1 /*
2 * top - a top users display for Unix
3 *
4 * DESCRIPTION:
5 * Originally written for BSD4.4 system by Christos Zoulas.
6 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
7 * Order support hacked in from top-3.5beta6/machine/m_aix41.c
8 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
9 *
10 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu>
11 * Steven Wallace <swallace@FreeBSD.org>
12 * Wolfram Schneider <wosch@FreeBSD.org>
13 * Thomas Moestl <tmoestl@gmx.net>
14 * Eitan Adler <eadler@FreeBSD.org>
15 */
16
17 #include <sys/param.h>
18 #include <sys/cpuset.h>
19 #include <sys/errno.h>
20 #include <sys/fcntl.h>
21 #include <sys/priority.h>
22 #include <sys/proc.h>
23 #include <sys/resource.h>
24 #include <sys/sbuf.h>
25 #include <sys/sysctl.h>
26 #include <sys/time.h>
27 #include <sys/user.h>
28
29 #include <assert.h>
30 #include <err.h>
31 #include <libgen.h>
32 #include <kvm.h>
33 #include <math.h>
34 #include <paths.h>
35 #include <stdio.h>
36 #include <stdbool.h>
37 #include <stdint.h>
38 #include <stdlib.h>
39 #include <string.h>
40 #include <time.h>
41 #include <unistd.h>
42 #include <vis.h>
43
44 #include "top.h"
45 #include "display.h"
46 #include "machine.h"
47 #include "loadavg.h"
48 #include "screen.h"
49 #include "utils.h"
50 #include "layout.h"
51
52 #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var))
53
54 extern struct timeval timeout;
55 static int smpmode;
56 enum displaymodes displaymode;
57 static const int namelength = 10;
58 /* TOP_JID_LEN based on max of 999999 */
59 #define TOP_JID_LEN 6
60 #define TOP_SWAP_LEN 5
61
62 /* get_process_info passes back a handle. This is what it looks like: */
63
64 struct handle {
65 struct kinfo_proc **next_proc; /* points to next valid proc pointer */
66 int remaining; /* number of pointers remaining */
67 };
68
69
70 /* define what weighted cpu is. */
71 #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \
72 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu))))
73
74 /* what we consider to be process size: */
75 #define PROCSIZE(pp) ((pp)->ki_size / 1024)
76
77 #define RU(pp) (&(pp)->ki_rusage)
78
79 #define PCTCPU(pp) (pcpu[pp - pbase])
80
81 /* process state names for the "STATE" column of the display */
82 /* the extra nulls in the string "run" are for adding a slash and
83 the processor number when needed */
84
85 static const char *state_abbrev[] = {
86 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK"
87 };
88
89
90 static kvm_t *kd;
91
92 /* values that we stash away in _init and use in later routines */
93
94 static double logcpu;
95
96 /* these are retrieved from the kernel in _init */
97
98 static load_avg ccpu;
99
100 /* these are used in the get_ functions */
101
102 static int lastpid;
103
104 /* these are for calculating cpu state percentages */
105
106 static long cp_time[CPUSTATES];
107 static long cp_old[CPUSTATES];
108 static long cp_diff[CPUSTATES];
109
110 /* these are for detailing the process states */
111
112 static const char *procstatenames[] = {
113 "", " starting, ", " running, ", " sleeping, ", " stopped, ",
114 " zombie, ", " waiting, ", " lock, ",
115 NULL
116 };
117 static int process_states[nitems(procstatenames)];
118
119 /* these are for detailing the cpu states */
120
121 static int cpu_states[CPUSTATES];
122 static const char *cpustatenames[] = {
123 "user", "nice", "system", "interrupt", "idle", NULL
124 };
125
126 /* these are for detailing the memory statistics */
127
128 static const char *memorynames[] = {
129 "K Active, ", "K Inact, ", "K Laundry, ", "K Wired, ", "K Buf, ",
130 "K Free", NULL
131 };
132 static int memory_stats[nitems(memorynames)];
133
134 static const char *arcnames[] = {
135 "K Total, ", "K MFU, ", "K MRU, ", "K Anon, ", "K Header, ", "K Other",
136 NULL
137 };
138 static int arc_stats[nitems(arcnames)];
139
140 static const char *carcnames[] = {
141 "K Compressed, ", "K Uncompressed, ", ":1 Ratio, ",
142 NULL
143 };
144 static int carc_stats[nitems(carcnames)];
145
146 static const char *swapnames[] = {
147 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
148 NULL
149 };
150 static int swap_stats[nitems(swapnames)];
151
152 static int has_swap;
153
154 /* these are for keeping track of the proc array */
155
156 static int nproc;
157 static int onproc = -1;
158 static int pref_len;
159 static struct kinfo_proc *pbase;
160 static struct kinfo_proc **pref;
161 static struct kinfo_proc *previous_procs;
162 static struct kinfo_proc **previous_pref;
163 static int previous_proc_count = 0;
164 static int previous_proc_count_max = 0;
165 static int previous_thread;
166
167 /* data used for recalculating pctcpu */
168 static double *pcpu;
169 static struct timespec proc_uptime;
170 static struct timeval proc_wall_time;
171 static struct timeval previous_wall_time;
172 static uint64_t previous_interval = 0;
173
174 /* total number of io operations */
175 static long total_inblock;
176 static long total_oublock;
177 static long total_majflt;
178
179 /* these are for getting the memory statistics */
180
181 static int arc_enabled;
182 static int carc_enabled;
183 static int pageshift; /* log base 2 of the pagesize */
184
185 /* define pagetok in terms of pageshift */
186
187 #define pagetok(size) ((size) << pageshift)
188
189 /* swap usage */
190 #define ki_swap(kip) \
191 ((kip)->ki_swrss > (kip)->ki_rssize ? (kip)->ki_swrss - (kip)->ki_rssize : 0)
192
193 /* Per-cpu time states */
194 static int maxcpu;
195 static int maxid;
196 static int ncpus;
197 static cpuset_t cpumask;
198 static long *times;
199 static long *pcpu_cp_time;
200 static long *pcpu_cp_old;
201 static long *pcpu_cp_diff;
202 static int *pcpu_cpu_states;
203
204 /* Battery units and states */
205 static int battery_units;
206 static int battery_life;
207
208 static int compare_cpu(const void *a, const void *b);
209 static int compare_size(const void *a, const void *b);
210 static int compare_res(const void *a, const void *b);
211 static int compare_time(const void *a, const void *b);
212 static int compare_prio(const void *a, const void *b);
213 static int compare_threads(const void *a, const void *b);
214 static int compare_iototal(const void *a, const void *b);
215 static int compare_ioread(const void *a, const void *b);
216 static int compare_iowrite(const void *a, const void *b);
217 static int compare_iofault(const void *a, const void *b);
218 static int compare_vcsw(const void *a, const void *b);
219 static int compare_ivcsw(const void *a, const void *b);
220 static int compare_swap(const void *a, const void *b);
221 static int compare_jid(const void *a, const void *b);
222 static int compare_pid(const void *a, const void *b);
223 static int compare_tid(const void *a, const void *b);
224 static const char *format_nice(const struct kinfo_proc *pp);
225 static void getsysctl(const char *name, void *ptr, size_t len);
226 static int swapmode(int *retavail, int *retfree);
227 static void update_layout(void);
228 static int find_uid(uid_t needle, int *haystack);
229 static int cmd_matches(struct kinfo_proc *, const char *);
230
231 /*
232 * Sorting orders. The first element is the default.
