xref: /linux/drivers/gpu/drm/xe/xe_svm.c (revision e9ef810dfee7a2227da9d423aecb0ced35faddbe)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2024 Intel Corporation
4  */
5 
6 #include <drm/drm_drv.h>
7 
8 #include "xe_bo.h"
9 #include "xe_gt_stats.h"
10 #include "xe_gt_tlb_invalidation.h"
11 #include "xe_migrate.h"
12 #include "xe_module.h"
13 #include "xe_pm.h"
14 #include "xe_pt.h"
15 #include "xe_svm.h"
16 #include "xe_tile.h"
17 #include "xe_ttm_vram_mgr.h"
18 #include "xe_vm.h"
19 #include "xe_vm_types.h"
20 
xe_svm_range_in_vram(struct xe_svm_range * range)21 static bool xe_svm_range_in_vram(struct xe_svm_range *range)
22 {
23 	/*
24 	 * Advisory only check whether the range is currently backed by VRAM
25 	 * memory.
26 	 */
27 
28 	struct drm_gpusvm_range_flags flags = {
29 		/* Pairs with WRITE_ONCE in drm_gpusvm.c */
30 		.__flags = READ_ONCE(range->base.flags.__flags),
31 	};
32 
33 	return flags.has_devmem_pages;
34 }
35 
xe_svm_range_has_vram_binding(struct xe_svm_range * range)36 static bool xe_svm_range_has_vram_binding(struct xe_svm_range *range)
37 {
38 	/* Not reliable without notifier lock */
39 	return xe_svm_range_in_vram(range) && range->tile_present;
40 }
41 
gpusvm_to_vm(struct drm_gpusvm * gpusvm)42 static struct xe_vm *gpusvm_to_vm(struct drm_gpusvm *gpusvm)
43 {
44 	return container_of(gpusvm, struct xe_vm, svm.gpusvm);
45 }
46 
range_to_vm(struct drm_gpusvm_range * r)47 static struct xe_vm *range_to_vm(struct drm_gpusvm_range *r)
48 {
49 	return gpusvm_to_vm(r->gpusvm);
50 }
51 
52 #define range_debug(r__, operaton__)					\
53 	vm_dbg(&range_to_vm(&(r__)->base)->xe->drm,			\
54 	       "%s: asid=%u, gpusvm=%p, vram=%d,%d, seqno=%lu, " \
55 	       "start=0x%014lx, end=0x%014lx, size=%lu",		\
56 	       (operaton__), range_to_vm(&(r__)->base)->usm.asid,	\
57 	       (r__)->base.gpusvm,					\
58 	       xe_svm_range_in_vram((r__)) ? 1 : 0,			\
59 	       xe_svm_range_has_vram_binding((r__)) ? 1 : 0,		\
60 	       (r__)->base.notifier_seq,				\
61 	       xe_svm_range_start((r__)), xe_svm_range_end((r__)),	\
62 	       xe_svm_range_size((r__)))
63 
xe_svm_range_debug(struct xe_svm_range * range,const char * operation)64 void xe_svm_range_debug(struct xe_svm_range *range, const char *operation)
65 {
66 	range_debug(range, operation);
67 }
68 
xe_svm_devm_owner(struct xe_device * xe)69 static void *xe_svm_devm_owner(struct xe_device *xe)
70 {
71 	return xe;
72 }
73 
74 static struct drm_gpusvm_range *
xe_svm_range_alloc(struct drm_gpusvm * gpusvm)75 xe_svm_range_alloc(struct drm_gpusvm *gpusvm)
76 {
77 	struct xe_svm_range *range;
78 
79 	range = kzalloc(sizeof(*range), GFP_KERNEL);
80 	if (!range)
81 		return NULL;
82 
83 	INIT_LIST_HEAD(&range->garbage_collector_link);
84 	xe_vm_get(gpusvm_to_vm(gpusvm));
85 
86 	return &range->base;
87 }
88 
xe_svm_range_free(struct drm_gpusvm_range * range)89 static void xe_svm_range_free(struct drm_gpusvm_range *range)
90 {
91 	xe_vm_put(range_to_vm(range));
92 	kfree(range);
93 }
94 
95 static void
xe_svm_garbage_collector_add_range(struct xe_vm * vm,struct xe_svm_range * range,const struct mmu_notifier_range * mmu_range)96 xe_svm_garbage_collector_add_range(struct xe_vm *vm, struct xe_svm_range *range,
97 				   const struct mmu_notifier_range *mmu_range)
98 {
99 	struct xe_device *xe = vm->xe;
100 
101 	range_debug(range, "GARBAGE COLLECTOR ADD");
102 
103 	drm_gpusvm_range_set_unmapped(&range->base, mmu_range);
104 
105 	spin_lock(&vm->svm.garbage_collector.lock);
106 	if (list_empty(&range->garbage_collector_link))
107 		list_add_tail(&range->garbage_collector_link,
108 			      &vm->svm.garbage_collector.range_list);
109 	spin_unlock(&vm->svm.garbage_collector.lock);
110 
111 	queue_work(xe_device_get_root_tile(xe)->primary_gt->usm.pf_wq,
112 		   &vm->svm.garbage_collector.work);
113 }
114 
115 static u8
xe_svm_range_notifier_event_begin(struct xe_vm * vm,struct drm_gpusvm_range * r,const struct mmu_notifier_range * mmu_range,u64 * adj_start,u64 * adj_end)116 xe_svm_range_notifier_event_begin(struct xe_vm *vm, struct drm_gpusvm_range *r,
117 				  const struct mmu_notifier_range *mmu_range,
118 				  u64 *adj_start, u64 *adj_end)
119 {
120 	struct xe_svm_range *range = to_xe_range(r);
121 	struct xe_device *xe = vm->xe;
122 	struct xe_tile *tile;
123 	u8 tile_mask = 0;
124 	u8 id;
125 
126 	xe_svm_assert_in_notifier(vm);
127 
128 	range_debug(range, "NOTIFIER");
129 
130 	/* Skip if already unmapped or if no binding exist */
131 	if (range->base.flags.unmapped || !range->tile_present)
132 		return 0;
133 
134 	range_debug(range, "NOTIFIER - EXECUTE");
135 
136 	/* Adjust invalidation to range boundaries */
137 	*adj_start = min(xe_svm_range_start(range), mmu_range->start);
138 	*adj_end = max(xe_svm_range_end(range), mmu_range->end);
139 
140 	/*
141 	 * XXX: Ideally would zap PTEs in one shot in xe_svm_invalidate but the
142 	 * invalidation code can't correctly cope with sparse ranges or
143 	 * invalidations spanning multiple ranges.
