf_output_end(&handle);
9681 }
9682 
9683 /*
9684  * context_switch tracking
9685  */
9686 
9687 struct perf_switch_event {
9688 	struct task_struct	*task;
9689 	struct task_struct	*next_prev;
9690 
9691 	struct {
9692 		struct perf_event_header	header;
9693 		u32				next_prev_pid;
9694 		u32				next_prev_tid;
9695 	} event_id;
9696 };
9697 
perf_event_switch_match(struct perf_event * event)9698 static int perf_event_switch_match(struct perf_event *event)
9699 {
9700 	return event->attr.context_switch;
9701 }
9702 
perf_event_switch_output(struct perf_event * event,void * data)9703 static void perf_event_switch_output(struct perf_event *event, void *data)
9704 {
9705 	struct perf_switch_event *se = data;
9706 	struct perf_output_handle handle;
9707 	struct perf_sample_data sample;
9708 	int ret;
9709 
9710 	if (!perf_event_switch_match(event))
9711 		return;
9712 
9713 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
9714 	if (event->ctx->task) {
9715 		se->event_id.header.type = PERF_RECORD_SWITCH;
9716 		se->event_id.header.size = sizeof(se->event_id.header);
9717 	} else {
9718 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9719 		se->event_id.header.size = sizeof(se->event_id);
9720 		se->event_id.next_prev_pid =
9721 					perf_event_pid(event, se->next_prev);
9722 		se->event_id.next_prev_tid =
9723 					perf_event_tid(event, se->next_prev);
9724 	}
9725 
9726 	perf_event_header__init_id(&se->event_id.header, &sample, event);
9727 
9728 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9729 	if (ret)
9730 		return;
9731 
9732 	if (event->ctx->task)
9733 		perf_output_put(&handle, se->event_id.header);
9734 	else
9735 		perf_output_put(&handle, se->event_id);
9736 
9737 	perf_event__output_id_sample(event, &handle, &sample);
9738 
9739 	perf_output_end(&handle);
9740 }
9741 
perf_event_switch(struct task_struct * task,struct task_struct * next_prev,bool sched_in)9742 static void perf_event_switch(struct task_struct *task,
9743 			      struct task_struct *next_prev, bool sched_in)
9744 {
9745 	struct perf_switch_event switch_event;
9746 
9747 	/* N.B. caller checks nr_switch_events != 0 */
9748 
9749 	switch_event = (struct perf_switch_event){
9750 		.task		= task,
9751 		.next_prev	= next_prev,
9752 		.event_id	= {
9753 			.header = {
9754 				/* .type */
9755 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9756 				/* .size */
9757 			},
9758 			/* .next_prev_pid */
9759 			/* .next_prev_tid */
9760 		},
9761 	};
9762 
9763 	if (!sched_in && task_is_runnable(task)) {
9764 		switch_event.event_id.header.misc |=
9765 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9766 	}
9767 
9768 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9769 }
9770 
9771 /*
9772  * IRQ throttle logging
9773  */
9774 
perf_log_throttle(struct perf_event * event,int enable)9775 static void perf_log_throttle(struct perf_event *event, int enable)
9776 {
9777 	struct perf_output_handle handle;
9778 	struct perf_sample_data sample;
9779 	int ret;
9780 
9781 	struct {
9782 		struct perf_event_header	header;
9783 		u64				time;
9784 		u64				id;
9785 		u64				stream_id;
9786 	} throttle_event = {
9787 		.header = {
9788 			.type = PERF_RECORD_THROTTLE,
9789 			.misc = 0,
9790 			.size = sizeof(throttle_event),
9791 		},
9792 		.time		= perf_event_clock(event),
9793 		.id		= primary_event_id(event),
9794 		.stream_id	= event->id,
9795 	};
9796 
9797 	if (enable)
9798 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9799 
9800 	perf_event_header__init_id(&throttle_event.header, &sample, event);
9801 
9802 	ret = perf_output_begin(&handle, &sample, event,
9803 				throttle_event.header.size);
9804 	if (ret)
9805 		return;
9806 
9807 	perf_output_put(&handle, throttle_event);
9808 	perf_event__output_id_sample(event, &handle, &sample);
9809 	perf_output_end(&handle);
9810 }
9811 
9812 /*
9813  * ksymbol register/unregister tracking
9814  */
9815 
9816 struct perf_ksymbol_event {
9817 	const char	*name;
9818 	int		name_len;
9819 	struct {
9820 		struct perf_event_header        header;
9821 		u64				addr;
9822 		u32				len;
9823 		u16				ksym_type;
9824 		u16				flags;
9825 	} event_id;
9826 };
9827 
perf_event_ksymbol_match(struct perf_event * event)9828 static int perf_event_ksymbol_match(struct perf_event *event)
9829 {
9830 	return event->attr.ksymbol;
9831 }
9832 
perf_event_ksymbol_output(struct perf_event * event,void * data)9833 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9834 {
9835 	struct perf_ksymbol_event *ksymbol_event = data;
9836 	struct perf_output_handle handle;
9837 	struct perf_sample_data sample;
9838 	int ret;
9839 
9840 	if (!perf_event_ksymbol_match(event))
9841 		return;
9842 
9843 	perf_event_header__init_id(&ksymbol_event->event_id.header,
9844 				   &sample, event);
9845 	ret = perf_output_begin(&handle, &sample, event,
9846 				ksymbol_event->event_id.header.size);
9847 	if (ret)
9848 		return;
9849 
9850 	perf_output_put(&handle, ksymbol_event->event_id);
9851 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9852 	perf_event__output_id_sample(event, &handle, &sample);
9853 
9854 	perf_output_end(&handle);
9855 }
9856 
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)9857 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9858 			const char *sym)
9859 {
9860 	struct perf_ksymbol_event ksymbol_event;
9861 	char name[KSYM_NAME_LEN];
9862 	u16 flags = 0;
9863 	int name_len;
9864 
9865 	if (!atomic_read(&nr_ksymbol_events))
9866 		return;
9867 
9868 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9869 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9870 		goto err;
9871 
9872 	strscpy(name, sym);
9873 	name_len = strlen(name) + 1;
9874 	while (!IS_ALIGNED(name_len, sizeof(u64)))
9875 		name[name_len++] = '\0';
9876 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9877 
9878 	if (unregister)
9879 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9880 
9881 	ksymbol_event = (struct perf_ksymbol_event){
9882 		.name = name,
9883 		.name_len = name_len,
9884 		.event_id = {
9885 			.header = {
9886 				.type = PERF_RECORD_KSYMBOL,
9887 				.size = sizeof(ksymbol_event.event_id) +
9888 					name_len,
9889 			},
9890 			.addr = addr,
9891 			.len = len,
9892 			.ksym_type = ksym_type,
9893 			.flags = flags,
9894 		},
9895 	};
9896 
9897 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9898 	return;
9899 err:
9900 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9901 }
9902 
9903 /*
9904  * bpf program load/unload tracking
9905  */
9906 
9907 struct perf_bpf_event {
9908 	struct bpf_prog	*prog;
9909 	struct {
9910 		struct perf_event_header        header;
9911 		u16				type;
9912 		u16				flags;
9913 		u32				id;
9914 		u8				tag[BPF_TAG_SIZE];
9915 	} event_id;
9916 };
9917 
perf_event_bpf_match(struct perf_event * event)9918 static int perf_event_bpf_match(struct perf_event *event)
9919 {
9920 	return event->attr.bpf_event;
9921 }
9922 
perf_event_bpf_output(struct perf_event * event,void * data)9923 static void perf_event_bpf_output(struct perf_event *event, void *data)
9924 {
9925 	struct perf_bpf_event *bpf_event = data;
9926 	struct perf_output_handle handle;
9927 	struct perf_sample_data sample;
9928 	int ret;
9929 
9930 	if (!perf_event_bpf_match(event))
9931 		return;
9932 
9933 	perf_event_header__init_id(&bpf_event->event_id.header,
9934 				   &sample, event);
9935 	ret = perf_output_begin(&handle, &sample, event,
9936 				bpf_event->event_id.header.size);
9937 	if (ret)
9938 		return;
9939 
9940 	perf_output_put(&handle, bpf_event->event_id);
9941 	perf_event__output_id_sample(event, &handle, &sample);
9942 
9943 	perf_output_end(&handle);
9944 }
9945 
perf_event_bpf_emit_ksymbols(struct bpf_prog * prog,enum perf_bpf_event_type type)9946 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9947 					 enum perf_bpf_event_type type)
9948 {
9949 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9950 	int i;
9951 
9952 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9953 			   (u64)(unsigned long)prog->bpf_func,
9954 			   prog->jited_len, unregister,
9955 			   prog->aux->ksym.name);
9956 
9957 	for (i = 1; i < prog->aux->func_cnt; i++) {
9958 		struct bpf_prog *subprog = prog->aux->func[i];
9959 
9960 		perf_event_ksymbol(
9961 			PERF_RECORD_KSYMBOL_TYPE_BPF,
9962 			(u64)(unsigned long)subprog->bpf_func,
9963 			subprog->jited_len, unregister,
9964 			subprog->aux->ksym.name);
9965 	}
9966 }
9967 
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)9968 void perf_event_bpf_event(struct bpf_prog *prog,
9969 			  enum perf_bpf_event_type type,
9970 			  u16 flags)
9971 {
9972 	struct perf_bpf_event bpf_event;
9973 
9974 	switch (type) {
9975 	case PERF_BPF_EVENT_PROG_LOAD:
9976 	case PERF_BPF_EVENT_PROG_UNLOAD:
9977 		if (atomic_read(&nr_ksymbol_events))
9978 			perf_event_bpf_emit_ksymbols(prog, type);
9979 		break;
9980 	default:
9981 		return;
9982 	}
9983 
9984 	if (!atomic_read(&nr_bpf_events))
9985 		return;
9986 
9987 	bpf_event = (struct perf_bpf_event){
9988 		.prog = prog,
9989 		.event_id = {
9990 			.header = {
9991 				.type = PERF_RECORD_BPF_EVENT,
9992 				.size = sizeof(bpf_event.event_id),
9993 			},
9994 			.type = type,
9995 			.flags = flags,
9996 			.id = prog->aux->id,
9997 		},
9998 	};
9999 
10000 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
10001 
10002 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
10003 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
10004 }
10005 
10006 struct perf_text_poke_event {
10007 	const void		*old_bytes;
10008 	const void		*new_bytes;
10009 	size_t			pad;
10010 	u16			old_len;
10011 	u16			new_len;
10012 
10013 	struct {
10014 		struct perf_event_header	header;
10015 
10016 		u64				addr;
10017 	} event_id;
10018 };
10019 
perf_event_text_poke_match(struct perf_event * event)10020 static int perf_event_text_poke_match(struct perf_event *event)
10021 {
10022 	return event->attr.text_poke;
10023 }
10024 
perf_event_text_poke_output(struct perf_event * event,void * data)10025 static void perf_event_text_poke_output(struct perf_event *event, void *data)
10026 {
10027 	struct perf_text_poke_event *text_poke_event = data;
10028 	struct perf_output_handle handle;
10029 	struct perf_sample_data sample;
10030 	u64 padding = 0;
10031 	int ret;
10032 
10033 	if (!perf_event_text_poke_match(event))
10034 		return;
10035 
10036 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
10037 
10038 	ret = perf_output_begin(&handle, &sample, event,
10039 				text_poke_event->event_id.header.size);
10040 	if (ret)
10041 		return;
10042 
10043 	perf_output_put(&handle, text_poke_event->event_id);
10044 	perf_output_put(&handle, text_poke_event->old_len);
10045 	perf_output_put(&handle, text_poke_event->new_len);
10046 
10047 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
10048 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
10049 
10050 	if (text_poke_event->pad)
10051 		__output_copy(&handle, &padding, text_poke_event->pad);
10052 
10053 	perf_event__output_id_sample(event, &handle, &sample);
10054 
10055 	perf_output_end(&handle);
10056 }
10057 
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)10058 void perf_event_text_poke(const void *addr, const void *old_bytes,
10059 			  size_t old_len, const void *new_bytes, size_t new_len)
10060 {
10061 	struct perf_text_poke_event text_poke_event;
10062 	size_t tot, pad;
10063 
10064 	if (!atomic_read(&nr_text_poke_events))
10065 		return;
10066 
10067 	tot  = sizeof(text_poke_event.old_len) + old_len;
10068 	tot += sizeof(text_poke_event.new_len) + new_len;
10069 	pad  = ALIGN(tot, sizeof(u64)) - tot;
10070 
10071 	text_poke_event = (struct perf_text_poke_event){
10072 		.old_bytes    = old_bytes,
10073 		.new_bytes    = new_bytes,
10074 		.pad          = pad,
10075 		.old_len      = old_len,
10076 		.new_len      = new_len,
10077 		.event_id  = {
10078 			.header = {
10079 				.type = PERF_RECORD_TEXT_POKE,
10080 				.misc = PERF_RECORD_MISC_KERNEL,
10081 				.size = sizeof(text_poke_event.event_id) + tot + pad,
10082 			},
10083 			.addr = (unsigned long)addr,
10084 		},
10085 	};
10086 
10087 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
10088 }
10089 
perf_event_itrace_started(struct perf_event * event)10090 void perf_event_itrace_started(struct perf_event *event)
10091 {
10092 	WRITE_ONCE(event->attach_state, event->attach_state | PERF_ATTACH_ITRACE);
10093 }
10094 
perf_log_itrace_start(struct perf_event * event)10095 static void perf_log_itrace_start(struct perf_event *event)
10096 {
10097 	struct perf_output_handle handle;
10098 	struct perf_sample_data sample;
10099 	struct perf_aux_event {
10100 		struct perf_event_header        header;
10101 		u32				pid;
10102 		u32				tid;
10103 	} rec;
10104 	int ret;
10105 
10106 	if (event->parent)
10107 		event = event->parent;
10108 
10109 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
10110 	    event->attach_state & PERF_ATTACH_ITRACE)
10111 		return;
10112 
10113 	rec.header.type	= PERF_RECORD_ITRACE_START;
10114 	rec.header.misc	= 0;
10115 	rec.header.size	= sizeof(rec);
10116 	rec.pid	= perf_event_pid(event, current);
10117 	rec.tid	= perf_event_tid(event, current);
10118 
10119 	perf_event_header__init_id(&rec.header, &sample, event);
10120 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
10121 
10122 	if (ret)
10123 		return;
10124 
10125 	perf_output_put(&handle, rec);
10126 	perf_event__output_id_sample(event, &handle, &sample);
10127 
10128 	perf_output_end(&handle);
10129 }
10130 
perf_report_aux_output_id(struct perf_event * event,u64 hw_id)10131 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
10132 {
10133 	struct perf_output_handle handle;
10134 	struct perf_sample_data sample;
10135 	struct perf_aux_event {
10136 		struct perf_event_header        header;
10137 		u64				hw_id;
10138 	} rec;
10139 	int ret;
10140 
10141 	if (event->parent)
10142 		event = event->parent;
10143 
10144 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
10145 	rec.header.misc	= 0;
10146 	rec.header.size	= sizeof(rec);
10147 	rec.hw_id	= hw_id;
10148 
10149 	perf_event_header__init_id(&rec.header, &sample, event);
10150 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
10151 
10152 	if (ret)
10153 		return;
10154 
10155 	perf_output_put(&handle, rec);
10156 	perf_event__output_id_sample(event, &handle, &sample);
10157 
10158 	perf_output_end(&handle);
10159 }
10160 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
10161 
10162 static int
__perf_event_account_interrupt(struct perf_event * event,int throttle)10163 __perf_event_account_interrupt(struct perf_event *event, int throttle)
10164 {
10165 	struct hw_perf_event *hwc = &event->hw;
10166 	int ret = 0;
10167 	u64 seq;
10168 
10169 	seq = __this_cpu_read(perf_throttled_seq);
10170 	if (seq != hwc->interrupts_seq) {
10171 		hwc->interrupts_seq = seq;
10172 		hwc->interrupts = 1;
10173 	} else {
10174 		hwc->interrupts++;
10175 	}
10176 
10177 	if (unlikely(throttle && hwc->interrupts >= max_samples_per_tick)) {
10178 		__this_cpu_inc(perf_throttled_count);
10179 		tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
10180 		perf_event_throttle_group(event);
10181 		ret = 1;
10182 	}
10183 
10184 	if (event->attr.freq) {
10185 		u64 now = perf_clock();
10186 		s64 delta = now - hwc->freq_time_stamp;
10187 
10188 		hwc->freq_time_stamp = now;
10189 
10190 		if (delta > 0 && delta < 2*TICK_NSEC)
10191 			perf_adjust_period(event, delta, hwc->last_period, true);
10192 	}
10193 
10194 	return ret;
10195 }
10196 
perf_event_account_interrupt(struct perf_event * event)10197 int perf_event_account_interrupt(struct perf_event *event)
10198 {
10199 	return __perf_event_account_interrupt(event, 1);
10200 }
10201 
sample_is_allowed(struct perf_event * event,struct pt_regs * regs)10202 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
10203 {
10204 	/*
10205 	 * Due to interrupt latency (AKA "skid"), we may enter the
10206 	 * kernel before taking an overflow, even if the PMU is only
10207 	 * counting user events.
10208 	 */
10209 	if (event->attr.exclude_kernel && !user_mode(regs))
10210 		return false;
10211 
10212 	return true;
10213 }
10214 
10215 #ifdef CONFIG_BPF_SYSCALL
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)10216 static int bpf_overflow_handler(struct perf_event *event,
10217 				struct perf_sample_data *data,
10218 				struct pt_regs *regs)
10219 {
10220 	struct bpf_perf_event_data_kern ctx = {
10221 		.data = data,
10222 		.event = event,
10223 	};
10224 	struct bpf_prog *prog;
10225 	int ret = 0;
10226 
10227 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10228 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10229 		goto out;
10230 	rcu_read_lock();
10231 	prog = READ_ONCE(event->prog);
10232 	if (prog) {
10233 		perf_prepare_sample(data, event, regs);
10234 		ret = bpf_prog_run(prog, &ctx);
10235 	}
10236 	rcu_read_unlock();
10237 out:
10238 	__this_cpu_dec(bpf_prog_active);
10239 
10240 	return ret;
10241 }
10242 
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10243 static inline int perf_event_set_bpf_handler(struct perf_event *event,
10244 					     struct bpf_prog *prog,
10245 					     u64 bpf_cookie)
10246 {
10247 	if (event->overflow_handler_context)
10248 		/* hw breakpoint or kernel counter */
10249 		return -EINVAL;
10250 
10251 	if (event->prog)
10252 		return -EEXIST;
10253 
10254 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10255 		return -EINVAL;
10256 
10257 	if (event->attr.precise_ip &&
10258 	    prog->call_get_stack &&
10259 	    (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10260 	     event->attr.exclude_callchain_kernel ||
10261 	     event->attr.exclude_callchain_user)) {
10262 		/*
10263 		 * On perf_event with precise_ip, calling bpf_get_stack()
10264 		 * may trigger unwinder warnings and occasional crashes.
10265 		 * bpf_get_[stack|stackid] works around this issue by using
10266 		 * callchain attached to perf_sample_data. If the
10267 		 * perf_event does not full (kernel and user) callchain
10268 		 * attached to perf_sample_data, do not allow attaching BPF
10269 		 * program that calls bpf_get_[stack|stackid].
10270 		 */
10271 		return -EPROTO;
10272 	}
10273 
10274 	event->prog = prog;
10275 	event->bpf_cookie = bpf_cookie;
10276 	return 0;
10277 }
10278 
perf_event_free_bpf_handler(struct perf_event * event)10279 static inline void perf_event_free_bpf_handler(struct perf_event *event)
10280 {
10281 	struct bpf_prog *prog = event->prog;
10282 
10283 	if (!prog)
10284 		return;
10285 
10286 	event->prog = NULL;
10287 	bpf_prog_put(prog);
10288 }
10289 #else
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)10290 static inline int bpf_overflow_handler(struct perf_event *event,
10291 				       struct perf_sample_data *data,
10292 				       struct pt_regs *regs)
10293 {
10294 	return 1;
10295 }
10296 
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10297 static inline int perf_event_set_bpf_handler(struct perf_event *event,
10298 					     struct bpf_prog *prog,
10299 					     u64 bpf_cookie)
10300 {
10301 	return -EOPNOTSUPP;
10302 }
10303 
perf_event_free_bpf_handler(struct perf_event * event)10304 static inline void perf_event_free_bpf_handler(struct perf_event *event)
10305 {
10306 }
10307 #endif
10308 
10309 /*
10310  * Generic event overflow handling, sampling.
10311  */
10312 
__perf_event_overflow(struct perf_event * event,int throttle,struct perf_sample_data * data,struct pt_regs * regs)10313 static int __perf_event_overflow(struct perf_event *event,
10314 				 int throttle, struct perf_sample_data *data,
10315 				 struct pt_regs *regs)
10316 {
10317 	int events = atomic_read(&event->event_limit);
10318 	int ret = 0;
10319 
10320 	/*
10321 	 * Non-sampling counters might still use the PMI to fold short
10322 	 * hardware counters, ignore those.
10323 	 */
10324 	if (unlikely(!is_sampling_event(event)))
10325 		return 0;
10326 
10327 	ret = __perf_event_account_interrupt(event, throttle);
10328 
10329 	if (event->attr.aux_pause)
10330 		perf_event_aux_pause(event->aux_event, true);
10331 
10332 	if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT &&
10333 	    !bpf_overflow_handler(event, data, regs))
10334 		goto out;
10335 
10336 	/*
10337 	 * XXX event_limit might not quite work as expected on inherited
10338 	 * events
10339 	 */
10340 
10341 	event->pending_kill = POLL_IN;
10342 	if (events && atomic_dec_and_test(&event->event_limit)) {
10343 		ret = 1;
10344 		event->pending_kill = POLL_HUP;
10345 		perf_event_disable_inatomic(event);
10346 		event->pmu->stop(event, 0);
10347 	}
10348 
10349 	if (event->attr.sigtrap) {
10350 		/*
10351 		 * The desired behaviour of sigtrap vs invalid samples is a bit
10352 		 * tricky; on the one hand, one should not loose the SIGTRAP if
10353 		 * it is the first event, on the other hand, we should also not
10354 		 * trigger the WARN or override the data address.
