1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * intel_pstate.c: Native P state management for Intel processors
4 *
5 * (C) Copyright 2012 Intel Corporation
6 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/sched/smt.h>
20 #include <linux/list.h>
21 #include <linux/cpu.h>
22 #include <linux/cpufreq.h>
23 #include <linux/sysfs.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/acpi.h>
27 #include <linux/vmalloc.h>
28 #include <linux/pm_qos.h>
29 #include <linux/bitfield.h>
30 #include <trace/events/power.h>
31 #include <linux/units.h>
32
33 #include <asm/cpu.h>
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39 #include "../drivers/thermal/intel/thermal_interrupt.h"
40
41 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
42
43 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
44 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP 5000
45 #define INTEL_CPUFREQ_TRANSITION_DELAY 500
46
47 #ifdef CONFIG_ACPI
48 #include <acpi/processor.h>
49 #include <acpi/cppc_acpi.h>
50 #endif
51
52 #define FRAC_BITS 8
53 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
54 #define fp_toint(X) ((X) >> FRAC_BITS)
55
56 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
57
58 #define EXT_BITS 6
59 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
60 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
61 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
62
mul_fp(int32_t x,int32_t y)63 static inline int32_t mul_fp(int32_t x, int32_t y)
64 {
65 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
66 }
67
div_fp(s64 x,s64 y)68 static inline int32_t div_fp(s64 x, s64 y)
69 {
70 return div64_s64((int64_t)x << FRAC_BITS, y);
71 }
72
ceiling_fp(int32_t x)73 static inline int ceiling_fp(int32_t x)
74 {
75 int mask, ret;
76
77 ret = fp_toint(x);
78 mask = (1 << FRAC_BITS) - 1;
79 if (x & mask)
80 ret += 1;
81 return ret;
82 }
83
mul_ext_fp(u64 x,u64 y)84 static inline u64 mul_ext_fp(u64 x, u64 y)
85 {
86 return (x * y) >> EXT_FRAC_BITS;
87 }
88
div_ext_fp(u64 x,u64 y)89 static inline u64 div_ext_fp(u64 x, u64 y)
90 {
91 return div64_u64(x << EXT_FRAC_BITS, y);
92 }
93
94 /**
95 * struct sample - Store performance sample
96 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
97 * performance during last sample period
98 * @busy_scaled: Scaled busy value which is used to calculate next
99 * P state. This can be different than core_avg_perf
100 * to account for cpu idle period
101 * @aperf: Difference of actual performance frequency clock count
102 * read from APERF MSR between last and current sample
103 * @mperf: Difference of maximum performance frequency clock count
104 * read from MPERF MSR between last and current sample
105 * @tsc: Difference of time stamp counter between last and
106 * current sample
107 * @time: Current time from scheduler
108 *
109 * This structure is used in the cpudata structure to store performance sample
110 * data for choosing next P State.
111 */
112 struct sample {
113 int32_t core_avg_perf;
114 int32_t busy_scaled;
115 u64 aperf;
116 u64 mperf;
117 u64 tsc;
118 u64 time;
119 };
120
121 /**
122 * struct pstate_data - Store P state data
123 * @current_pstate: Current requested P state
124 * @min_pstate: Min P state possible for this platform
125 * @max_pstate: Max P state possible for this platform
126 * @max_pstate_physical:This is physical Max P state for a processor
127 * This can be higher than the max_pstate which can
128 * be limited by platform thermal design power limits
129 * @perf_ctl_scaling: PERF_CTL P-state to frequency scaling factor
130 * @scaling: Scaling factor between performance and frequency
131 * @turbo_pstate: Max Turbo P state possible for this platform
132 * @min_freq: @min_pstate frequency in cpufreq units
133 * @max_freq: @max_pstate frequency in cpufreq units
134 * @turbo_freq: @turbo_pstate frequency in cpufreq units
135 *
136 * Stores the per cpu model P state limits and current P state.
137 */
138 struct pstate_data {
139 int current_pstate;
140 int min_pstate;
141 int max_pstate;
142 int max_pstate_physical;
143 int perf_ctl_scaling;
144 int scaling;
145 int turbo_pstate;
146 unsigned int min_freq;
147 unsigned int max_freq;
148 unsigned int turbo_freq;
149 };
150
151 /**
152 * struct vid_data - Stores voltage information data
153 * @min: VID data for this platform corresponding to
154 * the lowest P state
155 * @max: VID data corresponding to the highest P State.
156 * @turbo: VID data for turbo P state
157 * @ratio: Ratio of (vid max - vid min) /
158 * (max P state - Min P State)
159 *
160 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
161 * This data is used in Atom platforms, where in addition to target P state,
162 * the voltage data needs to be specified to select next P State.
163 */
164 struct vid_data {
165 int min;
166 int max;
167 int turbo;
168 int32_t ratio;
169 };
170
171 /**
172 * struct global_params - Global parameters, mostly tunable via sysfs.
173 * @no_turbo: Whether or not to use turbo P-states.
174 * @turbo_disabled: Whether or not turbo P-states are available at all,
175 * based on the MSR_IA32_MISC_ENABLE value and whether or
176 * not the maximum reported turbo P-state is different from
177 * the maximum reported non-turbo one.
178 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
179 * P-state capacity.
180 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
181 * P-state capacity.
182 */
183 struct global_params {
184 bool no_turbo;
185 bool turbo_disabled;
186 int max_perf_pct;
187 int min_perf_pct;
188 };
189
190 /**
191 * struct cpudata - Per CPU instance data storage
192 * @cpu: CPU number for this instance data
193 * @policy: CPUFreq policy value
194 * @update_util: CPUFreq utility callback information
195 * @update_util_set: CPUFreq utility callback is set
196 * @iowait_boost: iowait-related boost fraction
197 * @last_update: Time of the last update.
198 * @pstate: Stores P state limits for this CPU
199 * @vid: Stores VID limits for this CPU
200 * @last_sample_time: Last Sample time
201 * @aperf_mperf_shift: APERF vs MPERF counting frequency difference
202 * @prev_aperf: Last APERF value read from APERF MSR
203 * @prev_mperf: Last MPERF value read from MPERF MSR
204 * @prev_tsc: Last timestamp counter (TSC) value
205 * @sample: Storage for storing last Sample data
206 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
207 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
208 * @acpi_perf_data: Stores ACPI perf information read from _PSS
209 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
210 * @epp_powersave: Last saved HWP energy performance preference
211 * (EPP) or energy performance bias (EPB),
212 * when policy switched to performance
213 * @epp_policy: Last saved policy used to set EPP/EPB
214 * @epp_default: Power on default HWP energy performance
215 * preference/bias
216 * @epp_cached: Cached HWP energy-performance preference value
217 * @hwp_req_cached: Cached value of the last HWP Request MSR
218 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR
219 * @last_io_update: Last time when IO wake flag was set
220 * @capacity_perf: Highest perf used for scale invariance
221 * @sched_flags: Store scheduler flags for possible cross CPU update
222 * @hwp_boost_min: Last HWP boosted min performance
223 * @suspended: Whether or not the driver has been suspended.
224 * @pd_registered: Set when a perf domain is registered for this CPU.
225 * @hwp_notify_work: workqueue for HWP notifications.
226 *
227 * This structure stores per CPU instance data for all CPUs.
228 */
229 struct cpudata {
230 int cpu;
231
232 unsigned int policy;
233 struct update_util_data update_util;
234 bool update_util_set;
235
236 struct pstate_data pstate;
237 struct vid_data vid;
238
239 u64 last_update;
240 u64 last_sample_time;
241 u64 aperf_mperf_shift;
242 u64 prev_aperf;
243 u64 prev_mperf;
244 u64 prev_tsc;
245 struct sample sample;
246 int32_t min_perf_ratio;
247 int32_t max_perf_ratio;
248 #ifdef CONFIG_ACPI
249 struct acpi_processor_performance acpi_perf_data;
250 bool valid_pss_table;
251 #endif
252 unsigned int iowait_boost;
253 s16 epp_powersave;
254 s16 epp_policy;
255 s16 epp_default;
256 s16 epp_cached;
257 u64 hwp_req_cached;
258 u64 hwp_cap_cached;
259 u64 last_io_update;
260 unsigned int capacity_perf;
261 unsigned int sched_flags;
262 u32 hwp_boost_min;
263 bool suspended;
264 #ifdef CONFIG_ENERGY_MODEL
265 bool pd_registered;
266 #endif
267 struct delayed_work hwp_notify_work;
268 };
269
270 static struct cpudata **all_cpu_data;
271
272 /**
273 * struct pstate_funcs - Per CPU model specific callbacks
274 * @get_max: Callback to get maximum non turbo effective P state
275 * @get_max_physical: Callback to get maximum non turbo physical P state
276 * @get_min: Callback to get minimum P state
277 * @get_turbo: Callback to get turbo P state
278 * @get_scaling: Callback to get frequency scaling factor
279 * @get_cpu_scaling: Get frequency scaling factor for a given cpu
280 * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
281 * @get_val: Callback to convert P state to actual MSR write value
282 * @get_vid: Callback to get VID data for Atom platforms
283 *
284 * Core and Atom CPU models have different way to get P State limits. This
285 * structure is used to store those callbacks.
286 */
287 struct pstate_funcs {
288 int (*get_max)(int cpu);
289 int (*get_max_physical)(int cpu);
290 int (*get_min)(int cpu);
291 int (*get_turbo)(int cpu);
292 int (*get_scaling)(void);
293 int (*get_cpu_scaling)(int cpu);
294 int (*get_aperf_mperf_shift)(void);
295 u64 (*get_val)(struct cpudata*, int pstate);
296 void (*get_vid)(struct cpudata *);
297 };
298
299 static struct pstate_funcs pstate_funcs __read_mostly;
300
301 static bool hwp_active __ro_after_init;
302 static int hwp_mode_bdw __ro_after_init;
303 static bool per_cpu_limits __ro_after_init;
304 static bool hwp_forced __ro_after_init;
305 static bool hwp_boost __read_mostly;
306 static bool hwp_is_hybrid;
307
308 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
309
310 #define INTEL_PSTATE_CORE_SCALING 100000
311 #define HYBRID_SCALING_FACTOR_ADL 78741
312 #define HYBRID_SCALING_FACTOR_MTL 80000
313 #define HYBRID_SCALING_FACTOR_LNL 86957
314
315 static int hybrid_scaling_factor;
316
core_get_scaling(void)317 static inline int core_get_scaling(void)
318 {
319 return INTEL_PSTATE_CORE_SCALING;
320 }
321
322 #ifdef CONFIG_ACPI
323 static bool acpi_ppc;
324 #endif
325
326 static struct global_params global;
327
328 static DEFINE_MUTEX(intel_pstate_driver_lock);
329 static DEFINE_MUTEX(intel_pstate_limits_lock);
330
331 #ifdef CONFIG_ACPI
332
intel_pstate_acpi_pm_profile_server(void)333 static bool intel_pstate_acpi_pm_profile_server(void)
334 {
335 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
336 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
337 return true;
338
339 return false;
340 }
341
intel_pstate_get_ppc_enable_status(void)342 static bool intel_pstate_get_ppc_enable_status(void)
343 {
344 if (intel_pstate_acpi_pm_profile_server())
345 return true;
346
347 return acpi_ppc;
348 }
349
350 #ifdef CONFIG_ACPI_CPPC_LIB
351
352 /* The work item is needed to avoid CPU hotplug locking issues */
intel_pstste_sched_itmt_work_fn(struct work_struct * work)353 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
354 {
355 sched_set_itmt_support();
356 }
357
358 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
359
360 #define CPPC_MAX_PERF U8_MAX
361
intel_pstate_set_itmt_prio(int cpu)362 static void intel_pstate_set_itmt_prio(int cpu)
363 {
364 struct cppc_perf_caps cppc_perf;
365 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
366 int ret;
367
368 ret = cppc_get_perf_caps(cpu, &cppc_perf);
369 /*
370 * If CPPC is not available, fall back to MSR_HWP_CAPABILITIES bits [8:0].
371 *
372 * Also, on some systems with overclocking enabled, CPPC.highest_perf is
373 * hardcoded to 0xff, so CPPC.highest_perf cannot be used to enable ITMT.
374 * Fall back to MSR_HWP_CAPABILITIES then too.
375 */
376 if (ret || cppc_perf.highest_perf == CPPC_MAX_PERF)
377 cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached));
378
379 /*
380 * The priorities can be set regardless of whether or not
381 * sched_set_itmt_support(true) has been called and it is valid to
382 * update them at any time after it has been called.
383 */
384 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
385
386 if (max_highest_perf <= min_highest_perf) {
387 if (cppc_perf.highest_perf > max_highest_perf)
388 max_highest_perf = cppc_perf.highest_perf;
389
390 if (cppc_perf.highest_perf < min_highest_perf)
391 min_highest_perf = cppc_perf.highest_perf;
392
393 if (max_highest_perf > min_highest_perf) {
394 /*
395 * This code can be run during CPU online under the
396 * CPU hotplug locks, so sched_set_itmt_support()
397 * cannot be called from here. Queue up a work item
398 * to invoke it.
399 */
400 schedule_work(&sched_itmt_work);
401 }
402 }
403 }
404
intel_pstate_get_cppc_guaranteed(int cpu)405 static int intel_pstate_get_cppc_guaranteed(int cpu)
406 {
407 struct cppc_perf_caps cppc_perf;
408 int ret;
409
410 ret = cppc_get_perf_caps(cpu, &cppc_perf);
411 if (ret)
412 return ret;
413
414 if (cppc_perf.guaranteed_perf)
415 return cppc_perf.guaranteed_perf;
416
417 return cppc_perf.nominal_perf;
418 }
419
intel_pstate_cppc_get_scaling(int cpu)420 static int intel_pstate_cppc_get_scaling(int cpu)
421 {
422 struct cppc_perf_caps cppc_perf;
423
424 /*
425 * Compute the perf-to-frequency scaling factor for the given CPU if
426 * possible, unless it would be 0.
427 */
428 if (!cppc_get_perf_caps(cpu, &cppc_perf) &&
429 cppc_perf.nominal_perf && cppc_perf.nominal_freq)
430 return div_u64(cppc_perf.nominal_freq * KHZ_PER_MHZ,
431 cppc_perf.nominal_perf);
432
433 return core_get_scaling();
434 }
435
436 #else /* CONFIG_ACPI_CPPC_LIB */
intel_pstate_set_itmt_prio(int cpu)437 static inline void intel_pstate_set_itmt_prio(int cpu)
438 {
439 }
440 #endif /* CONFIG_ACPI_CPPC_LIB */
441
intel_pstate_init_acpi_perf_limits(struct cpufreq_policy * policy)442 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
443 {
444 struct cpudata *cpu;
445 int ret;
446 int i;
447
448 if (hwp_active) {
449 intel_pstate_set_itmt_prio(policy->cpu);
450 return;
451 }
452
453 if (!intel_pstate_get_ppc_enable_status())
454 return;
455
456 cpu = all_cpu_data[policy->cpu];
457
458 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
459 policy->cpu);
460 if (ret)
461 return;
462
463 /*
464 * Check if the control value in _PSS is for PERF_CTL MSR, which should
465 * guarantee that the states returned by it map to the states in our
466 * list directly.
467 */
468 if (cpu->acpi_perf_data.control_register.space_id !=
469 ACPI_ADR_SPACE_FIXED_HARDWARE)
470 goto err;
471
472 /*
473 * If there is only one entry _PSS, simply ignore _PSS and continue as
474 * usual without taking _PSS into account
475 */
476 if (cpu->acpi_perf_data.state_count < 2)
477 goto err;
478
479 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
480 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
481 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
482 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
483 (u32) cpu->acpi_perf_data.states[i].core_frequency,
484 (u32) cpu->acpi_perf_data.states[i].power,
485 (u32) cpu->acpi_perf_data.states[i].control);
486 }
487
488 cpu->valid_pss_table = true;
489 pr_debug("_PPC limits will be enforced\n");
490
491 return;
492
493 err:
494 cpu->valid_pss_table = false;
495 acpi_processor_unregister_performance(policy->cpu);
496 }
497
intel_pstate_exit_perf_limits(struct cpufreq_policy * policy)498 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
499 {
500 struct cpudata *cpu;
501
502 cpu = all_cpu_data[policy->cpu];
503 if (!cpu->valid_pss_table)
504 return;
505
506 acpi_processor_unregister_performance(policy->cpu);
507 }
508 #else /* CONFIG_ACPI */
intel_pstate_init_acpi_perf_limits(struct cpufreq_policy * policy)509 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
510 {
511 }
512
intel_pstate_exit_perf_limits(struct cpufreq_policy * policy)513 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
514 {
515 }
516
intel_pstate_acpi_pm_profile_server(void)517 static inline bool intel_pstate_acpi_pm_profile_server(void)
518 {
519 return false;
520 }
521 #endif /* CONFIG_ACPI */
522
523 #ifndef CONFIG_ACPI_CPPC_LIB
intel_pstate_get_cppc_guaranteed(int cpu)524 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
525 {
526 return -ENOTSUPP;
527 }
528
intel_pstate_cppc_get_scaling(int cpu)529 static int intel_pstate_cppc_get_scaling(int cpu)
530 {
531 return core_get_scaling();
532 }
533 #endif /* CONFIG_ACPI_CPPC_LIB */
534
intel_pstate_freq_to_hwp_rel(struct cpudata * cpu,int freq,unsigned int relation)535 static int intel_pstate_freq_to_hwp_rel(struct cpudata *cpu, int freq,
536 unsigned int relation)
537 {
538 if (freq == cpu->pstate.turbo_freq)
539 return cpu->pstate.turbo_pstate;
540
541 if (freq == cpu->pstate.max_freq)
542 return cpu->pstate.max_pstate;
543
544 switch (relation) {
545 case CPUFREQ_RELATION_H:
546 return freq / cpu->pstate.scaling;
547 case CPUFREQ_RELATION_C:
548 return DIV_ROUND_CLOSEST(freq, cpu->pstate.scaling);
549 }
550
551 return DIV_ROUND_UP(freq, cpu->pstate.scaling);
552 }
553
intel_pstate_freq_to_hwp(struct cpudata * cpu,int freq)554 static int intel_pstate_freq_to_hwp(struct cpudata *cpu, int freq)
555 {
556 return intel_pstate_freq_to_hwp_rel(cpu, freq, CPUFREQ_RELATION_L);
557 }
558
559 /**
560 * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
561 * @cpu: Target CPU.
