1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and
4 * Shaohua Li <shli@fb.com>
5 */
6 #include <linux/module.h>
7
8 #include <linux/moduleparam.h>
9 #include <linux/sched.h>
10 #include <linux/fs.h>
11 #include <linux/init.h>
12 #include "null_blk.h"
13
14 #undef pr_fmt
15 #define pr_fmt(fmt) "null_blk: " fmt
16
17 #define FREE_BATCH 16
18
19 #define TICKS_PER_SEC 50ULL
20 #define TIMER_INTERVAL (NSEC_PER_SEC / TICKS_PER_SEC)
21
22 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
23 static DECLARE_FAULT_ATTR(null_timeout_attr);
24 static DECLARE_FAULT_ATTR(null_requeue_attr);
25 static DECLARE_FAULT_ATTR(null_init_hctx_attr);
26 #endif
27
mb_per_tick(int mbps)28 static inline u64 mb_per_tick(int mbps)
29 {
30 return (1 << 20) / TICKS_PER_SEC * ((u64) mbps);
31 }
32
33 /*
34 * Status flags for nullb_device.
35 *
36 * CONFIGURED: Device has been configured and turned on. Cannot reconfigure.
37 * UP: Device is currently on and visible in userspace.
38 * THROTTLED: Device is being throttled.
39 * CACHE: Device is using a write-back cache.
40 */
41 enum nullb_device_flags {
42 NULLB_DEV_FL_CONFIGURED = 0,
43 NULLB_DEV_FL_UP = 1,
44 NULLB_DEV_FL_THROTTLED = 2,
45 NULLB_DEV_FL_CACHE = 3,
46 };
47
48 #define MAP_SZ ((PAGE_SIZE >> SECTOR_SHIFT) + 2)
49 /*
50 * nullb_page is a page in memory for nullb devices.
51 *
52 * @page: The page holding the data.
53 * @bitmap: The bitmap represents which sector in the page has data.
54 * Each bit represents one block size. For example, sector 8
55 * will use the 7th bit
56 * The highest 2 bits of bitmap are for special purpose. LOCK means the cache
57 * page is being flushing to storage. FREE means the cache page is freed and
58 * should be skipped from flushing to storage. Please see
59 * null_make_cache_space
60 */
61 struct nullb_page {
62 struct page *page;
63 DECLARE_BITMAP(bitmap, MAP_SZ);
64 };
65 #define NULLB_PAGE_LOCK (MAP_SZ - 1)
66 #define NULLB_PAGE_FREE (MAP_SZ - 2)
67
68 static LIST_HEAD(nullb_list);
69 static struct mutex lock;
70 static int null_major;
71 static DEFINE_IDA(nullb_indexes);
72 static struct blk_mq_tag_set tag_set;
73
74 enum {
75 NULL_IRQ_NONE = 0,
76 NULL_IRQ_SOFTIRQ = 1,
77 NULL_IRQ_TIMER = 2,
78 };
79
80 static bool g_virt_boundary;
81 module_param_named(virt_boundary, g_virt_boundary, bool, 0444);
82 MODULE_PARM_DESC(virt_boundary, "Require a virtual boundary for the device. Default: False");
83
84 static int g_no_sched;
85 module_param_named(no_sched, g_no_sched, int, 0444);
86 MODULE_PARM_DESC(no_sched, "No io scheduler");
87
88 static int g_submit_queues = 1;
89 module_param_named(submit_queues, g_submit_queues, int, 0444);
90 MODULE_PARM_DESC(submit_queues, "Number of submission queues");
91
92 static int g_poll_queues = 1;
93 module_param_named(poll_queues, g_poll_queues, int, 0444);
94 MODULE_PARM_DESC(poll_queues, "Number of IOPOLL submission queues");
95
96 static int g_home_node = NUMA_NO_NODE;
97 module_param_named(home_node, g_home_node, int, 0444);
98 MODULE_PARM_DESC(home_node, "Home node for the device");
99
100 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
101 /*
102 * For more details about fault injection, please refer to
103 * Documentation/fault-injection/fault-injection.rst.
104 */
105 static char g_timeout_str[80];
106 module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444);
107 MODULE_PARM_DESC(timeout, "Fault injection. timeout=<interval>,<probability>,<space>,<times>");
108
109 static char g_requeue_str[80];
110 module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444);
111 MODULE_PARM_DESC(requeue, "Fault injection. requeue=<interval>,<probability>,<space>,<times>");
112
113 static char g_init_hctx_str[80];
114 module_param_string(init_hctx, g_init_hctx_str, sizeof(g_init_hctx_str), 0444);
115 MODULE_PARM_DESC(init_hctx, "Fault injection to fail hctx init. init_hctx=<interval>,<probability>,<space>,<times>");
116 #endif
117
118 /*
119 * Historic queue modes.
120 *
121 * These days nothing but NULL_Q_MQ is actually supported, but we keep it the
122 * enum for error reporting.
123 */
124 enum {
125 NULL_Q_BIO = 0,
126 NULL_Q_RQ = 1,
127 NULL_Q_MQ = 2,
128 };
129
130 static int g_queue_mode = NULL_Q_MQ;
131
null_param_store_val(const char * str,int * val,int min,int max)132 static int null_param_store_val(const char *str, int *val, int min, int max)
133 {
134 int ret, new_val;
135
136 ret = kstrtoint(str, 10, &new_val);
137 if (ret)
138 return -EINVAL;
139
140 if (new_val < min || new_val > max)
141 return -EINVAL;
142
143 *val = new_val;
144 return 0;
145 }
146
null_set_queue_mode(const char * str,const struct kernel_param * kp)147 static int null_set_queue_mode(const char *str, const struct kernel_param *kp)
148 {
149 return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ);
150 }
151
152 static const struct kernel_param_ops null_queue_mode_param_ops = {
153 .set = null_set_queue_mode,
154 .get = param_get_int,
155 };
156
157 device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444);
158 MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)");
159
160 static int g_gb = 250;
161 module_param_named(gb, g_gb, int, 0444);
162 MODULE_PARM_DESC(gb, "Size in GB");
163
164 static int g_bs = 512;
165 module_param_named(bs, g_bs, int, 0444);
166 MODULE_PARM_DESC(bs, "Block size (in bytes)");
167
168 static int g_max_sectors;
169 module_param_named(max_sectors, g_max_sectors, int, 0444);
170 MODULE_PARM_DESC(max_sectors, "Maximum size of a command (in 512B sectors)");
171
172 static unsigned int nr_devices = 1;
173 module_param(nr_devices, uint, 0444);
174 MODULE_PARM_DESC(nr_devices, "Number of devices to register");
175
176 static bool g_blocking;
177 module_param_named(blocking, g_blocking, bool, 0444);
178 MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device");
179
180 static bool g_shared_tags;
181 module_param_named(shared_tags, g_shared_tags, bool, 0444);
182 MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq");
183
184 static bool g_shared_tag_bitmap;
185 module_param_named(shared_tag_bitmap, g_shared_tag_bitmap, bool, 0444);
186 MODULE_PARM_DESC(shared_tag_bitmap, "Use shared tag bitmap for all submission queues for blk-mq");
187
188 static int g_irqmode = NULL_IRQ_SOFTIRQ;
189
null_set_irqmode(const char * str,const struct kernel_param * kp)190 static int null_set_irqmode(const char *str, const struct kernel_param *kp)
191 {
192 return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE,
193 NULL_IRQ_TIMER);
194 }
195
196 static const struct kernel_param_ops null_irqmode_param_ops = {
197 .set = null_set_irqmode,
198 .get = param_get_int,
199 };
200
201 device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444);
202 MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
203
204 static unsigned long g_completion_nsec = 10000;
205 module_param_named(completion_nsec, g_completion_nsec, ulong, 0444);
206 MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns");
207
208 static int g_hw_queue_depth = 64;
209 module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444);
210 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64");
211
212 static bool g_use_per_node_hctx;
213 module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444);
214 MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false");
215
216 static bool g_memory_backed;
217 module_param_named(memory_backed, g_memory_backed, bool, 0444);
218 MODULE_PARM_DESC(memory_backed, "Create a memory-backed block device. Default: false");
219
220 static bool g_discard;
221 module_param_named(discard, g_discard, bool, 0444);
222 MODULE_PARM_DESC(discard, "Support discard operations (requires memory-backed null_blk device). Default: false");
223
224 static unsigned long g_cache_size;
225 module_param_named(cache_size, g_cache_size, ulong, 0444);
226 MODULE_PARM_DESC(mbps, "Cache size in MiB for memory-backed device. Default: 0 (none)");
227
228 static bool g_fua = true;
229 module_param_named(fua, g_fua, bool, 0444);
230 MODULE_PARM_DESC(fua, "Enable/disable FUA support when cache_size is used. Default: true");
231
232 static unsigned int g_mbps;
233 module_param_named(mbps, g_mbps, uint, 0444);
234 MODULE_PARM_DESC(mbps, "Limit maximum bandwidth (in MiB/s). Default: 0 (no limit)");
235
236 static bool g_zoned;
237 module_param_named(zoned, g_zoned, bool, S_IRUGO);
238 MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false");
239
240 static unsigned long g_zone_size = 256;
241 module_param_named(zone_size, g_zone_size, ulong, S_IRUGO);
242 MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256");
243
244 static unsigned long g_zone_capacity;
245 module_param_named(zone_capacity, g_zone_capacity, ulong, 0444);
