1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com>
4 * (C) Copyright 2007 Novell Inc.
5 */
6
7 #include <linux/pci.h>
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/device.h>
11 #include <linux/mempolicy.h>
12 #include <linux/string.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/sched/isolation.h>
16 #include <linux/cpu.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/suspend.h>
19 #include <linux/kexec.h>
20 #include <linux/of_device.h>
21 #include <linux/acpi.h>
22 #include <linux/dma-map-ops.h>
23 #include <linux/iommu.h>
24 #include "pci.h"
25 #include "pcie/portdrv.h"
26
27 struct pci_dynid {
28 struct list_head node;
29 struct pci_device_id id;
30 };
31
32 /**
33 * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices
34 * @drv: target pci driver
35 * @vendor: PCI vendor ID
36 * @device: PCI device ID
37 * @subvendor: PCI subvendor ID
38 * @subdevice: PCI subdevice ID
39 * @class: PCI class
40 * @class_mask: PCI class mask
41 * @driver_data: private driver data
42 *
43 * Adds a new dynamic pci device ID to this driver and causes the
44 * driver to probe for all devices again. @drv must have been
45 * registered prior to calling this function.
46 *
47 * CONTEXT:
48 * Does GFP_KERNEL allocation.
49 *
50 * RETURNS:
51 * 0 on success, -errno on failure.
52 */
pci_add_dynid(struct pci_driver * drv,unsigned int vendor,unsigned int device,unsigned int subvendor,unsigned int subdevice,unsigned int class,unsigned int class_mask,unsigned long driver_data)53 int pci_add_dynid(struct pci_driver *drv,
54 unsigned int vendor, unsigned int device,
55 unsigned int subvendor, unsigned int subdevice,
56 unsigned int class, unsigned int class_mask,
57 unsigned long driver_data)
58 {
59 struct pci_dynid *dynid;
60
61 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
62 if (!dynid)
63 return -ENOMEM;
64
65 dynid->id.vendor = vendor;
66 dynid->id.device = device;
67 dynid->id.subvendor = subvendor;
68 dynid->id.subdevice = subdevice;
69 dynid->id.class = class;
70 dynid->id.class_mask = class_mask;
71 dynid->id.driver_data = driver_data;
72
73 spin_lock(&drv->dynids.lock);
74 list_add_tail(&dynid->node, &drv->dynids.list);
75 spin_unlock(&drv->dynids.lock);
76
77 return driver_attach(&drv->driver);
78 }
79 EXPORT_SYMBOL_GPL(pci_add_dynid);
80
pci_free_dynids(struct pci_driver * drv)81 static void pci_free_dynids(struct pci_driver *drv)
82 {
83 struct pci_dynid *dynid, *n;
84
85 spin_lock(&drv->dynids.lock);
86 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
87 list_del(&dynid->node);
88 kfree(dynid);
89 }
90 spin_unlock(&drv->dynids.lock);
91 }
92
93 /**
94 * pci_match_id - See if a PCI device matches a given pci_id table
95 * @ids: array of PCI device ID structures to search in
96 * @dev: the PCI device structure to match against.
97 *
98 * Used by a driver to check whether a PCI device is in its list of
99 * supported devices. Returns the matching pci_device_id structure or
100 * %NULL if there is no match.
101 *
102 * Deprecated; don't use this as it will not catch any dynamic IDs
103 * that a driver might want to check for.
104 */
pci_match_id(const struct pci_device_id * ids,struct pci_dev * dev)105 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids,
106 struct pci_dev *dev)
107 {
108 if (ids) {
109 while (ids->vendor || ids->subvendor || ids->class_mask) {
110 if (pci_match_one_device(ids, dev))
111 return ids;
112 ids++;
113 }
114 }
115 return NULL;
116 }
117 EXPORT_SYMBOL(pci_match_id);
118
119 static const struct pci_device_id pci_device_id_any = {
120 .vendor = PCI_ANY_ID,
121 .device = PCI_ANY_ID,
122 .subvendor = PCI_ANY_ID,
123 .subdevice = PCI_ANY_ID,
124 };
125
126 /**
127 * pci_match_device - See if a device matches a driver's list of IDs
128 * @drv: the PCI driver to match against
129 * @dev: the PCI device structure to match against
130 *
131 * Used by a driver to check whether a PCI device is in its list of
132 * supported devices or in the dynids list, which may have been augmented
133 * via the sysfs "new_id" file. Returns the matching pci_device_id
134 * structure or %NULL if there is no match.
135 */
pci_match_device(struct pci_driver * drv,struct pci_dev * dev)136 static const struct pci_device_id *pci_match_device(struct pci_driver *drv,
137 struct pci_dev *dev)
138 {
139 struct pci_dynid *dynid;
140 const struct pci_device_id *found_id = NULL, *ids;
141
142 /* When driver_override is set, only bind to the matching driver */
143 if (dev->driver_override && strcmp(dev->driver_override, drv->name))
144 return NULL;
145
146 /* Look at the dynamic ids first, before the static ones */
147 spin_lock(&drv->dynids.lock);
148 list_for_each_entry(dynid, &drv->dynids.list, node) {
149 if (pci_match_one_device(&dynid->id, dev)) {
150 found_id = &dynid->id;
151 break;
152 }
153 }
154 spin_unlock(&drv->dynids.lock);
155
156 if (found_id)
157 return found_id;
158
159 for (ids = drv->id_table; (found_id = pci_match_id(ids, dev));
160 ids = found_id + 1) {
161 /*
162 * The match table is split based on driver_override.
163 * In case override_only was set, enforce driver_override
164 * matching.
165 */
166 if (found_id->override_only) {
167 if (dev->driver_override)
168 return found_id;
169 } else {
170 return found_id;
171 }
172 }
173
174 /* driver_override will always match, send a dummy id */
175 if (dev->driver_override)
176 return &pci_device_id_any;
177 return NULL;
178 }
179
180 /**
181 * new_id_store - sysfs frontend to pci_add_dynid()
182 * @driver: target device driver
183 * @buf: buffer for scanning device ID data
184 * @count: input size
185 *
186 * Allow PCI IDs to be added to an existing driver via sysfs.
187 */
new_id_store(struct device_driver * driver,const char * buf,size_t count)188 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
189 size_t count)
190 {
191 struct pci_driver *pdrv = to_pci_driver(driver);
192 const struct pci_device_id *ids = pdrv->id_table;
193 u32 vendor, device, subvendor = PCI_ANY_ID,
194 subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
195 unsigned long driver_data = 0;
196 int fields;
197 int retval = 0;
198
199 fields = sscanf(buf, "%x %x %x %x %x %x %lx",
200 &vendor, &device, &subvendor, &subdevice,
201 &class, &class_mask, &driver_data);
202 if (fields < 2)
203 return -EINVAL;
204
205 if (fields != 7) {
206 struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL);
207 if (!pdev)
208 return -ENOMEM;
209
210 pdev->vendor = vendor;
211 pdev->device = device;
212 pdev->subsystem_vendor = subvendor;
213 pdev->subsystem_device = subdevice;
214 pdev->class = class;
215
216 if (pci_match_device(pdrv, pdev))
217 retval = -EEXIST;
218
219 kfree(pdev);
220
221 if (retval)
222 return retval;
223 }
224
225 /* Only accept driver_data values that match an existing id_table
226 entry */
227 if (ids) {
228 retval = -EINVAL;
229 while (ids->vendor || ids->subvendor || ids->class_mask) {
230 if (driver_data == ids->driver_data) {
231 retval = 0;
232 break;
233 }
234 ids++;
235 }
236 if (retval) /* No match */
237 return retval;
238 }
239
240 retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice,
241 class, class_mask, driver_data);
242 if (retval)
243 return retval;
244 return count;
245 }
246 static DRIVER_ATTR_WO(new_id);
247
248 /**
249 * remove_id_store - remove a PCI device ID from this driver
250 * @driver: target device driver
251 * @buf: buffer for scanning device ID data
252 * @count: input size
253 *
254 * Removes a dynamic pci device ID to this driver.
