xref: /linux/include/net/page_pool/helpers.h (revision 2c1ed907520c50326b8f604907a8478b27881a2e)
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * page_pool/helpers.h
4  *	Author:	Jesper Dangaard Brouer <netoptimizer@brouer.com>
5  *	Copyright (C) 2016 Red Hat, Inc.
6  */
7 
8 /**
9  * DOC: page_pool allocator
10  *
11  * The page_pool allocator is optimized for recycling page or page fragment used
12  * by skb packet and xdp frame.
13  *
14  * Basic use involves replacing any alloc_pages() calls with page_pool_alloc(),
15  * which allocate memory with or without page splitting depending on the
16  * requested memory size.
17  *
18  * If the driver knows that it always requires full pages or its allocations are
19  * always smaller than half a page, it can use one of the more specific API
20  * calls:
21  *
22  * 1. page_pool_alloc_pages(): allocate memory without page splitting when
23  * driver knows that the memory it need is always bigger than half of the page
24  * allocated from page pool. There is no cache line dirtying for 'struct page'
25  * when a page is recycled back to the page pool.
26  *
27  * 2. page_pool_alloc_frag(): allocate memory with page splitting when driver
28  * knows that the memory it need is always smaller than or equal to half of the
29  * page allocated from page pool. Page splitting enables memory saving and thus
30  * avoids TLB/cache miss for data access, but there also is some cost to
31  * implement page splitting, mainly some cache line dirtying/bouncing for
32  * 'struct page' and atomic operation for page->pp_ref_count.
33  *
34  * The API keeps track of in-flight pages, in order to let API users know when
35  * it is safe to free a page_pool object, the API users must call
36  * page_pool_put_page() or page_pool_free_va() to free the page_pool object, or
37  * attach the page_pool object to a page_pool-aware object like skbs marked with
38  * skb_mark_for_recycle().
39  *
40  * page_pool_put_page() may be called multiple times on the same page if a page
41  * is split into multiple fragments. For the last fragment, it will either
42  * recycle the page, or in case of page->_refcount > 1, it will release the DMA
43  * mapping and in-flight state accounting.
44  *
45  * dma_sync_single_range_for_device() is only called for the last fragment when
46  * page_pool is created with PP_FLAG_DMA_SYNC_DEV flag, so it depends on the
47  * last freed fragment to do the sync_for_device operation for all fragments in
48  * the same page when a page is split. The API user must setup pool->p.max_len
49  * and pool->p.offset correctly and ensure that page_pool_put_page() is called
50  * with dma_sync_size being -1 for fragment API.
51  */
52 #ifndef _NET_PAGE_POOL_HELPERS_H
53 #define _NET_PAGE_POOL_HELPERS_H
54 
55 #include <linux/dma-mapping.h>
56 
57 #include <net/page_pool/types.h>
58 #include <net/net_debug.h>
59 #include <net/netmem.h>
60 
61 #ifdef CONFIG_PAGE_POOL_STATS
62 /* Deprecated driver-facing API, use netlink instead */
63 int page_pool_ethtool_stats_get_count(void);
64 u8 *page_pool_ethtool_stats_get_strings(u8 *data);
65 u64 *page_pool_ethtool_stats_get(u64 *data, const void *stats);
66 
67 bool page_pool_get_stats(const struct page_pool *pool,
68 			 struct page_pool_stats *stats);
69 #else
page_pool_ethtool_stats_get_count(void)70 static inline int page_pool_ethtool_stats_get_count(void)
71 {
72 	return 0;
73 }
74 
page_pool_ethtool_stats_get_strings(u8 * data)75 static inline u8 *page_pool_ethtool_stats_get_strings(u8 *data)
76 {
77 	return data;
78 }
79 
page_pool_ethtool_stats_get(u64 * data,const void * stats)80 static inline u64 *page_pool_ethtool_stats_get(u64 *data, const void *stats)
81 {
82 	return data;
83 }
84 #endif
85 
86 /**
87  * page_pool_dev_alloc_pages() - allocate a page.
88  * @pool:	pool from which to allocate
89  *
90  * Get a page from the page allocator or page_pool caches.
91  */
page_pool_dev_alloc_pages(struct page_pool * pool)92 static inline struct page *page_pool_dev_alloc_pages(struct page_pool *pool)
93 {
94 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
95 
96 	return page_pool_alloc_pages(pool, gfp);
97 }
98 
99 /**
100  * page_pool_dev_alloc_frag() - allocate a page fragment.