10355 		 */
10356 		bool valid_sample = sample_is_allowed(event, regs);
10357 		unsigned int pending_id = 1;
10358 		enum task_work_notify_mode notify_mode;
10359 
10360 		if (regs)
10361 			pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
10362 
10363 		notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME;
10364 
10365 		if (!event->pending_work &&
10366 		    !task_work_add(current, &event->pending_task, notify_mode)) {
10367 			event->pending_work = pending_id;
10368 			local_inc(&event->ctx->nr_no_switch_fast);
10369 			WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
10370 
10371 			event->pending_addr = 0;
10372 			if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
10373 				event->pending_addr = data->addr;
10374 
10375 		} else if (event->attr.exclude_kernel && valid_sample) {
10376 			/*
10377 			 * Should not be able to return to user space without
10378 			 * consuming pending_work; with exceptions:
10379 			 *
10380 			 *  1. Where !exclude_kernel, events can overflow again
10381 			 *     in the kernel without returning to user space.
10382 			 *
10383 			 *  2. Events that can overflow again before the IRQ-
10384 			 *     work without user space progress (e.g. hrtimer).
10385 			 *     To approximate progress (with false negatives),
10386 			 *     check 32-bit hash of the current IP.
10387 			 */
10388 			WARN_ON_ONCE(event->pending_work != pending_id);
10389 		}
10390 	}
10391 
10392 	READ_ONCE(event->overflow_handler)(event, data, regs);
10393 
10394 	if (*perf_event_fasync(event) && event->pending_kill) {
10395 		event->pending_wakeup = 1;
10396 		irq_work_queue(&event->pending_irq);
10397 	}
10398 out:
10399 	if (event->attr.aux_resume)
10400 		perf_event_aux_pause(event->aux_event, false);
10401 
10402 	return ret;
10403 }
10404 
perf_event_overflow(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)10405 int perf_event_overflow(struct perf_event *event,
10406 			struct perf_sample_data *data,
10407 			struct pt_regs *regs)
10408 {
10409 	return __perf_event_overflow(event, 1, data, regs);
10410 }
10411 
10412 /*
10413  * Generic software event infrastructure
10414  */
10415 
10416 struct swevent_htable {
10417 	struct swevent_hlist		*swevent_hlist;
10418 	struct mutex			hlist_mutex;
10419 	int				hlist_refcount;
10420 };
10421 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
10422 
10423 /*
10424  * We directly increment event->count and keep a second value in
10425  * event->hw.period_left to count intervals. This period event
10426  * is kept in the range [-sample_period, 0] so that we can use the
10427  * sign as trigger.
10428  */
10429 
perf_swevent_set_period(struct perf_event * event)10430 u64 perf_swevent_set_period(struct perf_event *event)
10431 {
10432 	struct hw_perf_event *hwc = &event->hw;
10433 	u64 period = hwc->last_period;
10434 	u64 nr, offset;
10435 	s64 old, val;
10436 
10437 	hwc->last_period = hwc->sample_period;
10438 
10439 	old = local64_read(&hwc->period_left);
10440 	do {
10441 		val = old;
10442 		if (val < 0)
10443 			return 0;
10444 
10445 		nr = div64_u64(period + val, period);
10446 		offset = nr * period;
10447 		val -= offset;
10448 	} while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
10449 
10450 	return nr;
10451 }
10452 
perf_swevent_overflow(struct perf_event * event,u64 overflow,struct perf_sample_data * data,struct pt_regs * regs)10453 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
10454 				    struct perf_sample_data *data,
10455 				    struct pt_regs *regs)
10456 {
10457 	struct hw_perf_event *hwc = &event->hw;
10458 	int throttle = 0;
10459 
10460 	if (!overflow)
10461 		overflow = perf_swevent_set_period(event);
10462 
10463 	if (hwc->interrupts == MAX_INTERRUPTS)
10464 		return;
10465 
10466 	for (; overflow; overflow--) {
10467 		if (__perf_event_overflow(event, throttle,
10468 					    data, regs)) {
10469 			/*
10470 			 * We inhibit the overflow from happening when
10471 			 * hwc->interrupts == MAX_INTERRUPTS.
10472 			 */
10473 			break;
10474 		}
10475 		throttle = 1;
10476 	}
10477 }
10478 
perf_swevent_event(struct perf_event * event,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)10479 static void perf_swevent_event(struct perf_event *event, u64 nr,
10480 			       struct perf_sample_data *data,
10481 			       struct pt_regs *regs)
10482 {
10483 	struct hw_perf_event *hwc = &event->hw;
10484 
10485 	local64_add(nr, &event->count);
10486 
10487 	if (!regs)
10488 		return;
10489 
10490 	if (!is_sampling_event(event))
10491 		return;
10492 
10493 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
10494 		data->period = nr;
10495 		return perf_swevent_overflow(event, 1, data, regs);
10496 	} else
10497 		data->period = event->hw.last_period;
10498 
10499 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
10500 		return perf_swevent_overflow(event, 1, data, regs);
10501 
10502 	if (local64_add_negative(nr, &hwc->period_left))
10503 		return;
10504 
10505 	perf_swevent_overflow(event, 0, data, regs);
10506 }
10507 
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)10508 int perf_exclude_event(struct perf_event *event, struct pt_regs *regs)
10509 {
10510 	if (event->hw.state & PERF_HES_STOPPED)
10511 		return 1;
10512 
10513 	if (regs) {
10514 		if (event->attr.exclude_user && user_mode(regs))
10515 			return 1;
10516 
10517 		if (event->attr.exclude_kernel && !user_mode(regs))
10518 			return 1;
10519 	}
10520 
10521 	return 0;
10522 }
10523 
perf_swevent_match(struct perf_event * event,enum perf_type_id type,u32 event_id,struct perf_sample_data * data,struct pt_regs * regs)10524 static int perf_swevent_match(struct perf_event *event,
10525 				enum perf_type_id type,
10526 				u32 event_id,
10527 				struct perf_sample_data *data,
10528 				struct pt_regs *regs)
10529 {
10530 	if (event->attr.type != type)
10531 		return 0;
10532 
10533 	if (event->attr.config != event_id)
10534 		return 0;
10535 
10536 	if (perf_exclude_event(event, regs))
10537 		return 0;
10538 
10539 	return 1;
10540 }
10541 
swevent_hash(u64 type,u32 event_id)10542 static inline u64 swevent_hash(u64 type, u32 event_id)
10543 {
10544 	u64 val = event_id | (type << 32);
10545 
10546 	return hash_64(val, SWEVENT_HLIST_BITS);
10547 }
10548 
10549 static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist * hlist,u64 type,u32 event_id)10550 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
10551 {
10552 	u64 hash = swevent_hash(type, event_id);
10553 
10554 	return &hlist->heads[hash];
10555 }
10556 
10557 /* For the read side: events when they trigger */
10558 static inline struct hlist_head *
find_swevent_head_rcu(struct swevent_htable * swhash,u64 type,u32 event_id)10559 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
10560 {
10561 	struct swevent_hlist *hlist;
10562 
10563 	hlist = rcu_dereference(swhash->swevent_hlist);
10564 	if (!hlist)
10565 		return NULL;
10566 
10567 	return __find_swevent_head(hlist, type, event_id);
10568 }
10569 
10570 /* For the event head insertion and removal in the hlist */
10571 static inline struct hlist_head *
find_swevent_head(struct swevent_htable * swhash,struct perf_event * event)10572 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
10573 {
10574 	struct swevent_hlist *hlist;
10575 	u32 event_id = event->attr.config;
10576 	u64 type = event->attr.type;
10577 
10578 	/*
10579 	 * Event scheduling is always serialized against hlist allocation
10580 	 * and release. Which makes the protected version suitable here.
10581 	 * The context lock guarantees that.
10582 	 */
10583 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
10584 					  lockdep_is_held(&event->ctx->lock));
10585 	if (!hlist)
10586 		return NULL;
10587 
10588 	return __find_swevent_head(hlist, type, event_id);
10589 }
10590 
do_perf_sw_event(enum perf_type_id type,u32 event_id,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)10591 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
10592 				    u64 nr,
10593 				    struct perf_sample_data *data,
10594 				    struct pt_regs *regs)
10595 {
10596 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10597 	struct perf_event *event;
10598 	struct hlist_head *head;
10599 
10600 	rcu_read_lock();
10601 	head = find_swevent_head_rcu(swhash, type, event_id);
10602 	if (!head)
10603 		goto end;
10604 
10605 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10606 		if (perf_swevent_match(event, type, event_id, data, regs))
10607 			perf_swevent_event(event, nr, data, regs);
10608 	}
10609 end:
10610 	rcu_read_unlock();
10611 }
10612 
10613 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
10614 
perf_swevent_get_recursion_context(void)10615 int perf_swevent_get_recursion_context(void)
10616 {
10617 	return get_recursion_context(current->perf_recursion);
10618 }
10619 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
10620 
perf_swevent_put_recursion_context(int rctx)10621 void perf_swevent_put_recursion_context(int rctx)
10622 {
10623 	put_recursion_context(current->perf_recursion, rctx);
10624 }
10625 
___perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)10626 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10627 {
10628 	struct perf_sample_data data;
10629 
10630 	if (WARN_ON_ONCE(!regs))
10631 		return;
10632 
10633 	perf_sample_data_init(&data, addr, 0);
10634 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
10635 }
10636 
__perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)10637 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10638 {
10639 	int rctx;
10640 
10641 	preempt_disable_notrace();
10642 	rctx = perf_swevent_get_recursion_context();
10643 	if (unlikely(rctx < 0))
10644 		goto fail;
10645 
10646 	___perf_sw_event(event_id, nr, regs, addr);
10647 
10648 	perf_swevent_put_recursion_context(rctx);
10649 fail:
10650 	preempt_enable_notrace();
10651 }
10652 
perf_swevent_read(struct perf_event * event)10653 static void perf_swevent_read(struct perf_event *event)
10654 {
10655 }
10656 
perf_swevent_add(struct perf_event * event,int flags)10657 static int perf_swevent_add(struct perf_event *event, int flags)
10658 {
10659 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10660 	struct hw_perf_event *hwc = &event->hw;
10661 	struct hlist_head *head;
10662 
10663 	if (is_sampling_event(event)) {
10664 		hwc->last_period = hwc->sample_period;
10665 		perf_swevent_set_period(event);
10666 	}
10667 
10668 	hwc->state = !(flags & PERF_EF_START);
10669 
10670 	head = find_swevent_head(swhash, event);
10671 	if (WARN_ON_ONCE(!head))
10672 		return -EINVAL;
10673 
10674 	hlist_add_head_rcu(&event->hlist_entry, head);
10675 	perf_event_update_userpage(event);
10676 
10677 	return 0;
10678 }
10679 
perf_swevent_del(struct perf_event * event,int flags)10680 static void perf_swevent_del(struct perf_event *event, int flags)
10681 {
10682 	hlist_del_rcu(&event->hlist_entry);
10683 }
10684 
perf_swevent_start(struct perf_event * event,int flags)10685 static void perf_swevent_start(struct perf_event *event, int flags)
10686 {
10687 	event->hw.state = 0;
10688 }
10689 
perf_swevent_stop(struct perf_event * event,int flags)10690 static void perf_swevent_stop(struct perf_event *event, int flags)
10691 {
10692 	event->hw.state = PERF_HES_STOPPED;
10693 }
10694 
10695 /* Deref the hlist from the update side */
10696 static inline struct swevent_hlist *
swevent_hlist_deref(struct swevent_htable * swhash)10697 swevent_hlist_deref(struct swevent_htable *swhash)
10698 {
10699 	return rcu_dereference_protected(swhash->swevent_hlist,
10700 					 lockdep_is_held(&swhash->hlist_mutex));
10701 }
10702 
swevent_hlist_release(struct swevent_htable * swhash)10703 static void swevent_hlist_release(struct swevent_htable *swhash)
10704 {
10705 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
10706 
10707 	if (!hlist)
10708 		return;
10709 
10710 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
10711 	kfree_rcu(hlist, rcu_head);
10712 }
10713 
swevent_hlist_put_cpu(int cpu)10714 static void swevent_hlist_put_cpu(int cpu)
10715 {
10716 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10717 
10718 	mutex_lock(&swhash->hlist_mutex);
10719 
10720 	if (!--swhash->hlist_refcount)
10721 		swevent_hlist_release(swhash);
10722 
10723 	mutex_unlock(&swhash->hlist_mutex);
10724 }
10725 
swevent_hlist_put(void)10726 static void swevent_hlist_put(void)
10727 {
10728 	int cpu;
10729 
10730 	for_each_possible_cpu(cpu)
10731 		swevent_hlist_put_cpu(cpu);
10732 }
10733 
swevent_hlist_get_cpu(int cpu)10734 static int swevent_hlist_get_cpu(int cpu)
10735 {
10736 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10737 	int err = 0;
10738 
10739 	mutex_lock(&swhash->hlist_mutex);
10740 	if (!swevent_hlist_deref(swhash) &&
10741 	    cpumask_test_cpu(cpu, perf_online_mask)) {
10742 		struct swevent_hlist *hlist;
10743 
10744 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
10745 		if (!hlist) {
10746 			err = -ENOMEM;
10747 			goto exit;
10748 		}
10749 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10750 	}
10751 	swhash->hlist_refcount++;
10752 exit:
10753 	mutex_unlock(&swhash->hlist_mutex);
10754 
10755 	return err;
10756 }
10757 
swevent_hlist_get(void)10758 static int swevent_hlist_get(void)
10759 {
10760 	int err, cpu, failed_cpu;
10761 
10762 	mutex_lock(&pmus_lock);
10763 	for_each_possible_cpu(cpu) {
10764 		err = swevent_hlist_get_cpu(cpu);
10765 		if (err) {
10766 			failed_cpu = cpu;
10767 			goto fail;
10768 		}
10769 	}
10770 	mutex_unlock(&pmus_lock);
10771 	return 0;
10772 fail:
10773 	for_each_possible_cpu(cpu) {
10774 		if (cpu == failed_cpu)
10775 			break;
10776 		swevent_hlist_put_cpu(cpu);
10777 	}
10778 	mutex_unlock(&pmus_lock);
10779 	return err;
10780 }
10781 
10782 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10783 
sw_perf_event_destroy(struct perf_event * event)10784 static void sw_perf_event_destroy(struct perf_event *event)
10785 {
10786 	u64 event_id = event->attr.config;
10787 
10788 	WARN_ON(event->parent);
10789 
10790 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
10791 	swevent_hlist_put();
10792 }
10793 
10794 static struct pmu perf_cpu_clock; /* fwd declaration */
10795 static struct pmu perf_task_clock;
10796 
perf_swevent_init(struct perf_event * event)10797 static int perf_swevent_init(struct perf_event *event)
10798 {
10799 	u64 event_id = event->attr.config;
10800 
10801 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10802 		return -ENOENT;
10803 
10804 	/*
10805 	 * no branch sampling for software events
10806 	 */
10807 	if (has_branch_stack(event))
10808 		return -EOPNOTSUPP;
10809 
10810 	switch (event_id) {
10811 	case PERF_COUNT_SW_CPU_CLOCK:
10812 		event->attr.type = perf_cpu_clock.type;
10813 		return -ENOENT;
10814 	case PERF_COUNT_SW_TASK_CLOCK:
10815 		event->attr.type = perf_task_clock.type;
10816 		return -ENOENT;
10817 
10818 	default:
10819 		break;
10820 	}
10821 
10822 	if (event_id >= PERF_COUNT_SW_MAX)
10823 		return -ENOENT;
10824 
10825 	if (!event->parent) {
10826 		int err;
10827 
10828 		err = swevent_hlist_get();
10829 		if (err)
10830 			return err;
10831 
10832 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
10833 		event->destroy = sw_perf_event_destroy;
10834 	}
10835 
10836 	return 0;
10837 }
10838 
10839 static struct pmu perf_swevent = {
10840 	.task_ctx_nr	= perf_sw_context,
10841 
10842 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10843 
10844 	.event_init	= perf_swevent_init,
10845 	.add		= perf_swevent_add,
10846 	.del		= perf_swevent_del,
10847 	.start		= perf_swevent_start,
10848 	.stop		= perf_swevent_stop,
10849 	.read		= perf_swevent_read,
10850 };
10851 
10852 #ifdef CONFIG_EVENT_TRACING
10853 
tp_perf_event_destroy(struct perf_event * event)10854 static void tp_perf_event_destroy(struct perf_event *event)
10855 {
10856 	perf_trace_destroy(event);
10857 }
10858 
perf_tp_event_init(struct perf_event * event)10859 static int perf_tp_event_init(struct perf_event *event)
10860 {
10861 	int err;
10862 
10863 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
10864 		return -ENOENT;
10865 
10866 	/*
10867 	 * no branch sampling for tracepoint events
10868 	 */
10869 	if (has_branch_stack(event))
10870 		return -EOPNOTSUPP;
10871 
10872 	err = perf_trace_init(event);
10873 	if (err)
10874 		return err;
10875 
10876 	event->destroy = tp_perf_event_destroy;
10877 
10878 	return 0;
10879 }
10880 
10881 static struct pmu perf_tracepoint = {
10882 	.task_ctx_nr	= perf_sw_context,
10883 
10884 	.event_init	= perf_tp_event_init,
10885 	.add		= perf_trace_add,
10886 	.del		= perf_trace_del,
10887 	.start		= perf_swevent_start,
10888 	.stop		= perf_swevent_stop,
10889 	.read		= perf_swevent_read,
10890 };
10891 
perf_tp_filter_match(struct perf_event * event,struct perf_raw_record * raw)10892 static int perf_tp_filter_match(struct perf_event *event,
10893 				struct perf_raw_record *raw)
10894 {
10895 	void *record = raw->frag.data;
10896 
10897 	/* only top level events have filters set */
10898 	if (event->parent)
10899 		event = event->parent;
10900 
10901 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
10902 		return 1;
10903 	return 0;
10904 }
10905 
perf_tp_event_match(struct perf_event * event,struct perf_raw_record * raw,struct pt_regs * regs)10906 static int perf_tp_event_match(struct perf_event *event,
10907 				struct perf_raw_record *raw,
10908 				struct pt_regs *regs)
10909 {
10910 	if (event->hw.state & PERF_HES_STOPPED)
10911 		return 0;
10912 	/*
10913 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10914 	 */
10915 	if (event->attr.exclude_kernel && !user_mode(regs))
10916 		return 0;
10917 
10918 	if (!perf_tp_filter_match(event, raw))
10919 		return 0;
10920 
10921 	return 1;
10922 }
10923 
perf_trace_run_bpf_submit(void * raw_data,int size,int rctx,struct trace_event_call * call,u64 count,struct pt_regs * regs,struct hlist_head * head,struct task_struct * task)10924 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10925 			       struct trace_event_call *call, u64 count,
10926 			       struct pt_regs *regs, struct hlist_head *head,
10927 			       struct task_struct *task)
10928 {
10929 	if (bpf_prog_array_valid(call)) {
10930 		*(struct pt_regs **)raw_data = regs;
10931 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10932 			perf_swevent_put_recursion_context(rctx);
10933 			return;
10934 		}
10935 	}
10936 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10937 		      rctx, task);
10938 }
10939 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10940 
__perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_raw_record * raw,struct perf_event * event)10941 static void __perf_tp_event_target_task(u64 count, void *record,
10942 					struct pt_regs *regs,
10943 					struct perf_sample_data *data,
10944 					struct perf_raw_record *raw,
10945 					struct perf_event *event)
10946 {
10947 	struct trace_entry *entry = record;
10948 
10949 	if (event->attr.config != entry->type)
10950 		return;
10951 	/* Cannot deliver synchronous signal to other task. */
10952 	if (event->attr.sigtrap)
10953 		return;
10954 	if (perf_tp_event_match(event, raw, regs)) {
10955 		perf_sample_data_init(data, 0, 0);
10956 		perf_sample_save_raw_data(data, event, raw);
10957 		perf_swevent_event(event, count, data, regs);
10958 	}
10959 }
10960 
perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_raw_record * raw,struct perf_event_context * ctx)10961 static void perf_tp_event_target_task(u64 count, void *record,
10962 				      struct pt_regs *regs,
10963 				      struct perf_sample_data *data,
10964 				      struct perf_raw_record *raw,
10965 				      struct perf_event_context *ctx)
10966 {
10967 	unsigned int cpu = smp_processor_id();
10968 	struct pmu *pmu = &perf_tracepoint;
10969 	struct perf_event *event, *sibling;
10970 
10971 	perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10972 		__perf_tp_event_target_task(count, record, regs, data, raw, event);
10973 		for_each_sibling_event(sibling, event)
10974 			__perf_tp_event_target_task(count, record, regs, data, raw, sibling);
10975 	}
10976 
10977 	perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10978 		__perf_tp_event_target_task(count, record, regs, data, raw, event);
10979 		for_each_sibling_event(sibling, event)
10980 			__perf_tp_event_target_task(count, record, regs, data, raw, sibling);
10981 	}
10982 }
10983 
perf_tp_event(u16 event_type,u64 count,void * record,int entry_size,struct pt_regs * regs,struct hlist_head * head,int rctx,struct task_struct * task)10984 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10985 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
10986 		   struct task_struct *task)
10987 {
10988 	struct perf_sample_data data;
10989 	struct perf_event *event;
10990 
10991 	struct perf_raw_record raw = {
10992 		.frag = {
10993 			.size = entry_size,
10994 			.data = record,
10995 		},
10996 	};
10997 
10998 	perf_trace_buf_update(record, event_type);
10999 
11000 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
11001 		if (perf_tp_event_match(event, &raw, regs)) {
11002 			/*
11003 			 * Here use the same on-stack perf_sample_data,
11004 			 * some members in data are event-specific and
11005 			 * need to be re-computed for different sweveents.
11006 			 * Re-initialize data->sample_flags safely to avoid
11007 			 * the problem that next event skips preparing data
11008 			 * because data->sample_flags is set.
11009 			 */
11010 			perf_sample_data_init(&data, 0, 0);
11011 			perf_sample_save_raw_data(&data, event, &raw);
11012 			perf_swevent_event(event, count, &data, regs);
11013 		}
11014 	}
11015 
11016 	/*
11017 	 * If we got specified a target task, also iterate its context and
11018 	 * deliver this event there too.