255 */
remove_id_store(struct device_driver * driver,const char * buf,size_t count)256 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
257 size_t count)
258 {
259 struct pci_dynid *dynid, *n;
260 struct pci_driver *pdrv = to_pci_driver(driver);
261 u32 vendor, device, subvendor = PCI_ANY_ID,
262 subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
263 int fields;
264 size_t retval = -ENODEV;
265
266 fields = sscanf(buf, "%x %x %x %x %x %x",
267 &vendor, &device, &subvendor, &subdevice,
268 &class, &class_mask);
269 if (fields < 2)
270 return -EINVAL;
271
272 spin_lock(&pdrv->dynids.lock);
273 list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) {
274 struct pci_device_id *id = &dynid->id;
275 if ((id->vendor == vendor) &&
276 (id->device == device) &&
277 (subvendor == PCI_ANY_ID || id->subvendor == subvendor) &&
278 (subdevice == PCI_ANY_ID || id->subdevice == subdevice) &&
279 !((id->class ^ class) & class_mask)) {
280 list_del(&dynid->node);
281 kfree(dynid);
282 retval = count;
283 break;
284 }
285 }
286 spin_unlock(&pdrv->dynids.lock);
287
288 return retval;
289 }
290 static DRIVER_ATTR_WO(remove_id);
291
292 static struct attribute *pci_drv_attrs[] = {
293 &driver_attr_new_id.attr,
294 &driver_attr_remove_id.attr,
295 NULL,
296 };
297 ATTRIBUTE_GROUPS(pci_drv);
298
299 struct drv_dev_and_id {
300 struct pci_driver *drv;
301 struct pci_dev *dev;
302 const struct pci_device_id *id;
303 };
304
local_pci_probe(void * _ddi)305 static long local_pci_probe(void *_ddi)
306 {
307 struct drv_dev_and_id *ddi = _ddi;
308 struct pci_dev *pci_dev = ddi->dev;
309 struct pci_driver *pci_drv = ddi->drv;
310 struct device *dev = &pci_dev->dev;
311 int rc;
312
313 /*
314 * Unbound PCI devices are always put in D0, regardless of
315 * runtime PM status. During probe, the device is set to
316 * active and the usage count is incremented. If the driver
317 * supports runtime PM, it should call pm_runtime_put_noidle(),
318 * or any other runtime PM helper function decrementing the usage
319 * count, in its probe routine and pm_runtime_get_noresume() in
320 * its remove routine.
321 */
322 pm_runtime_get_sync(dev);
323 pci_dev->driver = pci_drv;
324 rc = pci_drv->probe(pci_dev, ddi->id);
325 if (!rc)
326 return rc;
327 if (rc < 0) {
328 pci_dev->driver = NULL;
329 pm_runtime_put_sync(dev);
330 return rc;
331 }
332 /*
333 * Probe function should return < 0 for failure, 0 for success
334 * Treat values > 0 as success, but warn.
335 */
336 pci_warn(pci_dev, "Driver probe function unexpectedly returned %d\n",
337 rc);
338 return 0;
339 }
340
pci_physfn_is_probed(struct pci_dev * dev)341 static bool pci_physfn_is_probed(struct pci_dev *dev)
342 {
343 #ifdef CONFIG_PCI_IOV
344 return dev->is_virtfn && dev->physfn->is_probed;
345 #else
346 return false;
347 #endif
348 }
349
pci_call_probe(struct pci_driver * drv,struct pci_dev * dev,const struct pci_device_id * id)350 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev,
351 const struct pci_device_id *id)
352 {
353 int error, node, cpu;
354 struct drv_dev_and_id ddi = { drv, dev, id };
355
356 /*
357 * Execute driver initialization on node where the device is
358 * attached. This way the driver likely allocates its local memory
359 * on the right node.
360 */
361 node = dev_to_node(&dev->dev);
362 dev->is_probed = 1;
363
364 cpu_hotplug_disable();
365
366 /*
367 * Prevent nesting work_on_cpu() for the case where a Virtual Function
368 * device is probed from work_on_cpu() of the Physical device.
369 */
370 if (node < 0 || node >= MAX_NUMNODES || !node_online(node) ||
371 pci_physfn_is_probed(dev)) {
372 cpu = nr_cpu_ids;
373 } else {
374 cpumask_var_t wq_domain_mask;
375
376 if (!zalloc_cpumask_var(&wq_domain_mask, GFP_KERNEL)) {
377 error = -ENOMEM;
378 goto out;
379 }
380 cpumask_and(wq_domain_mask,
381 housekeeping_cpumask(HK_TYPE_WQ),
382 housekeeping_cpumask(HK_TYPE_DOMAIN));
383
384 cpu = cpumask_any_and(cpumask_of_node(node),
385 wq_domain_mask);
386 free_cpumask_var(wq_domain_mask);
387 }
388
389 if (cpu < nr_cpu_ids)
390 error = work_on_cpu(cpu, local_pci_probe, &ddi);
391 else
392 error = local_pci_probe(&ddi);
393 out:
394 dev->is_probed = 0;
395 cpu_hotplug_enable();
396 return error;
397 }
398
399 /**
400 * __pci_device_probe - check if a driver wants to claim a specific PCI device
401 * @drv: driver to call to check if it wants the PCI device
402 * @pci_dev: PCI device being probed
403 *
404 * returns 0 on success, else error.
405 * side-effect: pci_dev->driver is set to drv when drv claims pci_dev.
406 */
__pci_device_probe(struct pci_driver * drv,struct pci_dev * pci_dev)407 static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev)
408 {
409 const struct pci_device_id *id;
410 int error = 0;
411
412 if (drv->probe) {
413 error = -ENODEV;
414
415 id = pci_match_device(drv, pci_dev);
416 if (id)
417 error = pci_call_probe(drv, pci_dev, id);
418 }
419 return error;
420 }
421
422 #ifdef CONFIG_PCI_IOV
pci_device_can_probe(struct pci_dev * pdev)423 static inline bool pci_device_can_probe(struct pci_dev *pdev)
424 {
425 return (!pdev->is_virtfn || pdev->physfn->sriov->drivers_autoprobe ||
426 pdev->driver_override);
427 }
428 #else
pci_device_can_probe(struct pci_dev * pdev)429 static inline bool pci_device_can_probe(struct pci_dev *pdev)
430 {
431 return true;
432 }
433 #endif
434
pci_device_probe(struct device * dev)435 static int pci_device_probe(struct device *dev)
436 {
437 int error;
438 struct pci_dev *pci_dev = to_pci_dev(dev);
439 struct pci_driver *drv = to_pci_driver(dev->driver);
440
441 if (!pci_device_can_probe(pci_dev))
442 return -ENODEV;
443
444 pci_assign_irq(pci_dev);
445
446 error = pcibios_alloc_irq(pci_dev);
447 if (error < 0)
448 return error;
449
450 pci_dev_get(pci_dev);
451 error = __pci_device_probe(drv, pci_dev);
452 if (error) {
453 pcibios_free_irq(pci_dev);
454 pci_dev_put(pci_dev);
455 }
456
457 return error;
458 }
459
pci_device_remove(struct device * dev)460 static void pci_device_remove(struct device *dev)
461 {
462 struct pci_dev *pci_dev = to_pci_dev(dev);
463 struct pci_driver *drv = pci_dev->driver;
464
465 if (drv->remove) {
466 pm_runtime_get_sync(dev);
467 /*
468 * If the driver provides a .runtime_idle() callback and it has
469 * started to run already, it may continue to run in parallel
470 * with the code below, so wait until all of the runtime PM
471 * activity has completed.
