1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * BPF JIT compiler
4 *
5 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6 * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7 */
8 #include <linux/netdevice.h>
9 #include <linux/filter.h>
10 #include <linux/if_vlan.h>
11 #include <linux/bitfield.h>
12 #include <linux/bpf.h>
13 #include <linux/memory.h>
14 #include <linux/sort.h>
15 #include <asm/extable.h>
16 #include <asm/ftrace.h>
17 #include <asm/set_memory.h>
18 #include <asm/nospec-branch.h>
19 #include <asm/text-patching.h>
20 #include <asm/unwind.h>
21 #include <asm/cfi.h>
22
23 static bool all_callee_regs_used[4] = {true, true, true, true};
24
emit_code(u8 * ptr,u32 bytes,unsigned int len)25 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
26 {
27 if (len == 1)
28 *ptr = bytes;
29 else if (len == 2)
30 *(u16 *)ptr = bytes;
31 else {
32 *(u32 *)ptr = bytes;
33 barrier();
34 }
35 return ptr + len;
36 }
37
38 #define EMIT(bytes, len) \
39 do { prog = emit_code(prog, bytes, len); } while (0)
40
41 #define EMIT1(b1) EMIT(b1, 1)
42 #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
43 #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
44 #define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
45 #define EMIT5(b1, b2, b3, b4, b5) \
46 do { EMIT1(b1); EMIT4(b2, b3, b4, b5); } while (0)
47
48 #define EMIT1_off32(b1, off) \
49 do { EMIT1(b1); EMIT(off, 4); } while (0)
50 #define EMIT2_off32(b1, b2, off) \
51 do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
52 #define EMIT3_off32(b1, b2, b3, off) \
53 do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
54 #define EMIT4_off32(b1, b2, b3, b4, off) \
55 do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
56
57 #ifdef CONFIG_X86_KERNEL_IBT
58 #define EMIT_ENDBR() EMIT(gen_endbr(), 4)
59 #define EMIT_ENDBR_POISON() EMIT(gen_endbr_poison(), 4)
60 #else
61 #define EMIT_ENDBR()
62 #define EMIT_ENDBR_POISON()
63 #endif
64
is_imm8(int value)65 static bool is_imm8(int value)
66 {
67 return value <= 127 && value >= -128;
68 }
69
70 /*
71 * Let us limit the positive offset to be <= 123.
72 * This is to ensure eventual jit convergence For the following patterns:
73 * ...
74 * pass4, final_proglen=4391:
75 * ...
76 * 20e: 48 85 ff test rdi,rdi
77 * 211: 74 7d je 0x290
78 * 213: 48 8b 77 00 mov rsi,QWORD PTR [rdi+0x0]
79 * ...
80 * 289: 48 85 ff test rdi,rdi
81 * 28c: 74 17 je 0x2a5
82 * 28e: e9 7f ff ff ff jmp 0x212
83 * 293: bf 03 00 00 00 mov edi,0x3
84 * Note that insn at 0x211 is 2-byte cond jump insn for offset 0x7d (-125)
85 * and insn at 0x28e is 5-byte jmp insn with offset -129.
86 *
87 * pass5, final_proglen=4392:
88 * ...
89 * 20e: 48 85 ff test rdi,rdi
90 * 211: 0f 84 80 00 00 00 je 0x297
91 * 217: 48 8b 77 00 mov rsi,QWORD PTR [rdi+0x0]
92 * ...
93 * 28d: 48 85 ff test rdi,rdi
94 * 290: 74 1a je 0x2ac
95 * 292: eb 84 jmp 0x218
96 * 294: bf 03 00 00 00 mov edi,0x3
97 * Note that insn at 0x211 is 6-byte cond jump insn now since its offset
98 * becomes 0x80 based on previous round (0x293 - 0x213 = 0x80).
99 * At the same time, insn at 0x292 is a 2-byte insn since its offset is
100 * -124.
101 *
102 * pass6 will repeat the same code as in pass4 and this will prevent
103 * eventual convergence.
104 *
105 * To fix this issue, we need to break je (2->6 bytes) <-> jmp (5->2 bytes)
106 * cycle in the above. In the above example je offset <= 0x7c should work.
107 *
108 * For other cases, je <-> je needs offset <= 0x7b to avoid no convergence
109 * issue. For jmp <-> je and jmp <-> jmp cases, jmp offset <= 0x7c should
110 * avoid no convergence issue.
111 *
112 * Overall, let us limit the positive offset for 8bit cond/uncond jmp insn
113 * to maximum 123 (0x7b). This way, the jit pass can eventually converge.
114 */
is_imm8_jmp_offset(int value)115 static bool is_imm8_jmp_offset(int value)
116 {
117 return value <= 123 && value >= -128;
118 }
119
is_simm32(s64 value)120 static bool is_simm32(s64 value)
121 {
122 return value == (s64)(s32)value;
123 }
124
is_uimm32(u64 value)125 static bool is_uimm32(u64 value)
126 {
127 return value == (u64)(u32)value;
128 }
129
130 /* mov dst, src */
131 #define EMIT_mov(DST, SRC) \
132 do { \
133 if (DST != SRC) \
134 EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
135 } while (0)
136
bpf_size_to_x86_bytes(int bpf_size)137 static int bpf_size_to_x86_bytes(int bpf_size)
138 {
139 if (bpf_size == BPF_W)
140 return 4;
141 else if (bpf_size == BPF_H)
142 return 2;
143 else if (bpf_size == BPF_B)
144 return 1;
145 else if (bpf_size == BPF_DW)
146 return 4; /* imm32 */
147 else
148 return 0;
149 }
150
151 /*
152 * List of x86 cond jumps opcodes (. + s8)
153 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
154 */
155 #define X86_JB 0x72
156 #define X86_JAE 0x73
157 #define X86_JE 0x74
158 #define X86_JNE 0x75
159 #define X86_JBE 0x76
160 #define X86_JA 0x77
161 #define X86_JL 0x7C
162 #define X86_JGE 0x7D
163 #define X86_JLE 0x7E
164 #define X86_JG 0x7F
165
166 /* Pick a register outside of BPF range for JIT internal work */
167 #define AUX_REG (MAX_BPF_JIT_REG + 1)
168 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
169 #define X86_REG_R12 (MAX_BPF_JIT_REG + 3)
170
171 /*
172 * The following table maps BPF registers to x86-64 registers.
173 *
174 * x86-64 register R12 is unused, since if used as base address
175 * register in load/store instructions, it always needs an
176 * extra byte of encoding and is callee saved.
177 *
178 * x86-64 register R9 is not used by BPF programs, but can be used by BPF
179 * trampoline. x86-64 register R10 is used for blinding (if enabled).
180 */
181 static const int reg2hex[] = {
182 [BPF_REG_0] = 0, /* RAX */
183 [BPF_REG_1] = 7, /* RDI */
184 [BPF_REG_2] = 6, /* RSI */
185 [BPF_REG_3] = 2, /* RDX */
186 [BPF_REG_4] = 1, /* RCX */
187 [BPF_REG_5] = 0, /* R8 */
188 [BPF_REG_6] = 3, /* RBX callee saved */
189 [BPF_REG_7] = 5, /* R13 callee saved */
190 [BPF_REG_8] = 6, /* R14 callee saved */
191 [BPF_REG_9] = 7, /* R15 callee saved */
192 [BPF_REG_FP] = 5, /* RBP readonly */
193 [BPF_REG_AX] = 2, /* R10 temp register */
194 [AUX_REG] = 3, /* R11 temp register */
195 [X86_REG_R9] = 1, /* R9 register, 6th function argument */
196 [X86_REG_R12] = 4, /* R12 callee saved */
197 };
198
199 static const int reg2pt_regs[] = {
200 [BPF_REG_0] = offsetof(struct pt_regs, ax),
201 [BPF_REG_1] = offsetof(struct pt_regs, di),
202 [BPF_REG_2] = offsetof(struct pt_regs, si),
203 [BPF_REG_3] = offsetof(struct pt_regs, dx),
204 [BPF_REG_4] = offsetof(struct pt_regs, cx),
205 [BPF_REG_5] = offsetof(struct pt_regs, r8),
206 [BPF_REG_6] = offsetof(struct pt_regs, bx),
207 [BPF_REG_7] = offsetof(struct pt_regs, r13),
208 [BPF_REG_8] = offsetof(struct pt_regs, r14),
209 [BPF_REG_9] = offsetof(struct pt_regs, r15),
210 };
211
212 /*
213 * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
214 * which need extra byte of encoding.
215 * rax,rcx,...,rbp have simpler encoding
216 */
is_ereg(u32 reg)217 static bool is_ereg(u32 reg)
218 {
219 return (1 << reg) & (BIT(BPF_REG_5) |
220 BIT(AUX_REG) |
221 BIT(BPF_REG_7) |
222 BIT(BPF_REG_8) |
223 BIT(BPF_REG_9) |
224 BIT(X86_REG_R9) |
225 BIT(X86_REG_R12) |
226 BIT(BPF_REG_AX));
227 }
228
229 /*
230 * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
231 * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
232 * of encoding. al,cl,dl,bl have simpler encoding.
233 */
is_ereg_8l(u32 reg)234 static bool is_ereg_8l(u32 reg)
235 {
236 return is_ereg(reg) ||
237 (1 << reg) & (BIT(BPF_REG_1) |
238 BIT(BPF_REG_2) |
239 BIT(BPF_REG_FP));
240 }
241
is_axreg(u32 reg)242 static bool is_axreg(u32 reg)
243 {
244 return reg == BPF_REG_0;
245 }
246
247 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
add_1mod(u8 byte,u32 reg)248 static u8 add_1mod(u8 byte, u32 reg)
249 {
250 if (is_ereg(reg))
251 byte |= 1;
252 return byte;
253 }
254
add_2mod(u8 byte,u32 r1,u32 r2)255 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
256 {
257 if (is_ereg(r1))
258 byte |= 1;
259 if (is_ereg(r2))
260 byte |= 4;
261 return byte;
262 }
263
add_3mod(u8 byte,u32 r1,u32 r2,u32 index)264 static u8 add_3mod(u8 byte, u32 r1, u32 r2, u32 index)
265 {
266 if (is_ereg(r1))
267 byte |= 1;
268 if (is_ereg(index))
269 byte |= 2;
270 if (is_ereg(r2))
271 byte |= 4;
272 return byte;
273 }
274
275 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */
add_1reg(u8 byte,u32 dst_reg)276 static u8 add_1reg(u8 byte, u32 dst_reg)
277 {
278 return byte + reg2hex[dst_reg];
279 }
280
281 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
add_2reg(u8 byte,u32 dst_reg,u32 src_reg)282 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
283 {
284 return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
285 }
286
287 /* Some 1-byte opcodes for binary ALU operations */
288 static u8 simple_alu_opcodes[] = {
289 [BPF_ADD] = 0x01,
290 [BPF_SUB] = 0x29,
291 [BPF_AND] = 0x21,
292 [BPF_OR] = 0x09,
293 [BPF_XOR] = 0x31,
294 [BPF_LSH] = 0xE0,
295 [BPF_RSH] = 0xE8,
296 [BPF_ARSH] = 0xF8,
297 };
298
jit_fill_hole(void * area,unsigned int size)299 static void jit_fill_hole(void *area, unsigned int size)
300 {
301 /* Fill whole space with INT3 instructions */
302 memset(area, 0xcc, size);
303 }
304
bpf_arch_text_invalidate(void * dst,size_t len)305 int bpf_arch_text_invalidate(void *dst, size_t len)
306 {
307 return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len));
308 }
309
310 struct jit_context {
311 int cleanup_addr; /* Epilogue code offset */
312
313 /*
314 * Program specific offsets of labels in the code; these rely on the
315 * JIT doing at least 2 passes, recording the position on the first
316 * pass, only to generate the correct offset on the second pass.
317 */
318 int tail_call_direct_label;
319 int tail_call_indirect_label;
320 };
321
322 /* Maximum number of bytes emitted while JITing one eBPF insn */
323 #define BPF_MAX_INSN_SIZE 128
324 #define BPF_INSN_SAFETY 64
325
326 /* Number of bytes emit_patch() needs to generate instructions */
327 #define X86_PATCH_SIZE 5
328 /* Number of bytes that will be skipped on tailcall */
329 #define X86_TAIL_CALL_OFFSET (12 + ENDBR_INSN_SIZE)
330
push_r9(u8 ** pprog)331 static void push_r9(u8 **pprog)
332 {
333 u8 *prog = *pprog;
334
335 EMIT2(0x41, 0x51); /* push r9 */
336 *pprog = prog;
337 }
338
pop_r9(u8 ** pprog)339 static void pop_r9(u8 **pprog)
340 {
341 u8 *prog = *pprog;
342
343 EMIT2(0x41, 0x59); /* pop r9 */
344 *pprog = prog;
345 }
346
push_r12(u8 ** pprog)347 static void push_r12(u8 **pprog)
348 {
349 u8 *prog = *pprog;
350
351 EMIT2(0x41, 0x54); /* push r12 */
352 *pprog = prog;
353 }
354
push_callee_regs(u8 ** pprog,bool * callee_regs_used)355 static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
356 {
357 u8 *prog = *pprog;
358
359 if (callee_regs_used[0])
360 EMIT1(0x53); /* push rbx */
361 if (callee_regs_used[1])
362 EMIT2(0x41, 0x55); /* push r13 */
363 if (callee_regs_used[2])
364 EMIT2(0x41, 0x56); /* push r14 */
365 if (callee_regs_used[3])
366 EMIT2(0x41, 0x57); /* push r15 */
367 *pprog = prog;
368 }
369
pop_r12(u8 ** pprog)370 static void pop_r12(u8 **pprog)
371 {
372 u8 *prog = *pprog;
373
374 EMIT2(0x41, 0x5C); /* pop r12 */
375 *pprog = prog;
376 }
377
pop_callee_regs(u8 ** pprog,bool * callee_regs_used)378 static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
379 {
380 u8 *prog = *pprog;
381
382 if (callee_regs_used[3])
383 EMIT2(0x41, 0x5F); /* pop r15 */
384 if (callee_regs_used[2])
385 EMIT2(0x41, 0x5E); /* pop r14 */
386 if (callee_regs_used[1])
387 EMIT2(0x41, 0x5D); /* pop r13 */
388 if (callee_regs_used[0])
389 EMIT1(0x5B); /* pop rbx */
390 *pprog = prog;
391 }
392
emit_nops(u8 ** pprog,int len)393 static void emit_nops(u8 **pprog, int len)
394 {
395 u8 *prog = *pprog;
396 int i, noplen;
397
398 while (len > 0) {
399 noplen = len;
400
401 if (noplen > ASM_NOP_MAX)
402 noplen = ASM_NOP_MAX;
403
404 for (i = 0; i < noplen; i++)
405 EMIT1(x86_nops[noplen][i]);
406 len -= noplen;
407 }
408
409 *pprog = prog;
410 }
411
412 /*
413 * Emit the various CFI preambles, see asm/cfi.h and the comments about FineIBT
414 * in arch/x86/kernel/alternative.c
415 */
416 static int emit_call(u8 **prog, void *func, void *ip);
417
emit_fineibt(u8 ** pprog,u8 * ip,u32 hash,int arity)418 static void emit_fineibt(u8 **pprog, u8 *ip, u32 hash, int arity)
419 {
420 u8 *prog = *pprog;
421
422 EMIT_ENDBR();
423 EMIT1_off32(0x2d, hash); /* subl $hash, %eax */
424 if (cfi_bhi) {
425 EMIT2(0x2e, 0x2e); /* cs cs */
426 emit_call(&prog, __bhi_args[arity], ip + 11);
427 } else {
428 EMIT3_off32(0x2e, 0x0f, 0x85, 3); /* jne.d32,pn 3 */
429 }
430 EMIT_ENDBR_POISON();
431
432 *pprog = prog;
433 }
434
emit_kcfi(u8 ** pprog,u32 hash)435 static void emit_kcfi(u8 **pprog, u32 hash)
436 {
437 u8 *prog = *pprog;
438
439 EMIT1_off32(0xb8, hash); /* movl $hash, %eax */
440 #ifdef CONFIG_CALL_PADDING
441 EMIT1(0x90);
442 EMIT1(0x90);
443 EMIT1(0x90);
444 EMIT1(0x90);
445 EMIT1(0x90);
446 EMIT1(0x90);
447 EMIT1(0x90);
448 EMIT1(0x90);
449 EMIT1(0x90);
450 EMIT1(0x90);
451 EMIT1(0x90);
452 #endif
453 EMIT_ENDBR();
454
455 *pprog = prog;
456 }
457
emit_cfi(u8 ** pprog,u8 * ip,u32 hash,int arity)458 static void emit_cfi(u8 **pprog, u8 *ip, u32 hash, int arity)
459 {
460 u8 *prog = *pprog;
461
462 switch (cfi_mode) {
463 case CFI_FINEIBT:
464 emit_fineibt(&prog, ip, hash, arity);
465 break;
466
467 case CFI_KCFI:
468 emit_kcfi(&prog, hash);
469 break;
470
471 default:
472 EMIT_ENDBR();
473 break;
474 }
475
476 *pprog = prog;
477 }
478
emit_prologue_tail_call(u8 ** pprog,bool is_subprog)479 static void emit_prologue_tail_call(u8 **pprog, bool is_subprog)
480 {
481 u8 *prog = *pprog;
482
483 if (!is_subprog) {
484 /* cmp rax, MAX_TAIL_CALL_CNT */
485 EMIT4(0x48, 0x83, 0xF8, MAX_TAIL_CALL_CNT);
486 EMIT2(X86_JA, 6); /* ja 6 */
487 /* rax is tail_call_cnt if <= MAX_TAIL_CALL_CNT.
488 * case1: entry of main prog.
489 * case2: tail callee of main prog.
490 */
491 EMIT1(0x50); /* push rax */
492 /* Make rax as tail_call_cnt_ptr. */
493 EMIT3(0x48, 0x89, 0xE0); /* mov rax, rsp */
494 EMIT2(0xEB, 1); /* jmp 1 */
495 /* rax is tail_call_cnt_ptr if > MAX_TAIL_CALL_CNT.
496 * case: tail callee of subprog.
497 */
498 EMIT1(0x50); /* push rax */
499 /* push tail_call_cnt_ptr */
500 EMIT1(0x50); /* push rax */
501 } else { /* is_subprog */
502 /* rax is tail_call_cnt_ptr. */
503 EMIT1(0x50); /* push rax */
504 EMIT1(0x50); /* push rax */
505 }
506
507 *pprog = prog;
508 }
509
510 /*
511 * Emit x86-64 prologue code for BPF program.
512 * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
513 * while jumping to another program
514 */
emit_prologue(u8 ** pprog,u8 * ip,u32 stack_depth,bool ebpf_from_cbpf,bool tail_call_reachable,bool is_subprog,bool is_exception_cb)515 static void emit_prologue(u8 **pprog, u8 *ip, u32 stack_depth, bool ebpf_from_cbpf,
516 bool tail_call_reachable, bool is_subprog,
517 bool is_exception_cb)
518 {
519 u8 *prog = *pprog;
520
521 if (is_subprog) {
522 emit_cfi(&prog, ip, cfi_bpf_subprog_hash, 5);
523 } else {
524 emit_cfi(&prog, ip, cfi_bpf_hash, 1);
525 }
526 /* BPF trampoline can be made to work without these nops,
527 * but let's waste 5 bytes for now and optimize later
528 */
529 emit_nops(&prog, X86_PATCH_SIZE);
530 if (!ebpf_from_cbpf) {
531 if (tail_call_reachable && !is_subprog)
532 /* When it's the entry of the whole tailcall context,
533 * zeroing rax means initialising tail_call_cnt.
534 */
535 EMIT3(0x48, 0x31, 0xC0); /* xor rax, rax */
536 else
537 /* Keep the same instruction layout. */
538 emit_nops(&prog, 3); /* nop3 */
539 }
540 /* Exception callback receives FP as third parameter */
541 if (is_exception_cb) {
542 EMIT3(0x48, 0x89, 0xF4); /* mov rsp, rsi */
543 EMIT3(0x48, 0x89, 0xD5); /* mov rbp, rdx */
544 /* The main frame must have exception_boundary as true, so we
545 * first restore those callee-saved regs from stack, before
546 * reusing the stack frame.
