1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * bcache setup/teardown code, and some metadata io - read a superblock and
4 * figure out what to do with it.
5 *
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
9
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "extents.h"
14 #include "request.h"
15 #include "writeback.h"
16 #include "features.h"
17
18 #include <linux/blkdev.h>
19 #include <linux/pagemap.h>
20 #include <linux/debugfs.h>
21 #include <linux/idr.h>
22 #include <linux/kthread.h>
23 #include <linux/workqueue.h>
24 #include <linux/module.h>
25 #include <linux/random.h>
26 #include <linux/reboot.h>
27 #include <linux/sysfs.h>
28
29 unsigned int bch_cutoff_writeback;
30 unsigned int bch_cutoff_writeback_sync;
31
32 static const char bcache_magic[] = {
33 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
34 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
35 };
36
37 static const char invalid_uuid[] = {
38 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
39 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
40 };
41
42 static struct kobject *bcache_kobj;
43 struct mutex bch_register_lock;
44 bool bcache_is_reboot;
45 LIST_HEAD(bch_cache_sets);
46 static LIST_HEAD(uncached_devices);
47
48 static int bcache_major;
49 static DEFINE_IDA(bcache_device_idx);
50 static wait_queue_head_t unregister_wait;
51 struct workqueue_struct *bcache_wq;
52 struct workqueue_struct *bch_flush_wq;
53 struct workqueue_struct *bch_journal_wq;
54
55
56 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE)
57 /* limitation of partitions number on single bcache device */
58 #define BCACHE_MINORS 128
59 /* limitation of bcache devices number on single system */
60 #define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS)
61
62 /* Superblock */
63
get_bucket_size(struct cache_sb * sb,struct cache_sb_disk * s)64 static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s)
65 {
66 unsigned int bucket_size = le16_to_cpu(s->bucket_size);
67
68 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
69 if (bch_has_feature_large_bucket(sb)) {
70 unsigned int max, order;
71
72 max = sizeof(unsigned int) * BITS_PER_BYTE - 1;
73 order = le16_to_cpu(s->bucket_size);
74 /*
75 * bcache tool will make sure the overflow won't
76 * happen, an error message here is enough.
77 */
78 if (order > max)
79 pr_err("Bucket size (1 << %u) overflows\n",
80 order);
81 bucket_size = 1 << order;
82 } else if (bch_has_feature_obso_large_bucket(sb)) {
83 bucket_size +=
84 le16_to_cpu(s->obso_bucket_size_hi) << 16;
85 }
86 }
87
88 return bucket_size;
89 }
90
read_super_common(struct cache_sb * sb,struct block_device * bdev,struct cache_sb_disk * s)91 static const char *read_super_common(struct cache_sb *sb, struct block_device *bdev,
92 struct cache_sb_disk *s)
93 {
94 const char *err;
95 unsigned int i;
96
97 sb->first_bucket= le16_to_cpu(s->first_bucket);
98 sb->nbuckets = le64_to_cpu(s->nbuckets);
99 sb->bucket_size = get_bucket_size(sb, s);
100
101 sb->nr_in_set = le16_to_cpu(s->nr_in_set);
102 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
103
104 err = "Too many journal buckets";
105 if (sb->keys > SB_JOURNAL_BUCKETS)
106 goto err;
107
108 err = "Too many buckets";
109 if (sb->nbuckets > LONG_MAX)
110 goto err;
111
112 err = "Not enough buckets";
113 if (sb->nbuckets < 1 << 7)
114 goto err;
115
116 err = "Bad block size (not power of 2)";
117 if (!is_power_of_2(sb->block_size))
118 goto err;
119
120 err = "Bad block size (larger than page size)";
121 if (sb->block_size > PAGE_SECTORS)
122 goto err;
123
124 err = "Bad bucket size (not power of 2)";
125 if (!is_power_of_2(sb->bucket_size))
126 goto err;
127
128 err = "Bad bucket size (smaller than page size)";
129 if (sb->bucket_size < PAGE_SECTORS)
130 goto err;
131
132 err = "Invalid superblock: device too small";
133 if (get_capacity(bdev->bd_disk) <
134 sb->bucket_size * sb->nbuckets)
135 goto err;
136
137 err = "Bad UUID";
138 if (bch_is_zero(sb->set_uuid, 16))
139 goto err;
140
141 err = "Bad cache device number in set";
142 if (!sb->nr_in_set ||
143 sb->nr_in_set <= sb->nr_this_dev ||
144 sb->nr_in_set > MAX_CACHES_PER_SET)
145 goto err;
146
147 err = "Journal buckets not sequential";
148 for (i = 0; i < sb->keys; i++)
149 if (sb->d[i] != sb->first_bucket + i)
150 goto err;
151
152 err = "Too many journal buckets";
153 if (sb->first_bucket + sb->keys > sb->nbuckets)
154 goto err;
155
156 err = "Invalid superblock: first bucket comes before end of super";
157 if (sb->first_bucket * sb->bucket_size < 16)
158 goto err;
159
160 err = NULL;
161 err:
162 return err;
163 }
164
165
read_super(struct cache_sb * sb,struct block_device * bdev,struct cache_sb_disk ** res)166 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
167 struct cache_sb_disk **res)
168 {
169 const char *err;
170 struct cache_sb_disk *s;
171 struct folio *folio;
172 unsigned int i;
173
174 folio = mapping_read_folio_gfp(bdev->bd_mapping,
175 SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL);
176 if (IS_ERR(folio))
177 return "IO error";
178 s = folio_address(folio) + offset_in_folio(folio, SB_OFFSET);
179
180 sb->offset = le64_to_cpu(s->offset);
181 sb->version = le64_to_cpu(s->version);
182
183 memcpy(sb->magic, s->magic, 16);
184 memcpy(sb->uuid, s->uuid, 16);
185 memcpy(sb->set_uuid, s->set_uuid, 16);
186 memcpy(sb->label, s->label, SB_LABEL_SIZE);
187
188 sb->flags = le64_to_cpu(s->flags);
189 sb->seq = le64_to_cpu(s->seq);
190 sb->last_mount = le32_to_cpu(s->last_mount);
191 sb->keys = le16_to_cpu(s->keys);
192
193 for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
194 sb->d[i] = le64_to_cpu(s->d[i]);
195
196 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n",
197 sb->version, sb->flags, sb->seq, sb->keys);
198
199 err = "Not a bcache superblock (bad offset)";
200 if (sb->offset != SB_SECTOR)
201 goto err;
202
203 err = "Not a bcache superblock (bad magic)";
204 if (memcmp(sb->magic, bcache_magic, 16))
205 goto err;
206
207 err = "Bad checksum";
208 if (s->csum != csum_set(s))
209 goto err;
210
211 err = "Bad UUID";
212 if (bch_is_zero(sb->uuid, 16))
213 goto err;
214
215 sb->block_size = le16_to_cpu(s->block_size);
216
217 err = "Superblock block size smaller than device block size";
218 if (sb->block_size << 9 < bdev_logical_block_size(bdev))
219 goto err;
220
221 switch (sb->version) {
222 case BCACHE_SB_VERSION_BDEV:
223 sb->data_offset = BDEV_DATA_START_DEFAULT;
224 break;
225 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
226 case BCACHE_SB_VERSION_BDEV_WITH_FEATURES:
227 sb->data_offset = le64_to_cpu(s->data_offset);
228
229 err = "Bad data offset";
230 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
231 goto err;
232
233 break;
234 case BCACHE_SB_VERSION_CDEV:
235 case BCACHE_SB_VERSION_CDEV_WITH_UUID:
236 err = read_super_common(sb, bdev, s);
237 if (err)
238 goto err;
239 break;
240 case BCACHE_SB_VERSION_CDEV_WITH_FEATURES:
241 /*
242 * Feature bits are needed in read_super_common(),
243 * convert them firstly.
244 */
245 sb->feature_compat = le64_to_cpu(s->feature_compat);
246 sb->feature_incompat = le64_to_cpu(s->feature_incompat);
247 sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat);
248
249 /* Check incompatible features */
250 err = "Unsupported compatible feature found";
251 if (bch_has_unknown_compat_features(sb))
252 goto err;
253
254 err = "Unsupported read-only compatible feature found";
255 if (bch_has_unknown_ro_compat_features(sb))
256 goto err;
257
258 err = "Unsupported incompatible feature found";
259 if (bch_has_unknown_incompat_features(sb))
260 goto err;
261
262 err = read_super_common(sb, bdev, s);
263 if (err)
264 goto err;
265 break;
266 default:
267 err = "Unsupported superblock version";
268 goto err;
269 }
270
271 sb->last_mount = (u32)ktime_get_real_seconds();
272 *res = s;
273 return NULL;
274 err:
275 folio_put(folio);
276 return err;
277 }
278
write_bdev_super_endio(struct bio * bio)279 static void write_bdev_super_endio(struct bio *bio)
280 {
281 struct cached_dev *dc = bio->bi_private;
282
283 if (bio->bi_status)
284 bch_count_backing_io_errors(dc, bio);
285
286 closure_put(&dc->sb_write);
287 }
288
__write_super(struct cache_sb * sb,struct cache_sb_disk * out,struct bio * bio)289 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out,
290 struct bio *bio)
291 {
292 unsigned int i;
293
294 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META;
295 bio->bi_iter.bi_sector = SB_SECTOR;
296 bio_add_virt_nofail(bio, out, SB_SIZE);
297
298 out->offset = cpu_to_le64(sb->offset);
299
300 memcpy(out->uuid, sb->uuid, 16);
301 memcpy(out->set_uuid, sb->set_uuid, 16);
302 memcpy(out->label, sb->label, SB_LABEL_SIZE);
303
304 out->flags = cpu_to_le64(sb->flags);
305 out->seq = cpu_to_le64(sb->seq);
306
307 out->last_mount = cpu_to_le32(sb->last_mount);
308 out->first_bucket = cpu_to_le16(sb->first_bucket);
309 out->keys = cpu_to_le16(sb->keys);
310
311 for (i = 0; i < sb->keys; i++)
312 out->d[i] = cpu_to_le64(sb->d[i]);
313
314 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
315 out->feature_compat = cpu_to_le64(sb->feature_compat);
316 out->feature_incompat = cpu_to_le64(sb->feature_incompat);
317 out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat);
318 }
319
320 out->version = cpu_to_le64(sb->version);
321 out->csum = csum_set(out);
322
323 pr_debug("ver %llu, flags %llu, seq %llu\n",
324 sb->version, sb->flags, sb->seq);
325
326 submit_bio(bio);
327 }
328
CLOSURE_CALLBACK(bch_write_bdev_super_unlock)329 static CLOSURE_CALLBACK(bch_write_bdev_super_unlock)
330 {
331 closure_type(dc, struct cached_dev, sb_write);
332
333 up(&dc->sb_write_mutex);
334 }
335
bch_write_bdev_super(struct cached_dev * dc,struct closure * parent)336 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
337 {
338 struct closure *cl = &dc->sb_write;
339 struct bio *bio = &dc->sb_bio;
340
341 down(&dc->sb_write_mutex);
342 closure_init(cl, parent);
343
344 bio_init(bio, dc->bdev, dc->sb_bv, 1, 0);
345 bio->bi_end_io = write_bdev_super_endio;
346 bio->bi_private = dc;
347
348 closure_get(cl);
349 /* I/O request sent to backing device */
350 __write_super(&dc->sb, dc->sb_disk, bio);
351
352 closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
353 }
354
write_super_endio(struct bio * bio)355 static void write_super_endio(struct bio *bio)
356 {
357 struct cache *ca = bio->bi_private;
358
359 /* is_read = 0 */
360 bch_count_io_errors(ca, bio->bi_status, 0,
361 "writing superblock");
362 closure_put(&ca->set->sb_write);
363 }
364
CLOSURE_CALLBACK(bcache_write_super_unlock)365 static CLOSURE_CALLBACK(bcache_write_super_unlock)
366 {
367 closure_type(c, struct cache_set, sb_write);
368
369 up(&c->sb_write_mutex);
370 }
371
bcache_write_super(struct cache_set * c)372 void bcache_write_super(struct cache_set *c)
373 {
374 struct closure *cl = &c->sb_write;
375 struct cache *ca = c->cache;
376 struct bio *bio = &ca->sb_bio;
377 unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
378
379 down(&c->sb_write_mutex);
380 closure_init(cl, &c->cl);
381
382 ca->sb.seq++;
383
384 if (ca->sb.version < version)
385 ca->sb.version = version;
386
387 bio_init(bio, ca->bdev, ca->sb_bv, 1, 0);
388 bio->bi_end_io = write_super_endio;
389 bio->bi_private = ca;
390
391 closure_get(cl);
392 __write_super(&ca->sb, ca->sb_disk, bio);
393
394 closure_return_with_destructor(cl, bcache_write_super_unlock);
395 }
396
397 /* UUID io */
398
uuid_endio(struct bio * bio)399 static void uuid_endio(struct bio *bio)
400 {
401 struct closure *cl = bio->bi_private;
402 struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
403
404 cache_set_err_on(bio->bi_status, c, "accessing uuids");
405 bch_bbio_free(bio, c);
406 closure_put(cl);
407 }
408
CLOSURE_CALLBACK(uuid_io_unlock)409 static CLOSURE_CALLBACK(uuid_io_unlock)
410 {
411 closure_type(c, struct cache_set, uuid_write);
412
413 up(&c->uuid_write_mutex);
414 }
415
uuid_io(struct cache_set * c,blk_opf_t opf,struct bkey * k,struct closure * parent)416 static void uuid_io(struct cache_set *c, blk_opf_t opf, struct bkey *k,
417 struct closure *parent)
418 {
419 struct closure *cl = &c->uuid_write;
420 struct uuid_entry *u;
421 unsigned int i;
422 char buf[80];
423
424 BUG_ON(!parent);
425 down(&c->uuid_write_mutex);
426 closure_init(cl, parent);
427
428 for (i = 0; i < KEY_PTRS(k); i++) {
429 struct bio *bio = bch_bbio_alloc(c);
430
431 bio->bi_opf = opf | REQ_SYNC | REQ_META;
432 bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
433
434 bio->bi_end_io = uuid_endio;
435 bio->bi_private = cl;
436 bch_bio_map(bio, c->uuids);
437
438 bch_submit_bbio(bio, c, k, i);
439
440 if ((opf & REQ_OP_MASK) != REQ_OP_WRITE)
441 break;
442 }
443
444 bch_extent_to_text(buf, sizeof(buf), k);
445 pr_debug("%s UUIDs at %s\n", (opf & REQ_OP_MASK) == REQ_OP_WRITE ?