101  * @pool: pool from which to allocate
102  * @offset: offset to the allocated page
103  * @size: requested size
104  *
105  * Get a page fragment from the page allocator or page_pool caches.
106  *
107  * Return: allocated page fragment, otherwise return NULL.
108  */
page_pool_dev_alloc_frag(struct page_pool * pool,unsigned int * offset,unsigned int size)109 static inline struct page *page_pool_dev_alloc_frag(struct page_pool *pool,
110 						    unsigned int *offset,
111 						    unsigned int size)
112 {
113 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
114 
115 	return page_pool_alloc_frag(pool, offset, size, gfp);
116 }
117 
page_pool_alloc_netmem(struct page_pool * pool,unsigned int * offset,unsigned int * size,gfp_t gfp)118 static inline netmem_ref page_pool_alloc_netmem(struct page_pool *pool,
119 						unsigned int *offset,
120 						unsigned int *size, gfp_t gfp)
121 {
122 	unsigned int max_size = PAGE_SIZE << pool->p.order;
123 	netmem_ref netmem;
124 
125 	if ((*size << 1) > max_size) {
126 		*size = max_size;
127 		*offset = 0;
128 		return page_pool_alloc_netmems(pool, gfp);
129 	}
130 
131 	netmem = page_pool_alloc_frag_netmem(pool, offset, *size, gfp);
132 	if (unlikely(!netmem))
133 		return 0;
134 
135 	/* There is very likely not enough space for another fragment, so append
136 	 * the remaining size to the current fragment to avoid truesize
137 	 * underestimate problem.
138 	 */
139 	if (pool->frag_offset + *size > max_size) {
140 		*size = max_size - *offset;
141 		pool->frag_offset = max_size;
142 	}
143 
144 	return netmem;
145 }
146 
page_pool_dev_alloc_netmem(struct page_pool * pool,unsigned int * offset,unsigned int * size)147 static inline netmem_ref page_pool_dev_alloc_netmem(struct page_pool *pool,
148 						    unsigned int *offset,
149 						    unsigned int *size)
150 {
151 	gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
152 
153 	return page_pool_alloc_netmem(pool, offset, size, gfp);
154 }
155 
page_pool_alloc(struct page_pool * pool,unsigned int * offset,unsigned int * size,gfp_t gfp)156 static inline struct page *page_pool_alloc(struct page_pool *pool,
157 					   unsigned int *offset,
158 					   unsigned int *size, gfp_t gfp)
159 {
160 	return netmem_to_page(page_pool_alloc_netmem(pool, offset, size, gfp));
161 }
162 
163 /**
164  * page_pool_dev_alloc() - allocate a page or a page fragment.
165  * @pool: pool from which to allocate
166  * @offset: offset to the allocated page
167  * @size: in as the requested size, out as the allocated size
168  *
169  * Get a page or a page fragment from the page allocator or page_pool caches
170  * depending on the requested size in order to allocate memory with least memory
171  * utilization and performance penalty.
172  *
173  * Return: allocated page or page fragment, otherwise return NULL.
174  */
page_pool_dev_alloc(struct page_pool * pool,unsigned int * offset,unsigned int * size)175 static inline struct page *page_pool_dev_alloc(struct page_pool *pool,
176 					       unsigned int *offset,
177 					       unsigned int *size)
178 {
179 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
180 
181 	return page_pool_alloc(pool, offset, size, gfp);
182 }
183 
page_pool_alloc_va(struct page_pool * pool,unsigned int * size,gfp_t gfp)184 static inline void *page_pool_alloc_va(struct page_pool *pool,
185 				       unsigned int *size, gfp_t gfp)
186 {
187 	unsigned int offset;
188 	struct page *page;
189 
190 	/* Mask off __GFP_HIGHMEM to ensure we can use page_address() */
191 	page = page_pool_alloc(pool, &offset, size, gfp & ~__GFP_HIGHMEM);
192 	if (unlikely(!page))
193 		return NULL;
194 
195 	return page_address(page) + offset;
196 }
197 
198 /**
199  * page_pool_dev_alloc_va() - allocate a page or a page fragment and return its
200  *			      va.
201  * @pool: pool from which to allocate
202  * @size: in as the requested size, out as the allocated size
203  *
204  * This is just a thin wrapper around the page_pool_alloc() API, and
205  * it returns va of the allocated page or page fragment.
206  *
207  * Return: the va for the allocated page or page fragment, otherwise return NULL.