246 MODULE_PARM_DESC(zone_capacity, "Zone capacity in MB when block device is zoned. Can be less than or equal to zone size. Default: Zone size");
247
248 static unsigned int g_zone_nr_conv;
249 module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444);
250 MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0");
251
252 static unsigned int g_zone_max_open;
253 module_param_named(zone_max_open, g_zone_max_open, uint, 0444);
254 MODULE_PARM_DESC(zone_max_open, "Maximum number of open zones when block device is zoned. Default: 0 (no limit)");
255
256 static unsigned int g_zone_max_active;
257 module_param_named(zone_max_active, g_zone_max_active, uint, 0444);
258 MODULE_PARM_DESC(zone_max_active, "Maximum number of active zones when block device is zoned. Default: 0 (no limit)");
259
260 static int g_zone_append_max_sectors = INT_MAX;
261 module_param_named(zone_append_max_sectors, g_zone_append_max_sectors, int, 0444);
262 MODULE_PARM_DESC(zone_append_max_sectors,
263 "Maximum size of a zone append command (in 512B sectors). Specify 0 for zone append emulation");
264
265 static bool g_zone_full;
266 module_param_named(zone_full, g_zone_full, bool, S_IRUGO);
267 MODULE_PARM_DESC(zone_full, "Initialize the sequential write required zones of a zoned device to be full. Default: false");
268
269 static bool g_rotational;
270 module_param_named(rotational, g_rotational, bool, S_IRUGO);
271 MODULE_PARM_DESC(rotational, "Set the rotational feature for the device. Default: false");
272
273 static struct nullb_device *null_alloc_dev(void);
274 static void null_free_dev(struct nullb_device *dev);
275 static void null_del_dev(struct nullb *nullb);
276 static int null_add_dev(struct nullb_device *dev);
277 static struct nullb *null_find_dev_by_name(const char *name);
278 static void null_free_device_storage(struct nullb_device *dev, bool is_cache);
279
to_nullb_device(struct config_item * item)280 static inline struct nullb_device *to_nullb_device(struct config_item *item)
281 {
282 return item ? container_of(to_config_group(item), struct nullb_device, group) : NULL;
283 }
284
nullb_device_uint_attr_show(unsigned int val,char * page)285 static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page)
286 {
287 return snprintf(page, PAGE_SIZE, "%u\n", val);
288 }
289
nullb_device_ulong_attr_show(unsigned long val,char * page)290 static inline ssize_t nullb_device_ulong_attr_show(unsigned long val,
291 char *page)
292 {
293 return snprintf(page, PAGE_SIZE, "%lu\n", val);
294 }
295
nullb_device_bool_attr_show(bool val,char * page)296 static inline ssize_t nullb_device_bool_attr_show(bool val, char *page)
297 {
298 return snprintf(page, PAGE_SIZE, "%u\n", val);
299 }
300
nullb_device_uint_attr_store(unsigned int * val,const char * page,size_t count)301 static ssize_t nullb_device_uint_attr_store(unsigned int *val,
302 const char *page, size_t count)
303 {
304 unsigned int tmp;
305 int result;
306
307 result = kstrtouint(page, 0, &tmp);
308 if (result < 0)
309 return result;
310
311 *val = tmp;
312 return count;
313 }
314
nullb_device_ulong_attr_store(unsigned long * val,const char * page,size_t count)315 static ssize_t nullb_device_ulong_attr_store(unsigned long *val,
316 const char *page, size_t count)
317 {
318 int result;
319 unsigned long tmp;
320
321 result = kstrtoul(page, 0, &tmp);
322 if (result < 0)
323 return result;
324
325 *val = tmp;
326 return count;
327 }
328
nullb_device_bool_attr_store(bool * val,const char * page,size_t count)329 static ssize_t nullb_device_bool_attr_store(bool *val, const char *page,
330 size_t count)
331 {
332 bool tmp;
333 int result;
334
335 result = kstrtobool(page, &tmp);
336 if (result < 0)
337 return result;
338
339 *val = tmp;
340 return count;
341 }
342
343 /* The following macro should only be used with TYPE = {uint, ulong, bool}. */
344 #define NULLB_DEVICE_ATTR(NAME, TYPE, APPLY) \
345 static ssize_t \
346 nullb_device_##NAME##_show(struct config_item *item, char *page) \
347 { \
348 return nullb_device_##TYPE##_attr_show( \
349 to_nullb_device(item)->NAME, page); \
350 } \
351 static ssize_t \
352 nullb_device_##NAME##_store(struct config_item *item, const char *page, \
353 size_t count) \
354 { \
355 int (*apply_fn)(struct nullb_device *dev, TYPE new_value) = APPLY;\
356 struct nullb_device *dev = to_nullb_device(item); \
357 TYPE new_value = 0; \
358 int ret; \
359 \
360 ret = nullb_device_##TYPE##_attr_store(&new_value, page, count);\
361 if (ret < 0) \
362 return ret; \
363 if (apply_fn) \
364 ret = apply_fn(dev, new_value); \
365 else if (test_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags)) \
366 ret = -EBUSY; \
367 if (ret < 0) \
368 return ret; \
369 dev->NAME = new_value; \
370 return count; \
371 } \
372 CONFIGFS_ATTR(nullb_device_, NAME);
373
nullb_update_nr_hw_queues(struct nullb_device * dev,unsigned int submit_queues,unsigned int poll_queues)374 static int nullb_update_nr_hw_queues(struct nullb_device *dev,
375 unsigned int submit_queues,
376 unsigned int poll_queues)
377
378 {
379 struct blk_mq_tag_set *set;
380 int ret, nr_hw_queues;
381
382 if (!dev->nullb)
383 return 0;
384
385 /*
386 * Make sure at least one submit queue exists.
387 */
388 if (!submit_queues)
389 return -EINVAL;
390
391 /*
392 * Make sure that null_init_hctx() does not access nullb->queues[] past
393 * the end of that array.
394 */
395 if (submit_queues > nr_cpu_ids || poll_queues > g_poll_queues)
396 return -EINVAL;
397
398 /*
399 * Keep previous and new queue numbers in nullb_device for reference in
400 * the call back function null_map_queues().
401 */
402 dev->prev_submit_queues = dev->submit_queues;
403 dev->prev_poll_queues = dev->poll_queues;
404 dev->submit_queues = submit_queues;
405 dev->poll_queues = poll_queues;
406
407 set = dev->nullb->tag_set;
408 nr_hw_queues = submit_queues + poll_queues;
409 blk_mq_update_nr_hw_queues(set, nr_hw_queues);
410 ret = set->nr_hw_queues == nr_hw_queues ? 0 : -ENOMEM;
411
412 if (ret) {
413 /* on error, revert the queue numbers */
414 dev->submit_queues = dev->prev_submit_queues;
415 dev->poll_queues = dev->prev_poll_queues;
416 }
417
418 return ret;
419 }
420
nullb_apply_submit_queues(struct nullb_device * dev,unsigned int submit_queues)421 static int nullb_apply_submit_queues(struct nullb_device *dev,
422 unsigned int submit_queues)
423 {
424 int ret;
425
426 mutex_lock(&lock);
427 ret = nullb_update_nr_hw_queues(dev, submit_queues, dev->poll_queues);
428 mutex_unlock(&lock);
429
430 return ret;
431 }
432
nullb_apply_poll_queues(struct nullb_device * dev,unsigned int poll_queues)433 static int nullb_apply_poll_queues(struct nullb_device *dev,
434 unsigned int poll_queues)
435 {
436 int ret;
437
438 mutex_lock(&lock);
439 ret = nullb_update_nr_hw_queues(dev, dev->submit_queues, poll_queues);
440 mutex_unlock(&lock);
441
442 return ret;
443 }
444
445 NULLB_DEVICE_ATTR(size, ulong, NULL);
446 NULLB_DEVICE_ATTR(completion_nsec, ulong, NULL);
447 NULLB_DEVICE_ATTR(submit_queues, uint, nullb_apply_submit_queues);
448 NULLB_DEVICE_ATTR(poll_queues, uint, nullb_apply_poll_queues);
449 NULLB_DEVICE_ATTR(home_node, uint, NULL);
450 NULLB_DEVICE_ATTR(queue_mode, uint, NULL);
451 NULLB_DEVICE_ATTR(blocksize, uint, NULL);
452 NULLB_DEVICE_ATTR(max_sectors, uint, NULL);
453 NULLB_DEVICE_ATTR(irqmode, uint, NULL);
454 NULLB_DEVICE_ATTR(hw_queue_depth, uint, NULL);
455 NULLB_DEVICE_ATTR(index, uint, NULL);
456 NULLB_DEVICE_ATTR(blocking, bool, NULL);
457 NULLB_DEVICE_ATTR(use_per_node_hctx, bool, NULL);
458 NULLB_DEVICE_ATTR(memory_backed, bool, NULL);
459 NULLB_DEVICE_ATTR(discard, bool, NULL);
460 NULLB_DEVICE_ATTR(mbps, uint, NULL);
461 NULLB_DEVICE_ATTR(cache_size, ulong, NULL);
462 NULLB_DEVICE_ATTR(zoned, bool, NULL);
463 NULLB_DEVICE_ATTR(zone_size, ulong, NULL);
464 NULLB_DEVICE_ATTR(zone_capacity, ulong, NULL);
465 NULLB_DEVICE_ATTR(zone_nr_conv, uint, NULL);
466 NULLB_DEVICE_ATTR(zone_max_open, uint, NULL);
467 NULLB_DEVICE_ATTR(zone_max_active, uint, NULL);
468 NULLB_DEVICE_ATTR(zone_append_max_sectors, uint, NULL);
469 NULLB_DEVICE_ATTR(zone_full, bool, NULL);
470 NULLB_DEVICE_ATTR(virt_boundary, bool, NULL);
471 NULLB_DEVICE_ATTR(no_sched, bool, NULL);
472 NULLB_DEVICE_ATTR(shared_tags, bool, NULL);
473 NULLB_DEVICE_ATTR(shared_tag_bitmap, bool, NULL);
474 NULLB_DEVICE_ATTR(fua, bool, NULL);
475 NULLB_DEVICE_ATTR(rotational, bool, NULL);
476 NULLB_DEVICE_ATTR(badblocks_once, bool, NULL);
477 NULLB_DEVICE_ATTR(badblocks_partial_io, bool, NULL);
478
nullb_device_power_show(struct config_item * item,char * page)479 static ssize_t nullb_device_power_show(struct config_item *item, char *page)
480 {
