xref: /linux/drivers/md/bcache/super.c (revision 00d20db21e0ddefa0578a6b510f331ca34880f74)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcache setup/teardown code, and some metadata io - read a superblock and
4  * figure out what to do with it.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9 
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "extents.h"
14 #include "request.h"
15 #include "writeback.h"
16 #include "features.h"
17 
18 #include <linux/blkdev.h>
19 #include <linux/pagemap.h>
20 #include <linux/debugfs.h>
21 #include <linux/idr.h>
22 #include <linux/kthread.h>
23 #include <linux/workqueue.h>
24 #include <linux/module.h>
25 #include <linux/random.h>
26 #include <linux/reboot.h>
27 #include <linux/sysfs.h>
28 
29 unsigned int bch_cutoff_writeback;
30 unsigned int bch_cutoff_writeback_sync;
31 
32 static const char bcache_magic[] = {
33 	0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
34 	0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
35 };
36 
37 static const char invalid_uuid[] = {
38 	0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
39 	0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
40 };
41 
42 static struct kobject *bcache_kobj;
43 struct mutex bch_register_lock;
44 bool bcache_is_reboot;
45 LIST_HEAD(bch_cache_sets);
46 static LIST_HEAD(uncached_devices);
47 
48 static int bcache_major;
49 static DEFINE_IDA(bcache_device_idx);
50 static wait_queue_head_t unregister_wait;
51 struct workqueue_struct *bcache_wq;
52 struct workqueue_struct *bch_flush_wq;
53 struct workqueue_struct *bch_journal_wq;
54 
55 
56 #define BTREE_MAX_PAGES		(256 * 1024 / PAGE_SIZE)
57 /* limitation of partitions number on single bcache device */
58 #define BCACHE_MINORS		128
59 /* limitation of bcache devices number on single system */
60 #define BCACHE_DEVICE_IDX_MAX	((1U << MINORBITS)/BCACHE_MINORS)
61 
62 /* Superblock */
63 
get_bucket_size(struct cache_sb * sb,struct cache_sb_disk * s)64 static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s)
65 {
66 	unsigned int bucket_size = le16_to_cpu(s->bucket_size);
67 
68 	if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
69 		if (bch_has_feature_large_bucket(sb)) {
70 			unsigned int max, order;
71 
72 			max = sizeof(unsigned int) * BITS_PER_BYTE - 1;
73 			order = le16_to_cpu(s->bucket_size);
74 			/*
75 			 * bcache tool will make sure the overflow won't
76 			 * happen, an error message here is enough.
77 			 */
78 			if (order > max)
79 				pr_err("Bucket size (1 << %u) overflows\n",
80 					order);
81 			bucket_size = 1 << order;
82 		} else if (bch_has_feature_obso_large_bucket(sb)) {
83 			bucket_size +=
84 				le16_to_cpu(s->obso_bucket_size_hi) << 16;
85 		}
86 	}
87 
88 	return bucket_size;
89 }
90 
read_super_common(struct cache_sb * sb,struct block_device * bdev,struct cache_sb_disk * s)91 static const char *read_super_common(struct cache_sb *sb,  struct block_device *bdev,
92 				     struct cache_sb_disk *s)
93 {
94 	const char *err;
95 	unsigned int i;
96 
97 	sb->first_bucket= le16_to_cpu(s->first_bucket);
98 	sb->nbuckets	= le64_to_cpu(s->nbuckets);
99 	sb->bucket_size	= get_bucket_size(sb, s);
100 
101 	sb->nr_in_set	= le16_to_cpu(s->nr_in_set);
102 	sb->nr_this_dev	= le16_to_cpu(s->nr_this_dev);
103 
104 	err = "Too many journal buckets";
105 	if (sb->keys > SB_JOURNAL_BUCKETS)
106 		goto err;
107 
108 	err = "Too many buckets";
109 	if (sb->nbuckets > LONG_MAX)
110 		goto err;
111 
112 	err = "Not enough buckets";
113 	if (sb->nbuckets < 1 << 7)
114 		goto err;
115 
116 	err = "Bad block size (not power of 2)";
117 	if (!is_power_of_2(sb->block_size))
118 		goto err;
119 
120 	err = "Bad block size (larger than page size)";
121 	if (sb->block_size > PAGE_SECTORS)
122 		goto err;
123 
124 	err = "Bad bucket size (not power of 2)";
125 	if (!is_power_of_2(sb->bucket_size))
126 		goto err;
127 
128 	err = "Bad bucket size (smaller than page size)";
129 	if (sb->bucket_size < PAGE_SECTORS)
130 		goto err;
131 
132 	err = "Invalid superblock: device too small";
133 	if (get_capacity(bdev->bd_disk) <
134 	    sb->bucket_size * sb->nbuckets)
135 		goto err;
136 
137 	err = "Bad UUID";
138 	if (bch_is_zero(sb->set_uuid, 16))
139 		goto err;
140 
141 	err = "Bad cache device number in set";
142 	if (!sb->nr_in_set ||
143 	    sb->nr_in_set <= sb->nr_this_dev ||
144 	    sb->nr_in_set > MAX_CACHES_PER_SET)
145 		goto err;
146 
147 	err = "Journal buckets not sequential";
148 	for (i = 0; i < sb->keys; i++)
149 		if (sb->d[i] != sb->first_bucket + i)
150 			goto err;
151 
152 	err = "Too many journal buckets";
153 	if (sb->first_bucket + sb->keys > sb->nbuckets)
154 		goto err;
155 
156 	err = "Invalid superblock: first bucket comes before end of super";
157 	if (sb->first_bucket * sb->bucket_size < 16)
158 		goto err;
159 
160 	err = NULL;
161 err:
162 	return err;
163 }
164 
165 
read_super(struct cache_sb * sb,struct block_device * bdev,struct cache_sb_disk ** res)166 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
167 			      struct cache_sb_disk **res)
168 {
169 	const char *err;
170 	struct cache_sb_disk *s;
171 	struct folio *folio;
172 	unsigned int i;
173 
174 	folio = mapping_read_folio_gfp(bdev->bd_mapping,
175 			SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL);
176 	if (IS_ERR(folio))
177 		return "IO error";
178 	s = folio_address(folio) + offset_in_folio(folio, SB_OFFSET);
179 
180 	sb->offset		= le64_to_cpu(s->offset);
181 	sb->version		= le64_to_cpu(s->version);
182 
183 	memcpy(sb->magic,	s->magic, 16);
184 	memcpy(sb->uuid,	s->uuid, 16);
185 	memcpy(sb->set_uuid,	s->set_uuid, 16);
186 	memcpy(sb->label,	s->label, SB_LABEL_SIZE);
187 
188 	sb->flags		= le64_to_cpu(s->flags);
189 	sb->seq			= le64_to_cpu(s->seq);
190 	sb->last_mount		= le32_to_cpu(s->last_mount);
191 	sb->keys		= le16_to_cpu(s->keys);
192 
193 	for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
194 		sb->d[i] = le64_to_cpu(s->d[i]);
195 
196 	pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n",
197 		 sb->version, sb->flags, sb->seq, sb->keys);
198 
199 	err = "Not a bcache superblock (bad offset)";
200 	if (sb->offset != SB_SECTOR)
201 		goto err;
202 
203 	err = "Not a bcache superblock (bad magic)";
204 	if (memcmp(sb->magic, bcache_magic, 16))
205 		goto err;
206 
207 	err = "Bad checksum";
208 	if (s->csum != csum_set(s))
209 		goto err;
210 
211 	err = "Bad UUID";
212 	if (bch_is_zero(sb->uuid, 16))
213 		goto err;
214 
215 	sb->block_size	= le16_to_cpu(s->block_size);
216 
217 	err = "Superblock block size smaller than device block size";
218 	if (sb->block_size << 9 < bdev_logical_block_size(bdev))
219 		goto err;
220 
221 	switch (sb->version) {
222 	case BCACHE_SB_VERSION_BDEV:
223 		sb->data_offset	= BDEV_DATA_START_DEFAULT;
224 		break;
225 	case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
226 	case BCACHE_SB_VERSION_BDEV_WITH_FEATURES:
227 		sb->data_offset	= le64_to_cpu(s->data_offset);
228 
229 		err = "Bad data offset";
230 		if (sb->data_offset < BDEV_DATA_START_DEFAULT)
231 			goto err;
232 
233 		break;
234 	case BCACHE_SB_VERSION_CDEV:
235 	case BCACHE_SB_VERSION_CDEV_WITH_UUID:
236 		err = read_super_common(sb, bdev, s);
237 		if (err)
238 			goto err;
239 		break;
240 	case BCACHE_SB_VERSION_CDEV_WITH_FEATURES:
241 		/*
242 		 * Feature bits are needed in read_super_common(),
243 		 * convert them firstly.
244 		 */
245 		sb->feature_compat = le64_to_cpu(s->feature_compat);
246 		sb->feature_incompat = le64_to_cpu(s->feature_incompat);
247 		sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat);
248 
249 		/* Check incompatible features */
250 		err = "Unsupported compatible feature found";
251 		if (bch_has_unknown_compat_features(sb))
252 			goto err;
253 
254 		err = "Unsupported read-only compatible feature found";
255 		if (bch_has_unknown_ro_compat_features(sb))
256 			goto err;
257 
258 		err = "Unsupported incompatible feature found";
259 		if (bch_has_unknown_incompat_features(sb))
260 			goto err;
261 
262 		err = read_super_common(sb, bdev, s);
263 		if (err)
264 			goto err;
265 		break;
266 	default:
267 		err = "Unsupported superblock version";
268 		goto err;
269 	}
270 
271 	sb->last_mount = (u32)ktime_get_real_seconds();
272 	*res = s;
273 	return NULL;
274 err:
275 	folio_put(folio);
276 	return err;
277 }
278 
write_bdev_super_endio(struct bio * bio)279 static void write_bdev_super_endio(struct bio *bio)
280 {
281 	struct cached_dev *dc = bio->bi_private;
282 
283 	if (bio->bi_status)
284 		bch_count_backing_io_errors(dc, bio);
285 
286 	closure_put(&dc->sb_write);
287 }
288 
__write_super(struct cache_sb * sb,struct cache_sb_disk * out,struct bio * bio)289 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out,
290 		struct bio *bio)
291 {
292 	unsigned int i;
293 
294 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META;
295 	bio->bi_iter.bi_sector	= SB_SECTOR;
296 	bio_add_virt_nofail(bio, out, SB_SIZE);
297 
298 	out->offset		= cpu_to_le64(sb->offset);
299 
300 	memcpy(out->uuid,	sb->uuid, 16);
301 	memcpy(out->set_uuid,	sb->set_uuid, 16);
302 	memcpy(out->label,	sb->label, SB_LABEL_SIZE);
303 
304 	out->flags		= cpu_to_le64(sb->flags);
305 	out->seq		= cpu_to_le64(sb->seq);
306 
307 	out->last_mount		= cpu_to_le32(sb->last_mount);
308 	out->first_bucket	= cpu_to_le16(sb->first_bucket);
309 	out->keys		= cpu_to_le16(sb->keys);
310 
311 	for (i = 0; i < sb->keys; i++)
312 		out->d[i] = cpu_to_le64(sb->d[i]);
313 
314 	if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
315 		out->feature_compat    = cpu_to_le64(sb->feature_compat);
316 		out->feature_incompat  = cpu_to_le64(sb->feature_incompat);
317 		out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat);
318 	}
319 
320 	out->version		= cpu_to_le64(sb->version);
321 	out->csum = csum_set(out);
322 
323 	pr_debug("ver %llu, flags %llu, seq %llu\n",
324 		 sb->version, sb->flags, sb->seq);
325 
326 	submit_bio(bio);
327 }
328 
CLOSURE_CALLBACK(bch_write_bdev_super_unlock)329 static CLOSURE_CALLBACK(bch_write_bdev_super_unlock)
330 {
331 	closure_type(dc, struct cached_dev, sb_write);
332 
333 	up(&dc->sb_write_mutex);
334 }
335 
bch_write_bdev_super(struct cached_dev * dc,struct closure * parent)336 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
337 {
338 	struct closure *cl = &dc->sb_write;
339 	struct bio *bio = &dc->sb_bio;
340 
341 	down(&dc->sb_write_mutex);
342 	closure_init(cl, parent);
343 
344 	bio_init(bio, dc->bdev, dc->sb_bv, 1, 0);
345 	bio->bi_end_io	= write_bdev_super_endio;
346 	bio->bi_private = dc;
347 
348 	closure_get(cl);
349 	/* I/O request sent to backing device */
350 	__write_super(&dc->sb, dc->sb_disk, bio);
351 
352 	closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
353 }
354 
write_super_endio(struct bio * bio)355 static void write_super_endio(struct bio *bio)
356 {
357 	struct cache *ca = bio->bi_private;
358 
359 	/* is_read = 0 */
360 	bch_count_io_errors(ca, bio->bi_status, 0,
361 			    "writing superblock");
362 	closure_put(&ca->set->sb_write);
363 }
364 
CLOSURE_CALLBACK(bcache_write_super_unlock)365 static CLOSURE_CALLBACK(bcache_write_super_unlock)
366 {
367 	closure_type(c, struct cache_set, sb_write);
368 
369 	up(&c->sb_write_mutex);
370 }
371 
bcache_write_super(struct cache_set * c)372 void bcache_write_super(struct cache_set *c)
373 {
374 	struct closure *cl = &c->sb_write;
375 	struct cache *ca = c->cache;
376 	struct bio *bio = &ca->sb_bio;
377 	unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
378 
379 	down(&c->sb_write_mutex);
380 	closure_init(cl, &c->cl);
381 
382 	ca->sb.seq++;
383 
384 	if (ca->sb.version < version)
385 		ca->sb.version = version;
386 
387 	bio_init(bio, ca->bdev, ca->sb_bv, 1, 0);
388 	bio->bi_end_io	= write_super_endio;
389 	bio->bi_private = ca;
390 
391 	closure_get(cl);
392 	__write_super(&ca->sb, ca->sb_disk, bio);
393 
394 	closure_return_with_destructor(cl, bcache_write_super_unlock);
395 }
396 
397 /* UUID io */
398 
uuid_endio(struct bio * bio)399 static void uuid_endio(struct bio *bio)
400 {
401 	struct closure *cl = bio->bi_private;
402 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
403 
404 	cache_set_err_on(bio->bi_status, c, "accessing uuids");
405 	bch_bbio_free(bio, c);
406 	closure_put(cl);
407 }
408 
CLOSURE_CALLBACK(uuid_io_unlock)409 static CLOSURE_CALLBACK(uuid_io_unlock)
410 {
411 	closure_type(c, struct cache_set, uuid_write);
412 
413 	up(&c->uuid_write_mutex);
414 }
415 
uuid_io(struct cache_set * c,blk_opf_t opf,struct bkey * k,struct closure * parent)416 static void uuid_io(struct cache_set *c, blk_opf_t opf, struct bkey *k,
417 		    struct closure *parent)
418 {
419 	struct closure *cl = &c->uuid_write;
420 	struct uuid_entry *u;
421 	unsigned int i;
422 	char buf[80];
423 
424 	BUG_ON(!parent);
425 	down(&c->uuid_write_mutex);
426 	closure_init(cl, parent);
427 
428 	for (i = 0; i < KEY_PTRS(k); i++) {
429 		struct bio *bio = bch_bbio_alloc(c);
430 
431 		bio->bi_opf = opf | REQ_SYNC | REQ_META;
432 		bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
433 
434 		bio->bi_end_io	= uuid_endio;
435 		bio->bi_private = cl;
436 		bch_bio_map(bio, c->uuids);
437 
438 		bch_submit_bbio(bio, c, k, i);
439 
440 		if ((opf & REQ_OP_MASK) != REQ_OP_WRITE)
441 			break;
442 	}
443 
444 	bch_extent_to_text(buf, sizeof(buf), k);
445 	pr_debug("%s UUIDs at %s\n", (opf & REQ_OP_MASK) == REQ_OP_WRITE ?