208  */
page_pool_dev_alloc_va(struct page_pool * pool,unsigned int * size)209 static inline void *page_pool_dev_alloc_va(struct page_pool *pool,
210 					   unsigned int *size)
211 {
212 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
213 
214 	return page_pool_alloc_va(pool, size, gfp);
215 }
216 
217 /**
218  * page_pool_get_dma_dir() - Retrieve the stored DMA direction.
219  * @pool:	pool from which page was allocated
220  *
221  * Get the stored dma direction. A driver might decide to store this locally
222  * and avoid the extra cache line from page_pool to determine the direction.
223  */
224 static inline enum dma_data_direction
page_pool_get_dma_dir(const struct page_pool * pool)225 page_pool_get_dma_dir(const struct page_pool *pool)
226 {
227 	return pool->p.dma_dir;
228 }
229 
page_pool_fragment_netmem(netmem_ref netmem,long nr)230 static inline void page_pool_fragment_netmem(netmem_ref netmem, long nr)
231 {
232 	atomic_long_set(netmem_get_pp_ref_count_ref(netmem), nr);
233 }
234 
235 /**
236  * page_pool_fragment_page() - split a fresh page into fragments
237  * @page:	page to split
238  * @nr:		references to set
239  *
240  * pp_ref_count represents the number of outstanding references to the page,
241  * which will be freed using page_pool APIs (rather than page allocator APIs
242  * like put_page()). Such references are usually held by page_pool-aware
243  * objects like skbs marked for page pool recycling.
244  *
245  * This helper allows the caller to take (set) multiple references to a
246  * freshly allocated page. The page must be freshly allocated (have a
247  * pp_ref_count of 1). This is commonly done by drivers and
248  * "fragment allocators" to save atomic operations - either when they know
249  * upfront how many references they will need; or to take MAX references and
250  * return the unused ones with a single atomic dec(), instead of performing
251  * multiple atomic inc() operations.
252  */
page_pool_fragment_page(struct page * page,long nr)253 static inline void page_pool_fragment_page(struct page *page, long nr)
254 {
255 	page_pool_fragment_netmem(page_to_netmem(page), nr);
256 }
257 
page_pool_unref_netmem(netmem_ref netmem,long nr)258 static inline long page_pool_unref_netmem(netmem_ref netmem, long nr)
259 {
260 	atomic_long_t *pp_ref_count = netmem_get_pp_ref_count_ref(netmem);
261 	long ret;
262 
263 	/* If nr == pp_ref_count then we have cleared all remaining
264 	 * references to the page:
265 	 * 1. 'n == 1': no need to actually overwrite it.
266 	 * 2. 'n != 1': overwrite it with one, which is the rare case
267 	 *              for pp_ref_count draining.
268 	 *
269 	 * The main advantage to doing this is that not only we avoid a atomic
270 	 * update, as an atomic_read is generally a much cheaper operation than
271 	 * an atomic update, especially when dealing with a page that may be
272 	 * referenced by only 2 or 3 users; but also unify the pp_ref_count
273 	 * handling by ensuring all pages have partitioned into only 1 piece
274 	 * initially, and only overwrite it when the page is partitioned into
275 	 * more than one piece.
276 	 */
277 	if (atomic_long_read(pp_ref_count) == nr) {
278 		/* As we have ensured nr is always one for constant case using
279 		 * the BUILD_BUG_ON(), only need to handle the non-constant case
280 		 * here for pp_ref_count draining, which is a rare case.
281 		 */
282 		BUILD_BUG_ON(__builtin_constant_p(nr) && nr != 1);
283 		if (!__builtin_constant_p(nr))
284 			atomic_long_set(pp_ref_count, 1);
285 
286 		return 0;
287 	}
288 
289 	ret = atomic_long_sub_return(nr, pp_ref_count);
290 	WARN_ON(ret < 0);
291 
292 	/* We are the last user here too, reset pp_ref_count back to 1 to
293 	 * ensure all pages have been partitioned into 1 piece initially,
294 	 * this should be the rare case when the last two fragment users call
295 	 * page_pool_unref_page() currently.