481 return nullb_device_bool_attr_show(to_nullb_device(item)->power, page);
482 }
483
nullb_device_power_store(struct config_item * item,const char * page,size_t count)484 static ssize_t nullb_device_power_store(struct config_item *item,
485 const char *page, size_t count)
486 {
487 struct nullb_device *dev = to_nullb_device(item);
488 bool newp = false;
489 ssize_t ret;
490
491 ret = nullb_device_bool_attr_store(&newp, page, count);
492 if (ret < 0)
493 return ret;
494
495 ret = count;
496 mutex_lock(&lock);
497 if (!dev->power && newp) {
498 if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags))
499 goto out;
500
501 ret = null_add_dev(dev);
502 if (ret) {
503 clear_bit(NULLB_DEV_FL_UP, &dev->flags);
504 goto out;
505 }
506
507 set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
508 dev->power = newp;
509 ret = count;
510 } else if (dev->power && !newp) {
511 if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
512 dev->power = newp;
513 null_del_dev(dev->nullb);
514 }
515 clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
516 }
517
518 out:
519 mutex_unlock(&lock);
520 return ret;
521 }
522
523 CONFIGFS_ATTR(nullb_device_, power);
524
nullb_device_badblocks_show(struct config_item * item,char * page)525 static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page)
526 {
527 struct nullb_device *t_dev = to_nullb_device(item);
528
529 return badblocks_show(&t_dev->badblocks, page, 0);
530 }
531
nullb_device_badblocks_store(struct config_item * item,const char * page,size_t count)532 static ssize_t nullb_device_badblocks_store(struct config_item *item,
533 const char *page, size_t count)
534 {
535 struct nullb_device *t_dev = to_nullb_device(item);
536 char *orig, *buf, *tmp;
537 u64 start, end;
538 int ret;
539
540 orig = kstrndup(page, count, GFP_KERNEL);
541 if (!orig)
542 return -ENOMEM;
543
544 buf = strstrip(orig);
545
546 ret = -EINVAL;
547 if (buf[0] != '+' && buf[0] != '-')
548 goto out;
549 tmp = strchr(&buf[1], '-');
550 if (!tmp)
551 goto out;
552 *tmp = '\0';
553 ret = kstrtoull(buf + 1, 0, &start);
554 if (ret)
555 goto out;
556 ret = kstrtoull(tmp + 1, 0, &end);
557 if (ret)
558 goto out;
559 ret = -EINVAL;
560 if (start > end)
561 goto out;
562 /* enable badblocks */
563 cmpxchg(&t_dev->badblocks.shift, -1, 0);
564 if (buf[0] == '+') {
565 if (badblocks_set(&t_dev->badblocks, start,
566 end - start + 1, 1))
567 ret = count;
568 } else if (badblocks_clear(&t_dev->badblocks, start,
569 end - start + 1)) {
570 ret = count;
571 }
572 out:
573 kfree(orig);
574 return ret;
575 }
576 CONFIGFS_ATTR(nullb_device_, badblocks);
577
nullb_device_zone_readonly_store(struct config_item * item,const char * page,size_t count)578 static ssize_t nullb_device_zone_readonly_store(struct config_item *item,
579 const char *page, size_t count)
580 {
581 struct nullb_device *dev = to_nullb_device(item);
582
583 return zone_cond_store(dev, page, count, BLK_ZONE_COND_READONLY);
584 }
585 CONFIGFS_ATTR_WO(nullb_device_, zone_readonly);
586
nullb_device_zone_offline_store(struct config_item * item,const char * page,size_t count)587 static ssize_t nullb_device_zone_offline_store(struct config_item *item,
588 const char *page, size_t count)
589 {
590 struct nullb_device *dev = to_nullb_device(item);
591
592 return zone_cond_store(dev, page, count, BLK_ZONE_COND_OFFLINE);
593 }
594 CONFIGFS_ATTR_WO(nullb_device_, zone_offline);
595
596 static struct configfs_attribute *nullb_device_attrs[] = {
597 &nullb_device_attr_badblocks,
598 &nullb_device_attr_badblocks_once,
599 &nullb_device_attr_badblocks_partial_io,
600 &nullb_device_attr_blocking,
601 &nullb_device_attr_blocksize,
602 &nullb_device_attr_cache_size,
603 &nullb_device_attr_completion_nsec,
604 &nullb_device_attr_discard,
605 &nullb_device_attr_fua,
606 &nullb_device_attr_home_node,
607 &nullb_device_attr_hw_queue_depth,
608 &nullb_device_attr_index,
609 &nullb_device_attr_irqmode,
610 &nullb_device_attr_max_sectors,
611 &nullb_device_attr_mbps,
612 &nullb_device_attr_memory_backed,
613 &nullb_device_attr_no_sched,
614 &nullb_device_attr_poll_queues,
615 &nullb_device_attr_power,
616 &nullb_device_attr_queue_mode,
617 &nullb_device_attr_rotational,
618 &nullb_device_attr_shared_tag_bitmap,
619 &nullb_device_attr_shared_tags,
620 &nullb_device_attr_size,
621 &nullb_device_attr_submit_queues,
622 &nullb_device_attr_use_per_node_hctx,
623 &nullb_device_attr_virt_boundary,
624 &nullb_device_attr_zone_append_max_sectors,
625 &nullb_device_attr_zone_capacity,
626 &nullb_device_attr_zone_full,
627 &nullb_device_attr_zone_max_active,
628 &nullb_device_attr_zone_max_open,
629 &nullb_device_attr_zone_nr_conv,
630 &nullb_device_attr_zone_offline,
631 &nullb_device_attr_zone_readonly,
632 &nullb_device_attr_zone_size,
633 &nullb_device_attr_zoned,
634 NULL,
635 };
636
nullb_device_release(struct config_item * item)637 static void nullb_device_release(struct config_item *item)
638 {
639 struct nullb_device *dev = to_nullb_device(item);
640
641 null_free_device_storage(dev, false);
642 null_free_dev(dev);
643 }
644
645 static struct configfs_item_operations nullb_device_ops = {
646 .release = nullb_device_release,
647 };
648
649 static const struct config_item_type nullb_device_type = {
650 .ct_item_ops = &nullb_device_ops,
651 .ct_attrs = nullb_device_attrs,
652 .ct_owner = THIS_MODULE,
653 };
654
655 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
656
nullb_add_fault_config(struct nullb_device * dev)657 static void nullb_add_fault_config(struct nullb_device *dev)
658 {
659 fault_config_init(&dev->timeout_config, "timeout_inject");
660 fault_config_init(&dev->requeue_config, "requeue_inject");
661 fault_config_init(&dev->init_hctx_fault_config, "init_hctx_fault_inject");
662
663 configfs_add_default_group(&dev->timeout_config.group, &dev->group);
664 configfs_add_default_group(&dev->requeue_config.group, &dev->group);
665 configfs_add_default_group(&dev->init_hctx_fault_config.group, &dev->group);
666 }
667
668 #else
669
nullb_add_fault_config(struct nullb_device * dev)670 static void nullb_add_fault_config(struct nullb_device *dev)
671 {
672 }
673
674 #endif
675
676 static struct
nullb_group_make_group(struct config_group * group,const char * name)677 config_group *nullb_group_make_group(struct config_group *group, const char *name)
678 {
679 struct nullb_device *dev;
680
681 if (null_find_dev_by_name(name))
682 return ERR_PTR(-EEXIST);
683
684 dev = null_alloc_dev();
685 if (!dev)
686 return ERR_PTR(-ENOMEM);
687
688 config_group_init_type_name(&dev->group, name, &nullb_device_type);
689 nullb_add_fault_config(dev);
690
691 return &dev->group;
692 }
693
694 static void
nullb_group_drop_item(struct config_group * group,struct config_item * item)695 nullb_group_drop_item(struct config_group *group, struct config_item *item)
696 {
697 struct nullb_device *dev = to_nullb_device(item);
698
699 if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
700 mutex_lock(&lock);
701 dev->power = false;
702 null_del_dev(dev->nullb);
703 mutex_unlock(&lock);
704 }
705
706 config_item_put(item);
707 }
708
memb_group_features_show(struct config_item * item,char * page)709 static ssize_t memb_group_features_show(struct config_item *item, char *page)
710 {
711
712 struct configfs_attribute **entry;
713 char delimiter = ',';
714 size_t left = PAGE_SIZE;
715 size_t written = 0;
716 int ret;
717
718 for (entry = &nullb_device_attrs[0]; *entry && left > 0; entry++) {
719 if (!*(entry + 1))
720 delimiter = '\n';
721 ret = snprintf(page + written, left, "%s%c", (*entry)->ca_name,
722 delimiter);
723 if (ret >= left) {
724 WARN_ONCE(1, "Too many null_blk features to print\n");
725 memzero_explicit(page, PAGE_SIZE);
726 return -ENOBUFS;
727 }
728 left -= ret;
729 written += ret;
730 }
731
732 return written;
733 }
734
735 CONFIGFS_ATTR_RO(memb_group_, features);
736
737 static struct configfs_attribute *nullb_group_attrs[] = {
738 &memb_group_attr_features,
739 NULL,
740 };
741
742 static struct configfs_group_operations nullb_group_ops = {
743 .make_group = nullb_group_make_group,
744 .drop_item = nullb_group_drop_item,
745 };
746
747 static const struct config_item_type nullb_group_type = {
748 .ct_group_ops = &nullb_group_ops,
749 .ct_attrs = nullb_group_attrs,
750 .ct_owner = THIS_MODULE,
751 };
752
753 static struct configfs_subsystem nullb_subsys = {
754 .su_group = {
755 .cg_item = {
756 .ci_namebuf = "nullb",
757 .ci_type = &nullb_group_type,
758 },
759 },
760 };
761
null_cache_active(struct nullb * nullb)762 static inline int null_cache_active(struct nullb *nullb)
763 {
764 return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
765 }
766
null_alloc_dev(void)767 static struct nullb_device *null_alloc_dev(void)