472 */
473 pm_runtime_barrier(dev);
474 drv->remove(pci_dev);
475 pm_runtime_put_noidle(dev);
476 }
477 pcibios_free_irq(pci_dev);
478 pci_dev->driver = NULL;
479 pci_iov_remove(pci_dev);
480
481 /* Undo the runtime PM settings in local_pci_probe() */
482 pm_runtime_put_sync(dev);
483
484 /*
485 * If the device is still on, set the power state as "unknown",
486 * since it might change by the next time we load the driver.
487 */
488 if (pci_dev->current_state == PCI_D0)
489 pci_dev->current_state = PCI_UNKNOWN;
490
491 /*
492 * We would love to complain here if pci_dev->is_enabled is set, that
493 * the driver should have called pci_disable_device(), but the
494 * unfortunate fact is there are too many odd BIOS and bridge setups
495 * that don't like drivers doing that all of the time.
496 * Oh well, we can dream of sane hardware when we sleep, no matter how
497 * horrible the crap we have to deal with is when we are awake...
498 */
499
500 pci_dev_put(pci_dev);
501 }
502
pci_device_shutdown(struct device * dev)503 static void pci_device_shutdown(struct device *dev)
504 {
505 struct pci_dev *pci_dev = to_pci_dev(dev);
506 struct pci_driver *drv = pci_dev->driver;
507
508 pm_runtime_resume(dev);
509
510 if (drv && drv->shutdown)
511 drv->shutdown(pci_dev);
512
513 /*
514 * If this is a kexec reboot, turn off Bus Master bit on the
515 * device to tell it to not continue to do DMA. Don't touch
516 * devices in D3cold or unknown states.
517 * If it is not a kexec reboot, firmware will hit the PCI
518 * devices with big hammer and stop their DMA any way.
519 */
520 if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot))
521 pci_clear_master(pci_dev);
522 }
523
524 #ifdef CONFIG_PM_SLEEP
525
526 /* Auxiliary functions used for system resume */
527
528 /**
529 * pci_restore_standard_config - restore standard config registers of PCI device
530 * @pci_dev: PCI device to handle
531 */
pci_restore_standard_config(struct pci_dev * pci_dev)532 static int pci_restore_standard_config(struct pci_dev *pci_dev)
533 {
534 pci_update_current_state(pci_dev, PCI_UNKNOWN);
535
536 if (pci_dev->current_state != PCI_D0) {
537 int error = pci_set_power_state(pci_dev, PCI_D0);
538 if (error)
539 return error;
540 }
541
542 pci_restore_state(pci_dev);
543 pci_pme_restore(pci_dev);
544 return 0;
545 }
546 #endif /* CONFIG_PM_SLEEP */
547
548 #ifdef CONFIG_PM
549
550 /* Auxiliary functions used for system resume and run-time resume */
551
pci_pm_default_resume(struct pci_dev * pci_dev)552 static void pci_pm_default_resume(struct pci_dev *pci_dev)
553 {
554 pci_fixup_device(pci_fixup_resume, pci_dev);
555 pci_enable_wake(pci_dev, PCI_D0, false);
556 }
557
pci_pm_default_resume_early(struct pci_dev * pci_dev)558 static void pci_pm_default_resume_early(struct pci_dev *pci_dev)
559 {
560 pci_pm_power_up_and_verify_state(pci_dev);
561 pci_restore_state(pci_dev);
562 pci_pme_restore(pci_dev);
563 }
564
pci_pm_bridge_power_up_actions(struct pci_dev * pci_dev)565 static void pci_pm_bridge_power_up_actions(struct pci_dev *pci_dev)
566 {
567 int ret;
568
569 ret = pci_bridge_wait_for_secondary_bus(pci_dev, "resume");
570 if (ret) {
571 /*
572 * The downstream link failed to come up, so mark the
573 * devices below as disconnected to make sure we don't
574 * attempt to resume them.
575 */
576 pci_walk_bus(pci_dev->subordinate, pci_dev_set_disconnected,
577 NULL);
578 return;
579 }
580
581 /*
582 * When powering on a bridge from D3cold, the whole hierarchy may be
583 * powered on into D0uninitialized state, resume them to give them a
584 * chance to suspend again
585 */
586 pci_resume_bus(pci_dev->subordinate);
587 }
588
589 #endif /* CONFIG_PM */
590
591 #ifdef CONFIG_PM_SLEEP
592
593 /*
594 * Default "suspend" method for devices that have no driver provided suspend,
595 * or not even a driver at all (second part).
596 */
pci_pm_set_unknown_state(struct pci_dev * pci_dev)597 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev)
598 {
599 /*
600 * mark its power state as "unknown", since we don't know if
601 * e.g. the BIOS will change its device state when we suspend.
602 */
603 if (pci_dev->current_state == PCI_D0)
604 pci_dev->current_state = PCI_UNKNOWN;
605 }
606
607 /*
608 * Default "resume" method for devices that have no driver provided resume,
609 * or not even a driver at all (second part).
610 */
pci_pm_reenable_device(struct pci_dev * pci_dev)611 static int pci_pm_reenable_device(struct pci_dev *pci_dev)
612 {
613 int retval;
614
615 /* if the device was enabled before suspend, re-enable */
616 retval = pci_reenable_device(pci_dev);
617 /*
618 * if the device was busmaster before the suspend, make it busmaster
619 * again
620 */
621 if (pci_dev->is_busmaster)
622 pci_set_master(pci_dev);
623
624 return retval;
625 }
626
pci_legacy_suspend(struct device * dev,pm_message_t state)627 static int pci_legacy_suspend(struct device *dev, pm_message_t state)
628 {
629 struct pci_dev *pci_dev = to_pci_dev(dev);
630 struct pci_driver *drv = pci_dev->driver;
631
632 if (drv && drv->suspend) {
633 pci_power_t prev = pci_dev->current_state;
634 int error;
635
636 error = drv->suspend(pci_dev, state);
637 suspend_report_result(dev, drv->suspend, error);
638 if (error)
639 return error;
640
641 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
642 && pci_dev->current_state != PCI_UNKNOWN) {
643 pci_WARN_ONCE(pci_dev, pci_dev->current_state != prev,
644 "PCI PM: Device state not saved by %pS\n",
645 drv->suspend);
646 }
647 }
648
649 pci_fixup_device(pci_fixup_suspend, pci_dev);
650
651 return 0;
652 }
653
pci_legacy_suspend_late(struct device * dev)654 static int pci_legacy_suspend_late(struct device *dev)
655 {
656 struct pci_dev *pci_dev = to_pci_dev(dev);
657
658 if (!pci_dev->state_saved)
659 pci_save_state(pci_dev);
660
661 pci_pm_set_unknown_state(pci_dev);
662
663 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
664
665 return 0;
666 }
667
pci_legacy_resume(struct device * dev)668 static int pci_legacy_resume(struct device *dev)
669 {
670 struct pci_dev *pci_dev = to_pci_dev(dev);
671 struct pci_driver *drv = pci_dev->driver;
672
673 pci_fixup_device(pci_fixup_resume, pci_dev);
674
675 return drv && drv->resume ?