296 	 */
297 	if (unlikely(!ret))
298 		atomic_long_set(pp_ref_count, 1);
299 
300 	return ret;
301 }
302 
page_pool_unref_page(struct page * page,long nr)303 static inline long page_pool_unref_page(struct page *page, long nr)
304 {
305 	return page_pool_unref_netmem(page_to_netmem(page), nr);
306 }
307 
page_pool_ref_netmem(netmem_ref netmem)308 static inline void page_pool_ref_netmem(netmem_ref netmem)
309 {
310 	atomic_long_inc(netmem_get_pp_ref_count_ref(netmem));
311 }
312 
page_pool_ref_page(struct page * page)313 static inline void page_pool_ref_page(struct page *page)
314 {
315 	page_pool_ref_netmem(page_to_netmem(page));
316 }
317 
page_pool_unref_and_test(netmem_ref netmem)318 static inline bool page_pool_unref_and_test(netmem_ref netmem)
319 {
320 	/* If page_pool_unref_page() returns 0, we were the last user */
321 	return page_pool_unref_netmem(netmem, 1) == 0;
322 }
323 
page_pool_put_netmem(struct page_pool * pool,netmem_ref netmem,unsigned int dma_sync_size,bool allow_direct)324 static inline void page_pool_put_netmem(struct page_pool *pool,
325 					netmem_ref netmem,
326 					unsigned int dma_sync_size,
327 					bool allow_direct)
328 {
329 	/* When page_pool isn't compiled-in, net/core/xdp.c doesn't
330 	 * allow registering MEM_TYPE_PAGE_POOL, but shield linker.
331 	 */
332 #ifdef CONFIG_PAGE_POOL
333 	if (!page_pool_unref_and_test(netmem))
334 		return;
335 
336 	page_pool_put_unrefed_netmem(pool, netmem, dma_sync_size, allow_direct);
337 #endif
338 }
339 
340 /**
341  * page_pool_put_page() - release a reference to a page pool page
342  * @pool:	pool from which page was allocated
343  * @page:	page to release a reference on
344  * @dma_sync_size: how much of the page may have been touched by the device
345  * @allow_direct: released by the consumer, allow lockless caching
346  *
347  * The outcome of this depends on the page refcnt. If the driver bumps
348  * the refcnt > 1 this will unmap the page. If the page refcnt is 1
349  * the allocator owns the page and will try to recycle it in one of the pool
350  * caches. If PP_FLAG_DMA_SYNC_DEV is set, the page will be synced for_device
351  * using dma_sync_single_range_for_device().
352  */
page_pool_put_page(struct page_pool * pool,struct page * page,unsigned int dma_sync_size,bool allow_direct)353 static inline void page_pool_put_page(struct page_pool *pool,
354 				      struct page *page,
355 				      unsigned int dma_sync_size,
356 				      bool allow_direct)
357 {
358 	page_pool_put_netmem(pool, page_to_netmem(page), dma_sync_size,
359 			     allow_direct);
360 }
361 
page_pool_put_full_netmem(struct page_pool * pool,netmem_ref netmem,bool allow_direct)362 static inline void page_pool_put_full_netmem(struct page_pool *pool,
363 					     netmem_ref netmem,
364 					     bool allow_direct)
365 {
366 	page_pool_put_netmem(pool, netmem, -1, allow_direct);
367 }
368 
369 /**
370  * page_pool_put_full_page() - release a reference on a page pool page
371  * @pool:	pool from which page was allocated
372  * @page:	page to release a reference on
373  * @allow_direct: released by the consumer, allow lockless caching
374  *
375  * Similar to page_pool_put_page(), but will DMA sync the entire memory area
376  * as configured in &page_pool_params.max_len.
377  */
page_pool_put_full_page(struct page_pool * pool,struct page * page,bool allow_direct)378 static inline void page_pool_put_full_page(struct page_pool *pool,
379 					   struct page *page, bool allow_direct)
380 {
381 	page_pool_put_netmem(pool, page_to_netmem(page), -1, allow_direct);
382 }
383 
384 /**
385  * page_pool_recycle_direct() - release a reference on a page pool page
386  * @pool:	pool from which page was allocated
387  * @page:	page to release a reference on
388  *
389  * Similar to page_pool_put_full_page() but caller must guarantee safe context
390  * (e.g NAPI), since it will recycle the page directly into the pool fast cache.
391  */
page_pool_recycle_direct(struct page_pool * pool,struct page * page)392 static inline void page_pool_recycle_direct(struct page_pool *pool,
393 					    struct page *page)
394 {
395 	page_pool_put_full_page(pool, page, true);
396 }
397 
398 #define PAGE_POOL_32BIT_ARCH_WITH_64BIT_DMA	\
399 		(sizeof(dma_addr_t) > sizeof(unsigned long))
400 
401 /**
402  * page_pool_free_va() - free a va into the page_pool
403  * @pool: pool from which va was allocated
404  * @va: va to be freed
405  * @allow_direct: freed by the consumer, allow lockless caching
406  *
407  * Free a va allocated from page_pool_allo_va().