233 */
234
235 typedef int (compare_fn)(const void *arg1, const void *arg2);
236 static const struct sort_info {
237 const char *si_name;
238 compare_fn *si_compare;
239 } sortdata[] = {
240 {
241 .si_name = "cpu",
242 .si_compare = &compare_cpu,
243 },
244 {
245 .si_name = "size",
246 .si_compare = &compare_size,
247 },
248 {
249 .si_name = "res",
250 .si_compare = &compare_res,
251 },
252 {
253 .si_name = "time",
254 .si_compare = &compare_time,
255 },
256 {
257 .si_name = "pri",
258 .si_compare = &compare_prio,
259 },
260 {
261 .si_name = "threads",
262 .si_compare = &compare_threads,
263 },
264 {
265 .si_name = "total",
266 .si_compare = &compare_iototal,
267 },
268 {
269 .si_name = "read",
270 .si_compare = &compare_ioread,
271 },
272 {
273 .si_name = "write",
274 .si_compare = &compare_iowrite,
275 },
276 {
277 .si_name = "fault",
278 .si_compare = &compare_iofault,
279 },
280 {
281 .si_name = "vcsw",
282 .si_compare = &compare_vcsw,
283 },
284 {
285 .si_name = "ivcsw",
286 .si_compare = &compare_ivcsw,
287 },
288 {
289 .si_name = "jid",
290 .si_compare = &compare_jid,
291 },
292 {
293 .si_name = "swap",
294 .si_compare = &compare_swap,
295 },
296 {
297 .si_name = "pid",
298 .si_compare = &compare_pid,
299 },
300 };
301
302 static int
find_uid(uid_t needle,int * haystack)303 find_uid(uid_t needle, int *haystack)
304 {
305 size_t i = 0;
306
307 for (; i < TOP_MAX_UIDS; ++i)
308 if ((uid_t)haystack[i] == needle)
309 return 1;
310 return (0);
311 }
312
313 void
toggle_pcpustats(void)314 toggle_pcpustats(void)
315 {
316
317 if (ncpus == 1)
318 return;
319 update_layout();
320 }
321
322 /* Adjust display based on ncpus and the ARC state. */
323 static void
update_layout(void)324 update_layout(void)
325 {
326
327 y_mem = 3;
328 y_arc = 4;
329 y_carc = 5;
330 y_swap = 3 + arc_enabled + carc_enabled + has_swap;
331 y_idlecursor = 4 + arc_enabled + carc_enabled + has_swap;
332 y_message = 4 + arc_enabled + carc_enabled + has_swap;
333 y_header = 5 + arc_enabled + carc_enabled + has_swap;
334 y_procs = 6 + arc_enabled + carc_enabled + has_swap;
335 Header_lines = 6 + arc_enabled + carc_enabled + has_swap;
336
337 if (pcpu_stats) {
338 y_mem += ncpus - 1;
339 y_arc += ncpus - 1;
340 y_carc += ncpus - 1;
341 y_swap += ncpus - 1;
342 y_idlecursor += ncpus - 1;
343 y_message += ncpus - 1;
344 y_header += ncpus - 1;
345 y_procs += ncpus - 1;
346 Header_lines += ncpus - 1;
347 }
348 }
349
350 int
machine_init(struct statics * statics)351 machine_init(struct statics *statics)
352 {
353 int i, j, empty, pagesize;
354 uint64_t arc_size;
355 int carc_en, nswapdev;
356 size_t size;
357
358 size = sizeof(smpmode);
359 if (sysctlbyname("kern.smp.active", &smpmode, &size, NULL, 0) != 0 ||
360 size != sizeof(smpmode))
361 smpmode = 0;
362
363 size = sizeof(arc_size);
364 if (sysctlbyname("kstat.zfs.misc.arcstats.size", &arc_size, &size,
365 NULL, 0) == 0 && arc_size != 0)
366 arc_enabled = 1;
367 size = sizeof(carc_en);
368 if (arc_enabled &&
369 sysctlbyname("vfs.zfs.compressed_arc_enabled", &carc_en, &size,
370 NULL, 0) == 0 && carc_en == 1) {
371 uint64_t uncomp_sz;
372
373 /*
374 * Don't report compression stats if no data is in the ARC.
375 * Otherwise, we end up printing a blank line.
376 */
377 size = sizeof(uncomp_sz);
378 if (sysctlbyname("kstat.zfs.misc.arcstats.uncompressed_size",
379 &uncomp_sz, &size, NULL, 0) == 0 && uncomp_sz != 0)
380 carc_enabled = 1;
381 }
382
383 kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open");
384 if (kd == NULL)
385 return (-1);
386
387 size = sizeof(nswapdev);
388 if (sysctlbyname("vm.nswapdev", &nswapdev, &size, NULL, 0) == 0 &&
389 nswapdev != 0)
390 has_swap = 1;
391
392 GETSYSCTL("kern.ccpu", ccpu);
393
394 /* this is used in calculating WCPU -- calculate it ahead of time */
395 logcpu = log(loaddouble(ccpu));
396
397 pbase = NULL;
398 pref = NULL;
399 pcpu = NULL;
400 nproc = 0;
401 onproc = -1;
402
403 /* get the page size and calculate pageshift from it */
404 pagesize = getpagesize();
405 pageshift = 0;
406 while (pagesize > 1) {
407 pageshift++;
408 pagesize >>= 1;
409 }
410
411 /* we only need the amount of log(2)1024 for our conversion */
412 pageshift -= LOG1024;
413
414 /* fill in the statics information */
415 statics->procstate_names = procstatenames;
416 statics->cpustate_names = cpustatenames;
417 statics->memory_names = memorynames;
418 if (arc_enabled)
419 statics->arc_names = arcnames;
420 else
421 statics->arc_names = NULL;
422 if (carc_enabled)
423 statics->carc_names = carcnames;
424 else
425 statics->carc_names = NULL;
426 if (has_swap)
427 statics->swap_names = swapnames;
428 else
429 statics->swap_names = NULL;
430
431 /* Allocate state for per-CPU stats. */
432 GETSYSCTL("kern.smp.maxcpus", maxcpu);
433 times = calloc(maxcpu * CPUSTATES, sizeof(long));
434 if (times == NULL)
435 err(1, "calloc for kern.smp.maxcpus");
436 size = sizeof(long) * maxcpu * CPUSTATES;
437 if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1)
438 err(1, "sysctlbyname kern.cp_times");
439 pcpu_cp_time = calloc(1, size);
440 maxid = MIN(size / CPUSTATES / sizeof(long) - 1, CPU_SETSIZE - 1);
441 CPU_ZERO(&cpumask);
442 for (i = 0; i <= maxid; i++) {
443 empty = 1;
444 for (j = 0; empty && j < CPUSTATES; j++) {
445 if (times[i * CPUSTATES + j] != 0)
446 empty = 0;
447 }
448 if (!empty)
449 CPU_SET(i, &cpumask);
450 }
451 ncpus = CPU_COUNT(&cpumask);
452 assert(ncpus > 0);
453 pcpu_cp_old = calloc(ncpus * CPUSTATES, sizeof(long));
454 pcpu_cp_diff = calloc(ncpus * CPUSTATES, sizeof(long));
455 pcpu_cpu_states = calloc(ncpus * CPUSTATES, sizeof(int));
456 statics->ncpus = ncpus;
457
458 /* Allocate state of battery units reported via ACPI. */
459 battery_units = 0;
460 size = sizeof(int);
461 sysctlbyname("hw.acpi.battery.units", &battery_units, &size, NULL, 0);
462 statics->nbatteries = battery_units;
463
464 update_layout();
465
466 /* all done! */
467 return (0);
468 }
469
470 char *
format_header(const char * uname_field)471 format_header(const char *uname_field)
472 {
473 static struct sbuf* header = NULL;
474
475 /* clean up from last time. */
476 if (header != NULL) {
477 sbuf_clear(header);
478 } else {
479 header = sbuf_new_auto();
480 }
481
482 switch (displaymode) {
