1 // SPDX-License-Identifier: GPL-2.0-or-later
2
3 /*
4 * zsmalloc memory allocator
5 *
6 * Copyright (C) 2011 Nitin Gupta
7 * Copyright (C) 2012, 2013 Minchan Kim
8 *
9 * This code is released using a dual license strategy: BSD/GPL
10 * You can choose the license that better fits your requirements.
11 *
12 * Released under the terms of 3-clause BSD License
13 * Released under the terms of GNU General Public License Version 2.0
14 */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 /*
19 * lock ordering:
20 * page_lock
21 * pool->lock
22 * class->lock
23 * zspage->lock
24 */
25
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/errno.h>
30 #include <linux/highmem.h>
31 #include <linux/string.h>
32 #include <linux/slab.h>
33 #include <linux/scatterlist.h>
34 #include <linux/spinlock.h>
35 #include <linux/sprintf.h>
36 #include <linux/shrinker.h>
37 #include <linux/types.h>
38 #include <linux/debugfs.h>
39 #include <linux/zsmalloc.h>
40 #include <linux/fs.h>
41 #include <linux/workqueue.h>
42 #include "zpdesc.h"
43
44 #define ZSPAGE_MAGIC 0x58
45
46 /*
47 * This must be power of 2 and greater than or equal to sizeof(link_free).
48 * These two conditions ensure that any 'struct link_free' itself doesn't
49 * span more than 1 page which avoids complex case of mapping 2 pages simply
50 * to restore link_free pointer values.
51 */
52 #define ZS_ALIGN 8
53
54 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
55
56 /*
57 * Object location (<PFN>, <obj_idx>) is encoded as
58 * a single (unsigned long) handle value.
59 *
60 * Note that object index <obj_idx> starts from 0.
61 *
62 * This is made more complicated by various memory models and PAE.
63 */
64
65 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
66 #ifdef MAX_PHYSMEM_BITS
67 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
68 #else
69 /*
70 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
71 * be PAGE_SHIFT
72 */
73 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
74 #endif
75 #endif
76
77 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
78
79 /*
80 * Head in allocated object should have OBJ_ALLOCATED_TAG
81 * to identify the object was allocated or not.
82 * It's okay to add the status bit in the least bit because
83 * header keeps handle which is 4byte-aligned address so we
84 * have room for two bit at least.
85 */
86 #define OBJ_ALLOCATED_TAG 1
87
88 #define OBJ_TAG_BITS 1
89 #define OBJ_TAG_MASK OBJ_ALLOCATED_TAG
90
91 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS)
92 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
93
94 #define HUGE_BITS 1
95 #define FULLNESS_BITS 4
96 #define CLASS_BITS 8
97 #define MAGIC_VAL_BITS 8
98
99 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
100
101 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
102 #define ZS_MIN_ALLOC_SIZE \
103 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
104 /* each chunk includes extra space to keep handle */
105 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
106
107 /*
108 * On systems with 4K page size, this gives 255 size classes! There is a
109 * trade-off here:
110 * - Large number of size classes is potentially wasteful as free page are
111 * spread across these classes
112 * - Small number of size classes causes large internal fragmentation
113 * - Probably its better to use specific size classes (empirically
114 * determined). NOTE: all those class sizes must be set as multiple of
115 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
116 *
117 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
118 * (reason above)
119 */
120 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
121 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
122 ZS_SIZE_CLASS_DELTA) + 1)
123
124 /*
125 * Pages are distinguished by the ratio of used memory (that is the ratio
126 * of ->inuse objects to all objects that page can store). For example,
127 * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
128 *
129 * The number of fullness groups is not random. It allows us to keep
130 * difference between the least busy page in the group (minimum permitted
131 * number of ->inuse objects) and the most busy page (maximum permitted
132 * number of ->inuse objects) at a reasonable value.
133 */
134 enum fullness_group {
135 ZS_INUSE_RATIO_0,
136 ZS_INUSE_RATIO_10,
137 /* NOTE: 8 more fullness groups here */
138 ZS_INUSE_RATIO_99 = 10,
139 ZS_INUSE_RATIO_100,
140 NR_FULLNESS_GROUPS,
141 };
142
143 enum class_stat_type {
144 /* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
145 ZS_OBJS_ALLOCATED = NR_FULLNESS_GROUPS,
146 ZS_OBJS_INUSE,
147 NR_CLASS_STAT_TYPES,
148 };
149
150 struct zs_size_stat {
151 unsigned long objs[NR_CLASS_STAT_TYPES];
152 };
153
154 #ifdef CONFIG_ZSMALLOC_STAT
155 static struct dentry *zs_stat_root;
156 #endif
157
158 static size_t huge_class_size;
159
160 struct size_class {
161 spinlock_t lock;
162 struct list_head fullness_list[NR_FULLNESS_GROUPS];
163 /*
164 * Size of objects stored in this class. Must be multiple
165 * of ZS_ALIGN.
166 */
167 int size;
168 int objs_per_zspage;
169 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
170 int pages_per_zspage;
171
172 unsigned int index;
173 struct zs_size_stat stats;
174 };
175
176 /*
177 * Placed within free objects to form a singly linked list.
178 * For every zspage, zspage->freeobj gives head of this list.
179 *
180 * This must be power of 2 and less than or equal to ZS_ALIGN
181 */
182 struct link_free {
183 union {
184 /*
185 * Free object index;
186 * It's valid for non-allocated object
187 */
188 unsigned long next;
189 /*
190 * Handle of allocated object.
191 */
192 unsigned long handle;
193 };
194 };
195
196 static struct kmem_cache *handle_cachep;
197 static struct kmem_cache *zspage_cachep;
198
199 struct zs_pool {
200 const char *name;
201
202 struct size_class *size_class[ZS_SIZE_CLASSES];
203
204 atomic_long_t pages_allocated;
205
206 struct zs_pool_stats stats;
207
208 /* Compact classes */
209 struct shrinker *shrinker;
210
211 #ifdef CONFIG_ZSMALLOC_STAT
212 struct dentry *stat_dentry;
213 #endif
214 #ifdef CONFIG_COMPACTION
215 struct work_struct free_work;
216 #endif
217 /* protect zspage migration/compaction */
218 rwlock_t lock;
219 atomic_t compaction_in_progress;
220 };
221
zpdesc_set_first(struct zpdesc * zpdesc)222 static inline void zpdesc_set_first(struct zpdesc *zpdesc)
223 {
224 SetPagePrivate(zpdesc_page(zpdesc));
225 }
226
zpdesc_inc_zone_page_state(struct zpdesc * zpdesc)227 static inline void zpdesc_inc_zone_page_state(struct zpdesc *zpdesc)
228 {
229 inc_zone_page_state(zpdesc_page(zpdesc), NR_ZSPAGES);
230 }
231
zpdesc_dec_zone_page_state(struct zpdesc * zpdesc)232 static inline void zpdesc_dec_zone_page_state(struct zpdesc *zpdesc)
233 {
234 dec_zone_page_state(zpdesc_page(zpdesc), NR_ZSPAGES);
235 }
236
alloc_zpdesc(gfp_t gfp,const int nid)237 static inline struct zpdesc *alloc_zpdesc(gfp_t gfp, const int nid)
238 {
239 struct page *page = alloc_pages_node(nid, gfp, 0);
240
241 return page_zpdesc(page);
242 }
243
free_zpdesc(struct zpdesc * zpdesc)244 static inline void free_zpdesc(struct zpdesc *zpdesc)
245 {
246 struct page *page = zpdesc_page(zpdesc);
247
248 /* PageZsmalloc is sticky until the page is freed to the buddy. */
249 __free_page(page);
250 }
251
252 #define ZS_PAGE_UNLOCKED 0
253 #define ZS_PAGE_WRLOCKED -1
254
255 struct zspage_lock {
256 spinlock_t lock;
257 int cnt;
258 struct lockdep_map dep_map;
259 };
260
261 struct zspage {
262 struct {
263 unsigned int huge:HUGE_BITS;
264 unsigned int fullness:FULLNESS_BITS;
265 unsigned int class:CLASS_BITS + 1;
266 unsigned int magic:MAGIC_VAL_BITS;
267 };
268 unsigned int inuse;
269 unsigned int freeobj;
270 struct zpdesc *first_zpdesc;
271 struct list_head list; /* fullness list */
272 struct zs_pool *pool;
273 struct zspage_lock zsl;
274 };
275
zspage_lock_init(struct zspage * zspage)276 static void zspage_lock_init(struct zspage *zspage)
277 {
278 static struct lock_class_key __key;
279 struct zspage_lock *zsl = &zspage->zsl;
280
281 lockdep_init_map(&zsl->dep_map, "zspage->lock", &__key, 0);
282 spin_lock_init(&zsl->lock);
283 zsl->cnt = ZS_PAGE_UNLOCKED;
284 }
285
286 /*
287 * The zspage lock can be held from atomic contexts, but it needs to remain
288 * preemptible when held for reading because it remains held outside of those
289 * atomic contexts, otherwise we unnecessarily lose preemptibility.
290 *
291 * To achieve this, the following rules are enforced on readers and writers:
292 *
293 * - Writers are blocked by both writers and readers, while readers are only
294 * blocked by writers (i.e. normal rwlock semantics).
295 *
296 * - Writers are always atomic (to allow readers to spin waiting for them).
297 *
298 * - Writers always use trylock (as the lock may be held be sleeping readers).
299 *
300 * - Readers may spin on the lock (as they can only wait for atomic writers).
301 *
302 * - Readers may sleep while holding the lock (as writes only use trylock).
