1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. 5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. 6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io 8 * 9 * This software is available to you under a choice of one of two 10 * licenses. You may choose to be licensed under the terms of the GNU 11 * General Public License (GPL) Version 2, available from the file 12 * COPYING in the main directory of this source tree, or the 13 * OpenIB.org BSD license below: 14 * 15 * Redistribution and use in source and binary forms, with or 16 * without modification, are permitted provided that the following 17 * conditions are met: 18 * 19 * - Redistributions of source code must retain the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer. 22 * 23 * - Redistributions in binary form must reproduce the above 24 * copyright notice, this list of conditions and the following 25 * disclaimer in the documentation and/or other materials 26 * provided with the distribution. 27 * 28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 35 * SOFTWARE. 36 */ 37 38 #include <linux/bug.h> 39 #include <linux/sched/signal.h> 40 #include <linux/module.h> 41 #include <linux/kernel.h> 42 #include <linux/splice.h> 43 #include <crypto/aead.h> 44 45 #include <net/strparser.h> 46 #include <net/tls.h> 47 #include <trace/events/sock.h> 48 49 #include "tls.h" 50 51 struct tls_decrypt_arg { 52 struct_group(inargs, 53 bool zc; 54 bool async; 55 bool async_done; 56 u8 tail; 57 ); 58 59 struct sk_buff *skb; 60 }; 61 62 struct tls_decrypt_ctx { 63 struct sock *sk; 64 u8 iv[TLS_MAX_IV_SIZE]; 65 u8 aad[TLS_MAX_AAD_SIZE]; 66 u8 tail; 67 bool free_sgout; 68 struct scatterlist sg[]; 69 }; 70 71 noinline void tls_err_abort(struct sock *sk, int err) 72 { 73 WARN_ON_ONCE(err >= 0); 74 /* sk->sk_err should contain a positive error code. */ 75 WRITE_ONCE(sk->sk_err, -err); 76 /* Paired with smp_rmb() in tcp_poll() */ 77 smp_wmb(); 78 sk_error_report(sk); 79 } 80 81 static int __skb_nsg(struct sk_buff *skb, int offset, int len, 82 unsigned int recursion_level) 83 { 84 int start = skb_headlen(skb); 85 int i, chunk = start - offset; 86 struct sk_buff *frag_iter; 87 int elt = 0; 88 89 if (unlikely(recursion_level >= 24)) 90 return -EMSGSIZE; 91 92 if (chunk > 0) { 93 if (chunk > len) 94 chunk = len; 95 elt++; 96 len -= chunk; 97 if (len == 0) 98 return elt; 99 offset += chunk; 100 } 101 102 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 103 int end; 104 105 WARN_ON(start > offset + len); 106 107 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 108 chunk = end - offset; 109 if (chunk > 0) { 110 if (chunk > len) 111 chunk = len; 112 elt++; 113 len -= chunk; 114 if (len == 0) 115 return elt; 116 offset += chunk; 117 } 118 start = end; 119 } 120 121 if (unlikely(skb_has_frag_list(skb))) { 122 skb_walk_frags(skb, frag_iter) { 123 int end, ret; 124 125 WARN_ON(start > offset + len); 126 127 end = start + frag_iter->len; 128 chunk = end - offset; 129 if (chunk > 0) { 130 if (chunk > len) 131 chunk = len; 132 ret = __skb_nsg(frag_iter, offset - start, chunk, 133 recursion_level + 1); 134 if (unlikely(ret < 0)) 135 return ret; 136 elt += ret; 137 len -= chunk; 138 if (len == 0) 139 return elt; 140 offset += chunk; 141 } 142 start = end; 143 } 144 } 145 BUG_ON(len); 146 return elt; 147 } 148 149 /* Return the number of scatterlist elements required to completely map the 150 * skb, or -EMSGSIZE if the recursion depth is exceeded. 151 */ 152 static int skb_nsg(struct sk_buff *skb, int offset, int len) 153 { 154 return __skb_nsg(skb, offset, len, 0); 155 } 156 157 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb, 158 struct tls_decrypt_arg *darg) 159 { 160 struct strp_msg *rxm = strp_msg(skb); 161 struct tls_msg *tlm = tls_msg(skb); 162 int sub = 0; 163 164 /* Determine zero-padding length */ 165 if (prot->version == TLS_1_3_VERSION) { 166 int offset = rxm->full_len - TLS_TAG_SIZE - 1; 167 char content_type = darg->zc ? darg->tail : 0; 168 int err; 169 170 while (content_type == 0) { 171 if (offset < prot->prepend_size) 172 return -EBADMSG; 173 err = skb_copy_bits(skb, rxm->offset + offset, 174 &content_type, 1); 175 if (err) 176 return err; 177 if (content_type) 178 break; 179 sub++; 180 offset--; 181 } 182 tlm->control = content_type; 183 } 184 return sub; 185 } 186 187 static void tls_decrypt_done(void *data, int err) 188 { 189 struct aead_request *aead_req = data; 190 struct crypto_aead *aead = crypto_aead_reqtfm(aead_req); 191 struct scatterlist *sgout = aead_req->dst; 192 struct tls_sw_context_rx *ctx; 193 struct tls_decrypt_ctx *dctx; 194 struct tls_context *tls_ctx; 195 struct scatterlist *sg; 196 unsigned int pages; 197 struct sock *sk; 198 int aead_size; 199 200 /* If requests get too backlogged crypto API returns -EBUSY and calls 201 * ->complete(-EINPROGRESS) immediately followed by ->complete(0) 202 * to make waiting for backlog to flush with crypto_wait_req() easier. 203 * First wait converts -EBUSY -> -EINPROGRESS, and the second one 204 * -EINPROGRESS -> 0. 205 * We have a single struct crypto_async_request per direction, this 206 * scheme doesn't help us, so just ignore the first ->complete(). 207 */ 208 if (err == -EINPROGRESS) 209 return; 210 211 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead); 212 aead_size = ALIGN(aead_size, __alignof__(*dctx)); 213 dctx = (void *)((u8 *)aead_req + aead_size); 214 215 sk = dctx->sk; 216 tls_ctx = tls_get_ctx(sk); 217 ctx = tls_sw_ctx_rx(tls_ctx); 218 219 /* Propagate if there was an err */ 220 if (err) { 221 if (err == -EBADMSG) 222 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); 223 ctx->async_wait.err = err; 224 tls_err_abort(sk, err); 225 } 226 227 /* Free the destination pages if skb was not decrypted inplace */ 228 if (dctx->free_sgout) { 229 /* Skip the first S/G entry as it points to AAD */ 230 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { 231 if (!sg) 232 break; 233 put_page(sg_page(sg)); 234 } 235 } 236 237 kfree(aead_req); 238 239 if (atomic_dec_and_test(&ctx->decrypt_pending)) 240 complete(&ctx->async_wait.completion); 241 } 242 243 static int tls_decrypt_async_wait(struct tls_sw_context_rx *ctx) 244 { 245 if (!atomic_dec_and_test(&ctx->decrypt_pending)) 246 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 247 atomic_inc(&ctx->decrypt_pending); 248 249 return ctx->async_wait.err; 250 } 251 252 static int tls_do_decryption(struct sock *sk, 253 struct scatterlist *sgin, 254 struct scatterlist *sgout, 255 char *iv_recv, 256 size_t data_len, 257 struct aead_request *aead_req, 258 struct tls_decrypt_arg *darg) 259 { 260 struct tls_context *tls_ctx = tls_get_ctx(sk); 261 struct tls_prot_info *prot = &tls_ctx->prot_info; 262 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 263 int ret; 264 265 aead_request_set_tfm(aead_req, ctx->aead_recv); 266 aead_request_set_ad(aead_req, prot->aad_size); 267 aead_request_set_crypt(aead_req, sgin, sgout, 268 data_len + prot->tag_size, 269 (u8 *)iv_recv); 270 271 if (darg->async) { 272 aead_request_set_callback(aead_req, 273 CRYPTO_TFM_REQ_MAY_BACKLOG, 274 tls_decrypt_done, aead_req); 275 DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->decrypt_pending) < 1); 276 atomic_inc(&ctx->decrypt_pending); 277 } else { 278 DECLARE_CRYPTO_WAIT(wait); 279 280 aead_request_set_callback(aead_req, 281 CRYPTO_TFM_REQ_MAY_BACKLOG, 282 crypto_req_done, &wait); 283 ret = crypto_aead_decrypt(aead_req); 284 if (ret == -EINPROGRESS || ret == -EBUSY) 285 ret = crypto_wait_req(ret, &wait); 286 return ret; 287 } 288 289 ret = crypto_aead_decrypt(aead_req); 290 if (ret == -EINPROGRESS) 291 return 0; 292 293 if (ret == -EBUSY) { 294 ret = tls_decrypt_async_wait(ctx); 295 darg->async_done = true; 296 /* all completions have run, we're not doing async anymore */ 297 darg->async = false; 298 return ret; 299 } 300 301 atomic_dec(&ctx->decrypt_pending); 302 darg->async = false; 303 304 return ret; 305 } 306 307 static void tls_trim_both_msgs(struct sock *sk, int target_size) 308 { 309 struct tls_context *tls_ctx = tls_get_ctx(sk); 310 struct tls_prot_info *prot = &tls_ctx->prot_info; 311 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 312 struct tls_rec *rec = ctx->open_rec; 313 314 sk_msg_trim(sk, &rec->msg_plaintext, target_size); 315 if (target_size > 0) 316 target_size += prot->overhead_size; 317 sk_msg_trim(sk, &rec->msg_encrypted, target_size); 318 } 319 320 static int tls_alloc_encrypted_msg(struct sock *sk, int len) 321 { 322 struct tls_context *tls_ctx = tls_get_ctx(sk); 323 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 324 struct tls_rec *rec = ctx->open_rec; 325 struct sk_msg *msg_en = &rec->msg_encrypted; 326 327 return sk_msg_alloc(sk, msg_en, len, 0); 328 } 329 330 static int tls_clone_plaintext_msg(struct sock *sk, int required) 331 { 332 struct tls_context *tls_ctx = tls_get_ctx(sk); 333 struct tls_prot_info *prot = &tls_ctx->prot_info; 334 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 335 struct tls_rec *rec = ctx->open_rec; 336 struct sk_msg *msg_pl = &rec->msg_plaintext; 337 struct sk_msg *msg_en = &rec->msg_encrypted; 338 int skip, len; 339 340 /* We add page references worth len bytes from encrypted sg 341 * at the end of plaintext sg. It is guaranteed that msg_en 342 * has enough required room (ensured by caller). 