676 drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev);
677 }
678
679 /* Auxiliary functions used by the new power management framework */
680
pci_pm_default_suspend(struct pci_dev * pci_dev)681 static void pci_pm_default_suspend(struct pci_dev *pci_dev)
682 {
683 /* Disable non-bridge devices without PM support */
684 if (!pci_has_subordinate(pci_dev))
685 pci_disable_enabled_device(pci_dev);
686 }
687
pci_has_legacy_pm_support(struct pci_dev * pci_dev)688 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev)
689 {
690 struct pci_driver *drv = pci_dev->driver;
691 bool ret = drv && (drv->suspend || drv->resume);
692
693 /*
694 * Legacy PM support is used by default, so warn if the new framework is
695 * supported as well. Drivers are supposed to support either the
696 * former, or the latter, but not both at the same time.
697 */
698 pci_WARN(pci_dev, ret && drv->driver.pm, "device %04x:%04x\n",
699 pci_dev->vendor, pci_dev->device);
700
701 return ret;
702 }
703
704 /* New power management framework */
705
pci_pm_prepare(struct device * dev)706 static int pci_pm_prepare(struct device *dev)
707 {
708 struct pci_dev *pci_dev = to_pci_dev(dev);
709 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
710
711 dev_pm_set_strict_midlayer(dev, true);
712
713 if (pm && pm->prepare) {
714 int error = pm->prepare(dev);
715 if (error < 0)
716 return error;
717
718 if (!error && dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_PREPARE))
719 return 0;
720 }
721 if (pci_dev_need_resume(pci_dev))
722 return 0;
723
724 /*
725 * The PME setting needs to be adjusted here in case the direct-complete
726 * optimization is used with respect to this device.
727 */
728 pci_dev_adjust_pme(pci_dev);
729 return 1;
730 }
731
pci_pm_complete(struct device * dev)732 static void pci_pm_complete(struct device *dev)
733 {
734 struct pci_dev *pci_dev = to_pci_dev(dev);
735
736 pci_dev_complete_resume(pci_dev);
737 pm_generic_complete(dev);
738
739 /* Resume device if platform firmware has put it in reset-power-on */
740 if (pm_runtime_suspended(dev) && pm_resume_via_firmware()) {
741 pci_power_t pre_sleep_state = pci_dev->current_state;
742
743 pci_refresh_power_state(pci_dev);
744 /*
745 * On platforms with ACPI this check may also trigger for
746 * devices sharing power resources if one of those power
747 * resources has been activated as a result of a change of the
748 * power state of another device sharing it. However, in that
749 * case it is also better to resume the device, in general.
750 */
751 if (pci_dev->current_state < pre_sleep_state)
752 pm_request_resume(dev);
753 }
754
755 dev_pm_set_strict_midlayer(dev, false);
756 }
757
758 #else /* !CONFIG_PM_SLEEP */
759
760 #define pci_pm_prepare NULL
761 #define pci_pm_complete NULL
762
763 #endif /* !CONFIG_PM_SLEEP */
764
765 #ifdef CONFIG_SUSPEND
pcie_pme_root_status_cleanup(struct pci_dev * pci_dev)766 static void pcie_pme_root_status_cleanup(struct pci_dev *pci_dev)
767 {
768 /*
769 * Some BIOSes forget to clear Root PME Status bits after system
770 * wakeup, which breaks ACPI-based runtime wakeup on PCI Express.
771 * Clear those bits now just in case (shouldn't hurt).
772 */
773 if (pci_is_pcie(pci_dev) &&
774 (pci_pcie_type(pci_dev) == PCI_EXP_TYPE_ROOT_PORT ||
775 pci_pcie_type(pci_dev) == PCI_EXP_TYPE_RC_EC))
776 pcie_clear_root_pme_status(pci_dev);
777 }
778
pci_pm_suspend(struct device * dev)779 static int pci_pm_suspend(struct device *dev)
780 {
781 struct pci_dev *pci_dev = to_pci_dev(dev);
782 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
783
784 pci_dev->skip_bus_pm = false;
785
786 /*
787 * Disabling PTM allows some systems, e.g., Intel mobile chips
788 * since Coffee Lake, to enter a lower-power PM state.
789 */
790 pci_suspend_ptm(pci_dev);
791
792 if (pci_has_legacy_pm_support(pci_dev))
793 return pci_legacy_suspend(dev, PMSG_SUSPEND);
794
795 if (!pm) {
796 pci_pm_default_suspend(pci_dev);
797 return 0;
798 }
799
800 /*
801 * PCI devices suspended at run time may need to be resumed at this
802 * point, because in general it may be necessary to reconfigure them for
803 * system suspend. Namely, if the device is expected to wake up the
804 * system from the sleep state, it may have to be reconfigured for this
805 * purpose, or if the device is not expected to wake up the system from
806 * the sleep state, it should be prevented from signaling wakeup events
807 * going forward.
808 *
809 * Also if the driver of the device does not indicate that its system
810 * suspend callbacks can cope with runtime-suspended devices, it is
811 * better to resume the device from runtime suspend here.
812 */
813 if (!dev_pm_smart_suspend(dev) || pci_dev_need_resume(pci_dev)) {
814 pm_runtime_resume(dev);
815 pci_dev->state_saved = false;
816 } else {
817 pci_dev_adjust_pme(pci_dev);
818 }
819
820 if (pm->suspend) {
821 pci_power_t prev = pci_dev->current_state;
822 int error;
823
824 error = pm->suspend(dev);
825 suspend_report_result(dev, pm->suspend, error);
826 if (error)
827 return error;
828
829 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
830 && pci_dev->current_state != PCI_UNKNOWN) {
831 pci_WARN_ONCE(pci_dev, pci_dev->current_state != prev,
832 "PCI PM: State of device not saved by %pS\n",
833 pm->suspend);
834 }
835 }
836
837 return 0;
838 }
839
pci_pm_suspend_late(struct device * dev)840 static int pci_pm_suspend_late(struct device *dev)
841 {
842 if (dev_pm_skip_suspend(dev))
843 return 0;
844
845 pci_fixup_device(pci_fixup_suspend, to_pci_dev(dev));
846
847 return pm_generic_suspend_late(dev);
848 }
849
pci_pm_suspend_noirq(struct device * dev)850 static int pci_pm_suspend_noirq(struct device *dev)
851 {
852 struct pci_dev *pci_dev = to_pci_dev(dev);
853 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
854
855 if (dev_pm_skip_suspend(dev))
856 return 0;
857
858 if (pci_has_legacy_pm_support(pci_dev))
859 return pci_legacy_suspend_late(dev);
860
861 if (!pm) {
862 pci_save_state(pci_dev);
863 goto Fixup;
864 }
865
866 if (pm->suspend_noirq) {
867 pci_power_t prev = pci_dev->current_state;
868 int error;
869
870 error = pm->suspend_noirq(dev);
871 suspend_report_result(dev, pm->suspend_noirq, error);
872 if (error)
873 return error;
874
875 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
876 && pci_dev->current_state != PCI_UNKNOWN) {
877 pci_WARN_ONCE(pci_dev, pci_dev->current_state != prev,
878 "PCI PM: State of device not saved by %pS\n",
879 pm->suspend_noirq);
880 goto Fixup;
881 }
882 }
883
884 if (!pci_dev->state_saved) {
885 pci_save_state(pci_dev);
886
887 /*
888 * If the device is a bridge with a child in D0 below it,
889 * it needs to stay in D0, so check skip_bus_pm to avoid
890 * putting it into a low-power state in that case.
891 */
892 if (!pci_dev->skip_bus_pm && pci_power_manageable(pci_dev))
893 pci_prepare_to_sleep(pci_dev);
894 }
895
896 pci_dbg(pci_dev, "PCI PM: Suspend power state: %s\n",
897 pci_power_name(pci_dev->current_state));
898
899 if (pci_dev->current_state == PCI_D0) {
900 pci_dev->skip_bus_pm = true;
901 /*
902 * Per PCI PM r1.2, table 6-1, a bridge must be in D0 if any
903 * downstream device is in D0, so avoid changing the power state
904 * of the parent bridge by setting the skip_bus_pm flag for it.