303 */
zspage_read_lock(struct zspage * zspage)304 static void zspage_read_lock(struct zspage *zspage)
305 {
306 struct zspage_lock *zsl = &zspage->zsl;
307
308 rwsem_acquire_read(&zsl->dep_map, 0, 0, _RET_IP_);
309
310 spin_lock(&zsl->lock);
311 zsl->cnt++;
312 spin_unlock(&zsl->lock);
313
314 lock_acquired(&zsl->dep_map, _RET_IP_);
315 }
316
zspage_read_unlock(struct zspage * zspage)317 static void zspage_read_unlock(struct zspage *zspage)
318 {
319 struct zspage_lock *zsl = &zspage->zsl;
320
321 rwsem_release(&zsl->dep_map, _RET_IP_);
322
323 spin_lock(&zsl->lock);
324 zsl->cnt--;
325 spin_unlock(&zsl->lock);
326 }
327
zspage_write_trylock(struct zspage * zspage)328 static __must_check bool zspage_write_trylock(struct zspage *zspage)
329 {
330 struct zspage_lock *zsl = &zspage->zsl;
331
332 spin_lock(&zsl->lock);
333 if (zsl->cnt == ZS_PAGE_UNLOCKED) {
334 zsl->cnt = ZS_PAGE_WRLOCKED;
335 rwsem_acquire(&zsl->dep_map, 0, 1, _RET_IP_);
336 lock_acquired(&zsl->dep_map, _RET_IP_);
337 return true;
338 }
339
340 spin_unlock(&zsl->lock);
341 return false;
342 }
343
zspage_write_unlock(struct zspage * zspage)344 static void zspage_write_unlock(struct zspage *zspage)
345 {
346 struct zspage_lock *zsl = &zspage->zsl;
347
348 rwsem_release(&zsl->dep_map, _RET_IP_);
349
350 zsl->cnt = ZS_PAGE_UNLOCKED;
351 spin_unlock(&zsl->lock);
352 }
353
354 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
SetZsHugePage(struct zspage * zspage)355 static void SetZsHugePage(struct zspage *zspage)
356 {
357 zspage->huge = 1;
358 }
359
ZsHugePage(struct zspage * zspage)360 static bool ZsHugePage(struct zspage *zspage)
361 {
362 return zspage->huge;
363 }
364
365 #ifdef CONFIG_COMPACTION
366 static void kick_deferred_free(struct zs_pool *pool);
367 static void init_deferred_free(struct zs_pool *pool);
368 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
369 #else
kick_deferred_free(struct zs_pool * pool)370 static void kick_deferred_free(struct zs_pool *pool) {}
init_deferred_free(struct zs_pool * pool)371 static void init_deferred_free(struct zs_pool *pool) {}
SetZsPageMovable(struct zs_pool * pool,struct zspage * zspage)372 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
373 #endif
374
cache_alloc_handle(gfp_t gfp)375 static unsigned long cache_alloc_handle(gfp_t gfp)
376 {
377 gfp = gfp & ~(__GFP_HIGHMEM | __GFP_MOVABLE);
378
379 return (unsigned long)kmem_cache_alloc(handle_cachep, gfp);
380 }
381
cache_free_handle(unsigned long handle)382 static void cache_free_handle(unsigned long handle)
383 {
384 kmem_cache_free(handle_cachep, (void *)handle);
385 }
386
cache_alloc_zspage(gfp_t gfp)387 static struct zspage *cache_alloc_zspage(gfp_t gfp)
388 {
389 gfp = gfp & ~(__GFP_HIGHMEM | __GFP_MOVABLE);
390
391 return kmem_cache_zalloc(zspage_cachep, gfp);
392 }
393
cache_free_zspage(struct zspage * zspage)394 static void cache_free_zspage(struct zspage *zspage)
395 {
396 kmem_cache_free(zspage_cachep, zspage);
397 }
398
399 /* class->lock(which owns the handle) synchronizes races */
record_obj(unsigned long handle,unsigned long obj)400 static void record_obj(unsigned long handle, unsigned long obj)
401 {
402 *(unsigned long *)handle = obj;
403 }
404
is_first_zpdesc(struct zpdesc * zpdesc)405 static inline bool __maybe_unused is_first_zpdesc(struct zpdesc *zpdesc)
406 {
407 return PagePrivate(zpdesc_page(zpdesc));
408 }
409
410 /* Protected by class->lock */
get_zspage_inuse(struct zspage * zspage)411 static inline int get_zspage_inuse(struct zspage *zspage)
412 {
413 return zspage->inuse;
414 }
415
mod_zspage_inuse(struct zspage * zspage,int val)416 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
417 {
418 zspage->inuse += val;
419 }
420
get_first_zpdesc(struct zspage * zspage)421 static struct zpdesc *get_first_zpdesc(struct zspage *zspage)
422 {
423 struct zpdesc *first_zpdesc = zspage->first_zpdesc;
424
425 VM_BUG_ON_PAGE(!is_first_zpdesc(first_zpdesc), zpdesc_page(first_zpdesc));
426 return first_zpdesc;
427 }
428
429 #define FIRST_OBJ_PAGE_TYPE_MASK 0xffffff
430
get_first_obj_offset(struct zpdesc * zpdesc)431 static inline unsigned int get_first_obj_offset(struct zpdesc *zpdesc)
432 {
433 VM_WARN_ON_ONCE(!PageZsmalloc(zpdesc_page(zpdesc)));
434 return zpdesc->first_obj_offset & FIRST_OBJ_PAGE_TYPE_MASK;
435 }
436
set_first_obj_offset(struct zpdesc * zpdesc,unsigned int offset)437 static inline void set_first_obj_offset(struct zpdesc *zpdesc, unsigned int offset)
438 {
439 /* With 24 bits available, we can support offsets into 16 MiB pages. */
440 BUILD_BUG_ON(PAGE_SIZE > SZ_16M);
441 VM_WARN_ON_ONCE(!PageZsmalloc(zpdesc_page(zpdesc)));
442 VM_WARN_ON_ONCE(offset & ~FIRST_OBJ_PAGE_TYPE_MASK);
443 zpdesc->first_obj_offset &= ~FIRST_OBJ_PAGE_TYPE_MASK;
444 zpdesc->first_obj_offset |= offset & FIRST_OBJ_PAGE_TYPE_MASK;
445 }
446
get_freeobj(struct zspage * zspage)447 static inline unsigned int get_freeobj(struct zspage *zspage)
448 {
449 return zspage->freeobj;
450 }
451
set_freeobj(struct zspage * zspage,unsigned int obj)452 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
453 {
454 zspage->freeobj = obj;
455 }
456
zspage_class(struct zs_pool * pool,struct zspage * zspage)457 static struct size_class *zspage_class(struct zs_pool *pool,
458 struct zspage *zspage)
459 {
460 return pool->size_class[zspage->class];
461 }
462
463 /*
464 * zsmalloc divides the pool into various size classes where each
465 * class maintains a list of zspages where each zspage is divided
466 * into equal sized chunks. Each allocation falls into one of these
467 * classes depending on its size. This function returns index of the
468 * size class which has chunk size big enough to hold the given size.
469 */
get_size_class_index(int size)470 static int get_size_class_index(int size)
471 {
472 int idx = 0;
473
474 if (likely(size > ZS_MIN_ALLOC_SIZE))
475 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
476 ZS_SIZE_CLASS_DELTA);
477
478 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
479 }
480
class_stat_add(struct size_class * class,int type,unsigned long cnt)481 static inline void class_stat_add(struct size_class *class, int type,
482 unsigned long cnt)
483 {
484 class->stats.objs[type] += cnt;
485 }
486
class_stat_sub(struct size_class * class,int type,unsigned long cnt)487 static inline void class_stat_sub(struct size_class *class, int type,
488 unsigned long cnt)
489 {
490 class->stats.objs[type] -= cnt;
491 }
492
class_stat_read(struct size_class * class,int type)493 static inline unsigned long class_stat_read(struct size_class *class, int type)
494 {
495 return class->stats.objs[type];
496 }
497
498 #ifdef CONFIG_ZSMALLOC_STAT
499
zs_stat_init(void)500 static void __init zs_stat_init(void)
501 {
502 if (!debugfs_initialized()) {
503 pr_warn("debugfs not available, stat dir not created\n");
504 return;
505 }
506
507 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
508 }
509
zs_stat_exit(void)510 static void __exit zs_stat_exit(void)
511 {
512 debugfs_remove_recursive(zs_stat_root);
513 }
514
515 static unsigned long zs_can_compact(struct size_class *class);
516
zs_stats_size_show(struct seq_file * s,void * v)517 static int zs_stats_size_show(struct seq_file *s, void *v)
518 {
519 int i, fg;
520 struct zs_pool *pool = s->private;
521 struct size_class *class;
522 int objs_per_zspage;
523 unsigned long obj_allocated, obj_used, pages_used, freeable;
524 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
525 unsigned long total_freeable = 0;
526 unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
527
528 seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
529 "class", "size", "10%", "20%", "30%", "40%",
530 "50%", "60%", "70%", "80%", "90%", "99%", "100%",
531 "obj_allocated", "obj_used", "pages_used",
532 "pages_per_zspage", "freeable");
533
534 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
535
536 class = pool->size_class[i];
537
538 if (class->index != i)
539 continue;
540
541 spin_lock(&class->lock);
542
543 seq_printf(s, " %5u %5u ", i, class->size);
544 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
545 inuse_totals[fg] += class_stat_read(class, fg);
546 seq_printf(s, "%9lu ", class_stat_read(class, fg));
547 }
548
549 obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
550 obj_used = class_stat_read(class, ZS_OBJS_INUSE);
551 freeable = zs_can_compact(class);
552 spin_unlock(&class->lock);
553
554 objs_per_zspage = class->objs_per_zspage;
555 pages_used = obj_allocated / objs_per_zspage *
556 class->pages_per_zspage;
557
558 seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
559 obj_allocated, obj_used, pages_used,
560 class->pages_per_zspage, freeable);
561
562 total_objs += obj_allocated;
563 total_used_objs += obj_used;
564 total_pages += pages_used;
565 total_freeable += freeable;
566 }
567
568 seq_puts(s, "\n");
569 seq_printf(s, " %5s %5s ", "Total", "");
570
571 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
572 seq_printf(s, "%9lu ", inuse_totals[fg]);
573
574 seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
575 total_objs, total_used_objs, total_pages, "",
576 total_freeable);
577
578 return 0;
579 }
580 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
581
zs_pool_stat_create(struct zs_pool * pool,const char * name)582 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
583 {
584 if (!zs_stat_root) {
585 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
586 return;
587 }
588
589 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
590
591 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
592 &zs_stats_size_fops);
593 }
594
zs_pool_stat_destroy(struct zs_pool * pool)595 static void zs_pool_stat_destroy(struct zs_pool *pool)
596 {
597 debugfs_remove_recursive(pool->stat_dentry);
598 }
599
600 #else /* CONFIG_ZSMALLOC_STAT */
zs_stat_init(void)601 static void __init zs_stat_init(void)
602 {
603 }
604
zs_stat_exit(void)605 static void __exit zs_stat_exit(void)
606 {
607 }
608
zs_pool_stat_create(struct zs_pool * pool,const char * name)609 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
610 {
611 }
612
zs_pool_stat_destroy(struct zs_pool * pool)613 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
614 {
615 }
616 #endif
617
618
619 /*
620 * For each size class, zspages are divided into different groups
621 * depending on their usage ratio. This function returns fullness
622 * status of the given page.
