1 /* SPDX-License-Identifier: GPL-2.0
2 *
3 * page_pool/helpers.h
4 * Author: Jesper Dangaard Brouer <netoptimizer@brouer.com>
5 * Copyright (C) 2016 Red Hat, Inc.
6 */
7
8 /**
9 * DOC: page_pool allocator
10 *
11 * The page_pool allocator is optimized for recycling page or page fragment used
12 * by skb packet and xdp frame.
13 *
14 * Basic use involves replacing any alloc_pages() calls with page_pool_alloc(),
15 * which allocate memory with or without page splitting depending on the
16 * requested memory size.
17 *
18 * If the driver knows that it always requires full pages or its allocations are
19 * always smaller than half a page, it can use one of the more specific API
20 * calls:
21 *
22 * 1. page_pool_alloc_pages(): allocate memory without page splitting when
23 * driver knows that the memory it need is always bigger than half of the page
24 * allocated from page pool. There is no cache line dirtying for 'struct page'
25 * when a page is recycled back to the page pool.
26 *
27 * 2. page_pool_alloc_frag(): allocate memory with page splitting when driver
28 * knows that the memory it need is always smaller than or equal to half of the
29 * page allocated from page pool. Page splitting enables memory saving and thus
30 * avoids TLB/cache miss for data access, but there also is some cost to
31 * implement page splitting, mainly some cache line dirtying/bouncing for
32 * 'struct page' and atomic operation for page->pp_ref_count.
33 *
34 * The API keeps track of in-flight pages, in order to let API users know when
35 * it is safe to free a page_pool object, the API users must call
36 * page_pool_put_page() or page_pool_free_va() to free the page_pool object, or
37 * attach the page_pool object to a page_pool-aware object like skbs marked with
38 * skb_mark_for_recycle().
39 *
40 * page_pool_put_page() may be called multiple times on the same page if a page
41 * is split into multiple fragments. For the last fragment, it will either
42 * recycle the page, or in case of page->_refcount > 1, it will release the DMA
43 * mapping and in-flight state accounting.
44 *
45 * dma_sync_single_range_for_device() is only called for the last fragment when
46 * page_pool is created with PP_FLAG_DMA_SYNC_DEV flag, so it depends on the
47 * last freed fragment to do the sync_for_device operation for all fragments in
48 * the same page when a page is split. The API user must setup pool->p.max_len
49 * and pool->p.offset correctly and ensure that page_pool_put_page() is called
50 * with dma_sync_size being -1 for fragment API.
51 */
52 #ifndef _NET_PAGE_POOL_HELPERS_H
53 #define _NET_PAGE_POOL_HELPERS_H
54
55 #include <linux/dma-mapping.h>
56
57 #include <net/page_pool/types.h>
58 #include <net/net_debug.h>
59 #include <net/netmem.h>
60
61 #ifdef CONFIG_PAGE_POOL_STATS
62 /* Deprecated driver-facing API, use netlink instead */
63 int page_pool_ethtool_stats_get_count(void);
64 u8 *page_pool_ethtool_stats_get_strings(u8 *data);
65 u64 *page_pool_ethtool_stats_get(u64 *data, const void *stats);
66
67 bool page_pool_get_stats(const struct page_pool *pool,
68 struct page_pool_stats *stats);
69 #else
page_pool_ethtool_stats_get_count(void)70 static inline int page_pool_ethtool_stats_get_count(void)
71 {
72 return 0;
73 }
74
page_pool_ethtool_stats_get_strings(u8 * data)75 static inline u8 *page_pool_ethtool_stats_get_strings(u8 *data)
76 {
77 return data;
78 }
79
page_pool_ethtool_stats_get(u64 * data,const void * stats)80 static inline u64 *page_pool_ethtool_stats_get(u64 *data, const void *stats)
81 {
82 return data;
83 }
84 #endif
85
86 /**
87 * page_pool_dev_alloc_pages() - allocate a page.
88 * @pool: pool from which to allocate
89 *
90 * Get a page from the page allocator or page_pool caches.
91 */
page_pool_dev_alloc_pages(struct page_pool * pool)92 static inline struct page *page_pool_dev_alloc_pages(struct page_pool *pool)
93 {
94 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
95
96 return page_pool_alloc_pages(pool, gfp);
97 }
98
99 /**
100 * page_pool_dev_alloc_frag() - allocate a page fragment.
