1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/async.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-mq.h>
10 #include <linux/blk-integrity.h>
11 #include <linux/compat.h>
12 #include <linux/delay.h>
13 #include <linux/errno.h>
14 #include <linux/hdreg.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/pr.h>
21 #include <linux/ptrace.h>
22 #include <linux/nvme_ioctl.h>
23 #include <linux/pm_qos.h>
24 #include <linux/ratelimit.h>
25 #include <linux/unaligned.h>
26
27 #include "nvme.h"
28 #include "fabrics.h"
29 #include <linux/nvme-auth.h>
30
31 #define CREATE_TRACE_POINTS
32 #include "trace.h"
33
34 #define NVME_MINORS (1U << MINORBITS)
35
36 struct nvme_ns_info {
37 struct nvme_ns_ids ids;
38 u32 nsid;
39 __le32 anagrpid;
40 u8 pi_offset;
41 u16 endgid;
42 u64 runs;
43 bool is_shared;
44 bool is_readonly;
45 bool is_ready;
46 bool is_removed;
47 bool is_rotational;
48 bool no_vwc;
49 };
50
51 unsigned int admin_timeout = 60;
52 module_param(admin_timeout, uint, 0644);
53 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
54 EXPORT_SYMBOL_GPL(admin_timeout);
55
56 unsigned int nvme_io_timeout = 30;
57 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
58 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
59 EXPORT_SYMBOL_GPL(nvme_io_timeout);
60
61 static unsigned char shutdown_timeout = 5;
62 module_param(shutdown_timeout, byte, 0644);
63 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
64
65 static u8 nvme_max_retries = 5;
66 module_param_named(max_retries, nvme_max_retries, byte, 0644);
67 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
68
69 static unsigned long default_ps_max_latency_us = 100000;
70 module_param(default_ps_max_latency_us, ulong, 0644);
71 MODULE_PARM_DESC(default_ps_max_latency_us,
72 "max power saving latency for new devices; use PM QOS to change per device");
73
74 static bool force_apst;
75 module_param(force_apst, bool, 0644);
76 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
77
78 static unsigned long apst_primary_timeout_ms = 100;
79 module_param(apst_primary_timeout_ms, ulong, 0644);
80 MODULE_PARM_DESC(apst_primary_timeout_ms,
81 "primary APST timeout in ms");
82
83 static unsigned long apst_secondary_timeout_ms = 2000;
84 module_param(apst_secondary_timeout_ms, ulong, 0644);
85 MODULE_PARM_DESC(apst_secondary_timeout_ms,
86 "secondary APST timeout in ms");
87
88 static unsigned long apst_primary_latency_tol_us = 15000;
89 module_param(apst_primary_latency_tol_us, ulong, 0644);
90 MODULE_PARM_DESC(apst_primary_latency_tol_us,
91 "primary APST latency tolerance in us");
92
93 static unsigned long apst_secondary_latency_tol_us = 100000;
94 module_param(apst_secondary_latency_tol_us, ulong, 0644);
95 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
96 "secondary APST latency tolerance in us");
97
98 /*
99 * Older kernels didn't enable protection information if it was at an offset.
100 * Newer kernels do, so it breaks reads on the upgrade if such formats were
101 * used in prior kernels since the metadata written did not contain a valid
102 * checksum.
103 */
104 static bool disable_pi_offsets = false;
105 module_param(disable_pi_offsets, bool, 0444);
106 MODULE_PARM_DESC(disable_pi_offsets,
107 "disable protection information if it has an offset");
108
109 /*
110 * nvme_wq - hosts nvme related works that are not reset or delete
111 * nvme_reset_wq - hosts nvme reset works
112 * nvme_delete_wq - hosts nvme delete works
113 *
114 * nvme_wq will host works such as scan, aen handling, fw activation,
115 * keep-alive, periodic reconnects etc. nvme_reset_wq
116 * runs reset works which also flush works hosted on nvme_wq for
117 * serialization purposes. nvme_delete_wq host controller deletion
118 * works which flush reset works for serialization.
119 */
120 struct workqueue_struct *nvme_wq;
121 EXPORT_SYMBOL_GPL(nvme_wq);
122
123 struct workqueue_struct *nvme_reset_wq;
124 EXPORT_SYMBOL_GPL(nvme_reset_wq);
125
126 struct workqueue_struct *nvme_delete_wq;
127 EXPORT_SYMBOL_GPL(nvme_delete_wq);
128
129 static LIST_HEAD(nvme_subsystems);
130 DEFINE_MUTEX(nvme_subsystems_lock);
131
132 static DEFINE_IDA(nvme_instance_ida);
133 static dev_t nvme_ctrl_base_chr_devt;
134 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env);
135 static const struct class nvme_class = {
136 .name = "nvme",
137 .dev_uevent = nvme_class_uevent,
138 };
139
140 static const struct class nvme_subsys_class = {
141 .name = "nvme-subsystem",
142 };
143
144 static DEFINE_IDA(nvme_ns_chr_minor_ida);
145 static dev_t nvme_ns_chr_devt;
146 static const struct class nvme_ns_chr_class = {
147 .name = "nvme-generic",
148 };
149
150 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
151 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
152 unsigned nsid);
153 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
154 struct nvme_command *cmd);
155 static int nvme_get_log_lsi(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page,
156 u8 lsp, u8 csi, void *log, size_t size, u64 offset, u16 lsi);
157
nvme_queue_scan(struct nvme_ctrl * ctrl)158 void nvme_queue_scan(struct nvme_ctrl *ctrl)
159 {
160 /*
161 * Only new queue scan work when admin and IO queues are both alive
162 */
163 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset)
164 queue_work(nvme_wq, &ctrl->scan_work);
165 }
166
167 /*
168 * Use this function to proceed with scheduling reset_work for a controller
169 * that had previously been set to the resetting state. This is intended for
170 * code paths that can't be interrupted by other reset attempts. A hot removal
171 * may prevent this from succeeding.
172 */
nvme_try_sched_reset(struct nvme_ctrl * ctrl)173 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
174 {
175 if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING)
176 return -EBUSY;
177 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
178 return -EBUSY;
179 return 0;
180 }
181 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
182
nvme_failfast_work(struct work_struct * work)183 static void nvme_failfast_work(struct work_struct *work)
184 {
185 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
186 struct nvme_ctrl, failfast_work);
187
188 if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING)
189 return;
190
191 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
192 dev_info(ctrl->device, "failfast expired\n");
193 nvme_kick_requeue_lists(ctrl);
194 }
195
nvme_start_failfast_work(struct nvme_ctrl * ctrl)196 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
197 {
198 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
199 return;
200
201 schedule_delayed_work(&ctrl->failfast_work,
202 ctrl->opts->fast_io_fail_tmo * HZ);
203 }
204
nvme_stop_failfast_work(struct nvme_ctrl * ctrl)205 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
206 {
207 if (!ctrl->opts)
208 return;
209
210 cancel_delayed_work_sync(&ctrl->failfast_work);
211 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
212 }
213
214
nvme_reset_ctrl(struct nvme_ctrl * ctrl)215 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
216 {
217 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
218 return -EBUSY;
219 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
220 return -EBUSY;
221 return 0;
222 }
223 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
224
nvme_reset_ctrl_sync(struct nvme_ctrl * ctrl)225 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
226 {
227 int ret;
228
229 ret = nvme_reset_ctrl(ctrl);
230 if (!ret) {
231 flush_work(&ctrl->reset_work);
232 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
233 ret = -ENETRESET;
234 }
235
236 return ret;
237 }
238
nvme_do_delete_ctrl(struct nvme_ctrl * ctrl)239 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
240 {
241 dev_info(ctrl->device,
242 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
243
244 flush_work(&ctrl->reset_work);
245 nvme_stop_ctrl(ctrl);
246 nvme_remove_namespaces(ctrl);
247 ctrl->ops->delete_ctrl(ctrl);
248 nvme_uninit_ctrl(ctrl);
249 }
250
nvme_delete_ctrl_work(struct work_struct * work)251 static void nvme_delete_ctrl_work(struct work_struct *work)
252 {
253 struct nvme_ctrl *ctrl =
254 container_of(work, struct nvme_ctrl, delete_work);
255
256 nvme_do_delete_ctrl(ctrl);
257 }
258
nvme_delete_ctrl(struct nvme_ctrl * ctrl)259 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
260 {
261 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
262 return -EBUSY;
263 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
264 return -EBUSY;
265 return 0;
266 }
267 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
268
nvme_delete_ctrl_sync(struct nvme_ctrl * ctrl)269 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
270 {
271 /*
272 * Keep a reference until nvme_do_delete_ctrl() complete,
273 * since ->delete_ctrl can free the controller.
274 */
275 nvme_get_ctrl(ctrl);
276 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
277 nvme_do_delete_ctrl(ctrl);
278 nvme_put_ctrl(ctrl);
279 }
280
nvme_error_status(u16 status)281 static blk_status_t nvme_error_status(u16 status)
282 {
283 switch (status & NVME_SCT_SC_MASK) {
284 case NVME_SC_SUCCESS:
285 return BLK_STS_OK;
286 case NVME_SC_CAP_EXCEEDED:
287 return BLK_STS_NOSPC;
288 case NVME_SC_LBA_RANGE:
289 case NVME_SC_CMD_INTERRUPTED:
290 case NVME_SC_NS_NOT_READY:
291 return BLK_STS_TARGET;
292 case NVME_SC_BAD_ATTRIBUTES:
293 case NVME_SC_INVALID_OPCODE:
294 case NVME_SC_INVALID_FIELD:
295 case NVME_SC_INVALID_NS:
296 return BLK_STS_NOTSUPP;
297 case NVME_SC_WRITE_FAULT:
298 case NVME_SC_READ_ERROR:
299 case NVME_SC_UNWRITTEN_BLOCK:
300 case NVME_SC_ACCESS_DENIED:
301 case NVME_SC_READ_ONLY:
302 case NVME_SC_COMPARE_FAILED:
303 return BLK_STS_MEDIUM;
304 case NVME_SC_GUARD_CHECK:
305 case NVME_SC_APPTAG_CHECK:
306 case NVME_SC_REFTAG_CHECK:
307 case NVME_SC_INVALID_PI:
308 return BLK_STS_PROTECTION;
309 case NVME_SC_RESERVATION_CONFLICT:
310 return BLK_STS_RESV_CONFLICT;
311 case NVME_SC_HOST_PATH_ERROR:
312 return BLK_STS_TRANSPORT;
313 case NVME_SC_ZONE_TOO_MANY_ACTIVE:
314 return BLK_STS_ZONE_ACTIVE_RESOURCE;
315 case NVME_SC_ZONE_TOO_MANY_OPEN:
316 return BLK_STS_ZONE_OPEN_RESOURCE;
317 default:
318 return BLK_STS_IOERR;
319 }
320 }
321
nvme_retry_req(struct request * req)322 static void nvme_retry_req(struct request *req)
323 {
324 unsigned long delay = 0;
325 u16 crd;
326
327 /* The mask and shift result must be <= 3 */
328 crd = (nvme_req(req)->status & NVME_STATUS_CRD) >> 11;
329 if (crd)
330 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
331
332 nvme_req(req)->retries++;
333 blk_mq_requeue_request(req, false);
334 blk_mq_delay_kick_requeue_list(req->q, delay);
335 }
336
nvme_log_error(struct request * req)337 static void nvme_log_error(struct request *req)
338 {
339 struct nvme_ns *ns = req->q->queuedata;
340 struct nvme_request *nr = nvme_req(req);
341
342 if (ns) {
343 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
344 ns->disk ? ns->disk->disk_name : "?",
345 nvme_get_opcode_str(nr->cmd->common.opcode),
346 nr->cmd->common.opcode,
347 nvme_sect_to_lba(ns->head, blk_rq_pos(req)),
348 blk_rq_bytes(req) >> ns->head->lba_shift,
349 nvme_get_error_status_str(nr->status),
350 NVME_SCT(nr->status), /* Status Code Type */
351 nr->status & NVME_SC_MASK, /* Status Code */
352 nr->status & NVME_STATUS_MORE ? "MORE " : "",
353 nr->status & NVME_STATUS_DNR ? "DNR " : "");
354 return;
355 }
356
357 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
358 dev_name(nr->ctrl->device),
359 nvme_get_admin_opcode_str(nr->cmd->common.opcode),
360 nr->cmd->common.opcode,
361 nvme_get_error_status_str(nr->status),
362 NVME_SCT(nr->status), /* Status Code Type */
363 nr->status & NVME_SC_MASK, /* Status Code */
364 nr->status & NVME_STATUS_MORE ? "MORE " : "",
365 nr->status & NVME_STATUS_DNR ? "DNR " : "");
366 }
367
nvme_log_err_passthru(struct request * req)368 static void nvme_log_err_passthru(struct request *req)
369 {
370 struct nvme_ns *ns = req->q->queuedata;
371 struct nvme_request *nr = nvme_req(req);
372
373 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s"
374 "cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n",
375 ns ? ns->disk->disk_name : dev_name(nr->ctrl->device),
376 ns ? nvme_get_opcode_str(nr->cmd->common.opcode) :
377 nvme_get_admin_opcode_str(nr->cmd->common.opcode),
378 nr->cmd->common.opcode,
379 nvme_get_error_status_str(nr->status),
380 NVME_SCT(nr->status), /* Status Code Type */
381 nr->status & NVME_SC_MASK, /* Status Code */
382 nr->status & NVME_STATUS_MORE ? "MORE " : "",
383 nr->status & NVME_STATUS_DNR ? "DNR " : "",
384 le32_to_cpu(nr->cmd->common.cdw10),
385 le32_to_cpu(nr->cmd->common.cdw11),
386 le32_to_cpu(nr->cmd->common.cdw12),
387 le32_to_cpu(nr->cmd->common.cdw13),
388 le32_to_cpu(nr->cmd->common.cdw14),
389 le32_to_cpu(nr->cmd->common.cdw15));
390 }
391
392 enum nvme_disposition {
393 COMPLETE,
394 RETRY,
395 FAILOVER,
396 AUTHENTICATE,
397 };
398
nvme_decide_disposition(struct request * req)399 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
400 {
401 if (likely(nvme_req(req)->status == 0))
402 return COMPLETE;
403
404 if (blk_noretry_request(req) ||
405 (nvme_req(req)->status & NVME_STATUS_DNR) ||
406 nvme_req(req)->retries >= nvme_max_retries)
407 return COMPLETE;
408
409 if ((nvme_req(req)->status & NVME_SCT_SC_MASK) == NVME_SC_AUTH_REQUIRED)
410 return AUTHENTICATE;
411
412 if (req->cmd_flags & REQ_NVME_MPATH) {
413 if (nvme_is_path_error(nvme_req(req)->status) ||
414 blk_queue_dying(req->q))
415 return FAILOVER;
416 } else {
417 if (blk_queue_dying(req->q))
418 return COMPLETE;
419 }
420
421 return RETRY;
422 }
423
nvme_end_req_zoned(struct request * req)424 static inline void nvme_end_req_zoned(struct request *req)
425 {
426 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
427 req_op(req) == REQ_OP_ZONE_APPEND) {
428 struct nvme_ns *ns = req->q->queuedata;
429
430 req->__sector = nvme_lba_to_sect(ns->head,
431 le64_to_cpu(nvme_req(req)->result.u64));
432 }
433 }
434
__nvme_end_req(struct request * req)435 static inline void __nvme_end_req(struct request *req)
436 {
437 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) {
438 if (blk_rq_is_passthrough(req))
439 nvme_log_err_passthru(req);
440 else
441 nvme_log_error(req);
442 }
443 nvme_end_req_zoned(req);
444 nvme_trace_bio_complete(req);
445 if (req->cmd_flags & REQ_NVME_MPATH)
446 nvme_mpath_end_request(req);
447 }
448
nvme_end_req(struct request * req)449 void nvme_end_req(struct request *req)
450 {
451 blk_status_t status = nvme_error_status(nvme_req(req)->status);
452
453 __nvme_end_req(req);
454 blk_mq_end_request(req, status);
455 }
456
nvme_complete_rq(struct request * req)457 void nvme_complete_rq(struct request *req)
458 {
459 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
460
461 trace_nvme_complete_rq(req);
462 nvme_cleanup_cmd(req);
463
464 /*
465 * Completions of long-running commands should not be able to
466 * defer sending of periodic keep alives, since the controller
467 * may have completed processing such commands a long time ago
468 * (arbitrarily close to command submission time).
469 * req->deadline - req->timeout is the command submission time
470 * in jiffies.
471 */
472 if (ctrl->kas &&
473 req->deadline - req->timeout >= ctrl->ka_last_check_time)
474 ctrl->comp_seen = true;
475
476 switch (nvme_decide_disposition(req)) {
477 case COMPLETE:
478 nvme_end_req(req);
479 return;
480 case RETRY:
481 nvme_retry_req(req);
482 return;
483 case FAILOVER:
484 nvme_failover_req(req);
485 return;
486 case AUTHENTICATE:
487 #ifdef CONFIG_NVME_HOST_AUTH
488 queue_work(nvme_wq, &ctrl->dhchap_auth_work);
489 nvme_retry_req(req);
490 #else
491 nvme_end_req(req);
492 #endif
493 return;
494 }
495 }
496 EXPORT_SYMBOL_GPL(nvme_complete_rq);
497
nvme_complete_batch_req(struct request * req)498 void nvme_complete_batch_req(struct request *req)
499 {
500 trace_nvme_complete_rq(req);
501 nvme_cleanup_cmd(req);
502 __nvme_end_req(req);
503 }
504 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
505
506 /*
507 * Called to unwind from ->queue_rq on a failed command submission so that the
508 * multipathing code gets called to potentially failover to another path.
509 * The caller needs to unwind all transport specific resource allocations and
510 * must return propagate the return value.
511 */
nvme_host_path_error(struct request * req)512 blk_status_t nvme_host_path_error(struct request *req)
513 {
514 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
515 blk_mq_set_request_complete(req);
516 nvme_complete_rq(req);
517 return BLK_STS_OK;
518 }
519 EXPORT_SYMBOL_GPL(nvme_host_path_error);
520
nvme_cancel_request(struct request * req,void * data)521 bool nvme_cancel_request(struct request *req, void *data)
522 {
523 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
524 "Cancelling I/O %d", req->tag);
525
526 /* don't abort one completed or idle request */
527 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
528 return true;
529
530 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
531 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
532 blk_mq_complete_request(req);
533 return true;
534 }
535 EXPORT_SYMBOL_GPL(nvme_cancel_request);
536
nvme_cancel_tagset(struct nvme_ctrl * ctrl)537 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
538 {
539 if (ctrl->tagset) {
540 blk_mq_tagset_busy_iter(ctrl->tagset,
541 nvme_cancel_request, ctrl);
542 blk_mq_tagset_wait_completed_request(ctrl->tagset);
543 }
544 }
545 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
546
nvme_cancel_admin_tagset(struct nvme_ctrl * ctrl)547 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
548 {
549 if (ctrl->admin_tagset) {
550 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
551 nvme_cancel_request, ctrl);
552 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
553 }
554 }
555 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
556
nvme_change_ctrl_state(struct nvme_ctrl * ctrl,enum nvme_ctrl_state new_state)557 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
558 enum nvme_ctrl_state new_state)
559 {
560 enum nvme_ctrl_state old_state;
561 unsigned long flags;
562 bool changed = false;
563
564 spin_lock_irqsave(&ctrl->lock, flags);
565
566 old_state = nvme_ctrl_state(ctrl);
567 switch (new_state) {
568 case NVME_CTRL_LIVE:
569 switch (old_state) {
570 case NVME_CTRL_CONNECTING:
571 changed = true;
572 fallthrough;
573 default:
574 break;
575 }
576 break;
577 case NVME_CTRL_RESETTING:
578 switch (old_state) {
579 case NVME_CTRL_NEW:
580 case NVME_CTRL_LIVE:
581 changed = true;
582 fallthrough;
583 default:
584 break;
585 }
586 break;
587 case NVME_CTRL_CONNECTING:
588 switch (old_state) {
589 case NVME_CTRL_NEW:
590 case NVME_CTRL_RESETTING:
591 changed = true;
592 fallthrough;
593 default:
594 break;
595 }
596 break;
597 case NVME_CTRL_DELETING:
598 switch (old_state) {
599 case NVME_CTRL_LIVE:
600 case NVME_CTRL_RESETTING:
601 case NVME_CTRL_CONNECTING:
602 changed = true;
603 fallthrough;
604 default:
605 break;
606 }
607 break;
608 case NVME_CTRL_DELETING_NOIO:
609 switch (old_state) {
610 case NVME_CTRL_DELETING:
611 case NVME_CTRL_DEAD:
612 changed = true;
613 fallthrough;
614 default:
615 break;
616 }
617 break;
618 case NVME_CTRL_DEAD:
619 switch (old_state) {
620 case NVME_CTRL_DELETING:
621 changed = true;
622 fallthrough;
623 default:
624 break;
625 }
626 break;
627 default:
628 break;
629 }
630
631 if (changed) {
632 WRITE_ONCE(ctrl->state, new_state);
633 wake_up_all(&ctrl->state_wq);
634 }
635
636 spin_unlock_irqrestore(&ctrl->lock, flags);
637 if (!changed)
638 return false;
639
640 if (new_state == NVME_CTRL_LIVE) {
641 if (old_state == NVME_CTRL_CONNECTING)
642 nvme_stop_failfast_work(ctrl);
643 nvme_kick_requeue_lists(ctrl);
644 } else if (new_state == NVME_CTRL_CONNECTING &&
645 old_state == NVME_CTRL_RESETTING) {
646 nvme_start_failfast_work(ctrl);
647 }
648 return changed;
649 }
650 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
651
652 /*
653 * Waits for the controller state to be resetting, or returns false if it is
654 * not possible to ever transition to that state.