768 {
769 struct nullb_device *dev;
770
771 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
772 if (!dev)
773 return NULL;
774
775 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
776 dev->timeout_config.attr = null_timeout_attr;
777 dev->requeue_config.attr = null_requeue_attr;
778 dev->init_hctx_fault_config.attr = null_init_hctx_attr;
779 #endif
780
781 INIT_RADIX_TREE(&dev->data, GFP_ATOMIC);
782 INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC);
783 if (badblocks_init(&dev->badblocks, 0)) {
784 kfree(dev);
785 return NULL;
786 }
787
788 dev->size = g_gb * 1024;
789 dev->completion_nsec = g_completion_nsec;
790 dev->submit_queues = g_submit_queues;
791 dev->prev_submit_queues = g_submit_queues;
792 dev->poll_queues = g_poll_queues;
793 dev->prev_poll_queues = g_poll_queues;
794 dev->home_node = g_home_node;
795 dev->queue_mode = g_queue_mode;
796 dev->blocksize = g_bs;
797 dev->max_sectors = g_max_sectors;
798 dev->irqmode = g_irqmode;
799 dev->hw_queue_depth = g_hw_queue_depth;
800 dev->blocking = g_blocking;
801 dev->memory_backed = g_memory_backed;
802 dev->discard = g_discard;
803 dev->cache_size = g_cache_size;
804 dev->mbps = g_mbps;
805 dev->use_per_node_hctx = g_use_per_node_hctx;
806 dev->zoned = g_zoned;
807 dev->zone_size = g_zone_size;
808 dev->zone_capacity = g_zone_capacity;
809 dev->zone_nr_conv = g_zone_nr_conv;
810 dev->zone_max_open = g_zone_max_open;
811 dev->zone_max_active = g_zone_max_active;
812 dev->zone_append_max_sectors = g_zone_append_max_sectors;
813 dev->zone_full = g_zone_full;
814 dev->virt_boundary = g_virt_boundary;
815 dev->no_sched = g_no_sched;
816 dev->shared_tags = g_shared_tags;
817 dev->shared_tag_bitmap = g_shared_tag_bitmap;
818 dev->fua = g_fua;
819 dev->rotational = g_rotational;
820
821 return dev;
822 }
823
null_free_dev(struct nullb_device * dev)824 static void null_free_dev(struct nullb_device *dev)
825 {
826 if (!dev)
827 return;
828
829 null_free_zoned_dev(dev);
830 badblocks_exit(&dev->badblocks);
831 kfree(dev);
832 }
833
null_cmd_timer_expired(struct hrtimer * timer)834 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer)
835 {
836 struct nullb_cmd *cmd = container_of(timer, struct nullb_cmd, timer);
837
838 blk_mq_end_request(blk_mq_rq_from_pdu(cmd), cmd->error);
839 return HRTIMER_NORESTART;
840 }
841
null_cmd_end_timer(struct nullb_cmd * cmd)842 static void null_cmd_end_timer(struct nullb_cmd *cmd)
843 {
844 ktime_t kt = cmd->nq->dev->completion_nsec;
845
846 hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL);
847 }
848
null_complete_rq(struct request * rq)849 static void null_complete_rq(struct request *rq)
850 {
851 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
852
853 blk_mq_end_request(rq, cmd->error);
854 }
855
null_alloc_page(void)856 static struct nullb_page *null_alloc_page(void)
857 {
858 struct nullb_page *t_page;
859
860 t_page = kmalloc(sizeof(struct nullb_page), GFP_NOIO);
861 if (!t_page)
862 return NULL;
863
864 t_page->page = alloc_pages(GFP_NOIO, 0);
865 if (!t_page->page) {
866 kfree(t_page);
867 return NULL;
868 }
869
870 memset(t_page->bitmap, 0, sizeof(t_page->bitmap));
871 return t_page;
872 }
873
null_free_page(struct nullb_page * t_page)874 static void null_free_page(struct nullb_page *t_page)
875 {
876 __set_bit(NULLB_PAGE_FREE, t_page->bitmap);
877 if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap))
878 return;
879 __free_page(t_page->page);
880 kfree(t_page);
881 }
882
null_page_empty(struct nullb_page * page)883 static bool null_page_empty(struct nullb_page *page)
884 {
885 int size = MAP_SZ - 2;
886
887 return find_first_bit(page->bitmap, size) == size;
888 }
889
null_free_sector(struct nullb * nullb,sector_t sector,bool is_cache)890 static void null_free_sector(struct nullb *nullb, sector_t sector,
891 bool is_cache)
892 {
893 unsigned int sector_bit;
894 u64 idx;
895 struct nullb_page *t_page, *ret;
896 struct radix_tree_root *root;
897
898 root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
899 idx = sector >> PAGE_SECTORS_SHIFT;
900 sector_bit = (sector & SECTOR_MASK);
901
902 t_page = radix_tree_lookup(root, idx);
903 if (t_page) {
904 __clear_bit(sector_bit, t_page->bitmap);
905
906 if (null_page_empty(t_page)) {
907 ret = radix_tree_delete_item(root, idx, t_page);
908 WARN_ON(ret != t_page);
909 null_free_page(ret);
910 if (is_cache)
911 nullb->dev->curr_cache -= PAGE_SIZE;
912 }
913 }
914 }
915
null_radix_tree_insert(struct nullb * nullb,u64 idx,struct nullb_page * t_page,bool is_cache)916 static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx,
917 struct nullb_page *t_page, bool is_cache)
918 {
919 struct radix_tree_root *root;
920
921 root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
922
923 if (radix_tree_insert(root, idx, t_page)) {
924 null_free_page(t_page);
925 t_page = radix_tree_lookup(root, idx);
926 WARN_ON(!t_page || t_page->page->private != idx);
927 } else if (is_cache)
928 nullb->dev->curr_cache += PAGE_SIZE;
929
930 return t_page;
931 }
932
null_free_device_storage(struct nullb_device * dev,bool is_cache)933 static void null_free_device_storage(struct nullb_device *dev, bool is_cache)
934 {
935 unsigned long pos = 0;
936 int nr_pages;
937 struct nullb_page *ret, *t_pages[FREE_BATCH];
938 struct radix_tree_root *root;
939
940 root = is_cache ? &dev->cache : &dev->data;
941
942 do {
943 int i;
944
945 nr_pages = radix_tree_gang_lookup(root,
946 (void **)t_pages, pos, FREE_BATCH);
947
948 for (i = 0; i < nr_pages; i++) {
949 pos = t_pages[i]->page->private;
950 ret = radix_tree_delete_item(root, pos, t_pages[i]);
951 WARN_ON(ret != t_pages[i]);
952 null_free_page(ret);
953 }
954
955 pos++;
956 } while (nr_pages == FREE_BATCH);
957
958 if (is_cache)
959 dev->curr_cache = 0;
960 }
961
__null_lookup_page(struct nullb * nullb,sector_t sector,bool for_write,bool is_cache)962 static struct nullb_page *__null_lookup_page(struct nullb *nullb,
963 sector_t sector, bool for_write, bool is_cache)
964 {
965 unsigned int sector_bit;
966 u64 idx;
967 struct nullb_page *t_page;
968 struct radix_tree_root *root;
969
970 idx = sector >> PAGE_SECTORS_SHIFT;
971 sector_bit = (sector & SECTOR_MASK);
972
973 root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
974 t_page = radix_tree_lookup(root, idx);
975 WARN_ON(t_page && t_page->page->private != idx);
976
977 if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap)))
978 return t_page;
979
980 return NULL;
981 }
982
null_lookup_page(struct nullb * nullb,sector_t sector,bool for_write,bool ignore_cache)983 static struct nullb_page *null_lookup_page(struct nullb *nullb,
984 sector_t sector, bool for_write, bool ignore_cache)
985 {
986 struct nullb_page *page = NULL;
987
988 if (!ignore_cache)
989 page = __null_lookup_page(nullb, sector, for_write, true);
990 if (page)
991 return page;
992 return __null_lookup_page(nullb, sector, for_write, false);
993 }
994
null_insert_page(struct nullb * nullb,sector_t sector,bool ignore_cache)995 static struct nullb_page *null_insert_page(struct nullb *nullb,
996 sector_t sector, bool ignore_cache)
997 __releases(&nullb->lock)
998 __acquires(&nullb->lock)
999 {
1000 u64 idx;
1001 struct nullb_page *t_page;
1002
1003 t_page = null_lookup_page(nullb, sector, true, ignore_cache);
1004 if (t_page)
1005 return t_page;
1006
1007 spin_unlock_irq(&nullb->lock);
1008
1009 t_page = null_alloc_page();
1010 if (!t_page)
1011 goto out_lock;
1012
1013 if (radix_tree_preload(GFP_NOIO))
1014 goto out_freepage;
1015
1016 spin_lock_irq(&nullb->lock);
1017 idx = sector >> PAGE_SECTORS_SHIFT;
1018 t_page->page->private = idx;
1019 t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache);
1020 radix_tree_preload_end();
1021
1022 return t_page;
1023 out_freepage:
1024 null_free_page(t_page);
1025 out_lock:
1026 spin_lock_irq(&nullb->lock);
1027 return null_lookup_page(nullb, sector, true, ignore_cache);
1028 }
1029
null_flush_cache_page(struct nullb * nullb,struct nullb_page * c_page)1030 static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page)
1031 {
1032 int i;
1033 unsigned int offset;
1034 u64 idx;
1035 struct nullb_page *t_page, *ret;
1036 void *dst, *src;
1037
1038 idx = c_page->page->private;
1039
1040 t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true);
1041
1042 __clear_bit(NULLB_PAGE_LOCK, c_page->bitmap);
1043 if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) {
1044 null_free_page(c_page);
1045 if (t_page && null_page_empty(t_page)) {
1046 ret = radix_tree_delete_item(&nullb->dev->data,
1047 idx, t_page);
1048 null_free_page(t_page);
1049 }
1050 return 0;
1051 }
1052
1053 if (!t_page)
1054 return -ENOMEM;
1055
1056 src = kmap_local_page(c_page->page);