562 *
563 * On hybrid processors, HWP may expose more performance levels than there are
564 * P-states accessible through the PERF_CTL interface. If that happens, the
565 * scaling factor between HWP performance levels and CPU frequency will be less
566 * than the scaling factor between P-state values and CPU frequency.
567 *
568 * In that case, adjust the CPU parameters used in computations accordingly.
569 */
intel_pstate_hybrid_hwp_adjust(struct cpudata * cpu)570 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
571 {
572 int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
573 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
574 int perf_ctl_turbo = pstate_funcs.get_turbo(cpu->cpu);
575 int scaling = cpu->pstate.scaling;
576 int freq;
577
578 pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
579 pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
580 pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
581 pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
582 pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
583 pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
584
585 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_pstate * scaling,
586 perf_ctl_scaling);
587 cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
588 perf_ctl_scaling);
589
590 freq = perf_ctl_max_phys * perf_ctl_scaling;
591 cpu->pstate.max_pstate_physical = intel_pstate_freq_to_hwp(cpu, freq);
592
593 freq = cpu->pstate.min_pstate * perf_ctl_scaling;
594 cpu->pstate.min_freq = freq;
595 /*
596 * Cast the min P-state value retrieved via pstate_funcs.get_min() to
597 * the effective range of HWP performance levels.
598 */
599 cpu->pstate.min_pstate = intel_pstate_freq_to_hwp(cpu, freq);
600 }
601
turbo_is_disabled(void)602 static bool turbo_is_disabled(void)
603 {
604 u64 misc_en;
605
606 if (!cpu_feature_enabled(X86_FEATURE_IDA))
607 return true;
608
609 rdmsrq(MSR_IA32_MISC_ENABLE, misc_en);
610
611 return !!(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
612 }
613
min_perf_pct_min(void)614 static int min_perf_pct_min(void)
615 {
616 struct cpudata *cpu = all_cpu_data[0];
617 int turbo_pstate = cpu->pstate.turbo_pstate;
618
619 return turbo_pstate ?
620 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
621 }
622
intel_pstate_get_epp(struct cpudata * cpu_data,u64 hwp_req_data)623 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
624 {
625 s16 epp = -EOPNOTSUPP;
626
627 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
628 /*
629 * When hwp_req_data is 0, means that caller didn't read
630 * MSR_HWP_REQUEST, so need to read and get EPP.
631 */
632 if (!hwp_req_data) {
633 epp = rdmsrq_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
634 &hwp_req_data);
635 if (epp)
636 return epp;
637 }
638 epp = (hwp_req_data >> 24) & 0xff;
639 }
640
641 return epp;
642 }
643
644 /*
645 * EPP display strings corresponding to EPP index in the
646 * energy_perf_strings[]
647 * index String
648 *-------------------------------------
649 * 0 default
650 * 1 performance
651 * 2 balance_performance
652 * 3 balance_power
653 * 4 power
654 */
655
656 enum energy_perf_value_index {
657 EPP_INDEX_DEFAULT = 0,
658 EPP_INDEX_PERFORMANCE,
659 EPP_INDEX_BALANCE_PERFORMANCE,
660 EPP_INDEX_BALANCE_POWERSAVE,
661 EPP_INDEX_POWERSAVE,
662 };
663
664 static const char * const energy_perf_strings[] = {
665 [EPP_INDEX_DEFAULT] = "default",
666 [EPP_INDEX_PERFORMANCE] = "performance",
667 [EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance",
668 [EPP_INDEX_BALANCE_POWERSAVE] = "balance_power",
669 [EPP_INDEX_POWERSAVE] = "power",
670 NULL
671 };
672 static unsigned int epp_values[] = {
673 [EPP_INDEX_DEFAULT] = 0, /* Unused index */
674 [EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE,
675 [EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE,
676 [EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE,
677 [EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE,
678 };
679
intel_pstate_get_energy_pref_index(struct cpudata * cpu_data,int * raw_epp)680 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
681 {
682 s16 epp;
683 int index = -EINVAL;
684
685 *raw_epp = 0;
686 epp = intel_pstate_get_epp(cpu_data, 0);
687 if (epp < 0)
688 return epp;
689
690 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
691 if (epp == epp_values[EPP_INDEX_PERFORMANCE])
692 return EPP_INDEX_PERFORMANCE;
693 if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE])
694 return EPP_INDEX_BALANCE_PERFORMANCE;
695 if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE])
696 return EPP_INDEX_BALANCE_POWERSAVE;
697 if (epp == epp_values[EPP_INDEX_POWERSAVE])
698 return EPP_INDEX_POWERSAVE;
699 *raw_epp = epp;
700 return 0;
701 } else if (boot_cpu_has(X86_FEATURE_EPB)) {
702 /*
703 * Range:
704 * 0x00-0x03 : Performance
705 * 0x04-0x07 : Balance performance
706 * 0x08-0x0B : Balance power
707 * 0x0C-0x0F : Power
708 * The EPB is a 4 bit value, but our ranges restrict the
709 * value which can be set. Here only using top two bits
710 * effectively.
711 */
712 index = (epp >> 2) + 1;
713 }
714
715 return index;
716 }
717
intel_pstate_set_epp(struct cpudata * cpu,u32 epp)718 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
719 {
720 int ret;
721
722 /*
723 * Use the cached HWP Request MSR value, because in the active mode the
724 * register itself may be updated by intel_pstate_hwp_boost_up() or
725 * intel_pstate_hwp_boost_down() at any time.
726 */
727 u64 value = READ_ONCE(cpu->hwp_req_cached);
728
729 value &= ~GENMASK_ULL(31, 24);
730 value |= (u64)epp << 24;
731 /*
732 * The only other updater of hwp_req_cached in the active mode,
733 * intel_pstate_hwp_set(), is called under the same lock as this
734 * function, so it cannot run in parallel with the update below.
735 */
736 WRITE_ONCE(cpu->hwp_req_cached, value);
737 ret = wrmsrq_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
738 if (!ret)
739 cpu->epp_cached = epp;
740
741 return ret;
742 }
743
intel_pstate_set_energy_pref_index(struct cpudata * cpu_data,int pref_index,bool use_raw,u32 raw_epp)744 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
745 int pref_index, bool use_raw,
746 u32 raw_epp)
747 {
748 int epp = -EINVAL;
749 int ret = -EOPNOTSUPP;
750
751 if (!pref_index)
752 epp = cpu_data->epp_default;
753
754 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
755 if (use_raw)
756 epp = raw_epp;
757 else if (epp == -EINVAL)
758 epp = epp_values[pref_index];
759
760 /*
761 * To avoid confusion, refuse to set EPP to any values different
762 * from 0 (performance) if the current policy is "performance",
763 * because those values would be overridden.
764 */
765 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
766 return -EBUSY;
767
768 ret = intel_pstate_set_epp(cpu_data, epp);
769 }
770
771 return ret;
772 }
773
show_energy_performance_available_preferences(struct cpufreq_policy * policy,char * buf)774 static ssize_t show_energy_performance_available_preferences(
775 struct cpufreq_policy *policy, char *buf)
776 {
777 int i = 0;
778 int ret = 0;
779
780 while (energy_perf_strings[i] != NULL)
781 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
782
783 ret += sprintf(&buf[ret], "\n");
784
785 return ret;
786 }
787
788 cpufreq_freq_attr_ro(energy_performance_available_preferences);
789
790 static struct cpufreq_driver intel_pstate;
791
store_energy_performance_preference(struct cpufreq_policy * policy,const char * buf,size_t count)792 static ssize_t store_energy_performance_preference(
793 struct cpufreq_policy *policy, const char *buf, size_t count)
794 {
795 struct cpudata *cpu = all_cpu_data[policy->cpu];
796 char str_preference[21];
797 bool raw = false;
798 ssize_t ret;
799 u32 epp = 0;
800
801 ret = sscanf(buf, "%20s", str_preference);
802 if (ret != 1)
803 return -EINVAL;
804
805 ret = match_string(energy_perf_strings, -1, str_preference);
806 if (ret < 0) {
807 if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
808 return ret;
809
810 ret = kstrtouint(buf, 10, &epp);
811 if (ret)
812 return ret;
813
814 if (epp > 255)
815 return -EINVAL;
816
817 raw = true;
818 }
819
820 /*
821 * This function runs with the policy R/W semaphore held, which
822 * guarantees that the driver pointer will not change while it is
823 * running.
824 */
825 if (!intel_pstate_driver)
826 return -EAGAIN;
827
828 mutex_lock(&intel_pstate_limits_lock);
829
830 if (intel_pstate_driver == &intel_pstate) {
831 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
832 } else {
833 /*
834 * In the passive mode the governor needs to be stopped on the
835 * target CPU before the EPP update and restarted after it,
836 * which is super-heavy-weight, so make sure it is worth doing
837 * upfront.
838 */
839 if (!raw)
840 epp = ret ? epp_values[ret] : cpu->epp_default;
841
842 if (cpu->epp_cached != epp) {
843 int err;
844
845 cpufreq_stop_governor(policy);
846 ret = intel_pstate_set_epp(cpu, epp);
847 err = cpufreq_start_governor(policy);
848 if (!ret)
849 ret = err;
850 } else {
851 ret = 0;
852 }
853 }
854
855 mutex_unlock(&intel_pstate_limits_lock);
856
857 return ret ?: count;
858 }
859
show_energy_performance_preference(struct cpufreq_policy * policy,char * buf)860 static ssize_t show_energy_performance_preference(
861 struct cpufreq_policy *policy, char *buf)
862 {
863 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
864 int preference, raw_epp;
865
866 preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
867 if (preference < 0)
868 return preference;
869
870 if (raw_epp)
871 return sprintf(buf, "%d\n", raw_epp);
872 else
873 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
874 }
875
876 cpufreq_freq_attr_rw(energy_performance_preference);
877
show_base_frequency(struct cpufreq_policy * policy,char * buf)878 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
879 {
880 struct cpudata *cpu = all_cpu_data[policy->cpu];
881 int ratio, freq;
882
883 ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
884 if (ratio <= 0) {
885 u64 cap;
886
887 rdmsrq_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
888 ratio = HWP_GUARANTEED_PERF(cap);
889 }
890
891 freq = ratio * cpu->pstate.scaling;
892 if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
893 freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
894
895 return sprintf(buf, "%d\n", freq);
896 }
897
898 cpufreq_freq_attr_ro(base_frequency);
899
900 enum hwp_cpufreq_attr_index {
901 HWP_BASE_FREQUENCY_INDEX = 0,
902 HWP_PERFORMANCE_PREFERENCE_INDEX,
903 HWP_PERFORMANCE_AVAILABLE_PREFERENCES_INDEX,
904 HWP_CPUFREQ_ATTR_COUNT,
905 };
906
907 static struct freq_attr *hwp_cpufreq_attrs[] = {
908 [HWP_BASE_FREQUENCY_INDEX] = &base_frequency,
909 [HWP_PERFORMANCE_PREFERENCE_INDEX] = &energy_performance_preference,
910 [HWP_PERFORMANCE_AVAILABLE_PREFERENCES_INDEX] =
911 &energy_performance_available_preferences,
912 [HWP_CPUFREQ_ATTR_COUNT] = NULL,
913 };
914
915 static bool no_cas __ro_after_init;
916
917 static struct cpudata *hybrid_max_perf_cpu __read_mostly;
918 /*
919 * Protects hybrid_max_perf_cpu, the capacity_perf fields in struct cpudata,
920 * and the x86 arch scale-invariance information from concurrent updates.
921 */
922 static DEFINE_MUTEX(hybrid_capacity_lock);
923
924 #ifdef CONFIG_ENERGY_MODEL
925 #define HYBRID_EM_STATE_COUNT 4
926
hybrid_active_power(struct device * dev,unsigned long * power,unsigned long * freq)927 static int hybrid_active_power(struct device *dev, unsigned long *power,
928 unsigned long *freq)
929 {
930 /*
931 * Create "utilization bins" of 0-40%, 40%-60%, 60%-80%, and 80%-100%
932 * of the maximum capacity such that two CPUs of the same type will be
933 * regarded as equally attractive if the utilization of each of them
934 * falls into the same bin, which should prevent tasks from being
935 * migrated between them too often.
936 *
937 * For this purpose, return the "frequency" of 2 for the first
938 * performance level and otherwise leave the value set by the caller.
939 */
940 if (!*freq)
941 *freq = 2;
942
943 /* No power information. */
944 *power = EM_MAX_POWER;
945
946 return 0;
947 }
948
hybrid_get_cost(struct device * dev,unsigned long freq,unsigned long * cost)949 static int hybrid_get_cost(struct device *dev, unsigned long freq,
950 unsigned long *cost)
951 {
952 struct pstate_data *pstate = &all_cpu_data[dev->id]->pstate;
953 struct cpu_cacheinfo *cacheinfo = get_cpu_cacheinfo(dev->id);
954
955 /*
956 * The smaller the perf-to-frequency scaling factor, the larger the IPC
957 * ratio between the given CPU and the least capable CPU in the system.
958 * Regard that IPC ratio as the primary cost component and assume that
959 * the scaling factors for different CPU types will differ by at least
960 * 5% and they will not be above INTEL_PSTATE_CORE_SCALING.
961 *
962 * Add the freq value to the cost, so that the cost of running on CPUs
963 * of the same type in different "utilization bins" is different.
964 */
965 *cost = div_u64(100ULL * INTEL_PSTATE_CORE_SCALING, pstate->scaling) + freq;
966 /*
967 * Increase the cost slightly for CPUs able to access L3 to avoid
968 * touching it in case some other CPUs of the same type can do the work
969 * without it.
970 */
971 if (cacheinfo) {
972 unsigned int i;
973
974 /* Check if L3 cache is there. */
975 for (i = 0; i < cacheinfo->num_leaves; i++) {
976 if (cacheinfo->info_list[i].level == 3) {
977 *cost += 2;
978 break;
979 }
980 }
981 }
982
983 return 0;
984 }
985
hybrid_register_perf_domain(unsigned int cpu)986 static bool hybrid_register_perf_domain(unsigned int cpu)
987 {
988 static const struct em_data_callback cb
989 = EM_ADV_DATA_CB(hybrid_active_power, hybrid_get_cost);
990 struct cpudata *cpudata = all_cpu_data[cpu];
991 struct device *cpu_dev;
992
993 /*
994 * Registering EM perf domains without enabling asymmetric CPU capacity
995 * support is not really useful and one domain should not be registered
996 * more than once.