446 		 "wrote" : "read", buf);
447 
448 	for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
449 		if (!bch_is_zero(u->uuid, 16))
450 			pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n",
451 				 u - c->uuids, u->uuid, u->label,
452 				 u->first_reg, u->last_reg, u->invalidated);
453 
454 	closure_return_with_destructor(cl, uuid_io_unlock);
455 }
456 
uuid_read(struct cache_set * c,struct jset * j,struct closure * cl)457 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
458 {
459 	struct bkey *k = &j->uuid_bucket;
460 
461 	if (__bch_btree_ptr_invalid(c, k))
462 		return "bad uuid pointer";
463 
464 	bkey_copy(&c->uuid_bucket, k);
465 	uuid_io(c, REQ_OP_READ, k, cl);
466 
467 	if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
468 		struct uuid_entry_v0	*u0 = (void *) c->uuids;
469 		struct uuid_entry	*u1 = (void *) c->uuids;
470 		int i;
471 
472 		closure_sync(cl);
473 
474 		/*
475 		 * Since the new uuid entry is bigger than the old, we have to
476 		 * convert starting at the highest memory address and work down
477 		 * in order to do it in place
478 		 */
479 
480 		for (i = c->nr_uuids - 1;
481 		     i >= 0;
482 		     --i) {
483 			memcpy(u1[i].uuid,	u0[i].uuid, 16);
484 			memcpy(u1[i].label,	u0[i].label, 32);
485 
486 			u1[i].first_reg		= u0[i].first_reg;
487 			u1[i].last_reg		= u0[i].last_reg;
488 			u1[i].invalidated	= u0[i].invalidated;
489 
490 			u1[i].flags	= 0;
491 			u1[i].sectors	= 0;
492 		}
493 	}
494 
495 	return NULL;
496 }
497 
__uuid_write(struct cache_set * c)498 static int __uuid_write(struct cache_set *c)
499 {
500 	BKEY_PADDED(key) k;
501 	struct closure cl;
502 	struct cache *ca = c->cache;
503 	unsigned int size;
504 
505 	closure_init_stack(&cl);
506 	lockdep_assert_held(&bch_register_lock);
507 
508 	if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true))
509 		return 1;
510 
511 	size =  meta_bucket_pages(&ca->sb) * PAGE_SECTORS;
512 	SET_KEY_SIZE(&k.key, size);
513 	uuid_io(c, REQ_OP_WRITE, &k.key, &cl);
514 	closure_sync(&cl);
515 
516 	/* Only one bucket used for uuid write */
517 	atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
518 
519 	bkey_copy(&c->uuid_bucket, &k.key);
520 	bkey_put(c, &k.key);
521 	return 0;
522 }
523 
bch_uuid_write(struct cache_set * c)524 int bch_uuid_write(struct cache_set *c)
525 {
526 	int ret = __uuid_write(c);
527 
528 	if (!ret)
529 		bch_journal_meta(c, NULL);
530 
531 	return ret;
532 }
533 
uuid_find(struct cache_set * c,const char * uuid)534 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
535 {
536 	struct uuid_entry *u;
537 
538 	for (u = c->uuids;
539 	     u < c->uuids + c->nr_uuids; u++)
540 		if (!memcmp(u->uuid, uuid, 16))
541 			return u;
542 
543 	return NULL;
544 }
545 
uuid_find_empty(struct cache_set * c)546 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
547 {
548 	static const char zero_uuid[16] __nonstring =
549 		{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
550 
551 	return uuid_find(c, zero_uuid);
552 }
553 
554 /*
555  * Bucket priorities/gens:
556  *
557  * For each bucket, we store on disk its
558  *   8 bit gen
559  *  16 bit priority
560  *
561  * See alloc.c for an explanation of the gen. The priority is used to implement
562  * lru (and in the future other) cache replacement policies; for most purposes
563  * it's just an opaque integer.
564  *
565  * The gens and the priorities don't have a whole lot to do with each other, and
566  * it's actually the gens that must be written out at specific times - it's no
567  * big deal if the priorities don't get written, if we lose them we just reuse
568  * buckets in suboptimal order.
569  *
570  * On disk they're stored in a packed array, and in as many buckets are required
571  * to fit them all. The buckets we use to store them form a list; the journal
572  * header points to the first bucket, the first bucket points to the second
573  * bucket, et cetera.
574  *
575  * This code is used by the allocation code; periodically (whenever it runs out
576  * of buckets to allocate from) the allocation code will invalidate some
577  * buckets, but it can't use those buckets until their new gens are safely on
578  * disk.
579  */
580 
prio_endio(struct bio * bio)581 static void prio_endio(struct bio *bio)
582 {
583 	struct cache *ca = bio->bi_private;
584 
585 	cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
586 	bch_bbio_free(bio, ca->set);
587 	closure_put(&ca->prio);
588 }
589 
prio_io(struct cache * ca,uint64_t bucket,blk_opf_t opf)590 static void prio_io(struct cache *ca, uint64_t bucket, blk_opf_t opf)
591 {
592 	struct closure *cl = &ca->prio;
593 	struct bio *bio = bch_bbio_alloc(ca->set);
594 
595 	closure_init_stack(cl);
596 
597 	bio->bi_iter.bi_sector	= bucket * ca->sb.bucket_size;
598 	bio_set_dev(bio, ca->bdev);
599 	bio->bi_iter.bi_size	= meta_bucket_bytes(&ca->sb);
600 
601 	bio->bi_end_io	= prio_endio;
602 	bio->bi_private = ca;
603 	bio->bi_opf = opf | REQ_SYNC | REQ_META;
604 	bch_bio_map(bio, ca->disk_buckets);
605 
606 	closure_bio_submit(ca->set, bio, &ca->prio);
607 	closure_sync(cl);
608 }
609 
bch_prio_write(struct cache * ca,bool wait)610 int bch_prio_write(struct cache *ca, bool wait)
611 {
612 	int i;
613 	struct bucket *b;
614 	struct closure cl;
615 
616 	pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n",
617 		 fifo_used(&ca->free[RESERVE_PRIO]),
618 		 fifo_used(&ca->free[RESERVE_NONE]),
619 		 fifo_used(&ca->free_inc));
620 
621 	/*
622 	 * Pre-check if there are enough free buckets. In the non-blocking
623 	 * scenario it's better to fail early rather than starting to allocate
624 	 * buckets and do a cleanup later in case of failure.
625 	 */
626 	if (!wait) {
627 		size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) +
628 			       fifo_used(&ca->free[RESERVE_NONE]);
629 		if (prio_buckets(ca) > avail)
630 			return -ENOMEM;
631 	}
632 
633 	closure_init_stack(&cl);
634 
635 	lockdep_assert_held(&ca->set->bucket_lock);
636 
637 	ca->disk_buckets->seq++;
638 
639 	atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
640 			&ca->meta_sectors_written);
641 
642 	for (i = prio_buckets(ca) - 1; i >= 0; --i) {
643 		long bucket;
644 		struct prio_set *p = ca->disk_buckets;
645 		struct bucket_disk *d = p->data;
646 		struct bucket_disk *end = d + prios_per_bucket(ca);
647 
648 		for (b = ca->buckets + i * prios_per_bucket(ca);
649 		     b < ca->buckets + ca->sb.nbuckets && d < end;
650 		     b++, d++) {
651 			d->prio = cpu_to_le16(b->prio);
652 			d->gen = b->gen;
653 		}
654 
655 		p->next_bucket	= ca->prio_buckets[i + 1];
656 		p->magic	= pset_magic(&ca->sb);
657 		p->csum		= bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8);
658 
659 		bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait);
660 		BUG_ON(bucket == -1);
661 
662 		mutex_unlock(&ca->set->bucket_lock);
663 		prio_io(ca, bucket, REQ_OP_WRITE);
664 		mutex_lock(&ca->set->bucket_lock);
665 
666 		ca->prio_buckets[i] = bucket;
667 		atomic_dec_bug(&ca->buckets[bucket].pin);
668 	}
669 
670 	mutex_unlock(&ca->set->bucket_lock);
671 
672 	bch_journal_meta(ca->set, &cl);
673 	closure_sync(&cl);
674 
675 	mutex_lock(&ca->set->bucket_lock);
676 
677 	/*
678 	 * Don't want the old priorities to get garbage collected until after we
679 	 * finish writing the new ones, and they're journalled
680 	 */
681 	for (i = 0; i < prio_buckets(ca); i++) {
682 		if (ca->prio_last_buckets[i])
683 			__bch_bucket_free(ca,
684 				&ca->buckets[ca->prio_last_buckets[i]]);
685 
686 		ca->prio_last_buckets[i] = ca->prio_buckets[i];
687 	}
688 	return 0;
689 }
690 
prio_read(struct cache * ca,uint64_t bucket)691 static int prio_read(struct cache *ca, uint64_t bucket)
692 {
693 	struct prio_set *p = ca->disk_buckets;
694 	struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
695 	struct bucket *b;
696 	unsigned int bucket_nr = 0;
697 	int ret = -EIO;
698 
699 	for (b = ca->buckets;
700 	     b < ca->buckets + ca->sb.nbuckets;
701 	     b++, d++) {
702 		if (d == end) {
703 			ca->prio_buckets[bucket_nr] = bucket;
704 			ca->prio_last_buckets[bucket_nr] = bucket;
705 			bucket_nr++;
706 
707 			prio_io(ca, bucket, REQ_OP_READ);
708 
709 			if (p->csum !=
710 			    bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) {
711 				pr_warn("bad csum reading priorities\n");
712 				goto out;
713 			}
714 
715 			if (p->magic != pset_magic(&ca->sb)) {
716 				pr_warn("bad magic reading priorities\n");
717 				goto out;
718 			}
719 
720 			bucket = p->next_bucket;
721 			d = p->data;
722 		}
723 
724 		b->prio = le16_to_cpu(d->prio);
725 		b->gen = b->last_gc = d->gen;
726 	}
727 
728 	ret = 0;
729 out:
730 	return ret;
731 }
732 
733 /* Bcache device */
734 
open_dev(struct gendisk * disk,blk_mode_t mode)735 static int open_dev(struct gendisk *disk, blk_mode_t mode)
736 {
737 	struct bcache_device *d = disk->private_data;
738 
739 	if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
740 		return -ENXIO;
741 
742 	closure_get(&d->cl);
743 	return 0;
744 }
745 
release_dev(struct gendisk * b)746 static void release_dev(struct gendisk *b)
747 {
748 	struct bcache_device *d = b->private_data;
749 
750 	closure_put(&d->cl);
751 }
752 
ioctl_dev(struct block_device * b,blk_mode_t mode,unsigned int cmd,unsigned long arg)753 static int ioctl_dev(struct block_device *b, blk_mode_t mode,
754 		     unsigned int cmd, unsigned long arg)
755 {
756 	struct bcache_device *d = b->bd_disk->private_data;
757 
758 	return d->ioctl(d, mode, cmd, arg);
759 }
760 
761 static const struct block_device_operations bcache_cached_ops = {
762 	.submit_bio	= cached_dev_submit_bio,
763 	.open		= open_dev,
764 	.release	= release_dev,
765 	.ioctl		= ioctl_dev,
766 	.owner		= THIS_MODULE,
767 };
768 
769 static const struct block_device_operations bcache_flash_ops = {
770 	.submit_bio	= flash_dev_submit_bio,
771 	.open		= open_dev,
772 	.release	= release_dev,
773 	.ioctl		= ioctl_dev,
774 	.owner		= THIS_MODULE,
775 };
776 
bcache_device_stop(struct bcache_device * d)777 void bcache_device_stop(struct bcache_device *d)
778 {
779 	if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
780 		/*
781 		 * closure_fn set to
782 		 * - cached device: cached_dev_flush()
783 		 * - flash dev: flash_dev_flush()
784 		 */
785 		closure_queue(&d->cl);
786 }
787 
bcache_device_unlink(struct bcache_device * d)788 static void bcache_device_unlink(struct bcache_device *d)
789 {
790 	lockdep_assert_held(&bch_register_lock);