1057 dst = kmap_local_page(t_page->page);
1058
1059 for (i = 0; i < PAGE_SECTORS;
1060 i += (nullb->dev->blocksize >> SECTOR_SHIFT)) {
1061 if (test_bit(i, c_page->bitmap)) {
1062 offset = (i << SECTOR_SHIFT);
1063 memcpy(dst + offset, src + offset,
1064 nullb->dev->blocksize);
1065 __set_bit(i, t_page->bitmap);
1066 }
1067 }
1068
1069 kunmap_local(dst);
1070 kunmap_local(src);
1071
1072 ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page);
1073 null_free_page(ret);
1074 nullb->dev->curr_cache -= PAGE_SIZE;
1075
1076 return 0;
1077 }
1078
null_make_cache_space(struct nullb * nullb,unsigned long n)1079 static int null_make_cache_space(struct nullb *nullb, unsigned long n)
1080 {
1081 int i, err, nr_pages;
1082 struct nullb_page *c_pages[FREE_BATCH];
1083 unsigned long flushed = 0, one_round;
1084
1085 again:
1086 if ((nullb->dev->cache_size * 1024 * 1024) >
1087 nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0)
1088 return 0;
1089
1090 nr_pages = radix_tree_gang_lookup(&nullb->dev->cache,
1091 (void **)c_pages, nullb->cache_flush_pos, FREE_BATCH);
1092 /*
1093 * nullb_flush_cache_page could unlock before using the c_pages. To
1094 * avoid race, we don't allow page free
1095 */
1096 for (i = 0; i < nr_pages; i++) {
1097 nullb->cache_flush_pos = c_pages[i]->page->private;
1098 /*
1099 * We found the page which is being flushed to disk by other
1100 * threads
1101 */
1102 if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap))
1103 c_pages[i] = NULL;
1104 else
1105 __set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap);
1106 }
1107
1108 one_round = 0;
1109 for (i = 0; i < nr_pages; i++) {
1110 if (c_pages[i] == NULL)
1111 continue;
1112 err = null_flush_cache_page(nullb, c_pages[i]);
1113 if (err)
1114 return err;
1115 one_round++;
1116 }
1117 flushed += one_round << PAGE_SHIFT;
1118
1119 if (n > flushed) {
1120 if (nr_pages == 0)
1121 nullb->cache_flush_pos = 0;
1122 if (one_round == 0) {
1123 /* give other threads a chance */
1124 spin_unlock_irq(&nullb->lock);
1125 spin_lock_irq(&nullb->lock);
1126 }
1127 goto again;
1128 }
1129 return 0;
1130 }
1131
copy_to_nullb(struct nullb * nullb,struct page * source,unsigned int off,sector_t sector,size_t n,bool is_fua)1132 static int copy_to_nullb(struct nullb *nullb, struct page *source,
1133 unsigned int off, sector_t sector, size_t n, bool is_fua)
1134 {
1135 size_t temp, count = 0;
1136 unsigned int offset;
1137 struct nullb_page *t_page;
1138
1139 while (count < n) {
1140 temp = min_t(size_t, nullb->dev->blocksize, n - count);
1141
1142 if (null_cache_active(nullb) && !is_fua)
1143 null_make_cache_space(nullb, PAGE_SIZE);
1144
1145 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1146 t_page = null_insert_page(nullb, sector,
1147 !null_cache_active(nullb) || is_fua);
1148 if (!t_page)
1149 return -ENOSPC;
1150
1151 memcpy_page(t_page->page, offset, source, off + count, temp);
1152
1153 __set_bit(sector & SECTOR_MASK, t_page->bitmap);
1154
1155 if (is_fua)
1156 null_free_sector(nullb, sector, true);
1157
1158 count += temp;
1159 sector += temp >> SECTOR_SHIFT;
1160 }
1161 return 0;
1162 }
1163
copy_from_nullb(struct nullb * nullb,struct page * dest,unsigned int off,sector_t sector,size_t n)1164 static int copy_from_nullb(struct nullb *nullb, struct page *dest,
1165 unsigned int off, sector_t sector, size_t n)
1166 {
1167 size_t temp, count = 0;
1168 unsigned int offset;
1169 struct nullb_page *t_page;
1170
1171 while (count < n) {
1172 temp = min_t(size_t, nullb->dev->blocksize, n - count);
1173
1174 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1175 t_page = null_lookup_page(nullb, sector, false,
1176 !null_cache_active(nullb));
1177
1178 if (t_page)
1179 memcpy_page(dest, off + count, t_page->page, offset,
1180 temp);
1181 else
1182 zero_user(dest, off + count, temp);
1183
1184 count += temp;
1185 sector += temp >> SECTOR_SHIFT;
1186 }
1187 return 0;
1188 }
1189
nullb_fill_pattern(struct nullb * nullb,struct page * page,unsigned int len,unsigned int off)1190 static void nullb_fill_pattern(struct nullb *nullb, struct page *page,
1191 unsigned int len, unsigned int off)
1192 {
1193 memset_page(page, off, 0xff, len);
1194 }
1195
null_handle_discard(struct nullb_device * dev,sector_t sector,sector_t nr_sectors)1196 blk_status_t null_handle_discard(struct nullb_device *dev,
1197 sector_t sector, sector_t nr_sectors)
1198 {
1199 struct nullb *nullb = dev->nullb;
1200 size_t n = nr_sectors << SECTOR_SHIFT;
1201 size_t temp;
1202
1203 spin_lock_irq(&nullb->lock);
1204 while (n > 0) {
1205 temp = min_t(size_t, n, dev->blocksize);
1206 null_free_sector(nullb, sector, false);
1207 if (null_cache_active(nullb))
1208 null_free_sector(nullb, sector, true);
1209 sector += temp >> SECTOR_SHIFT;
1210 n -= temp;
1211 }
1212 spin_unlock_irq(&nullb->lock);
1213
1214 return BLK_STS_OK;
1215 }
1216
null_handle_flush(struct nullb * nullb)1217 static blk_status_t null_handle_flush(struct nullb *nullb)
1218 {
1219 int err;
1220
1221 if (!null_cache_active(nullb))
1222 return 0;
1223
1224 spin_lock_irq(&nullb->lock);
1225 while (true) {
1226 err = null_make_cache_space(nullb,
1227 nullb->dev->cache_size * 1024 * 1024);
1228 if (err || nullb->dev->curr_cache == 0)
1229 break;
1230 }
1231
1232 WARN_ON(!radix_tree_empty(&nullb->dev->cache));
1233 spin_unlock_irq(&nullb->lock);
1234 return errno_to_blk_status(err);
1235 }
1236
null_transfer(struct nullb * nullb,struct page * page,unsigned int len,unsigned int off,bool is_write,sector_t sector,bool is_fua)1237 static int null_transfer(struct nullb *nullb, struct page *page,
1238 unsigned int len, unsigned int off, bool is_write, sector_t sector,
1239 bool is_fua)
1240 {
1241 struct nullb_device *dev = nullb->dev;
1242 unsigned int valid_len = len;
1243 int err = 0;
1244
1245 if (!is_write) {
1246 if (dev->zoned)
1247 valid_len = null_zone_valid_read_len(nullb,
1248 sector, len);
1249
1250 if (valid_len) {
1251 err = copy_from_nullb(nullb, page, off,
1252 sector, valid_len);
1253 off += valid_len;
1254 len -= valid_len;
1255 }
1256
1257 if (len)
1258 nullb_fill_pattern(nullb, page, len, off);
1259 flush_dcache_page(page);
1260 } else {
1261 flush_dcache_page(page);
1262 err = copy_to_nullb(nullb, page, off, sector, len, is_fua);
1263 }
1264
1265 return err;
1266 }
1267
1268 /*
1269 * Transfer data for the given request. The transfer size is capped with the
1270 * nr_sectors argument.
1271 */
null_handle_data_transfer(struct nullb_cmd * cmd,sector_t nr_sectors)1272 static blk_status_t null_handle_data_transfer(struct nullb_cmd *cmd,
1273 sector_t nr_sectors)
1274 {
1275 struct request *rq = blk_mq_rq_from_pdu(cmd);
1276 struct nullb *nullb = cmd->nq->dev->nullb;
1277 int err = 0;
1278 unsigned int len;
1279 sector_t sector = blk_rq_pos(rq);
1280 unsigned int max_bytes = nr_sectors << SECTOR_SHIFT;
1281 unsigned int transferred_bytes = 0;
1282 struct req_iterator iter;
1283 struct bio_vec bvec;
1284
1285 spin_lock_irq(&nullb->lock);
1286 rq_for_each_segment(bvec, rq, iter) {
1287 len = bvec.bv_len;
1288 if (transferred_bytes + len > max_bytes)
1289 len = max_bytes - transferred_bytes;
1290 err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1291 op_is_write(req_op(rq)), sector,
1292 rq->cmd_flags & REQ_FUA);
1293 if (err)
1294 break;
1295 sector += len >> SECTOR_SHIFT;
1296 transferred_bytes += len;
1297 if (transferred_bytes >= max_bytes)
1298 break;
1299 }
1300 spin_unlock_irq(&nullb->lock);
1301
1302 return errno_to_blk_status(err);
1303 }
1304
null_handle_throttled(struct nullb_cmd * cmd)1305 static inline blk_status_t null_handle_throttled(struct nullb_cmd *cmd)
1306 {
1307 struct nullb_device *dev = cmd->nq->dev;
1308 struct nullb *nullb = dev->nullb;
1309 blk_status_t sts = BLK_STS_OK;
1310 struct request *rq = blk_mq_rq_from_pdu(cmd);
1311
1312 if (!hrtimer_active(&nullb->bw_timer))
1313 hrtimer_restart(&nullb->bw_timer);
1314
1315 if (atomic_long_sub_return(blk_rq_bytes(rq), &nullb->cur_bytes) < 0) {
1316 blk_mq_stop_hw_queues(nullb->q);
1317 /* race with timer */
1318 if (atomic_long_read(&nullb->cur_bytes) > 0)
1319 blk_mq_start_stopped_hw_queues(nullb->q, true);
1320 /* requeue request */
1321 sts = BLK_STS_DEV_RESOURCE;
1322 }
1323 return sts;
1324 }
1325
1326 /*
1327 * Check if the command should fail for the badblocks. If so, return
1328 * BLK_STS_IOERR and return number of partial I/O sectors to be written or read,
1329 * which may be less than the requested number of sectors.
1330 *
1331 * @cmd: The command to handle.
1332 * @sector: The start sector for I/O.
1333 * @nr_sectors: Specifies number of sectors to write or read, and returns the
1334 * number of sectors to be written or read.
