1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2024, Microsoft Corporation.
4 *
5 * The main part of the mshv_root module, providing APIs to create
6 * and manage guest partitions.
7 *
8 * Authors: Microsoft Linux virtualization team
9 */
10
11 #include <linux/entry-virt.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/fs.h>
15 #include <linux/miscdevice.h>
16 #include <linux/slab.h>
17 #include <linux/file.h>
18 #include <linux/anon_inodes.h>
19 #include <linux/mm.h>
20 #include <linux/io.h>
21 #include <linux/cpuhotplug.h>
22 #include <linux/random.h>
23 #include <asm/mshyperv.h>
24 #include <linux/hyperv.h>
25 #include <linux/notifier.h>
26 #include <linux/reboot.h>
27 #include <linux/kexec.h>
28 #include <linux/page-flags.h>
29 #include <linux/crash_dump.h>
30 #include <linux/panic_notifier.h>
31 #include <linux/vmalloc.h>
32
33 #include "mshv_eventfd.h"
34 #include "mshv.h"
35 #include "mshv_root.h"
36
37 MODULE_AUTHOR("Microsoft");
38 MODULE_LICENSE("GPL");
39 MODULE_DESCRIPTION("Microsoft Hyper-V root partition VMM interface /dev/mshv");
40
41 /* TODO move this to another file when debugfs code is added */
42 enum hv_stats_vp_counters { /* HV_THREAD_COUNTER */
43 #if defined(CONFIG_X86)
44 VpRootDispatchThreadBlocked = 201,
45 #elif defined(CONFIG_ARM64)
46 VpRootDispatchThreadBlocked = 94,
47 #endif
48 VpStatsMaxCounter
49 };
50
51 struct hv_stats_page {
52 union {
53 u64 vp_cntrs[VpStatsMaxCounter]; /* VP counters */
54 u8 data[HV_HYP_PAGE_SIZE];
55 };
56 } __packed;
57
58 struct mshv_root mshv_root;
59
60 enum hv_scheduler_type hv_scheduler_type;
61
62 /* Once we implement the fast extended hypercall ABI they can go away. */
63 static void * __percpu *root_scheduler_input;
64 static void * __percpu *root_scheduler_output;
65
66 static long mshv_dev_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
67 static int mshv_dev_open(struct inode *inode, struct file *filp);
68 static int mshv_dev_release(struct inode *inode, struct file *filp);
69 static int mshv_vp_release(struct inode *inode, struct file *filp);
70 static long mshv_vp_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
71 static int mshv_partition_release(struct inode *inode, struct file *filp);
72 static long mshv_partition_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
73 static int mshv_vp_mmap(struct file *file, struct vm_area_struct *vma);
74 static vm_fault_t mshv_vp_fault(struct vm_fault *vmf);
75 static int mshv_init_async_handler(struct mshv_partition *partition);
76 static void mshv_async_hvcall_handler(void *data, u64 *status);
77
78 static const union hv_input_vtl input_vtl_zero;
79 static const union hv_input_vtl input_vtl_normal = {
80 .target_vtl = HV_NORMAL_VTL,
81 .use_target_vtl = 1,
82 };
83
84 static const struct vm_operations_struct mshv_vp_vm_ops = {
85 .fault = mshv_vp_fault,
86 };
87
88 static const struct file_operations mshv_vp_fops = {
89 .owner = THIS_MODULE,
90 .release = mshv_vp_release,
91 .unlocked_ioctl = mshv_vp_ioctl,
92 .llseek = noop_llseek,
93 .mmap = mshv_vp_mmap,
94 };
95
96 static const struct file_operations mshv_partition_fops = {
97 .owner = THIS_MODULE,
98 .release = mshv_partition_release,
99 .unlocked_ioctl = mshv_partition_ioctl,
100 .llseek = noop_llseek,
101 };
102
103 static const struct file_operations mshv_dev_fops = {
104 .owner = THIS_MODULE,
105 .open = mshv_dev_open,
106 .release = mshv_dev_release,
107 .unlocked_ioctl = mshv_dev_ioctl,
108 .llseek = noop_llseek,
109 };
110
111 static struct miscdevice mshv_dev = {
112 .minor = MISC_DYNAMIC_MINOR,
113 .name = "mshv",
114 .fops = &mshv_dev_fops,
115 .mode = 0600,
116 };
117
118 /*
119 * Only allow hypercalls that have a u64 partition id as the first member of
120 * the input structure.
121 * These are sorted by value.
122 */
123 static u16 mshv_passthru_hvcalls[] = {
124 HVCALL_GET_PARTITION_PROPERTY,
125 HVCALL_SET_PARTITION_PROPERTY,
126 HVCALL_INSTALL_INTERCEPT,
127 HVCALL_GET_VP_REGISTERS,
128 HVCALL_SET_VP_REGISTERS,
129 HVCALL_TRANSLATE_VIRTUAL_ADDRESS,
130 HVCALL_CLEAR_VIRTUAL_INTERRUPT,
131 HVCALL_REGISTER_INTERCEPT_RESULT,
132 HVCALL_ASSERT_VIRTUAL_INTERRUPT,
133 HVCALL_GET_GPA_PAGES_ACCESS_STATES,
134 HVCALL_SIGNAL_EVENT_DIRECT,
135 HVCALL_POST_MESSAGE_DIRECT,
136 HVCALL_GET_VP_CPUID_VALUES,
137 };
138
mshv_hvcall_is_async(u16 code)139 static bool mshv_hvcall_is_async(u16 code)
140 {
141 switch (code) {
142 case HVCALL_SET_PARTITION_PROPERTY:
143 return true;
144 default:
145 break;
146 }
147 return false;
148 }
149
mshv_ioctl_passthru_hvcall(struct mshv_partition * partition,bool partition_locked,void __user * user_args)150 static int mshv_ioctl_passthru_hvcall(struct mshv_partition *partition,
151 bool partition_locked,
152 void __user *user_args)
153 {
154 u64 status;
155 int ret = 0, i;
156 bool is_async;
157 struct mshv_root_hvcall args;
158 struct page *page;
159 unsigned int pages_order;
160 void *input_pg = NULL;
161 void *output_pg = NULL;
162
163 if (copy_from_user(&args, user_args, sizeof(args)))
164 return -EFAULT;
165
166 if (args.status || !args.in_ptr || args.in_sz < sizeof(u64) ||
167 mshv_field_nonzero(args, rsvd) || args.in_sz > HV_HYP_PAGE_SIZE)
168 return -EINVAL;
169
170 if (args.out_ptr && (!args.out_sz || args.out_sz > HV_HYP_PAGE_SIZE))
171 return -EINVAL;
172
173 for (i = 0; i < ARRAY_SIZE(mshv_passthru_hvcalls); ++i)
174 if (args.code == mshv_passthru_hvcalls[i])
175 break;
176
177 if (i >= ARRAY_SIZE(mshv_passthru_hvcalls))
178 return -EINVAL;
179
180 is_async = mshv_hvcall_is_async(args.code);
181 if (is_async) {
182 /* async hypercalls can only be called from partition fd */
183 if (!partition_locked)
184 return -EINVAL;
185 ret = mshv_init_async_handler(partition);
186 if (ret)
187 return ret;
188 }
189
190 pages_order = args.out_ptr ? 1 : 0;
191 page = alloc_pages(GFP_KERNEL, pages_order);
192 if (!page)
193 return -ENOMEM;
194 input_pg = page_address(page);
195
196 if (args.out_ptr)
197 output_pg = (char *)input_pg + PAGE_SIZE;
198 else
199 output_pg = NULL;
200
201 if (copy_from_user(input_pg, (void __user *)args.in_ptr,
202 args.in_sz)) {
203 ret = -EFAULT;
204 goto free_pages_out;
205 }
206
207 /*
208 * NOTE: This only works because all the allowed hypercalls' input
209 * structs begin with a u64 partition_id field.
210 */
211 *(u64 *)input_pg = partition->pt_id;
212
213 if (args.reps)
214 status = hv_do_rep_hypercall(args.code, args.reps, 0,
215 input_pg, output_pg);
216 else
217 status = hv_do_hypercall(args.code, input_pg, output_pg);
218
219 if (hv_result(status) == HV_STATUS_CALL_PENDING) {
220 if (is_async) {
221 mshv_async_hvcall_handler(partition, &status);
222 } else { /* Paranoia check. This shouldn't happen! */
223 ret = -EBADFD;
224 goto free_pages_out;
225 }
226 }
227
228 if (hv_result(status) == HV_STATUS_INSUFFICIENT_MEMORY) {
229 ret = hv_call_deposit_pages(NUMA_NO_NODE, partition->pt_id, 1);
230 if (!ret)
231 ret = -EAGAIN;
232 } else if (!hv_result_success(status)) {
233 ret = hv_result_to_errno(status);
234 }
235
236 /*
237 * Always return the status and output data regardless of result.
238 * The VMM may need it to determine how to proceed. E.g. the status may
239 * contain the number of reps completed if a rep hypercall partially
240 * succeeded.
241 */
242 args.status = hv_result(status);
243 args.reps = args.reps ? hv_repcomp(status) : 0;
244 if (copy_to_user(user_args, &args, sizeof(args)))
245 ret = -EFAULT;
246
247 if (output_pg &&
248 copy_to_user((void __user *)args.out_ptr, output_pg, args.out_sz))
249 ret = -EFAULT;
250
251 free_pages_out:
252 free_pages((unsigned long)input_pg, pages_order);
253
254 return ret;
255 }
256
is_ghcb_mapping_available(void)257 static inline bool is_ghcb_mapping_available(void)
258 {
259 #if IS_ENABLED(CONFIG_X86_64)
260 return ms_hyperv.ext_features & HV_VP_GHCB_ROOT_MAPPING_AVAILABLE;
261 #else
262 return 0;
263 #endif
264 }
265
mshv_get_vp_registers(u32 vp_index,u64 partition_id,u16 count,struct hv_register_assoc * registers)266 static int mshv_get_vp_registers(u32 vp_index, u64 partition_id, u16 count,
267 struct hv_register_assoc *registers)
268 {
269 return hv_call_get_vp_registers(vp_index, partition_id,
270 count, input_vtl_zero, registers);
271 }
272
mshv_set_vp_registers(u32 vp_index,u64 partition_id,u16 count,struct hv_register_assoc * registers)273 static int mshv_set_vp_registers(u32 vp_index, u64 partition_id, u16 count,
274 struct hv_register_assoc *registers)
275 {
276 return hv_call_set_vp_registers(vp_index, partition_id,
277 count, input_vtl_zero, registers);
278 }
279
280 /*
281 * Explicit guest vCPU suspend is asynchronous by nature (as it is requested by
282 * dom0 vCPU for guest vCPU) and thus it can race with "intercept" suspend,
283 * done by the hypervisor.
284 * "Intercept" suspend leads to asynchronous message delivery to dom0 which
285 * should be awaited to keep the VP loop consistent (i.e. no message pending
286 * upon VP resume).