408  */
page_pool_free_va(struct page_pool * pool,void * va,bool allow_direct)409 static inline void page_pool_free_va(struct page_pool *pool, void *va,
410 				     bool allow_direct)
411 {
412 	page_pool_put_page(pool, virt_to_head_page(va), -1, allow_direct);
413 }
414 
page_pool_get_dma_addr_netmem(netmem_ref netmem)415 static inline dma_addr_t page_pool_get_dma_addr_netmem(netmem_ref netmem)
416 {
417 	dma_addr_t ret = netmem_get_dma_addr(netmem);
418 
419 	if (PAGE_POOL_32BIT_ARCH_WITH_64BIT_DMA)
420 		ret <<= PAGE_SHIFT;
421 
422 	return ret;
423 }
424 
425 /**
426  * page_pool_get_dma_addr() - Retrieve the stored DMA address.
427  * @page:	page allocated from a page pool
428  *
429  * Fetch the DMA address of the page. The page pool to which the page belongs
430  * must had been created with PP_FLAG_DMA_MAP.
431  */
page_pool_get_dma_addr(const struct page * page)432 static inline dma_addr_t page_pool_get_dma_addr(const struct page *page)
433 {
434 	dma_addr_t ret = page->dma_addr;
435 
436 	if (PAGE_POOL_32BIT_ARCH_WITH_64BIT_DMA)
437 		ret <<= PAGE_SHIFT;
438 
439 	return ret;
440 }
441 
__page_pool_dma_sync_for_cpu(const struct page_pool * pool,const dma_addr_t dma_addr,u32 offset,u32 dma_sync_size)442 static inline void __page_pool_dma_sync_for_cpu(const struct page_pool *pool,
443 						const dma_addr_t dma_addr,
444 						u32 offset, u32 dma_sync_size)
445 {
446 	dma_sync_single_range_for_cpu(pool->p.dev, dma_addr,
447 				      offset + pool->p.offset, dma_sync_size,
448 				      page_pool_get_dma_dir(pool));
449 }
450 
451 /**
452  * page_pool_dma_sync_for_cpu - sync Rx page for CPU after it's written by HW
453  * @pool: &page_pool the @page belongs to
454  * @page: page to sync
455  * @offset: offset from page start to "hard" start if using PP frags
456  * @dma_sync_size: size of the data written to the page
457  *
458  * Can be used as a shorthand to sync Rx pages before accessing them in the
459  * driver. Caller must ensure the pool was created with ``PP_FLAG_DMA_MAP``.
460  * Note that this version performs DMA sync unconditionally, even if the
461  * associated PP doesn't perform sync-for-device.
462  */
page_pool_dma_sync_for_cpu(const struct page_pool * pool,const struct page * page,u32 offset,u32 dma_sync_size)463 static inline void page_pool_dma_sync_for_cpu(const struct page_pool *pool,
464 					      const struct page *page,
465 					      u32 offset, u32 dma_sync_size)
466 {
467 	__page_pool_dma_sync_for_cpu(pool, page_pool_get_dma_addr(page), offset,
468 				     dma_sync_size);
469 }
470 
471 static inline void
page_pool_dma_sync_netmem_for_cpu(const struct page_pool * pool,const netmem_ref netmem,u32 offset,u32 dma_sync_size)472 page_pool_dma_sync_netmem_for_cpu(const struct page_pool *pool,
473 				  const netmem_ref netmem, u32 offset,
474 				  u32 dma_sync_size)
475 {
476 	if (!pool->dma_sync_for_cpu)
477 		return;
478 
479 	__page_pool_dma_sync_for_cpu(pool,
480 				     page_pool_get_dma_addr_netmem(netmem),
481 				     offset, dma_sync_size);
482 }
483 
page_pool_put(struct page_pool * pool)484 static inline bool page_pool_put(struct page_pool *pool)
485 {
486 	return refcount_dec_and_test(&pool->user_cnt);
487 }
488 
page_pool_nid_changed(struct page_pool * pool,int new_nid)489 static inline void page_pool_nid_changed(struct page_pool *pool, int new_nid)
490 {
491 	if (unlikely(pool->p.nid != new_nid))
492 		page_pool_update_nid(pool, new_nid);
493 }
494 
495 #endif /* _NET_PAGE_POOL_HELPERS_H */
496