343 */ 344 len = required - msg_pl->sg.size; 345 346 /* Skip initial bytes in msg_en's data to be able to use 347 * same offset of both plain and encrypted data. 348 */ 349 skip = prot->prepend_size + msg_pl->sg.size; 350 351 return sk_msg_clone(sk, msg_pl, msg_en, skip, len); 352 } 353 354 static struct tls_rec *tls_get_rec(struct sock *sk) 355 { 356 struct tls_context *tls_ctx = tls_get_ctx(sk); 357 struct tls_prot_info *prot = &tls_ctx->prot_info; 358 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 359 struct sk_msg *msg_pl, *msg_en; 360 struct tls_rec *rec; 361 int mem_size; 362 363 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); 364 365 rec = kzalloc(mem_size, sk->sk_allocation); 366 if (!rec) 367 return NULL; 368 369 msg_pl = &rec->msg_plaintext; 370 msg_en = &rec->msg_encrypted; 371 372 sk_msg_init(msg_pl); 373 sk_msg_init(msg_en); 374 375 sg_init_table(rec->sg_aead_in, 2); 376 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); 377 sg_unmark_end(&rec->sg_aead_in[1]); 378 379 sg_init_table(rec->sg_aead_out, 2); 380 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); 381 sg_unmark_end(&rec->sg_aead_out[1]); 382 383 rec->sk = sk; 384 385 return rec; 386 } 387 388 static void tls_free_rec(struct sock *sk, struct tls_rec *rec) 389 { 390 sk_msg_free(sk, &rec->msg_encrypted); 391 sk_msg_free(sk, &rec->msg_plaintext); 392 kfree(rec); 393 } 394 395 static void tls_free_open_rec(struct sock *sk) 396 { 397 struct tls_context *tls_ctx = tls_get_ctx(sk); 398 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 399 struct tls_rec *rec = ctx->open_rec; 400 401 if (rec) { 402 tls_free_rec(sk, rec); 403 ctx->open_rec = NULL; 404 } 405 } 406 407 int tls_tx_records(struct sock *sk, int flags) 408 { 409 struct tls_context *tls_ctx = tls_get_ctx(sk); 410 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 411 struct tls_rec *rec, *tmp; 412 struct sk_msg *msg_en; 413 int tx_flags, rc = 0; 414 415 if (tls_is_partially_sent_record(tls_ctx)) { 416 rec = list_first_entry(&ctx->tx_list, 417 struct tls_rec, list); 418 419 if (flags == -1) 420 tx_flags = rec->tx_flags; 421 else 422 tx_flags = flags; 423 424 rc = tls_push_partial_record(sk, tls_ctx, tx_flags); 425 if (rc) 426 goto tx_err; 427 428 /* Full record has been transmitted. 429 * Remove the head of tx_list 430 */ 431 list_del(&rec->list); 432 sk_msg_free(sk, &rec->msg_plaintext); 433 kfree(rec); 434 } 435 436 /* Tx all ready records */ 437 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 438 if (READ_ONCE(rec->tx_ready)) { 439 if (flags == -1) 440 tx_flags = rec->tx_flags; 441 else 442 tx_flags = flags; 443 444 msg_en = &rec->msg_encrypted; 445 rc = tls_push_sg(sk, tls_ctx, 446 &msg_en->sg.data[msg_en->sg.curr], 447 0, tx_flags); 448 if (rc) 449 goto tx_err; 450 451 list_del(&rec->list); 452 sk_msg_free(sk, &rec->msg_plaintext); 453 kfree(rec); 454 } else { 455 break; 456 } 457 } 458 459 tx_err: 460 if (rc < 0 && rc != -EAGAIN) 461 tls_err_abort(sk, rc); 462 463 return rc; 464 } 465 466 static void tls_encrypt_done(void *data, int err) 467 { 468 struct tls_sw_context_tx *ctx; 469 struct tls_context *tls_ctx; 470 struct tls_prot_info *prot; 471 struct tls_rec *rec = data; 472 struct scatterlist *sge; 473 struct sk_msg *msg_en; 474 struct sock *sk; 475 476 if (err == -EINPROGRESS) /* see the comment in tls_decrypt_done() */ 477 return; 478 479 msg_en = &rec->msg_encrypted; 480 481 sk = rec->sk; 482 tls_ctx = tls_get_ctx(sk); 483 prot = &tls_ctx->prot_info; 484 ctx = tls_sw_ctx_tx(tls_ctx); 485 486 sge = sk_msg_elem(msg_en, msg_en->sg.curr); 487 sge->offset -= prot->prepend_size; 488 sge->length += prot->prepend_size; 489 490 /* Check if error is previously set on socket */ 491 if (err || sk->sk_err) { 492 rec = NULL; 493 494 /* If err is already set on socket, return the same code */ 495 if (sk->sk_err) { 496 ctx->async_wait.err = -sk->sk_err; 497 } else { 498 ctx->async_wait.err = err; 499 tls_err_abort(sk, err); 500 } 501 } 502 503 if (rec) { 504 struct tls_rec *first_rec; 505 506 /* Mark the record as ready for transmission */ 507 smp_store_mb(rec->tx_ready, true); 508 509 /* If received record is at head of tx_list, schedule tx */ 510 first_rec = list_first_entry(&ctx->tx_list, 511 struct tls_rec, list); 512 if (rec == first_rec) { 513 /* Schedule the transmission */ 514 if (!test_and_set_bit(BIT_TX_SCHEDULED, 515 &ctx->tx_bitmask)) 516 schedule_delayed_work(&ctx->tx_work.work, 1); 517 } 518 } 519 520 if (atomic_dec_and_test(&ctx->encrypt_pending)) 521 complete(&ctx->async_wait.completion); 522 } 523 524 static int tls_encrypt_async_wait(struct tls_sw_context_tx *ctx) 525 { 526 if (!atomic_dec_and_test(&ctx->encrypt_pending)) 527 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 528 atomic_inc(&ctx->encrypt_pending); 529 530 return ctx->async_wait.err; 531 } 532 533 static int tls_do_encryption(struct sock *sk, 534 struct tls_context *tls_ctx, 535 struct tls_sw_context_tx *ctx, 536 struct aead_request *aead_req, 537 size_t data_len, u32 start) 538 { 539 struct tls_prot_info *prot = &tls_ctx->prot_info; 540 struct tls_rec *rec = ctx->open_rec; 541 struct sk_msg *msg_en = &rec->msg_encrypted; 542 struct scatterlist *sge = sk_msg_elem(msg_en, start); 543 int rc, iv_offset = 0; 544 545 /* For CCM based ciphers, first byte of IV is a constant */ 546 switch (prot->cipher_type) { 547 case TLS_CIPHER_AES_CCM_128: 548 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE; 549 iv_offset = 1; 550 break; 551 case TLS_CIPHER_SM4_CCM: 552 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE; 553 iv_offset = 1; 554 break; 555 } 556 557 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv, 558 prot->iv_size + prot->salt_size); 559 560 tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset, 561 tls_ctx->tx.rec_seq); 562 563 sge->offset += prot->prepend_size; 564 sge->length -= prot->prepend_size; 565 566 msg_en->sg.curr = start; 567 568 aead_request_set_tfm(aead_req, ctx->aead_send); 569 aead_request_set_ad(aead_req, prot->aad_size); 570 aead_request_set_crypt(aead_req, rec->sg_aead_in, 571 rec->sg_aead_out, 572 data_len, rec->iv_data); 573 574 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 575 tls_encrypt_done, rec); 576 577 /* Add the record in tx_list */ 578 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); 579 DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->encrypt_pending) < 1); 580 atomic_inc(&ctx->encrypt_pending); 581 582 rc = crypto_aead_encrypt(aead_req); 583 if (rc == -EBUSY) { 584 rc = tls_encrypt_async_wait(ctx); 585 rc = rc ?: -EINPROGRESS; 586 } 587 if (!rc || rc != -EINPROGRESS) { 588 atomic_dec(&ctx->encrypt_pending); 589 sge->offset -= prot->prepend_size; 590 sge->length += prot->prepend_size; 591 } 592 593 if (!rc) { 594 WRITE_ONCE(rec->tx_ready, true); 595 } else if (rc != -EINPROGRESS) { 596 list_del(&rec->list); 597 return rc; 598 } 599 600 /* Unhook the record from context if encryption is not failure */ 601 ctx->open_rec = NULL; 602 tls_advance_record_sn(sk, prot, &tls_ctx->tx); 603 return rc; 604 } 605 606 static int tls_split_open_record(struct sock *sk, struct tls_rec *from, 607 struct tls_rec **to, struct sk_msg *msg_opl, 608 struct sk_msg *msg_oen, u32 split_point, 609 u32 tx_overhead_size, u32 *orig_end) 610 { 611 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; 612 struct scatterlist *sge, *osge, *nsge; 613 u32 orig_size = msg_opl->sg.size; 614 struct scatterlist tmp = { }; 615 struct sk_msg *msg_npl; 616 struct tls_rec *new; 617 int ret; 618 619 new = tls_get_rec(sk); 620 if (!new) 621 return -ENOMEM; 622 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + 623 tx_overhead_size, 0); 624 if (ret < 0) { 625 tls_free_rec(sk, new); 626 return ret; 627 } 628 629 *orig_end = msg_opl->sg.end; 630 i = msg_opl->sg.start; 631 sge = sk_msg_elem(msg_opl, i); 632 while (apply && sge->length) { 633 if (sge->length > apply) { 634 u32 len = sge->length - apply; 635 636 get_page(sg_page(sge)); 637 sg_set_page(&tmp, sg_page(sge), len, 638 sge->offset + apply); 639 sge->length = apply; 640 bytes += apply; 641 apply = 0; 642 } else { 643 apply -= sge->length; 644 bytes += sge->length; 645 } 646 647 sk_msg_iter_var_next(i); 648 if (i == msg_opl->sg.end) 649 break; 650 sge = sk_msg_elem(msg_opl, i); 651 } 652 653 msg_opl->sg.end = i; 654 msg_opl->sg.curr = i; 655 msg_opl->sg.copybreak = 0; 656 msg_opl->apply_bytes = 0; 657 msg_opl->sg.size = bytes; 658 659 msg_npl = &new->msg_plaintext; 660 msg_npl->apply_bytes = apply; 661 msg_npl->sg.size = orig_size - bytes; 662 663 j = msg_npl->sg.start; 664 nsge = sk_msg_elem(msg_npl, j); 665 if (tmp.length) { 666 memcpy(nsge, &tmp, sizeof(*nsge)); 667 sk_msg_iter_var_next(j); 668 nsge = sk_msg_elem(msg_npl, j); 669 } 670 671 osge = sk_msg_elem(msg_opl, i); 672 while (osge->length) { 673 memcpy(nsge, osge, sizeof(*nsge)); 674 sg_unmark_end(nsge); 675 sk_msg_iter_var_next(i); 676 sk_msg_iter_var_next(j); 677 if (i == *orig_end) 678 break; 679 osge = sk_msg_elem(msg_opl, i); 680 nsge = sk_msg_elem(msg_npl, j); 681 } 682 683 msg_npl->sg.end = j; 684 msg_npl->sg.curr = j; 685 msg_npl->sg.copybreak = 0; 686 687 *to = new; 688 return 0; 689 } 690 691 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, 692 struct tls_rec *from, u32 orig_end) 693 { 694 struct sk_msg *msg_npl = &from->msg_plaintext; 695 struct sk_msg *msg_opl = &to->msg_plaintext; 696 struct scatterlist *osge, *nsge; 697 u32 i, j; 698 699 i = msg_opl->sg.end; 700 sk_msg_iter_var_prev(i); 701 j = msg_npl->sg.start; 702 703 osge = sk_msg_elem(msg_opl, i); 704 nsge = sk_msg_elem(msg_npl, j); 705 706 if (sg_page(osge) == sg_page(nsge) && 707 osge->offset + osge->length == nsge->offset) { 708 osge->length += nsge->length; 709 put_page(sg_page(nsge)); 710 } 711 712 msg_opl->sg.end = orig_end; 713 msg_opl->sg.curr = orig_end; 714 msg_opl->sg.copybreak = 0; 715 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; 716 msg_opl->sg.size += msg_npl->sg.size; 717 718 sk_msg_free(sk, &to->msg_encrypted); 719 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); 720 721 kfree(from); 722 } 723 724 static int tls_push_record(struct sock *sk, int flags, 725 unsigned char record_type) 726 { 727 struct tls_context *tls_ctx = tls_get_ctx(sk); 728 struct tls_prot_info *prot = &tls_ctx->prot_info; 729 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 730 struct tls_rec *rec = ctx->open_rec, *tmp = NULL; 731 u32 i, split_point, orig_end; 732 struct sk_msg *msg_pl, *msg_en; 733 struct aead_request *req; 734 bool split; 735 int rc; 736 737 if (!rec) 738 return 0; 739 740 msg_pl = &rec->msg_plaintext; 741 msg_en = &rec->msg_encrypted; 742 743 split_point = msg_pl->apply_bytes; 744 split = split_point && split_point < msg_pl->sg.size; 745 if (unlikely((!split && 746 msg_pl->sg.size + 747 prot->overhead_size > msg_en->sg.size) || 748 (split && 749 split_point + 750 prot->overhead_size > msg_en->sg.size))) { 751 split = true; 752 split_point = msg_en->sg.size; 753 } 754 if (split) { 755 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, 756 split_point, prot->overhead_size, 757 &orig_end); 758 if (rc < 0) 759 return rc; 760 /* This can happen if above tls_split_open_record allocates 761 * a single large encryption buffer instead of two smaller 762 * ones. In this case adjust pointers and continue without 763 * split. 