101 * @pool: pool from which to allocate
102 * @offset: offset to the allocated page
103 * @size: requested size
104 *
105 * Get a page fragment from the page allocator or page_pool caches.
106 *
107 * Return: allocated page fragment, otherwise return NULL.
108 */
page_pool_dev_alloc_frag(struct page_pool * pool,unsigned int * offset,unsigned int size)109 static inline struct page *page_pool_dev_alloc_frag(struct page_pool *pool,
110 unsigned int *offset,
111 unsigned int size)
112 {
113 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
114
115 return page_pool_alloc_frag(pool, offset, size, gfp);
116 }
117
page_pool_alloc_netmem(struct page_pool * pool,unsigned int * offset,unsigned int * size,gfp_t gfp)118 static inline netmem_ref page_pool_alloc_netmem(struct page_pool *pool,
119 unsigned int *offset,
120 unsigned int *size, gfp_t gfp)
121 {
122 unsigned int max_size = PAGE_SIZE << pool->p.order;
123 netmem_ref netmem;
124
125 if ((*size << 1) > max_size) {
126 *size = max_size;
127 *offset = 0;
128 return page_pool_alloc_netmems(pool, gfp);
129 }
130
131 netmem = page_pool_alloc_frag_netmem(pool, offset, *size, gfp);
132 if (unlikely(!netmem))
133 return 0;
134
135 /* There is very likely not enough space for another fragment, so append
136 * the remaining size to the current fragment to avoid truesize
137 * underestimate problem.
138 */
139 if (pool->frag_offset + *size > max_size) {
140 *size = max_size - *offset;
141 pool->frag_offset = max_size;
142 }
143
144 return netmem;
145 }
146
page_pool_dev_alloc_netmem(struct page_pool * pool,unsigned int * offset,unsigned int * size)147 static inline netmem_ref page_pool_dev_alloc_netmem(struct page_pool *pool,
148 unsigned int *offset,
149 unsigned int *size)
150 {
151 gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
152
153 return page_pool_alloc_netmem(pool, offset, size, gfp);
154 }
155
page_pool_alloc(struct page_pool * pool,unsigned int * offset,unsigned int * size,gfp_t gfp)156 static inline struct page *page_pool_alloc(struct page_pool *pool,
157 unsigned int *offset,
158 unsigned int *size, gfp_t gfp)
159 {
160 return netmem_to_page(page_pool_alloc_netmem(pool, offset, size, gfp));
161 }
162
163 /**
164 * page_pool_dev_alloc() - allocate a page or a page fragment.
165 * @pool: pool from which to allocate
166 * @offset: offset to the allocated page
167 * @size: in as the requested size, out as the allocated size
168 *
169 * Get a page or a page fragment from the page allocator or page_pool caches
170 * depending on the requested size in order to allocate memory with least memory
171 * utilization and performance penalty.
172 *
173 * Return: allocated page or page fragment, otherwise return NULL.
174 */
page_pool_dev_alloc(struct page_pool * pool,unsigned int * offset,unsigned int * size)175 static inline struct page *page_pool_dev_alloc(struct page_pool *pool,
176 unsigned int *offset,
177 unsigned int *size)
178 {
179 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
180
181 return page_pool_alloc(pool, offset, size, gfp);
182 }
183
page_pool_alloc_va(struct page_pool * pool,unsigned int * size,gfp_t gfp)184 static inline void *page_pool_alloc_va(struct page_pool *pool,
185 unsigned int *size, gfp_t gfp)
186 {
187 unsigned int offset;
188 struct page *page;
189
190 /* Mask off __GFP_HIGHMEM to ensure we can use page_address() */
191 page = page_pool_alloc(pool, &offset, size, gfp & ~__GFP_HIGHMEM);
192 if (unlikely(!page))
193 return NULL;
194
195 return page_address(page) + offset;
196 }
197
198 /**
199 * page_pool_dev_alloc_va() - allocate a page or a page fragment and return its
200 * va.
201 * @pool: pool from which to allocate
202 * @size: in as the requested size, out as the allocated size
203 *
204 * This is just a thin wrapper around the page_pool_alloc() API, and
205 * it returns va of the allocated page or page fragment.
206 *
207 * Return: the va for the allocated page or page fragment, otherwise return NULL.