547 */
548 pop_callee_regs(&prog, all_callee_regs_used);
549 pop_r12(&prog);
550 /* Reset the stack frame. */
551 EMIT3(0x48, 0x89, 0xEC); /* mov rsp, rbp */
552 } else {
553 EMIT1(0x55); /* push rbp */
554 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
555 }
556
557 /* X86_TAIL_CALL_OFFSET is here */
558 EMIT_ENDBR();
559
560 /* sub rsp, rounded_stack_depth */
561 if (stack_depth)
562 EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
563 if (tail_call_reachable)
564 emit_prologue_tail_call(&prog, is_subprog);
565 *pprog = prog;
566 }
567
emit_patch(u8 ** pprog,void * func,void * ip,u8 opcode)568 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
569 {
570 u8 *prog = *pprog;
571 s64 offset;
572
573 offset = func - (ip + X86_PATCH_SIZE);
574 if (!is_simm32(offset)) {
575 pr_err("Target call %p is out of range\n", func);
576 return -ERANGE;
577 }
578 EMIT1_off32(opcode, offset);
579 *pprog = prog;
580 return 0;
581 }
582
emit_call(u8 ** pprog,void * func,void * ip)583 static int emit_call(u8 **pprog, void *func, void *ip)
584 {
585 return emit_patch(pprog, func, ip, 0xE8);
586 }
587
emit_rsb_call(u8 ** pprog,void * func,void * ip)588 static int emit_rsb_call(u8 **pprog, void *func, void *ip)
589 {
590 OPTIMIZER_HIDE_VAR(func);
591 ip += x86_call_depth_emit_accounting(pprog, func, ip);
592 return emit_patch(pprog, func, ip, 0xE8);
593 }
594
emit_jump(u8 ** pprog,void * func,void * ip)595 static int emit_jump(u8 **pprog, void *func, void *ip)
596 {
597 return emit_patch(pprog, func, ip, 0xE9);
598 }
599
__bpf_arch_text_poke(void * ip,enum bpf_text_poke_type t,void * old_addr,void * new_addr)600 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
601 void *old_addr, void *new_addr)
602 {
603 const u8 *nop_insn = x86_nops[5];
604 u8 old_insn[X86_PATCH_SIZE];
605 u8 new_insn[X86_PATCH_SIZE];
606 u8 *prog;
607 int ret;
608
609 memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
610 if (old_addr) {
611 prog = old_insn;
612 ret = t == BPF_MOD_CALL ?
613 emit_call(&prog, old_addr, ip) :
614 emit_jump(&prog, old_addr, ip);
615 if (ret)
616 return ret;
617 }
618
619 memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
620 if (new_addr) {
621 prog = new_insn;
622 ret = t == BPF_MOD_CALL ?
623 emit_call(&prog, new_addr, ip) :
624 emit_jump(&prog, new_addr, ip);
625 if (ret)
626 return ret;
627 }
628
629 ret = -EBUSY;
630 mutex_lock(&text_mutex);
631 if (memcmp(ip, old_insn, X86_PATCH_SIZE))
632 goto out;
633 ret = 1;
634 if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
635 smp_text_poke_single(ip, new_insn, X86_PATCH_SIZE, NULL);
636 ret = 0;
637 }
638 out:
639 mutex_unlock(&text_mutex);
640 return ret;
641 }
642
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type t,void * old_addr,void * new_addr)643 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
644 void *old_addr, void *new_addr)
645 {
646 if (!is_kernel_text((long)ip) &&
647 !is_bpf_text_address((long)ip))
648 /* BPF poking in modules is not supported */
649 return -EINVAL;
650
651 /*
652 * See emit_prologue(), for IBT builds the trampoline hook is preceded
653 * with an ENDBR instruction.
654 */
655 if (is_endbr(ip))
656 ip += ENDBR_INSN_SIZE;
657
658 return __bpf_arch_text_poke(ip, t, old_addr, new_addr);
659 }
660
661 #define EMIT_LFENCE() EMIT3(0x0F, 0xAE, 0xE8)
662
emit_indirect_jump(u8 ** pprog,int reg,u8 * ip)663 static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip)
664 {
665 u8 *prog = *pprog;
666
667 if (cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS)) {
668 OPTIMIZER_HIDE_VAR(reg);
669 emit_jump(&prog, its_static_thunk(reg), ip);
670 } else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
671 EMIT_LFENCE();
672 EMIT2(0xFF, 0xE0 + reg);
673 } else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) {
674 OPTIMIZER_HIDE_VAR(reg);
675 if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
676 emit_jump(&prog, &__x86_indirect_jump_thunk_array[reg], ip);
677 else
678 emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip);
679 } else {
680 EMIT2(0xFF, 0xE0 + reg); /* jmp *%\reg */
681 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) || IS_ENABLED(CONFIG_MITIGATION_SLS))
682 EMIT1(0xCC); /* int3 */
683 }
684
685 *pprog = prog;
686 }
687
emit_return(u8 ** pprog,u8 * ip)688 static void emit_return(u8 **pprog, u8 *ip)
689 {
690 u8 *prog = *pprog;
691
692 if (cpu_wants_rethunk()) {
693 emit_jump(&prog, x86_return_thunk, ip);
694 } else {
695 EMIT1(0xC3); /* ret */
696 if (IS_ENABLED(CONFIG_MITIGATION_SLS))
697 EMIT1(0xCC); /* int3 */
698 }
699
700 *pprog = prog;
701 }
702
703 #define BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack) (-16 - round_up(stack, 8))
704
705 /*
706 * Generate the following code:
707 *
708 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
709 * if (index >= array->map.max_entries)
710 * goto out;
711 * if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT)
712 * goto out;
713 * prog = array->ptrs[index];
714 * if (prog == NULL)
715 * goto out;
716 * goto *(prog->bpf_func + prologue_size);
717 * out:
718 */
emit_bpf_tail_call_indirect(struct bpf_prog * bpf_prog,u8 ** pprog,bool * callee_regs_used,u32 stack_depth,u8 * ip,struct jit_context * ctx)719 static void emit_bpf_tail_call_indirect(struct bpf_prog *bpf_prog,
720 u8 **pprog, bool *callee_regs_used,
721 u32 stack_depth, u8 *ip,
722 struct jit_context *ctx)
723 {
724 int tcc_ptr_off = BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack_depth);
725 u8 *prog = *pprog, *start = *pprog;
726 int offset;
727
728 /*
729 * rdi - pointer to ctx
730 * rsi - pointer to bpf_array
731 * rdx - index in bpf_array
732 */
733
734 /*
735 * if (index >= array->map.max_entries)
736 * goto out;
737 */
738 EMIT2(0x89, 0xD2); /* mov edx, edx */
739 EMIT3(0x39, 0x56, /* cmp dword ptr [rsi + 16], edx */
740 offsetof(struct bpf_array, map.max_entries));
741
742 offset = ctx->tail_call_indirect_label - (prog + 2 - start);
743 EMIT2(X86_JBE, offset); /* jbe out */
744
745 /*
746 * if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT)
747 * goto out;
748 */
749 EMIT3_off32(0x48, 0x8B, 0x85, tcc_ptr_off); /* mov rax, qword ptr [rbp - tcc_ptr_off] */
750 EMIT4(0x48, 0x83, 0x38, MAX_TAIL_CALL_CNT); /* cmp qword ptr [rax], MAX_TAIL_CALL_CNT */
751
752 offset = ctx->tail_call_indirect_label - (prog + 2 - start);
753 EMIT2(X86_JAE, offset); /* jae out */
754
755 /* prog = array->ptrs[index]; */
756 EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6, /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
757 offsetof(struct bpf_array, ptrs));
758
759 /*
760 * if (prog == NULL)
761 * goto out;
762 */
763 EMIT3(0x48, 0x85, 0xC9); /* test rcx,rcx */
764
765 offset = ctx->tail_call_indirect_label - (prog + 2 - start);
766 EMIT2(X86_JE, offset); /* je out */
767
768 /* Inc tail_call_cnt if the slot is populated. */
769 EMIT4(0x48, 0x83, 0x00, 0x01); /* add qword ptr [rax], 1 */
770
771 if (bpf_prog->aux->exception_boundary) {
772 pop_callee_regs(&prog, all_callee_regs_used);
773 pop_r12(&prog);
774 } else {
775 pop_callee_regs(&prog, callee_regs_used);
776 if (bpf_arena_get_kern_vm_start(bpf_prog->aux->arena))
777 pop_r12(&prog);
778 }
779
780 /* Pop tail_call_cnt_ptr. */
781 EMIT1(0x58); /* pop rax */
782 /* Pop tail_call_cnt, if it's main prog.
783 * Pop tail_call_cnt_ptr, if it's subprog.
784 */
785 EMIT1(0x58); /* pop rax */
786 if (stack_depth)
787 EMIT3_off32(0x48, 0x81, 0xC4, /* add rsp, sd */
788 round_up(stack_depth, 8));
789
790 /* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
791 EMIT4(0x48, 0x8B, 0x49, /* mov rcx, qword ptr [rcx + 32] */
792 offsetof(struct bpf_prog, bpf_func));
793 EMIT4(0x48, 0x83, 0xC1, /* add rcx, X86_TAIL_CALL_OFFSET */
794 X86_TAIL_CALL_OFFSET);
795 /*
796 * Now we're ready to jump into next BPF program
797 * rdi == ctx (1st arg)
798 * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
799 */
800 emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start));
801
802 /* out: */
803 ctx->tail_call_indirect_label = prog - start;
804 *pprog = prog;
805 }
806
emit_bpf_tail_call_direct(struct bpf_prog * bpf_prog,struct bpf_jit_poke_descriptor * poke,u8 ** pprog,u8 * ip,bool * callee_regs_used,u32 stack_depth,struct jit_context * ctx)807 static void emit_bpf_tail_call_direct(struct bpf_prog *bpf_prog,
808 struct bpf_jit_poke_descriptor *poke,
809 u8 **pprog, u8 *ip,
810 bool *callee_regs_used, u32 stack_depth,
811 struct jit_context *ctx)
812 {
813 int tcc_ptr_off = BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack_depth);
814 u8 *prog = *pprog, *start = *pprog;
815 int offset;
816
817 /*
818 * if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT)
819 * goto out;
820 */
821 EMIT3_off32(0x48, 0x8B, 0x85, tcc_ptr_off); /* mov rax, qword ptr [rbp - tcc_ptr_off] */
822 EMIT4(0x48, 0x83, 0x38, MAX_TAIL_CALL_CNT); /* cmp qword ptr [rax], MAX_TAIL_CALL_CNT */
823
824 offset = ctx->tail_call_direct_label - (prog + 2 - start);
825 EMIT2(X86_JAE, offset); /* jae out */
826
827 poke->tailcall_bypass = ip + (prog - start);
828 poke->adj_off = X86_TAIL_CALL_OFFSET;
829 poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE;
830 poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
831
832 emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
833 poke->tailcall_bypass);
834
835 /* Inc tail_call_cnt if the slot is populated. */
836 EMIT4(0x48, 0x83, 0x00, 0x01); /* add qword ptr [rax], 1 */
837
838 if (bpf_prog->aux->exception_boundary) {
839 pop_callee_regs(&prog, all_callee_regs_used);
840 pop_r12(&prog);
841 } else {
842 pop_callee_regs(&prog, callee_regs_used);
843 if (bpf_arena_get_kern_vm_start(bpf_prog->aux->arena))
844 pop_r12(&prog);
845 }
846
847 /* Pop tail_call_cnt_ptr. */
848 EMIT1(0x58); /* pop rax */
849 /* Pop tail_call_cnt, if it's main prog.
850 * Pop tail_call_cnt_ptr, if it's subprog.
851 */
852 EMIT1(0x58); /* pop rax */
853 if (stack_depth)
854 EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
855
856 emit_nops(&prog, X86_PATCH_SIZE);
857
858 /* out: */
859 ctx->tail_call_direct_label = prog - start;
860
861 *pprog = prog;
862 }
863
bpf_tail_call_direct_fixup(struct bpf_prog * prog)864 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
865 {
866 struct bpf_jit_poke_descriptor *poke;
867 struct bpf_array *array;
868 struct bpf_prog *target;
869 int i, ret;
870
871 for (i = 0; i < prog->aux->size_poke_tab; i++) {
872 poke = &prog->aux->poke_tab[i];
873 if (poke->aux && poke->aux != prog->aux)
874 continue;
875
876 WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
877
878 if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
879 continue;
880
881 array = container_of(poke->tail_call.map, struct bpf_array, map);
882 mutex_lock(&array->aux->poke_mutex);
883 target = array->ptrs[poke->tail_call.key];
884 if (target) {
885 ret = __bpf_arch_text_poke(poke->tailcall_target,
886 BPF_MOD_JUMP, NULL,
887 (u8 *)target->bpf_func +
888 poke->adj_off);
889 BUG_ON(ret < 0);
890 ret = __bpf_arch_text_poke(poke->tailcall_bypass,
891 BPF_MOD_JUMP,
892 (u8 *)poke->tailcall_target +
893 X86_PATCH_SIZE, NULL);
894 BUG_ON(ret < 0);
895 }
896 WRITE_ONCE(poke->tailcall_target_stable, true);
897 mutex_unlock(&array->aux->poke_mutex);
898 }
899 }
900
emit_mov_imm32(u8 ** pprog,bool sign_propagate,u32 dst_reg,const u32 imm32)901 static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
902 u32 dst_reg, const u32 imm32)
903 {
904 u8 *prog = *pprog;
905 u8 b1, b2, b3;
906
907 /*
908 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
909 * (which zero-extends imm32) to save 2 bytes.
910 */
911 if (sign_propagate && (s32)imm32 < 0) {
912 /* 'mov %rax, imm32' sign extends imm32 */
913 b1 = add_1mod(0x48, dst_reg);
914 b2 = 0xC7;
915 b3 = 0xC0;
916 EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
917 goto done;
918 }
919
920 /*
921 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
922 * to save 3 bytes.
923 */
924 if (imm32 == 0) {
925 if (is_ereg(dst_reg))
926 EMIT1(add_2mod(0x40, dst_reg, dst_reg));
927 b2 = 0x31; /* xor */
928 b3 = 0xC0;
929 EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
930 goto done;
931 }
932
933 /* mov %eax, imm32 */
934 if (is_ereg(dst_reg))
935 EMIT1(add_1mod(0x40, dst_reg));
936 EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
937 done:
938 *pprog = prog;
939 }
940
emit_mov_imm64(u8 ** pprog,u32 dst_reg,const u32 imm32_hi,const u32 imm32_lo)941 static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
942 const u32 imm32_hi, const u32 imm32_lo)
943 {
944 u64 imm64 = ((u64)imm32_hi << 32) | (u32)imm32_lo;
945 u8 *prog = *pprog;
946
947 if (is_uimm32(imm64)) {
948 /*
949 * For emitting plain u32, where sign bit must not be
950 * propagated LLVM tends to load imm64 over mov32
951 * directly, so save couple of bytes by just doing
952 * 'mov %eax, imm32' instead.
953 */
954 emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
955 } else if (is_simm32(imm64)) {
956 emit_mov_imm32(&prog, true, dst_reg, imm32_lo);
957 } else {
958 /* movabsq rax, imm64 */
959 EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
960 EMIT(imm32_lo, 4);
961 EMIT(imm32_hi, 4);
962 }
963
964 *pprog = prog;
965 }
966
emit_mov_reg(u8 ** pprog,bool is64,u32 dst_reg,u32 src_reg)967 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
968 {
969 u8 *prog = *pprog;
970
971 if (is64) {
972 /* mov dst, src */
973 EMIT_mov(dst_reg, src_reg);
974 } else {
975 /* mov32 dst, src */
976 if (is_ereg(dst_reg) || is_ereg(src_reg))
977 EMIT1(add_2mod(0x40, dst_reg, src_reg));
978 EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
979 }
980
981 *pprog = prog;
982 }
983
emit_movsx_reg(u8 ** pprog,int num_bits,bool is64,u32 dst_reg,u32 src_reg)984 static void emit_movsx_reg(u8 **pprog, int num_bits, bool is64, u32 dst_reg,
985 u32 src_reg)
986 {
987 u8 *prog = *pprog;
988
989 if (is64) {
990 /* movs[b,w,l]q dst, src */
991 if (num_bits == 8)
992 EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbe,
993 add_2reg(0xC0, src_reg, dst_reg));
994 else if (num_bits == 16)
995 EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbf,
996 add_2reg(0xC0, src_reg, dst_reg));
997 else if (num_bits == 32)
998 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x63,
999 add_2reg(0xC0, src_reg, dst_reg));
1000 } else {
1001 /* movs[b,w]l dst, src */
1002 if (num_bits == 8) {
1003 EMIT4(add_2mod(0x40, src_reg, dst_reg), 0x0f, 0xbe,
1004 add_2reg(0xC0, src_reg, dst_reg));
1005 } else if (num_bits == 16) {
1006 if (is_ereg(dst_reg) || is_ereg(src_reg))
1007 EMIT1(add_2mod(0x40, src_reg, dst_reg));
1008 EMIT3(add_2mod(0x0f, src_reg, dst_reg), 0xbf,
1009 add_2reg(0xC0, src_reg, dst_reg));
1010 }
1011 }
1012
1013 *pprog = prog;
1014 }
1015
1016 /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
emit_insn_suffix(u8 ** pprog,u32 ptr_reg,u32 val_reg,int off)1017 static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
1018 {
1019 u8 *prog = *pprog;
1020
1021 if (is_imm8(off)) {
1022 /* 1-byte signed displacement.