764 */ 765 if (!msg_pl->sg.size) { 766 tls_merge_open_record(sk, rec, tmp, orig_end); 767 msg_pl = &rec->msg_plaintext; 768 msg_en = &rec->msg_encrypted; 769 split = false; 770 } 771 sk_msg_trim(sk, msg_en, msg_pl->sg.size + 772 prot->overhead_size); 773 } 774 775 rec->tx_flags = flags; 776 req = &rec->aead_req; 777 778 i = msg_pl->sg.end; 779 sk_msg_iter_var_prev(i); 780 781 rec->content_type = record_type; 782 if (prot->version == TLS_1_3_VERSION) { 783 /* Add content type to end of message. No padding added */ 784 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); 785 sg_mark_end(&rec->sg_content_type); 786 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, 787 &rec->sg_content_type); 788 } else { 789 sg_mark_end(sk_msg_elem(msg_pl, i)); 790 } 791 792 if (msg_pl->sg.end < msg_pl->sg.start) { 793 sg_chain(&msg_pl->sg.data[msg_pl->sg.start], 794 MAX_SKB_FRAGS - msg_pl->sg.start + 1, 795 msg_pl->sg.data); 796 } 797 798 i = msg_pl->sg.start; 799 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]); 800 801 i = msg_en->sg.end; 802 sk_msg_iter_var_prev(i); 803 sg_mark_end(sk_msg_elem(msg_en, i)); 804 805 i = msg_en->sg.start; 806 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); 807 808 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, 809 tls_ctx->tx.rec_seq, record_type, prot); 810 811 tls_fill_prepend(tls_ctx, 812 page_address(sg_page(&msg_en->sg.data[i])) + 813 msg_en->sg.data[i].offset, 814 msg_pl->sg.size + prot->tail_size, 815 record_type); 816 817 tls_ctx->pending_open_record_frags = false; 818 819 rc = tls_do_encryption(sk, tls_ctx, ctx, req, 820 msg_pl->sg.size + prot->tail_size, i); 821 if (rc < 0) { 822 if (rc != -EINPROGRESS) { 823 tls_err_abort(sk, -EBADMSG); 824 if (split) { 825 tls_ctx->pending_open_record_frags = true; 826 tls_merge_open_record(sk, rec, tmp, orig_end); 827 } 828 } 829 ctx->async_capable = 1; 830 return rc; 831 } else if (split) { 832 msg_pl = &tmp->msg_plaintext; 833 msg_en = &tmp->msg_encrypted; 834 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); 835 tls_ctx->pending_open_record_frags = true; 836 ctx->open_rec = tmp; 837 } 838 839 return tls_tx_records(sk, flags); 840 } 841 842 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, 843 bool full_record, u8 record_type, 844 ssize_t *copied, int flags) 845 { 846 struct tls_context *tls_ctx = tls_get_ctx(sk); 847 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 848 struct sk_msg msg_redir = { }; 849 struct sk_psock *psock; 850 struct sock *sk_redir; 851 struct tls_rec *rec; 852 bool enospc, policy, redir_ingress; 853 int err = 0, send; 854 u32 delta = 0; 855 856 policy = !(flags & MSG_SENDPAGE_NOPOLICY); 857 psock = sk_psock_get(sk); 858 if (!psock || !policy) { 859 err = tls_push_record(sk, flags, record_type); 860 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) { 861 *copied -= sk_msg_free(sk, msg); 862 tls_free_open_rec(sk); 863 err = -sk->sk_err; 864 } 865 if (psock) 866 sk_psock_put(sk, psock); 867 return err; 868 } 869 more_data: 870 enospc = sk_msg_full(msg); 871 if (psock->eval == __SK_NONE) { 872 delta = msg->sg.size; 873 psock->eval = sk_psock_msg_verdict(sk, psock, msg); 874 delta -= msg->sg.size; 875 } 876 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && 877 !enospc && !full_record) { 878 err = -ENOSPC; 879 goto out_err; 880 } 881 msg->cork_bytes = 0; 882 send = msg->sg.size; 883 if (msg->apply_bytes && msg->apply_bytes < send) 884 send = msg->apply_bytes; 885 886 switch (psock->eval) { 887 case __SK_PASS: 888 err = tls_push_record(sk, flags, record_type); 889 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) { 890 *copied -= sk_msg_free(sk, msg); 891 tls_free_open_rec(sk); 892 err = -sk->sk_err; 893 goto out_err; 894 } 895 break; 896 case __SK_REDIRECT: 897 redir_ingress = psock->redir_ingress; 898 sk_redir = psock->sk_redir; 899 memcpy(&msg_redir, msg, sizeof(*msg)); 900 if (msg->apply_bytes < send) 901 msg->apply_bytes = 0; 902 else 903 msg->apply_bytes -= send; 904 sk_msg_return_zero(sk, msg, send); 905 msg->sg.size -= send; 906 release_sock(sk); 907 err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress, 908 &msg_redir, send, flags); 909 lock_sock(sk); 910 if (err < 0) { 911 /* Regardless of whether the data represented by 912 * msg_redir is sent successfully, we have already 913 * uncharged it via sk_msg_return_zero(). The 914 * msg->sg.size represents the remaining unprocessed 915 * data, which needs to be uncharged here. 916 */ 917 sk_mem_uncharge(sk, msg->sg.size); 918 *copied -= sk_msg_free_nocharge(sk, &msg_redir); 919 msg->sg.size = 0; 920 } 921 if (msg->sg.size == 0) 922 tls_free_open_rec(sk); 923 break; 924 case __SK_DROP: 925 default: 926 sk_msg_free_partial(sk, msg, send); 927 if (msg->apply_bytes < send) 928 msg->apply_bytes = 0; 929 else 930 msg->apply_bytes -= send; 931 if (msg->sg.size == 0) 932 tls_free_open_rec(sk); 933 *copied -= (send + delta); 934 err = -EACCES; 935 } 936 937 if (likely(!err)) { 938 bool reset_eval = !ctx->open_rec; 939 940 rec = ctx->open_rec; 941 if (rec) { 942 msg = &rec->msg_plaintext; 943 if (!msg->apply_bytes) 944 reset_eval = true; 945 } 946 if (reset_eval) { 947 psock->eval = __SK_NONE; 948 if (psock->sk_redir) { 949 sock_put(psock->sk_redir); 950 psock->sk_redir = NULL; 951 } 952 } 953 if (rec) 954 goto more_data; 955 } 956 out_err: 957 sk_psock_put(sk, psock); 958 return err; 959 } 960 961 static int tls_sw_push_pending_record(struct sock *sk, int flags) 962 { 963 struct tls_context *tls_ctx = tls_get_ctx(sk); 964 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 965 struct tls_rec *rec = ctx->open_rec; 966 struct sk_msg *msg_pl; 967 size_t copied; 968 969 if (!rec) 970 return 0; 971 972 msg_pl = &rec->msg_plaintext; 973 copied = msg_pl->sg.size; 974 if (!copied) 975 return 0; 976 977 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, 978 &copied, flags); 979 } 980 981 static int tls_sw_sendmsg_splice(struct sock *sk, struct msghdr *msg, 982 struct sk_msg *msg_pl, size_t try_to_copy, 983 ssize_t *copied) 984 { 985 struct page *page = NULL, **pages = &page; 986 987 do { 988 ssize_t part; 989 size_t off; 990 991 part = iov_iter_extract_pages(&msg->msg_iter, &pages, 992 try_to_copy, 1, 0, &off); 993 if (part <= 0) 994 return part ?: -EIO; 995 996 if (WARN_ON_ONCE(!sendpage_ok(page))) { 997 iov_iter_revert(&msg->msg_iter, part); 998 return -EIO; 999 } 1000 1001 sk_msg_page_add(msg_pl, page, part, off); 1002 msg_pl->sg.copybreak = 0; 1003 msg_pl->sg.curr = msg_pl->sg.end; 1004 sk_mem_charge(sk, part); 1005 *copied += part; 1006 try_to_copy -= part; 1007 } while (try_to_copy && !sk_msg_full(msg_pl)); 1008 1009 return 0; 1010 } 1011 1012 static int tls_sw_sendmsg_locked(struct sock *sk, struct msghdr *msg, 1013 size_t size) 1014 { 1015 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1016 struct tls_context *tls_ctx = tls_get_ctx(sk); 1017 struct tls_prot_info *prot = &tls_ctx->prot_info; 1018 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1019 bool async_capable = ctx->async_capable; 1020 unsigned char record_type = TLS_RECORD_TYPE_DATA; 1021 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 1022 bool eor = !(msg->msg_flags & MSG_MORE); 1023 size_t try_to_copy; 1024 ssize_t copied = 0; 1025 struct sk_msg *msg_pl, *msg_en; 1026 struct tls_rec *rec; 1027 int required_size; 1028 int num_async = 0; 1029 bool full_record; 1030 int record_room; 1031 int num_zc = 0; 1032 int orig_size; 1033 int ret = 0; 1034 1035 if (!eor && (msg->msg_flags & MSG_EOR)) 1036 return -EINVAL; 1037 1038 if (unlikely(msg->msg_controllen)) { 1039 ret = tls_process_cmsg(sk, msg, &record_type); 1040 if (ret) { 1041 if (ret == -EINPROGRESS) 1042 num_async++; 1043 else if (ret != -EAGAIN) 1044 goto send_end; 1045 } 1046 } 1047 1048 while (msg_data_left(msg)) { 1049 if (sk->sk_err) { 1050 ret = -sk->sk_err; 1051 goto send_end; 1052 } 1053 1054 if (ctx->open_rec) 1055 rec = ctx->open_rec; 1056 else 1057 rec = ctx->open_rec = tls_get_rec(sk); 1058 if (!rec) { 1059 ret = -ENOMEM; 1060 goto send_end; 1061 } 1062 1063 msg_pl = &rec->msg_plaintext; 1064 msg_en = &rec->msg_encrypted; 1065 1066 orig_size = msg_pl->sg.size; 1067 full_record = false; 1068 try_to_copy = msg_data_left(msg); 1069 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 1070 if (try_to_copy >= record_room) { 1071 try_to_copy = record_room; 1072 full_record = true; 1073 } 1074 1075 required_size = msg_pl->sg.size + try_to_copy + 1076 prot->overhead_size; 1077 1078 if (!sk_stream_memory_free(sk)) 1079 goto wait_for_sndbuf; 1080 1081 alloc_encrypted: 1082 ret = tls_alloc_encrypted_msg(sk, required_size); 1083 if (ret) { 1084 if (ret != -ENOSPC) 1085 goto wait_for_memory; 1086 1087 /* Adjust try_to_copy according to the amount that was 1088 * actually