287 * VP intercept suspend can't be done when the VP is explicitly suspended
288 * already, and thus can be only two possible race scenarios:
289 * 1. implicit suspend bit set -> explicit suspend bit set -> message sent
290 * 2. implicit suspend bit set -> message sent -> explicit suspend bit set
291 * Checking for implicit suspend bit set after explicit suspend request has
292 * succeeded in either case allows us to reliably identify, if there is a
293 * message to receive and deliver to VMM.
294 */
295 static int
mshv_suspend_vp(const struct mshv_vp * vp,bool * message_in_flight)296 mshv_suspend_vp(const struct mshv_vp *vp, bool *message_in_flight)
297 {
298 struct hv_register_assoc explicit_suspend = {
299 .name = HV_REGISTER_EXPLICIT_SUSPEND
300 };
301 struct hv_register_assoc intercept_suspend = {
302 .name = HV_REGISTER_INTERCEPT_SUSPEND
303 };
304 union hv_explicit_suspend_register *es =
305 &explicit_suspend.value.explicit_suspend;
306 union hv_intercept_suspend_register *is =
307 &intercept_suspend.value.intercept_suspend;
308 int ret;
309
310 es->suspended = 1;
311
312 ret = mshv_set_vp_registers(vp->vp_index, vp->vp_partition->pt_id,
313 1, &explicit_suspend);
314 if (ret) {
315 vp_err(vp, "Failed to explicitly suspend vCPU\n");
316 return ret;
317 }
318
319 ret = mshv_get_vp_registers(vp->vp_index, vp->vp_partition->pt_id,
320 1, &intercept_suspend);
321 if (ret) {
322 vp_err(vp, "Failed to get intercept suspend state\n");
323 return ret;
324 }
325
326 *message_in_flight = is->suspended;
327
328 return 0;
329 }
330
331 /*
332 * This function is used when VPs are scheduled by the hypervisor's
333 * scheduler.
334 *
335 * Caller has to make sure the registers contain cleared
336 * HV_REGISTER_INTERCEPT_SUSPEND and HV_REGISTER_EXPLICIT_SUSPEND registers
337 * exactly in this order (the hypervisor clears them sequentially) to avoid
338 * potential invalid clearing a newly arrived HV_REGISTER_INTERCEPT_SUSPEND
339 * after VP is released from HV_REGISTER_EXPLICIT_SUSPEND in case of the
340 * opposite order.
341 */
mshv_run_vp_with_hyp_scheduler(struct mshv_vp * vp)342 static long mshv_run_vp_with_hyp_scheduler(struct mshv_vp *vp)
343 {
344 long ret;
345 struct hv_register_assoc suspend_regs[2] = {
346 { .name = HV_REGISTER_INTERCEPT_SUSPEND },
347 { .name = HV_REGISTER_EXPLICIT_SUSPEND }
348 };
349 size_t count = ARRAY_SIZE(suspend_regs);
350
351 /* Resume VP execution */
352 ret = mshv_set_vp_registers(vp->vp_index, vp->vp_partition->pt_id,
353 count, suspend_regs);
354 if (ret) {
355 vp_err(vp, "Failed to resume vp execution. %lx\n", ret);
356 return ret;
357 }
358
359 ret = wait_event_interruptible(vp->run.vp_suspend_queue,
360 vp->run.kicked_by_hv == 1);
361 if (ret) {
362 bool message_in_flight;
363
364 /*
365 * Otherwise the waiting was interrupted by a signal: suspend
366 * the vCPU explicitly and copy message in flight (if any).
367 */
368 ret = mshv_suspend_vp(vp, &message_in_flight);
369 if (ret)
370 return ret;
371
372 /* Return if no message in flight */
373 if (!message_in_flight)
374 return -EINTR;
375
376 /* Wait for the message in flight. */
377 wait_event(vp->run.vp_suspend_queue, vp->run.kicked_by_hv == 1);
378 }
379
380 /*
381 * Reset the flag to make the wait_event call above work
382 * next time.
383 */
384 vp->run.kicked_by_hv = 0;
385
386 return 0;
387 }
388
389 static int
mshv_vp_dispatch(struct mshv_vp * vp,u32 flags,struct hv_output_dispatch_vp * res)390 mshv_vp_dispatch(struct mshv_vp *vp, u32 flags,
391 struct hv_output_dispatch_vp *res)
392 {
393 struct hv_input_dispatch_vp *input;
394 struct hv_output_dispatch_vp *output;
395 u64 status;
396
397 preempt_disable();
398 input = *this_cpu_ptr(root_scheduler_input);
399 output = *this_cpu_ptr(root_scheduler_output);
400
401 memset(input, 0, sizeof(*input));
402 memset(output, 0, sizeof(*output));
403
404 input->partition_id = vp->vp_partition->pt_id;
405 input->vp_index = vp->vp_index;
406 input->time_slice = 0; /* Run forever until something happens */
407 input->spec_ctrl = 0; /* TODO: set sensible flags */
408 input->flags = flags;
409
410 vp->run.flags.root_sched_dispatched = 1;
411 status = hv_do_hypercall(HVCALL_DISPATCH_VP, input, output);
412 vp->run.flags.root_sched_dispatched = 0;
413
414 *res = *output;
415 preempt_enable();
416
417 if (!hv_result_success(status))
418 vp_err(vp, "%s: status %s\n", __func__,
419 hv_result_to_string(status));
420
421 return hv_result_to_errno(status);
422 }
423
424 static int
mshv_vp_clear_explicit_suspend(struct mshv_vp * vp)425 mshv_vp_clear_explicit_suspend(struct mshv_vp *vp)
426 {
427 struct hv_register_assoc explicit_suspend = {
428 .name = HV_REGISTER_EXPLICIT_SUSPEND,
429 .value.explicit_suspend.suspended = 0,
430 };
431 int ret;
432
433 ret = mshv_set_vp_registers(vp->vp_index, vp->vp_partition->pt_id,
434 1, &explicit_suspend);
435
436 if (ret)
437 vp_err(vp, "Failed to unsuspend\n");
438
439 return ret;
440 }
441
442 #if IS_ENABLED(CONFIG_X86_64)
mshv_vp_interrupt_pending(struct mshv_vp * vp)443 static u64 mshv_vp_interrupt_pending(struct mshv_vp *vp)
444 {
445 if (!vp->vp_register_page)
446 return 0;
447 return vp->vp_register_page->interrupt_vectors.as_uint64;
448 }
449 #else
mshv_vp_interrupt_pending(struct mshv_vp * vp)450 static u64 mshv_vp_interrupt_pending(struct mshv_vp *vp)
451 {
452 return 0;
453 }
454 #endif
455
mshv_vp_dispatch_thread_blocked(struct mshv_vp * vp)456 static bool mshv_vp_dispatch_thread_blocked(struct mshv_vp *vp)
457 {
458 struct hv_stats_page **stats = vp->vp_stats_pages;
459 u64 *self_vp_cntrs = stats[HV_STATS_AREA_SELF]->vp_cntrs;
460 u64 *parent_vp_cntrs = stats[HV_STATS_AREA_PARENT]->vp_cntrs;
461
462 if (self_vp_cntrs[VpRootDispatchThreadBlocked])
463 return self_vp_cntrs[VpRootDispatchThreadBlocked];
464 return parent_vp_cntrs[VpRootDispatchThreadBlocked];
465 }
466
467 static int
mshv_vp_wait_for_hv_kick(struct mshv_vp * vp)468 mshv_vp_wait_for_hv_kick(struct mshv_vp *vp)
469 {
470 int ret;
471
472 ret = wait_event_interruptible(vp->run.vp_suspend_queue,
473 (vp->run.kicked_by_hv == 1 &&
474 !mshv_vp_dispatch_thread_blocked(vp)) ||
475 mshv_vp_interrupt_pending(vp));
476 if (ret)
477 return -EINTR;
478
479 vp->run.flags.root_sched_blocked = 0;
480 vp->run.kicked_by_hv = 0;
481
482 return 0;
483 }
484
485 /* Must be called with interrupts enabled */
mshv_run_vp_with_root_scheduler(struct mshv_vp * vp)486 static long mshv_run_vp_with_root_scheduler(struct mshv_vp *vp)
487 {
488 long ret;
489
490 if (vp->run.flags.root_sched_blocked) {
491 /*
492 * Dispatch state of this VP is blocked. Need to wait
493 * for the hypervisor to clear the blocked state before
494 * dispatching it.
495 */
496 ret = mshv_vp_wait_for_hv_kick(vp);
497 if (ret)
498 return ret;
499 }
500
501 do {
502 u32 flags = 0;
503 struct hv_output_dispatch_vp output;
504
505 if (__xfer_to_guest_mode_work_pending()) {
506 ret = xfer_to_guest_mode_handle_work();
507 if (ret)
508 break;
509 }
510
511 if (vp->run.flags.intercept_suspend)
512 flags |= HV_DISPATCH_VP_FLAG_CLEAR_INTERCEPT_SUSPEND;
513
514 if (mshv_vp_interrupt_pending(vp))
515 flags |= HV_DISPATCH_VP_FLAG_SCAN_INTERRUPT_INJECTION;
516
517 ret = mshv_vp_dispatch(vp, flags, &output);
518 if (ret)
519 break;
520
521 vp->run.flags.intercept_suspend = 0;
522
523 if (output.dispatch_state == HV_VP_DISPATCH_STATE_BLOCKED) {
524 if (output.dispatch_event ==
525 HV_VP_DISPATCH_EVENT_SUSPEND) {
526 /*
527 * TODO: remove the warning once VP canceling
528 * is supported
529 */
530 WARN_ONCE(atomic64_read(&vp->run.vp_signaled_count),
531 "%s: vp#%d: unexpected explicit suspend\n",
532 __func__, vp->vp_index);
533 /*
534 * Need to clear explicit suspend before
535 * dispatching.
536 * Explicit suspend is either:
537 * - set right after the first VP dispatch or
538 * - set explicitly via hypercall
539 * Since the latter case is not yet supported,
540 * simply clear it here.