1023 *
1024 * If off == 0 we could skip this and save one extra byte, but
1025 * special case of x86 R13 which always needs an offset is not
1026 * worth the hassle
1027 */
1028 EMIT2(add_2reg(0x40, ptr_reg, val_reg), off);
1029 } else {
1030 /* 4-byte signed displacement */
1031 EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off);
1032 }
1033 *pprog = prog;
1034 }
1035
emit_insn_suffix_SIB(u8 ** pprog,u32 ptr_reg,u32 val_reg,u32 index_reg,int off)1036 static void emit_insn_suffix_SIB(u8 **pprog, u32 ptr_reg, u32 val_reg, u32 index_reg, int off)
1037 {
1038 u8 *prog = *pprog;
1039
1040 if (is_imm8(off)) {
1041 EMIT3(add_2reg(0x44, BPF_REG_0, val_reg), add_2reg(0, ptr_reg, index_reg) /* SIB */, off);
1042 } else {
1043 EMIT2_off32(add_2reg(0x84, BPF_REG_0, val_reg), add_2reg(0, ptr_reg, index_reg) /* SIB */, off);
1044 }
1045 *pprog = prog;
1046 }
1047
1048 /*
1049 * Emit a REX byte if it will be necessary to address these registers
1050 */
maybe_emit_mod(u8 ** pprog,u32 dst_reg,u32 src_reg,bool is64)1051 static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)
1052 {
1053 u8 *prog = *pprog;
1054
1055 if (is64)
1056 EMIT1(add_2mod(0x48, dst_reg, src_reg));
1057 else if (is_ereg(dst_reg) || is_ereg(src_reg))
1058 EMIT1(add_2mod(0x40, dst_reg, src_reg));
1059 *pprog = prog;
1060 }
1061
1062 /*
1063 * Similar version of maybe_emit_mod() for a single register
1064 */
maybe_emit_1mod(u8 ** pprog,u32 reg,bool is64)1065 static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64)
1066 {
1067 u8 *prog = *pprog;
1068
1069 if (is64)
1070 EMIT1(add_1mod(0x48, reg));
1071 else if (is_ereg(reg))
1072 EMIT1(add_1mod(0x40, reg));
1073 *pprog = prog;
1074 }
1075
1076 /* LDX: dst_reg = *(u8*)(src_reg + off) */
emit_ldx(u8 ** pprog,u32 size,u32 dst_reg,u32 src_reg,int off)1077 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1078 {
1079 u8 *prog = *pprog;
1080
1081 switch (size) {
1082 case BPF_B:
1083 /* Emit 'movzx rax, byte ptr [rax + off]' */
1084 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
1085 break;
1086 case BPF_H:
1087 /* Emit 'movzx rax, word ptr [rax + off]' */
1088 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
1089 break;
1090 case BPF_W:
1091 /* Emit 'mov eax, dword ptr [rax+0x14]' */
1092 if (is_ereg(dst_reg) || is_ereg(src_reg))
1093 EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
1094 else
1095 EMIT1(0x8B);
1096 break;
1097 case BPF_DW:
1098 /* Emit 'mov rax, qword ptr [rax+0x14]' */
1099 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
1100 break;
1101 }
1102 emit_insn_suffix(&prog, src_reg, dst_reg, off);
1103 *pprog = prog;
1104 }
1105
1106 /* LDSX: dst_reg = *(s8*)(src_reg + off) */
emit_ldsx(u8 ** pprog,u32 size,u32 dst_reg,u32 src_reg,int off)1107 static void emit_ldsx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1108 {
1109 u8 *prog = *pprog;
1110
1111 switch (size) {
1112 case BPF_B:
1113 /* Emit 'movsx rax, byte ptr [rax + off]' */
1114 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBE);
1115 break;
1116 case BPF_H:
1117 /* Emit 'movsx rax, word ptr [rax + off]' */
1118 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBF);
1119 break;
1120 case BPF_W:
1121 /* Emit 'movsx rax, dword ptr [rax+0x14]' */
1122 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x63);
1123 break;
1124 }
1125 emit_insn_suffix(&prog, src_reg, dst_reg, off);
1126 *pprog = prog;
1127 }
1128
emit_ldx_index(u8 ** pprog,u32 size,u32 dst_reg,u32 src_reg,u32 index_reg,int off)1129 static void emit_ldx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off)
1130 {
1131 u8 *prog = *pprog;
1132
1133 switch (size) {
1134 case BPF_B:
1135 /* movzx rax, byte ptr [rax + r12 + off] */
1136 EMIT3(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x0F, 0xB6);
1137 break;
1138 case BPF_H:
1139 /* movzx rax, word ptr [rax + r12 + off] */
1140 EMIT3(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x0F, 0xB7);
1141 break;
1142 case BPF_W:
1143 /* mov eax, dword ptr [rax + r12 + off] */
1144 EMIT2(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x8B);
1145 break;
1146 case BPF_DW:
1147 /* mov rax, qword ptr [rax + r12 + off] */
1148 EMIT2(add_3mod(0x48, src_reg, dst_reg, index_reg), 0x8B);
1149 break;
1150 }
1151 emit_insn_suffix_SIB(&prog, src_reg, dst_reg, index_reg, off);
1152 *pprog = prog;
1153 }
1154
emit_ldsx_index(u8 ** pprog,u32 size,u32 dst_reg,u32 src_reg,u32 index_reg,int off)1155 static void emit_ldsx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off)
1156 {
1157 u8 *prog = *pprog;
1158
1159 switch (size) {
1160 case BPF_B:
1161 /* movsx rax, byte ptr [rax + r12 + off] */
1162 EMIT3(add_3mod(0x48, src_reg, dst_reg, index_reg), 0x0F, 0xBE);
1163 break;
1164 case BPF_H:
1165 /* movsx rax, word ptr [rax + r12 + off] */
1166 EMIT3(add_3mod(0x48, src_reg, dst_reg, index_reg), 0x0F, 0xBF);
1167 break;
1168 case BPF_W:
1169 /* movsx rax, dword ptr [rax + r12 + off] */
1170 EMIT2(add_3mod(0x48, src_reg, dst_reg, index_reg), 0x63);
1171 break;
1172 }
1173 emit_insn_suffix_SIB(&prog, src_reg, dst_reg, index_reg, off);
1174 *pprog = prog;
1175 }
1176
emit_ldx_r12(u8 ** pprog,u32 size,u32 dst_reg,u32 src_reg,int off)1177 static void emit_ldx_r12(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1178 {
1179 emit_ldx_index(pprog, size, dst_reg, src_reg, X86_REG_R12, off);
1180 }
1181
emit_ldsx_r12(u8 ** prog,u32 size,u32 dst_reg,u32 src_reg,int off)1182 static void emit_ldsx_r12(u8 **prog, u32 size, u32 dst_reg, u32 src_reg, int off)
1183 {
1184 emit_ldsx_index(prog, size, dst_reg, src_reg, X86_REG_R12, off);
1185 }
1186
1187 /* STX: *(u8*)(dst_reg + off) = src_reg */
emit_stx(u8 ** pprog,u32 size,u32 dst_reg,u32 src_reg,int off)1188 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1189 {
1190 u8 *prog = *pprog;
1191
1192 switch (size) {
1193 case BPF_B:
1194 /* Emit 'mov byte ptr [rax + off], al' */
1195 if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
1196 /* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
1197 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
1198 else
1199 EMIT1(0x88);
1200 break;
1201 case BPF_H:
1202 if (is_ereg(dst_reg) || is_ereg(src_reg))
1203 EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
1204 else
1205 EMIT2(0x66, 0x89);
1206 break;
1207 case BPF_W:
1208 if (is_ereg(dst_reg) || is_ereg(src_reg))
1209 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
1210 else
1211 EMIT1(0x89);
1212 break;
1213 case BPF_DW:
1214 EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
1215 break;
1216 }
1217 emit_insn_suffix(&prog, dst_reg, src_reg, off);
1218 *pprog = prog;
1219 }
1220
1221 /* STX: *(u8*)(dst_reg + index_reg + off) = src_reg */
emit_stx_index(u8 ** pprog,u32 size,u32 dst_reg,u32 src_reg,u32 index_reg,int off)1222 static void emit_stx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off)
1223 {
1224 u8 *prog = *pprog;
1225
1226 switch (size) {
1227 case BPF_B:
1228 /* mov byte ptr [rax + r12 + off], al */
1229 EMIT2(add_3mod(0x40, dst_reg, src_reg, index_reg), 0x88);
1230 break;
1231 case BPF_H:
1232 /* mov word ptr [rax + r12 + off], ax */
1233 EMIT3(0x66, add_3mod(0x40, dst_reg, src_reg, index_reg), 0x89);
1234 break;
1235 case BPF_W:
1236 /* mov dword ptr [rax + r12 + 1], eax */
1237 EMIT2(add_3mod(0x40, dst_reg, src_reg, index_reg), 0x89);
1238 break;
1239 case BPF_DW:
1240 /* mov qword ptr [rax + r12 + 1], rax */
1241 EMIT2(add_3mod(0x48, dst_reg, src_reg, index_reg), 0x89);
1242 break;
1243 }
1244 emit_insn_suffix_SIB(&prog, dst_reg, src_reg, index_reg, off);
1245 *pprog = prog;
1246 }
1247
emit_stx_r12(u8 ** pprog,u32 size,u32 dst_reg,u32 src_reg,int off)1248 static void emit_stx_r12(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1249 {
1250 emit_stx_index(pprog, size, dst_reg, src_reg, X86_REG_R12, off);
1251 }
1252
1253 /* ST: *(u8*)(dst_reg + index_reg + off) = imm32 */
emit_st_index(u8 ** pprog,u32 size,u32 dst_reg,u32 index_reg,int off,int imm)1254 static void emit_st_index(u8 **pprog, u32 size, u32 dst_reg, u32 index_reg, int off, int imm)
1255 {
1256 u8 *prog = *pprog;
1257
1258 switch (size) {
1259 case BPF_B:
1260 /* mov byte ptr [rax + r12 + off], imm8 */
1261 EMIT2(add_3mod(0x40, dst_reg, 0, index_reg), 0xC6);
1262 break;
1263 case BPF_H:
1264 /* mov word ptr [rax + r12 + off], imm16 */
1265 EMIT3(0x66, add_3mod(0x40, dst_reg, 0, index_reg), 0xC7);
1266 break;
1267 case BPF_W:
1268 /* mov dword ptr [rax + r12 + 1], imm32 */
1269 EMIT2(add_3mod(0x40, dst_reg, 0, index_reg), 0xC7);
1270 break;
1271 case BPF_DW:
1272 /* mov qword ptr [rax + r12 + 1], imm32 */
1273 EMIT2(add_3mod(0x48, dst_reg, 0, index_reg), 0xC7);
1274 break;
1275 }
1276 emit_insn_suffix_SIB(&prog, dst_reg, 0, index_reg, off);
1277 EMIT(imm, bpf_size_to_x86_bytes(size));
1278 *pprog = prog;
1279 }
1280
emit_st_r12(u8 ** pprog,u32 size,u32 dst_reg,int off,int imm)1281 static void emit_st_r12(u8 **pprog, u32 size, u32 dst_reg, int off, int imm)
1282 {
1283 emit_st_index(pprog, size, dst_reg, X86_REG_R12, off, imm);
1284 }
1285
emit_atomic_rmw(u8 ** pprog,u32 atomic_op,u32 dst_reg,u32 src_reg,s16 off,u8 bpf_size)1286 static int emit_atomic_rmw(u8 **pprog, u32 atomic_op,
1287 u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)
1288 {
1289 u8 *prog = *pprog;
1290
1291 EMIT1(0xF0); /* lock prefix */
1292
1293 maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW);
1294
1295 /* emit opcode */
1296 switch (atomic_op) {
1297 case BPF_ADD:
1298 case BPF_AND:
1299 case BPF_OR:
1300 case BPF_XOR:
1301 /* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */
1302 EMIT1(simple_alu_opcodes[atomic_op]);
1303 break;
1304 case BPF_ADD | BPF_FETCH:
1305 /* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */
1306 EMIT2(0x0F, 0xC1);
1307 break;
1308 case BPF_XCHG:
1309 /* src_reg = atomic_xchg(dst_reg + off, src_reg); */
1310 EMIT1(0x87);
1311 break;
1312 case BPF_CMPXCHG:
1313 /* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
1314 EMIT2(0x0F, 0xB1);
1315 break;
1316 default:
1317 pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
1318 return -EFAULT;
1319 }
1320
1321 emit_insn_suffix(&prog, dst_reg, src_reg, off);
1322
1323 *pprog = prog;
1324 return 0;
1325 }
1326
emit_atomic_rmw_index(u8 ** pprog,u32 atomic_op,u32 size,u32 dst_reg,u32 src_reg,u32 index_reg,int off)1327 static int emit_atomic_rmw_index(u8 **pprog, u32 atomic_op, u32 size,
1328 u32 dst_reg, u32 src_reg, u32 index_reg,
1329 int off)
1330 {
1331 u8 *prog = *pprog;
1332
1333 EMIT1(0xF0); /* lock prefix */
1334 switch (size) {
1335 case BPF_W:
1336 EMIT1(add_3mod(0x40, dst_reg, src_reg, index_reg));
1337 break;
1338 case BPF_DW:
1339 EMIT1(add_3mod(0x48, dst_reg, src_reg, index_reg));
1340 break;
1341 default:
1342 pr_err("bpf_jit: 1- and 2-byte RMW atomics are not supported\n");
1343 return -EFAULT;
1344 }
1345
1346 /* emit opcode */
1347 switch (atomic_op) {
1348 case BPF_ADD:
1349 case BPF_AND:
1350 case BPF_OR:
1351 case BPF_XOR:
1352 /* lock *(u32/u64*)(dst_reg + idx_reg + off) <op>= src_reg */
1353 EMIT1(simple_alu_opcodes[atomic_op]);
1354 break;
1355 case BPF_ADD | BPF_FETCH:
1356 /* src_reg = atomic_fetch_add(dst_reg + idx_reg + off, src_reg); */
1357 EMIT2(0x0F, 0xC1);
1358 break;
1359 case BPF_XCHG:
1360 /* src_reg = atomic_xchg(dst_reg + idx_reg + off, src_reg); */
1361 EMIT1(0x87);
1362 break;
1363 case BPF_CMPXCHG:
1364 /* r0 = atomic_cmpxchg(dst_reg + idx_reg + off, r0, src_reg); */
1365 EMIT2(0x0F, 0xB1);
1366 break;
1367 default:
1368 pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
1369 return -EFAULT;
1370 }
1371 emit_insn_suffix_SIB(&prog, dst_reg, src_reg, index_reg, off);
1372 *pprog = prog;
1373 return 0;
1374 }
1375
emit_atomic_ld_st(u8 ** pprog,u32 atomic_op,u32 dst_reg,u32 src_reg,s16 off,u8 bpf_size)1376 static int emit_atomic_ld_st(u8 **pprog, u32 atomic_op, u32 dst_reg,
1377 u32 src_reg, s16 off, u8 bpf_size)
1378 {
1379 switch (atomic_op) {
1380 case BPF_LOAD_ACQ:
1381 /* dst_reg = smp_load_acquire(src_reg + off16) */
1382 emit_ldx(pprog, bpf_size, dst_reg, src_reg, off);
1383 break;
1384 case BPF_STORE_REL:
1385 /* smp_store_release(dst_reg + off16, src_reg) */
1386 emit_stx(pprog, bpf_size, dst_reg, src_reg, off);
1387 break;
1388 default:
1389 pr_err("bpf_jit: unknown atomic load/store opcode %02x\n",
1390 atomic_op);
1391 return -EFAULT;
1392 }
1393
1394 return 0;
1395 }
1396
emit_atomic_ld_st_index(u8 ** pprog,u32 atomic_op,u32 size,u32 dst_reg,u32 src_reg,u32 index_reg,int off)1397 static int emit_atomic_ld_st_index(u8 **pprog, u32 atomic_op, u32 size,
1398 u32 dst_reg, u32 src_reg, u32 index_reg,
1399 int off)
1400 {
1401 switch (atomic_op) {
1402 case BPF_LOAD_ACQ:
1403 /* dst_reg = smp_load_acquire(src_reg + idx_reg + off16) */
1404 emit_ldx_index(pprog, size, dst_reg, src_reg, index_reg, off);
1405 break;
1406 case BPF_STORE_REL:
1407 /* smp_store_release(dst_reg + idx_reg + off16, src_reg) */
1408 emit_stx_index(pprog, size, dst_reg, src_reg, index_reg, off);
1409 break;
1410 default:
1411 pr_err("bpf_jit: unknown atomic load/store opcode %02x\n",
1412 atomic_op);
1413 return -EFAULT;
1414 }
1415
1416 return 0;
1417 }
1418
1419 /*
1420 * Metadata encoding for exception handling in JITed code.
1421 *
1422 * Format of `fixup` and `data` fields in `struct exception_table_entry`:
1423 *
1424 * Bit layout of `fixup` (32-bit):
1425 *
1426 * +-----------+--------+-----------+---------+----------+
1427 * | 31 | 30-24 | 23-16 | 15-8 | 7-0 |
1428 * | | | | | |
1429 * | ARENA_ACC | Unused | ARENA_REG | DST_REG | INSN_LEN |
1430 * +-----------+--------+-----------+---------+----------+
1431 *
1432 * - INSN_LEN (8 bits): Length of faulting insn (max x86 insn = 15 bytes (fits in 8 bits)).
1433 * - DST_REG (8 bits): Offset of dst_reg from reg2pt_regs[] (max offset = 112 (fits in 8 bits)).
1434 * This is set to DONT_CLEAR if the insn is a store.
1435 * - ARENA_REG (8 bits): Offset of the register that is used to calculate the
1436 * address for load/store when accessing the arena region.
1437 * - ARENA_ACCESS (1 bit): This bit is set when the faulting instruction accessed the arena region.
1438 *
1439 * Bit layout of `data` (32-bit):
1440 *
1441 * +--------------+--------+--------------+
1442 * | 31-16 | 15-8 | 7-0 |
1443 * | | | |
1444 * | ARENA_OFFSET | Unused | EX_TYPE_BPF |
1445 * +--------------+--------+--------------+
1446 *
1447 * - ARENA_OFFSET (16 bits): Offset used to calculate the address for load/store when
1448 * accessing the arena region.