791 
792 	if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
793 		struct cache *ca = d->c->cache;
794 
795 		sysfs_remove_link(&d->c->kobj, d->name);
796 		sysfs_remove_link(&d->kobj, "cache");
797 
798 		bd_unlink_disk_holder(ca->bdev, d->disk);
799 	}
800 }
801 
bcache_device_link(struct bcache_device * d,struct cache_set * c,const char * name)802 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
803 			       const char *name)
804 {
805 	struct cache *ca = c->cache;
806 	int ret;
807 
808 	bd_link_disk_holder(ca->bdev, d->disk);
809 
810 	snprintf(d->name, BCACHEDEVNAME_SIZE,
811 		 "%s%u", name, d->id);
812 
813 	ret = sysfs_create_link(&d->kobj, &c->kobj, "cache");
814 	if (ret < 0)
815 		pr_err("Couldn't create device -> cache set symlink\n");
816 
817 	ret = sysfs_create_link(&c->kobj, &d->kobj, d->name);
818 	if (ret < 0)
819 		pr_err("Couldn't create cache set -> device symlink\n");
820 
821 	clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
822 }
823 
bcache_device_detach(struct bcache_device * d)824 static void bcache_device_detach(struct bcache_device *d)
825 {
826 	lockdep_assert_held(&bch_register_lock);
827 
828 	atomic_dec(&d->c->attached_dev_nr);
829 
830 	if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
831 		struct uuid_entry *u = d->c->uuids + d->id;
832 
833 		SET_UUID_FLASH_ONLY(u, 0);
834 		memcpy(u->uuid, invalid_uuid, 16);
835 		u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
836 		bch_uuid_write(d->c);
837 	}
838 
839 	bcache_device_unlink(d);
840 
841 	d->c->devices[d->id] = NULL;
842 	closure_put(&d->c->caching);
843 	d->c = NULL;
844 }
845 
bcache_device_attach(struct bcache_device * d,struct cache_set * c,unsigned int id)846 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
847 				 unsigned int id)
848 {
849 	d->id = id;
850 	d->c = c;
851 	c->devices[id] = d;
852 
853 	if (id >= c->devices_max_used)
854 		c->devices_max_used = id + 1;
855 
856 	closure_get(&c->caching);
857 }
858 
first_minor_to_idx(int first_minor)859 static inline int first_minor_to_idx(int first_minor)
860 {
861 	return (first_minor/BCACHE_MINORS);
862 }
863 
idx_to_first_minor(int idx)864 static inline int idx_to_first_minor(int idx)
865 {
866 	return (idx * BCACHE_MINORS);
867 }
868 
bcache_device_free(struct bcache_device * d)869 static void bcache_device_free(struct bcache_device *d)
870 {
871 	struct gendisk *disk = d->disk;
872 
873 	lockdep_assert_held(&bch_register_lock);
874 
875 	if (disk)
876 		pr_info("%s stopped\n", disk->disk_name);
877 	else
878 		pr_err("bcache device (NULL gendisk) stopped\n");
879 
880 	if (d->c)
881 		bcache_device_detach(d);
882 
883 	if (disk) {
884 		ida_free(&bcache_device_idx,
885 			 first_minor_to_idx(disk->first_minor));
886 		put_disk(disk);
887 	}
888 
889 	bioset_exit(&d->bio_split);
890 	bioset_exit(&d->bio_detached);
891 	kvfree(d->full_dirty_stripes);
892 	kvfree(d->stripe_sectors_dirty);
893 
894 	closure_debug_destroy(&d->cl);
895 }
896 
bcache_device_init(struct bcache_device * d,unsigned int block_size,sector_t sectors,struct block_device * cached_bdev,const struct block_device_operations * ops)897 static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
898 		sector_t sectors, struct block_device *cached_bdev,
899 		const struct block_device_operations *ops)
900 {
901 	const size_t max_stripes = min_t(size_t, INT_MAX,
902 					 SIZE_MAX / sizeof(atomic_t));
903 	struct queue_limits lim = {
904 		.max_hw_sectors		= UINT_MAX,
905 		.max_sectors		= UINT_MAX,
906 		.max_segment_size	= UINT_MAX,
907 		.max_segments		= BIO_MAX_VECS,
908 		.max_hw_discard_sectors	= UINT_MAX,
909 		.io_min			= block_size,
910 		.logical_block_size	= block_size,
911 		.physical_block_size	= block_size,
912 		.features		= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA,
913 	};
914 	uint64_t n;
915 	int idx;
916 
917 	if (cached_bdev) {
918 		d->stripe_size = bdev_io_opt(cached_bdev) >> SECTOR_SHIFT;
919 		lim.io_opt = umax(block_size, bdev_io_opt(cached_bdev));
920 	}
921 	if (!d->stripe_size)
922 		d->stripe_size = 1 << 31;
923 	else if (d->stripe_size < BCH_MIN_STRIPE_SZ)
924 		d->stripe_size = roundup(BCH_MIN_STRIPE_SZ, d->stripe_size);
925 
926 	n = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
927 	if (!n || n > max_stripes) {
928 		pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n",
929 			n);
930 		return -ENOMEM;
931 	}
932 	d->nr_stripes = n;
933 
934 	n = d->nr_stripes * sizeof(atomic_t);
935 	d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
936 	if (!d->stripe_sectors_dirty)
937 		return -ENOMEM;
938 
939 	n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
940 	d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
941 	if (!d->full_dirty_stripes)
942 		goto out_free_stripe_sectors_dirty;
943 
944 	idx = ida_alloc_max(&bcache_device_idx, BCACHE_DEVICE_IDX_MAX - 1,
945 			    GFP_KERNEL);
946 	if (idx < 0)
947 		goto out_free_full_dirty_stripes;
948 
949 	if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
950 			BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
951 		goto out_ida_remove;
952 
953 	if (bioset_init(&d->bio_detached, 4,
954 			offsetof(struct detached_dev_io_private, bio),
955 			BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
956 		goto out_bioset_split_exit;
957 
958 	if (lim.logical_block_size > PAGE_SIZE && cached_bdev) {
959 		/*
960 		 * This should only happen with BCACHE_SB_VERSION_BDEV.
961 		 * Block/page size is checked for BCACHE_SB_VERSION_CDEV.
962 		 */
963 		pr_info("bcache%i: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n",
964 			idx, lim.logical_block_size,
965 			PAGE_SIZE, bdev_logical_block_size(cached_bdev));
966 
967 		/* This also adjusts physical block size/min io size if needed */
968 		lim.logical_block_size = bdev_logical_block_size(cached_bdev);
969 	}
970 
971 	d->disk = blk_alloc_disk(&lim, NUMA_NO_NODE);
972 	if (IS_ERR(d->disk))
973 		goto out_bioset_detach_exit;
974 
975 	set_capacity(d->disk, sectors);
976 	snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
977 
978 	d->disk->major		= bcache_major;
979 	d->disk->first_minor	= idx_to_first_minor(idx);
980 	d->disk->minors		= BCACHE_MINORS;
981 	d->disk->fops		= ops;
982 	d->disk->private_data	= d;
983 	return 0;
984 
985 out_bioset_detach_exit:
986 	bioset_exit(&d->bio_detached);
987 out_bioset_split_exit:
988 	bioset_exit(&d->bio_split);
989 out_ida_remove:
990 	ida_free(&bcache_device_idx, idx);
991 out_free_full_dirty_stripes:
992 	kvfree(d->full_dirty_stripes);
993 out_free_stripe_sectors_dirty:
994 	kvfree(d->stripe_sectors_dirty);
995 	return -ENOMEM;
996 
997 }
998 
999 /* Cached device */
1000 
calc_cached_dev_sectors(struct cache_set * c)1001 static void calc_cached_dev_sectors(struct cache_set *c)
1002 {
1003 	uint64_t sectors = 0;
1004 	struct cached_dev *dc;
1005 
1006 	list_for_each_entry(dc, &c->cached_devs, list)
1007 		sectors += bdev_nr_sectors(dc->bdev);
1008 
1009 	c->cached_dev_sectors = sectors;
1010 }
1011 
1012 #define BACKING_DEV_OFFLINE_TIMEOUT 5
cached_dev_status_update(void * arg)1013 static int cached_dev_status_update(void *arg)
1014 {
1015 	struct cached_dev *dc = arg;
1016 	struct request_queue *q;
1017 
1018 	/*
1019 	 * If this delayed worker is stopping outside, directly quit here.
1020 	 * dc->io_disable might be set via sysfs interface, so check it
1021 	 * here too.
1022 	 */
1023 	while (!kthread_should_stop() && !dc->io_disable) {
1024 		q = bdev_get_queue(dc->bdev);
1025 		if (blk_queue_dying(q))
1026 			dc->offline_seconds++;
1027 		else
1028 			dc->offline_seconds = 0;
1029 
1030 		if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
1031 			pr_err("%pg: device offline for %d seconds\n",
1032 			       dc->bdev,
1033 			       BACKING_DEV_OFFLINE_TIMEOUT);
1034 			pr_err("%s: disable I/O request due to backing device offline\n",
1035 			       dc->disk.name);
1036 			dc->io_disable = true;
1037 			/* let others know earlier that io_disable is true */
1038 			smp_mb();
1039 			bcache_device_stop(&dc->disk);
1040 			break;
1041 		}
1042 		schedule_timeout_interruptible(HZ);
1043 	}
1044 
1045 	wait_for_kthread_stop();
1046 	return 0;
1047 }
1048 
1049 
bch_cached_dev_run(struct cached_dev * dc)1050 int bch_cached_dev_run(struct cached_dev *dc)
1051 {
1052 	int ret = 0;
1053 	struct bcache_device *d = &dc->disk;
1054 	char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
1055 	char *env[] = {
1056 		"DRIVER=bcache",
1057 		kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
1058 		kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
1059 		NULL,
1060 	};
1061 
1062 	if (dc->io_disable) {
1063 		pr_err("I/O disabled on cached dev %pg\n", dc->bdev);
1064 		ret = -EIO;
1065 		goto out;
1066 	}
1067 
1068 	if (atomic_xchg(&dc->running, 1)) {
1069 		pr_info("cached dev %pg is running already\n", dc->bdev);
1070 		ret = -EBUSY;
1071 		goto out;
1072 	}
1073 
1074 	if (!d->c &&
1075 	    BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
1076 		struct closure cl;
1077 
1078 		closure_init_stack(&cl);
1079 
1080 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
1081 		bch_write_bdev_super(dc, &cl);
1082 		closure_sync(&cl);
1083 	}
1084 
1085 	ret = add_disk(d->disk);
1086 	if (ret)
1087 		goto out;
1088 	bd_link_disk_holder(dc->bdev, dc->disk.disk);
1089 	/*
1090 	 * won't show up in the uevent file, use udevadm monitor -e instead
1091 	 * only class / kset properties are persistent
1092 	 */
1093 	kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
1094 
1095 	if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
1096 	    sysfs_create_link(&disk_to_dev(d->disk)->kobj,
1097 			      &d->kobj, "bcache")) {
1098 		pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n");
1099 		ret = -ENOMEM;
1100 		goto out;
1101 	}
1102 
1103 	dc->status_update_thread = kthread_run(cached_dev_status_update,
1104 					       dc, "bcache_status_update");
1105 	if (IS_ERR(dc->status_update_thread)) {
1106 		pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n");
1107 	}
1108 
1109 out:
1110 	kfree(env[1]);
1111 	kfree(env[2]);
1112 	kfree(buf);
1113 	return ret;
1114 }
1115 
1116 /*
1117  * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
1118  * work dc->writeback_rate_update is running. Wait until the routine
1119  * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
1120  * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
1121  * seconds, give up waiting here and continue to cancel it too.