208 */
page_pool_dev_alloc_va(struct page_pool * pool,unsigned int * size)209 static inline void *page_pool_dev_alloc_va(struct page_pool *pool,
210 unsigned int *size)
211 {
212 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
213
214 return page_pool_alloc_va(pool, size, gfp);
215 }
216
217 /**
218 * page_pool_get_dma_dir() - Retrieve the stored DMA direction.
219 * @pool: pool from which page was allocated
220 *
221 * Get the stored dma direction. A driver might decide to store this locally
222 * and avoid the extra cache line from page_pool to determine the direction.
223 */
224 static inline enum dma_data_direction
page_pool_get_dma_dir(const struct page_pool * pool)225 page_pool_get_dma_dir(const struct page_pool *pool)
226 {
227 return pool->p.dma_dir;
228 }
229
page_pool_fragment_netmem(netmem_ref netmem,long nr)230 static inline void page_pool_fragment_netmem(netmem_ref netmem, long nr)
231 {
232 atomic_long_set(netmem_get_pp_ref_count_ref(netmem), nr);
233 }
234
235 /**
236 * page_pool_fragment_page() - split a fresh page into fragments
237 * @page: page to split
238 * @nr: references to set
239 *
240 * pp_ref_count represents the number of outstanding references to the page,
241 * which will be freed using page_pool APIs (rather than page allocator APIs
242 * like put_page()). Such references are usually held by page_pool-aware
243 * objects like skbs marked for page pool recycling.
244 *
245 * This helper allows the caller to take (set) multiple references to a
246 * freshly allocated page. The page must be freshly allocated (have a
247 * pp_ref_count of 1). This is commonly done by drivers and
248 * "fragment allocators" to save atomic operations - either when they know
249 * upfront how many references they will need; or to take MAX references and
250 * return the unused ones with a single atomic dec(), instead of performing
251 * multiple atomic inc() operations.
252 */
page_pool_fragment_page(struct page * page,long nr)253 static inline void page_pool_fragment_page(struct page *page, long nr)
254 {
255 page_pool_fragment_netmem(page_to_netmem(page), nr);
256 }
257
page_pool_unref_netmem(netmem_ref netmem,long nr)258 static inline long page_pool_unref_netmem(netmem_ref netmem, long nr)
259 {
260 atomic_long_t *pp_ref_count = netmem_get_pp_ref_count_ref(netmem);
261 long ret;
262
263 /* If nr == pp_ref_count then we have cleared all remaining
264 * references to the page:
265 * 1. 'n == 1': no need to actually overwrite it.
266 * 2. 'n != 1': overwrite it with one, which is the rare case
267 * for pp_ref_count draining.
268 *
269 * The main advantage to doing this is that not only we avoid a atomic
270 * update, as an atomic_read is generally a much cheaper operation than
271 * an atomic update, especially when dealing with a page that may be
272 * referenced by only 2 or 3 users; but also unify the pp_ref_count
273 * handling by ensuring all pages have partitioned into only 1 piece
274 * initially, and only overwrite it when the page is partitioned into
275 * more than one piece.
276 */
277 if (atomic_long_read(pp_ref_count) == nr) {
278 /* As we have ensured nr is always one for constant case using
279 * the BUILD_BUG_ON(), only need to handle the non-constant case
280 * here for pp_ref_count draining, which is a rare case.
281 */
282 BUILD_BUG_ON(__builtin_constant_p(nr) && nr != 1);
283 if (!__builtin_constant_p(nr))
284 atomic_long_set(pp_ref_count, 1);
285
286 return 0;
287 }
288
289 ret = atomic_long_sub_return(nr, pp_ref_count);
290 WARN_ON(ret < 0);
291
292 /* We are the last user here too, reset pp_ref_count back to 1 to
293 * ensure all pages have been partitioned into 1 piece initially,
294 * this should be the rare case when the last two fragment users call
295 * page_pool_unref_page() currently.