483 case DISP_CPU: {
484 sbuf_printf(header, " %s", ps.thread_id ? " THR" : "PID");
485 sbuf_printf(header, "%*s", ps.jail ? TOP_JID_LEN : 0,
486 ps.jail ? " JID" : "");
487 sbuf_printf(header, " %-*.*s ", namelength, namelength, uname_field);
488 if (!ps.thread) {
489 sbuf_cat(header, "THR ");
490 }
491 sbuf_cat(header, "PRI NICE SIZE RES ");
492 if (ps.swap) {
493 sbuf_printf(header, "%*s ", TOP_SWAP_LEN - 1, "SWAP");
494 }
495 sbuf_cat(header, "STATE ");
496 if (smpmode) {
497 sbuf_cat(header, "C ");
498 }
499 sbuf_cat(header, "TIME ");
500 sbuf_printf(header, " %6s ", ps.wcpu ? "WCPU" : "CPU");
501 sbuf_cat(header, "COMMAND");
502 sbuf_finish(header);
503 break;
504 }
505 case DISP_IO: {
506 sbuf_printf(header, " %s%*s %-*.*s",
507 ps.thread_id ? " THR" : "PID",
508 ps.jail ? TOP_JID_LEN : 0, ps.jail ? " JID" : "",
509 namelength, namelength, uname_field);
510 sbuf_cat(header, " VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND");
511 sbuf_finish(header);
512 break;
513 }
514 case DISP_MAX:
515 assert("displaymode must not be set to DISP_MAX");
516 }
517
518 return sbuf_data(header);
519 }
520
521 static int swappgsin = -1;
522 static int swappgsout = -1;
523
524
525 void
get_system_info(struct system_info * si)526 get_system_info(struct system_info *si)
527 {
528 struct loadavg sysload;
529 int mib[2];
530 struct timeval boottime;
531 uint64_t arc_stat, arc_stat2;
532 int i, j;
533 size_t size;
534
535 /* get the CPU stats */
536 size = (maxid + 1) * CPUSTATES * sizeof(long);
537 if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1)
538 err(1, "sysctlbyname kern.cp_times");
539 GETSYSCTL("kern.cp_time", cp_time);
540 GETSYSCTL("vm.loadavg", sysload);
541 GETSYSCTL("kern.lastpid", lastpid);
542
543 /* convert load averages to doubles */
544 for (i = 0; i < 3; i++)
545 si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale;
546
547 /* convert cp_time counts to percentages */
548 for (i = j = 0; i <= maxid; i++) {
549 if (!CPU_ISSET(i, &cpumask))
550 continue;
551 percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES],
552 &pcpu_cp_time[j * CPUSTATES],
553 &pcpu_cp_old[j * CPUSTATES],
554 &pcpu_cp_diff[j * CPUSTATES]);
555 j++;
556 }
557 percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
558
559 /* sum memory & swap statistics */
560 {
561 static unsigned int swap_delay = 0;
562 static int swapavail = 0;
563 static int swapfree = 0;
564 static long bufspace = 0;
565 static uint64_t nspgsin, nspgsout;
566
567 GETSYSCTL("vfs.bufspace", bufspace);
568 GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]);
569 GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]);
570 GETSYSCTL("vm.stats.vm.v_laundry_count", memory_stats[2]);
571 GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[3]);
572 GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]);
573 GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin);
574 GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout);
575 /* convert memory stats to Kbytes */
576 memory_stats[0] = pagetok(memory_stats[0]);
577 memory_stats[1] = pagetok(memory_stats[1]);
578 memory_stats[2] = pagetok(memory_stats[2]);
579 memory_stats[3] = pagetok(memory_stats[3]);
580 memory_stats[4] = bufspace / 1024;
581 memory_stats[5] = pagetok(memory_stats[5]);
582 memory_stats[6] = -1;
583
584 /* first interval */
585 if (swappgsin < 0) {
586 swap_stats[4] = 0;
587 swap_stats[5] = 0;
588 }
589
590 /* compute differences between old and new swap statistic */
591 else {
592 swap_stats[4] = pagetok(((nspgsin - swappgsin)));
593 swap_stats[5] = pagetok(((nspgsout - swappgsout)));
594 }
595
596 swappgsin = nspgsin;
597 swappgsout = nspgsout;
598
599 /* call CPU heavy swapmode() only for changes */
600 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
601 swap_stats[3] = swapmode(&swapavail, &swapfree);
602 swap_stats[0] = swapavail;
603 swap_stats[1] = swapavail - swapfree;
604 swap_stats[2] = swapfree;
605 }
606 swap_delay = 1;
607 swap_stats[6] = -1;
608 }
609
610 if (arc_enabled) {
611 GETSYSCTL("kstat.zfs.misc.arcstats.size", arc_stat);
612 arc_stats[0] = arc_stat >> 10;
613 GETSYSCTL("kstat.zfs.misc.arcstats.mfu_size", arc_stat);
614 arc_stats[1] = arc_stat >> 10;
615 GETSYSCTL("kstat.zfs.misc.arcstats.mru_size", arc_stat);
616 arc_stats[2] = arc_stat >> 10;
617 GETSYSCTL("kstat.zfs.misc.arcstats.anon_size", arc_stat);
618 arc_stats[3] = arc_stat >> 10;
619 GETSYSCTL("kstat.zfs.misc.arcstats.hdr_size", arc_stat);
620 GETSYSCTL("kstat.zfs.misc.arcstats.l2_hdr_size", arc_stat2);
621 arc_stats[4] = (arc_stat + arc_stat2) >> 10;
622 GETSYSCTL("kstat.zfs.misc.arcstats.bonus_size", arc_stat);
623 arc_stats[5] = arc_stat >> 10;
624 GETSYSCTL("kstat.zfs.misc.arcstats.dnode_size", arc_stat);
625 arc_stats[5] += arc_stat >> 10;
626 GETSYSCTL("kstat.zfs.misc.arcstats.dbuf_size", arc_stat);
627 arc_stats[5] += arc_stat >> 10;
628 si->arc = arc_stats;
629 }
630 if (carc_enabled) {
631 GETSYSCTL("kstat.zfs.misc.arcstats.compressed_size", arc_stat);
632 carc_stats[0] = arc_stat >> 10;
633 carc_stats[2] = arc_stat >> 10; /* For ratio */
634 GETSYSCTL("kstat.zfs.misc.arcstats.uncompressed_size", arc_stat);
635 carc_stats[1] = arc_stat >> 10;
636 si->carc = carc_stats;
637 }
638
639 /* set arrays and strings */
640 if (pcpu_stats) {
641 si->cpustates = pcpu_cpu_states;
642 si->ncpus = ncpus;
643 } else {
644 si->cpustates = cpu_states;
645 si->ncpus = 1;
646 }
647 si->memory = memory_stats;
648 si->swap = swap_stats;
649
650
651 if (lastpid > 0) {
652 si->last_pid = lastpid;
653 } else {
654 si->last_pid = -1;
655 }
656
657 /*
658 * Print how long system has been up.
659 * (Found by looking getting "boottime" from the kernel)
660 */
661 mib[0] = CTL_KERN;
662 mib[1] = KERN_BOOTTIME;
663 size = sizeof(boottime);
664 if (sysctl(mib, nitems(mib), &boottime, &size, NULL, 0) != -1 &&
665 boottime.tv_sec != 0) {
666 si->boottime = boottime;
667 } else {
668 si->boottime.tv_sec = -1;
669 }
670
671 battery_life = 0;
672 if (battery_units > 0) {
673 GETSYSCTL("hw.acpi.battery.life", battery_life);
674 }
675 si->battery = battery_life;
676 }
677
678 #define NOPROC ((void *)-1)
679
680 /*
681 * We need to compare data from the old process entry with the new
682 * process entry.