144 	 */
145 	for_each_tile(tile, xe, id)
146 		if (xe_pt_zap_ptes_range(tile, vm, range)) {
147 			tile_mask |= BIT(id);
148 			/*
149 			 * WRITE_ONCE pairs with READ_ONCE in
150 			 * xe_vm_has_valid_gpu_mapping()
151 			 */
152 			WRITE_ONCE(range->tile_invalidated,
153 				   range->tile_invalidated | BIT(id));
154 		}
155 
156 	return tile_mask;
157 }
158 
159 static void
xe_svm_range_notifier_event_end(struct xe_vm * vm,struct drm_gpusvm_range * r,const struct mmu_notifier_range * mmu_range)160 xe_svm_range_notifier_event_end(struct xe_vm *vm, struct drm_gpusvm_range *r,
161 				const struct mmu_notifier_range *mmu_range)
162 {
163 	struct drm_gpusvm_ctx ctx = { .in_notifier = true, };
164 
165 	xe_svm_assert_in_notifier(vm);
166 
167 	drm_gpusvm_range_unmap_pages(&vm->svm.gpusvm, r, &ctx);
168 	if (!xe_vm_is_closed(vm) && mmu_range->event == MMU_NOTIFY_UNMAP)
169 		xe_svm_garbage_collector_add_range(vm, to_xe_range(r),
170 						   mmu_range);
171 }
172 
xe_svm_invalidate(struct drm_gpusvm * gpusvm,struct drm_gpusvm_notifier * notifier,const struct mmu_notifier_range * mmu_range)173 static void xe_svm_invalidate(struct drm_gpusvm *gpusvm,
174 			      struct drm_gpusvm_notifier *notifier,
175 			      const struct mmu_notifier_range *mmu_range)
176 {
177 	struct xe_vm *vm = gpusvm_to_vm(gpusvm);
178 	struct xe_device *xe = vm->xe;
179 	struct drm_gpusvm_range *r, *first;
180 	u64 adj_start = mmu_range->start, adj_end = mmu_range->end;
181 	u8 tile_mask = 0;
182 	long err;
183 
184 	xe_svm_assert_in_notifier(vm);
185 
186 	vm_dbg(&gpusvm_to_vm(gpusvm)->xe->drm,
187 	       "INVALIDATE: asid=%u, gpusvm=%p, seqno=%lu, start=0x%016lx, end=0x%016lx, event=%d",
188 	       vm->usm.asid, gpusvm, notifier->notifier.invalidate_seq,
189 	       mmu_range->start, mmu_range->end, mmu_range->event);
190 
191 	/* Adjust invalidation to notifier boundaries */
192 	adj_start = max(drm_gpusvm_notifier_start(notifier), adj_start);
193 	adj_end = min(drm_gpusvm_notifier_end(notifier), adj_end);
194 
195 	first = drm_gpusvm_range_find(notifier, adj_start, adj_end);
196 	if (!first)
197 		return;
198 
199 	/*
200 	 * PTs may be getting destroyed so not safe to touch these but PT should
201 	 * be invalidated at this point in time. Regardless we still need to
202 	 * ensure any dma mappings are unmapped in the here.
203 	 */
204 	if (xe_vm_is_closed(vm))
205 		goto range_notifier_event_end;
206 
207 	/*
208 	 * XXX: Less than ideal to always wait on VM's resv slots if an
209 	 * invalidation is not required. Could walk range list twice to figure
210 	 * out if an invalidations is need, but also not ideal.
211 	 */
212 	err = dma_resv_wait_timeout(xe_vm_resv(vm),
213 				    DMA_RESV_USAGE_BOOKKEEP,
214 				    false, MAX_SCHEDULE_TIMEOUT);
215 	XE_WARN_ON(err <= 0);
216 
217 	r = first;
218 	drm_gpusvm_for_each_range(r, notifier, adj_start, adj_end)
219 		tile_mask |= xe_svm_range_notifier_event_begin(vm, r, mmu_range,
220 							       &adj_start,
221 							       &adj_end);
222 	if (!tile_mask)
223 		goto range_notifier_event_end;
224 
225 	xe_device_wmb(xe);
226 
227 	err = xe_vm_range_tilemask_tlb_invalidation(vm, adj_start, adj_end, tile_mask);
228 	WARN_ON_ONCE(err);
229 
230 range_notifier_event_end:
231 	r = first;
232 	drm_gpusvm_for_each_range(r, notifier, adj_start, adj_end)
233 		xe_svm_range_notifier_event_end(vm, r, mmu_range);
234 }
235 
__xe_svm_garbage_collector(struct xe_vm * vm,struct xe_svm_range * range)236 static int __xe_svm_garbage_collector(struct xe_vm *vm,
237 				      struct xe_svm_range *range)
238 {
239 	struct dma_fence *fence;
240 
241 	range_debug(range, "GARBAGE COLLECTOR");
242 
243 	xe_vm_lock(vm, false);
244 	fence = xe_vm_range_unbind(vm, range);
245 	xe_vm_unlock(vm);
246 	if (IS_ERR(fence))
247 		return PTR_ERR(fence);
248 	dma_fence_put(fence);
249 
250 	drm_gpusvm_range_remove(&vm->svm.gpusvm, &range->base);
251 
252 	return 0;
253 }
254 
xe_svm_garbage_collector(struct xe_vm * vm)255 static int xe_svm_garbage_collector(struct xe_vm *vm)
256 {
257 	struct xe_svm_range *range;
258 	int err;
259 
260 	lockdep_assert_held_write(&vm->lock);
261 
262 	if (xe_vm_is_closed_or_banned(vm))
263 		return -ENOENT;
264 
265 	spin_lock(&vm->svm.garbage_collector.lock);
266 	for (;;) {