11019 	 */
11020 	if (task && task != current) {
11021 		struct perf_event_context *ctx;
11022 
11023 		rcu_read_lock();
11024 		ctx = rcu_dereference(task->perf_event_ctxp);
11025 		if (!ctx)
11026 			goto unlock;
11027 
11028 		raw_spin_lock(&ctx->lock);
11029 		perf_tp_event_target_task(count, record, regs, &data, &raw, ctx);
11030 		raw_spin_unlock(&ctx->lock);
11031 unlock:
11032 		rcu_read_unlock();
11033 	}
11034 
11035 	perf_swevent_put_recursion_context(rctx);
11036 }
11037 EXPORT_SYMBOL_GPL(perf_tp_event);
11038 
11039 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
11040 /*
11041  * Flags in config, used by dynamic PMU kprobe and uprobe
11042  * The flags should match following PMU_FORMAT_ATTR().
11043  *
11044  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
11045  *                               if not set, create kprobe/uprobe
11046  *
11047  * The following values specify a reference counter (or semaphore in the
11048  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
11049  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
11050  *
11051  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
11052  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
11053  */
11054 enum perf_probe_config {
11055 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
11056 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
11057 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
11058 };
11059 
11060 PMU_FORMAT_ATTR(retprobe, "config:0");
11061 #endif
11062 
11063 #ifdef CONFIG_KPROBE_EVENTS
11064 static struct attribute *kprobe_attrs[] = {
11065 	&format_attr_retprobe.attr,
11066 	NULL,
11067 };
11068 
11069 static struct attribute_group kprobe_format_group = {
11070 	.name = "format",
11071 	.attrs = kprobe_attrs,
11072 };
11073 
11074 static const struct attribute_group *kprobe_attr_groups[] = {
11075 	&kprobe_format_group,
11076 	NULL,
11077 };
11078 
11079 static int perf_kprobe_event_init(struct perf_event *event);
11080 static struct pmu perf_kprobe = {
11081 	.task_ctx_nr	= perf_sw_context,
11082 	.event_init	= perf_kprobe_event_init,
11083 	.add		= perf_trace_add,
11084 	.del		= perf_trace_del,
11085 	.start		= perf_swevent_start,
11086 	.stop		= perf_swevent_stop,
11087 	.read		= perf_swevent_read,
11088 	.attr_groups	= kprobe_attr_groups,
11089 };
11090 
perf_kprobe_event_init(struct perf_event * event)11091 static int perf_kprobe_event_init(struct perf_event *event)
11092 {
11093 	int err;
11094 	bool is_retprobe;
11095 
11096 	if (event->attr.type != perf_kprobe.type)
11097 		return -ENOENT;
11098 
11099 	if (!perfmon_capable())
11100 		return -EACCES;
11101 
11102 	/*
11103 	 * no branch sampling for probe events
11104 	 */
11105 	if (has_branch_stack(event))
11106 		return -EOPNOTSUPP;
11107 
11108 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
11109 	err = perf_kprobe_init(event, is_retprobe);
11110 	if (err)
11111 		return err;
11112 
11113 	event->destroy = perf_kprobe_destroy;
11114 
11115 	return 0;
11116 }
11117 #endif /* CONFIG_KPROBE_EVENTS */
11118 
11119 #ifdef CONFIG_UPROBE_EVENTS
11120 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
11121 
11122 static struct attribute *uprobe_attrs[] = {
11123 	&format_attr_retprobe.attr,
11124 	&format_attr_ref_ctr_offset.attr,
11125 	NULL,
11126 };
11127 
11128 static struct attribute_group uprobe_format_group = {
11129 	.name = "format",
11130 	.attrs = uprobe_attrs,
11131 };
11132 
11133 static const struct attribute_group *uprobe_attr_groups[] = {
11134 	&uprobe_format_group,
11135 	NULL,
11136 };
11137 
11138 static int perf_uprobe_event_init(struct perf_event *event);
11139 static struct pmu perf_uprobe = {
11140 	.task_ctx_nr	= perf_sw_context,
11141 	.event_init	= perf_uprobe_event_init,
11142 	.add		= perf_trace_add,
11143 	.del		= perf_trace_del,
11144 	.start		= perf_swevent_start,
11145 	.stop		= perf_swevent_stop,
11146 	.read		= perf_swevent_read,
11147 	.attr_groups	= uprobe_attr_groups,
11148 };
11149 
perf_uprobe_event_init(struct perf_event * event)11150 static int perf_uprobe_event_init(struct perf_event *event)
11151 {
11152 	int err;
11153 	unsigned long ref_ctr_offset;
11154 	bool is_retprobe;
11155 
11156 	if (event->attr.type != perf_uprobe.type)
11157 		return -ENOENT;
11158 
11159 	if (!capable(CAP_SYS_ADMIN))
11160 		return -EACCES;
11161 
11162 	/*
11163 	 * no branch sampling for probe events
11164 	 */
11165 	if (has_branch_stack(event))
11166 		return -EOPNOTSUPP;
11167 
11168 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
11169 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
11170 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
11171 	if (err)
11172 		return err;
11173 
11174 	event->destroy = perf_uprobe_destroy;
11175 
11176 	return 0;
11177 }
11178 #endif /* CONFIG_UPROBE_EVENTS */
11179 
perf_tp_register(void)11180 static inline void perf_tp_register(void)
11181 {
11182 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
11183 #ifdef CONFIG_KPROBE_EVENTS
11184 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
11185 #endif
11186 #ifdef CONFIG_UPROBE_EVENTS
11187 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
11188 #endif
11189 }
11190 
perf_event_free_filter(struct perf_event * event)11191 static void perf_event_free_filter(struct perf_event *event)
11192 {
11193 	ftrace_profile_free_filter(event);
11194 }
11195 
11196 /*
11197  * returns true if the event is a tracepoint, or a kprobe/upprobe created
11198  * with perf_event_open()
11199  */
perf_event_is_tracing(struct perf_event * event)11200 static inline bool perf_event_is_tracing(struct perf_event *event)
11201 {
11202 	if (event->pmu == &perf_tracepoint)
11203 		return true;
11204 #ifdef CONFIG_KPROBE_EVENTS
11205 	if (event->pmu == &perf_kprobe)
11206 		return true;
11207 #endif
11208 #ifdef CONFIG_UPROBE_EVENTS
11209 	if (event->pmu == &perf_uprobe)
11210 		return true;
11211 #endif
11212 	return false;
11213 }
11214 
__perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)11215 static int __perf_event_set_bpf_prog(struct perf_event *event,
11216 				     struct bpf_prog *prog,
11217 				     u64 bpf_cookie)
11218 {
11219 	bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
11220 
11221 	if (event->state <= PERF_EVENT_STATE_REVOKED)
11222 		return -ENODEV;
11223 
11224 	if (!perf_event_is_tracing(event))
11225 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
11226 
11227 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
11228 	is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
11229 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
11230 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
11231 	if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
11232 		/* bpf programs can only be attached to u/kprobe or tracepoint */
11233 		return -EINVAL;
11234 
11235 	if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
11236 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
11237 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
11238 		return -EINVAL;
11239 
11240 	if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe)
11241 		/* only uprobe programs are allowed to be sleepable */
11242 		return -EINVAL;
11243 
11244 	/* Kprobe override only works for kprobes, not uprobes. */
11245 	if (prog->kprobe_override && !is_kprobe)
11246 		return -EINVAL;
11247 
11248 	/* Writing to context allowed only for uprobes. */
11249 	if (prog->aux->kprobe_write_ctx && !is_uprobe)
11250 		return -EINVAL;
11251 
11252 	if (is_tracepoint || is_syscall_tp) {
11253 		int off = trace_event_get_offsets(event->tp_event);
11254 
11255 		if (prog->aux->max_ctx_offset > off)
11256 			return -EACCES;
11257 	}
11258 
11259 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
11260 }
11261 
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)11262 int perf_event_set_bpf_prog(struct perf_event *event,
11263 			    struct bpf_prog *prog,
11264 			    u64 bpf_cookie)
11265 {
11266 	struct perf_event_context *ctx;
11267 	int ret;
11268 
11269 	ctx = perf_event_ctx_lock(event);
11270 	ret = __perf_event_set_bpf_prog(event, prog, bpf_cookie);
11271 	perf_event_ctx_unlock(event, ctx);
11272 
11273 	return ret;
11274 }
11275 
perf_event_free_bpf_prog(struct perf_event * event)11276 void perf_event_free_bpf_prog(struct perf_event *event)
11277 {
11278 	if (!event->prog)
11279 		return;
11280 
11281 	if (!perf_event_is_tracing(event)) {
11282 		perf_event_free_bpf_handler(event);
11283 		return;
11284 	}
11285 	perf_event_detach_bpf_prog(event);
11286 }
11287 
11288 #else
11289 
perf_tp_register(void)11290 static inline void perf_tp_register(void)
11291 {
11292 }
11293 
perf_event_free_filter(struct perf_event * event)11294 static void perf_event_free_filter(struct perf_event *event)
11295 {
11296 }
11297 
__perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)11298 static int __perf_event_set_bpf_prog(struct perf_event *event,
11299 				     struct bpf_prog *prog,
11300 				     u64 bpf_cookie)
11301 {
11302 	return -ENOENT;
11303 }
11304 
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)11305 int perf_event_set_bpf_prog(struct perf_event *event,
11306 			    struct bpf_prog *prog,
11307 			    u64 bpf_cookie)
11308 {
11309 	return -ENOENT;
11310 }
11311 
perf_event_free_bpf_prog(struct perf_event * event)11312 void perf_event_free_bpf_prog(struct perf_event *event)
11313 {
11314 }
11315 #endif /* CONFIG_EVENT_TRACING */
11316 
11317 #ifdef CONFIG_HAVE_HW_BREAKPOINT
perf_bp_event(struct perf_event * bp,void * data)11318 void perf_bp_event(struct perf_event *bp, void *data)
11319 {
11320 	struct perf_sample_data sample;
11321 	struct pt_regs *regs = data;
11322 
11323 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
11324 
11325 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
11326 		perf_swevent_event(bp, 1, &sample, regs);
11327 }
11328 #endif
11329 
11330 /*
11331  * Allocate a new address filter
11332  */
11333 static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event * event,struct list_head * filters)11334 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
11335 {
11336 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
11337 	struct perf_addr_filter *filter;
11338 
11339 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
11340 	if (!filter)
11341 		return NULL;
11342 
11343 	INIT_LIST_HEAD(&filter->entry);
11344 	list_add_tail(&filter->entry, filters);
11345 
11346 	return filter;
11347 }
11348 
free_filters_list(struct list_head * filters)11349 static void free_filters_list(struct list_head *filters)
11350 {
11351 	struct perf_addr_filter *filter, *iter;
11352 
11353 	list_for_each_entry_safe(filter, iter, filters, entry) {
11354 		path_put(&filter->path);
11355 		list_del(&filter->entry);
11356 		kfree(filter);
11357 	}
11358 }
11359 
11360 /*
11361  * Free existing address filters and optionally install new ones
11362  */
perf_addr_filters_splice(struct perf_event * event,struct list_head * head)11363 static void perf_addr_filters_splice(struct perf_event *event,
11364 				     struct list_head *head)
11365 {
11366 	unsigned long flags;
11367 	LIST_HEAD(list);
11368 
11369 	if (!has_addr_filter(event))
11370 		return;
11371 
11372 	/* don't bother with children, they don't have their own filters */
11373 	if (event->parent)
11374 		return;
11375 
11376 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
11377 
11378 	list_splice_init(&event->addr_filters.list, &list);
11379 	if (head)
11380 		list_splice(head, &event->addr_filters.list);
11381 
11382 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
11383 
11384 	free_filters_list(&list);
11385 }
11386 
perf_free_addr_filters(struct perf_event * event)11387 static void perf_free_addr_filters(struct perf_event *event)
11388 {
11389 	/*
11390 	 * Used during free paths, there is no concurrency.
11391 	 */
11392 	if (list_empty(&event->addr_filters.list))
11393 		return;
11394 
11395 	perf_addr_filters_splice(event, NULL);
11396 }
11397 
11398 /*
11399  * Scan through mm's vmas and see if one of them matches the
11400  * @filter; if so, adjust filter's address range.
11401  * Called with mm::mmap_lock down for reading.
11402  */
perf_addr_filter_apply(struct perf_addr_filter * filter,struct mm_struct * mm,struct perf_addr_filter_range * fr)11403 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
11404 				   struct mm_struct *mm,
11405 				   struct perf_addr_filter_range *fr)
11406 {
11407 	struct vm_area_struct *vma;
11408 	VMA_ITERATOR(vmi, mm, 0);
11409 
11410 	for_each_vma(vmi, vma) {
11411 		if (!vma->vm_file)
11412 			continue;
11413 
11414 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
11415 			return;
11416 	}
11417 }
11418 
11419 /*
11420  * Update event's address range filters based on the
11421  * task's existing mappings, if any.
11422  */
perf_event_addr_filters_apply(struct perf_event * event)11423 static void perf_event_addr_filters_apply(struct perf_event *event)
11424 {
11425 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11426 	struct task_struct *task = READ_ONCE(event->ctx->task);
11427 	struct perf_addr_filter *filter;
11428 	struct mm_struct *mm = NULL;
11429 	unsigned int count = 0;
11430 	unsigned long flags;
11431 
11432 	/*
11433 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
11434 	 * will stop on the parent's child_mutex that our caller is also holding
11435 	 */
11436 	if (task == TASK_TOMBSTONE)
11437 		return;
11438 
11439 	if (ifh->nr_file_filters) {
11440 		mm = get_task_mm(task);
11441 		if (!mm)
11442 			goto restart;
11443 
11444 		mmap_read_lock(mm);
11445 	}
11446 
11447 	raw_spin_lock_irqsave(&ifh->lock, flags);
11448 	list_for_each_entry(filter, &ifh->list, entry) {
11449 		if (filter->path.dentry) {
11450 			/*
11451 			 * Adjust base offset if the filter is associated to a
11452 			 * binary that needs to be mapped:
11453 			 */
11454 			event->addr_filter_ranges[count].start = 0;
11455 			event->addr_filter_ranges[count].size = 0;
11456 
11457 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
11458 		} else {
11459 			event->addr_filter_ranges[count].start = filter->offset;
11460 			event->addr_filter_ranges[count].size  = filter->size;
11461 		}
11462 
11463 		count++;
11464 	}
11465 
11466 	event->addr_filters_gen++;
11467 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
11468 
11469 	if (ifh->nr_file_filters) {
11470 		mmap_read_unlock(mm);
11471 
11472 		mmput(mm);
11473 	}
11474 
11475 restart:
11476 	perf_event_stop(event, 1);
11477 }
11478 
11479 /*
11480  * Address range filtering: limiting the data to certain
11481  * instruction address ranges. Filters are ioctl()ed to us from
11482  * userspace as ascii strings.
11483  *
11484  * Filter string format:
11485  *
11486  * ACTION RANGE_SPEC
11487  * where ACTION is one of the
11488  *  * "filter": limit the trace to this region
11489  *  * "start": start tracing from this address
11490  *  * "stop": stop tracing at this address/region;
11491  * RANGE_SPEC is
11492  *  * for kernel addresses: <start address>[/<size>]
11493  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
11494  *
11495  * if <size> is not specified or is zero, the range is treated as a single
11496  * address; not valid for ACTION=="filter".
11497  */
11498 enum {
11499 	IF_ACT_NONE = -1,
11500 	IF_ACT_FILTER,
11501 	IF_ACT_START,
11502 	IF_ACT_STOP,
11503 	IF_SRC_FILE,
11504 	IF_SRC_KERNEL,
11505 	IF_SRC_FILEADDR,
11506 	IF_SRC_KERNELADDR,
11507 };
11508 
11509 enum {
11510 	IF_STATE_ACTION = 0,
11511 	IF_STATE_SOURCE,
11512 	IF_STATE_END,
11513 };
11514 
11515 static const match_table_t if_tokens = {
11516 	{ IF_ACT_FILTER,	"filter" },
11517 	{ IF_ACT_START,		"start" },
11518 	{ IF_ACT_STOP,		"stop" },
11519 	{ IF_SRC_FILE,		"%u/%u@%s" },
11520 	{ IF_SRC_KERNEL,	"%u/%u" },
11521 	{ IF_SRC_FILEADDR,	"%u@%s" },
11522 	{ IF_SRC_KERNELADDR,	"%u" },
11523 	{ IF_ACT_NONE,		NULL },
11524 };
11525 
11526 /*
11527  * Address filter string parser
11528  */
11529 static int
perf_event_parse_addr_filter(struct perf_event * event,char * fstr,struct list_head * filters)11530 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
11531 			     struct list_head *filters)
11532 {
11533 	struct perf_addr_filter *filter = NULL;
11534 	char *start, *orig, *filename = NULL;
11535 	substring_t args[MAX_OPT_ARGS];
11536 	int state = IF_STATE_ACTION, token;
11537 	unsigned int kernel = 0;
11538 	int ret = -EINVAL;
11539 
11540 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
11541 	if (!fstr)
11542 		return -ENOMEM;
11543 
11544 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
11545 		static const enum perf_addr_filter_action_t actions[] = {
11546 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
11547 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
11548 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
11549 		};
11550 		ret = -EINVAL;
11551 
11552 		if (!*start)
11553 			continue;
11554 
11555 		/* filter definition begins */
11556 		if (state == IF_STATE_ACTION) {
11557 			filter = perf_addr_filter_new(event, filters);
11558 			if (!filter)
11559 				goto fail;
11560 		}
11561 
11562 		token = match_token(start, if_tokens, args);
11563 		switch (token) {
11564 		case IF_ACT_FILTER:
11565 		case IF_ACT_START:
11566 		case IF_ACT_STOP:
11567 			if (state != IF_STATE_ACTION)
11568 				goto fail;
11569 
11570 			filter->action = actions[token];
11571 			state = IF_STATE_SOURCE;
11572 			break;
11573 
11574 		case IF_SRC_KERNELADDR:
11575 		case IF_SRC_KERNEL:
11576 			kernel = 1;
11577 			fallthrough;
11578 
11579 		case IF_SRC_FILEADDR:
11580 		case IF_SRC_FILE:
11581 			if (state != IF_STATE_SOURCE)
11582 				goto fail;
11583 
11584 			*args[0].to = 0;
11585 			ret = kstrtoul(args[0].from, 0, &filter->offset);
11586 			if (ret)
11587 				goto fail;
11588 
11589 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
11590 				*args[1].to = 0;
11591 				ret = kstrtoul(args[1].from, 0, &filter->size);
11592 				if (ret)
11593 					goto fail;
11594 			}
11595 
11596 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
11597 				int fpos = token == IF_SRC_FILE ? 2 : 1;
11598 
11599 				kfree(filename);
11600 				filename = match_strdup(&args[fpos]);
11601 				if (!filename) {
11602 					ret = -ENOMEM;
11603 					goto fail;
11604 				}
11605 			}
11606 
11607 			state = IF_STATE_END;
11608 			break;
11609 
11610 		default:
11611 			goto fail;
11612 		}
11613 
11614 		/*
11615 		 * Filter definition is fully parsed, validate and install it.
11616 		 * Make sure that it doesn't contradict itself or the event's
11617 		 * attribute.
11618 		 */
11619 		if (state == IF_STATE_END) {
11620 			ret = -EINVAL;
11621 
11622 			/*
11623 			 * ACTION "filter" must have a non-zero length region
11624 			 * specified.
11625 			 */
11626 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
11627 			    !filter->size)
11628 				goto fail;
11629 
11630 			if (!kernel) {
11631 				if (!filename)
11632 					goto fail;
11633 
11634 				/*
11635 				 * For now, we only support file-based filters
11636 				 * in per-task events; doing so for CPU-wide
11637 				 * events requires additional context switching
11638 				 * trickery, since same object code will be
11639 				 * mapped at different virtual addresses in
11640 				 * different processes.
11641 				 */
11642 				ret = -EOPNOTSUPP;
11643 				if (!event->ctx->task)
11644 					goto fail;
11645 
11646 				/* look up the path and grab its inode */
11647 				ret = kern_path(filename, LOOKUP_FOLLOW,
11648 						&filter->path);
11649 				if (ret)
11650 					goto fail;
11651 
11652 				ret = -EINVAL;
11653 				if (!filter->path.dentry ||
11654 				    !S_ISREG(d_inode(filter->path.dentry)
11655 					     ->i_mode))
11656 					goto fail;
11657 
11658 				event->addr_filters.nr_file_filters++;
11659 			}
11660 
11661 			/* ready to consume more filters */
11662 			kfree(filename);
11663 			filename = NULL;
11664 			state = IF_STATE_ACTION;
11665 			filter = NULL;
11666 			kernel = 0;
11667 		}
11668 	}
11669 
11670 	if (state != IF_STATE_ACTION)
11671 		goto fail;
11672 
11673 	kfree(filename);
11674 	kfree(orig);
11675 
11676 	return 0;
11677 
11678 fail:
11679 	kfree(filename);
11680 	free_filters_list(filters);
11681 	kfree(orig);
11682 
11683 	return ret;
11684 }
11685 
11686 static int
perf_event_set_addr_filter(struct perf_event * event,char * filter_str)11687 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
11688 {
11689 	LIST_HEAD(filters);
11690 	int ret;
11691 
11692 	/*
11693 	 * Since this is called in perf_ioctl() path, we're already holding
11694 	 * ctx::mutex.
11695 	 */
11696 	lockdep_assert_held(&event->ctx->mutex);
11697 
11698 	if (WARN_ON_ONCE(event->parent))
11699 		return -EINVAL;
11700 
11701 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
11702 	if (ret)
11703 		goto fail_clear_files;
11704 
11705 	ret = event->pmu->addr_filters_validate(&filters);
11706 	if (ret)
11707 		goto fail_free_filters;
11708 
11709 	/* remove existing filters, if any */
11710 	perf_addr_filters_splice(event, &filters);
11711 
11712 	/* install new filters */
11713 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
11714 
11715 	return ret;
11716 
11717 fail_free_filters:
11718 	free_filters_list(&filters);
11719 
11720 fail_clear_files:
11721 	event->addr_filters.nr_file_filters = 0;
11722 
11723 	return ret;
11724 }
11725 
perf_event_set_filter(struct perf_event * event,void __user * arg)11726 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11727 {
11728 	int ret = -EINVAL;
11729 	char *filter_str;
11730 
11731 	filter_str = strndup_user(arg, PAGE_SIZE);
11732 	if (IS_ERR(filter_str))
11733 		return PTR_ERR(filter_str);
11734 
11735 #ifdef CONFIG_EVENT_TRACING
11736 	if (perf_event_is_tracing(event)) {
11737 		struct perf_event_context *ctx = event->ctx;
11738 
11739 		/*
11740 		 * Beware, here be dragons!!