1449 */
1450
1451 #define DONT_CLEAR 1
1452 #define FIXUP_INSN_LEN_MASK GENMASK(7, 0)
1453 #define FIXUP_REG_MASK GENMASK(15, 8)
1454 #define FIXUP_ARENA_REG_MASK GENMASK(23, 16)
1455 #define FIXUP_ARENA_ACCESS BIT(31)
1456 #define DATA_ARENA_OFFSET_MASK GENMASK(31, 16)
1457
ex_handler_bpf(const struct exception_table_entry * x,struct pt_regs * regs)1458 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
1459 {
1460 u32 reg = FIELD_GET(FIXUP_REG_MASK, x->fixup);
1461 u32 insn_len = FIELD_GET(FIXUP_INSN_LEN_MASK, x->fixup);
1462 bool is_arena = !!(x->fixup & FIXUP_ARENA_ACCESS);
1463 bool is_write = (reg == DONT_CLEAR);
1464 unsigned long addr;
1465 s16 off;
1466 u32 arena_reg;
1467
1468 if (is_arena) {
1469 arena_reg = FIELD_GET(FIXUP_ARENA_REG_MASK, x->fixup);
1470 off = FIELD_GET(DATA_ARENA_OFFSET_MASK, x->data);
1471 addr = *(unsigned long *)((void *)regs + arena_reg) + off;
1472 bpf_prog_report_arena_violation(is_write, addr, regs->ip);
1473 }
1474
1475 /* jump over faulting load and clear dest register */
1476 if (reg != DONT_CLEAR)
1477 *(unsigned long *)((void *)regs + reg) = 0;
1478 regs->ip += insn_len;
1479
1480 return true;
1481 }
1482
detect_reg_usage(struct bpf_insn * insn,int insn_cnt,bool * regs_used)1483 static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
1484 bool *regs_used)
1485 {
1486 int i;
1487
1488 for (i = 1; i <= insn_cnt; i++, insn++) {
1489 if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
1490 regs_used[0] = true;
1491 if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
1492 regs_used[1] = true;
1493 if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
1494 regs_used[2] = true;
1495 if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
1496 regs_used[3] = true;
1497 }
1498 }
1499
1500 /* emit the 3-byte VEX prefix
1501 *
1502 * r: same as rex.r, extra bit for ModRM reg field
1503 * x: same as rex.x, extra bit for SIB index field
1504 * b: same as rex.b, extra bit for ModRM r/m, or SIB base
1505 * m: opcode map select, encoding escape bytes e.g. 0x0f38
1506 * w: same as rex.w (32 bit or 64 bit) or opcode specific
1507 * src_reg2: additional source reg (encoded as BPF reg)
1508 * l: vector length (128 bit or 256 bit) or reserved
1509 * pp: opcode prefix (none, 0x66, 0xf2 or 0xf3)
1510 */
emit_3vex(u8 ** pprog,bool r,bool x,bool b,u8 m,bool w,u8 src_reg2,bool l,u8 pp)1511 static void emit_3vex(u8 **pprog, bool r, bool x, bool b, u8 m,
1512 bool w, u8 src_reg2, bool l, u8 pp)
1513 {
1514 u8 *prog = *pprog;
1515 const u8 b0 = 0xc4; /* first byte of 3-byte VEX prefix */
1516 u8 b1, b2;
1517 u8 vvvv = reg2hex[src_reg2];
1518
1519 /* reg2hex gives only the lower 3 bit of vvvv */
1520 if (is_ereg(src_reg2))
1521 vvvv |= 1 << 3;
1522
1523 /*
1524 * 2nd byte of 3-byte VEX prefix
1525 * ~ means bit inverted encoding
1526 *
1527 * 7 0
1528 * +---+---+---+---+---+---+---+---+
1529 * |~R |~X |~B | m |
1530 * +---+---+---+---+---+---+---+---+
1531 */
1532 b1 = (!r << 7) | (!x << 6) | (!b << 5) | (m & 0x1f);
1533 /*
1534 * 3rd byte of 3-byte VEX prefix
1535 *
1536 * 7 0
1537 * +---+---+---+---+---+---+---+---+
1538 * | W | ~vvvv | L | pp |
1539 * +---+---+---+---+---+---+---+---+
1540 */
1541 b2 = (w << 7) | ((~vvvv & 0xf) << 3) | (l << 2) | (pp & 3);
1542
1543 EMIT3(b0, b1, b2);
1544 *pprog = prog;
1545 }
1546
1547 /* emit BMI2 shift instruction */
emit_shiftx(u8 ** pprog,u32 dst_reg,u8 src_reg,bool is64,u8 op)1548 static void emit_shiftx(u8 **pprog, u32 dst_reg, u8 src_reg, bool is64, u8 op)
1549 {
1550 u8 *prog = *pprog;
1551 bool r = is_ereg(dst_reg);
1552 u8 m = 2; /* escape code 0f38 */
1553
1554 emit_3vex(&prog, r, false, r, m, is64, src_reg, false, op);
1555 EMIT2(0xf7, add_2reg(0xC0, dst_reg, dst_reg));
1556 *pprog = prog;
1557 }
1558
emit_priv_frame_ptr(u8 ** pprog,void __percpu * priv_frame_ptr)1559 static void emit_priv_frame_ptr(u8 **pprog, void __percpu *priv_frame_ptr)
1560 {
1561 u8 *prog = *pprog;
1562
1563 /* movabs r9, priv_frame_ptr */
1564 emit_mov_imm64(&prog, X86_REG_R9, (__force long) priv_frame_ptr >> 32,
1565 (u32) (__force long) priv_frame_ptr);
1566
1567 #ifdef CONFIG_SMP
1568 /* add <r9>, gs:[<off>] */
1569 EMIT2(0x65, 0x4c);
1570 EMIT3(0x03, 0x0c, 0x25);
1571 EMIT((u32)(unsigned long)&this_cpu_off, 4);
1572 #endif
1573
1574 *pprog = prog;
1575 }
1576
1577 #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
1578
1579 #define __LOAD_TCC_PTR(off) \
1580 EMIT3_off32(0x48, 0x8B, 0x85, off)
1581 /* mov rax, qword ptr [rbp - rounded_stack_depth - 16] */
1582 #define LOAD_TAIL_CALL_CNT_PTR(stack) \
1583 __LOAD_TCC_PTR(BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack))
1584
1585 /* Memory size/value to protect private stack overflow/underflow */
1586 #define PRIV_STACK_GUARD_SZ 8
1587 #define PRIV_STACK_GUARD_VAL 0xEB9F12345678eb9fULL
1588
emit_spectre_bhb_barrier(u8 ** pprog,u8 * ip,struct bpf_prog * bpf_prog)1589 static int emit_spectre_bhb_barrier(u8 **pprog, u8 *ip,
1590 struct bpf_prog *bpf_prog)
1591 {
1592 u8 *prog = *pprog;
1593 u8 *func;
1594
1595 if (cpu_feature_enabled(X86_FEATURE_CLEAR_BHB_LOOP)) {
1596 /* The clearing sequence clobbers eax and ecx. */
1597 EMIT1(0x50); /* push rax */
1598 EMIT1(0x51); /* push rcx */
1599 ip += 2;
1600
1601 func = (u8 *)clear_bhb_loop;
1602 ip += x86_call_depth_emit_accounting(&prog, func, ip);
1603
1604 if (emit_call(&prog, func, ip))
1605 return -EINVAL;
1606 EMIT1(0x59); /* pop rcx */
1607 EMIT1(0x58); /* pop rax */
1608 }
1609 /* Insert IBHF instruction */
1610 if ((cpu_feature_enabled(X86_FEATURE_CLEAR_BHB_LOOP) &&
1611 cpu_feature_enabled(X86_FEATURE_HYPERVISOR)) ||
1612 cpu_feature_enabled(X86_FEATURE_CLEAR_BHB_HW)) {
1613 /*
1614 * Add an Indirect Branch History Fence (IBHF). IBHF acts as a
1615 * fence preventing branch history from before the fence from
1616 * affecting indirect branches after the fence. This is
1617 * specifically used in cBPF jitted code to prevent Intra-mode
1618 * BHI attacks. The IBHF instruction is designed to be a NOP on
1619 * hardware that doesn't need or support it. The REP and REX.W
1620 * prefixes are required by the microcode, and they also ensure
1621 * that the NOP is unlikely to be used in existing code.
1622 *
1623 * IBHF is not a valid instruction in 32-bit mode.
1624 */
1625 EMIT5(0xF3, 0x48, 0x0F, 0x1E, 0xF8); /* ibhf */
1626 }
1627 *pprog = prog;
1628 return 0;
1629 }
1630
do_jit(struct bpf_prog * bpf_prog,int * addrs,u8 * image,u8 * rw_image,int oldproglen,struct jit_context * ctx,bool jmp_padding)1631 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image,
1632 int oldproglen, struct jit_context *ctx, bool jmp_padding)
1633 {
1634 bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
1635 struct bpf_insn *insn = bpf_prog->insnsi;
1636 bool callee_regs_used[4] = {};
1637 int insn_cnt = bpf_prog->len;
1638 bool seen_exit = false;
1639 u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
1640 void __percpu *priv_frame_ptr = NULL;
1641 u64 arena_vm_start, user_vm_start;
1642 void __percpu *priv_stack_ptr;
1643 int i, excnt = 0;
1644 int ilen, proglen = 0;
1645 u8 *prog = temp;
1646 u32 stack_depth;
1647 int err;
1648
1649 stack_depth = bpf_prog->aux->stack_depth;
1650 priv_stack_ptr = bpf_prog->aux->priv_stack_ptr;
1651 if (priv_stack_ptr) {
1652 priv_frame_ptr = priv_stack_ptr + PRIV_STACK_GUARD_SZ + round_up(stack_depth, 8);
1653 stack_depth = 0;
1654 }
1655
1656 arena_vm_start = bpf_arena_get_kern_vm_start(bpf_prog->aux->arena);
1657 user_vm_start = bpf_arena_get_user_vm_start(bpf_prog->aux->arena);
1658
1659 detect_reg_usage(insn, insn_cnt, callee_regs_used);
1660
1661 emit_prologue(&prog, image, stack_depth,
1662 bpf_prog_was_classic(bpf_prog), tail_call_reachable,
1663 bpf_is_subprog(bpf_prog), bpf_prog->aux->exception_cb);
1664 /* Exception callback will clobber callee regs for its own use, and
1665 * restore the original callee regs from main prog's stack frame.
1666 */
1667 if (bpf_prog->aux->exception_boundary) {
1668 /* We also need to save r12, which is not mapped to any BPF
1669 * register, as we throw after entry into the kernel, which may
1670 * overwrite r12.
1671 */
1672 push_r12(&prog);
1673 push_callee_regs(&prog, all_callee_regs_used);
1674 } else {
1675 if (arena_vm_start)
1676 push_r12(&prog);
1677 push_callee_regs(&prog, callee_regs_used);
1678 }
1679 if (arena_vm_start)
1680 emit_mov_imm64(&prog, X86_REG_R12,
1681 arena_vm_start >> 32, (u32) arena_vm_start);
1682
1683 if (priv_frame_ptr)
1684 emit_priv_frame_ptr(&prog, priv_frame_ptr);
1685
1686 ilen = prog - temp;
1687 if (rw_image)
1688 memcpy(rw_image + proglen, temp, ilen);
1689 proglen += ilen;
1690 addrs[0] = proglen;
1691 prog = temp;
1692
1693 for (i = 1; i <= insn_cnt; i++, insn++) {
1694 const s32 imm32 = insn->imm;
1695 u32 dst_reg = insn->dst_reg;
1696 u32 src_reg = insn->src_reg;
1697 u8 b2 = 0, b3 = 0;
1698 u8 *start_of_ldx;
1699 s64 jmp_offset;
1700 s16 insn_off;
1701 u8 jmp_cond;
1702 u8 *func;
1703 int nops;
1704
1705 if (priv_frame_ptr) {
1706 if (src_reg == BPF_REG_FP)
1707 src_reg = X86_REG_R9;
1708
1709 if (dst_reg == BPF_REG_FP)
1710 dst_reg = X86_REG_R9;
1711 }
1712
1713 switch (insn->code) {
1714 /* ALU */
1715 case BPF_ALU | BPF_ADD | BPF_X:
1716 case BPF_ALU | BPF_SUB | BPF_X:
1717 case BPF_ALU | BPF_AND | BPF_X:
1718 case BPF_ALU | BPF_OR | BPF_X:
1719 case BPF_ALU | BPF_XOR | BPF_X:
1720 case BPF_ALU64 | BPF_ADD | BPF_X:
1721 case BPF_ALU64 | BPF_SUB | BPF_X:
1722 case BPF_ALU64 | BPF_AND | BPF_X:
1723 case BPF_ALU64 | BPF_OR | BPF_X:
1724 case BPF_ALU64 | BPF_XOR | BPF_X:
1725 maybe_emit_mod(&prog, dst_reg, src_reg,
1726 BPF_CLASS(insn->code) == BPF_ALU64);
1727 b2 = simple_alu_opcodes[BPF_OP(insn->code)];
1728 EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
1729 break;
1730
1731 case BPF_ALU64 | BPF_MOV | BPF_X:
1732 if (insn_is_cast_user(insn)) {
1733 if (dst_reg != src_reg)
1734 /* 32-bit mov */
1735 emit_mov_reg(&prog, false, dst_reg, src_reg);
1736 /* shl dst_reg, 32 */
1737 maybe_emit_1mod(&prog, dst_reg, true);
1738 EMIT3(0xC1, add_1reg(0xE0, dst_reg), 32);
1739
1740 /* or dst_reg, user_vm_start */
1741 maybe_emit_1mod(&prog, dst_reg, true);
1742 if (is_axreg(dst_reg))
1743 EMIT1_off32(0x0D, user_vm_start >> 32);
1744 else
1745 EMIT2_off32(0x81, add_1reg(0xC8, dst_reg), user_vm_start >> 32);
1746
1747 /* rol dst_reg, 32 */
1748 maybe_emit_1mod(&prog, dst_reg, true);
1749 EMIT3(0xC1, add_1reg(0xC0, dst_reg), 32);
1750
1751 /* xor r11, r11 */
1752 EMIT3(0x4D, 0x31, 0xDB);
1753
1754 /* test dst_reg32, dst_reg32; check if lower 32-bit are zero */
1755 maybe_emit_mod(&prog, dst_reg, dst_reg, false);
1756 EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1757
1758 /* cmove r11, dst_reg; if so, set dst_reg to zero */
1759 /* WARNING: Intel swapped src/dst register encoding in CMOVcc !!! */
1760 maybe_emit_mod(&prog, AUX_REG, dst_reg, true);
1761 EMIT3(0x0F, 0x44, add_2reg(0xC0, AUX_REG, dst_reg));
1762 break;
1763 } else if (insn_is_mov_percpu_addr(insn)) {
1764 /* mov <dst>, <src> (if necessary) */
1765 EMIT_mov(dst_reg, src_reg);
1766 #ifdef CONFIG_SMP
1767 /* add <dst>, gs:[<off>] */
1768 EMIT2(0x65, add_1mod(0x48, dst_reg));
1769 EMIT3(0x03, add_2reg(0x04, 0, dst_reg), 0x25);
1770 EMIT((u32)(unsigned long)&this_cpu_off, 4);
1771 #endif
1772 break;
1773 }
1774 fallthrough;
1775 case BPF_ALU | BPF_MOV | BPF_X:
1776 if (insn->off == 0)
1777 emit_mov_reg(&prog,
1778 BPF_CLASS(insn->code) == BPF_ALU64,
1779 dst_reg, src_reg);
1780 else
1781 emit_movsx_reg(&prog, insn->off,
1782 BPF_CLASS(insn->code) == BPF_ALU64,
1783 dst_reg, src_reg);
1784 break;
1785
1786 /* neg dst */
1787 case BPF_ALU | BPF_NEG:
1788 case BPF_ALU64 | BPF_NEG:
1789 maybe_emit_1mod(&prog, dst_reg,
1790 BPF_CLASS(insn->code) == BPF_ALU64);
1791 EMIT2(0xF7, add_1reg(0xD8, dst_reg));
1792 break;
1793
1794 case BPF_ALU | BPF_ADD | BPF_K:
1795 case BPF_ALU | BPF_SUB | BPF_K:
1796 case BPF_ALU | BPF_AND | BPF_K:
1797 case BPF_ALU | BPF_OR | BPF_K:
1798 case BPF_ALU | BPF_XOR | BPF_K:
1799 case BPF_ALU64 | BPF_ADD | BPF_K:
1800 case BPF_ALU64 | BPF_SUB | BPF_K:
1801 case BPF_ALU64 | BPF_AND | BPF_K:
1802 case BPF_ALU64 | BPF_OR | BPF_K:
1803 case BPF_ALU64 | BPF_XOR | BPF_K:
1804 maybe_emit_1mod(&prog, dst_reg,
1805 BPF_CLASS(insn->code) == BPF_ALU64);
1806
1807 /*
1808 * b3 holds 'normal' opcode, b2 short form only valid
1809 * in case dst is eax/rax.
1810 */
1811 switch (BPF_OP(insn->code)) {
1812 case BPF_ADD:
1813 b3 = 0xC0;
1814 b2 = 0x05;
1815 break;
1816 case BPF_SUB:
1817 b3 = 0xE8;
1818 b2 = 0x2D;
1819 break;
1820 case BPF_AND:
1821 b3 = 0xE0;
1822 b2 = 0x25;
1823 break;
1824 case BPF_OR:
1825 b3 = 0xC8;
1826 b2 = 0x0D;
1827 break;
1828 case BPF_XOR:
1829 b3 = 0xF0;
1830 b2 = 0x35;
1831 break;
1832 }
1833
1834 if (is_imm8(imm32))
1835 EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
1836 else if (is_axreg(dst_reg))
1837 EMIT1_off32(b2, imm32);
1838 else
1839 EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
1840 break;
1841
1842 case BPF_ALU64 | BPF_MOV | BPF_K:
1843 case BPF_ALU | BPF_MOV | BPF_K:
1844 emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
1845 dst_reg, imm32);
1846 break;
1847
1848 case BPF_LD | BPF_IMM | BPF_DW:
1849 emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
1850 insn++;
1851 i++;
1852 break;
1853
1854 /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
1855 case BPF_ALU | BPF_MOD | BPF_X:
1856 case BPF_ALU | BPF_DIV | BPF_X:
1857 case BPF_ALU | BPF_MOD | BPF_K:
1858 case BPF_ALU | BPF_DIV | BPF_K:
1859 case BPF_ALU64 | BPF_MOD | BPF_X:
1860 case BPF_ALU64 | BPF_DIV | BPF_X:
1861 case BPF_ALU64 | BPF_MOD | BPF_K:
1862 case BPF_ALU64 | BPF_DIV | BPF_K: {
1863 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1864
1865 if (dst_reg != BPF_REG_0)
1866 EMIT1(0x50); /* push rax */
1867 if (dst_reg != BPF_REG_3)
1868 EMIT1(0x52); /* push rdx */
1869
1870 if (BPF_SRC(insn->code) == BPF_X) {
1871 if (src_reg == BPF_REG_0 ||
1872 src_reg == BPF_REG_3) {
1873 /* mov r11, src_reg */
1874 EMIT_mov(AUX_REG, src_reg);
1875 src_reg = AUX_REG;
1876 }
1877 } else {
1878 /* mov r11, imm32 */
1879 EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
1880 src_reg = AUX_REG;
1881 }
1882
1883 if (dst_reg != BPF_REG_0)
1884 /* mov rax, dst_reg */
1885 emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg);
1886
1887 if (insn->off == 0) {
1888 /*
1889 * xor edx, edx
1890 * equivalent to 'xor rdx, rdx', but one byte less
1891 */
1892 EMIT2(0x31, 0xd2);
1893
1894 /* div src_reg */
1895 maybe_emit_1mod(&prog, src_reg, is64);
1896 EMIT2(0xF7, add_1reg(0xF0, src_reg));
1897 } else {
1898 if (BPF_CLASS(insn->code) == BPF_ALU)
1899 EMIT1(0x99); /* cdq */
1900 else
1901 EMIT2(0x48, 0x99); /* cqo */
1902