997 */
998 if (!hybrid_max_perf_cpu || cpudata->pd_registered)
999 return false;
1000
1001 cpu_dev = get_cpu_device(cpu);
1002 if (!cpu_dev)
1003 return false;
1004
1005 if (em_dev_register_pd_no_update(cpu_dev, HYBRID_EM_STATE_COUNT, &cb,
1006 cpumask_of(cpu), false))
1007 return false;
1008
1009 cpudata->pd_registered = true;
1010
1011 return true;
1012 }
1013
hybrid_register_all_perf_domains(void)1014 static void hybrid_register_all_perf_domains(void)
1015 {
1016 unsigned int cpu;
1017
1018 for_each_online_cpu(cpu)
1019 hybrid_register_perf_domain(cpu);
1020 }
1021
hybrid_update_perf_domain(struct cpudata * cpu)1022 static void hybrid_update_perf_domain(struct cpudata *cpu)
1023 {
1024 if (cpu->pd_registered)
1025 em_adjust_cpu_capacity(cpu->cpu);
1026 }
1027 #else /* !CONFIG_ENERGY_MODEL */
hybrid_register_perf_domain(unsigned int cpu)1028 static inline bool hybrid_register_perf_domain(unsigned int cpu) { return false; }
hybrid_register_all_perf_domains(void)1029 static inline void hybrid_register_all_perf_domains(void) {}
hybrid_update_perf_domain(struct cpudata * cpu)1030 static inline void hybrid_update_perf_domain(struct cpudata *cpu) {}
1031 #endif /* CONFIG_ENERGY_MODEL */
1032
hybrid_set_cpu_capacity(struct cpudata * cpu)1033 static void hybrid_set_cpu_capacity(struct cpudata *cpu)
1034 {
1035 arch_set_cpu_capacity(cpu->cpu, cpu->capacity_perf,
1036 hybrid_max_perf_cpu->capacity_perf,
1037 cpu->capacity_perf,
1038 cpu->pstate.max_pstate_physical);
1039 hybrid_update_perf_domain(cpu);
1040
1041 topology_set_cpu_scale(cpu->cpu, arch_scale_cpu_capacity(cpu->cpu));
1042
1043 pr_debug("CPU%d: perf = %u, max. perf = %u, base perf = %d\n", cpu->cpu,
1044 cpu->capacity_perf, hybrid_max_perf_cpu->capacity_perf,
1045 cpu->pstate.max_pstate_physical);
1046 }
1047
hybrid_clear_cpu_capacity(unsigned int cpunum)1048 static void hybrid_clear_cpu_capacity(unsigned int cpunum)
1049 {
1050 arch_set_cpu_capacity(cpunum, 1, 1, 1, 1);
1051 }
1052
hybrid_get_capacity_perf(struct cpudata * cpu)1053 static void hybrid_get_capacity_perf(struct cpudata *cpu)
1054 {
1055 if (READ_ONCE(global.no_turbo)) {
1056 cpu->capacity_perf = cpu->pstate.max_pstate_physical;
1057 return;
1058 }
1059
1060 cpu->capacity_perf = HWP_HIGHEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1061 }
1062
hybrid_set_capacity_of_cpus(void)1063 static void hybrid_set_capacity_of_cpus(void)
1064 {
1065 int cpunum;
1066
1067 for_each_online_cpu(cpunum) {
1068 struct cpudata *cpu = all_cpu_data[cpunum];
1069
1070 if (cpu)
1071 hybrid_set_cpu_capacity(cpu);
1072 }
1073 }
1074
hybrid_update_cpu_capacity_scaling(void)1075 static void hybrid_update_cpu_capacity_scaling(void)
1076 {
1077 struct cpudata *max_perf_cpu = NULL;
1078 unsigned int max_cap_perf = 0;
1079 int cpunum;
1080
1081 for_each_online_cpu(cpunum) {
1082 struct cpudata *cpu = all_cpu_data[cpunum];
1083
1084 if (!cpu)
1085 continue;
1086
1087 /*
1088 * During initialization, CPU performance at full capacity needs
1089 * to be determined.
1090 */
1091 if (!hybrid_max_perf_cpu)
1092 hybrid_get_capacity_perf(cpu);
1093
1094 /*
1095 * If hybrid_max_perf_cpu is not NULL at this point, it is
1096 * being replaced, so don't take it into account when looking
1097 * for the new one.
1098 */
1099 if (cpu == hybrid_max_perf_cpu)
1100 continue;
1101
1102 if (cpu->capacity_perf > max_cap_perf) {
1103 max_cap_perf = cpu->capacity_perf;
1104 max_perf_cpu = cpu;
1105 }
1106 }
1107
1108 if (max_perf_cpu) {
1109 hybrid_max_perf_cpu = max_perf_cpu;
1110 hybrid_set_capacity_of_cpus();
1111 } else {
1112 pr_info("Found no CPUs with nonzero maximum performance\n");
1113 /* Revert to the flat CPU capacity structure. */
1114 for_each_online_cpu(cpunum)
1115 hybrid_clear_cpu_capacity(cpunum);
1116 }
1117 }
1118
__hybrid_refresh_cpu_capacity_scaling(void)1119 static void __hybrid_refresh_cpu_capacity_scaling(void)
1120 {
1121 hybrid_max_perf_cpu = NULL;
1122 hybrid_update_cpu_capacity_scaling();
1123 }
1124
hybrid_refresh_cpu_capacity_scaling(void)1125 static void hybrid_refresh_cpu_capacity_scaling(void)
1126 {
1127 guard(mutex)(&hybrid_capacity_lock);
1128
1129 __hybrid_refresh_cpu_capacity_scaling();
1130 /*
1131 * Perf domains are not registered before setting hybrid_max_perf_cpu,
1132 * so register them all after setting up CPU capacity scaling.
1133 */
1134 hybrid_register_all_perf_domains();
1135 }
1136
hybrid_init_cpu_capacity_scaling(bool refresh)1137 static void hybrid_init_cpu_capacity_scaling(bool refresh)
1138 {
1139 /* Bail out if enabling capacity-aware scheduling is prohibited. */
1140 if (no_cas)
1141 return;
1142
1143 /*
1144 * If hybrid_max_perf_cpu is set at this point, the hybrid CPU capacity
1145 * scaling has been enabled already and the driver is just changing the
1146 * operation mode.
1147 */
1148 if (refresh) {
1149 hybrid_refresh_cpu_capacity_scaling();
1150 return;
1151 }
1152
1153 /*
1154 * On hybrid systems, use asym capacity instead of ITMT, but because
1155 * the capacity of SMT threads is not deterministic even approximately,
1156 * do not do that when SMT is in use.
1157 */
1158 if (hwp_is_hybrid && !sched_smt_active() && arch_enable_hybrid_capacity_scale()) {
1159 hybrid_refresh_cpu_capacity_scaling();
1160 /*
1161 * Disabling ITMT causes sched domains to be rebuilt to disable asym
1162 * packing and enable asym capacity and EAS.
1163 */
1164 sched_clear_itmt_support();
1165 }
1166 }
1167
hybrid_clear_max_perf_cpu(void)1168 static bool hybrid_clear_max_perf_cpu(void)
1169 {
1170 bool ret;
1171
1172 guard(mutex)(&hybrid_capacity_lock);
1173
1174 ret = !!hybrid_max_perf_cpu;
1175 hybrid_max_perf_cpu = NULL;
1176
1177 return ret;
1178 }
1179
__intel_pstate_get_hwp_cap(struct cpudata * cpu)1180 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
1181 {
1182 u64 cap;
1183
1184 rdmsrq_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
1185 WRITE_ONCE(cpu->hwp_cap_cached, cap);
1186 cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
1187 cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
1188 }
1189
intel_pstate_get_hwp_cap(struct cpudata * cpu)1190 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
1191 {
1192 int scaling = cpu->pstate.scaling;
1193
1194 __intel_pstate_get_hwp_cap(cpu);
1195
1196 cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
1197 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
1198 if (scaling != cpu->pstate.perf_ctl_scaling) {
1199 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
1200
1201 cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
1202 perf_ctl_scaling);
1203 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
1204 perf_ctl_scaling);
1205 }
1206 }
1207
hybrid_update_capacity(struct cpudata * cpu)1208 static void hybrid_update_capacity(struct cpudata *cpu)
1209 {
1210 unsigned int max_cap_perf;
1211
1212 mutex_lock(&hybrid_capacity_lock);
1213
1214 if (!hybrid_max_perf_cpu)
1215 goto unlock;
1216
1217 /*
1218 * The maximum performance of the CPU may have changed, but assume
1219 * that the performance of the other CPUs has not changed.
1220 */
1221 max_cap_perf = hybrid_max_perf_cpu->capacity_perf;
1222
1223 intel_pstate_get_hwp_cap(cpu);
1224
1225 hybrid_get_capacity_perf(cpu);
1226 /* Should hybrid_max_perf_cpu be replaced by this CPU? */
1227 if (cpu->capacity_perf > max_cap_perf) {
1228 hybrid_max_perf_cpu = cpu;
1229 hybrid_set_capacity_of_cpus();
1230 goto unlock;
1231 }
1232
1233 /* If this CPU is hybrid_max_perf_cpu, should it be replaced? */
1234 if (cpu == hybrid_max_perf_cpu && cpu->capacity_perf < max_cap_perf) {
1235 hybrid_update_cpu_capacity_scaling();
1236 goto unlock;
1237 }
1238
1239 hybrid_set_cpu_capacity(cpu);
1240 /*
1241 * If the CPU was offline to start with and it is going online for the
1242 * first time, a perf domain needs to be registered for it if hybrid
1243 * capacity scaling has been enabled already. In that case, sched
1244 * domains need to be rebuilt to take the new perf domain into account.
1245 */
1246 if (hybrid_register_perf_domain(cpu->cpu))
1247 em_rebuild_sched_domains();
1248
1249 unlock:
1250 mutex_unlock(&hybrid_capacity_lock);
1251 }
1252
intel_pstate_hwp_set(unsigned int cpu)1253 static void intel_pstate_hwp_set(unsigned int cpu)
1254 {
1255 struct cpudata *cpu_data = all_cpu_data[cpu];
1256 int max, min;
1257 u64 value;
1258 s16 epp;
1259
1260 max = cpu_data->max_perf_ratio;
1261 min = cpu_data->min_perf_ratio;
1262
1263 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
1264 min = max;
1265
1266 rdmsrq_on_cpu(cpu, MSR_HWP_REQUEST, &value);
1267
1268 value &= ~HWP_MIN_PERF(~0L);
1269 value |= HWP_MIN_PERF(min);
1270
1271 value &= ~HWP_MAX_PERF(~0L);
1272 value |= HWP_MAX_PERF(max);
1273
1274 if (cpu_data->epp_policy == cpu_data->policy)
1275 goto skip_epp;
1276
1277 cpu_data->epp_policy = cpu_data->policy;
1278
1279 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
1280 epp = intel_pstate_get_epp(cpu_data, value);
1281 cpu_data->epp_powersave = epp;
1282 /* If EPP read was failed, then don't try to write */
1283 if (epp < 0)
1284 goto skip_epp;
1285
1286 epp = 0;
1287 } else {
1288 /* skip setting EPP, when saved value is invalid */
1289 if (cpu_data->epp_powersave < 0)
1290 goto skip_epp;
1291
1292 /*
1293 * No need to restore EPP when it is not zero. This
1294 * means:
1295 * - Policy is not changed
1296 * - user has manually changed
1297 * - Error reading EPB
1298 */
1299 epp = intel_pstate_get_epp(cpu_data, value);
1300 if (epp)
1301 goto skip_epp;
1302
1303 epp = cpu_data->epp_powersave;
1304 }
1305 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1306 value &= ~GENMASK_ULL(31, 24);
1307 value |= (u64)epp << 24;
1308 }
1309
1310 skip_epp:
1311 WRITE_ONCE(cpu_data->hwp_req_cached, value);
1312 wrmsrq_on_cpu(cpu, MSR_HWP_REQUEST, value);
1313 }
1314
1315 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata);
1316
intel_pstate_hwp_offline(struct cpudata * cpu)1317 static void intel_pstate_hwp_offline(struct cpudata *cpu)
1318 {
1319 u64 value = READ_ONCE(cpu->hwp_req_cached);
1320 int min_perf;
1321
1322 intel_pstate_disable_hwp_interrupt(cpu);
1323
1324 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1325 /*
1326 * In case the EPP has been set to "performance" by the
1327 * active mode "performance" scaling algorithm, replace that
1328 * temporary value with the cached EPP one.
1329 */
1330 value &= ~GENMASK_ULL(31, 24);
1331 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
1332 /*
1333 * However, make sure that EPP will be set to "performance" when
1334 * the CPU is brought back online again and the "performance"
1335 * scaling algorithm is still in effect.
1336 */
1337 cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
1338 }
1339
1340 /*
1341 * Clear the desired perf field in the cached HWP request value to
1342 * prevent nonzero desired values from being leaked into the active
1343 * mode.
1344 */
1345 value &= ~HWP_DESIRED_PERF(~0L);
1346 WRITE_ONCE(cpu->hwp_req_cached, value);
1347
1348 value &= ~GENMASK_ULL(31, 0);
1349 min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1350
1351 /* Set hwp_max = hwp_min */
1352 value |= HWP_MAX_PERF(min_perf);
1353 value |= HWP_MIN_PERF(min_perf);
1354
1355 /* Set EPP to min */
1356 if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1357 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1358
1359 wrmsrq_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1360
1361 mutex_lock(&hybrid_capacity_lock);
1362
1363 if (!hybrid_max_perf_cpu) {
1364 mutex_unlock(&hybrid_capacity_lock);
1365
1366 return;
1367 }
1368
1369 if (hybrid_max_perf_cpu == cpu)
1370 hybrid_update_cpu_capacity_scaling();
1371
1372 mutex_unlock(&hybrid_capacity_lock);
1373
1374 /* Reset the capacity of the CPU going offline to the initial value. */
1375 hybrid_clear_cpu_capacity(cpu->cpu);
1376 }
1377
1378 #define POWER_CTL_EE_ENABLE 1
1379 #define POWER_CTL_EE_DISABLE 2
1380
1381 /* Enable bit for Dynamic Efficiency Control (DEC) */
1382 #define POWER_CTL_DEC_ENABLE 27
1383
1384 static int power_ctl_ee_state;
1385
set_power_ctl_ee_state(bool input)1386 static void set_power_ctl_ee_state(bool input)
1387 {
1388 u64 power_ctl;
1389
1390 mutex_lock(&intel_pstate_driver_lock);
1391 rdmsrq(MSR_IA32_POWER_CTL, power_ctl);
1392 if (input) {
1393 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1394 power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1395 } else {
1396 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1397 power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1398 }
1399 wrmsrq(MSR_IA32_POWER_CTL, power_ctl);
1400 mutex_unlock(&intel_pstate_driver_lock);
1401 }
1402
1403 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1404
intel_pstate_hwp_reenable(struct cpudata * cpu)1405 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1406 {
1407 intel_pstate_hwp_enable(cpu);
1408 wrmsrq_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1409 }
1410
intel_pstate_suspend(struct cpufreq_policy * policy)1411 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1412 {
1413 struct cpudata *cpu = all_cpu_data[policy->cpu];
1414
1415 pr_debug("CPU %d suspending\n", cpu->cpu);
1416
1417 cpu->suspended = true;
1418
1419 /* disable HWP interrupt and cancel any pending work */
1420 intel_pstate_disable_hwp_interrupt(cpu);
1421
1422 return 0;
1423 }
1424
intel_pstate_resume(struct cpufreq_policy * policy)1425 static int intel_pstate_resume(struct cpufreq_policy *policy)
1426 {
1427 struct cpudata *cpu = all_cpu_data[policy->cpu];
1428
1429 pr_debug("CPU %d resuming\n", cpu->cpu);
1430
1431 /* Only restore if the system default is changed */
1432 if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1433 set_power_ctl_ee_state(true);
1434 else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1435 set_power_ctl_ee_state(false);
1436
1437 if (cpu->suspended && hwp_active) {
1438 mutex_lock(&intel_pstate_limits_lock);
1439
1440 /* Re-enable HWP, because "online" has not done that. */
1441 intel_pstate_hwp_reenable(cpu);
1442
1443 mutex_unlock(&intel_pstate_limits_lock);
1444 }
1445
1446 cpu->suspended = false;
1447
1448 return 0;
1449 }
1450
intel_pstate_update_policies(void)1451 static void intel_pstate_update_policies(void)
1452 {
1453 int cpu;
1454
1455 for_each_possible_cpu(cpu)
1456 cpufreq_update_policy(cpu);
1457 }
1458
__intel_pstate_update_max_freq(struct cpufreq_policy * policy,struct cpudata * cpudata)1459 static void __intel_pstate_update_max_freq(struct cpufreq_policy *policy,
1460 struct cpudata *cpudata)
1461 {
1462 guard(cpufreq_policy_write)(policy);
1463
1464 if (hwp_active)
1465 intel_pstate_get_hwp_cap(cpudata);
1466
1467 policy->cpuinfo.max_freq = READ_ONCE(global.no_turbo) ?