11741 		 *
11742 		 * the tracepoint muck will deadlock against ctx->mutex, but
11743 		 * the tracepoint stuff does not actually need it. So
11744 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11745 		 * already have a reference on ctx.
11746 		 *
11747 		 * This can result in event getting moved to a different ctx,
11748 		 * but that does not affect the tracepoint state.
11749 		 */
11750 		mutex_unlock(&ctx->mutex);
11751 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11752 		mutex_lock(&ctx->mutex);
11753 	} else
11754 #endif
11755 	if (has_addr_filter(event))
11756 		ret = perf_event_set_addr_filter(event, filter_str);
11757 
11758 	kfree(filter_str);
11759 	return ret;
11760 }
11761 
11762 /*
11763  * hrtimer based swevent callback
11764  */
11765 
perf_swevent_hrtimer(struct hrtimer * hrtimer)11766 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11767 {
11768 	enum hrtimer_restart ret = HRTIMER_RESTART;
11769 	struct perf_sample_data data;
11770 	struct pt_regs *regs;
11771 	struct perf_event *event;
11772 	u64 period;
11773 
11774 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11775 
11776 	if (event->state != PERF_EVENT_STATE_ACTIVE)
11777 		return HRTIMER_NORESTART;
11778 
11779 	event->pmu->read(event);
11780 
11781 	perf_sample_data_init(&data, 0, event->hw.last_period);
11782 	regs = get_irq_regs();
11783 
11784 	if (regs && !perf_exclude_event(event, regs)) {
11785 		if (!(event->attr.exclude_idle && is_idle_task(current)))
11786 			if (__perf_event_overflow(event, 1, &data, regs))
11787 				ret = HRTIMER_NORESTART;
11788 	}
11789 
11790 	period = max_t(u64, 10000, event->hw.sample_period);
11791 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11792 
11793 	return ret;
11794 }
11795 
perf_swevent_start_hrtimer(struct perf_event * event)11796 static void perf_swevent_start_hrtimer(struct perf_event *event)
11797 {
11798 	struct hw_perf_event *hwc = &event->hw;
11799 	s64 period;
11800 
11801 	if (!is_sampling_event(event))
11802 		return;
11803 
11804 	period = local64_read(&hwc->period_left);
11805 	if (period) {
11806 		if (period < 0)
11807 			period = 10000;
11808 
11809 		local64_set(&hwc->period_left, 0);
11810 	} else {
11811 		period = max_t(u64, 10000, hwc->sample_period);
11812 	}
11813 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11814 		      HRTIMER_MODE_REL_PINNED_HARD);
11815 }
11816 
perf_swevent_cancel_hrtimer(struct perf_event * event)11817 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11818 {
11819 	struct hw_perf_event *hwc = &event->hw;
11820 
11821 	/*
11822 	 * The throttle can be triggered in the hrtimer handler.
11823 	 * The HRTIMER_NORESTART should be used to stop the timer,
11824 	 * rather than hrtimer_cancel(). See perf_swevent_hrtimer()
11825 	 */
11826 	if (is_sampling_event(event) && (hwc->interrupts != MAX_INTERRUPTS)) {
11827 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11828 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
11829 
11830 		hrtimer_cancel(&hwc->hrtimer);
11831 	}
11832 }
11833 
perf_swevent_init_hrtimer(struct perf_event * event)11834 static void perf_swevent_init_hrtimer(struct perf_event *event)
11835 {
11836 	struct hw_perf_event *hwc = &event->hw;
11837 
11838 	if (!is_sampling_event(event))
11839 		return;
11840 
11841 	hrtimer_setup(&hwc->hrtimer, perf_swevent_hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11842 
11843 	/*
11844 	 * Since hrtimers have a fixed rate, we can do a static freq->period
11845 	 * mapping and avoid the whole period adjust feedback stuff.
11846 	 */
11847 	if (event->attr.freq) {
11848 		long freq = event->attr.sample_freq;
11849 
11850 		event->attr.sample_period = NSEC_PER_SEC / freq;
11851 		hwc->sample_period = event->attr.sample_period;
11852 		local64_set(&hwc->period_left, hwc->sample_period);
11853 		hwc->last_period = hwc->sample_period;
11854 		event->attr.freq = 0;
11855 	}
11856 }
11857 
11858 /*
11859  * Software event: cpu wall time clock
11860  */
11861 
cpu_clock_event_update(struct perf_event * event)11862 static void cpu_clock_event_update(struct perf_event *event)
11863 {
11864 	s64 prev;
11865 	u64 now;
11866 
11867 	now = local_clock();
11868 	prev = local64_xchg(&event->hw.prev_count, now);
11869 	local64_add(now - prev, &event->count);
11870 }
11871 
cpu_clock_event_start(struct perf_event * event,int flags)11872 static void cpu_clock_event_start(struct perf_event *event, int flags)
11873 {
11874 	local64_set(&event->hw.prev_count, local_clock());
11875 	perf_swevent_start_hrtimer(event);
11876 }
11877 
cpu_clock_event_stop(struct perf_event * event,int flags)11878 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11879 {
11880 	perf_swevent_cancel_hrtimer(event);
11881 	if (flags & PERF_EF_UPDATE)
11882 		cpu_clock_event_update(event);
11883 }
11884 
cpu_clock_event_add(struct perf_event * event,int flags)11885 static int cpu_clock_event_add(struct perf_event *event, int flags)
11886 {
11887 	if (flags & PERF_EF_START)
11888 		cpu_clock_event_start(event, flags);
11889 	perf_event_update_userpage(event);
11890 
11891 	return 0;
11892 }
11893 
cpu_clock_event_del(struct perf_event * event,int flags)11894 static void cpu_clock_event_del(struct perf_event *event, int flags)
11895 {
11896 	cpu_clock_event_stop(event, flags);
11897 }
11898 
cpu_clock_event_read(struct perf_event * event)11899 static void cpu_clock_event_read(struct perf_event *event)
11900 {
11901 	cpu_clock_event_update(event);
11902 }
11903 
cpu_clock_event_init(struct perf_event * event)11904 static int cpu_clock_event_init(struct perf_event *event)
11905 {
11906 	if (event->attr.type != perf_cpu_clock.type)
11907 		return -ENOENT;
11908 
11909 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11910 		return -ENOENT;
11911 
11912 	/*
11913 	 * no branch sampling for software events
11914 	 */
11915 	if (has_branch_stack(event))
11916 		return -EOPNOTSUPP;
11917 
11918 	perf_swevent_init_hrtimer(event);
11919 
11920 	return 0;
11921 }
11922 
11923 static struct pmu perf_cpu_clock = {
11924 	.task_ctx_nr	= perf_sw_context,
11925 
11926 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11927 	.dev		= PMU_NULL_DEV,
11928 
11929 	.event_init	= cpu_clock_event_init,
11930 	.add		= cpu_clock_event_add,
11931 	.del		= cpu_clock_event_del,
11932 	.start		= cpu_clock_event_start,
11933 	.stop		= cpu_clock_event_stop,
11934 	.read		= cpu_clock_event_read,
11935 };
11936 
11937 /*
11938  * Software event: task time clock
11939  */
11940 
task_clock_event_update(struct perf_event * event,u64 now)11941 static void task_clock_event_update(struct perf_event *event, u64 now)
11942 {
11943 	u64 prev;
11944 	s64 delta;
11945 
11946 	prev = local64_xchg(&event->hw.prev_count, now);
11947 	delta = now - prev;
11948 	local64_add(delta, &event->count);
11949 }
11950 
task_clock_event_start(struct perf_event * event,int flags)11951 static void task_clock_event_start(struct perf_event *event, int flags)
11952 {
11953 	local64_set(&event->hw.prev_count, event->ctx->time);
11954 	perf_swevent_start_hrtimer(event);
11955 }
11956 
task_clock_event_stop(struct perf_event * event,int flags)11957 static void task_clock_event_stop(struct perf_event *event, int flags)
11958 {
11959 	perf_swevent_cancel_hrtimer(event);
11960 	if (flags & PERF_EF_UPDATE)
11961 		task_clock_event_update(event, event->ctx->time);
11962 }
11963 
task_clock_event_add(struct perf_event * event,int flags)11964 static int task_clock_event_add(struct perf_event *event, int flags)
11965 {
11966 	if (flags & PERF_EF_START)
11967 		task_clock_event_start(event, flags);
11968 	perf_event_update_userpage(event);
11969 
11970 	return 0;
11971 }
11972 
task_clock_event_del(struct perf_event * event,int flags)11973 static void task_clock_event_del(struct perf_event *event, int flags)
11974 {
11975 	task_clock_event_stop(event, PERF_EF_UPDATE);
11976 }
11977 
task_clock_event_read(struct perf_event * event)11978 static void task_clock_event_read(struct perf_event *event)
11979 {
11980 	u64 now = perf_clock();
11981 	u64 delta = now - event->ctx->timestamp;
11982 	u64 time = event->ctx->time + delta;
11983 
11984 	task_clock_event_update(event, time);
11985 }
11986 
task_clock_event_init(struct perf_event * event)11987 static int task_clock_event_init(struct perf_event *event)
11988 {
11989 	if (event->attr.type != perf_task_clock.type)
11990 		return -ENOENT;
11991 
11992 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11993 		return -ENOENT;
11994 
11995 	/*
11996 	 * no branch sampling for software events
11997 	 */
11998 	if (has_branch_stack(event))
11999 		return -EOPNOTSUPP;
12000 
12001 	perf_swevent_init_hrtimer(event);
12002 
12003 	return 0;
12004 }
12005 
12006 static struct pmu perf_task_clock = {
12007 	.task_ctx_nr	= perf_sw_context,
12008 
12009 	.capabilities	= PERF_PMU_CAP_NO_NMI,
12010 	.dev		= PMU_NULL_DEV,
12011 
12012 	.event_init	= task_clock_event_init,
12013 	.add		= task_clock_event_add,
12014 	.del		= task_clock_event_del,
12015 	.start		= task_clock_event_start,
12016 	.stop		= task_clock_event_stop,
12017 	.read		= task_clock_event_read,
12018 };
12019 
perf_pmu_nop_void(struct pmu * pmu)12020 static void perf_pmu_nop_void(struct pmu *pmu)
12021 {
12022 }
12023 
perf_pmu_nop_txn(struct pmu * pmu,unsigned int flags)12024 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
12025 {
12026 }
12027 
perf_pmu_nop_int(struct pmu * pmu)12028 static int perf_pmu_nop_int(struct pmu *pmu)
12029 {
12030 	return 0;
12031 }
12032 
perf_event_nop_int(struct perf_event * event,u64 value)12033 static int perf_event_nop_int(struct perf_event *event, u64 value)
12034 {
12035 	return 0;
12036 }
12037 
12038 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
12039 
perf_pmu_start_txn(struct pmu * pmu,unsigned int flags)12040 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
12041 {
12042 	__this_cpu_write(nop_txn_flags, flags);
12043 
12044 	if (flags & ~PERF_PMU_TXN_ADD)
12045 		return;
12046 
12047 	perf_pmu_disable(pmu);
12048 }
12049 
perf_pmu_commit_txn(struct pmu * pmu)12050 static int perf_pmu_commit_txn(struct pmu *pmu)
12051 {
12052 	unsigned int flags = __this_cpu_read(nop_txn_flags);
12053 
12054 	__this_cpu_write(nop_txn_flags, 0);
12055 
12056 	if (flags & ~PERF_PMU_TXN_ADD)
12057 		return 0;
12058 
12059 	perf_pmu_enable(pmu);
12060 	return 0;
12061 }
12062 
perf_pmu_cancel_txn(struct pmu * pmu)12063 static void perf_pmu_cancel_txn(struct pmu *pmu)
12064 {
12065 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
12066 
12067 	__this_cpu_write(nop_txn_flags, 0);
12068 
12069 	if (flags & ~PERF_PMU_TXN_ADD)
12070 		return;
12071 
12072 	perf_pmu_enable(pmu);
12073 }
12074 
perf_event_idx_default(struct perf_event * event)12075 static int perf_event_idx_default(struct perf_event *event)
12076 {
12077 	return 0;
12078 }
12079 
12080 /*
12081  * Let userspace know that this PMU supports address range filtering:
12082  */
nr_addr_filters_show(struct device * dev,struct device_attribute * attr,char * page)12083 static ssize_t nr_addr_filters_show(struct device *dev,
12084 				    struct device_attribute *attr,
12085 				    char *page)
12086 {
12087 	struct pmu *pmu = dev_get_drvdata(dev);
12088 
12089 	return sysfs_emit(page, "%d\n", pmu->nr_addr_filters);
12090 }
12091 DEVICE_ATTR_RO(nr_addr_filters);
12092 
12093 static struct idr pmu_idr;
12094 
12095 static ssize_t
type_show(struct device * dev,struct device_attribute * attr,char * page)12096 type_show(struct device *dev, struct device_attribute *attr, char *page)
12097 {
12098 	struct pmu *pmu = dev_get_drvdata(dev);
12099 
12100 	return sysfs_emit(page, "%d\n", pmu->type);
12101 }
12102 static DEVICE_ATTR_RO(type);
12103 
12104 static ssize_t
perf_event_mux_interval_ms_show(struct device * dev,struct device_attribute * attr,char * page)12105 perf_event_mux_interval_ms_show(struct device *dev,
12106 				struct device_attribute *attr,
12107 				char *page)
12108 {
12109 	struct pmu *pmu = dev_get_drvdata(dev);
12110 
12111 	return sysfs_emit(page, "%d\n", pmu->hrtimer_interval_ms);
12112 }
12113 
12114 static DEFINE_MUTEX(mux_interval_mutex);
12115 
12116 static ssize_t
perf_event_mux_interval_ms_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)12117 perf_event_mux_interval_ms_store(struct device *dev,
12118 				 struct device_attribute *attr,
12119 				 const char *buf, size_t count)
12120 {
12121 	struct pmu *pmu = dev_get_drvdata(dev);
12122 	int timer, cpu, ret;
12123 
12124 	ret = kstrtoint(buf, 0, &timer);
12125 	if (ret)
12126 		return ret;
12127 
12128 	if (timer < 1)
12129 		return -EINVAL;
12130 
12131 	/* same value, noting to do */
12132 	if (timer == pmu->hrtimer_interval_ms)
12133 		return count;
12134 
12135 	mutex_lock(&mux_interval_mutex);
12136 	pmu->hrtimer_interval_ms = timer;
12137 
12138 	/* update all cpuctx for this PMU */
12139 	cpus_read_lock();
12140 	for_each_online_cpu(cpu) {
12141 		struct perf_cpu_pmu_context *cpc;
12142 		cpc = *per_cpu_ptr(pmu->cpu_pmu_context, cpu);
12143 		cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
12144 
12145 		cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
12146 	}
12147 	cpus_read_unlock();
12148 	mutex_unlock(&mux_interval_mutex);
12149 
12150 	return count;
12151 }
12152 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
12153 
perf_scope_cpu_topology_cpumask(unsigned int scope,int cpu)12154 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu)
12155 {
12156 	switch (scope) {
12157 	case PERF_PMU_SCOPE_CORE:
12158 		return topology_sibling_cpumask(cpu);
12159 	case PERF_PMU_SCOPE_DIE:
12160 		return topology_die_cpumask(cpu);
12161 	case PERF_PMU_SCOPE_CLUSTER:
12162 		return topology_cluster_cpumask(cpu);
12163 	case PERF_PMU_SCOPE_PKG:
12164 		return topology_core_cpumask(cpu);
12165 	case PERF_PMU_SCOPE_SYS_WIDE:
12166 		return cpu_online_mask;
12167 	}
12168 
12169 	return NULL;
12170 }
12171 
perf_scope_cpumask(unsigned int scope)12172 static inline struct cpumask *perf_scope_cpumask(unsigned int scope)
12173 {
12174 	switch (scope) {
12175 	case PERF_PMU_SCOPE_CORE:
12176 		return perf_online_core_mask;
12177 	case PERF_PMU_SCOPE_DIE:
12178 		return perf_online_die_mask;
12179 	case PERF_PMU_SCOPE_CLUSTER:
12180 		return perf_online_cluster_mask;
12181 	case PERF_PMU_SCOPE_PKG:
12182 		return perf_online_pkg_mask;
12183 	case PERF_PMU_SCOPE_SYS_WIDE:
12184 		return perf_online_sys_mask;
12185 	}
12186 
12187 	return NULL;
12188 }
12189 
cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)12190 static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr,
12191 			    char *buf)
12192 {
12193 	struct pmu *pmu = dev_get_drvdata(dev);
12194 	struct cpumask *mask = perf_scope_cpumask(pmu->scope);
12195 
12196 	if (mask)
12197 		return cpumap_print_to_pagebuf(true, buf, mask);
12198 	return 0;
12199 }
12200 
12201 static DEVICE_ATTR_RO(cpumask);
12202 
12203 static struct attribute *pmu_dev_attrs[] = {
12204 	&dev_attr_type.attr,
12205 	&dev_attr_perf_event_mux_interval_ms.attr,
12206 	&dev_attr_nr_addr_filters.attr,
12207 	&dev_attr_cpumask.attr,
12208 	NULL,
12209 };
12210 
pmu_dev_is_visible(struct kobject * kobj,struct attribute * a,int n)12211 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
12212 {
12213 	struct device *dev = kobj_to_dev(kobj);
12214 	struct pmu *pmu = dev_get_drvdata(dev);
12215 
12216 	if (n == 2 && !pmu->nr_addr_filters)
12217 		return 0;
12218 
12219 	/* cpumask */
12220 	if (n == 3 && pmu->scope == PERF_PMU_SCOPE_NONE)
12221 		return 0;
12222 
12223 	return a->mode;
12224 }
12225 
12226 static struct attribute_group pmu_dev_attr_group = {
12227 	.is_visible = pmu_dev_is_visible,
12228 	.attrs = pmu_dev_attrs,
12229 };
12230 
12231 static const struct attribute_group *pmu_dev_groups[] = {
12232 	&pmu_dev_attr_group,
12233 	NULL,
12234 };
12235 
12236 static int pmu_bus_running;
12237 static const struct bus_type pmu_bus = {
12238 	.name		= "event_source",
12239 	.dev_groups	= pmu_dev_groups,
12240 };
12241 
pmu_dev_release(struct device * dev)12242 static void pmu_dev_release(struct device *dev)
12243 {
12244 	kfree(dev);
12245 }
12246 
pmu_dev_alloc(struct pmu * pmu)12247 static int pmu_dev_alloc(struct pmu *pmu)
12248 {
12249 	int ret = -ENOMEM;
12250 
12251 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
12252 	if (!pmu->dev)
12253 		goto out;
12254 
12255 	pmu->dev->groups = pmu->attr_groups;
12256 	device_initialize(pmu->dev);
12257 
12258 	dev_set_drvdata(pmu->dev, pmu);
12259 	pmu->dev->bus = &pmu_bus;
12260 	pmu->dev->parent = pmu->parent;
12261 	pmu->dev->release = pmu_dev_release;
12262 
12263 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
12264 	if (ret)
12265 		goto free_dev;
12266 
12267 	ret = device_add(pmu->dev);
12268 	if (ret)
12269 		goto free_dev;
12270 
12271 	if (pmu->attr_update) {
12272 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
12273 		if (ret)
12274 			goto del_dev;
12275 	}
12276 
12277 out:
12278 	return ret;
12279 
12280 del_dev:
12281 	device_del(pmu->dev);
12282 
12283 free_dev:
12284 	put_device(pmu->dev);
12285 	pmu->dev = NULL;
12286 	goto out;
12287 }
12288 
12289 static struct lock_class_key cpuctx_mutex;
12290 static struct lock_class_key cpuctx_lock;
12291 
idr_cmpxchg(struct idr * idr,unsigned long id,void * old,void * new)12292 static bool idr_cmpxchg(struct idr *idr, unsigned long id, void *old, void *new)
12293 {
12294 	void *tmp, *val = idr_find(idr, id);
12295 
12296 	if (val != old)
12297 		return false;
12298 
12299 	tmp = idr_replace(idr, new, id);
12300 	if (IS_ERR(tmp))
12301 		return false;
12302 
12303 	WARN_ON_ONCE(tmp != val);
12304 	return true;
12305 }
12306 
perf_pmu_free(struct pmu * pmu)12307 static void perf_pmu_free(struct pmu *pmu)
12308 {
12309 	if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
12310 		if (pmu->nr_addr_filters)
12311 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
12312 		device_del(pmu->dev);
12313 		put_device(pmu->dev);
12314 	}
12315 
12316 	if (pmu->cpu_pmu_context) {
12317 		int cpu;
12318 
12319 		for_each_possible_cpu(cpu) {
12320 			struct perf_cpu_pmu_context *cpc;
12321 
12322 			cpc = *per_cpu_ptr(pmu->cpu_pmu_context, cpu);
12323 			if (!cpc)
12324 				continue;
12325 			if (cpc->epc.embedded) {
12326 				/* refcount managed */
12327 				put_pmu_ctx(&cpc->epc);
12328 				continue;
12329 			}
12330 			kfree(cpc);
12331 		}
12332 		free_percpu(pmu->cpu_pmu_context);
12333 	}
12334 }
12335 
DEFINE_FREE(pmu_unregister,struct pmu *,if (_T)perf_pmu_free (_T))12336 DEFINE_FREE(pmu_unregister, struct pmu *, if (_T) perf_pmu_free(_T))
12337 
12338 int perf_pmu_register(struct pmu *_pmu, const char *name, int type)
12339 {
12340 	int cpu, max = PERF_TYPE_MAX;
12341 
12342 	struct pmu *pmu __free(pmu_unregister) = _pmu;
12343 	guard(mutex)(&pmus_lock);
12344 
12345 	if (WARN_ONCE(!name, "Can not register anonymous pmu.\n"))
12346 		return -EINVAL;
12347 
12348 	if (WARN_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE,
12349 		      "Can not register a pmu with an invalid scope.\n"))
12350 		return -EINVAL;
12351 
12352 	pmu->name = name;
12353 
12354 	if (type >= 0)
12355 		max = type;
12356 
12357 	CLASS(idr_alloc, pmu_type)(&pmu_idr, NULL, max, 0, GFP_KERNEL);
12358 	if (pmu_type.id < 0)
12359 		return pmu_type.id;
12360 
12361 	WARN_ON(type >= 0 && pmu_type.id != type);
12362 
12363 	pmu->type = pmu_type.id;
12364 	atomic_set(&pmu->exclusive_cnt, 0);
12365 
12366 	if (pmu_bus_running && !pmu->dev) {
12367 		int ret = pmu_dev_alloc(pmu);
12368 		if (ret)
12369 			return ret;
12370 	}
12371 
12372 	pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context *);
12373 	if (!pmu->cpu_pmu_context)
12374 		return -ENOMEM;
12375 
12376 	for_each_possible_cpu(cpu) {
12377 		struct perf_cpu_pmu_context *cpc =
12378 			kmalloc_node(sizeof(struct perf_cpu_pmu_context),
12379 				     GFP_KERNEL | __GFP_ZERO,
12380 				     cpu_to_node(cpu));
12381 
12382 		if (!cpc)
12383 			return -ENOMEM;
12384 
12385 		*per_cpu_ptr(pmu->cpu_pmu_context, cpu) = cpc;
12386 		__perf_init_event_pmu_context(&cpc->epc, pmu);
12387 		__perf_mux_hrtimer_init(cpc, cpu);
12388 	}
12389 
12390 	if (!pmu->start_txn) {
12391 		if (pmu->pmu_enable) {
12392 			/*
12393 			 * If we have pmu_enable/pmu_disable calls, install
12394 			 * transaction stubs that use that to try and batch
12395 			 * hardware accesses.