683 * To facilitate doing this quickly we stash a pointer in the kinfo_proc
684 * structure to cache the mapping. We also use a negative cache pointer
685 * of NOPROC to avoid duplicate lookups.
686 * XXX: this could be done when the actual processes are fetched, we do
687 * it here out of laziness.
688 */
689 static const struct kinfo_proc *
get_old_proc(struct kinfo_proc * pp)690 get_old_proc(struct kinfo_proc *pp)
691 {
692 const struct kinfo_proc * const *oldpp, *oldp;
693
694 /*
695 * If this is the first fetch of the kinfo_procs then we don't have
696 * any previous entries.
697 */
698 if (previous_proc_count == 0)
699 return (NULL);
700 /* negative cache? */
701 if (pp->ki_udata == NOPROC)
702 return (NULL);
703 /* cached? */
704 if (pp->ki_udata != NULL)
705 return (pp->ki_udata);
706 /*
707 * Not cached,
708 * 1) look up based on pid.
709 * 2) compare process start.
710 * If we fail here, then setup a negative cache entry, otherwise
711 * cache it.
712 */
713 oldpp = bsearch(&pp, previous_pref, previous_proc_count,
714 sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid);
715 if (oldpp == NULL) {
716 pp->ki_udata = NOPROC;
717 return (NULL);
718 }
719 oldp = *oldpp;
720 if (memcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) {
721 pp->ki_udata = NOPROC;
722 return (NULL);
723 }
724 pp->ki_udata = __DECONST(void *, oldp);
725 return (oldp);
726 }
727
728 /*
729 * Return the total amount of IO done in blocks in/out and faults.
730 * store the values individually in the pointers passed in.
731 */
732 static long
get_io_stats(const struct kinfo_proc * pp,long * inp,long * oup,long * flp,long * vcsw,long * ivcsw)733 get_io_stats(const struct kinfo_proc *pp, long *inp, long *oup, long *flp,
734 long *vcsw, long *ivcsw)
735 {
736 const struct kinfo_proc *oldp;
737 static struct kinfo_proc dummy;
738 long ret;
739
740 oldp = get_old_proc(__DECONST(struct kinfo_proc *, pp));
741 if (oldp == NULL) {
742 memset(&dummy, 0, sizeof(dummy));
743 oldp = &dummy;
744 }
745 *inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock;
746 *oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock;
747 *flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
748 *vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
749 *ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
750 ret =
751 (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) +
752 (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) +
753 (RU(pp)->ru_majflt - RU(oldp)->ru_majflt);
754 return (ret);
755 }
756
757 /*
758 * If there was a previous update, use the delta in ki_runtime over
759 * the previous interval to calculate pctcpu. Otherwise, fall back
760 * to using the kernel's ki_pctcpu.
761 */
762 static double
proc_calc_pctcpu(struct kinfo_proc * pp)763 proc_calc_pctcpu(struct kinfo_proc *pp)
764 {
765 const struct kinfo_proc *oldp;
766
767 if (previous_interval != 0) {
768 oldp = get_old_proc(pp);
769 if (oldp != NULL)
770 return ((double)(pp->ki_runtime - oldp->ki_runtime)
771 / previous_interval);
772
773 /*
774 * If this process/thread was created during the previous
775 * interval, charge it's total runtime to the previous
776 * interval.
777 */
778 else if (pp->ki_start.tv_sec > previous_wall_time.tv_sec ||
779 (pp->ki_start.tv_sec == previous_wall_time.tv_sec &&
780 pp->ki_start.tv_usec >= previous_wall_time.tv_usec))
781 return ((double)pp->ki_runtime / previous_interval);
782 }
783 return (pctdouble(pp->ki_pctcpu));
784 }
785
786 /*
787 * Return true if this process has used any CPU time since the
788 * previous update.
789 */
790 static int
proc_used_cpu(struct kinfo_proc * pp)791 proc_used_cpu(struct kinfo_proc *pp)
792 {
793 const struct kinfo_proc *oldp;
794
795 oldp = get_old_proc(pp);
796 if (oldp == NULL)
797 return (PCTCPU(pp) != 0);
798 return (pp->ki_runtime != oldp->ki_runtime ||
799 RU(pp)->ru_nvcsw != RU(oldp)->ru_nvcsw ||
800 RU(pp)->ru_nivcsw != RU(oldp)->ru_nivcsw);
801 }
802
803 /*
804 * Return the total number of block in/out and faults by a process.
805 */
806 static long
get_io_total(const struct kinfo_proc * pp)807 get_io_total(const struct kinfo_proc *pp)
808 {
809 long dummy;
810
811 return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy));
812 }
813
814 static struct handle handle;
815
816 void *
get_process_info(struct system_info * si,struct process_select * sel,const struct sort_info * sort_info)817 get_process_info(struct system_info *si, struct process_select *sel,
818 const struct sort_info *sort_info)
819 {
820 int i;
821 int total_procs;
822 long p_io;
823 long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw;
824 long nsec;
825 int active_procs;
826 struct kinfo_proc **prefp;
827 struct kinfo_proc *pp;
828 struct timespec previous_proc_uptime;
829 compare_fn *compare;
830
831 compare = sort_info->si_compare;
832
833 /*
834 * If thread state was toggled, don't cache the previous processes.
835 */
836 if (previous_thread != sel->thread)
837 nproc = 0;
838 previous_thread = sel->thread;
839
840 /*
841 * Save the previous process info.