541 */
542 ret = mshv_vp_clear_explicit_suspend(vp);
543 if (ret)
544 break;
545
546 ret = mshv_vp_wait_for_hv_kick(vp);
547 if (ret)
548 break;
549 } else {
550 vp->run.flags.root_sched_blocked = 1;
551 ret = mshv_vp_wait_for_hv_kick(vp);
552 if (ret)
553 break;
554 }
555 } else {
556 /* HV_VP_DISPATCH_STATE_READY */
557 if (output.dispatch_event ==
558 HV_VP_DISPATCH_EVENT_INTERCEPT)
559 vp->run.flags.intercept_suspend = 1;
560 }
561 } while (!vp->run.flags.intercept_suspend);
562
563 return ret;
564 }
565
566 static_assert(sizeof(struct hv_message) <= MSHV_RUN_VP_BUF_SZ,
567 "sizeof(struct hv_message) must not exceed MSHV_RUN_VP_BUF_SZ");
568
mshv_vp_ioctl_run_vp(struct mshv_vp * vp,void __user * ret_msg)569 static long mshv_vp_ioctl_run_vp(struct mshv_vp *vp, void __user *ret_msg)
570 {
571 long rc;
572
573 if (hv_scheduler_type == HV_SCHEDULER_TYPE_ROOT)
574 rc = mshv_run_vp_with_root_scheduler(vp);
575 else
576 rc = mshv_run_vp_with_hyp_scheduler(vp);
577
578 if (rc)
579 return rc;
580
581 if (copy_to_user(ret_msg, vp->vp_intercept_msg_page,
582 sizeof(struct hv_message)))
583 rc = -EFAULT;
584
585 return rc;
586 }
587
588 static int
mshv_vp_ioctl_get_set_state_pfn(struct mshv_vp * vp,struct hv_vp_state_data state_data,unsigned long user_pfn,size_t page_count,bool is_set)589 mshv_vp_ioctl_get_set_state_pfn(struct mshv_vp *vp,
590 struct hv_vp_state_data state_data,
591 unsigned long user_pfn, size_t page_count,
592 bool is_set)
593 {
594 int completed, ret = 0;
595 unsigned long check;
596 struct page **pages;
597
598 if (page_count > INT_MAX)
599 return -EINVAL;
600 /*
601 * Check the arithmetic for wraparound/overflow.
602 * The last page address in the buffer is:
603 * (user_pfn + (page_count - 1)) * PAGE_SIZE
604 */
605 if (check_add_overflow(user_pfn, (page_count - 1), &check))
606 return -EOVERFLOW;
607 if (check_mul_overflow(check, PAGE_SIZE, &check))
608 return -EOVERFLOW;
609
610 /* Pin user pages so hypervisor can copy directly to them */
611 pages = kcalloc(page_count, sizeof(struct page *), GFP_KERNEL);
612 if (!pages)
613 return -ENOMEM;
614
615 for (completed = 0; completed < page_count; completed += ret) {
616 unsigned long user_addr = (user_pfn + completed) * PAGE_SIZE;
617 int remaining = page_count - completed;
618
619 ret = pin_user_pages_fast(user_addr, remaining, FOLL_WRITE,
620 &pages[completed]);
621 if (ret < 0) {
622 vp_err(vp, "%s: Failed to pin user pages error %i\n",
623 __func__, ret);
624 goto unpin_pages;
625 }
626 }
627
628 if (is_set)
629 ret = hv_call_set_vp_state(vp->vp_index,
630 vp->vp_partition->pt_id,
631 state_data, page_count, pages,
632 0, NULL);
633 else
634 ret = hv_call_get_vp_state(vp->vp_index,
635 vp->vp_partition->pt_id,
636 state_data, page_count, pages,
637 NULL);
638
639 unpin_pages:
640 unpin_user_pages(pages, completed);
641 kfree(pages);
642 return ret;
643 }
644
645 static long
mshv_vp_ioctl_get_set_state(struct mshv_vp * vp,struct mshv_get_set_vp_state __user * user_args,bool is_set)646 mshv_vp_ioctl_get_set_state(struct mshv_vp *vp,
647 struct mshv_get_set_vp_state __user *user_args,
648 bool is_set)
649 {
650 struct mshv_get_set_vp_state args;
651 long ret = 0;
652 union hv_output_get_vp_state vp_state;
653 u32 data_sz;
654 struct hv_vp_state_data state_data = {};
655
656 if (copy_from_user(&args, user_args, sizeof(args)))
657 return -EFAULT;
658
659 if (args.type >= MSHV_VP_STATE_COUNT || mshv_field_nonzero(args, rsvd) ||
660 !args.buf_sz || !PAGE_ALIGNED(args.buf_sz) ||
661 !PAGE_ALIGNED(args.buf_ptr))
662 return -EINVAL;
663
664 if (!access_ok((void __user *)args.buf_ptr, args.buf_sz))
665 return -EFAULT;
666
667 switch (args.type) {
668 case MSHV_VP_STATE_LAPIC:
669 state_data.type = HV_GET_SET_VP_STATE_LAPIC_STATE;
670 data_sz = HV_HYP_PAGE_SIZE;
671 break;
672 case MSHV_VP_STATE_XSAVE:
673 {
674 u64 data_sz_64;
675
676 ret = hv_call_get_partition_property(vp->vp_partition->pt_id,
677 HV_PARTITION_PROPERTY_XSAVE_STATES,
678 &state_data.xsave.states.as_uint64);
679 if (ret)
680 return ret;
681
682 ret = hv_call_get_partition_property(vp->vp_partition->pt_id,
683 HV_PARTITION_PROPERTY_MAX_XSAVE_DATA_SIZE,
684 &data_sz_64);
685 if (ret)
686 return ret;
687
688 data_sz = (u32)data_sz_64;
689 state_data.xsave.flags = 0;
690 /* Always request legacy states */
691 state_data.xsave.states.legacy_x87 = 1;
692 state_data.xsave.states.legacy_sse = 1;
693 state_data.type = HV_GET_SET_VP_STATE_XSAVE;
694 break;
695 }
696 case MSHV_VP_STATE_SIMP:
697 state_data.type = HV_GET_SET_VP_STATE_SIM_PAGE;
698 data_sz = HV_HYP_PAGE_SIZE;
699 break;
700 case MSHV_VP_STATE_SIEFP:
701 state_data.type = HV_GET_SET_VP_STATE_SIEF_PAGE;
702 data_sz = HV_HYP_PAGE_SIZE;
703 break;
704 case MSHV_VP_STATE_SYNTHETIC_TIMERS:
705 state_data.type = HV_GET_SET_VP_STATE_SYNTHETIC_TIMERS;
706 data_sz = sizeof(vp_state.synthetic_timers_state);
707 break;
708 default:
709 return -EINVAL;
710 }
711
712 if (copy_to_user(&user_args->buf_sz, &data_sz, sizeof(user_args->buf_sz)))
713 return -EFAULT;
714
715 if (data_sz > args.buf_sz)
716 return -EINVAL;
717
718 /* If the data is transmitted via pfns, delegate to helper */
719 if (state_data.type & HV_GET_SET_VP_STATE_TYPE_PFN) {
720 unsigned long user_pfn = PFN_DOWN(args.buf_ptr);
721 size_t page_count = PFN_DOWN(args.buf_sz);
722
723 return mshv_vp_ioctl_get_set_state_pfn(vp, state_data, user_pfn,
724 page_count, is_set);
725 }
726
727 /* Paranoia check - this shouldn't happen! */
728 if (data_sz > sizeof(vp_state)) {
729 vp_err(vp, "Invalid vp state data size!\n");
730 return -EINVAL;
731 }
732
733 if (is_set) {
734 if (copy_from_user(&vp_state, (__user void *)args.buf_ptr, data_sz))
735 return -EFAULT;
736
737 return hv_call_set_vp_state(vp->vp_index,
738 vp->vp_partition->pt_id,
739 state_data, 0, NULL,
740 sizeof(vp_state), (u8 *)&vp_state);
741 }
742
743 ret = hv_call_get_vp_state(vp->vp_index, vp->vp_partition->pt_id,
744 state_data, 0, NULL, &vp_state);
745 if (ret)
746 return ret;
747
748 if (copy_to_user((void __user *)args.buf_ptr, &vp_state, data_sz))
749 return -EFAULT;
750
751 return 0;
752 }
753
754 static long
mshv_vp_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)755 mshv_vp_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
756 {
757 struct mshv_vp *vp = filp->private_data;
758 long r = -ENOTTY;
759
760 if (mutex_lock_killable(&vp->vp_mutex))
761 return -EINTR;
762
763 switch (ioctl) {
764 case MSHV_RUN_VP:
765 r = mshv_vp_ioctl_run_vp(vp, (void __user *)arg);
766 break;
767 case MSHV_GET_VP_STATE:
768 r = mshv_vp_ioctl_get_set_state(vp, (void __user *)arg, false);
769 break;
770 case MSHV_SET_VP_STATE:
771 r = mshv_vp_ioctl_get_set_state(vp, (void __user *)arg, true);
772 break;
773 case MSHV_ROOT_HVCALL:
774 r = mshv_ioctl_passthru_hvcall(vp->vp_partition, false,
775 (void __user *)arg);
776 break;
777 default:
778 vp_warn(vp, "Invalid ioctl: %#x\n", ioctl);
779 break;
780 }
781 mutex_unlock(&vp->vp_mutex);
782
783 return r;
784 }
785
mshv_vp_fault(struct vm_fault * vmf)786 static vm_fault_t mshv_vp_fault(struct vm_fault *vmf)
787 {
788 struct mshv_vp *vp = vmf->vma->vm_file->private_data;
789
790 switch (vmf->vma->vm_pgoff) {
791 case MSHV_VP_MMAP_OFFSET_REGISTERS:
792 vmf->page = virt_to_page(vp->vp_register_page);
793 break;
794 case MSHV_VP_MMAP_OFFSET_INTERCEPT_MESSAGE:
795 vmf->page = virt_to_page(vp->vp_intercept_msg_page);
796 break;
797 case MSHV_VP_MMAP_OFFSET_GHCB:
798 vmf->page = virt_to_page(vp->vp_ghcb_page);
799 break;
800 default:
801 return VM_FAULT_SIGBUS;
802 }
803
804 get_page(vmf->page);
805
806 return 0;
807 }
808
mshv_vp_mmap(struct file * file,struct vm_area_struct * vma)809 static int mshv_vp_mmap(struct file *file, struct vm_area_struct *vma)
810 {
811 struct mshv_vp *vp = file->private_data;
812
813 switch (vma->vm_pgoff) {
814 case MSHV_VP_MMAP_OFFSET_REGISTERS:
815 if (!vp->vp_register_page)
816 return -ENODEV;
817 break;
818 case MSHV_VP_MMAP_OFFSET_INTERCEPT_MESSAGE:
819 if (!vp->vp_intercept_msg_page)
820 return -ENODEV;
821 break;
822 case MSHV_VP_MMAP_OFFSET_GHCB:
823 if (!vp->vp_ghcb_page)
824 return -ENODEV;
825 break;
826 default:
827 return -EINVAL;
828 }
829
830 vma->vm_ops = &mshv_vp_vm_ops;
831 return 0;
832 }
833
834 static int
mshv_vp_release(struct inode * inode,struct file * filp)835 mshv_vp_release(struct inode *inode, struct file *filp)
836 {
837 struct mshv_vp *vp = filp->private_data;
838
839 /* Rest of VP cleanup happens in destroy_partition() */
840 mshv_partition_put(vp->vp_partition);
841 return 0;
842 }
843
mshv_vp_stats_unmap(u64 partition_id,u32 vp_index)844 static void mshv_vp_stats_unmap(u64 partition_id, u32 vp_index)
845 {
846 union hv_stats_object_identity identity = {
847 .vp.partition_id = partition_id,
848 .vp.vp_index = vp_index,
849 };
850