12396 			 */
12397 			pmu->start_txn  = perf_pmu_start_txn;
12398 			pmu->commit_txn = perf_pmu_commit_txn;
12399 			pmu->cancel_txn = perf_pmu_cancel_txn;
12400 		} else {
12401 			pmu->start_txn  = perf_pmu_nop_txn;
12402 			pmu->commit_txn = perf_pmu_nop_int;
12403 			pmu->cancel_txn = perf_pmu_nop_void;
12404 		}
12405 	}
12406 
12407 	if (!pmu->pmu_enable) {
12408 		pmu->pmu_enable  = perf_pmu_nop_void;
12409 		pmu->pmu_disable = perf_pmu_nop_void;
12410 	}
12411 
12412 	if (!pmu->check_period)
12413 		pmu->check_period = perf_event_nop_int;
12414 
12415 	if (!pmu->event_idx)
12416 		pmu->event_idx = perf_event_idx_default;
12417 
12418 	INIT_LIST_HEAD(&pmu->events);
12419 	spin_lock_init(&pmu->events_lock);
12420 
12421 	/*
12422 	 * Now that the PMU is complete, make it visible to perf_try_init_event().
12423 	 */
12424 	if (!idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu))
12425 		return -EINVAL;
12426 	list_add_rcu(&pmu->entry, &pmus);
12427 
12428 	take_idr_id(pmu_type);
12429 	_pmu = no_free_ptr(pmu); // let it rip
12430 	return 0;
12431 }
12432 EXPORT_SYMBOL_GPL(perf_pmu_register);
12433 
__pmu_detach_event(struct pmu * pmu,struct perf_event * event,struct perf_event_context * ctx)12434 static void __pmu_detach_event(struct pmu *pmu, struct perf_event *event,
12435 			       struct perf_event_context *ctx)
12436 {
12437 	/*
12438 	 * De-schedule the event and mark it REVOKED.
12439 	 */
12440 	perf_event_exit_event(event, ctx, true);
12441 
12442 	/*
12443 	 * All _free_event() bits that rely on event->pmu:
12444 	 *
12445 	 * Notably, perf_mmap() relies on the ordering here.
12446 	 */
12447 	scoped_guard (mutex, &event->mmap_mutex) {
12448 		WARN_ON_ONCE(pmu->event_unmapped);
12449 		/*
12450 		 * Mostly an empty lock sequence, such that perf_mmap(), which
12451 		 * relies on mmap_mutex, is sure to observe the state change.
12452 		 */
12453 	}
12454 
12455 	perf_event_free_bpf_prog(event);
12456 	perf_free_addr_filters(event);
12457 
12458 	if (event->destroy) {
12459 		event->destroy(event);
12460 		event->destroy = NULL;
12461 	}
12462 
12463 	if (event->pmu_ctx) {
12464 		put_pmu_ctx(event->pmu_ctx);
12465 		event->pmu_ctx = NULL;
12466 	}
12467 
12468 	exclusive_event_destroy(event);
12469 	module_put(pmu->module);
12470 
12471 	event->pmu = NULL; /* force fault instead of UAF */
12472 }
12473 
pmu_detach_event(struct pmu * pmu,struct perf_event * event)12474 static void pmu_detach_event(struct pmu *pmu, struct perf_event *event)
12475 {
12476 	struct perf_event_context *ctx;
12477 
12478 	ctx = perf_event_ctx_lock(event);
12479 	__pmu_detach_event(pmu, event, ctx);
12480 	perf_event_ctx_unlock(event, ctx);
12481 
12482 	scoped_guard (spinlock, &pmu->events_lock)
12483 		list_del(&event->pmu_list);
12484 }
12485 
pmu_get_event(struct pmu * pmu)12486 static struct perf_event *pmu_get_event(struct pmu *pmu)
12487 {
12488 	struct perf_event *event;
12489 
12490 	guard(spinlock)(&pmu->events_lock);
12491 	list_for_each_entry(event, &pmu->events, pmu_list) {
12492 		if (atomic_long_inc_not_zero(&event->refcount))
12493 			return event;
12494 	}
12495 
12496 	return NULL;
12497 }
12498 
pmu_empty(struct pmu * pmu)12499 static bool pmu_empty(struct pmu *pmu)
12500 {
12501 	guard(spinlock)(&pmu->events_lock);
12502 	return list_empty(&pmu->events);
12503 }
12504 
pmu_detach_events(struct pmu * pmu)12505 static void pmu_detach_events(struct pmu *pmu)
12506 {
12507 	struct perf_event *event;
12508 
12509 	for (;;) {
12510 		event = pmu_get_event(pmu);
12511 		if (!event)
12512 			break;
12513 
12514 		pmu_detach_event(pmu, event);
12515 		put_event(event);
12516 	}
12517 
12518 	/*
12519 	 * wait for pending _free_event()s
12520 	 */
12521 	wait_var_event(pmu, pmu_empty(pmu));
12522 }
12523 
perf_pmu_unregister(struct pmu * pmu)12524 int perf_pmu_unregister(struct pmu *pmu)
12525 {
12526 	scoped_guard (mutex, &pmus_lock) {
12527 		if (!idr_cmpxchg(&pmu_idr, pmu->type, pmu, NULL))
12528 			return -EINVAL;
12529 
12530 		list_del_rcu(&pmu->entry);
12531 	}
12532 
12533 	/*
12534 	 * We dereference the pmu list under both SRCU and regular RCU, so
12535 	 * synchronize against both of those.
12536 	 *
12537 	 * Notably, the entirety of event creation, from perf_init_event()
12538 	 * (which will now fail, because of the above) until
12539 	 * perf_install_in_context() should be under SRCU such that
12540 	 * this synchronizes against event creation. This avoids trying to
12541 	 * detach events that are not fully formed.
12542 	 */
12543 	synchronize_srcu(&pmus_srcu);
12544 	synchronize_rcu();
12545 
12546 	if (pmu->event_unmapped && !pmu_empty(pmu)) {
12547 		/*
12548 		 * Can't force remove events when pmu::event_unmapped()
12549 		 * is used in perf_mmap_close().
12550 		 */
12551 		guard(mutex)(&pmus_lock);
12552 		idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu);
12553 		list_add_rcu(&pmu->entry, &pmus);
12554 		return -EBUSY;
12555 	}
12556 
12557 	scoped_guard (mutex, &pmus_lock)
12558 		idr_remove(&pmu_idr, pmu->type);
12559 
12560 	/*
12561 	 * PMU is removed from the pmus list, so no new events will
12562 	 * be created, now take care of the existing ones.
12563 	 */
12564 	pmu_detach_events(pmu);
12565 
12566 	/*
12567 	 * PMU is unused, make it go away.
12568 	 */
12569 	perf_pmu_free(pmu);
12570 	return 0;
12571 }
12572 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
12573 
has_extended_regs(struct perf_event * event)12574 static inline bool has_extended_regs(struct perf_event *event)
12575 {
12576 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
12577 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
12578 }
12579 
perf_try_init_event(struct pmu * pmu,struct perf_event * event)12580 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
12581 {
12582 	struct perf_event_context *ctx = NULL;
12583 	int ret;
12584 
12585 	if (!try_module_get(pmu->module))
12586 		return -ENODEV;
12587 
12588 	/*
12589 	 * A number of pmu->event_init() methods iterate the sibling_list to,
12590 	 * for example, validate if the group fits on the PMU. Therefore,
12591 	 * if this is a sibling event, acquire the ctx->mutex to protect
12592 	 * the sibling_list.
12593 	 */
12594 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
12595 		/*
12596 		 * This ctx->mutex can nest when we're called through
12597 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
12598 		 */
12599 		ctx = perf_event_ctx_lock_nested(event->group_leader,
12600 						 SINGLE_DEPTH_NESTING);
12601 		BUG_ON(!ctx);
12602 	}
12603 
12604 	event->pmu = pmu;
12605 	ret = pmu->event_init(event);
12606 
12607 	if (ctx)
12608 		perf_event_ctx_unlock(event->group_leader, ctx);
12609 
12610 	if (ret)
12611 		goto err_pmu;
12612 
12613 	if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
12614 	    has_extended_regs(event)) {
12615 		ret = -EOPNOTSUPP;
12616 		goto err_destroy;
12617 	}
12618 
12619 	if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
12620 	    event_has_any_exclude_flag(event)) {
12621 		ret = -EINVAL;
12622 		goto err_destroy;
12623 	}
12624 
12625 	if (pmu->scope != PERF_PMU_SCOPE_NONE && event->cpu >= 0) {
12626 		const struct cpumask *cpumask;
12627 		struct cpumask *pmu_cpumask;
12628 		int cpu;
12629 
12630 		cpumask = perf_scope_cpu_topology_cpumask(pmu->scope, event->cpu);
12631 		pmu_cpumask = perf_scope_cpumask(pmu->scope);
12632 
12633 		ret = -ENODEV;
12634 		if (!pmu_cpumask || !cpumask)
12635 			goto err_destroy;
12636 
12637 		cpu = cpumask_any_and(pmu_cpumask, cpumask);
12638 		if (cpu >= nr_cpu_ids)
12639 			goto err_destroy;
12640 
12641 		event->event_caps |= PERF_EV_CAP_READ_SCOPE;
12642 	}
12643 
12644 	return 0;
12645 
12646 err_destroy:
12647 	if (event->destroy) {
12648 		event->destroy(event);
12649 		event->destroy = NULL;
12650 	}
12651 
12652 err_pmu:
12653 	event->pmu = NULL;
12654 	module_put(pmu->module);
12655 	return ret;
12656 }
12657 
perf_init_event(struct perf_event * event)12658 static struct pmu *perf_init_event(struct perf_event *event)
12659 {
12660 	bool extended_type = false;
12661 	struct pmu *pmu;
12662 	int type, ret;
12663 
12664 	guard(srcu)(&pmus_srcu); /* pmu idr/list access */
12665 
12666 	/*
12667 	 * Save original type before calling pmu->event_init() since certain
12668 	 * pmus overwrites event->attr.type to forward event to another pmu.
12669 	 */
12670 	event->orig_type = event->attr.type;
12671 
12672 	/* Try parent's PMU first: */
12673 	if (event->parent && event->parent->pmu) {
12674 		pmu = event->parent->pmu;
12675 		ret = perf_try_init_event(pmu, event);
12676 		if (!ret)
12677 			return pmu;
12678 	}
12679 
12680 	/*
12681 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
12682 	 * are often aliases for PERF_TYPE_RAW.
12683 	 */
12684 	type = event->attr.type;
12685 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
12686 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
12687 		if (!type) {
12688 			type = PERF_TYPE_RAW;
12689 		} else {
12690 			extended_type = true;
12691 			event->attr.config &= PERF_HW_EVENT_MASK;
12692 		}
12693 	}
12694 
12695 again:
12696 	scoped_guard (rcu)
12697 		pmu = idr_find(&pmu_idr, type);
12698 	if (pmu) {
12699 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
12700 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
12701 			return ERR_PTR(-ENOENT);
12702 
12703 		ret = perf_try_init_event(pmu, event);
12704 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
12705 			type = event->attr.type;
12706 			goto again;
12707 		}
12708 
12709 		if (ret)
12710 			return ERR_PTR(ret);
12711 
12712 		return pmu;
12713 	}
12714 
12715 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
12716 		ret = perf_try_init_event(pmu, event);
12717 		if (!ret)
12718 			return pmu;
12719 
12720 		if (ret != -ENOENT)
12721 			return ERR_PTR(ret);
12722 	}
12723 
12724 	return ERR_PTR(-ENOENT);
12725 }
12726 
attach_sb_event(struct perf_event * event)12727 static void attach_sb_event(struct perf_event *event)
12728 {
12729 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
12730 
12731 	raw_spin_lock(&pel->lock);
12732 	list_add_rcu(&event->sb_list, &pel->list);
12733 	raw_spin_unlock(&pel->lock);
12734 }
12735 
12736 /*
12737  * We keep a list of all !task (and therefore per-cpu) events
12738  * that need to receive side-band records.
12739  *
12740  * This avoids having to scan all the various PMU per-cpu contexts
12741  * looking for them.
12742  */
account_pmu_sb_event(struct perf_event * event)12743 static void account_pmu_sb_event(struct perf_event *event)
12744 {
12745 	if (is_sb_event(event))
12746 		attach_sb_event(event);
12747 }
12748 
12749 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
account_freq_event_nohz(void)12750 static void account_freq_event_nohz(void)
12751 {
12752 #ifdef CONFIG_NO_HZ_FULL
12753 	/* Lock so we don't race with concurrent unaccount */
12754 	spin_lock(&nr_freq_lock);
12755 	if (atomic_inc_return(&nr_freq_events) == 1)
12756 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
12757 	spin_unlock(&nr_freq_lock);
12758 #endif
12759 }
12760 
account_freq_event(void)12761 static void account_freq_event(void)
12762 {
12763 	if (tick_nohz_full_enabled())
12764 		account_freq_event_nohz();
12765 	else
12766 		atomic_inc(&nr_freq_events);
12767 }
12768 
12769 
account_event(struct perf_event * event)12770 static void account_event(struct perf_event *event)
12771 {
12772 	bool inc = false;
12773 
12774 	if (event->parent)
12775 		return;
12776 
12777 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
12778 		inc = true;
12779 	if (event->attr.mmap || event->attr.mmap_data)
12780 		atomic_inc(&nr_mmap_events);
12781 	if (event->attr.build_id)
12782 		atomic_inc(&nr_build_id_events);
12783 	if (event->attr.comm)
12784 		atomic_inc(&nr_comm_events);
12785 	if (event->attr.namespaces)
12786 		atomic_inc(&nr_namespaces_events);
12787 	if (event->attr.cgroup)
12788 		atomic_inc(&nr_cgroup_events);
12789 	if (event->attr.task)
12790 		atomic_inc(&nr_task_events);
12791 	if (event->attr.freq)
12792 		account_freq_event();
12793 	if (event->attr.context_switch) {
12794 		atomic_inc(&nr_switch_events);
12795 		inc = true;
12796 	}
12797 	if (has_branch_stack(event))
12798 		inc = true;
12799 	if (is_cgroup_event(event))
12800 		inc = true;
12801 	if (event->attr.ksymbol)
12802 		atomic_inc(&nr_ksymbol_events);
12803 	if (event->attr.bpf_event)
12804 		atomic_inc(&nr_bpf_events);
12805 	if (event->attr.text_poke)
12806 		atomic_inc(&nr_text_poke_events);
12807 
12808 	if (inc) {
12809 		/*
12810 		 * We need the mutex here because static_branch_enable()
12811 		 * must complete *before* the perf_sched_count increment
12812 		 * becomes visible.
12813 		 */
12814 		if (atomic_inc_not_zero(&perf_sched_count))
12815 			goto enabled;
12816 
12817 		mutex_lock(&perf_sched_mutex);
12818 		if (!atomic_read(&perf_sched_count)) {
12819 			static_branch_enable(&perf_sched_events);
12820 			/*
12821 			 * Guarantee that all CPUs observe they key change and
12822 			 * call the perf scheduling hooks before proceeding to
12823 			 * install events that need them.
12824 			 */
12825 			synchronize_rcu();
12826 		}
12827 		/*
12828 		 * Now that we have waited for the sync_sched(), allow further
12829 		 * increments to by-pass the mutex.
12830 		 */
12831 		atomic_inc(&perf_sched_count);
12832 		mutex_unlock(&perf_sched_mutex);
12833 	}
12834 enabled:
12835 
12836 	account_pmu_sb_event(event);
12837 }
12838 
12839 /*
12840  * Allocate and initialize an event structure
12841  */
12842 static struct perf_event *
perf_event_alloc(struct perf_event_attr * attr,int cpu,struct task_struct * task,struct perf_event * group_leader,struct perf_event * parent_event,perf_overflow_handler_t overflow_handler,void * context,int cgroup_fd)12843 perf_event_alloc(struct perf_event_attr *attr, int cpu,
12844 		 struct task_struct *task,
12845 		 struct perf_event *group_leader,
12846 		 struct perf_event *parent_event,
12847 		 perf_overflow_handler_t overflow_handler,
12848 		 void *context, int cgroup_fd)
12849 {
12850 	struct pmu *pmu;
12851 	struct hw_perf_event *hwc;
12852 	long err = -EINVAL;
12853 	int node;
12854 
12855 	if ((unsigned)cpu >= nr_cpu_ids) {
12856 		if (!task || cpu != -1)
12857 			return ERR_PTR(-EINVAL);
12858 	}
12859 	if (attr->sigtrap && !task) {
12860 		/* Requires a task: avoid signalling random tasks. */
12861 		return ERR_PTR(-EINVAL);
12862 	}
12863 
12864 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
12865 	struct perf_event *event __free(__free_event) =
12866 		kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, node);
12867 	if (!event)
12868 		return ERR_PTR(-ENOMEM);
12869 
12870 	/*
12871 	 * Single events are their own group leaders, with an
12872 	 * empty sibling list:
12873 	 */
12874 	if (!group_leader)
12875 		group_leader = event;
12876 
12877 	mutex_init(&event->child_mutex);
12878 	INIT_LIST_HEAD(&event->child_list);
12879 
12880 	INIT_LIST_HEAD(&event->event_entry);
12881 	INIT_LIST_HEAD(&event->sibling_list);
12882 	INIT_LIST_HEAD(&event->active_list);
12883 	init_event_group(event);
12884 	INIT_LIST_HEAD(&event->rb_entry);
12885 	INIT_LIST_HEAD(&event->active_entry);
12886 	INIT_LIST_HEAD(&event->addr_filters.list);
12887 	INIT_HLIST_NODE(&event->hlist_entry);
12888 	INIT_LIST_HEAD(&event->pmu_list);
12889 
12890 
12891 	init_waitqueue_head(&event->waitq);
12892 	init_irq_work(&event->pending_irq, perf_pending_irq);
12893 	event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable);
12894 	init_task_work(&event->pending_task, perf_pending_task);
12895 
12896 	mutex_init(&event->mmap_mutex);
12897 	raw_spin_lock_init(&event->addr_filters.lock);
12898 
12899 	atomic_long_set(&event->refcount, 1);
12900 	event->cpu		= cpu;
12901 	event->attr		= *attr;
12902 	event->group_leader	= group_leader;
12903 	event->pmu		= NULL;
12904 	event->oncpu		= -1;
12905 
12906 	event->parent		= parent_event;
12907 
12908 	event->ns		= get_pid_ns(task_active_pid_ns(current));
12909 	event->id		= atomic64_inc_return(&perf_event_id);
12910 
12911 	event->state		= PERF_EVENT_STATE_INACTIVE;
12912 
12913 	if (parent_event)
12914 		event->event_caps = parent_event->event_caps;
12915 
12916 	if (task) {
12917 		event->attach_state = PERF_ATTACH_TASK;
12918 		/*
12919 		 * XXX pmu::event_init needs to know what task to account to
12920 		 * and we cannot use the ctx information because we need the
12921 		 * pmu before we get a ctx.
12922 		 */
12923 		event->hw.target = get_task_struct(task);
12924 	}
12925 
12926 	event->clock = &local_clock;
12927 	if (parent_event)
12928 		event->clock = parent_event->clock;
12929 
12930 	if (!overflow_handler && parent_event) {
12931 		overflow_handler = parent_event->overflow_handler;
12932 		context = parent_event->overflow_handler_context;
12933 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
12934 		if (parent_event->prog) {
12935 			struct bpf_prog *prog = parent_event->prog;
12936 
12937 			bpf_prog_inc(prog);
12938 			event->prog = prog;
12939 		}
12940 #endif
12941 	}
12942 
12943 	if (overflow_handler) {
12944 		event->overflow_handler	= overflow_handler;
12945 		event->overflow_handler_context = context;
12946 	} else if (is_write_backward(event)){
12947 		event->overflow_handler = perf_event_output_backward;
12948 		event->overflow_handler_context = NULL;
12949 	} else {
12950 		event->overflow_handler = perf_event_output_forward;
12951 		event->overflow_handler_context = NULL;
12952 	}
12953 
12954 	perf_event__state_init(event);
12955 
12956 	pmu = NULL;
12957 
12958 	hwc = &event->hw;
12959 	hwc->sample_period = attr->sample_period;
12960 	if (is_event_in_freq_mode(event))
12961 		hwc->sample_period = 1;
12962 	hwc->last_period = hwc->sample_period;
12963 
12964 	local64_set(&hwc->period_left, hwc->sample_period);
12965 
12966 	/*
12967 	 * We do not support PERF_SAMPLE_READ on inherited events unless
12968 	 * PERF_SAMPLE_TID is also selected, which allows inherited events to
12969 	 * collect per-thread samples.