842 */
843 if (previous_proc_count_max < nproc) {
844 free(previous_procs);
845 previous_procs = calloc(nproc, sizeof(*previous_procs));
846 free(previous_pref);
847 previous_pref = calloc(nproc, sizeof(*previous_pref));
848 if (previous_procs == NULL || previous_pref == NULL) {
849 fprintf(stderr, "top: Out of memory.\n");
850 quit(TOP_EX_SYS_ERROR);
851 }
852 previous_proc_count_max = nproc;
853 }
854 if (nproc) {
855 for (i = 0; i < nproc; i++)
856 previous_pref[i] = &previous_procs[i];
857 memcpy(previous_procs, pbase, nproc * sizeof(*previous_procs));
858 qsort(previous_pref, nproc, sizeof(*previous_pref),
859 ps.thread ? compare_tid : compare_pid);
860 }
861 previous_proc_count = nproc;
862 previous_proc_uptime = proc_uptime;
863 previous_wall_time = proc_wall_time;
864 previous_interval = 0;
865
866 pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC,
867 0, &nproc);
868 gettimeofday(&proc_wall_time, NULL);
869 if (clock_gettime(CLOCK_UPTIME, &proc_uptime) != 0)
870 memset(&proc_uptime, 0, sizeof(proc_uptime));
871 else if (previous_proc_uptime.tv_sec != 0 &&
872 previous_proc_uptime.tv_nsec != 0) {
873 previous_interval = (proc_uptime.tv_sec -
874 previous_proc_uptime.tv_sec) * 1000000;
875 nsec = proc_uptime.tv_nsec - previous_proc_uptime.tv_nsec;
876 if (nsec < 0) {
877 previous_interval -= 1000000;
878 nsec += 1000000000;
879 }
880 previous_interval += nsec / 1000;
881 }
882 if (nproc > onproc) {
883 pref = realloc(pref, sizeof(*pref) * nproc);
884 pcpu = realloc(pcpu, sizeof(*pcpu) * nproc);
885 onproc = nproc;
886 }
887 if (pref == NULL || pbase == NULL || pcpu == NULL) {
888 fprintf(stderr, "top: Out of memory.\n");
889 quit(TOP_EX_SYS_ERROR);
890 }
891 /* get a pointer to the states summary array */
892 si->procstates = process_states;
893
894 /* count up process states and get pointers to interesting procs */
895 total_procs = 0;
896 active_procs = 0;
897 total_inblock = 0;
898 total_oublock = 0;
899 total_majflt = 0;
900 memset(process_states, 0, sizeof(process_states));
901 prefp = pref;
902 for (pp = pbase, i = 0; i < nproc; pp++, i++) {
903
904 if (pp->ki_stat == 0)
905 /* not in use */
906 continue;
907
908 if (!sel->self && pp->ki_pid == mypid && sel->pid == -1)
909 /* skip self */
910 continue;
911
912 if (!sel->system && (pp->ki_flag & P_SYSTEM) && sel->pid == -1)
913 /* skip system process */
914 continue;
915
916 p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt,
917 &p_vcsw, &p_ivcsw);
918 total_inblock += p_inblock;
919 total_oublock += p_oublock;
920 total_majflt += p_majflt;
921 total_procs++;
922 process_states[(unsigned char)pp->ki_stat]++;
923
924 if (pp->ki_stat == SZOMB)
925 /* skip zombies */
926 continue;
927
928 if (!sel->kidle && pp->ki_tdflags & TDF_IDLETD && sel->pid == -1)
929 /* skip kernel idle process */
930 continue;
931
932 PCTCPU(pp) = proc_calc_pctcpu(pp);
933 if (sel->thread && PCTCPU(pp) > 1.0)
934 PCTCPU(pp) = 1.0;
935 if (displaymode == DISP_CPU && !sel->idle &&
936 (!proc_used_cpu(pp) ||
937 pp->ki_stat == SSTOP || pp->ki_stat == SIDL))
938 /* skip idle or non-running processes */
939 continue;
940
941 if (displaymode == DISP_IO && !sel->idle && p_io == 0)
942 /* skip processes that aren't doing I/O */
943 continue;
944
945 if (sel->jid != -1 && pp->ki_jid != sel->jid)
946 /* skip proc. that don't belong to the selected JID */
947 continue;
948
949 if (sel->uid[0] != -1 && !find_uid(pp->ki_ruid, sel->uid))
950 /* skip proc. that don't belong to the selected UID */
951 continue;
952
953 if (sel->pid != -1 && pp->ki_pid != sel->pid)
954 continue;
955
956 if (!cmd_matches(pp, sel->command))
957 /* skip proc. that doesn't match grep string */
958 continue;
959
960 *prefp++ = pp;
961 active_procs++;
962 }
963
964 /* if requested, sort the "interesting" processes */
965 if (compare != NULL)
966 qsort(pref, active_procs, sizeof(*pref), compare);
967
968 /* remember active and total counts */
969 si->p_total = total_procs;
970 si->p_pactive = pref_len = active_procs;
971
972 /* pass back a handle */
973 handle.next_proc = pref;
974 handle.remaining = active_procs;
975 return (&handle);
976 }
977
978 /*
979 * Returns the sort info associated with the specified order. Currently, that's
980 * really only the comparator that we'll later use. Specifying a NULL ordername
981 * will return the default comparator.
982 */
983 const struct sort_info *
get_sort_info(const char * ordername)984 get_sort_info(const char *ordername)
985 {
986 const struct sort_info *info;
987 size_t idx;
988
989 if (ordername == NULL)
990 return (&sortdata[0]);
991
992 for (idx = 0; idx < nitems(sortdata); idx++) {
993 info = &sortdata[idx];
994
995 if (strcmp(info->si_name, ordername) == 0)
996 return (info);
997 }
998
999 return (NULL);
1000 }
1001
1002 void
dump_sort_names(FILE * fp)1003 dump_sort_names(FILE *fp)
1004 {
1005 const struct sort_info *info;
1006 size_t idx;
1007
1008 for (idx = 0; idx < nitems(sortdata); idx++) {
1009 info = &sortdata[idx];
1010
1011 fprintf(fp, " %s", info->si_name);
1012 }
1013 }
1014
1015 static int
cmd_matches(struct kinfo_proc * proc,const char * term)1016 cmd_matches(struct kinfo_proc *proc, const char *term)
1017 {
1018 char **args = NULL;
1019
1020 if (!term) {
1021 /* No command filter set */
1022 return 1;
1023 } else {
1024 /* Filter set, does process name contain term? */
1025 if (strstr(proc->ki_comm, term))
1026 return 1;
1027 /* Search arguments only if arguments are displayed */
1028 if (show_args) {
1029 args = kvm_getargv(kd, proc, 1024);
1030 if (args == NULL) {
1031 /* Failed to get arguments so can't search them */
1032 return 0;
1033 }
1034 while (*args != NULL) {
1035 if (strstr(*args, term))
1036 return 1;
1037 args++;
1038 }
1039 }
1040 }
1041 return 0;
1042 }
1043
1044 char *
format_next_process(struct handle * xhandle,char * (* get_userid)(int),int flags)1045 format_next_process(struct handle * xhandle, char *(*get_userid)(int), int flags)
1046 {
1047 struct kinfo_proc *pp;
1048 const struct kinfo_proc *oldp;
1049 long cputime;
1050 char status[22];
1051 size_t state;
1052 struct rusage ru, *rup;
1053 long p_tot, s_tot;
1054 char *cmdbuf = NULL;
1055 char **args;
1056 static struct sbuf* procbuf = NULL;
1057
1058 /* clean up from last time. */
1059 if (procbuf != NULL) {
1060 sbuf_clear(procbuf);
1061 } else {
1062 procbuf = sbuf_new_auto();
1063 }
1064
1065
1066 /* find and remember the next proc structure */
1067 pp = *(xhandle->next_proc++);
1068 xhandle->remaining--;
1069
1070 /* get the process's command name */
1071 if ((pp->ki_flag & P_INMEM) == 0) {
1072 /*
1073 * Print swapped processes as <pname>
1074 */
1075 size_t len;
1076
1077 len = strlen(pp->ki_comm);
1078 if (len > sizeof(pp->ki_comm) - 3)
1079 len = sizeof(pp->ki_comm) - 3;
1080 memmove(pp->ki_comm + 1, pp->ki_comm, len);
1081 pp->ki_comm[0] = '<';
1082 pp->ki_comm[len + 1] = '>';
1083 pp->ki_comm[len + 2] = '\0';
1084 }
1085
1086 /*
1087 * Convert the process's runtime from microseconds to seconds. This
1088 * time includes the interrupt time although that is not wanted here.
1089 * ps(1) is similarly sloppy.