905 */
906 if (pci_dev->bus->self)
907 pci_dev->bus->self->skip_bus_pm = true;
908 }
909
910 if (pci_dev->skip_bus_pm && pm_suspend_no_platform()) {
911 pci_dbg(pci_dev, "PCI PM: Skipped\n");
912 goto Fixup;
913 }
914
915 pci_pm_set_unknown_state(pci_dev);
916
917 /*
918 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's
919 * PCI COMMAND register isn't 0, the BIOS assumes that the controller
920 * hasn't been quiesced and tries to turn it off. If the controller
921 * is already in D3, this can hang or cause memory corruption.
922 *
923 * Since the value of the COMMAND register doesn't matter once the
924 * device has been suspended, we can safely set it to 0 here.
925 */
926 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
927 pci_write_config_word(pci_dev, PCI_COMMAND, 0);
928
929 Fixup:
930 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
931
932 /*
933 * If the target system sleep state is suspend-to-idle, it is sufficient
934 * to check whether or not the device's wakeup settings are good for
935 * runtime PM. Otherwise, the pm_resume_via_firmware() check will cause
936 * pci_pm_complete() to take care of fixing up the device's state
937 * anyway, if need be.
938 */
939 if (device_can_wakeup(dev) && !device_may_wakeup(dev))
940 dev->power.may_skip_resume = false;
941
942 return 0;
943 }
944
pci_pm_resume_noirq(struct device * dev)945 static int pci_pm_resume_noirq(struct device *dev)
946 {
947 struct pci_dev *pci_dev = to_pci_dev(dev);
948 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
949 pci_power_t prev_state = pci_dev->current_state;
950 bool skip_bus_pm = pci_dev->skip_bus_pm;
951
952 if (dev_pm_skip_resume(dev))
953 return 0;
954
955 /*
956 * In the suspend-to-idle case, devices left in D0 during suspend will
957 * stay in D0, so it is not necessary to restore or update their
958 * configuration here and attempting to put them into D0 again is
959 * pointless, so avoid doing that.
960 */
961 if (!(skip_bus_pm && pm_suspend_no_platform()))
962 pci_pm_default_resume_early(pci_dev);
963
964 pci_fixup_device(pci_fixup_resume_early, pci_dev);
965 pcie_pme_root_status_cleanup(pci_dev);
966
967 if (!skip_bus_pm && prev_state == PCI_D3cold)
968 pci_pm_bridge_power_up_actions(pci_dev);
969
970 if (pci_has_legacy_pm_support(pci_dev))
971 return 0;
972
973 if (pm && pm->resume_noirq)
974 return pm->resume_noirq(dev);
975
976 return 0;
977 }
978
pci_pm_resume_early(struct device * dev)979 static int pci_pm_resume_early(struct device *dev)
980 {
981 if (dev_pm_skip_resume(dev))
982 return 0;
983
984 return pm_generic_resume_early(dev);
985 }
986
pci_pm_resume(struct device * dev)987 static int pci_pm_resume(struct device *dev)
988 {
989 struct pci_dev *pci_dev = to_pci_dev(dev);
990 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
991
992 /*
993 * This is necessary for the suspend error path in which resume is
994 * called without restoring the standard config registers of the device.
995 */
996 if (pci_dev->state_saved)
997 pci_restore_standard_config(pci_dev);
998
999 pci_resume_ptm(pci_dev);
1000
1001 if (pci_has_legacy_pm_support(pci_dev))
1002 return pci_legacy_resume(dev);
1003
1004 pci_pm_default_resume(pci_dev);
1005
1006 if (pm) {
1007 if (pm->resume)
1008 return pm->resume(dev);
1009 } else {
1010 pci_pm_reenable_device(pci_dev);
1011 }
1012
1013 return 0;
1014 }
1015
1016 #else /* !CONFIG_SUSPEND */
1017
1018 #define pci_pm_suspend NULL
1019 #define pci_pm_suspend_late NULL
1020 #define pci_pm_suspend_noirq NULL
1021 #define pci_pm_resume NULL
1022 #define pci_pm_resume_early NULL
1023 #define pci_pm_resume_noirq NULL
1024
1025 #endif /* !CONFIG_SUSPEND */
1026
1027 #ifdef CONFIG_HIBERNATE_CALLBACKS
1028
pci_pm_freeze(struct device * dev)1029 static int pci_pm_freeze(struct device *dev)
1030 {
1031 struct pci_dev *pci_dev = to_pci_dev(dev);
1032 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1033
1034 if (pci_has_legacy_pm_support(pci_dev))
1035 return pci_legacy_suspend(dev, PMSG_FREEZE);
1036
1037 if (!pm) {
1038 pci_pm_default_suspend(pci_dev);
1039 return 0;
1040 }
1041
1042 /*
1043 * Resume all runtime-suspended devices before creating a snapshot
1044 * image of system memory, because the restore kernel generally cannot
1045 * be expected to always handle them consistently and they need to be
1046 * put into the runtime-active metastate during system resume anyway,
1047 * so it is better to ensure that the state saved in the image will be
1048 * always consistent with that.
1049 */
1050 pm_runtime_resume(dev);
1051 pci_dev->state_saved = false;
1052
1053 if (pm->freeze) {
1054 int error;
1055
1056 error = pm->freeze(dev);
1057 suspend_report_result(dev, pm->freeze, error);
1058 if (error)
1059 return error;
1060 }
1061
1062 return 0;
1063 }
1064
pci_pm_freeze_noirq(struct device * dev)1065 static int pci_pm_freeze_noirq(struct device *dev)
1066 {
1067 struct pci_dev *pci_dev = to_pci_dev(dev);
1068 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1069
1070 if (pci_has_legacy_pm_support(pci_dev))
1071 return pci_legacy_suspend_late(dev);
1072
1073 if (pm && pm->freeze_noirq) {
1074 int error;
1075
1076 error = pm->freeze_noirq(dev);
1077 suspend_report_result(dev, pm->freeze_noirq, error);
1078 if (error)
1079 return error;
1080 }
1081
1082 if (!pci_dev->state_saved)
1083 pci_save_state(pci_dev);
1084
1085 pci_pm_set_unknown_state(pci_dev);
1086
1087 return 0;
1088 }
1089
pci_pm_thaw_noirq(struct device * dev)1090 static int pci_pm_thaw_noirq(struct device *dev)
1091 {
1092 struct pci_dev *pci_dev = to_pci_dev(dev);
1093 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1094
1095 /*
1096 * The pm->thaw_noirq() callback assumes the device has been
1097 * returned to D0 and its config state has been restored.
1098 *
1099 * In addition, pci_restore_state() restores MSI-X state in MMIO
1100 * space, which requires the device to be in D0, so return it to D0
1101 * in case the driver's "freeze" callbacks put it into a low-power
1102 * state.