655 */
nvme_wait_reset(struct nvme_ctrl * ctrl)656 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
657 {
658 wait_event(ctrl->state_wq,
659 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
660 nvme_state_terminal(ctrl));
661 return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING;
662 }
663 EXPORT_SYMBOL_GPL(nvme_wait_reset);
664
nvme_free_ns_head(struct kref * ref)665 static void nvme_free_ns_head(struct kref *ref)
666 {
667 struct nvme_ns_head *head =
668 container_of(ref, struct nvme_ns_head, ref);
669
670 nvme_mpath_put_disk(head);
671 ida_free(&head->subsys->ns_ida, head->instance);
672 cleanup_srcu_struct(&head->srcu);
673 nvme_put_subsystem(head->subsys);
674 kfree(head->plids);
675 kfree(head);
676 }
677
nvme_tryget_ns_head(struct nvme_ns_head * head)678 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
679 {
680 return kref_get_unless_zero(&head->ref);
681 }
682
nvme_put_ns_head(struct nvme_ns_head * head)683 void nvme_put_ns_head(struct nvme_ns_head *head)
684 {
685 kref_put(&head->ref, nvme_free_ns_head);
686 }
687
nvme_free_ns(struct kref * kref)688 static void nvme_free_ns(struct kref *kref)
689 {
690 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
691
692 put_disk(ns->disk);
693 nvme_put_ns_head(ns->head);
694 nvme_put_ctrl(ns->ctrl);
695 kfree(ns);
696 }
697
nvme_get_ns(struct nvme_ns * ns)698 bool nvme_get_ns(struct nvme_ns *ns)
699 {
700 return kref_get_unless_zero(&ns->kref);
701 }
702
nvme_put_ns(struct nvme_ns * ns)703 void nvme_put_ns(struct nvme_ns *ns)
704 {
705 kref_put(&ns->kref, nvme_free_ns);
706 }
707 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, "NVME_TARGET_PASSTHRU");
708
nvme_clear_nvme_request(struct request * req)709 static inline void nvme_clear_nvme_request(struct request *req)
710 {
711 nvme_req(req)->status = 0;
712 nvme_req(req)->retries = 0;
713 nvme_req(req)->flags = 0;
714 req->rq_flags |= RQF_DONTPREP;
715 }
716
717 /* initialize a passthrough request */
nvme_init_request(struct request * req,struct nvme_command * cmd)718 void nvme_init_request(struct request *req, struct nvme_command *cmd)
719 {
720 struct nvme_request *nr = nvme_req(req);
721 bool logging_enabled;
722
723 if (req->q->queuedata) {
724 struct nvme_ns *ns = req->q->disk->private_data;
725
726 logging_enabled = ns->head->passthru_err_log_enabled;
727 req->timeout = NVME_IO_TIMEOUT;
728 } else { /* no queuedata implies admin queue */
729 logging_enabled = nr->ctrl->passthru_err_log_enabled;
730 req->timeout = NVME_ADMIN_TIMEOUT;
731 }
732
733 if (!logging_enabled)
734 req->rq_flags |= RQF_QUIET;
735
736 /* passthru commands should let the driver set the SGL flags */
737 cmd->common.flags &= ~NVME_CMD_SGL_ALL;
738
739 req->cmd_flags |= REQ_FAILFAST_DRIVER;
740 if (req->mq_hctx->type == HCTX_TYPE_POLL)
741 req->cmd_flags |= REQ_POLLED;
742 nvme_clear_nvme_request(req);
743 memcpy(nr->cmd, cmd, sizeof(*cmd));
744 }
745 EXPORT_SYMBOL_GPL(nvme_init_request);
746
747 /*
748 * For something we're not in a state to send to the device the default action
749 * is to busy it and retry it after the controller state is recovered. However,
750 * if the controller is deleting or if anything is marked for failfast or
751 * nvme multipath it is immediately failed.
752 *
753 * Note: commands used to initialize the controller will be marked for failfast.
754 * Note: nvme cli/ioctl commands are marked for failfast.
755 */
nvme_fail_nonready_command(struct nvme_ctrl * ctrl,struct request * rq)756 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
757 struct request *rq)
758 {
759 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
760
761 if (state != NVME_CTRL_DELETING_NOIO &&
762 state != NVME_CTRL_DELETING &&
763 state != NVME_CTRL_DEAD &&
764 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
765 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
766 return BLK_STS_RESOURCE;
767
768 if (!(rq->rq_flags & RQF_DONTPREP))
769 nvme_clear_nvme_request(rq);
770
771 return nvme_host_path_error(rq);
772 }
773 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
774
__nvme_check_ready(struct nvme_ctrl * ctrl,struct request * rq,bool queue_live,enum nvme_ctrl_state state)775 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
776 bool queue_live, enum nvme_ctrl_state state)
777 {
778 struct nvme_request *req = nvme_req(rq);
779
780 /*
781 * currently we have a problem sending passthru commands
782 * on the admin_q if the controller is not LIVE because we can't
783 * make sure that they are going out after the admin connect,
784 * controller enable and/or other commands in the initialization
785 * sequence. until the controller will be LIVE, fail with
786 * BLK_STS_RESOURCE so that they will be rescheduled.
787 */
788 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
789 return false;
790
791 if (ctrl->ops->flags & NVME_F_FABRICS) {
792 /*
793 * Only allow commands on a live queue, except for the connect
794 * command, which is require to set the queue live in the
795 * appropinquate states.
796 */
797 switch (state) {
798 case NVME_CTRL_CONNECTING:
799 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
800 (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
801 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
802 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
803 return true;
804 break;
805 default:
806 break;
807 case NVME_CTRL_DEAD:
808 return false;
809 }
810 }
811
812 return queue_live;
813 }
814 EXPORT_SYMBOL_GPL(__nvme_check_ready);
815
nvme_setup_flush(struct nvme_ns * ns,struct nvme_command * cmnd)816 static inline void nvme_setup_flush(struct nvme_ns *ns,
817 struct nvme_command *cmnd)
818 {
819 memset(cmnd, 0, sizeof(*cmnd));
820 cmnd->common.opcode = nvme_cmd_flush;
821 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
822 }
823
nvme_setup_discard(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)824 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
825 struct nvme_command *cmnd)
826 {
827 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
828 struct nvme_dsm_range *range;
829 struct bio *bio;
830
831 /*
832 * Some devices do not consider the DSM 'Number of Ranges' field when
833 * determining how much data to DMA. Always allocate memory for maximum
834 * number of segments to prevent device reading beyond end of buffer.
835 */
836 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
837
838 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
839 if (!range) {
840 /*
841 * If we fail allocation our range, fallback to the controller
842 * discard page. If that's also busy, it's safe to return
843 * busy, as we know we can make progress once that's freed.
844 */
845 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
846 return BLK_STS_RESOURCE;
847
848 range = page_address(ns->ctrl->discard_page);
849 }
850
851 if (queue_max_discard_segments(req->q) == 1) {
852 u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req));
853 u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9);
854
855 range[0].cattr = cpu_to_le32(0);
856 range[0].nlb = cpu_to_le32(nlb);
857 range[0].slba = cpu_to_le64(slba);
858 n = 1;
859 } else {
860 __rq_for_each_bio(bio, req) {
861 u64 slba = nvme_sect_to_lba(ns->head,
862 bio->bi_iter.bi_sector);
863 u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift;
864
865 if (n < segments) {
866 range[n].cattr = cpu_to_le32(0);
867 range[n].nlb = cpu_to_le32(nlb);
868 range[n].slba = cpu_to_le64(slba);
869 }
870 n++;
871 }
872 }
873
874 if (WARN_ON_ONCE(n != segments)) {
875 if (virt_to_page(range) == ns->ctrl->discard_page)
876 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
877 else
878 kfree(range);
879 return BLK_STS_IOERR;
880 }
881
882 memset(cmnd, 0, sizeof(*cmnd));
883 cmnd->dsm.opcode = nvme_cmd_dsm;
884 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
885 cmnd->dsm.nr = cpu_to_le32(segments - 1);
886 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
887
888 bvec_set_virt(&req->special_vec, range, alloc_size);
889 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
890
891 return BLK_STS_OK;
892 }
893
nvme_set_app_tag(struct request * req,struct nvme_command * cmnd)894 static void nvme_set_app_tag(struct request *req, struct nvme_command *cmnd)
895 {
896 cmnd->rw.lbat = cpu_to_le16(bio_integrity(req->bio)->app_tag);
897 cmnd->rw.lbatm = cpu_to_le16(0xffff);
898 }
899
nvme_set_ref_tag(struct nvme_ns * ns,struct nvme_command * cmnd,struct request * req)900 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
901 struct request *req)
902 {
903 u32 upper, lower;
904 u64 ref48;
905
906 /* only type1 and type 2 PI formats have a reftag */
907 switch (ns->head->pi_type) {
908 case NVME_NS_DPS_PI_TYPE1:
909 case NVME_NS_DPS_PI_TYPE2:
910 break;
911 default:
912 return;
913 }
914
915 /* both rw and write zeroes share the same reftag format */
916 switch (ns->head->guard_type) {
917 case NVME_NVM_NS_16B_GUARD:
918 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
919 break;
920 case NVME_NVM_NS_64B_GUARD:
921 ref48 = ext_pi_ref_tag(req);
922 lower = lower_32_bits(ref48);
923 upper = upper_32_bits(ref48);
924
925 cmnd->rw.reftag = cpu_to_le32(lower);
926 cmnd->rw.cdw3 = cpu_to_le32(upper);
927 break;
928 default:
929 break;
930 }
931 }
932
nvme_setup_write_zeroes(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)933 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
934 struct request *req, struct nvme_command *cmnd)
935 {
936 memset(cmnd, 0, sizeof(*cmnd));
937
938 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
939 return nvme_setup_discard(ns, req, cmnd);
940
941 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
942 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
943 cmnd->write_zeroes.slba =
944 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
945 cmnd->write_zeroes.length =
946 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
947
948 if (!(req->cmd_flags & REQ_NOUNMAP) &&
949 (ns->head->features & NVME_NS_DEAC))
950 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
951
952 if (nvme_ns_has_pi(ns->head)) {
953 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
954 nvme_set_ref_tag(ns, cmnd, req);
955 }
956
957 return BLK_STS_OK;
958 }
959
960 /*
961 * NVMe does not support a dedicated command to issue an atomic write. A write
962 * which does adhere to the device atomic limits will silently be executed
963 * non-atomically. The request issuer should ensure that the write is within
964 * the queue atomic writes limits, but just validate this in case it is not.
965 */
nvme_valid_atomic_write(struct request * req)966 static bool nvme_valid_atomic_write(struct request *req)
967 {
968 struct request_queue *q = req->q;
969 u32 boundary_bytes = queue_atomic_write_boundary_bytes(q);
970
971 if (blk_rq_bytes(req) > queue_atomic_write_unit_max_bytes(q))
972 return false;
973
974 if (boundary_bytes) {
975 u64 mask = boundary_bytes - 1, imask = ~mask;
976 u64 start = blk_rq_pos(req) << SECTOR_SHIFT;
977 u64 end = start + blk_rq_bytes(req) - 1;
978
979 /* If greater then must be crossing a boundary */
980 if (blk_rq_bytes(req) > boundary_bytes)
981 return false;
982
983 if ((start & imask) != (end & imask))
984 return false;
985 }
986
987 return true;
988 }
989
nvme_setup_rw(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd,enum nvme_opcode op)990 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
991 struct request *req, struct nvme_command *cmnd,
992 enum nvme_opcode op)
993 {
994 u16 control = 0;
995 u32 dsmgmt = 0;
996
997 if (req->cmd_flags & REQ_FUA)
998 control |= NVME_RW_FUA;
999 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
1000 control |= NVME_RW_LR;
1001
1002 if (req->cmd_flags & REQ_RAHEAD)
1003 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
1004
1005 if (op == nvme_cmd_write && ns->head->nr_plids) {
1006 u16 write_stream = req->bio->bi_write_stream;
1007
1008 if (WARN_ON_ONCE(write_stream > ns->head->nr_plids))
1009 return BLK_STS_INVAL;
1010
1011 if (write_stream) {
1012 dsmgmt |= ns->head->plids[write_stream - 1] << 16;
1013 control |= NVME_RW_DTYPE_DPLCMT;
1014 }
1015 }
1016
1017 if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req))
1018 return BLK_STS_INVAL;
1019
1020 cmnd->rw.opcode = op;
1021 cmnd->rw.flags = 0;
1022 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
1023 cmnd->rw.cdw2 = 0;
1024 cmnd->rw.cdw3 = 0;
1025 cmnd->rw.metadata = 0;
1026 cmnd->rw.slba =
1027 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
1028 cmnd->rw.length =
1029 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
1030 cmnd->rw.reftag = 0;
1031 cmnd->rw.lbat = 0;
1032 cmnd->rw.lbatm = 0;
1033
1034 if (ns->head->ms) {
1035 /*
1036 * If formatted with metadata, the block layer always provides a
1037 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
1038 * we enable the PRACT bit for protection information or set the
1039 * namespace capacity to zero to prevent any I/O.
1040 */
1041 if (!blk_integrity_rq(req)) {
1042 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head)))
1043 return BLK_STS_NOTSUPP;
1044 control |= NVME_RW_PRINFO_PRACT;
1045 nvme_set_ref_tag(ns, cmnd, req);
1046 }
1047
1048 if (bio_integrity_flagged(req->bio, BIP_CHECK_GUARD))
1049 control |= NVME_RW_PRINFO_PRCHK_GUARD;
1050 if (bio_integrity_flagged(req->bio, BIP_CHECK_REFTAG)) {
1051 control |= NVME_RW_PRINFO_PRCHK_REF;
1052 if (op == nvme_cmd_zone_append)
1053 control |= NVME_RW_APPEND_PIREMAP;
1054 nvme_set_ref_tag(ns, cmnd, req);
1055 }
1056 if (bio_integrity_flagged(req->bio, BIP_CHECK_APPTAG)) {
1057 control |= NVME_RW_PRINFO_PRCHK_APP;
1058 nvme_set_app_tag(req, cmnd);
1059 }
1060 }
1061
1062 cmnd->rw.control = cpu_to_le16(control);
1063 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
1064 return 0;
1065 }
1066
nvme_cleanup_cmd(struct request * req)1067 void nvme_cleanup_cmd(struct request *req)
1068 {
1069 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
1070 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
1071
1072 if (req->special_vec.bv_page == ctrl->discard_page)
1073 clear_bit_unlock(0, &ctrl->discard_page_busy);
1074 else
1075 kfree(bvec_virt(&req->special_vec));
1076 req->rq_flags &= ~RQF_SPECIAL_PAYLOAD;
1077 }
1078 }
1079 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
1080
nvme_setup_cmd(struct nvme_ns * ns,struct request * req)1081 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
1082 {
1083 struct nvme_command *cmd = nvme_req(req)->cmd;
1084 blk_status_t ret = BLK_STS_OK;
1085
1086 if (!(req->rq_flags & RQF_DONTPREP))
1087 nvme_clear_nvme_request(req);
1088
1089 switch (req_op(req)) {
1090 case REQ_OP_DRV_IN:
1091 case REQ_OP_DRV_OUT:
1092 /* these are setup prior to execution in nvme_init_request() */
1093 break;
1094 case REQ_OP_FLUSH:
1095 nvme_setup_flush(ns, cmd);
1096 break;
1097 case REQ_OP_ZONE_RESET_ALL:
1098 case REQ_OP_ZONE_RESET:
1099 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1100 break;
1101 case REQ_OP_ZONE_OPEN:
1102 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1103 break;
1104 case REQ_OP_ZONE_CLOSE:
1105 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1106 break;
1107 case REQ_OP_ZONE_FINISH:
1108 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1109 break;
1110 case REQ_OP_WRITE_ZEROES:
1111 ret = nvme_setup_write_zeroes(ns, req, cmd);
1112 break;
1113 case REQ_OP_DISCARD:
1114 ret = nvme_setup_discard(ns, req, cmd);
1115 break;
1116 case REQ_OP_READ:
1117 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1118 break;
1119 case REQ_OP_WRITE:
1120 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1121 break;
1122 case REQ_OP_ZONE_APPEND:
1123 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1124 break;
1125 default:
1126 WARN_ON_ONCE(1);
1127 return BLK_STS_IOERR;
1128 }
1129
1130 cmd->common.command_id = nvme_cid(req);
1131 trace_nvme_setup_cmd(req, cmd);
1132 return ret;
1133 }
1134 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1135
1136 /*
1137 * Return values:
1138 * 0: success
1139 * >0: nvme controller's cqe status response
1140 * <0: kernel error in lieu of controller response
1141 */
nvme_execute_rq(struct request * rq,bool at_head)1142 int nvme_execute_rq(struct request *rq, bool at_head)
1143 {
1144 blk_status_t status;
1145
1146 status = blk_execute_rq(rq, at_head);
1147 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1148 return -EINTR;
1149 if (nvme_req(rq)->status)
1150 return nvme_req(rq)->status;
1151 return blk_status_to_errno(status);
1152 }
1153 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, "NVME_TARGET_PASSTHRU");
1154
1155 /*
1156 * Returns 0 on success. If the result is negative, it's a Linux error code;
1157 * if the result is positive, it's an NVM Express status code
1158 */
__nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,union nvme_result * result,void * buffer,unsigned bufflen,int qid,nvme_submit_flags_t flags)1159 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1160 union nvme_result *result, void *buffer, unsigned bufflen,
1161 int qid, nvme_submit_flags_t flags)
1162 {
1163 struct request *req;
1164 int ret;
1165 blk_mq_req_flags_t blk_flags = 0;
1166
1167 if (flags & NVME_SUBMIT_NOWAIT)
1168 blk_flags |= BLK_MQ_REQ_NOWAIT;
1169 if (flags & NVME_SUBMIT_RESERVED)
1170 blk_flags |= BLK_MQ_REQ_RESERVED;
1171 if (qid == NVME_QID_ANY)
1172 req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags);
1173 else
1174 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags,
1175 qid - 1);
1176
1177 if (IS_ERR(req))
1178 return PTR_ERR(req);
1179 nvme_init_request(req, cmd);
1180 if (flags & NVME_SUBMIT_RETRY)
1181 req->cmd_flags &= ~REQ_FAILFAST_DRIVER;
1182
1183 if (buffer && bufflen) {
1184 ret = blk_rq_map_kern(req, buffer, bufflen, GFP_KERNEL);
1185 if (ret)
1186 goto out;
1187 }
1188
1189 ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD);
1190 if (result && ret >= 0)
1191 *result = nvme_req(req)->result;
1192 out:
1193 blk_mq_free_request(req);
1194 return ret;
1195 }
1196 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1197
nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,void * buffer,unsigned bufflen)1198 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1199 void *buffer, unsigned bufflen)
1200 {
1201 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1202 NVME_QID_ANY, 0);
1203 }
1204 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1205
nvme_command_effects(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1206 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1207 {
1208 u32 effects = 0;
1209
1210 if (ns) {
1211 effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1212 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1213 dev_warn_once(ctrl->device,
1214 "IO command:%02x has unusual effects:%08x\n",
1215 opcode, effects);
1216
1217 /*
1218 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1219 * which would deadlock when done on an I/O command. Note that
1220 * We already warn about an unusual effect above.
1221 */
1222 effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1223 } else {
1224 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1225
1226 /* Ignore execution restrictions if any relaxation bits are set */
1227 if (effects & NVME_CMD_EFFECTS_CSER_MASK)
1228 effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1229 }
1230
1231 return effects;
1232 }
1233 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, "NVME_TARGET_PASSTHRU");
1234
nvme_passthru_start(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1235 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1236 {
1237 u32 effects = nvme_command_effects(ctrl, ns, opcode);
1238
1239 /*
1240 * For simplicity, IO to all namespaces is quiesced even if the command
1241 * effects say only one namespace is affected.
1242 */
1243 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1244 mutex_lock(&ctrl->scan_lock);
1245 mutex_lock(&ctrl->subsys->lock);
1246 nvme_mpath_start_freeze(ctrl->subsys);
1247 nvme_mpath_wait_freeze(ctrl->subsys);
1248 nvme_start_freeze(ctrl);
1249 nvme_wait_freeze(ctrl);
1250 }
1251 return effects;
1252 }
1253 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, "NVME_TARGET_PASSTHRU");
1254
nvme_passthru_end(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u32 effects,struct nvme_command * cmd,int status)1255 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1256 struct nvme_command *cmd, int status)
1257 {
1258 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1259 nvme_unfreeze(ctrl);
1260 nvme_mpath_unfreeze(ctrl->subsys);
1261 mutex_unlock(&ctrl->subsys->lock);
1262 mutex_unlock(&ctrl->scan_lock);
1263 }
1264 if (effects & NVME_CMD_EFFECTS_CCC) {
1265 if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1266 &ctrl->flags)) {
1267 dev_info(ctrl->device,
1268 "controller capabilities changed, reset may be required to take effect.\n");
1269 }
1270 }
1271 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1272 nvme_queue_scan(ctrl);
1273 flush_work(&ctrl->scan_work);
1274 }
1275 if (ns)
1276 return;
1277
1278 switch (cmd->common.opcode) {
1279 case nvme_admin_set_features:
1280 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1281 case NVME_FEAT_KATO:
1282 /*
1283 * Keep alive commands interval on the host should be
1284 * updated when KATO is modified by Set Features
1285 * commands.
1286 */
1287 if (!status)
1288 nvme_update_keep_alive(ctrl, cmd);
1289 break;
1290 default:
1291 break;
1292 }
1293 break;
1294 default:
1295 break;
1296 }
1297 }
1298 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, "NVME_TARGET_PASSTHRU");
1299
1300 /*
1301 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1302 *
1303 * The host should send Keep Alive commands at half of the Keep Alive Timeout
1304 * accounting for transport roundtrip times [..].
1305 */
nvme_keep_alive_work_period(struct nvme_ctrl * ctrl)1306 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1307 {
1308 unsigned long delay = ctrl->kato * HZ / 2;
1309
1310 /*
1311 * When using Traffic Based Keep Alive, we need to run
1312 * nvme_keep_alive_work at twice the normal frequency, as one
1313 * command completion can postpone sending a keep alive command
1314 * by up to twice the delay between runs.
1315 */
1316 if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1317 delay /= 2;
1318 return delay;
1319 }
1320
nvme_queue_keep_alive_work(struct nvme_ctrl * ctrl)1321 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1322 {
1323 unsigned long now = jiffies;
1324 unsigned long delay = nvme_keep_alive_work_period(ctrl);
1325 unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay;
1326
1327 if (time_after(now, ka_next_check_tm))
1328 delay = 0;
1329 else
1330 delay = ka_next_check_tm - now;
1331
1332 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1333 }
1334
nvme_keep_alive_end_io(struct request * rq,blk_status_t status)1335 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1336 blk_status_t status)
1337 {
1338 struct nvme_ctrl *ctrl = rq->end_io_data;
1339 unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1340 unsigned long delay = nvme_keep_alive_work_period(ctrl);
1341 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
1342
1343 /*
1344 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1345 * at the desired frequency.