allocated. The difference is due 1089 * to max sg elements limit 1090 */ 1091 try_to_copy -= required_size - msg_en->sg.size; 1092 full_record = true; 1093 } 1094 1095 if (try_to_copy && (msg->msg_flags & MSG_SPLICE_PAGES)) { 1096 ret = tls_sw_sendmsg_splice(sk, msg, msg_pl, 1097 try_to_copy, &copied); 1098 if (ret < 0) 1099 goto send_end; 1100 tls_ctx->pending_open_record_frags = true; 1101 1102 if (sk_msg_full(msg_pl)) 1103 full_record = true; 1104 1105 if (full_record || eor) 1106 goto copied; 1107 continue; 1108 } 1109 1110 if (!is_kvec && (full_record || eor) && !async_capable) { 1111 u32 first = msg_pl->sg.end; 1112 1113 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, 1114 msg_pl, try_to_copy); 1115 if (ret) 1116 goto fallback_to_reg_send; 1117 1118 num_zc++; 1119 copied += try_to_copy; 1120 1121 sk_msg_sg_copy_set(msg_pl, first); 1122 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1123 record_type, &copied, 1124 msg->msg_flags); 1125 if (ret) { 1126 if (ret == -EINPROGRESS) 1127 num_async++; 1128 else if (ret == -ENOMEM) 1129 goto wait_for_memory; 1130 else if (ctx->open_rec && ret == -ENOSPC) { 1131 if (msg_pl->cork_bytes) { 1132 ret = 0; 1133 goto send_end; 1134 } 1135 goto rollback_iter; 1136 } else if (ret != -EAGAIN) 1137 goto send_end; 1138 } 1139 continue; 1140 rollback_iter: 1141 copied -= try_to_copy; 1142 sk_msg_sg_copy_clear(msg_pl, first); 1143 iov_iter_revert(&msg->msg_iter, 1144 msg_pl->sg.size - orig_size); 1145 fallback_to_reg_send: 1146 sk_msg_trim(sk, msg_pl, orig_size); 1147 } 1148 1149 required_size = msg_pl->sg.size + try_to_copy; 1150 1151 ret = tls_clone_plaintext_msg(sk, required_size); 1152 if (ret) { 1153 if (ret != -ENOSPC) 1154 goto send_end; 1155 1156 /* Adjust try_to_copy according to the amount that was 1157 * actually allocated. The difference is due 1158 * to max sg elements limit 1159 */ 1160 try_to_copy -= required_size - msg_pl->sg.size; 1161 full_record = true; 1162 sk_msg_trim(sk, msg_en, 1163 msg_pl->sg.size + prot->overhead_size); 1164 } 1165 1166 if (try_to_copy) { 1167 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, 1168 msg_pl, try_to_copy); 1169 if (ret < 0) 1170 goto trim_sgl; 1171 } 1172 1173 /* Open records defined only if successfully copied, otherwise 1174 * we would trim the sg but not reset the open record frags. 1175 */ 1176 tls_ctx->pending_open_record_frags = true; 1177 copied += try_to_copy; 1178 copied: 1179 if (full_record || eor) { 1180 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1181 record_type, &copied, 1182 msg->msg_flags); 1183 if (ret) { 1184 if (ret == -EINPROGRESS) 1185 num_async++; 1186 else if (ret == -ENOMEM) 1187 goto wait_for_memory; 1188 else if (ret != -EAGAIN) { 1189 if (ret == -ENOSPC) 1190 ret = 0; 1191 goto send_end; 1192 } 1193 } 1194 } 1195 1196 continue; 1197 1198 wait_for_sndbuf: 1199 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1200 wait_for_memory: 1201 ret = sk_stream_wait_memory(sk, &timeo); 1202 if (ret) { 1203 trim_sgl: 1204 if (ctx->open_rec) 1205 tls_trim_both_msgs(sk, orig_size); 1206 goto send_end; 1207 } 1208 1209 if (ctx->open_rec && msg_en->sg.size < required_size) 1210 goto alloc_encrypted; 1211 } 1212 1213 if (!num_async) { 1214 goto send_end; 1215 } else if (num_zc || eor) { 1216 int err; 1217 1218 /* Wait for pending encryptions to get completed */ 1219 err = tls_encrypt_async_wait(ctx); 1220 if (err) { 1221 ret = err; 1222 copied = 0; 1223 } 1224 } 1225 1226 /* Transmit if any encryptions have completed */ 1227 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1228 cancel_delayed_work(&ctx->tx_work.work); 1229 tls_tx_records(sk, msg->msg_flags); 1230 } 1231 1232 send_end: 1233 ret = sk_stream_error(sk, msg->msg_flags, ret); 1234 return copied > 0 ? copied : ret; 1235 } 1236 1237 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1238 { 1239 struct tls_context *tls_ctx = tls_get_ctx(sk); 1240 int ret; 1241 1242 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1243 MSG_CMSG_COMPAT | MSG_SPLICE_PAGES | MSG_EOR | 1244 MSG_SENDPAGE_NOPOLICY)) 1245 return -EOPNOTSUPP; 1246 1247 ret = mutex_lock_interruptible(&tls_ctx->tx_lock); 1248 if (ret) 1249 return ret; 1250 lock_sock(sk); 1251 ret = tls_sw_sendmsg_locked(sk, msg, size); 1252 release_sock(sk); 1253 mutex_unlock(&tls_ctx->tx_lock); 1254 return ret; 1255 } 1256 1257 /* 1258 * Handle unexpected EOF during splice without SPLICE_F_MORE set. 1259 */ 1260 void tls_sw_splice_eof(struct socket *sock) 1261 { 1262 struct sock *sk = sock->sk; 1263 struct tls_context *tls_ctx = tls_get_ctx(sk); 1264 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1265 struct tls_rec *rec; 1266 struct sk_msg *msg_pl; 1267 ssize_t copied = 0; 1268 bool retrying = false; 1269 int ret = 0; 1270 1271 if (!ctx->open_rec) 1272 return; 1273 1274 mutex_lock(&tls_ctx->tx_lock); 1275 lock_sock(sk); 1276 1277 retry: 1278 /* same checks as in tls_sw_push_pending_record() */ 1279 rec = ctx->open_rec; 1280 if (!rec) 1281 goto unlock; 1282 1283 msg_pl = &rec->msg_plaintext; 1284 if (msg_pl->sg.size == 0) 1285 goto unlock; 1286 1287 /* Check the BPF advisor and perform transmission. */ 1288 ret = bpf_exec_tx_verdict(msg_pl, sk, false, TLS_RECORD_TYPE_DATA, 1289 &copied, 0); 1290 switch (ret) { 1291 case 0: 1292 case -EAGAIN: 1293 if (retrying) 1294 goto unlock; 1295 retrying = true; 1296 goto retry; 1297 case -EINPROGRESS: 1298 break; 1299 default: 1300 goto unlock; 1301 } 1302 1303 /* Wait for pending encryptions to get completed */ 1304 if (tls_encrypt_async_wait(ctx)) 1305 goto unlock; 1306 1307 /* Transmit if any encryptions have completed */ 1308 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1309 cancel_delayed_work(&ctx->tx_work.work); 1310 tls_tx_records(sk, 0); 1311 } 1312 1313 unlock: 1314 release_sock(sk); 1315 mutex_unlock(&tls_ctx->tx_lock); 1316 } 1317 1318 static int 1319 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock, 1320 bool released) 1321 { 1322 struct tls_context *tls_ctx = tls_get_ctx(sk); 1323 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1324 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1325 int ret = 0; 1326 long timeo; 1327 1328 /* a rekey is pending, let userspace deal with it */ 1329 if (unlikely(ctx->key_update_pending)) 1330 return -EKEYEXPIRED; 1331 1332 timeo = sock_rcvtimeo(sk, nonblock); 1333 1334 while (!tls_strp_msg_ready(ctx)) { 1335 if (!sk_psock_queue_empty(psock)) 1336 return 0; 1337 1338 if (sk->sk_err) 1339 return sock_error(sk); 1340 1341 if (ret < 0) 1342 return ret; 1343 1344 if (!skb_queue_empty(&sk->sk_receive_queue)) { 1345 tls_strp_check_rcv(&ctx->strp); 1346 if (tls_strp_msg_ready(ctx)) 1347 break; 1348 } 1349 1350 if (sk->sk_shutdown & RCV_SHUTDOWN) 1351 return 0; 1352 1353 if (sock_flag(sk, SOCK_DONE)) 1354 return 0; 1355 1356 if (!timeo) 1357 return -EAGAIN; 1358 1359 released = true; 1360 add_wait_queue(sk_sleep(sk), &wait); 1361 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1362 ret = sk_wait_event(sk, &timeo, 1363 tls_strp_msg_ready(ctx) || 1364 !sk_psock_queue_empty(psock), 1365 &wait); 1366 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1367 remove_wait_queue(sk_sleep(sk), &wait); 1368 1369 /* Handle signals */ 1370 if (signal_pending(current)) 1371 return sock_intr_errno(timeo); 1372 } 1373 1374 tls_strp_msg_load(&ctx->strp, released); 1375 1376 return 1; 1377 } 1378 1379 static int tls_setup_from_iter(struct iov_iter *from, 1380 int length, int *pages_used, 1381 struct scatterlist *to, 1382 int to_max_pages) 1383 { 1384 int rc = 0, i = 0, num_elem = *pages_used, maxpages; 1385 struct page *pages[MAX_SKB_FRAGS]; 1386 unsigned int size = 0; 1387 ssize_t copied, use; 1388 size_t offset; 1389 1390 while (length > 0) { 1391 i = 0; 1392 maxpages = to_max_pages - num_elem; 1393 if (maxpages == 0) { 1394 rc = -EFAULT; 1395 goto out; 1396 } 1397 copied = iov_iter_get_pages2(from, pages, 1398 length, 1399 maxpages, &offset); 1400 if (copied <= 0) { 1401 rc = -EFAULT; 1402 goto out; 1403 } 1404 1405 length -= copied; 1406 size += copied; 1407 while (copied) { 1408 use = min_t(int, copied, PAGE_SIZE - offset); 1409 1410 sg_set_page(&to[num_elem], 1411 pages[i], use, offset); 1412 sg_unmark_end(&to[num_elem]); 1413 /* We do not uncharge memory from this API */ 1414 1415 offset = 0; 1416 copied -= use; 1417 1418 i++; 1419 num_elem++; 1420 } 1421 } 1422 /* Mark the end in the last sg entry if newly added */ 1423 if (num_elem > *pages_used) 1424 sg_mark_end(&to[num_elem - 1]); 1425 out: 1426 if (rc) 1427 iov_iter_revert(from, size); 1428 *pages_used = num_elem; 1429 1430 return rc; 1431 } 1432 1433 static struct sk_buff * 1434 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb, 1435 unsigned int full_len) 1436 { 1437 struct strp_msg *clr_rxm; 1438 struct sk_buff *clr_skb; 1439 int err; 1440 1441 clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER, 1442 &err, sk->sk_allocation); 1443 if (!clr_skb) 1444 return NULL; 1445 1446 skb_copy_header(clr_skb, skb); 1447 clr_skb->len = full_len; 1448 clr_skb->data_len = full_len; 1449 1450 clr_rxm = strp_msg(clr_skb); 1451 clr_rxm->offset = 0; 1452 1453 return clr_skb; 1454 } 1455 1456 /* Decrypt handlers 1457 * 1458 * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers. 1459 * They must transform the darg in/out argument are as follows: 1460 * | Input | Output 1461 * ------------------------------------------------------------------- 1462 * zc | Zero-copy decrypt allowed | Zero-copy performed 1463 * async | Async decrypt allowed | Async crypto used / in progress 1464 * skb | * | Output skb 1465 * 1466 * If ZC decryption was performed darg.skb will point to the input skb. 1467 */ 1468 1469 /* This function decrypts the input skb into either out_iov or in out_sg 1470 * or in skb buffers itself. The input parameter 'darg->zc' indicates if 1471 * zero-copy mode needs to be tried or not. With zero-copy mode, either 1472 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are 1473 * NULL, then the decryption happens inside skb buffers itself, i.e. 1474 * zero-copy gets disabled and 'darg->zc' is updated. 