1903 /* idiv src_reg */
1904 maybe_emit_1mod(&prog, src_reg, is64);
1905 EMIT2(0xF7, add_1reg(0xF8, src_reg));
1906 }
1907
1908 if (BPF_OP(insn->code) == BPF_MOD &&
1909 dst_reg != BPF_REG_3)
1910 /* mov dst_reg, rdx */
1911 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3);
1912 else if (BPF_OP(insn->code) == BPF_DIV &&
1913 dst_reg != BPF_REG_0)
1914 /* mov dst_reg, rax */
1915 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0);
1916
1917 if (dst_reg != BPF_REG_3)
1918 EMIT1(0x5A); /* pop rdx */
1919 if (dst_reg != BPF_REG_0)
1920 EMIT1(0x58); /* pop rax */
1921 break;
1922 }
1923
1924 case BPF_ALU | BPF_MUL | BPF_K:
1925 case BPF_ALU64 | BPF_MUL | BPF_K:
1926 maybe_emit_mod(&prog, dst_reg, dst_reg,
1927 BPF_CLASS(insn->code) == BPF_ALU64);
1928
1929 if (is_imm8(imm32))
1930 /* imul dst_reg, dst_reg, imm8 */
1931 EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg),
1932 imm32);
1933 else
1934 /* imul dst_reg, dst_reg, imm32 */
1935 EMIT2_off32(0x69,
1936 add_2reg(0xC0, dst_reg, dst_reg),
1937 imm32);
1938 break;
1939
1940 case BPF_ALU | BPF_MUL | BPF_X:
1941 case BPF_ALU64 | BPF_MUL | BPF_X:
1942 maybe_emit_mod(&prog, src_reg, dst_reg,
1943 BPF_CLASS(insn->code) == BPF_ALU64);
1944
1945 /* imul dst_reg, src_reg */
1946 EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg));
1947 break;
1948
1949 /* Shifts */
1950 case BPF_ALU | BPF_LSH | BPF_K:
1951 case BPF_ALU | BPF_RSH | BPF_K:
1952 case BPF_ALU | BPF_ARSH | BPF_K:
1953 case BPF_ALU64 | BPF_LSH | BPF_K:
1954 case BPF_ALU64 | BPF_RSH | BPF_K:
1955 case BPF_ALU64 | BPF_ARSH | BPF_K:
1956 maybe_emit_1mod(&prog, dst_reg,
1957 BPF_CLASS(insn->code) == BPF_ALU64);
1958
1959 b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1960 if (imm32 == 1)
1961 EMIT2(0xD1, add_1reg(b3, dst_reg));
1962 else
1963 EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
1964 break;
1965
1966 case BPF_ALU | BPF_LSH | BPF_X:
1967 case BPF_ALU | BPF_RSH | BPF_X:
1968 case BPF_ALU | BPF_ARSH | BPF_X:
1969 case BPF_ALU64 | BPF_LSH | BPF_X:
1970 case BPF_ALU64 | BPF_RSH | BPF_X:
1971 case BPF_ALU64 | BPF_ARSH | BPF_X:
1972 /* BMI2 shifts aren't better when shift count is already in rcx */
1973 if (boot_cpu_has(X86_FEATURE_BMI2) && src_reg != BPF_REG_4) {
1974 /* shrx/sarx/shlx dst_reg, dst_reg, src_reg */
1975 bool w = (BPF_CLASS(insn->code) == BPF_ALU64);
1976 u8 op;
1977
1978 switch (BPF_OP(insn->code)) {
1979 case BPF_LSH:
1980 op = 1; /* prefix 0x66 */
1981 break;
1982 case BPF_RSH:
1983 op = 3; /* prefix 0xf2 */
1984 break;
1985 case BPF_ARSH:
1986 op = 2; /* prefix 0xf3 */
1987 break;
1988 }
1989
1990 emit_shiftx(&prog, dst_reg, src_reg, w, op);
1991
1992 break;
1993 }
1994
1995 if (src_reg != BPF_REG_4) { /* common case */
1996 /* Check for bad case when dst_reg == rcx */
1997 if (dst_reg == BPF_REG_4) {
1998 /* mov r11, dst_reg */
1999 EMIT_mov(AUX_REG, dst_reg);
2000 dst_reg = AUX_REG;
2001 } else {
2002 EMIT1(0x51); /* push rcx */
2003 }
2004 /* mov rcx, src_reg */
2005 EMIT_mov(BPF_REG_4, src_reg);
2006 }
2007
2008 /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
2009 maybe_emit_1mod(&prog, dst_reg,
2010 BPF_CLASS(insn->code) == BPF_ALU64);
2011
2012 b3 = simple_alu_opcodes[BPF_OP(insn->code)];
2013 EMIT2(0xD3, add_1reg(b3, dst_reg));
2014
2015 if (src_reg != BPF_REG_4) {
2016 if (insn->dst_reg == BPF_REG_4)
2017 /* mov dst_reg, r11 */
2018 EMIT_mov(insn->dst_reg, AUX_REG);
2019 else
2020 EMIT1(0x59); /* pop rcx */
2021 }
2022
2023 break;
2024
2025 case BPF_ALU | BPF_END | BPF_FROM_BE:
2026 case BPF_ALU64 | BPF_END | BPF_FROM_LE:
2027 switch (imm32) {
2028 case 16:
2029 /* Emit 'ror %ax, 8' to swap lower 2 bytes */
2030 EMIT1(0x66);
2031 if (is_ereg(dst_reg))
2032 EMIT1(0x41);
2033 EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
2034
2035 /* Emit 'movzwl eax, ax' */
2036 if (is_ereg(dst_reg))
2037 EMIT3(0x45, 0x0F, 0xB7);
2038 else
2039 EMIT2(0x0F, 0xB7);
2040 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
2041 break;
2042 case 32:
2043 /* Emit 'bswap eax' to swap lower 4 bytes */
2044 if (is_ereg(dst_reg))
2045 EMIT2(0x41, 0x0F);
2046 else
2047 EMIT1(0x0F);
2048 EMIT1(add_1reg(0xC8, dst_reg));
2049 break;
2050 case 64:
2051 /* Emit 'bswap rax' to swap 8 bytes */
2052 EMIT3(add_1mod(0x48, dst_reg), 0x0F,
2053 add_1reg(0xC8, dst_reg));
2054 break;
2055 }
2056 break;
2057
2058 case BPF_ALU | BPF_END | BPF_FROM_LE:
2059 switch (imm32) {
2060 case 16:
2061 /*
2062 * Emit 'movzwl eax, ax' to zero extend 16-bit
2063 * into 64 bit
2064 */
2065 if (is_ereg(dst_reg))
2066 EMIT3(0x45, 0x0F, 0xB7);
2067 else
2068 EMIT2(0x0F, 0xB7);
2069 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
2070 break;
2071 case 32:
2072 /* Emit 'mov eax, eax' to clear upper 32-bits */
2073 if (is_ereg(dst_reg))
2074 EMIT1(0x45);
2075 EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
2076 break;
2077 case 64:
2078 /* nop */
2079 break;
2080 }
2081 break;
2082
2083 /* speculation barrier */
2084 case BPF_ST | BPF_NOSPEC:
2085 EMIT_LFENCE();
2086 break;
2087
2088 /* ST: *(u8*)(dst_reg + off) = imm */
2089 case BPF_ST | BPF_MEM | BPF_B:
2090 if (is_ereg(dst_reg))
2091 EMIT2(0x41, 0xC6);
2092 else
2093 EMIT1(0xC6);
2094 goto st;
2095 case BPF_ST | BPF_MEM | BPF_H:
2096 if (is_ereg(dst_reg))
2097 EMIT3(0x66, 0x41, 0xC7);
2098 else
2099 EMIT2(0x66, 0xC7);
2100 goto st;
2101 case BPF_ST | BPF_MEM | BPF_W:
2102 if (is_ereg(dst_reg))
2103 EMIT2(0x41, 0xC7);
2104 else
2105 EMIT1(0xC7);
2106 goto st;
2107 case BPF_ST | BPF_MEM | BPF_DW:
2108 EMIT2(add_1mod(0x48, dst_reg), 0xC7);
2109
2110 st: if (is_imm8(insn->off))
2111 EMIT2(add_1reg(0x40, dst_reg), insn->off);
2112 else
2113 EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
2114
2115 EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
2116 break;
2117
2118 /* STX: *(u8*)(dst_reg + off) = src_reg */
2119 case BPF_STX | BPF_MEM | BPF_B:
2120 case BPF_STX | BPF_MEM | BPF_H:
2121 case BPF_STX | BPF_MEM | BPF_W:
2122 case BPF_STX | BPF_MEM | BPF_DW:
2123 emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
2124 break;
2125
2126 case BPF_ST | BPF_PROBE_MEM32 | BPF_B:
2127 case BPF_ST | BPF_PROBE_MEM32 | BPF_H:
2128 case BPF_ST | BPF_PROBE_MEM32 | BPF_W:
2129 case BPF_ST | BPF_PROBE_MEM32 | BPF_DW:
2130 start_of_ldx = prog;
2131 emit_st_r12(&prog, BPF_SIZE(insn->code), dst_reg, insn->off, insn->imm);
2132 goto populate_extable;
2133
2134 /* LDX: dst_reg = *(u8*)(src_reg + r12 + off) */
2135 case BPF_LDX | BPF_PROBE_MEM32 | BPF_B:
2136 case BPF_LDX | BPF_PROBE_MEM32 | BPF_H:
2137 case BPF_LDX | BPF_PROBE_MEM32 | BPF_W:
2138 case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW:
2139 case BPF_LDX | BPF_PROBE_MEM32SX | BPF_B:
2140 case BPF_LDX | BPF_PROBE_MEM32SX | BPF_H:
2141 case BPF_LDX | BPF_PROBE_MEM32SX | BPF_W:
2142 case BPF_STX | BPF_PROBE_MEM32 | BPF_B:
2143 case BPF_STX | BPF_PROBE_MEM32 | BPF_H:
2144 case BPF_STX | BPF_PROBE_MEM32 | BPF_W:
2145 case BPF_STX | BPF_PROBE_MEM32 | BPF_DW:
2146 start_of_ldx = prog;
2147 if (BPF_CLASS(insn->code) == BPF_LDX) {
2148 if (BPF_MODE(insn->code) == BPF_PROBE_MEM32SX)
2149 emit_ldsx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
2150 else
2151 emit_ldx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
2152 } else {
2153 emit_stx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
2154 }
2155 populate_extable:
2156 {
2157 struct exception_table_entry *ex;
2158 u8 *_insn = image + proglen + (start_of_ldx - temp);
2159 u32 arena_reg, fixup_reg;
2160 s64 delta;
2161
2162 if (!bpf_prog->aux->extable)
2163 break;
2164
2165 if (excnt >= bpf_prog->aux->num_exentries) {
2166 pr_err("mem32 extable bug\n");
2167 return -EFAULT;
2168 }
2169 ex = &bpf_prog->aux->extable[excnt++];
2170
2171 delta = _insn - (u8 *)&ex->insn;
2172 /* switch ex to rw buffer for writes */
2173 ex = (void *)rw_image + ((void *)ex - (void *)image);
2174
2175 ex->insn = delta;
2176
2177 ex->data = EX_TYPE_BPF;
2178
2179 /*
2180 * src_reg/dst_reg holds the address in the arena region with upper
2181 * 32-bits being zero because of a preceding addr_space_cast(r<n>,
2182 * 0x0, 0x1) instruction. This address is adjusted with the addition
2183 * of arena_vm_start (see the implementation of BPF_PROBE_MEM32 and
2184 * BPF_PROBE_ATOMIC) before being used for the memory access. Pass
2185 * the reg holding the unmodified 32-bit address to
2186 * ex_handler_bpf().
2187 */
2188 if (BPF_CLASS(insn->code) == BPF_LDX) {
2189 arena_reg = reg2pt_regs[src_reg];
2190 fixup_reg = reg2pt_regs[dst_reg];
2191 } else {
2192 arena_reg = reg2pt_regs[dst_reg];
2193 fixup_reg = DONT_CLEAR;
2194 }
2195
2196 ex->fixup = FIELD_PREP(FIXUP_INSN_LEN_MASK, prog - start_of_ldx) |
2197 FIELD_PREP(FIXUP_ARENA_REG_MASK, arena_reg) |
2198 FIELD_PREP(FIXUP_REG_MASK, fixup_reg);
2199 ex->fixup |= FIXUP_ARENA_ACCESS;
2200
2201 ex->data |= FIELD_PREP(DATA_ARENA_OFFSET_MASK, insn->off);
2202 }
2203 break;
2204
2205 /* LDX: dst_reg = *(u8*)(src_reg + off) */
2206 case BPF_LDX | BPF_MEM | BPF_B:
2207 case BPF_LDX | BPF_PROBE_MEM | BPF_B:
2208 case BPF_LDX | BPF_MEM | BPF_H:
2209 case BPF_LDX | BPF_PROBE_MEM | BPF_H:
2210 case BPF_LDX | BPF_MEM | BPF_W:
2211 case BPF_LDX | BPF_PROBE_MEM | BPF_W:
2212 case BPF_LDX | BPF_MEM | BPF_DW:
2213 case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
2214 /* LDXS: dst_reg = *(s8*)(src_reg + off) */
2215 case BPF_LDX | BPF_MEMSX | BPF_B:
2216 case BPF_LDX | BPF_MEMSX | BPF_H:
2217 case BPF_LDX | BPF_MEMSX | BPF_W:
2218 case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
2219 case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
2220 case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
2221 insn_off = insn->off;
2222
2223 if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
2224 BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
2225 /* Conservatively check that src_reg + insn->off is a kernel address:
2226 * src_reg + insn->off > TASK_SIZE_MAX + PAGE_SIZE
2227 * and
2228 * src_reg + insn->off < VSYSCALL_ADDR
2229 */
2230
2231 u64 limit = TASK_SIZE_MAX + PAGE_SIZE - VSYSCALL_ADDR;
2232 u8 *end_of_jmp;
2233
2234 /* movabsq r10, VSYSCALL_ADDR */
2235 emit_mov_imm64(&prog, BPF_REG_AX, (long)VSYSCALL_ADDR >> 32,
2236 (u32)(long)VSYSCALL_ADDR);
2237
2238 /* mov src_reg, r11 */
2239 EMIT_mov(AUX_REG, src_reg);
2240
2241 if (insn->off) {
2242 /* add r11, insn->off */
2243 maybe_emit_1mod(&prog, AUX_REG, true);
2244 EMIT2_off32(0x81, add_1reg(0xC0, AUX_REG), insn->off);
2245 }
2246
2247 /* sub r11, r10 */
2248 maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true);
2249 EMIT2(0x29, add_2reg(0xC0, AUX_REG, BPF_REG_AX));
2250
2251 /* movabsq r10, limit */
2252 emit_mov_imm64(&prog, BPF_REG_AX, (long)limit >> 32,
2253 (u32)(long)limit);
2254
2255 /* cmp r10, r11 */
2256 maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true);
2257 EMIT2(0x39, add_2reg(0xC0, AUX_REG, BPF_REG_AX));
2258
2259 /* if unsigned '>', goto load */
2260 EMIT2(X86_JA, 0);
2261 end_of_jmp = prog;
2262
2263 /* xor dst_reg, dst_reg */
2264 emit_mov_imm32(&prog, false, dst_reg, 0);
2265 /* jmp byte_after_ldx */
2266 EMIT2(0xEB, 0);
2267
2268 /* populate jmp_offset for JAE above to jump to start_of_ldx */
2269 start_of_ldx = prog;
2270 end_of_jmp[-1] = start_of_ldx - end_of_jmp;
2271 }
2272 if (BPF_MODE(insn->code) == BPF_PROBE_MEMSX ||
2273 BPF_MODE(insn->code) == BPF_MEMSX)
2274 emit_ldsx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
2275 else
2276 emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
2277 if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
2278 BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
2279 struct exception_table_entry *ex;
2280 u8 *_insn = image + proglen + (start_of_ldx - temp);
2281 s64 delta;
2282
2283 /* populate jmp_offset for JMP above */
2284 start_of_ldx[-1] = prog - start_of_ldx;
2285
2286 if (!bpf_prog->aux->extable)
2287 break;
2288
2289 if (excnt >= bpf_prog->aux->num_exentries) {
2290 pr_err("ex gen bug\n");
2291 return -EFAULT;
2292 }
2293 ex = &bpf_prog->aux->extable[excnt++];
2294
2295 delta = _insn - (u8 *)&ex->insn;
2296 if (!is_simm32(delta)) {
2297 pr_err("extable->insn doesn't fit into 32-bit\n");
2298 return -EFAULT;
2299 }
2300 /* switch ex to rw buffer for writes */
2301 ex = (void *)rw_image + ((void *)ex - (void *)image);
2302
2303 ex->insn = delta;
2304
2305 ex->data = EX_TYPE_BPF;
2306
2307 if (dst_reg > BPF_REG_9) {
2308 pr_err("verifier error\n");
2309 return -EFAULT;
2310 }
2311 /*
2312 * Compute size of x86 insn and its target dest x86 register.
2313 * ex_handler_bpf() will use lower 8 bits to adjust
2314 * pt_regs->ip to jump over this x86 instruction
2315 * and upper bits to figure out which pt_regs to zero out.
2316 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
2317 * of 4 bytes will be ignored and rbx will be zero inited.
2318 */
2319 ex->fixup = FIELD_PREP(FIXUP_INSN_LEN_MASK, prog - start_of_ldx) |
2320 FIELD_PREP(FIXUP_REG_MASK, reg2pt_regs[dst_reg]);
2321 }
2322 break;
2323
2324 case BPF_STX | BPF_ATOMIC | BPF_B:
2325 case BPF_STX | BPF_ATOMIC | BPF_H:
2326 if (!bpf_atomic_is_load_store(insn)) {
2327 pr_err("bpf_jit: 1- and 2-byte RMW atomics are not supported\n");
2328 return -EFAULT;
2329 }
2330 fallthrough;
2331 case BPF_STX | BPF_ATOMIC | BPF_W:
2332 case BPF_STX | BPF_ATOMIC | BPF_DW:
2333 if (insn->imm == (BPF_AND | BPF_FETCH) ||
2334 insn->imm == (BPF_OR | BPF_FETCH) ||
2335 insn->imm == (BPF_XOR | BPF_FETCH)) {
2336 bool is64 = BPF_SIZE(insn->code) == BPF_DW;
2337 u32 real_src_reg = src_reg;
2338 u32 real_dst_reg = dst_reg;
2339 u8 *branch_target;
2340
2341 /*
2342 * Can't be implemented with a single x86 insn.
2343 * Need to do a CMPXCHG loop.
2344 */
2345
2346 /* Will need RAX as a CMPXCHG operand so save R0 */
2347 emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0);
2348 if (src_reg == BPF_REG_0)
2349 real_src_reg = BPF_REG_AX;
2350 if (dst_reg == BPF_REG_0)
2351 real_dst_reg = BPF_REG_AX;
2352
2353 branch_target = prog;
2354 /* Load old value */
2355 emit_ldx(&prog, BPF_SIZE(insn->code),
2356 BPF_REG_0, real_dst_reg, insn->off);
2357 /*
2358 * Perform the (commutative) operation locally,
2359 * put the result in the AUX_REG.
2360 */
2361 emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0);
2362 maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64);
2363 EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)],
2364 add_2reg(0xC0, AUX_REG, real_src_reg));
2365 /* Attempt to swap in new value */
2366 err = emit_atomic_rmw(&prog, BPF_CMPXCHG,
2367 real_dst_reg, AUX_REG,
2368 insn->off,
2369 BPF_SIZE(insn->code));
2370 if (WARN_ON(err))
2371 return err;
2372 /*
2373 * ZF tells us whether we won the race. If it's
2374 * cleared we need to try again.