1122  */
cancel_writeback_rate_update_dwork(struct cached_dev * dc)1123 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
1124 {
1125 	int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
1126 
1127 	do {
1128 		if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
1129 			      &dc->disk.flags))
1130 			break;
1131 		time_out--;
1132 		schedule_timeout_interruptible(1);
1133 	} while (time_out > 0);
1134 
1135 	if (time_out == 0)
1136 		pr_warn("give up waiting for dc->writeback_write_update to quit\n");
1137 
1138 	cancel_delayed_work_sync(&dc->writeback_rate_update);
1139 }
1140 
cached_dev_detach_finish(struct work_struct * w)1141 static void cached_dev_detach_finish(struct work_struct *w)
1142 {
1143 	struct cached_dev *dc = container_of(w, struct cached_dev, detach);
1144 	struct cache_set *c = dc->disk.c;
1145 
1146 	BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
1147 	BUG_ON(refcount_read(&dc->count));
1148 
1149 
1150 	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1151 		cancel_writeback_rate_update_dwork(dc);
1152 
1153 	if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1154 		kthread_stop(dc->writeback_thread);
1155 		dc->writeback_thread = NULL;
1156 	}
1157 
1158 	mutex_lock(&bch_register_lock);
1159 
1160 	bcache_device_detach(&dc->disk);
1161 	list_move(&dc->list, &uncached_devices);
1162 	calc_cached_dev_sectors(c);
1163 
1164 	clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1165 	clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1166 
1167 	mutex_unlock(&bch_register_lock);
1168 
1169 	pr_info("Caching disabled for %pg\n", dc->bdev);
1170 
1171 	/* Drop ref we took in cached_dev_detach() */
1172 	closure_put(&dc->disk.cl);
1173 }
1174 
bch_cached_dev_detach(struct cached_dev * dc)1175 void bch_cached_dev_detach(struct cached_dev *dc)
1176 {
1177 	lockdep_assert_held(&bch_register_lock);
1178 
1179 	if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1180 		return;
1181 
1182 	if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1183 		return;
1184 
1185 	/*
1186 	 * Block the device from being closed and freed until we're finished
1187 	 * detaching
1188 	 */
1189 	closure_get(&dc->disk.cl);
1190 
1191 	bch_writeback_queue(dc);
1192 
1193 	cached_dev_put(dc);
1194 }
1195 
bch_cached_dev_attach(struct cached_dev * dc,struct cache_set * c,uint8_t * set_uuid)1196 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1197 			  uint8_t *set_uuid)
1198 {
1199 	uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1200 	struct uuid_entry *u;
1201 	struct cached_dev *exist_dc, *t;
1202 	int ret = 0;
1203 
1204 	if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) ||
1205 	    (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16)))
1206 		return -ENOENT;
1207 
1208 	if (dc->disk.c) {
1209 		pr_err("Can't attach %pg: already attached\n", dc->bdev);
1210 		return -EINVAL;
1211 	}
1212 
1213 	if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1214 		pr_err("Can't attach %pg: shutting down\n", dc->bdev);
1215 		return -EINVAL;
1216 	}
1217 
1218 	if (dc->sb.block_size < c->cache->sb.block_size) {
1219 		/* Will die */
1220 		pr_err("Couldn't attach %pg: block size less than set's block size\n",
1221 		       dc->bdev);
1222 		return -EINVAL;
1223 	}
1224 
1225 	/* Check whether already attached */
1226 	list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1227 		if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1228 			pr_err("Tried to attach %pg but duplicate UUID already attached\n",
1229 				dc->bdev);
1230 
1231 			return -EINVAL;
1232 		}
1233 	}
1234 
1235 	u = uuid_find(c, dc->sb.uuid);
1236 
1237 	if (u &&
1238 	    (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1239 	     BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1240 		memcpy(u->uuid, invalid_uuid, 16);
1241 		u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1242 		u = NULL;
1243 	}
1244 
1245 	if (!u) {
1246 		if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1247 			pr_err("Couldn't find uuid for %pg in set\n", dc->bdev);
1248 			return -ENOENT;
1249 		}
1250 
1251 		u = uuid_find_empty(c);
1252 		if (!u) {
1253 			pr_err("Not caching %pg, no room for UUID\n", dc->bdev);
1254 			return -EINVAL;
1255 		}
1256 	}
1257 
1258 	/*
1259 	 * Deadlocks since we're called via sysfs...
1260 	 * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1261 	 */
1262 
1263 	if (bch_is_zero(u->uuid, 16)) {
1264 		struct closure cl;
1265 
1266 		closure_init_stack(&cl);
1267 
1268 		memcpy(u->uuid, dc->sb.uuid, 16);
1269 		memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1270 		u->first_reg = u->last_reg = rtime;
1271 		bch_uuid_write(c);
1272 
1273 		memcpy(dc->sb.set_uuid, c->set_uuid, 16);
1274 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1275 
1276 		bch_write_bdev_super(dc, &cl);
1277 		closure_sync(&cl);
1278 	} else {
1279 		u->last_reg = rtime;
1280 		bch_uuid_write(c);
1281 	}
1282 
1283 	bcache_device_attach(&dc->disk, c, u - c->uuids);
1284 	list_move(&dc->list, &c->cached_devs);
1285 	calc_cached_dev_sectors(c);
1286 
1287 	/*
1288 	 * dc->c must be set before dc->count != 0 - paired with the mb in
1289 	 * cached_dev_get()
1290 	 */
1291 	smp_wmb();
1292 	refcount_set(&dc->count, 1);
1293 
1294 	/* Block writeback thread, but spawn it */
1295 	down_write(&dc->writeback_lock);
1296 	if (bch_cached_dev_writeback_start(dc)) {
1297 		up_write(&dc->writeback_lock);
1298 		pr_err("Couldn't start writeback facilities for %s\n",
1299 		       dc->disk.disk->disk_name);
1300 		return -ENOMEM;
1301 	}
1302 
1303 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1304 		atomic_set(&dc->has_dirty, 1);
1305 		bch_writeback_queue(dc);
1306 	}
1307 
1308 	bch_sectors_dirty_init(&dc->disk);
1309 
1310 	ret = bch_cached_dev_run(dc);
1311 	if (ret && (ret != -EBUSY)) {
1312 		up_write(&dc->writeback_lock);
1313 		/*
1314 		 * bch_register_lock is held, bcache_device_stop() is not
1315 		 * able to be directly called. The kthread and kworker
1316 		 * created previously in bch_cached_dev_writeback_start()
1317 		 * have to be stopped manually here.
1318 		 */
1319 		kthread_stop(dc->writeback_thread);
1320 		cancel_writeback_rate_update_dwork(dc);
1321 		pr_err("Couldn't run cached device %pg\n", dc->bdev);
1322 		return ret;
1323 	}
1324 
1325 	bcache_device_link(&dc->disk, c, "bdev");
1326 	atomic_inc(&c->attached_dev_nr);
1327 
1328 	if (bch_has_feature_obso_large_bucket(&(c->cache->sb))) {
1329 		pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1330 		pr_err("Please update to the latest bcache-tools to create the cache device\n");
1331 		set_disk_ro(dc->disk.disk, 1);
1332 	}
1333 
1334 	/* Allow the writeback thread to proceed */
1335 	up_write(&dc->writeback_lock);
1336 
1337 	pr_info("Caching %pg as %s on set %pU\n",
1338 		dc->bdev,
1339 		dc->disk.disk->disk_name,
1340 		dc->disk.c->set_uuid);
1341 	return 0;
1342 }
1343 
1344 /* when dc->disk.kobj released */
bch_cached_dev_release(struct kobject * kobj)1345 void bch_cached_dev_release(struct kobject *kobj)
1346 {
1347 	struct cached_dev *dc = container_of(kobj, struct cached_dev,
1348 					     disk.kobj);
1349 	kfree(dc);
1350 	module_put(THIS_MODULE);
1351 }
1352 
CLOSURE_CALLBACK(cached_dev_free)1353 static CLOSURE_CALLBACK(cached_dev_free)
1354 {
1355 	closure_type(dc, struct cached_dev, disk.cl);
1356 
1357 	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1358 		cancel_writeback_rate_update_dwork(dc);
1359 
1360 	if (!IS_ERR_OR_NULL(dc->writeback_thread))
1361 		kthread_stop(dc->writeback_thread);
1362 	if (!IS_ERR_OR_NULL(dc->status_update_thread))
1363 		kthread_stop(dc->status_update_thread);
1364 
1365 	mutex_lock(&bch_register_lock);
1366 
1367 	if (atomic_read(&dc->running)) {
1368 		bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1369 		del_gendisk(dc->disk.disk);
1370 	}
1371 	bcache_device_free(&dc->disk);
1372 	list_del(&dc->list);
1373 
1374 	mutex_unlock(&bch_register_lock);
1375 
1376 	if (dc->sb_disk)
1377 		folio_put(virt_to_folio(dc->sb_disk));
1378 
1379 	if (dc->bdev_file)
1380 		fput(dc->bdev_file);
1381 
1382 	wake_up(&unregister_wait);
1383 
1384 	kobject_put(&dc->disk.kobj);
1385 }
1386 
CLOSURE_CALLBACK(cached_dev_flush)1387 static CLOSURE_CALLBACK(cached_dev_flush)
1388 {
1389 	closure_type(dc, struct cached_dev, disk.cl);
1390 	struct bcache_device *d = &dc->disk;
1391 
1392 	mutex_lock(&bch_register_lock);
1393 	bcache_device_unlink(d);
1394 	mutex_unlock(&bch_register_lock);
1395 
1396 	bch_cache_accounting_destroy(&dc->accounting);
1397 	kobject_del(&d->kobj);
1398 
1399 	continue_at(cl, cached_dev_free, system_percpu_wq);
1400 }
1401 
cached_dev_init(struct cached_dev * dc,unsigned int block_size)1402 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1403 {
1404 	int ret;
1405 	struct io *io;
1406 	struct request_queue *q = bdev_get_queue(dc->bdev);
1407 
1408 	__module_get(THIS_MODULE);
1409 	INIT_LIST_HEAD(&dc->list);
1410 	closure_init(&dc->disk.cl, NULL);
1411 	set_closure_fn(&dc->disk.cl, cached_dev_flush, system_percpu_wq);
1412 	kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1413 	INIT_WORK(&dc->detach, cached_dev_detach_finish);
1414 	sema_init(&dc->sb_write_mutex, 1);
1415 	INIT_LIST_HEAD(&dc->io_lru);
1416 	spin_lock_init(&dc->io_lock);
1417 	bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1418 
1419 	dc->sequential_cutoff		= 4 << 20;
1420 
1421 	for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1422 		list_add(&io->lru, &dc->io_lru);
1423 		hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1424 	}
1425 
1426 	if (bdev_io_opt(dc->bdev))
1427 		dc->partial_stripes_expensive = !!(q->limits.features &
1428 			BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE);
1429 
1430 	ret = bcache_device_init(&dc->disk, block_size,
1431 			 bdev_nr_sectors(dc->bdev) - dc->sb.data_offset,
1432 			 dc->bdev, &bcache_cached_ops);
1433 	if (ret)
1434 		return ret;
1435 
1436 	atomic_set(&dc->io_errors, 0);
1437 	dc->io_disable = false;
1438 	dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1439 	/* default to auto */
1440 	dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1441 
1442 	bch_cached_dev_request_init(dc);
1443 	bch_cached_dev_writeback_init(dc);
1444 	return 0;
1445 }
1446 
1447 /* Cached device - bcache superblock */
1448 
register_bdev(struct cache_sb * sb,struct cache_sb_disk * sb_disk,struct file * bdev_file,struct cached_dev * dc)1449 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
1450 				 struct file *bdev_file,
1451 				 struct cached_dev *dc)
1452 {
1453 	const char *err = "cannot allocate memory";
1454 	struct cache_set *c;
1455 	int ret = -ENOMEM;
1456 
1457 	memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1458 	dc->bdev_file = bdev_file;