1346 */
1347 if (rtt <= delay) {
1348 delay -= rtt;
1349 } else {
1350 dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1351 jiffies_to_msecs(rtt));
1352 delay = 0;
1353 }
1354
1355 blk_mq_free_request(rq);
1356
1357 if (status) {
1358 dev_err(ctrl->device,
1359 "failed nvme_keep_alive_end_io error=%d\n",
1360 status);
1361 return RQ_END_IO_NONE;
1362 }
1363
1364 ctrl->ka_last_check_time = jiffies;
1365 ctrl->comp_seen = false;
1366 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_CONNECTING)
1367 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1368 return RQ_END_IO_NONE;
1369 }
1370
nvme_keep_alive_work(struct work_struct * work)1371 static void nvme_keep_alive_work(struct work_struct *work)
1372 {
1373 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1374 struct nvme_ctrl, ka_work);
1375 bool comp_seen = ctrl->comp_seen;
1376 struct request *rq;
1377
1378 ctrl->ka_last_check_time = jiffies;
1379
1380 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1381 dev_dbg(ctrl->device,
1382 "reschedule traffic based keep-alive timer\n");
1383 ctrl->comp_seen = false;
1384 nvme_queue_keep_alive_work(ctrl);
1385 return;
1386 }
1387
1388 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1389 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1390 if (IS_ERR(rq)) {
1391 /* allocation failure, reset the controller */
1392 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1393 nvme_reset_ctrl(ctrl);
1394 return;
1395 }
1396 nvme_init_request(rq, &ctrl->ka_cmd);
1397
1398 rq->timeout = ctrl->kato * HZ;
1399 rq->end_io = nvme_keep_alive_end_io;
1400 rq->end_io_data = ctrl;
1401 blk_execute_rq_nowait(rq, false);
1402 }
1403
nvme_start_keep_alive(struct nvme_ctrl * ctrl)1404 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1405 {
1406 if (unlikely(ctrl->kato == 0))
1407 return;
1408
1409 nvme_queue_keep_alive_work(ctrl);
1410 }
1411
nvme_stop_keep_alive(struct nvme_ctrl * ctrl)1412 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1413 {
1414 if (unlikely(ctrl->kato == 0))
1415 return;
1416
1417 cancel_delayed_work_sync(&ctrl->ka_work);
1418 }
1419 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1420
nvme_update_keep_alive(struct nvme_ctrl * ctrl,struct nvme_command * cmd)1421 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1422 struct nvme_command *cmd)
1423 {
1424 unsigned int new_kato =
1425 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1426
1427 dev_info(ctrl->device,
1428 "keep alive interval updated from %u ms to %u ms\n",
1429 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1430
1431 nvme_stop_keep_alive(ctrl);
1432 ctrl->kato = new_kato;
1433 nvme_start_keep_alive(ctrl);
1434 }
1435
nvme_id_cns_ok(struct nvme_ctrl * ctrl,u8 cns)1436 static bool nvme_id_cns_ok(struct nvme_ctrl *ctrl, u8 cns)
1437 {
1438 /*
1439 * The CNS field occupies a full byte starting with NVMe 1.2
1440 */
1441 if (ctrl->vs >= NVME_VS(1, 2, 0))
1442 return true;
1443
1444 /*
1445 * NVMe 1.1 expanded the CNS value to two bits, which means values
1446 * larger than that could get truncated and treated as an incorrect
1447 * value.
1448 *
1449 * Qemu implemented 1.0 behavior for controllers claiming 1.1
1450 * compliance, so they need to be quirked here.
1451 */
1452 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1453 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS))
1454 return cns <= 3;
1455
1456 /*
1457 * NVMe 1.0 used a single bit for the CNS value.
1458 */
1459 return cns <= 1;
1460 }
1461
nvme_identify_ctrl(struct nvme_ctrl * dev,struct nvme_id_ctrl ** id)1462 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1463 {
1464 struct nvme_command c = { };
1465 int error;
1466
1467 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1468 c.identify.opcode = nvme_admin_identify;
1469 c.identify.cns = NVME_ID_CNS_CTRL;
1470
1471 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1472 if (!*id)
1473 return -ENOMEM;
1474
1475 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1476 sizeof(struct nvme_id_ctrl));
1477 if (error) {
1478 kfree(*id);
1479 *id = NULL;
1480 }
1481 return error;
1482 }
1483
nvme_process_ns_desc(struct nvme_ctrl * ctrl,struct nvme_ns_ids * ids,struct nvme_ns_id_desc * cur,bool * csi_seen)1484 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1485 struct nvme_ns_id_desc *cur, bool *csi_seen)
1486 {
1487 const char *warn_str = "ctrl returned bogus length:";
1488 void *data = cur;
1489
1490 switch (cur->nidt) {
1491 case NVME_NIDT_EUI64:
1492 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1493 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1494 warn_str, cur->nidl);
1495 return -1;
1496 }
1497 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1498 return NVME_NIDT_EUI64_LEN;
1499 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1500 return NVME_NIDT_EUI64_LEN;
1501 case NVME_NIDT_NGUID:
1502 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1503 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1504 warn_str, cur->nidl);
1505 return -1;
1506 }
1507 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1508 return NVME_NIDT_NGUID_LEN;
1509 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1510 return NVME_NIDT_NGUID_LEN;
1511 case NVME_NIDT_UUID:
1512 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1513 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1514 warn_str, cur->nidl);
1515 return -1;
1516 }
1517 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1518 return NVME_NIDT_UUID_LEN;
1519 uuid_copy(&ids->uuid, data + sizeof(*cur));
1520 return NVME_NIDT_UUID_LEN;
1521 case NVME_NIDT_CSI:
1522 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1523 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1524 warn_str, cur->nidl);
1525 return -1;
1526 }
1527 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1528 *csi_seen = true;
1529 return NVME_NIDT_CSI_LEN;
1530 default:
1531 /* Skip unknown types */
1532 return cur->nidl;
1533 }
1534 }
1535
nvme_identify_ns_descs(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1536 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1537 struct nvme_ns_info *info)
1538 {
1539 struct nvme_command c = { };
1540 bool csi_seen = false;
1541 int status, pos, len;
1542 void *data;
1543
1544 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1545 return 0;
1546 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1547 return 0;
1548
1549 c.identify.opcode = nvme_admin_identify;
1550 c.identify.nsid = cpu_to_le32(info->nsid);
1551 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1552
1553 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1554 if (!data)
1555 return -ENOMEM;
1556
1557 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1558 NVME_IDENTIFY_DATA_SIZE);
1559 if (status) {
1560 dev_warn(ctrl->device,
1561 "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1562 info->nsid, status);
1563 goto free_data;
1564 }
1565
1566 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1567 struct nvme_ns_id_desc *cur = data + pos;
1568
1569 if (cur->nidl == 0)
1570 break;
1571
1572 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1573 if (len < 0)
1574 break;
1575
1576 len += sizeof(*cur);
1577 }
1578
1579 if (nvme_multi_css(ctrl) && !csi_seen) {
1580 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1581 info->nsid);
1582 status = -EINVAL;
1583 }
1584
1585 free_data:
1586 kfree(data);
1587 return status;
1588 }
1589
nvme_identify_ns(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_id_ns ** id)1590 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1591 struct nvme_id_ns **id)
1592 {
1593 struct nvme_command c = { };
1594 int error;
1595
1596 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1597 c.identify.opcode = nvme_admin_identify;
1598 c.identify.nsid = cpu_to_le32(nsid);
1599 c.identify.cns = NVME_ID_CNS_NS;
1600
1601 *id = kmalloc(sizeof(**id), GFP_KERNEL);
1602 if (!*id)
1603 return -ENOMEM;
1604
1605 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1606 if (error) {
1607 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1608 kfree(*id);
1609 *id = NULL;
1610 }
1611 return error;
1612 }
1613
nvme_ns_info_from_identify(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1614 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1615 struct nvme_ns_info *info)
1616 {
1617 struct nvme_ns_ids *ids = &info->ids;
1618 struct nvme_id_ns *id;
1619 int ret;
1620
1621 ret = nvme_identify_ns(ctrl, info->nsid, &id);
1622 if (ret)
1623 return ret;
1624
1625 if (id->ncap == 0) {
1626 /* namespace not allocated or attached */
1627 info->is_removed = true;
1628 ret = -ENODEV;
1629 goto error;
1630 }
1631
1632 info->anagrpid = id->anagrpid;
1633 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1634 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1635 info->is_ready = true;
1636 info->endgid = le16_to_cpu(id->endgid);
1637 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1638 dev_info(ctrl->device,
1639 "Ignoring bogus Namespace Identifiers\n");
1640 } else {
1641 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1642 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1643 memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1644 if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1645 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1646 memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1647 }
1648
1649 error:
1650 kfree(id);
1651 return ret;
1652 }
1653
nvme_ns_info_from_id_cs_indep(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1654 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1655 struct nvme_ns_info *info)
1656 {
1657 struct nvme_id_ns_cs_indep *id;
1658 struct nvme_command c = {
1659 .identify.opcode = nvme_admin_identify,
1660 .identify.nsid = cpu_to_le32(info->nsid),
1661 .identify.cns = NVME_ID_CNS_NS_CS_INDEP,
1662 };
1663 int ret;
1664
1665 id = kmalloc(sizeof(*id), GFP_KERNEL);
1666 if (!id)
1667 return -ENOMEM;
1668
1669 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1670 if (!ret) {
1671 info->anagrpid = id->anagrpid;
1672 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1673 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1674 info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1675 info->is_rotational = id->nsfeat & NVME_NS_ROTATIONAL;
1676 info->no_vwc = id->nsfeat & NVME_NS_VWC_NOT_PRESENT;
1677 info->endgid = le16_to_cpu(id->endgid);
1678 }
1679 kfree(id);
1680 return ret;
1681 }
1682
nvme_features(struct nvme_ctrl * dev,u8 op,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1683 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1684 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1685 {
1686 union nvme_result res = { 0 };
1687 struct nvme_command c = { };
1688 int ret;
1689
1690 c.features.opcode = op;
1691 c.features.fid = cpu_to_le32(fid);
1692 c.features.dword11 = cpu_to_le32(dword11);
1693
1694 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1695 buffer, buflen, NVME_QID_ANY, 0);
1696 if (ret >= 0 && result)
1697 *result = le32_to_cpu(res.u32);
1698 return ret;
1699 }
1700
nvme_set_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,void * result)1701 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1702 unsigned int dword11, void *buffer, size_t buflen,
1703 void *result)
1704 {
1705 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1706 buflen, result);
1707 }
1708 EXPORT_SYMBOL_GPL(nvme_set_features);
1709
nvme_get_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,void * result)1710 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1711 unsigned int dword11, void *buffer, size_t buflen,
1712 void *result)
1713 {
1714 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1715 buflen, result);
1716 }
1717 EXPORT_SYMBOL_GPL(nvme_get_features);
1718
nvme_set_queue_count(struct nvme_ctrl * ctrl,int * count)1719 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1720 {
1721 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1722 u32 result;
1723 int status, nr_io_queues;
1724
1725 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1726 &result);
1727
1728 /*
1729 * It's either a kernel error or the host observed a connection
1730 * lost. In either case it's not possible communicate with the
1731 * controller and thus enter the error code path.
1732 */
1733 if (status < 0 || status == NVME_SC_HOST_PATH_ERROR)
1734 return status;
1735
1736 /*
1737 * Degraded controllers might return an error when setting the queue
1738 * count. We still want to be able to bring them online and offer
1739 * access to the admin queue, as that might be only way to fix them up.
1740 */
1741 if (status > 0) {
1742 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1743 *count = 0;
1744 } else {
1745 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1746 *count = min(*count, nr_io_queues);
1747 }
1748
1749 return 0;
1750 }
1751 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1752
1753 #define NVME_AEN_SUPPORTED \
1754 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1755 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1756
nvme_enable_aen(struct nvme_ctrl * ctrl)1757 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1758 {
1759 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1760 int status;
1761
1762 if (!supported_aens)
1763 return;
1764
1765 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1766 NULL, 0, &result);
1767 if (status)
1768 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1769 supported_aens);
1770
1771 queue_work(nvme_wq, &ctrl->async_event_work);
1772 }
1773
nvme_ns_open(struct nvme_ns * ns)1774 static int nvme_ns_open(struct nvme_ns *ns)
1775 {
1776
1777 /* should never be called due to GENHD_FL_HIDDEN */
1778 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1779 goto fail;
1780 if (!nvme_get_ns(ns))
1781 goto fail;
1782 if (!try_module_get(ns->ctrl->ops->module))
1783 goto fail_put_ns;
1784
1785 return 0;
1786
1787 fail_put_ns:
1788 nvme_put_ns(ns);
1789 fail:
1790 return -ENXIO;
1791 }
1792
nvme_ns_release(struct nvme_ns * ns)1793 static void nvme_ns_release(struct nvme_ns *ns)
1794 {
1795
1796 module_put(ns->ctrl->ops->module);
1797 nvme_put_ns(ns);
1798 }
1799
nvme_open(struct gendisk * disk,blk_mode_t mode)1800 static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1801 {
1802 return nvme_ns_open(disk->private_data);
1803 }
1804
nvme_release(struct gendisk * disk)1805 static void nvme_release(struct gendisk *disk)
1806 {
1807 nvme_ns_release(disk->private_data);
1808 }
1809
nvme_getgeo(struct gendisk * disk,struct hd_geometry * geo)1810 int nvme_getgeo(struct gendisk *disk, struct hd_geometry *geo)
1811 {
1812 /* some standard values */
1813 geo->heads = 1 << 6;
1814 geo->sectors = 1 << 5;
1815 geo->cylinders = get_capacity(disk) >> 11;
1816 return 0;
1817 }
1818
nvme_init_integrity(struct nvme_ns_head * head,struct queue_limits * lim,struct nvme_ns_info * info)1819 static bool nvme_init_integrity(struct nvme_ns_head *head,
1820 struct queue_limits *lim, struct nvme_ns_info *info)
1821 {
1822 struct blk_integrity *bi = &lim->integrity;
1823
1824 memset(bi, 0, sizeof(*bi));
1825
1826 if (!head->ms)
1827 return true;
1828
1829 /*
1830 * PI can always be supported as we can ask the controller to simply
1831 * insert/strip it, which is not possible for other kinds of metadata.
1832 */
1833 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) ||
1834 !(head->features & NVME_NS_METADATA_SUPPORTED))
1835 return nvme_ns_has_pi(head);
1836
1837 switch (head->pi_type) {
1838 case NVME_NS_DPS_PI_TYPE3:
1839 switch (head->guard_type) {
1840 case NVME_NVM_NS_16B_GUARD:
1841 bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1842 bi->tag_size = sizeof(u16) + sizeof(u32);
1843 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1844 break;
1845 case NVME_NVM_NS_64B_GUARD:
1846 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1847 bi->tag_size = sizeof(u16) + 6;
1848 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1849 break;
1850 default:
1851 break;
1852 }
1853 break;
1854 case NVME_NS_DPS_PI_TYPE1:
1855 case NVME_NS_DPS_PI_TYPE2:
1856 switch (head->guard_type) {
1857 case NVME_NVM_NS_16B_GUARD:
1858 bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1859 bi->tag_size = sizeof(u16);
1860 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1861 BLK_INTEGRITY_REF_TAG;
1862 break;
1863 case NVME_NVM_NS_64B_GUARD:
1864 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1865 bi->tag_size = sizeof(u16);
1866 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1867 BLK_INTEGRITY_REF_TAG;
1868 break;
1869 default:
1870 break;
1871 }
1872 break;
1873 default:
1874 break;
1875 }
1876
1877 bi->metadata_size = head->ms;
1878 if (bi->csum_type) {
1879 bi->pi_tuple_size = head->pi_size;
1880 bi->pi_offset = info->pi_offset;
1881 }
1882 return true;
1883 }
1884
nvme_config_discard(struct nvme_ns * ns,struct queue_limits * lim)1885 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim)
1886 {
1887 struct nvme_ctrl *ctrl = ns->ctrl;
1888
1889 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX))
1890 lim->max_hw_discard_sectors =
1891 nvme_lba_to_sect(ns->head, ctrl->dmrsl);
1892 else if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1893 lim->max_hw_discard_sectors = UINT_MAX;
1894 else
1895 lim->max_hw_discard_sectors = 0;
1896
1897 lim->discard_granularity = lim->logical_block_size;
1898
1899 if (ctrl->dmrl)
1900 lim->max_discard_segments = ctrl->dmrl;
1901 else
1902 lim->max_discard_segments = NVME_DSM_MAX_RANGES;
1903 }
1904
nvme_ns_ids_equal(struct nvme_ns_ids * a,struct nvme_ns_ids * b)1905 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1906 {
1907 return uuid_equal(&a->uuid, &b->uuid) &&
1908 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1909 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1910 a->csi == b->csi;
1911 }
1912
nvme_identify_ns_nvm(struct nvme_ctrl * ctrl,unsigned int nsid,struct nvme_id_ns_nvm ** nvmp)1913 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid,
1914 struct nvme_id_ns_nvm **nvmp)
1915 {
1916 struct nvme_command c = {
1917 .identify.opcode = nvme_admin_identify,
1918 .identify.nsid = cpu_to_le32(nsid),
1919 .identify.cns = NVME_ID_CNS_CS_NS,
1920 .identify.csi = NVME_CSI_NVM,
1921 };
1922 struct nvme_id_ns_nvm *nvm;
1923 int ret;
1924
1925 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1926 if (!nvm)
1927 return -ENOMEM;
1928
1929 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm));
1930 if (ret)
1931 kfree(nvm);
1932 else
1933 *nvmp = nvm;
1934 return ret;
1935 }
1936
nvme_configure_pi_elbas(struct nvme_ns_head * head,struct nvme_id_ns * id,struct nvme_id_ns_nvm * nvm)1937 static void nvme_configure_pi_elbas(struct nvme_ns_head *head,
1938 struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm)
1939 {
1940 u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]);
1941 u8 guard_type;
1942
1943 /* no support for storage tag formats right now */
1944 if (nvme_elbaf_sts(elbaf))
1945 return;
1946
1947 guard_type = nvme_elbaf_guard_type(elbaf);
1948 if ((nvm->pic & NVME_ID_NS_NVM_QPIFS) &&
1949 guard_type == NVME_NVM_NS_QTYPE_GUARD)
1950 guard_type = nvme_elbaf_qualified_guard_type(elbaf);
1951
1952 head->guard_type = guard_type;
1953 switch (head->guard_type) {
1954 case NVME_NVM_NS_64B_GUARD:
1955 head->pi_size = sizeof(struct crc64_pi_tuple);
1956 break;
1957 case NVME_NVM_NS_16B_GUARD:
1958 head->pi_size = sizeof(struct t10_pi_tuple);
1959 break;
1960 default:
1961 break;
1962 }
1963 }
1964
nvme_configure_metadata(struct nvme_ctrl * ctrl,struct nvme_ns_head * head,struct nvme_id_ns * id,struct nvme_id_ns_nvm * nvm,struct nvme_ns_info * info)1965 static void nvme_configure_metadata(struct nvme_ctrl *ctrl,
1966 struct nvme_ns_head *head, struct nvme_id_ns *id,
1967 struct nvme_id_ns_nvm *nvm, struct nvme_ns_info *info)
1968 {
1969 head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1970 head->pi_type = 0;
1971 head->pi_size = 0;
1972 head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms);
1973 if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1974 return;
1975
1976 if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1977 nvme_configure_pi_elbas(head, id, nvm);
1978 } else {
1979 head->pi_size = sizeof(struct t10_pi_tuple);
1980 head->guard_type = NVME_NVM_NS_16B_GUARD;
1981 }
1982
1983 if (head->pi_size && head->ms >= head->pi_size)
1984 head->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1985 if (!(id->dps & NVME_NS_DPS_PI_FIRST)) {
1986 if (disable_pi_offsets)
1987 head->pi_type = 0;
1988 else
1989 info->pi_offset = head->ms - head->pi_size;
1990 }
1991
1992 if (ctrl->ops->flags & NVME_F_FABRICS) {
1993 /*
1994 * The NVMe over Fabrics specification only supports metadata as
1995 * part of the extended data LBA. We rely on HCA/HBA support to
1996 * remap the separate metadata buffer from the block layer.
1997 */
1998 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1999 return;
2000
2001 head->features |= NVME_NS_EXT_LBAS;
2002
2003 /*
2004 * The current fabrics transport drivers support namespace
2005 * metadata formats only if nvme_ns_has_pi() returns true.
2006 * Suppress support for all other formats so the namespace will
2007 * have a 0 capacity and not be usable through the block stack.
2008 *
2009 * Note, this check will need to be modified if any drivers
2010 * gain the ability to use other metadata formats.
2011 */
2012 if (ctrl->max_integrity_segments && nvme_ns_has_pi(head))
2013 head->features |= NVME_NS_METADATA_SUPPORTED;
2014 } else {
2015 /*
2016 * For PCIe controllers, we can't easily remap the separate
2017 * metadata buffer from the block layer and thus require a
2018 * separate metadata buffer for block layer metadata/PI support.
2019 * We allow extended LBAs for the passthrough interface, though.
2020 */
2021 if (id->flbas & NVME_NS_FLBAS_META_EXT)
2022 head->features |= NVME_NS_EXT_LBAS;
2023 else
2024 head->features |= NVME_NS_METADATA_SUPPORTED;
2025 }
2026 }
2027
2028
nvme_configure_atomic_write(struct nvme_ns * ns,struct nvme_id_ns * id,struct queue_limits * lim,u32 bs)2029 static u32 nvme_configure_atomic_write(struct nvme_ns *ns,
2030 struct nvme_id_ns *id, struct queue_limits *lim, u32 bs)
2031 {
2032 u32 atomic_bs, boundary = 0;
2033
2034 /*
2035 * We do not support an offset for the atomic boundaries.
2036 */
2037 if (id->nabo)
2038 return bs;
2039
2040 if ((id->nsfeat & NVME_NS_FEAT_ATOMICS) && id->nawupf) {
2041 /*
2042 * Use the per-namespace atomic write unit when available.
2043 */
2044 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2045 if (id->nabspf)
2046 boundary = (le16_to_cpu(id->nabspf) + 1) * bs;
2047 } else {
2048 /*
2049 * Use the controller wide atomic write unit. This sucks
2050 * because the limit is defined in terms of logical blocks while
2051 * namespaces can have different formats, and because there is
2052 * no clear language in the specification prohibiting different
2053 * values for different controllers in the subsystem.
2054 */
2055 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2056 }
2057
2058 lim->atomic_write_hw_max = atomic_bs;
2059 lim->atomic_write_hw_boundary = boundary;
2060 lim->atomic_write_hw_unit_min = bs;
2061 lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs);
2062 lim->features |= BLK_FEAT_ATOMIC_WRITES;
2063 return atomic_bs;
2064 }
2065
nvme_max_drv_segments(struct nvme_ctrl * ctrl)2066 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl)
2067 {
2068 return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1;
2069 }
2070
nvme_set_ctrl_limits(struct nvme_ctrl * ctrl,struct queue_limits * lim)2071 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl,
2072 struct queue_limits *lim)
2073 {
2074 lim->max_hw_sectors = ctrl->max_hw_sectors;
2075 lim->max_segments = min_t(u32, USHRT_MAX,
2076 min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments));
2077 lim->max_integrity_segments = ctrl->max_integrity_segments;
2078 lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1;
2079 lim->max_segment_size = UINT_MAX;
2080 lim->dma_alignment = 3;
2081 }
2082
nvme_update_disk_info(struct nvme_ns * ns,struct nvme_id_ns * id,struct queue_limits * lim)2083 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id,
2084 struct queue_limits *lim)
2085 {
2086 struct nvme_ns_head *head = ns->head;
2087 u32 bs = 1U << head->lba_shift;
2088 u32 atomic_bs, phys_bs, io_opt = 0;
2089 bool valid = true;
2090
2091 /*
2092 * The block layer can't support LBA sizes larger than the page size
2093 * or smaller than a sector size yet, so catch this early and don't
2094 * allow block I/O.