1475 */ 1476 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov, 1477 struct scatterlist *out_sg, 1478 struct tls_decrypt_arg *darg) 1479 { 1480 struct tls_context *tls_ctx = tls_get_ctx(sk); 1481 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1482 struct tls_prot_info *prot = &tls_ctx->prot_info; 1483 int n_sgin, n_sgout, aead_size, err, pages = 0; 1484 struct sk_buff *skb = tls_strp_msg(ctx); 1485 const struct strp_msg *rxm = strp_msg(skb); 1486 const struct tls_msg *tlm = tls_msg(skb); 1487 struct aead_request *aead_req; 1488 struct scatterlist *sgin = NULL; 1489 struct scatterlist *sgout = NULL; 1490 const int data_len = rxm->full_len - prot->overhead_size; 1491 int tail_pages = !!prot->tail_size; 1492 struct tls_decrypt_ctx *dctx; 1493 struct sk_buff *clear_skb; 1494 int iv_offset = 0; 1495 u8 *mem; 1496 1497 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, 1498 rxm->full_len - prot->prepend_size); 1499 if (n_sgin < 1) 1500 return n_sgin ?: -EBADMSG; 1501 1502 if (darg->zc && (out_iov || out_sg)) { 1503 clear_skb = NULL; 1504 1505 if (out_iov) 1506 n_sgout = 1 + tail_pages + 1507 iov_iter_npages_cap(out_iov, INT_MAX, data_len); 1508 else 1509 n_sgout = sg_nents(out_sg); 1510 } else { 1511 darg->zc = false; 1512 1513 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len); 1514 if (!clear_skb) 1515 return -ENOMEM; 1516 1517 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags; 1518 } 1519 1520 /* Increment to accommodate AAD */ 1521 n_sgin = n_sgin + 1; 1522 1523 /* Allocate a single block of memory which contains 1524 * aead_req || tls_decrypt_ctx. 1525 * Both structs are variable length. 1526 */ 1527 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); 1528 aead_size = ALIGN(aead_size, __alignof__(*dctx)); 1529 mem = kmalloc(aead_size + struct_size(dctx, sg, size_add(n_sgin, n_sgout)), 1530 sk->sk_allocation); 1531 if (!mem) { 1532 err = -ENOMEM; 1533 goto exit_free_skb; 1534 } 1535 1536 /* Segment the allocated memory */ 1537 aead_req = (struct aead_request *)mem; 1538 dctx = (struct tls_decrypt_ctx *)(mem + aead_size); 1539 dctx->sk = sk; 1540 sgin = &dctx->sg[0]; 1541 sgout = &dctx->sg[n_sgin]; 1542 1543 /* For CCM based ciphers, first byte of nonce+iv is a constant */ 1544 switch (prot->cipher_type) { 1545 case TLS_CIPHER_AES_CCM_128: 1546 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE; 1547 iv_offset = 1; 1548 break; 1549 case TLS_CIPHER_SM4_CCM: 1550 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE; 1551 iv_offset = 1; 1552 break; 1553 } 1554 1555 /* Prepare IV */ 1556 if (prot->version == TLS_1_3_VERSION || 1557 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) { 1558 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, 1559 prot->iv_size + prot->salt_size); 1560 } else { 1561 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, 1562 &dctx->iv[iv_offset] + prot->salt_size, 1563 prot->iv_size); 1564 if (err < 0) 1565 goto exit_free; 1566 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size); 1567 } 1568 tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq); 1569 1570 /* Prepare AAD */ 1571 tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size + 1572 prot->tail_size, 1573 tls_ctx->rx.rec_seq, tlm->control, prot); 1574 1575 /* Prepare sgin */ 1576 sg_init_table(sgin, n_sgin); 1577 sg_set_buf(&sgin[0], dctx->aad, prot->aad_size); 1578 err = skb_to_sgvec(skb, &sgin[1], 1579 rxm->offset + prot->prepend_size, 1580 rxm->full_len - prot->prepend_size); 1581 if (err < 0) 1582 goto exit_free; 1583 1584 if (clear_skb) { 1585 sg_init_table(sgout, n_sgout); 1586 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); 1587 1588 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size, 1589 data_len + prot->tail_size); 1590 if (err < 0) 1591 goto exit_free; 1592 } else if (out_iov) { 1593 sg_init_table(sgout, n_sgout); 1594 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); 1595 1596 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1], 1597 (n_sgout - 1 - tail_pages)); 1598 if (err < 0) 1599 goto exit_free_pages; 1600 1601 if (prot->tail_size) { 1602 sg_unmark_end(&sgout[pages]); 1603 sg_set_buf(&sgout[pages + 1], &dctx->tail, 1604 prot->tail_size); 1605 sg_mark_end(&sgout[pages + 1]); 1606 } 1607 } else if (out_sg) { 1608 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); 1609 } 1610 dctx->free_sgout = !!pages; 1611 1612 /* Prepare and submit AEAD request */ 1613 err = tls_do_decryption(sk, sgin, sgout, dctx->iv, 1614 data_len + prot->tail_size, aead_req, darg); 1615 if (err) { 1616 if (darg->async_done) 1617 goto exit_free_skb; 1618 goto exit_free_pages; 1619 } 1620 1621 darg->skb = clear_skb ?: tls_strp_msg(ctx); 1622 clear_skb = NULL; 1623 1624 if (unlikely(darg->async)) { 1625 err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold); 1626 if (err) 1627 __skb_queue_tail(&ctx->async_hold, darg->skb); 1628 return err; 1629 } 1630 1631 if (unlikely(darg->async_done)) 1632 return 0; 1633 1634 if (prot->tail_size) 1635 darg->tail = dctx->tail; 1636 1637 exit_free_pages: 1638 /* Release the pages in case iov was mapped to pages */ 1639 for (; pages > 0; pages--) 1640 put_page(sg_page(&sgout[pages])); 1641 exit_free: 1642 kfree(mem); 1643 exit_free_skb: 1644 consume_skb(clear_skb); 1645 return err; 1646 } 1647 1648 static int 1649 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx, 1650 struct msghdr *msg, struct tls_decrypt_arg *darg) 1651 { 1652 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1653 struct tls_prot_info *prot = &tls_ctx->prot_info; 1654 struct strp_msg *rxm; 1655 int pad, err; 1656 1657 err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg); 1658 if (err < 0) { 1659 if (err == -EBADMSG) 1660 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); 1661 return err; 1662 } 1663 /* keep going even for ->async, the code below is TLS 1.3 */ 1664 1665 /* If opportunistic TLS 1.3 ZC failed retry without ZC */ 1666 if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION && 1667 darg->tail != TLS_RECORD_TYPE_DATA)) { 1668 darg->zc = false; 1669 if (!darg->tail) 1670 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL); 1671 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY); 1672 return tls_decrypt_sw(sk, tls_ctx, msg, darg); 1673 } 1674 1675 pad = tls_padding_length(prot, darg->skb, darg); 1676 if (pad < 0) { 1677 if (darg->skb != tls_strp_msg(ctx)) 1678 consume_skb(darg->skb); 1679 return pad; 1680 } 1681 1682 rxm = strp_msg(darg->skb); 1683 rxm->full_len -= pad; 1684 1685 return 0; 1686 } 1687 1688 static int 1689 tls_decrypt_device(struct sock *sk, struct msghdr *msg, 1690 struct tls_context *tls_ctx, struct tls_decrypt_arg *darg) 1691 { 1692 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1693 struct tls_prot_info *prot = &tls_ctx->prot_info; 1694 struct strp_msg *rxm; 1695 int pad, err; 1696 1697 if (tls_ctx->rx_conf != TLS_HW) 1698 return 0; 1699 1700 err = tls_device_decrypted(sk, tls_ctx); 1701 if (err <= 0) 1702 return err; 1703 1704 pad = tls_padding_length(prot, tls_strp_msg(ctx), darg); 1705 if (pad < 0) 1706 return pad; 1707 1708 darg->async = false; 1709 darg->skb = tls_strp_msg(ctx); 1710 /* ->zc downgrade check, in case TLS 1.3 gets here */ 1711 darg->zc &= !(prot->version == TLS_1_3_VERSION && 1712 tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA); 1713 1714 rxm = strp_msg(darg->skb); 1715 rxm->full_len -= pad; 1716 1717 if (!darg->zc) { 1718 /* Non-ZC case needs a real skb */ 1719 darg->skb = tls_strp_msg_detach(ctx); 1720 if (!darg->skb) 1721 return -ENOMEM; 1722 } else { 1723 unsigned int off, len; 1724 1725 /* In ZC case nobody cares about the output skb. 1726 * Just copy the data here. Note the skb is not fully trimmed. 1727 */ 1728 off = rxm->offset + prot->prepend_size; 1729 len = rxm->full_len - prot->overhead_size; 1730 1731 err = skb_copy_datagram_msg(darg->skb, off, msg, len); 1732 if (err) 1733 return err; 1734 } 1735 return 1; 1736 } 1737 1738 static int tls_check_pending_rekey(struct sock *sk, struct tls_context *ctx, 1739 struct sk_buff *skb) 1740 { 1741 const struct strp_msg *rxm = strp_msg(skb); 1742 const struct tls_msg *tlm = tls_msg(skb); 1743 char hs_type; 1744 int err; 1745 1746 if (likely(tlm->control != TLS_RECORD_TYPE_HANDSHAKE)) 1747 return 0; 1748 1749 if (rxm->full_len < 1) 1750 return 0; 1751 1752 err = skb_copy_bits(skb, rxm->offset, &hs_type, 1); 1753 if (err < 0) { 1754 DEBUG_NET_WARN_ON_ONCE(1); 1755 return err; 1756 } 1757 1758 if (hs_type == TLS_HANDSHAKE_KEYUPDATE) { 1759 struct tls_sw_context_rx *rx_ctx = ctx->priv_ctx_rx; 1760 1761 WRITE_ONCE(rx_ctx->key_update_pending, true); 1762 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXREKEYRECEIVED); 1763 } 1764 1765 return 0; 1766 } 1767 1768 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg, 1769 struct tls_decrypt_arg *darg) 1770 { 1771 struct tls_context *tls_ctx = tls_get_ctx(sk); 1772 struct tls_prot_info *prot = &tls_ctx->prot_info; 1773 struct strp_msg *rxm; 1774 int err; 1775 1776 err = tls_decrypt_device(sk, msg, tls_ctx, darg); 1777 if (!err) 1778 err = tls_decrypt_sw(sk, tls_ctx, msg, darg); 1779 if (err < 0) 1780 return err; 1781 1782 rxm = strp_msg(darg->skb); 1783 rxm->offset += prot->prepend_size; 1784 rxm->full_len -= prot->overhead_size; 1785 tls_advance_record_sn(sk, prot, &tls_ctx->rx); 1786 1787 return tls_check_pending_rekey(sk, tls_ctx, darg->skb); 1788 } 1789 1790 int decrypt_skb(struct sock *sk, struct scatterlist *sgout) 1791 { 1792 struct tls_decrypt_arg darg = { .zc = true, }; 1793 1794 return tls_decrypt_sg(sk, NULL, sgout, &darg); 1795 } 1796 1797 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm, 1798 u8 *control) 1799 { 1800 int err; 1801 1802 if (!