851 identity.vp.stats_area_type = HV_STATS_AREA_SELF;
852 hv_call_unmap_stat_page(HV_STATS_OBJECT_VP, &identity);
853
854 identity.vp.stats_area_type = HV_STATS_AREA_PARENT;
855 hv_call_unmap_stat_page(HV_STATS_OBJECT_VP, &identity);
856 }
857
mshv_vp_stats_map(u64 partition_id,u32 vp_index,void * stats_pages[])858 static int mshv_vp_stats_map(u64 partition_id, u32 vp_index,
859 void *stats_pages[])
860 {
861 union hv_stats_object_identity identity = {
862 .vp.partition_id = partition_id,
863 .vp.vp_index = vp_index,
864 };
865 int err;
866
867 identity.vp.stats_area_type = HV_STATS_AREA_SELF;
868 err = hv_call_map_stat_page(HV_STATS_OBJECT_VP, &identity,
869 &stats_pages[HV_STATS_AREA_SELF]);
870 if (err)
871 return err;
872
873 identity.vp.stats_area_type = HV_STATS_AREA_PARENT;
874 err = hv_call_map_stat_page(HV_STATS_OBJECT_VP, &identity,
875 &stats_pages[HV_STATS_AREA_PARENT]);
876 if (err)
877 goto unmap_self;
878
879 return 0;
880
881 unmap_self:
882 identity.vp.stats_area_type = HV_STATS_AREA_SELF;
883 hv_call_unmap_stat_page(HV_STATS_OBJECT_VP, &identity);
884 return err;
885 }
886
887 static long
mshv_partition_ioctl_create_vp(struct mshv_partition * partition,void __user * arg)888 mshv_partition_ioctl_create_vp(struct mshv_partition *partition,
889 void __user *arg)
890 {
891 struct mshv_create_vp args;
892 struct mshv_vp *vp;
893 struct page *intercept_message_page, *register_page, *ghcb_page;
894 void *stats_pages[2];
895 long ret;
896
897 if (copy_from_user(&args, arg, sizeof(args)))
898 return -EFAULT;
899
900 if (args.vp_index >= MSHV_MAX_VPS)
901 return -EINVAL;
902
903 if (partition->pt_vp_array[args.vp_index])
904 return -EEXIST;
905
906 ret = hv_call_create_vp(NUMA_NO_NODE, partition->pt_id, args.vp_index,
907 0 /* Only valid for root partition VPs */);
908 if (ret)
909 return ret;
910
911 ret = hv_call_map_vp_state_page(partition->pt_id, args.vp_index,
912 HV_VP_STATE_PAGE_INTERCEPT_MESSAGE,
913 input_vtl_zero,
914 &intercept_message_page);
915 if (ret)
916 goto destroy_vp;
917
918 if (!mshv_partition_encrypted(partition)) {
919 ret = hv_call_map_vp_state_page(partition->pt_id, args.vp_index,
920 HV_VP_STATE_PAGE_REGISTERS,
921 input_vtl_zero,
922 ®ister_page);
923 if (ret)
924 goto unmap_intercept_message_page;
925 }
926
927 if (mshv_partition_encrypted(partition) &&
928 is_ghcb_mapping_available()) {
929 ret = hv_call_map_vp_state_page(partition->pt_id, args.vp_index,
930 HV_VP_STATE_PAGE_GHCB,
931 input_vtl_normal,
932 &ghcb_page);
933 if (ret)
934 goto unmap_register_page;
935 }
936
937 if (hv_parent_partition()) {
938 ret = mshv_vp_stats_map(partition->pt_id, args.vp_index,
939 stats_pages);
940 if (ret)
941 goto unmap_ghcb_page;
942 }
943
944 vp = kzalloc(sizeof(*vp), GFP_KERNEL);
945 if (!vp)
946 goto unmap_stats_pages;
947
948 vp->vp_partition = mshv_partition_get(partition);
949 if (!vp->vp_partition) {
950 ret = -EBADF;
951 goto free_vp;
952 }
953
954 mutex_init(&vp->vp_mutex);
955 init_waitqueue_head(&vp->run.vp_suspend_queue);
956 atomic64_set(&vp->run.vp_signaled_count, 0);
957
958 vp->vp_index = args.vp_index;
959 vp->vp_intercept_msg_page = page_to_virt(intercept_message_page);
960 if (!mshv_partition_encrypted(partition))
961 vp->vp_register_page = page_to_virt(register_page);
962
963 if (mshv_partition_encrypted(partition) && is_ghcb_mapping_available())
964 vp->vp_ghcb_page = page_to_virt(ghcb_page);
965
966 if (hv_parent_partition())
967 memcpy(vp->vp_stats_pages, stats_pages, sizeof(stats_pages));
968
969 /*
970 * Keep anon_inode_getfd last: it installs fd in the file struct and
971 * thus makes the state accessible in user space.
972 */
973 ret = anon_inode_getfd("mshv_vp", &mshv_vp_fops, vp,
974 O_RDWR | O_CLOEXEC);
975 if (ret < 0)
976 goto put_partition;
977
978 /* already exclusive with the partition mutex for all ioctls */
979 partition->pt_vp_count++;
980 partition->pt_vp_array[args.vp_index] = vp;
981
982 return ret;
983
984 put_partition:
985 mshv_partition_put(partition);
986 free_vp:
987 kfree(vp);
988 unmap_stats_pages:
989 if (hv_parent_partition())
990 mshv_vp_stats_unmap(partition->pt_id, args.vp_index);
991 unmap_ghcb_page:
992 if (mshv_partition_encrypted(partition) && is_ghcb_mapping_available()) {
993 hv_call_unmap_vp_state_page(partition->pt_id, args.vp_index,
994 HV_VP_STATE_PAGE_GHCB,
995 input_vtl_normal);
996 }
997 unmap_register_page:
998 if (!mshv_partition_encrypted(partition)) {
999 hv_call_unmap_vp_state_page(partition->pt_id, args.vp_index,
1000 HV_VP_STATE_PAGE_REGISTERS,
1001 input_vtl_zero);
1002 }
1003 unmap_intercept_message_page:
1004 hv_call_unmap_vp_state_page(partition->pt_id, args.vp_index,
1005 HV_VP_STATE_PAGE_INTERCEPT_MESSAGE,
1006 input_vtl_zero);
1007 destroy_vp:
1008 hv_call_delete_vp(partition->pt_id, args.vp_index);
1009 return ret;
1010 }
1011
mshv_init_async_handler(struct mshv_partition * partition)1012 static int mshv_init_async_handler(struct mshv_partition *partition)
1013 {
1014 if (completion_done(&partition->async_hypercall)) {
1015 pt_err(partition,
1016 "Cannot issue async hypercall while another one in progress!\n");
1017 return -EPERM;
1018 }
1019
1020 reinit_completion(&partition->async_hypercall);
1021 return 0;
1022 }
1023
mshv_async_hvcall_handler(void * data,u64 * status)1024 static void mshv_async_hvcall_handler(void *data, u64 *status)
1025 {
1026 struct mshv_partition *partition = data;
1027
1028 wait_for_completion(&partition->async_hypercall);
1029 pt_dbg(partition, "Async hypercall completed!\n");
1030
1031 *status = partition->async_hypercall_status;
1032 }
1033
1034 static int
mshv_partition_region_share(struct mshv_mem_region * region)1035 mshv_partition_region_share(struct mshv_mem_region *region)
1036 {
1037 u32 flags = HV_MODIFY_SPA_PAGE_HOST_ACCESS_MAKE_SHARED;
1038
1039 if (region->flags.large_pages)
1040 flags |= HV_MODIFY_SPA_PAGE_HOST_ACCESS_LARGE_PAGE;
1041
1042 return hv_call_modify_spa_host_access(region->partition->pt_id,
1043 region->pages, region->nr_pages,
1044 HV_MAP_GPA_READABLE | HV_MAP_GPA_WRITABLE,
1045 flags, true);
1046 }
1047
1048 static int
mshv_partition_region_unshare(struct mshv_mem_region * region)1049 mshv_partition_region_unshare(struct mshv_mem_region *region)
1050 {
1051 u32 flags = HV_MODIFY_SPA_PAGE_HOST_ACCESS_MAKE_EXCLUSIVE;
1052
1053 if (region->flags.large_pages)
1054 flags |= HV_MODIFY_SPA_PAGE_HOST_ACCESS_LARGE_PAGE;
1055
1056 return hv_call_modify_spa_host_access(region->partition->pt_id,
1057 region->pages, region->nr_pages,
1058 0,
1059 flags, false);
1060 }
1061
1062 static int
mshv_region_remap_pages(struct mshv_mem_region * region,u32 map_flags,u64 page_offset,u64 page_count)1063 mshv_region_remap_pages(struct mshv_mem_region *region, u32 map_flags,
1064 u64 page_offset, u64 page_count)
1065 {
1066 if (page_offset + page_count > region->nr_pages)
1067 return -EINVAL;
1068
1069 if (region->flags.large_pages)
1070 map_flags |= HV_MAP_GPA_LARGE_PAGE;
1071
1072 /* ask the hypervisor to map guest ram */
1073 return hv_call_map_gpa_pages(region->partition->pt_id,
1074 region->start_gfn + page_offset,
1075 page_count, map_flags,
1076 region->pages + page_offset);
1077 }
1078
1079 static int
mshv_region_map(struct mshv_mem_region * region)1080 mshv_region_map(struct mshv_mem_region *region)
1081 {
1082 u32 map_flags = region->hv_map_flags;
1083
1084 return mshv_region_remap_pages(region, map_flags,
1085 0, region->nr_pages);
1086 }
1087
1088 static void
mshv_region_evict_pages(struct mshv_mem_region * region,u64 page_offset,u64 page_count)1089 mshv_region_evict_pages(struct mshv_mem_region *region,
1090 u64 page_offset, u64 page_count)
1091 {
1092 if (region->flags.range_pinned)
1093 unpin_user_pages(region->pages + page_offset, page_count);
1094
1095 memset(region->pages + page_offset, 0,
1096 page_count * sizeof(struct page *));
1097 }
1098
1099 static void
mshv_region_evict(struct mshv_mem_region * region)1100 mshv_region_evict(struct mshv_mem_region *region)
1101 {
1102 mshv_region_evict_pages(region, 0, region->nr_pages);
1103 }
1104
1105 static int
mshv_region_populate_pages(struct mshv_mem_region * region,u64 page_offset,u64 page_count)1106 mshv_region_populate_pages(struct mshv_mem_region *region,
1107 u64 page_offset, u64 page_count)
1108 {
1109 u64 done_count, nr_pages;
1110 struct page **pages;
1111 __u64 userspace_addr;
1112 int ret;
1113
1114 if (page_offset + page_count > region->nr_pages)
1115 return -EINVAL;
1116
1117 for (done_count = 0; done_count < page_count; done_count += ret) {
1118 pages = region->pages + page_offset + done_count;
1119 userspace_addr = region->start_uaddr +
1120 (page_offset + done_count) *
1121 HV_HYP_PAGE_SIZE;
1122 nr_pages = min(page_count - done_count,
1123 MSHV_PIN_PAGES_BATCH_SIZE);
1124
1125 /*
1126 * Pinning assuming 4k pages works for large pages too.