296 */
297 if (unlikely(!ret))
298 atomic_long_set(pp_ref_count, 1);
299
300 return ret;
301 }
302
page_pool_unref_page(struct page * page,long nr)303 static inline long page_pool_unref_page(struct page *page, long nr)
304 {
305 return page_pool_unref_netmem(page_to_netmem(page), nr);
306 }
307
page_pool_ref_netmem(netmem_ref netmem)308 static inline void page_pool_ref_netmem(netmem_ref netmem)
309 {
310 atomic_long_inc(netmem_get_pp_ref_count_ref(netmem));
311 }
312
page_pool_ref_page(struct page * page)313 static inline void page_pool_ref_page(struct page *page)
314 {
315 page_pool_ref_netmem(page_to_netmem(page));
316 }
317
page_pool_unref_and_test(netmem_ref netmem)318 static inline bool page_pool_unref_and_test(netmem_ref netmem)
319 {
320 /* If page_pool_unref_page() returns 0, we were the last user */
321 return page_pool_unref_netmem(netmem, 1) == 0;
322 }
323
page_pool_put_netmem(struct page_pool * pool,netmem_ref netmem,unsigned int dma_sync_size,bool allow_direct)324 static inline void page_pool_put_netmem(struct page_pool *pool,
325 netmem_ref netmem,
326 unsigned int dma_sync_size,
327 bool allow_direct)
328 {
329 /* When page_pool isn't compiled-in, net/core/xdp.c doesn't
330 * allow registering MEM_TYPE_PAGE_POOL, but shield linker.
331 */
332 #ifdef CONFIG_PAGE_POOL
333 if (!page_pool_unref_and_test(netmem))
334 return;
335
336 page_pool_put_unrefed_netmem(pool, netmem, dma_sync_size, allow_direct);
337 #endif
338 }
339
340 /**
341 * page_pool_put_page() - release a reference to a page pool page
342 * @pool: pool from which page was allocated
343 * @page: page to release a reference on
344 * @dma_sync_size: how much of the page may have been touched by the device
345 * @allow_direct: released by the consumer, allow lockless caching
346 *
347 * The outcome of this depends on the page refcnt. If the driver bumps
348 * the refcnt > 1 this will unmap the page. If the page refcnt is 1
349 * the allocator owns the page and will try to recycle it in one of the pool
350 * caches. If PP_FLAG_DMA_SYNC_DEV is set, the page will be synced for_device
351 * using dma_sync_single_range_for_device().
352 */
page_pool_put_page(struct page_pool * pool,struct page * page,unsigned int dma_sync_size,bool allow_direct)353 static inline void page_pool_put_page(struct page_pool *pool,
354 struct page *page,
355 unsigned int dma_sync_size,
356 bool allow_direct)
357 {
358 page_pool_put_netmem(pool, page_to_netmem(page), dma_sync_size,
359 allow_direct);
360 }
361
page_pool_put_full_netmem(struct page_pool * pool,netmem_ref netmem,bool allow_direct)362 static inline void page_pool_put_full_netmem(struct page_pool *pool,
363 netmem_ref netmem,
364 bool allow_direct)
365 {
366 page_pool_put_netmem(pool, netmem, -1, allow_direct);
367 }
368
369 /**
370 * page_pool_put_full_page() - release a reference on a page pool page
371 * @pool: pool from which page was allocated
372 * @page: page to release a reference on
373 * @allow_direct: released by the consumer, allow lockless caching
374 *
375 * Similar to page_pool_put_page(), but will DMA sync the entire memory area
376 * as configured in &page_pool_params.max_len.
377 */
page_pool_put_full_page(struct page_pool * pool,struct page * page,bool allow_direct)378 static inline void page_pool_put_full_page(struct page_pool *pool,
379 struct page *page, bool allow_direct)
380 {
381 page_pool_put_netmem(pool, page_to_netmem(page), -1, allow_direct);
382 }
383
384 /**
385 * page_pool_recycle_direct() - release a reference on a page pool page
386 * @pool: pool from which page was allocated
387 * @page: page to release a reference on
388 *
389 * Similar to page_pool_put_full_page() but caller must guarantee safe context
390 * (e.g NAPI), since it will recycle the page directly into the pool fast cache.
391 */
page_pool_recycle_direct(struct page_pool * pool,struct page * page)392 static inline void page_pool_recycle_direct(struct page_pool *pool,
393 struct page *page)
394 {
395 page_pool_put_full_page(pool, page, true);
396 }
397
398 #define PAGE_POOL_32BIT_ARCH_WITH_64BIT_DMA \
399 (sizeof(dma_addr_t) > sizeof(unsigned long))
400
401 /**
402 * page_pool_free_va() - free a va into the page_pool
403 * @pool: pool from which va was allocated
404 * @va: va to be freed
405 * @allow_direct: freed by the consumer, allow lockless caching
406 *
407 * Free a va allocated from page_pool_allo_va().