623 */
get_fullness_group(struct size_class * class,struct zspage * zspage)624 static int get_fullness_group(struct size_class *class, struct zspage *zspage)
625 {
626 int inuse, objs_per_zspage, ratio;
627
628 inuse = get_zspage_inuse(zspage);
629 objs_per_zspage = class->objs_per_zspage;
630
631 if (inuse == 0)
632 return ZS_INUSE_RATIO_0;
633 if (inuse == objs_per_zspage)
634 return ZS_INUSE_RATIO_100;
635
636 ratio = 100 * inuse / objs_per_zspage;
637 /*
638 * Take integer division into consideration: a page with one inuse
639 * object out of 127 possible, will end up having 0 usage ratio,
640 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
641 */
642 return ratio / 10 + 1;
643 }
644
645 /*
646 * Each size class maintains various freelists and zspages are assigned
647 * to one of these freelists based on the number of live objects they
648 * have. This functions inserts the given zspage into the freelist
649 * identified by <class, fullness_group>.
650 */
insert_zspage(struct size_class * class,struct zspage * zspage,int fullness)651 static void insert_zspage(struct size_class *class,
652 struct zspage *zspage,
653 int fullness)
654 {
655 class_stat_add(class, fullness, 1);
656 list_add(&zspage->list, &class->fullness_list[fullness]);
657 zspage->fullness = fullness;
658 }
659
660 /*
661 * This function removes the given zspage from the freelist identified
662 * by <class, fullness_group>.
663 */
remove_zspage(struct size_class * class,struct zspage * zspage)664 static void remove_zspage(struct size_class *class, struct zspage *zspage)
665 {
666 int fullness = zspage->fullness;
667
668 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
669
670 list_del_init(&zspage->list);
671 class_stat_sub(class, fullness, 1);
672 }
673
674 /*
675 * Each size class maintains zspages in different fullness groups depending
676 * on the number of live objects they contain. When allocating or freeing
677 * objects, the fullness status of the page can change, for instance, from
678 * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
679 * checks if such a status change has occurred for the given page and
680 * accordingly moves the page from the list of the old fullness group to that
681 * of the new fullness group.
682 */
fix_fullness_group(struct size_class * class,struct zspage * zspage)683 static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
684 {
685 int newfg;
686
687 newfg = get_fullness_group(class, zspage);
688 if (newfg == zspage->fullness)
689 goto out;
690
691 remove_zspage(class, zspage);
692 insert_zspage(class, zspage, newfg);
693 out:
694 return newfg;
695 }
696
get_zspage(struct zpdesc * zpdesc)697 static struct zspage *get_zspage(struct zpdesc *zpdesc)
698 {
699 struct zspage *zspage = zpdesc->zspage;
700
701 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
702 return zspage;
703 }
704
get_next_zpdesc(struct zpdesc * zpdesc)705 static struct zpdesc *get_next_zpdesc(struct zpdesc *zpdesc)
706 {
707 struct zspage *zspage = get_zspage(zpdesc);
708
709 if (unlikely(ZsHugePage(zspage)))
710 return NULL;
711
712 return zpdesc->next;
713 }
714
715 /**
716 * obj_to_location - get (<zpdesc>, <obj_idx>) from encoded object value
717 * @obj: the encoded object value
718 * @zpdesc: zpdesc object resides in zspage
719 * @obj_idx: object index
720 */
obj_to_location(unsigned long obj,struct zpdesc ** zpdesc,unsigned int * obj_idx)721 static void obj_to_location(unsigned long obj, struct zpdesc **zpdesc,
722 unsigned int *obj_idx)
723 {
724 *zpdesc = pfn_zpdesc(obj >> OBJ_INDEX_BITS);
725 *obj_idx = (obj & OBJ_INDEX_MASK);
726 }
727
obj_to_zpdesc(unsigned long obj,struct zpdesc ** zpdesc)728 static void obj_to_zpdesc(unsigned long obj, struct zpdesc **zpdesc)
729 {
730 *zpdesc = pfn_zpdesc(obj >> OBJ_INDEX_BITS);
731 }
732
733 /**
734 * location_to_obj - get obj value encoded from (<zpdesc>, <obj_idx>)
735 * @zpdesc: zpdesc object resides in zspage
736 * @obj_idx: object index
737 */
location_to_obj(struct zpdesc * zpdesc,unsigned int obj_idx)738 static unsigned long location_to_obj(struct zpdesc *zpdesc, unsigned int obj_idx)
739 {
740 unsigned long obj;
741
742 obj = zpdesc_pfn(zpdesc) << OBJ_INDEX_BITS;
743 obj |= obj_idx & OBJ_INDEX_MASK;
744
745 return obj;
746 }
747
handle_to_obj(unsigned long handle)748 static unsigned long handle_to_obj(unsigned long handle)
749 {
750 return *(unsigned long *)handle;
751 }
752
obj_allocated(struct zpdesc * zpdesc,void * obj,unsigned long * phandle)753 static inline bool obj_allocated(struct zpdesc *zpdesc, void *obj,
754 unsigned long *phandle)
755 {
756 unsigned long handle;
757 struct zspage *zspage = get_zspage(zpdesc);
758
759 if (unlikely(ZsHugePage(zspage))) {
760 VM_BUG_ON_PAGE(!is_first_zpdesc(zpdesc), zpdesc_page(zpdesc));
761 handle = zpdesc->handle;
762 } else
763 handle = *(unsigned long *)obj;
764
765 if (!(handle & OBJ_ALLOCATED_TAG))
766 return false;
767
768 /* Clear all tags before returning the handle */
769 *phandle = handle & ~OBJ_TAG_MASK;
770 return true;
771 }
772
reset_zpdesc(struct zpdesc * zpdesc)773 static void reset_zpdesc(struct zpdesc *zpdesc)
774 {
775 struct page *page = zpdesc_page(zpdesc);
776
777 ClearPagePrivate(page);
778 zpdesc->zspage = NULL;
779 zpdesc->next = NULL;
780 /* PageZsmalloc is sticky until the page is freed to the buddy. */
781 }
782
trylock_zspage(struct zspage * zspage)783 static int trylock_zspage(struct zspage *zspage)
784 {
785 struct zpdesc *cursor, *fail;
786
787 for (cursor = get_first_zpdesc(zspage); cursor != NULL; cursor =
788 get_next_zpdesc(cursor)) {
789 if (!zpdesc_trylock(cursor)) {
790 fail = cursor;
791 goto unlock;
792 }
793 }
794
795 return 1;
796 unlock:
797 for (cursor = get_first_zpdesc(zspage); cursor != fail; cursor =
798 get_next_zpdesc(cursor))
799 zpdesc_unlock(cursor);
800
801 return 0;
802 }
803
__free_zspage(struct zs_pool * pool,struct size_class * class,struct zspage * zspage)804 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
805 struct zspage *zspage)
806 {
807 struct zpdesc *zpdesc, *next;
808
809 assert_spin_locked(&class->lock);
810
811 VM_BUG_ON(get_zspage_inuse(zspage));
812 VM_BUG_ON(zspage->fullness != ZS_INUSE_RATIO_0);
813
814 next = zpdesc = get_first_zpdesc(zspage);
815 do {
816 VM_BUG_ON_PAGE(!zpdesc_is_locked(zpdesc), zpdesc_page(zpdesc));
817 next = get_next_zpdesc(zpdesc);
818 reset_zpdesc(zpdesc);
819 zpdesc_unlock(zpdesc);
820 zpdesc_dec_zone_page_state(zpdesc);
821 zpdesc_put(zpdesc);
822 zpdesc = next;
823 } while (zpdesc != NULL);
824
825 cache_free_zspage(zspage);
826
827 class_stat_sub(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
828 atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
829 }
830
free_zspage(struct zs_pool * pool,struct size_class * class,struct zspage * zspage)831 static void free_zspage(struct zs_pool *pool, struct size_class *class,
832 struct zspage *zspage)
833 {
834 VM_BUG_ON(get_zspage_inuse(zspage));
835 VM_BUG_ON(list_empty(&zspage->list));
836
837 /*
838 * Since zs_free couldn't be sleepable, this function cannot call
839 * lock_page. The page locks trylock_zspage got will be released
840 * by __free_zspage.