12970 	 * See perf_output_read().
12971 	 */
12972 	if (has_inherit_and_sample_read(attr) && !(attr->sample_type & PERF_SAMPLE_TID))
12973 		return ERR_PTR(-EINVAL);
12974 
12975 	if (!has_branch_stack(event))
12976 		event->attr.branch_sample_type = 0;
12977 
12978 	pmu = perf_init_event(event);
12979 	if (IS_ERR(pmu))
12980 		return (void*)pmu;
12981 
12982 	/*
12983 	 * The PERF_ATTACH_TASK_DATA is set in the event_init()->hw_config().
12984 	 * The attach should be right after the perf_init_event().
12985 	 * Otherwise, the __free_event() would mistakenly detach the non-exist
12986 	 * perf_ctx_data because of the other errors between them.
12987 	 */
12988 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
12989 		err = attach_perf_ctx_data(event);
12990 		if (err)
12991 			return ERR_PTR(err);
12992 	}
12993 
12994 	/*
12995 	 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12996 	 * events (they don't make sense as the cgroup will be different
12997 	 * on other CPUs in the uncore mask).
12998 	 */
12999 	if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1))
13000 		return ERR_PTR(-EINVAL);
13001 
13002 	if (event->attr.aux_output &&
13003 	    (!(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT) ||
13004 	     event->attr.aux_pause || event->attr.aux_resume))
13005 		return ERR_PTR(-EOPNOTSUPP);
13006 
13007 	if (event->attr.aux_pause && event->attr.aux_resume)
13008 		return ERR_PTR(-EINVAL);
13009 
13010 	if (event->attr.aux_start_paused) {
13011 		if (!(pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE))
13012 			return ERR_PTR(-EOPNOTSUPP);
13013 		event->hw.aux_paused = 1;
13014 	}
13015 
13016 	if (cgroup_fd != -1) {
13017 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
13018 		if (err)
13019 			return ERR_PTR(err);
13020 	}
13021 
13022 	err = exclusive_event_init(event);
13023 	if (err)
13024 		return ERR_PTR(err);
13025 
13026 	if (has_addr_filter(event)) {
13027 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
13028 						    sizeof(struct perf_addr_filter_range),
13029 						    GFP_KERNEL);
13030 		if (!event->addr_filter_ranges)
13031 			return ERR_PTR(-ENOMEM);
13032 
13033 		/*
13034 		 * Clone the parent's vma offsets: they are valid until exec()
13035 		 * even if the mm is not shared with the parent.
13036 		 */
13037 		if (event->parent) {
13038 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
13039 
13040 			raw_spin_lock_irq(&ifh->lock);
13041 			memcpy(event->addr_filter_ranges,
13042 			       event->parent->addr_filter_ranges,
13043 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
13044 			raw_spin_unlock_irq(&ifh->lock);
13045 		}
13046 
13047 		/* force hw sync on the address filters */
13048 		event->addr_filters_gen = 1;
13049 	}
13050 
13051 	if (!event->parent) {
13052 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
13053 			err = get_callchain_buffers(attr->sample_max_stack);
13054 			if (err)
13055 				return ERR_PTR(err);
13056 			event->attach_state |= PERF_ATTACH_CALLCHAIN;
13057 		}
13058 	}
13059 
13060 	err = security_perf_event_alloc(event);
13061 	if (err)
13062 		return ERR_PTR(err);
13063 
13064 	/* symmetric to unaccount_event() in _free_event() */
13065 	account_event(event);
13066 
13067 	/*
13068 	 * Event creation should be under SRCU, see perf_pmu_unregister().
13069 	 */
13070 	lockdep_assert_held(&pmus_srcu);
13071 	scoped_guard (spinlock, &pmu->events_lock)
13072 		list_add(&event->pmu_list, &pmu->events);
13073 
13074 	return_ptr(event);
13075 }
13076 
perf_copy_attr(struct perf_event_attr __user * uattr,struct perf_event_attr * attr)13077 static int perf_copy_attr(struct perf_event_attr __user *uattr,
13078 			  struct perf_event_attr *attr)
13079 {
13080 	u32 size;
13081 	int ret;
13082 
13083 	/* Zero the full structure, so that a short copy will be nice. */
13084 	memset(attr, 0, sizeof(*attr));
13085 
13086 	ret = get_user(size, &uattr->size);
13087 	if (ret)
13088 		return ret;
13089 
13090 	/* ABI compatibility quirk: */
13091 	if (!size)
13092 		size = PERF_ATTR_SIZE_VER0;
13093 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
13094 		goto err_size;
13095 
13096 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
13097 	if (ret) {
13098 		if (ret == -E2BIG)
13099 			goto err_size;
13100 		return ret;
13101 	}
13102 
13103 	attr->size = size;
13104 
13105 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
13106 		return -EINVAL;
13107 
13108 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
13109 		return -EINVAL;
13110 
13111 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
13112 		return -EINVAL;
13113 
13114 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
13115 		u64 mask = attr->branch_sample_type;
13116 
13117 		/* only using defined bits */
13118 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
13119 			return -EINVAL;
13120 
13121 		/* at least one branch bit must be set */
13122 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
13123 			return -EINVAL;
13124 
13125 		/* propagate priv level, when not set for branch */
13126 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
13127 
13128 			/* exclude_kernel checked on syscall entry */
13129 			if (!attr->exclude_kernel)
13130 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
13131 
13132 			if (!attr->exclude_user)
13133 				mask |= PERF_SAMPLE_BRANCH_USER;
13134 
13135 			if (!attr->exclude_hv)
13136 				mask |= PERF_SAMPLE_BRANCH_HV;
13137 			/*
13138 			 * adjust user setting (for HW filter setup)
13139 			 */
13140 			attr->branch_sample_type = mask;
13141 		}
13142 		/* privileged levels capture (kernel, hv): check permissions */
13143 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
13144 			ret = perf_allow_kernel();
13145 			if (ret)
13146 				return ret;
13147 		}
13148 	}
13149 
13150 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
13151 		ret = perf_reg_validate(attr->sample_regs_user);
13152 		if (ret)
13153 			return ret;
13154 	}
13155 
13156 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
13157 		if (!arch_perf_have_user_stack_dump())
13158 			return -ENOSYS;
13159 
13160 		/*
13161 		 * We have __u32 type for the size, but so far
13162 		 * we can only use __u16 as maximum due to the
13163 		 * __u16 sample size limit.
13164 		 */
13165 		if (attr->sample_stack_user >= USHRT_MAX)
13166 			return -EINVAL;
13167 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
13168 			return -EINVAL;
13169 	}
13170 
13171 	if (!attr->sample_max_stack)
13172 		attr->sample_max_stack = sysctl_perf_event_max_stack;
13173 
13174 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
13175 		ret = perf_reg_validate(attr->sample_regs_intr);
13176 
13177 #ifndef CONFIG_CGROUP_PERF
13178 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
13179 		return -EINVAL;
13180 #endif
13181 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
13182 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
13183 		return -EINVAL;
13184 
13185 	if (!attr->inherit && attr->inherit_thread)
13186 		return -EINVAL;
13187 
13188 	if (attr->remove_on_exec && attr->enable_on_exec)
13189 		return -EINVAL;
13190 
13191 	if (attr->sigtrap && !attr->remove_on_exec)
13192 		return -EINVAL;
13193 
13194 out:
13195 	return ret;
13196 
13197 err_size:
13198 	put_user(sizeof(*attr), &uattr->size);
13199 	ret = -E2BIG;
13200 	goto out;
13201 }
13202 
mutex_lock_double(struct mutex * a,struct mutex * b)13203 static void mutex_lock_double(struct mutex *a, struct mutex *b)
13204 {
13205 	if (b < a)
13206 		swap(a, b);
13207 
13208 	mutex_lock(a);
13209 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
13210 }
13211 
13212 static int
perf_event_set_output(struct perf_event * event,struct perf_event * output_event)13213 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
13214 {
13215 	struct perf_buffer *rb = NULL;
13216 	int ret = -EINVAL;
13217 
13218 	if (!output_event) {
13219 		mutex_lock(&event->mmap_mutex);
13220 		goto set;
13221 	}
13222 
13223 	/* don't allow circular references */
13224 	if (event == output_event)
13225 		goto out;
13226 
13227 	/*
13228 	 * Don't allow cross-cpu buffers
13229 	 */
13230 	if (output_event->cpu != event->cpu)
13231 		goto out;
13232 
13233 	/*
13234 	 * If its not a per-cpu rb, it must be the same task.
13235 	 */
13236 	if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
13237 		goto out;
13238 
13239 	/*
13240 	 * Mixing clocks in the same buffer is trouble you don't need.
13241 	 */
13242 	if (output_event->clock != event->clock)
13243 		goto out;
13244 
13245 	/*
13246 	 * Either writing ring buffer from beginning or from end.
13247 	 * Mixing is not allowed.
13248 	 */
13249 	if (is_write_backward(output_event) != is_write_backward(event))
13250 		goto out;
13251 
13252 	/*
13253 	 * If both events generate aux data, they must be on the same PMU
13254 	 */
13255 	if (has_aux(event) && has_aux(output_event) &&
13256 	    event->pmu != output_event->pmu)
13257 		goto out;
13258 
13259 	/*
13260 	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
13261 	 * output_event is already on rb->event_list, and the list iteration
13262 	 * restarts after every removal, it is guaranteed this new event is
13263 	 * observed *OR* if output_event is already removed, it's guaranteed we
13264 	 * observe !rb->mmap_count.
13265 	 */
13266 	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
13267 set:
13268 	/* Can't redirect output if we've got an active mmap() */
13269 	if (refcount_read(&event->mmap_count))
13270 		goto unlock;
13271 
13272 	if (output_event) {
13273 		if (output_event->state <= PERF_EVENT_STATE_REVOKED)
13274 			goto unlock;
13275 
13276 		/* get the rb we want to redirect to */
13277 		rb = ring_buffer_get(output_event);
13278 		if (!rb)
13279 			goto unlock;
13280 
13281 		/* did we race against perf_mmap_close() */
13282 		if (!refcount_read(&rb->mmap_count)) {
13283 			ring_buffer_put(rb);
13284 			goto unlock;
13285 		}
13286 	}
13287 
13288 	ring_buffer_attach(event, rb);
13289 
13290 	ret = 0;
13291 unlock:
13292 	mutex_unlock(&event->mmap_mutex);
13293 	if (output_event)
13294 		mutex_unlock(&output_event->mmap_mutex);
13295 
13296 out:
13297 	return ret;
13298 }
13299 
perf_event_set_clock(struct perf_event * event,clockid_t clk_id)13300 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
13301 {
13302 	bool nmi_safe = false;
13303 
13304 	switch (clk_id) {
13305 	case CLOCK_MONOTONIC:
13306 		event->clock = &ktime_get_mono_fast_ns;
13307 		nmi_safe = true;
13308 		break;
13309 
13310 	case CLOCK_MONOTONIC_RAW:
13311 		event->clock = &ktime_get_raw_fast_ns;
13312 		nmi_safe = true;
13313 		break;
13314 
13315 	case CLOCK_REALTIME:
13316 		event->clock = &ktime_get_real_ns;
13317 		break;
13318 
13319 	case CLOCK_BOOTTIME:
13320 		event->clock = &ktime_get_boottime_ns;
13321 		break;
13322 
13323 	case CLOCK_TAI:
13324 		event->clock = &ktime_get_clocktai_ns;
13325 		break;
13326 
13327 	default:
13328 		return -EINVAL;
13329 	}
13330 
13331 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
13332 		return -EINVAL;
13333 
13334 	return 0;
13335 }
13336 
13337 static bool
perf_check_permission(struct perf_event_attr * attr,struct task_struct * task)13338 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
13339 {
13340 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
13341 	bool is_capable = perfmon_capable();
13342 
13343 	if (attr->sigtrap) {
13344 		/*
13345 		 * perf_event_attr::sigtrap sends signals to the other task.
13346 		 * Require the current task to also have CAP_KILL.
13347 		 */
13348 		rcu_read_lock();
13349 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
13350 		rcu_read_unlock();
13351 
13352 		/*
13353 		 * If the required capabilities aren't available, checks for
13354 		 * ptrace permissions: upgrade to ATTACH, since sending signals
13355 		 * can effectively change the target task.
13356 		 */
13357 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
13358 	}
13359 
13360 	/*
13361 	 * Preserve ptrace permission check for backwards compatibility. The
13362 	 * ptrace check also includes checks that the current task and other
13363 	 * task have matching uids, and is therefore not done here explicitly.
13364 	 */
13365 	return is_capable || ptrace_may_access(task, ptrace_mode);
13366 }
13367 
13368 /**
13369  * sys_perf_event_open - open a performance event, associate it to a task/cpu
13370  *
13371  * @attr_uptr:	event_id type attributes for monitoring/sampling
13372  * @pid:		target pid
13373  * @cpu:		target cpu
13374  * @group_fd:		group leader event fd
13375  * @flags:		perf event open flags
13376  */
SYSCALL_DEFINE5(perf_event_open,struct perf_event_attr __user *,attr_uptr,pid_t,pid,int,cpu,int,group_fd,unsigned long,flags)13377 SYSCALL_DEFINE5(perf_event_open,
13378 		struct perf_event_attr __user *, attr_uptr,
13379 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
13380 {
13381 	struct perf_event *group_leader = NULL, *output_event = NULL;
13382 	struct perf_event_pmu_context *pmu_ctx;
13383 	struct perf_event *event, *sibling;
13384 	struct perf_event_attr attr;
13385 	struct perf_event_context *ctx;
13386 	struct file *event_file = NULL;
13387 	struct task_struct *task = NULL;
13388 	struct pmu *pmu;
13389 	int event_fd;
13390 	int move_group = 0;
13391 	int err;
13392 	int f_flags = O_RDWR;
13393 	int cgroup_fd = -1;
13394 
13395 	/* for future expandability... */
13396 	if (flags & ~PERF_FLAG_ALL)
13397 		return -EINVAL;
13398 
13399 	err = perf_copy_attr(attr_uptr, &attr);
13400 	if (err)
13401 		return err;
13402 
13403 	/* Do we allow access to perf_event_open(2) ? */
13404 	err = security_perf_event_open(PERF_SECURITY_OPEN);
13405 	if (err)
13406 		return err;
13407 
13408 	if (!attr.exclude_kernel) {
13409 		err = perf_allow_kernel();
13410 		if (err)
13411 			return err;
13412 	}
13413 
13414 	if (attr.namespaces) {
13415 		if (!perfmon_capable())
13416 			return -EACCES;
13417 	}
13418 
13419 	if (attr.freq) {
13420 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
13421 			return -EINVAL;
13422 	} else {
13423 		if (attr.sample_period & (1ULL << 63))
13424 			return -EINVAL;
13425 	}
13426 
13427 	/* Only privileged users can get physical addresses */
13428 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
13429 		err = perf_allow_kernel();
13430 		if (err)
13431 			return err;
13432 	}
13433 
13434 	/* REGS_INTR can leak data, lockdown must prevent this */
13435 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
13436 		err = security_locked_down(LOCKDOWN_PERF);
13437 		if (err)
13438 			return err;
13439 	}
13440 
13441 	/*
13442 	 * In cgroup mode, the pid argument is used to pass the fd
13443 	 * opened to the cgroup directory in cgroupfs. The cpu argument
13444 	 * designates the cpu on which to monitor threads from that
13445 	 * cgroup.
13446 	 */
13447 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
13448 		return -EINVAL;
13449 
13450 	if (flags & PERF_FLAG_FD_CLOEXEC)
13451 		f_flags |= O_CLOEXEC;
13452 
13453 	event_fd = get_unused_fd_flags(f_flags);
13454 	if (event_fd < 0)
13455 		return event_fd;
13456 
13457 	/*
13458 	 * Event creation should be under SRCU, see perf_pmu_unregister().
13459 	 */
13460 	guard(srcu)(&pmus_srcu);
13461 
13462 	CLASS(fd, group)(group_fd);     // group_fd == -1 => empty
13463 	if (group_fd != -1) {
13464 		if (!is_perf_file(group)) {
13465 			err = -EBADF;
13466 			goto err_fd;
13467 		}
13468 		group_leader = fd_file(group)->private_data;
13469 		if (group_leader->state <= PERF_EVENT_STATE_REVOKED) {
13470 			err = -ENODEV;
13471 			goto err_fd;
13472 		}
13473 		if (flags & PERF_FLAG_FD_OUTPUT)
13474 			output_event = group_leader;
13475 		if (flags & PERF_FLAG_FD_NO_GROUP)
13476 			group_leader = NULL;
13477 	}
13478 
13479 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
13480 		task = find_lively_task_by_vpid(pid);
13481 		if (IS_ERR(task)) {
13482 			err = PTR_ERR(task);
13483 			goto err_fd;
13484 		}
13485 	}
13486 
13487 	if (task && group_leader &&
13488 	    group_leader->attr.inherit != attr.inherit) {
13489 		err = -EINVAL;
13490 		goto err_task;
13491 	}
13492 
13493 	if (flags & PERF_FLAG_PID_CGROUP)
13494 		cgroup_fd = pid;
13495 
13496 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
13497 				 NULL, NULL, cgroup_fd);
13498 	if (IS_ERR(event)) {
13499 		err = PTR_ERR(event);
13500 		goto err_task;
13501 	}
13502 
13503 	if (is_sampling_event(event)) {
13504 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
13505 			err = -EOPNOTSUPP;
13506 			goto err_alloc;
13507 		}
13508 	}
13509 
13510 	/*
13511 	 * Special case software events and allow them to be part of
13512 	 * any hardware group.
13513 	 */
13514 	pmu = event->pmu;
13515 
13516 	if (attr.use_clockid) {
13517 		err = perf_event_set_clock(event, attr.clockid);
13518 		if (err)
13519 			goto err_alloc;
13520 	}
13521 
13522 	if (pmu->task_ctx_nr == perf_sw_context)
13523 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
13524 
13525 	if (task) {
13526 		err = down_read_interruptible(&task->signal->exec_update_lock);
13527 		if (err)
13528 			goto err_alloc;
13529 
13530 		/*
13531 		 * We must hold exec_update_lock across this and any potential
13532 		 * perf_install_in_context() call for this new event to
13533 		 * serialize against exec() altering our credentials (and the
13534 		 * perf_event_exit_task() that could imply).
13535 		 */
13536 		err = -EACCES;
13537 		if (!perf_check_permission(&attr, task))
13538 			goto err_cred;
13539 	}
13540 
13541 	/*
13542 	 * Get the target context (task or percpu):
13543 	 */
13544 	ctx = find_get_context(task, event);
13545 	if (IS_ERR(ctx)) {
13546 		err = PTR_ERR(ctx);
13547 		goto err_cred;
13548 	}
13549 
13550 	mutex_lock(&ctx->mutex);
13551 
13552 	if (ctx->task == TASK_TOMBSTONE) {
13553 		err = -ESRCH;
13554 		goto err_locked;
13555 	}
13556 
13557 	if (!task) {
13558 		/*
13559 		 * Check if the @cpu we're creating an event for is online.
13560 		 *
13561 		 * We use the perf_cpu_context::ctx::mutex to serialize against
13562 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
13563 		 */
13564 		struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
13565 
13566 		if (!cpuctx->online) {
13567 			err = -ENODEV;
13568 			goto err_locked;
13569 		}
13570 	}
13571 
13572 	if (group_leader) {
13573 		err = -EINVAL;
13574 
13575 		/*
13576 		 * Do not allow a recursive hierarchy (this new sibling
13577 		 * becoming part of another group-sibling):
13578 		 */
13579 		if (group_leader->group_leader != group_leader)
13580 			goto err_locked;
13581 
13582 		/* All events in a group should have the same clock */
13583 		if (group_leader->clock != event->clock)
13584 			goto err_locked;
13585 
13586 		/*
13587 		 * Make sure we're both events for the same CPU;
13588 		 * grouping events for different CPUs is broken; since
13589 		 * you can never concurrently schedule them anyhow.
13590 		 */
13591 		if (group_leader->cpu != event->cpu)
13592 			goto err_locked;
13593 
13594 		/*
13595 		 * Make sure we're both on the same context; either task or cpu.
13596 		 */
13597 		if (group_leader->ctx != ctx)
13598 			goto err_locked;
13599 
13600 		/*
13601 		 * Only a group leader can be exclusive or pinned
13602 		 */
13603 		if (attr.exclusive || attr.pinned)
13604 			goto err_locked;
13605 
13606 		if (is_software_event(event) &&
13607 		    !in_software_context(group_leader)) {
13608 			/*
13609 			 * If the event is a sw event, but the group_leader
13610 			 * is on hw context.
13611 			 *
13612 			 * Allow the addition of software events to hw
13613 			 * groups, this is safe because software events
13614 			 * never fail to schedule.
13615 			 *
13616 			 * Note the comment that goes with struct
13617 			 * perf_event_pmu_context.
13618 			 */
13619 			pmu = group_leader->pmu_ctx->pmu;
13620 		} else if (!is_software_event(event)) {
13621 			if (is_software_event(group_leader) &&
13622 			    (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
13623 				/*
13624 				 * In case the group is a pure software group, and we
13625 				 * try to add a hardware event, move the whole group to
13626 				 * the hardware context.
13627 				 */
13628 				move_group = 1;
13629 			}
13630 
13631 			/* Don't allow group of multiple hw events from different pmus */
13632 			if (!in_software_context(group_leader) &&
13633 			    group_leader->pmu_ctx->pmu != pmu)
13634 				goto err_locked;
13635 		}
13636 	}
13637 
13638 	/*
13639 	 * Now that we're certain of the pmu; find the pmu_ctx.
13640 	 */
13641 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13642 	if (IS_ERR(pmu_ctx)) {
13643 		err = PTR_ERR(pmu_ctx);
13644 		goto err_locked;
13645 	}
13646 	event->pmu_ctx = pmu_ctx;
13647 
13648 	if (output_event) {
13649 		err = perf_event_set_output(event, output_event);
13650 		if (err)
13651 			goto err_context;
13652 	}
13653 
13654 	if (!perf_event_validate_size(event)) {
13655 		err = -E2BIG;
13656 		goto err_context;
13657 	}
13658 
13659 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
13660 		err = -EINVAL;
13661 		goto err_context;
13662 	}
13663 
13664 	/*
13665 	 * Must be under the same ctx::mutex as perf_install_in_context(),
13666 	 * because we need to serialize with concurrent event creation.