446 "wrote" : "read", buf);
447
448 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
449 if (!bch_is_zero(u->uuid, 16))
450 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n",
451 u - c->uuids, u->uuid, u->label,
452 u->first_reg, u->last_reg, u->invalidated);
453
454 closure_return_with_destructor(cl, uuid_io_unlock);
455 }
456
uuid_read(struct cache_set * c,struct jset * j,struct closure * cl)457 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
458 {
459 struct bkey *k = &j->uuid_bucket;
460
461 if (__bch_btree_ptr_invalid(c, k))
462 return "bad uuid pointer";
463
464 bkey_copy(&c->uuid_bucket, k);
465 uuid_io(c, REQ_OP_READ, k, cl);
466
467 if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
468 struct uuid_entry_v0 *u0 = (void *) c->uuids;
469 struct uuid_entry *u1 = (void *) c->uuids;
470 int i;
471
472 closure_sync(cl);
473
474 /*
475 * Since the new uuid entry is bigger than the old, we have to
476 * convert starting at the highest memory address and work down
477 * in order to do it in place
478 */
479
480 for (i = c->nr_uuids - 1;
481 i >= 0;
482 --i) {
483 memcpy(u1[i].uuid, u0[i].uuid, 16);
484 memcpy(u1[i].label, u0[i].label, 32);
485
486 u1[i].first_reg = u0[i].first_reg;
487 u1[i].last_reg = u0[i].last_reg;
488 u1[i].invalidated = u0[i].invalidated;
489
490 u1[i].flags = 0;
491 u1[i].sectors = 0;
492 }
493 }
494
495 return NULL;
496 }
497
__uuid_write(struct cache_set * c)498 static int __uuid_write(struct cache_set *c)
499 {
500 BKEY_PADDED(key) k;
501 struct closure cl;
502 struct cache *ca = c->cache;
503 unsigned int size;
504
505 closure_init_stack(&cl);
506 lockdep_assert_held(&bch_register_lock);
507
508 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true))
509 return 1;
510
511 size = meta_bucket_pages(&ca->sb) * PAGE_SECTORS;
512 SET_KEY_SIZE(&k.key, size);
513 uuid_io(c, REQ_OP_WRITE, &k.key, &cl);
514 closure_sync(&cl);
515
516 /* Only one bucket used for uuid write */
517 atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
518
519 bkey_copy(&c->uuid_bucket, &k.key);
520 bkey_put(c, &k.key);
521 return 0;
522 }
523
bch_uuid_write(struct cache_set * c)524 int bch_uuid_write(struct cache_set *c)
525 {
526 int ret = __uuid_write(c);
527
528 if (!ret)
529 bch_journal_meta(c, NULL);
530
531 return ret;
532 }
533
uuid_find(struct cache_set * c,const char * uuid)534 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
535 {
536 struct uuid_entry *u;
537
538 for (u = c->uuids;
539 u < c->uuids + c->nr_uuids; u++)
540 if (!memcmp(u->uuid, uuid, 16))
541 return u;
542
543 return NULL;
544 }
545
uuid_find_empty(struct cache_set * c)546 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
547 {
548 static const char zero_uuid[16] __nonstring =
549 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
550
551 return uuid_find(c, zero_uuid);
552 }
553
554 /*
555 * Bucket priorities/gens:
556 *
557 * For each bucket, we store on disk its
558 * 8 bit gen
559 * 16 bit priority
560 *
561 * See alloc.c for an explanation of the gen. The priority is used to implement
562 * lru (and in the future other) cache replacement policies; for most purposes
563 * it's just an opaque integer.
564 *
565 * The gens and the priorities don't have a whole lot to do with each other, and
566 * it's actually the gens that must be written out at specific times - it's no
567 * big deal if the priorities don't get written, if we lose them we just reuse
568 * buckets in suboptimal order.
569 *
570 * On disk they're stored in a packed array, and in as many buckets are required
571 * to fit them all. The buckets we use to store them form a list; the journal
572 * header points to the first bucket, the first bucket points to the second
573 * bucket, et cetera.
574 *
575 * This code is used by the allocation code; periodically (whenever it runs out
576 * of buckets to allocate from) the allocation code will invalidate some
577 * buckets, but it can't use those buckets until their new gens are safely on
578 * disk.
579 */
580
prio_endio(struct bio * bio)581 static void prio_endio(struct bio *bio)
582 {
583 struct cache *ca = bio->bi_private;
584
585 cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
586 bch_bbio_free(bio, ca->set);
587 closure_put(&ca->prio);
588 }
589
prio_io(struct cache * ca,uint64_t bucket,blk_opf_t opf)590 static void prio_io(struct cache *ca, uint64_t bucket, blk_opf_t opf)
591 {
592 struct closure *cl = &ca->prio;
593 struct bio *bio = bch_bbio_alloc(ca->set);
594
595 closure_init_stack(cl);
596
597 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size;
598 bio_set_dev(bio, ca->bdev);
599 bio->bi_iter.bi_size = meta_bucket_bytes(&ca->sb);
600
601 bio->bi_end_io = prio_endio;
602 bio->bi_private = ca;
603 bio->bi_opf = opf | REQ_SYNC | REQ_META;
604 bch_bio_map(bio, ca->disk_buckets);
605
606 closure_bio_submit(ca->set, bio, &ca->prio);
607 closure_sync(cl);
608 }
609
bch_prio_write(struct cache * ca,bool wait)610 int bch_prio_write(struct cache *ca, bool wait)
611 {
612 int i;
613 struct bucket *b;
614 struct closure cl;
615
616 pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n",
617 fifo_used(&ca->free[RESERVE_PRIO]),
618 fifo_used(&ca->free[RESERVE_NONE]),
619 fifo_used(&ca->free_inc));
620
621 /*
622 * Pre-check if there are enough free buckets. In the non-blocking
623 * scenario it's better to fail early rather than starting to allocate
624 * buckets and do a cleanup later in case of failure.
625 */
626 if (!wait) {
627 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) +
628 fifo_used(&ca->free[RESERVE_NONE]);
629 if (prio_buckets(ca) > avail)
630 return -ENOMEM;
631 }
632
633 closure_init_stack(&cl);
634
635 lockdep_assert_held(&ca->set->bucket_lock);
636
637 ca->disk_buckets->seq++;
638
639 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
640 &ca->meta_sectors_written);
641
642 for (i = prio_buckets(ca) - 1; i >= 0; --i) {
643 long bucket;
644 struct prio_set *p = ca->disk_buckets;
645 struct bucket_disk *d = p->data;
646 struct bucket_disk *end = d + prios_per_bucket(ca);
647
648 for (b = ca->buckets + i * prios_per_bucket(ca);
649 b < ca->buckets + ca->sb.nbuckets && d < end;
650 b++, d++) {
651 d->prio = cpu_to_le16(b->prio);
652 d->gen = b->gen;
653 }
654
655 p->next_bucket = ca->prio_buckets[i + 1];
656 p->magic = pset_magic(&ca->sb);
657 p->csum = bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8);
658
659 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait);
660 BUG_ON(bucket == -1);
661
662 mutex_unlock(&ca->set->bucket_lock);
663 prio_io(ca, bucket, REQ_OP_WRITE);
664 mutex_lock(&ca->set->bucket_lock);
665
666 ca->prio_buckets[i] = bucket;
667 atomic_dec_bug(&ca->buckets[bucket].pin);
668 }
669
670 mutex_unlock(&ca->set->bucket_lock);
671
672 bch_journal_meta(ca->set, &cl);
673 closure_sync(&cl);
674
675 mutex_lock(&ca->set->bucket_lock);
676
677 /*
678 * Don't want the old priorities to get garbage collected until after we
679 * finish writing the new ones, and they're journalled
680 */
681 for (i = 0; i < prio_buckets(ca); i++) {
682 if (ca->prio_last_buckets[i])
683 __bch_bucket_free(ca,
684 &ca->buckets[ca->prio_last_buckets[i]]);
685
686 ca->prio_last_buckets[i] = ca->prio_buckets[i];
687 }
688 return 0;
689 }
690
prio_read(struct cache * ca,uint64_t bucket)691 static int prio_read(struct cache *ca, uint64_t bucket)
692 {
693 struct prio_set *p = ca->disk_buckets;
694 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
695 struct bucket *b;
696 unsigned int bucket_nr = 0;
697 int ret = -EIO;
698
699 for (b = ca->buckets;
700 b < ca->buckets + ca->sb.nbuckets;
701 b++, d++) {
702 if (d == end) {
703 ca->prio_buckets[bucket_nr] = bucket;
704 ca->prio_last_buckets[bucket_nr] = bucket;
705 bucket_nr++;
706
707 prio_io(ca, bucket, REQ_OP_READ);
708
709 if (p->csum !=
710 bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) {
711 pr_warn("bad csum reading priorities\n");
712 goto out;
713 }
714
715 if (p->magic != pset_magic(&ca->sb)) {
716 pr_warn("bad magic reading priorities\n");
717 goto out;
718 }
719
720 bucket = p->next_bucket;
721 d = p->data;
722 }
723
724 b->prio = le16_to_cpu(d->prio);
725 b->gen = b->last_gc = d->gen;
726 }
727
728 ret = 0;
729 out:
730 return ret;
731 }
732
733 /* Bcache device */
734
open_dev(struct gendisk * disk,blk_mode_t mode)735 static int open_dev(struct gendisk *disk, blk_mode_t mode)
736 {
737 struct bcache_device *d = disk->private_data;
738
739 if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
740 return -ENXIO;
741
742 closure_get(&d->cl);
743 return 0;
744 }
745
release_dev(struct gendisk * b)746 static void release_dev(struct gendisk *b)
747 {
748 struct bcache_device *d = b->private_data;
749
750 closure_put(&d->cl);
751 }
752
ioctl_dev(struct block_device * b,blk_mode_t mode,unsigned int cmd,unsigned long arg)753 static int ioctl_dev(struct block_device *b, blk_mode_t mode,
754 unsigned int cmd, unsigned long arg)
755 {
756 struct bcache_device *d = b->bd_disk->private_data;
757
758 return d->ioctl(d, mode, cmd, arg);
759 }
760
761 static const struct block_device_operations bcache_cached_ops = {
762 .submit_bio = cached_dev_submit_bio,
763 .open = open_dev,
764 .release = release_dev,
765 .ioctl = ioctl_dev,
766 .owner = THIS_MODULE,
767 };
768
769 static const struct block_device_operations bcache_flash_ops = {
770 .submit_bio = flash_dev_submit_bio,
771 .open = open_dev,
772 .release = release_dev,
773 .ioctl = ioctl_dev,
774 .owner = THIS_MODULE,
775 };
776
bcache_device_stop(struct bcache_device * d)777 void bcache_device_stop(struct bcache_device *d)
778 {
779 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
780 /*
781 * closure_fn set to
782 * - cached device: cached_dev_flush()
783 * - flash dev: flash_dev_flush()
784 */
785 closure_queue(&d->cl);
786 }
787
bcache_device_unlink(struct bcache_device * d)788 static void bcache_device_unlink(struct bcache_device *d)
789 {
790 lockdep_assert_held(&bch_register_lock);
791