408 */
page_pool_free_va(struct page_pool * pool,void * va,bool allow_direct)409 static inline void page_pool_free_va(struct page_pool *pool, void *va,
410 bool allow_direct)
411 {
412 page_pool_put_page(pool, virt_to_head_page(va), -1, allow_direct);
413 }
414
page_pool_get_dma_addr_netmem(netmem_ref netmem)415 static inline dma_addr_t page_pool_get_dma_addr_netmem(netmem_ref netmem)
416 {
417 dma_addr_t ret = netmem_get_dma_addr(netmem);
418
419 if (PAGE_POOL_32BIT_ARCH_WITH_64BIT_DMA)
420 ret <<= PAGE_SHIFT;
421
422 return ret;
423 }
424
425 /**
426 * page_pool_get_dma_addr() - Retrieve the stored DMA address.
427 * @page: page allocated from a page pool
428 *
429 * Fetch the DMA address of the page. The page pool to which the page belongs
430 * must had been created with PP_FLAG_DMA_MAP.
431 */
page_pool_get_dma_addr(const struct page * page)432 static inline dma_addr_t page_pool_get_dma_addr(const struct page *page)
433 {
434 dma_addr_t ret = page->dma_addr;
435
436 if (PAGE_POOL_32BIT_ARCH_WITH_64BIT_DMA)
437 ret <<= PAGE_SHIFT;
438
439 return ret;
440 }
441
__page_pool_dma_sync_for_cpu(const struct page_pool * pool,const dma_addr_t dma_addr,u32 offset,u32 dma_sync_size)442 static inline void __page_pool_dma_sync_for_cpu(const struct page_pool *pool,
443 const dma_addr_t dma_addr,
444 u32 offset, u32 dma_sync_size)
445 {
446 dma_sync_single_range_for_cpu(pool->p.dev, dma_addr,
447 offset + pool->p.offset, dma_sync_size,
448 page_pool_get_dma_dir(pool));
449 }
450
451 /**
452 * page_pool_dma_sync_for_cpu - sync Rx page for CPU after it's written by HW
453 * @pool: &page_pool the @page belongs to
454 * @page: page to sync
455 * @offset: offset from page start to "hard" start if using PP frags
456 * @dma_sync_size: size of the data written to the page
457 *
458 * Can be used as a shorthand to sync Rx pages before accessing them in the
459 * driver. Caller must ensure the pool was created with ``PP_FLAG_DMA_MAP``.
460 * Note that this version performs DMA sync unconditionally, even if the
461 * associated PP doesn't perform sync-for-device.
462 */
page_pool_dma_sync_for_cpu(const struct page_pool * pool,const struct page * page,u32 offset,u32 dma_sync_size)463 static inline void page_pool_dma_sync_for_cpu(const struct page_pool *pool,
464 const struct page *page,
465 u32 offset, u32 dma_sync_size)
466 {
467 __page_pool_dma_sync_for_cpu(pool, page_pool_get_dma_addr(page), offset,
468 dma_sync_size);
469 }
470
471 static inline void
page_pool_dma_sync_netmem_for_cpu(const struct page_pool * pool,const netmem_ref netmem,u32 offset,u32 dma_sync_size)472 page_pool_dma_sync_netmem_for_cpu(const struct page_pool *pool,
473 const netmem_ref netmem, u32 offset,
474 u32 dma_sync_size)
475 {
476 if (!pool->dma_sync_for_cpu)
477 return;
478
479 __page_pool_dma_sync_for_cpu(pool,
480 page_pool_get_dma_addr_netmem(netmem),
481 offset, dma_sync_size);
482 }
483
page_pool_put(struct page_pool * pool)484 static inline bool page_pool_put(struct page_pool *pool)
485 {
486 return refcount_dec_and_test(&pool->user_cnt);
487 }
488
page_pool_nid_changed(struct page_pool * pool,int new_nid)489 static inline void page_pool_nid_changed(struct page_pool *pool, int new_nid)
490 {
491 if (unlikely(pool->p.nid != new_nid))
492 page_pool_update_nid(pool, new_nid);
493 }
494
495 #endif /* _NET_PAGE_POOL_HELPERS_H */
496