2095 */
2096 if (blk_validate_block_size(bs)) {
2097 bs = (1 << 9);
2098 valid = false;
2099 }
2100
2101 phys_bs = bs;
2102 atomic_bs = nvme_configure_atomic_write(ns, id, lim, bs);
2103
2104 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2105 /* NPWG = Namespace Preferred Write Granularity */
2106 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2107 /* NOWS = Namespace Optimal Write Size */
2108 if (id->nows)
2109 io_opt = bs * (1 + le16_to_cpu(id->nows));
2110 }
2111
2112 /*
2113 * Linux filesystems assume writing a single physical block is
2114 * an atomic operation. Hence limit the physical block size to the
2115 * value of the Atomic Write Unit Power Fail parameter.
2116 */
2117 lim->logical_block_size = bs;
2118 lim->physical_block_size = min(phys_bs, atomic_bs);
2119 lim->io_min = phys_bs;
2120 lim->io_opt = io_opt;
2121 if ((ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) &&
2122 (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM))
2123 lim->max_write_zeroes_sectors = UINT_MAX;
2124 else
2125 lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors;
2126 return valid;
2127 }
2128
nvme_ns_is_readonly(struct nvme_ns * ns,struct nvme_ns_info * info)2129 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
2130 {
2131 return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
2132 }
2133
nvme_first_scan(struct gendisk * disk)2134 static inline bool nvme_first_scan(struct gendisk *disk)
2135 {
2136 /* nvme_alloc_ns() scans the disk prior to adding it */
2137 return !disk_live(disk);
2138 }
2139
nvme_set_chunk_sectors(struct nvme_ns * ns,struct nvme_id_ns * id,struct queue_limits * lim)2140 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id,
2141 struct queue_limits *lim)
2142 {
2143 struct nvme_ctrl *ctrl = ns->ctrl;
2144 u32 iob;
2145
2146 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2147 is_power_of_2(ctrl->max_hw_sectors))
2148 iob = ctrl->max_hw_sectors;
2149 else
2150 iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob));
2151
2152 if (!iob)
2153 return;
2154
2155 if (!is_power_of_2(iob)) {
2156 if (nvme_first_scan(ns->disk))
2157 pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2158 ns->disk->disk_name, iob);
2159 return;
2160 }
2161
2162 if (blk_queue_is_zoned(ns->disk->queue)) {
2163 if (nvme_first_scan(ns->disk))
2164 pr_warn("%s: ignoring zoned namespace IO boundary\n",
2165 ns->disk->disk_name);
2166 return;
2167 }
2168
2169 lim->chunk_sectors = iob;
2170 }
2171
nvme_update_ns_info_generic(struct nvme_ns * ns,struct nvme_ns_info * info)2172 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
2173 struct nvme_ns_info *info)
2174 {
2175 struct queue_limits lim;
2176 unsigned int memflags;
2177 int ret;
2178
2179 lim = queue_limits_start_update(ns->disk->queue);
2180 nvme_set_ctrl_limits(ns->ctrl, &lim);
2181
2182 memflags = blk_mq_freeze_queue(ns->disk->queue);
2183 ret = queue_limits_commit_update(ns->disk->queue, &lim);
2184 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2185 blk_mq_unfreeze_queue(ns->disk->queue, memflags);
2186
2187 /* Hide the block-interface for these devices */
2188 if (!ret)
2189 ret = -ENODEV;
2190 return ret;
2191 }
2192
nvme_query_fdp_granularity(struct nvme_ctrl * ctrl,struct nvme_ns_info * info,u8 fdp_idx)2193 static int nvme_query_fdp_granularity(struct nvme_ctrl *ctrl,
2194 struct nvme_ns_info *info, u8 fdp_idx)
2195 {
2196 struct nvme_fdp_config_log hdr, *h;
2197 struct nvme_fdp_config_desc *desc;
2198 size_t size = sizeof(hdr);
2199 void *log, *end;
2200 int i, n, ret;
2201
2202 ret = nvme_get_log_lsi(ctrl, 0, NVME_LOG_FDP_CONFIGS, 0,
2203 NVME_CSI_NVM, &hdr, size, 0, info->endgid);
2204 if (ret) {
2205 dev_warn(ctrl->device,
2206 "FDP configs log header status:0x%x endgid:%d\n", ret,
2207 info->endgid);
2208 return ret;
2209 }
2210
2211 size = le32_to_cpu(hdr.sze);
2212 if (size > PAGE_SIZE * MAX_ORDER_NR_PAGES) {
2213 dev_warn(ctrl->device, "FDP config size too large:%zu\n",
2214 size);
2215 return 0;
2216 }
2217
2218 h = kvmalloc(size, GFP_KERNEL);
2219 if (!h)
2220 return -ENOMEM;
2221
2222 ret = nvme_get_log_lsi(ctrl, 0, NVME_LOG_FDP_CONFIGS, 0,
2223 NVME_CSI_NVM, h, size, 0, info->endgid);
2224 if (ret) {
2225 dev_warn(ctrl->device,
2226 "FDP configs log status:0x%x endgid:%d\n", ret,
2227 info->endgid);
2228 goto out;
2229 }
2230
2231 n = le16_to_cpu(h->numfdpc) + 1;
2232 if (fdp_idx > n) {
2233 dev_warn(ctrl->device, "FDP index:%d out of range:%d\n",
2234 fdp_idx, n);
2235 /* Proceed without registering FDP streams */
2236 ret = 0;
2237 goto out;
2238 }
2239
2240 log = h + 1;
2241 desc = log;
2242 end = log + size - sizeof(*h);
2243 for (i = 0; i < fdp_idx; i++) {
2244 log += le16_to_cpu(desc->dsze);
2245 desc = log;
2246 if (log >= end) {
2247 dev_warn(ctrl->device,
2248 "FDP invalid config descriptor list\n");
2249 ret = 0;
2250 goto out;
2251 }
2252 }
2253
2254 if (le32_to_cpu(desc->nrg) > 1) {
2255 dev_warn(ctrl->device, "FDP NRG > 1 not supported\n");
2256 ret = 0;
2257 goto out;
2258 }
2259
2260 info->runs = le64_to_cpu(desc->runs);
2261 out:
2262 kvfree(h);
2263 return ret;
2264 }
2265
nvme_query_fdp_info(struct nvme_ns * ns,struct nvme_ns_info * info)2266 static int nvme_query_fdp_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2267 {
2268 struct nvme_ns_head *head = ns->head;
2269 struct nvme_ctrl *ctrl = ns->ctrl;
2270 struct nvme_fdp_ruh_status *ruhs;
2271 struct nvme_fdp_config fdp;
2272 struct nvme_command c = {};
2273 size_t size;
2274 int i, ret;
2275
2276 /*
2277 * The FDP configuration is static for the lifetime of the namespace,
2278 * so return immediately if we've already registered this namespace's
2279 * streams.
2280 */
2281 if (head->nr_plids)
2282 return 0;
2283
2284 ret = nvme_get_features(ctrl, NVME_FEAT_FDP, info->endgid, NULL, 0,
2285 &fdp);
2286 if (ret) {
2287 dev_warn(ctrl->device, "FDP get feature status:0x%x\n", ret);
2288 return ret;
2289 }
2290
2291 if (!(fdp.flags & FDPCFG_FDPE))
2292 return 0;
2293
2294 ret = nvme_query_fdp_granularity(ctrl, info, fdp.fdpcidx);
2295 if (!info->runs)
2296 return ret;
2297
2298 size = struct_size(ruhs, ruhsd, S8_MAX - 1);
2299 ruhs = kzalloc(size, GFP_KERNEL);
2300 if (!ruhs)
2301 return -ENOMEM;
2302
2303 c.imr.opcode = nvme_cmd_io_mgmt_recv;
2304 c.imr.nsid = cpu_to_le32(head->ns_id);
2305 c.imr.mo = NVME_IO_MGMT_RECV_MO_RUHS;
2306 c.imr.numd = cpu_to_le32(nvme_bytes_to_numd(size));
2307 ret = nvme_submit_sync_cmd(ns->queue, &c, ruhs, size);
2308 if (ret) {
2309 dev_warn(ctrl->device, "FDP io-mgmt status:0x%x\n", ret);
2310 goto free;
2311 }
2312
2313 head->nr_plids = le16_to_cpu(ruhs->nruhsd);
2314 if (!head->nr_plids)
2315 goto free;
2316
2317 head->plids = kcalloc(head->nr_plids, sizeof(*head->plids),
2318 GFP_KERNEL);
2319 if (!head->plids) {
2320 dev_warn(ctrl->device,
2321 "failed to allocate %u FDP placement IDs\n",
2322 head->nr_plids);
2323 head->nr_plids = 0;
2324 ret = -ENOMEM;
2325 goto free;
2326 }
2327
2328 for (i = 0; i < head->nr_plids; i++)
2329 head->plids[i] = le16_to_cpu(ruhs->ruhsd[i].pid);
2330 free:
2331 kfree(ruhs);
2332 return ret;
2333 }
2334
nvme_update_ns_info_block(struct nvme_ns * ns,struct nvme_ns_info * info)2335 static int nvme_update_ns_info_block(struct nvme_ns *ns,
2336 struct nvme_ns_info *info)
2337 {
2338 struct queue_limits lim;
2339 struct nvme_id_ns_nvm *nvm = NULL;
2340 struct nvme_zone_info zi = {};
2341 struct nvme_id_ns *id;
2342 unsigned int memflags;
2343 sector_t capacity;
2344 unsigned lbaf;
2345 int ret;
2346
2347 ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2348 if (ret)
2349 return ret;
2350
2351 if (id->ncap == 0) {
2352 /* namespace not allocated or attached */
2353 info->is_removed = true;
2354 ret = -ENXIO;
2355 goto out;
2356 }
2357 lbaf = nvme_lbaf_index(id->flbas);
2358
2359 if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) {
2360 ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm);
2361 if (ret < 0)
2362 goto out;
2363 }
2364
2365 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2366 ns->head->ids.csi == NVME_CSI_ZNS) {
2367 ret = nvme_query_zone_info(ns, lbaf, &zi);
2368 if (ret < 0)
2369 goto out;
2370 }
2371
2372 if (ns->ctrl->ctratt & NVME_CTRL_ATTR_FDPS) {
2373 ret = nvme_query_fdp_info(ns, info);
2374 if (ret < 0)
2375 goto out;
2376 }
2377
2378 lim = queue_limits_start_update(ns->disk->queue);
2379
2380 memflags = blk_mq_freeze_queue(ns->disk->queue);
2381 ns->head->lba_shift = id->lbaf[lbaf].ds;
2382 ns->head->nuse = le64_to_cpu(id->nuse);
2383 capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze));
2384 nvme_set_ctrl_limits(ns->ctrl, &lim);
2385 nvme_configure_metadata(ns->ctrl, ns->head, id, nvm, info);
2386 nvme_set_chunk_sectors(ns, id, &lim);
2387 if (!nvme_update_disk_info(ns, id, &lim))
2388 capacity = 0;
2389
2390 nvme_config_discard(ns, &lim);
2391 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2392 ns->head->ids.csi == NVME_CSI_ZNS)
2393 nvme_update_zone_info(ns, &lim, &zi);
2394
2395 if ((ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT) && !info->no_vwc)
2396 lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA;
2397 else
2398 lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
2399
2400 if (info->is_rotational)
2401 lim.features |= BLK_FEAT_ROTATIONAL;
2402
2403 /*
2404 * Register a metadata profile for PI, or the plain non-integrity NVMe
2405 * metadata masquerading as Type 0 if supported, otherwise reject block
2406 * I/O to namespaces with metadata except when the namespace supports
2407 * PI, as it can strip/insert in that case.
2408 */
2409 if (!nvme_init_integrity(ns->head, &lim, info))
2410 capacity = 0;
2411
2412 lim.max_write_streams = ns->head->nr_plids;
2413 if (lim.max_write_streams)
2414 lim.write_stream_granularity = min(info->runs, U32_MAX);
2415 else
2416 lim.write_stream_granularity = 0;
2417
2418 /*
2419 * Only set the DEAC bit if the device guarantees that reads from
2420 * deallocated data return zeroes. While the DEAC bit does not
2421 * require that, it must be a no-op if reads from deallocated data
2422 * do not return zeroes.
2423 */
2424 if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3))) {
2425 ns->head->features |= NVME_NS_DEAC;
2426 lim.max_hw_wzeroes_unmap_sectors = lim.max_write_zeroes_sectors;
2427 }
2428
2429 ret = queue_limits_commit_update(ns->disk->queue, &lim);
2430 if (ret) {
2431 blk_mq_unfreeze_queue(ns->disk->queue, memflags);
2432 goto out;
2433 }
2434
2435 set_capacity_and_notify(ns->disk, capacity);
2436 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2437 set_bit(NVME_NS_READY, &ns->flags);
2438 blk_mq_unfreeze_queue(ns->disk->queue, memflags);
2439
2440 if (blk_queue_is_zoned(ns->queue)) {
2441 ret = blk_revalidate_disk_zones(ns->disk);
2442 if (ret && !nvme_first_scan(ns->disk))
2443 goto out;
2444 }
2445
2446 ret = 0;
2447 out:
2448 kfree(nvm);
2449 kfree(id);
2450 return ret;
2451 }
2452
nvme_update_ns_info(struct nvme_ns * ns,struct nvme_ns_info * info)2453 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2454 {
2455 bool unsupported = false;
2456 int ret;
2457
2458 switch (info->ids.csi) {
2459 case NVME_CSI_ZNS:
2460 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2461 dev_info(ns->ctrl->device,
2462 "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2463 info->nsid);
2464 ret = nvme_update_ns_info_generic(ns, info);
2465 break;
2466 }
2467 ret = nvme_update_ns_info_block(ns, info);
2468 break;
2469 case NVME_CSI_NVM:
2470 ret = nvme_update_ns_info_block(ns, info);
2471 break;
2472 default:
2473 dev_info(ns->ctrl->device,
2474 "block device for nsid %u not supported (csi %u)\n",
2475 info->nsid, info->ids.csi);
2476 ret = nvme_update_ns_info_generic(ns, info);
2477 break;
2478 }
2479
2480 /*
2481 * If probing fails due an unsupported feature, hide the block device,
2482 * but still allow other access.
2483 */
2484 if (ret == -ENODEV) {
2485 ns->disk->flags |= GENHD_FL_HIDDEN;
2486 set_bit(NVME_NS_READY, &ns->flags);
2487 unsupported = true;
2488 ret = 0;
2489 }
2490
2491 if (!ret && nvme_ns_head_multipath(ns->head)) {
2492 struct queue_limits *ns_lim = &ns->disk->queue->limits;
2493 struct queue_limits lim;
2494 unsigned int memflags;
2495
2496 lim = queue_limits_start_update(ns->head->disk->queue);
2497 memflags = blk_mq_freeze_queue(ns->head->disk->queue);
2498 /*
2499 * queue_limits mixes values that are the hardware limitations
2500 * for bio splitting with what is the device configuration.
2501 *
2502 * For NVMe the device configuration can change after e.g. a
2503 * Format command, and we really want to pick up the new format
2504 * value here. But we must still stack the queue limits to the
2505 * least common denominator for multipathing to split the bios
2506 * properly.
2507 *
2508 * To work around this, we explicitly set the device
2509 * configuration to those that we just queried, but only stack
2510 * the splitting limits in to make sure we still obey possibly
2511 * lower limitations of other controllers.
2512 */
2513 lim.logical_block_size = ns_lim->logical_block_size;
2514 lim.physical_block_size = ns_lim->physical_block_size;
2515 lim.io_min = ns_lim->io_min;
2516 lim.io_opt = ns_lim->io_opt;
2517 queue_limits_stack_bdev(&lim, ns->disk->part0, 0,
2518 ns->head->disk->disk_name);
2519 if (unsupported)
2520 ns->head->disk->flags |= GENHD_FL_HIDDEN;
2521 else
2522 nvme_init_integrity(ns->head, &lim, info);
2523 lim.max_write_streams = ns_lim->max_write_streams;
2524 lim.write_stream_granularity = ns_lim->write_stream_granularity;
2525 ret = queue_limits_commit_update(ns->head->disk->queue, &lim);
2526
2527 set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk));
2528 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2529 nvme_mpath_revalidate_paths(ns);
2530
2531 blk_mq_unfreeze_queue(ns->head->disk->queue, memflags);
2532 }
2533
2534 return ret;
2535 }
2536
nvme_ns_get_unique_id(struct nvme_ns * ns,u8 id[16],enum blk_unique_id type)2537 int nvme_ns_get_unique_id(struct nvme_ns *ns, u8 id[16],
2538 enum blk_unique_id type)
2539 {
2540 struct nvme_ns_ids *ids = &ns->head->ids;
2541
2542 if (type != BLK_UID_EUI64)
2543 return -EINVAL;
2544
2545 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) {
2546 memcpy(id, &ids->nguid, sizeof(ids->nguid));
2547 return sizeof(ids->nguid);
2548 }
2549 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) {
2550 memcpy(id, &ids->eui64, sizeof(ids->eui64));
2551 return sizeof(ids->eui64);
2552 }
2553
2554 return -EINVAL;
2555 }
2556
nvme_get_unique_id(struct gendisk * disk,u8 id[16],enum blk_unique_id type)2557 static int nvme_get_unique_id(struct gendisk *disk, u8 id[16],
2558 enum blk_unique_id type)
2559 {
2560 return nvme_ns_get_unique_id(disk->private_data, id, type);
2561 }
2562
2563 #ifdef CONFIG_BLK_SED_OPAL
nvme_sec_submit(void * data,u16 spsp,u8 secp,void * buffer,size_t len,bool send)2564 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2565 bool send)
2566 {
2567 struct nvme_ctrl *ctrl = data;
2568 struct nvme_command cmd = { };
2569
2570 if (send)
2571 cmd.common.opcode = nvme_admin_security_send;
2572 else
2573 cmd.common.opcode = nvme_admin_security_recv;
2574 cmd.common.nsid = 0;
2575 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2576 cmd.common.cdw11 = cpu_to_le32(len);
2577
2578 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2579 NVME_QID_ANY, NVME_SUBMIT_AT_HEAD);
2580 }
2581
nvme_configure_opal(struct nvme_ctrl * ctrl,bool was_suspended)2582 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2583 {
2584 if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2585 if (!ctrl->opal_dev)
2586 ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2587 else if (was_suspended)
2588 opal_unlock_from_suspend(ctrl->opal_dev);
2589 } else {
2590 free_opal_dev(ctrl->opal_dev);
2591 ctrl->opal_dev = NULL;
2592 }
2593 }
2594 #else
nvme_configure_opal(struct nvme_ctrl * ctrl,bool was_suspended)2595 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2596 {
2597 }
2598 #endif /* CONFIG_BLK_SED_OPAL */
2599
2600 #ifdef CONFIG_BLK_DEV_ZONED
nvme_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)2601 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2602 unsigned int nr_zones, report_zones_cb cb, void *data)
2603 {
2604 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2605 data);
2606 }
2607 #else
2608 #define nvme_report_zones NULL
2609 #endif /* CONFIG_BLK_DEV_ZONED */
2610
2611 const struct block_device_operations nvme_bdev_ops = {
2612 .owner = THIS_MODULE,
2613 .ioctl = nvme_ioctl,
2614 .compat_ioctl = blkdev_compat_ptr_ioctl,
2615 .open = nvme_open,
2616 .release = nvme_release,
2617 .getgeo = nvme_getgeo,
2618 .get_unique_id = nvme_get_unique_id,
2619 .report_zones = nvme_report_zones,
2620 .pr_ops = &nvme_pr_ops,
2621 };
2622
nvme_wait_ready(struct nvme_ctrl * ctrl,u32 mask,u32 val,u32 timeout,const char * op)2623 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2624 u32 timeout, const char *op)
2625 {
2626 unsigned long timeout_jiffies = jiffies + timeout * HZ;
2627 u32 csts;
2628 int ret;
2629
2630 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2631 if (csts == ~0)
2632 return -ENODEV;
2633 if ((csts & mask) == val)
2634 break;
2635
2636 usleep_range(1000, 2000);
2637 if (fatal_signal_pending(current))
2638 return -EINTR;
2639 if (time_after(jiffies, timeout_jiffies)) {
2640 dev_err(ctrl->device,
2641 "Device not ready; aborting %s, CSTS=0x%x\n",
2642 op, csts);
2643 return -ENODEV;
2644 }
2645 }
2646
2647 return ret;
2648 }
2649
nvme_disable_ctrl(struct nvme_ctrl * ctrl,bool shutdown)2650 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2651 {
2652 int ret;
2653
2654 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2655 if (shutdown)
2656 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2657 else
2658 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2659
2660 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2661 if (ret)
2662 return ret;
2663
2664 if (shutdown) {
2665 return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2666 NVME_CSTS_SHST_CMPLT,
2667 ctrl->shutdown_timeout, "shutdown");
2668 }
2669 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2670 msleep(NVME_QUIRK_DELAY_AMOUNT);
2671 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2672 (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2673 }
2674 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2675
nvme_enable_ctrl(struct nvme_ctrl * ctrl)2676 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2677 {
2678 unsigned dev_page_min;
2679 u32 timeout;
2680 int ret;
2681
2682 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2683 if (ret) {
2684 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2685 return ret;
2686 }
2687 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2688
2689 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2690 dev_err(ctrl->device,
2691 "Minimum device page size %u too large for host (%u)\n",
2692 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2693 return -ENODEV;
2694 }
2695
2696 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2697 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2698 else
2699 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2700
2701 /*
2702 * Setting CRIME results in CSTS.RDY before the media is ready. This
2703 * makes it possible for media related commands to return the error
2704 * NVME_SC_ADMIN_COMMAND_MEDIA_NOT_READY. Until the driver is
2705 * restructured to handle retries, disable CC.CRIME.
2706 */
2707 ctrl->ctrl_config &= ~NVME_CC_CRIME;
2708
2709 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2710 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2711 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2712 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2713 if (ret)
2714 return ret;
2715
2716 /* CAP value may change after initial CC write */
2717 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2718 if (ret)
2719 return ret;
2720
2721 timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2722 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2723 u32 crto, ready_timeout;
2724
2725 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2726 if (ret) {
2727 dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2728 ret);
2729 return ret;
2730 }
2731
2732 /*
2733 * CRTO should always be greater or equal to CAP.TO, but some
2734 * devices are known to get this wrong. Use the larger of the
2735 * two values.