1127 * All page structs within the large page are returned.
1128 *
1129 * Pin requests are batched because pin_user_pages_fast
1130 * with the FOLL_LONGTERM flag does a large temporary
1131 * allocation of contiguous memory.
1132 */
1133 if (region->flags.range_pinned)
1134 ret = pin_user_pages_fast(userspace_addr,
1135 nr_pages,
1136 FOLL_WRITE | FOLL_LONGTERM,
1137 pages);
1138 else
1139 ret = -EOPNOTSUPP;
1140
1141 if (ret < 0)
1142 goto release_pages;
1143 }
1144
1145 if (PageHuge(region->pages[page_offset]))
1146 region->flags.large_pages = true;
1147
1148 return 0;
1149
1150 release_pages:
1151 mshv_region_evict_pages(region, page_offset, done_count);
1152 return ret;
1153 }
1154
1155 static int
mshv_region_populate(struct mshv_mem_region * region)1156 mshv_region_populate(struct mshv_mem_region *region)
1157 {
1158 return mshv_region_populate_pages(region, 0, region->nr_pages);
1159 }
1160
1161 static struct mshv_mem_region *
mshv_partition_region_by_gfn(struct mshv_partition * partition,u64 gfn)1162 mshv_partition_region_by_gfn(struct mshv_partition *partition, u64 gfn)
1163 {
1164 struct mshv_mem_region *region;
1165
1166 hlist_for_each_entry(region, &partition->pt_mem_regions, hnode) {
1167 if (gfn >= region->start_gfn &&
1168 gfn < region->start_gfn + region->nr_pages)
1169 return region;
1170 }
1171
1172 return NULL;
1173 }
1174
1175 static struct mshv_mem_region *
mshv_partition_region_by_uaddr(struct mshv_partition * partition,u64 uaddr)1176 mshv_partition_region_by_uaddr(struct mshv_partition *partition, u64 uaddr)
1177 {
1178 struct mshv_mem_region *region;
1179
1180 hlist_for_each_entry(region, &partition->pt_mem_regions, hnode) {
1181 if (uaddr >= region->start_uaddr &&
1182 uaddr < region->start_uaddr +
1183 (region->nr_pages << HV_HYP_PAGE_SHIFT))
1184 return region;
1185 }
1186
1187 return NULL;
1188 }
1189
1190 /*
1191 * NB: caller checks and makes sure mem->size is page aligned
1192 * Returns: 0 with regionpp updated on success, or -errno
1193 */
mshv_partition_create_region(struct mshv_partition * partition,struct mshv_user_mem_region * mem,struct mshv_mem_region ** regionpp,bool is_mmio)1194 static int mshv_partition_create_region(struct mshv_partition *partition,
1195 struct mshv_user_mem_region *mem,
1196 struct mshv_mem_region **regionpp,
1197 bool is_mmio)
1198 {
1199 struct mshv_mem_region *region;
1200 u64 nr_pages = HVPFN_DOWN(mem->size);
1201
1202 /* Reject overlapping regions */
1203 if (mshv_partition_region_by_gfn(partition, mem->guest_pfn) ||
1204 mshv_partition_region_by_gfn(partition, mem->guest_pfn + nr_pages - 1) ||
1205 mshv_partition_region_by_uaddr(partition, mem->userspace_addr) ||
1206 mshv_partition_region_by_uaddr(partition, mem->userspace_addr + mem->size - 1))
1207 return -EEXIST;
1208
1209 region = vzalloc(sizeof(*region) + sizeof(struct page *) * nr_pages);
1210 if (!region)
1211 return -ENOMEM;
1212
1213 region->nr_pages = nr_pages;
1214 region->start_gfn = mem->guest_pfn;
1215 region->start_uaddr = mem->userspace_addr;
1216 region->hv_map_flags = HV_MAP_GPA_READABLE | HV_MAP_GPA_ADJUSTABLE;
1217 if (mem->flags & BIT(MSHV_SET_MEM_BIT_WRITABLE))
1218 region->hv_map_flags |= HV_MAP_GPA_WRITABLE;
1219 if (mem->flags & BIT(MSHV_SET_MEM_BIT_EXECUTABLE))
1220 region->hv_map_flags |= HV_MAP_GPA_EXECUTABLE;
1221
1222 /* Note: large_pages flag populated when we pin the pages */
1223 if (!is_mmio)
1224 region->flags.range_pinned = true;
1225
1226 region->partition = partition;
1227
1228 *regionpp = region;
1229
1230 return 0;
1231 }
1232
1233 /*
1234 * Map guest ram. if snp, make sure to release that from the host first
1235 * Side Effects: In case of failure, pages are unpinned when feasible.
1236 */
1237 static int
mshv_partition_mem_region_map(struct mshv_mem_region * region)1238 mshv_partition_mem_region_map(struct mshv_mem_region *region)
1239 {
1240 struct mshv_partition *partition = region->partition;
1241 int ret;
1242
1243 ret = mshv_region_populate(region);
1244 if (ret) {
1245 pt_err(partition, "Failed to populate memory region: %d\n",
1246 ret);
1247 goto err_out;
1248 }
1249
1250 /*
1251 * For an SNP partition it is a requirement that for every memory region
1252 * that we are going to map for this partition we should make sure that
1253 * host access to that region is released. This is ensured by doing an
1254 * additional hypercall which will update the SLAT to release host
1255 * access to guest memory regions.
1256 */
1257 if (mshv_partition_encrypted(partition)) {
1258 ret = mshv_partition_region_unshare(region);
1259 if (ret) {
1260 pt_err(partition,
1261 "Failed to unshare memory region (guest_pfn: %llu): %d\n",
1262 region->start_gfn, ret);
1263 goto evict_region;
1264 }
1265 }
1266
1267 ret = mshv_region_map(region);
1268 if (ret && mshv_partition_encrypted(partition)) {
1269 int shrc;
1270
1271 shrc = mshv_partition_region_share(region);
1272 if (!shrc)
1273 goto evict_region;
1274
1275 pt_err(partition,
1276 "Failed to share memory region (guest_pfn: %llu): %d\n",
1277 region->start_gfn, shrc);
1278 /*
1279 * Don't unpin if marking shared failed because pages are no
1280 * longer mapped in the host, ie root, anymore.
1281 */
1282 goto err_out;
1283 }
1284
1285 return 0;
1286
1287 evict_region:
1288 mshv_region_evict(region);
1289 err_out:
1290 return ret;
1291 }
1292
1293 /*
1294 * This maps two things: guest RAM and for pci passthru mmio space.
1295 *
1296 * mmio:
1297 * - vfio overloads vm_pgoff to store the mmio start pfn/spa.
1298 * - Two things need to happen for mapping mmio range:
1299 * 1. mapped in the uaddr so VMM can access it.
1300 * 2. mapped in the hwpt (gfn <-> mmio phys addr) so guest can access it.
1301 *
1302 * This function takes care of the second. The first one is managed by vfio,
1303 * and hence is taken care of via vfio_pci_mmap_fault().
1304 */
1305 static long
mshv_map_user_memory(struct mshv_partition * partition,struct mshv_user_mem_region mem)1306 mshv_map_user_memory(struct mshv_partition *partition,
1307 struct mshv_user_mem_region mem)
1308 {
1309 struct mshv_mem_region *region;
1310 struct vm_area_struct *vma;
1311 bool is_mmio;
1312 ulong mmio_pfn;
1313 long ret;
1314
1315 if (mem.flags & BIT(MSHV_SET_MEM_BIT_UNMAP) ||
1316 !access_ok((const void *)mem.userspace_addr, mem.size))
1317 return -EINVAL;
1318
1319 mmap_read_lock(current->mm);
1320 vma = vma_lookup(current->mm, mem.userspace_addr);
1321 is_mmio = vma ? !!(vma->vm_flags & (VM_IO | VM_PFNMAP)) : 0;
1322 mmio_pfn = is_mmio ? vma->vm_pgoff : 0;
1323 mmap_read_unlock(current->mm);
1324
1325 if (!vma)
1326 return -EINVAL;
1327
1328 ret = mshv_partition_create_region(partition, &mem, ®ion,
1329 is_mmio);
1330 if (ret)
1331 return ret;
1332
1333 if (is_mmio)
1334 ret = hv_call_map_mmio_pages(partition->pt_id, mem.guest_pfn,
1335 mmio_pfn, HVPFN_DOWN(mem.size));
1336 else
1337 ret = mshv_partition_mem_region_map(region);
1338
1339 if (ret)
1340 goto errout;
1341
1342 /* Install the new region */
1343 hlist_add_head(®ion->hnode, &partition->pt_mem_regions);
1344
1345 return 0;
1346
1347 errout:
1348 vfree(region);
1349 return ret;
1350 }
1351
1352 /* Called for unmapping both the guest ram and the mmio space */
1353 static long
mshv_unmap_user_memory(struct mshv_partition * partition,struct mshv_user_mem_region mem)1354 mshv_unmap_user_memory(struct mshv_partition *partition,
1355 struct mshv_user_mem_region mem)
1356 {
1357 struct mshv_mem_region *region;
1358 u32 unmap_flags = 0;
1359
1360 if (!(mem.flags & BIT(MSHV_SET_MEM_BIT_UNMAP)))
1361 return -EINVAL;
1362
1363 region = mshv_partition_region_by_gfn(partition, mem.guest_pfn);
1364 if (!region)
1365 return -EINVAL;
1366
1367 /* Paranoia check */
1368 if (region->start_uaddr != mem.userspace_addr ||
1369 region->start_gfn != mem.guest_pfn ||
1370 region->nr_pages != HVPFN_DOWN(mem.size))
1371 return -EINVAL;
1372
1373 hlist_del(®ion->hnode);
1374
1375 if (region->flags.large_pages)
1376 unmap_flags |= HV_UNMAP_GPA_LARGE_PAGE;
1377
1378 /* ignore unmap failures and continue as process may be exiting */
1379 hv_call_unmap_gpa_pages(partition->pt_id, region->start_gfn,
1380 region->nr_pages, unmap_flags);
1381
1382 mshv_region_evict(region);
1383
1384 vfree(region);
1385 return 0;
1386 }
1387
1388 static long
mshv_partition_ioctl_set_memory(struct mshv_partition * partition,struct mshv_user_mem_region __user * user_mem)1389 mshv_partition_ioctl_set_memory(struct mshv_partition *partition,
1390 struct mshv_user_mem_region __user *user_mem)
1391 {
1392 struct mshv_user_mem_region mem;
1393
1394 if (copy_from_user(&mem, user_mem, sizeof(mem)))
1395 return -EFAULT;
1396
1397 if (!mem.size ||