841 */
842 if (!trylock_zspage(zspage)) {
843 kick_deferred_free(pool);
844 return;
845 }
846
847 remove_zspage(class, zspage);
848 __free_zspage(pool, class, zspage);
849 }
850
851 /* Initialize a newly allocated zspage */
init_zspage(struct size_class * class,struct zspage * zspage)852 static void init_zspage(struct size_class *class, struct zspage *zspage)
853 {
854 unsigned int freeobj = 1;
855 unsigned long off = 0;
856 struct zpdesc *zpdesc = get_first_zpdesc(zspage);
857
858 while (zpdesc) {
859 struct zpdesc *next_zpdesc;
860 struct link_free *link;
861 void *vaddr;
862
863 set_first_obj_offset(zpdesc, off);
864
865 vaddr = kmap_local_zpdesc(zpdesc);
866 link = (struct link_free *)vaddr + off / sizeof(*link);
867
868 while ((off += class->size) < PAGE_SIZE) {
869 link->next = freeobj++ << OBJ_TAG_BITS;
870 link += class->size / sizeof(*link);
871 }
872
873 /*
874 * We now come to the last (full or partial) object on this
875 * page, which must point to the first object on the next
876 * page (if present)
877 */
878 next_zpdesc = get_next_zpdesc(zpdesc);
879 if (next_zpdesc) {
880 link->next = freeobj++ << OBJ_TAG_BITS;
881 } else {
882 /*
883 * Reset OBJ_TAG_BITS bit to last link to tell
884 * whether it's allocated object or not.
885 */
886 link->next = -1UL << OBJ_TAG_BITS;
887 }
888 kunmap_local(vaddr);
889 zpdesc = next_zpdesc;
890 off %= PAGE_SIZE;
891 }
892
893 set_freeobj(zspage, 0);
894 }
895
create_page_chain(struct size_class * class,struct zspage * zspage,struct zpdesc * zpdescs[])896 static void create_page_chain(struct size_class *class, struct zspage *zspage,
897 struct zpdesc *zpdescs[])
898 {
899 int i;
900 struct zpdesc *zpdesc;
901 struct zpdesc *prev_zpdesc = NULL;
902 int nr_zpdescs = class->pages_per_zspage;
903
904 /*
905 * Allocate individual pages and link them together as:
906 * 1. all pages are linked together using zpdesc->next
907 * 2. each sub-page point to zspage using zpdesc->zspage
908 *
909 * we set PG_private to identify the first zpdesc (i.e. no other zpdesc
910 * has this flag set).
911 */
912 for (i = 0; i < nr_zpdescs; i++) {
913 zpdesc = zpdescs[i];
914 zpdesc->zspage = zspage;
915 zpdesc->next = NULL;
916 if (i == 0) {
917 zspage->first_zpdesc = zpdesc;
918 zpdesc_set_first(zpdesc);
919 if (unlikely(class->objs_per_zspage == 1 &&
920 class->pages_per_zspage == 1))
921 SetZsHugePage(zspage);
922 } else {
923 prev_zpdesc->next = zpdesc;
924 }
925 prev_zpdesc = zpdesc;
926 }
927 }
928
929 /*
930 * Allocate a zspage for the given size class
931 */
alloc_zspage(struct zs_pool * pool,struct size_class * class,gfp_t gfp,const int nid)932 static struct zspage *alloc_zspage(struct zs_pool *pool,
933 struct size_class *class,
934 gfp_t gfp, const int nid)
935 {
936 int i;
937 struct zpdesc *zpdescs[ZS_MAX_PAGES_PER_ZSPAGE];
938 struct zspage *zspage = cache_alloc_zspage(gfp);
939
940 if (!zspage)
941 return NULL;
942
943 if (!IS_ENABLED(CONFIG_COMPACTION))
944 gfp &= ~__GFP_MOVABLE;
945
946 zspage->magic = ZSPAGE_MAGIC;
947 zspage->pool = pool;
948 zspage->class = class->index;
949 zspage_lock_init(zspage);
950
951 for (i = 0; i < class->pages_per_zspage; i++) {
952 struct zpdesc *zpdesc;
953
954 zpdesc = alloc_zpdesc(gfp, nid);
955 if (!zpdesc) {
956 while (--i >= 0) {
957 zpdesc_dec_zone_page_state(zpdescs[i]);
958 free_zpdesc(zpdescs[i]);
959 }
960 cache_free_zspage(zspage);
961 return NULL;
962 }
963 __zpdesc_set_zsmalloc(zpdesc);
964
965 zpdesc_inc_zone_page_state(zpdesc);
966 zpdescs[i] = zpdesc;
967 }
968
969 create_page_chain(class, zspage, zpdescs);
970 init_zspage(class, zspage);
971
972 return zspage;
973 }
974
find_get_zspage(struct size_class * class)975 static struct zspage *find_get_zspage(struct size_class *class)
976 {
977 int i;
978 struct zspage *zspage;
979
980 for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
981 zspage = list_first_entry_or_null(&class->fullness_list[i],
982 struct zspage, list);
983 if (zspage)
984 break;
985 }
986
987 return zspage;
988 }
989
can_merge(struct size_class * prev,int pages_per_zspage,int objs_per_zspage)990 static bool can_merge(struct size_class *prev, int pages_per_zspage,
991 int objs_per_zspage)
992 {
993 if (prev->pages_per_zspage == pages_per_zspage &&
994 prev->objs_per_zspage == objs_per_zspage)
995 return true;
996
997 return false;
998 }
999
zspage_full(struct size_class * class,struct zspage * zspage)1000 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1001 {
1002 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1003 }
1004
zspage_empty(struct zspage * zspage)1005 static bool zspage_empty(struct zspage *zspage)
1006 {
1007 return get_zspage_inuse(zspage) == 0;
1008 }
1009
1010 /**
1011 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1012 * that hold objects of the provided size.
1013 * @pool: zsmalloc pool to use
1014 * @size: object size
1015 *
1016 * Context: Any context.
1017 *
1018 * Return: the index of the zsmalloc &size_class that hold objects of the
1019 * provided size.
1020 */
zs_lookup_class_index(struct zs_pool * pool,unsigned int size)1021 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1022 {
1023 struct size_class *class;
1024
1025 class = pool->size_class[get_size_class_index(size)];
1026
1027 return class->index;
1028 }
1029 EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1030
zs_get_total_pages(struct zs_pool * pool)1031 unsigned long zs_get_total_pages(struct zs_pool *pool)
1032 {
1033 return atomic_long_read(&pool->pages_allocated);
1034 }
1035 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1036
zs_obj_read_begin(struct zs_pool * pool,unsigned long handle,size_t mem_len,void * local_copy)1037 void *zs_obj_read_begin(struct zs_pool *pool, unsigned long handle,
1038 size_t mem_len, void *local_copy)
1039 {
1040 struct zspage *zspage;
1041 struct zpdesc *zpdesc;
1042 unsigned long obj, off;
1043 unsigned int obj_idx;
1044 struct size_class *class;
1045 void *addr;
1046
1047 /* Guarantee we can get zspage from handle safely */
1048 read_lock(&pool->lock);
1049 obj = handle_to_obj(handle);
1050 obj_to_location(obj, &zpdesc, &obj_idx);
1051 zspage = get_zspage(zpdesc);
1052
1053 /* Make sure migration doesn't move any pages in this zspage */
1054 zspage_read_lock(zspage);
1055 read_unlock(&pool->lock);
1056
1057 class = zspage_class(pool, zspage);
1058 off = offset_in_page(class->size * obj_idx);
1059
1060 if (!ZsHugePage(zspage))
1061 off += ZS_HANDLE_SIZE;
1062
1063 if (off + mem_len <= PAGE_SIZE) {
1064 /* this object is contained entirely within a page */
1065 addr = kmap_local_zpdesc(zpdesc);
1066 addr += off;
1067 } else {
1068 size_t sizes[2];
1069
1070 /* this object spans two pages */
1071 sizes[0] = PAGE_SIZE - off;
1072 sizes[1] = mem_len - sizes[0];
1073 addr = local_copy;
1074
1075 memcpy_from_page(addr, zpdesc_page(zpdesc),
1076 off, sizes[0]);
1077 zpdesc = get_next_zpdesc(zpdesc);
1078 memcpy_from_page(addr + sizes[0],
1079 zpdesc_page(zpdesc),
1080 0, sizes[1]);
1081 }
1082
1083 return addr;
1084 }
1085 EXPORT_SYMBOL_GPL(zs_obj_read_begin);
1086
zs_obj_read_end(struct zs_pool * pool,unsigned long handle,size_t mem_len,void * handle_mem)1087 void zs_obj_read_end(struct zs_pool *pool, unsigned long handle,
1088 size_t mem_len, void *handle_mem)
1089 {
1090 struct zspage *zspage;
1091 struct zpdesc *zpdesc;
1092 unsigned long obj, off;
1093 unsigned int obj_idx;
1094 struct size_class *class;
1095
1096 obj = handle_to_obj(handle);
1097 obj_to_location(obj, &zpdesc, &obj_idx);
1098 zspage = get_zspage(zpdesc);
1099 class = zspage_class(pool, zspage);
1100 off = offset_in_page(class->size * obj_idx);
1101
1102 if (!ZsHugePage(zspage))
1103 off += ZS_HANDLE_SIZE;
1104
1105 if (off + mem_len <= PAGE_SIZE) {
1106 handle_mem -= off;
1107 kunmap_local(handle_mem);
1108 }
1109
1110 zspage_read_unlock(zspage);
1111 }
1112 EXPORT_SYMBOL_GPL(zs_obj_read_end);
1113
zs_obj_read_sg_begin(struct zs_pool * pool,unsigned long handle,struct scatterlist * sg,size_t mem_len)1114 void zs_obj_read_sg_begin(struct zs_pool *pool, unsigned long handle,
1115 struct scatterlist *sg, size_t mem_len)
1116 {
1117 struct zspage *zspage;
1118 struct zpdesc *zpdesc;
1119 unsigned long obj, off;
1120 unsigned int obj_idx;
1121 struct size_class *class;
1122
1123 /* Guarantee we can get zspage from handle safely */
1124 read_lock(&pool->lock);
1125 obj = handle_to_obj(handle);