2736 */
2737 ready_timeout = NVME_CRTO_CRWMT(crto);
2738
2739 if (ready_timeout < timeout)
2740 dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2741 crto, ctrl->cap);
2742 else
2743 timeout = ready_timeout;
2744 }
2745
2746 ctrl->ctrl_config |= NVME_CC_ENABLE;
2747 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2748 if (ret)
2749 return ret;
2750 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2751 (timeout + 1) / 2, "initialisation");
2752 }
2753 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2754
nvme_configure_timestamp(struct nvme_ctrl * ctrl)2755 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2756 {
2757 __le64 ts;
2758 int ret;
2759
2760 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2761 return 0;
2762
2763 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2764 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2765 NULL);
2766 if (ret)
2767 dev_warn_once(ctrl->device,
2768 "could not set timestamp (%d)\n", ret);
2769 return ret;
2770 }
2771
nvme_configure_host_options(struct nvme_ctrl * ctrl)2772 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2773 {
2774 struct nvme_feat_host_behavior *host;
2775 u8 acre = 0, lbafee = 0;
2776 int ret;
2777
2778 /* Don't bother enabling the feature if retry delay is not reported */
2779 if (ctrl->crdt[0])
2780 acre = NVME_ENABLE_ACRE;
2781 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2782 lbafee = NVME_ENABLE_LBAFEE;
2783
2784 if (!acre && !lbafee)
2785 return 0;
2786
2787 host = kzalloc(sizeof(*host), GFP_KERNEL);
2788 if (!host)
2789 return 0;
2790
2791 host->acre = acre;
2792 host->lbafee = lbafee;
2793 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2794 host, sizeof(*host), NULL);
2795 kfree(host);
2796 return ret;
2797 }
2798
2799 /*
2800 * The function checks whether the given total (exlat + enlat) latency of
2801 * a power state allows the latter to be used as an APST transition target.
2802 * It does so by comparing the latency to the primary and secondary latency
2803 * tolerances defined by module params. If there's a match, the corresponding
2804 * timeout value is returned and the matching tolerance index (1 or 2) is
2805 * reported.
2806 */
nvme_apst_get_transition_time(u64 total_latency,u64 * transition_time,unsigned * last_index)2807 static bool nvme_apst_get_transition_time(u64 total_latency,
2808 u64 *transition_time, unsigned *last_index)
2809 {
2810 if (total_latency <= apst_primary_latency_tol_us) {
2811 if (*last_index == 1)
2812 return false;
2813 *last_index = 1;
2814 *transition_time = apst_primary_timeout_ms;
2815 return true;
2816 }
2817 if (apst_secondary_timeout_ms &&
2818 total_latency <= apst_secondary_latency_tol_us) {
2819 if (*last_index <= 2)
2820 return false;
2821 *last_index = 2;
2822 *transition_time = apst_secondary_timeout_ms;
2823 return true;
2824 }
2825 return false;
2826 }
2827
2828 /*
2829 * APST (Autonomous Power State Transition) lets us program a table of power
2830 * state transitions that the controller will perform automatically.
2831 *
2832 * Depending on module params, one of the two supported techniques will be used:
2833 *
2834 * - If the parameters provide explicit timeouts and tolerances, they will be
2835 * used to build a table with up to 2 non-operational states to transition to.
2836 * The default parameter values were selected based on the values used by
2837 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2838 * regeneration of the APST table in the event of switching between external
2839 * and battery power, the timeouts and tolerances reflect a compromise
2840 * between values used by Microsoft for AC and battery scenarios.
2841 * - If not, we'll configure the table with a simple heuristic: we are willing
2842 * to spend at most 2% of the time transitioning between power states.
2843 * Therefore, when running in any given state, we will enter the next
2844 * lower-power non-operational state after waiting 50 * (enlat + exlat)
2845 * microseconds, as long as that state's exit latency is under the requested
2846 * maximum latency.
2847 *
2848 * We will not autonomously enter any non-operational state for which the total
2849 * latency exceeds ps_max_latency_us.
2850 *
2851 * Users can set ps_max_latency_us to zero to turn off APST.
2852 */
nvme_configure_apst(struct nvme_ctrl * ctrl)2853 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2854 {
2855 struct nvme_feat_auto_pst *table;
2856 unsigned apste = 0;
2857 u64 max_lat_us = 0;
2858 __le64 target = 0;
2859 int max_ps = -1;
2860 int state;
2861 int ret;
2862 unsigned last_lt_index = UINT_MAX;
2863
2864 /*
2865 * If APST isn't supported or if we haven't been initialized yet,
2866 * then don't do anything.
2867 */
2868 if (!ctrl->apsta)
2869 return 0;
2870
2871 if (ctrl->npss > 31) {
2872 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2873 return 0;
2874 }
2875
2876 table = kzalloc(sizeof(*table), GFP_KERNEL);
2877 if (!table)
2878 return 0;
2879
2880 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2881 /* Turn off APST. */
2882 dev_dbg(ctrl->device, "APST disabled\n");
2883 goto done;
2884 }
2885
2886 /*
2887 * Walk through all states from lowest- to highest-power.
2888 * According to the spec, lower-numbered states use more power. NPSS,
2889 * despite the name, is the index of the lowest-power state, not the
2890 * number of states.
2891 */
2892 for (state = (int)ctrl->npss; state >= 0; state--) {
2893 u64 total_latency_us, exit_latency_us, transition_ms;
2894
2895 if (target)
2896 table->entries[state] = target;
2897
2898 /*
2899 * Don't allow transitions to the deepest state if it's quirked
2900 * off.
2901 */
2902 if (state == ctrl->npss &&
2903 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2904 continue;
2905
2906 /*
2907 * Is this state a useful non-operational state for higher-power
2908 * states to autonomously transition to?
2909 */
2910 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2911 continue;
2912
2913 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2914 if (exit_latency_us > ctrl->ps_max_latency_us)
2915 continue;
2916
2917 total_latency_us = exit_latency_us +
2918 le32_to_cpu(ctrl->psd[state].entry_lat);
2919
2920 /*
2921 * This state is good. It can be used as the APST idle target
2922 * for higher power states.
2923 */
2924 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2925 if (!nvme_apst_get_transition_time(total_latency_us,
2926 &transition_ms, &last_lt_index))
2927 continue;
2928 } else {
2929 transition_ms = total_latency_us + 19;
2930 do_div(transition_ms, 20);
2931 if (transition_ms > (1 << 24) - 1)
2932 transition_ms = (1 << 24) - 1;
2933 }
2934
2935 target = cpu_to_le64((state << 3) | (transition_ms << 8));
2936 if (max_ps == -1)
2937 max_ps = state;
2938 if (total_latency_us > max_lat_us)
2939 max_lat_us = total_latency_us;
2940 }
2941
2942 if (max_ps == -1)
2943 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2944 else
2945 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2946 max_ps, max_lat_us, (int)sizeof(*table), table);
2947 apste = 1;
2948
2949 done:
2950 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2951 table, sizeof(*table), NULL);
2952 if (ret)
2953 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2954 kfree(table);
2955 return ret;
2956 }
2957
nvme_set_latency_tolerance(struct device * dev,s32 val)2958 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2959 {
2960 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2961 u64 latency;
2962
2963 switch (val) {
2964 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2965 case PM_QOS_LATENCY_ANY:
2966 latency = U64_MAX;
2967 break;
2968
2969 default:
2970 latency = val;
2971 }
2972
2973 if (ctrl->ps_max_latency_us != latency) {
2974 ctrl->ps_max_latency_us = latency;
2975 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
2976 nvme_configure_apst(ctrl);
2977 }
2978 }
2979
2980 struct nvme_core_quirk_entry {
2981 /*
2982 * NVMe model and firmware strings are padded with spaces. For
2983 * simplicity, strings in the quirk table are padded with NULLs
2984 * instead.
2985 */
2986 u16 vid;
2987 const char *mn;
2988 const char *fr;
2989 unsigned long quirks;
2990 };
2991
2992 static const struct nvme_core_quirk_entry core_quirks[] = {
2993 {
2994 /*
2995 * This Toshiba device seems to die using any APST states. See:
2996 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2997 */
2998 .vid = 0x1179,
2999 .mn = "THNSF5256GPUK TOSHIBA",
3000 .quirks = NVME_QUIRK_NO_APST,
3001 },
3002 {
3003 /*
3004 * This LiteON CL1-3D*-Q11 firmware version has a race
3005 * condition associated with actions related to suspend to idle
3006 * LiteON has resolved the problem in future firmware
3007 */
3008 .vid = 0x14a4,
3009 .fr = "22301111",
3010 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
3011 },
3012 {
3013 /*
3014 * This Kioxia CD6-V Series / HPE PE8030 device times out and
3015 * aborts I/O during any load, but more easily reproducible
3016 * with discards (fstrim).
3017 *
3018 * The device is left in a state where it is also not possible
3019 * to use "nvme set-feature" to disable APST, but booting with
3020 * nvme_core.default_ps_max_latency=0 works.
3021 */
3022 .vid = 0x1e0f,
3023 .mn = "KCD6XVUL6T40",
3024 .quirks = NVME_QUIRK_NO_APST,
3025 },
3026 {
3027 /*
3028 * The external Samsung X5 SSD fails initialization without a
3029 * delay before checking if it is ready and has a whole set of
3030 * other problems. To make this even more interesting, it
3031 * shares the PCI ID with internal Samsung 970 Evo Plus that
3032 * does not need or want these quirks.
3033 */
3034 .vid = 0x144d,
3035 .mn = "Samsung Portable SSD X5",
3036 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3037 NVME_QUIRK_NO_DEEPEST_PS |
3038 NVME_QUIRK_IGNORE_DEV_SUBNQN,
3039 }
3040 };
3041
3042 /* match is null-terminated but idstr is space-padded. */
string_matches(const char * idstr,const char * match,size_t len)3043 static bool string_matches(const char *idstr, const char *match, size_t len)
3044 {
3045 size_t matchlen;
3046
3047 if (!match)
3048 return true;
3049
3050 matchlen = strlen(match);
3051 WARN_ON_ONCE(matchlen > len);
3052
3053 if (memcmp(idstr, match, matchlen))
3054 return false;
3055
3056 for (; matchlen < len; matchlen++)
3057 if (idstr[matchlen] != ' ')
3058 return false;
3059
3060 return true;
3061 }
3062
quirk_matches(const struct nvme_id_ctrl * id,const struct nvme_core_quirk_entry * q)3063 static bool quirk_matches(const struct nvme_id_ctrl *id,
3064 const struct nvme_core_quirk_entry *q)
3065 {
3066 return q->vid == le16_to_cpu(id->vid) &&
3067 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
3068 string_matches(id->fr, q->fr, sizeof(id->fr));
3069 }
3070
nvme_init_subnqn(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3071 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
3072 struct nvme_id_ctrl *id)
3073 {
3074 size_t nqnlen;
3075 int off;
3076
3077 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
3078 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
3079 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
3080 strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
3081 return;
3082 }
3083
3084 if (ctrl->vs >= NVME_VS(1, 2, 1))
3085 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
3086 }
3087
3088 /*
3089 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
3090 * Base Specification 2.0. It is slightly different from the format
3091 * specified there due to historic reasons, and we can't change it now.
3092 */
3093 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
3094 "nqn.2014.08.org.nvmexpress:%04x%04x",
3095 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
3096 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
3097 off += sizeof(id->sn);
3098 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
3099 off += sizeof(id->mn);
3100 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
3101 }
3102
nvme_release_subsystem(struct device * dev)3103 static void nvme_release_subsystem(struct device *dev)
3104 {
3105 struct nvme_subsystem *subsys =
3106 container_of(dev, struct nvme_subsystem, dev);
3107
3108 if (subsys->instance >= 0)
3109 ida_free(&nvme_instance_ida, subsys->instance);
3110 kfree(subsys);
3111 }
3112
nvme_destroy_subsystem(struct kref * ref)3113 static void nvme_destroy_subsystem(struct kref *ref)
3114 {
3115 struct nvme_subsystem *subsys =
3116 container_of(ref, struct nvme_subsystem, ref);
3117
3118 mutex_lock(&nvme_subsystems_lock);
3119 list_del(&subsys->entry);
3120 mutex_unlock(&nvme_subsystems_lock);
3121
3122 ida_destroy(&subsys->ns_ida);
3123 device_del(&subsys->dev);
3124 put_device(&subsys->dev);
3125 }
3126
nvme_put_subsystem(struct nvme_subsystem * subsys)3127 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
3128 {
3129 kref_put(&subsys->ref, nvme_destroy_subsystem);
3130 }
3131
__nvme_find_get_subsystem(const char * subsysnqn)3132 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
3133 {
3134 struct nvme_subsystem *subsys;
3135
3136 lockdep_assert_held(&nvme_subsystems_lock);
3137
3138 /*
3139 * Fail matches for discovery subsystems. This results
3140 * in each discovery controller bound to a unique subsystem.
3141 * This avoids issues with validating controller values
3142 * that can only be true when there is a single unique subsystem.
3143 * There may be multiple and completely independent entities
3144 * that provide discovery controllers.
3145 */
3146 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
3147 return NULL;
3148
3149 list_for_each_entry(subsys, &nvme_subsystems, entry) {
3150 if (strcmp(subsys->subnqn, subsysnqn))
3151 continue;
3152 if (!kref_get_unless_zero(&subsys->ref))
3153 continue;
3154 return subsys;
3155 }
3156
3157 return NULL;
3158 }
3159
nvme_discovery_ctrl(struct nvme_ctrl * ctrl)3160 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
3161 {
3162 return ctrl->opts && ctrl->opts->discovery_nqn;
3163 }
3164
nvme_admin_ctrl(struct nvme_ctrl * ctrl)3165 static inline bool nvme_admin_ctrl(struct nvme_ctrl *ctrl)
3166 {
3167 return ctrl->cntrltype == NVME_CTRL_ADMIN;
3168 }
3169
nvme_is_io_ctrl(struct nvme_ctrl * ctrl)3170 static inline bool nvme_is_io_ctrl(struct nvme_ctrl *ctrl)
3171 {
3172 return !nvme_discovery_ctrl(ctrl) && !nvme_admin_ctrl(ctrl);
3173 }
3174
nvme_validate_cntlid(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3175 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
3176 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3177 {
3178 struct nvme_ctrl *tmp;
3179
3180 lockdep_assert_held(&nvme_subsystems_lock);
3181
3182 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
3183 if (nvme_state_terminal(tmp))
3184 continue;
3185
3186 if (tmp->cntlid == ctrl->cntlid) {
3187 dev_err(ctrl->device,
3188 "Duplicate cntlid %u with %s, subsys %s, rejecting\n",
3189 ctrl->cntlid, dev_name(tmp->device),
3190 subsys->subnqn);
3191 return false;
3192 }
3193
3194 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
3195 nvme_discovery_ctrl(ctrl))
3196 continue;
3197
3198 dev_err(ctrl->device,
3199 "Subsystem does not support multiple controllers\n");
3200 return false;
3201 }
3202
3203 return true;
3204 }
3205
nvme_init_subsystem(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3206 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3207 {
3208 struct nvme_subsystem *subsys, *found;
3209 int ret;
3210
3211 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
3212 if (!subsys)
3213 return -ENOMEM;
3214
3215 subsys->instance = -1;
3216 mutex_init(&subsys->lock);
3217 kref_init(&subsys->ref);
3218 INIT_LIST_HEAD(&subsys->ctrls);
3219 INIT_LIST_HEAD(&subsys->nsheads);
3220 nvme_init_subnqn(subsys, ctrl, id);
3221 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
3222 memcpy(subsys->model, id->mn, sizeof(subsys->model));
3223 subsys->vendor_id = le16_to_cpu(id->vid);
3224 subsys->cmic = id->cmic;
3225 subsys->awupf = le16_to_cpu(id->awupf);
3226
3227 /* Versions prior to 1.4 don't necessarily report a valid type */
3228 if (id->cntrltype == NVME_CTRL_DISC ||
3229 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
3230 subsys->subtype = NVME_NQN_DISC;
3231 else
3232 subsys->subtype = NVME_NQN_NVME;
3233
3234 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
3235 dev_err(ctrl->device,
3236 "Subsystem %s is not a discovery controller",
3237 subsys->subnqn);
3238 kfree(subsys);
3239 return -EINVAL;
3240 }
3241 nvme_mpath_default_iopolicy(subsys);
3242
3243 subsys->dev.class = &nvme_subsys_class;
3244 subsys->dev.release = nvme_release_subsystem;
3245 subsys->dev.groups = nvme_subsys_attrs_groups;
3246 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
3247 device_initialize(&subsys->dev);
3248
3249 mutex_lock(&nvme_subsystems_lock);
3250 found = __nvme_find_get_subsystem(subsys->subnqn);
3251 if (found) {
3252 put_device(&subsys->dev);
3253 subsys = found;
3254
3255 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
3256 ret = -EINVAL;
3257 goto out_put_subsystem;
3258 }
3259 } else {
3260 ret = device_add(&subsys->dev);
3261 if (ret) {
3262 dev_err(ctrl->device,
3263 "failed to register subsystem device.\n");
3264 put_device(&subsys->dev);
3265 goto out_unlock;
3266 }
3267 ida_init(&subsys->ns_ida);
3268 list_add_tail(&subsys->entry, &nvme_subsystems);
3269 }
3270
3271 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
3272 dev_name(ctrl->device));
3273 if (ret) {
3274 dev_err(ctrl->device,
3275 "failed to create sysfs link from subsystem.\n");
3276 goto out_put_subsystem;
3277 }
3278
3279 if (!found)
3280 subsys->instance = ctrl->instance;
3281 ctrl->subsys = subsys;
3282 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
3283 mutex_unlock(&nvme_subsystems_lock);
3284 return 0;
3285
3286 out_put_subsystem:
3287 nvme_put_subsystem(subsys);
3288 out_unlock:
3289 mutex_unlock(&nvme_subsystems_lock);
3290 return ret;
3291 }
3292
nvme_get_log_lsi(struct nvme_ctrl * ctrl,u32 nsid,u8 log_page,u8 lsp,u8 csi,void * log,size_t size,u64 offset,u16 lsi)3293 static int nvme_get_log_lsi(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page,
3294 u8 lsp, u8 csi, void *log, size_t size, u64 offset, u16 lsi)
3295 {
3296 struct nvme_command c = { };
3297 u32 dwlen = nvme_bytes_to_numd(size);
3298
3299 c.get_log_page.opcode = nvme_admin_get_log_page;
3300 c.get_log_page.nsid = cpu_to_le32(nsid);
3301 c.get_log_page.lid = log_page;
3302 c.get_log_page.lsp = lsp;
3303 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
3304 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
3305 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
3306 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
3307 c.get_log_page.csi = csi;
3308 c.get_log_page.lsi = cpu_to_le16(lsi);
3309
3310 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
3311 }
3312
nvme_get_log(struct nvme_ctrl * ctrl,u32 nsid,u8 log_page,u8 lsp,u8 csi,void * log,size_t size,u64 offset)3313 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
3314 void *log, size_t size, u64 offset)
3315 {
3316 return nvme_get_log_lsi(ctrl, nsid, log_page, lsp, csi, log, size,
3317 offset, 0);
3318 }
3319
nvme_get_effects_log(struct nvme_ctrl * ctrl,u8 csi,struct nvme_effects_log ** log)3320 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3321 struct nvme_effects_log **log)
3322 {
3323 struct nvme_effects_log *old, *cel = xa_load(&ctrl->cels, csi);
3324 int ret;
3325
3326 if (cel)
3327 goto out;
3328
3329 cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3330 if (!cel)
3331 return -ENOMEM;
3332
3333 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3334 cel, sizeof(*cel), 0);
3335 if (ret) {
3336 kfree(cel);
3337 return ret;
3338 }
3339
3340 old = xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3341 if (xa_is_err(old)) {
3342 kfree(cel);
3343 return xa_err(old);
3344 }
3345 out:
3346 *log = cel;
3347 return 0;
3348 }
3349
nvme_mps_to_sectors(struct nvme_ctrl * ctrl,u32 units)3350 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
3351 {
3352 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
3353
3354 if (check_shl_overflow(1U, units + page_shift - 9, &val))
3355 return UINT_MAX;
3356 return val;
3357 }
3358
nvme_init_non_mdts_limits(struct nvme_ctrl * ctrl)3359 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
3360 {
3361 struct nvme_command c = { };
3362 struct nvme_id_ctrl_nvm *id;
3363 int ret;
3364
3365 /*
3366 * Even though NVMe spec explicitly states that MDTS is not applicable
3367 * to the write-zeroes, we are cautious and limit the size to the
3368 * controllers max_hw_sectors value, which is based on the MDTS field
3369 * and possibly other limiting factors.
3370 */
3371 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3372 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3373 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3374 else
3375 ctrl->max_zeroes_sectors = 0;
3376
3377 if (!nvme_is_io_ctrl(ctrl) ||
3378 !nvme_id_cns_ok(ctrl, NVME_ID_CNS_CS_CTRL) ||
3379 test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
3380 return 0;
3381
3382 id = kzalloc(sizeof(*id), GFP_KERNEL);
3383 if (!id)
3384 return -ENOMEM;
3385
3386 c.identify.opcode = nvme_admin_identify;
3387 c.identify.cns = NVME_ID_CNS_CS_CTRL;
3388 c.identify.csi = NVME_CSI_NVM;
3389
3390 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3391 if (ret)
3392 goto free_data;
3393
3394 ctrl->dmrl = id->dmrl;
3395 ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3396 if (id->wzsl)
3397 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3398
3399 free_data:
3400 if (ret > 0)
3401 set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
3402 kfree(id);
3403 return ret;
3404 }
3405
nvme_init_effects_log(struct nvme_ctrl * ctrl,u8 csi,struct nvme_effects_log ** log)3406 static int nvme_init_effects_log(struct nvme_ctrl *ctrl,
3407 u8 csi, struct nvme_effects_log **log)
3408 {
3409 struct nvme_effects_log *effects, *old;
3410
3411 effects = kzalloc(sizeof(*effects), GFP_KERNEL);
3412 if (!effects)
3413 return -ENOMEM;
3414
3415 old = xa_store(&ctrl->cels, csi, effects, GFP_KERNEL);
3416 if (xa_is_err(old)) {
3417 kfree(effects);
3418 return xa_err(old);
3419 }
3420
3421 *log = effects;
3422 return 0;
3423 }
3424
nvme_init_known_nvm_effects(struct nvme_ctrl * ctrl)3425 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
3426 {
3427 struct nvme_effects_log *log = ctrl->effects;
3428
3429 log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3430 NVME_CMD_EFFECTS_NCC |
3431 NVME_CMD_EFFECTS_CSE_MASK);
3432 log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3433 NVME_CMD_EFFECTS_CSE_MASK);
3434
3435 /*
3436 * The spec says the result of a security receive command depends on
3437 * the previous security send command. As such, many vendors log this
3438 * command as one to submitted only when no other commands to the same
3439 * namespace are outstanding. The intention is to tell the host to
3440 * prevent mixing security send and receive.