1468 cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1469
1470 refresh_frequency_limits(policy);
1471 }
1472
intel_pstate_update_max_freq(struct cpudata * cpudata)1473 static bool intel_pstate_update_max_freq(struct cpudata *cpudata)
1474 {
1475 struct cpufreq_policy *policy __free(put_cpufreq_policy) = cpufreq_cpu_get(cpudata->cpu);
1476 if (!policy)
1477 return false;
1478
1479 __intel_pstate_update_max_freq(policy, cpudata);
1480
1481 return true;
1482 }
1483
intel_pstate_update_limits(struct cpufreq_policy * policy)1484 static void intel_pstate_update_limits(struct cpufreq_policy *policy)
1485 {
1486 struct cpudata *cpudata = all_cpu_data[policy->cpu];
1487
1488 __intel_pstate_update_max_freq(policy, cpudata);
1489
1490 hybrid_update_capacity(cpudata);
1491 }
1492
intel_pstate_update_limits_for_all(void)1493 static void intel_pstate_update_limits_for_all(void)
1494 {
1495 int cpu;
1496
1497 for_each_possible_cpu(cpu)
1498 intel_pstate_update_max_freq(all_cpu_data[cpu]);
1499
1500 mutex_lock(&hybrid_capacity_lock);
1501
1502 if (hybrid_max_perf_cpu)
1503 __hybrid_refresh_cpu_capacity_scaling();
1504
1505 mutex_unlock(&hybrid_capacity_lock);
1506 }
1507
1508 /************************** sysfs begin ************************/
1509 #define show_one(file_name, object) \
1510 static ssize_t show_##file_name \
1511 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \
1512 { \
1513 return sprintf(buf, "%u\n", global.object); \
1514 }
1515
1516 static ssize_t intel_pstate_show_status(char *buf);
1517 static int intel_pstate_update_status(const char *buf, size_t size);
1518
show_status(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1519 static ssize_t show_status(struct kobject *kobj,
1520 struct kobj_attribute *attr, char *buf)
1521 {
1522 ssize_t ret;
1523
1524 mutex_lock(&intel_pstate_driver_lock);
1525 ret = intel_pstate_show_status(buf);
1526 mutex_unlock(&intel_pstate_driver_lock);
1527
1528 return ret;
1529 }
1530
store_status(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1531 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1532 const char *buf, size_t count)
1533 {
1534 char *p = memchr(buf, '\n', count);
1535 int ret;
1536
1537 mutex_lock(&intel_pstate_driver_lock);
1538 ret = intel_pstate_update_status(buf, p ? p - buf : count);
1539 mutex_unlock(&intel_pstate_driver_lock);
1540
1541 return ret < 0 ? ret : count;
1542 }
1543
show_turbo_pct(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1544 static ssize_t show_turbo_pct(struct kobject *kobj,
1545 struct kobj_attribute *attr, char *buf)
1546 {
1547 struct cpudata *cpu;
1548 int total, no_turbo, turbo_pct;
1549 uint32_t turbo_fp;
1550
1551 mutex_lock(&intel_pstate_driver_lock);
1552
1553 if (!intel_pstate_driver) {
1554 mutex_unlock(&intel_pstate_driver_lock);
1555 return -EAGAIN;
1556 }
1557
1558 cpu = all_cpu_data[0];
1559
1560 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1561 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1562 turbo_fp = div_fp(no_turbo, total);
1563 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1564
1565 mutex_unlock(&intel_pstate_driver_lock);
1566
1567 return sprintf(buf, "%u\n", turbo_pct);
1568 }
1569
show_num_pstates(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1570 static ssize_t show_num_pstates(struct kobject *kobj,
1571 struct kobj_attribute *attr, char *buf)
1572 {
1573 struct cpudata *cpu;
1574 int total;
1575
1576 mutex_lock(&intel_pstate_driver_lock);
1577
1578 if (!intel_pstate_driver) {
1579 mutex_unlock(&intel_pstate_driver_lock);
1580 return -EAGAIN;
1581 }
1582
1583 cpu = all_cpu_data[0];
1584 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1585
1586 mutex_unlock(&intel_pstate_driver_lock);
1587
1588 return sprintf(buf, "%u\n", total);
1589 }
1590
show_no_turbo(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1591 static ssize_t show_no_turbo(struct kobject *kobj,
1592 struct kobj_attribute *attr, char *buf)
1593 {
1594 ssize_t ret;
1595
1596 mutex_lock(&intel_pstate_driver_lock);
1597
1598 if (!intel_pstate_driver) {
1599 mutex_unlock(&intel_pstate_driver_lock);
1600 return -EAGAIN;
1601 }
1602
1603 ret = sprintf(buf, "%u\n", global.no_turbo);
1604
1605 mutex_unlock(&intel_pstate_driver_lock);
1606
1607 return ret;
1608 }
1609
store_no_turbo(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1610 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1611 const char *buf, size_t count)
1612 {
1613 unsigned int input;
1614 bool no_turbo;
1615
1616 if (sscanf(buf, "%u", &input) != 1)
1617 return -EINVAL;
1618
1619 mutex_lock(&intel_pstate_driver_lock);
1620
1621 if (!intel_pstate_driver) {
1622 count = -EAGAIN;
1623 goto unlock_driver;
1624 }
1625
1626 no_turbo = !!clamp_t(int, input, 0, 1);
1627
1628 WRITE_ONCE(global.turbo_disabled, turbo_is_disabled());
1629 if (global.turbo_disabled && !no_turbo) {
1630 pr_notice("Turbo disabled by BIOS or unavailable on processor\n");
1631 count = -EPERM;
1632 if (global.no_turbo)
1633 goto unlock_driver;
1634 else
1635 no_turbo = 1;
1636 }
1637
1638 if (no_turbo == global.no_turbo) {
1639 goto unlock_driver;
1640 }
1641
1642 WRITE_ONCE(global.no_turbo, no_turbo);
1643
1644 mutex_lock(&intel_pstate_limits_lock);
1645
1646 if (no_turbo) {
1647 struct cpudata *cpu = all_cpu_data[0];
1648 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1649
1650 /* Squash the global minimum into the permitted range. */
1651 if (global.min_perf_pct > pct)
1652 global.min_perf_pct = pct;
1653 }
1654
1655 mutex_unlock(&intel_pstate_limits_lock);
1656
1657 intel_pstate_update_limits_for_all();
1658 arch_set_max_freq_ratio(no_turbo);
1659
1660 unlock_driver:
1661 mutex_unlock(&intel_pstate_driver_lock);
1662
1663 return count;
1664 }
1665
update_cpu_qos_request(int cpu,enum freq_qos_req_type type)1666 static void update_cpu_qos_request(int cpu, enum freq_qos_req_type type)
1667 {
1668 struct cpudata *cpudata = all_cpu_data[cpu];
1669 unsigned int freq = cpudata->pstate.turbo_freq;
1670 struct freq_qos_request *req;
1671
1672 struct cpufreq_policy *policy __free(put_cpufreq_policy) = cpufreq_cpu_get(cpu);
1673 if (!policy)
1674 return;
1675
1676 req = policy->driver_data;
1677 if (!req)
1678 return;
1679
1680 if (hwp_active)
1681 intel_pstate_get_hwp_cap(cpudata);
1682
1683 if (type == FREQ_QOS_MIN) {
1684 freq = DIV_ROUND_UP(freq * global.min_perf_pct, 100);
1685 } else {
1686 req++;
1687 freq = (freq * global.max_perf_pct) / 100;
1688 }
1689
1690 if (freq_qos_update_request(req, freq) < 0)
1691 pr_warn("Failed to update freq constraint: CPU%d\n", cpu);
1692 }
1693
update_qos_requests(enum freq_qos_req_type type)1694 static void update_qos_requests(enum freq_qos_req_type type)
1695 {
1696 int i;
1697
1698 for_each_possible_cpu(i)
1699 update_cpu_qos_request(i, type);
1700 }
1701
store_max_perf_pct(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1702 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1703 const char *buf, size_t count)
1704 {
1705 unsigned int input;
1706 int ret;
1707
1708 ret = sscanf(buf, "%u", &input);
1709 if (ret != 1)
1710 return -EINVAL;
1711
1712 mutex_lock(&intel_pstate_driver_lock);
1713
1714 if (!intel_pstate_driver) {
1715 mutex_unlock(&intel_pstate_driver_lock);
1716 return -EAGAIN;
1717 }
1718
1719 mutex_lock(&intel_pstate_limits_lock);
1720
1721 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1722
1723 mutex_unlock(&intel_pstate_limits_lock);
1724
1725 if (intel_pstate_driver == &intel_pstate)
1726 intel_pstate_update_policies();
1727 else
1728 update_qos_requests(FREQ_QOS_MAX);
1729
1730 mutex_unlock(&intel_pstate_driver_lock);
1731
1732 return count;
1733 }
1734
store_min_perf_pct(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1735 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1736 const char *buf, size_t count)
1737 {
1738 unsigned int input;
1739 int ret;
1740
1741 ret = sscanf(buf, "%u", &input);
1742 if (ret != 1)
1743 return -EINVAL;
1744
1745 mutex_lock(&intel_pstate_driver_lock);
1746
1747 if (!intel_pstate_driver) {
1748 mutex_unlock(&intel_pstate_driver_lock);
1749 return -EAGAIN;
1750 }
1751
1752 mutex_lock(&intel_pstate_limits_lock);
1753
1754 global.min_perf_pct = clamp_t(int, input,
1755 min_perf_pct_min(), global.max_perf_pct);
1756
1757 mutex_unlock(&intel_pstate_limits_lock);
1758
1759 if (intel_pstate_driver == &intel_pstate)
1760 intel_pstate_update_policies();
1761 else
1762 update_qos_requests(FREQ_QOS_MIN);
1763
1764 mutex_unlock(&intel_pstate_driver_lock);
1765
1766 return count;
1767 }
1768
show_hwp_dynamic_boost(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1769 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1770 struct kobj_attribute *attr, char *buf)
1771 {
1772 return sprintf(buf, "%u\n", hwp_boost);
1773 }
1774
store_hwp_dynamic_boost(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1775 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1776 struct kobj_attribute *b,
1777 const char *buf, size_t count)
1778 {
1779 unsigned int input;
1780 int ret;
1781
1782 ret = kstrtouint(buf, 10, &input);
1783 if (ret)
1784 return ret;
1785
1786 mutex_lock(&intel_pstate_driver_lock);
1787 hwp_boost = !!input;
1788 intel_pstate_update_policies();
1789 mutex_unlock(&intel_pstate_driver_lock);
1790
1791 return count;
1792 }
1793
show_energy_efficiency(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1794 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1795 char *buf)
1796 {
1797 u64 power_ctl;
1798 int enable;
1799
1800 rdmsrq(MSR_IA32_POWER_CTL, power_ctl);
1801 enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1802 return sprintf(buf, "%d\n", !enable);
1803 }
1804
store_energy_efficiency(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1805 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1806 const char *buf, size_t count)
1807 {
1808 bool input;
1809 int ret;
1810
1811 ret = kstrtobool(buf, &input);
1812 if (ret)
1813 return ret;
1814
1815 set_power_ctl_ee_state(input);
1816
1817 return count;
1818 }
1819
1820 show_one(max_perf_pct, max_perf_pct);
1821 show_one(min_perf_pct, min_perf_pct);
1822
1823 define_one_global_rw(status);
1824 define_one_global_rw(no_turbo);
1825 define_one_global_rw(max_perf_pct);
1826 define_one_global_rw(min_perf_pct);
1827 define_one_global_ro(turbo_pct);
1828 define_one_global_ro(num_pstates);
1829 define_one_global_rw(hwp_dynamic_boost);
1830 define_one_global_rw(energy_efficiency);
1831
1832 static struct attribute *intel_pstate_attributes[] = {
1833 &status.attr,
1834 &no_turbo.attr,
1835 NULL
1836 };
1837
1838 static const struct attribute_group intel_pstate_attr_group = {
1839 .attrs = intel_pstate_attributes,
1840 };
1841
1842 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1843
1844 static struct kobject *intel_pstate_kobject;
1845
intel_pstate_sysfs_expose_params(void)1846 static void __init intel_pstate_sysfs_expose_params(void)
1847 {
1848 struct device *dev_root = bus_get_dev_root(&cpu_subsys);
1849 int rc;
1850
1851 if (dev_root) {
1852 intel_pstate_kobject = kobject_create_and_add("intel_pstate", &dev_root->kobj);
1853 put_device(dev_root);
1854 }
1855 if (WARN_ON(!intel_pstate_kobject))
1856 return;
1857
1858 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1859 if (WARN_ON(rc))
1860 return;
1861
1862 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1863 rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1864 WARN_ON(rc);
1865
1866 rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1867 WARN_ON(rc);
1868 }
1869
1870 /*
1871 * If per cpu limits are enforced there are no global limits, so
1872 * return without creating max/min_perf_pct attributes
1873 */
1874 if (per_cpu_limits)
1875 return;
1876
1877 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1878 WARN_ON(rc);
1879
1880 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1881 WARN_ON(rc);
1882
1883 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1884 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1885 WARN_ON(rc);
1886 }
1887 }
1888
intel_pstate_sysfs_remove(void)1889 static void __init intel_pstate_sysfs_remove(void)
1890 {
1891 if (!intel_pstate_kobject)
1892 return;
1893
1894 sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1895
1896 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1897 sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1898 sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1899 }
1900
1901 if (!per_cpu_limits) {
1902 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1903 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1904
1905 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1906 sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1907 }
1908
1909 kobject_put(intel_pstate_kobject);
1910 }
1911
intel_pstate_sysfs_expose_hwp_dynamic_boost(void)1912 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1913 {
1914 int rc;
1915
1916 if (!hwp_active)
1917 return;
1918
1919 rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1920 WARN_ON_ONCE(rc);
1921 }
1922
intel_pstate_sysfs_hide_hwp_dynamic_boost(void)1923 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1924 {
1925 if (!hwp_active)
1926 return;
1927
1928 sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1929 }
1930
1931 /************************** sysfs end ************************/
1932
intel_pstate_notify_work(struct work_struct * work)1933 static void intel_pstate_notify_work(struct work_struct *work)
1934 {
1935 struct cpudata *cpudata =
1936 container_of(to_delayed_work(work), struct cpudata, hwp_notify_work);
1937
1938 if (intel_pstate_update_max_freq(cpudata)) {
1939 /*
1940 * The driver will not be unregistered while this function is
1941 * running, so update the capacity without acquiring the driver
1942 * lock.
1943 */
1944 hybrid_update_capacity(cpudata);
1945 }
1946
1947 wrmsrq_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1948 }
1949
1950 static DEFINE_RAW_SPINLOCK(hwp_notify_lock);
1951 static cpumask_t hwp_intr_enable_mask;
1952
1953 #define HWP_GUARANTEED_PERF_CHANGE_STATUS BIT(0)
1954 #define HWP_HIGHEST_PERF_CHANGE_STATUS BIT(3)
1955
notify_hwp_interrupt(void)1956 void notify_hwp_interrupt(void)
1957 {
1958 unsigned int this_cpu = smp_processor_id();
1959 u64 value, status_mask;
1960 unsigned long flags;
1961
1962 if (!hwp_active || !cpu_feature_enabled(X86_FEATURE_HWP_NOTIFY))
1963 return;
1964
1965 status_mask = HWP_GUARANTEED_PERF_CHANGE_STATUS;
1966 if (cpu_feature_enabled(X86_FEATURE_HWP_HIGHEST_PERF_CHANGE))
1967 status_mask |= HWP_HIGHEST_PERF_CHANGE_STATUS;
1968
1969 rdmsrq_safe(MSR_HWP_STATUS, &value);
1970 if (!(value & status_mask))
1971 return;
1972
1973 raw_spin_lock_irqsave(&hwp_notify_lock, flags);
1974
1975 if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask))
1976 goto ack_intr;
1977
1978 schedule_delayed_work(&all_cpu_data[this_cpu]->hwp_notify_work,
1979 msecs_to_jiffies(10));
1980
1981 raw_spin_unlock_irqrestore(&hwp_notify_lock, flags);
1982
1983 return;
1984
1985 ack_intr:
1986 wrmsrq_safe(MSR_HWP_STATUS, 0);
1987 raw_spin_unlock_irqrestore(&hwp_notify_lock, flags);
1988 }
1989
intel_pstate_disable_hwp_interrupt(struct cpudata * cpudata)1990 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata)
1991 {
1992 bool cancel_work;
1993
1994 if (!cpu_feature_enabled(X86_FEATURE_HWP_NOTIFY))
1995 return;
1996
1997 /* wrmsrq_on_cpu has to be outside spinlock as this can result in IPC */
1998 wrmsrq_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1999
2000 raw_spin_lock_irq(&hwp_notify_lock);
2001 cancel_work = cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask);
2002 raw_spin_unlock_irq(&hwp_notify_lock);
2003
2004 if (cancel_work)
2005 cancel_delayed_work_sync(&cpudata->hwp_notify_work);
2006 }
2007
2008 #define HWP_GUARANTEED_PERF_CHANGE_REQ BIT(0)
2009 #define HWP_HIGHEST_PERF_CHANGE_REQ BIT(2)
2010
intel_pstate_enable_hwp_interrupt(struct cpudata * cpudata)2011 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata)
2012 {
2013 /* Enable HWP notification interrupt for performance change */
2014 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) {
2015 u64 interrupt_mask = HWP_GUARANTEED_PERF_CHANGE_REQ;
2016
2017 raw_spin_lock_irq(&hwp_notify_lock);
2018 INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work);
2019 cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask);
2020 raw_spin_unlock_irq(&hwp_notify_lock);
2021
2022 if (cpu_feature_enabled(X86_FEATURE_HWP_HIGHEST_PERF_CHANGE))
2023 interrupt_mask |= HWP_HIGHEST_PERF_CHANGE_REQ;
2024
2025 /* wrmsrq_on_cpu has to be outside spinlock as this can result in IPC */
2026 wrmsrq_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, interrupt_mask);
2027 wrmsrq_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
2028 }
2029 }
2030
intel_pstate_update_epp_defaults(struct cpudata * cpudata)2031 static void intel_pstate_update_epp_defaults(struct cpudata *cpudata)
2032 {
2033 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
2034
2035 /*
2036 * If the EPP is set by firmware, which means that firmware enabled HWP
2037 * - Is equal or less than 0x80 (default balance_perf EPP)
2038 * - But less performance oriented than performance EPP
2039 * then use this as new balance_perf EPP.