1126 obj_to_location(obj, &zpdesc, &obj_idx);
1127 zspage = get_zspage(zpdesc);
1128
1129 /* Make sure migration doesn't move any pages in this zspage */
1130 zspage_read_lock(zspage);
1131 read_unlock(&pool->lock);
1132
1133 class = zspage_class(pool, zspage);
1134 off = offset_in_page(class->size * obj_idx);
1135
1136 if (!ZsHugePage(zspage))
1137 off += ZS_HANDLE_SIZE;
1138
1139 if (off + mem_len <= PAGE_SIZE) {
1140 /* this object is contained entirely within a page */
1141 sg_init_table(sg, 1);
1142 sg_set_page(sg, zpdesc_page(zpdesc), mem_len, off);
1143 } else {
1144 size_t sizes[2];
1145
1146 /* this object spans two pages */
1147 sizes[0] = PAGE_SIZE - off;
1148 sizes[1] = mem_len - sizes[0];
1149
1150 sg_init_table(sg, 2);
1151 sg_set_page(sg, zpdesc_page(zpdesc), sizes[0], off);
1152
1153 zpdesc = get_next_zpdesc(zpdesc);
1154 sg = sg_next(sg);
1155
1156 sg_set_page(sg, zpdesc_page(zpdesc), sizes[1], 0);
1157 }
1158 }
1159 EXPORT_SYMBOL_GPL(zs_obj_read_sg_begin);
1160
zs_obj_read_sg_end(struct zs_pool * pool,unsigned long handle)1161 void zs_obj_read_sg_end(struct zs_pool *pool, unsigned long handle)
1162 {
1163 struct zspage *zspage;
1164 struct zpdesc *zpdesc;
1165 unsigned long obj;
1166 unsigned int obj_idx;
1167
1168 obj = handle_to_obj(handle);
1169 obj_to_location(obj, &zpdesc, &obj_idx);
1170 zspage = get_zspage(zpdesc);
1171
1172 zspage_read_unlock(zspage);
1173 }
1174 EXPORT_SYMBOL_GPL(zs_obj_read_sg_end);
1175
zs_obj_write(struct zs_pool * pool,unsigned long handle,void * handle_mem,size_t mem_len)1176 void zs_obj_write(struct zs_pool *pool, unsigned long handle,
1177 void *handle_mem, size_t mem_len)
1178 {
1179 struct zspage *zspage;
1180 struct zpdesc *zpdesc;
1181 unsigned long obj, off;
1182 unsigned int obj_idx;
1183 struct size_class *class;
1184
1185 /* Guarantee we can get zspage from handle safely */
1186 read_lock(&pool->lock);
1187 obj = handle_to_obj(handle);
1188 obj_to_location(obj, &zpdesc, &obj_idx);
1189 zspage = get_zspage(zpdesc);
1190
1191 /* Make sure migration doesn't move any pages in this zspage */
1192 zspage_read_lock(zspage);
1193 read_unlock(&pool->lock);
1194
1195 class = zspage_class(pool, zspage);
1196 off = offset_in_page(class->size * obj_idx);
1197
1198 if (!ZsHugePage(zspage))
1199 off += ZS_HANDLE_SIZE;
1200
1201 if (off + mem_len <= PAGE_SIZE) {
1202 /* this object is contained entirely within a page */
1203 void *dst = kmap_local_zpdesc(zpdesc);
1204
1205 memcpy(dst + off, handle_mem, mem_len);
1206 kunmap_local(dst);
1207 } else {
1208 /* this object spans two pages */
1209 size_t sizes[2];
1210
1211 sizes[0] = PAGE_SIZE - off;
1212 sizes[1] = mem_len - sizes[0];
1213
1214 memcpy_to_page(zpdesc_page(zpdesc), off,
1215 handle_mem, sizes[0]);
1216 zpdesc = get_next_zpdesc(zpdesc);
1217 memcpy_to_page(zpdesc_page(zpdesc), 0,
1218 handle_mem + sizes[0], sizes[1]);
1219 }
1220
1221 zspage_read_unlock(zspage);
1222 }
1223 EXPORT_SYMBOL_GPL(zs_obj_write);
1224
1225 /**
1226 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1227 * zsmalloc &size_class.
1228 * @pool: zsmalloc pool to use
1229 *
1230 * The function returns the size of the first huge class - any object of equal
1231 * or bigger size will be stored in zspage consisting of a single physical
1232 * page.
1233 *
1234 * Context: Any context.
1235 *
1236 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1237 */
zs_huge_class_size(struct zs_pool * pool)1238 size_t zs_huge_class_size(struct zs_pool *pool)
1239 {
1240 return huge_class_size;
1241 }
1242 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1243
obj_malloc(struct zs_pool * pool,struct zspage * zspage,unsigned long handle)1244 static unsigned long obj_malloc(struct zs_pool *pool,
1245 struct zspage *zspage, unsigned long handle)
1246 {
1247 int i, nr_zpdesc, offset;
1248 unsigned long obj;
1249 struct link_free *link;
1250 struct size_class *class;
1251
1252 struct zpdesc *m_zpdesc;
1253 unsigned long m_offset;
1254 void *vaddr;
1255
1256 class = pool->size_class[zspage->class];
1257 obj = get_freeobj(zspage);
1258
1259 offset = obj * class->size;
1260 nr_zpdesc = offset >> PAGE_SHIFT;
1261 m_offset = offset_in_page(offset);
1262 m_zpdesc = get_first_zpdesc(zspage);
1263
1264 for (i = 0; i < nr_zpdesc; i++)
1265 m_zpdesc = get_next_zpdesc(m_zpdesc);
1266
1267 vaddr = kmap_local_zpdesc(m_zpdesc);
1268 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1269 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1270 if (likely(!ZsHugePage(zspage)))
1271 /* record handle in the header of allocated chunk */
1272 link->handle = handle | OBJ_ALLOCATED_TAG;
1273 else
1274 zspage->first_zpdesc->handle = handle | OBJ_ALLOCATED_TAG;
1275
1276 kunmap_local(vaddr);
1277 mod_zspage_inuse(zspage, 1);
1278
1279 obj = location_to_obj(m_zpdesc, obj);
1280 record_obj(handle, obj);
1281
1282 return obj;
1283 }
1284
1285
1286 /**
1287 * zs_malloc - Allocate block of given size from pool.
1288 * @pool: pool to allocate from
1289 * @size: size of block to allocate
1290 * @gfp: gfp flags when allocating object
1291 * @nid: The preferred node id to allocate new zspage (if needed)
1292 *
1293 * On success, handle to the allocated object is returned,
1294 * otherwise an ERR_PTR().
1295 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1296 */
zs_malloc(struct zs_pool * pool,size_t size,gfp_t gfp,const int nid)1297 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp,
1298 const int nid)
1299 {
1300 unsigned long handle;
1301 struct size_class *class;
1302 int newfg;
1303 struct zspage *zspage;
1304
1305 if (unlikely(!size))
1306 return (unsigned long)ERR_PTR(-EINVAL);
1307
1308 if (unlikely(size > ZS_MAX_ALLOC_SIZE))
1309 return (unsigned long)ERR_PTR(-ENOSPC);
1310
1311 handle = cache_alloc_handle(gfp);
1312 if (!handle)
1313 return (unsigned long)ERR_PTR(-ENOMEM);
1314
1315 /* extra space in chunk to keep the handle */
1316 size += ZS_HANDLE_SIZE;
1317 class = pool->size_class[get_size_class_index(size)];
1318
1319 /* class->lock effectively protects the zpage migration */
1320 spin_lock(&class->lock);
1321 zspage = find_get_zspage(class);
1322 if (likely(zspage)) {
1323 obj_malloc(pool, zspage, handle);
1324 /* Now move the zspage to another fullness group, if required */
1325 fix_fullness_group(class, zspage);
1326 class_stat_add(class, ZS_OBJS_INUSE, 1);
1327
1328 goto out;
1329 }
1330
1331 spin_unlock(&class->lock);
1332
1333 zspage = alloc_zspage(pool, class, gfp, nid);
1334 if (!zspage) {
1335 cache_free_handle(handle);
1336 return (unsigned long)ERR_PTR(-ENOMEM);
1337 }
1338
1339 spin_lock(&class->lock);
1340 obj_malloc(pool, zspage, handle);
1341 newfg = get_fullness_group(class, zspage);
1342 insert_zspage(class, zspage, newfg);
1343 atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
1344 class_stat_add(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
1345 class_stat_add(class, ZS_OBJS_INUSE, 1);
1346
1347 /* We completely set up zspage so mark them as movable */
1348 SetZsPageMovable(pool, zspage);
1349 out:
1350 spin_unlock(&class->lock);
1351
1352 return handle;
1353 }
1354 EXPORT_SYMBOL_GPL(zs_malloc);
1355
obj_free(int class_size,unsigned long obj)1356 static void obj_free(int class_size, unsigned long obj)
1357 {
1358 struct link_free *link;
1359 struct zspage *zspage;
1360 struct zpdesc *f_zpdesc;
1361 unsigned long f_offset;
1362 unsigned int f_objidx;
1363 void *vaddr;
1364
1365
1366 obj_to_location(obj, &f_zpdesc, &f_objidx);
1367 f_offset = offset_in_page(class_size * f_objidx);
1368 zspage = get_zspage(f_zpdesc);
1369
1370 vaddr = kmap_local_zpdesc(f_zpdesc);
1371 link = (struct link_free *)(vaddr + f_offset);
1372
1373 /* Insert this object in containing zspage's freelist */
1374 if (likely(!ZsHugePage(zspage)))
1375 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1376 else
1377 f_zpdesc->handle = 0;
1378 set_freeobj(zspage, f_objidx);
1379
1380 kunmap_local(vaddr);
1381 mod_zspage_inuse(zspage, -1);
1382 }
1383
zs_free(struct zs_pool * pool,unsigned long handle)1384 void zs_free(struct zs_pool *pool, unsigned long handle)
1385 {
1386 struct zspage *zspage;
1387 struct zpdesc *f_zpdesc;
1388 unsigned long obj;
1389 struct size_class *class;
1390 int fullness;
1391
1392 if (IS_ERR_OR_NULL((void *)handle))
1393 return;
1394
1395 /*
1396 * The pool->lock protects the race with zpage's migration
1397 * so it's safe to get the page from handle.