1459 	dc->bdev = file_bdev(bdev_file);
1460 	dc->sb_disk = sb_disk;
1461 
1462 	if (cached_dev_init(dc, sb->block_size << 9))
1463 		goto err;
1464 
1465 	err = "error creating kobject";
1466 	if (kobject_add(&dc->disk.kobj, bdev_kobj(dc->bdev), "bcache"))
1467 		goto err;
1468 	if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1469 		goto err;
1470 
1471 	pr_info("registered backing device %pg\n", dc->bdev);
1472 
1473 	list_add(&dc->list, &uncached_devices);
1474 	/* attach to a matched cache set if it exists */
1475 	list_for_each_entry(c, &bch_cache_sets, list)
1476 		bch_cached_dev_attach(dc, c, NULL);
1477 
1478 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1479 	    BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) {
1480 		err = "failed to run cached device";
1481 		ret = bch_cached_dev_run(dc);
1482 		if (ret)
1483 			goto err;
1484 	}
1485 
1486 	return 0;
1487 err:
1488 	pr_notice("error %pg: %s\n", dc->bdev, err);
1489 	bcache_device_stop(&dc->disk);
1490 	return ret;
1491 }
1492 
1493 /* Flash only volumes */
1494 
1495 /* When d->kobj released */
bch_flash_dev_release(struct kobject * kobj)1496 void bch_flash_dev_release(struct kobject *kobj)
1497 {
1498 	struct bcache_device *d = container_of(kobj, struct bcache_device,
1499 					       kobj);
1500 	kfree(d);
1501 }
1502 
CLOSURE_CALLBACK(flash_dev_free)1503 static CLOSURE_CALLBACK(flash_dev_free)
1504 {
1505 	closure_type(d, struct bcache_device, cl);
1506 
1507 	mutex_lock(&bch_register_lock);
1508 	atomic_long_sub(bcache_dev_sectors_dirty(d),
1509 			&d->c->flash_dev_dirty_sectors);
1510 	del_gendisk(d->disk);
1511 	bcache_device_free(d);
1512 	mutex_unlock(&bch_register_lock);
1513 	kobject_put(&d->kobj);
1514 }
1515 
CLOSURE_CALLBACK(flash_dev_flush)1516 static CLOSURE_CALLBACK(flash_dev_flush)
1517 {
1518 	closure_type(d, struct bcache_device, cl);
1519 
1520 	mutex_lock(&bch_register_lock);
1521 	bcache_device_unlink(d);
1522 	mutex_unlock(&bch_register_lock);
1523 	kobject_del(&d->kobj);
1524 	continue_at(cl, flash_dev_free, system_percpu_wq);
1525 }
1526 
flash_dev_run(struct cache_set * c,struct uuid_entry * u)1527 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1528 {
1529 	int err = -ENOMEM;
1530 	struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1531 					  GFP_KERNEL);
1532 	if (!d)
1533 		goto err_ret;
1534 
1535 	closure_init(&d->cl, NULL);
1536 	set_closure_fn(&d->cl, flash_dev_flush, system_percpu_wq);
1537 
1538 	kobject_init(&d->kobj, &bch_flash_dev_ktype);
1539 
1540 	if (bcache_device_init(d, block_bytes(c->cache), u->sectors,
1541 			NULL, &bcache_flash_ops))
1542 		goto err;
1543 
1544 	bcache_device_attach(d, c, u - c->uuids);
1545 	bch_sectors_dirty_init(d);
1546 	bch_flash_dev_request_init(d);
1547 	err = add_disk(d->disk);
1548 	if (err)
1549 		goto err;
1550 
1551 	err = kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache");
1552 	if (err)
1553 		goto err;
1554 
1555 	bcache_device_link(d, c, "volume");
1556 
1557 	if (bch_has_feature_obso_large_bucket(&c->cache->sb)) {
1558 		pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1559 		pr_err("Please update to the latest bcache-tools to create the cache device\n");
1560 		set_disk_ro(d->disk, 1);
1561 	}
1562 
1563 	return 0;
1564 err:
1565 	kobject_put(&d->kobj);
1566 err_ret:
1567 	return err;
1568 }
1569 
flash_devs_run(struct cache_set * c)1570 static int flash_devs_run(struct cache_set *c)
1571 {
1572 	int ret = 0;
1573 	struct uuid_entry *u;
1574 
1575 	for (u = c->uuids;
1576 	     u < c->uuids + c->nr_uuids && !ret;
1577 	     u++)
1578 		if (UUID_FLASH_ONLY(u))
1579 			ret = flash_dev_run(c, u);
1580 
1581 	return ret;
1582 }
1583 
bch_flash_dev_create(struct cache_set * c,uint64_t size)1584 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1585 {
1586 	struct uuid_entry *u;
1587 
1588 	if (test_bit(CACHE_SET_STOPPING, &c->flags))
1589 		return -EINTR;
1590 
1591 	if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1592 		return -EPERM;
1593 
1594 	u = uuid_find_empty(c);
1595 	if (!u) {
1596 		pr_err("Can't create volume, no room for UUID\n");
1597 		return -EINVAL;
1598 	}
1599 
1600 	get_random_bytes(u->uuid, 16);
1601 	memset(u->label, 0, 32);
1602 	u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1603 
1604 	SET_UUID_FLASH_ONLY(u, 1);
1605 	u->sectors = size >> 9;
1606 
1607 	bch_uuid_write(c);
1608 
1609 	return flash_dev_run(c, u);
1610 }
1611 
bch_cached_dev_error(struct cached_dev * dc)1612 bool bch_cached_dev_error(struct cached_dev *dc)
1613 {
1614 	if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1615 		return false;
1616 
1617 	dc->io_disable = true;
1618 	/* make others know io_disable is true earlier */
1619 	smp_mb();
1620 
1621 	pr_err("stop %s: too many IO errors on backing device %pg\n",
1622 	       dc->disk.disk->disk_name, dc->bdev);
1623 
1624 	bcache_device_stop(&dc->disk);
1625 	return true;
1626 }
1627 
1628 /* Cache set */
1629 
1630 __printf(2, 3)
bch_cache_set_error(struct cache_set * c,const char * fmt,...)1631 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1632 {
1633 	struct va_format vaf;
1634 	va_list args;
1635 
1636 	if (c->on_error != ON_ERROR_PANIC &&
1637 	    test_bit(CACHE_SET_STOPPING, &c->flags))
1638 		return false;
1639 
1640 	if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1641 		pr_info("CACHE_SET_IO_DISABLE already set\n");
1642 
1643 	/*
1644 	 * XXX: we can be called from atomic context
1645 	 * acquire_console_sem();
1646 	 */
1647 
1648 	va_start(args, fmt);
1649 
1650 	vaf.fmt = fmt;
1651 	vaf.va = &args;
1652 
1653 	pr_err("error on %pU: %pV, disabling caching\n",
1654 	       c->set_uuid, &vaf);
1655 
1656 	va_end(args);
1657 
1658 	if (c->on_error == ON_ERROR_PANIC)
1659 		panic("panic forced after error\n");
1660 
1661 	bch_cache_set_unregister(c);
1662 	return true;
1663 }
1664 
1665 /* When c->kobj released */
bch_cache_set_release(struct kobject * kobj)1666 void bch_cache_set_release(struct kobject *kobj)
1667 {
1668 	struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1669 
1670 	kfree(c);
1671 	module_put(THIS_MODULE);
1672 }
1673 
CLOSURE_CALLBACK(cache_set_free)1674 static CLOSURE_CALLBACK(cache_set_free)
1675 {
1676 	closure_type(c, struct cache_set, cl);
1677 	struct cache *ca;
1678 
1679 	debugfs_remove(c->debug);
1680 
1681 	bch_open_buckets_free(c);
1682 	bch_btree_cache_free(c);
1683 	bch_journal_free(c);
1684 
1685 	mutex_lock(&bch_register_lock);
1686 	bch_bset_sort_state_free(&c->sort);
1687 	free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb)));
1688 
1689 	ca = c->cache;
1690 	if (ca) {
1691 		ca->set = NULL;
1692 		c->cache = NULL;
1693 		kobject_put(&ca->kobj);
1694 	}
1695 
1696 
1697 	if (c->moving_gc_wq)
1698 		destroy_workqueue(c->moving_gc_wq);
1699 	bioset_exit(&c->bio_split);
1700 	mempool_exit(&c->fill_iter);
1701 	mempool_exit(&c->bio_meta);
1702 	mempool_exit(&c->search);
1703 	kfree(c->devices);
1704 
1705 	list_del(&c->list);
1706 	mutex_unlock(&bch_register_lock);
1707 
1708 	pr_info("Cache set %pU unregistered\n", c->set_uuid);
1709 	wake_up(&unregister_wait);
1710 
1711 	closure_debug_destroy(&c->cl);
1712 	kobject_put(&c->kobj);
1713 }
1714 
CLOSURE_CALLBACK(cache_set_flush)1715 static CLOSURE_CALLBACK(cache_set_flush)
1716 {
1717 	closure_type(c, struct cache_set, caching);
1718 	struct cache *ca = c->cache;
1719 	struct btree *b;
1720 
1721 	bch_cache_accounting_destroy(&c->accounting);
1722 
1723 	kobject_put(&c->internal);
1724 	kobject_del(&c->kobj);
1725 
1726 	if (!IS_ERR_OR_NULL(c->gc_thread))
1727 		kthread_stop(c->gc_thread);
1728 
1729 	if (!IS_ERR_OR_NULL(c->root))
1730 		list_add(&c->root->list, &c->btree_cache);
1731 
1732 	/*
1733 	 * Avoid flushing cached nodes if cache set is retiring
1734 	 * due to too many I/O errors detected.
1735 	 */
1736 	if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1737 		list_for_each_entry(b, &c->btree_cache, list) {
1738 			mutex_lock(&b->write_lock);
1739 			if (btree_node_dirty(b))
1740 				__bch_btree_node_write(b, NULL);
1741 			mutex_unlock(&b->write_lock);
1742 		}
1743 
1744 	/*
1745 	 * If the register_cache_set() call to bch_cache_set_alloc() failed,
1746 	 * ca has not been assigned a value and return error.
1747 	 * So we need check ca is not NULL during bch_cache_set_unregister().
1748 	 */
1749 	if (ca && ca->alloc_thread)
1750 		kthread_stop(ca->alloc_thread);
1751 
1752 	if (c->journal.cur) {
1753 		cancel_delayed_work_sync(&c->journal.work);
1754 		/* flush last journal entry if needed */
1755 		c->journal.work.work.func(&c->journal.work.work);
1756 	}
1757 
1758 	closure_return(cl);
1759 }
1760 
1761 /*
1762  * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1763  * cache set is unregistering due to too many I/O errors. In this condition,
1764  * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1765  * value and whether the broken cache has dirty data:
1766  *
1767  * dc->stop_when_cache_set_failed    dc->has_dirty   stop bcache device
1768  *  BCH_CACHED_STOP_AUTO               0               NO
1769  *  BCH_CACHED_STOP_AUTO               1               YES
1770  *  BCH_CACHED_DEV_STOP_ALWAYS         0               YES
1771  *  BCH_CACHED_DEV_STOP_ALWAYS         1               YES
1772  *
1773  * The expected behavior is, if stop_when_cache_set_failed is configured to
1774  * "auto" via sysfs interface, the bcache device will not be stopped if the
1775  * backing device is clean on the broken cache device.
1776  */
conditional_stop_bcache_device(struct cache_set * c,struct bcache_device * d,struct cached_dev * dc)1777 static void conditional_stop_bcache_device(struct cache_set *c,
1778 					   struct bcache_device *d,
1779 					   struct cached_dev *dc)
1780 {
1781 	if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1782 		pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n",
1783 			d->disk->disk_name, c->set_uuid);
1784 		bcache_device_stop(d);
1785 	} else if (atomic_read(&dc->has_dirty)) {
1786 		/*
1787 		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1788 		 * and dc->has_dirty == 1
1789 		 */
1790 		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n",
1791 			d->disk->disk_name);
1792 		/*
1793 		 * There might be a small time gap that cache set is
1794 		 * released but bcache device is not. Inside this time
1795 		 * gap, regular I/O requests will directly go into
1796 		 * backing device as no cache set attached to. This
1797 		 * behavior may also introduce potential inconsistence
1798 		 * data in writeback mode while cache is dirty.
1799 		 * Therefore before calling bcache_device_stop() due
1800 		 * to a broken cache device, dc->io_disable should be
1801 		 * explicitly set to true.