2375 */
2376 EMIT2(X86_JNE, -(prog - branch_target) - 2);
2377 /* Return the pre-modification value */
2378 emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0);
2379 /* Restore R0 after clobbering RAX */
2380 emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX);
2381 break;
2382 }
2383
2384 if (bpf_atomic_is_load_store(insn))
2385 err = emit_atomic_ld_st(&prog, insn->imm, dst_reg, src_reg,
2386 insn->off, BPF_SIZE(insn->code));
2387 else
2388 err = emit_atomic_rmw(&prog, insn->imm, dst_reg, src_reg,
2389 insn->off, BPF_SIZE(insn->code));
2390 if (err)
2391 return err;
2392 break;
2393
2394 case BPF_STX | BPF_PROBE_ATOMIC | BPF_B:
2395 case BPF_STX | BPF_PROBE_ATOMIC | BPF_H:
2396 if (!bpf_atomic_is_load_store(insn)) {
2397 pr_err("bpf_jit: 1- and 2-byte RMW atomics are not supported\n");
2398 return -EFAULT;
2399 }
2400 fallthrough;
2401 case BPF_STX | BPF_PROBE_ATOMIC | BPF_W:
2402 case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW:
2403 start_of_ldx = prog;
2404
2405 if (bpf_atomic_is_load_store(insn))
2406 err = emit_atomic_ld_st_index(&prog, insn->imm,
2407 BPF_SIZE(insn->code), dst_reg,
2408 src_reg, X86_REG_R12, insn->off);
2409 else
2410 err = emit_atomic_rmw_index(&prog, insn->imm, BPF_SIZE(insn->code),
2411 dst_reg, src_reg, X86_REG_R12,
2412 insn->off);
2413 if (err)
2414 return err;
2415 goto populate_extable;
2416
2417 /* call */
2418 case BPF_JMP | BPF_CALL: {
2419 u8 *ip = image + addrs[i - 1];
2420
2421 func = (u8 *) __bpf_call_base + imm32;
2422 if (src_reg == BPF_PSEUDO_CALL && tail_call_reachable) {
2423 LOAD_TAIL_CALL_CNT_PTR(stack_depth);
2424 ip += 7;
2425 }
2426 if (!imm32)
2427 return -EINVAL;
2428 if (priv_frame_ptr) {
2429 push_r9(&prog);
2430 ip += 2;
2431 }
2432 ip += x86_call_depth_emit_accounting(&prog, func, ip);
2433 if (emit_call(&prog, func, ip))
2434 return -EINVAL;
2435 if (priv_frame_ptr)
2436 pop_r9(&prog);
2437 break;
2438 }
2439
2440 case BPF_JMP | BPF_TAIL_CALL:
2441 if (imm32)
2442 emit_bpf_tail_call_direct(bpf_prog,
2443 &bpf_prog->aux->poke_tab[imm32 - 1],
2444 &prog, image + addrs[i - 1],
2445 callee_regs_used,
2446 stack_depth,
2447 ctx);
2448 else
2449 emit_bpf_tail_call_indirect(bpf_prog,
2450 &prog,
2451 callee_regs_used,
2452 stack_depth,
2453 image + addrs[i - 1],
2454 ctx);
2455 break;
2456
2457 /* cond jump */
2458 case BPF_JMP | BPF_JEQ | BPF_X:
2459 case BPF_JMP | BPF_JNE | BPF_X:
2460 case BPF_JMP | BPF_JGT | BPF_X:
2461 case BPF_JMP | BPF_JLT | BPF_X:
2462 case BPF_JMP | BPF_JGE | BPF_X:
2463 case BPF_JMP | BPF_JLE | BPF_X:
2464 case BPF_JMP | BPF_JSGT | BPF_X:
2465 case BPF_JMP | BPF_JSLT | BPF_X:
2466 case BPF_JMP | BPF_JSGE | BPF_X:
2467 case BPF_JMP | BPF_JSLE | BPF_X:
2468 case BPF_JMP32 | BPF_JEQ | BPF_X:
2469 case BPF_JMP32 | BPF_JNE | BPF_X:
2470 case BPF_JMP32 | BPF_JGT | BPF_X:
2471 case BPF_JMP32 | BPF_JLT | BPF_X:
2472 case BPF_JMP32 | BPF_JGE | BPF_X:
2473 case BPF_JMP32 | BPF_JLE | BPF_X:
2474 case BPF_JMP32 | BPF_JSGT | BPF_X:
2475 case BPF_JMP32 | BPF_JSLT | BPF_X:
2476 case BPF_JMP32 | BPF_JSGE | BPF_X:
2477 case BPF_JMP32 | BPF_JSLE | BPF_X:
2478 /* cmp dst_reg, src_reg */
2479 maybe_emit_mod(&prog, dst_reg, src_reg,
2480 BPF_CLASS(insn->code) == BPF_JMP);
2481 EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
2482 goto emit_cond_jmp;
2483
2484 case BPF_JMP | BPF_JSET | BPF_X:
2485 case BPF_JMP32 | BPF_JSET | BPF_X:
2486 /* test dst_reg, src_reg */
2487 maybe_emit_mod(&prog, dst_reg, src_reg,
2488 BPF_CLASS(insn->code) == BPF_JMP);
2489 EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
2490 goto emit_cond_jmp;
2491
2492 case BPF_JMP | BPF_JSET | BPF_K:
2493 case BPF_JMP32 | BPF_JSET | BPF_K:
2494 /* test dst_reg, imm32 */
2495 maybe_emit_1mod(&prog, dst_reg,
2496 BPF_CLASS(insn->code) == BPF_JMP);
2497 EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
2498 goto emit_cond_jmp;
2499
2500 case BPF_JMP | BPF_JEQ | BPF_K:
2501 case BPF_JMP | BPF_JNE | BPF_K:
2502 case BPF_JMP | BPF_JGT | BPF_K:
2503 case BPF_JMP | BPF_JLT | BPF_K:
2504 case BPF_JMP | BPF_JGE | BPF_K:
2505 case BPF_JMP | BPF_JLE | BPF_K:
2506 case BPF_JMP | BPF_JSGT | BPF_K:
2507 case BPF_JMP | BPF_JSLT | BPF_K:
2508 case BPF_JMP | BPF_JSGE | BPF_K:
2509 case BPF_JMP | BPF_JSLE | BPF_K:
2510 case BPF_JMP32 | BPF_JEQ | BPF_K:
2511 case BPF_JMP32 | BPF_JNE | BPF_K:
2512 case BPF_JMP32 | BPF_JGT | BPF_K:
2513 case BPF_JMP32 | BPF_JLT | BPF_K:
2514 case BPF_JMP32 | BPF_JGE | BPF_K:
2515 case BPF_JMP32 | BPF_JLE | BPF_K:
2516 case BPF_JMP32 | BPF_JSGT | BPF_K:
2517 case BPF_JMP32 | BPF_JSLT | BPF_K:
2518 case BPF_JMP32 | BPF_JSGE | BPF_K:
2519 case BPF_JMP32 | BPF_JSLE | BPF_K:
2520 /* test dst_reg, dst_reg to save one extra byte */
2521 if (imm32 == 0) {
2522 maybe_emit_mod(&prog, dst_reg, dst_reg,
2523 BPF_CLASS(insn->code) == BPF_JMP);
2524 EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
2525 goto emit_cond_jmp;
2526 }
2527
2528 /* cmp dst_reg, imm8/32 */
2529 maybe_emit_1mod(&prog, dst_reg,
2530 BPF_CLASS(insn->code) == BPF_JMP);
2531
2532 if (is_imm8(imm32))
2533 EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
2534 else
2535 EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
2536
2537 emit_cond_jmp: /* Convert BPF opcode to x86 */
2538 switch (BPF_OP(insn->code)) {
2539 case BPF_JEQ:
2540 jmp_cond = X86_JE;
2541 break;
2542 case BPF_JSET:
2543 case BPF_JNE:
2544 jmp_cond = X86_JNE;
2545 break;
2546 case BPF_JGT:
2547 /* GT is unsigned '>', JA in x86 */
2548 jmp_cond = X86_JA;
2549 break;
2550 case BPF_JLT:
2551 /* LT is unsigned '<', JB in x86 */
2552 jmp_cond = X86_JB;
2553 break;
2554 case BPF_JGE:
2555 /* GE is unsigned '>=', JAE in x86 */
2556 jmp_cond = X86_JAE;
2557 break;
2558 case BPF_JLE:
2559 /* LE is unsigned '<=', JBE in x86 */
2560 jmp_cond = X86_JBE;
2561 break;
2562 case BPF_JSGT:
2563 /* Signed '>', GT in x86 */
2564 jmp_cond = X86_JG;
2565 break;
2566 case BPF_JSLT:
2567 /* Signed '<', LT in x86 */
2568 jmp_cond = X86_JL;
2569 break;
2570 case BPF_JSGE:
2571 /* Signed '>=', GE in x86 */
2572 jmp_cond = X86_JGE;
2573 break;
2574 case BPF_JSLE:
2575 /* Signed '<=', LE in x86 */
2576 jmp_cond = X86_JLE;
2577 break;
2578 default: /* to silence GCC warning */
2579 return -EFAULT;
2580 }
2581 jmp_offset = addrs[i + insn->off] - addrs[i];
2582 if (is_imm8_jmp_offset(jmp_offset)) {
2583 if (jmp_padding) {
2584 /* To keep the jmp_offset valid, the extra bytes are
2585 * padded before the jump insn, so we subtract the
2586 * 2 bytes of jmp_cond insn from INSN_SZ_DIFF.
2587 *
2588 * If the previous pass already emits an imm8
2589 * jmp_cond, then this BPF insn won't shrink, so
2590 * "nops" is 0.
2591 *
2592 * On the other hand, if the previous pass emits an
2593 * imm32 jmp_cond, the extra 4 bytes(*) is padded to
2594 * keep the image from shrinking further.
2595 *
2596 * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond
2597 * is 2 bytes, so the size difference is 4 bytes.
2598 */
2599 nops = INSN_SZ_DIFF - 2;
2600 if (nops != 0 && nops != 4) {
2601 pr_err("unexpected jmp_cond padding: %d bytes\n",
2602 nops);
2603 return -EFAULT;
2604 }
2605 emit_nops(&prog, nops);
2606 }
2607 EMIT2(jmp_cond, jmp_offset);
2608 } else if (is_simm32(jmp_offset)) {
2609 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
2610 } else {
2611 pr_err("cond_jmp gen bug %llx\n", jmp_offset);
2612 return -EFAULT;
2613 }
2614
2615 break;
2616
2617 case BPF_JMP | BPF_JA:
2618 case BPF_JMP32 | BPF_JA:
2619 if (BPF_CLASS(insn->code) == BPF_JMP) {
2620 if (insn->off == -1)
2621 /* -1 jmp instructions will always jump
2622 * backwards two bytes. Explicitly handling
2623 * this case avoids wasting too many passes
2624 * when there are long sequences of replaced
2625 * dead code.
2626 */
2627 jmp_offset = -2;
2628 else
2629 jmp_offset = addrs[i + insn->off] - addrs[i];
2630 } else {
2631 if (insn->imm == -1)
2632 jmp_offset = -2;
2633 else
2634 jmp_offset = addrs[i + insn->imm] - addrs[i];
2635 }
2636
2637 if (!jmp_offset) {
2638 /*
2639 * If jmp_padding is enabled, the extra nops will
2640 * be inserted. Otherwise, optimize out nop jumps.
2641 */
2642 if (jmp_padding) {
2643 /* There are 3 possible conditions.
2644 * (1) This BPF_JA is already optimized out in
2645 * the previous run, so there is no need
2646 * to pad any extra byte (0 byte).
2647 * (2) The previous pass emits an imm8 jmp,
2648 * so we pad 2 bytes to match the previous
2649 * insn size.
2650 * (3) Similarly, the previous pass emits an
2651 * imm32 jmp, and 5 bytes is padded.
2652 */
2653 nops = INSN_SZ_DIFF;
2654 if (nops != 0 && nops != 2 && nops != 5) {
2655 pr_err("unexpected nop jump padding: %d bytes\n",
2656 nops);
2657 return -EFAULT;
2658 }
2659 emit_nops(&prog, nops);
2660 }
2661 break;
2662 }
2663 emit_jmp:
2664 if (is_imm8_jmp_offset(jmp_offset)) {
2665 if (jmp_padding) {
2666 /* To avoid breaking jmp_offset, the extra bytes
2667 * are padded before the actual jmp insn, so
2668 * 2 bytes is subtracted from INSN_SZ_DIFF.
2669 *
2670 * If the previous pass already emits an imm8
2671 * jmp, there is nothing to pad (0 byte).
2672 *
2673 * If it emits an imm32 jmp (5 bytes) previously
2674 * and now an imm8 jmp (2 bytes), then we pad
2675 * (5 - 2 = 3) bytes to stop the image from
2676 * shrinking further.
2677 */
2678 nops = INSN_SZ_DIFF - 2;
2679 if (nops != 0 && nops != 3) {
2680 pr_err("unexpected jump padding: %d bytes\n",
2681 nops);
2682 return -EFAULT;
2683 }
2684 emit_nops(&prog, INSN_SZ_DIFF - 2);
2685 }
2686 EMIT2(0xEB, jmp_offset);
2687 } else if (is_simm32(jmp_offset)) {
2688 EMIT1_off32(0xE9, jmp_offset);
2689 } else {
2690 pr_err("jmp gen bug %llx\n", jmp_offset);
2691 return -EFAULT;
2692 }
2693 break;
2694
2695 case BPF_JMP | BPF_EXIT:
2696 if (seen_exit) {
2697 jmp_offset = ctx->cleanup_addr - addrs[i];
2698 goto emit_jmp;
2699 }
2700 seen_exit = true;
2701 /* Update cleanup_addr */
2702 ctx->cleanup_addr = proglen;
2703 if (bpf_prog_was_classic(bpf_prog) &&
2704 !capable(CAP_SYS_ADMIN)) {
2705 u8 *ip = image + addrs[i - 1];
2706
2707 if (emit_spectre_bhb_barrier(&prog, ip, bpf_prog))
2708 return -EINVAL;
2709 }
2710 if (bpf_prog->aux->exception_boundary) {
2711 pop_callee_regs(&prog, all_callee_regs_used);
2712 pop_r12(&prog);
2713 } else {
2714 pop_callee_regs(&prog, callee_regs_used);
2715 if (arena_vm_start)
2716 pop_r12(&prog);
2717 }
2718 EMIT1(0xC9); /* leave */
2719 emit_return(&prog, image + addrs[i - 1] + (prog - temp));
2720 break;
2721
2722 default:
2723 /*
2724 * By design x86-64 JIT should support all BPF instructions.
2725 * This error will be seen if new instruction was added
2726 * to the interpreter, but not to the JIT, or if there is
2727 * junk in bpf_prog.
2728 */
2729 pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
2730 return -EINVAL;
2731 }
2732
2733 ilen = prog - temp;
2734 if (ilen > BPF_MAX_INSN_SIZE) {
2735 pr_err("bpf_jit: fatal insn size error\n");
2736 return -EFAULT;
2737 }
2738
2739 if (image) {
2740 /*
2741 * When populating the image, assert that:
2742 *
2743 * i) We do not write beyond the allocated space, and
2744 * ii) addrs[i] did not change from the prior run, in order
2745 * to validate assumptions made for computing branch
2746 * displacements.
2747 */
2748 if (unlikely(proglen + ilen > oldproglen ||
2749 proglen + ilen != addrs[i])) {
2750 pr_err("bpf_jit: fatal error\n");
2751 return -EFAULT;
2752 }
2753 memcpy(rw_image + proglen, temp, ilen);
2754 }
2755 proglen += ilen;
2756 addrs[i] = proglen;
2757 prog = temp;
2758 }
2759
2760 if (image && excnt != bpf_prog->aux->num_exentries) {
2761 pr_err("extable is not populated\n");
2762 return -EFAULT;
2763 }
2764 return proglen;
2765 }
2766
clean_stack_garbage(const struct btf_func_model * m,u8 ** pprog,int nr_stack_slots,int stack_size)2767 static void clean_stack_garbage(const struct btf_func_model *m,
2768 u8 **pprog, int nr_stack_slots,
2769 int stack_size)
2770 {
2771 int arg_size, off;
2772 u8 *prog;
2773
2774 /* Generally speaking, the compiler will pass the arguments
2775 * on-stack with "push" instruction, which will take 8-byte
2776 * on the stack. In this case, there won't be garbage values
2777 * while we copy the arguments from origin stack frame to current
2778 * in BPF_DW.
2779 *
2780 * However, sometimes the compiler will only allocate 4-byte on
2781 * the stack for the arguments. For now, this case will only
2782 * happen if there is only one argument on-stack and its size
2783 * not more than 4 byte. In this case, there will be garbage
2784 * values on the upper 4-byte where we store the argument on
2785 * current stack frame.
2786 *
2787 * arguments on origin stack:
2788 *
2789 * stack_arg_1(4-byte) xxx(4-byte)
2790 *
2791 * what we copy:
2792 *
2793 * stack_arg_1(8-byte): stack_arg_1(origin) xxx
2794 *
2795 * and the xxx is the garbage values which we should clean here.
2796 */
2797 if (nr_stack_slots != 1)
2798 return;
2799
2800 /* the size of the last argument */
2801 arg_size = m->arg_size[m->nr_args - 1];
2802 if (arg_size <= 4) {
2803 off = -(stack_size - 4);
2804 prog = *pprog;
2805 /* mov DWORD PTR [rbp + off], 0 */
2806 if (!is_imm8(off))
2807 EMIT2_off32(0xC7, 0x85, off);
2808 else
2809 EMIT3(0xC7, 0x45, off);
2810 EMIT(0, 4);
2811 *pprog = prog;
2812 }
2813 }
2814
2815 /* get the count of the regs that are used to pass arguments */
get_nr_used_regs(const struct btf_func_model * m)2816 static int get_nr_used_regs(const struct btf_func_model *m)
2817 {
2818 int i, arg_regs, nr_used_regs = 0;
2819
2820 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2821 arg_regs = (m->arg_size[i] + 7) / 8;
2822 if (nr_used_regs + arg_regs <= 6)
2823 nr_used_regs += arg_regs;
2824
2825 if (nr_used_regs >= 6)
2826 break;
2827 }
2828
2829 return nr_used_regs;
2830 }
2831
save_args(const struct btf_func_model * m,u8 ** prog,int stack_size,bool for_call_origin)2832 static void save_args(const struct btf_func_model *m, u8 **prog,
2833 int stack_size, bool for_call_origin)
2834 {
2835 int arg_regs, first_off = 0, nr_regs = 0, nr_stack_slots = 0;
2836 int i, j;
2837
2838 /* Store function arguments to stack.
2839 * For a function that accepts two pointers the sequence will be:
2840 * mov QWORD PTR [rbp-0x10],rdi
2841 * mov QWORD PTR [rbp-0x8],rsi
2842 */
2843 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2844 arg_regs = (m->arg_size[i] + 7) / 8;
2845
2846 /* According to the research of Yonghong, struct members
2847 * should be all in register or all on the stack.
2848 * Meanwhile, the compiler will pass the argument on regs
2849 * if the remaining regs can hold the argument.
2850 *
2851 * Disorder of the args can happen. For example:
2852 *
2853 * struct foo_struct {
2854 * long a;
2855 * int b;
2856 * };
2857 * int foo(char, char, char, char, char, struct foo_struct,
2858 * char);
2859 *
2860 * the arg1-5,arg7 will be passed by regs, and arg6 will
2861 * by stack.
2862 */
2863 if (nr_regs + arg_regs > 6) {
2864 /* copy function arguments from origin stack frame
2865 * into current stack frame.
2866 *
2867 * The starting address of the arguments on-stack
2868 * is:
2869 * rbp + 8(push rbp) +
2870 * 8(return addr of origin call) +
2871 * 8(return addr of the caller)
2872 * which means: rbp + 24
2873 */
2874 for (j = 0; j < arg_regs; j++) {
2875 emit_ldx(prog, BPF_DW, BPF_REG_0, BPF_REG_FP,
2876 nr_stack_slots * 8 + 0x18);
2877 emit_stx(prog, BPF_DW, BPF_REG_FP, BPF_REG_0,
2878 -stack_size);
2879
2880 if (!nr_stack_slots)
2881 first_off = stack_size;
2882 stack_size -= 8;
2883 nr_stack_slots++;
2884 }
2885 } else {
2886 /* Only copy the arguments on-stack to current
2887 * 'stack_size' and ignore the regs, used to
2888 * prepare the arguments on-stack for origin call.
2889 */
2890 if (for_call_origin) {
2891 nr_regs += arg_regs;
2892 continue;
2893 }
2894
2895 /* copy the arguments from regs into stack */
2896 for (j = 0; j < arg_regs; j++) {
2897 emit_stx(prog, BPF_DW, BPF_REG_FP,
2898 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2899 -stack_size);
2900 stack_size -= 8;
2901 nr_regs++;
2902 }
2903 }
2904 }
2905
2906 clean_stack_garbage(m, prog, nr_stack_slots, first_off);
2907 }
2908
restore_regs(const struct btf_func_model * m,u8 ** prog,int stack_size)2909 static void restore_regs(const struct btf_func_model *m, u8 **prog,
2910 int stack_size)
2911 {
2912 int i, j, arg_regs, nr_regs = 0;
2913
2914 /* Restore function arguments from stack.
2915 * For a function that accepts two pointers the sequence will be:
2916 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
2917 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
2918 *
2919 * The logic here is similar to what we do in save_args()
2920 */
2921 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2922 arg_regs = (m->arg_size[i] + 7) / 8;
2923 if (nr_regs + arg_regs <= 6) {
2924 for (j = 0; j < arg_regs; j++) {
2925 emit_ldx(prog, BPF_DW,
2926 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2927 BPF_REG_FP,
2928 -stack_size);
2929 stack_size -= 8;
2930 nr_regs++;
2931 }
2932 } else {
2933 stack_size -= 8 * arg_regs;
2934 }
2935
2936 if (nr_regs >= 6)
2937 break;
2938 }
2939 }
2940
invoke_bpf_prog(const struct btf_func_model * m,u8 ** pprog,struct bpf_tramp_link * l,int stack_size,int run_ctx_off,bool save_ret,void * image,void * rw_image)2941 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
2942 struct bpf_tramp_link *l, int stack_size,
2943 int run_ctx_off, bool save_ret,
2944 void *image, void *rw_image)
2945 {
2946 u8 *prog = *pprog;
2947 u8 *jmp_insn;
2948 int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2949 struct bpf_prog *p = l->link.prog;
2950 u64 cookie = l->cookie;
2951
2952 /* mov rdi, cookie */
2953 emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie);
2954
2955 /* Prepare struct bpf_tramp_run_ctx.
2956 *
2957 * bpf_tramp_run_ctx is already preserved by
2958 * arch_prepare_bpf_trampoline().
2959 *
2960 * mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi
2961 */
2962 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off);
2963
2964 /* arg1: mov rdi, progs[i] */
2965 emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2966 /* arg2: lea rsi, [rbp - ctx_cookie_off] */
2967 if (!is_imm8(-run_ctx_off))
2968 EMIT3_off32(0x48, 0x8D, 0xB5, -run_ctx_off);
2969 else
2970 EMIT4(0x48, 0x8D, 0x75, -run_ctx_off);
2971
2972 if (emit_rsb_call(&prog, bpf_trampoline_enter(p), image + (prog - (u8 *)rw_image)))
2973 return -EINVAL;
2974 /* remember prog start time returned by __bpf_prog_enter */
2975 emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
2976
2977 /* if (__bpf_prog_enter*(prog) == 0)
2978 * goto skip_exec_of_prog;
2979 */
2980 EMIT3(0x48, 0x85, 0xC0); /* test rax,rax */
2981 /* emit 2 nops that will be replaced with JE insn */
2982 jmp_insn = prog;
2983 emit_nops(&prog, 2);
2984
2985 /* arg1: lea rdi, [rbp - stack_size] */
2986 if (!is_imm8(-stack_size))
2987 EMIT3_off32(0x48, 0x8D, 0xBD, -stack_size);
2988 else
2989 EMIT4(0x48, 0x8D, 0x7D, -stack_size);
2990 /* arg2: progs[i]->insnsi for interpreter */
2991 if (!p->jited)
2992 emit_mov_imm64(&prog, BPF_REG_2,
2993 (long) p->insnsi >> 32,
2994 (u32) (long) p->insnsi);
2995 /* call JITed bpf program or interpreter */
2996 if (emit_rsb_call(&prog, p->bpf_func, image + (prog - (u8 *)rw_image)))
2997 return -EINVAL;
2998
2999 /*
3000 * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
3001 * of the previous call which is then passed on the stack to
3002 * the next BPF program.