267 		range = list_first_entry_or_null(&vm->svm.garbage_collector.range_list,
268 						 typeof(*range),
269 						 garbage_collector_link);
270 		if (!range)
271 			break;
272 
273 		list_del(&range->garbage_collector_link);
274 		spin_unlock(&vm->svm.garbage_collector.lock);
275 
276 		err = __xe_svm_garbage_collector(vm, range);
277 		if (err) {
278 			drm_warn(&vm->xe->drm,
279 				 "Garbage collection failed: %pe\n",
280 				 ERR_PTR(err));
281 			xe_vm_kill(vm, true);
282 			return err;
283 		}
284 
285 		spin_lock(&vm->svm.garbage_collector.lock);
286 	}
287 	spin_unlock(&vm->svm.garbage_collector.lock);
288 
289 	return 0;
290 }
291 
xe_svm_garbage_collector_work_func(struct work_struct * w)292 static void xe_svm_garbage_collector_work_func(struct work_struct *w)
293 {
294 	struct xe_vm *vm = container_of(w, struct xe_vm,
295 					svm.garbage_collector.work);
296 
297 	down_write(&vm->lock);
298 	xe_svm_garbage_collector(vm);
299 	up_write(&vm->lock);
300 }
301 
302 #if IS_ENABLED(CONFIG_DRM_XE_PAGEMAP)
303 
page_to_vr(struct page * page)304 static struct xe_vram_region *page_to_vr(struct page *page)
305 {
306 	return container_of(page_pgmap(page), struct xe_vram_region, pagemap);
307 }
308 
vr_to_tile(struct xe_vram_region * vr)309 static struct xe_tile *vr_to_tile(struct xe_vram_region *vr)
310 {
311 	return container_of(vr, struct xe_tile, mem.vram);
312 }
313 
xe_vram_region_page_to_dpa(struct xe_vram_region * vr,struct page * page)314 static u64 xe_vram_region_page_to_dpa(struct xe_vram_region *vr,
315 				      struct page *page)
316 {
317 	u64 dpa;
318 	struct xe_tile *tile = vr_to_tile(vr);
319 	u64 pfn = page_to_pfn(page);
320 	u64 offset;
321 
322 	xe_tile_assert(tile, is_device_private_page(page));
323 	xe_tile_assert(tile, (pfn << PAGE_SHIFT) >= vr->hpa_base);
324 
325 	offset = (pfn << PAGE_SHIFT) - vr->hpa_base;
326 	dpa = vr->dpa_base + offset;
327 
328 	return dpa;
329 }
330 
331 enum xe_svm_copy_dir {
332 	XE_SVM_COPY_TO_VRAM,
333 	XE_SVM_COPY_TO_SRAM,
334 };
335 
xe_svm_copy(struct page ** pages,dma_addr_t * dma_addr,unsigned long npages,const enum xe_svm_copy_dir dir)336 static int xe_svm_copy(struct page **pages, dma_addr_t *dma_addr,
337 		       unsigned long npages, const enum xe_svm_copy_dir dir)
338 {
339 	struct xe_vram_region *vr = NULL;
340 	struct xe_tile *tile;
341 	struct dma_fence *fence = NULL;
342 	unsigned long i;
343 #define XE_VRAM_ADDR_INVALID	~0x0ull
344 	u64 vram_addr = XE_VRAM_ADDR_INVALID;
345 	int err = 0, pos = 0;
346 	bool sram = dir == XE_SVM_COPY_TO_SRAM;
347 
348 	/*
349 	 * This flow is complex: it locates physically contiguous device pages,
350 	 * derives the starting physical address, and performs a single GPU copy
351 	 * to for every 8M chunk in a DMA address array. Both device pages and
352 	 * DMA addresses may be sparsely populated. If either is NULL, a copy is
353 	 * triggered based on the current search state. The last GPU copy is
354 	 * waited on to ensure all copies are complete.
355 	 */
356 
357 	for (i = 0; i < npages; ++i) {
358 		struct page *spage = pages[i];
359 		struct dma_fence *__fence;
360 		u64 __vram_addr;
361 		bool match = false, chunk, last;
362 
363 #define XE_MIGRATE_CHUNK_SIZE	SZ_8M
364 		chunk = (i - pos) == (XE_MIGRATE_CHUNK_SIZE / PAGE_SIZE);
365 		last = (i + 1) == npages;
366 
367 		/* No CPU page and no device pages queue'd to copy */
368 		if (!dma_addr[i] && vram_addr == XE_VRAM_ADDR_INVALID)
369 			continue;
370 
371 		if (!vr && spage) {
372 			vr = page_to_vr(spage);
373 			tile = vr_to_tile(vr);
374 		}
375 		XE_WARN_ON(spage && page_to_vr(spage) != vr);
376 
377 		/*
378 		 * CPU page and device page valid, capture physical address on
379 		 * first device page, check if physical contiguous on subsequent
380 		 * device pages.
381 		 */
382 		if (dma_addr[i] && spage) {
383 			__vram_addr = xe_vram_region_page_to_dpa(vr, spage);
384 			if (vram_addr == XE_VRAM_ADDR_INVALID) {
385 				vram_addr = __vram_addr;
386 				pos = i;
387 			}
388 
389 			match = vram_addr + PAGE_SIZE * (i - pos) == __vram_addr;
390 		}
391 
392 		/*
393 		 * Mismatched physical address, 8M copy chunk, or last page -
394 		 * trigger a copy.
395 		 */
396 		if (!match || chunk || last) {
397 			/*
398 			 * Extra page for first copy if last page and matching
399 			 * physical address.