1802 		 */
1803 		dc->io_disable = true;
1804 		/* make others know io_disable is true earlier */
1805 		smp_mb();
1806 		bcache_device_stop(d);
1807 	} else {
1808 		/*
1809 		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1810 		 * and dc->has_dirty == 0
1811 		 */
1812 		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n",
1813 			d->disk->disk_name);
1814 	}
1815 }
1816 
CLOSURE_CALLBACK(__cache_set_unregister)1817 static CLOSURE_CALLBACK(__cache_set_unregister)
1818 {
1819 	closure_type(c, struct cache_set, caching);
1820 	struct cached_dev *dc;
1821 	struct bcache_device *d;
1822 	size_t i;
1823 
1824 	mutex_lock(&bch_register_lock);
1825 
1826 	for (i = 0; i < c->devices_max_used; i++) {
1827 		d = c->devices[i];
1828 		if (!d)
1829 			continue;
1830 
1831 		if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1832 		    test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1833 			dc = container_of(d, struct cached_dev, disk);
1834 			bch_cached_dev_detach(dc);
1835 			if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1836 				conditional_stop_bcache_device(c, d, dc);
1837 		} else {
1838 			bcache_device_stop(d);
1839 		}
1840 	}
1841 
1842 	mutex_unlock(&bch_register_lock);
1843 
1844 	continue_at(cl, cache_set_flush, system_percpu_wq);
1845 }
1846 
bch_cache_set_stop(struct cache_set * c)1847 void bch_cache_set_stop(struct cache_set *c)
1848 {
1849 	if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1850 		/* closure_fn set to __cache_set_unregister() */
1851 		closure_queue(&c->caching);
1852 }
1853 
bch_cache_set_unregister(struct cache_set * c)1854 void bch_cache_set_unregister(struct cache_set *c)
1855 {
1856 	set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1857 	bch_cache_set_stop(c);
1858 }
1859 
1860 #define alloc_meta_bucket_pages(gfp, sb)		\
1861 	((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb))))
1862 
bch_cache_set_alloc(struct cache_sb * sb)1863 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1864 {
1865 	int iter_size;
1866 	struct cache *ca = container_of(sb, struct cache, sb);
1867 	struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1868 
1869 	if (!c)
1870 		return NULL;
1871 
1872 	__module_get(THIS_MODULE);
1873 	closure_init(&c->cl, NULL);
1874 	set_closure_fn(&c->cl, cache_set_free, system_percpu_wq);
1875 
1876 	closure_init(&c->caching, &c->cl);
1877 	set_closure_fn(&c->caching, __cache_set_unregister, system_percpu_wq);
1878 
1879 	/* Maybe create continue_at_noreturn() and use it here? */
1880 	closure_set_stopped(&c->cl);
1881 	closure_put(&c->cl);
1882 
1883 	kobject_init(&c->kobj, &bch_cache_set_ktype);
1884 	kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1885 
1886 	bch_cache_accounting_init(&c->accounting, &c->cl);
1887 
1888 	memcpy(c->set_uuid, sb->set_uuid, 16);
1889 
1890 	c->cache		= ca;
1891 	c->cache->set		= c;
1892 	c->bucket_bits		= ilog2(sb->bucket_size);
1893 	c->block_bits		= ilog2(sb->block_size);
1894 	c->nr_uuids		= meta_bucket_bytes(sb) / sizeof(struct uuid_entry);
1895 	c->devices_max_used	= 0;
1896 	atomic_set(&c->attached_dev_nr, 0);
1897 	c->btree_pages		= meta_bucket_pages(sb);
1898 	if (c->btree_pages > BTREE_MAX_PAGES)
1899 		c->btree_pages = max_t(int, c->btree_pages / 4,
1900 				       BTREE_MAX_PAGES);
1901 
1902 	sema_init(&c->sb_write_mutex, 1);
1903 	mutex_init(&c->bucket_lock);
1904 	init_waitqueue_head(&c->btree_cache_wait);
1905 	spin_lock_init(&c->btree_cannibalize_lock);
1906 	init_waitqueue_head(&c->bucket_wait);
1907 	init_waitqueue_head(&c->gc_wait);
1908 	sema_init(&c->uuid_write_mutex, 1);
1909 
1910 	spin_lock_init(&c->btree_gc_time.lock);
1911 	spin_lock_init(&c->btree_split_time.lock);
1912 	spin_lock_init(&c->btree_read_time.lock);
1913 
1914 	bch_moving_init_cache_set(c);
1915 
1916 	INIT_LIST_HEAD(&c->list);
1917 	INIT_LIST_HEAD(&c->cached_devs);
1918 	INIT_LIST_HEAD(&c->btree_cache);
1919 	INIT_LIST_HEAD(&c->btree_cache_freeable);
1920 	INIT_LIST_HEAD(&c->btree_cache_freed);
1921 	INIT_LIST_HEAD(&c->data_buckets);
1922 
1923 	iter_size = sizeof(struct btree_iter) +
1924 		    ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size) *
1925 			    sizeof(struct btree_iter_set);
1926 
1927 	c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL);
1928 	if (!c->devices)
1929 		goto err;
1930 
1931 	if (mempool_init_slab_pool(&c->search, 32, bch_search_cache))
1932 		goto err;
1933 
1934 	if (mempool_init_kmalloc_pool(&c->bio_meta, 2,
1935 			sizeof(struct bbio) +
1936 			sizeof(struct bio_vec) * meta_bucket_pages(sb)))
1937 		goto err;
1938 
1939 	if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size))
1940 		goto err;
1941 
1942 	if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1943 			BIOSET_NEED_RESCUER))
1944 		goto err;
1945 
1946 	c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb);
1947 	if (!c->uuids)
1948 		goto err;
1949 
1950 	c->moving_gc_wq = alloc_workqueue("bcache_gc",
1951 					  WQ_MEM_RECLAIM | WQ_PERCPU, 0);
1952 	if (!c->moving_gc_wq)
1953 		goto err;
1954 
1955 	if (bch_journal_alloc(c))
1956 		goto err;
1957 
1958 	if (bch_btree_cache_alloc(c))
1959 		goto err;
1960 
1961 	if (bch_open_buckets_alloc(c))
1962 		goto err;
1963 
1964 	if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1965 		goto err;
1966 
1967 	c->congested_read_threshold_us	= 2000;
1968 	c->congested_write_threshold_us	= 20000;
1969 	c->error_limit	= DEFAULT_IO_ERROR_LIMIT;
1970 	c->idle_max_writeback_rate_enabled = 1;
1971 	WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1972 
1973 	return c;
1974 err:
1975 	bch_cache_set_unregister(c);
1976 	return NULL;
1977 }
1978 
run_cache_set(struct cache_set * c)1979 static int run_cache_set(struct cache_set *c)
1980 {
1981 	const char *err = "cannot allocate memory";
1982 	struct cached_dev *dc, *t;
1983 	struct cache *ca = c->cache;
1984 	struct closure cl;
1985 	LIST_HEAD(journal);
1986 	struct journal_replay *l;
1987 
1988 	closure_init_stack(&cl);
1989 
1990 	c->nbuckets = ca->sb.nbuckets;
1991 	set_gc_sectors(c);
1992 
1993 	if (CACHE_SYNC(&c->cache->sb)) {
1994 		struct bkey *k;
1995 		struct jset *j;
1996 
1997 		err = "cannot allocate memory for journal";
1998 		if (bch_journal_read(c, &journal))
1999 			goto err;
2000 
2001 		pr_debug("btree_journal_read() done\n");
2002 
2003 		err = "no journal entries found";
2004 		if (list_empty(&journal))
2005 			goto err;
2006 
2007 		j = &list_entry(journal.prev, struct journal_replay, list)->j;
2008 
2009 		err = "IO error reading priorities";
2010 		if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]))
2011 			goto err;
2012 
2013 		/*
2014 		 * If prio_read() fails it'll call cache_set_error and we'll
2015 		 * tear everything down right away, but if we perhaps checked
2016 		 * sooner we could avoid journal replay.
2017 		 */
2018 
2019 		k = &j->btree_root;
2020 
2021 		err = "bad btree root";
2022 		if (__bch_btree_ptr_invalid(c, k))
2023 			goto err;
2024 
2025 		err = "error reading btree root";
2026 		c->root = bch_btree_node_get(c, NULL, k,
2027 					     j->btree_level,
2028 					     true, NULL);
2029 		if (IS_ERR(c->root))
2030 			goto err;
2031 
2032 		list_del_init(&c->root->list);
2033 		rw_unlock(true, c->root);
2034 
2035 		err = uuid_read(c, j, &cl);
2036 		if (err)
2037 			goto err;
2038 
2039 		err = "error in recovery";
2040 		if (bch_btree_check(c))
2041 			goto err;
2042 
2043 		bch_journal_mark(c, &journal);
2044 		bch_initial_gc_finish(c);
2045 		pr_debug("btree_check() done\n");
2046 
2047 		/*
2048 		 * bcache_journal_next() can't happen sooner, or
2049 		 * btree_gc_finish() will give spurious errors about last_gc >
2050 		 * gc_gen - this is a hack but oh well.
2051 		 */
2052 		bch_journal_next(&c->journal);
2053 
2054 		err = "error starting allocator thread";
2055 		if (bch_cache_allocator_start(ca))
2056 			goto err;
2057 
2058 		/*
2059 		 * First place it's safe to allocate: btree_check() and
2060 		 * btree_gc_finish() have to run before we have buckets to
2061 		 * allocate, and bch_bucket_alloc_set() might cause a journal
2062 		 * entry to be written so bcache_journal_next() has to be called
2063 		 * first.
2064 		 *
2065 		 * If the uuids were in the old format we have to rewrite them
2066 		 * before the next journal entry is written:
2067 		 */
2068 		if (j->version < BCACHE_JSET_VERSION_UUID)
2069 			__uuid_write(c);
2070 
2071 		err = "bcache: replay journal failed";
2072 		if (bch_journal_replay(c, &journal))
2073 			goto err;
2074 	} else {
2075 		unsigned int j;
2076 
2077 		pr_notice("invalidating existing data\n");
2078 		ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
2079 					2, SB_JOURNAL_BUCKETS);
2080 
2081 		for (j = 0; j < ca->sb.keys; j++)
2082 			ca->sb.d[j] = ca->sb.first_bucket + j;
2083 
2084 		bch_initial_gc_finish(c);
2085 
2086 		err = "error starting allocator thread";
2087 		if (bch_cache_allocator_start(ca))
2088 			goto err;
2089 
2090 		mutex_lock(&c->bucket_lock);
2091 		bch_prio_write(ca, true);
2092 		mutex_unlock(&c->bucket_lock);
2093 
2094 		err = "cannot allocate new UUID bucket";
2095 		if (__uuid_write(c))
2096 			goto err;
2097 
2098 		err = "cannot allocate new btree root";
2099 		c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
2100 		if (IS_ERR(c->root))
2101 			goto err;
2102 
2103 		mutex_lock(&c->root->write_lock);
2104 		bkey_copy_key(&c->root->key, &MAX_KEY);
2105 		bch_btree_node_write(c->root, &cl);
2106 		mutex_unlock(&c->root->write_lock);
2107 
2108 		bch_btree_set_root(c->root);
2109 		rw_unlock(true, c->root);
2110 
2111 		/*
2112 		 * We don't want to write the first journal entry until
2113 		 * everything is set up - fortunately journal entries won't be
2114 		 * written until the SET_CACHE_SYNC() here:
2115 		 */
2116 		SET_CACHE_SYNC(&c->cache->sb, true);
2117 
2118 		bch_journal_next(&c->journal);
2119 		bch_journal_meta(c, &cl);
2120 	}
2121 
2122 	err = "error starting gc thread";
2123 	if (bch_gc_thread_start(c))
2124 		goto err;
2125 
2126 	closure_sync(&cl);
2127 	c->cache->sb.last_mount = (u32)ktime_get_real_seconds();
2128 	bcache_write_super(c);
2129 
2130 	if (bch_has_feature_obso_large_bucket(&c->cache->sb))
2131 		pr_err("Detect obsoleted large bucket layout, all attached bcache device will be read-only\n");
2132 
2133 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
2134 		bch_cached_dev_attach(dc, c, NULL);
2135 
2136 	flash_devs_run(c);
2137 
2138 	bch_journal_space_reserve(&c->journal);
2139 	set_bit(CACHE_SET_RUNNING, &c->flags);
2140 	return 0;
2141 err:
2142 	while (!list_empty(&journal)) {
2143 		l = list_first_entry(&journal, struct journal_replay, list);
2144 		list_del(&l->list);
2145 		kfree(l);
2146 	}
2147 
2148 	closure_sync(&cl);
2149 
2150 	bch_cache_set_error(c, "%s", err);
2151 
2152 	return -EIO;
2153 }
2154 
register_cache_set(struct cache * ca)2155 static const char *register_cache_set(struct cache *ca)
2156 {
2157 	char buf[12];
2158 	const char *err = "cannot allocate memory";
2159 	struct cache_set *c;
2160 
2161 	list_for_each_entry(c, &bch_cache_sets, list)
2162 		if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) {
2163 			if (c->cache)
2164 				return "duplicate cache set member";
2165 
2166 			goto found;
2167 		}
2168 
2169 	c = bch_cache_set_alloc(&ca->sb);
2170 	if (!c)
2171 		return err;
2172 
2173 	err = "error creating kobject";
2174 	if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) ||
2175 	    kobject_add(&c->internal, &c->kobj, "internal"))
2176 		goto err;
2177 
2178 	if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
2179 		goto err;
2180 
2181 	bch_debug_init_cache_set(c);
2182 
2183 	list_add(&c->list, &bch_cache_sets);
2184 found:
2185 	sprintf(buf, "cache%i", ca->sb.nr_this_dev);
2186 	if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
2187 	    sysfs_create_link(&c->kobj, &ca->kobj, buf))
2188 		goto err;
2189 
2190 	kobject_get(&ca->kobj);
2191 	ca->set = c;
2192 	ca->set->cache = ca;
2193 
2194 	err = "failed to run cache set";
2195 	if (run_cache_set(c) < 0)
2196 		goto err;
2197 
2198 	return NULL;
2199 err:
2200 	bch_cache_set_unregister(c);
2201 	return err;
2202 }
2203 
2204 /* Cache device */
2205 
2206 /* When ca->kobj released */
bch_cache_release(struct kobject * kobj)2207 void bch_cache_release(struct kobject *kobj)
2208 {
2209 	struct cache *ca = container_of(kobj, struct cache, kobj);
2210 	unsigned int i;
2211 
2212 	if (ca->set) {
2213 		BUG_ON(ca->set->cache != ca);
2214 		ca->set->cache = NULL;
2215 	}
2216 
2217 	free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb)));
2218 	kfree(ca->prio_buckets);
2219 	vfree(ca->buckets);
2220 
2221 	free_heap(&ca->heap);
2222 	free_fifo(&ca->free_inc);
2223 
2224 	for (i = 0; i < RESERVE_NR; i++)
2225 		free_fifo(&ca->free[i]);
2226 
2227 	if (ca->sb_disk)
2228 		folio_put(virt_to_folio(ca->sb_disk));
2229 
2230 	if (ca->bdev_file)
2231 		fput(ca->bdev_file);
2232 
2233 	kfree(ca);
2234 	module_put(THIS_MODULE);
2235 }
2236 
cache_alloc(struct cache * ca)2237 static int cache_alloc(struct cache *ca)
2238 {
2239 	size_t free;
2240 	size_t btree_buckets;
2241 	struct bucket *b;
2242 	int ret = -ENOMEM;
2243 	const char *err = NULL;
2244 
2245 	__module_get(THIS_MODULE);
2246 	kobject_init(&ca->kobj, &bch_cache_ktype);
2247 
2248 	bio_init_inline(&ca->journal.bio, NULL, 8, 0);
2249 
2250 	/*
2251 	 * When the cache disk is first registered, ca->sb.njournal_buckets
2252 	 * is zero, and it is assigned in run_cache_set().