1103 */
1104 pci_pm_power_up_and_verify_state(pci_dev);
1105 pci_restore_state(pci_dev);
1106
1107 if (pci_has_legacy_pm_support(pci_dev))
1108 return 0;
1109
1110 if (pm && pm->thaw_noirq)
1111 return pm->thaw_noirq(dev);
1112
1113 return 0;
1114 }
1115
pci_pm_thaw(struct device * dev)1116 static int pci_pm_thaw(struct device *dev)
1117 {
1118 struct pci_dev *pci_dev = to_pci_dev(dev);
1119 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1120 int error = 0;
1121
1122 if (pci_has_legacy_pm_support(pci_dev))
1123 return pci_legacy_resume(dev);
1124
1125 if (pm) {
1126 if (pm->thaw)
1127 error = pm->thaw(dev);
1128 } else {
1129 pci_pm_reenable_device(pci_dev);
1130 }
1131
1132 pci_dev->state_saved = false;
1133
1134 return error;
1135 }
1136
pci_pm_poweroff(struct device * dev)1137 static int pci_pm_poweroff(struct device *dev)
1138 {
1139 struct pci_dev *pci_dev = to_pci_dev(dev);
1140 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1141
1142 if (pci_has_legacy_pm_support(pci_dev))
1143 return pci_legacy_suspend(dev, PMSG_HIBERNATE);
1144
1145 if (!pm) {
1146 pci_pm_default_suspend(pci_dev);
1147 return 0;
1148 }
1149
1150 /* The reason to do that is the same as in pci_pm_suspend(). */
1151 if (!dev_pm_smart_suspend(dev) || pci_dev_need_resume(pci_dev)) {
1152 pm_runtime_resume(dev);
1153 pci_dev->state_saved = false;
1154 } else {
1155 pci_dev_adjust_pme(pci_dev);
1156 }
1157
1158 if (pm->poweroff) {
1159 int error;
1160
1161 error = pm->poweroff(dev);
1162 suspend_report_result(dev, pm->poweroff, error);
1163 if (error)
1164 return error;
1165 }
1166
1167 return 0;
1168 }
1169
pci_pm_poweroff_late(struct device * dev)1170 static int pci_pm_poweroff_late(struct device *dev)
1171 {
1172 if (dev_pm_skip_suspend(dev))
1173 return 0;
1174
1175 pci_fixup_device(pci_fixup_suspend, to_pci_dev(dev));
1176
1177 return pm_generic_poweroff_late(dev);
1178 }
1179
pci_pm_poweroff_noirq(struct device * dev)1180 static int pci_pm_poweroff_noirq(struct device *dev)
1181 {
1182 struct pci_dev *pci_dev = to_pci_dev(dev);
1183 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1184
1185 if (dev_pm_skip_suspend(dev))
1186 return 0;
1187
1188 if (pci_has_legacy_pm_support(pci_dev))
1189 return pci_legacy_suspend_late(dev);
1190
1191 if (!pm) {
1192 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1193 return 0;
1194 }
1195
1196 if (pm->poweroff_noirq) {
1197 int error;
1198
1199 error = pm->poweroff_noirq(dev);
1200 suspend_report_result(dev, pm->poweroff_noirq, error);
1201 if (error)
1202 return error;
1203 }
1204
1205 if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev))
1206 pci_prepare_to_sleep(pci_dev);
1207
1208 /*
1209 * The reason for doing this here is the same as for the analogous code
1210 * in pci_pm_suspend_noirq().
1211 */
1212 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1213 pci_write_config_word(pci_dev, PCI_COMMAND, 0);
1214
1215 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1216
1217 return 0;
1218 }
1219
pci_pm_restore_noirq(struct device * dev)1220 static int pci_pm_restore_noirq(struct device *dev)
1221 {
1222 struct pci_dev *pci_dev = to_pci_dev(dev);
1223 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1224
1225 pci_pm_default_resume_early(pci_dev);
1226 pci_fixup_device(pci_fixup_resume_early, pci_dev);
1227
1228 if (pci_has_legacy_pm_support(pci_dev))
1229 return 0;
1230
1231 if (pm && pm->restore_noirq)
1232 return pm->restore_noirq(dev);
1233
1234 return 0;
1235 }
1236
pci_pm_restore(struct device * dev)1237 static int pci_pm_restore(struct device *dev)
1238 {
1239 struct pci_dev *pci_dev = to_pci_dev(dev);
1240 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1241
1242 /*
1243 * This is necessary for the hibernation error path in which restore is
1244 * called without restoring the standard config registers of the device.
1245 */
1246 if (pci_dev->state_saved)
1247 pci_restore_standard_config(pci_dev);
1248
1249 if (pci_has_legacy_pm_support(pci_dev))
1250 return pci_legacy_resume(dev);
1251
1252 pci_pm_default_resume(pci_dev);
1253
1254 if (pm) {
1255 if (pm->restore)
1256 return pm->restore(dev);
1257 } else {
1258 pci_pm_reenable_device(pci_dev);
1259 }
1260
1261 return 0;
1262 }
1263
1264 #else /* !CONFIG_HIBERNATE_CALLBACKS */
1265
1266 #define pci_pm_freeze NULL
1267 #define pci_pm_freeze_noirq NULL
1268 #define pci_pm_thaw NULL
1269 #define pci_pm_thaw_noirq NULL
1270 #define pci_pm_poweroff NULL
1271 #define pci_pm_poweroff_late NULL
1272 #define pci_pm_poweroff_noirq NULL
1273 #define pci_pm_restore NULL
1274 #define pci_pm_restore_noirq NULL
1275
1276 #endif /* !CONFIG_HIBERNATE_CALLBACKS */
1277
1278 #ifdef CONFIG_PM
1279
pci_pm_runtime_suspend(struct device * dev)1280 static int pci_pm_runtime_suspend(struct device *dev)
1281 {
1282 struct pci_dev *pci_dev = to_pci_dev(dev);
1283 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1284 pci_power_t prev = pci_dev->current_state;
1285 int error;
1286
1287 pci_suspend_ptm(pci_dev);
1288
1289 /*
1290 * If pci_dev->driver is not set (unbound), we leave the device in D0,
1291 * but it may go to D3cold when the bridge above it runtime suspends.
1292 * Save its config space in case that happens.
1293 */
1294 if (!pci_dev->driver) {
1295 pci_save_state(pci_dev);
1296 return 0;
1297 }
1298
1299 pci_dev->state_saved = false;
1300 if (pm && pm->runtime_suspend) {
1301 error = pm->runtime_suspend(dev);
1302 /*
1303 * -EBUSY and -EAGAIN is used to request the runtime PM core
1304 * to schedule a new suspend, so log the event only with debug
1305 * log level.
1306 */
1307 if (error == -EBUSY || error == -EAGAIN) {
1308 pci_dbg(pci_dev, "can't suspend now (%ps returned %d)\n",
1309 pm->runtime_suspend, error);
1310 return error;
1311 } else if (error) {
1312 pci_err(pci_dev, "can't suspend (%ps returned %d)\n",
1313 pm->runtime_suspend, error);
1314 return error;
1315 }
1316 }
1317
1318 pci_fixup_device(pci_fixup_suspend, pci_dev);
1319
1320 if (pm && pm->runtime_suspend
1321 && !pci_dev->state_saved && pci_dev->current_state != PCI_D0
1322 && pci_dev->current_state != PCI_UNKNOWN) {
1323 pci_WARN_ONCE(pci_dev, pci_dev->current_state != prev,
1324 "PCI PM: State of device not saved by %pS\n",
1325 pm->runtime_suspend);
1326 return 0;
1327 }
1328
1329 if (!pci_dev->state_saved) {
1330 pci_save_state(pci_dev);
1331 pci_finish_runtime_suspend(pci_dev);
1332 }
1333
1334 return 0;
1335 }
1336
pci_pm_runtime_resume(struct device * dev)1337 static int pci_pm_runtime_resume(struct device *dev)
1338 {
1339 struct pci_dev *pci_dev = to_pci_dev(dev);
1340 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1341 pci_power_t prev_state = pci_dev->current_state;
1342 int error = 0;
1343
1344 /*
1345 * Restoring config space is necessary even if the device is not bound
1346 * to a driver because although we left it in D0, it may have gone to
1347 * D3cold when the bridge above it runtime suspended.