1090 */
1091 cputime = (pp->ki_runtime + 500000) / 1000000;
1092
1093 /* generate "STATE" field */
1094 switch (state = pp->ki_stat) {
1095 case SRUN:
1096 if (smpmode && pp->ki_oncpu != NOCPU)
1097 sprintf(status, "CPU%d", pp->ki_oncpu);
1098 else
1099 strcpy(status, "RUN");
1100 break;
1101 case SLOCK:
1102 if (pp->ki_kiflag & KI_LOCKBLOCK) {
1103 sprintf(status, "*%.6s", pp->ki_lockname);
1104 break;
1105 }
1106 /* fall through */
1107 case SSLEEP:
1108 sprintf(status, "%.6s", pp->ki_wmesg);
1109 break;
1110 default:
1111
1112 if (state < nitems(state_abbrev)) {
1113 sprintf(status, "%.6s", state_abbrev[state]);
1114 } else {
1115 sprintf(status, "?%5zu", state);
1116 }
1117 break;
1118 }
1119
1120 cmdbuf = calloc(screen_width + 1, 1);
1121 if (cmdbuf == NULL) {
1122 warn("calloc(%d)", screen_width + 1);
1123 return NULL;
1124 }
1125
1126 if (!(flags & FMT_SHOWARGS)) {
1127 if (ps.thread && pp->ki_flag & P_HADTHREADS &&
1128 pp->ki_tdname[0]) {
1129 snprintf(cmdbuf, screen_width, "%s{%s%s}", pp->ki_comm,
1130 pp->ki_tdname, pp->ki_moretdname);
1131 } else {
1132 snprintf(cmdbuf, screen_width, "%s", pp->ki_comm);
1133 }
1134 } else {
1135 if (pp->ki_flag & P_SYSTEM ||
1136 (args = kvm_getargv(kd, pp, screen_width)) == NULL ||
1137 !(*args)) {
1138 if (ps.thread && pp->ki_flag & P_HADTHREADS &&
1139 pp->ki_tdname[0]) {
1140 snprintf(cmdbuf, screen_width,
1141 "[%s{%s%s}]", pp->ki_comm, pp->ki_tdname,
1142 pp->ki_moretdname);
1143 } else {
1144 snprintf(cmdbuf, screen_width,
1145 "[%s]", pp->ki_comm);
1146 }
1147 } else {
1148 const char *src;
1149 char *dst, *argbuf;
1150 const char *cmd;
1151 size_t argbuflen;
1152 size_t len;
1153
1154 argbuflen = screen_width * 4;
1155 argbuf = calloc(argbuflen + 1, 1);
1156 if (argbuf == NULL) {
1157 warn("calloc(%zu)", argbuflen + 1);
1158 free(cmdbuf);
1159 return NULL;
1160 }
1161
1162 dst = argbuf;
1163
1164 /* Extract cmd name from argv */
1165 cmd = basename(*args);
1166
1167 for (; (src = *args++) != NULL; ) {
1168 if (*src == '\0')
1169 continue;
1170 len = (argbuflen - (dst - argbuf) - 1) / 4;
1171 strvisx(dst, src,
1172 MIN(strlen(src), len),
1173 VIS_NL | VIS_TAB | VIS_CSTYLE | VIS_OCTAL);
1174 while (*dst != '\0')
1175 dst++;
1176 if ((argbuflen - (dst - argbuf) - 1) / 4 > 0)
1177 *dst++ = ' '; /* add delimiting space */
1178 }
1179 if (dst != argbuf && dst[-1] == ' ')
1180 dst--;
1181 *dst = '\0';
1182
1183 if (strcmp(cmd, pp->ki_comm) != 0) {
1184 if (ps.thread && pp->ki_flag & P_HADTHREADS &&
1185 pp->ki_tdname[0])
1186 snprintf(cmdbuf, screen_width,
1187 "%s (%s){%s%s}", argbuf,
1188 pp->ki_comm, pp->ki_tdname,
1189 pp->ki_moretdname);
1190 else
1191 snprintf(cmdbuf, screen_width,
1192 "%s (%s)", argbuf, pp->ki_comm);
1193 } else {
1194 if (ps.thread && pp->ki_flag & P_HADTHREADS &&
1195 pp->ki_tdname[0])
1196 snprintf(cmdbuf, screen_width,
1197 "%s{%s%s}", argbuf, pp->ki_tdname,
1198 pp->ki_moretdname);
1199 else
1200 strlcpy(cmdbuf, argbuf, screen_width);
1201 }
1202 free(argbuf);
1203 }
1204 }
1205
1206 if (displaymode == DISP_IO) {
1207 oldp = get_old_proc(pp);
1208 if (oldp != NULL) {
1209 ru.ru_inblock = RU(pp)->ru_inblock -
1210 RU(oldp)->ru_inblock;
1211 ru.ru_oublock = RU(pp)->ru_oublock -
1212 RU(oldp)->ru_oublock;
1213 ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
1214 ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
1215 ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
1216 rup = &ru;
1217 } else {
1218 rup = RU(pp);
1219 }
1220 p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt;
1221 s_tot = total_inblock + total_oublock + total_majflt;
1222
1223 sbuf_printf(procbuf, "%5d ", (ps.thread_id) ? pp->ki_tid : pp->ki_pid);
1224
1225 if (ps.jail) {
1226 sbuf_printf(procbuf, "%*d ", TOP_JID_LEN - 1, pp->ki_jid);
1227 }
1228 sbuf_printf(procbuf, "%-*.*s", namelength, namelength, (*get_userid)(pp->ki_ruid));
1229 sbuf_printf(procbuf, "%6ld ", rup->ru_nvcsw);
1230 sbuf_printf(procbuf, "%6ld ", rup->ru_nivcsw);
1231 sbuf_printf(procbuf, "%6ld ", rup->ru_inblock);
1232 sbuf_printf(procbuf, "%6ld ", rup->ru_oublock);
1233 sbuf_printf(procbuf, "%6ld ", rup->ru_majflt);
1234 sbuf_printf(procbuf, "%6ld ", p_tot);
1235 sbuf_printf(procbuf, "%6.2f%% ", s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot));
1236
1237 } else {
1238 sbuf_printf(procbuf, "%5d ", (ps.thread_id) ? pp->ki_tid : pp->ki_pid);
1239 if (ps.jail) {
1240 sbuf_printf(procbuf, "%*d ", TOP_JID_LEN - 1, pp->ki_jid);
1241 }
1242 sbuf_printf(procbuf, "%-*.*s ", namelength, namelength, (*get_userid)(pp->ki_ruid));
1243
1244 if (!ps.thread) {
1245 sbuf_printf(procbuf, "%4d ", pp->ki_numthreads);
1246 } else {
1247 sbuf_printf(procbuf, " ");
1248 }
1249
1250 sbuf_printf(procbuf, "%3d ", pp->ki_pri.pri_level - PUSER);
1251 sbuf_printf(procbuf, "%4s", format_nice(pp));
1252 sbuf_printf(procbuf, "%7s ", format_k(PROCSIZE(pp)));
1253 sbuf_printf(procbuf, "%6s ", format_k(pagetok(pp->ki_rssize)));
1254 if (ps.swap) {
1255 sbuf_printf(procbuf, "%*s ",
1256 TOP_SWAP_LEN - 1,
1257 format_k(pagetok(ki_swap(pp))));
1258 }
1259 sbuf_printf(procbuf, "%-6.6s ", status);
1260 if (smpmode) {
1261 int cpu;
1262 if (state == SRUN && pp->ki_oncpu != NOCPU) {
1263 cpu = pp->ki_oncpu;
1264 } else {
1265 cpu = pp->ki_lastcpu;
1266 }
1267 sbuf_printf(procbuf, "%3d ", cpu);
1268 }
1269 sbuf_printf(procbuf, "%6s ", format_time(cputime));
1270 sbuf_printf(procbuf, "%6.2f%% ", ps.wcpu ? 100.0 * weighted_cpu(PCTCPU(pp), pp) : 100.0 * PCTCPU(pp));
1271 }
1272 sbuf_printf(procbuf, "%s", cmdbuf);
1273 free(cmdbuf);
1274 return (sbuf_data(procbuf));
1275 }
1276
1277 static void
getsysctl(const char * name,void * ptr,size_t len)1278 getsysctl(const char *name, void *ptr, size_t len)
1279 {
1280 size_t nlen = len;
1281
1282 if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) {
1283 fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name,
1284 strerror(errno));
1285 quit(TOP_EX_SYS_ERROR);
1286 }
1287 if (nlen != len) {
1288 fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n",
1289 name, (unsigned long)len, (unsigned long)nlen);
1290 quit(TOP_EX_SYS_ERROR);
1291 }
1292 }
1293
1294 static const char *
format_nice(const struct kinfo_proc * pp)1295 format_nice(const struct kinfo_proc *pp)
1296 {
1297 const char *fifo, *kproc;
1298 int rtpri;
1299 static char nicebuf[4 + 1];
1300
1301 fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F";
1302 kproc = (pp->ki_flag & P_KPROC) ? "k" : "";
1303 switch (PRI_BASE(pp->ki_pri.pri_class)) {
1304 case PRI_ITHD:
1305 return ("-");
1306 case PRI_REALTIME:
1307 /*
1308 * XXX: the kernel doesn't tell us the original rtprio and
1309 * doesn't really know what it was, so to recover it we
1310 * must be more chummy with the implementation than the
1311 * implementation is with itself. pri_user gives a
1312 * constant "base" priority, but is only initialized
1313 * properly for user threads. pri_native gives what the
1314 * kernel calls the "base" priority, but it isn't constant
1315 * since it is changed by priority propagation. pri_native
1316 * also isn't properly initialized for all threads, but it
1317 * is properly initialized for kernel realtime and idletime
1318 * threads. Thus we use pri_user for the base priority of
1319 * user threads (it is always correct) and pri_native for
1320 * the base priority of kernel realtime and idletime threads
1321 * (there is nothing better, and it is usually correct).