1335 */
null_handle_badblocks(struct nullb_cmd * cmd,sector_t sector,unsigned int * nr_sectors)1336 blk_status_t null_handle_badblocks(struct nullb_cmd *cmd, sector_t sector,
1337 unsigned int *nr_sectors)
1338 {
1339 struct badblocks *bb = &cmd->nq->dev->badblocks;
1340 struct nullb_device *dev = cmd->nq->dev;
1341 unsigned int block_sectors = dev->blocksize >> SECTOR_SHIFT;
1342 sector_t first_bad, bad_sectors;
1343 unsigned int partial_io_sectors = 0;
1344
1345 if (!badblocks_check(bb, sector, *nr_sectors, &first_bad, &bad_sectors))
1346 return BLK_STS_OK;
1347
1348 if (cmd->nq->dev->badblocks_once)
1349 badblocks_clear(bb, first_bad, bad_sectors);
1350
1351 if (cmd->nq->dev->badblocks_partial_io) {
1352 if (!IS_ALIGNED(first_bad, block_sectors))
1353 first_bad = ALIGN_DOWN(first_bad, block_sectors);
1354 if (sector < first_bad)
1355 partial_io_sectors = first_bad - sector;
1356 }
1357 *nr_sectors = partial_io_sectors;
1358
1359 return BLK_STS_IOERR;
1360 }
1361
null_handle_memory_backed(struct nullb_cmd * cmd,enum req_op op,sector_t sector,sector_t nr_sectors)1362 blk_status_t null_handle_memory_backed(struct nullb_cmd *cmd, enum req_op op,
1363 sector_t sector, sector_t nr_sectors)
1364 {
1365 struct nullb_device *dev = cmd->nq->dev;
1366
1367 if (op == REQ_OP_DISCARD)
1368 return null_handle_discard(dev, sector, nr_sectors);
1369
1370 return null_handle_data_transfer(cmd, nr_sectors);
1371 }
1372
nullb_zero_read_cmd_buffer(struct nullb_cmd * cmd)1373 static void nullb_zero_read_cmd_buffer(struct nullb_cmd *cmd)
1374 {
1375 struct request *rq = blk_mq_rq_from_pdu(cmd);
1376 struct nullb_device *dev = cmd->nq->dev;
1377 struct bio *bio;
1378
1379 if (!dev->memory_backed && req_op(rq) == REQ_OP_READ) {
1380 __rq_for_each_bio(bio, rq)
1381 zero_fill_bio(bio);
1382 }
1383 }
1384
nullb_complete_cmd(struct nullb_cmd * cmd)1385 static inline void nullb_complete_cmd(struct nullb_cmd *cmd)
1386 {
1387 struct request *rq = blk_mq_rq_from_pdu(cmd);
1388
1389 /*
1390 * Since root privileges are required to configure the null_blk
1391 * driver, it is fine that this driver does not initialize the
1392 * data buffers of read commands. Zero-initialize these buffers
1393 * anyway if KMSAN is enabled to prevent that KMSAN complains
1394 * about null_blk not initializing read data buffers.
1395 */
1396 if (IS_ENABLED(CONFIG_KMSAN))
1397 nullb_zero_read_cmd_buffer(cmd);
1398
1399 /* Complete IO by inline, softirq or timer */
1400 switch (cmd->nq->dev->irqmode) {
1401 case NULL_IRQ_SOFTIRQ:
1402 blk_mq_complete_request(rq);
1403 break;
1404 case NULL_IRQ_NONE:
1405 blk_mq_end_request(rq, cmd->error);
1406 break;
1407 case NULL_IRQ_TIMER:
1408 null_cmd_end_timer(cmd);
1409 break;
1410 }
1411 }
1412
null_process_cmd(struct nullb_cmd * cmd,enum req_op op,sector_t sector,unsigned int nr_sectors)1413 blk_status_t null_process_cmd(struct nullb_cmd *cmd, enum req_op op,
1414 sector_t sector, unsigned int nr_sectors)
1415 {
1416 struct nullb_device *dev = cmd->nq->dev;
1417 blk_status_t badblocks_ret = BLK_STS_OK;
1418 blk_status_t ret;
1419
1420 if (dev->badblocks.shift != -1)
1421 badblocks_ret = null_handle_badblocks(cmd, sector, &nr_sectors);
1422
1423 if (dev->memory_backed && nr_sectors) {
1424 ret = null_handle_memory_backed(cmd, op, sector, nr_sectors);
1425 if (ret != BLK_STS_OK)
1426 return ret;
1427 }
1428
1429 return badblocks_ret;
1430 }
1431
null_handle_cmd(struct nullb_cmd * cmd,sector_t sector,sector_t nr_sectors,enum req_op op)1432 static void null_handle_cmd(struct nullb_cmd *cmd, sector_t sector,
1433 sector_t nr_sectors, enum req_op op)
1434 {
1435 struct nullb_device *dev = cmd->nq->dev;
1436 struct nullb *nullb = dev->nullb;
1437 blk_status_t sts;
1438
1439 if (op == REQ_OP_FLUSH) {
1440 cmd->error = null_handle_flush(nullb);
1441 goto out;
1442 }
1443
1444 if (dev->zoned)
1445 sts = null_process_zoned_cmd(cmd, op, sector, nr_sectors);
1446 else
1447 sts = null_process_cmd(cmd, op, sector, nr_sectors);
1448
1449 /* Do not overwrite errors (e.g. timeout errors) */
1450 if (cmd->error == BLK_STS_OK)
1451 cmd->error = sts;
1452
1453 out:
1454 nullb_complete_cmd(cmd);
1455 }
1456
nullb_bwtimer_fn(struct hrtimer * timer)1457 static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer)
1458 {
1459 struct nullb *nullb = container_of(timer, struct nullb, bw_timer);
1460 ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1461 unsigned int mbps = nullb->dev->mbps;
1462
1463 if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps))
1464 return HRTIMER_NORESTART;
1465
1466 atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps));
1467 blk_mq_start_stopped_hw_queues(nullb->q, true);
1468
1469 hrtimer_forward_now(&nullb->bw_timer, timer_interval);
1470
1471 return HRTIMER_RESTART;
1472 }
1473
nullb_setup_bwtimer(struct nullb * nullb)1474 static void nullb_setup_bwtimer(struct nullb *nullb)
1475 {
1476 ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1477
1478 hrtimer_setup(&nullb->bw_timer, nullb_bwtimer_fn, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1479 atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps));
1480 hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL);
1481 }
1482
1483 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1484
should_timeout_request(struct request * rq)1485 static bool should_timeout_request(struct request *rq)
1486 {
1487 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1488 struct nullb_device *dev = cmd->nq->dev;
1489
1490 return should_fail(&dev->timeout_config.attr, 1);
1491 }
1492
should_requeue_request(struct request * rq)1493 static bool should_requeue_request(struct request *rq)
1494 {
1495 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1496 struct nullb_device *dev = cmd->nq->dev;
1497
1498 return should_fail(&dev->requeue_config.attr, 1);
1499 }
1500
should_init_hctx_fail(struct nullb_device * dev)1501 static bool should_init_hctx_fail(struct nullb_device *dev)
1502 {
1503 return should_fail(&dev->init_hctx_fault_config.attr, 1);
1504 }
1505
1506 #else
1507
should_timeout_request(struct request * rq)1508 static bool should_timeout_request(struct request *rq)
1509 {
1510 return false;
1511 }
1512
should_requeue_request(struct request * rq)1513 static bool should_requeue_request(struct request *rq)
1514 {
1515 return false;
1516 }
1517
should_init_hctx_fail(struct nullb_device * dev)1518 static bool should_init_hctx_fail(struct nullb_device *dev)
1519 {
1520 return false;
1521 }
1522
1523 #endif
1524
null_map_queues(struct blk_mq_tag_set * set)1525 static void null_map_queues(struct blk_mq_tag_set *set)
1526 {
1527 struct nullb *nullb = set->driver_data;
1528 int i, qoff;
1529 unsigned int submit_queues = g_submit_queues;
1530 unsigned int poll_queues = g_poll_queues;
1531
1532 if (nullb) {
1533 struct nullb_device *dev = nullb->dev;
1534
1535 /*
1536 * Refer nr_hw_queues of the tag set to check if the expected
1537 * number of hardware queues are prepared. If block layer failed
1538 * to prepare them, use previous numbers of submit queues and
1539 * poll queues to map queues.
1540 */
1541 if (set->nr_hw_queues ==
1542 dev->submit_queues + dev->poll_queues) {
1543 submit_queues = dev->submit_queues;
1544 poll_queues = dev->poll_queues;
1545 } else if (set->nr_hw_queues ==
1546 dev->prev_submit_queues + dev->prev_poll_queues) {
1547 submit_queues = dev->prev_submit_queues;
1548 poll_queues = dev->prev_poll_queues;
1549 } else {
1550 pr_warn("tag set has unexpected nr_hw_queues: %d\n",
1551 set->nr_hw_queues);
1552 WARN_ON_ONCE(true);
1553 submit_queues = 1;
1554 poll_queues = 0;
1555 }
1556 }
1557
1558 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
1559 struct blk_mq_queue_map *map = &set->map[i];
1560
1561 switch (i) {
1562 case HCTX_TYPE_DEFAULT:
1563 map->nr_queues = submit_queues;
1564 break;
1565 case HCTX_TYPE_READ:
1566 map->nr_queues = 0;
1567 continue;
1568 case HCTX_TYPE_POLL:
1569 map->nr_queues = poll_queues;
1570 break;
1571 }
1572 map->queue_offset = qoff;
1573 qoff += map->nr_queues;
1574 blk_mq_map_queues(map);
1575 }
1576 }
1577
null_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1578 static int null_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1579 {
1580 struct nullb_queue *nq = hctx->driver_data;
1581 LIST_HEAD(list);
1582 int nr = 0;
1583 struct request *rq;
1584
1585 spin_lock(&nq->poll_lock);
1586 list_splice_init(&nq->poll_list, &list);
1587 list_for_each_entry(rq, &list, queuelist)
1588 blk_mq_set_request_complete(rq);
1589 spin_unlock(&nq->poll_lock);
1590
1591 while (!list_empty(&list)) {
1592 struct nullb_cmd *cmd;
1593 struct request *req;
1594
1595 req = list_first_entry(&list, struct request, queuelist);
1596 list_del_init(&req->queuelist);
1597 cmd = blk_mq_rq_to_pdu(req);
1598 cmd->error = null_process_cmd(cmd, req_op(req), blk_rq_pos(req),
1599 blk_rq_sectors(req));
1600 if (!blk_mq_add_to_batch(req, iob, cmd->error != BLK_STS_OK,
1601 blk_mq_end_request_batch))
1602 blk_mq_end_request(req, cmd->error);
1603 nr++;
1604 }
1605
1606 return nr;
1607 }
1608
null_timeout_rq(struct request * rq)1609 static enum blk_eh_timer_return null_timeout_rq(struct request *rq)
1610 {
1611 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1612 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1613
1614 if (hctx->type == HCTX_TYPE_POLL) {
1615 struct nullb_queue *nq = hctx->driver_data;
1616
1617 spin_lock(&nq->poll_lock);
1618 /* The request may have completed meanwhile. */
1619 if (blk_mq_request_completed(rq)) {
1620 spin_unlock(&nq->poll_lock);
1621 return BLK_EH_DONE;
1622 }
1623 list_del_init(&rq->queuelist);
1624 spin_unlock(&nq->poll_lock);
1625 }
1626
1627 pr_info("rq %p timed out\n", rq);
1628
1629 /*
1630 * If the device is marked as blocking (i.e. memory backed or zoned
1631 * device), the submission path may be blocked waiting for resources
1632 * and cause real timeouts. For these real timeouts, the submission
1633 * path will complete the request using blk_mq_complete_request().