792 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
793 struct cache *ca = d->c->cache;
794
795 sysfs_remove_link(&d->c->kobj, d->name);
796 sysfs_remove_link(&d->kobj, "cache");
797
798 bd_unlink_disk_holder(ca->bdev, d->disk);
799 }
800 }
801
bcache_device_link(struct bcache_device * d,struct cache_set * c,const char * name)802 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
803 const char *name)
804 {
805 struct cache *ca = c->cache;
806 int ret;
807
808 bd_link_disk_holder(ca->bdev, d->disk);
809
810 snprintf(d->name, BCACHEDEVNAME_SIZE,
811 "%s%u", name, d->id);
812
813 ret = sysfs_create_link(&d->kobj, &c->kobj, "cache");
814 if (ret < 0)
815 pr_err("Couldn't create device -> cache set symlink\n");
816
817 ret = sysfs_create_link(&c->kobj, &d->kobj, d->name);
818 if (ret < 0)
819 pr_err("Couldn't create cache set -> device symlink\n");
820
821 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
822 }
823
bcache_device_detach(struct bcache_device * d)824 static void bcache_device_detach(struct bcache_device *d)
825 {
826 lockdep_assert_held(&bch_register_lock);
827
828 atomic_dec(&d->c->attached_dev_nr);
829
830 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
831 struct uuid_entry *u = d->c->uuids + d->id;
832
833 SET_UUID_FLASH_ONLY(u, 0);
834 memcpy(u->uuid, invalid_uuid, 16);
835 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
836 bch_uuid_write(d->c);
837 }
838
839 bcache_device_unlink(d);
840
841 d->c->devices[d->id] = NULL;
842 closure_put(&d->c->caching);
843 d->c = NULL;
844 }
845
bcache_device_attach(struct bcache_device * d,struct cache_set * c,unsigned int id)846 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
847 unsigned int id)
848 {
849 d->id = id;
850 d->c = c;
851 c->devices[id] = d;
852
853 if (id >= c->devices_max_used)
854 c->devices_max_used = id + 1;
855
856 closure_get(&c->caching);
857 }
858
first_minor_to_idx(int first_minor)859 static inline int first_minor_to_idx(int first_minor)
860 {
861 return (first_minor/BCACHE_MINORS);
862 }
863
idx_to_first_minor(int idx)864 static inline int idx_to_first_minor(int idx)
865 {
866 return (idx * BCACHE_MINORS);
867 }
868
bcache_device_free(struct bcache_device * d)869 static void bcache_device_free(struct bcache_device *d)
870 {
871 struct gendisk *disk = d->disk;
872
873 lockdep_assert_held(&bch_register_lock);
874
875 if (disk)
876 pr_info("%s stopped\n", disk->disk_name);
877 else
878 pr_err("bcache device (NULL gendisk) stopped\n");
879
880 if (d->c)
881 bcache_device_detach(d);
882
883 if (disk) {
884 ida_free(&bcache_device_idx,
885 first_minor_to_idx(disk->first_minor));
886 put_disk(disk);
887 }
888
889 bioset_exit(&d->bio_split);
890 bioset_exit(&d->bio_detached);
891 kvfree(d->full_dirty_stripes);
892 kvfree(d->stripe_sectors_dirty);
893
894 closure_debug_destroy(&d->cl);
895 }
896
bcache_device_init(struct bcache_device * d,unsigned int block_size,sector_t sectors,struct block_device * cached_bdev,const struct block_device_operations * ops)897 static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
898 sector_t sectors, struct block_device *cached_bdev,
899 const struct block_device_operations *ops)
900 {
901 const size_t max_stripes = min_t(size_t, INT_MAX,
902 SIZE_MAX / sizeof(atomic_t));
903 struct queue_limits lim = {
904 .max_hw_sectors = UINT_MAX,
905 .max_sectors = UINT_MAX,
906 .max_segment_size = UINT_MAX,
907 .max_segments = BIO_MAX_VECS,
908 .max_hw_discard_sectors = UINT_MAX,
909 .io_min = block_size,
910 .logical_block_size = block_size,
911 .physical_block_size = block_size,
912 .features = BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA,
913 };
914 uint64_t n;
915 int idx;
916
917 if (cached_bdev) {
918 d->stripe_size = bdev_io_opt(cached_bdev) >> SECTOR_SHIFT;
919 lim.io_opt = umax(block_size, bdev_io_opt(cached_bdev));
920 }
921 if (!d->stripe_size)
922 d->stripe_size = 1 << 31;
923 else if (d->stripe_size < BCH_MIN_STRIPE_SZ)
924 d->stripe_size = roundup(BCH_MIN_STRIPE_SZ, d->stripe_size);
925
926 n = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
927 if (!n || n > max_stripes) {
928 pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n",
929 n);
930 return -ENOMEM;
931 }
932 d->nr_stripes = n;
933
934 n = d->nr_stripes * sizeof(atomic_t);
935 d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
936 if (!d->stripe_sectors_dirty)
937 return -ENOMEM;
938
939 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
940 d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
941 if (!d->full_dirty_stripes)
942 goto out_free_stripe_sectors_dirty;
943
944 idx = ida_alloc_max(&bcache_device_idx, BCACHE_DEVICE_IDX_MAX - 1,
945 GFP_KERNEL);
946 if (idx < 0)
947 goto out_free_full_dirty_stripes;
948
949 if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
950 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
951 goto out_ida_remove;
952
953 if (bioset_init(&d->bio_detached, 4,
954 offsetof(struct detached_dev_io_private, bio),
955 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
956 goto out_bioset_split_exit;
957
958 if (lim.logical_block_size > PAGE_SIZE && cached_bdev) {
959 /*
960 * This should only happen with BCACHE_SB_VERSION_BDEV.
961 * Block/page size is checked for BCACHE_SB_VERSION_CDEV.
962 */
963 pr_info("bcache%i: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n",
964 idx, lim.logical_block_size,
965 PAGE_SIZE, bdev_logical_block_size(cached_bdev));
966
967 /* This also adjusts physical block size/min io size if needed */
968 lim.logical_block_size = bdev_logical_block_size(cached_bdev);
969 }
970
971 d->disk = blk_alloc_disk(&lim, NUMA_NO_NODE);
972 if (IS_ERR(d->disk))
973 goto out_bioset_detach_exit;
974
975 set_capacity(d->disk, sectors);
976 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
977
978 d->disk->major = bcache_major;
979 d->disk->first_minor = idx_to_first_minor(idx);
980 d->disk->minors = BCACHE_MINORS;
981 d->disk->fops = ops;
982 d->disk->private_data = d;
983 return 0;
984
985 out_bioset_detach_exit:
986 bioset_exit(&d->bio_detached);
987 out_bioset_split_exit:
988 bioset_exit(&d->bio_split);
989 out_ida_remove:
990 ida_free(&bcache_device_idx, idx);
991 out_free_full_dirty_stripes:
992 kvfree(d->full_dirty_stripes);
993 out_free_stripe_sectors_dirty:
994 kvfree(d->stripe_sectors_dirty);
995 return -ENOMEM;
996
997 }
998
999 /* Cached device */
1000
calc_cached_dev_sectors(struct cache_set * c)1001 static void calc_cached_dev_sectors(struct cache_set *c)
1002 {
1003 uint64_t sectors = 0;
1004 struct cached_dev *dc;
1005
1006 list_for_each_entry(dc, &c->cached_devs, list)
1007 sectors += bdev_nr_sectors(dc->bdev);
1008
1009 c->cached_dev_sectors = sectors;
1010 }
1011
1012 #define BACKING_DEV_OFFLINE_TIMEOUT 5
cached_dev_status_update(void * arg)1013 static int cached_dev_status_update(void *arg)
1014 {
1015 struct cached_dev *dc = arg;
1016 struct request_queue *q;
1017
1018 /*
1019 * If this delayed worker is stopping outside, directly quit here.
1020 * dc->io_disable might be set via sysfs interface, so check it
1021 * here too.
1022 */
1023 while (!kthread_should_stop() && !dc->io_disable) {
1024 q = bdev_get_queue(dc->bdev);
1025 if (blk_queue_dying(q))
1026 dc->offline_seconds++;
1027 else
1028 dc->offline_seconds = 0;
1029
1030 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
1031 pr_err("%pg: device offline for %d seconds\n",
1032 dc->bdev,
1033 BACKING_DEV_OFFLINE_TIMEOUT);
1034 pr_err("%s: disable I/O request due to backing device offline\n",
1035 dc->disk.name);
1036 dc->io_disable = true;
1037 /* let others know earlier that io_disable is true */
1038 smp_mb();
1039 bcache_device_stop(&dc->disk);
1040 break;
1041 }
1042 schedule_timeout_interruptible(HZ);
1043 }
1044
1045 wait_for_kthread_stop();
1046 return 0;
1047 }
1048
1049
bch_cached_dev_run(struct cached_dev * dc)1050 int bch_cached_dev_run(struct cached_dev *dc)
1051 {
1052 int ret = 0;
1053 struct bcache_device *d = &dc->disk;
1054 char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
1055 char *env[] = {
1056 "DRIVER=bcache",
1057 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
1058 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
1059 NULL,
1060 };
1061
1062 if (dc->io_disable) {
1063 pr_err("I/O disabled on cached dev %pg\n", dc->bdev);
1064 ret = -EIO;
1065 goto out;
1066 }
1067
1068 if (atomic_xchg(&dc->running, 1)) {
1069 pr_info("cached dev %pg is running already\n", dc->bdev);
1070 ret = -EBUSY;
1071 goto out;
1072 }
1073
1074 if (!d->c &&
1075 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
1076 struct closure cl;
1077
1078 closure_init_stack(&cl);
1079
1080 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
1081 bch_write_bdev_super(dc, &cl);
1082 closure_sync(&cl);
1083 }
1084
1085 ret = add_disk(d->disk);
1086 if (ret)
1087 goto out;
1088 bd_link_disk_holder(dc->bdev, dc->disk.disk);
1089 /*
1090 * won't show up in the uevent file, use udevadm monitor -e instead
1091 * only class / kset properties are persistent
1092 */
1093 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
1094
1095 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
1096 sysfs_create_link(&disk_to_dev(d->disk)->kobj,
1097 &d->kobj, "bcache")) {
1098 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n");
1099 ret = -ENOMEM;
1100 goto out;
1101 }
1102
1103 dc->status_update_thread = kthread_run(cached_dev_status_update,
1104 dc, "bcache_status_update");
1105 if (IS_ERR(dc->status_update_thread)) {
1106 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n");
1107 }
1108
1109 out:
1110 kfree(env[1]);
1111 kfree(env[2]);
1112 kfree(buf);
1113 return ret;
1114 }
1115
1116 /*
1117 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
1118 * work dc->writeback_rate_update is running. Wait until the routine
1119 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
1120 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
1121 * seconds, give up waiting here and continue to cancel it too.