400 			 */
401 			int incr = (match && last) ? 1 : 0;
402 
403 			if (vram_addr != XE_VRAM_ADDR_INVALID) {
404 				if (sram) {
405 					vm_dbg(&tile->xe->drm,
406 					       "COPY TO SRAM - 0x%016llx -> 0x%016llx, NPAGES=%ld",
407 					       vram_addr, (u64)dma_addr[pos], i - pos + incr);
408 					__fence = xe_migrate_from_vram(tile->migrate,
409 								       i - pos + incr,
410 								       vram_addr,
411 								       dma_addr + pos);
412 				} else {
413 					vm_dbg(&tile->xe->drm,
414 					       "COPY TO VRAM - 0x%016llx -> 0x%016llx, NPAGES=%ld",
415 					       (u64)dma_addr[pos], vram_addr, i - pos + incr);
416 					__fence = xe_migrate_to_vram(tile->migrate,
417 								     i - pos + incr,
418 								     dma_addr + pos,
419 								     vram_addr);
420 				}
421 				if (IS_ERR(__fence)) {
422 					err = PTR_ERR(__fence);
423 					goto err_out;
424 				}
425 
426 				dma_fence_put(fence);
427 				fence = __fence;
428 			}
429 
430 			/* Setup physical address of next device page */
431 			if (dma_addr[i] && spage) {
432 				vram_addr = __vram_addr;
433 				pos = i;
434 			} else {
435 				vram_addr = XE_VRAM_ADDR_INVALID;
436 			}
437 
438 			/* Extra mismatched device page, copy it */
439 			if (!match && last && vram_addr != XE_VRAM_ADDR_INVALID) {
440 				if (sram) {
441 					vm_dbg(&tile->xe->drm,
442 					       "COPY TO SRAM - 0x%016llx -> 0x%016llx, NPAGES=%d",
443 					       vram_addr, (u64)dma_addr[pos], 1);
444 					__fence = xe_migrate_from_vram(tile->migrate, 1,
445 								       vram_addr,
446 								       dma_addr + pos);
447 				} else {
448 					vm_dbg(&tile->xe->drm,
449 					       "COPY TO VRAM - 0x%016llx -> 0x%016llx, NPAGES=%d",
450 					       (u64)dma_addr[pos], vram_addr, 1);
451 					__fence = xe_migrate_to_vram(tile->migrate, 1,
452 								     dma_addr + pos,
453 								     vram_addr);
454 				}
455 				if (IS_ERR(__fence)) {
456 					err = PTR_ERR(__fence);
457 					goto err_out;
458 				}
459 
460 				dma_fence_put(fence);
461 				fence = __fence;
462 			}
463 		}
464 	}
465 
466 err_out:
467 	/* Wait for all copies to complete */
468 	if (fence) {
469 		dma_fence_wait(fence, false);
470 		dma_fence_put(fence);
471 	}
472 
473 	return err;
474 #undef XE_MIGRATE_CHUNK_SIZE
475 #undef XE_VRAM_ADDR_INVALID
476 }
477 
xe_svm_copy_to_devmem(struct page ** pages,dma_addr_t * dma_addr,unsigned long npages)478 static int xe_svm_copy_to_devmem(struct page **pages, dma_addr_t *dma_addr,
479 				 unsigned long npages)
480 {
481 	return xe_svm_copy(pages, dma_addr, npages, XE_SVM_COPY_TO_VRAM);
482 }
483 
xe_svm_copy_to_ram(struct page ** pages,dma_addr_t * dma_addr,unsigned long npages)484 static int xe_svm_copy_to_ram(struct page **pages, dma_addr_t *dma_addr,
485 			      unsigned long npages)
486 {
487 	return xe_svm_copy(pages, dma_addr, npages, XE_SVM_COPY_TO_SRAM);
488 }
489 
to_xe_bo(struct drm_pagemap_devmem * devmem_allocation)490 static struct xe_bo *to_xe_bo(struct drm_pagemap_devmem *devmem_allocation)
491 {
492 	return container_of(devmem_allocation, struct xe_bo, devmem_allocation);
493 }
494 
xe_svm_devmem_release(struct drm_pagemap_devmem * devmem_allocation)495 static void xe_svm_devmem_release(struct drm_pagemap_devmem *devmem_allocation)
496 {
497 	struct xe_bo *bo = to_xe_bo(devmem_allocation);
498 	struct xe_device *xe = xe_bo_device(bo);
499 
500 	xe_bo_put_async(bo);
501 	xe_pm_runtime_put(xe);
502 }
503 
block_offset_to_pfn(struct xe_vram_region * vr,u64 offset)504 static u64 block_offset_to_pfn(struct xe_vram_region *vr, u64 offset)
505 {
506 	return PHYS_PFN(offset + vr->hpa_base);
507 }
508 
tile_to_buddy(struct xe_tile * tile)509 static struct drm_buddy *tile_to_buddy(struct xe_tile *tile)
510 {
511 	return &tile->mem.vram.ttm.mm;
512 }
513 
xe_svm_populate_devmem_pfn(struct drm_pagemap_devmem * devmem_allocation,unsigned long npages,unsigned long * pfn)514 static int xe_svm_populate_devmem_pfn(struct drm_pagemap_devmem *devmem_allocation,
515 				      unsigned long npages, unsigned long *pfn)
516 {
517 	struct xe_bo *bo = to_xe_bo(devmem_allocation);
518 	struct ttm_resource *res = bo->ttm.resource;
519 	struct list_head *blocks = &to_xe_ttm_vram_mgr_resource(res)->blocks;
520 	struct drm_buddy_block *block;
521 	int j = 0;
522 
523 	list_for_each_entry(block, blocks, link) {
524 		struct xe_vram_region *vr = block->private;
525 		struct xe_tile *tile = vr_to_tile(vr);
526 		struct drm_buddy *buddy = tile_to_buddy(tile);
527 		u64 block_pfn = block_offset_to_pfn(vr, drm_buddy_block_offset(block));
528 		int i;
529 
530 		for (i = 0; i < drm_buddy_block_size(buddy, block) >> PAGE_SHIFT; ++i)
531 			pfn[j++] = block_pfn + i;
532 	}
533 
534 	return 0;
535 }
536 
537 static const struct drm_pagemap_devmem_ops dpagemap_devmem_ops = {
538 	.devmem_release = xe_svm_devmem_release,
539 	.populate_devmem_pfn = xe_svm_populate_devmem_pfn,
540 	.copy_to_devmem = xe_svm_copy_to_devmem,
541 	.copy_to_ram = xe_svm_copy_to_ram,
542 };
543 
544 #endif
545 
546 static const struct drm_gpusvm_ops gpusvm_ops = {
547 	.range_alloc = xe_svm_range_alloc,
548 	.range_free = xe_svm_range_free,
549 	.invalidate = xe_svm_invalidate,
550 };
551 
552 static const unsigned long fault_chunk_sizes[] = {
553 	SZ_2M,
554 	SZ_64K,
555 	SZ_4K,
556 };
557 
558 /**
559  * xe_svm_init() - SVM initialize
560  * @vm: The VM.
561  *
562  * Initialize SVM state which is embedded within the VM.
563  *
564  * Return: 0 on success, negative error code on error.