1322 *
1323 * The field width and thus the buffer are too small for
1324 * values like "kr31F", but such values shouldn't occur,
1325 * and if they do then the tailing "F" is not displayed.
1326 */
1327 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native :
1328 pp->ki_pri.pri_user) - PRI_MIN_REALTIME;
1329 snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s",
1330 kproc, rtpri, fifo);
1331 break;
1332 case PRI_TIMESHARE:
1333 if (pp->ki_flag & P_KPROC)
1334 return ("-");
1335 snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO);
1336 break;
1337 case PRI_IDLE:
1338 /* XXX: as above. */
1339 rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native :
1340 pp->ki_pri.pri_user) - PRI_MIN_IDLE;
1341 snprintf(nicebuf, sizeof(nicebuf), "%si%d%s",
1342 kproc, rtpri, fifo);
1343 break;
1344 default:
1345 return ("?");
1346 }
1347 return (nicebuf);
1348 }
1349
1350 /* comparison routines for qsort */
1351
1352 static int
compare_pid(const void * p1,const void * p2)1353 compare_pid(const void *p1, const void *p2)
1354 {
1355 const struct kinfo_proc * const *pp1 = p1;
1356 const struct kinfo_proc * const *pp2 = p2;
1357
1358 assert((*pp2)->ki_pid >= 0 && (*pp1)->ki_pid >= 0);
1359
1360 return ((*pp1)->ki_pid - (*pp2)->ki_pid);
1361 }
1362
1363 static int
compare_tid(const void * p1,const void * p2)1364 compare_tid(const void *p1, const void *p2)
1365 {
1366 const struct kinfo_proc * const *pp1 = p1;
1367 const struct kinfo_proc * const *pp2 = p2;
1368
1369 assert((*pp2)->ki_tid >= 0 && (*pp1)->ki_tid >= 0);
1370
1371 return ((*pp1)->ki_tid - (*pp2)->ki_tid);
1372 }
1373
1374 /*
1375 * proc_compare - comparison function for "qsort"
1376 * Compares the resource consumption of two processes using five
1377 * distinct keys. The keys (in descending order of importance) are:
1378 * percent cpu, cpu ticks, state, resident set size, total virtual
1379 * memory usage. The process states are ordered as follows (from least
1380 * to most important): run, zombie, idle, interrupt wait, stop, sleep.
1381 * The array declaration below maps a process state index into a
1382 * number that reflects this ordering.
1383 */
1384
1385 static const int sorted_state[] = {
1386 [SIDL] = 3, /* being created */
1387 [SRUN] = 1, /* running/runnable */
1388 [SSLEEP] = 6, /* sleeping */
1389 [SSTOP] = 5, /* stopped/suspended */
1390 [SZOMB] = 2, /* zombie */
1391 [SWAIT] = 4, /* intr */
1392 [SLOCK] = 7, /* blocked on lock */
1393 };
1394
1395
1396 #define ORDERKEY_PCTCPU(a, b) do { \
1397 double diff; \
1398 if (ps.wcpu) \
1399 diff = weighted_cpu(PCTCPU((b)), (b)) - \
1400 weighted_cpu(PCTCPU((a)), (a)); \
1401 else \
1402 diff = PCTCPU((b)) - PCTCPU((a)); \
1403 if (diff != 0) \
1404 return (diff > 0 ? 1 : -1); \
1405 } while (0)
1406
1407 #define ORDERKEY_CPTICKS(a, b) do { \
1408 int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \
1409 if (diff != 0) \
1410 return (diff > 0 ? 1 : -1); \
1411 } while (0)
1412
1413 #define ORDERKEY_STATE(a, b) do { \
1414 int diff = sorted_state[(unsigned char)(b)->ki_stat] - sorted_state[(unsigned char)(a)->ki_stat]; \
1415 if (diff != 0) \
1416 return (diff > 0 ? 1 : -1); \
1417 } while (0)
1418
1419 #define ORDERKEY_PRIO(a, b) do { \
1420 int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \
1421 if (diff != 0) \
1422 return (diff > 0 ? 1 : -1); \
1423 } while (0)
1424
1425 #define ORDERKEY_THREADS(a, b) do { \
1426 int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \
1427 if (diff != 0) \
1428 return (diff > 0 ? 1 : -1); \
1429 } while (0)
1430
1431 #define ORDERKEY_RSSIZE(a, b) do { \
1432 long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \
1433 if (diff != 0) \
1434 return (diff > 0 ? 1 : -1); \
1435 } while (0)
1436
1437 #define ORDERKEY_MEM(a, b) do { \
1438 long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \
1439 if (diff != 0) \
1440 return (diff > 0 ? 1 : -1); \
1441 } while (0)
1442
1443 #define ORDERKEY_JID(a, b) do { \
1444 int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \
1445 if (diff != 0) \
1446 return (diff > 0 ? 1 : -1); \
1447 } while (0)
1448
1449 #define ORDERKEY_SWAP(a, b) do { \
1450 int diff = (int)ki_swap(b) - (int)ki_swap(a); \
1451 if (diff != 0) \
1452 return (diff > 0 ? 1 : -1); \
1453 } while (0)
1454
1455 /* compare_cpu - the comparison function for sorting by cpu percentage */
1456
1457 static int
compare_cpu(const void * arg1,const void * arg2)1458 compare_cpu(const void *arg1, const void *arg2)
1459 {
1460 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
1461 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
1462
1463 ORDERKEY_PCTCPU(p1, p2);
1464 ORDERKEY_CPTICKS(p1, p2);
1465 ORDERKEY_STATE(p1, p2);
1466 ORDERKEY_PRIO(p1, p2);
1467 ORDERKEY_RSSIZE(p1, p2);
1468 ORDERKEY_MEM(p1, p2);
1469
1470 return (0);
1471 }
1472
1473 /* compare_size - the comparison function for sorting by total memory usage */
1474
1475 static int
compare_size(const void * arg1,const void * arg2)1476 compare_size(const void *arg1, const void *arg2)
1477 {
1478 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
1479 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
1480
1481 ORDERKEY_MEM(p1, p2);
1482 ORDERKEY_RSSIZE(p1, p2);
1483 ORDERKEY_PCTCPU(p1, p2);
1484 ORDERKEY_CPTICKS(p1, p2);
1485 ORDERKEY_STATE(p1, p2);
1486 ORDERKEY_PRIO(p1, p2);
1487
1488 return (0);
1489 }
1490
1491 /* compare_res - the comparison function for sorting by resident set size */
1492
1493 static int
compare_res(const void * arg1,const void * arg2)1494 compare_res(const void *arg1, const void *arg2)
1495 {
1496 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
1497 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
1498
1499 ORDERKEY_RSSIZE(p1, p2);
1500 ORDERKEY_MEM(p1, p2);
1501 ORDERKEY_PCTCPU(p1, p2);
1502 ORDERKEY_CPTICKS(p1, p2);
1503 ORDERKEY_STATE(p1, p2);
1504 ORDERKEY_PRIO(p1, p2);
1505
1506 return (0);
1507 }
1508
1509 /* compare_time - the comparison function for sorting by total cpu time */
1510
1511 static int
compare_time(const void * arg1,const void * arg2)1512 compare_time(const void *arg1, const void *arg2)
1513 {
1514 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
1515 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *) arg2;