1398 */
1399 read_lock(&pool->lock);
1400 obj = handle_to_obj(handle);
1401 obj_to_zpdesc(obj, &f_zpdesc);
1402 zspage = get_zspage(f_zpdesc);
1403 class = zspage_class(pool, zspage);
1404 spin_lock(&class->lock);
1405 read_unlock(&pool->lock);
1406
1407 class_stat_sub(class, ZS_OBJS_INUSE, 1);
1408 obj_free(class->size, obj);
1409
1410 fullness = fix_fullness_group(class, zspage);
1411 if (fullness == ZS_INUSE_RATIO_0)
1412 free_zspage(pool, class, zspage);
1413
1414 spin_unlock(&class->lock);
1415 cache_free_handle(handle);
1416 }
1417 EXPORT_SYMBOL_GPL(zs_free);
1418
zs_object_copy(struct size_class * class,unsigned long dst,unsigned long src)1419 static void zs_object_copy(struct size_class *class, unsigned long dst,
1420 unsigned long src)
1421 {
1422 struct zpdesc *s_zpdesc, *d_zpdesc;
1423 unsigned int s_objidx, d_objidx;
1424 unsigned long s_off, d_off;
1425 void *s_addr, *d_addr;
1426 int s_size, d_size, size;
1427 int written = 0;
1428
1429 s_size = d_size = class->size;
1430
1431 obj_to_location(src, &s_zpdesc, &s_objidx);
1432 obj_to_location(dst, &d_zpdesc, &d_objidx);
1433
1434 s_off = offset_in_page(class->size * s_objidx);
1435 d_off = offset_in_page(class->size * d_objidx);
1436
1437 if (s_off + class->size > PAGE_SIZE)
1438 s_size = PAGE_SIZE - s_off;
1439
1440 if (d_off + class->size > PAGE_SIZE)
1441 d_size = PAGE_SIZE - d_off;
1442
1443 s_addr = kmap_local_zpdesc(s_zpdesc);
1444 d_addr = kmap_local_zpdesc(d_zpdesc);
1445
1446 while (1) {
1447 size = min(s_size, d_size);
1448 memcpy(d_addr + d_off, s_addr + s_off, size);
1449 written += size;
1450
1451 if (written == class->size)
1452 break;
1453
1454 s_off += size;
1455 s_size -= size;
1456 d_off += size;
1457 d_size -= size;
1458
1459 /*
1460 * Calling kunmap_local(d_addr) is necessary. kunmap_local()
1461 * calls must occurs in reverse order of calls to kmap_local_page().
1462 * So, to call kunmap_local(s_addr) we should first call
1463 * kunmap_local(d_addr). For more details see
1464 * Documentation/mm/highmem.rst.
1465 */
1466 if (s_off >= PAGE_SIZE) {
1467 kunmap_local(d_addr);
1468 kunmap_local(s_addr);
1469 s_zpdesc = get_next_zpdesc(s_zpdesc);
1470 s_addr = kmap_local_zpdesc(s_zpdesc);
1471 d_addr = kmap_local_zpdesc(d_zpdesc);
1472 s_size = class->size - written;
1473 s_off = 0;
1474 }
1475
1476 if (d_off >= PAGE_SIZE) {
1477 kunmap_local(d_addr);
1478 d_zpdesc = get_next_zpdesc(d_zpdesc);
1479 d_addr = kmap_local_zpdesc(d_zpdesc);
1480 d_size = class->size - written;
1481 d_off = 0;
1482 }
1483 }
1484
1485 kunmap_local(d_addr);
1486 kunmap_local(s_addr);
1487 }
1488
1489 /*
1490 * Find alloced object in zspage from index object and
1491 * return handle.
1492 */
find_alloced_obj(struct size_class * class,struct zpdesc * zpdesc,int * obj_idx)1493 static unsigned long find_alloced_obj(struct size_class *class,
1494 struct zpdesc *zpdesc, int *obj_idx)
1495 {
1496 unsigned int offset;
1497 int index = *obj_idx;
1498 unsigned long handle = 0;
1499 void *addr = kmap_local_zpdesc(zpdesc);
1500
1501 offset = get_first_obj_offset(zpdesc);
1502 offset += class->size * index;
1503
1504 while (offset < PAGE_SIZE) {
1505 if (obj_allocated(zpdesc, addr + offset, &handle))
1506 break;
1507
1508 offset += class->size;
1509 index++;
1510 }
1511
1512 kunmap_local(addr);
1513
1514 *obj_idx = index;
1515
1516 return handle;
1517 }
1518
migrate_zspage(struct zs_pool * pool,struct zspage * src_zspage,struct zspage * dst_zspage)1519 static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage,
1520 struct zspage *dst_zspage)
1521 {
1522 unsigned long used_obj, free_obj;
1523 unsigned long handle;
1524 int obj_idx = 0;
1525 struct zpdesc *s_zpdesc = get_first_zpdesc(src_zspage);
1526 struct size_class *class = pool->size_class[src_zspage->class];
1527
1528 while (1) {
1529 handle = find_alloced_obj(class, s_zpdesc, &obj_idx);
1530 if (!handle) {
1531 s_zpdesc = get_next_zpdesc(s_zpdesc);
1532 if (!s_zpdesc)
1533 break;
1534 obj_idx = 0;
1535 continue;
1536 }
1537
1538 used_obj = handle_to_obj(handle);
1539 free_obj = obj_malloc(pool, dst_zspage, handle);
1540 zs_object_copy(class, free_obj, used_obj);
1541 obj_idx++;
1542 obj_free(class->size, used_obj);
1543
1544 /* Stop if there is no more space */
1545 if (zspage_full(class, dst_zspage))
1546 break;
1547
1548 /* Stop if there are no more objects to migrate */
1549 if (zspage_empty(src_zspage))
1550 break;
1551 }
1552 }
1553
isolate_src_zspage(struct size_class * class)1554 static struct zspage *isolate_src_zspage(struct size_class *class)
1555 {
1556 struct zspage *zspage;
1557 int fg;
1558
1559 for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
1560 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1561 struct zspage, list);
1562 if (zspage) {
1563 remove_zspage(class, zspage);
1564 return zspage;
1565 }
1566 }
1567
1568 return zspage;
1569 }
1570
isolate_dst_zspage(struct size_class * class)1571 static struct zspage *isolate_dst_zspage(struct size_class *class)
1572 {
1573 struct zspage *zspage;
1574 int fg;
1575
1576 for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
1577 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1578 struct zspage, list);
1579 if (zspage) {
1580 remove_zspage(class, zspage);
1581 return zspage;
1582 }
1583 }
1584
1585 return zspage;
1586 }
1587
1588 /*
1589 * putback_zspage - add @zspage into right class's fullness list
1590 * @class: destination class
1591 * @zspage: target page
1592 *
1593 * Return @zspage's fullness status
1594 */
putback_zspage(struct size_class * class,struct zspage * zspage)1595 static int putback_zspage(struct size_class *class, struct zspage *zspage)
1596 {
1597 int fullness;
1598
1599 fullness = get_fullness_group(class, zspage);
1600 insert_zspage(class, zspage, fullness);
1601
1602 return fullness;
1603 }
1604
1605 #ifdef CONFIG_COMPACTION
1606 /*
1607 * To prevent zspage destroy during migration, zspage freeing should
1608 * hold locks of all pages in the zspage.
1609 */
lock_zspage(struct zspage * zspage)1610 static void lock_zspage(struct zspage *zspage)
1611 {
1612 struct zpdesc *curr_zpdesc, *zpdesc;
1613
1614 /*
1615 * Pages we haven't locked yet can be migrated off the list while we're
1616 * trying to lock them, so we need to be careful and only attempt to
1617 * lock each page under zspage_read_lock(). Otherwise, the page we lock
1618 * may no longer belong to the zspage. This means that we may wait for
1619 * the wrong page to unlock, so we must take a reference to the page
1620 * prior to waiting for it to unlock outside zspage_read_lock().
1621 */
1622 while (1) {
1623 zspage_read_lock(zspage);
1624 zpdesc = get_first_zpdesc(zspage);
1625 if (zpdesc_trylock(zpdesc))
1626 break;
1627 zpdesc_get(zpdesc);
1628 zspage_read_unlock(zspage);
1629 zpdesc_wait_locked(zpdesc);
1630 zpdesc_put(zpdesc);
1631 }
1632
1633 curr_zpdesc = zpdesc;
1634 while ((zpdesc = get_next_zpdesc(curr_zpdesc))) {
1635 if (zpdesc_trylock(zpdesc)) {
1636 curr_zpdesc = zpdesc;
1637 } else {
1638 zpdesc_get(zpdesc);
1639 zspage_read_unlock(zspage);
1640 zpdesc_wait_locked(zpdesc);
1641 zpdesc_put(zpdesc);
1642 zspage_read_lock(zspage);
1643 }
1644 }
1645 zspage_read_unlock(zspage);
1646 }
1647 #endif /* CONFIG_COMPACTION */
1648
1649 #ifdef CONFIG_COMPACTION
1650
replace_sub_page(struct size_class * class,struct zspage * zspage,struct zpdesc * newzpdesc,struct zpdesc * oldzpdesc)1651 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1652 struct zpdesc *newzpdesc, struct zpdesc *oldzpdesc)
1653 {
1654 struct zpdesc *zpdesc;
1655 struct zpdesc *zpdescs[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1656 unsigned int first_obj_offset;
1657 int idx = 0;
1658
1659 zpdesc = get_first_zpdesc(zspage);
1660 do {
1661 if (zpdesc == oldzpdesc)
1662 zpdescs[idx] = newzpdesc;
1663 else
1664 zpdescs[idx] = zpdesc;
1665 idx++;
1666 } while ((zpdesc = get_next_zpdesc(zpdesc)) != NULL);
1667
1668 create_page_chain(class, zspage, zpdescs);
1669 first_obj_offset = get_first_obj_offset(oldzpdesc);
1670 set_first_obj_offset(newzpdesc, first_obj_offset);
1671 if (unlikely(ZsHugePage(zspage)))
1672 newzpdesc->handle = oldzpdesc->handle;
1673 __zpdesc_set_movable(newzpdesc);
1674 }
1675
zs_page_isolate(struct page * page,isolate_mode_t mode)1676 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1677 {
1678 /*
1679 * Page is locked so zspage can't be destroyed concurrently
1680 * (see free_zspage()). But if the page was already destroyed
1681 * (see reset_zpdesc()), refuse isolation here.