1634 * Only fake timeouts need to execute blk_mq_complete_request() here.
1635 */
1636 cmd->error = BLK_STS_TIMEOUT;
1637 if (cmd->fake_timeout || hctx->type == HCTX_TYPE_POLL)
1638 blk_mq_complete_request(rq);
1639 return BLK_EH_DONE;
1640 }
1641
null_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1642 static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx,
1643 const struct blk_mq_queue_data *bd)
1644 {
1645 struct request *rq = bd->rq;
1646 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1647 struct nullb_queue *nq = hctx->driver_data;
1648 sector_t nr_sectors = blk_rq_sectors(rq);
1649 sector_t sector = blk_rq_pos(rq);
1650 const bool is_poll = hctx->type == HCTX_TYPE_POLL;
1651
1652 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1653
1654 if (!is_poll && nq->dev->irqmode == NULL_IRQ_TIMER) {
1655 hrtimer_setup(&cmd->timer, null_cmd_timer_expired, CLOCK_MONOTONIC,
1656 HRTIMER_MODE_REL);
1657 }
1658 cmd->error = BLK_STS_OK;
1659 cmd->nq = nq;
1660 cmd->fake_timeout = should_timeout_request(rq) ||
1661 blk_should_fake_timeout(rq->q);
1662
1663 if (should_requeue_request(rq)) {
1664 /*
1665 * Alternate between hitting the core BUSY path, and the
1666 * driver driven requeue path
1667 */
1668 nq->requeue_selection++;
1669 if (nq->requeue_selection & 1)
1670 return BLK_STS_RESOURCE;
1671 blk_mq_requeue_request(rq, true);
1672 return BLK_STS_OK;
1673 }
1674
1675 if (test_bit(NULLB_DEV_FL_THROTTLED, &nq->dev->flags)) {
1676 blk_status_t sts = null_handle_throttled(cmd);
1677
1678 if (sts != BLK_STS_OK)
1679 return sts;
1680 }
1681
1682 blk_mq_start_request(rq);
1683
1684 if (is_poll) {
1685 spin_lock(&nq->poll_lock);
1686 list_add_tail(&rq->queuelist, &nq->poll_list);
1687 spin_unlock(&nq->poll_lock);
1688 return BLK_STS_OK;
1689 }
1690 if (cmd->fake_timeout)
1691 return BLK_STS_OK;
1692
1693 null_handle_cmd(cmd, sector, nr_sectors, req_op(rq));
1694 return BLK_STS_OK;
1695 }
1696
null_queue_rqs(struct rq_list * rqlist)1697 static void null_queue_rqs(struct rq_list *rqlist)
1698 {
1699 struct rq_list requeue_list = {};
1700 struct blk_mq_queue_data bd = { };
1701 blk_status_t ret;
1702
1703 do {
1704 struct request *rq = rq_list_pop(rqlist);
1705
1706 bd.rq = rq;
1707 ret = null_queue_rq(rq->mq_hctx, &bd);
1708 if (ret != BLK_STS_OK)
1709 rq_list_add_tail(&requeue_list, rq);
1710 } while (!rq_list_empty(rqlist));
1711
1712 *rqlist = requeue_list;
1713 }
1714
null_init_queue(struct nullb * nullb,struct nullb_queue * nq)1715 static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq)
1716 {
1717 nq->dev = nullb->dev;
1718 INIT_LIST_HEAD(&nq->poll_list);
1719 spin_lock_init(&nq->poll_lock);
1720 }
1721
null_init_hctx(struct blk_mq_hw_ctx * hctx,void * driver_data,unsigned int hctx_idx)1722 static int null_init_hctx(struct blk_mq_hw_ctx *hctx, void *driver_data,
1723 unsigned int hctx_idx)
1724 {
1725 struct nullb *nullb = hctx->queue->queuedata;
1726 struct nullb_queue *nq;
1727
1728 if (should_init_hctx_fail(nullb->dev))
1729 return -EFAULT;
1730
1731 nq = &nullb->queues[hctx_idx];
1732 hctx->driver_data = nq;
1733 null_init_queue(nullb, nq);
1734
1735 return 0;
1736 }
1737
1738 static const struct blk_mq_ops null_mq_ops = {
1739 .queue_rq = null_queue_rq,
1740 .queue_rqs = null_queue_rqs,
1741 .complete = null_complete_rq,
1742 .timeout = null_timeout_rq,
1743 .poll = null_poll,
1744 .map_queues = null_map_queues,
1745 .init_hctx = null_init_hctx,
1746 };
1747
null_del_dev(struct nullb * nullb)1748 static void null_del_dev(struct nullb *nullb)
1749 {
1750 struct nullb_device *dev;
1751
1752 if (!nullb)
1753 return;
1754
1755 dev = nullb->dev;
1756
1757 ida_free(&nullb_indexes, nullb->index);
1758
1759 list_del_init(&nullb->list);
1760
1761 del_gendisk(nullb->disk);
1762
1763 if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) {
1764 hrtimer_cancel(&nullb->bw_timer);
1765 atomic_long_set(&nullb->cur_bytes, LONG_MAX);
1766 blk_mq_start_stopped_hw_queues(nullb->q, true);
1767 }
1768
1769 put_disk(nullb->disk);
1770 if (nullb->tag_set == &nullb->__tag_set)
1771 blk_mq_free_tag_set(nullb->tag_set);
1772 kfree(nullb->queues);
1773 if (null_cache_active(nullb))
1774 null_free_device_storage(nullb->dev, true);
1775 kfree(nullb);
1776 dev->nullb = NULL;
1777 }
1778
null_config_discard(struct nullb * nullb,struct queue_limits * lim)1779 static void null_config_discard(struct nullb *nullb, struct queue_limits *lim)
1780 {
1781 if (nullb->dev->discard == false)
1782 return;
1783
1784 if (!nullb->dev->memory_backed) {
1785 nullb->dev->discard = false;
1786 pr_info("discard option is ignored without memory backing\n");
1787 return;
1788 }
1789
1790 if (nullb->dev->zoned) {
1791 nullb->dev->discard = false;
1792 pr_info("discard option is ignored in zoned mode\n");
1793 return;
1794 }
1795
1796 lim->max_hw_discard_sectors = UINT_MAX >> 9;
1797 }
1798
1799 static const struct block_device_operations null_ops = {
1800 .owner = THIS_MODULE,
1801 .report_zones = null_report_zones,
1802 };
1803
setup_queues(struct nullb * nullb)1804 static int setup_queues(struct nullb *nullb)
1805 {
1806 int nqueues = nr_cpu_ids;
1807
1808 if (g_poll_queues)
1809 nqueues += g_poll_queues;
1810
1811 nullb->queues = kcalloc(nqueues, sizeof(struct nullb_queue),
1812 GFP_KERNEL);
1813 if (!nullb->queues)
1814 return -ENOMEM;
1815
1816 return 0;
1817 }
1818
null_init_tag_set(struct blk_mq_tag_set * set,int poll_queues)1819 static int null_init_tag_set(struct blk_mq_tag_set *set, int poll_queues)
1820 {
1821 set->ops = &null_mq_ops;
1822 set->cmd_size = sizeof(struct nullb_cmd);
1823 set->timeout = 5 * HZ;
1824 set->nr_maps = 1;
1825 if (poll_queues) {
1826 set->nr_hw_queues += poll_queues;
1827 set->nr_maps += 2;
1828 }
1829 return blk_mq_alloc_tag_set(set);
1830 }
1831
null_init_global_tag_set(void)1832 static int null_init_global_tag_set(void)
1833 {
1834 int error;
1835
1836 if (tag_set.ops)
1837 return 0;
1838
1839 tag_set.nr_hw_queues = g_submit_queues;
1840 tag_set.queue_depth = g_hw_queue_depth;
1841 tag_set.numa_node = g_home_node;
1842 if (g_no_sched)
1843 tag_set.flags |= BLK_MQ_F_NO_SCHED_BY_DEFAULT;
1844 if (g_shared_tag_bitmap)
1845 tag_set.flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1846 if (g_blocking)
1847 tag_set.flags |= BLK_MQ_F_BLOCKING;
1848
1849 error = null_init_tag_set(&tag_set, g_poll_queues);
1850 if (error)
1851 tag_set.ops = NULL;
1852 return error;
1853 }
1854
null_setup_tagset(struct nullb * nullb)1855 static int null_setup_tagset(struct nullb *nullb)
1856 {
1857 if (nullb->dev->shared_tags) {
1858 nullb->tag_set = &tag_set;
1859 return null_init_global_tag_set();
1860 }
1861
1862 nullb->tag_set = &nullb->__tag_set;
1863 nullb->tag_set->driver_data = nullb;
1864 nullb->tag_set->nr_hw_queues = nullb->dev->submit_queues;
1865 nullb->tag_set->queue_depth = nullb->dev->hw_queue_depth;
1866 nullb->tag_set->numa_node = nullb->dev->home_node;
1867 if (nullb->dev->no_sched)
1868 nullb->tag_set->flags |= BLK_MQ_F_NO_SCHED_BY_DEFAULT;
1869 if (nullb->dev->shared_tag_bitmap)
1870 nullb->tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1871 if (nullb->dev->blocking)
1872 nullb->tag_set->flags |= BLK_MQ_F_BLOCKING;
1873 return null_init_tag_set(nullb->tag_set, nullb->dev->poll_queues);
1874 }
1875
null_validate_conf(struct nullb_device * dev)1876 static int null_validate_conf(struct nullb_device *dev)
1877 {
1878 if (dev->queue_mode == NULL_Q_RQ) {
1879 pr_err("legacy IO path is no longer available\n");
1880 return -EINVAL;
1881 }
1882 if (dev->queue_mode == NULL_Q_BIO) {
1883 pr_err("BIO-based IO path is no longer available, using blk-mq instead.\n");
1884 dev->queue_mode = NULL_Q_MQ;
1885 }
1886
1887 if (dev->use_per_node_hctx) {
1888 if (dev->submit_queues != nr_online_nodes)
1889 dev->submit_queues = nr_online_nodes;
1890 } else if (dev->submit_queues > nr_cpu_ids)
1891 dev->submit_queues = nr_cpu_ids;
1892 else if (dev->submit_queues == 0)
1893 dev->submit_queues = 1;
1894 dev->prev_submit_queues = dev->submit_queues;
1895
1896 if (dev->poll_queues > g_poll_queues)
1897 dev->poll_queues = g_poll_queues;
1898 dev->prev_poll_queues = dev->poll_queues;