3441 *
3442 * This driver can only enforce such exclusive access against IO
3443 * queues, though. We are not readily able to enforce such a rule for
3444 * two commands to the admin queue, which is the only queue that
3445 * matters for this command.
3446 *
3447 * Rather than blindly freezing the IO queues for this effect that
3448 * doesn't even apply to IO, mask it off.
3449 */
3450 log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
3451
3452 log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3453 log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3454 log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3455 }
3456
nvme_init_effects(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3457 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3458 {
3459 int ret = 0;
3460
3461 if (ctrl->effects)
3462 return 0;
3463
3464 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3465 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3466 if (ret < 0)
3467 return ret;
3468 }
3469
3470 if (!ctrl->effects) {
3471 ret = nvme_init_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3472 if (ret < 0)
3473 return ret;
3474 }
3475
3476 nvme_init_known_nvm_effects(ctrl);
3477 return 0;
3478 }
3479
nvme_check_ctrl_fabric_info(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3480 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3481 {
3482 /*
3483 * In fabrics we need to verify the cntlid matches the
3484 * admin connect
3485 */
3486 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3487 dev_err(ctrl->device,
3488 "Mismatching cntlid: Connect %u vs Identify %u, rejecting\n",
3489 ctrl->cntlid, le16_to_cpu(id->cntlid));
3490 return -EINVAL;
3491 }
3492
3493 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3494 dev_err(ctrl->device,
3495 "keep-alive support is mandatory for fabrics\n");
3496 return -EINVAL;
3497 }
3498
3499 if (nvme_is_io_ctrl(ctrl) && ctrl->ioccsz < 4) {
3500 dev_err(ctrl->device,
3501 "I/O queue command capsule supported size %d < 4\n",
3502 ctrl->ioccsz);
3503 return -EINVAL;
3504 }
3505
3506 if (nvme_is_io_ctrl(ctrl) && ctrl->iorcsz < 1) {
3507 dev_err(ctrl->device,
3508 "I/O queue response capsule supported size %d < 1\n",
3509 ctrl->iorcsz);
3510 return -EINVAL;
3511 }
3512
3513 if (!ctrl->maxcmd) {
3514 dev_warn(ctrl->device,
3515 "Firmware bug: maximum outstanding commands is 0\n");
3516 ctrl->maxcmd = ctrl->sqsize + 1;
3517 }
3518
3519 return 0;
3520 }
3521
nvme_init_identify(struct nvme_ctrl * ctrl)3522 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3523 {
3524 struct queue_limits lim;
3525 struct nvme_id_ctrl *id;
3526 u32 max_hw_sectors;
3527 bool prev_apst_enabled;
3528 int ret;
3529
3530 ret = nvme_identify_ctrl(ctrl, &id);
3531 if (ret) {
3532 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3533 return -EIO;
3534 }
3535
3536 if (!(ctrl->ops->flags & NVME_F_FABRICS))
3537 ctrl->cntlid = le16_to_cpu(id->cntlid);
3538
3539 if (!ctrl->identified) {
3540 unsigned int i;
3541
3542 /*
3543 * Check for quirks. Quirk can depend on firmware version,
3544 * so, in principle, the set of quirks present can change
3545 * across a reset. As a possible future enhancement, we
3546 * could re-scan for quirks every time we reinitialize
3547 * the device, but we'd have to make sure that the driver
3548 * behaves intelligently if the quirks change.
3549 */
3550 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3551 if (quirk_matches(id, &core_quirks[i]))
3552 ctrl->quirks |= core_quirks[i].quirks;
3553 }
3554
3555 ret = nvme_init_subsystem(ctrl, id);
3556 if (ret)
3557 goto out_free;
3558
3559 ret = nvme_init_effects(ctrl, id);
3560 if (ret)
3561 goto out_free;
3562 }
3563 memcpy(ctrl->subsys->firmware_rev, id->fr,
3564 sizeof(ctrl->subsys->firmware_rev));
3565
3566 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3567 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3568 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3569 }
3570
3571 ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3572 ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3573 ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3574
3575 ctrl->oacs = le16_to_cpu(id->oacs);
3576 ctrl->oncs = le16_to_cpu(id->oncs);
3577 ctrl->mtfa = le16_to_cpu(id->mtfa);
3578 ctrl->oaes = le32_to_cpu(id->oaes);
3579 ctrl->wctemp = le16_to_cpu(id->wctemp);
3580 ctrl->cctemp = le16_to_cpu(id->cctemp);
3581
3582 atomic_set(&ctrl->abort_limit, id->acl + 1);
3583 ctrl->vwc = id->vwc;
3584 if (id->mdts)
3585 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3586 else
3587 max_hw_sectors = UINT_MAX;
3588 ctrl->max_hw_sectors =
3589 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3590
3591 lim = queue_limits_start_update(ctrl->admin_q);
3592 nvme_set_ctrl_limits(ctrl, &lim);
3593 ret = queue_limits_commit_update(ctrl->admin_q, &lim);
3594 if (ret)
3595 goto out_free;
3596
3597 ctrl->sgls = le32_to_cpu(id->sgls);
3598 ctrl->kas = le16_to_cpu(id->kas);
3599 ctrl->max_namespaces = le32_to_cpu(id->mnan);
3600 ctrl->ctratt = le32_to_cpu(id->ctratt);
3601
3602 ctrl->cntrltype = id->cntrltype;
3603 ctrl->dctype = id->dctype;
3604
3605 if (id->rtd3e) {
3606 /* us -> s */
3607 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3608
3609 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3610 shutdown_timeout, 60);
3611
3612 if (ctrl->shutdown_timeout != shutdown_timeout)
3613 dev_info(ctrl->device,
3614 "D3 entry latency set to %u seconds\n",
3615 ctrl->shutdown_timeout);
3616 } else
3617 ctrl->shutdown_timeout = shutdown_timeout;
3618
3619 ctrl->npss = id->npss;
3620 ctrl->apsta = id->apsta;
3621 prev_apst_enabled = ctrl->apst_enabled;
3622 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3623 if (force_apst && id->apsta) {
3624 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3625 ctrl->apst_enabled = true;
3626 } else {
3627 ctrl->apst_enabled = false;
3628 }
3629 } else {
3630 ctrl->apst_enabled = id->apsta;
3631 }
3632 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3633
3634 if (ctrl->ops->flags & NVME_F_FABRICS) {
3635 ctrl->icdoff = le16_to_cpu(id->icdoff);
3636 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3637 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3638 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3639
3640 ret = nvme_check_ctrl_fabric_info(ctrl, id);
3641 if (ret)
3642 goto out_free;
3643 } else {
3644 ctrl->hmpre = le32_to_cpu(id->hmpre);
3645 ctrl->hmmin = le32_to_cpu(id->hmmin);
3646 ctrl->hmminds = le32_to_cpu(id->hmminds);
3647 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3648 }
3649
3650 ret = nvme_mpath_init_identify(ctrl, id);
3651 if (ret < 0)
3652 goto out_free;
3653
3654 if (ctrl->apst_enabled && !prev_apst_enabled)
3655 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3656 else if (!ctrl->apst_enabled && prev_apst_enabled)
3657 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3658 out_free:
3659 kfree(id);
3660 return ret;
3661 }
3662
3663 /*
3664 * Initialize the cached copies of the Identify data and various controller
3665 * register in our nvme_ctrl structure. This should be called as soon as
3666 * the admin queue is fully up and running.
3667 */
nvme_init_ctrl_finish(struct nvme_ctrl * ctrl,bool was_suspended)3668 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3669 {
3670 int ret;
3671
3672 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3673 if (ret) {
3674 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3675 return ret;
3676 }
3677
3678 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3679
3680 if (ctrl->vs >= NVME_VS(1, 1, 0))
3681 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3682
3683 ret = nvme_init_identify(ctrl);
3684 if (ret)
3685 return ret;
3686
3687 if (nvme_admin_ctrl(ctrl)) {
3688 /*
3689 * An admin controller has one admin queue, but no I/O queues.
3690 * Override queue_count so it only creates an admin queue.
3691 */
3692 dev_dbg(ctrl->device,
3693 "Subsystem %s is an administrative controller",
3694 ctrl->subsys->subnqn);
3695 ctrl->queue_count = 1;
3696 }
3697
3698 ret = nvme_configure_apst(ctrl);
3699 if (ret < 0)
3700 return ret;
3701
3702 ret = nvme_configure_timestamp(ctrl);
3703 if (ret < 0)
3704 return ret;
3705
3706 ret = nvme_configure_host_options(ctrl);
3707 if (ret < 0)
3708 return ret;
3709
3710 nvme_configure_opal(ctrl, was_suspended);
3711
3712 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3713 /*
3714 * Do not return errors unless we are in a controller reset,
3715 * the controller works perfectly fine without hwmon.
3716 */
3717 ret = nvme_hwmon_init(ctrl);
3718 if (ret == -EINTR)
3719 return ret;
3720 }
3721
3722 clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
3723 ctrl->identified = true;
3724
3725 nvme_start_keep_alive(ctrl);
3726
3727 return 0;
3728 }
3729 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3730
nvme_dev_open(struct inode * inode,struct file * file)3731 static int nvme_dev_open(struct inode *inode, struct file *file)
3732 {
3733 struct nvme_ctrl *ctrl =
3734 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3735
3736 switch (nvme_ctrl_state(ctrl)) {
3737 case NVME_CTRL_LIVE:
3738 break;
3739 default:
3740 return -EWOULDBLOCK;
3741 }
3742
3743 nvme_get_ctrl(ctrl);
3744 if (!try_module_get(ctrl->ops->module)) {
3745 nvme_put_ctrl(ctrl);
3746 return -EINVAL;
3747 }
3748
3749 file->private_data = ctrl;
3750 return 0;
3751 }
3752
nvme_dev_release(struct inode * inode,struct file * file)3753 static int nvme_dev_release(struct inode *inode, struct file *file)
3754 {
3755 struct nvme_ctrl *ctrl =
3756 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3757
3758 module_put(ctrl->ops->module);
3759 nvme_put_ctrl(ctrl);
3760 return 0;
3761 }
3762
3763 static const struct file_operations nvme_dev_fops = {
3764 .owner = THIS_MODULE,
3765 .open = nvme_dev_open,
3766 .release = nvme_dev_release,
3767 .unlocked_ioctl = nvme_dev_ioctl,
3768 .compat_ioctl = compat_ptr_ioctl,
3769 .uring_cmd = nvme_dev_uring_cmd,
3770 };
3771
nvme_find_ns_head(struct nvme_ctrl * ctrl,unsigned nsid)3772 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3773 unsigned nsid)
3774 {
3775 struct nvme_ns_head *h;
3776
3777 lockdep_assert_held(&ctrl->subsys->lock);
3778
3779 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3780 /*
3781 * Private namespaces can share NSIDs under some conditions.
3782 * In that case we can't use the same ns_head for namespaces
3783 * with the same NSID.
3784 */
3785 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3786 continue;
3787 if (nvme_tryget_ns_head(h))
3788 return h;
3789 }
3790
3791 return NULL;
3792 }
3793
nvme_subsys_check_duplicate_ids(struct nvme_subsystem * subsys,struct nvme_ns_ids * ids)3794 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3795 struct nvme_ns_ids *ids)
3796 {
3797 bool has_uuid = !uuid_is_null(&ids->uuid);
3798 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3799 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3800 struct nvme_ns_head *h;
3801
3802 lockdep_assert_held(&subsys->lock);
3803
3804 list_for_each_entry(h, &subsys->nsheads, entry) {
3805 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3806 return -EINVAL;
3807 if (has_nguid &&
3808 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3809 return -EINVAL;
3810 if (has_eui64 &&
3811 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3812 return -EINVAL;
3813 }
3814
3815 return 0;
3816 }
3817
nvme_cdev_rel(struct device * dev)3818 static void nvme_cdev_rel(struct device *dev)
3819 {
3820 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3821 }
3822
nvme_cdev_del(struct cdev * cdev,struct device * cdev_device)3823 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3824 {
3825 cdev_device_del(cdev, cdev_device);
3826 put_device(cdev_device);
3827 }
3828
nvme_cdev_add(struct cdev * cdev,struct device * cdev_device,const struct file_operations * fops,struct module * owner)3829 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3830 const struct file_operations *fops, struct module *owner)
3831 {
3832 int minor, ret;
3833
3834 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3835 if (minor < 0)
3836 return minor;
3837 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3838 cdev_device->class = &nvme_ns_chr_class;
3839 cdev_device->release = nvme_cdev_rel;
3840 device_initialize(cdev_device);
3841 cdev_init(cdev, fops);
3842 cdev->owner = owner;
3843 ret = cdev_device_add(cdev, cdev_device);
3844 if (ret)
3845 put_device(cdev_device);
3846
3847 return ret;
3848 }
3849
nvme_ns_chr_open(struct inode * inode,struct file * file)3850 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3851 {
3852 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3853 }
3854
nvme_ns_chr_release(struct inode * inode,struct file * file)3855 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3856 {
3857 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3858 return 0;
3859 }
3860
3861 static const struct file_operations nvme_ns_chr_fops = {
3862 .owner = THIS_MODULE,
3863 .open = nvme_ns_chr_open,
3864 .release = nvme_ns_chr_release,
3865 .unlocked_ioctl = nvme_ns_chr_ioctl,
3866 .compat_ioctl = compat_ptr_ioctl,
3867 .uring_cmd = nvme_ns_chr_uring_cmd,
3868 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3869 };
3870
nvme_add_ns_cdev(struct nvme_ns * ns)3871 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3872 {
3873 int ret;
3874
3875 ns->cdev_device.parent = ns->ctrl->device;
3876 ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3877 ns->ctrl->instance, ns->head->instance);
3878 if (ret)
3879 return ret;
3880
3881 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3882 ns->ctrl->ops->module);
3883 }
3884
nvme_alloc_ns_head(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)3885 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3886 struct nvme_ns_info *info)
3887 {
3888 struct nvme_ns_head *head;
3889 size_t size = sizeof(*head);
3890 int ret = -ENOMEM;
3891
3892 #ifdef CONFIG_NVME_MULTIPATH
3893 size += num_possible_nodes() * sizeof(struct nvme_ns *);
3894 #endif
3895
3896 head = kzalloc(size, GFP_KERNEL);
3897 if (!head)
3898 goto out;
3899 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3900 if (ret < 0)
3901 goto out_free_head;
3902 head->instance = ret;
3903 INIT_LIST_HEAD(&head->list);
3904 ret = init_srcu_struct(&head->srcu);
3905 if (ret)
3906 goto out_ida_remove;
3907 head->subsys = ctrl->subsys;
3908 head->ns_id = info->nsid;
3909 head->ids = info->ids;
3910 head->shared = info->is_shared;
3911 head->rotational = info->is_rotational;
3912 ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1);
3913 ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE);
3914 kref_init(&head->ref);
3915
3916 if (head->ids.csi) {
3917 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3918 if (ret)
3919 goto out_cleanup_srcu;
3920 } else
3921 head->effects = ctrl->effects;
3922
3923 ret = nvme_mpath_alloc_disk(ctrl, head);
3924 if (ret)
3925 goto out_cleanup_srcu;
3926
3927 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3928
3929 kref_get(&ctrl->subsys->ref);
3930
3931 return head;
3932 out_cleanup_srcu:
3933 cleanup_srcu_struct(&head->srcu);
3934 out_ida_remove:
3935 ida_free(&ctrl->subsys->ns_ida, head->instance);
3936 out_free_head:
3937 kfree(head);
3938 out:
3939 if (ret > 0)
3940 ret = blk_status_to_errno(nvme_error_status(ret));
3941 return ERR_PTR(ret);
3942 }
3943
nvme_global_check_duplicate_ids(struct nvme_subsystem * this,struct nvme_ns_ids * ids)3944 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3945 struct nvme_ns_ids *ids)
3946 {
3947 struct nvme_subsystem *s;
3948 int ret = 0;
3949
3950 /*
3951 * Note that this check is racy as we try to avoid holding the global
3952 * lock over the whole ns_head creation. But it is only intended as
3953 * a sanity check anyway.
3954 */
3955 mutex_lock(&nvme_subsystems_lock);
3956 list_for_each_entry(s, &nvme_subsystems, entry) {
3957 if (s == this)
3958 continue;
3959 mutex_lock(&s->lock);
3960 ret = nvme_subsys_check_duplicate_ids(s, ids);
3961 mutex_unlock(&s->lock);
3962 if (ret)
3963 break;
3964 }
3965 mutex_unlock(&nvme_subsystems_lock);
3966
3967 return ret;
3968 }
3969
nvme_init_ns_head(struct nvme_ns * ns,struct nvme_ns_info * info)3970 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3971 {
3972 struct nvme_ctrl *ctrl = ns->ctrl;
3973 struct nvme_ns_head *head = NULL;
3974 int ret;
3975
3976 ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3977 if (ret) {
3978 /*
3979 * We've found two different namespaces on two different
3980 * subsystems that report the same ID. This is pretty nasty
3981 * for anything that actually requires unique device
3982 * identification. In the kernel we need this for multipathing,
3983 * and in user space the /dev/disk/by-id/ links rely on it.
3984 *
3985 * If the device also claims to be multi-path capable back off
3986 * here now and refuse the probe the second device as this is a
3987 * recipe for data corruption. If not this is probably a
3988 * cheap consumer device if on the PCIe bus, so let the user
3989 * proceed and use the shiny toy, but warn that with changing
3990 * probing order (which due to our async probing could just be
3991 * device taking longer to startup) the other device could show
3992 * up at any time.
3993 */
3994 nvme_print_device_info(ctrl);
3995 if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3996 ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3997 info->is_shared)) {
3998 dev_err(ctrl->device,
3999 "ignoring nsid %d because of duplicate IDs\n",
4000 info->nsid);
4001 return ret;
4002 }
4003
4004 dev_err(ctrl->device,
4005 "clearing duplicate IDs for nsid %d\n", info->nsid);
4006 dev_err(ctrl->device,
4007 "use of /dev/disk/by-id/ may cause data corruption\n");
4008 memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
4009 memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
4010 memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
4011 ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
4012 }
4013
4014 mutex_lock(&ctrl->subsys->lock);
4015 head = nvme_find_ns_head(ctrl, info->nsid);
4016 if (!head) {
4017 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
4018 if (ret) {
4019 dev_err(ctrl->device,
4020 "duplicate IDs in subsystem for nsid %d\n",
4021 info->nsid);
4022 goto out_unlock;
4023 }
4024 head = nvme_alloc_ns_head(ctrl, info);
4025 if (IS_ERR(head)) {
4026 ret = PTR_ERR(head);
4027 goto out_unlock;
4028 }
4029 } else {
4030 ret = -EINVAL;
4031 if ((!info->is_shared || !head->shared) &&
4032 !list_empty(&head->list)) {
4033 dev_err(ctrl->device,
4034 "Duplicate unshared namespace %d\n",
4035 info->nsid);
4036 goto out_put_ns_head;
4037 }
4038 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
4039 dev_err(ctrl->device,
4040 "IDs don't match for shared namespace %d\n",
4041 info->nsid);
4042 goto out_put_ns_head;
4043 }
4044
4045 if (!multipath) {
4046 dev_warn(ctrl->device,
4047 "Found shared namespace %d, but multipathing not supported.\n",
4048 info->nsid);
4049 dev_warn_once(ctrl->device,
4050 "Shared namespace support requires core_nvme.multipath=Y.\n");
4051 }
4052 }
4053
4054 list_add_tail_rcu(&ns->siblings, &head->list);
4055 ns->head = head;
4056 mutex_unlock(&ctrl->subsys->lock);
4057
4058 #ifdef CONFIG_NVME_MULTIPATH
4059 cancel_delayed_work(&head->remove_work);
4060 #endif
4061 return 0;
4062
4063 out_put_ns_head:
4064 nvme_put_ns_head(head);
4065 out_unlock:
4066 mutex_unlock(&ctrl->subsys->lock);
4067 return ret;
4068 }
4069
nvme_find_get_ns(struct nvme_ctrl * ctrl,unsigned nsid)4070 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4071 {
4072 struct nvme_ns *ns, *ret = NULL;
4073 int srcu_idx;
4074
4075 srcu_idx = srcu_read_lock(&ctrl->srcu);
4076 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4077 srcu_read_lock_held(&ctrl->srcu)) {
4078 if (ns->head->ns_id == nsid) {
4079 if (!nvme_get_ns(ns))
4080 continue;
4081 ret = ns;
4082 break;
4083 }
4084 if (ns->head->ns_id > nsid)
4085 break;
4086 }
4087 srcu_read_unlock(&ctrl->srcu, srcu_idx);
4088 return ret;
4089 }
4090 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, "NVME_TARGET_PASSTHRU");
4091
4092 /*
4093 * Add the namespace to the controller list while keeping the list ordered.
4094 */
nvme_ns_add_to_ctrl_list(struct nvme_ns * ns)4095 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
4096 {
4097 struct nvme_ns *tmp;
4098
4099 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
4100 if (tmp->head->ns_id < ns->head->ns_id) {
4101 list_add_rcu(&ns->list, &tmp->list);
4102 return;
4103 }
4104 }
4105 list_add_rcu(&ns->list, &ns->ctrl->namespaces);
4106 }
4107
nvme_alloc_ns(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)4108 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
4109 {
4110 struct queue_limits lim = { };
4111 struct nvme_ns *ns;
4112 struct gendisk *disk;
4113 int node = ctrl->numa_node;
4114 bool last_path = false;
4115
4116 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
4117 if (!ns)
4118 return;
4119
4120 if (ctrl->opts && ctrl->opts->data_digest)
4121 lim.features |= BLK_FEAT_STABLE_WRITES;
4122 if (ctrl->ops->supports_pci_p2pdma &&
4123 ctrl->ops->supports_pci_p2pdma(ctrl))
4124 lim.features |= BLK_FEAT_PCI_P2PDMA;
4125
4126 disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns);
4127 if (IS_ERR(disk))
4128 goto out_free_ns;
4129 disk->fops = &nvme_bdev_ops;
4130 disk->private_data = ns;
4131
4132 ns->disk = disk;
4133 ns->queue = disk->queue;
4134 ns->ctrl = ctrl;
4135 kref_init(&ns->kref);
4136
4137 if (nvme_init_ns_head(ns, info))
4138 goto out_cleanup_disk;
4139
4140 /*
4141 * If multipathing is enabled, the device name for all disks and not
4142 * just those that represent shared namespaces needs to be based on the
4143 * subsystem instance. Using the controller instance for private
4144 * namespaces could lead to naming collisions between shared and private
4145 * namespaces if they don't use a common numbering scheme.