565  */
xe_svm_init(struct xe_vm * vm)566 int xe_svm_init(struct xe_vm *vm)
567 {
568 	int err;
569 
570 	spin_lock_init(&vm->svm.garbage_collector.lock);
571 	INIT_LIST_HEAD(&vm->svm.garbage_collector.range_list);
572 	INIT_WORK(&vm->svm.garbage_collector.work,
573 		  xe_svm_garbage_collector_work_func);
574 
575 	err = drm_gpusvm_init(&vm->svm.gpusvm, "Xe SVM", &vm->xe->drm,
576 			      current->mm, xe_svm_devm_owner(vm->xe), 0,
577 			      vm->size, xe_modparam.svm_notifier_size * SZ_1M,
578 			      &gpusvm_ops, fault_chunk_sizes,
579 			      ARRAY_SIZE(fault_chunk_sizes));
580 	if (err)
581 		return err;
582 
583 	drm_gpusvm_driver_set_lock(&vm->svm.gpusvm, &vm->lock);
584 
585 	return 0;
586 }
587 
588 /**
589  * xe_svm_close() - SVM close
590  * @vm: The VM.
591  *
592  * Close SVM state (i.e., stop and flush all SVM actions).
593  */
xe_svm_close(struct xe_vm * vm)594 void xe_svm_close(struct xe_vm *vm)
595 {
596 	xe_assert(vm->xe, xe_vm_is_closed(vm));
597 	flush_work(&vm->svm.garbage_collector.work);
598 }
599 
600 /**
601  * xe_svm_fini() - SVM finalize
602  * @vm: The VM.
603  *
604  * Finalize SVM state which is embedded within the VM.
605  */
xe_svm_fini(struct xe_vm * vm)606 void xe_svm_fini(struct xe_vm *vm)
607 {
608 	xe_assert(vm->xe, xe_vm_is_closed(vm));
609 
610 	drm_gpusvm_fini(&vm->svm.gpusvm);
611 }
612 
xe_svm_range_is_valid(struct xe_svm_range * range,struct xe_tile * tile,bool devmem_only)613 static bool xe_svm_range_is_valid(struct xe_svm_range *range,
614 				  struct xe_tile *tile,
615 				  bool devmem_only)
616 {
617 	return (xe_vm_has_valid_gpu_mapping(tile, range->tile_present,
618 					    range->tile_invalidated) &&
619 		(!devmem_only || xe_svm_range_in_vram(range)));
620 }
621 
622 /** xe_svm_range_migrate_to_smem() - Move range pages from VRAM to SMEM
623  * @vm: xe_vm pointer
624  * @range: Pointer to the SVM range structure
625  *
626  * The xe_svm_range_migrate_to_smem() checks range has pages in VRAM
627  * and migrates them to SMEM
628  */
xe_svm_range_migrate_to_smem(struct xe_vm * vm,struct xe_svm_range * range)629 void xe_svm_range_migrate_to_smem(struct xe_vm *vm, struct xe_svm_range *range)
630 {
631 	if (xe_svm_range_in_vram(range))
632 		drm_gpusvm_range_evict(&vm->svm.gpusvm, &range->base);
633 }
634 
635 /**
636  * xe_svm_range_validate() - Check if the SVM range is valid
637  * @vm: xe_vm pointer
638  * @range: Pointer to the SVM range structure
639  * @tile_mask: Mask representing the tiles to be checked
640  * @devmem_preferred : if true range needs to be in devmem
641  *
642  * The xe_svm_range_validate() function checks if a range is
643  * valid and located in the desired memory region.
644  *
645  * Return: true if the range is valid, false otherwise
646  */
xe_svm_range_validate(struct xe_vm * vm,struct xe_svm_range * range,u8 tile_mask,bool devmem_preferred)647 bool xe_svm_range_validate(struct xe_vm *vm,
648 			   struct xe_svm_range *range,
649 			   u8 tile_mask, bool devmem_preferred)
650 {
651 	bool ret;
652 
653 	xe_svm_notifier_lock(vm);
654 
655 	ret = (range->tile_present & ~range->tile_invalidated & tile_mask) == tile_mask &&
656 	       (devmem_preferred == range->base.flags.has_devmem_pages);
657 
658 	xe_svm_notifier_unlock(vm);
659 
660 	return ret;
661 }
662 
663 /**
664  * xe_svm_find_vma_start - Find start of CPU VMA
665  * @vm: xe_vm pointer
666  * @start: start address
667  * @end: end address
668  * @vma: Pointer to struct xe_vma
669  *
670  *
671  * This function searches for a cpu vma, within the specified
672  * range [start, end] in the given VM. It adjusts the range based on the
673  * xe_vma start and end addresses. If no cpu VMA is found, it returns ULONG_MAX.