3003 *
3004 * BPF_TRAMP_FENTRY trampoline may need to return the return
3005 * value of BPF_PROG_TYPE_STRUCT_OPS prog.
3006 */
3007 if (save_ret)
3008 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
3009
3010 /* replace 2 nops with JE insn, since jmp target is known */
3011 jmp_insn[0] = X86_JE;
3012 jmp_insn[1] = prog - jmp_insn - 2;
3013
3014 /* arg1: mov rdi, progs[i] */
3015 emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
3016 /* arg2: mov rsi, rbx <- start time in nsec */
3017 emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
3018 /* arg3: lea rdx, [rbp - run_ctx_off] */
3019 if (!is_imm8(-run_ctx_off))
3020 EMIT3_off32(0x48, 0x8D, 0x95, -run_ctx_off);
3021 else
3022 EMIT4(0x48, 0x8D, 0x55, -run_ctx_off);
3023 if (emit_rsb_call(&prog, bpf_trampoline_exit(p), image + (prog - (u8 *)rw_image)))
3024 return -EINVAL;
3025
3026 *pprog = prog;
3027 return 0;
3028 }
3029
emit_align(u8 ** pprog,u32 align)3030 static void emit_align(u8 **pprog, u32 align)
3031 {
3032 u8 *target, *prog = *pprog;
3033
3034 target = PTR_ALIGN(prog, align);
3035 if (target != prog)
3036 emit_nops(&prog, target - prog);
3037
3038 *pprog = prog;
3039 }
3040
emit_cond_near_jump(u8 ** pprog,void * func,void * ip,u8 jmp_cond)3041 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
3042 {
3043 u8 *prog = *pprog;
3044 s64 offset;
3045
3046 offset = func - (ip + 2 + 4);
3047 if (!is_simm32(offset)) {
3048 pr_err("Target %p is out of range\n", func);
3049 return -EINVAL;
3050 }
3051 EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
3052 *pprog = prog;
3053 return 0;
3054 }
3055
invoke_bpf(const struct btf_func_model * m,u8 ** pprog,struct bpf_tramp_links * tl,int stack_size,int run_ctx_off,bool save_ret,void * image,void * rw_image)3056 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
3057 struct bpf_tramp_links *tl, int stack_size,
3058 int run_ctx_off, bool save_ret,
3059 void *image, void *rw_image)
3060 {
3061 int i;
3062 u8 *prog = *pprog;
3063
3064 for (i = 0; i < tl->nr_links; i++) {
3065 if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size,
3066 run_ctx_off, save_ret, image, rw_image))
3067 return -EINVAL;
3068 }
3069 *pprog = prog;
3070 return 0;
3071 }
3072
invoke_bpf_mod_ret(const struct btf_func_model * m,u8 ** pprog,struct bpf_tramp_links * tl,int stack_size,int run_ctx_off,u8 ** branches,void * image,void * rw_image)3073 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
3074 struct bpf_tramp_links *tl, int stack_size,
3075 int run_ctx_off, u8 **branches,
3076 void *image, void *rw_image)
3077 {
3078 u8 *prog = *pprog;
3079 int i;
3080
3081 /* The first fmod_ret program will receive a garbage return value.
3082 * Set this to 0 to avoid confusing the program.
3083 */
3084 emit_mov_imm32(&prog, false, BPF_REG_0, 0);
3085 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
3086 for (i = 0; i < tl->nr_links; i++) {
3087 if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true,
3088 image, rw_image))
3089 return -EINVAL;
3090
3091 /* mod_ret prog stored return value into [rbp - 8]. Emit:
3092 * if (*(u64 *)(rbp - 8) != 0)
3093 * goto do_fexit;
3094 */
3095 /* cmp QWORD PTR [rbp - 0x8], 0x0 */
3096 EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
3097
3098 /* Save the location of the branch and Generate 6 nops
3099 * (4 bytes for an offset and 2 bytes for the jump) These nops
3100 * are replaced with a conditional jump once do_fexit (i.e. the
3101 * start of the fexit invocation) is finalized.
3102 */
3103 branches[i] = prog;
3104 emit_nops(&prog, 4 + 2);
3105 }
3106
3107 *pprog = prog;
3108 return 0;
3109 }
3110
3111 /* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */
3112 #define LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack) \
3113 __LOAD_TCC_PTR(-round_up(stack, 8) - 8)
3114
3115 /* Example:
3116 * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
3117 * its 'struct btf_func_model' will be nr_args=2
3118 * The assembly code when eth_type_trans is executing after trampoline:
3119 *
3120 * push rbp
3121 * mov rbp, rsp
3122 * sub rsp, 16 // space for skb and dev
3123 * push rbx // temp regs to pass start time
3124 * mov qword ptr [rbp - 16], rdi // save skb pointer to stack
3125 * mov qword ptr [rbp - 8], rsi // save dev pointer to stack
3126 * call __bpf_prog_enter // rcu_read_lock and preempt_disable
3127 * mov rbx, rax // remember start time in bpf stats are enabled
3128 * lea rdi, [rbp - 16] // R1==ctx of bpf prog
3129 * call addr_of_jited_FENTRY_prog
3130 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
3131 * mov rsi, rbx // prog start time
3132 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
3133 * mov rdi, qword ptr [rbp - 16] // restore skb pointer from stack
3134 * mov rsi, qword ptr [rbp - 8] // restore dev pointer from stack
3135 * pop rbx
3136 * leave
3137 * ret
3138 *
3139 * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
3140 * replaced with 'call generated_bpf_trampoline'. When it returns
3141 * eth_type_trans will continue executing with original skb and dev pointers.
3142 *
3143 * The assembly code when eth_type_trans is called from trampoline:
3144 *
3145 * push rbp
3146 * mov rbp, rsp
3147 * sub rsp, 24 // space for skb, dev, return value
3148 * push rbx // temp regs to pass start time
3149 * mov qword ptr [rbp - 24], rdi // save skb pointer to stack
3150 * mov qword ptr [rbp - 16], rsi // save dev pointer to stack
3151 * call __bpf_prog_enter // rcu_read_lock and preempt_disable
3152 * mov rbx, rax // remember start time if bpf stats are enabled
3153 * lea rdi, [rbp - 24] // R1==ctx of bpf prog
3154 * call addr_of_jited_FENTRY_prog // bpf prog can access skb and dev
3155 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
3156 * mov rsi, rbx // prog start time
3157 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
3158 * mov rdi, qword ptr [rbp - 24] // restore skb pointer from stack
3159 * mov rsi, qword ptr [rbp - 16] // restore dev pointer from stack
3160 * call eth_type_trans+5 // execute body of eth_type_trans
3161 * mov qword ptr [rbp - 8], rax // save return value
3162 * call __bpf_prog_enter // rcu_read_lock and preempt_disable
3163 * mov rbx, rax // remember start time in bpf stats are enabled
3164 * lea rdi, [rbp - 24] // R1==ctx of bpf prog
3165 * call addr_of_jited_FEXIT_prog // bpf prog can access skb, dev, return value
3166 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
3167 * mov rsi, rbx // prog start time
3168 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
3169 * mov rax, qword ptr [rbp - 8] // restore eth_type_trans's return value
3170 * pop rbx
3171 * leave
3172 * add rsp, 8 // skip eth_type_trans's frame
3173 * ret // return to its caller
3174 */
__arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,void * rw_image,void * rw_image_end,void * image,const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)3175 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *rw_image,
3176 void *rw_image_end, void *image,
3177 const struct btf_func_model *m, u32 flags,
3178 struct bpf_tramp_links *tlinks,
3179 void *func_addr)
3180 {
3181 int i, ret, nr_regs = m->nr_args, stack_size = 0;
3182 int regs_off, nregs_off, ip_off, run_ctx_off, arg_stack_off, rbx_off;
3183 struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
3184 struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
3185 struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
3186 void *orig_call = func_addr;
3187 u8 **branches = NULL;
3188 u8 *prog;
3189 bool save_ret;
3190
3191 /*
3192 * F_INDIRECT is only compatible with F_RET_FENTRY_RET, it is
3193 * explicitly incompatible with F_CALL_ORIG | F_SKIP_FRAME | F_IP_ARG
3194 * because @func_addr.
3195 */
3196 WARN_ON_ONCE((flags & BPF_TRAMP_F_INDIRECT) &&
3197 (flags & ~(BPF_TRAMP_F_INDIRECT | BPF_TRAMP_F_RET_FENTRY_RET)));
3198
3199 /* extra registers for struct arguments */
3200 for (i = 0; i < m->nr_args; i++) {
3201 if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
3202 nr_regs += (m->arg_size[i] + 7) / 8 - 1;
3203 }
3204
3205 /* x86-64 supports up to MAX_BPF_FUNC_ARGS arguments. 1-6
3206 * are passed through regs, the remains are through stack.
3207 */
3208 if (nr_regs > MAX_BPF_FUNC_ARGS)
3209 return -ENOTSUPP;
3210
3211 /* Generated trampoline stack layout:
3212 *
3213 * RBP + 8 [ return address ]
3214 * RBP + 0 [ RBP ]
3215 *
3216 * RBP - 8 [ return value ] BPF_TRAMP_F_CALL_ORIG or
3217 * BPF_TRAMP_F_RET_FENTRY_RET flags
3218 *
3219 * [ reg_argN ] always
3220 * [ ... ]
3221 * RBP - regs_off [ reg_arg1 ] program's ctx pointer
3222 *
3223 * RBP - nregs_off [ regs count ] always
3224 *
3225 * RBP - ip_off [ traced function ] BPF_TRAMP_F_IP_ARG flag
3226 *
3227 * RBP - rbx_off [ rbx value ] always
3228 *
3229 * RBP - run_ctx_off [ bpf_tramp_run_ctx ]
3230 *
3231 * [ stack_argN ] BPF_TRAMP_F_CALL_ORIG
3232 * [ ... ]
3233 * [ stack_arg2 ]
3234 * RBP - arg_stack_off [ stack_arg1 ]
3235 * RSP [ tail_call_cnt_ptr ] BPF_TRAMP_F_TAIL_CALL_CTX
3236 */
3237
3238 /* room for return value of orig_call or fentry prog */
3239 save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
3240 if (save_ret)
3241 stack_size += 8;
3242
3243 stack_size += nr_regs * 8;
3244 regs_off = stack_size;
3245
3246 /* regs count */
3247 stack_size += 8;
3248 nregs_off = stack_size;
3249
3250 if (flags & BPF_TRAMP_F_IP_ARG)
3251 stack_size += 8; /* room for IP address argument */
3252
3253 ip_off = stack_size;
3254
3255 stack_size += 8;
3256 rbx_off = stack_size;
3257
3258 stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7;
3259 run_ctx_off = stack_size;
3260
3261 if (nr_regs > 6 && (flags & BPF_TRAMP_F_CALL_ORIG)) {
3262 /* the space that used to pass arguments on-stack */
3263 stack_size += (nr_regs - get_nr_used_regs(m)) * 8;
3264 /* make sure the stack pointer is 16-byte aligned if we
3265 * need pass arguments on stack, which means
3266 * [stack_size + 8(rbp) + 8(rip) + 8(origin rip)]
3267 * should be 16-byte aligned. Following code depend on
3268 * that stack_size is already 8-byte aligned.
3269 */
3270 stack_size += (stack_size % 16) ? 0 : 8;
3271 }
3272
3273 arg_stack_off = stack_size;
3274
3275 if (flags & BPF_TRAMP_F_SKIP_FRAME) {
3276 /* skip patched call instruction and point orig_call to actual
3277 * body of the kernel function.
3278 */
3279 if (is_endbr(orig_call))
3280 orig_call += ENDBR_INSN_SIZE;
3281 orig_call += X86_PATCH_SIZE;
3282 }
3283
3284 prog = rw_image;
3285
3286 if (flags & BPF_TRAMP_F_INDIRECT) {
3287 /*
3288 * Indirect call for bpf_struct_ops
3289 */
3290 emit_cfi(&prog, image,
3291 cfi_get_func_hash(func_addr),
3292 cfi_get_func_arity(func_addr));
3293 } else {
3294 /*
3295 * Direct-call fentry stub, as such it needs accounting for the
3296 * __fentry__ call.
3297 */
3298 x86_call_depth_emit_accounting(&prog, NULL, image);
3299 }
3300 EMIT1(0x55); /* push rbp */
3301 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
3302 if (!is_imm8(stack_size)) {
3303 /* sub rsp, stack_size */
3304 EMIT3_off32(0x48, 0x81, 0xEC, stack_size);
3305 } else {
3306 /* sub rsp, stack_size */
3307 EMIT4(0x48, 0x83, 0xEC, stack_size);
3308 }
3309 if (flags & BPF_TRAMP_F_TAIL_CALL_CTX)
3310 EMIT1(0x50); /* push rax */
3311 /* mov QWORD PTR [rbp - rbx_off], rbx */
3312 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_6, -rbx_off);
3313
3314 /* Store number of argument registers of the traced function:
3315 * mov rax, nr_regs
3316 * mov QWORD PTR [rbp - nregs_off], rax
3317 */
3318 emit_mov_imm64(&prog, BPF_REG_0, 0, (u32) nr_regs);
3319 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -nregs_off);
3320
3321 if (flags & BPF_TRAMP_F_IP_ARG) {
3322 /* Store IP address of the traced function:
3323 * movabsq rax, func_addr
3324 * mov QWORD PTR [rbp - ip_off], rax
3325 */
3326 emit_mov_imm64(&prog, BPF_REG_0, (long) func_addr >> 32, (u32) (long) func_addr);
3327 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -ip_off);
3328 }
3329
3330 save_args(m, &prog, regs_off, false);
3331
3332 if (flags & BPF_TRAMP_F_CALL_ORIG) {
3333 /* arg1: mov rdi, im */
3334 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
3335 if (emit_rsb_call(&prog, __bpf_tramp_enter,
3336 image + (prog - (u8 *)rw_image))) {
3337 ret = -EINVAL;
3338 goto cleanup;
3339 }
3340 }
3341
3342 if (fentry->nr_links) {
3343 if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off,
3344 flags & BPF_TRAMP_F_RET_FENTRY_RET, image, rw_image))
3345 return -EINVAL;
3346 }
3347
3348 if (fmod_ret->nr_links) {
3349 branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *),
3350 GFP_KERNEL);
3351 if (!branches)
3352 return -ENOMEM;
3353
3354 if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off,
3355 run_ctx_off, branches, image, rw_image)) {
3356 ret = -EINVAL;
3357 goto cleanup;
3358 }
3359 }
3360
3361 if (flags & BPF_TRAMP_F_CALL_ORIG) {
3362 restore_regs(m, &prog, regs_off);
3363 save_args(m, &prog, arg_stack_off, true);
3364
3365 if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) {
3366 /* Before calling the original function, load the
3367 * tail_call_cnt_ptr from stack to rax.
3368 */
3369 LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack_size);
3370 }
3371
3372 if (flags & BPF_TRAMP_F_ORIG_STACK) {
3373 emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, 8);
3374 EMIT2(0xff, 0xd3); /* call *rbx */
3375 } else {
3376 /* call original function */
3377 if (emit_rsb_call(&prog, orig_call, image + (prog - (u8 *)rw_image))) {
3378 ret = -EINVAL;
3379 goto cleanup;
3380 }
3381 }
3382 /* remember return value in a stack for bpf prog to access */
3383 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
3384 im->ip_after_call = image + (prog - (u8 *)rw_image);
3385 emit_nops(&prog, X86_PATCH_SIZE);
3386 }
3387
3388 if (fmod_ret->nr_links) {
3389 /* From Intel 64 and IA-32 Architectures Optimization
3390 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
3391 * Coding Rule 11: All branch targets should be 16-byte
3392 * aligned.
3393 */
3394 emit_align(&prog, 16);
3395 /* Update the branches saved in invoke_bpf_mod_ret with the
3396 * aligned address of do_fexit.
3397 */
3398 for (i = 0; i < fmod_ret->nr_links; i++) {
3399 emit_cond_near_jump(&branches[i], image + (prog - (u8 *)rw_image),
3400 image + (branches[i] - (u8 *)rw_image), X86_JNE);
3401 }
3402 }
3403
3404 if (fexit->nr_links) {
3405 if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off,
3406 false, image, rw_image)) {
3407 ret = -EINVAL;
3408 goto cleanup;
3409 }
3410 }
3411
3412 if (flags & BPF_TRAMP_F_RESTORE_REGS)
3413 restore_regs(m, &prog, regs_off);
3414
3415 /* This needs to be done regardless. If there were fmod_ret programs,
3416 * the return value is only updated on the stack and still needs to be
3417 * restored to R0.
3418 */
3419 if (flags & BPF_TRAMP_F_CALL_ORIG) {
3420 im->ip_epilogue = image + (prog - (u8 *)rw_image);
3421 /* arg1: mov rdi, im */
3422 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
3423 if (emit_rsb_call(&prog, __bpf_tramp_exit, image + (prog - (u8 *)rw_image))) {
3424 ret = -EINVAL;
3425 goto cleanup;
3426 }
3427 } else if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) {
3428 /* Before running the original function, load the
3429 * tail_call_cnt_ptr from stack to rax.
3430 */
3431 LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack_size);
3432 }
3433
3434 /* restore return value of orig_call or fentry prog back into RAX */
3435 if (save_ret)
3436 emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
3437
3438 emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, -rbx_off);
3439 EMIT1(0xC9); /* leave */
3440 if (flags & BPF_TRAMP_F_SKIP_FRAME) {
3441 /* skip our return address and return to parent */
3442 EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
3443 }
3444 emit_return(&prog, image + (prog - (u8 *)rw_image));
3445 /* Make sure the trampoline generation logic doesn't overflow */
3446 if (WARN_ON_ONCE(prog > (u8 *)rw_image_end - BPF_INSN_SAFETY)) {
3447 ret = -EFAULT;
3448 goto cleanup;
3449 }
3450 ret = prog - (u8 *)rw_image + BPF_INSN_SAFETY;
3451
3452 cleanup:
3453 kfree(branches);
3454 return ret;
3455 }
3456
arch_alloc_bpf_trampoline(unsigned int size)3457 void *arch_alloc_bpf_trampoline(unsigned int size)
3458 {
3459 return bpf_prog_pack_alloc(size, jit_fill_hole);
3460 }
3461
arch_free_bpf_trampoline(void * image,unsigned int size)3462 void arch_free_bpf_trampoline(void *image, unsigned int size)
3463 {
3464 bpf_prog_pack_free(image, size);
3465 }
3466
arch_protect_bpf_trampoline(void * image,unsigned int size)3467 int arch_protect_bpf_trampoline(void *image, unsigned int size)
3468 {
3469 return 0;
3470 }
3471
arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,void * image,void * image_end,const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)3472 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
3473 const struct btf_func_model *m, u32 flags,
3474 struct bpf_tramp_links *tlinks,
3475 void *func_addr)
3476 {
3477 void *rw_image, *tmp;
3478 int ret;
3479 u32 size = image_end - image;
3480
3481 /* rw_image doesn't need to be in module memory range, so we can
3482 * use kvmalloc.