4146 *
4147 * If multipathing is not enabled, disk names must use the controller
4148 * instance as shared namespaces will show up as multiple block
4149 * devices.
4150 */
4151 if (nvme_ns_head_multipath(ns->head)) {
4152 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
4153 ctrl->instance, ns->head->instance);
4154 disk->flags |= GENHD_FL_HIDDEN;
4155 } else if (multipath) {
4156 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
4157 ns->head->instance);
4158 } else {
4159 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
4160 ns->head->instance);
4161 }
4162
4163 if (nvme_update_ns_info(ns, info))
4164 goto out_unlink_ns;
4165
4166 mutex_lock(&ctrl->namespaces_lock);
4167 /*
4168 * Ensure that no namespaces are added to the ctrl list after the queues
4169 * are frozen, thereby avoiding a deadlock between scan and reset.
4170 */
4171 if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) {
4172 mutex_unlock(&ctrl->namespaces_lock);
4173 goto out_unlink_ns;
4174 }
4175 nvme_ns_add_to_ctrl_list(ns);
4176 mutex_unlock(&ctrl->namespaces_lock);
4177 synchronize_srcu(&ctrl->srcu);
4178 nvme_get_ctrl(ctrl);
4179
4180 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups))
4181 goto out_cleanup_ns_from_list;
4182
4183 if (!nvme_ns_head_multipath(ns->head))
4184 nvme_add_ns_cdev(ns);
4185
4186 nvme_mpath_add_disk(ns, info->anagrpid);
4187 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
4188
4189 /*
4190 * Set ns->disk->device->driver_data to ns so we can access
4191 * ns->head->passthru_err_log_enabled in
4192 * nvme_io_passthru_err_log_enabled_[store | show]().
4193 */
4194 dev_set_drvdata(disk_to_dev(ns->disk), ns);
4195
4196 return;
4197
4198 out_cleanup_ns_from_list:
4199 nvme_put_ctrl(ctrl);
4200 mutex_lock(&ctrl->namespaces_lock);
4201 list_del_rcu(&ns->list);
4202 mutex_unlock(&ctrl->namespaces_lock);
4203 synchronize_srcu(&ctrl->srcu);
4204 out_unlink_ns:
4205 mutex_lock(&ctrl->subsys->lock);
4206 list_del_rcu(&ns->siblings);
4207 if (list_empty(&ns->head->list)) {
4208 list_del_init(&ns->head->entry);
4209 /*
4210 * If multipath is not configured, we still create a namespace
4211 * head (nshead), but head->disk is not initialized in that
4212 * case. As a result, only a single reference to nshead is held
4213 * (via kref_init()) when it is created. Therefore, ensure that
4214 * we do not release the reference to nshead twice if head->disk
4215 * is not present.
4216 */
4217 if (ns->head->disk)
4218 last_path = true;
4219 }
4220 mutex_unlock(&ctrl->subsys->lock);
4221 if (last_path)
4222 nvme_put_ns_head(ns->head);
4223 nvme_put_ns_head(ns->head);
4224 out_cleanup_disk:
4225 put_disk(disk);
4226 out_free_ns:
4227 kfree(ns);
4228 }
4229
nvme_ns_remove(struct nvme_ns * ns)4230 static void nvme_ns_remove(struct nvme_ns *ns)
4231 {
4232 bool last_path = false;
4233
4234 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
4235 return;
4236
4237 clear_bit(NVME_NS_READY, &ns->flags);
4238 set_capacity(ns->disk, 0);
4239 nvme_fault_inject_fini(&ns->fault_inject);
4240
4241 /*
4242 * Ensure that !NVME_NS_READY is seen by other threads to prevent
4243 * this ns going back into current_path.
4244 */
4245 synchronize_srcu(&ns->head->srcu);
4246
4247 /* wait for concurrent submissions */
4248 if (nvme_mpath_clear_current_path(ns))
4249 synchronize_srcu(&ns->head->srcu);
4250
4251 mutex_lock(&ns->ctrl->subsys->lock);
4252 list_del_rcu(&ns->siblings);
4253 if (list_empty(&ns->head->list)) {
4254 if (!nvme_mpath_queue_if_no_path(ns->head))
4255 list_del_init(&ns->head->entry);
4256 last_path = true;
4257 }
4258 mutex_unlock(&ns->ctrl->subsys->lock);
4259
4260 /* guarantee not available in head->list */
4261 synchronize_srcu(&ns->head->srcu);
4262
4263 if (!nvme_ns_head_multipath(ns->head))
4264 nvme_cdev_del(&ns->cdev, &ns->cdev_device);
4265
4266 nvme_mpath_remove_sysfs_link(ns);
4267
4268 del_gendisk(ns->disk);
4269
4270 mutex_lock(&ns->ctrl->namespaces_lock);
4271 list_del_rcu(&ns->list);
4272 mutex_unlock(&ns->ctrl->namespaces_lock);
4273 synchronize_srcu(&ns->ctrl->srcu);
4274
4275 if (last_path)
4276 nvme_mpath_remove_disk(ns->head);
4277 nvme_put_ns(ns);
4278 }
4279
nvme_ns_remove_by_nsid(struct nvme_ctrl * ctrl,u32 nsid)4280 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
4281 {
4282 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
4283
4284 if (ns) {
4285 nvme_ns_remove(ns);
4286 nvme_put_ns(ns);
4287 }
4288 }
4289
nvme_validate_ns(struct nvme_ns * ns,struct nvme_ns_info * info)4290 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
4291 {
4292 int ret = NVME_SC_INVALID_NS | NVME_STATUS_DNR;
4293
4294 if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
4295 dev_err(ns->ctrl->device,
4296 "identifiers changed for nsid %d\n", ns->head->ns_id);
4297 goto out;
4298 }
4299
4300 ret = nvme_update_ns_info(ns, info);
4301 out:
4302 /*
4303 * Only remove the namespace if we got a fatal error back from the
4304 * device, otherwise ignore the error and just move on.
4305 *
4306 * TODO: we should probably schedule a delayed retry here.
4307 */
4308 if (ret > 0 && (ret & NVME_STATUS_DNR))
4309 nvme_ns_remove(ns);
4310 }
4311
nvme_scan_ns(struct nvme_ctrl * ctrl,unsigned nsid)4312 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4313 {
4314 struct nvme_ns_info info = { .nsid = nsid };
4315 struct nvme_ns *ns;
4316 int ret = 1;
4317
4318 if (nvme_identify_ns_descs(ctrl, &info))
4319 return;
4320
4321 if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
4322 dev_warn(ctrl->device,
4323 "command set not reported for nsid: %d\n", nsid);
4324 return;
4325 }
4326
4327 /*
4328 * If available try to use the Command Set Independent Identify Namespace
4329 * data structure to find all the generic information that is needed to
4330 * set up a namespace. If not fall back to the legacy version.
4331 */
4332 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
4333 (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS) ||
4334 ctrl->vs >= NVME_VS(2, 0, 0))
4335 ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
4336 if (ret > 0)
4337 ret = nvme_ns_info_from_identify(ctrl, &info);
4338
4339 if (info.is_removed)
4340 nvme_ns_remove_by_nsid(ctrl, nsid);
4341
4342 /*
4343 * Ignore the namespace if it is not ready. We will get an AEN once it
4344 * becomes ready and restart the scan.
4345 */
4346 if (ret || !info.is_ready)
4347 return;
4348
4349 ns = nvme_find_get_ns(ctrl, nsid);
4350 if (ns) {
4351 nvme_validate_ns(ns, &info);
4352 nvme_put_ns(ns);
4353 } else {
4354 nvme_alloc_ns(ctrl, &info);
4355 }
4356 }
4357
4358 /**
4359 * struct async_scan_info - keeps track of controller & NSIDs to scan
4360 * @ctrl: Controller on which namespaces are being scanned
4361 * @next_nsid: Index of next NSID to scan in ns_list
4362 * @ns_list: Pointer to list of NSIDs to scan
4363 *
4364 * Note: There is a single async_scan_info structure shared by all instances
4365 * of nvme_scan_ns_async() scanning a given controller, so the atomic
4366 * operations on next_nsid are critical to ensure each instance scans a unique
4367 * NSID.
4368 */
4369 struct async_scan_info {
4370 struct nvme_ctrl *ctrl;
4371 atomic_t next_nsid;
4372 __le32 *ns_list;
4373 };
4374
nvme_scan_ns_async(void * data,async_cookie_t cookie)4375 static void nvme_scan_ns_async(void *data, async_cookie_t cookie)
4376 {
4377 struct async_scan_info *scan_info = data;
4378 int idx;
4379 u32 nsid;
4380
4381 idx = (u32)atomic_fetch_inc(&scan_info->next_nsid);
4382 nsid = le32_to_cpu(scan_info->ns_list[idx]);
4383
4384 nvme_scan_ns(scan_info->ctrl, nsid);
4385 }
4386
nvme_remove_invalid_namespaces(struct nvme_ctrl * ctrl,unsigned nsid)4387 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4388 unsigned nsid)
4389 {
4390 struct nvme_ns *ns, *next;
4391 LIST_HEAD(rm_list);
4392
4393 mutex_lock(&ctrl->namespaces_lock);
4394 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4395 if (ns->head->ns_id > nsid) {
4396 list_del_rcu(&ns->list);
4397 synchronize_srcu(&ctrl->srcu);
4398 list_add_tail_rcu(&ns->list, &rm_list);
4399 }
4400 }
4401 mutex_unlock(&ctrl->namespaces_lock);
4402
4403 list_for_each_entry_safe(ns, next, &rm_list, list)
4404 nvme_ns_remove(ns);
4405 }
4406
nvme_scan_ns_list(struct nvme_ctrl * ctrl)4407 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4408 {
4409 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4410 __le32 *ns_list;
4411 u32 prev = 0;
4412 int ret = 0, i;
4413 ASYNC_DOMAIN(domain);
4414 struct async_scan_info scan_info;
4415
4416 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4417 if (!ns_list)
4418 return -ENOMEM;
4419
4420 scan_info.ctrl = ctrl;
4421 scan_info.ns_list = ns_list;
4422 for (;;) {
4423 struct nvme_command cmd = {
4424 .identify.opcode = nvme_admin_identify,
4425 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST,
4426 .identify.nsid = cpu_to_le32(prev),
4427 };
4428
4429 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4430 NVME_IDENTIFY_DATA_SIZE);
4431 if (ret) {
4432 dev_warn(ctrl->device,
4433 "Identify NS List failed (status=0x%x)\n", ret);
4434 goto free;
4435 }
4436
4437 atomic_set(&scan_info.next_nsid, 0);
4438 for (i = 0; i < nr_entries; i++) {
4439 u32 nsid = le32_to_cpu(ns_list[i]);
4440
4441 if (!nsid) /* end of the list? */
4442 goto out;
4443 async_schedule_domain(nvme_scan_ns_async, &scan_info,
4444 &domain);
4445 while (++prev < nsid)
4446 nvme_ns_remove_by_nsid(ctrl, prev);
4447 }
4448 async_synchronize_full_domain(&domain);
4449 }
4450 out:
4451 nvme_remove_invalid_namespaces(ctrl, prev);
4452 free:
4453 async_synchronize_full_domain(&domain);
4454 kfree(ns_list);
4455 return ret;
4456 }
4457
nvme_scan_ns_sequential(struct nvme_ctrl * ctrl)4458 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4459 {
4460 struct nvme_id_ctrl *id;
4461 u32 nn, i;
4462
4463 if (nvme_identify_ctrl(ctrl, &id))
4464 return;
4465 nn = le32_to_cpu(id->nn);
4466 kfree(id);
4467
4468 for (i = 1; i <= nn; i++)
4469 nvme_scan_ns(ctrl, i);
4470
4471 nvme_remove_invalid_namespaces(ctrl, nn);
4472 }
4473
nvme_clear_changed_ns_log(struct nvme_ctrl * ctrl)4474 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4475 {
4476 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4477 __le32 *log;
4478 int error;
4479
4480 log = kzalloc(log_size, GFP_KERNEL);
4481 if (!log)
4482 return;
4483
4484 /*
4485 * We need to read the log to clear the AEN, but we don't want to rely
4486 * on it for the changed namespace information as userspace could have
4487 * raced with us in reading the log page, which could cause us to miss
4488 * updates.
4489 */
4490 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4491 NVME_CSI_NVM, log, log_size, 0);
4492 if (error)
4493 dev_warn(ctrl->device,
4494 "reading changed ns log failed: %d\n", error);
4495
4496 kfree(log);
4497 }
4498
nvme_scan_work(struct work_struct * work)4499 static void nvme_scan_work(struct work_struct *work)
4500 {
4501 struct nvme_ctrl *ctrl =
4502 container_of(work, struct nvme_ctrl, scan_work);
4503 int ret;
4504
4505 /* No tagset on a live ctrl means IO queues could not created */
4506 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset)
4507 return;
4508
4509 /*
4510 * Identify controller limits can change at controller reset due to
4511 * new firmware download, even though it is not common we cannot ignore
4512 * such scenario. Controller's non-mdts limits are reported in the unit
4513 * of logical blocks that is dependent on the format of attached
4514 * namespace. Hence re-read the limits at the time of ns allocation.
4515 */
4516 ret = nvme_init_non_mdts_limits(ctrl);
4517 if (ret < 0) {
4518 dev_warn(ctrl->device,
4519 "reading non-mdts-limits failed: %d\n", ret);
4520 return;
4521 }
4522
4523 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4524 dev_info(ctrl->device, "rescanning namespaces.\n");
4525 nvme_clear_changed_ns_log(ctrl);
4526 }
4527
4528 mutex_lock(&ctrl->scan_lock);
4529 if (!nvme_id_cns_ok(ctrl, NVME_ID_CNS_NS_ACTIVE_LIST)) {
4530 nvme_scan_ns_sequential(ctrl);
4531 } else {
4532 /*
4533 * Fall back to sequential scan if DNR is set to handle broken
4534 * devices which should support Identify NS List (as per the VS
4535 * they report) but don't actually support it.
4536 */
4537 ret = nvme_scan_ns_list(ctrl);
4538 if (ret > 0 && ret & NVME_STATUS_DNR)
4539 nvme_scan_ns_sequential(ctrl);
4540 }
4541 mutex_unlock(&ctrl->scan_lock);
4542
4543 /* Requeue if we have missed AENs */
4544 if (test_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events))
4545 nvme_queue_scan(ctrl);
4546 #ifdef CONFIG_NVME_MULTIPATH
4547 else if (ctrl->ana_log_buf)
4548 /* Re-read the ANA log page to not miss updates */
4549 queue_work(nvme_wq, &ctrl->ana_work);
4550 #endif
4551 }
4552
4553 /*
4554 * This function iterates the namespace list unlocked to allow recovery from
4555 * controller failure. It is up to the caller to ensure the namespace list is
4556 * not modified by scan work while this function is executing.
4557 */
nvme_remove_namespaces(struct nvme_ctrl * ctrl)4558 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4559 {
4560 struct nvme_ns *ns, *next;
4561 LIST_HEAD(ns_list);
4562
4563 /*
4564 * make sure to requeue I/O to all namespaces as these
4565 * might result from the scan itself and must complete
4566 * for the scan_work to make progress
4567 */
4568 nvme_mpath_clear_ctrl_paths(ctrl);
4569
4570 /*
4571 * Unquiesce io queues so any pending IO won't hang, especially
4572 * those submitted from scan work
4573 */
4574 nvme_unquiesce_io_queues(ctrl);
4575
4576 /* prevent racing with ns scanning */
4577 flush_work(&ctrl->scan_work);
4578
4579 /*
4580 * The dead states indicates the controller was not gracefully
4581 * disconnected. In that case, we won't be able to flush any data while
4582 * removing the namespaces' disks; fail all the queues now to avoid
4583 * potentially having to clean up the failed sync later.
4584 */
4585 if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD)
4586 nvme_mark_namespaces_dead(ctrl);
4587
4588 /* this is a no-op when called from the controller reset handler */
4589 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4590
4591 mutex_lock(&ctrl->namespaces_lock);
4592 list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu);
4593 mutex_unlock(&ctrl->namespaces_lock);
4594 synchronize_srcu(&ctrl->srcu);
4595
4596 list_for_each_entry_safe(ns, next, &ns_list, list)
4597 nvme_ns_remove(ns);
4598 }
4599 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4600
nvme_class_uevent(const struct device * dev,struct kobj_uevent_env * env)4601 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
4602 {
4603 const struct nvme_ctrl *ctrl =
4604 container_of(dev, struct nvme_ctrl, ctrl_device);
4605 struct nvmf_ctrl_options *opts = ctrl->opts;
4606 int ret;
4607
4608 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4609 if (ret)
4610 return ret;
4611
4612 if (opts) {
4613 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4614 if (ret)
4615 return ret;
4616
4617 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4618 opts->trsvcid ?: "none");
4619 if (ret)
4620 return ret;
4621
4622 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4623 opts->host_traddr ?: "none");
4624 if (ret)
4625 return ret;
4626
4627 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4628 opts->host_iface ?: "none");
4629 }
4630 return ret;
4631 }
4632
nvme_change_uevent(struct nvme_ctrl * ctrl,char * envdata)4633 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4634 {
4635 char *envp[2] = { envdata, NULL };
4636
4637 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4638 }
4639
nvme_aen_uevent(struct nvme_ctrl * ctrl)4640 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4641 {
4642 char *envp[2] = { NULL, NULL };
4643 u32 aen_result = ctrl->aen_result;
4644
4645 ctrl->aen_result = 0;
4646 if (!aen_result)
4647 return;
4648
4649 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4650 if (!envp[0])
4651 return;
4652 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4653 kfree(envp[0]);
4654 }
4655
nvme_async_event_work(struct work_struct * work)4656 static void nvme_async_event_work(struct work_struct *work)
4657 {
4658 struct nvme_ctrl *ctrl =
4659 container_of(work, struct nvme_ctrl, async_event_work);
4660
4661 nvme_aen_uevent(ctrl);
4662
4663 /*
4664 * The transport drivers must guarantee AER submission here is safe by
4665 * flushing ctrl async_event_work after changing the controller state
4666 * from LIVE and before freeing the admin queue.
4667 */
4668 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
4669 ctrl->ops->submit_async_event(ctrl);
4670 }
4671
nvme_ctrl_pp_status(struct nvme_ctrl * ctrl)4672 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4673 {
4674
4675 u32 csts;
4676
4677 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4678 return false;
4679
4680 if (csts == ~0)
4681 return false;
4682
4683 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4684 }
4685
nvme_get_fw_slot_info(struct nvme_ctrl * ctrl)4686 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4687 {
4688 struct nvme_fw_slot_info_log *log;
4689 u8 next_fw_slot, cur_fw_slot;
4690
4691 log = kmalloc(sizeof(*log), GFP_KERNEL);
4692 if (!log)
4693 return;
4694
4695 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4696 log, sizeof(*log), 0)) {
4697 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4698 goto out_free_log;
4699 }
4700
4701 cur_fw_slot = log->afi & 0x7;
4702 next_fw_slot = (log->afi & 0x70) >> 4;
4703 if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) {
4704 dev_info(ctrl->device,
4705 "Firmware is activated after next Controller Level Reset\n");
4706 goto out_free_log;
4707 }
4708
4709 memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1],
4710 sizeof(ctrl->subsys->firmware_rev));
4711
4712 out_free_log:
4713 kfree(log);
4714 }
4715
nvme_fw_act_work(struct work_struct * work)4716 static void nvme_fw_act_work(struct work_struct *work)
4717 {
4718 struct nvme_ctrl *ctrl = container_of(work,
4719 struct nvme_ctrl, fw_act_work);
4720 unsigned long fw_act_timeout;
4721
4722 nvme_auth_stop(ctrl);
4723
4724 if (ctrl->mtfa)
4725 fw_act_timeout = jiffies + msecs_to_jiffies(ctrl->mtfa * 100);
4726 else
4727 fw_act_timeout = jiffies + secs_to_jiffies(admin_timeout);
4728
4729 nvme_quiesce_io_queues(ctrl);
4730 while (nvme_ctrl_pp_status(ctrl)) {
4731 if (time_after(jiffies, fw_act_timeout)) {
4732 dev_warn(ctrl->device,
4733 "Fw activation timeout, reset controller\n");
4734 nvme_try_sched_reset(ctrl);
4735 return;
4736 }
4737 msleep(100);
4738 }
4739
4740 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING) ||
4741 !nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4742 return;
4743
4744 nvme_unquiesce_io_queues(ctrl);
4745 /* read FW slot information to clear the AER */
4746 nvme_get_fw_slot_info(ctrl);
4747
4748 queue_work(nvme_wq, &ctrl->async_event_work);
4749 }
4750
nvme_aer_type(u32 result)4751 static u32 nvme_aer_type(u32 result)
4752 {
4753 return result & 0x7;
4754 }
4755
nvme_aer_subtype(u32 result)4756 static u32 nvme_aer_subtype(u32 result)
4757 {
4758 return (result & 0xff00) >> 8;
4759 }
4760
nvme_handle_aen_notice(struct nvme_ctrl * ctrl,u32 result)4761 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4762 {
4763 u32 aer_notice_type = nvme_aer_subtype(result);
4764 bool requeue = true;
4765
4766 switch (aer_notice_type) {
4767 case NVME_AER_NOTICE_NS_CHANGED:
4768 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4769 nvme_queue_scan(ctrl);
4770 break;
4771 case NVME_AER_NOTICE_FW_ACT_STARTING:
4772 /*
4773 * We are (ab)using the RESETTING state to prevent subsequent
4774 * recovery actions from interfering with the controller's
4775 * firmware activation.
4776 */
4777 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4778 requeue = false;
4779 queue_work(nvme_wq, &ctrl->fw_act_work);
4780 }
4781 break;
4782 #ifdef CONFIG_NVME_MULTIPATH
4783 case NVME_AER_NOTICE_ANA:
4784 if (!ctrl->ana_log_buf)
4785 break;
4786 queue_work(nvme_wq, &ctrl->ana_work);
4787 break;
4788 #endif
4789 case NVME_AER_NOTICE_DISC_CHANGED:
4790 ctrl->aen_result = result;
4791 break;
4792 default:
4793 dev_warn(ctrl->device, "async event result %08x\n", result);
4794 }
4795 return requeue;
4796 }
4797
nvme_handle_aer_persistent_error(struct nvme_ctrl * ctrl)4798 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4799 {
4800 dev_warn(ctrl->device,
4801 "resetting controller due to persistent internal error\n");
4802 nvme_reset_ctrl(ctrl);
4803 }
4804
nvme_complete_async_event(struct nvme_ctrl * ctrl,__le16 status,volatile union nvme_result * res)4805 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4806 volatile union nvme_result *res)
4807 {
4808 u32 result = le32_to_cpu(res->u32);
4809 u32 aer_type = nvme_aer_type(result);
4810 u32 aer_subtype = nvme_aer_subtype(result);
4811 bool requeue = true;
4812
4813 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4814 return;
4815
4816 trace_nvme_async_event(ctrl, result);
4817 switch (aer_type) {
4818 case NVME_AER_NOTICE:
4819 requeue = nvme_handle_aen_notice(ctrl, result);
4820 break;
4821 case NVME_AER_ERROR:
4822 /*
4823 * For a persistent internal error, don't run async_event_work
4824 * to submit a new AER. The controller reset will do it.