1122 */
cancel_writeback_rate_update_dwork(struct cached_dev * dc)1123 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
1124 {
1125 int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
1126
1127 do {
1128 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
1129 &dc->disk.flags))
1130 break;
1131 time_out--;
1132 schedule_timeout_interruptible(1);
1133 } while (time_out > 0);
1134
1135 if (time_out == 0)
1136 pr_warn("give up waiting for dc->writeback_write_update to quit\n");
1137
1138 cancel_delayed_work_sync(&dc->writeback_rate_update);
1139 }
1140
cached_dev_detach_finish(struct work_struct * w)1141 static void cached_dev_detach_finish(struct work_struct *w)
1142 {
1143 struct cached_dev *dc = container_of(w, struct cached_dev, detach);
1144 struct cache_set *c = dc->disk.c;
1145
1146 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
1147 BUG_ON(refcount_read(&dc->count));
1148
1149
1150 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1151 cancel_writeback_rate_update_dwork(dc);
1152
1153 if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1154 kthread_stop(dc->writeback_thread);
1155 dc->writeback_thread = NULL;
1156 }
1157
1158 mutex_lock(&bch_register_lock);
1159
1160 bcache_device_detach(&dc->disk);
1161 list_move(&dc->list, &uncached_devices);
1162 calc_cached_dev_sectors(c);
1163
1164 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1165 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1166
1167 mutex_unlock(&bch_register_lock);
1168
1169 pr_info("Caching disabled for %pg\n", dc->bdev);
1170
1171 /* Drop ref we took in cached_dev_detach() */
1172 closure_put(&dc->disk.cl);
1173 }
1174
bch_cached_dev_detach(struct cached_dev * dc)1175 void bch_cached_dev_detach(struct cached_dev *dc)
1176 {
1177 lockdep_assert_held(&bch_register_lock);
1178
1179 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1180 return;
1181
1182 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1183 return;
1184
1185 /*
1186 * Block the device from being closed and freed until we're finished
1187 * detaching
1188 */
1189 closure_get(&dc->disk.cl);
1190
1191 bch_writeback_queue(dc);
1192
1193 cached_dev_put(dc);
1194 }
1195
bch_cached_dev_attach(struct cached_dev * dc,struct cache_set * c,uint8_t * set_uuid)1196 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1197 uint8_t *set_uuid)
1198 {
1199 uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1200 struct uuid_entry *u;
1201 struct cached_dev *exist_dc, *t;
1202 int ret = 0;
1203
1204 if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) ||
1205 (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16)))
1206 return -ENOENT;
1207
1208 if (dc->disk.c) {
1209 pr_err("Can't attach %pg: already attached\n", dc->bdev);
1210 return -EINVAL;
1211 }
1212
1213 if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1214 pr_err("Can't attach %pg: shutting down\n", dc->bdev);
1215 return -EINVAL;
1216 }
1217
1218 if (dc->sb.block_size < c->cache->sb.block_size) {
1219 /* Will die */
1220 pr_err("Couldn't attach %pg: block size less than set's block size\n",
1221 dc->bdev);
1222 return -EINVAL;
1223 }
1224
1225 /* Check whether already attached */
1226 list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1227 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1228 pr_err("Tried to attach %pg but duplicate UUID already attached\n",
1229 dc->bdev);
1230
1231 return -EINVAL;
1232 }
1233 }
1234
1235 u = uuid_find(c, dc->sb.uuid);
1236
1237 if (u &&
1238 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1239 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1240 memcpy(u->uuid, invalid_uuid, 16);
1241 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1242 u = NULL;
1243 }
1244
1245 if (!u) {
1246 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1247 pr_err("Couldn't find uuid for %pg in set\n", dc->bdev);
1248 return -ENOENT;
1249 }
1250
1251 u = uuid_find_empty(c);
1252 if (!u) {
1253 pr_err("Not caching %pg, no room for UUID\n", dc->bdev);
1254 return -EINVAL;
1255 }
1256 }
1257
1258 /*
1259 * Deadlocks since we're called via sysfs...
1260 * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1261 */
1262
1263 if (bch_is_zero(u->uuid, 16)) {
1264 struct closure cl;
1265
1266 closure_init_stack(&cl);
1267
1268 memcpy(u->uuid, dc->sb.uuid, 16);
1269 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1270 u->first_reg = u->last_reg = rtime;
1271 bch_uuid_write(c);
1272
1273 memcpy(dc->sb.set_uuid, c->set_uuid, 16);
1274 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1275
1276 bch_write_bdev_super(dc, &cl);
1277 closure_sync(&cl);
1278 } else {
1279 u->last_reg = rtime;
1280 bch_uuid_write(c);
1281 }
1282
1283 bcache_device_attach(&dc->disk, c, u - c->uuids);
1284 list_move(&dc->list, &c->cached_devs);
1285 calc_cached_dev_sectors(c);
1286
1287 /*
1288 * dc->c must be set before dc->count != 0 - paired with the mb in
1289 * cached_dev_get()
1290 */
1291 smp_wmb();
1292 refcount_set(&dc->count, 1);
1293
1294 /* Block writeback thread, but spawn it */
1295 down_write(&dc->writeback_lock);
1296 if (bch_cached_dev_writeback_start(dc)) {
1297 up_write(&dc->writeback_lock);
1298 pr_err("Couldn't start writeback facilities for %s\n",
1299 dc->disk.disk->disk_name);
1300 return -ENOMEM;
1301 }
1302
1303 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1304 atomic_set(&dc->has_dirty, 1);
1305 bch_writeback_queue(dc);
1306 }
1307
1308 bch_sectors_dirty_init(&dc->disk);
1309
1310 ret = bch_cached_dev_run(dc);
1311 if (ret && (ret != -EBUSY)) {
1312 up_write(&dc->writeback_lock);
1313 /*
1314 * bch_register_lock is held, bcache_device_stop() is not
1315 * able to be directly called. The kthread and kworker
1316 * created previously in bch_cached_dev_writeback_start()
1317 * have to be stopped manually here.
1318 */
1319 kthread_stop(dc->writeback_thread);
1320 cancel_writeback_rate_update_dwork(dc);
1321 pr_err("Couldn't run cached device %pg\n", dc->bdev);
1322 return ret;
1323 }
1324
1325 bcache_device_link(&dc->disk, c, "bdev");
1326 atomic_inc(&c->attached_dev_nr);
1327
1328 if (bch_has_feature_obso_large_bucket(&(c->cache->sb))) {
1329 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1330 pr_err("Please update to the latest bcache-tools to create the cache device\n");
1331 set_disk_ro(dc->disk.disk, 1);
1332 }
1333
1334 /* Allow the writeback thread to proceed */
1335 up_write(&dc->writeback_lock);
1336
1337 pr_info("Caching %pg as %s on set %pU\n",
1338 dc->bdev,
1339 dc->disk.disk->disk_name,
1340 dc->disk.c->set_uuid);
1341 return 0;
1342 }
1343
1344 /* when dc->disk.kobj released */
bch_cached_dev_release(struct kobject * kobj)1345 void bch_cached_dev_release(struct kobject *kobj)
1346 {
1347 struct cached_dev *dc = container_of(kobj, struct cached_dev,
1348 disk.kobj);
1349 kfree(dc);
1350 module_put(THIS_MODULE);
1351 }
1352
CLOSURE_CALLBACK(cached_dev_free)1353 static CLOSURE_CALLBACK(cached_dev_free)
1354 {
1355 closure_type(dc, struct cached_dev, disk.cl);
1356
1357 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1358 cancel_writeback_rate_update_dwork(dc);
1359
1360 if (!IS_ERR_OR_NULL(dc->writeback_thread))
1361 kthread_stop(dc->writeback_thread);
1362 if (!IS_ERR_OR_NULL(dc->status_update_thread))
1363 kthread_stop(dc->status_update_thread);
1364
1365 mutex_lock(&bch_register_lock);
1366
1367 if (atomic_read(&dc->running)) {
1368 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1369 del_gendisk(dc->disk.disk);
1370 }
1371 bcache_device_free(&dc->disk);
1372 list_del(&dc->list);
1373
1374 mutex_unlock(&bch_register_lock);
1375
1376 if (dc->sb_disk)
1377 folio_put(virt_to_folio(dc->sb_disk));
1378
1379 if (dc->bdev_file)
1380 fput(dc->bdev_file);
1381
1382 wake_up(&unregister_wait);
1383
1384 kobject_put(&dc->disk.kobj);
1385 }
1386
CLOSURE_CALLBACK(cached_dev_flush)1387 static CLOSURE_CALLBACK(cached_dev_flush)
1388 {
1389 closure_type(dc, struct cached_dev, disk.cl);
1390 struct bcache_device *d = &dc->disk;
1391
1392 mutex_lock(&bch_register_lock);
1393 bcache_device_unlink(d);
1394 mutex_unlock(&bch_register_lock);
1395
1396 bch_cache_accounting_destroy(&dc->accounting);
1397 kobject_del(&d->kobj);
1398
1399 continue_at(cl, cached_dev_free, system_percpu_wq);
1400 }
1401
cached_dev_init(struct cached_dev * dc,unsigned int block_size)1402 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1403 {
1404 int ret;
1405 struct io *io;
1406 struct request_queue *q = bdev_get_queue(dc->bdev);
1407
1408 __module_get(THIS_MODULE);
1409 INIT_LIST_HEAD(&dc->list);
1410 closure_init(&dc->disk.cl, NULL);
1411 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_percpu_wq);
1412 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1413 INIT_WORK(&dc->detach, cached_dev_detach_finish);
1414 sema_init(&dc->sb_write_mutex, 1);
1415 INIT_LIST_HEAD(&dc->io_lru);
1416 spin_lock_init(&dc->io_lock);
1417 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1418
1419 dc->sequential_cutoff = 4 << 20;
1420
1421 for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1422 list_add(&io->lru, &dc->io_lru);
1423 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1424 }
1425
1426 if (bdev_io_opt(dc->bdev))
1427 dc->partial_stripes_expensive = !!(q->limits.features &
1428 BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE);
1429
1430 ret = bcache_device_init(&dc->disk, block_size,
1431 bdev_nr_sectors(dc->bdev) - dc->sb.data_offset,
1432 dc->bdev, &bcache_cached_ops);
1433 if (ret)
1434 return ret;
1435
1436 atomic_set(&dc->io_errors, 0);
1437 dc->io_disable = false;
1438 dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1439 /* default to auto */
1440 dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1441
1442 bch_cached_dev_request_init(dc);
1443 bch_cached_dev_writeback_init(dc);
1444 return 0;
1445 }
1446
1447 /* Cached device - bcache superblock */
1448
register_bdev(struct cache_sb * sb,struct cache_sb_disk * sb_disk,struct file * bdev_file,struct cached_dev * dc)1449 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
1450 struct file *bdev_file,
1451 struct cached_dev *dc)
1452 {
1453 const char *err = "cannot allocate memory";
1454 struct cache_set *c;
1455 int ret = -ENOMEM;
1456