1398 !PAGE_ALIGNED(mem.size) ||
1399 !PAGE_ALIGNED(mem.userspace_addr) ||
1400 (mem.flags & ~MSHV_SET_MEM_FLAGS_MASK) ||
1401 mshv_field_nonzero(mem, rsvd))
1402 return -EINVAL;
1403
1404 if (mem.flags & BIT(MSHV_SET_MEM_BIT_UNMAP))
1405 return mshv_unmap_user_memory(partition, mem);
1406
1407 return mshv_map_user_memory(partition, mem);
1408 }
1409
1410 static long
mshv_partition_ioctl_ioeventfd(struct mshv_partition * partition,void __user * user_args)1411 mshv_partition_ioctl_ioeventfd(struct mshv_partition *partition,
1412 void __user *user_args)
1413 {
1414 struct mshv_user_ioeventfd args;
1415
1416 if (copy_from_user(&args, user_args, sizeof(args)))
1417 return -EFAULT;
1418
1419 return mshv_set_unset_ioeventfd(partition, &args);
1420 }
1421
1422 static long
mshv_partition_ioctl_irqfd(struct mshv_partition * partition,void __user * user_args)1423 mshv_partition_ioctl_irqfd(struct mshv_partition *partition,
1424 void __user *user_args)
1425 {
1426 struct mshv_user_irqfd args;
1427
1428 if (copy_from_user(&args, user_args, sizeof(args)))
1429 return -EFAULT;
1430
1431 return mshv_set_unset_irqfd(partition, &args);
1432 }
1433
1434 static long
mshv_partition_ioctl_get_gpap_access_bitmap(struct mshv_partition * partition,void __user * user_args)1435 mshv_partition_ioctl_get_gpap_access_bitmap(struct mshv_partition *partition,
1436 void __user *user_args)
1437 {
1438 struct mshv_gpap_access_bitmap args;
1439 union hv_gpa_page_access_state *states;
1440 long ret, i;
1441 union hv_gpa_page_access_state_flags hv_flags = {};
1442 u8 hv_type_mask;
1443 ulong bitmap_buf_sz, states_buf_sz;
1444 int written = 0;
1445
1446 if (copy_from_user(&args, user_args, sizeof(args)))
1447 return -EFAULT;
1448
1449 if (args.access_type >= MSHV_GPAP_ACCESS_TYPE_COUNT ||
1450 args.access_op >= MSHV_GPAP_ACCESS_OP_COUNT ||
1451 mshv_field_nonzero(args, rsvd) || !args.page_count ||
1452 !args.bitmap_ptr)
1453 return -EINVAL;
1454
1455 if (check_mul_overflow(args.page_count, sizeof(*states), &states_buf_sz))
1456 return -E2BIG;
1457
1458 /* Num bytes needed to store bitmap; one bit per page rounded up */
1459 bitmap_buf_sz = DIV_ROUND_UP(args.page_count, 8);
1460
1461 /* Sanity check */
1462 if (bitmap_buf_sz > states_buf_sz)
1463 return -EBADFD;
1464
1465 switch (args.access_type) {
1466 case MSHV_GPAP_ACCESS_TYPE_ACCESSED:
1467 hv_type_mask = 1;
1468 if (args.access_op == MSHV_GPAP_ACCESS_OP_CLEAR) {
1469 hv_flags.clear_accessed = 1;
1470 /* not accessed implies not dirty */
1471 hv_flags.clear_dirty = 1;
1472 } else { /* MSHV_GPAP_ACCESS_OP_SET */
1473 hv_flags.set_accessed = 1;
1474 }
1475 break;
1476 case MSHV_GPAP_ACCESS_TYPE_DIRTY:
1477 hv_type_mask = 2;
1478 if (args.access_op == MSHV_GPAP_ACCESS_OP_CLEAR) {
1479 hv_flags.clear_dirty = 1;
1480 } else { /* MSHV_GPAP_ACCESS_OP_SET */
1481 hv_flags.set_dirty = 1;
1482 /* dirty implies accessed */
1483 hv_flags.set_accessed = 1;
1484 }
1485 break;
1486 }
1487
1488 states = vzalloc(states_buf_sz);
1489 if (!states)
1490 return -ENOMEM;
1491
1492 ret = hv_call_get_gpa_access_states(partition->pt_id, args.page_count,
1493 args.gpap_base, hv_flags, &written,
1494 states);
1495 if (ret)
1496 goto free_return;
1497
1498 /*
1499 * Overwrite states buffer with bitmap - the bits in hv_type_mask
1500 * correspond to bitfields in hv_gpa_page_access_state
1501 */
1502 for (i = 0; i < written; ++i)
1503 __assign_bit(i, (ulong *)states,
1504 states[i].as_uint8 & hv_type_mask);
1505
1506 /* zero the unused bits in the last byte(s) of the returned bitmap */
1507 for (i = written; i < bitmap_buf_sz * 8; ++i)
1508 __clear_bit(i, (ulong *)states);
1509
1510 if (copy_to_user((void __user *)args.bitmap_ptr, states, bitmap_buf_sz))
1511 ret = -EFAULT;
1512
1513 free_return:
1514 vfree(states);
1515 return ret;
1516 }
1517
1518 static long
mshv_partition_ioctl_set_msi_routing(struct mshv_partition * partition,void __user * user_args)1519 mshv_partition_ioctl_set_msi_routing(struct mshv_partition *partition,
1520 void __user *user_args)
1521 {
1522 struct mshv_user_irq_entry *entries = NULL;
1523 struct mshv_user_irq_table args;
1524 long ret;
1525
1526 if (copy_from_user(&args, user_args, sizeof(args)))
1527 return -EFAULT;
1528
1529 if (args.nr > MSHV_MAX_GUEST_IRQS ||
1530 mshv_field_nonzero(args, rsvd))
1531 return -EINVAL;
1532
1533 if (args.nr) {
1534 struct mshv_user_irq_table __user *urouting = user_args;
1535
1536 entries = vmemdup_user(urouting->entries,
1537 array_size(sizeof(*entries),
1538 args.nr));
1539 if (IS_ERR(entries))
1540 return PTR_ERR(entries);
1541 }
1542 ret = mshv_update_routing_table(partition, entries, args.nr);
1543 kvfree(entries);
1544
1545 return ret;
1546 }
1547
1548 static long
mshv_partition_ioctl_initialize(struct mshv_partition * partition)1549 mshv_partition_ioctl_initialize(struct mshv_partition *partition)
1550 {
1551 long ret;
1552
1553 if (partition->pt_initialized)
1554 return 0;
1555
1556 ret = hv_call_initialize_partition(partition->pt_id);
1557 if (ret)
1558 goto withdraw_mem;
1559
1560 partition->pt_initialized = true;
1561
1562 return 0;
1563
1564 withdraw_mem:
1565 hv_call_withdraw_memory(U64_MAX, NUMA_NO_NODE, partition->pt_id);
1566
1567 return ret;
1568 }
1569
1570 static long
mshv_partition_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1571 mshv_partition_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1572 {
1573 struct mshv_partition *partition = filp->private_data;
1574 long ret;
1575 void __user *uarg = (void __user *)arg;
1576
1577 if (mutex_lock_killable(&partition->pt_mutex))
1578 return -EINTR;
1579
1580 switch (ioctl) {
1581 case MSHV_INITIALIZE_PARTITION:
1582 ret = mshv_partition_ioctl_initialize(partition);
1583 break;
1584 case MSHV_SET_GUEST_MEMORY:
1585 ret = mshv_partition_ioctl_set_memory(partition, uarg);
1586 break;
1587 case MSHV_CREATE_VP:
1588 ret = mshv_partition_ioctl_create_vp(partition, uarg);
1589 break;
1590 case MSHV_IRQFD:
1591 ret = mshv_partition_ioctl_irqfd(partition, uarg);
1592 break;
1593 case MSHV_IOEVENTFD:
1594 ret = mshv_partition_ioctl_ioeventfd(partition, uarg);
1595 break;
1596 case MSHV_SET_MSI_ROUTING:
1597 ret = mshv_partition_ioctl_set_msi_routing(partition, uarg);
1598 break;
1599 case MSHV_GET_GPAP_ACCESS_BITMAP:
1600 ret = mshv_partition_ioctl_get_gpap_access_bitmap(partition,
1601 uarg);
1602 break;
1603 case MSHV_ROOT_HVCALL:
1604 ret = mshv_ioctl_passthru_hvcall(partition, true, uarg);
1605 break;
1606 default:
1607 ret = -ENOTTY;
1608 }
1609
1610 mutex_unlock(&partition->pt_mutex);
1611 return ret;
1612 }
1613
1614 static int
disable_vp_dispatch(struct mshv_vp * vp)1615 disable_vp_dispatch(struct mshv_vp *vp)
1616 {
1617 int ret;
1618 struct hv_register_assoc dispatch_suspend = {
1619 .name = HV_REGISTER_DISPATCH_SUSPEND,
1620 .value.dispatch_suspend.suspended = 1,
1621 };
1622
1623 ret = mshv_set_vp_registers(vp->vp_index, vp->vp_partition->pt_id,
1624 1, &dispatch_suspend);
1625 if (ret)
1626 vp_err(vp, "failed to suspend\n");
1627
1628 return ret;
1629 }
1630
1631 static int
get_vp_signaled_count(struct mshv_vp * vp,u64 * count)1632 get_vp_signaled_count(struct mshv_vp *vp, u64 *count)
1633 {
1634 int ret;
1635 struct hv_register_assoc root_signal_count = {
1636 .name = HV_REGISTER_VP_ROOT_SIGNAL_COUNT,
1637 };
1638
1639 ret = mshv_get_vp_registers(vp->vp_index, vp->vp_partition->pt_id,
1640 1, &root_signal_count);
1641
1642 if (ret) {
1643 vp_err(vp, "Failed to get root signal count");
1644 *count = 0;
1645 return ret;
1646 }
1647
1648 *count = root_signal_count.value.reg64;
1649
1650 return ret;
1651 }
1652
1653 static void
drain_vp_signals(struct mshv_vp * vp)1654 drain_vp_signals(struct mshv_vp *vp)
1655 {
1656 u64 hv_signal_count;
1657 u64 vp_signal_count;
1658
1659 get_vp_signaled_count(vp, &hv_signal_count);
1660
1661 vp_signal_count = atomic64_read(&vp->run.vp_signaled_count);
1662
1663 /*
1664 * There should be at most 1 outstanding notification, but be extra
1665 * careful anyway.
1666 */
1667 while (hv_signal_count != vp_signal_count) {
1668 WARN_ON(hv_signal_count - vp_signal_count != 1);
1669
1670 if (wait_event_interruptible(vp->run.vp_suspend_queue,
1671 vp->run.kicked_by_hv == 1))
1672 break;
1673 vp->run.kicked_by_hv = 0;
1674 vp_signal_count = atomic64_read(&vp->run.vp_signaled_count);
1675 }
1676 }
1677
drain_all_vps(const struct mshv_partition * partition)1678 static void drain_all_vps(const struct mshv_partition *partition)
1679 {
1680 int i;
1681 struct mshv_vp *vp;
1682
1683 /*
1684 * VPs are reachable from ISR. It is safe to not take the partition
1685 * lock because nobody else can enter this function and drop the
1686 * partition from the list.