13667 	 */
13668 	if (!exclusive_event_installable(event, ctx)) {
13669 		err = -EBUSY;
13670 		goto err_context;
13671 	}
13672 
13673 	WARN_ON_ONCE(ctx->parent_ctx);
13674 
13675 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
13676 	if (IS_ERR(event_file)) {
13677 		err = PTR_ERR(event_file);
13678 		event_file = NULL;
13679 		goto err_context;
13680 	}
13681 
13682 	/*
13683 	 * This is the point on no return; we cannot fail hereafter. This is
13684 	 * where we start modifying current state.
13685 	 */
13686 
13687 	if (move_group) {
13688 		perf_remove_from_context(group_leader, 0);
13689 		put_pmu_ctx(group_leader->pmu_ctx);
13690 
13691 		for_each_sibling_event(sibling, group_leader) {
13692 			perf_remove_from_context(sibling, 0);
13693 			put_pmu_ctx(sibling->pmu_ctx);
13694 		}
13695 
13696 		/*
13697 		 * Install the group siblings before the group leader.
13698 		 *
13699 		 * Because a group leader will try and install the entire group
13700 		 * (through the sibling list, which is still in-tact), we can
13701 		 * end up with siblings installed in the wrong context.
13702 		 *
13703 		 * By installing siblings first we NO-OP because they're not
13704 		 * reachable through the group lists.
13705 		 */
13706 		for_each_sibling_event(sibling, group_leader) {
13707 			sibling->pmu_ctx = pmu_ctx;
13708 			get_pmu_ctx(pmu_ctx);
13709 			perf_event__state_init(sibling);
13710 			perf_install_in_context(ctx, sibling, sibling->cpu);
13711 		}
13712 
13713 		/*
13714 		 * Removing from the context ends up with disabled
13715 		 * event. What we want here is event in the initial
13716 		 * startup state, ready to be add into new context.
13717 		 */
13718 		group_leader->pmu_ctx = pmu_ctx;
13719 		get_pmu_ctx(pmu_ctx);
13720 		perf_event__state_init(group_leader);
13721 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
13722 	}
13723 
13724 	/*
13725 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
13726 	 * that we're serialized against further additions and before
13727 	 * perf_install_in_context() which is the point the event is active and
13728 	 * can use these values.
13729 	 */
13730 	perf_event__header_size(event);
13731 	perf_event__id_header_size(event);
13732 
13733 	event->owner = current;
13734 
13735 	perf_install_in_context(ctx, event, event->cpu);
13736 	perf_unpin_context(ctx);
13737 
13738 	mutex_unlock(&ctx->mutex);
13739 
13740 	if (task) {
13741 		up_read(&task->signal->exec_update_lock);
13742 		put_task_struct(task);
13743 	}
13744 
13745 	mutex_lock(&current->perf_event_mutex);
13746 	list_add_tail(&event->owner_entry, &current->perf_event_list);
13747 	mutex_unlock(&current->perf_event_mutex);
13748 
13749 	/*
13750 	 * File reference in group guarantees that group_leader has been
13751 	 * kept alive until we place the new event on the sibling_list.
13752 	 * This ensures destruction of the group leader will find
13753 	 * the pointer to itself in perf_group_detach().
13754 	 */
13755 	fd_install(event_fd, event_file);
13756 	return event_fd;
13757 
13758 err_context:
13759 	put_pmu_ctx(event->pmu_ctx);
13760 	event->pmu_ctx = NULL; /* _free_event() */
13761 err_locked:
13762 	mutex_unlock(&ctx->mutex);
13763 	perf_unpin_context(ctx);
13764 	put_ctx(ctx);
13765 err_cred:
13766 	if (task)
13767 		up_read(&task->signal->exec_update_lock);
13768 err_alloc:
13769 	put_event(event);
13770 err_task:
13771 	if (task)
13772 		put_task_struct(task);
13773 err_fd:
13774 	put_unused_fd(event_fd);
13775 	return err;
13776 }
13777 
13778 /**
13779  * perf_event_create_kernel_counter
13780  *
13781  * @attr: attributes of the counter to create
13782  * @cpu: cpu in which the counter is bound
13783  * @task: task to profile (NULL for percpu)
13784  * @overflow_handler: callback to trigger when we hit the event
13785  * @context: context data could be used in overflow_handler callback
13786  */
13787 struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr * attr,int cpu,struct task_struct * task,perf_overflow_handler_t overflow_handler,void * context)13788 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
13789 				 struct task_struct *task,
13790 				 perf_overflow_handler_t overflow_handler,
13791 				 void *context)
13792 {
13793 	struct perf_event_pmu_context *pmu_ctx;
13794 	struct perf_event_context *ctx;
13795 	struct perf_event *event;
13796 	struct pmu *pmu;
13797 	int err;
13798 
13799 	/*
13800 	 * Grouping is not supported for kernel events, neither is 'AUX',
13801 	 * make sure the caller's intentions are adjusted.
13802 	 */
13803 	if (attr->aux_output || attr->aux_action)
13804 		return ERR_PTR(-EINVAL);
13805 
13806 	/*
13807 	 * Event creation should be under SRCU, see perf_pmu_unregister().
13808 	 */
13809 	guard(srcu)(&pmus_srcu);
13810 
13811 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
13812 				 overflow_handler, context, -1);
13813 	if (IS_ERR(event)) {
13814 		err = PTR_ERR(event);
13815 		goto err;
13816 	}
13817 
13818 	/* Mark owner so we could distinguish it from user events. */
13819 	event->owner = TASK_TOMBSTONE;
13820 	pmu = event->pmu;
13821 
13822 	if (pmu->task_ctx_nr == perf_sw_context)
13823 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
13824 
13825 	/*
13826 	 * Get the target context (task or percpu):
13827 	 */
13828 	ctx = find_get_context(task, event);
13829 	if (IS_ERR(ctx)) {
13830 		err = PTR_ERR(ctx);
13831 		goto err_alloc;
13832 	}
13833 
13834 	WARN_ON_ONCE(ctx->parent_ctx);
13835 	mutex_lock(&ctx->mutex);
13836 	if (ctx->task == TASK_TOMBSTONE) {
13837 		err = -ESRCH;
13838 		goto err_unlock;
13839 	}
13840 
13841 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13842 	if (IS_ERR(pmu_ctx)) {
13843 		err = PTR_ERR(pmu_ctx);
13844 		goto err_unlock;
13845 	}
13846 	event->pmu_ctx = pmu_ctx;
13847 
13848 	if (!task) {
13849 		/*
13850 		 * Check if the @cpu we're creating an event for is online.
13851 		 *
13852 		 * We use the perf_cpu_context::ctx::mutex to serialize against
13853 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
13854 		 */
13855 		struct perf_cpu_context *cpuctx =
13856 			container_of(ctx, struct perf_cpu_context, ctx);
13857 		if (!cpuctx->online) {
13858 			err = -ENODEV;
13859 			goto err_pmu_ctx;
13860 		}
13861 	}
13862 
13863 	if (!exclusive_event_installable(event, ctx)) {
13864 		err = -EBUSY;
13865 		goto err_pmu_ctx;
13866 	}
13867 
13868 	perf_install_in_context(ctx, event, event->cpu);
13869 	perf_unpin_context(ctx);
13870 	mutex_unlock(&ctx->mutex);
13871 
13872 	return event;
13873 
13874 err_pmu_ctx:
13875 	put_pmu_ctx(pmu_ctx);
13876 	event->pmu_ctx = NULL; /* _free_event() */
13877 err_unlock:
13878 	mutex_unlock(&ctx->mutex);
13879 	perf_unpin_context(ctx);
13880 	put_ctx(ctx);
13881 err_alloc:
13882 	put_event(event);
13883 err:
13884 	return ERR_PTR(err);
13885 }
13886 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
13887 
__perf_pmu_remove(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct perf_event_groups * groups,struct list_head * events)13888 static void __perf_pmu_remove(struct perf_event_context *ctx,
13889 			      int cpu, struct pmu *pmu,
13890 			      struct perf_event_groups *groups,
13891 			      struct list_head *events)
13892 {
13893 	struct perf_event *event, *sibling;
13894 
13895 	perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
13896 		perf_remove_from_context(event, 0);
13897 		put_pmu_ctx(event->pmu_ctx);
13898 		list_add(&event->migrate_entry, events);
13899 
13900 		for_each_sibling_event(sibling, event) {
13901 			perf_remove_from_context(sibling, 0);
13902 			put_pmu_ctx(sibling->pmu_ctx);
13903 			list_add(&sibling->migrate_entry, events);
13904 		}
13905 	}
13906 }
13907 
__perf_pmu_install_event(struct pmu * pmu,struct perf_event_context * ctx,int cpu,struct perf_event * event)13908 static void __perf_pmu_install_event(struct pmu *pmu,
13909 				     struct perf_event_context *ctx,
13910 				     int cpu, struct perf_event *event)
13911 {
13912 	struct perf_event_pmu_context *epc;
13913 	struct perf_event_context *old_ctx = event->ctx;
13914 
13915 	get_ctx(ctx); /* normally find_get_context() */
13916 
13917 	event->cpu = cpu;
13918 	epc = find_get_pmu_context(pmu, ctx, event);
13919 	event->pmu_ctx = epc;
13920 
13921 	if (event->state >= PERF_EVENT_STATE_OFF)
13922 		event->state = PERF_EVENT_STATE_INACTIVE;
13923 	perf_install_in_context(ctx, event, cpu);
13924 
13925 	/*
13926 	 * Now that event->ctx is updated and visible, put the old ctx.
13927 	 */
13928 	put_ctx(old_ctx);
13929 }
13930 
__perf_pmu_install(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct list_head * events)13931 static void __perf_pmu_install(struct perf_event_context *ctx,
13932 			       int cpu, struct pmu *pmu, struct list_head *events)
13933 {
13934 	struct perf_event *event, *tmp;
13935 
13936 	/*
13937 	 * Re-instate events in 2 passes.
13938 	 *
13939 	 * Skip over group leaders and only install siblings on this first
13940 	 * pass, siblings will not get enabled without a leader, however a
13941 	 * leader will enable its siblings, even if those are still on the old
13942 	 * context.
13943 	 */
13944 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13945 		if (event->group_leader == event)
13946 			continue;
13947 
13948 		list_del(&event->migrate_entry);
13949 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13950 	}
13951 
13952 	/*
13953 	 * Once all the siblings are setup properly, install the group leaders
13954 	 * to make it go.
13955 	 */
13956 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13957 		list_del(&event->migrate_entry);
13958 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13959 	}
13960 }
13961 
perf_pmu_migrate_context(struct pmu * pmu,int src_cpu,int dst_cpu)13962 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
13963 {
13964 	struct perf_event_context *src_ctx, *dst_ctx;
13965 	LIST_HEAD(events);
13966 
13967 	/*
13968 	 * Since per-cpu context is persistent, no need to grab an extra
13969 	 * reference.
13970 	 */
13971 	src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
13972 	dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
13973 
13974 	/*
13975 	 * See perf_event_ctx_lock() for comments on the details
13976 	 * of swizzling perf_event::ctx.
13977 	 */
13978 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
13979 
13980 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
13981 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
13982 
13983 	if (!list_empty(&events)) {
13984 		/*
13985 		 * Wait for the events to quiesce before re-instating them.
13986 		 */
13987 		synchronize_rcu();
13988 
13989 		__perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13990 	}
13991 
13992 	mutex_unlock(&dst_ctx->mutex);
13993 	mutex_unlock(&src_ctx->mutex);
13994 }
13995 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13996 
sync_child_event(struct perf_event * child_event)13997 static void sync_child_event(struct perf_event *child_event)
13998 {
13999 	struct perf_event *parent_event = child_event->parent;
14000 	u64 child_val;
14001 
14002 	if (child_event->attr.inherit_stat) {
14003 		struct task_struct *task = child_event->ctx->task;
14004 
14005 		if (task && task != TASK_TOMBSTONE)
14006 			perf_event_read_event(child_event, task);
14007 	}
14008 
14009 	child_val = perf_event_count(child_event, false);
14010 
14011 	/*
14012 	 * Add back the child's count to the parent's count:
14013 	 */
14014 	atomic64_add(child_val, &parent_event->child_count);
14015 	atomic64_add(child_event->total_time_enabled,
14016 		     &parent_event->child_total_time_enabled);
14017 	atomic64_add(child_event->total_time_running,
14018 		     &parent_event->child_total_time_running);
14019 }
14020 
14021 static void
perf_event_exit_event(struct perf_event * event,struct perf_event_context * ctx,bool revoke)14022 perf_event_exit_event(struct perf_event *event,
14023 		      struct perf_event_context *ctx, bool revoke)
14024 {
14025 	struct perf_event *parent_event = event->parent;
14026 	unsigned long detach_flags = DETACH_EXIT;
14027 	unsigned int attach_state;
14028 
14029 	if (parent_event) {
14030 		/*
14031 		 * Do not destroy the 'original' grouping; because of the
14032 		 * context switch optimization the original events could've
14033 		 * ended up in a random child task.
14034 		 *
14035 		 * If we were to destroy the original group, all group related
14036 		 * operations would cease to function properly after this
14037 		 * random child dies.
14038 		 *
14039 		 * Do destroy all inherited groups, we don't care about those
14040 		 * and being thorough is better.
14041 		 */
14042 		detach_flags |= DETACH_GROUP | DETACH_CHILD;
14043 		mutex_lock(&parent_event->child_mutex);
14044 		/* PERF_ATTACH_ITRACE might be set concurrently */
14045 		attach_state = READ_ONCE(event->attach_state);
14046 	}
14047 
14048 	if (revoke)
14049 		detach_flags |= DETACH_GROUP | DETACH_REVOKE;
14050 
14051 	perf_remove_from_context(event, detach_flags);
14052 	/*
14053 	 * Child events can be freed.
14054 	 */
14055 	if (parent_event) {
14056 		mutex_unlock(&parent_event->child_mutex);
14057 
14058 		/*
14059 		 * Match the refcount initialization. Make sure it doesn't happen
14060 		 * twice if pmu_detach_event() calls it on an already exited task.
14061 		 */
14062 		if (attach_state & PERF_ATTACH_CHILD) {
14063 			/*
14064 			 * Kick perf_poll() for is_event_hup();
14065 			 */
14066 			perf_event_wakeup(parent_event);
14067 			/*
14068 			 * pmu_detach_event() will have an extra refcount.
14069 			 * perf_pending_task() might have one too.
14070 			 */
14071 			put_event(event);
14072 		}
14073 
14074 		return;
14075 	}
14076 
14077 	/*
14078 	 * Parent events are governed by their filedesc, retain them.
14079 	 */
14080 	perf_event_wakeup(event);
14081 }
14082 
perf_event_exit_task_context(struct task_struct * task,bool exit)14083 static void perf_event_exit_task_context(struct task_struct *task, bool exit)
14084 {
14085 	struct perf_event_context *ctx, *clone_ctx = NULL;
14086 	struct perf_event *child_event, *next;
14087 
14088 	ctx = perf_pin_task_context(task);
14089 	if (!ctx)
14090 		return;
14091 
14092 	/*
14093 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
14094 	 * ctx::mutex over the entire thing. This serializes against almost
14095 	 * everything that wants to access the ctx.
14096 	 *
14097 	 * The exception is sys_perf_event_open() /
14098 	 * perf_event_create_kernel_count() which does find_get_context()
14099 	 * without ctx::mutex (it cannot because of the move_group double mutex
14100 	 * lock thing). See the comments in perf_install_in_context().
14101 	 */
14102 	mutex_lock(&ctx->mutex);
14103 
14104 	/*
14105 	 * In a single ctx::lock section, de-schedule the events and detach the
14106 	 * context from the task such that we cannot ever get it scheduled back
14107 	 * in.
14108 	 */
14109 	raw_spin_lock_irq(&ctx->lock);
14110 	if (exit)
14111 		task_ctx_sched_out(ctx, NULL, EVENT_ALL);
14112 
14113 	/*
14114 	 * Now that the context is inactive, destroy the task <-> ctx relation
14115 	 * and mark the context dead.
14116 	 */
14117 	RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
14118 	put_ctx(ctx); /* cannot be last */
14119 	WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
14120 	put_task_struct(task); /* cannot be last */
14121 
14122 	clone_ctx = unclone_ctx(ctx);
14123 	raw_spin_unlock_irq(&ctx->lock);
14124 
14125 	if (clone_ctx)
14126 		put_ctx(clone_ctx);
14127 
14128 	/*
14129 	 * Report the task dead after unscheduling the events so that we
14130 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
14131 	 * get a few PERF_RECORD_READ events.
14132 	 */
14133 	if (exit)
14134 		perf_event_task(task, ctx, 0);
14135 
14136 	list_for_each_entry_safe(child_event, next, &ctx->event_list, event_entry)
14137 		perf_event_exit_event(child_event, ctx, false);
14138 
14139 	mutex_unlock(&ctx->mutex);
14140 
14141 	if (!exit) {
14142 		/*
14143 		 * perf_event_release_kernel() could still have a reference on
14144 		 * this context. In that case we must wait for these events to
14145 		 * have been freed (in particular all their references to this
14146 		 * task must've been dropped).
14147 		 *
14148 		 * Without this copy_process() will unconditionally free this
14149 		 * task (irrespective of its reference count) and
14150 		 * _free_event()'s put_task_struct(event->hw.target) will be a
14151 		 * use-after-free.
14152 		 *
14153 		 * Wait for all events to drop their context reference.
14154 		 */
14155 		wait_var_event(&ctx->refcount,
14156 			       refcount_read(&ctx->refcount) == 1);
14157 	}
14158 	put_ctx(ctx);
14159 }
14160 
14161 /*
14162  * When a task exits, feed back event values to parent events.
14163  *
14164  * Can be called with exec_update_lock held when called from
14165  * setup_new_exec().
14166  */
perf_event_exit_task(struct task_struct * task)14167 void perf_event_exit_task(struct task_struct *task)
14168 {
14169 	struct perf_event *event, *tmp;
14170 
14171 	WARN_ON_ONCE(task != current);
14172 
14173 	mutex_lock(&task->perf_event_mutex);
14174 	list_for_each_entry_safe(event, tmp, &task->perf_event_list,
14175 				 owner_entry) {
14176 		list_del_init(&event->owner_entry);
14177 
14178 		/*
14179 		 * Ensure the list deletion is visible before we clear
14180 		 * the owner, closes a race against perf_release() where
14181 		 * we need to serialize on the owner->perf_event_mutex.
14182 		 */
14183 		smp_store_release(&event->owner, NULL);
14184 	}
14185 	mutex_unlock(&task->perf_event_mutex);
14186 
14187 	perf_event_exit_task_context(task, true);
14188 
14189 	/*
14190 	 * The perf_event_exit_task_context calls perf_event_task
14191 	 * with task's task_ctx, which generates EXIT events for
14192 	 * task contexts and sets task->perf_event_ctxp[] to NULL.
14193 	 * At this point we need to send EXIT events to cpu contexts.
14194 	 */
14195 	perf_event_task(task, NULL, 0);
14196 
14197 	/*
14198 	 * Detach the perf_ctx_data for the system-wide event.
14199 	 */
14200 	guard(percpu_read)(&global_ctx_data_rwsem);
14201 	detach_task_ctx_data(task);
14202 }
14203 
14204 /*
14205  * Free a context as created by inheritance by perf_event_init_task() below,
14206  * used by fork() in case of fail.
14207  *
14208  * Even though the task has never lived, the context and events have been
14209  * exposed through the child_list, so we must take care tearing it all down.
14210  */
perf_event_free_task(struct task_struct * task)14211 void perf_event_free_task(struct task_struct *task)
14212 {
14213 	perf_event_exit_task_context(task, false);
14214 }
14215 
perf_event_delayed_put(struct task_struct * task)14216 void perf_event_delayed_put(struct task_struct *task)
14217 {
14218 	WARN_ON_ONCE(task->perf_event_ctxp);
14219 }
14220 
perf_event_get(unsigned int fd)14221 struct file *perf_event_get(unsigned int fd)
14222 {
14223 	struct file *file = fget(fd);
14224 	if (!file)
14225 		return ERR_PTR(-EBADF);
14226 
14227 	if (file->f_op != &perf_fops) {
14228 		fput(file);
14229 		return ERR_PTR(-EBADF);
14230 	}
14231 
14232 	return file;
14233 }
14234 
perf_get_event(struct file * file)14235 const struct perf_event *perf_get_event(struct file *file)
14236 {
14237 	if (file->f_op != &perf_fops)
14238 		return ERR_PTR(-EINVAL);
14239 
14240 	return file->private_data;
14241 }
14242 
perf_event_attrs(struct perf_event * event)14243 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
14244 {
14245 	if (!event)
14246 		return ERR_PTR(-EINVAL);
14247 
14248 	return &event->attr;
14249 }
14250 
perf_allow_kernel(void)14251 int perf_allow_kernel(void)
14252 {
14253 	if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
14254 		return -EACCES;
14255 
14256 	return security_perf_event_open(PERF_SECURITY_KERNEL);
14257 }
14258 EXPORT_SYMBOL_GPL(perf_allow_kernel);
14259 
14260 /*
14261  * Inherit an event from parent task to child task.
14262  *
14263  * Returns:
14264  *  - valid pointer on success
14265  *  - NULL for orphaned events
14266  *  - IS_ERR() on error
14267  */
14268 static struct perf_event *
inherit_event(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event * group_leader,struct perf_event_context * child_ctx)14269 inherit_event(struct perf_event *parent_event,
14270 	      struct task_struct *parent,
14271 	      struct perf_event_context *parent_ctx,
14272 	      struct task_struct *child,
14273 	      struct perf_event *group_leader,
14274 	      struct perf_event_context *child_ctx)
14275 {
14276 	enum perf_event_state parent_state = parent_event->state;
14277 	struct perf_event_pmu_context *pmu_ctx;
14278 	struct perf_event *child_event;
14279 	unsigned long flags;
14280 
14281 	/*
14282 	 * Instead of creating recursive hierarchies of events,
14283 	 * we link inherited events back to the original parent,
14284 	 * which has a filp for sure, which we use as the reference
14285 	 * count:
14286 	 */
14287 	if (parent_event->parent)
14288 		parent_event = parent_event->parent;
14289 
14290 	if (parent_event->state <= PERF_EVENT_STATE_REVOKED)
14291 		return NULL;
14292 
14293 	/*
14294 	 * Event creation should be under SRCU, see perf_pmu_unregister().