1457 memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1458 dc->bdev_file = bdev_file;
1459 dc->bdev = file_bdev(bdev_file);
1460 dc->sb_disk = sb_disk;
1461
1462 if (cached_dev_init(dc, sb->block_size << 9))
1463 goto err;
1464
1465 err = "error creating kobject";
1466 if (kobject_add(&dc->disk.kobj, bdev_kobj(dc->bdev), "bcache"))
1467 goto err;
1468 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1469 goto err;
1470
1471 pr_info("registered backing device %pg\n", dc->bdev);
1472
1473 list_add(&dc->list, &uncached_devices);
1474 /* attach to a matched cache set if it exists */
1475 list_for_each_entry(c, &bch_cache_sets, list)
1476 bch_cached_dev_attach(dc, c, NULL);
1477
1478 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1479 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) {
1480 err = "failed to run cached device";
1481 ret = bch_cached_dev_run(dc);
1482 if (ret)
1483 goto err;
1484 }
1485
1486 return 0;
1487 err:
1488 pr_notice("error %pg: %s\n", dc->bdev, err);
1489 bcache_device_stop(&dc->disk);
1490 return ret;
1491 }
1492
1493 /* Flash only volumes */
1494
1495 /* When d->kobj released */
bch_flash_dev_release(struct kobject * kobj)1496 void bch_flash_dev_release(struct kobject *kobj)
1497 {
1498 struct bcache_device *d = container_of(kobj, struct bcache_device,
1499 kobj);
1500 kfree(d);
1501 }
1502
CLOSURE_CALLBACK(flash_dev_free)1503 static CLOSURE_CALLBACK(flash_dev_free)
1504 {
1505 closure_type(d, struct bcache_device, cl);
1506
1507 mutex_lock(&bch_register_lock);
1508 atomic_long_sub(bcache_dev_sectors_dirty(d),
1509 &d->c->flash_dev_dirty_sectors);
1510 del_gendisk(d->disk);
1511 bcache_device_free(d);
1512 mutex_unlock(&bch_register_lock);
1513 kobject_put(&d->kobj);
1514 }
1515
CLOSURE_CALLBACK(flash_dev_flush)1516 static CLOSURE_CALLBACK(flash_dev_flush)
1517 {
1518 closure_type(d, struct bcache_device, cl);
1519
1520 mutex_lock(&bch_register_lock);
1521 bcache_device_unlink(d);
1522 mutex_unlock(&bch_register_lock);
1523 kobject_del(&d->kobj);
1524 continue_at(cl, flash_dev_free, system_percpu_wq);
1525 }
1526
flash_dev_run(struct cache_set * c,struct uuid_entry * u)1527 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1528 {
1529 int err = -ENOMEM;
1530 struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1531 GFP_KERNEL);
1532 if (!d)
1533 goto err_ret;
1534
1535 closure_init(&d->cl, NULL);
1536 set_closure_fn(&d->cl, flash_dev_flush, system_percpu_wq);
1537
1538 kobject_init(&d->kobj, &bch_flash_dev_ktype);
1539
1540 if (bcache_device_init(d, block_bytes(c->cache), u->sectors,
1541 NULL, &bcache_flash_ops))
1542 goto err;
1543
1544 bcache_device_attach(d, c, u - c->uuids);
1545 bch_sectors_dirty_init(d);
1546 bch_flash_dev_request_init(d);
1547 err = add_disk(d->disk);
1548 if (err)
1549 goto err;
1550
1551 err = kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache");
1552 if (err)
1553 goto err;
1554
1555 bcache_device_link(d, c, "volume");
1556
1557 if (bch_has_feature_obso_large_bucket(&c->cache->sb)) {
1558 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1559 pr_err("Please update to the latest bcache-tools to create the cache device\n");
1560 set_disk_ro(d->disk, 1);
1561 }
1562
1563 return 0;
1564 err:
1565 kobject_put(&d->kobj);
1566 err_ret:
1567 return err;
1568 }
1569
flash_devs_run(struct cache_set * c)1570 static int flash_devs_run(struct cache_set *c)
1571 {
1572 int ret = 0;
1573 struct uuid_entry *u;
1574
1575 for (u = c->uuids;
1576 u < c->uuids + c->nr_uuids && !ret;
1577 u++)
1578 if (UUID_FLASH_ONLY(u))
1579 ret = flash_dev_run(c, u);
1580
1581 return ret;
1582 }
1583
bch_flash_dev_create(struct cache_set * c,uint64_t size)1584 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1585 {
1586 struct uuid_entry *u;
1587
1588 if (test_bit(CACHE_SET_STOPPING, &c->flags))
1589 return -EINTR;
1590
1591 if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1592 return -EPERM;
1593
1594 u = uuid_find_empty(c);
1595 if (!u) {
1596 pr_err("Can't create volume, no room for UUID\n");
1597 return -EINVAL;
1598 }
1599
1600 get_random_bytes(u->uuid, 16);
1601 memset(u->label, 0, 32);
1602 u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1603
1604 SET_UUID_FLASH_ONLY(u, 1);
1605 u->sectors = size >> 9;
1606
1607 bch_uuid_write(c);
1608
1609 return flash_dev_run(c, u);
1610 }
1611
bch_cached_dev_error(struct cached_dev * dc)1612 bool bch_cached_dev_error(struct cached_dev *dc)
1613 {
1614 if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1615 return false;
1616
1617 dc->io_disable = true;
1618 /* make others know io_disable is true earlier */
1619 smp_mb();
1620
1621 pr_err("stop %s: too many IO errors on backing device %pg\n",
1622 dc->disk.disk->disk_name, dc->bdev);
1623
1624 bcache_device_stop(&dc->disk);
1625 return true;
1626 }
1627
1628 /* Cache set */
1629
1630 __printf(2, 3)
bch_cache_set_error(struct cache_set * c,const char * fmt,...)1631 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1632 {
1633 struct va_format vaf;
1634 va_list args;
1635
1636 if (c->on_error != ON_ERROR_PANIC &&
1637 test_bit(CACHE_SET_STOPPING, &c->flags))
1638 return false;
1639
1640 if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1641 pr_info("CACHE_SET_IO_DISABLE already set\n");
1642
1643 /*
1644 * XXX: we can be called from atomic context
1645 * acquire_console_sem();
1646 */
1647
1648 va_start(args, fmt);
1649
1650 vaf.fmt = fmt;
1651 vaf.va = &args;
1652
1653 pr_err("error on %pU: %pV, disabling caching\n",
1654 c->set_uuid, &vaf);
1655
1656 va_end(args);
1657
1658 if (c->on_error == ON_ERROR_PANIC)
1659 panic("panic forced after error\n");
1660
1661 bch_cache_set_unregister(c);
1662 return true;
1663 }
1664
1665 /* When c->kobj released */
bch_cache_set_release(struct kobject * kobj)1666 void bch_cache_set_release(struct kobject *kobj)
1667 {
1668 struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1669
1670 kfree(c);
1671 module_put(THIS_MODULE);
1672 }
1673
CLOSURE_CALLBACK(cache_set_free)1674 static CLOSURE_CALLBACK(cache_set_free)
1675 {
1676 closure_type(c, struct cache_set, cl);
1677 struct cache *ca;
1678
1679 debugfs_remove(c->debug);
1680
1681 bch_open_buckets_free(c);
1682 bch_btree_cache_free(c);
1683 bch_journal_free(c);
1684
1685 mutex_lock(&bch_register_lock);
1686 bch_bset_sort_state_free(&c->sort);
1687 free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb)));
1688
1689 ca = c->cache;
1690 if (ca) {
1691 ca->set = NULL;
1692 c->cache = NULL;
1693 kobject_put(&ca->kobj);
1694 }
1695
1696
1697 if (c->moving_gc_wq)
1698 destroy_workqueue(c->moving_gc_wq);
1699 bioset_exit(&c->bio_split);
1700 mempool_exit(&c->fill_iter);
1701 mempool_exit(&c->bio_meta);
1702 mempool_exit(&c->search);
1703 kfree(c->devices);
1704
1705 list_del(&c->list);
1706 mutex_unlock(&bch_register_lock);
1707
1708 pr_info("Cache set %pU unregistered\n", c->set_uuid);
1709 wake_up(&unregister_wait);
1710
1711 closure_debug_destroy(&c->cl);
1712 kobject_put(&c->kobj);
1713 }
1714
CLOSURE_CALLBACK(cache_set_flush)1715 static CLOSURE_CALLBACK(cache_set_flush)
1716 {
1717 closure_type(c, struct cache_set, caching);
1718 struct cache *ca = c->cache;
1719 struct btree *b;
1720
1721 bch_cache_accounting_destroy(&c->accounting);
1722
1723 kobject_put(&c->internal);
1724 kobject_del(&c->kobj);
1725
1726 if (!IS_ERR_OR_NULL(c->gc_thread))
1727 kthread_stop(c->gc_thread);
1728
1729 if (!IS_ERR_OR_NULL(c->root))
1730 list_add(&c->root->list, &c->btree_cache);
1731
1732 /*
1733 * Avoid flushing cached nodes if cache set is retiring
1734 * due to too many I/O errors detected.
1735 */
1736 if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1737 list_for_each_entry(b, &c->btree_cache, list) {
1738 mutex_lock(&b->write_lock);
1739 if (btree_node_dirty(b))
1740 __bch_btree_node_write(b, NULL);
1741 mutex_unlock(&b->write_lock);
1742 }
1743
1744 /*
1745 * If the register_cache_set() call to bch_cache_set_alloc() failed,
1746 * ca has not been assigned a value and return error.
1747 * So we need check ca is not NULL during bch_cache_set_unregister().
1748 */
1749 if (ca && ca->alloc_thread)
1750 kthread_stop(ca->alloc_thread);
1751
1752 if (c->journal.cur) {
1753 cancel_delayed_work_sync(&c->journal.work);
1754 /* flush last journal entry if needed */
1755 c->journal.work.work.func(&c->journal.work.work);
1756 }
1757
1758 closure_return(cl);
1759 }
1760
1761 /*
1762 * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1763 * cache set is unregistering due to too many I/O errors. In this condition,
1764 * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1765 * value and whether the broken cache has dirty data:
1766 *
1767 * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device
1768 * BCH_CACHED_STOP_AUTO 0 NO
1769 * BCH_CACHED_STOP_AUTO 1 YES
1770 * BCH_CACHED_DEV_STOP_ALWAYS 0 YES
1771 * BCH_CACHED_DEV_STOP_ALWAYS 1 YES
1772 *
1773 * The expected behavior is, if stop_when_cache_set_failed is configured to
1774 * "auto" via sysfs interface, the bcache device will not be stopped if the
1775 * backing device is clean on the broken cache device.
1776 */
conditional_stop_bcache_device(struct cache_set * c,struct bcache_device * d,struct cached_dev * dc)1777 static void conditional_stop_bcache_device(struct cache_set *c,
1778 struct bcache_device *d,
1779 struct cached_dev *dc)
1780 {
1781 if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1782 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n",
1783 d->disk->disk_name, c->set_uuid);
1784 bcache_device_stop(d);
1785 } else if (atomic_read(&dc->has_dirty)) {
1786 /*
1787 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1788 * and dc->has_dirty == 1
1789 */
1790 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n",
1791 d->disk->disk_name);
1792 /*
1793 * There might be a small time gap that cache set is
1794 * released but bcache device is not. Inside this time
1795 * gap, regular I/O requests will directly go into
1796 * backing device as no cache set attached to. This
1797 * behavior may also introduce potential inconsistence
1798 * data in writeback mode while cache is dirty.
1799 * Therefore before calling bcache_device_stop() due
1800 * to a broken cache device, dc->io_disable should be
1801 * explicitly set to true.