*control) { 1803 *control = tlm->control; 1804 if (!*control) 1805 return -EBADMSG; 1806 1807 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1808 sizeof(*control), control); 1809 if (*control != TLS_RECORD_TYPE_DATA) { 1810 if (err || msg->msg_flags & MSG_CTRUNC) 1811 return -EIO; 1812 } 1813 } else if (*control != tlm->control) { 1814 return 0; 1815 } 1816 1817 return 1; 1818 } 1819 1820 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx) 1821 { 1822 tls_strp_msg_done(&ctx->strp); 1823 } 1824 1825 /* This function traverses the rx_list in tls receive context to copies the 1826 * decrypted records into the buffer provided by caller zero copy is not 1827 * true. Further, the records are removed from the rx_list if it is not a peek 1828 * case and the record has been consumed completely. 1829 */ 1830 static int process_rx_list(struct tls_sw_context_rx *ctx, 1831 struct msghdr *msg, 1832 u8 *control, 1833 size_t skip, 1834 size_t len, 1835 bool is_peek, 1836 bool *more) 1837 { 1838 struct sk_buff *skb = skb_peek(&ctx->rx_list); 1839 struct tls_msg *tlm; 1840 ssize_t copied = 0; 1841 int err; 1842 1843 while (skip && skb) { 1844 struct strp_msg *rxm = strp_msg(skb); 1845 tlm = tls_msg(skb); 1846 1847 err = tls_record_content_type(msg, tlm, control); 1848 if (err <= 0) 1849 goto more; 1850 1851 if (skip < rxm->full_len) 1852 break; 1853 1854 skip = skip - rxm->full_len; 1855 skb = skb_peek_next(skb, &ctx->rx_list); 1856 } 1857 1858 while (len && skb) { 1859 struct sk_buff *next_skb; 1860 struct strp_msg *rxm = strp_msg(skb); 1861 int chunk = min_t(unsigned int, rxm->full_len - skip, len); 1862 1863 tlm = tls_msg(skb); 1864 1865 err = tls_record_content_type(msg, tlm, control); 1866 if (err <= 0) 1867 goto more; 1868 1869 err = skb_copy_datagram_msg(skb, rxm->offset + skip, 1870 msg, chunk); 1871 if (err < 0) 1872 goto more; 1873 1874 len = len - chunk; 1875 copied = copied + chunk; 1876 1877 /* Consume the data from record if it is non-peek case*/ 1878 if (!is_peek) { 1879 rxm->offset = rxm->offset + chunk; 1880 rxm->full_len = rxm->full_len - chunk; 1881 1882 /* Return if there is unconsumed data in the record */ 1883 if (rxm->full_len - skip) 1884 break; 1885 } 1886 1887 /* The remaining skip-bytes must lie in 1st record in rx_list. 1888 * So from the 2nd record, 'skip' should be 0. 1889 */ 1890 skip = 0; 1891 1892 if (msg) 1893 msg->msg_flags |= MSG_EOR; 1894 1895 next_skb = skb_peek_next(skb, &ctx->rx_list); 1896 1897 if (!is_peek) { 1898 __skb_unlink(skb, &ctx->rx_list); 1899 consume_skb(skb); 1900 } 1901 1902 skb = next_skb; 1903 } 1904 err = 0; 1905 1906 out: 1907 return copied ? : err; 1908 more: 1909 if (more) 1910 *more = true; 1911 goto out; 1912 } 1913 1914 static bool 1915 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot, 1916 size_t len_left, size_t decrypted, ssize_t done, 1917 size_t *flushed_at) 1918 { 1919 size_t max_rec; 1920 1921 if (len_left <= decrypted) 1922 return false; 1923 1924 max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE; 1925 if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec) 1926 return false; 1927 1928 *flushed_at = done; 1929 return sk_flush_backlog(sk); 1930 } 1931 1932 static int tls_rx_reader_acquire(struct sock *sk, struct tls_sw_context_rx *ctx, 1933 bool nonblock) 1934 { 1935 long timeo; 1936 int ret; 1937 1938 timeo = sock_rcvtimeo(sk, nonblock); 1939 1940 while (unlikely(ctx->reader_present)) { 1941 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1942 1943 ctx->reader_contended = 1; 1944 1945 add_wait_queue(&ctx->wq, &wait); 1946 ret = sk_wait_event(sk, &timeo, 1947 !READ_ONCE(ctx->reader_present), &wait); 1948 remove_wait_queue(&ctx->wq, &wait); 1949 1950 if (timeo <= 0) 1951 return -EAGAIN; 1952 if (signal_pending(current)) 1953 return sock_intr_errno(timeo); 1954 if (ret < 0) 1955 return ret; 1956 } 1957 1958 WRITE_ONCE(ctx->reader_present, 1); 1959 1960 return 0; 1961 } 1962 1963 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx, 1964 bool nonblock) 1965 { 1966 int err; 1967 1968 lock_sock(sk); 1969 err = tls_rx_reader_acquire(sk, ctx, nonblock); 1970 if (err) 1971 release_sock(sk); 1972 return err; 1973 } 1974 1975 static void tls_rx_reader_release(struct sock *sk, struct tls_sw_context_rx *ctx) 1976 { 1977 if (unlikely(ctx->reader_contended)) { 1978 if (wq_has_sleeper(&ctx->wq)) 1979 wake_up(&ctx->wq); 1980 else 1981 ctx->reader_contended = 0; 1982 1983 WARN_ON_ONCE(!ctx->reader_present); 1984 } 1985 1986 WRITE_ONCE(ctx->reader_present, 0); 1987 } 1988 1989 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx) 1990 { 1991 tls_rx_reader_release(sk, ctx); 1992 release_sock(sk); 1993 } 1994 1995 int tls_sw_recvmsg(struct sock *sk, 1996 struct msghdr *msg, 1997 size_t len, 1998 int flags, 1999 int *addr_len) 2000 { 2001 struct tls_context *tls_ctx = tls_get_ctx(sk); 2002 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2003 struct tls_prot_info *prot = &tls_ctx->prot_info; 2004 ssize_t decrypted = 0, async_copy_bytes = 0; 2005 struct sk_psock *psock; 2006 unsigned char control = 0; 2007 size_t flushed_at = 0; 2008 struct strp_msg *rxm; 2009 struct tls_msg *tlm; 2010 ssize_t copied = 0; 2011 ssize_t peeked = 0; 2012 bool async = false; 2013 int target, err; 2014 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 2015 bool is_peek = flags & MSG_PEEK; 2016 bool rx_more = false; 2017 bool released = true; 2018 bool bpf_strp_enabled; 2019 bool zc_capable; 2020 2021 if (unlikely(flags & MSG_ERRQUEUE)) 2022 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); 2023 2024 err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT); 2025 if (err < 0) 2026 return err; 2027 psock = sk_psock_get(sk); 2028 bpf_strp_enabled = sk_psock_strp_enabled(psock); 2029 2030 /* If crypto failed the connection is broken */ 2031 err = ctx->async_wait.err; 2032 if (err) 2033 goto end; 2034 2035 /* Process pending decrypted records. It must be non-zero-copy */ 2036 err = process_rx_list(ctx, msg, &control, 0, len, is_peek, &rx_more); 2037 if (err < 0) 2038 goto end; 2039 2040 copied = err; 2041 if (len <= copied || (copied && control != TLS_RECORD_TYPE_DATA) || rx_more) 2042 goto end; 2043 2044 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2045 len = len - copied; 2046 2047 zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek && 2048 ctx->zc_capable; 2049 decrypted = 0; 2050 while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) { 2051 struct tls_decrypt_arg darg; 2052 int to_decrypt, chunk; 2053 2054 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT, 2055 released); 2056 if (err <= 0) { 2057 if (psock) { 2058 chunk = sk_msg_recvmsg(sk, psock, msg, len, 2059 flags); 2060 if (chunk > 0) { 2061 decrypted += chunk; 2062 len -= chunk; 2063 continue; 2064 } 2065 } 2066 goto recv_end; 2067 } 2068 2069 memset(&darg.inargs, 0, sizeof(darg.inargs)); 2070 2071 rxm = strp_msg(tls_strp_msg(ctx)); 2072 tlm = tls_msg(tls_strp_msg(ctx)); 2073 2074 to_decrypt = rxm->full_len - prot->overhead_size; 2075 2076 if (zc_capable && to_decrypt <= len && 2077 tlm->control == TLS_RECORD_TYPE_DATA) 2078 darg.zc = true; 2079 2080 /* Do not use async mode if record is non-data */ 2081 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled) 2082 darg.async = ctx->async_capable; 2083 else 2084 darg.async = false; 2085 2086 err = tls_rx_one_record(sk, msg, &darg); 2087 if (err < 0) { 2088 tls_err_abort(sk, -EBADMSG); 2089 goto recv_end; 2090 } 2091 2092 async |= darg.async; 2093 2094 /* If the type of records being processed is not known yet, 2095 * set it to record type just dequeued. If it is already known, 2096 * but does not match the record type just dequeued, go to end. 2097 * We always get record type here since for tls1.2, record type 2098 * is known just after record is dequeued from stream parser. 2099 * For tls1.3, we disable async. 2100 */ 2101 err = tls_record_content_type(msg, tls_msg(darg.skb), &control); 2102 if (err <= 0) { 2103 DEBUG_NET_WARN_ON_ONCE(darg.zc); 2104 tls_rx_rec_done(ctx); 2105 put_on_rx_list_err: 2106 __skb_queue_tail(&ctx->rx_list, darg.skb); 2107 goto recv_end; 2108 } 2109 2110 /* periodically flush backlog, and feed strparser */ 2111 released = tls_read_flush_backlog(sk, prot, len, to_decrypt, 2112 decrypted + copied, 2113 &flushed_at); 2114 2115 /* TLS 1.3 may have updated the length by more than overhead */ 2116 rxm = strp_msg(darg.skb); 2117 chunk = rxm->full_len; 2118 tls_rx_rec_done(ctx); 2119 2120 if (!darg.zc) { 2121 bool partially_consumed = chunk > len; 2122 struct sk_buff *skb = darg.skb; 2123 2124 DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor); 2125 2126 if (async) { 2127 /* TLS 1.2-only, to_decrypt must be text len */ 2128 chunk = min_t(int, to_decrypt, len); 2129 async_copy_bytes += chunk; 2130 put_on_rx_list: 2131 decrypted += chunk; 2132 len -= chunk; 2133 __skb_queue_tail(&ctx->rx_list, skb); 2134 if (unlikely(control != TLS_RECORD_TYPE_DATA)) 2135 break; 2136 continue; 2137 } 2138 2139 if (bpf_strp_enabled) { 2140 released = true; 2141 err = sk_psock_tls_strp_read(psock, skb); 2142 if (err != __SK_PASS) { 2143 rxm->offset = rxm->offset + rxm->full_len; 2144 rxm->full_len = 0; 2145 if (err == __SK_DROP) 2146 consume_skb(skb); 2147 continue; 2148 } 2149 } 2150 2151 if (partially_consumed) 2152 chunk = len; 2153 2154 err = skb_copy_datagram_msg(skb, rxm->offset, 2155 msg, chunk); 2156 if (err < 0) 2157 goto put_on_rx_list_err; 2158 2159 if (is_peek) { 2160 peeked += chunk; 2161 goto put_on_rx_list; 2162 } 2163 2164 if (partially_consumed) { 2165 rxm->offset += chunk; 2166 rxm->full_len -= chunk; 2167 goto put_on_rx_list; 