2040 */
2041 if (hwp_forced && cpudata->epp_default <= HWP_EPP_BALANCE_PERFORMANCE &&
2042 cpudata->epp_default > HWP_EPP_PERFORMANCE) {
2043 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = cpudata->epp_default;
2044 return;
2045 }
2046
2047 /*
2048 * If this CPU gen doesn't call for change in balance_perf
2049 * EPP return.
2050 */
2051 if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE)
2052 return;
2053
2054 /*
2055 * Use hard coded value per gen to update the balance_perf
2056 * and default EPP.
2057 */
2058 cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE];
2059 intel_pstate_set_epp(cpudata, cpudata->epp_default);
2060 }
2061
intel_pstate_hwp_enable(struct cpudata * cpudata)2062 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
2063 {
2064 /* First disable HWP notification interrupt till we activate again */
2065 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
2066 wrmsrq_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
2067
2068 wrmsrq_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
2069
2070 intel_pstate_enable_hwp_interrupt(cpudata);
2071
2072 if (cpudata->epp_default >= 0)
2073 return;
2074
2075 intel_pstate_update_epp_defaults(cpudata);
2076 }
2077
atom_get_min_pstate(int not_used)2078 static int atom_get_min_pstate(int not_used)
2079 {
2080 u64 value;
2081
2082 rdmsrq(MSR_ATOM_CORE_RATIOS, value);
2083 return (value >> 8) & 0x7F;
2084 }
2085
atom_get_max_pstate(int not_used)2086 static int atom_get_max_pstate(int not_used)
2087 {
2088 u64 value;
2089
2090 rdmsrq(MSR_ATOM_CORE_RATIOS, value);
2091 return (value >> 16) & 0x7F;
2092 }
2093
atom_get_turbo_pstate(int not_used)2094 static int atom_get_turbo_pstate(int not_used)
2095 {
2096 u64 value;
2097
2098 rdmsrq(MSR_ATOM_CORE_TURBO_RATIOS, value);
2099 return value & 0x7F;
2100 }
2101
atom_get_val(struct cpudata * cpudata,int pstate)2102 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
2103 {
2104 u64 val;
2105 int32_t vid_fp;
2106 u32 vid;
2107
2108 val = (u64)pstate << 8;
2109 if (READ_ONCE(global.no_turbo) && !READ_ONCE(global.turbo_disabled))
2110 val |= (u64)1 << 32;
2111
2112 vid_fp = cpudata->vid.min + mul_fp(
2113 int_tofp(pstate - cpudata->pstate.min_pstate),
2114 cpudata->vid.ratio);
2115
2116 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
2117 vid = ceiling_fp(vid_fp);
2118
2119 if (pstate > cpudata->pstate.max_pstate)
2120 vid = cpudata->vid.turbo;
2121
2122 return val | vid;
2123 }
2124
silvermont_get_scaling(void)2125 static int silvermont_get_scaling(void)
2126 {
2127 u64 value;
2128 int i;
2129 /* Defined in Table 35-6 from SDM (Sept 2015) */
2130 static int silvermont_freq_table[] = {
2131 83300, 100000, 133300, 116700, 80000};
2132
2133 rdmsrq(MSR_FSB_FREQ, value);
2134 i = value & 0x7;
2135 WARN_ON(i > 4);
2136
2137 return silvermont_freq_table[i];
2138 }
2139
airmont_get_scaling(void)2140 static int airmont_get_scaling(void)
2141 {
2142 u64 value;
2143 int i;
2144 /* Defined in Table 35-10 from SDM (Sept 2015) */
2145 static int airmont_freq_table[] = {
2146 83300, 100000, 133300, 116700, 80000,
2147 93300, 90000, 88900, 87500};
2148
2149 rdmsrq(MSR_FSB_FREQ, value);
2150 i = value & 0xF;
2151 WARN_ON(i > 8);
2152
2153 return airmont_freq_table[i];
2154 }
2155
atom_get_vid(struct cpudata * cpudata)2156 static void atom_get_vid(struct cpudata *cpudata)
2157 {
2158 u64 value;
2159
2160 rdmsrq(MSR_ATOM_CORE_VIDS, value);
2161 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
2162 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
2163 cpudata->vid.ratio = div_fp(
2164 cpudata->vid.max - cpudata->vid.min,
2165 int_tofp(cpudata->pstate.max_pstate -
2166 cpudata->pstate.min_pstate));
2167
2168 rdmsrq(MSR_ATOM_CORE_TURBO_VIDS, value);
2169 cpudata->vid.turbo = value & 0x7f;
2170 }
2171
core_get_min_pstate(int cpu)2172 static int core_get_min_pstate(int cpu)
2173 {
2174 u64 value;
2175
2176 rdmsrq_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
2177 return (value >> 40) & 0xFF;
2178 }
2179
core_get_max_pstate_physical(int cpu)2180 static int core_get_max_pstate_physical(int cpu)
2181 {
2182 u64 value;
2183
2184 rdmsrq_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
2185 return (value >> 8) & 0xFF;
2186 }
2187
core_get_tdp_ratio(int cpu,u64 plat_info)2188 static int core_get_tdp_ratio(int cpu, u64 plat_info)
2189 {
2190 /* Check how many TDP levels present */
2191 if (plat_info & 0x600000000) {
2192 u64 tdp_ctrl;
2193 u64 tdp_ratio;
2194 int tdp_msr;
2195 int err;
2196
2197 /* Get the TDP level (0, 1, 2) to get ratios */
2198 err = rdmsrq_safe_on_cpu(cpu, MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
2199 if (err)
2200 return err;
2201
2202 /* TDP MSR are continuous starting at 0x648 */
2203 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
2204 err = rdmsrq_safe_on_cpu(cpu, tdp_msr, &tdp_ratio);
2205 if (err)
2206 return err;
2207
2208 /* For level 1 and 2, bits[23:16] contain the ratio */
2209 if (tdp_ctrl & 0x03)
2210 tdp_ratio >>= 16;
2211
2212 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
2213 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
2214
2215 return (int)tdp_ratio;
2216 }
2217
2218 return -ENXIO;
2219 }
2220
core_get_max_pstate(int cpu)2221 static int core_get_max_pstate(int cpu)
2222 {
2223 u64 tar;
2224 u64 plat_info;
2225 int max_pstate;
2226 int tdp_ratio;
2227 int err;
2228
2229 rdmsrq_on_cpu(cpu, MSR_PLATFORM_INFO, &plat_info);
2230 max_pstate = (plat_info >> 8) & 0xFF;
2231
2232 tdp_ratio = core_get_tdp_ratio(cpu, plat_info);
2233 if (tdp_ratio <= 0)
2234 return max_pstate;
2235
2236 if (hwp_active) {
2237 /* Turbo activation ratio is not used on HWP platforms */
2238 return tdp_ratio;
2239 }
2240
2241 err = rdmsrq_safe_on_cpu(cpu, MSR_TURBO_ACTIVATION_RATIO, &tar);
2242 if (!err) {
2243 int tar_levels;
2244
2245 /* Do some sanity checking for safety */
2246 tar_levels = tar & 0xff;
2247 if (tdp_ratio - 1 == tar_levels) {
2248 max_pstate = tar_levels;
2249 pr_debug("max_pstate=TAC %x\n", max_pstate);
2250 }
2251 }
2252
2253 return max_pstate;
2254 }
2255
core_get_turbo_pstate(int cpu)2256 static int core_get_turbo_pstate(int cpu)
2257 {
2258 u64 value;
2259 int nont, ret;
2260
2261 rdmsrq_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
2262 nont = core_get_max_pstate(cpu);
2263 ret = (value) & 255;
2264 if (ret <= nont)
2265 ret = nont;
2266 return ret;
2267 }
2268
core_get_val(struct cpudata * cpudata,int pstate)2269 static u64 core_get_val(struct cpudata *cpudata, int pstate)
2270 {
2271 u64 val;
2272
2273 val = (u64)pstate << 8;
2274 if (READ_ONCE(global.no_turbo) && !READ_ONCE(global.turbo_disabled))
2275 val |= (u64)1 << 32;
2276
2277 return val;
2278 }
2279
knl_get_aperf_mperf_shift(void)2280 static int knl_get_aperf_mperf_shift(void)
2281 {
2282 return 10;
2283 }
2284
knl_get_turbo_pstate(int cpu)2285 static int knl_get_turbo_pstate(int cpu)
2286 {
2287 u64 value;
2288 int nont, ret;
2289
2290 rdmsrq_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
2291 nont = core_get_max_pstate(cpu);
2292 ret = (((value) >> 8) & 0xFF);
2293 if (ret <= nont)
2294 ret = nont;
2295 return ret;
2296 }
2297
hwp_get_cpu_scaling(int cpu)2298 static int hwp_get_cpu_scaling(int cpu)
2299 {
2300 if (hybrid_scaling_factor) {
2301 struct cpuinfo_x86 *c = &cpu_data(cpu);
2302 u8 cpu_type = c->topo.intel_type;
2303
2304 /*
2305 * Return the hybrid scaling factor for P-cores and use the
2306 * default core scaling for E-cores.
2307 */
2308 if (cpu_type == INTEL_CPU_TYPE_CORE)
2309 return hybrid_scaling_factor;
2310
2311 if (cpu_type == INTEL_CPU_TYPE_ATOM)
2312 return core_get_scaling();
2313 }
2314
2315 /* Use core scaling on non-hybrid systems. */
2316 if (!cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
2317 return core_get_scaling();
2318
2319 /*
2320 * The system is hybrid, but the hybrid scaling factor is not known or
2321 * the CPU type is not one of the above, so use CPPC to compute the
2322 * scaling factor for this CPU.
2323 */
2324 return intel_pstate_cppc_get_scaling(cpu);
2325 }
2326
intel_pstate_set_pstate(struct cpudata * cpu,int pstate)2327 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
2328 {
2329 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
2330 cpu->pstate.current_pstate = pstate;
2331 /*
2332 * Generally, there is no guarantee that this code will always run on
2333 * the CPU being updated, so force the register update to run on the
2334 * right CPU.
2335 */
2336 wrmsrq_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2337 pstate_funcs.get_val(cpu, pstate));
2338 }
2339
intel_pstate_set_min_pstate(struct cpudata * cpu)2340 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
2341 {
2342 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
2343 }
2344
intel_pstate_get_cpu_pstates(struct cpudata * cpu)2345 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
2346 {
2347 int perf_ctl_max_phys = pstate_funcs.get_max_physical(cpu->cpu);
2348 int perf_ctl_scaling = pstate_funcs.get_scaling();
2349
2350 cpu->pstate.min_pstate = pstate_funcs.get_min(cpu->cpu);
2351 cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
2352 cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
2353
2354 if (hwp_active && !hwp_mode_bdw) {
2355 __intel_pstate_get_hwp_cap(cpu);
2356
2357 if (pstate_funcs.get_cpu_scaling) {
2358 cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
2359 if (cpu->pstate.scaling != perf_ctl_scaling) {
2360 intel_pstate_hybrid_hwp_adjust(cpu);
2361 hwp_is_hybrid = true;
2362 }
2363 } else {
2364 cpu->pstate.scaling = perf_ctl_scaling;
2365 }
2366 /*
2367 * If the CPU is going online for the first time and it was
2368 * offline initially, asym capacity scaling needs to be updated.
2369 */
2370 hybrid_update_capacity(cpu);
2371 } else {
2372 cpu->pstate.scaling = perf_ctl_scaling;
2373 cpu->pstate.max_pstate = pstate_funcs.get_max(cpu->cpu);
2374 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(cpu->cpu);
2375 }
2376
2377 if (cpu->pstate.scaling == perf_ctl_scaling) {
2378 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
2379 cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
2380 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
2381 }
2382
2383 if (pstate_funcs.get_aperf_mperf_shift)
2384 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
2385
2386 if (pstate_funcs.get_vid)
2387 pstate_funcs.get_vid(cpu);
2388
2389 intel_pstate_set_min_pstate(cpu);
2390 }
2391
2392 /*
2393 * Long hold time will keep high perf limits for long time,
2394 * which negatively impacts perf/watt for some workloads,
2395 * like specpower. 3ms is based on experiements on some
2396 * workoads.
2397 */
2398 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
2399
intel_pstate_hwp_boost_up(struct cpudata * cpu)2400 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
2401 {
2402 u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
2403 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2404 u32 max_limit = (hwp_req & 0xff00) >> 8;
2405 u32 min_limit = (hwp_req & 0xff);
2406 u32 boost_level1;
2407
2408 /*
2409 * Cases to consider (User changes via sysfs or boot time):
2410 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
2411 * No boost, return.
2412 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
2413 * Should result in one level boost only for P0.
2414 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
2415 * Should result in two level boost:
2416 * (min + p1)/2 and P1.
2417 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
2418 * Should result in three level boost:
2419 * (min + p1)/2, P1 and P0.
2420 */
2421
2422 /* If max and min are equal or already at max, nothing to boost */
2423 if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
2424 return;
2425
2426 if (!cpu->hwp_boost_min)
2427 cpu->hwp_boost_min = min_limit;
2428
2429 /* level at half way mark between min and guranteed */
2430 boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
2431
2432 if (cpu->hwp_boost_min < boost_level1)
2433 cpu->hwp_boost_min = boost_level1;
2434 else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
2435 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
2436 else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
2437 max_limit != HWP_GUARANTEED_PERF(hwp_cap))
2438 cpu->hwp_boost_min = max_limit;
2439 else
2440 return;
2441
2442 hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
2443 wrmsrq(MSR_HWP_REQUEST, hwp_req);
2444 cpu->last_update = cpu->sample.time;
2445 }
2446
intel_pstate_hwp_boost_down(struct cpudata * cpu)2447 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
2448 {
2449 if (cpu->hwp_boost_min) {
2450 bool expired;
2451
2452 /* Check if we are idle for hold time to boost down */
2453 expired = time_after64(cpu->sample.time, cpu->last_update +
2454 hwp_boost_hold_time_ns);
2455 if (expired) {
2456 wrmsrq(MSR_HWP_REQUEST, cpu->hwp_req_cached);
2457 cpu->hwp_boost_min = 0;
2458 }
2459 }
2460 cpu->last_update = cpu->sample.time;
2461 }
2462
intel_pstate_update_util_hwp_local(struct cpudata * cpu,u64 time)2463 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
2464 u64 time)
2465 {
2466 cpu->sample.time = time;
2467
2468 if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
2469 bool do_io = false;
2470
2471 cpu->sched_flags = 0;
2472 /*
2473 * Set iowait_boost flag and update time. Since IO WAIT flag
2474 * is set all the time, we can't just conclude that there is
2475 * some IO bound activity is scheduled on this CPU with just
2476 * one occurrence. If we receive at least two in two
2477 * consecutive ticks, then we treat as boost candidate.
2478 */
2479 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
2480 do_io = true;
2481
2482 cpu->last_io_update = time;
2483
2484 if (do_io)
2485 intel_pstate_hwp_boost_up(cpu);
2486
2487 } else {
2488 intel_pstate_hwp_boost_down(cpu);
2489 }
2490 }
2491
intel_pstate_update_util_hwp(struct update_util_data * data,u64 time,unsigned int flags)2492 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2493 u64 time, unsigned int flags)
2494 {
2495 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2496
2497 cpu->sched_flags |= flags;
2498
2499 if (smp_processor_id() == cpu->cpu)
2500 intel_pstate_update_util_hwp_local(cpu, time);
2501 }
2502
intel_pstate_calc_avg_perf(struct cpudata * cpu)2503 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2504 {
2505 struct sample *sample = &cpu->sample;
2506
2507 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2508 }
2509
intel_pstate_sample(struct cpudata * cpu,u64 time)2510 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2511 {
2512 u64 aperf, mperf;
2513 unsigned long flags;
2514 u64 tsc;
2515
2516 local_irq_save(flags);
2517 rdmsrq(MSR_IA32_APERF, aperf);
2518 rdmsrq(MSR_IA32_MPERF, mperf);
2519 tsc = rdtsc();
2520 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2521 local_irq_restore(flags);
2522 return false;
2523 }
2524 local_irq_restore(flags);
2525
2526 cpu->last_sample_time = cpu->sample.time;
2527 cpu->sample.time = time;
2528 cpu->sample.aperf = aperf;
2529 cpu->sample.mperf = mperf;
2530 cpu->sample.tsc = tsc;
2531 cpu->sample.aperf -= cpu->prev_aperf;
2532 cpu->sample.mperf -= cpu->prev_mperf;
2533 cpu->sample.tsc -= cpu->prev_tsc;
2534
2535 cpu->prev_aperf = aperf;
2536 cpu->prev_mperf = mperf;
2537 cpu->prev_tsc = tsc;
2538 /*
2539 * First time this function is invoked in a given cycle, all of the
2540 * previous sample data fields are equal to zero or stale and they must
2541 * be populated with meaningful numbers for things to work, so assume
2542 * that sample.time will always be reset before setting the utilization
2543 * update hook and make the caller skip the sample then.