1687 */
1688 for (i = 0; i < MSHV_MAX_VPS; i++) {
1689 vp = partition->pt_vp_array[i];
1690 if (!vp)
1691 continue;
1692 /*
1693 * Disable dispatching of the VP in the hypervisor. After this
1694 * the hypervisor guarantees it won't generate any signals for
1695 * the VP and the hypervisor's VP signal count won't change.
1696 */
1697 disable_vp_dispatch(vp);
1698 drain_vp_signals(vp);
1699 }
1700 }
1701
1702 static void
remove_partition(struct mshv_partition * partition)1703 remove_partition(struct mshv_partition *partition)
1704 {
1705 spin_lock(&mshv_root.pt_ht_lock);
1706 hlist_del_rcu(&partition->pt_hnode);
1707 spin_unlock(&mshv_root.pt_ht_lock);
1708
1709 synchronize_rcu();
1710 }
1711
1712 /*
1713 * Tear down a partition and remove it from the list.
1714 * Partition's refcount must be 0
1715 */
destroy_partition(struct mshv_partition * partition)1716 static void destroy_partition(struct mshv_partition *partition)
1717 {
1718 struct mshv_vp *vp;
1719 struct mshv_mem_region *region;
1720 int i, ret;
1721 struct hlist_node *n;
1722
1723 if (refcount_read(&partition->pt_ref_count)) {
1724 pt_err(partition,
1725 "Attempt to destroy partition but refcount > 0\n");
1726 return;
1727 }
1728
1729 if (partition->pt_initialized) {
1730 /*
1731 * We only need to drain signals for root scheduler. This should be
1732 * done before removing the partition from the partition list.
1733 */
1734 if (hv_scheduler_type == HV_SCHEDULER_TYPE_ROOT)
1735 drain_all_vps(partition);
1736
1737 /* Remove vps */
1738 for (i = 0; i < MSHV_MAX_VPS; ++i) {
1739 vp = partition->pt_vp_array[i];
1740 if (!vp)
1741 continue;
1742
1743 if (hv_parent_partition())
1744 mshv_vp_stats_unmap(partition->pt_id, vp->vp_index);
1745
1746 if (vp->vp_register_page) {
1747 (void)hv_call_unmap_vp_state_page(partition->pt_id,
1748 vp->vp_index,
1749 HV_VP_STATE_PAGE_REGISTERS,
1750 input_vtl_zero);
1751 vp->vp_register_page = NULL;
1752 }
1753
1754 (void)hv_call_unmap_vp_state_page(partition->pt_id,
1755 vp->vp_index,
1756 HV_VP_STATE_PAGE_INTERCEPT_MESSAGE,
1757 input_vtl_zero);
1758 vp->vp_intercept_msg_page = NULL;
1759
1760 if (vp->vp_ghcb_page) {
1761 (void)hv_call_unmap_vp_state_page(partition->pt_id,
1762 vp->vp_index,
1763 HV_VP_STATE_PAGE_GHCB,
1764 input_vtl_normal);
1765 vp->vp_ghcb_page = NULL;
1766 }
1767
1768 kfree(vp);
1769
1770 partition->pt_vp_array[i] = NULL;
1771 }
1772
1773 /* Deallocates and unmaps everything including vcpus, GPA mappings etc */
1774 hv_call_finalize_partition(partition->pt_id);
1775
1776 partition->pt_initialized = false;
1777 }
1778
1779 remove_partition(partition);
1780
1781 /* Remove regions, regain access to the memory and unpin the pages */
1782 hlist_for_each_entry_safe(region, n, &partition->pt_mem_regions,
1783 hnode) {
1784 hlist_del(®ion->hnode);
1785
1786 if (mshv_partition_encrypted(partition)) {
1787 ret = mshv_partition_region_share(region);
1788 if (ret) {
1789 pt_err(partition,
1790 "Failed to regain access to memory, unpinning user pages will fail and crash the host error: %d\n",
1791 ret);
1792 return;
1793 }
1794 }
1795
1796 mshv_region_evict(region);
1797
1798 vfree(region);
1799 }
1800
1801 /* Withdraw and free all pages we deposited */
1802 hv_call_withdraw_memory(U64_MAX, NUMA_NO_NODE, partition->pt_id);
1803 hv_call_delete_partition(partition->pt_id);
1804
1805 mshv_free_routing_table(partition);
1806 kfree(partition);
1807 }
1808
1809 struct
mshv_partition_get(struct mshv_partition * partition)1810 mshv_partition *mshv_partition_get(struct mshv_partition *partition)
1811 {
1812 if (refcount_inc_not_zero(&partition->pt_ref_count))
1813 return partition;
1814 return NULL;
1815 }
1816
1817 struct
mshv_partition_find(u64 partition_id)1818 mshv_partition *mshv_partition_find(u64 partition_id)
1819 __must_hold(RCU)
1820 {
1821 struct mshv_partition *p;
1822
1823 hash_for_each_possible_rcu(mshv_root.pt_htable, p, pt_hnode,
1824 partition_id)
1825 if (p->pt_id == partition_id)
1826 return p;
1827
1828 return NULL;
1829 }
1830
1831 void
mshv_partition_put(struct mshv_partition * partition)1832 mshv_partition_put(struct mshv_partition *partition)
1833 {
1834 if (refcount_dec_and_test(&partition->pt_ref_count))
1835 destroy_partition(partition);
1836 }
1837
1838 static int
mshv_partition_release(struct inode * inode,struct file * filp)1839 mshv_partition_release(struct inode *inode, struct file *filp)
1840 {
1841 struct mshv_partition *partition = filp->private_data;
1842
1843 mshv_eventfd_release(partition);
1844
1845 cleanup_srcu_struct(&partition->pt_irq_srcu);
1846
1847 mshv_partition_put(partition);
1848
1849 return 0;
1850 }
1851
1852 static int
add_partition(struct mshv_partition * partition)1853 add_partition(struct mshv_partition *partition)
1854 {
1855 spin_lock(&mshv_root.pt_ht_lock);
1856
1857 hash_add_rcu(mshv_root.pt_htable, &partition->pt_hnode,
1858 partition->pt_id);
1859
1860 spin_unlock(&mshv_root.pt_ht_lock);
1861
1862 return 0;
1863 }
1864
1865 static long
mshv_ioctl_create_partition(void __user * user_arg,struct device * module_dev)1866 mshv_ioctl_create_partition(void __user *user_arg, struct device *module_dev)
1867 {
1868 struct mshv_create_partition args;
1869 u64 creation_flags;
1870 struct hv_partition_creation_properties creation_properties = {};
1871 union hv_partition_isolation_properties isolation_properties = {};
1872 struct mshv_partition *partition;
1873 struct file *file;
1874 int fd;
1875 long ret;
1876
1877 if (copy_from_user(&args, user_arg, sizeof(args)))
1878 return -EFAULT;
1879
1880 if ((args.pt_flags & ~MSHV_PT_FLAGS_MASK) ||
1881 args.pt_isolation >= MSHV_PT_ISOLATION_COUNT)
1882 return -EINVAL;
1883
1884 /* Only support EXO partitions */
1885 creation_flags = HV_PARTITION_CREATION_FLAG_EXO_PARTITION |
1886 HV_PARTITION_CREATION_FLAG_INTERCEPT_MESSAGE_PAGE_ENABLED;
1887
1888 if (args.pt_flags & BIT(MSHV_PT_BIT_LAPIC))
1889 creation_flags |= HV_PARTITION_CREATION_FLAG_LAPIC_ENABLED;
1890 if (args.pt_flags & BIT(MSHV_PT_BIT_X2APIC))
1891 creation_flags |= HV_PARTITION_CREATION_FLAG_X2APIC_CAPABLE;
1892 if (args.pt_flags & BIT(MSHV_PT_BIT_GPA_SUPER_PAGES))
1893 creation_flags |= HV_PARTITION_CREATION_FLAG_GPA_SUPER_PAGES_ENABLED;
1894
1895 switch (args.pt_isolation) {
1896 case MSHV_PT_ISOLATION_NONE:
1897 isolation_properties.isolation_type =
1898 HV_PARTITION_ISOLATION_TYPE_NONE;
1899 break;
1900 }
1901
1902 partition = kzalloc(sizeof(*partition), GFP_KERNEL);
1903 if (!partition)
1904 return -ENOMEM;
1905
1906 partition->pt_module_dev = module_dev;
1907 partition->isolation_type = isolation_properties.isolation_type;
1908
1909 refcount_set(&partition->pt_ref_count, 1);
1910
1911 mutex_init(&partition->pt_mutex);
1912
1913 mutex_init(&partition->pt_irq_lock);
1914
1915 init_completion(&partition->async_hypercall);
1916
1917 INIT_HLIST_HEAD(&partition->irq_ack_notifier_list);
1918
1919 INIT_HLIST_HEAD(&partition->pt_devices);
1920
1921 INIT_HLIST_HEAD(&partition->pt_mem_regions);
1922
1923 mshv_eventfd_init(partition);
1924
1925 ret = init_srcu_struct(&partition->pt_irq_srcu);
1926 if (ret)
1927 goto free_partition;
1928
1929 ret = hv_call_create_partition(creation_flags,
1930 creation_properties,
1931 isolation_properties,
1932 &partition->pt_id);
1933 if (ret)
1934 goto cleanup_irq_srcu;
1935
1936 ret = add_partition(partition);
1937 if (ret)
1938 goto delete_partition;
1939
1940 ret = mshv_init_async_handler(partition);
1941 if (ret)
1942 goto remove_partition;
1943
1944 fd = get_unused_fd_flags(O_CLOEXEC);
1945 if (fd < 0) {
1946 ret = fd;
1947 goto remove_partition;
1948 }
1949
1950 file = anon_inode_getfile("mshv_partition", &mshv_partition_fops,
1951 partition, O_RDWR);
1952 if (IS_ERR(file)) {
1953 ret = PTR_ERR(file);
1954 goto put_fd;
1955 }
1956
1957 fd_install(fd, file);
1958
1959 return fd;
1960
1961 put_fd:
1962 put_unused_fd(fd);
1963 remove_partition:
1964 remove_partition(partition);
1965 delete_partition:
1966 hv_call_delete_partition(partition->pt_id);
1967 cleanup_irq_srcu:
1968 cleanup_srcu_struct(&partition->pt_irq_srcu);
1969 free_partition:
1970 kfree(partition);
1971
1972 return ret;
1973 }
1974
mshv_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1975 static long mshv_dev_ioctl(struct file *filp, unsigned int ioctl,
1976 unsigned long arg)
1977 {
1978 struct miscdevice *misc = filp->private_data;
1979
1980 switch (ioctl) {
1981 case MSHV_CREATE_PARTITION:
1982 return mshv_ioctl_create_partition((void __user *)arg,
1983 misc->this_device);
1984 }
1985
1986 return -ENOTTY;
1987 }
1988