1516
1517 ORDERKEY_CPTICKS(p1, p2);
1518 ORDERKEY_PCTCPU(p1, p2);
1519 ORDERKEY_STATE(p1, p2);
1520 ORDERKEY_PRIO(p1, p2);
1521 ORDERKEY_RSSIZE(p1, p2);
1522 ORDERKEY_MEM(p1, p2);
1523
1524 return (0);
1525 }
1526
1527 /* compare_prio - the comparison function for sorting by priority */
1528
1529 static int
compare_prio(const void * arg1,const void * arg2)1530 compare_prio(const void *arg1, const void *arg2)
1531 {
1532 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
1533 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
1534
1535 ORDERKEY_PRIO(p1, p2);
1536 ORDERKEY_CPTICKS(p1, p2);
1537 ORDERKEY_PCTCPU(p1, p2);
1538 ORDERKEY_STATE(p1, p2);
1539 ORDERKEY_RSSIZE(p1, p2);
1540 ORDERKEY_MEM(p1, p2);
1541
1542 return (0);
1543 }
1544
1545 /* compare_threads - the comparison function for sorting by threads */
1546 static int
compare_threads(const void * arg1,const void * arg2)1547 compare_threads(const void *arg1, const void *arg2)
1548 {
1549 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
1550 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
1551
1552 ORDERKEY_THREADS(p1, p2);
1553 ORDERKEY_PCTCPU(p1, p2);
1554 ORDERKEY_CPTICKS(p1, p2);
1555 ORDERKEY_STATE(p1, p2);
1556 ORDERKEY_PRIO(p1, p2);
1557 ORDERKEY_RSSIZE(p1, p2);
1558 ORDERKEY_MEM(p1, p2);
1559
1560 return (0);
1561 }
1562
1563 /* compare_jid - the comparison function for sorting by jid */
1564 static int
compare_jid(const void * arg1,const void * arg2)1565 compare_jid(const void *arg1, const void *arg2)
1566 {
1567 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
1568 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
1569
1570 ORDERKEY_JID(p1, p2);
1571 ORDERKEY_PCTCPU(p1, p2);
1572 ORDERKEY_CPTICKS(p1, p2);
1573 ORDERKEY_STATE(p1, p2);
1574 ORDERKEY_PRIO(p1, p2);
1575 ORDERKEY_RSSIZE(p1, p2);
1576 ORDERKEY_MEM(p1, p2);
1577
1578 return (0);
1579 }
1580
1581 /* compare_swap - the comparison function for sorting by swap */
1582 static int
compare_swap(const void * arg1,const void * arg2)1583 compare_swap(const void *arg1, const void *arg2)
1584 {
1585 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
1586 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
1587
1588 ORDERKEY_SWAP(p1, p2);
1589 ORDERKEY_PCTCPU(p1, p2);
1590 ORDERKEY_CPTICKS(p1, p2);
1591 ORDERKEY_STATE(p1, p2);
1592 ORDERKEY_PRIO(p1, p2);
1593 ORDERKEY_RSSIZE(p1, p2);
1594 ORDERKEY_MEM(p1, p2);
1595
1596 return (0);
1597 }
1598
1599 /* assorted comparison functions for sorting by i/o */
1600
1601 static int
compare_iototal(const void * arg1,const void * arg2)1602 compare_iototal(const void *arg1, const void *arg2)
1603 {
1604 const struct kinfo_proc * const p1 = *(const struct kinfo_proc * const *)arg1;
1605 const struct kinfo_proc * const p2 = *(const struct kinfo_proc * const *)arg2;
1606
1607 return (get_io_total(p2) - get_io_total(p1));
1608 }
1609
1610 static int
compare_ioread(const void * arg1,const void * arg2)1611 compare_ioread(const void *arg1, const void *arg2)
1612 {
1613 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
1614 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
1615 long dummy, inp1, inp2;
1616
1617 (void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy);
1618 (void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy);
1619
1620 return (inp2 - inp1);
1621 }
1622
1623 static int
compare_iowrite(const void * arg1,const void * arg2)1624 compare_iowrite(const void *arg1, const void *arg2)
1625 {
1626 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
1627 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
1628 long dummy, oup1, oup2;
1629
1630 (void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy);
1631 (void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy);
1632
1633 return (oup2 - oup1);
1634 }
1635
1636 static int
compare_iofault(const void * arg1,const void * arg2)1637 compare_iofault(const void *arg1, const void *arg2)
1638 {
1639 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
1640 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
1641 long dummy, flp1, flp2;
1642
1643 (void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy);
1644 (void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy);
1645
1646 return (flp2 - flp1);
1647 }
1648
1649 static int
compare_vcsw(const void * arg1,const void * arg2)1650 compare_vcsw(const void *arg1, const void *arg2)
1651 {
1652 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
1653 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
1654 long dummy, flp1, flp2;
1655
1656 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy);
1657 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy);
1658
1659 return (flp2 - flp1);
1660 }
1661
1662 static int
compare_ivcsw(const void * arg1,const void * arg2)1663 compare_ivcsw(const void *arg1, const void *arg2)
1664 {
1665 const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
1666 const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
1667 long dummy, flp1, flp2;
1668
1669 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1);
1670 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2);
1671
1672 return (flp2 - flp1);
1673 }
1674
1675 static int
swapmode(int * retavail,int * retfree)1676 swapmode(int *retavail, int *retfree)
1677 {
1678 int n;
1679 struct kvm_swap swapary[1];
1680 static int pagesize = 0;
1681 static unsigned long swap_maxpages = 0;
1682
1683 *retavail = 0;
1684 *retfree = 0;
1685
1686 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024)
1687
1688 n = kvm_getswapinfo(kd, swapary, 1, 0);
1689 if (n < 0 || swapary[0].ksw_total == 0)
1690 return (0);
1691
1692 if (pagesize == 0)
1693 pagesize = getpagesize();
1694 if (swap_maxpages == 0)
1695 GETSYSCTL("vm.swap_maxpages", swap_maxpages);
1696
1697 /* ksw_total contains the total size of swap all devices which may
1698 exceed the maximum swap size allocatable in the system */
1699 if ( swapary[0].ksw_total > swap_maxpages )
1700 swapary[0].ksw_total = swap_maxpages;
1701
1702 *retavail = CONVERT(swapary[0].ksw_total);
1703 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
1704
1705 #undef CONVERT
1706
1707 n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total);
1708 return (n);
1709 }
1710