674  *
675  * Return: The starting address of the VMA within the range,
676  * or ULONG_MAX if no VMA is found
677  */
xe_svm_find_vma_start(struct xe_vm * vm,u64 start,u64 end,struct xe_vma * vma)678 u64 xe_svm_find_vma_start(struct xe_vm *vm, u64 start, u64 end, struct xe_vma *vma)
679 {
680 	return drm_gpusvm_find_vma_start(&vm->svm.gpusvm,
681 					 max(start, xe_vma_start(vma)),
682 					 min(end, xe_vma_end(vma)));
683 }
684 
685 #if IS_ENABLED(CONFIG_DRM_XE_PAGEMAP)
tile_to_vr(struct xe_tile * tile)686 static struct xe_vram_region *tile_to_vr(struct xe_tile *tile)
687 {
688 	return &tile->mem.vram;
689 }
690 
xe_drm_pagemap_populate_mm(struct drm_pagemap * dpagemap,unsigned long start,unsigned long end,struct mm_struct * mm,unsigned long timeslice_ms)691 static int xe_drm_pagemap_populate_mm(struct drm_pagemap *dpagemap,
692 				      unsigned long start, unsigned long end,
693 				      struct mm_struct *mm,
694 				      unsigned long timeslice_ms)
695 {
696 	struct xe_tile *tile = container_of(dpagemap, typeof(*tile), mem.vram.dpagemap);
697 	struct xe_device *xe = tile_to_xe(tile);
698 	struct device *dev = xe->drm.dev;
699 	struct xe_vram_region *vr = tile_to_vr(tile);
700 	struct drm_buddy_block *block;
701 	struct list_head *blocks;
702 	struct xe_bo *bo;
703 	ktime_t time_end = 0;
704 	int err, idx;
705 
706 	if (!drm_dev_enter(&xe->drm, &idx))
707 		return -ENODEV;
708 
709 	xe_pm_runtime_get(xe);
710 
711  retry:
712 	bo = xe_bo_create_locked(tile_to_xe(tile), NULL, NULL, end - start,
713 				 ttm_bo_type_device,
714 				 XE_BO_FLAG_VRAM_IF_DGFX(tile) |
715 				 XE_BO_FLAG_CPU_ADDR_MIRROR);
716 	if (IS_ERR(bo)) {
717 		err = PTR_ERR(bo);
718 		if (xe_vm_validate_should_retry(NULL, err, &time_end))
719 			goto retry;
720 		goto out_pm_put;
721 	}
722 
723 	drm_pagemap_devmem_init(&bo->devmem_allocation, dev, mm,
724 				&dpagemap_devmem_ops,
725 				&tile->mem.vram.dpagemap,
726 				end - start);
727 
728 	blocks = &to_xe_ttm_vram_mgr_resource(bo->ttm.resource)->blocks;
729 	list_for_each_entry(block, blocks, link)
730 		block->private = vr;
731 
732 	xe_bo_get(bo);
733 
734 	/* Ensure the device has a pm ref while there are device pages active. */
735 	xe_pm_runtime_get_noresume(xe);
736 	err = drm_pagemap_migrate_to_devmem(&bo->devmem_allocation, mm,
737 					    start, end, timeslice_ms,
738 					    xe_svm_devm_owner(xe));
739 	if (err)
740 		xe_svm_devmem_release(&bo->devmem_allocation);
741 
742 	xe_bo_unlock(bo);
743 	xe_bo_put(bo);
744 
745 out_pm_put:
746 	xe_pm_runtime_put(xe);
747 	drm_dev_exit(idx);
748 
749 	return err;
750 }
751 #endif
752 
supports_4K_migration(struct xe_device * xe)753 static bool supports_4K_migration(struct xe_device *xe)
754 {
755 	if (xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K)
756 		return false;
757 
758 	return true;
759 }
760 
761 /**
762  * xe_svm_range_needs_migrate_to_vram() - SVM range needs migrate to VRAM or not
763  * @range: SVM range for which migration needs to be decided
764  * @vma: vma which has range
765  * @preferred_region_is_vram: preferred region for range is vram
766  *
767  * Return: True for range needing migration and migration is supported else false
768  */
xe_svm_range_needs_migrate_to_vram(struct xe_svm_range * range,struct xe_vma * vma,bool preferred_region_is_vram)769 bool xe_svm_range_needs_migrate_to_vram(struct xe_svm_range *range, struct xe_vma *vma,
770 					bool preferred_region_is_vram)
771 {
772 	struct xe_vm *vm = range_to_vm(&range->base);
773 	u64 range_size = xe_svm_range_size(range);
774 
775 	if (!range->base.flags.migrate_devmem || !preferred_region_is_vram)
776 		return false;
777 
778 	xe_assert(vm->xe, IS_DGFX(vm->xe));
779 
780 	if (preferred_region_is_vram && xe_svm_range_in_vram(range)) {
781 		drm_info(&vm->xe->drm, "Range is already in VRAM\n");
782 		return false;
783 	}
784 
785 	if (preferred_region_is_vram && range_size < SZ_64K && !supports_4K_migration(vm->xe)) {
786 		drm_dbg(&vm->xe->drm, "Platform doesn't support SZ_4K range migration\n");
787 		return false;
788 	}
789 
790 	return true;
791 }
792 
793 /**
794  * xe_svm_handle_pagefault() - SVM handle page fault
795  * @vm: The VM.
796  * @vma: The CPU address mirror VMA.
797  * @gt: The gt upon the fault occurred.
798  * @fault_addr: The GPU fault address.
799  * @atomic: The fault atomic access bit.
800  *
801  * Create GPU bindings for a SVM page fault. Optionally migrate to device
802  * memory.
803  *
804  * Return: 0 on success, negative error code on error.
805  */
xe_svm_handle_pagefault(struct xe_vm * vm,struct xe_vma * vma,struct xe_gt * gt,u64 fault_addr,bool atomic)806 int xe_svm_handle_pagefault(struct xe_vm *vm, struct xe_vma *vma,
807 			    struct xe_gt *gt, u64 fault_addr,
808 			    bool atomic)