3483 */
3484 rw_image = kvmalloc(size, GFP_KERNEL);
3485 if (!rw_image)
3486 return -ENOMEM;
3487
3488 ret = __arch_prepare_bpf_trampoline(im, rw_image, rw_image + size, image, m,
3489 flags, tlinks, func_addr);
3490 if (ret < 0)
3491 goto out;
3492
3493 tmp = bpf_arch_text_copy(image, rw_image, size);
3494 if (IS_ERR(tmp))
3495 ret = PTR_ERR(tmp);
3496 out:
3497 kvfree(rw_image);
3498 return ret;
3499 }
3500
arch_bpf_trampoline_size(const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)3501 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
3502 struct bpf_tramp_links *tlinks, void *func_addr)
3503 {
3504 struct bpf_tramp_image im;
3505 void *image;
3506 int ret;
3507
3508 /* Allocate a temporary buffer for __arch_prepare_bpf_trampoline().
3509 * This will NOT cause fragmentation in direct map, as we do not
3510 * call set_memory_*() on this buffer.
3511 *
3512 * We cannot use kvmalloc here, because we need image to be in
3513 * module memory range.
3514 */
3515 image = bpf_jit_alloc_exec(PAGE_SIZE);
3516 if (!image)
3517 return -ENOMEM;
3518
3519 ret = __arch_prepare_bpf_trampoline(&im, image, image + PAGE_SIZE, image,
3520 m, flags, tlinks, func_addr);
3521 bpf_jit_free_exec(image);
3522 return ret;
3523 }
3524
emit_bpf_dispatcher(u8 ** pprog,int a,int b,s64 * progs,u8 * image,u8 * buf)3525 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf)
3526 {
3527 u8 *jg_reloc, *prog = *pprog;
3528 int pivot, err, jg_bytes = 1;
3529 s64 jg_offset;
3530
3531 if (a == b) {
3532 /* Leaf node of recursion, i.e. not a range of indices
3533 * anymore.
3534 */
3535 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */
3536 if (!is_simm32(progs[a]))
3537 return -1;
3538 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
3539 progs[a]);
3540 err = emit_cond_near_jump(&prog, /* je func */
3541 (void *)progs[a], image + (prog - buf),
3542 X86_JE);
3543 if (err)
3544 return err;
3545
3546 emit_indirect_jump(&prog, 2 /* rdx */, image + (prog - buf));
3547
3548 *pprog = prog;
3549 return 0;
3550 }
3551
3552 /* Not a leaf node, so we pivot, and recursively descend into
3553 * the lower and upper ranges.
3554 */
3555 pivot = (b - a) / 2;
3556 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */
3557 if (!is_simm32(progs[a + pivot]))
3558 return -1;
3559 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
3560
3561 if (pivot > 2) { /* jg upper_part */
3562 /* Require near jump. */
3563 jg_bytes = 4;
3564 EMIT2_off32(0x0F, X86_JG + 0x10, 0);
3565 } else {
3566 EMIT2(X86_JG, 0);
3567 }
3568 jg_reloc = prog;
3569
3570 err = emit_bpf_dispatcher(&prog, a, a + pivot, /* emit lower_part */
3571 progs, image, buf);
3572 if (err)
3573 return err;
3574
3575 /* From Intel 64 and IA-32 Architectures Optimization
3576 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
3577 * Coding Rule 11: All branch targets should be 16-byte
3578 * aligned.
3579 */
3580 emit_align(&prog, 16);
3581 jg_offset = prog - jg_reloc;
3582 emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
3583
3584 err = emit_bpf_dispatcher(&prog, a + pivot + 1, /* emit upper_part */
3585 b, progs, image, buf);
3586 if (err)
3587 return err;
3588
3589 *pprog = prog;
3590 return 0;
3591 }
3592
cmp_ips(const void * a,const void * b)3593 static int cmp_ips(const void *a, const void *b)
3594 {
3595 const s64 *ipa = a;
3596 const s64 *ipb = b;
3597
3598 if (*ipa > *ipb)
3599 return 1;
3600 if (*ipa < *ipb)
3601 return -1;
3602 return 0;
3603 }
3604
arch_prepare_bpf_dispatcher(void * image,void * buf,s64 * funcs,int num_funcs)3605 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs)
3606 {
3607 u8 *prog = buf;
3608
3609 sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
3610 return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs, image, buf);
3611 }
3612
priv_stack_init_guard(void __percpu * priv_stack_ptr,int alloc_size)3613 static void priv_stack_init_guard(void __percpu *priv_stack_ptr, int alloc_size)
3614 {
3615 int cpu, underflow_idx = (alloc_size - PRIV_STACK_GUARD_SZ) >> 3;
3616 u64 *stack_ptr;
3617
3618 for_each_possible_cpu(cpu) {
3619 stack_ptr = per_cpu_ptr(priv_stack_ptr, cpu);
3620 stack_ptr[0] = PRIV_STACK_GUARD_VAL;
3621 stack_ptr[underflow_idx] = PRIV_STACK_GUARD_VAL;
3622 }
3623 }
3624
priv_stack_check_guard(void __percpu * priv_stack_ptr,int alloc_size,struct bpf_prog * prog)3625 static void priv_stack_check_guard(void __percpu *priv_stack_ptr, int alloc_size,
3626 struct bpf_prog *prog)
3627 {
3628 int cpu, underflow_idx = (alloc_size - PRIV_STACK_GUARD_SZ) >> 3;
3629 u64 *stack_ptr;
3630
3631 for_each_possible_cpu(cpu) {
3632 stack_ptr = per_cpu_ptr(priv_stack_ptr, cpu);
3633 if (stack_ptr[0] != PRIV_STACK_GUARD_VAL ||
3634 stack_ptr[underflow_idx] != PRIV_STACK_GUARD_VAL) {
3635 pr_err("BPF private stack overflow/underflow detected for prog %sx\n",
3636 bpf_jit_get_prog_name(prog));
3637 break;
3638 }
3639 }
3640 }
3641
3642 struct x64_jit_data {
3643 struct bpf_binary_header *rw_header;
3644 struct bpf_binary_header *header;
3645 int *addrs;
3646 u8 *image;
3647 int proglen;
3648 struct jit_context ctx;
3649 };
3650
3651 #define MAX_PASSES 20
3652 #define PADDING_PASSES (MAX_PASSES - 5)
3653
bpf_int_jit_compile(struct bpf_prog * prog)3654 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
3655 {
3656 struct bpf_binary_header *rw_header = NULL;
3657 struct bpf_binary_header *header = NULL;
3658 struct bpf_prog *tmp, *orig_prog = prog;
3659 void __percpu *priv_stack_ptr = NULL;
3660 struct x64_jit_data *jit_data;
3661 int priv_stack_alloc_sz;
3662 int proglen, oldproglen = 0;
3663 struct jit_context ctx = {};
3664 bool tmp_blinded = false;
3665 bool extra_pass = false;
3666 bool padding = false;
3667 u8 *rw_image = NULL;
3668 u8 *image = NULL;
3669 int *addrs;
3670 int pass;
3671 int i;
3672
3673 if (!prog->jit_requested)
3674 return orig_prog;
3675
3676 tmp = bpf_jit_blind_constants(prog);
3677 /*
3678 * If blinding was requested and we failed during blinding,
3679 * we must fall back to the interpreter.
3680 */
3681 if (IS_ERR(tmp))
3682 return orig_prog;
3683 if (tmp != prog) {
3684 tmp_blinded = true;
3685 prog = tmp;
3686 }
3687
3688 jit_data = prog->aux->jit_data;
3689 if (!jit_data) {
3690 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
3691 if (!jit_data) {
3692 prog = orig_prog;
3693 goto out;
3694 }
3695 prog->aux->jit_data = jit_data;
3696 }
3697 priv_stack_ptr = prog->aux->priv_stack_ptr;
3698 if (!priv_stack_ptr && prog->aux->jits_use_priv_stack) {
3699 /* Allocate actual private stack size with verifier-calculated
3700 * stack size plus two memory guards to protect overflow and
3701 * underflow.
3702 */
3703 priv_stack_alloc_sz = round_up(prog->aux->stack_depth, 8) +
3704 2 * PRIV_STACK_GUARD_SZ;
3705 priv_stack_ptr = __alloc_percpu_gfp(priv_stack_alloc_sz, 8, GFP_KERNEL);
3706 if (!priv_stack_ptr) {
3707 prog = orig_prog;
3708 goto out_priv_stack;
3709 }
3710
3711 priv_stack_init_guard(priv_stack_ptr, priv_stack_alloc_sz);
3712 prog->aux->priv_stack_ptr = priv_stack_ptr;
3713 }
3714 addrs = jit_data->addrs;
3715 if (addrs) {
3716 ctx = jit_data->ctx;
3717 oldproglen = jit_data->proglen;
3718 image = jit_data->image;
3719 header = jit_data->header;
3720 rw_header = jit_data->rw_header;
3721 rw_image = (void *)rw_header + ((void *)image - (void *)header);
3722 extra_pass = true;
3723 padding = true;
3724 goto skip_init_addrs;
3725 }
3726 addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
3727 if (!addrs) {
3728 prog = orig_prog;
3729 goto out_addrs;
3730 }
3731
3732 /*
3733 * Before first pass, make a rough estimation of addrs[]
3734 * each BPF instruction is translated to less than 64 bytes
3735 */
3736 for (proglen = 0, i = 0; i <= prog->len; i++) {
3737 proglen += 64;
3738 addrs[i] = proglen;
3739 }
3740 ctx.cleanup_addr = proglen;
3741 skip_init_addrs:
3742
3743 /*
3744 * JITed image shrinks with every pass and the loop iterates
3745 * until the image stops shrinking. Very large BPF programs
3746 * may converge on the last pass. In such case do one more
3747 * pass to emit the final image.
3748 */
3749 for (pass = 0; pass < MAX_PASSES || image; pass++) {
3750 if (!padding && pass >= PADDING_PASSES)
3751 padding = true;
3752 proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding);
3753 if (proglen <= 0) {
3754 out_image:
3755 image = NULL;
3756 if (header) {
3757 bpf_arch_text_copy(&header->size, &rw_header->size,
3758 sizeof(rw_header->size));
3759 bpf_jit_binary_pack_free(header, rw_header);
3760 }
3761 /* Fall back to interpreter mode */
3762 prog = orig_prog;
3763 if (extra_pass) {
3764 prog->bpf_func = NULL;
3765 prog->jited = 0;
3766 prog->jited_len = 0;
3767 }
3768 goto out_addrs;
3769 }
3770 if (image) {
3771 if (proglen != oldproglen) {
3772 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
3773 proglen, oldproglen);
3774 goto out_image;
3775 }
3776 break;
3777 }
3778 if (proglen == oldproglen) {
3779 /*
3780 * The number of entries in extable is the number of BPF_LDX
3781 * insns that access kernel memory via "pointer to BTF type".
3782 * The verifier changed their opcode from LDX|MEM|size
3783 * to LDX|PROBE_MEM|size to make JITing easier.
3784 */
3785 u32 align = __alignof__(struct exception_table_entry);
3786 u32 extable_size = prog->aux->num_exentries *
3787 sizeof(struct exception_table_entry);
3788
3789 /* allocate module memory for x86 insns and extable */
3790 header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size,
3791 &image, align, &rw_header, &rw_image,
3792 jit_fill_hole);
3793 if (!header) {
3794 prog = orig_prog;
3795 goto out_addrs;
3796 }
3797 prog->aux->extable = (void *) image + roundup(proglen, align);
3798 }
3799 oldproglen = proglen;
3800 cond_resched();
3801 }
3802
3803 if (bpf_jit_enable > 1)
3804 bpf_jit_dump(prog->len, proglen, pass + 1, rw_image);
3805
3806 if (image) {
3807 if (!prog->is_func || extra_pass) {
3808 /*
3809 * bpf_jit_binary_pack_finalize fails in two scenarios:
3810 * 1) header is not pointing to proper module memory;
3811 * 2) the arch doesn't support bpf_arch_text_copy().
3812 *
3813 * Both cases are serious bugs and justify WARN_ON.
3814 */
3815 if (WARN_ON(bpf_jit_binary_pack_finalize(header, rw_header))) {
3816 /* header has been freed */
3817 header = NULL;
3818 goto out_image;
3819 }
3820
3821 bpf_tail_call_direct_fixup(prog);
3822 } else {
3823 jit_data->addrs = addrs;
3824 jit_data->ctx = ctx;
3825 jit_data->proglen = proglen;
3826 jit_data->image = image;
3827 jit_data->header = header;
3828 jit_data->rw_header = rw_header;
3829 }
3830 /*
3831 * ctx.prog_offset is used when CFI preambles put code *before*
3832 * the function. See emit_cfi(). For FineIBT specifically this code
3833 * can also be executed and bpf_prog_kallsyms_add() will
3834 * generate an additional symbol to cover this, hence also
3835 * decrement proglen.
3836 */
3837 prog->bpf_func = (void *)image + cfi_get_offset();
3838 prog->jited = 1;
3839 prog->jited_len = proglen - cfi_get_offset();
3840 } else {
3841 prog = orig_prog;
3842 }
3843
3844 if (!image || !prog->is_func || extra_pass) {
3845 if (image)
3846 bpf_prog_fill_jited_linfo(prog, addrs + 1);
3847 out_addrs:
3848 kvfree(addrs);
3849 if (!image && priv_stack_ptr) {
3850 free_percpu(priv_stack_ptr);
3851 prog->aux->priv_stack_ptr = NULL;
3852 }
3853 out_priv_stack:
3854 kfree(jit_data);
3855 prog->aux->jit_data = NULL;
3856 }
3857 out:
3858 if (tmp_blinded)
3859 bpf_jit_prog_release_other(prog, prog == orig_prog ?
3860 tmp : orig_prog);
3861 return prog;
3862 }
3863
bpf_jit_supports_kfunc_call(void)3864 bool bpf_jit_supports_kfunc_call(void)
3865 {
3866 return true;
3867 }
3868
bpf_arch_text_copy(void * dst,void * src,size_t len)3869 void *bpf_arch_text_copy(void *dst, void *src, size_t len)
3870 {
3871 if (text_poke_copy(dst, src, len) == NULL)
3872 return ERR_PTR(-EINVAL);
3873 return dst;
3874 }
3875
3876 /* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */
bpf_jit_supports_subprog_tailcalls(void)3877 bool bpf_jit_supports_subprog_tailcalls(void)
3878 {
3879 return true;
3880 }
3881
bpf_jit_supports_percpu_insn(void)3882 bool bpf_jit_supports_percpu_insn(void)
3883 {
3884 return true;
3885 }
3886
bpf_jit_free(struct bpf_prog * prog)3887 void bpf_jit_free(struct bpf_prog *prog)
3888 {
3889 if (prog->jited) {
3890 struct x64_jit_data *jit_data = prog->aux->jit_data;
3891 struct bpf_binary_header *hdr;
3892 void __percpu *priv_stack_ptr;
3893 int priv_stack_alloc_sz;
3894
3895 /*
3896 * If we fail the final pass of JIT (from jit_subprogs),
3897 * the program may not be finalized yet. Call finalize here
3898 * before freeing it.
3899 */
3900 if (jit_data) {
3901 bpf_jit_binary_pack_finalize(jit_data->header,
3902 jit_data->rw_header);
3903 kvfree(jit_data->addrs);
3904 kfree(jit_data);
3905 }
3906 prog->bpf_func = (void *)prog->bpf_func - cfi_get_offset();
3907 hdr = bpf_jit_binary_pack_hdr(prog);
3908 bpf_jit_binary_pack_free(hdr, NULL);
3909 priv_stack_ptr = prog->aux->priv_stack_ptr;
3910 if (priv_stack_ptr) {
3911 priv_stack_alloc_sz = round_up(prog->aux->stack_depth, 8) +
3912 2 * PRIV_STACK_GUARD_SZ;
3913 priv_stack_check_guard(priv_stack_ptr, priv_stack_alloc_sz, prog);
3914 free_percpu(prog->aux->priv_stack_ptr);
3915 }
3916 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog));
3917 }
3918
3919 bpf_prog_unlock_free(prog);
3920 }
3921
bpf_jit_supports_exceptions(void)3922 bool bpf_jit_supports_exceptions(void)
3923 {
3924 /* We unwind through both kernel frames (starting from within bpf_throw
3925 * call) and BPF frames. Therefore we require ORC unwinder to be enabled
3926 * to walk kernel frames and reach BPF frames in the stack trace.
3927 */
3928 return IS_ENABLED(CONFIG_UNWINDER_ORC);
3929 }
3930
bpf_jit_supports_private_stack(void)3931 bool bpf_jit_supports_private_stack(void)
3932 {
3933 return true;
3934 }
3935
arch_bpf_stack_walk(bool (* consume_fn)(void * cookie,u64 ip,u64 sp,u64 bp),void * cookie)3936 void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
3937 {
3938 #if defined(CONFIG_UNWINDER_ORC)
3939 struct unwind_state state;
3940 unsigned long addr;
3941
3942 for (unwind_start(&state, current, NULL, NULL); !unwind_done(&state);
3943 unwind_next_frame(&state)) {
3944 addr = unwind_get_return_address(&state);
3945 if (!addr || !consume_fn(cookie, (u64)addr, (u64)state.sp, (u64)state.bp))
3946 break;
3947 }
3948 return;
3949 #endif
3950 }
3951
bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor * poke,struct bpf_prog * new,struct bpf_prog * old)3952 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
3953 struct bpf_prog *new, struct bpf_prog *old)
3954 {
3955 u8 *old_addr, *new_addr, *old_bypass_addr;
3956 int ret;
3957
3958 old_bypass_addr = old ? NULL : poke->bypass_addr;
3959 old_addr = old ? (u8 *)old->bpf_func + poke->adj_off : NULL;
3960 new_addr = new ? (u8 *)new->bpf_func + poke->adj_off : NULL;
3961
3962 /*
3963 * On program loading or teardown, the program's kallsym entry
3964 * might not be in place, so we use __bpf_arch_text_poke to skip
3965 * the kallsyms check.
3966 */
3967 if (new) {
3968 ret = __bpf_arch_text_poke(poke->tailcall_target,
3969 BPF_MOD_JUMP,
3970 old_addr, new_addr);
3971 BUG_ON(ret < 0);
3972 if (!old) {
3973 ret = __bpf_arch_text_poke(poke->tailcall_bypass,
3974 BPF_MOD_JUMP,
3975 poke->bypass_addr,
3976 NULL);
3977 BUG_ON(ret < 0);
3978 }
3979 } else {
3980 ret = __bpf_arch_text_poke(poke->tailcall_bypass,
3981 BPF_MOD_JUMP,
3982 old_bypass_addr,
3983 poke->bypass_addr);
3984 BUG_ON(ret < 0);
3985 /* let other CPUs finish the execution of program
3986 * so that it will not possible to expose them
3987 * to invalid nop, stack unwind, nop state
3988 */
3989 if (!ret)
3990 synchronize_rcu();
3991 ret = __bpf_arch_text_poke(poke->tailcall_target,
3992 BPF_MOD_JUMP,
3993 old_addr, NULL);
3994 BUG_ON(ret < 0);
3995 }
3996 }
3997
bpf_jit_supports_arena(void)3998 bool bpf_jit_supports_arena(void)
3999 {
4000 return true;
4001 }
4002
bpf_jit_supports_insn(struct bpf_insn * insn,bool in_arena)4003 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
4004 {
4005 if (!in_arena)
4006 return true;
4007 switch (insn->code) {
4008 case BPF_STX | BPF_ATOMIC | BPF_W:
4009 case BPF_STX | BPF_ATOMIC | BPF_DW:
4010 if (insn->imm == (BPF_AND | BPF_FETCH) ||
4011 insn->imm == (BPF_OR | BPF_FETCH) ||
4012 insn->imm == (BPF_XOR | BPF_FETCH))
4013 return false;
4014 }
4015 return true;
4016 }
4017
bpf_jit_supports_ptr_xchg(void)4018 bool bpf_jit_supports_ptr_xchg(void)
4019 {
4020 return true;
4021 }
4022
4023 /* x86-64 JIT emits its own code to filter user addresses so return 0 here */
bpf_arch_uaddress_limit(void)4024 u64 bpf_arch_uaddress_limit(void)
4025 {
4026 return 0;
4027 }
4028
bpf_jit_supports_timed_may_goto(void)4029 bool bpf_jit_supports_timed_may_goto(void)
4030 {
4031 return true;
4032 }
4033