1802 */
1803 dc->io_disable = true;
1804 /* make others know io_disable is true earlier */
1805 smp_mb();
1806 bcache_device_stop(d);
1807 } else {
1808 /*
1809 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1810 * and dc->has_dirty == 0
1811 */
1812 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n",
1813 d->disk->disk_name);
1814 }
1815 }
1816
CLOSURE_CALLBACK(__cache_set_unregister)1817 static CLOSURE_CALLBACK(__cache_set_unregister)
1818 {
1819 closure_type(c, struct cache_set, caching);
1820 struct cached_dev *dc;
1821 struct bcache_device *d;
1822 size_t i;
1823
1824 mutex_lock(&bch_register_lock);
1825
1826 for (i = 0; i < c->devices_max_used; i++) {
1827 d = c->devices[i];
1828 if (!d)
1829 continue;
1830
1831 if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1832 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1833 dc = container_of(d, struct cached_dev, disk);
1834 bch_cached_dev_detach(dc);
1835 if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1836 conditional_stop_bcache_device(c, d, dc);
1837 } else {
1838 bcache_device_stop(d);
1839 }
1840 }
1841
1842 mutex_unlock(&bch_register_lock);
1843
1844 continue_at(cl, cache_set_flush, system_percpu_wq);
1845 }
1846
bch_cache_set_stop(struct cache_set * c)1847 void bch_cache_set_stop(struct cache_set *c)
1848 {
1849 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1850 /* closure_fn set to __cache_set_unregister() */
1851 closure_queue(&c->caching);
1852 }
1853
bch_cache_set_unregister(struct cache_set * c)1854 void bch_cache_set_unregister(struct cache_set *c)
1855 {
1856 set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1857 bch_cache_set_stop(c);
1858 }
1859
1860 #define alloc_meta_bucket_pages(gfp, sb) \
1861 ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb))))
1862
bch_cache_set_alloc(struct cache_sb * sb)1863 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1864 {
1865 int iter_size;
1866 struct cache *ca = container_of(sb, struct cache, sb);
1867 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1868
1869 if (!c)
1870 return NULL;
1871
1872 __module_get(THIS_MODULE);
1873 closure_init(&c->cl, NULL);
1874 set_closure_fn(&c->cl, cache_set_free, system_percpu_wq);
1875
1876 closure_init(&c->caching, &c->cl);
1877 set_closure_fn(&c->caching, __cache_set_unregister, system_percpu_wq);
1878
1879 /* Maybe create continue_at_noreturn() and use it here? */
1880 closure_set_stopped(&c->cl);
1881 closure_put(&c->cl);
1882
1883 kobject_init(&c->kobj, &bch_cache_set_ktype);
1884 kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1885
1886 bch_cache_accounting_init(&c->accounting, &c->cl);
1887
1888 memcpy(c->set_uuid, sb->set_uuid, 16);
1889
1890 c->cache = ca;
1891 c->cache->set = c;
1892 c->bucket_bits = ilog2(sb->bucket_size);
1893 c->block_bits = ilog2(sb->block_size);
1894 c->nr_uuids = meta_bucket_bytes(sb) / sizeof(struct uuid_entry);
1895 c->devices_max_used = 0;
1896 atomic_set(&c->attached_dev_nr, 0);
1897 c->btree_pages = meta_bucket_pages(sb);
1898 if (c->btree_pages > BTREE_MAX_PAGES)
1899 c->btree_pages = max_t(int, c->btree_pages / 4,
1900 BTREE_MAX_PAGES);
1901
1902 sema_init(&c->sb_write_mutex, 1);
1903 mutex_init(&c->bucket_lock);
1904 init_waitqueue_head(&c->btree_cache_wait);
1905 spin_lock_init(&c->btree_cannibalize_lock);
1906 init_waitqueue_head(&c->bucket_wait);
1907 init_waitqueue_head(&c->gc_wait);
1908 sema_init(&c->uuid_write_mutex, 1);
1909
1910 spin_lock_init(&c->btree_gc_time.lock);
1911 spin_lock_init(&c->btree_split_time.lock);
1912 spin_lock_init(&c->btree_read_time.lock);
1913
1914 bch_moving_init_cache_set(c);
1915
1916 INIT_LIST_HEAD(&c->list);
1917 INIT_LIST_HEAD(&c->cached_devs);
1918 INIT_LIST_HEAD(&c->btree_cache);
1919 INIT_LIST_HEAD(&c->btree_cache_freeable);
1920 INIT_LIST_HEAD(&c->btree_cache_freed);
1921 INIT_LIST_HEAD(&c->data_buckets);
1922
1923 iter_size = sizeof(struct btree_iter) +
1924 ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size) *
1925 sizeof(struct btree_iter_set);
1926
1927 c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL);
1928 if (!c->devices)
1929 goto err;
1930
1931 if (mempool_init_slab_pool(&c->search, 32, bch_search_cache))
1932 goto err;
1933
1934 if (mempool_init_kmalloc_pool(&c->bio_meta, 2,
1935 sizeof(struct bbio) +
1936 sizeof(struct bio_vec) * meta_bucket_pages(sb)))
1937 goto err;
1938
1939 if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size))
1940 goto err;
1941
1942 if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1943 BIOSET_NEED_RESCUER))
1944 goto err;
1945
1946 c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb);
1947 if (!c->uuids)
1948 goto err;
1949
1950 c->moving_gc_wq = alloc_workqueue("bcache_gc",
1951 WQ_MEM_RECLAIM | WQ_PERCPU, 0);
1952 if (!c->moving_gc_wq)
1953 goto err;
1954
1955 if (bch_journal_alloc(c))
1956 goto err;
1957
1958 if (bch_btree_cache_alloc(c))
1959 goto err;
1960
1961 if (bch_open_buckets_alloc(c))
1962 goto err;
1963
1964 if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1965 goto err;
1966
1967 c->congested_read_threshold_us = 2000;
1968 c->congested_write_threshold_us = 20000;
1969 c->error_limit = DEFAULT_IO_ERROR_LIMIT;
1970 c->idle_max_writeback_rate_enabled = 1;
1971 WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1972
1973 return c;
1974 err:
1975 bch_cache_set_unregister(c);
1976 return NULL;
1977 }
1978
run_cache_set(struct cache_set * c)1979 static int run_cache_set(struct cache_set *c)
1980 {
1981 const char *err = "cannot allocate memory";
1982 struct cached_dev *dc, *t;
1983 struct cache *ca = c->cache;
1984 struct closure cl;
1985 LIST_HEAD(journal);
1986 struct journal_replay *l;
1987
1988 closure_init_stack(&cl);
1989
1990 c->nbuckets = ca->sb.nbuckets;
1991 set_gc_sectors(c);
1992
1993 if (CACHE_SYNC(&c->cache->sb)) {
1994 struct bkey *k;
1995 struct jset *j;
1996
1997 err = "cannot allocate memory for journal";
1998 if (bch_journal_read(c, &journal))
1999 goto err;
2000
2001 pr_debug("btree_journal_read() done\n");
2002
2003 err = "no journal entries found";
2004 if (list_empty(&journal))
2005 goto err;
2006
2007 j = &list_entry(journal.prev, struct journal_replay, list)->j;
2008
2009 err = "IO error reading priorities";
2010 if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]))
2011 goto err;
2012
2013 /*
2014 * If prio_read() fails it'll call cache_set_error and we'll
2015 * tear everything down right away, but if we perhaps checked
2016 * sooner we could avoid journal replay.
2017 */
2018
2019 k = &j->btree_root;
2020
2021 err = "bad btree root";
2022 if (__bch_btree_ptr_invalid(c, k))
2023 goto err;
2024
2025 err = "error reading btree root";
2026 c->root = bch_btree_node_get(c, NULL, k,
2027 j->btree_level,
2028 true, NULL);
2029 if (IS_ERR(c->root))
2030 goto err;
2031
2032 list_del_init(&c->root->list);
2033 rw_unlock(true, c->root);
2034
2035 err = uuid_read(c, j, &cl);
2036 if (err)
2037 goto err;
2038
2039 err = "error in recovery";
2040 if (bch_btree_check(c))
2041 goto err;
2042
2043 bch_journal_mark(c, &journal);
2044 bch_initial_gc_finish(c);
2045 pr_debug("btree_check() done\n");
2046
2047 /*
2048 * bcache_journal_next() can't happen sooner, or
2049 * btree_gc_finish() will give spurious errors about last_gc >
2050 * gc_gen - this is a hack but oh well.
2051 */
2052 bch_journal_next(&c->journal);
2053
2054 err = "error starting allocator thread";
2055 if (bch_cache_allocator_start(ca))
2056 goto err;
2057
2058 /*
2059 * First place it's safe to allocate: btree_check() and
2060 * btree_gc_finish() have to run before we have buckets to
2061 * allocate, and bch_bucket_alloc_set() might cause a journal
2062 * entry to be written so bcache_journal_next() has to be called
2063 * first.
2064 *
2065 * If the uuids were in the old format we have to rewrite them
2066 * before the next journal entry is written:
2067 */
2068 if (j->version < BCACHE_JSET_VERSION_UUID)
2069 __uuid_write(c);
2070
2071 err = "bcache: replay journal failed";
2072 if (bch_journal_replay(c, &journal))
2073 goto err;
2074 } else {
2075 unsigned int j;
2076
2077 pr_notice("invalidating existing data\n");
2078 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
2079 2, SB_JOURNAL_BUCKETS);
2080
2081 for (j = 0; j < ca->sb.keys; j++)
2082 ca->sb.d[j] = ca->sb.first_bucket + j;
2083
2084 bch_initial_gc_finish(c);
2085
2086 err = "error starting allocator thread";
2087 if (bch_cache_allocator_start(ca))
2088 goto err;
2089
2090 mutex_lock(&c->bucket_lock);
2091 bch_prio_write(ca, true);
2092 mutex_unlock(&c->bucket_lock);
2093
2094 err = "cannot allocate new UUID bucket";
2095 if (__uuid_write(c))
2096 goto err;
2097
2098 err = "cannot allocate new btree root";
2099 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
2100 if (IS_ERR(c->root))
2101 goto err;
2102
2103 mutex_lock(&c->root->write_lock);
2104 bkey_copy_key(&c->root->key, &MAX_KEY);
2105 bch_btree_node_write(c->root, &cl);
2106 mutex_unlock(&c->root->write_lock);
2107
2108 bch_btree_set_root(c->root);
2109 rw_unlock(true, c->root);
2110
2111 /*
2112 * We don't want to write the first journal entry until
2113 * everything is set up - fortunately journal entries won't be
2114 * written until the SET_CACHE_SYNC() here:
2115 */
2116 SET_CACHE_SYNC(&c->cache->sb, true);
2117
2118 bch_journal_next(&c->journal);
2119 bch_journal_meta(c, &cl);
2120 }
2121
2122 err = "error starting gc thread";
2123 if (bch_gc_thread_start(c))
2124 goto err;
2125
2126 closure_sync(&cl);
2127 c->cache->sb.last_mount = (u32)ktime_get_real_seconds();
2128 bcache_write_super(c);
2129
2130 if (bch_has_feature_obso_large_bucket(&c->cache->sb))
2131 pr_err("Detect obsoleted large bucket layout, all attached bcache device will be read-only\n");
2132
2133 list_for_each_entry_safe(dc, t, &uncached_devices, list)
2134 bch_cached_dev_attach(dc, c, NULL);
2135
2136 flash_devs_run(c);
2137
2138 bch_journal_space_reserve(&c->journal);
2139 set_bit(CACHE_SET_RUNNING, &c->flags);
2140 return 0;
2141 err:
2142 while (!list_empty(&journal)) {
2143 l = list_first_entry(&journal, struct journal_replay, list);
2144 list_del(&l->list);
2145 kfree(l);
2146 }
2147
2148 closure_sync(&cl);
2149
2150 bch_cache_set_error(c, "%s", err);
2151
2152 return -EIO;
2153 }
2154
register_cache_set(struct cache * ca)2155 static const char *register_cache_set(struct cache *ca)
2156 {
2157 char buf[12];
2158 const char *err = "cannot allocate memory";
2159 struct cache_set *c;
2160
2161 list_for_each_entry(c, &bch_cache_sets, list)
2162 if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) {
2163 if (c->cache)
2164 return "duplicate cache set member";
2165
2166 goto found;
2167 }
2168
2169 c = bch_cache_set_alloc(&ca->sb);
2170 if (!c)
2171 return err;
2172
2173 err = "error creating kobject";
2174 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) ||
2175 kobject_add(&c->internal, &c->kobj, "internal"))
2176 goto err;
2177
2178 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
2179 goto err;
2180
2181 bch_debug_init_cache_set(c);
2182
2183 list_add(&c->list, &bch_cache_sets);
2184 found:
2185 sprintf(buf, "cache%i", ca->sb.nr_this_dev);
2186 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
2187 sysfs_create_link(&c->kobj, &ca->kobj, buf))
2188 goto err;
2189
2190 kobject_get(&ca->kobj);
2191 ca->set = c;
2192 ca->set->cache = ca;
2193
2194 err = "failed to run cache set";
2195 if (run_cache_set(c) < 0)
2196 goto err;
2197
2198 return NULL;
2199 err:
2200 bch_cache_set_unregister(c);
2201 return err;
2202 }
2203
2204 /* Cache device */
2205
2206 /* When ca->kobj released */
bch_cache_release(struct kobject * kobj)2207 void bch_cache_release(struct kobject *kobj)
2208 {
2209 struct cache *ca = container_of(kobj, struct cache, kobj);
2210 unsigned int i;
2211
2212 if (ca->set) {
2213 BUG_ON(ca->set->cache != ca);
2214 ca->set->cache = NULL;
2215 }
2216
2217 free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb)));
2218 kfree(ca->prio_buckets);
2219 vfree(ca->buckets);
2220
2221 free_heap(&ca->heap);
2222 free_fifo(&ca->free_inc);
2223
2224 for (i = 0; i < RESERVE_NR; i++)
2225 free_fifo(&ca->free[i]);
2226
2227 if (ca->sb_disk)
2228 folio_put(virt_to_folio(ca->sb_disk));
2229
2230 if (ca->bdev_file)
2231 fput(ca->bdev_file);
2232
2233 kfree(ca);
2234 module_put(THIS_MODULE);
2235 }
2236
cache_alloc(struct cache * ca)2237 static int cache_alloc(struct cache *ca)
2238 {
2239 size_t free;
2240 size_t btree_buckets;
2241 struct bucket *b;
2242 int ret = -ENOMEM;
2243 const char *err = NULL;
2244
2245 __module_get(THIS_MODULE);
2246 kobject_init(&ca->kobj, &bch_cache_ktype);
2247
2248 bio_init_inline(&ca->journal.bio, NULL, 8, 0);
2249
2250 /*
2251 * When the cache disk is first registered, ca->sb.njournal_buckets
2252 * is zero, and it is assigned in run_cache_set().