2253 	 *
2254 	 * When ca->sb.njournal_buckets is not zero, journal exists,
2255 	 * and in bch_journal_replay(), tree node may split.
2256 	 * The worst situation is all journal buckets are valid journal,
2257 	 * and all the keys need to replay, so the number of RESERVE_BTREE
2258 	 * type buckets should be as much as journal buckets.
2259 	 *
2260 	 * If the number of RESERVE_BTREE type buckets is too few, the
2261 	 * bch_allocator_thread() may hang up and unable to allocate
2262 	 * bucket. The situation is roughly as follows:
2263 	 *
2264 	 * 1. In bch_data_insert_keys(), if the operation is not op->replace,
2265 	 *    it will call the bch_journal(), which increments the journal_ref
2266 	 *    counter. This counter is only decremented after bch_btree_insert
2267 	 *    completes.
2268 	 *
2269 	 * 2. When calling bch_btree_insert, if the btree needs to split,
2270 	 *    it will call btree_split() and btree_check_reserve() to check
2271 	 *    whether there are enough reserved buckets in the RESERVE_BTREE
2272 	 *    slot. If not enough, bcache_btree_root() will repeatedly retry.
2273 	 *
2274 	 * 3. Normally, the bch_allocator_thread is responsible for filling
2275 	 *    the reservation slots from the free_inc bucket list. When the
2276 	 *    free_inc bucket list is exhausted, the bch_allocator_thread
2277 	 *    will call invalidate_buckets() until free_inc is refilled.
2278 	 *    Then bch_allocator_thread calls bch_prio_write() once. and
2279 	 *    bch_prio_write() will call bch_journal_meta() and waits for
2280 	 *    the journal write to complete.
2281 	 *
2282 	 * 4. During journal_write, journal_write_unlocked() is be called.
2283 	 *    If journal full occurs, journal_reclaim() and btree_flush_write()
2284 	 *    will be called sequentially, then retry journal_write.
2285 	 *
2286 	 * 5. When 2 and 4 occur together, IO will hung up and cannot recover.
2287 	 *
2288 	 * Therefore, reserve more RESERVE_BTREE type buckets.
2289 	 */
2290 	btree_buckets = clamp_t(size_t, ca->sb.nbuckets >> 7,
2291 				32, SB_JOURNAL_BUCKETS);
2292 	free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2293 	if (!free) {
2294 		ret = -EPERM;
2295 		err = "ca->sb.nbuckets is too small";
2296 		goto err_free;
2297 	}
2298 
2299 	if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2300 						GFP_KERNEL)) {
2301 		err = "ca->free[RESERVE_BTREE] alloc failed";
2302 		goto err_btree_alloc;
2303 	}
2304 
2305 	if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2306 							GFP_KERNEL)) {
2307 		err = "ca->free[RESERVE_PRIO] alloc failed";
2308 		goto err_prio_alloc;
2309 	}
2310 
2311 	if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2312 		err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2313 		goto err_movinggc_alloc;
2314 	}
2315 
2316 	if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2317 		err = "ca->free[RESERVE_NONE] alloc failed";
2318 		goto err_none_alloc;
2319 	}
2320 
2321 	if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2322 		err = "ca->free_inc alloc failed";
2323 		goto err_free_inc_alloc;
2324 	}
2325 
2326 	if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2327 		err = "ca->heap alloc failed";
2328 		goto err_heap_alloc;
2329 	}
2330 
2331 	ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2332 			      ca->sb.nbuckets));
2333 	if (!ca->buckets) {
2334 		err = "ca->buckets alloc failed";
2335 		goto err_buckets_alloc;
2336 	}
2337 
2338 	ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2339 				   prio_buckets(ca), 2),
2340 				   GFP_KERNEL);
2341 	if (!ca->prio_buckets) {
2342 		err = "ca->prio_buckets alloc failed";
2343 		goto err_prio_buckets_alloc;
2344 	}
2345 
2346 	ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb);
2347 	if (!ca->disk_buckets) {
2348 		err = "ca->disk_buckets alloc failed";
2349 		goto err_disk_buckets_alloc;
2350 	}
2351 
2352 	ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2353 
2354 	for_each_bucket(b, ca)
2355 		atomic_set(&b->pin, 0);
2356 	return 0;
2357 
2358 err_disk_buckets_alloc:
2359 	kfree(ca->prio_buckets);
2360 err_prio_buckets_alloc:
2361 	vfree(ca->buckets);
2362 err_buckets_alloc:
2363 	free_heap(&ca->heap);
2364 err_heap_alloc:
2365 	free_fifo(&ca->free_inc);
2366 err_free_inc_alloc:
2367 	free_fifo(&ca->free[RESERVE_NONE]);
2368 err_none_alloc:
2369 	free_fifo(&ca->free[RESERVE_MOVINGGC]);
2370 err_movinggc_alloc:
2371 	free_fifo(&ca->free[RESERVE_PRIO]);
2372 err_prio_alloc:
2373 	free_fifo(&ca->free[RESERVE_BTREE]);
2374 err_btree_alloc:
2375 err_free:
2376 	module_put(THIS_MODULE);
2377 	if (err)
2378 		pr_notice("error %pg: %s\n", ca->bdev, err);
2379 	return ret;
2380 }
2381 
register_cache(struct cache_sb * sb,struct cache_sb_disk * sb_disk,struct file * bdev_file,struct cache * ca)2382 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
2383 				struct file *bdev_file,
2384 				struct cache *ca)
2385 {
2386 	const char *err = NULL; /* must be set for any error case */
2387 	int ret = 0;
2388 
2389 	memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2390 	ca->bdev_file = bdev_file;
2391 	ca->bdev = file_bdev(bdev_file);
2392 	ca->sb_disk = sb_disk;
2393 
2394 	ret = cache_alloc(ca);
2395 	if (ret != 0) {
2396 		if (ret == -ENOMEM)
2397 			err = "cache_alloc(): -ENOMEM";
2398 		else if (ret == -EPERM)
2399 			err = "cache_alloc(): cache device is too small";
2400 		else
2401 			err = "cache_alloc(): unknown error";
2402 		pr_notice("error %pg: %s\n", file_bdev(bdev_file), err);
2403 		/*
2404 		 * If we failed here, it means ca->kobj is not initialized yet,
2405 		 * kobject_put() won't be called and there is no chance to
2406 		 * call fput() to bdev in bch_cache_release(). So
2407 		 * we explicitly call fput() on the block device here.
2408 		 */
2409 		fput(bdev_file);
2410 		return ret;
2411 	}
2412 
2413 	if (kobject_add(&ca->kobj, bdev_kobj(file_bdev(bdev_file)), "bcache")) {
2414 		pr_notice("error %pg: error calling kobject_add\n",
2415 			  file_bdev(bdev_file));
2416 		ret = -ENOMEM;
2417 		goto out;
2418 	}
2419 
2420 	mutex_lock(&bch_register_lock);
2421 	err = register_cache_set(ca);
2422 	mutex_unlock(&bch_register_lock);
2423 
2424 	if (err) {
2425 		ret = -ENODEV;
2426 		goto out;
2427 	}
2428 
2429 	pr_info("registered cache device %pg\n", file_bdev(ca->bdev_file));
2430 
2431 out:
2432 	kobject_put(&ca->kobj);
2433 	return ret;
2434 }
2435 
2436 /* Global interfaces/init */
2437 
2438 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2439 			       const char *buffer, size_t size);
2440 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2441 					 struct kobj_attribute *attr,
2442 					 const char *buffer, size_t size);
2443 
2444 kobj_attribute_write(register,		register_bcache);
2445 kobj_attribute_write(register_quiet,	register_bcache);
2446 kobj_attribute_write(pendings_cleanup,	bch_pending_bdevs_cleanup);
2447 
bch_is_open_backing(dev_t dev)2448 static bool bch_is_open_backing(dev_t dev)
2449 {
2450 	struct cache_set *c, *tc;
2451 	struct cached_dev *dc, *t;
2452 
2453 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2454 		list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2455 			if (dc->bdev->bd_dev == dev)
2456 				return true;
2457 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
2458 		if (dc->bdev->bd_dev == dev)
2459 			return true;
2460 	return false;
2461 }
2462 
bch_is_open_cache(dev_t dev)2463 static bool bch_is_open_cache(dev_t dev)
2464 {
2465 	struct cache_set *c, *tc;
2466 
2467 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2468 		struct cache *ca = c->cache;
2469 
2470 		if (ca->bdev->bd_dev == dev)
2471 			return true;
2472 	}
2473 
2474 	return false;
2475 }
2476 
bch_is_open(dev_t dev)2477 static bool bch_is_open(dev_t dev)
2478 {
2479 	return bch_is_open_cache(dev) || bch_is_open_backing(dev);
2480 }
2481 
2482 struct async_reg_args {
2483 	struct delayed_work reg_work;
2484 	char *path;
2485 	struct cache_sb *sb;
2486 	struct cache_sb_disk *sb_disk;
2487 	struct file *bdev_file;
2488 	void *holder;
2489 };
2490 
register_bdev_worker(struct work_struct * work)2491 static void register_bdev_worker(struct work_struct *work)
2492 {
2493 	int fail = false;
2494 	struct async_reg_args *args =
2495 		container_of(work, struct async_reg_args, reg_work.work);
2496 
2497 	mutex_lock(&bch_register_lock);
2498 	if (register_bdev(args->sb, args->sb_disk, args->bdev_file,
2499 			  args->holder) < 0)
2500 		fail = true;
2501 	mutex_unlock(&bch_register_lock);
2502 
2503 	if (fail)
2504 		pr_info("error %s: fail to register backing device\n",
2505 			args->path);
2506 	kfree(args->sb);
2507 	kfree(args->path);
2508 	kfree(args);
2509 	module_put(THIS_MODULE);
2510 }
2511 
register_cache_worker(struct work_struct * work)2512 static void register_cache_worker(struct work_struct *work)
2513 {
2514 	int fail = false;
2515 	struct async_reg_args *args =
2516 		container_of(work, struct async_reg_args, reg_work.work);
2517 
2518 	/* blkdev_put() will be called in bch_cache_release() */
2519 	if (register_cache(args->sb, args->sb_disk, args->bdev_file,
2520 			   args->holder))
2521 		fail = true;
2522 
2523 	if (fail)
2524 		pr_info("error %s: fail to register cache device\n",
2525 			args->path);
2526 	kfree(args->sb);
2527 	kfree(args->path);
2528 	kfree(args);
2529 	module_put(THIS_MODULE);
2530 }
2531 
register_device_async(struct async_reg_args * args)2532 static void register_device_async(struct async_reg_args *args)
2533 {
2534 	if (SB_IS_BDEV(args->sb))
2535 		INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker);
2536 	else
2537 		INIT_DELAYED_WORK(&args->reg_work, register_cache_worker);
2538 
2539 	/* 10 jiffies is enough for a delay */
2540 	queue_delayed_work(system_percpu_wq, &args->reg_work, 10);
2541 }
2542 
alloc_holder_object(struct cache_sb * sb)2543 static void *alloc_holder_object(struct cache_sb *sb)
2544 {
2545 	if (SB_IS_BDEV(sb))
2546 		return kzalloc(sizeof(struct cached_dev), GFP_KERNEL);
2547 	return kzalloc(sizeof(struct cache), GFP_KERNEL);
2548 }
2549 
register_bcache(struct kobject * k,struct kobj_attribute * attr,const char * buffer,size_t size)2550 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2551 			       const char *buffer, size_t size)
2552 {
2553 	const char *err;
2554 	char *path = NULL;
2555 	struct cache_sb *sb;
2556 	struct cache_sb_disk *sb_disk;
2557 	struct file *bdev_file, *bdev_file2;
2558 	void *holder = NULL;
2559 	ssize_t ret;
2560 	bool async_registration = false;
2561 	bool quiet = false;
2562 
2563 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION
2564 	async_registration = true;
2565 #endif
2566 
2567 	ret = -EBUSY;
2568 	err = "failed to reference bcache module";
2569 	if (!try_module_get(THIS_MODULE))
2570 		goto out;
2571 
2572 	/* For latest state of bcache_is_reboot */
2573 	smp_mb();
2574 	err = "bcache is in reboot";
2575 	if (bcache_is_reboot)
2576 		goto out_module_put;
2577 
2578 	ret = -ENOMEM;
2579 	err = "cannot allocate memory";
2580 	path = kstrndup(buffer, size, GFP_KERNEL);
2581 	if (!path)
2582 		goto out_module_put;
2583 
2584 	sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2585 	if (!sb)
2586 		goto out_free_path;
2587 
2588 	ret = -EINVAL;