1899 dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER);
1900
1901 /* Do memory allocation, so set blocking */
1902 if (dev->memory_backed)
1903 dev->blocking = true;
1904 else /* cache is meaningless */
1905 dev->cache_size = 0;
1906 dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024,
1907 dev->cache_size);
1908 dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps);
1909
1910 if (dev->zoned &&
1911 (!dev->zone_size || !is_power_of_2(dev->zone_size))) {
1912 pr_err("zone_size must be power-of-two\n");
1913 return -EINVAL;
1914 }
1915
1916 return 0;
1917 }
1918
1919 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
__null_setup_fault(struct fault_attr * attr,char * str)1920 static bool __null_setup_fault(struct fault_attr *attr, char *str)
1921 {
1922 if (!str[0])
1923 return true;
1924
1925 if (!setup_fault_attr(attr, str))
1926 return false;
1927
1928 attr->verbose = 0;
1929 return true;
1930 }
1931 #endif
1932
null_setup_fault(void)1933 static bool null_setup_fault(void)
1934 {
1935 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1936 if (!__null_setup_fault(&null_timeout_attr, g_timeout_str))
1937 return false;
1938 if (!__null_setup_fault(&null_requeue_attr, g_requeue_str))
1939 return false;
1940 if (!__null_setup_fault(&null_init_hctx_attr, g_init_hctx_str))
1941 return false;
1942 #endif
1943 return true;
1944 }
1945
null_add_dev(struct nullb_device * dev)1946 static int null_add_dev(struct nullb_device *dev)
1947 {
1948 struct queue_limits lim = {
1949 .logical_block_size = dev->blocksize,
1950 .physical_block_size = dev->blocksize,
1951 .max_hw_sectors = dev->max_sectors,
1952 };
1953
1954 struct nullb *nullb;
1955 int rv;
1956
1957 rv = null_validate_conf(dev);
1958 if (rv)
1959 return rv;
1960
1961 nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node);
1962 if (!nullb) {
1963 rv = -ENOMEM;
1964 goto out;
1965 }
1966 nullb->dev = dev;
1967 dev->nullb = nullb;
1968
1969 spin_lock_init(&nullb->lock);
1970
1971 rv = setup_queues(nullb);
1972 if (rv)
1973 goto out_free_nullb;
1974
1975 rv = null_setup_tagset(nullb);
1976 if (rv)
1977 goto out_cleanup_queues;
1978
1979 if (dev->virt_boundary)
1980 lim.virt_boundary_mask = PAGE_SIZE - 1;
1981 null_config_discard(nullb, &lim);
1982 if (dev->zoned) {
1983 rv = null_init_zoned_dev(dev, &lim);
1984 if (rv)
1985 goto out_cleanup_tags;
1986 }
1987
1988 if (dev->cache_size > 0) {
1989 set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
1990 lim.features |= BLK_FEAT_WRITE_CACHE;
1991 if (dev->fua)
1992 lim.features |= BLK_FEAT_FUA;
1993 }
1994
1995 if (dev->rotational)
1996 lim.features |= BLK_FEAT_ROTATIONAL;
1997
1998 nullb->disk = blk_mq_alloc_disk(nullb->tag_set, &lim, nullb);
1999 if (IS_ERR(nullb->disk)) {
2000 rv = PTR_ERR(nullb->disk);
2001 goto out_cleanup_zone;
2002 }
2003 nullb->q = nullb->disk->queue;
2004
2005 if (dev->mbps) {
2006 set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags);
2007 nullb_setup_bwtimer(nullb);
2008 }
2009
2010 nullb->q->queuedata = nullb;
2011
2012 rv = ida_alloc(&nullb_indexes, GFP_KERNEL);
2013 if (rv < 0)
2014 goto out_cleanup_disk;
2015
2016 nullb->index = rv;
2017 dev->index = rv;
2018
2019 if (config_item_name(&dev->group.cg_item)) {
2020 /* Use configfs dir name as the device name */
2021 snprintf(nullb->disk_name, sizeof(nullb->disk_name),
2022 "%s", config_item_name(&dev->group.cg_item));
2023 } else {
2024 sprintf(nullb->disk_name, "nullb%d", nullb->index);
2025 }
2026
2027 set_capacity(nullb->disk,
2028 ((sector_t)nullb->dev->size * SZ_1M) >> SECTOR_SHIFT);
2029 nullb->disk->major = null_major;
2030 nullb->disk->first_minor = nullb->index;
2031 nullb->disk->minors = 1;
2032 nullb->disk->fops = &null_ops;
2033 nullb->disk->private_data = nullb;
2034 strscpy_pad(nullb->disk->disk_name, nullb->disk_name, DISK_NAME_LEN);
2035
2036 if (nullb->dev->zoned) {
2037 rv = null_register_zoned_dev(nullb);
2038 if (rv)
2039 goto out_ida_free;
2040 }
2041
2042 rv = add_disk(nullb->disk);
2043 if (rv)
2044 goto out_ida_free;
2045
2046 list_add_tail(&nullb->list, &nullb_list);
2047
2048 pr_info("disk %s created\n", nullb->disk_name);
2049
2050 return 0;
2051
2052 out_ida_free:
2053 ida_free(&nullb_indexes, nullb->index);
2054 out_cleanup_disk:
2055 put_disk(nullb->disk);
2056 out_cleanup_zone:
2057 null_free_zoned_dev(dev);
2058 out_cleanup_tags:
2059 if (nullb->tag_set == &nullb->__tag_set)
2060 blk_mq_free_tag_set(nullb->tag_set);
2061 out_cleanup_queues:
2062 kfree(nullb->queues);
2063 out_free_nullb:
2064 kfree(nullb);
2065 dev->nullb = NULL;
2066 out:
2067 return rv;
2068 }
2069
null_find_dev_by_name(const char * name)2070 static struct nullb *null_find_dev_by_name(const char *name)
2071 {
2072 struct nullb *nullb = NULL, *nb;
2073
2074 mutex_lock(&lock);
2075 list_for_each_entry(nb, &nullb_list, list) {
2076 if (strcmp(nb->disk_name, name) == 0) {
2077 nullb = nb;
2078 break;
2079 }
2080 }
2081 mutex_unlock(&lock);
2082
2083 return nullb;
2084 }
2085
null_create_dev(void)2086 static int null_create_dev(void)
2087 {
2088 struct nullb_device *dev;
2089 int ret;
2090
2091 dev = null_alloc_dev();
2092 if (!dev)
2093 return -ENOMEM;
2094
2095 mutex_lock(&lock);
2096 ret = null_add_dev(dev);
2097 mutex_unlock(&lock);
2098 if (ret) {
2099 null_free_dev(dev);
2100 return ret;
2101 }
2102
2103 return 0;
2104 }
2105
null_destroy_dev(struct nullb * nullb)2106 static void null_destroy_dev(struct nullb *nullb)
2107 {
2108 struct nullb_device *dev = nullb->dev;
2109
2110 null_del_dev(nullb);
2111 null_free_device_storage(dev, false);
2112 null_free_dev(dev);
2113 }
2114
null_init(void)2115 static int __init null_init(void)
2116 {
2117 int ret = 0;
2118 unsigned int i;
2119 struct nullb *nullb;
2120
2121 if (g_bs > PAGE_SIZE) {
2122 pr_warn("invalid block size\n");
2123 pr_warn("defaults block size to %lu\n", PAGE_SIZE);
2124 g_bs = PAGE_SIZE;
2125 }
2126
2127 if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) {
2128 pr_err("invalid home_node value\n");
2129 g_home_node = NUMA_NO_NODE;
2130 }
2131
2132 if (!null_setup_fault())
2133 return -EINVAL;
2134
2135 if (g_queue_mode == NULL_Q_RQ) {
2136 pr_err("legacy IO path is no longer available\n");
2137 return -EINVAL;
2138 }
2139
2140 if (g_use_per_node_hctx) {
2141 if (g_submit_queues != nr_online_nodes) {
2142 pr_warn("submit_queues param is set to %u.\n",
2143 nr_online_nodes);
2144 g_submit_queues = nr_online_nodes;
2145 }
2146 } else if (g_submit_queues > nr_cpu_ids) {
2147 g_submit_queues = nr_cpu_ids;
2148 } else if (g_submit_queues <= 0) {
2149 g_submit_queues = 1;
2150 }
2151
2152 config_group_init(&nullb_subsys.su_group);
2153 mutex_init(&nullb_subsys.su_mutex);
2154
2155 ret = configfs_register_subsystem(&nullb_subsys);
2156 if (ret)
2157 return ret;
2158
2159 mutex_init(&lock);
2160
2161 null_major = register_blkdev(0, "nullb");
2162 if (null_major < 0) {
2163 ret = null_major;
2164 goto err_conf;
2165 }
2166
2167 for (i = 0; i < nr_devices; i++) {
2168 ret = null_create_dev();
2169 if (ret)
2170 goto err_dev;
2171 }
2172
2173 pr_info("module loaded\n");
2174 return 0;
2175
2176 err_dev:
2177 while (!list_empty(&nullb_list)) {
2178 nullb = list_entry(nullb_list.next, struct nullb, list);
2179 null_destroy_dev(nullb);
2180 }
2181 unregister_blkdev(null_major, "nullb");
2182 err_conf:
2183 configfs_unregister_subsystem(&nullb_subsys);
2184 return ret;
2185 }
2186
null_exit(void)2187 static void __exit null_exit(void)
2188 {
2189 struct nullb *nullb;
2190
2191 configfs_unregister_subsystem(&nullb_subsys);
2192
2193 unregister_blkdev(null_major, "nullb");
2194
2195 mutex_lock(&lock);
2196 while (!list_empty(&nullb_list)) {
2197 nullb = list_entry(nullb_list.next, struct nullb, list);
2198 null_destroy_dev(nullb);
2199 }
2200 mutex_unlock(&lock);
2201
2202 if (tag_set.ops)
2203 blk_mq_free_tag_set(&tag_set);
2204
2205 mutex_destroy(&lock);
2206 }
2207
2208 module_init(null_init);
2209 module_exit(null_exit);
2210
2211 MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>");
2212 MODULE_DESCRIPTION("multi queue aware block test driver");
2213 MODULE_LICENSE("GPL");
2214