1989 static int
mshv_dev_open(struct inode * inode,struct file * filp)1990 mshv_dev_open(struct inode *inode, struct file *filp)
1991 {
1992 return 0;
1993 }
1994
1995 static int
mshv_dev_release(struct inode * inode,struct file * filp)1996 mshv_dev_release(struct inode *inode, struct file *filp)
1997 {
1998 return 0;
1999 }
2000
2001 static int mshv_cpuhp_online;
2002 static int mshv_root_sched_online;
2003
scheduler_type_to_string(enum hv_scheduler_type type)2004 static const char *scheduler_type_to_string(enum hv_scheduler_type type)
2005 {
2006 switch (type) {
2007 case HV_SCHEDULER_TYPE_LP:
2008 return "classic scheduler without SMT";
2009 case HV_SCHEDULER_TYPE_LP_SMT:
2010 return "classic scheduler with SMT";
2011 case HV_SCHEDULER_TYPE_CORE_SMT:
2012 return "core scheduler";
2013 case HV_SCHEDULER_TYPE_ROOT:
2014 return "root scheduler";
2015 default:
2016 return "unknown scheduler";
2017 };
2018 }
2019
2020 /* TODO move this to hv_common.c when needed outside */
hv_retrieve_scheduler_type(enum hv_scheduler_type * out)2021 static int __init hv_retrieve_scheduler_type(enum hv_scheduler_type *out)
2022 {
2023 struct hv_input_get_system_property *input;
2024 struct hv_output_get_system_property *output;
2025 unsigned long flags;
2026 u64 status;
2027
2028 local_irq_save(flags);
2029 input = *this_cpu_ptr(hyperv_pcpu_input_arg);
2030 output = *this_cpu_ptr(hyperv_pcpu_output_arg);
2031
2032 memset(input, 0, sizeof(*input));
2033 memset(output, 0, sizeof(*output));
2034 input->property_id = HV_SYSTEM_PROPERTY_SCHEDULER_TYPE;
2035
2036 status = hv_do_hypercall(HVCALL_GET_SYSTEM_PROPERTY, input, output);
2037 if (!hv_result_success(status)) {
2038 local_irq_restore(flags);
2039 pr_err("%s: %s\n", __func__, hv_result_to_string(status));
2040 return hv_result_to_errno(status);
2041 }
2042
2043 *out = output->scheduler_type;
2044 local_irq_restore(flags);
2045
2046 return 0;
2047 }
2048
2049 /* Retrieve and stash the supported scheduler type */
mshv_retrieve_scheduler_type(struct device * dev)2050 static int __init mshv_retrieve_scheduler_type(struct device *dev)
2051 {
2052 int ret = 0;
2053
2054 if (hv_l1vh_partition())
2055 hv_scheduler_type = HV_SCHEDULER_TYPE_CORE_SMT;
2056 else
2057 ret = hv_retrieve_scheduler_type(&hv_scheduler_type);
2058
2059 if (ret)
2060 return ret;
2061
2062 dev_info(dev, "Hypervisor using %s\n",
2063 scheduler_type_to_string(hv_scheduler_type));
2064
2065 switch (hv_scheduler_type) {
2066 case HV_SCHEDULER_TYPE_CORE_SMT:
2067 case HV_SCHEDULER_TYPE_LP_SMT:
2068 case HV_SCHEDULER_TYPE_ROOT:
2069 case HV_SCHEDULER_TYPE_LP:
2070 /* Supported scheduler, nothing to do */
2071 break;
2072 default:
2073 dev_err(dev, "unsupported scheduler 0x%x, bailing.\n",
2074 hv_scheduler_type);
2075 return -EOPNOTSUPP;
2076 }
2077
2078 return 0;
2079 }
2080
mshv_root_scheduler_init(unsigned int cpu)2081 static int mshv_root_scheduler_init(unsigned int cpu)
2082 {
2083 void **inputarg, **outputarg, *p;
2084
2085 inputarg = (void **)this_cpu_ptr(root_scheduler_input);
2086 outputarg = (void **)this_cpu_ptr(root_scheduler_output);
2087
2088 /* Allocate two consecutive pages. One for input, one for output. */
2089 p = kmalloc(2 * HV_HYP_PAGE_SIZE, GFP_KERNEL);
2090 if (!p)
2091 return -ENOMEM;
2092
2093 *inputarg = p;
2094 *outputarg = (char *)p + HV_HYP_PAGE_SIZE;
2095
2096 return 0;
2097 }
2098
mshv_root_scheduler_cleanup(unsigned int cpu)2099 static int mshv_root_scheduler_cleanup(unsigned int cpu)
2100 {
2101 void *p, **inputarg, **outputarg;
2102
2103 inputarg = (void **)this_cpu_ptr(root_scheduler_input);
2104 outputarg = (void **)this_cpu_ptr(root_scheduler_output);
2105
2106 p = *inputarg;
2107
2108 *inputarg = NULL;
2109 *outputarg = NULL;
2110
2111 kfree(p);
2112
2113 return 0;
2114 }
2115
2116 /* Must be called after retrieving the scheduler type */
2117 static int
root_scheduler_init(struct device * dev)2118 root_scheduler_init(struct device *dev)
2119 {
2120 int ret;
2121
2122 if (hv_scheduler_type != HV_SCHEDULER_TYPE_ROOT)
2123 return 0;
2124
2125 root_scheduler_input = alloc_percpu(void *);
2126 root_scheduler_output = alloc_percpu(void *);
2127
2128 if (!root_scheduler_input || !root_scheduler_output) {
2129 dev_err(dev, "Failed to allocate root scheduler buffers\n");
2130 ret = -ENOMEM;
2131 goto out;
2132 }
2133
2134 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mshv_root_sched",
2135 mshv_root_scheduler_init,
2136 mshv_root_scheduler_cleanup);
2137
2138 if (ret < 0) {
2139 dev_err(dev, "Failed to setup root scheduler state: %i\n", ret);
2140 goto out;
2141 }
2142
2143 mshv_root_sched_online = ret;
2144
2145 return 0;
2146
2147 out:
2148 free_percpu(root_scheduler_input);
2149 free_percpu(root_scheduler_output);
2150 return ret;
2151 }
2152
2153 static void
root_scheduler_deinit(void)2154 root_scheduler_deinit(void)
2155 {
2156 if (hv_scheduler_type != HV_SCHEDULER_TYPE_ROOT)
2157 return;
2158
2159 cpuhp_remove_state(mshv_root_sched_online);
2160 free_percpu(root_scheduler_input);
2161 free_percpu(root_scheduler_output);
2162 }
2163
mshv_reboot_notify(struct notifier_block * nb,unsigned long code,void * unused)2164 static int mshv_reboot_notify(struct notifier_block *nb,
2165 unsigned long code, void *unused)
2166 {
2167 cpuhp_remove_state(mshv_cpuhp_online);
2168 return 0;
2169 }
2170
2171 struct notifier_block mshv_reboot_nb = {
2172 .notifier_call = mshv_reboot_notify,
2173 };
2174
mshv_root_partition_exit(void)2175 static void mshv_root_partition_exit(void)
2176 {
2177 unregister_reboot_notifier(&mshv_reboot_nb);
2178 root_scheduler_deinit();
2179 }
2180
mshv_root_partition_init(struct device * dev)2181 static int __init mshv_root_partition_init(struct device *dev)
2182 {
2183 int err;
2184
2185 err = root_scheduler_init(dev);
2186 if (err)
2187 return err;
2188
2189 err = register_reboot_notifier(&mshv_reboot_nb);
2190 if (err)
2191 goto root_sched_deinit;
2192
2193 return 0;
2194
2195 root_sched_deinit:
2196 root_scheduler_deinit();
2197 return err;
2198 }
2199
mshv_parent_partition_init(void)2200 static int __init mshv_parent_partition_init(void)
2201 {
2202 int ret;
2203 struct device *dev;
2204 union hv_hypervisor_version_info version_info;
2205
2206 if (!hv_parent_partition() || is_kdump_kernel())
2207 return -ENODEV;
2208
2209 if (hv_get_hypervisor_version(&version_info))
2210 return -ENODEV;
2211
2212 ret = misc_register(&mshv_dev);
2213 if (ret)
2214 return ret;
2215
2216 dev = mshv_dev.this_device;
2217
2218 if (version_info.build_number < MSHV_HV_MIN_VERSION ||
2219 version_info.build_number > MSHV_HV_MAX_VERSION) {
2220 dev_err(dev, "Running on unvalidated Hyper-V version\n");
2221 dev_err(dev, "Versions: current: %u min: %u max: %u\n",
2222 version_info.build_number, MSHV_HV_MIN_VERSION,
2223 MSHV_HV_MAX_VERSION);
2224 }
2225
2226 mshv_root.synic_pages = alloc_percpu(struct hv_synic_pages);
2227 if (!mshv_root.synic_pages) {
2228 dev_err(dev, "Failed to allocate percpu synic page\n");
2229 ret = -ENOMEM;
2230 goto device_deregister;
2231 }
2232
2233 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mshv_synic",
2234 mshv_synic_init,
2235 mshv_synic_cleanup);
2236 if (ret < 0) {
2237 dev_err(dev, "Failed to setup cpu hotplug state: %i\n", ret);
2238 goto free_synic_pages;
2239 }
2240
2241 mshv_cpuhp_online = ret;
2242
2243 ret = mshv_retrieve_scheduler_type(dev);
2244 if (ret)
2245 goto remove_cpu_state;
2246
2247 if (hv_root_partition())
2248 ret = mshv_root_partition_init(dev);
2249 if (ret)
2250 goto remove_cpu_state;
2251
2252 ret = mshv_irqfd_wq_init();
2253 if (ret)
2254 goto exit_partition;
2255
2256 spin_lock_init(&mshv_root.pt_ht_lock);
2257 hash_init(mshv_root.pt_htable);
2258
2259 hv_setup_mshv_handler(mshv_isr);
2260
2261 return 0;
2262
2263 exit_partition:
2264 if (hv_root_partition())
2265 mshv_root_partition_exit();
2266 remove_cpu_state:
2267 cpuhp_remove_state(mshv_cpuhp_online);
2268 free_synic_pages:
2269 free_percpu(mshv_root.synic_pages);
2270 device_deregister:
2271 misc_deregister(&mshv_dev);
2272 return ret;
2273 }
2274
mshv_parent_partition_exit(void)2275 static void __exit mshv_parent_partition_exit(void)
2276 {
2277 hv_setup_mshv_handler(NULL);
2278 mshv_port_table_fini();
2279 misc_deregister(&mshv_dev);
2280 mshv_irqfd_wq_cleanup();
2281 if (hv_root_partition())
2282 mshv_root_partition_exit();
2283 cpuhp_remove_state(mshv_cpuhp_online);
2284 free_percpu(mshv_root.synic_pages);
2285 }
2286
2287 module_init(mshv_parent_partition_init);
2288 module_exit(mshv_parent_partition_exit);
2289