1348 */
1349 pci_pm_default_resume_early(pci_dev);
1350 pci_resume_ptm(pci_dev);
1351
1352 if (!pci_dev->driver)
1353 return 0;
1354
1355 pci_fixup_device(pci_fixup_resume_early, pci_dev);
1356 pci_pm_default_resume(pci_dev);
1357
1358 if (prev_state == PCI_D3cold)
1359 pci_pm_bridge_power_up_actions(pci_dev);
1360
1361 if (pm && pm->runtime_resume)
1362 error = pm->runtime_resume(dev);
1363
1364 return error;
1365 }
1366
pci_pm_runtime_idle(struct device * dev)1367 static int pci_pm_runtime_idle(struct device *dev)
1368 {
1369 struct pci_dev *pci_dev = to_pci_dev(dev);
1370 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1371
1372 /*
1373 * If pci_dev->driver is not set (unbound), the device should
1374 * always remain in D0 regardless of the runtime PM status
1375 */
1376 if (!pci_dev->driver)
1377 return 0;
1378
1379 if (pm && pm->runtime_idle)
1380 return pm->runtime_idle(dev);
1381
1382 return 0;
1383 }
1384
1385 static const struct dev_pm_ops pci_dev_pm_ops = {
1386 .prepare = pci_pm_prepare,
1387 .complete = pci_pm_complete,
1388 .suspend = pci_pm_suspend,
1389 .suspend_late = pci_pm_suspend_late,
1390 .resume = pci_pm_resume,
1391 .resume_early = pci_pm_resume_early,
1392 .freeze = pci_pm_freeze,
1393 .thaw = pci_pm_thaw,
1394 .poweroff = pci_pm_poweroff,
1395 .poweroff_late = pci_pm_poweroff_late,
1396 .restore = pci_pm_restore,
1397 .suspend_noirq = pci_pm_suspend_noirq,
1398 .resume_noirq = pci_pm_resume_noirq,
1399 .freeze_noirq = pci_pm_freeze_noirq,
1400 .thaw_noirq = pci_pm_thaw_noirq,
1401 .poweroff_noirq = pci_pm_poweroff_noirq,
1402 .restore_noirq = pci_pm_restore_noirq,
1403 .runtime_suspend = pci_pm_runtime_suspend,
1404 .runtime_resume = pci_pm_runtime_resume,
1405 .runtime_idle = pci_pm_runtime_idle,
1406 };
1407
1408 #define PCI_PM_OPS_PTR (&pci_dev_pm_ops)
1409
1410 #else /* !CONFIG_PM */
1411
1412 #define pci_pm_runtime_suspend NULL
1413 #define pci_pm_runtime_resume NULL
1414 #define pci_pm_runtime_idle NULL
1415
1416 #define PCI_PM_OPS_PTR NULL
1417
1418 #endif /* !CONFIG_PM */
1419
1420 /**
1421 * __pci_register_driver - register a new pci driver
1422 * @drv: the driver structure to register
1423 * @owner: owner module of drv
1424 * @mod_name: module name string
1425 *
1426 * Adds the driver structure to the list of registered drivers.
1427 * Returns a negative value on error, otherwise 0.
1428 * If no error occurred, the driver remains registered even if
1429 * no device was claimed during registration.
1430 */
__pci_register_driver(struct pci_driver * drv,struct module * owner,const char * mod_name)1431 int __pci_register_driver(struct pci_driver *drv, struct module *owner,
1432 const char *mod_name)
1433 {
1434 /* initialize common driver fields */
1435 drv->driver.name = drv->name;
1436 drv->driver.bus = &pci_bus_type;
1437 drv->driver.owner = owner;
1438 drv->driver.mod_name = mod_name;
1439 drv->driver.groups = drv->groups;
1440 drv->driver.dev_groups = drv->dev_groups;
1441
1442 spin_lock_init(&drv->dynids.lock);
1443 INIT_LIST_HEAD(&drv->dynids.list);
1444
1445 /* register with core */
1446 return driver_register(&drv->driver);
1447 }
1448 EXPORT_SYMBOL(__pci_register_driver);
1449
1450 /**
1451 * pci_unregister_driver - unregister a pci driver
1452 * @drv: the driver structure to unregister
1453 *
1454 * Deletes the driver structure from the list of registered PCI drivers,
1455 * gives it a chance to clean up by calling its remove() function for
1456 * each device it was responsible for, and marks those devices as
1457 * driverless.
1458 */
1459
pci_unregister_driver(struct pci_driver * drv)1460 void pci_unregister_driver(struct pci_driver *drv)
1461 {
1462 driver_unregister(&drv->driver);
1463 pci_free_dynids(drv);
1464 }
1465 EXPORT_SYMBOL(pci_unregister_driver);
1466
1467 static struct pci_driver pci_compat_driver = {
1468 .name = "compat"
1469 };
1470
1471 /**
1472 * pci_dev_driver - get the pci_driver of a device
1473 * @dev: the device to query
1474 *
1475 * Returns the appropriate pci_driver structure or %NULL if there is no
1476 * registered driver for the device.
1477 */
pci_dev_driver(const struct pci_dev * dev)1478 struct pci_driver *pci_dev_driver(const struct pci_dev *dev)
1479 {
1480 int i;
1481
1482 if (dev->driver)
1483 return dev->driver;
1484
1485 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1486 if (dev->resource[i].flags & IORESOURCE_BUSY)
1487 return &pci_compat_driver;
1488
1489 return NULL;
1490 }
1491 EXPORT_SYMBOL(pci_dev_driver);
1492
1493 /**
1494 * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure
1495 * @dev: the PCI device structure to match against
1496 * @drv: the device driver to search for matching PCI device id structures
1497 *
1498 * Used by a driver to check whether a PCI device present in the
1499 * system is in its list of supported devices. Returns the matching
1500 * pci_device_id structure or %NULL if there is no match.
1501 */
pci_bus_match(struct device * dev,const struct device_driver * drv)1502 static int pci_bus_match(struct device *dev, const struct device_driver *drv)
1503 {
1504 struct pci_dev *pci_dev = to_pci_dev(dev);
1505 struct pci_driver *pci_drv;
1506 const struct pci_device_id *found_id;
1507
1508 if (pci_dev_binding_disallowed(pci_dev))
1509 return 0;
1510
1511 pci_drv = (struct pci_driver *)to_pci_driver(drv);
1512 found_id = pci_match_device(pci_drv, pci_dev);
1513 if (found_id)
1514 return 1;
1515
1516 return 0;
1517 }
1518
1519 /**
1520 * pci_dev_get - increments the reference count of the pci device structure
1521 * @dev: the device being referenced
1522 *
1523 * Each live reference to a device should be refcounted.
1524 *
1525 * Drivers for PCI devices should normally record such references in
1526 * their probe() methods, when they bind to a device, and release
1527 * them by calling pci_dev_put(), in their disconnect() methods.
1528 *
1529 * A pointer to the device with the incremented reference counter is returned.
1530 */
pci_dev_get(struct pci_dev * dev)1531 struct pci_dev *pci_dev_get(struct pci_dev *dev)
1532 {
1533 if (dev)
1534 get_device(&dev->dev);
1535 return dev;
1536 }
1537 EXPORT_SYMBOL(pci_dev_get);
1538
1539 /**
1540 * pci_dev_put - release a use of the pci device structure
1541 * @dev: device that's been disconnected
1542 *
1543 * Must be called when a user of a device is finished with it. When the last
1544 * user of the device calls this function, the memory of the device is freed.