2253 *
2254 * When ca->sb.njournal_buckets is not zero, journal exists,
2255 * and in bch_journal_replay(), tree node may split.
2256 * The worst situation is all journal buckets are valid journal,
2257 * and all the keys need to replay, so the number of RESERVE_BTREE
2258 * type buckets should be as much as journal buckets.
2259 *
2260 * If the number of RESERVE_BTREE type buckets is too few, the
2261 * bch_allocator_thread() may hang up and unable to allocate
2262 * bucket. The situation is roughly as follows:
2263 *
2264 * 1. In bch_data_insert_keys(), if the operation is not op->replace,
2265 * it will call the bch_journal(), which increments the journal_ref
2266 * counter. This counter is only decremented after bch_btree_insert
2267 * completes.
2268 *
2269 * 2. When calling bch_btree_insert, if the btree needs to split,
2270 * it will call btree_split() and btree_check_reserve() to check
2271 * whether there are enough reserved buckets in the RESERVE_BTREE
2272 * slot. If not enough, bcache_btree_root() will repeatedly retry.
2273 *
2274 * 3. Normally, the bch_allocator_thread is responsible for filling
2275 * the reservation slots from the free_inc bucket list. When the
2276 * free_inc bucket list is exhausted, the bch_allocator_thread
2277 * will call invalidate_buckets() until free_inc is refilled.
2278 * Then bch_allocator_thread calls bch_prio_write() once. and
2279 * bch_prio_write() will call bch_journal_meta() and waits for
2280 * the journal write to complete.
2281 *
2282 * 4. During journal_write, journal_write_unlocked() is be called.
2283 * If journal full occurs, journal_reclaim() and btree_flush_write()
2284 * will be called sequentially, then retry journal_write.
2285 *
2286 * 5. When 2 and 4 occur together, IO will hung up and cannot recover.
2287 *
2288 * Therefore, reserve more RESERVE_BTREE type buckets.
2289 */
2290 btree_buckets = clamp_t(size_t, ca->sb.nbuckets >> 7,
2291 32, SB_JOURNAL_BUCKETS);
2292 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2293 if (!free) {
2294 ret = -EPERM;
2295 err = "ca->sb.nbuckets is too small";
2296 goto err_free;
2297 }
2298
2299 if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2300 GFP_KERNEL)) {
2301 err = "ca->free[RESERVE_BTREE] alloc failed";
2302 goto err_btree_alloc;
2303 }
2304
2305 if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2306 GFP_KERNEL)) {
2307 err = "ca->free[RESERVE_PRIO] alloc failed";
2308 goto err_prio_alloc;
2309 }
2310
2311 if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2312 err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2313 goto err_movinggc_alloc;
2314 }
2315
2316 if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2317 err = "ca->free[RESERVE_NONE] alloc failed";
2318 goto err_none_alloc;
2319 }
2320
2321 if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2322 err = "ca->free_inc alloc failed";
2323 goto err_free_inc_alloc;
2324 }
2325
2326 if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2327 err = "ca->heap alloc failed";
2328 goto err_heap_alloc;
2329 }
2330
2331 ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2332 ca->sb.nbuckets));
2333 if (!ca->buckets) {
2334 err = "ca->buckets alloc failed";
2335 goto err_buckets_alloc;
2336 }
2337
2338 ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2339 prio_buckets(ca), 2),
2340 GFP_KERNEL);
2341 if (!ca->prio_buckets) {
2342 err = "ca->prio_buckets alloc failed";
2343 goto err_prio_buckets_alloc;
2344 }
2345
2346 ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb);
2347 if (!ca->disk_buckets) {
2348 err = "ca->disk_buckets alloc failed";
2349 goto err_disk_buckets_alloc;
2350 }
2351
2352 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2353
2354 for_each_bucket(b, ca)
2355 atomic_set(&b->pin, 0);
2356 return 0;
2357
2358 err_disk_buckets_alloc:
2359 kfree(ca->prio_buckets);
2360 err_prio_buckets_alloc:
2361 vfree(ca->buckets);
2362 err_buckets_alloc:
2363 free_heap(&ca->heap);
2364 err_heap_alloc:
2365 free_fifo(&ca->free_inc);
2366 err_free_inc_alloc:
2367 free_fifo(&ca->free[RESERVE_NONE]);
2368 err_none_alloc:
2369 free_fifo(&ca->free[RESERVE_MOVINGGC]);
2370 err_movinggc_alloc:
2371 free_fifo(&ca->free[RESERVE_PRIO]);
2372 err_prio_alloc:
2373 free_fifo(&ca->free[RESERVE_BTREE]);
2374 err_btree_alloc:
2375 err_free:
2376 module_put(THIS_MODULE);
2377 if (err)
2378 pr_notice("error %pg: %s\n", ca->bdev, err);
2379 return ret;
2380 }
2381
register_cache(struct cache_sb * sb,struct cache_sb_disk * sb_disk,struct file * bdev_file,struct cache * ca)2382 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
2383 struct file *bdev_file,
2384 struct cache *ca)
2385 {
2386 const char *err = NULL; /* must be set for any error case */
2387 int ret = 0;
2388
2389 memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2390 ca->bdev_file = bdev_file;
2391 ca->bdev = file_bdev(bdev_file);
2392 ca->sb_disk = sb_disk;
2393
2394 ret = cache_alloc(ca);
2395 if (ret != 0) {
2396 if (ret == -ENOMEM)
2397 err = "cache_alloc(): -ENOMEM";
2398 else if (ret == -EPERM)
2399 err = "cache_alloc(): cache device is too small";
2400 else
2401 err = "cache_alloc(): unknown error";
2402 pr_notice("error %pg: %s\n", file_bdev(bdev_file), err);
2403 /*
2404 * If we failed here, it means ca->kobj is not initialized yet,
2405 * kobject_put() won't be called and there is no chance to
2406 * call fput() to bdev in bch_cache_release(). So
2407 * we explicitly call fput() on the block device here.
2408 */
2409 fput(bdev_file);
2410 return ret;
2411 }
2412
2413 if (kobject_add(&ca->kobj, bdev_kobj(file_bdev(bdev_file)), "bcache")) {
2414 pr_notice("error %pg: error calling kobject_add\n",
2415 file_bdev(bdev_file));
2416 ret = -ENOMEM;
2417 goto out;
2418 }
2419
2420 mutex_lock(&bch_register_lock);
2421 err = register_cache_set(ca);
2422 mutex_unlock(&bch_register_lock);
2423
2424 if (err) {
2425 ret = -ENODEV;
2426 goto out;
2427 }
2428
2429 pr_info("registered cache device %pg\n", file_bdev(ca->bdev_file));
2430
2431 out:
2432 kobject_put(&ca->kobj);
2433 return ret;
2434 }
2435
2436 /* Global interfaces/init */
2437
2438 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2439 const char *buffer, size_t size);
2440 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2441 struct kobj_attribute *attr,
2442 const char *buffer, size_t size);
2443
2444 kobj_attribute_write(register, register_bcache);
2445 kobj_attribute_write(register_quiet, register_bcache);
2446 kobj_attribute_write(pendings_cleanup, bch_pending_bdevs_cleanup);
2447
bch_is_open_backing(dev_t dev)2448 static bool bch_is_open_backing(dev_t dev)
2449 {
2450 struct cache_set *c, *tc;
2451 struct cached_dev *dc, *t;
2452
2453 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2454 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2455 if (dc->bdev->bd_dev == dev)
2456 return true;
2457 list_for_each_entry_safe(dc, t, &uncached_devices, list)
2458 if (dc->bdev->bd_dev == dev)
2459 return true;
2460 return false;
2461 }
2462
bch_is_open_cache(dev_t dev)2463 static bool bch_is_open_cache(dev_t dev)
2464 {
2465 struct cache_set *c, *tc;
2466
2467 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2468 struct cache *ca = c->cache;
2469
2470 if (ca->bdev->bd_dev == dev)
2471 return true;
2472 }
2473
2474 return false;
2475 }
2476
bch_is_open(dev_t dev)2477 static bool bch_is_open(dev_t dev)
2478 {
2479 return bch_is_open_cache(dev) || bch_is_open_backing(dev);
2480 }
2481
2482 struct async_reg_args {
2483 struct delayed_work reg_work;
2484 char *path;
2485 struct cache_sb *sb;
2486 struct cache_sb_disk *sb_disk;
2487 struct file *bdev_file;
2488 void *holder;
2489 };
2490
register_bdev_worker(struct work_struct * work)2491 static void register_bdev_worker(struct work_struct *work)
2492 {
2493 int fail = false;
2494 struct async_reg_args *args =
2495 container_of(work, struct async_reg_args, reg_work.work);
2496
2497 mutex_lock(&bch_register_lock);
2498 if (register_bdev(args->sb, args->sb_disk, args->bdev_file,
2499 args->holder) < 0)
2500 fail = true;
2501 mutex_unlock(&bch_register_lock);
2502
2503 if (fail)
2504 pr_info("error %s: fail to register backing device\n",
2505 args->path);
2506 kfree(args->sb);
2507 kfree(args->path);
2508 kfree(args);
2509 module_put(THIS_MODULE);
2510 }
2511
register_cache_worker(struct work_struct * work)2512 static void register_cache_worker(struct work_struct *work)
2513 {
2514 int fail = false;
2515 struct async_reg_args *args =
2516 container_of(work, struct async_reg_args, reg_work.work);
2517
2518 /* blkdev_put() will be called in bch_cache_release() */
2519 if (register_cache(args->sb, args->sb_disk, args->bdev_file,
2520 args->holder))
2521 fail = true;
2522
2523 if (fail)
2524 pr_info("error %s: fail to register cache device\n",
2525 args->path);
2526 kfree(args->sb);
2527 kfree(args->path);
2528 kfree(args);
2529 module_put(THIS_MODULE);
2530 }
2531
register_device_async(struct async_reg_args * args)2532 static void register_device_async(struct async_reg_args *args)
2533 {
2534 if (SB_IS_BDEV(args->sb))
2535 INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker);
2536 else
2537 INIT_DELAYED_WORK(&args->reg_work, register_cache_worker);
2538
2539 /* 10 jiffies is enough for a delay */
2540 queue_delayed_work(system_percpu_wq, &args->reg_work, 10);
2541 }
2542
alloc_holder_object(struct cache_sb * sb)2543 static void *alloc_holder_object(struct cache_sb *sb)
2544 {
2545 if (SB_IS_BDEV(sb))
2546 return kzalloc(sizeof(struct cached_dev), GFP_KERNEL);
2547 return kzalloc(sizeof(struct cache), GFP_KERNEL);
2548 }
2549
register_bcache(struct kobject * k,struct kobj_attribute * attr,const char * buffer,size_t size)2550 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2551 const char *buffer, size_t size)
2552 {
2553 const char *err;
2554 char *path = NULL;
2555 struct cache_sb *sb;
2556 struct cache_sb_disk *sb_disk;
2557 struct file *bdev_file, *bdev_file2;
2558 void *holder = NULL;
2559 ssize_t ret;
2560 bool async_registration = false;
2561 bool quiet = false;
2562
2563 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION
2564 async_registration = true;
2565 #endif
2566
2567 ret = -EBUSY;
2568 err = "failed to reference bcache module";
2569 if (!try_module_get(THIS_MODULE))
2570 goto out;
2571
2572 /* For latest state of bcache_is_reboot */
2573 smp_mb();
2574 err = "bcache is in reboot";
2575 if (bcache_is_reboot)
2576 goto out_module_put;
2577
2578 ret = -ENOMEM;
2579 err = "cannot allocate memory";
2580 path = kstrndup(buffer, size, GFP_KERNEL);
2581 if (!path)
2582 goto out_module_put;
2583
2584 sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2585 if (!sb)