4825 */
4826 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4827 nvme_handle_aer_persistent_error(ctrl);
4828 return;
4829 }
4830 fallthrough;
4831 case NVME_AER_SMART:
4832 case NVME_AER_CSS:
4833 case NVME_AER_VS:
4834 ctrl->aen_result = result;
4835 break;
4836 default:
4837 break;
4838 }
4839
4840 if (requeue)
4841 queue_work(nvme_wq, &ctrl->async_event_work);
4842 }
4843 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4844
nvme_alloc_admin_tag_set(struct nvme_ctrl * ctrl,struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int cmd_size)4845 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4846 const struct blk_mq_ops *ops, unsigned int cmd_size)
4847 {
4848 struct queue_limits lim = {};
4849 int ret;
4850
4851 memset(set, 0, sizeof(*set));
4852 set->ops = ops;
4853 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4854 if (ctrl->ops->flags & NVME_F_FABRICS)
4855 /* Reserved for fabric connect and keep alive */
4856 set->reserved_tags = 2;
4857 set->numa_node = ctrl->numa_node;
4858 if (ctrl->ops->flags & NVME_F_BLOCKING)
4859 set->flags |= BLK_MQ_F_BLOCKING;
4860 set->cmd_size = cmd_size;
4861 set->driver_data = ctrl;
4862 set->nr_hw_queues = 1;
4863 set->timeout = NVME_ADMIN_TIMEOUT;
4864 ret = blk_mq_alloc_tag_set(set);
4865 if (ret)
4866 return ret;
4867
4868 ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL);
4869 if (IS_ERR(ctrl->admin_q)) {
4870 ret = PTR_ERR(ctrl->admin_q);
4871 goto out_free_tagset;
4872 }
4873
4874 if (ctrl->ops->flags & NVME_F_FABRICS) {
4875 ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL);
4876 if (IS_ERR(ctrl->fabrics_q)) {
4877 ret = PTR_ERR(ctrl->fabrics_q);
4878 goto out_cleanup_admin_q;
4879 }
4880 }
4881
4882 ctrl->admin_tagset = set;
4883 return 0;
4884
4885 out_cleanup_admin_q:
4886 blk_mq_destroy_queue(ctrl->admin_q);
4887 blk_put_queue(ctrl->admin_q);
4888 out_free_tagset:
4889 blk_mq_free_tag_set(set);
4890 ctrl->admin_q = NULL;
4891 ctrl->fabrics_q = NULL;
4892 return ret;
4893 }
4894 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4895
nvme_remove_admin_tag_set(struct nvme_ctrl * ctrl)4896 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4897 {
4898 /*
4899 * As we're about to destroy the queue and free tagset
4900 * we can not have keep-alive work running.
4901 */
4902 nvme_stop_keep_alive(ctrl);
4903 blk_mq_destroy_queue(ctrl->admin_q);
4904 blk_put_queue(ctrl->admin_q);
4905 if (ctrl->ops->flags & NVME_F_FABRICS) {
4906 blk_mq_destroy_queue(ctrl->fabrics_q);
4907 blk_put_queue(ctrl->fabrics_q);
4908 }
4909 blk_mq_free_tag_set(ctrl->admin_tagset);
4910 }
4911 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4912
nvme_alloc_io_tag_set(struct nvme_ctrl * ctrl,struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int nr_maps,unsigned int cmd_size)4913 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4914 const struct blk_mq_ops *ops, unsigned int nr_maps,
4915 unsigned int cmd_size)
4916 {
4917 int ret;
4918
4919 memset(set, 0, sizeof(*set));
4920 set->ops = ops;
4921 set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4922 /*
4923 * Some Apple controllers requires tags to be unique across admin and
4924 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4925 */
4926 if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4927 set->reserved_tags = NVME_AQ_DEPTH;
4928 else if (ctrl->ops->flags & NVME_F_FABRICS)
4929 /* Reserved for fabric connect */
4930 set->reserved_tags = 1;
4931 set->numa_node = ctrl->numa_node;
4932 if (ctrl->ops->flags & NVME_F_BLOCKING)
4933 set->flags |= BLK_MQ_F_BLOCKING;
4934 set->cmd_size = cmd_size;
4935 set->driver_data = ctrl;
4936 set->nr_hw_queues = ctrl->queue_count - 1;
4937 set->timeout = NVME_IO_TIMEOUT;
4938 set->nr_maps = nr_maps;
4939 ret = blk_mq_alloc_tag_set(set);
4940 if (ret)
4941 return ret;
4942
4943 if (ctrl->ops->flags & NVME_F_FABRICS) {
4944 struct queue_limits lim = {
4945 .features = BLK_FEAT_SKIP_TAGSET_QUIESCE,
4946 };
4947
4948 ctrl->connect_q = blk_mq_alloc_queue(set, &lim, NULL);
4949 if (IS_ERR(ctrl->connect_q)) {
4950 ret = PTR_ERR(ctrl->connect_q);
4951 goto out_free_tag_set;
4952 }
4953 }
4954
4955 ctrl->tagset = set;
4956 return 0;
4957
4958 out_free_tag_set:
4959 blk_mq_free_tag_set(set);
4960 ctrl->connect_q = NULL;
4961 return ret;
4962 }
4963 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4964
nvme_remove_io_tag_set(struct nvme_ctrl * ctrl)4965 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4966 {
4967 if (ctrl->ops->flags & NVME_F_FABRICS) {
4968 blk_mq_destroy_queue(ctrl->connect_q);
4969 blk_put_queue(ctrl->connect_q);
4970 }
4971 blk_mq_free_tag_set(ctrl->tagset);
4972 }
4973 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4974
nvme_stop_ctrl(struct nvme_ctrl * ctrl)4975 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4976 {
4977 nvme_mpath_stop(ctrl);
4978 nvme_auth_stop(ctrl);
4979 nvme_stop_failfast_work(ctrl);
4980 flush_work(&ctrl->async_event_work);
4981 cancel_work_sync(&ctrl->fw_act_work);
4982 if (ctrl->ops->stop_ctrl)
4983 ctrl->ops->stop_ctrl(ctrl);
4984 }
4985 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4986
nvme_start_ctrl(struct nvme_ctrl * ctrl)4987 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4988 {
4989 nvme_enable_aen(ctrl);
4990
4991 /*
4992 * persistent discovery controllers need to send indication to userspace
4993 * to re-read the discovery log page to learn about possible changes
4994 * that were missed. We identify persistent discovery controllers by
4995 * checking that they started once before, hence are reconnecting back.
4996 */
4997 if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4998 nvme_discovery_ctrl(ctrl)) {
4999 if (!ctrl->kato) {
5000 nvme_stop_keep_alive(ctrl);
5001 ctrl->kato = NVME_DEFAULT_KATO;
5002 nvme_start_keep_alive(ctrl);
5003 }
5004 nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
5005 }
5006
5007 if (ctrl->queue_count > 1) {
5008 nvme_queue_scan(ctrl);
5009 nvme_unquiesce_io_queues(ctrl);
5010 nvme_mpath_update(ctrl);
5011 }
5012
5013 nvme_change_uevent(ctrl, "NVME_EVENT=connected");
5014 set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
5015 }
5016 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
5017
nvme_uninit_ctrl(struct nvme_ctrl * ctrl)5018 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
5019 {
5020 nvme_stop_keep_alive(ctrl);
5021 nvme_hwmon_exit(ctrl);
5022 nvme_fault_inject_fini(&ctrl->fault_inject);
5023 dev_pm_qos_hide_latency_tolerance(ctrl->device);
5024 cdev_device_del(&ctrl->cdev, ctrl->device);
5025 nvme_put_ctrl(ctrl);
5026 }
5027 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
5028
nvme_free_cels(struct nvme_ctrl * ctrl)5029 static void nvme_free_cels(struct nvme_ctrl *ctrl)
5030 {
5031 struct nvme_effects_log *cel;
5032 unsigned long i;
5033
5034 xa_for_each(&ctrl->cels, i, cel) {
5035 xa_erase(&ctrl->cels, i);
5036 kfree(cel);
5037 }
5038
5039 xa_destroy(&ctrl->cels);
5040 }
5041
nvme_free_ctrl(struct device * dev)5042 static void nvme_free_ctrl(struct device *dev)
5043 {
5044 struct nvme_ctrl *ctrl =
5045 container_of(dev, struct nvme_ctrl, ctrl_device);
5046 struct nvme_subsystem *subsys = ctrl->subsys;
5047
5048 if (!subsys || ctrl->instance != subsys->instance)
5049 ida_free(&nvme_instance_ida, ctrl->instance);
5050 nvme_free_cels(ctrl);
5051 nvme_mpath_uninit(ctrl);
5052 cleanup_srcu_struct(&ctrl->srcu);
5053 nvme_auth_stop(ctrl);
5054 nvme_auth_free(ctrl);
5055 __free_page(ctrl->discard_page);
5056 free_opal_dev(ctrl->opal_dev);
5057
5058 if (subsys) {
5059 mutex_lock(&nvme_subsystems_lock);
5060 list_del(&ctrl->subsys_entry);
5061 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
5062 mutex_unlock(&nvme_subsystems_lock);
5063 }
5064
5065 ctrl->ops->free_ctrl(ctrl);
5066
5067 if (subsys)
5068 nvme_put_subsystem(subsys);
5069 }
5070
5071 /*
5072 * Initialize a NVMe controller structures. This needs to be called during
5073 * earliest initialization so that we have the initialized structured around
5074 * during probing.
5075 *
5076 * On success, the caller must use the nvme_put_ctrl() to release this when
5077 * needed, which also invokes the ops->free_ctrl() callback.
5078 */
nvme_init_ctrl(struct nvme_ctrl * ctrl,struct device * dev,const struct nvme_ctrl_ops * ops,unsigned long quirks)5079 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
5080 const struct nvme_ctrl_ops *ops, unsigned long quirks)
5081 {
5082 int ret;
5083
5084 WRITE_ONCE(ctrl->state, NVME_CTRL_NEW);
5085 ctrl->passthru_err_log_enabled = false;
5086 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
5087 spin_lock_init(&ctrl->lock);
5088 mutex_init(&ctrl->namespaces_lock);
5089
5090 ret = init_srcu_struct(&ctrl->srcu);
5091 if (ret)
5092 return ret;
5093
5094 mutex_init(&ctrl->scan_lock);
5095 INIT_LIST_HEAD(&ctrl->namespaces);
5096 xa_init(&ctrl->cels);
5097 ctrl->dev = dev;
5098 ctrl->ops = ops;
5099 ctrl->quirks = quirks;
5100 ctrl->numa_node = NUMA_NO_NODE;
5101 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
5102 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
5103 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
5104 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
5105 init_waitqueue_head(&ctrl->state_wq);
5106
5107 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
5108 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
5109 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
5110 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
5111 ctrl->ka_last_check_time = jiffies;
5112
5113 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
5114 PAGE_SIZE);
5115 ctrl->discard_page = alloc_page(GFP_KERNEL);
5116 if (!ctrl->discard_page) {
5117 ret = -ENOMEM;
5118 goto out;
5119 }
5120
5121 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
5122 if (ret < 0)
5123 goto out;
5124 ctrl->instance = ret;
5125
5126 ret = nvme_auth_init_ctrl(ctrl);
5127 if (ret)
5128 goto out_release_instance;
5129
5130 nvme_mpath_init_ctrl(ctrl);
5131
5132 device_initialize(&ctrl->ctrl_device);
5133 ctrl->device = &ctrl->ctrl_device;
5134 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
5135 ctrl->instance);
5136 ctrl->device->class = &nvme_class;
5137 ctrl->device->parent = ctrl->dev;
5138 if (ops->dev_attr_groups)
5139 ctrl->device->groups = ops->dev_attr_groups;
5140 else
5141 ctrl->device->groups = nvme_dev_attr_groups;
5142 ctrl->device->release = nvme_free_ctrl;
5143 dev_set_drvdata(ctrl->device, ctrl);
5144
5145 return ret;
5146
5147 out_release_instance:
5148 ida_free(&nvme_instance_ida, ctrl->instance);
5149 out:
5150 if (ctrl->discard_page)
5151 __free_page(ctrl->discard_page);
5152 cleanup_srcu_struct(&ctrl->srcu);
5153 return ret;
5154 }
5155 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
5156
5157 /*
5158 * On success, returns with an elevated controller reference and caller must
5159 * use nvme_uninit_ctrl() to properly free resources associated with the ctrl.
5160 */
nvme_add_ctrl(struct nvme_ctrl * ctrl)5161 int nvme_add_ctrl(struct nvme_ctrl *ctrl)
5162 {
5163 int ret;
5164
5165 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
5166 if (ret)
5167 return ret;
5168
5169 cdev_init(&ctrl->cdev, &nvme_dev_fops);
5170 ctrl->cdev.owner = ctrl->ops->module;
5171 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
5172 if (ret)
5173 return ret;
5174
5175 /*
5176 * Initialize latency tolerance controls. The sysfs files won't
5177 * be visible to userspace unless the device actually supports APST.
5178 */
5179 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
5180 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
5181 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
5182
5183 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
5184 nvme_get_ctrl(ctrl);
5185
5186 return 0;
5187 }
5188 EXPORT_SYMBOL_GPL(nvme_add_ctrl);
5189
5190 /* let I/O to all namespaces fail in preparation for surprise removal */
nvme_mark_namespaces_dead(struct nvme_ctrl * ctrl)5191 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
5192 {
5193 struct nvme_ns *ns;
5194 int srcu_idx;
5195
5196 srcu_idx = srcu_read_lock(&ctrl->srcu);
5197 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5198 srcu_read_lock_held(&ctrl->srcu))
5199 blk_mark_disk_dead(ns->disk);
5200 srcu_read_unlock(&ctrl->srcu, srcu_idx);
5201 }
5202 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
5203
nvme_unfreeze(struct nvme_ctrl * ctrl)5204 void nvme_unfreeze(struct nvme_ctrl *ctrl)
5205 {
5206 struct nvme_ns *ns;
5207 int srcu_idx;
5208
5209 srcu_idx = srcu_read_lock(&ctrl->srcu);
5210 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5211 srcu_read_lock_held(&ctrl->srcu))
5212 blk_mq_unfreeze_queue_non_owner(ns->queue);
5213 srcu_read_unlock(&ctrl->srcu, srcu_idx);
5214 clear_bit(NVME_CTRL_FROZEN, &ctrl->flags);
5215 }
5216 EXPORT_SYMBOL_GPL(nvme_unfreeze);
5217
nvme_wait_freeze_timeout(struct nvme_ctrl * ctrl,long timeout)5218 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
5219 {
5220 struct nvme_ns *ns;
5221 int srcu_idx;
5222
5223 srcu_idx = srcu_read_lock(&ctrl->srcu);
5224 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5225 srcu_read_lock_held(&ctrl->srcu)) {
5226 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
5227 if (timeout <= 0)
5228 break;
5229 }
5230 srcu_read_unlock(&ctrl->srcu, srcu_idx);
5231 return timeout;
5232 }
5233 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
5234
nvme_wait_freeze(struct nvme_ctrl * ctrl)5235 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
5236 {
5237 struct nvme_ns *ns;
5238 int srcu_idx;
5239
5240 srcu_idx = srcu_read_lock(&ctrl->srcu);
5241 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5242 srcu_read_lock_held(&ctrl->srcu))
5243 blk_mq_freeze_queue_wait(ns->queue);
5244 srcu_read_unlock(&ctrl->srcu, srcu_idx);
5245 }
5246 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
5247
nvme_start_freeze(struct nvme_ctrl * ctrl)5248 void nvme_start_freeze(struct nvme_ctrl *ctrl)
5249 {
5250 struct nvme_ns *ns;
5251 int srcu_idx;
5252
5253 set_bit(NVME_CTRL_FROZEN, &ctrl->flags);
5254 srcu_idx = srcu_read_lock(&ctrl->srcu);
5255 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5256 srcu_read_lock_held(&ctrl->srcu))
5257 /*
5258 * Typical non_owner use case is from pci driver, in which
5259 * start_freeze is called from timeout work function, but
5260 * unfreeze is done in reset work context
5261 */
5262 blk_freeze_queue_start_non_owner(ns->queue);
5263 srcu_read_unlock(&ctrl->srcu, srcu_idx);
5264 }
5265 EXPORT_SYMBOL_GPL(nvme_start_freeze);
5266
nvme_quiesce_io_queues(struct nvme_ctrl * ctrl)5267 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
5268 {
5269 if (!ctrl->tagset)
5270 return;
5271 if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
5272 blk_mq_quiesce_tagset(ctrl->tagset);
5273 else
5274 blk_mq_wait_quiesce_done(ctrl->tagset);
5275 }
5276 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
5277
nvme_unquiesce_io_queues(struct nvme_ctrl * ctrl)5278 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
5279 {
5280 if (!ctrl->tagset)
5281 return;
5282 if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
5283 blk_mq_unquiesce_tagset(ctrl->tagset);
5284 }
5285 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
5286
nvme_quiesce_admin_queue(struct nvme_ctrl * ctrl)5287 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
5288 {
5289 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5290 blk_mq_quiesce_queue(ctrl->admin_q);
5291 else
5292 blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
5293 }
5294 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
5295
nvme_unquiesce_admin_queue(struct nvme_ctrl * ctrl)5296 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
5297 {
5298 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5299 blk_mq_unquiesce_queue(ctrl->admin_q);
5300 }
5301 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
5302
nvme_sync_io_queues(struct nvme_ctrl * ctrl)5303 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
5304 {
5305 struct nvme_ns *ns;
5306 int srcu_idx;
5307
5308 srcu_idx = srcu_read_lock(&ctrl->srcu);
5309 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5310 srcu_read_lock_held(&ctrl->srcu))
5311 blk_sync_queue(ns->queue);
5312 srcu_read_unlock(&ctrl->srcu, srcu_idx);
5313 }
5314 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
5315
nvme_sync_queues(struct nvme_ctrl * ctrl)5316 void nvme_sync_queues(struct nvme_ctrl *ctrl)
5317 {
5318 nvme_sync_io_queues(ctrl);
5319 if (ctrl->admin_q)
5320 blk_sync_queue(ctrl->admin_q);
5321 }
5322 EXPORT_SYMBOL_GPL(nvme_sync_queues);
5323
nvme_ctrl_from_file(struct file * file)5324 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
5325 {
5326 if (file->f_op != &nvme_dev_fops)
5327 return NULL;
5328 return file->private_data;
5329 }
5330 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, "NVME_TARGET_PASSTHRU");
5331
5332 /*
5333 * Check we didn't inadvertently grow the command structure sizes:
5334 */
_nvme_check_size(void)5335 static inline void _nvme_check_size(void)
5336 {
5337 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
5338 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
5339 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
5340 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
5341 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
5342 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
5343 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
5344 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
5345 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
5346 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
5347 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
5348 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
5349 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
5350 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
5351 NVME_IDENTIFY_DATA_SIZE);
5352 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
5353 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
5354 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
5355 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
5356 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
5357 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
5358 BUILD_BUG_ON(sizeof(struct nvme_endurance_group_log) != 512);
5359 BUILD_BUG_ON(sizeof(struct nvme_rotational_media_log) != 512);
5360 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
5361 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
5362 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
5363 }
5364
5365
nvme_core_init(void)5366 static int __init nvme_core_init(void)
5367 {
5368 unsigned int wq_flags = WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS;
5369 int result = -ENOMEM;
5370
5371 _nvme_check_size();
5372
5373 nvme_wq = alloc_workqueue("nvme-wq", wq_flags, 0);
5374 if (!nvme_wq)
5375 goto out;
5376
5377 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", wq_flags, 0);
5378 if (!nvme_reset_wq)
5379 goto destroy_wq;
5380
5381 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", wq_flags, 0);
5382 if (!nvme_delete_wq)
5383 goto destroy_reset_wq;
5384
5385 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
5386 NVME_MINORS, "nvme");
5387 if (result < 0)
5388 goto destroy_delete_wq;
5389
5390 result = class_register(&nvme_class);
5391 if (result)
5392 goto unregister_chrdev;
5393
5394 result = class_register(&nvme_subsys_class);
5395 if (result)
5396 goto destroy_class;
5397
5398 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
5399 "nvme-generic");
5400 if (result < 0)
5401 goto destroy_subsys_class;
5402
5403 result = class_register(&nvme_ns_chr_class);
5404 if (result)
5405 goto unregister_generic_ns;
5406
5407 result = nvme_init_auth();
5408 if (result)
5409 goto destroy_ns_chr;
5410 return 0;
5411
5412 destroy_ns_chr:
5413 class_unregister(&nvme_ns_chr_class);
5414 unregister_generic_ns:
5415 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5416 destroy_subsys_class:
5417 class_unregister(&nvme_subsys_class);
5418 destroy_class:
5419 class_unregister(&nvme_class);
5420 unregister_chrdev:
5421 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5422 destroy_delete_wq:
5423 destroy_workqueue(nvme_delete_wq);
5424 destroy_reset_wq:
5425 destroy_workqueue(nvme_reset_wq);
5426 destroy_wq:
5427 destroy_workqueue(nvme_wq);
5428 out:
5429 return result;
5430 }
5431
nvme_core_exit(void)5432 static void __exit nvme_core_exit(void)
5433 {
5434 nvme_exit_auth();
5435 class_unregister(&nvme_ns_chr_class);
5436 class_unregister(&nvme_subsys_class);
5437 class_unregister(&nvme_class);
5438 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5439 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5440 destroy_workqueue(nvme_delete_wq);
5441 destroy_workqueue(nvme_reset_wq);
5442 destroy_workqueue(nvme_wq);
5443 ida_destroy(&nvme_ns_chr_minor_ida);
5444 ida_destroy(&nvme_instance_ida);
5445 }
5446
5447 MODULE_LICENSE("GPL");
5448 MODULE_VERSION("1.0");
5449 MODULE_DESCRIPTION("NVMe host core framework");
5450 module_init(nvme_core_init);
5451 module_exit(nvme_core_exit);
5452