809 {
810 	struct drm_gpusvm_ctx ctx = {
811 		.read_only = xe_vma_read_only(vma),
812 		.devmem_possible = IS_DGFX(vm->xe) &&
813 			IS_ENABLED(CONFIG_DRM_XE_PAGEMAP),
814 		.check_pages_threshold = IS_DGFX(vm->xe) &&
815 			IS_ENABLED(CONFIG_DRM_XE_PAGEMAP) ? SZ_64K : 0,
816 		.devmem_only = atomic && IS_DGFX(vm->xe) &&
817 			IS_ENABLED(CONFIG_DRM_XE_PAGEMAP),
818 		.timeslice_ms = atomic && IS_DGFX(vm->xe) &&
819 			IS_ENABLED(CONFIG_DRM_XE_PAGEMAP) ?
820 			vm->xe->atomic_svm_timeslice_ms : 0,
821 	};
822 	struct xe_svm_range *range;
823 	struct dma_fence *fence;
824 	struct xe_tile *tile = gt_to_tile(gt);
825 	int migrate_try_count = ctx.devmem_only ? 3 : 1;
826 	ktime_t end = 0;
827 	int err;
828 
829 	lockdep_assert_held_write(&vm->lock);
830 	xe_assert(vm->xe, xe_vma_is_cpu_addr_mirror(vma));
831 
832 	xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_PAGEFAULT_COUNT, 1);
833 
834 retry:
835 	/* Always process UNMAPs first so view SVM ranges is current */
836 	err = xe_svm_garbage_collector(vm);
837 	if (err)
838 		return err;
839 
840 	range = xe_svm_range_find_or_insert(vm, fault_addr, vma, &ctx);
841 
842 	if (IS_ERR(range))
843 		return PTR_ERR(range);
844 
845 	if (ctx.devmem_only && !range->base.flags.migrate_devmem)
846 		return -EACCES;
847 
848 	if (xe_svm_range_is_valid(range, tile, ctx.devmem_only))
849 		return 0;
850 
851 	range_debug(range, "PAGE FAULT");
852 
853 	if (--migrate_try_count >= 0 &&
854 	    xe_svm_range_needs_migrate_to_vram(range, vma, IS_DGFX(vm->xe))) {
855 		err = xe_svm_alloc_vram(tile, range, &ctx);
856 		ctx.timeslice_ms <<= 1;	/* Double timeslice if we have to retry */
857 		if (err) {
858 			if (migrate_try_count || !ctx.devmem_only) {
859 				drm_dbg(&vm->xe->drm,
860 					"VRAM allocation failed, falling back to retrying fault, asid=%u, errno=%pe\n",
861 					vm->usm.asid, ERR_PTR(err));
862 				goto retry;
863 			} else {
864 				drm_err(&vm->xe->drm,
865 					"VRAM allocation failed, retry count exceeded, asid=%u, errno=%pe\n",
866 					vm->usm.asid, ERR_PTR(err));
867 				return err;
868 			}
869 		}
870 	}
871 
872 	range_debug(range, "GET PAGES");
873 	err = xe_svm_range_get_pages(vm, range, &ctx);
874 	/* Corner where CPU mappings have changed */
875 	if (err == -EOPNOTSUPP || err == -EFAULT || err == -EPERM) {
876 		ctx.timeslice_ms <<= 1;	/* Double timeslice if we have to retry */
877 		if (migrate_try_count > 0 || !ctx.devmem_only) {
878 			drm_dbg(&vm->xe->drm,
879 				"Get pages failed, falling back to retrying, asid=%u, gpusvm=%p, errno=%pe\n",
880 				vm->usm.asid, &vm->svm.gpusvm, ERR_PTR(err));
881 			range_debug(range, "PAGE FAULT - RETRY PAGES");
882 			goto retry;
883 		} else {
884 			drm_err(&vm->xe->drm,
885 				"Get pages failed, retry count exceeded, asid=%u, gpusvm=%p, errno=%pe\n",
886 				vm->usm.asid, &vm->svm.gpusvm, ERR_PTR(err));
887 		}
888 	}
889 	if (err) {
890 		range_debug(range, "PAGE FAULT - FAIL PAGE COLLECT");
891 		goto err_out;
892 	}
893 
894 	range_debug(range, "PAGE FAULT - BIND");
895 
896 retry_bind:
897 	xe_vm_lock(vm, false);
898 	fence = xe_vm_range_rebind(vm, vma, range, BIT(tile->id));
899 	if (IS_ERR(fence)) {
900 		xe_vm_unlock(vm);
901 		err = PTR_ERR(fence);
902 		if (err == -EAGAIN) {
903 			ctx.timeslice_ms <<= 1;	/* Double timeslice if we have to retry */
904 			range_debug(range, "PAGE FAULT - RETRY BIND");
905 			goto retry;
906 		}
907 		if (xe_vm_validate_should_retry(NULL, err, &end))
908 			goto retry_bind;
909 		goto err_out;
910 	}
911 	xe_vm_unlock(vm);
912 
913 	dma_fence_wait(fence, false);
914 	dma_fence_put(fence);
915 
916 err_out:
917 
918 	return err;
919 }
920 
921 /**
922  * xe_svm_has_mapping() - SVM has mappings
923  * @vm: The VM.
924  * @start: Start address.
925  * @end: End address.
926  *
927  * Check if an address range has SVM mappings.
928  *
929  * Return: True if address range has a SVM mapping, False otherwise
930  */
xe_svm_has_mapping(struct xe_vm * vm,u64 start,u64 end)931 bool xe_svm_has_mapping(struct xe_vm *vm, u64 start, u64 end)
932 {
933 	return drm_gpusvm_has_mapping(&vm->svm.gpusvm, start, end);
934 }
935 
936 /**
937  * xe_svm_bo_evict() - SVM evict BO to system memory
938  * @bo: BO to evict
939  *
940  * SVM evict BO to system memory. GPU SVM layer ensures all device pages
941  * are evicted before returning.
942  *
943  * Return: 0 on success standard error code otherwise
944  */
xe_svm_bo_evict(struct xe_bo * bo)945 int xe_svm_bo_evict(struct xe_bo *bo)
946 {
947 	return drm_pagemap_evict_to_ram(&bo->devmem_allocation);
948 }
949 
950 /**
951  * xe_svm_range_find_or_insert- Find or insert GPU SVM range
952  * @vm: xe_vm pointer
953  * @addr: address for which range needs to be found/inserted
954  * @vma:  Pointer to struct xe_vma which mirrors CPU
955  * @ctx: GPU SVM context
956  *
957  * This function finds or inserts a newly allocated a SVM range based on the
958  * address.
959  *
960  * Return: Pointer to the SVM range on success, ERR_PTR() on failure.
961  */
xe_svm_range_find_or_insert(struct xe_vm * vm,u64 addr,struct xe_vma * vma,struct drm_gpusvm_ctx * ctx)962 struct xe_svm_range *xe_svm_range_find_or_insert(struct xe_vm *vm, u64 addr,
963 						 struct xe_vma *vma, struct drm_gpusvm_ctx *ctx)
964 {
965 	struct drm_gpusvm_range *r;
966 
967 	r = drm_gpusvm_range_find_or_insert(&vm->svm.gpusvm, max(addr, xe_vma_start(vma)),
968 					    xe_vma_start(vma), xe_vma_end(vma), ctx);
969 	if (IS_ERR(r))
970 		return ERR_PTR(PTR_ERR(r));
971 
972 	return to_xe_range(r);
973 }
974 
975 /**
976  * xe_svm_range_get_pages() - Get pages for a SVM range
977  * @vm: Pointer to the struct xe_vm
978  * @range: Pointer to the xe SVM range structure
979  * @ctx: GPU SVM context
980  *
981  * This function gets pages for a SVM range and ensures they are mapped for
982  * DMA access. In case of failure with -EOPNOTSUPP, it evicts the range.
983  *
984  * Return: 0 on success, negative error code on failure.