1682 */
1683 return page_zpdesc(page)->zspage;
1684 }
1685
zs_page_migrate(struct page * newpage,struct page * page,enum migrate_mode mode)1686 static int zs_page_migrate(struct page *newpage, struct page *page,
1687 enum migrate_mode mode)
1688 {
1689 struct zs_pool *pool;
1690 struct size_class *class;
1691 struct zspage *zspage;
1692 struct zpdesc *dummy;
1693 struct zpdesc *newzpdesc = page_zpdesc(newpage);
1694 struct zpdesc *zpdesc = page_zpdesc(page);
1695 void *s_addr, *d_addr, *addr;
1696 unsigned int offset;
1697 unsigned long handle;
1698 unsigned long old_obj, new_obj;
1699 unsigned int obj_idx;
1700
1701 /*
1702 * TODO: nothing prevents a zspage from getting destroyed while
1703 * it is isolated for migration, as the page lock is temporarily
1704 * dropped after zs_page_isolate() succeeded: we should rework that
1705 * and defer destroying such pages once they are un-isolated (putback)
1706 * instead.
1707 */
1708 if (!zpdesc->zspage)
1709 return 0;
1710
1711 /* The page is locked, so this pointer must remain valid */
1712 zspage = get_zspage(zpdesc);
1713 pool = zspage->pool;
1714
1715 /*
1716 * The pool migrate_lock protects the race between zpage migration
1717 * and zs_free.
1718 */
1719 write_lock(&pool->lock);
1720 class = zspage_class(pool, zspage);
1721
1722 /*
1723 * the class lock protects zpage alloc/free in the zspage.
1724 */
1725 spin_lock(&class->lock);
1726 /* the zspage write_lock protects zpage access via zs_obj_read/write() */
1727 if (!zspage_write_trylock(zspage)) {
1728 spin_unlock(&class->lock);
1729 write_unlock(&pool->lock);
1730 return -EINVAL;
1731 }
1732
1733 /* We're committed, tell the world that this is a Zsmalloc page. */
1734 __zpdesc_set_zsmalloc(newzpdesc);
1735
1736 offset = get_first_obj_offset(zpdesc);
1737 s_addr = kmap_local_zpdesc(zpdesc);
1738
1739 /*
1740 * Here, any user cannot access all objects in the zspage so let's move.
1741 */
1742 d_addr = kmap_local_zpdesc(newzpdesc);
1743 copy_page(d_addr, s_addr);
1744 kunmap_local(d_addr);
1745
1746 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1747 addr += class->size) {
1748 if (obj_allocated(zpdesc, addr, &handle)) {
1749
1750 old_obj = handle_to_obj(handle);
1751 obj_to_location(old_obj, &dummy, &obj_idx);
1752 new_obj = (unsigned long)location_to_obj(newzpdesc, obj_idx);
1753 record_obj(handle, new_obj);
1754 }
1755 }
1756 kunmap_local(s_addr);
1757
1758 replace_sub_page(class, zspage, newzpdesc, zpdesc);
1759 /*
1760 * Since we complete the data copy and set up new zspage structure,
1761 * it's okay to release migration_lock.
1762 */
1763 write_unlock(&pool->lock);
1764 spin_unlock(&class->lock);
1765 zspage_write_unlock(zspage);
1766
1767 zpdesc_get(newzpdesc);
1768 if (zpdesc_zone(newzpdesc) != zpdesc_zone(zpdesc)) {
1769 zpdesc_dec_zone_page_state(zpdesc);
1770 zpdesc_inc_zone_page_state(newzpdesc);
1771 }
1772
1773 reset_zpdesc(zpdesc);
1774 zpdesc_put(zpdesc);
1775
1776 return 0;
1777 }
1778
zs_page_putback(struct page * page)1779 static void zs_page_putback(struct page *page)
1780 {
1781 }
1782
1783 const struct movable_operations zsmalloc_mops = {
1784 .isolate_page = zs_page_isolate,
1785 .migrate_page = zs_page_migrate,
1786 .putback_page = zs_page_putback,
1787 };
1788
1789 /*
1790 * Caller should hold page_lock of all pages in the zspage
1791 * In here, we cannot use zspage meta data.
1792 */
async_free_zspage(struct work_struct * work)1793 static void async_free_zspage(struct work_struct *work)
1794 {
1795 int i;
1796 struct size_class *class;
1797 struct zspage *zspage, *tmp;
1798 LIST_HEAD(free_pages);
1799 struct zs_pool *pool = container_of(work, struct zs_pool,
1800 free_work);
1801
1802 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1803 class = pool->size_class[i];
1804 if (class->index != i)
1805 continue;
1806
1807 spin_lock(&class->lock);
1808 list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
1809 &free_pages);
1810 spin_unlock(&class->lock);
1811 }
1812
1813 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1814 list_del(&zspage->list);
1815 lock_zspage(zspage);
1816
1817 class = zspage_class(pool, zspage);
1818 spin_lock(&class->lock);
1819 class_stat_sub(class, ZS_INUSE_RATIO_0, 1);
1820 __free_zspage(pool, class, zspage);
1821 spin_unlock(&class->lock);
1822 }
1823 };
1824
kick_deferred_free(struct zs_pool * pool)1825 static void kick_deferred_free(struct zs_pool *pool)
1826 {
1827 schedule_work(&pool->free_work);
1828 }
1829
zs_flush_migration(struct zs_pool * pool)1830 static void zs_flush_migration(struct zs_pool *pool)
1831 {
1832 flush_work(&pool->free_work);
1833 }
1834
init_deferred_free(struct zs_pool * pool)1835 static void init_deferred_free(struct zs_pool *pool)
1836 {
1837 INIT_WORK(&pool->free_work, async_free_zspage);
1838 }
1839
SetZsPageMovable(struct zs_pool * pool,struct zspage * zspage)1840 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
1841 {
1842 struct zpdesc *zpdesc = get_first_zpdesc(zspage);
1843
1844 do {
1845 WARN_ON(!zpdesc_trylock(zpdesc));
1846 __zpdesc_set_movable(zpdesc);
1847 zpdesc_unlock(zpdesc);
1848 } while ((zpdesc = get_next_zpdesc(zpdesc)) != NULL);
1849 }
1850 #else
zs_flush_migration(struct zs_pool * pool)1851 static inline void zs_flush_migration(struct zs_pool *pool) { }
1852 #endif
1853
1854 /*
1855 *
1856 * Based on the number of unused allocated objects calculate
1857 * and return the number of pages that we can free.
1858 */
zs_can_compact(struct size_class * class)1859 static unsigned long zs_can_compact(struct size_class *class)
1860 {
1861 unsigned long obj_wasted;
1862 unsigned long obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
1863 unsigned long obj_used = class_stat_read(class, ZS_OBJS_INUSE);
1864
1865 if (obj_allocated <= obj_used)
1866 return 0;
1867
1868 obj_wasted = obj_allocated - obj_used;
1869 obj_wasted /= class->objs_per_zspage;
1870
1871 return obj_wasted * class->pages_per_zspage;
1872 }
1873
__zs_compact(struct zs_pool * pool,struct size_class * class)1874 static unsigned long __zs_compact(struct zs_pool *pool,
1875 struct size_class *class)
1876 {
1877 struct zspage *src_zspage = NULL;
1878 struct zspage *dst_zspage = NULL;
1879 unsigned long pages_freed = 0;
1880
1881 /*
1882 * protect the race between zpage migration and zs_free
1883 * as well as zpage allocation/free
1884 */
1885 write_lock(&pool->lock);
1886 spin_lock(&class->lock);
1887 while (zs_can_compact(class)) {
1888 int fg;
1889
1890 if (!dst_zspage) {
1891 dst_zspage = isolate_dst_zspage(class);
1892 if (!dst_zspage)
1893 break;
1894 }
1895
1896 src_zspage = isolate_src_zspage(class);
1897 if (!src_zspage)
1898 break;
1899
1900 if (!zspage_write_trylock(src_zspage))
1901 break;
1902
1903 migrate_zspage(pool, src_zspage, dst_zspage);
1904 zspage_write_unlock(src_zspage);
1905
1906 fg = putback_zspage(class, src_zspage);
1907 if (fg == ZS_INUSE_RATIO_0) {
1908 free_zspage(pool, class, src_zspage);
1909 pages_freed += class->pages_per_zspage;
1910 }
1911 src_zspage = NULL;
1912
1913 if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
1914 || rwlock_is_contended(&pool->lock)) {
1915 putback_zspage(class, dst_zspage);
1916 dst_zspage = NULL;
1917
1918 spin_unlock(&class->lock);
1919 write_unlock(&pool->lock);
1920 cond_resched();
1921 write_lock(&pool->lock);
1922 spin_lock(&class->lock);
1923 }
1924 }
1925
1926 if (src_zspage)
1927 putback_zspage(class, src_zspage);
1928
1929 if (dst_zspage)
1930 putback_zspage(class, dst_zspage);
1931
1932 spin_unlock(&class->lock);
1933 write_unlock(&pool->lock);
1934
1935 return pages_freed;
1936 }
1937
zs_compact(struct zs_pool * pool)1938 unsigned long zs_compact(struct zs_pool *pool)
1939 {
1940 int i;
1941 struct size_class *class;
1942 unsigned long pages_freed = 0;
1943
1944 /*
1945 * Pool compaction is performed under pool->lock so it is basically
1946 * single-threaded. Having more than one thread in __zs_compact()
1947 * will increase pool->lock contention, which will impact other
1948 * zsmalloc operations that need pool->lock.