1545 */
pci_dev_put(struct pci_dev * dev)1546 void pci_dev_put(struct pci_dev *dev)
1547 {
1548 if (dev)
1549 put_device(&dev->dev);
1550 }
1551 EXPORT_SYMBOL(pci_dev_put);
1552
pci_uevent(const struct device * dev,struct kobj_uevent_env * env)1553 static int pci_uevent(const struct device *dev, struct kobj_uevent_env *env)
1554 {
1555 const struct pci_dev *pdev;
1556
1557 if (!dev)
1558 return -ENODEV;
1559
1560 pdev = to_pci_dev(dev);
1561
1562 if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class))
1563 return -ENOMEM;
1564
1565 if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device))
1566 return -ENOMEM;
1567
1568 if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor,
1569 pdev->subsystem_device))
1570 return -ENOMEM;
1571
1572 if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev)))
1573 return -ENOMEM;
1574
1575 if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02X",
1576 pdev->vendor, pdev->device,
1577 pdev->subsystem_vendor, pdev->subsystem_device,
1578 (u8)(pdev->class >> 16), (u8)(pdev->class >> 8),
1579 (u8)(pdev->class)))
1580 return -ENOMEM;
1581
1582 return 0;
1583 }
1584
1585 #if defined(CONFIG_PCIEAER) || defined(CONFIG_EEH)
1586 /**
1587 * pci_uevent_ers - emit a uevent during recovery path of PCI device
1588 * @pdev: PCI device undergoing error recovery
1589 * @err_type: type of error event
1590 */
pci_uevent_ers(struct pci_dev * pdev,enum pci_ers_result err_type)1591 void pci_uevent_ers(struct pci_dev *pdev, enum pci_ers_result err_type)
1592 {
1593 int idx = 0;
1594 char *envp[3];
1595
1596 switch (err_type) {
1597 case PCI_ERS_RESULT_NONE:
1598 case PCI_ERS_RESULT_CAN_RECOVER:
1599 envp[idx++] = "ERROR_EVENT=BEGIN_RECOVERY";
1600 envp[idx++] = "DEVICE_ONLINE=0";
1601 break;
1602 case PCI_ERS_RESULT_RECOVERED:
1603 envp[idx++] = "ERROR_EVENT=SUCCESSFUL_RECOVERY";
1604 envp[idx++] = "DEVICE_ONLINE=1";
1605 break;
1606 case PCI_ERS_RESULT_DISCONNECT:
1607 envp[idx++] = "ERROR_EVENT=FAILED_RECOVERY";
1608 envp[idx++] = "DEVICE_ONLINE=0";
1609 break;
1610 default:
1611 break;
1612 }
1613
1614 if (idx > 0) {
1615 envp[idx++] = NULL;
1616 kobject_uevent_env(&pdev->dev.kobj, KOBJ_CHANGE, envp);
1617 }
1618 }
1619 #endif
1620
pci_bus_num_vf(struct device * dev)1621 static int pci_bus_num_vf(struct device *dev)
1622 {
1623 return pci_num_vf(to_pci_dev(dev));
1624 }
1625
1626 /**
1627 * pci_dma_configure - Setup DMA configuration
1628 * @dev: ptr to dev structure
1629 *
1630 * Function to update PCI devices's DMA configuration using the same
1631 * info from the OF node or ACPI node of host bridge's parent (if any).
1632 */
pci_dma_configure(struct device * dev)1633 static int pci_dma_configure(struct device *dev)
1634 {
1635 const struct device_driver *drv = READ_ONCE(dev->driver);
1636 struct device *bridge;
1637 int ret = 0;
1638
1639 bridge = pci_get_host_bridge_device(to_pci_dev(dev));
1640
1641 if (IS_ENABLED(CONFIG_OF) && bridge->parent &&
1642 bridge->parent->of_node) {
1643 ret = of_dma_configure(dev, bridge->parent->of_node, true);
1644 } else if (has_acpi_companion(bridge)) {
1645 struct acpi_device *adev = to_acpi_device_node(bridge->fwnode);
1646
1647 ret = acpi_dma_configure(dev, acpi_get_dma_attr(adev));
1648 }
1649
1650 pci_put_host_bridge_device(bridge);
1651
1652 /* @drv may not be valid when we're called from the IOMMU layer */
1653 if (!ret && drv && !to_pci_driver(drv)->driver_managed_dma) {
1654 ret = iommu_device_use_default_domain(dev);
1655 if (ret)
1656 arch_teardown_dma_ops(dev);
1657 }
1658
1659 return ret;
1660 }
1661
pci_dma_cleanup(struct device * dev)1662 static void pci_dma_cleanup(struct device *dev)
1663 {
1664 struct pci_driver *driver = to_pci_driver(dev->driver);
1665
1666 if (!driver->driver_managed_dma)
1667 iommu_device_unuse_default_domain(dev);
1668 }
1669
1670 /*
1671 * pci_device_irq_get_affinity - get IRQ affinity mask for device
1672 * @dev: ptr to dev structure
1673 * @irq_vec: interrupt vector number
1674 *
1675 * Return the CPU affinity mask for @dev and @irq_vec.
1676 */
pci_device_irq_get_affinity(struct device * dev,unsigned int irq_vec)1677 static const struct cpumask *pci_device_irq_get_affinity(struct device *dev,
1678 unsigned int irq_vec)
1679 {
1680 return pci_irq_get_affinity(to_pci_dev(dev), irq_vec);
1681 }
1682
1683 const struct bus_type pci_bus_type = {
1684 .name = "pci",
1685 .match = pci_bus_match,
1686 .uevent = pci_uevent,
1687 .probe = pci_device_probe,
1688 .remove = pci_device_remove,
1689 .shutdown = pci_device_shutdown,
1690 .irq_get_affinity = pci_device_irq_get_affinity,
1691 .dev_groups = pci_dev_groups,
1692 .bus_groups = pci_bus_groups,
1693 .drv_groups = pci_drv_groups,
1694 .pm = PCI_PM_OPS_PTR,
1695 .num_vf = pci_bus_num_vf,
1696 .dma_configure = pci_dma_configure,
1697 .dma_cleanup = pci_dma_cleanup,
1698 };
1699 EXPORT_SYMBOL(pci_bus_type);
1700
1701 #ifdef CONFIG_PCIEPORTBUS
pcie_port_bus_match(struct device * dev,const struct device_driver * drv)1702 static int pcie_port_bus_match(struct device *dev, const struct device_driver *drv)
1703 {
1704 struct pcie_device *pciedev;
1705 const struct pcie_port_service_driver *driver;
1706
1707 if (drv->bus != &pcie_port_bus_type || dev->bus != &pcie_port_bus_type)
1708 return 0;
1709
1710 pciedev = to_pcie_device(dev);
1711 driver = to_service_driver(drv);
1712
1713 if (driver->service != pciedev->service)
1714 return 0;
1715
1716 if (driver->port_type != PCIE_ANY_PORT &&
1717 driver->port_type != pci_pcie_type(pciedev->port))
1718 return 0;
1719
1720 return 1;
1721 }
1722
1723 const struct bus_type pcie_port_bus_type = {
1724 .name = "pci_express",
1725 .match = pcie_port_bus_match,
1726 };
1727 #endif
1728
pci_driver_init(void)1729 static int __init pci_driver_init(void)
1730 {
1731 int ret;
1732
1733 ret = bus_register(&pci_bus_type);
1734 if (ret)
1735 return ret;
1736
1737 #ifdef CONFIG_PCIEPORTBUS
1738 ret = bus_register(&pcie_port_bus_type);
1739 if (ret)
1740 return ret;
1741 #endif
1742 dma_debug_add_bus(&pci_bus_type);
1743 return 0;
1744 }
1745 postcore_initcall(pci_driver_init);
1746