2589 	err = "failed to open device";
2590 	bdev_file = bdev_file_open_by_path(strim(path), BLK_OPEN_READ, NULL, NULL);
2591 	if (IS_ERR(bdev_file))
2592 		goto out_free_sb;
2593 
2594 	err = read_super(sb, file_bdev(bdev_file), &sb_disk);
2595 	if (err)
2596 		goto out_blkdev_put;
2597 
2598 	holder = alloc_holder_object(sb);
2599 	if (!holder) {
2600 		ret = -ENOMEM;
2601 		err = "cannot allocate memory";
2602 		goto out_put_sb_folio;
2603 	}
2604 
2605 	/* Now reopen in exclusive mode with proper holder */
2606 	bdev_file2 = bdev_file_open_by_dev(file_bdev(bdev_file)->bd_dev,
2607 			BLK_OPEN_READ | BLK_OPEN_WRITE, holder, NULL);
2608 	fput(bdev_file);
2609 	bdev_file = bdev_file2;
2610 	if (IS_ERR(bdev_file)) {
2611 		ret = PTR_ERR(bdev_file);
2612 		bdev_file = NULL;
2613 		if (ret == -EBUSY) {
2614 			dev_t dev;
2615 
2616 			mutex_lock(&bch_register_lock);
2617 			if (lookup_bdev(strim(path), &dev) == 0 &&
2618 			    bch_is_open(dev))
2619 				err = "device already registered";
2620 			else
2621 				err = "device busy";
2622 			mutex_unlock(&bch_register_lock);
2623 			if (attr == &ksysfs_register_quiet) {
2624 				quiet = true;
2625 				ret = size;
2626 			}
2627 		}
2628 		goto out_free_holder;
2629 	}
2630 
2631 	err = "failed to register device";
2632 
2633 	if (async_registration) {
2634 		/* register in asynchronous way */
2635 		struct async_reg_args *args =
2636 			kzalloc(sizeof(struct async_reg_args), GFP_KERNEL);
2637 
2638 		if (!args) {
2639 			ret = -ENOMEM;
2640 			err = "cannot allocate memory";
2641 			goto out_free_holder;
2642 		}
2643 
2644 		args->path	= path;
2645 		args->sb	= sb;
2646 		args->sb_disk	= sb_disk;
2647 		args->bdev_file	= bdev_file;
2648 		args->holder	= holder;
2649 		register_device_async(args);
2650 		/* No wait and returns to user space */
2651 		goto async_done;
2652 	}
2653 
2654 	if (SB_IS_BDEV(sb)) {
2655 		mutex_lock(&bch_register_lock);
2656 		ret = register_bdev(sb, sb_disk, bdev_file, holder);
2657 		mutex_unlock(&bch_register_lock);
2658 		/* blkdev_put() will be called in cached_dev_free() */
2659 		if (ret < 0)
2660 			goto out_free_sb;
2661 	} else {
2662 		/* blkdev_put() will be called in bch_cache_release() */
2663 		ret = register_cache(sb, sb_disk, bdev_file, holder);
2664 		if (ret)
2665 			goto out_free_sb;
2666 	}
2667 
2668 	kfree(sb);
2669 	kfree(path);
2670 	module_put(THIS_MODULE);
2671 async_done:
2672 	return size;
2673 
2674 out_free_holder:
2675 	kfree(holder);
2676 out_put_sb_folio:
2677 	folio_put(virt_to_folio(sb_disk));
2678 out_blkdev_put:
2679 	if (bdev_file)
2680 		fput(bdev_file);
2681 out_free_sb:
2682 	kfree(sb);
2683 out_free_path:
2684 	kfree(path);
2685 	path = NULL;
2686 out_module_put:
2687 	module_put(THIS_MODULE);
2688 out:
2689 	if (!quiet)
2690 		pr_info("error %s: %s\n", path?path:"", err);
2691 	return ret;
2692 }
2693 
2694 
2695 struct pdev {
2696 	struct list_head list;
2697 	struct cached_dev *dc;
2698 };
2699 
bch_pending_bdevs_cleanup(struct kobject * k,struct kobj_attribute * attr,const char * buffer,size_t size)2700 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2701 					 struct kobj_attribute *attr,
2702 					 const char *buffer,
2703 					 size_t size)
2704 {
2705 	LIST_HEAD(pending_devs);
2706 	ssize_t ret = size;
2707 	struct cached_dev *dc, *tdc;
2708 	struct pdev *pdev, *tpdev;
2709 	struct cache_set *c, *tc;
2710 
2711 	mutex_lock(&bch_register_lock);
2712 	list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
2713 		pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL);
2714 		if (!pdev)
2715 			break;
2716 		pdev->dc = dc;
2717 		list_add(&pdev->list, &pending_devs);
2718 	}
2719 
2720 	list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2721 		char *pdev_set_uuid = pdev->dc->sb.set_uuid;
2722 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2723 			char *set_uuid = c->set_uuid;
2724 
2725 			if (!memcmp(pdev_set_uuid, set_uuid, 16)) {
2726 				list_del(&pdev->list);
2727 				kfree(pdev);
2728 				break;
2729 			}
2730 		}
2731 	}
2732 	mutex_unlock(&bch_register_lock);
2733 
2734 	list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2735 		pr_info("delete pdev %p\n", pdev);
2736 		list_del(&pdev->list);
2737 		bcache_device_stop(&pdev->dc->disk);
2738 		kfree(pdev);
2739 	}
2740 
2741 	return ret;
2742 }
2743 
bcache_reboot(struct notifier_block * n,unsigned long code,void * x)2744 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2745 {
2746 	if (bcache_is_reboot)
2747 		return NOTIFY_DONE;
2748 
2749 	if (code == SYS_DOWN ||
2750 	    code == SYS_HALT ||
2751 	    code == SYS_POWER_OFF) {
2752 		DEFINE_WAIT(wait);
2753 		unsigned long start = jiffies;
2754 		bool stopped = false;
2755 
2756 		struct cache_set *c, *tc;
2757 		struct cached_dev *dc, *tdc;
2758 
2759 		mutex_lock(&bch_register_lock);
2760 
2761 		if (bcache_is_reboot)
2762 			goto out;
2763 
2764 		/* New registration is rejected since now */
2765 		bcache_is_reboot = true;
2766 		/*
2767 		 * Make registering caller (if there is) on other CPU
2768 		 * core know bcache_is_reboot set to true earlier
2769 		 */
2770 		smp_mb();
2771 
2772 		if (list_empty(&bch_cache_sets) &&
2773 		    list_empty(&uncached_devices))
2774 			goto out;
2775 
2776 		mutex_unlock(&bch_register_lock);
2777 
2778 		pr_info("Stopping all devices:\n");
2779 
2780 		/*
2781 		 * The reason bch_register_lock is not held to call
2782 		 * bch_cache_set_stop() and bcache_device_stop() is to
2783 		 * avoid potential deadlock during reboot, because cache
2784 		 * set or bcache device stopping process will acquire
2785 		 * bch_register_lock too.
2786 		 *
2787 		 * We are safe here because bcache_is_reboot sets to
2788 		 * true already, register_bcache() will reject new
2789 		 * registration now. bcache_is_reboot also makes sure
2790 		 * bcache_reboot() won't be re-entered on by other thread,
2791 		 * so there is no race in following list iteration by
2792 		 * list_for_each_entry_safe().
2793 		 */
2794 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2795 			bch_cache_set_stop(c);
2796 
2797 		list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2798 			bcache_device_stop(&dc->disk);
2799 
2800 
2801 		/*
2802 		 * Give an early chance for other kthreads and
2803 		 * kworkers to stop themselves
2804 		 */
2805 		schedule();
2806 
2807 		/* What's a condition variable? */
2808 		while (1) {
2809 			long timeout = start + 10 * HZ - jiffies;
2810 
2811 			mutex_lock(&bch_register_lock);
2812 			stopped = list_empty(&bch_cache_sets) &&
2813 				list_empty(&uncached_devices);
2814 
2815 			if (timeout < 0 || stopped)
2816 				break;
2817 
2818 			prepare_to_wait(&unregister_wait, &wait,
2819 					TASK_UNINTERRUPTIBLE);
2820 
2821 			mutex_unlock(&bch_register_lock);
2822 			schedule_timeout(timeout);
2823 		}
2824 
2825 		finish_wait(&unregister_wait, &wait);
2826 
2827 		if (stopped)
2828 			pr_info("All devices stopped\n");
2829 		else
2830 			pr_notice("Timeout waiting for devices to be closed\n");
2831 out:
2832 		mutex_unlock(&bch_register_lock);
2833 	}
2834 
2835 	return NOTIFY_DONE;
2836 }
2837 
2838 static struct notifier_block reboot = {
2839 	.notifier_call	= bcache_reboot,
2840 	.priority	= INT_MAX, /* before any real devices */
2841 };
2842 
bcache_exit(void)2843 static void bcache_exit(void)
2844 {
2845 	bch_debug_exit();
2846 	bch_request_exit();
2847 	if (bcache_kobj)
2848 		kobject_put(bcache_kobj);
2849 	if (bcache_wq)
2850 		destroy_workqueue(bcache_wq);
2851 	if (bch_journal_wq)
2852 		destroy_workqueue(bch_journal_wq);
2853 	if (bch_flush_wq)
2854 		destroy_workqueue(bch_flush_wq);
2855 	bch_btree_exit();
2856 
2857 	if (bcache_major)
2858 		unregister_blkdev(bcache_major, "bcache");
2859 	unregister_reboot_notifier(&reboot);
2860 	mutex_destroy(&bch_register_lock);
2861 }
2862 
2863 /* Check and fixup module parameters */
check_module_parameters(void)2864 static void check_module_parameters(void)
2865 {
2866 	if (bch_cutoff_writeback_sync == 0)
2867 		bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
2868 	else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
2869 		pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n",
2870 			bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
2871 		bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
2872 	}
2873 
2874 	if (bch_cutoff_writeback == 0)
2875 		bch_cutoff_writeback = CUTOFF_WRITEBACK;
2876 	else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
2877 		pr_warn("set bch_cutoff_writeback (%u) to max value %u\n",
2878 			bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
2879 		bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
2880 	}
2881 
2882 	if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
2883 		pr_warn("set bch_cutoff_writeback (%u) to %u\n",
2884 			bch_cutoff_writeback, bch_cutoff_writeback_sync);
2885 		bch_cutoff_writeback = bch_cutoff_writeback_sync;
2886 	}
2887 }
2888 
bcache_init(void)2889 static int __init bcache_init(void)
2890 {
2891 	static const struct attribute *files[] = {
2892 		&ksysfs_register.attr,
2893 		&ksysfs_register_quiet.attr,
2894 		&ksysfs_pendings_cleanup.attr,
2895 		NULL
2896 	};
2897 
2898 	check_module_parameters();
2899 
2900 	mutex_init(&bch_register_lock);
2901 	init_waitqueue_head(&unregister_wait);
2902 	register_reboot_notifier(&reboot);
2903 
2904 	bcache_major = register_blkdev(0, "bcache");
2905 	if (bcache_major < 0) {
2906 		unregister_reboot_notifier(&reboot);
2907 		mutex_destroy(&bch_register_lock);
2908 		return bcache_major;
2909 	}
2910 
2911 	if (bch_btree_init())
2912 		goto err;
2913 
2914 	bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM | WQ_PERCPU, 0);
2915 	if (!bcache_wq)
2916 		goto err;
2917 
2918 	/*
2919 	 * Let's not make this `WQ_MEM_RECLAIM` for the following reasons:
2920 	 *
2921 	 * 1. It used `system_percpu_wq` before which also does no memory reclaim.
2922 	 * 2. With `WQ_MEM_RECLAIM` desktop stalls, increased boot times, and
2923 	 *    reduced throughput can be observed.
2924 	 *
2925 	 * We still want to user our own queue to not congest the `system_percpu_wq`.
2926 	 */
2927 	bch_flush_wq = alloc_workqueue("bch_flush", WQ_PERCPU, 0);
2928 	if (!bch_flush_wq)
2929 		goto err;
2930 
2931 	bch_journal_wq = alloc_workqueue("bch_journal",
2932 					 WQ_MEM_RECLAIM | WQ_PERCPU, 0);
2933 	if (!bch_journal_wq)
2934 		goto err;
2935 
2936 	bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2937 	if (!bcache_kobj)
2938 		goto err;
2939 
2940 	if (bch_request_init() ||
2941 	    sysfs_create_files(bcache_kobj, files))
2942 		goto err;
2943 
2944 	bch_debug_init();
2945 
2946 	bcache_is_reboot = false;
2947 
2948 	return 0;
2949 err:
2950 	bcache_exit();
2951 	return -ENOMEM;
2952 }
2953 
2954 /*
2955  * Module hooks
2956  */
2957 module_exit(bcache_exit);
2958 module_init(bcache_init);
2959 
2960 module_param(bch_cutoff_writeback, uint, 0);
2961 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
2962 
2963 module_param(bch_cutoff_writeback_sync, uint, 0);
2964 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
2965 
2966 MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2967 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2968 MODULE_LICENSE("GPL");
2969