2544 */
2545 if (likely(cpu->last_sample_time)) {
2546 intel_pstate_calc_avg_perf(cpu);
2547 return true;
2548 }
2549 return false;
2550 }
2551
get_avg_frequency(struct cpudata * cpu)2552 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2553 {
2554 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2555 }
2556
get_avg_pstate(struct cpudata * cpu)2557 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2558 {
2559 return mul_ext_fp(cpu->pstate.max_pstate_physical,
2560 cpu->sample.core_avg_perf);
2561 }
2562
get_target_pstate(struct cpudata * cpu)2563 static inline int32_t get_target_pstate(struct cpudata *cpu)
2564 {
2565 struct sample *sample = &cpu->sample;
2566 int32_t busy_frac;
2567 int target, avg_pstate;
2568
2569 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2570 sample->tsc);
2571
2572 if (busy_frac < cpu->iowait_boost)
2573 busy_frac = cpu->iowait_boost;
2574
2575 sample->busy_scaled = busy_frac * 100;
2576
2577 target = READ_ONCE(global.no_turbo) ?
2578 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2579 target += target >> 2;
2580 target = mul_fp(target, busy_frac);
2581 if (target < cpu->pstate.min_pstate)
2582 target = cpu->pstate.min_pstate;
2583
2584 /*
2585 * If the average P-state during the previous cycle was higher than the
2586 * current target, add 50% of the difference to the target to reduce
2587 * possible performance oscillations and offset possible performance
2588 * loss related to moving the workload from one CPU to another within
2589 * a package/module.
2590 */
2591 avg_pstate = get_avg_pstate(cpu);
2592 if (avg_pstate > target)
2593 target += (avg_pstate - target) >> 1;
2594
2595 return target;
2596 }
2597
intel_pstate_prepare_request(struct cpudata * cpu,int pstate)2598 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2599 {
2600 int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2601 int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2602
2603 return clamp_t(int, pstate, min_pstate, max_pstate);
2604 }
2605
intel_pstate_update_pstate(struct cpudata * cpu,int pstate)2606 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2607 {
2608 if (pstate == cpu->pstate.current_pstate)
2609 return;
2610
2611 cpu->pstate.current_pstate = pstate;
2612 wrmsrq(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2613 }
2614
intel_pstate_adjust_pstate(struct cpudata * cpu)2615 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2616 {
2617 int from = cpu->pstate.current_pstate;
2618 struct sample *sample;
2619 int target_pstate;
2620
2621 target_pstate = get_target_pstate(cpu);
2622 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2623 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2624 intel_pstate_update_pstate(cpu, target_pstate);
2625
2626 sample = &cpu->sample;
2627 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2628 fp_toint(sample->busy_scaled),
2629 from,
2630 cpu->pstate.current_pstate,
2631 sample->mperf,
2632 sample->aperf,
2633 sample->tsc,
2634 get_avg_frequency(cpu),
2635 fp_toint(cpu->iowait_boost * 100));
2636 }
2637
intel_pstate_update_util(struct update_util_data * data,u64 time,unsigned int flags)2638 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2639 unsigned int flags)
2640 {
2641 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2642 u64 delta_ns;
2643
2644 /* Don't allow remote callbacks */
2645 if (smp_processor_id() != cpu->cpu)
2646 return;
2647
2648 delta_ns = time - cpu->last_update;
2649 if (flags & SCHED_CPUFREQ_IOWAIT) {
2650 /* Start over if the CPU may have been idle. */
2651 if (delta_ns > TICK_NSEC) {
2652 cpu->iowait_boost = ONE_EIGHTH_FP;
2653 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2654 cpu->iowait_boost <<= 1;
2655 if (cpu->iowait_boost > int_tofp(1))
2656 cpu->iowait_boost = int_tofp(1);
2657 } else {
2658 cpu->iowait_boost = ONE_EIGHTH_FP;
2659 }
2660 } else if (cpu->iowait_boost) {
2661 /* Clear iowait_boost if the CPU may have been idle. */
2662 if (delta_ns > TICK_NSEC)
2663 cpu->iowait_boost = 0;
2664 else
2665 cpu->iowait_boost >>= 1;
2666 }
2667 cpu->last_update = time;
2668 delta_ns = time - cpu->sample.time;
2669 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2670 return;
2671
2672 if (intel_pstate_sample(cpu, time))
2673 intel_pstate_adjust_pstate(cpu);
2674 }
2675
2676 static struct pstate_funcs core_funcs = {
2677 .get_max = core_get_max_pstate,
2678 .get_max_physical = core_get_max_pstate_physical,
2679 .get_min = core_get_min_pstate,
2680 .get_turbo = core_get_turbo_pstate,
2681 .get_scaling = core_get_scaling,
2682 .get_val = core_get_val,
2683 };
2684
2685 static const struct pstate_funcs silvermont_funcs = {
2686 .get_max = atom_get_max_pstate,
2687 .get_max_physical = atom_get_max_pstate,
2688 .get_min = atom_get_min_pstate,
2689 .get_turbo = atom_get_turbo_pstate,
2690 .get_val = atom_get_val,
2691 .get_scaling = silvermont_get_scaling,
2692 .get_vid = atom_get_vid,
2693 };
2694
2695 static const struct pstate_funcs airmont_funcs = {
2696 .get_max = atom_get_max_pstate,
2697 .get_max_physical = atom_get_max_pstate,
2698 .get_min = atom_get_min_pstate,
2699 .get_turbo = atom_get_turbo_pstate,
2700 .get_val = atom_get_val,
2701 .get_scaling = airmont_get_scaling,
2702 .get_vid = atom_get_vid,
2703 };
2704
2705 static const struct pstate_funcs knl_funcs = {
2706 .get_max = core_get_max_pstate,
2707 .get_max_physical = core_get_max_pstate_physical,
2708 .get_min = core_get_min_pstate,
2709 .get_turbo = knl_get_turbo_pstate,
2710 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2711 .get_scaling = core_get_scaling,
2712 .get_val = core_get_val,
2713 };
2714
2715 #define X86_MATCH(vfm, policy) \
2716 X86_MATCH_VFM_FEATURE(vfm, X86_FEATURE_APERFMPERF, &policy)
2717
2718 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2719 X86_MATCH(INTEL_SANDYBRIDGE, core_funcs),
2720 X86_MATCH(INTEL_SANDYBRIDGE_X, core_funcs),
2721 X86_MATCH(INTEL_ATOM_SILVERMONT, silvermont_funcs),
2722 X86_MATCH(INTEL_IVYBRIDGE, core_funcs),
2723 X86_MATCH(INTEL_HASWELL, core_funcs),
2724 X86_MATCH(INTEL_BROADWELL, core_funcs),
2725 X86_MATCH(INTEL_IVYBRIDGE_X, core_funcs),
2726 X86_MATCH(INTEL_HASWELL_X, core_funcs),
2727 X86_MATCH(INTEL_HASWELL_L, core_funcs),
2728 X86_MATCH(INTEL_HASWELL_G, core_funcs),
2729 X86_MATCH(INTEL_BROADWELL_G, core_funcs),
2730 X86_MATCH(INTEL_ATOM_AIRMONT, airmont_funcs),
2731 X86_MATCH(INTEL_SKYLAKE_L, core_funcs),
2732 X86_MATCH(INTEL_BROADWELL_X, core_funcs),
2733 X86_MATCH(INTEL_SKYLAKE, core_funcs),
2734 X86_MATCH(INTEL_BROADWELL_D, core_funcs),
2735 X86_MATCH(INTEL_XEON_PHI_KNL, knl_funcs),
2736 X86_MATCH(INTEL_XEON_PHI_KNM, knl_funcs),
2737 X86_MATCH(INTEL_ATOM_GOLDMONT, core_funcs),
2738 X86_MATCH(INTEL_ATOM_GOLDMONT_PLUS, core_funcs),
2739 X86_MATCH(INTEL_SKYLAKE_X, core_funcs),
2740 X86_MATCH(INTEL_COMETLAKE, core_funcs),
2741 X86_MATCH(INTEL_ICELAKE_X, core_funcs),
2742 X86_MATCH(INTEL_TIGERLAKE, core_funcs),
2743 X86_MATCH(INTEL_SAPPHIRERAPIDS_X, core_funcs),
2744 X86_MATCH(INTEL_EMERALDRAPIDS_X, core_funcs),
2745 X86_MATCH(INTEL_GRANITERAPIDS_D, core_funcs),
2746 X86_MATCH(INTEL_GRANITERAPIDS_X, core_funcs),
2747 {}
2748 };
2749 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2750
2751 #ifdef CONFIG_ACPI
2752 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2753 X86_MATCH(INTEL_BROADWELL_D, core_funcs),
2754 X86_MATCH(INTEL_BROADWELL_X, core_funcs),
2755 X86_MATCH(INTEL_SKYLAKE_X, core_funcs),
2756 X86_MATCH(INTEL_ICELAKE_X, core_funcs),
2757 X86_MATCH(INTEL_SAPPHIRERAPIDS_X, core_funcs),
2758 X86_MATCH(INTEL_EMERALDRAPIDS_X, core_funcs),
2759 X86_MATCH(INTEL_GRANITERAPIDS_D, core_funcs),
2760 X86_MATCH(INTEL_GRANITERAPIDS_X, core_funcs),
2761 X86_MATCH(INTEL_ATOM_CRESTMONT, core_funcs),
2762 X86_MATCH(INTEL_ATOM_CRESTMONT_X, core_funcs),
2763 X86_MATCH(INTEL_ATOM_DARKMONT_X, core_funcs),
2764 {}
2765 };
2766 #endif
2767
2768 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2769 X86_MATCH(INTEL_KABYLAKE, core_funcs),
2770 {}
2771 };
2772
intel_pstate_init_cpu(unsigned int cpunum)2773 static int intel_pstate_init_cpu(unsigned int cpunum)
2774 {
2775 struct cpudata *cpu;
2776
2777 cpu = all_cpu_data[cpunum];
2778
2779 if (!cpu) {
2780 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2781 if (!cpu)
2782 return -ENOMEM;
2783
2784 WRITE_ONCE(all_cpu_data[cpunum], cpu);
2785
2786 cpu->cpu = cpunum;
2787
2788 cpu->epp_default = -EINVAL;
2789
2790 if (hwp_active) {
2791 intel_pstate_hwp_enable(cpu);
2792
2793 if (intel_pstate_acpi_pm_profile_server())
2794 hwp_boost = true;
2795 }
2796 } else if (hwp_active) {
2797 /*
2798 * Re-enable HWP in case this happens after a resume from ACPI
2799 * S3 if the CPU was offline during the whole system/resume
2800 * cycle.
2801 */
2802 intel_pstate_hwp_reenable(cpu);
2803 }
2804
2805 cpu->epp_powersave = -EINVAL;
2806 cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
2807
2808 intel_pstate_get_cpu_pstates(cpu);
2809
2810 pr_debug("controlling: cpu %d\n", cpunum);
2811
2812 return 0;
2813 }
2814
intel_pstate_set_update_util_hook(unsigned int cpu_num)2815 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2816 {
2817 struct cpudata *cpu = all_cpu_data[cpu_num];
2818
2819 if (hwp_active && !hwp_boost)
2820 return;
2821
2822 if (cpu->update_util_set)
2823 return;
2824
2825 /* Prevent intel_pstate_update_util() from using stale data. */
2826 cpu->sample.time = 0;
2827 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2828 (hwp_active ?
2829 intel_pstate_update_util_hwp :
2830 intel_pstate_update_util));
2831 cpu->update_util_set = true;
2832 }
2833
intel_pstate_clear_update_util_hook(unsigned int cpu)2834 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2835 {
2836 struct cpudata *cpu_data = all_cpu_data[cpu];
2837
2838 if (!cpu_data->update_util_set)
2839 return;
2840
2841 cpufreq_remove_update_util_hook(cpu);
2842 cpu_data->update_util_set = false;
2843 synchronize_rcu();
2844 }
2845
intel_pstate_get_max_freq(struct cpudata * cpu)2846 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2847 {
2848 return READ_ONCE(global.no_turbo) ?
2849 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2850 }
2851
intel_pstate_update_perf_limits(struct cpudata * cpu,unsigned int policy_min,unsigned int policy_max)2852 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2853 unsigned int policy_min,
2854 unsigned int policy_max)
2855 {
2856 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2857 int32_t max_policy_perf, min_policy_perf;
2858
2859 max_policy_perf = policy_max / perf_ctl_scaling;
2860 if (policy_max == policy_min) {
2861 min_policy_perf = max_policy_perf;
2862 } else {
2863 min_policy_perf = policy_min / perf_ctl_scaling;
2864 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2865 0, max_policy_perf);
2866 }
2867
2868 /*
2869 * HWP needs some special consideration, because HWP_REQUEST uses
2870 * abstract values to represent performance rather than pure ratios.
2871 */
2872 if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) {
2873 int freq;
2874
2875 freq = max_policy_perf * perf_ctl_scaling;
2876 max_policy_perf = intel_pstate_freq_to_hwp(cpu, freq);
2877 freq = min_policy_perf * perf_ctl_scaling;
2878 min_policy_perf = intel_pstate_freq_to_hwp(cpu, freq);
2879 }
2880
2881 pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2882 cpu->cpu, min_policy_perf, max_policy_perf);
2883
2884 /* Normalize user input to [min_perf, max_perf] */
2885 if (per_cpu_limits) {
2886 cpu->min_perf_ratio = min_policy_perf;
2887 cpu->max_perf_ratio = max_policy_perf;
2888 } else {
2889 int turbo_max = cpu->pstate.turbo_pstate;
2890 int32_t global_min, global_max;
2891
2892 /* Global limits are in percent of the maximum turbo P-state. */
2893 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2894 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2895 global_min = clamp_t(int32_t, global_min, 0, global_max);
2896
2897 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2898 global_min, global_max);
2899
2900 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2901 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2902 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2903 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2904
2905 /* Make sure min_perf <= max_perf */
2906 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2907 cpu->max_perf_ratio);
2908
2909 }
2910 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2911 cpu->max_perf_ratio,
2912 cpu->min_perf_ratio);
2913 }
2914
intel_pstate_set_policy(struct cpufreq_policy * policy)2915 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2916 {
2917 struct cpudata *cpu;
2918
2919 if (!policy->cpuinfo.max_freq)
2920 return -ENODEV;
2921
2922 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2923 policy->cpuinfo.max_freq, policy->max);
2924
2925 cpu = all_cpu_data[policy->cpu];
2926 cpu->policy = policy->policy;
2927
2928 mutex_lock(&intel_pstate_limits_lock);
2929
2930 intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2931
2932 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2933 int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
2934
2935 /*
2936 * NOHZ_FULL CPUs need this as the governor callback may not
2937 * be invoked on them.
2938 */
2939 intel_pstate_clear_update_util_hook(policy->cpu);
2940 intel_pstate_set_pstate(cpu, pstate);
2941 } else {
2942 intel_pstate_set_update_util_hook(policy->cpu);
2943 }
2944
2945 if (hwp_active) {
2946 /*
2947 * When hwp_boost was active before and dynamically it
2948 * was turned off, in that case we need to clear the
2949 * update util hook.
2950 */
2951 if (!hwp_boost)
2952 intel_pstate_clear_update_util_hook(policy->cpu);
2953 intel_pstate_hwp_set(policy->cpu);
2954 }
2955 /*
2956 * policy->cur is never updated with the intel_pstate driver, but it
2957 * is used as a stale frequency value. So, keep it within limits.
2958 */
2959 policy->cur = policy->min;
2960
2961 mutex_unlock(&intel_pstate_limits_lock);
2962
2963 return 0;
2964 }
2965
intel_pstate_adjust_policy_max(struct cpudata * cpu,struct cpufreq_policy_data * policy)2966 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2967 struct cpufreq_policy_data *policy)
2968 {
2969 if (!hwp_active &&
2970 cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2971 policy->max < policy->cpuinfo.max_freq &&
2972 policy->max > cpu->pstate.max_freq) {
2973 pr_debug("policy->max > max non turbo frequency\n");
2974 policy->max = policy->cpuinfo.max_freq;
2975 }
2976 }
2977
intel_pstate_verify_cpu_policy(struct cpudata * cpu,struct cpufreq_policy_data * policy)2978 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2979 struct cpufreq_policy_data *policy)
2980 {
2981 int max_freq;
2982
2983 if (hwp_active) {
2984 intel_pstate_get_hwp_cap(cpu);
2985 max_freq = READ_ONCE(global.no_turbo) ?