2168 } 2169 2170 consume_skb(skb); 2171 } 2172 2173 decrypted += chunk; 2174 len -= chunk; 2175 2176 /* Return full control message to userspace before trying 2177 * to parse another message type 2178 */ 2179 msg->msg_flags |= MSG_EOR; 2180 if (control != TLS_RECORD_TYPE_DATA) 2181 break; 2182 } 2183 2184 recv_end: 2185 if (async) { 2186 int ret; 2187 2188 /* Wait for all previously submitted records to be decrypted */ 2189 ret = tls_decrypt_async_wait(ctx); 2190 __skb_queue_purge(&ctx->async_hold); 2191 2192 if (ret) { 2193 if (err >= 0 || err == -EINPROGRESS) 2194 err = ret; 2195 goto end; 2196 } 2197 2198 /* Drain records from the rx_list & copy if required */ 2199 if (is_peek) 2200 err = process_rx_list(ctx, msg, &control, copied + peeked, 2201 decrypted - peeked, is_peek, NULL); 2202 else 2203 err = process_rx_list(ctx, msg, &control, 0, 2204 async_copy_bytes, is_peek, NULL); 2205 2206 /* we could have copied less than we wanted, and possibly nothing */ 2207 decrypted += max(err, 0) - async_copy_bytes; 2208 } 2209 2210 copied += decrypted; 2211 2212 end: 2213 tls_rx_reader_unlock(sk, ctx); 2214 if (psock) 2215 sk_psock_put(sk, psock); 2216 return copied ? : err; 2217 } 2218 2219 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 2220 struct pipe_inode_info *pipe, 2221 size_t len, unsigned int flags) 2222 { 2223 struct tls_context *tls_ctx = tls_get_ctx(sock->sk); 2224 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2225 struct strp_msg *rxm = NULL; 2226 struct sock *sk = sock->sk; 2227 struct tls_msg *tlm; 2228 struct sk_buff *skb; 2229 ssize_t copied = 0; 2230 int chunk; 2231 int err; 2232 2233 err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK); 2234 if (err < 0) 2235 return err; 2236 2237 if (!skb_queue_empty(&ctx->rx_list)) { 2238 skb = __skb_dequeue(&ctx->rx_list); 2239 } else { 2240 struct tls_decrypt_arg darg; 2241 2242 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK, 2243 true); 2244 if (err <= 0) 2245 goto splice_read_end; 2246 2247 memset(&darg.inargs, 0, sizeof(darg.inargs)); 2248 2249 err = tls_rx_one_record(sk, NULL, &darg); 2250 if (err < 0) { 2251 tls_err_abort(sk, -EBADMSG); 2252 goto splice_read_end; 2253 } 2254 2255 tls_rx_rec_done(ctx); 2256 skb = darg.skb; 2257 } 2258 2259 rxm = strp_msg(skb); 2260 tlm = tls_msg(skb); 2261 2262 /* splice does not support reading control messages */ 2263 if (tlm->control != TLS_RECORD_TYPE_DATA) { 2264 err = -EINVAL; 2265 goto splice_requeue; 2266 } 2267 2268 chunk = min_t(unsigned int, rxm->full_len, len); 2269 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); 2270 if (copied < 0) 2271 goto splice_requeue; 2272 2273 if (chunk < rxm->full_len) { 2274 rxm->offset += len; 2275 rxm->full_len -= len; 2276 goto splice_requeue; 2277 } 2278 2279 consume_skb(skb); 2280 2281 splice_read_end: 2282 tls_rx_reader_unlock(sk, ctx); 2283 return copied ? : err; 2284 2285 splice_requeue: 2286 __skb_queue_head(&ctx->rx_list, skb); 2287 goto splice_read_end; 2288 } 2289 2290 int tls_sw_read_sock(struct sock *sk, read_descriptor_t *desc, 2291 sk_read_actor_t read_actor) 2292 { 2293 struct tls_context *tls_ctx = tls_get_ctx(sk); 2294 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2295 struct tls_prot_info *prot = &tls_ctx->prot_info; 2296 struct strp_msg *rxm = NULL; 2297 struct sk_buff *skb = NULL; 2298 struct sk_psock *psock; 2299 size_t flushed_at = 0; 2300 bool released = true; 2301 struct tls_msg *tlm; 2302 ssize_t copied = 0; 2303 ssize_t decrypted; 2304 int err, used; 2305 2306 psock = sk_psock_get(sk); 2307 if (psock) { 2308 sk_psock_put(sk, psock); 2309 return -EINVAL; 2310 } 2311 err = tls_rx_reader_acquire(sk, ctx, true); 2312 if (err < 0) 2313 return err; 2314 2315 /* If crypto failed the connection is broken */ 2316 err = ctx->async_wait.err; 2317 if (err) 2318 goto read_sock_end; 2319 2320 decrypted = 0; 2321 do { 2322 if (!skb_queue_empty(&ctx->rx_list)) { 2323 skb = __skb_dequeue(&ctx->rx_list); 2324 rxm = strp_msg(skb); 2325 tlm = tls_msg(skb); 2326 } else { 2327 struct tls_decrypt_arg darg; 2328 2329 err = tls_rx_rec_wait(sk, NULL, true, released); 2330 if (err <= 0) 2331 goto read_sock_end; 2332 2333 memset(&darg.inargs, 0, sizeof(darg.inargs)); 2334 2335 err = tls_rx_one_record(sk, NULL, &darg); 2336 if (err < 0) { 2337 tls_err_abort(sk, -EBADMSG); 2338 goto read_sock_end; 2339 } 2340 2341 released = tls_read_flush_backlog(sk, prot, INT_MAX, 2342 0, decrypted, 2343 &flushed_at); 2344 skb = darg.skb; 2345 rxm = strp_msg(skb); 2346 tlm = tls_msg(skb); 2347 decrypted += rxm->full_len; 2348 2349 tls_rx_rec_done(ctx); 2350 } 2351 2352 /* read_sock does not support reading control messages */ 2353 if (tlm->control != TLS_RECORD_TYPE_DATA) { 2354 err = -EINVAL; 2355 goto read_sock_requeue; 2356 } 2357 2358 used = read_actor(desc, skb, rxm->offset, rxm->full_len); 2359 if (used <= 0) { 2360 if (!copied) 2361 err = used; 2362 goto read_sock_requeue; 2363 } 2364 copied += used; 2365 if (used < rxm->full_len) { 2366 rxm->offset += used; 2367 rxm->full_len -= used; 2368 if (!desc->count) 2369 goto read_sock_requeue; 2370 } else { 2371 consume_skb(skb); 2372 if (!desc->count) 2373 skb = NULL; 2374 } 2375 } while (skb); 2376 2377 read_sock_end: 2378 tls_rx_reader_release(sk, ctx); 2379 return copied ? : err; 2380 2381 read_sock_requeue: 2382 __skb_queue_head(&ctx->rx_list, skb); 2383 goto read_sock_end; 2384 } 2385 2386 bool tls_sw_sock_is_readable(struct sock *sk) 2387 { 2388 struct tls_context *tls_ctx = tls_get_ctx(sk); 2389 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2390 bool ingress_empty = true; 2391 struct sk_psock *psock; 2392 2393 rcu_read_lock(); 2394 psock = sk_psock(sk); 2395 if (psock) 2396 ingress_empty = list_empty(&psock->ingress_msg); 2397 rcu_read_unlock(); 2398 2399 return !ingress_empty || tls_strp_msg_ready(ctx) || 2400 !skb_queue_empty(&ctx->rx_list); 2401 } 2402 2403 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb) 2404 { 2405 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2406 struct tls_prot_info *prot = &tls_ctx->prot_info; 2407 char header[TLS_HEADER_SIZE + TLS_MAX_IV_SIZE]; 2408 size_t cipher_overhead; 2409 size_t data_len = 0; 2410 int ret; 2411 2412 /* Verify that we have a full TLS header, or wait for more data */ 2413 if (strp->stm.offset + prot->prepend_size > skb->len) 2414 return 0; 2415 2416 /* Sanity-check size of on-stack buffer. */ 2417 if (WARN_ON(prot->prepend_size > sizeof(header))) { 2418 ret = -EINVAL; 2419 goto read_failure; 2420 } 2421 2422 /* Linearize header to local buffer */ 2423 ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size); 2424 if (ret < 0) 2425 goto read_failure; 2426 2427 strp->mark = header[0]; 2428 2429 data_len = ((header[4] & 0xFF) | (header[3] << 8)); 2430 2431 cipher_overhead = prot->tag_size; 2432 if (prot->version != TLS_1_3_VERSION && 2433 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) 2434 cipher_overhead += prot->iv_size; 2435 2436 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + 2437 prot->tail_size) { 2438 ret = -EMSGSIZE; 2439 goto read_failure; 2440 } 2441 if (data_len < cipher_overhead) { 2442 ret = -EBADMSG; 2443 goto read_failure; 2444 } 2445 2446 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ 2447 if (header[1] != TLS_1_2_VERSION_MINOR || 2448 header[2] != TLS_1_2_VERSION_MAJOR) { 2449 ret = -EINVAL; 2450 goto read_failure; 2451 } 2452 2453 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE, 2454 TCP_SKB_CB(skb)->seq + strp->stm.offset); 2455 return data_len + TLS_HEADER_SIZE; 2456 2457 read_failure: 2458 tls_err_abort(strp->sk, ret); 2459 2460 return ret; 2461 } 2462 2463 void tls_rx_msg_ready(struct tls_strparser *strp) 2464 { 2465 struct tls_sw_context_rx *ctx; 2466 2467 ctx = container_of(strp, struct tls_sw_context_rx, strp); 2468 ctx->saved_data_ready(strp->sk); 2469 } 2470 2471 static void tls_data_ready(struct sock *sk) 2472 { 2473 struct tls_context *tls_ctx = tls_get_ctx(sk); 2474 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2475 struct sk_psock *psock; 2476 gfp_t alloc_save; 2477 2478 trace_sk_data_ready(sk); 2479 2480 alloc_save = sk->sk_allocation; 2481 sk->sk_allocation = GFP_ATOMIC; 2482 tls_strp_data_ready(&ctx->strp); 2483 sk->sk_allocation = alloc_save; 2484 2485 psock = sk_psock_get(sk); 2486 if (psock) { 2487 if (!list_empty(&psock->ingress_msg)) 2488 ctx->saved_data_ready(sk); 2489 sk_psock_put(sk, psock); 2490 } 2491 } 2492 2493 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx) 2494 { 2495 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2496 2497 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask); 2498 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask); 2499 cancel_delayed_work_sync(&ctx->tx_work.work); 2500 } 2501 2502 void tls_sw_release_resources_tx(struct sock *sk) 2503 { 2504 struct tls_context *tls_ctx = tls_get_ctx(sk); 2505 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2506 struct tls_rec *rec, *tmp; 2507 2508 /* Wait for any pending async encryptions to complete */ 2509 tls_encrypt_async_wait(ctx); 2510 2511 tls_tx_records(sk, -1); 2512 2513 /* Free up un-sent records in tx_list. First, free 2514 * the partially sent record if any at head of tx_list. 2515 */ 2516 if (tls_ctx->partially_sent_record) { 2517 tls_free_partial_record(sk, tls_ctx); 2518 rec = list_first_entry(&ctx->tx_list, 2519 struct tls_rec, list); 2520 list_del(&rec->list); 2521 sk_msg_free(sk, &rec->msg_plaintext); 2522 kfree(rec); 2523 } 2524 2525 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 2526 list_del(&rec->list); 2527 sk_msg_free(sk, &rec->msg_encrypted); 2528 sk_msg_free(sk, &rec->msg_plaintext); 2529 kfree(rec); 2530 } 2531 2532 crypto_free_aead(ctx->aead_send); 2533 tls_free_open_rec(sk); 2534 } 2535 2536 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx) 2537 { 2538 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2539 2540 kfree(ctx); 2541 } 2542 2543 void tls_sw_release_resources_rx(struct sock *sk) 2544 { 2545 struct tls_context *tls_ctx = tls_get_ctx(sk); 2546 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2547 2548 if (ctx->aead_recv) { 2549 __skb_queue_purge(&ctx->rx_list); 2550 crypto_free_aead(ctx->aead_recv); 2551 tls_strp_stop(&ctx->strp); 2552 /* If tls_sw_strparser_arm() was not called (cleanup paths) 2553 * we still want to tls_strp_stop(), but sk->sk_data_ready was 2554 * never swapped. 