985  */
xe_svm_range_get_pages(struct xe_vm * vm,struct xe_svm_range * range,struct drm_gpusvm_ctx * ctx)986 int xe_svm_range_get_pages(struct xe_vm *vm, struct xe_svm_range *range,
987 			   struct drm_gpusvm_ctx *ctx)
988 {
989 	int err = 0;
990 
991 	err = drm_gpusvm_range_get_pages(&vm->svm.gpusvm, &range->base, ctx);
992 	if (err == -EOPNOTSUPP) {
993 		range_debug(range, "PAGE FAULT - EVICT PAGES");
994 		drm_gpusvm_range_evict(&vm->svm.gpusvm, &range->base);
995 	}
996 
997 	return err;
998 }
999 
1000 #if IS_ENABLED(CONFIG_DRM_XE_PAGEMAP)
1001 
1002 /**
1003  * xe_svm_alloc_vram()- Allocate device memory pages for range,
1004  * migrating existing data.
1005  * @tile: tile to allocate vram from
1006  * @range: SVM range
1007  * @ctx: DRM GPU SVM context
1008  *
1009  * Return: 0 on success, error code on failure.
1010  */
xe_svm_alloc_vram(struct xe_tile * tile,struct xe_svm_range * range,const struct drm_gpusvm_ctx * ctx)1011 int xe_svm_alloc_vram(struct xe_tile *tile, struct xe_svm_range *range,
1012 		      const struct drm_gpusvm_ctx *ctx)
1013 {
1014 	struct drm_pagemap *dpagemap;
1015 
1016 	xe_assert(tile_to_xe(tile), range->base.flags.migrate_devmem);
1017 	range_debug(range, "ALLOCATE VRAM");
1018 
1019 	dpagemap = xe_tile_local_pagemap(tile);
1020 	return drm_pagemap_populate_mm(dpagemap, xe_svm_range_start(range),
1021 				       xe_svm_range_end(range),
1022 				       range->base.gpusvm->mm,
1023 				       ctx->timeslice_ms);
1024 }
1025 
1026 static struct drm_pagemap_device_addr
xe_drm_pagemap_device_map(struct drm_pagemap * dpagemap,struct device * dev,struct page * page,unsigned int order,enum dma_data_direction dir)1027 xe_drm_pagemap_device_map(struct drm_pagemap *dpagemap,
1028 			  struct device *dev,
1029 			  struct page *page,
1030 			  unsigned int order,
1031 			  enum dma_data_direction dir)
1032 {
1033 	struct device *pgmap_dev = dpagemap->dev;
1034 	enum drm_interconnect_protocol prot;
1035 	dma_addr_t addr;
1036 
1037 	if (pgmap_dev == dev) {
1038 		addr = xe_vram_region_page_to_dpa(page_to_vr(page), page);
1039 		prot = XE_INTERCONNECT_VRAM;
1040 	} else {
1041 		addr = DMA_MAPPING_ERROR;
1042 		prot = 0;
1043 	}
1044 
1045 	return drm_pagemap_device_addr_encode(addr, prot, order, dir);
1046 }
1047 
1048 static const struct drm_pagemap_ops xe_drm_pagemap_ops = {
1049 	.device_map = xe_drm_pagemap_device_map,
1050 	.populate_mm = xe_drm_pagemap_populate_mm,
1051 };
1052 
1053 /**
1054  * xe_devm_add: Remap and provide memmap backing for device memory
1055  * @tile: tile that the memory region belongs to
1056  * @vr: vram memory region to remap
1057  *
1058  * This remap device memory to host physical address space and create
1059  * struct page to back device memory
1060  *
1061  * Return: 0 on success standard error code otherwise
1062  */
xe_devm_add(struct xe_tile * tile,struct xe_vram_region * vr)1063 int xe_devm_add(struct xe_tile *tile, struct xe_vram_region *vr)
1064 {
1065 	struct xe_device *xe = tile_to_xe(tile);
1066 	struct device *dev = &to_pci_dev(xe->drm.dev)->dev;
1067 	struct resource *res;
1068 	void *addr;
1069 	int ret;
1070 
1071 	res = devm_request_free_mem_region(dev, &iomem_resource,
1072 					   vr->usable_size);
1073 	if (IS_ERR(res)) {
1074 		ret = PTR_ERR(res);
1075 		return ret;
1076 	}
1077 
1078 	vr->pagemap.type = MEMORY_DEVICE_PRIVATE;
1079 	vr->pagemap.range.start = res->start;
1080 	vr->pagemap.range.end = res->end;
1081 	vr->pagemap.nr_range = 1;
1082 	vr->pagemap.ops = drm_pagemap_pagemap_ops_get();
1083 	vr->pagemap.owner = xe_svm_devm_owner(xe);
1084 	addr = devm_memremap_pages(dev, &vr->pagemap);
1085 
1086 	vr->dpagemap.dev = dev;
1087 	vr->dpagemap.ops = &xe_drm_pagemap_ops;
1088 
1089 	if (IS_ERR(addr)) {
1090 		devm_release_mem_region(dev, res->start, resource_size(res));
1091 		ret = PTR_ERR(addr);
1092 		drm_err(&xe->drm, "Failed to remap tile %d memory, errno %pe\n",
1093 			tile->id, ERR_PTR(ret));
1094 		return ret;
1095 	}
1096 	vr->hpa_base = res->start;
1097 
1098 	drm_dbg(&xe->drm, "Added tile %d memory [%llx-%llx] to devm, remapped to %pr\n",
1099 		tile->id, vr->io_start, vr->io_start + vr->usable_size, res);
1100 	return 0;
1101 }
1102 #else
xe_svm_alloc_vram(struct xe_tile * tile,struct xe_svm_range * range,const struct drm_gpusvm_ctx * ctx)1103 int xe_svm_alloc_vram(struct xe_tile *tile,
1104 		      struct xe_svm_range *range,
1105 		      const struct drm_gpusvm_ctx *ctx)
1106 {
1107 	return -EOPNOTSUPP;
1108 }
1109 
xe_devm_add(struct xe_tile * tile,struct xe_vram_region * vr)1110 int xe_devm_add(struct xe_tile *tile, struct xe_vram_region *vr)
1111 {
1112 	return 0;
1113 }
1114 #endif
1115 
1116 /**
1117  * xe_svm_flush() - SVM flush
1118  * @vm: The VM.
1119  *
1120  * Flush all SVM actions.
1121  */
xe_svm_flush(struct xe_vm * vm)1122 void xe_svm_flush(struct xe_vm *vm)
1123 {
1124 	if (xe_vm_in_fault_mode(vm))
1125 		flush_work(&vm->svm.garbage_collector.work);
1126 }
1127