2986 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2987 } else {
2988 max_freq = intel_pstate_get_max_freq(cpu);
2989 }
2990 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2991
2992 intel_pstate_adjust_policy_max(cpu, policy);
2993 }
2994
intel_pstate_verify_policy(struct cpufreq_policy_data * policy)2995 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2996 {
2997 intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2998
2999 return 0;
3000 }
3001
intel_cpufreq_cpu_offline(struct cpufreq_policy * policy)3002 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
3003 {
3004 struct cpudata *cpu = all_cpu_data[policy->cpu];
3005
3006 pr_debug("CPU %d going offline\n", cpu->cpu);
3007
3008 if (cpu->suspended)
3009 return 0;
3010
3011 /*
3012 * If the CPU is an SMT thread and it goes offline with the performance
3013 * settings different from the minimum, it will prevent its sibling
3014 * from getting to lower performance levels, so force the minimum
3015 * performance on CPU offline to prevent that from happening.
3016 */
3017 if (hwp_active)
3018 intel_pstate_hwp_offline(cpu);
3019 else
3020 intel_pstate_set_min_pstate(cpu);
3021
3022 intel_pstate_exit_perf_limits(policy);
3023
3024 return 0;
3025 }
3026
intel_pstate_cpu_online(struct cpufreq_policy * policy)3027 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
3028 {
3029 struct cpudata *cpu = all_cpu_data[policy->cpu];
3030
3031 pr_debug("CPU %d going online\n", cpu->cpu);
3032
3033 intel_pstate_init_acpi_perf_limits(policy);
3034
3035 if (hwp_active) {
3036 /*
3037 * Re-enable HWP and clear the "suspended" flag to let "resume"
3038 * know that it need not do that.
3039 */
3040 intel_pstate_hwp_reenable(cpu);
3041 cpu->suspended = false;
3042
3043 hybrid_update_capacity(cpu);
3044 }
3045
3046 return 0;
3047 }
3048
intel_pstate_cpu_offline(struct cpufreq_policy * policy)3049 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
3050 {
3051 intel_pstate_clear_update_util_hook(policy->cpu);
3052
3053 return intel_cpufreq_cpu_offline(policy);
3054 }
3055
intel_pstate_cpu_exit(struct cpufreq_policy * policy)3056 static void intel_pstate_cpu_exit(struct cpufreq_policy *policy)
3057 {
3058 pr_debug("CPU %d exiting\n", policy->cpu);
3059
3060 policy->fast_switch_possible = false;
3061 }
3062
__intel_pstate_cpu_init(struct cpufreq_policy * policy)3063 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
3064 {
3065 struct cpudata *cpu;
3066 int rc;
3067
3068 rc = intel_pstate_init_cpu(policy->cpu);
3069 if (rc)
3070 return rc;
3071
3072 cpu = all_cpu_data[policy->cpu];
3073
3074 cpu->max_perf_ratio = 0xFF;
3075 cpu->min_perf_ratio = 0;
3076
3077 /* cpuinfo and default policy values */
3078 policy->cpuinfo.min_freq = cpu->pstate.min_freq;
3079 policy->cpuinfo.max_freq = READ_ONCE(global.no_turbo) ?
3080 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
3081
3082 policy->min = policy->cpuinfo.min_freq;
3083 policy->max = policy->cpuinfo.max_freq;
3084
3085 intel_pstate_init_acpi_perf_limits(policy);
3086
3087 policy->fast_switch_possible = true;
3088
3089 return 0;
3090 }
3091
intel_pstate_cpu_init(struct cpufreq_policy * policy)3092 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
3093 {
3094 int ret = __intel_pstate_cpu_init(policy);
3095
3096 if (ret)
3097 return ret;
3098
3099 /*
3100 * Set the policy to powersave to provide a valid fallback value in case
3101 * the default cpufreq governor is neither powersave nor performance.
3102 */
3103 policy->policy = CPUFREQ_POLICY_POWERSAVE;
3104
3105 if (hwp_active) {
3106 struct cpudata *cpu = all_cpu_data[policy->cpu];
3107
3108 cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
3109 }
3110
3111 return 0;
3112 }
3113
3114 static struct cpufreq_driver intel_pstate = {
3115 .flags = CPUFREQ_CONST_LOOPS,
3116 .verify = intel_pstate_verify_policy,
3117 .setpolicy = intel_pstate_set_policy,
3118 .suspend = intel_pstate_suspend,
3119 .resume = intel_pstate_resume,
3120 .init = intel_pstate_cpu_init,
3121 .exit = intel_pstate_cpu_exit,
3122 .offline = intel_pstate_cpu_offline,
3123 .online = intel_pstate_cpu_online,
3124 .update_limits = intel_pstate_update_limits,
3125 .name = "intel_pstate",
3126 };
3127
intel_cpufreq_verify_policy(struct cpufreq_policy_data * policy)3128 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
3129 {
3130 struct cpudata *cpu = all_cpu_data[policy->cpu];
3131
3132 intel_pstate_verify_cpu_policy(cpu, policy);
3133 intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
3134
3135 return 0;
3136 }
3137
3138 /* Use of trace in passive mode:
3139 *
3140 * In passive mode the trace core_busy field (also known as the
3141 * performance field, and lablelled as such on the graphs; also known as
3142 * core_avg_perf) is not needed and so is re-assigned to indicate if the
3143 * driver call was via the normal or fast switch path. Various graphs
3144 * output from the intel_pstate_tracer.py utility that include core_busy
3145 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
3146 * so we use 10 to indicate the normal path through the driver, and
3147 * 90 to indicate the fast switch path through the driver.
3148 * The scaled_busy field is not used, and is set to 0.
3149 */
3150
3151 #define INTEL_PSTATE_TRACE_TARGET 10
3152 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
3153
intel_cpufreq_trace(struct cpudata * cpu,unsigned int trace_type,int old_pstate)3154 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
3155 {
3156 struct sample *sample;
3157
3158 if (!trace_pstate_sample_enabled())
3159 return;
3160
3161 if (!intel_pstate_sample(cpu, ktime_get()))
3162 return;
3163
3164 sample = &cpu->sample;
3165 trace_pstate_sample(trace_type,
3166 0,
3167 old_pstate,
3168 cpu->pstate.current_pstate,
3169 sample->mperf,
3170 sample->aperf,
3171 sample->tsc,
3172 get_avg_frequency(cpu),
3173 fp_toint(cpu->iowait_boost * 100));
3174 }
3175
intel_cpufreq_hwp_update(struct cpudata * cpu,u32 min,u32 max,u32 desired,bool fast_switch)3176 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
3177 u32 desired, bool fast_switch)
3178 {
3179 u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
3180
3181 value &= ~HWP_MIN_PERF(~0L);
3182 value |= HWP_MIN_PERF(min);
3183
3184 value &= ~HWP_MAX_PERF(~0L);
3185 value |= HWP_MAX_PERF(max);
3186
3187 value &= ~HWP_DESIRED_PERF(~0L);
3188 value |= HWP_DESIRED_PERF(desired);
3189
3190 if (value == prev)
3191 return;
3192
3193 WRITE_ONCE(cpu->hwp_req_cached, value);
3194 if (fast_switch)
3195 wrmsrq(MSR_HWP_REQUEST, value);
3196 else
3197 wrmsrq_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3198 }
3199
intel_cpufreq_perf_ctl_update(struct cpudata * cpu,u32 target_pstate,bool fast_switch)3200 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
3201 u32 target_pstate, bool fast_switch)
3202 {
3203 if (fast_switch)
3204 wrmsrq(MSR_IA32_PERF_CTL,
3205 pstate_funcs.get_val(cpu, target_pstate));
3206 else
3207 wrmsrq_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
3208 pstate_funcs.get_val(cpu, target_pstate));
3209 }
3210
intel_cpufreq_update_pstate(struct cpufreq_policy * policy,int target_pstate,bool fast_switch)3211 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
3212 int target_pstate, bool fast_switch)
3213 {
3214 struct cpudata *cpu = all_cpu_data[policy->cpu];
3215 int old_pstate = cpu->pstate.current_pstate;
3216
3217 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
3218 if (hwp_active) {
3219 int max_pstate = policy->strict_target ?
3220 target_pstate : cpu->max_perf_ratio;
3221
3222 intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate,
3223 target_pstate, fast_switch);
3224 } else if (target_pstate != old_pstate) {
3225 intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
3226 }
3227
3228 cpu->pstate.current_pstate = target_pstate;
3229
3230 intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
3231 INTEL_PSTATE_TRACE_TARGET, old_pstate);
3232
3233 return target_pstate;
3234 }
3235
intel_cpufreq_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)3236 static int intel_cpufreq_target(struct cpufreq_policy *policy,
3237 unsigned int target_freq,
3238 unsigned int relation)
3239 {
3240 struct cpudata *cpu = all_cpu_data[policy->cpu];
3241 struct cpufreq_freqs freqs;
3242 int target_pstate;
3243
3244 freqs.old = policy->cur;
3245 freqs.new = target_freq;
3246
3247 cpufreq_freq_transition_begin(policy, &freqs);
3248
3249 target_pstate = intel_pstate_freq_to_hwp_rel(cpu, freqs.new, relation);
3250 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
3251
3252 freqs.new = target_pstate * cpu->pstate.scaling;
3253
3254 cpufreq_freq_transition_end(policy, &freqs, false);
3255
3256 return 0;
3257 }
3258
intel_cpufreq_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)3259 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
3260 unsigned int target_freq)
3261 {
3262 struct cpudata *cpu = all_cpu_data[policy->cpu];
3263 int target_pstate;
3264
3265 target_pstate = intel_pstate_freq_to_hwp(cpu, target_freq);
3266
3267 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
3268
3269 return target_pstate * cpu->pstate.scaling;
3270 }
3271
intel_cpufreq_adjust_perf(unsigned int cpunum,unsigned long min_perf,unsigned long target_perf,unsigned long capacity)3272 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
3273 unsigned long min_perf,
3274 unsigned long target_perf,
3275 unsigned long capacity)
3276 {
3277 struct cpudata *cpu = all_cpu_data[cpunum];
3278 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
3279 int old_pstate = cpu->pstate.current_pstate;
3280 int cap_pstate, min_pstate, max_pstate, target_pstate;
3281
3282 cap_pstate = READ_ONCE(global.no_turbo) ?
3283 HWP_GUARANTEED_PERF(hwp_cap) :
3284 HWP_HIGHEST_PERF(hwp_cap);
3285
3286 /* Optimization: Avoid unnecessary divisions. */
3287
3288 target_pstate = cap_pstate;
3289 if (target_perf < capacity)
3290 target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
3291
3292 min_pstate = cap_pstate;
3293 if (min_perf < capacity)
3294 min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
3295
3296 if (min_pstate < cpu->pstate.min_pstate)
3297 min_pstate = cpu->pstate.min_pstate;
3298
3299 if (min_pstate < cpu->min_perf_ratio)
3300 min_pstate = cpu->min_perf_ratio;
3301
3302 if (min_pstate > cpu->max_perf_ratio)
3303 min_pstate = cpu->max_perf_ratio;
3304
3305 max_pstate = min(cap_pstate, cpu->max_perf_ratio);
3306 if (max_pstate < min_pstate)
3307 max_pstate = min_pstate;
3308
3309 target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
3310
3311 intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
3312
3313 cpu->pstate.current_pstate = target_pstate;
3314 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
3315 }
3316
intel_cpufreq_cpu_init(struct cpufreq_policy * policy)3317 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
3318 {
3319 struct freq_qos_request *req;
3320 struct cpudata *cpu;
3321 struct device *dev;
3322 int ret, freq;
3323
3324 dev = get_cpu_device(policy->cpu);
3325 if (!dev)
3326 return -ENODEV;
3327
3328 ret = __intel_pstate_cpu_init(policy);
3329 if (ret)
3330 return ret;
3331
3332 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
3333 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
3334 policy->cur = policy->cpuinfo.min_freq;
3335
3336 req = kcalloc(2, sizeof(*req), GFP_KERNEL);
3337 if (!req) {
3338 ret = -ENOMEM;
3339 goto pstate_exit;
3340 }
3341
3342 cpu = all_cpu_data[policy->cpu];
3343
3344 if (hwp_active) {
3345 u64 value;
3346
3347 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
3348
3349 intel_pstate_get_hwp_cap(cpu);
3350
3351 rdmsrq_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
3352 WRITE_ONCE(cpu->hwp_req_cached, value);
3353
3354 cpu->epp_cached = intel_pstate_get_epp(cpu, value);
3355 } else {
3356 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
3357 }
3358
3359 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
3360
3361 ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
3362 freq);
3363 if (ret < 0) {
3364 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
3365 goto free_req;
3366 }
3367
3368 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
3369
3370 ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
3371 freq);
3372 if (ret < 0) {
3373 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
3374 goto remove_min_req;
3375 }
3376
3377 policy->driver_data = req;
3378
3379 return 0;
3380
3381 remove_min_req:
3382 freq_qos_remove_request(req);
3383 free_req:
3384 kfree(req);
3385 pstate_exit:
3386 intel_pstate_exit_perf_limits(policy);
3387
3388 return ret;
3389 }
3390
intel_cpufreq_cpu_exit(struct cpufreq_policy * policy)3391 static void intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
3392 {
3393 struct freq_qos_request *req;
3394
3395 req = policy->driver_data;
3396
3397 freq_qos_remove_request(req + 1);
3398 freq_qos_remove_request(req);
3399 kfree(req);
3400
3401 intel_pstate_cpu_exit(policy);
3402 }
3403
intel_cpufreq_suspend(struct cpufreq_policy * policy)3404 static int intel_cpufreq_suspend(struct cpufreq_policy *policy)
3405 {
3406 intel_pstate_suspend(policy);
3407
3408 if (hwp_active) {
3409 struct cpudata *cpu = all_cpu_data[policy->cpu];
3410 u64 value = READ_ONCE(cpu->hwp_req_cached);
3411
3412 /*
3413 * Clear the desired perf field in MSR_HWP_REQUEST in case
3414 * intel_cpufreq_adjust_perf() is in use and the last value
3415 * written by it may not be suitable.