2555 */ 2556 if (ctx->saved_data_ready) { 2557 write_lock_bh(&sk->sk_callback_lock); 2558 sk->sk_data_ready = ctx->saved_data_ready; 2559 write_unlock_bh(&sk->sk_callback_lock); 2560 } 2561 } 2562 } 2563 2564 void tls_sw_strparser_done(struct tls_context *tls_ctx) 2565 { 2566 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2567 2568 tls_strp_done(&ctx->strp); 2569 } 2570 2571 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx) 2572 { 2573 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2574 2575 kfree(ctx); 2576 } 2577 2578 void tls_sw_free_resources_rx(struct sock *sk) 2579 { 2580 struct tls_context *tls_ctx = tls_get_ctx(sk); 2581 2582 tls_sw_release_resources_rx(sk); 2583 tls_sw_free_ctx_rx(tls_ctx); 2584 } 2585 2586 /* The work handler to transmitt the encrypted records in tx_list */ 2587 static void tx_work_handler(struct work_struct *work) 2588 { 2589 struct delayed_work *delayed_work = to_delayed_work(work); 2590 struct tx_work *tx_work = container_of(delayed_work, 2591 struct tx_work, work); 2592 struct sock *sk = tx_work->sk; 2593 struct tls_context *tls_ctx = tls_get_ctx(sk); 2594 struct tls_sw_context_tx *ctx; 2595 2596 if (unlikely(!tls_ctx)) 2597 return; 2598 2599 ctx = tls_sw_ctx_tx(tls_ctx); 2600 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask)) 2601 return; 2602 2603 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 2604 return; 2605 2606 if (mutex_trylock(&tls_ctx->tx_lock)) { 2607 lock_sock(sk); 2608 tls_tx_records(sk, -1); 2609 release_sock(sk); 2610 mutex_unlock(&tls_ctx->tx_lock); 2611 } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 2612 /* Someone is holding the tx_lock, they will likely run Tx 2613 * and cancel the work on their way out of the lock section. 2614 * Schedule a long delay just in case. 2615 */ 2616 schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10)); 2617 } 2618 } 2619 2620 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx) 2621 { 2622 struct tls_rec *rec; 2623 2624 rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list); 2625 if (!rec) 2626 return false; 2627 2628 return READ_ONCE(rec->tx_ready); 2629 } 2630 2631 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) 2632 { 2633 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); 2634 2635 /* Schedule the transmission if tx list is ready */ 2636 if (tls_is_tx_ready(tx_ctx) && 2637 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask)) 2638 schedule_delayed_work(&tx_ctx->tx_work.work, 0); 2639 } 2640 2641 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx) 2642 { 2643 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2644 2645 write_lock_bh(&sk->sk_callback_lock); 2646 rx_ctx->saved_data_ready = sk->sk_data_ready; 2647 sk->sk_data_ready = tls_data_ready; 2648 write_unlock_bh(&sk->sk_callback_lock); 2649 } 2650 2651 void tls_update_rx_zc_capable(struct tls_context *tls_ctx) 2652 { 2653 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2654 2655 rx_ctx->zc_capable = tls_ctx->rx_no_pad || 2656 tls_ctx->prot_info.version != TLS_1_3_VERSION; 2657 } 2658 2659 static struct tls_sw_context_tx *init_ctx_tx(struct tls_context *ctx, struct sock *sk) 2660 { 2661 struct tls_sw_context_tx *sw_ctx_tx; 2662 2663 if (!ctx->priv_ctx_tx) { 2664 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); 2665 if (!sw_ctx_tx) 2666 return NULL; 2667 } else { 2668 sw_ctx_tx = ctx->priv_ctx_tx; 2669 } 2670 2671 crypto_init_wait(&sw_ctx_tx->async_wait); 2672 atomic_set(&sw_ctx_tx->encrypt_pending, 1); 2673 INIT_LIST_HEAD(&sw_ctx_tx->tx_list); 2674 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); 2675 sw_ctx_tx->tx_work.sk = sk; 2676 2677 return sw_ctx_tx; 2678 } 2679 2680 static struct tls_sw_context_rx *init_ctx_rx(struct tls_context *ctx) 2681 { 2682 struct tls_sw_context_rx *sw_ctx_rx; 2683 2684 if (!ctx->priv_ctx_rx) { 2685 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); 2686 if (!sw_ctx_rx) 2687 return NULL; 2688 } else { 2689 sw_ctx_rx = ctx->priv_ctx_rx; 2690 } 2691 2692 crypto_init_wait(&sw_ctx_rx->async_wait); 2693 atomic_set(&sw_ctx_rx->decrypt_pending, 1); 2694 init_waitqueue_head(&sw_ctx_rx->wq); 2695 skb_queue_head_init(&sw_ctx_rx->rx_list); 2696 skb_queue_head_init(&sw_ctx_rx->async_hold); 2697 2698 return sw_ctx_rx; 2699 } 2700 2701 int init_prot_info(struct tls_prot_info *prot, 2702 const struct tls_crypto_info *crypto_info, 2703 const struct tls_cipher_desc *cipher_desc) 2704 { 2705 u16 nonce_size = cipher_desc->nonce; 2706 2707 if (crypto_info->version == TLS_1_3_VERSION) { 2708 nonce_size = 0; 2709 prot->aad_size = TLS_HEADER_SIZE; 2710 prot->tail_size = 1; 2711 } else { 2712 prot->aad_size = TLS_AAD_SPACE_SIZE; 2713 prot->tail_size = 0; 2714 } 2715 2716 /* Sanity-check the sizes for stack allocations. */ 2717 if (nonce_size > TLS_MAX_IV_SIZE || prot->aad_size > TLS_MAX_AAD_SIZE) 2718 return -EINVAL; 2719 2720 prot->version = crypto_info->version; 2721 prot->cipher_type = crypto_info->cipher_type; 2722 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 2723 prot->tag_size = cipher_desc->tag; 2724 prot->overhead_size = prot->prepend_size + prot->tag_size + prot->tail_size; 2725 prot->iv_size = cipher_desc->iv; 2726 prot->salt_size = cipher_desc->salt; 2727 prot->rec_seq_size = cipher_desc->rec_seq; 2728 2729 return 0; 2730 } 2731 2732 static void tls_finish_key_update(struct sock *sk, struct tls_context *tls_ctx) 2733 { 2734 struct tls_sw_context_rx *ctx = tls_ctx->priv_ctx_rx; 2735 2736 WRITE_ONCE(ctx->key_update_pending, false); 2737 /* wake-up pre-existing poll() */ 2738 ctx->saved_data_ready(sk); 2739 } 2740 2741 int tls_set_sw_offload(struct sock *sk, int tx, 2742 struct tls_crypto_info *new_crypto_info) 2743 { 2744 struct tls_crypto_info *crypto_info, *src_crypto_info; 2745 struct tls_sw_context_tx *sw_ctx_tx = NULL; 2746 struct tls_sw_context_rx *sw_ctx_rx = NULL; 2747 const struct tls_cipher_desc *cipher_desc; 2748 char *iv, *rec_seq, *key, *salt; 2749 struct cipher_context *cctx; 2750 struct tls_prot_info *prot; 2751 struct crypto_aead **aead; 2752 struct tls_context *ctx; 2753 struct crypto_tfm *tfm; 2754 int rc = 0; 2755 2756 ctx = tls_get_ctx(sk); 2757 prot = &ctx->prot_info; 2758 2759 /* new_crypto_info != NULL means rekey */ 2760 if (!new_crypto_info) { 2761 if (tx) { 2762 ctx->priv_ctx_tx = init_ctx_tx(ctx, sk); 2763 if (!ctx->priv_ctx_tx) 2764 return -ENOMEM; 2765 } else { 2766 ctx->priv_ctx_rx = init_ctx_rx(ctx); 2767 if (!ctx->priv_ctx_rx) 2768 return -ENOMEM; 2769 } 2770 } 2771 2772 if (tx) { 2773 sw_ctx_tx = ctx->priv_ctx_tx; 2774 crypto_info = &ctx->crypto_send.info; 2775 cctx = &ctx->tx; 2776 aead = &sw_ctx_tx->aead_send; 2777 } else { 2778 sw_ctx_rx = ctx->priv_ctx_rx; 2779 crypto_info = &ctx->crypto_recv.info; 2780 cctx = &ctx->rx; 2781 aead = &sw_ctx_rx->aead_recv; 2782 } 2783 2784 src_crypto_info = new_crypto_info ?: crypto_info; 2785 2786 cipher_desc = get_cipher_desc(src_crypto_info->cipher_type); 2787 if (!cipher_desc) { 2788 rc = -EINVAL; 2789 goto free_priv; 2790 } 2791 2792 rc = init_prot_info(prot, src_crypto_info, cipher_desc); 2793 if (rc) 2794 goto free_priv; 2795 2796 iv = crypto_info_iv(src_crypto_info, cipher_desc); 2797 key = crypto_info_key(src_crypto_info, cipher_desc); 2798 salt = crypto_info_salt(src_crypto_info, cipher_desc); 2799 rec_seq = crypto_info_rec_seq(src_crypto_info, cipher_desc); 2800 2801 if (!*aead) { 2802 *aead = crypto_alloc_aead(cipher_desc->cipher_name, 0, 0); 2803 if (IS_ERR(*aead)) { 2804 rc = PTR_ERR(*aead); 2805 *aead = NULL; 2806 goto free_priv; 2807 } 2808 } 2809 2810 ctx->push_pending_record = tls_sw_push_pending_record; 2811 2812 /* setkey is the last operation that could fail during a 2813 * rekey. if it succeeds, we can start modifying the 2814 * context. 2815 */ 2816 rc = crypto_aead_setkey(*aead, key, cipher_desc->key); 2817 if (rc) { 2818 if (new_crypto_info) 2819 goto out; 2820 else 2821 goto free_aead; 2822 } 2823 2824 if (!new_crypto_info) { 2825 rc = crypto_aead_setauthsize(*aead, prot->tag_size); 2826 if (rc) 2827 goto free_aead; 2828 } 2829 2830 if (!tx && !new_crypto_info) { 2831 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); 2832 2833 tls_update_rx_zc_capable(ctx); 2834 sw_ctx_rx->async_capable = 2835 src_crypto_info->version != TLS_1_3_VERSION && 2836 !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC); 2837 2838 rc = tls_strp_init(&sw_ctx_rx->strp, sk); 2839 if (rc) 2840 goto free_aead; 2841 } 2842 2843 memcpy(cctx->iv, salt, cipher_desc->salt); 2844 memcpy(cctx->iv + cipher_desc->salt, iv, cipher_desc->iv); 2845 memcpy(cctx->rec_seq, rec_seq, cipher_desc->rec_seq); 2846 2847 if (new_crypto_info) { 2848 unsafe_memcpy(crypto_info, new_crypto_info, 2849 cipher_desc->crypto_info, 2850 /* size was checked in do_tls_setsockopt_conf */); 2851 memzero_explicit(new_crypto_info, cipher_desc->crypto_info); 2852 if (!tx) 2853 tls_finish_key_update(sk, ctx); 2854 } 2855 2856 goto out; 2857 2858 free_aead: 2859 crypto_free_aead(*aead); 2860 *aead = NULL; 2861 free_priv: 2862 if (!new_crypto_info) { 2863 if (tx) { 2864 kfree(ctx->priv_ctx_tx); 2865 ctx->priv_ctx_tx = NULL; 2866 } else { 2867 kfree(ctx->priv_ctx_rx); 2868 ctx->priv_ctx_rx = NULL; 2869 } 2870 } 2871 out: 2872 return rc; 2873 } 2874