1949 */
1950 if (atomic_xchg(&pool->compaction_in_progress, 1))
1951 return 0;
1952
1953 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
1954 class = pool->size_class[i];
1955 if (class->index != i)
1956 continue;
1957 pages_freed += __zs_compact(pool, class);
1958 }
1959 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
1960 atomic_set(&pool->compaction_in_progress, 0);
1961
1962 return pages_freed;
1963 }
1964 EXPORT_SYMBOL_GPL(zs_compact);
1965
zs_pool_stats(struct zs_pool * pool,struct zs_pool_stats * stats)1966 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
1967 {
1968 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
1969 }
1970 EXPORT_SYMBOL_GPL(zs_pool_stats);
1971
zs_shrinker_scan(struct shrinker * shrinker,struct shrink_control * sc)1972 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
1973 struct shrink_control *sc)
1974 {
1975 unsigned long pages_freed;
1976 struct zs_pool *pool = shrinker->private_data;
1977
1978 /*
1979 * Compact classes and calculate compaction delta.
1980 * Can run concurrently with a manually triggered
1981 * (by user) compaction.
1982 */
1983 pages_freed = zs_compact(pool);
1984
1985 return pages_freed ? pages_freed : SHRINK_STOP;
1986 }
1987
zs_shrinker_count(struct shrinker * shrinker,struct shrink_control * sc)1988 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
1989 struct shrink_control *sc)
1990 {
1991 int i;
1992 struct size_class *class;
1993 unsigned long pages_to_free = 0;
1994 struct zs_pool *pool = shrinker->private_data;
1995
1996 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
1997 class = pool->size_class[i];
1998 if (class->index != i)
1999 continue;
2000
2001 pages_to_free += zs_can_compact(class);
2002 }
2003
2004 return pages_to_free;
2005 }
2006
zs_unregister_shrinker(struct zs_pool * pool)2007 static void zs_unregister_shrinker(struct zs_pool *pool)
2008 {
2009 shrinker_free(pool->shrinker);
2010 }
2011
zs_register_shrinker(struct zs_pool * pool)2012 static int zs_register_shrinker(struct zs_pool *pool)
2013 {
2014 pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name);
2015 if (!pool->shrinker)
2016 return -ENOMEM;
2017
2018 pool->shrinker->scan_objects = zs_shrinker_scan;
2019 pool->shrinker->count_objects = zs_shrinker_count;
2020 pool->shrinker->batch = 0;
2021 pool->shrinker->private_data = pool;
2022
2023 shrinker_register(pool->shrinker);
2024
2025 return 0;
2026 }
2027
calculate_zspage_chain_size(int class_size)2028 static int calculate_zspage_chain_size(int class_size)
2029 {
2030 int i, min_waste = INT_MAX;
2031 int chain_size = 1;
2032
2033 if (is_power_of_2(class_size))
2034 return chain_size;
2035
2036 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2037 int waste;
2038
2039 waste = (i * PAGE_SIZE) % class_size;
2040 if (waste < min_waste) {
2041 min_waste = waste;
2042 chain_size = i;
2043 }
2044 }
2045
2046 return chain_size;
2047 }
2048
2049 /**
2050 * zs_create_pool - Creates an allocation pool to work from.
2051 * @name: pool name to be created
2052 *
2053 * This function must be called before anything when using
2054 * the zsmalloc allocator.
2055 *
2056 * On success, a pointer to the newly created pool is returned,
2057 * otherwise NULL.
2058 */
zs_create_pool(const char * name)2059 struct zs_pool *zs_create_pool(const char *name)
2060 {
2061 int i;
2062 struct zs_pool *pool;
2063 struct size_class *prev_class = NULL;
2064
2065 pool = kzalloc_obj(*pool, GFP_KERNEL);
2066 if (!pool)
2067 return NULL;
2068
2069 init_deferred_free(pool);
2070 rwlock_init(&pool->lock);
2071 atomic_set(&pool->compaction_in_progress, 0);
2072
2073 pool->name = kstrdup(name, GFP_KERNEL);
2074 if (!pool->name)
2075 goto err;
2076
2077 /*
2078 * Iterate reversely, because, size of size_class that we want to use
2079 * for merging should be larger or equal to current size.
2080 */
2081 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2082 int size;
2083 int pages_per_zspage;
2084 int objs_per_zspage;
2085 struct size_class *class;
2086 int fullness;
2087
2088 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2089 if (size > ZS_MAX_ALLOC_SIZE)
2090 size = ZS_MAX_ALLOC_SIZE;
2091 pages_per_zspage = calculate_zspage_chain_size(size);
2092 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2093
2094 /*
2095 * We iterate from biggest down to smallest classes,
2096 * so huge_class_size holds the size of the first huge
2097 * class. Any object bigger than or equal to that will
2098 * endup in the huge class.
2099 */
2100 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2101 !huge_class_size) {
2102 huge_class_size = size;
2103 /*
2104 * The object uses ZS_HANDLE_SIZE bytes to store the
2105 * handle. We need to subtract it, because zs_malloc()
2106 * unconditionally adds handle size before it performs
2107 * size class search - so object may be smaller than
2108 * huge class size, yet it still can end up in the huge
2109 * class because it grows by ZS_HANDLE_SIZE extra bytes
2110 * right before class lookup.
2111 */
2112 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2113 }
2114
2115 /*
2116 * size_class is used for normal zsmalloc operation such
2117 * as alloc/free for that size. Although it is natural that we
2118 * have one size_class for each size, there is a chance that we
2119 * can get more memory utilization if we use one size_class for
2120 * many different sizes whose size_class have same
2121 * characteristics. So, we makes size_class point to
2122 * previous size_class if possible.
2123 */
2124 if (prev_class) {
2125 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2126 pool->size_class[i] = prev_class;
2127 continue;
2128 }
2129 }
2130
2131 class = kzalloc_obj(struct size_class, GFP_KERNEL);
2132 if (!class)
2133 goto err;
2134
2135 class->size = size;
2136 class->index = i;
2137 class->pages_per_zspage = pages_per_zspage;
2138 class->objs_per_zspage = objs_per_zspage;
2139 spin_lock_init(&class->lock);
2140 pool->size_class[i] = class;
2141
2142 fullness = ZS_INUSE_RATIO_0;
2143 while (fullness < NR_FULLNESS_GROUPS) {
2144 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2145 fullness++;
2146 }
2147
2148 prev_class = class;
2149 }
2150
2151 /* debug only, don't abort if it fails */
2152 zs_pool_stat_create(pool, name);
2153
2154 /*
2155 * Not critical since shrinker is only used to trigger internal
2156 * defragmentation of the pool which is pretty optional thing. If
2157 * registration fails we still can use the pool normally and user can
2158 * trigger compaction manually. Thus, ignore return code.
2159 */
2160 zs_register_shrinker(pool);
2161
2162 return pool;
2163
2164 err:
2165 zs_destroy_pool(pool);
2166 return NULL;
2167 }
2168 EXPORT_SYMBOL_GPL(zs_create_pool);
2169
zs_destroy_pool(struct zs_pool * pool)2170 void zs_destroy_pool(struct zs_pool *pool)
2171 {
2172 int i;
2173
2174 zs_unregister_shrinker(pool);
2175 zs_flush_migration(pool);
2176 zs_pool_stat_destroy(pool);
2177
2178 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2179 int fg;
2180 struct size_class *class = pool->size_class[i];
2181
2182 if (!class)
2183 continue;
2184
2185 if (class->index != i)
2186 continue;
2187
2188 for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
2189 if (list_empty(&class->fullness_list[fg]))
2190 continue;
2191
2192 pr_err("Class-%d fullness group %d is not empty\n",
2193 class->size, fg);
2194 }
2195 kfree(class);
2196 }
2197
2198 kfree(pool->name);
2199 kfree(pool);
2200 }
2201 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2202
zs_destroy_caches(void)2203 static void zs_destroy_caches(void)
2204 {
2205 kmem_cache_destroy(handle_cachep);
2206 handle_cachep = NULL;
2207 kmem_cache_destroy(zspage_cachep);
2208 zspage_cachep = NULL;
2209 }
2210
zs_init_caches(void)2211 static int __init zs_init_caches(void)
2212 {
2213 handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
2214 0, 0, NULL);
2215 zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
2216 0, 0, NULL);
2217
2218 if (!handle_cachep || !zspage_cachep) {
2219 zs_destroy_caches();
2220 return -ENOMEM;
2221 }
2222 return 0;
2223 }
2224
zs_init(void)2225 static int __init zs_init(void)
2226 {
2227 int rc;
2228
2229 rc = zs_init_caches();
2230 if (rc)
2231 return rc;
2232
2233 #ifdef CONFIG_COMPACTION
2234 rc = set_movable_ops(&zsmalloc_mops, PGTY_zsmalloc);
2235 if (rc) {
2236 zs_destroy_caches();
2237 return rc;
2238 }
2239 #endif
2240 zs_stat_init();
2241 return 0;
2242 }
2243
zs_exit(void)2244 static void __exit zs_exit(void)
2245 {
2246 #ifdef CONFIG_COMPACTION
2247 set_movable_ops(NULL, PGTY_zsmalloc);
2248 #endif
2249 zs_stat_exit();
2250 zs_destroy_caches();
2251 }
2252
2253 module_init(zs_init);
2254 module_exit(zs_exit);
2255
2256 MODULE_LICENSE("Dual BSD/GPL");
2257 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2258 MODULE_DESCRIPTION("zsmalloc memory allocator");
2259