2586 goto out_free_path;
2587
2588 ret = -EINVAL;
2589 err = "failed to open device";
2590 bdev_file = bdev_file_open_by_path(strim(path), BLK_OPEN_READ, NULL, NULL);
2591 if (IS_ERR(bdev_file))
2592 goto out_free_sb;
2593
2594 err = read_super(sb, file_bdev(bdev_file), &sb_disk);
2595 if (err)
2596 goto out_blkdev_put;
2597
2598 holder = alloc_holder_object(sb);
2599 if (!holder) {
2600 ret = -ENOMEM;
2601 err = "cannot allocate memory";
2602 goto out_put_sb_folio;
2603 }
2604
2605 /* Now reopen in exclusive mode with proper holder */
2606 bdev_file2 = bdev_file_open_by_dev(file_bdev(bdev_file)->bd_dev,
2607 BLK_OPEN_READ | BLK_OPEN_WRITE, holder, NULL);
2608 fput(bdev_file);
2609 bdev_file = bdev_file2;
2610 if (IS_ERR(bdev_file)) {
2611 ret = PTR_ERR(bdev_file);
2612 bdev_file = NULL;
2613 if (ret == -EBUSY) {
2614 dev_t dev;
2615
2616 mutex_lock(&bch_register_lock);
2617 if (lookup_bdev(strim(path), &dev) == 0 &&
2618 bch_is_open(dev))
2619 err = "device already registered";
2620 else
2621 err = "device busy";
2622 mutex_unlock(&bch_register_lock);
2623 if (attr == &ksysfs_register_quiet) {
2624 quiet = true;
2625 ret = size;
2626 }
2627 }
2628 goto out_free_holder;
2629 }
2630
2631 err = "failed to register device";
2632
2633 if (async_registration) {
2634 /* register in asynchronous way */
2635 struct async_reg_args *args =
2636 kzalloc(sizeof(struct async_reg_args), GFP_KERNEL);
2637
2638 if (!args) {
2639 ret = -ENOMEM;
2640 err = "cannot allocate memory";
2641 goto out_free_holder;
2642 }
2643
2644 args->path = path;
2645 args->sb = sb;
2646 args->sb_disk = sb_disk;
2647 args->bdev_file = bdev_file;
2648 args->holder = holder;
2649 register_device_async(args);
2650 /* No wait and returns to user space */
2651 goto async_done;
2652 }
2653
2654 if (SB_IS_BDEV(sb)) {
2655 mutex_lock(&bch_register_lock);
2656 ret = register_bdev(sb, sb_disk, bdev_file, holder);
2657 mutex_unlock(&bch_register_lock);
2658 /* blkdev_put() will be called in cached_dev_free() */
2659 if (ret < 0)
2660 goto out_free_sb;
2661 } else {
2662 /* blkdev_put() will be called in bch_cache_release() */
2663 ret = register_cache(sb, sb_disk, bdev_file, holder);
2664 if (ret)
2665 goto out_free_sb;
2666 }
2667
2668 kfree(sb);
2669 kfree(path);
2670 module_put(THIS_MODULE);
2671 async_done:
2672 return size;
2673
2674 out_free_holder:
2675 kfree(holder);
2676 out_put_sb_folio:
2677 folio_put(virt_to_folio(sb_disk));
2678 out_blkdev_put:
2679 if (bdev_file)
2680 fput(bdev_file);
2681 out_free_sb:
2682 kfree(sb);
2683 out_free_path:
2684 kfree(path);
2685 path = NULL;
2686 out_module_put:
2687 module_put(THIS_MODULE);
2688 out:
2689 if (!quiet)
2690 pr_info("error %s: %s\n", path?path:"", err);
2691 return ret;
2692 }
2693
2694
2695 struct pdev {
2696 struct list_head list;
2697 struct cached_dev *dc;
2698 };
2699
bch_pending_bdevs_cleanup(struct kobject * k,struct kobj_attribute * attr,const char * buffer,size_t size)2700 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2701 struct kobj_attribute *attr,
2702 const char *buffer,
2703 size_t size)
2704 {
2705 LIST_HEAD(pending_devs);
2706 ssize_t ret = size;
2707 struct cached_dev *dc, *tdc;
2708 struct pdev *pdev, *tpdev;
2709 struct cache_set *c, *tc;
2710
2711 mutex_lock(&bch_register_lock);
2712 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
2713 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL);
2714 if (!pdev)
2715 break;
2716 pdev->dc = dc;
2717 list_add(&pdev->list, &pending_devs);
2718 }
2719
2720 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2721 char *pdev_set_uuid = pdev->dc->sb.set_uuid;
2722 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2723 char *set_uuid = c->set_uuid;
2724
2725 if (!memcmp(pdev_set_uuid, set_uuid, 16)) {
2726 list_del(&pdev->list);
2727 kfree(pdev);
2728 break;
2729 }
2730 }
2731 }
2732 mutex_unlock(&bch_register_lock);
2733
2734 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2735 pr_info("delete pdev %p\n", pdev);
2736 list_del(&pdev->list);
2737 bcache_device_stop(&pdev->dc->disk);
2738 kfree(pdev);
2739 }
2740
2741 return ret;
2742 }
2743
bcache_reboot(struct notifier_block * n,unsigned long code,void * x)2744 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2745 {
2746 if (bcache_is_reboot)
2747 return NOTIFY_DONE;
2748
2749 if (code == SYS_DOWN ||
2750 code == SYS_HALT ||
2751 code == SYS_POWER_OFF) {
2752 DEFINE_WAIT(wait);
2753 unsigned long start = jiffies;
2754 bool stopped = false;
2755
2756 struct cache_set *c, *tc;
2757 struct cached_dev *dc, *tdc;
2758
2759 mutex_lock(&bch_register_lock);
2760
2761 if (bcache_is_reboot)
2762 goto out;
2763
2764 /* New registration is rejected since now */
2765 bcache_is_reboot = true;
2766 /*
2767 * Make registering caller (if there is) on other CPU
2768 * core know bcache_is_reboot set to true earlier
2769 */
2770 smp_mb();
2771
2772 if (list_empty(&bch_cache_sets) &&
2773 list_empty(&uncached_devices))
2774 goto out;
2775
2776 mutex_unlock(&bch_register_lock);
2777
2778 pr_info("Stopping all devices:\n");
2779
2780 /*
2781 * The reason bch_register_lock is not held to call
2782 * bch_cache_set_stop() and bcache_device_stop() is to
2783 * avoid potential deadlock during reboot, because cache
2784 * set or bcache device stopping process will acquire
2785 * bch_register_lock too.
2786 *
2787 * We are safe here because bcache_is_reboot sets to
2788 * true already, register_bcache() will reject new
2789 * registration now. bcache_is_reboot also makes sure
2790 * bcache_reboot() won't be re-entered on by other thread,
2791 * so there is no race in following list iteration by
2792 * list_for_each_entry_safe().
2793 */
2794 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2795 bch_cache_set_stop(c);
2796
2797 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2798 bcache_device_stop(&dc->disk);
2799
2800
2801 /*
2802 * Give an early chance for other kthreads and
2803 * kworkers to stop themselves
2804 */
2805 schedule();
2806
2807 /* What's a condition variable? */
2808 while (1) {
2809 long timeout = start + 10 * HZ - jiffies;
2810
2811 mutex_lock(&bch_register_lock);
2812 stopped = list_empty(&bch_cache_sets) &&
2813 list_empty(&uncached_devices);
2814
2815 if (timeout < 0 || stopped)
2816 break;
2817
2818 prepare_to_wait(&unregister_wait, &wait,
2819 TASK_UNINTERRUPTIBLE);
2820
2821 mutex_unlock(&bch_register_lock);
2822 schedule_timeout(timeout);
2823 }
2824
2825 finish_wait(&unregister_wait, &wait);
2826
2827 if (stopped)
2828 pr_info("All devices stopped\n");
2829 else
2830 pr_notice("Timeout waiting for devices to be closed\n");
2831 out:
2832 mutex_unlock(&bch_register_lock);
2833 }
2834
2835 return NOTIFY_DONE;
2836 }
2837
2838 static struct notifier_block reboot = {
2839 .notifier_call = bcache_reboot,
2840 .priority = INT_MAX, /* before any real devices */
2841 };
2842
bcache_exit(void)2843 static void bcache_exit(void)
2844 {
2845 bch_debug_exit();
2846 bch_request_exit();
2847 if (bcache_kobj)
2848 kobject_put(bcache_kobj);
2849 if (bcache_wq)
2850 destroy_workqueue(bcache_wq);
2851 if (bch_journal_wq)
2852 destroy_workqueue(bch_journal_wq);
2853 if (bch_flush_wq)
2854 destroy_workqueue(bch_flush_wq);
2855 bch_btree_exit();
2856
2857 if (bcache_major)
2858 unregister_blkdev(bcache_major, "bcache");
2859 unregister_reboot_notifier(&reboot);
2860 mutex_destroy(&bch_register_lock);
2861 }
2862
2863 /* Check and fixup module parameters */
check_module_parameters(void)2864 static void check_module_parameters(void)
2865 {
2866 if (bch_cutoff_writeback_sync == 0)
2867 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
2868 else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
2869 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n",
2870 bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
2871 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
2872 }
2873
2874 if (bch_cutoff_writeback == 0)
2875 bch_cutoff_writeback = CUTOFF_WRITEBACK;
2876 else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
2877 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n",
2878 bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
2879 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
2880 }
2881
2882 if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
2883 pr_warn("set bch_cutoff_writeback (%u) to %u\n",
2884 bch_cutoff_writeback, bch_cutoff_writeback_sync);
2885 bch_cutoff_writeback = bch_cutoff_writeback_sync;
2886 }
2887 }
2888
bcache_init(void)2889 static int __init bcache_init(void)
2890 {
2891 static const struct attribute *files[] = {
2892 &ksysfs_register.attr,
2893 &ksysfs_register_quiet.attr,
2894 &ksysfs_pendings_cleanup.attr,
2895 NULL
2896 };
2897
2898 check_module_parameters();
2899
2900 mutex_init(&bch_register_lock);
2901 init_waitqueue_head(&unregister_wait);
2902 register_reboot_notifier(&reboot);
2903
2904 bcache_major = register_blkdev(0, "bcache");
2905 if (bcache_major < 0) {
2906 unregister_reboot_notifier(&reboot);
2907 mutex_destroy(&bch_register_lock);
2908 return bcache_major;
2909 }
2910
2911 if (bch_btree_init())
2912 goto err;
2913
2914 bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM | WQ_PERCPU, 0);
2915 if (!bcache_wq)
2916 goto err;
2917
2918 /*
2919 * Let's not make this `WQ_MEM_RECLAIM` for the following reasons:
2920 *
2921 * 1. It used `system_percpu_wq` before which also does no memory reclaim.
2922 * 2. With `WQ_MEM_RECLAIM` desktop stalls, increased boot times, and
2923 * reduced throughput can be observed.
2924 *
2925 * We still want to user our own queue to not congest the `system_percpu_wq`.
2926 */
2927 bch_flush_wq = alloc_workqueue("bch_flush", WQ_PERCPU, 0);
2928 if (!bch_flush_wq)
2929 goto err;
2930
2931 bch_journal_wq = alloc_workqueue("bch_journal",
2932 WQ_MEM_RECLAIM | WQ_PERCPU, 0);
2933 if (!bch_journal_wq)
2934 goto err;
2935
2936 bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2937 if (!bcache_kobj)
2938 goto err;
2939
2940 if (bch_request_init() ||
2941 sysfs_create_files(bcache_kobj, files))
2942 goto err;
2943
2944 bch_debug_init();
2945
2946 bcache_is_reboot = false;
2947
2948 return 0;
2949 err:
2950 bcache_exit();
2951 return -ENOMEM;
2952 }
2953
2954 /*
2955 * Module hooks
2956 */
2957 module_exit(bcache_exit);
2958 module_init(bcache_init);
2959
2960 module_param(bch_cutoff_writeback, uint, 0);
2961 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
2962
2963 module_param(bch_cutoff_writeback_sync, uint, 0);
2964 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
2965
2966 MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2967 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2968 MODULE_LICENSE("GPL");
2969