14295 	 */
14296 	guard(srcu)(&pmus_srcu);
14297 
14298 	child_event = perf_event_alloc(&parent_event->attr,
14299 					   parent_event->cpu,
14300 					   child,
14301 					   group_leader, parent_event,
14302 					   NULL, NULL, -1);
14303 	if (IS_ERR(child_event))
14304 		return child_event;
14305 
14306 	get_ctx(child_ctx);
14307 	child_event->ctx = child_ctx;
14308 
14309 	pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
14310 	if (IS_ERR(pmu_ctx)) {
14311 		free_event(child_event);
14312 		return ERR_CAST(pmu_ctx);
14313 	}
14314 	child_event->pmu_ctx = pmu_ctx;
14315 
14316 	/*
14317 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
14318 	 * must be under the same lock in order to serialize against
14319 	 * perf_event_release_kernel(), such that either we must observe
14320 	 * is_orphaned_event() or they will observe us on the child_list.
14321 	 */
14322 	mutex_lock(&parent_event->child_mutex);
14323 	if (is_orphaned_event(parent_event) ||
14324 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
14325 		mutex_unlock(&parent_event->child_mutex);
14326 		free_event(child_event);
14327 		return NULL;
14328 	}
14329 
14330 	/*
14331 	 * Make the child state follow the state of the parent event,
14332 	 * not its attr.disabled bit.  We hold the parent's mutex,
14333 	 * so we won't race with perf_event_{en, dis}able_family.
14334 	 */
14335 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
14336 		child_event->state = PERF_EVENT_STATE_INACTIVE;
14337 	else
14338 		child_event->state = PERF_EVENT_STATE_OFF;
14339 
14340 	if (parent_event->attr.freq) {
14341 		u64 sample_period = parent_event->hw.sample_period;
14342 		struct hw_perf_event *hwc = &child_event->hw;
14343 
14344 		hwc->sample_period = sample_period;
14345 		hwc->last_period   = sample_period;
14346 
14347 		local64_set(&hwc->period_left, sample_period);
14348 	}
14349 
14350 	child_event->overflow_handler = parent_event->overflow_handler;
14351 	child_event->overflow_handler_context
14352 		= parent_event->overflow_handler_context;
14353 
14354 	/*
14355 	 * Precalculate sample_data sizes
14356 	 */
14357 	perf_event__header_size(child_event);
14358 	perf_event__id_header_size(child_event);
14359 
14360 	/*
14361 	 * Link it up in the child's context:
14362 	 */
14363 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
14364 	add_event_to_ctx(child_event, child_ctx);
14365 	child_event->attach_state |= PERF_ATTACH_CHILD;
14366 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
14367 
14368 	/*
14369 	 * Link this into the parent event's child list
14370 	 */
14371 	list_add_tail(&child_event->child_list, &parent_event->child_list);
14372 	mutex_unlock(&parent_event->child_mutex);
14373 
14374 	return child_event;
14375 }
14376 
14377 /*
14378  * Inherits an event group.
14379  *
14380  * This will quietly suppress orphaned events; !inherit_event() is not an error.
14381  * This matches with perf_event_release_kernel() removing all child events.
14382  *
14383  * Returns:
14384  *  - 0 on success
14385  *  - <0 on error
14386  */
inherit_group(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event_context * child_ctx)14387 static int inherit_group(struct perf_event *parent_event,
14388 	      struct task_struct *parent,
14389 	      struct perf_event_context *parent_ctx,
14390 	      struct task_struct *child,
14391 	      struct perf_event_context *child_ctx)
14392 {
14393 	struct perf_event *leader;
14394 	struct perf_event *sub;
14395 	struct perf_event *child_ctr;
14396 
14397 	leader = inherit_event(parent_event, parent, parent_ctx,
14398 				 child, NULL, child_ctx);
14399 	if (IS_ERR(leader))
14400 		return PTR_ERR(leader);
14401 	/*
14402 	 * @leader can be NULL here because of is_orphaned_event(). In this
14403 	 * case inherit_event() will create individual events, similar to what
14404 	 * perf_group_detach() would do anyway.
14405 	 */
14406 	for_each_sibling_event(sub, parent_event) {
14407 		child_ctr = inherit_event(sub, parent, parent_ctx,
14408 					    child, leader, child_ctx);
14409 		if (IS_ERR(child_ctr))
14410 			return PTR_ERR(child_ctr);
14411 
14412 		if (sub->aux_event == parent_event && child_ctr &&
14413 		    !perf_get_aux_event(child_ctr, leader))
14414 			return -EINVAL;
14415 	}
14416 	if (leader)
14417 		leader->group_generation = parent_event->group_generation;
14418 	return 0;
14419 }
14420 
14421 /*
14422  * Creates the child task context and tries to inherit the event-group.
14423  *
14424  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
14425  * inherited_all set when we 'fail' to inherit an orphaned event; this is
14426  * consistent with perf_event_release_kernel() removing all child events.
14427  *
14428  * Returns:
14429  *  - 0 on success
14430  *  - <0 on error
14431  */
14432 static int
inherit_task_group(struct perf_event * event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,u64 clone_flags,int * inherited_all)14433 inherit_task_group(struct perf_event *event, struct task_struct *parent,
14434 		   struct perf_event_context *parent_ctx,
14435 		   struct task_struct *child,
14436 		   u64 clone_flags, int *inherited_all)
14437 {
14438 	struct perf_event_context *child_ctx;
14439 	int ret;
14440 
14441 	if (!event->attr.inherit ||
14442 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
14443 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
14444 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
14445 		*inherited_all = 0;
14446 		return 0;
14447 	}
14448 
14449 	child_ctx = child->perf_event_ctxp;
14450 	if (!child_ctx) {
14451 		/*
14452 		 * This is executed from the parent task context, so
14453 		 * inherit events that have been marked for cloning.
14454 		 * First allocate and initialize a context for the
14455 		 * child.
14456 		 */
14457 		child_ctx = alloc_perf_context(child);
14458 		if (!child_ctx)
14459 			return -ENOMEM;
14460 
14461 		child->perf_event_ctxp = child_ctx;
14462 	}
14463 
14464 	ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
14465 	if (ret)
14466 		*inherited_all = 0;
14467 
14468 	return ret;
14469 }
14470 
14471 /*
14472  * Initialize the perf_event context in task_struct
14473  */
perf_event_init_context(struct task_struct * child,u64 clone_flags)14474 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
14475 {
14476 	struct perf_event_context *child_ctx, *parent_ctx;
14477 	struct perf_event_context *cloned_ctx;
14478 	struct perf_event *event;
14479 	struct task_struct *parent = current;
14480 	int inherited_all = 1;
14481 	unsigned long flags;
14482 	int ret = 0;
14483 
14484 	if (likely(!parent->perf_event_ctxp))
14485 		return 0;
14486 
14487 	/*
14488 	 * If the parent's context is a clone, pin it so it won't get
14489 	 * swapped under us.
14490 	 */
14491 	parent_ctx = perf_pin_task_context(parent);
14492 	if (!parent_ctx)
14493 		return 0;
14494 
14495 	/*
14496 	 * No need to check if parent_ctx != NULL here; since we saw
14497 	 * it non-NULL earlier, the only reason for it to become NULL
14498 	 * is if we exit, and since we're currently in the middle of
14499 	 * a fork we can't be exiting at the same time.
14500 	 */
14501 
14502 	/*
14503 	 * Lock the parent list. No need to lock the child - not PID
14504 	 * hashed yet and not running, so nobody can access it.
14505 	 */
14506 	mutex_lock(&parent_ctx->mutex);
14507 
14508 	/*
14509 	 * We dont have to disable NMIs - we are only looking at
14510 	 * the list, not manipulating it:
14511 	 */
14512 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
14513 		ret = inherit_task_group(event, parent, parent_ctx,
14514 					 child, clone_flags, &inherited_all);
14515 		if (ret)
14516 			goto out_unlock;
14517 	}
14518 
14519 	/*
14520 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
14521 	 * to allocations, but we need to prevent rotation because
14522 	 * rotate_ctx() will change the list from interrupt context.
14523 	 */
14524 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
14525 	parent_ctx->rotate_disable = 1;
14526 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
14527 
14528 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
14529 		ret = inherit_task_group(event, parent, parent_ctx,
14530 					 child, clone_flags, &inherited_all);
14531 		if (ret)
14532 			goto out_unlock;
14533 	}
14534 
14535 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
14536 	parent_ctx->rotate_disable = 0;
14537 
14538 	child_ctx = child->perf_event_ctxp;
14539 
14540 	if (child_ctx && inherited_all) {
14541 		/*
14542 		 * Mark the child context as a clone of the parent
14543 		 * context, or of whatever the parent is a clone of.
14544 		 *
14545 		 * Note that if the parent is a clone, the holding of
14546 		 * parent_ctx->lock avoids it from being uncloned.
14547 		 */
14548 		cloned_ctx = parent_ctx->parent_ctx;
14549 		if (cloned_ctx) {
14550 			child_ctx->parent_ctx = cloned_ctx;
14551 			child_ctx->parent_gen = parent_ctx->parent_gen;
14552 		} else {
14553 			child_ctx->parent_ctx = parent_ctx;
14554 			child_ctx->parent_gen = parent_ctx->generation;
14555 		}
14556 		get_ctx(child_ctx->parent_ctx);
14557 	}
14558 
14559 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
14560 out_unlock:
14561 	mutex_unlock(&parent_ctx->mutex);
14562 
14563 	perf_unpin_context(parent_ctx);
14564 	put_ctx(parent_ctx);
14565 
14566 	return ret;
14567 }
14568 
14569 /*
14570  * Initialize the perf_event context in task_struct
14571  */
perf_event_init_task(struct task_struct * child,u64 clone_flags)14572 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
14573 {
14574 	int ret;
14575 
14576 	memset(child->perf_recursion, 0, sizeof(child->perf_recursion));
14577 	child->perf_event_ctxp = NULL;
14578 	mutex_init(&child->perf_event_mutex);
14579 	INIT_LIST_HEAD(&child->perf_event_list);
14580 	child->perf_ctx_data = NULL;
14581 
14582 	ret = perf_event_init_context(child, clone_flags);
14583 	if (ret) {
14584 		perf_event_free_task(child);
14585 		return ret;
14586 	}
14587 
14588 	return 0;
14589 }
14590 
perf_event_init_all_cpus(void)14591 static void __init perf_event_init_all_cpus(void)
14592 {
14593 	struct swevent_htable *swhash;
14594 	struct perf_cpu_context *cpuctx;
14595 	int cpu;
14596 
14597 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
14598 	zalloc_cpumask_var(&perf_online_core_mask, GFP_KERNEL);
14599 	zalloc_cpumask_var(&perf_online_die_mask, GFP_KERNEL);
14600 	zalloc_cpumask_var(&perf_online_cluster_mask, GFP_KERNEL);
14601 	zalloc_cpumask_var(&perf_online_pkg_mask, GFP_KERNEL);
14602 	zalloc_cpumask_var(&perf_online_sys_mask, GFP_KERNEL);
14603 
14604 
14605 	for_each_possible_cpu(cpu) {
14606 		swhash = &per_cpu(swevent_htable, cpu);
14607 		mutex_init(&swhash->hlist_mutex);
14608 
14609 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
14610 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
14611 
14612 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
14613 
14614 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14615 		__perf_event_init_context(&cpuctx->ctx);
14616 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
14617 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
14618 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
14619 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
14620 		cpuctx->heap = cpuctx->heap_default;
14621 	}
14622 }
14623 
perf_swevent_init_cpu(unsigned int cpu)14624 static void perf_swevent_init_cpu(unsigned int cpu)
14625 {
14626 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
14627 
14628 	mutex_lock(&swhash->hlist_mutex);
14629 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
14630 		struct swevent_hlist *hlist;
14631 
14632 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
14633 		WARN_ON(!hlist);
14634 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
14635 	}
14636 	mutex_unlock(&swhash->hlist_mutex);
14637 }
14638 
14639 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
__perf_event_exit_context(void * __info)14640 static void __perf_event_exit_context(void *__info)
14641 {
14642 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
14643 	struct perf_event_context *ctx = __info;
14644 	struct perf_event *event;
14645 
14646 	raw_spin_lock(&ctx->lock);
14647 	ctx_sched_out(ctx, NULL, EVENT_TIME);
14648 	list_for_each_entry(event, &ctx->event_list, event_entry)
14649 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
14650 	raw_spin_unlock(&ctx->lock);
14651 }
14652 
perf_event_clear_cpumask(unsigned int cpu)14653 static void perf_event_clear_cpumask(unsigned int cpu)
14654 {
14655 	int target[PERF_PMU_MAX_SCOPE];
14656 	unsigned int scope;
14657 	struct pmu *pmu;
14658 
14659 	cpumask_clear_cpu(cpu, perf_online_mask);
14660 
14661 	for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14662 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14663 		struct cpumask *pmu_cpumask = perf_scope_cpumask(scope);
14664 
14665 		target[scope] = -1;
14666 		if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14667 			continue;
14668 
14669 		if (!cpumask_test_and_clear_cpu(cpu, pmu_cpumask))
14670 			continue;
14671 		target[scope] = cpumask_any_but(cpumask, cpu);
14672 		if (target[scope] < nr_cpu_ids)
14673 			cpumask_set_cpu(target[scope], pmu_cpumask);
14674 	}
14675 
14676 	/* migrate */
14677 	list_for_each_entry(pmu, &pmus, entry) {
14678 		if (pmu->scope == PERF_PMU_SCOPE_NONE ||
14679 		    WARN_ON_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE))
14680 			continue;
14681 
14682 		if (target[pmu->scope] >= 0 && target[pmu->scope] < nr_cpu_ids)
14683 			perf_pmu_migrate_context(pmu, cpu, target[pmu->scope]);
14684 	}
14685 }
14686 
perf_event_exit_cpu_context(int cpu)14687 static void perf_event_exit_cpu_context(int cpu)
14688 {
14689 	struct perf_cpu_context *cpuctx;
14690 	struct perf_event_context *ctx;
14691 
14692 	// XXX simplify cpuctx->online
14693 	mutex_lock(&pmus_lock);
14694 	/*
14695 	 * Clear the cpumasks, and migrate to other CPUs if possible.
14696 	 * Must be invoked before the __perf_event_exit_context.
14697 	 */
14698 	perf_event_clear_cpumask(cpu);
14699 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14700 	ctx = &cpuctx->ctx;
14701 
14702 	mutex_lock(&ctx->mutex);
14703 	smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
14704 	cpuctx->online = 0;
14705 	mutex_unlock(&ctx->mutex);
14706 	mutex_unlock(&pmus_lock);
14707 }
14708 #else
14709 
perf_event_exit_cpu_context(int cpu)14710 static void perf_event_exit_cpu_context(int cpu) { }
14711 
14712 #endif
14713 
perf_event_setup_cpumask(unsigned int cpu)14714 static void perf_event_setup_cpumask(unsigned int cpu)
14715 {
14716 	struct cpumask *pmu_cpumask;
14717 	unsigned int scope;
14718 
14719 	/*
14720 	 * Early boot stage, the cpumask hasn't been set yet.
14721 	 * The perf_online_<domain>_masks includes the first CPU of each domain.
14722 	 * Always unconditionally set the boot CPU for the perf_online_<domain>_masks.
14723 	 */
14724 	if (cpumask_empty(perf_online_mask)) {
14725 		for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14726 			pmu_cpumask = perf_scope_cpumask(scope);
14727 			if (WARN_ON_ONCE(!pmu_cpumask))
14728 				continue;
14729 			cpumask_set_cpu(cpu, pmu_cpumask);
14730 		}
14731 		goto end;
14732 	}
14733 
14734 	for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14735 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14736 
14737 		pmu_cpumask = perf_scope_cpumask(scope);
14738 
14739 		if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14740 			continue;
14741 
14742 		if (!cpumask_empty(cpumask) &&
14743 		    cpumask_any_and(pmu_cpumask, cpumask) >= nr_cpu_ids)
14744 			cpumask_set_cpu(cpu, pmu_cpumask);
14745 	}
14746 end:
14747 	cpumask_set_cpu(cpu, perf_online_mask);
14748 }
14749 
perf_event_init_cpu(unsigned int cpu)14750 int perf_event_init_cpu(unsigned int cpu)
14751 {
14752 	struct perf_cpu_context *cpuctx;
14753 	struct perf_event_context *ctx;
14754 
14755 	perf_swevent_init_cpu(cpu);
14756 
14757 	mutex_lock(&pmus_lock);
14758 	perf_event_setup_cpumask(cpu);
14759 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14760 	ctx = &cpuctx->ctx;
14761 
14762 	mutex_lock(&ctx->mutex);
14763 	cpuctx->online = 1;
14764 	mutex_unlock(&ctx->mutex);
14765 	mutex_unlock(&pmus_lock);
14766 
14767 	return 0;
14768 }
14769 
perf_event_exit_cpu(unsigned int cpu)14770 int perf_event_exit_cpu(unsigned int cpu)
14771 {
14772 	perf_event_exit_cpu_context(cpu);
14773 	return 0;
14774 }
14775 
14776 static int
perf_reboot(struct notifier_block * notifier,unsigned long val,void * v)14777 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
14778 {
14779 	int cpu;
14780 
14781 	for_each_online_cpu(cpu)
14782 		perf_event_exit_cpu(cpu);
14783 
14784 	return NOTIFY_OK;
14785 }
14786 
14787 /*
14788  * Run the perf reboot notifier at the very last possible moment so that
14789  * the generic watchdog code runs as long as possible.
14790  */
14791 static struct notifier_block perf_reboot_notifier = {
14792 	.notifier_call = perf_reboot,
14793 	.priority = INT_MIN,
14794 };
14795 
perf_event_init(void)14796 void __init perf_event_init(void)
14797 {
14798 	int ret;
14799 
14800 	idr_init(&pmu_idr);
14801 
14802 	perf_event_init_all_cpus();
14803 	init_srcu_struct(&pmus_srcu);
14804 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
14805 	perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
14806 	perf_pmu_register(&perf_task_clock, "task_clock", -1);
14807 	perf_tp_register();
14808 	perf_event_init_cpu(smp_processor_id());
14809 	register_reboot_notifier(&perf_reboot_notifier);
14810 
14811 	ret = init_hw_breakpoint();
14812 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
14813 
14814 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
14815 
14816 	/*
14817 	 * Build time assertion that we keep the data_head at the intended
14818 	 * location.  IOW, validation we got the __reserved[] size right.
14819 	 */
14820 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
14821 		     != 1024);
14822 }
14823 
perf_event_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)14824 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
14825 			      char *page)
14826 {
14827 	struct perf_pmu_events_attr *pmu_attr =
14828 		container_of(attr, struct perf_pmu_events_attr, attr);
14829 
14830 	if (pmu_attr->event_str)
14831 		return sprintf(page, "%s\n", pmu_attr->event_str);
14832 
14833 	return 0;
14834 }
14835 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
14836 
perf_event_sysfs_init(void)14837 static int __init perf_event_sysfs_init(void)
14838 {
14839 	struct pmu *pmu;
14840 	int ret;
14841 
14842 	mutex_lock(&pmus_lock);
14843 
14844 	ret = bus_register(&pmu_bus);
14845 	if (ret)
14846 		goto unlock;
14847 
14848 	list_for_each_entry(pmu, &pmus, entry) {
14849 		if (pmu->dev)
14850 			continue;
14851 
14852 		ret = pmu_dev_alloc(pmu);
14853 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
14854 	}
14855 	pmu_bus_running = 1;
14856 	ret = 0;
14857 
14858 unlock:
14859 	mutex_unlock(&pmus_lock);
14860 
14861 	return ret;
14862 }
14863 device_initcall(perf_event_sysfs_init);
14864 
14865 #ifdef CONFIG_CGROUP_PERF
14866 static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)14867 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
14868 {
14869 	struct perf_cgroup *jc;
14870 
14871 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
14872 	if (!jc)
14873 		return ERR_PTR(-ENOMEM);
14874 
14875 	jc->info = alloc_percpu(struct perf_cgroup_info);
14876 	if (!jc->info) {
14877 		kfree(jc);
14878 		return ERR_PTR(-ENOMEM);
14879 	}
14880 
14881 	return &jc->css;
14882 }
14883 
perf_cgroup_css_free(struct cgroup_subsys_state * css)14884 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
14885 {
14886 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
14887 
14888 	free_percpu(jc->info);
14889 	kfree(jc);
14890 }
14891 
perf_cgroup_css_online(struct cgroup_subsys_state * css)14892 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
14893 {
14894 	perf_event_cgroup(css->cgroup);
14895 	return 0;
14896 }
14897 
__perf_cgroup_move(void * info)14898 static int __perf_cgroup_move(void *info)
14899 {
14900 	struct task_struct *task = info;
14901 
14902 	preempt_disable();
14903 	perf_cgroup_switch(task);
14904 	preempt_enable();
14905 
14906 	return 0;
14907 }
14908 
perf_cgroup_attach(struct cgroup_taskset * tset)14909 static void perf_cgroup_attach(struct cgroup_taskset *tset)
14910 {
14911 	struct task_struct *task;
14912 	struct cgroup_subsys_state *css;
14913 
14914 	cgroup_taskset_for_each(task, css, tset)
14915 		task_function_call(task, __perf_cgroup_move, task);
14916 }
14917 
14918 struct cgroup_subsys perf_event_cgrp_subsys = {
14919 	.css_alloc	= perf_cgroup_css_alloc,
14920 	.css_free	= perf_cgroup_css_free,
14921 	.css_online	= perf_cgroup_css_online,
14922 	.attach		= perf_cgroup_attach,
14923 	/*
14924 	 * Implicitly enable on dfl hierarchy so that perf events can
14925 	 * always be filtered by cgroup2 path as long as perf_event
14926 	 * controller is not mounted on a legacy hierarchy.
14927 	 */
14928 	.implicit_on_dfl = true,
14929 	.threaded	= true,
14930 };
14931 #endif /* CONFIG_CGROUP_PERF */
14932 
14933 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
14934