3416 */
3417 value &= ~HWP_DESIRED_PERF(~0L);
3418 wrmsrq_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3419 WRITE_ONCE(cpu->hwp_req_cached, value);
3420 }
3421
3422 return 0;
3423 }
3424
3425 static struct cpufreq_driver intel_cpufreq = {
3426 .flags = CPUFREQ_CONST_LOOPS,
3427 .verify = intel_cpufreq_verify_policy,
3428 .target = intel_cpufreq_target,
3429 .fast_switch = intel_cpufreq_fast_switch,
3430 .init = intel_cpufreq_cpu_init,
3431 .exit = intel_cpufreq_cpu_exit,
3432 .offline = intel_cpufreq_cpu_offline,
3433 .online = intel_pstate_cpu_online,
3434 .suspend = intel_cpufreq_suspend,
3435 .resume = intel_pstate_resume,
3436 .update_limits = intel_pstate_update_limits,
3437 .name = "intel_cpufreq",
3438 };
3439
3440 static struct cpufreq_driver *default_driver;
3441
intel_pstate_driver_cleanup(void)3442 static void intel_pstate_driver_cleanup(void)
3443 {
3444 unsigned int cpu;
3445
3446 cpus_read_lock();
3447 for_each_online_cpu(cpu) {
3448 if (all_cpu_data[cpu]) {
3449 if (intel_pstate_driver == &intel_pstate)
3450 intel_pstate_clear_update_util_hook(cpu);
3451
3452 kfree(all_cpu_data[cpu]);
3453 WRITE_ONCE(all_cpu_data[cpu], NULL);
3454 }
3455 }
3456 cpus_read_unlock();
3457
3458 intel_pstate_driver = NULL;
3459 }
3460
intel_pstate_register_driver(struct cpufreq_driver * driver)3461 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
3462 {
3463 bool refresh_cpu_cap_scaling;
3464 int ret;
3465
3466 if (driver == &intel_pstate)
3467 intel_pstate_sysfs_expose_hwp_dynamic_boost();
3468
3469 memset(&global, 0, sizeof(global));
3470 global.max_perf_pct = 100;
3471 global.turbo_disabled = turbo_is_disabled();
3472 global.no_turbo = global.turbo_disabled;
3473
3474 arch_set_max_freq_ratio(global.turbo_disabled);
3475
3476 refresh_cpu_cap_scaling = hybrid_clear_max_perf_cpu();
3477
3478 intel_pstate_driver = driver;
3479 ret = cpufreq_register_driver(intel_pstate_driver);
3480 if (ret) {
3481 intel_pstate_driver_cleanup();
3482 return ret;
3483 }
3484
3485 global.min_perf_pct = min_perf_pct_min();
3486
3487 hybrid_init_cpu_capacity_scaling(refresh_cpu_cap_scaling);
3488
3489 return 0;
3490 }
3491
intel_pstate_show_status(char * buf)3492 static ssize_t intel_pstate_show_status(char *buf)
3493 {
3494 if (!intel_pstate_driver)
3495 return sprintf(buf, "off\n");
3496
3497 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3498 "active" : "passive");
3499 }
3500
intel_pstate_update_status(const char * buf,size_t size)3501 static int intel_pstate_update_status(const char *buf, size_t size)
3502 {
3503 if (size == 3 && !strncmp(buf, "off", size)) {
3504 if (!intel_pstate_driver)
3505 return -EINVAL;
3506
3507 if (hwp_active)
3508 return -EBUSY;
3509
3510 cpufreq_unregister_driver(intel_pstate_driver);
3511 intel_pstate_driver_cleanup();
3512 return 0;
3513 }
3514
3515 if (size == 6 && !strncmp(buf, "active", size)) {
3516 if (intel_pstate_driver) {
3517 if (intel_pstate_driver == &intel_pstate)
3518 return 0;
3519
3520 cpufreq_unregister_driver(intel_pstate_driver);
3521 }
3522
3523 return intel_pstate_register_driver(&intel_pstate);
3524 }
3525
3526 if (size == 7 && !strncmp(buf, "passive", size)) {
3527 if (intel_pstate_driver) {
3528 if (intel_pstate_driver == &intel_cpufreq)
3529 return 0;
3530
3531 cpufreq_unregister_driver(intel_pstate_driver);
3532 intel_pstate_sysfs_hide_hwp_dynamic_boost();
3533 }
3534
3535 return intel_pstate_register_driver(&intel_cpufreq);
3536 }
3537
3538 return -EINVAL;
3539 }
3540
3541 static int no_load __initdata;
3542 static int no_hwp __initdata;
3543 static int hwp_only __initdata;
3544 static unsigned int force_load __initdata;
3545
intel_pstate_msrs_not_valid(void)3546 static int __init intel_pstate_msrs_not_valid(void)
3547 {
3548 if (!pstate_funcs.get_max(0) ||
3549 !pstate_funcs.get_min(0) ||
3550 !pstate_funcs.get_turbo(0))
3551 return -ENODEV;
3552
3553 return 0;
3554 }
3555
copy_cpu_funcs(struct pstate_funcs * funcs)3556 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3557 {
3558 pstate_funcs.get_max = funcs->get_max;
3559 pstate_funcs.get_max_physical = funcs->get_max_physical;
3560 pstate_funcs.get_min = funcs->get_min;
3561 pstate_funcs.get_turbo = funcs->get_turbo;
3562 pstate_funcs.get_scaling = funcs->get_scaling;
3563 pstate_funcs.get_val = funcs->get_val;
3564 pstate_funcs.get_vid = funcs->get_vid;
3565 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3566 }
3567
3568 #ifdef CONFIG_ACPI
3569
intel_pstate_no_acpi_pss(void)3570 static bool __init intel_pstate_no_acpi_pss(void)
3571 {
3572 int i;
3573
3574 for_each_possible_cpu(i) {
3575 acpi_status status;
3576 union acpi_object *pss;
3577 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3578 struct acpi_processor *pr = per_cpu(processors, i);
3579
3580 if (!pr)
3581 continue;
3582
3583 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3584 if (ACPI_FAILURE(status))
3585 continue;
3586
3587 pss = buffer.pointer;
3588 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3589 kfree(pss);
3590 return false;
3591 }
3592
3593 kfree(pss);
3594 }
3595
3596 pr_debug("ACPI _PSS not found\n");
3597 return true;
3598 }
3599
intel_pstate_no_acpi_pcch(void)3600 static bool __init intel_pstate_no_acpi_pcch(void)
3601 {
3602 acpi_status status;
3603 acpi_handle handle;
3604
3605 status = acpi_get_handle(NULL, "\\_SB", &handle);
3606 if (ACPI_FAILURE(status))
3607 goto not_found;
3608
3609 if (acpi_has_method(handle, "PCCH"))
3610 return false;
3611
3612 not_found:
3613 pr_debug("ACPI PCCH not found\n");
3614 return true;
3615 }
3616
intel_pstate_has_acpi_ppc(void)3617 static bool __init intel_pstate_has_acpi_ppc(void)
3618 {
3619 int i;
3620
3621 for_each_possible_cpu(i) {
3622 struct acpi_processor *pr = per_cpu(processors, i);
3623
3624 if (!pr)
3625 continue;
3626 if (acpi_has_method(pr->handle, "_PPC"))
3627 return true;
3628 }
3629 pr_debug("ACPI _PPC not found\n");
3630 return false;
3631 }
3632
3633 enum {
3634 PSS,
3635 PPC,
3636 };
3637
3638 /* Hardware vendor-specific info that has its own power management modes */
3639 static struct acpi_platform_list plat_info[] __initdata = {
3640 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3641 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3642 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3643 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3644 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3645 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3646 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3647 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3648 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3649 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3650 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3651 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3652 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3653 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3654 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3655 { } /* End */
3656 };
3657
3658 #define BITMASK_OOB (BIT(8) | BIT(18))
3659
intel_pstate_platform_pwr_mgmt_exists(void)3660 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3661 {
3662 const struct x86_cpu_id *id;
3663 u64 misc_pwr;
3664 int idx;
3665
3666 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3667 if (id) {
3668 rdmsrq(MSR_MISC_PWR_MGMT, misc_pwr);
3669 if (misc_pwr & BITMASK_OOB) {
3670 pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3671 pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3672 return true;
3673 }
3674 }
3675
3676 idx = acpi_match_platform_list(plat_info);
3677 if (idx < 0)
3678 return false;
3679
3680 switch (plat_info[idx].data) {
3681 case PSS:
3682 if (!intel_pstate_no_acpi_pss())
3683 return false;
3684
3685 return intel_pstate_no_acpi_pcch();
3686 case PPC:
3687 return intel_pstate_has_acpi_ppc() && !force_load;
3688 }
3689
3690 return false;
3691 }
3692
intel_pstate_request_control_from_smm(void)3693 static void intel_pstate_request_control_from_smm(void)
3694 {
3695 /*
3696 * It may be unsafe to request P-states control from SMM if _PPC support
3697 * has not been enabled.
3698 */
3699 if (acpi_ppc)
3700 acpi_processor_pstate_control();
3701 }
3702 #else /* CONFIG_ACPI not enabled */
intel_pstate_platform_pwr_mgmt_exists(void)3703 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
intel_pstate_has_acpi_ppc(void)3704 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
intel_pstate_request_control_from_smm(void)3705 static inline void intel_pstate_request_control_from_smm(void) {}
3706 #endif /* CONFIG_ACPI */
3707
3708 #define INTEL_PSTATE_HWP_BROADWELL 0x01
3709
3710 #define X86_MATCH_HWP(vfm, hwp_mode) \
3711 X86_MATCH_VFM_FEATURE(vfm, X86_FEATURE_HWP, hwp_mode)
3712
3713 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3714 X86_MATCH_HWP(INTEL_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
3715 X86_MATCH_HWP(INTEL_BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL),
3716 X86_MATCH_HWP(INTEL_ANY, 0),
3717 {}
3718 };
3719
intel_pstate_hwp_is_enabled(void)3720 static bool intel_pstate_hwp_is_enabled(void)
3721 {
3722 u64 value;
3723
3724 rdmsrq(MSR_PM_ENABLE, value);
3725 return !!(value & 0x1);
3726 }
3727
3728 #define POWERSAVE_MASK GENMASK(7, 0)
3729 #define BALANCE_POWER_MASK GENMASK(15, 8)
3730 #define BALANCE_PERFORMANCE_MASK GENMASK(23, 16)
3731 #define PERFORMANCE_MASK GENMASK(31, 24)
3732
3733 #define HWP_SET_EPP_VALUES(powersave, balance_power, balance_perf, performance) \
3734 (FIELD_PREP_CONST(POWERSAVE_MASK, powersave) |\
3735 FIELD_PREP_CONST(BALANCE_POWER_MASK, balance_power) |\
3736 FIELD_PREP_CONST(BALANCE_PERFORMANCE_MASK, balance_perf) |\
3737 FIELD_PREP_CONST(PERFORMANCE_MASK, performance))
3738
3739 #define HWP_SET_DEF_BALANCE_PERF_EPP(balance_perf) \
3740 (HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE, HWP_EPP_BALANCE_POWERSAVE,\
3741 balance_perf, HWP_EPP_PERFORMANCE))
3742
3743 static const struct x86_cpu_id intel_epp_default[] = {
3744 /*
3745 * Set EPP value as 102, this is the max suggested EPP
3746 * which can result in one core turbo frequency for
3747 * AlderLake Mobile CPUs.
3748 */
3749 X86_MATCH_VFM(INTEL_ALDERLAKE_L, HWP_SET_DEF_BALANCE_PERF_EPP(102)),
3750 X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3751 X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3752 X86_MATCH_VFM(INTEL_GRANITERAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3753 X86_MATCH_VFM(INTEL_GRANITERAPIDS_D, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3754 X86_MATCH_VFM(INTEL_METEORLAKE_L, HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE,
3755 179, 64, 16)),
3756 X86_MATCH_VFM(INTEL_ARROWLAKE, HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE,
3757 179, 64, 16)),
3758 {}
3759 };
3760
3761 static const struct x86_cpu_id intel_hybrid_scaling_factor[] = {
3762 X86_MATCH_VFM(INTEL_ALDERLAKE, HYBRID_SCALING_FACTOR_ADL),
3763 X86_MATCH_VFM(INTEL_ALDERLAKE_L, HYBRID_SCALING_FACTOR_ADL),
3764 X86_MATCH_VFM(INTEL_RAPTORLAKE, HYBRID_SCALING_FACTOR_ADL),
3765 X86_MATCH_VFM(INTEL_RAPTORLAKE_P, HYBRID_SCALING_FACTOR_ADL),
3766 X86_MATCH_VFM(INTEL_RAPTORLAKE_S, HYBRID_SCALING_FACTOR_ADL),
3767 X86_MATCH_VFM(INTEL_METEORLAKE_L, HYBRID_SCALING_FACTOR_MTL),
3768 X86_MATCH_VFM(INTEL_LUNARLAKE_M, HYBRID_SCALING_FACTOR_LNL),
3769 {}
3770 };
3771
hwp_check_epp(void)3772 static bool hwp_check_epp(void)
3773 {
3774 if (boot_cpu_has(X86_FEATURE_HWP_EPP))
3775 return true;
3776
3777 /* Without EPP support, don't expose EPP-related sysfs attributes. */
3778 hwp_cpufreq_attrs[HWP_PERFORMANCE_PREFERENCE_INDEX] = NULL;
3779 hwp_cpufreq_attrs[HWP_PERFORMANCE_AVAILABLE_PREFERENCES_INDEX] = NULL;
3780
3781 return false;
3782 }
3783
hwp_check_dec(void)3784 static bool hwp_check_dec(void)
3785 {
3786 u64 power_ctl;
3787
3788 rdmsrq(MSR_IA32_POWER_CTL, power_ctl);
3789 return !!(power_ctl & BIT(POWER_CTL_DEC_ENABLE));
3790 }
3791
intel_pstate_init(void)3792 static int __init intel_pstate_init(void)
3793 {
3794 static struct cpudata **_all_cpu_data;
3795 const struct x86_cpu_id *id;
3796 int rc;
3797
3798 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3799 return -ENODEV;
3800
3801 /*
3802 * The Intel pstate driver will be ignored if the platform
3803 * firmware has its own power management modes.
3804 */
3805 if (intel_pstate_platform_pwr_mgmt_exists()) {
3806 pr_info("P-states controlled by the platform\n");
3807 return -ENODEV;
3808 }
3809
3810 id = x86_match_cpu(hwp_support_ids);
3811 if (id) {
3812 bool epp_present = hwp_check_epp();
3813
3814 /*
3815 * If HWP is enabled already, there is no choice but to deal
3816 * with it.
3817 */
3818 hwp_forced = intel_pstate_hwp_is_enabled();
3819 if (hwp_forced) {
3820 pr_info("HWP enabled by BIOS\n");
3821 no_hwp = 0;
3822 } else if (no_load) {
3823 return -ENODEV;
3824 } else if (!epp_present && !hwp_check_dec()) {
3825 /*
3826 * Avoid enabling HWP for processors without EPP support
3827 * unless the Dynamic Efficiency Control (DEC) enable
3828 * bit (MSR_IA32_POWER_CTL, bit 27) is set because that
3829 * means incomplete HWP implementation which is a corner
3830 * case and supporting it is generally problematic.
3831 */
3832 no_hwp = 1;
3833 }
3834
3835 copy_cpu_funcs(&core_funcs);
3836
3837 if (!no_hwp) {
3838 hwp_active = true;
3839 hwp_mode_bdw = id->driver_data;
3840 intel_pstate.attr = hwp_cpufreq_attrs;
3841 intel_cpufreq.attr = hwp_cpufreq_attrs;
3842 intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3843 intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3844 if (!default_driver)
3845 default_driver = &intel_pstate;
3846
3847 pstate_funcs.get_cpu_scaling = hwp_get_cpu_scaling;
3848
3849 goto hwp_cpu_matched;
3850 }
3851 pr_info("HWP not enabled\n");
3852 } else {
3853 if (no_load)
3854 return -ENODEV;
3855
3856 id = x86_match_cpu(intel_pstate_cpu_ids);
3857 if (!id) {
3858 pr_info("CPU model not supported\n");
3859 return -ENODEV;
3860 }
3861
3862 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3863 }
3864
3865 if (intel_pstate_msrs_not_valid()) {
3866 pr_info("Invalid MSRs\n");
3867 return -ENODEV;
3868 }
3869 /* Without HWP start in the passive mode. */
3870 if (!default_driver)
3871 default_driver = &intel_cpufreq;
3872
3873 hwp_cpu_matched:
3874 if (!hwp_active && hwp_only)
3875 return -ENOTSUPP;
3876
3877 pr_info("Intel P-state driver initializing\n");
3878
3879 _all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3880 if (!_all_cpu_data)
3881 return -ENOMEM;
3882
3883 WRITE_ONCE(all_cpu_data, _all_cpu_data);
3884
3885 intel_pstate_request_control_from_smm();
3886
3887 intel_pstate_sysfs_expose_params();
3888
3889 if (hwp_active) {
3890 const struct x86_cpu_id *id = x86_match_cpu(intel_epp_default);
3891 const struct x86_cpu_id *hybrid_id = x86_match_cpu(intel_hybrid_scaling_factor);
3892
3893 if (id) {
3894 epp_values[EPP_INDEX_POWERSAVE] =
3895 FIELD_GET(POWERSAVE_MASK, id->driver_data);
3896 epp_values[EPP_INDEX_BALANCE_POWERSAVE] =
3897 FIELD_GET(BALANCE_POWER_MASK, id->driver_data);
3898 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] =
3899 FIELD_GET(BALANCE_PERFORMANCE_MASK, id->driver_data);
3900 epp_values[EPP_INDEX_PERFORMANCE] =
3901 FIELD_GET(PERFORMANCE_MASK, id->driver_data);
3902 pr_debug("Updated EPPs powersave:%x balanced power:%x balanced perf:%x performance:%x\n",
3903 epp_values[EPP_INDEX_POWERSAVE],
3904 epp_values[EPP_INDEX_BALANCE_POWERSAVE],
3905 epp_values[EPP_INDEX_BALANCE_PERFORMANCE],
3906 epp_values[EPP_INDEX_PERFORMANCE]);
3907 }
3908
3909 if (hybrid_id) {
3910 hybrid_scaling_factor = hybrid_id->driver_data;
3911 pr_debug("hybrid scaling factor: %d\n", hybrid_scaling_factor);
3912 }
3913
3914 }
3915
3916 mutex_lock(&intel_pstate_driver_lock);
3917 rc = intel_pstate_register_driver(default_driver);
3918 mutex_unlock(&intel_pstate_driver_lock);
3919 if (rc) {
3920 intel_pstate_sysfs_remove();
3921 return rc;
3922 }
3923
3924 if (hwp_active) {
3925 const struct x86_cpu_id *id;
3926
3927 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3928 if (id) {
3929 set_power_ctl_ee_state(false);
3930 pr_info("Disabling energy efficiency optimization\n");
3931 }
3932
3933 pr_info("HWP enabled\n");
3934 } else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3935 pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3936 }
3937
3938 return 0;
3939 }
3940 device_initcall(intel_pstate_init);
3941
intel_pstate_setup(char * str)3942 static int __init intel_pstate_setup(char *str)
3943 {
3944 if (!str)
3945 return -EINVAL;
3946
3947 if (!strcmp(str, "disable"))
3948 no_load = 1;
3949 else if (!strcmp(str, "active"))
3950 default_driver = &intel_pstate;
3951 else if (!strcmp(str, "passive"))
3952 default_driver = &intel_cpufreq;
3953
3954 if (!strcmp(str, "no_hwp"))
3955 no_hwp = 1;
3956
3957 if (!strcmp(str, "no_cas"))
3958 no_cas = true;
3959
3960 if (!strcmp(str, "force"))
3961 force_load = 1;
3962 if (!strcmp(str, "hwp_only"))
3963 hwp_only = 1;
3964 if (!strcmp(str, "per_cpu_perf_limits"))
3965 per_cpu_limits = true;
3966
3967 #ifdef CONFIG_ACPI
3968 if (!strcmp(str, "support_acpi_ppc"))
3969 acpi_ppc = true;
3970 #endif
3971
3972 return 0;
3973 }
3974 early_param("intel_pstate", intel_pstate_setup);
3975
3976 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3977 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3978