1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4
5 /*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10 #include <uapi/linux/sched.h>
11
12 #include <asm/current.h>
13 #include <asm/processor.h>
14 #include <linux/thread_info.h>
15 #include <linux/preempt.h>
16 #include <linux/cpumask_types.h>
17
18 #include <linux/cache.h>
19 #include <linux/irqflags_types.h>
20 #include <linux/smp_types.h>
21 #include <linux/pid_types.h>
22 #include <linux/sem_types.h>
23 #include <linux/shm.h>
24 #include <linux/kmsan_types.h>
25 #include <linux/mutex_types.h>
26 #include <linux/plist_types.h>
27 #include <linux/hrtimer_types.h>
28 #include <linux/timer_types.h>
29 #include <linux/seccomp_types.h>
30 #include <linux/nodemask_types.h>
31 #include <linux/refcount_types.h>
32 #include <linux/resource.h>
33 #include <linux/latencytop.h>
34 #include <linux/sched/prio.h>
35 #include <linux/sched/types.h>
36 #include <linux/signal_types.h>
37 #include <linux/spinlock.h>
38 #include <linux/syscall_user_dispatch_types.h>
39 #include <linux/mm_types_task.h>
40 #include <linux/netdevice_xmit.h>
41 #include <linux/task_io_accounting.h>
42 #include <linux/posix-timers_types.h>
43 #include <linux/restart_block.h>
44 #include <uapi/linux/rseq.h>
45 #include <linux/seqlock_types.h>
46 #include <linux/kcsan.h>
47 #include <linux/rv.h>
48 #include <linux/uidgid_types.h>
49 #include <linux/tracepoint-defs.h>
50 #include <asm/kmap_size.h>
51
52 /* task_struct member predeclarations (sorted alphabetically): */
53 struct audit_context;
54 struct bio_list;
55 struct blk_plug;
56 struct bpf_local_storage;
57 struct bpf_run_ctx;
58 struct bpf_net_context;
59 struct capture_control;
60 struct cfs_rq;
61 struct fs_struct;
62 struct futex_pi_state;
63 struct io_context;
64 struct io_uring_task;
65 struct mempolicy;
66 struct nameidata;
67 struct nsproxy;
68 struct perf_event_context;
69 struct perf_ctx_data;
70 struct pid_namespace;
71 struct pipe_inode_info;
72 struct rcu_node;
73 struct reclaim_state;
74 struct robust_list_head;
75 struct root_domain;
76 struct rq;
77 struct sched_attr;
78 struct sched_dl_entity;
79 struct seq_file;
80 struct sighand_struct;
81 struct signal_struct;
82 struct task_delay_info;
83 struct task_group;
84 struct task_struct;
85 struct user_event_mm;
86
87 #include <linux/sched/ext.h>
88
89 /*
90 * Task state bitmask. NOTE! These bits are also
91 * encoded in fs/proc/array.c: get_task_state().
92 *
93 * We have two separate sets of flags: task->__state
94 * is about runnability, while task->exit_state are
95 * about the task exiting. Confusing, but this way
96 * modifying one set can't modify the other one by
97 * mistake.
98 */
99
100 /* Used in tsk->__state: */
101 #define TASK_RUNNING 0x00000000
102 #define TASK_INTERRUPTIBLE 0x00000001
103 #define TASK_UNINTERRUPTIBLE 0x00000002
104 #define __TASK_STOPPED 0x00000004
105 #define __TASK_TRACED 0x00000008
106 /* Used in tsk->exit_state: */
107 #define EXIT_DEAD 0x00000010
108 #define EXIT_ZOMBIE 0x00000020
109 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
110 /* Used in tsk->__state again: */
111 #define TASK_PARKED 0x00000040
112 #define TASK_DEAD 0x00000080
113 #define TASK_WAKEKILL 0x00000100
114 #define TASK_WAKING 0x00000200
115 #define TASK_NOLOAD 0x00000400
116 #define TASK_NEW 0x00000800
117 #define TASK_RTLOCK_WAIT 0x00001000
118 #define TASK_FREEZABLE 0x00002000
119 #define __TASK_FREEZABLE_UNSAFE (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
120 #define TASK_FROZEN 0x00008000
121 #define TASK_STATE_MAX 0x00010000
122
123 #define TASK_ANY (TASK_STATE_MAX-1)
124
125 /*
126 * DO NOT ADD ANY NEW USERS !
127 */
128 #define TASK_FREEZABLE_UNSAFE (TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
129
130 /* Convenience macros for the sake of set_current_state: */
131 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
132 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
133 #define TASK_TRACED __TASK_TRACED
134
135 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
136
137 /* Convenience macros for the sake of wake_up(): */
138 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
139
140 /* get_task_state(): */
141 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
142 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
143 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
144 TASK_PARKED)
145
146 #define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING)
147
148 #define task_is_traced(task) ((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
149 #define task_is_stopped(task) ((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
150 #define task_is_stopped_or_traced(task) ((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
151
152 /*
153 * Special states are those that do not use the normal wait-loop pattern. See
154 * the comment with set_special_state().
155 */
156 #define is_special_task_state(state) \
157 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | \
158 TASK_DEAD | TASK_FROZEN))
159
160 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
161 # define debug_normal_state_change(state_value) \
162 do { \
163 WARN_ON_ONCE(is_special_task_state(state_value)); \
164 current->task_state_change = _THIS_IP_; \
165 } while (0)
166
167 # define debug_special_state_change(state_value) \
168 do { \
169 WARN_ON_ONCE(!is_special_task_state(state_value)); \
170 current->task_state_change = _THIS_IP_; \
171 } while (0)
172
173 # define debug_rtlock_wait_set_state() \
174 do { \
175 current->saved_state_change = current->task_state_change;\
176 current->task_state_change = _THIS_IP_; \
177 } while (0)
178
179 # define debug_rtlock_wait_restore_state() \
180 do { \
181 current->task_state_change = current->saved_state_change;\
182 } while (0)
183
184 #else
185 # define debug_normal_state_change(cond) do { } while (0)
186 # define debug_special_state_change(cond) do { } while (0)
187 # define debug_rtlock_wait_set_state() do { } while (0)
188 # define debug_rtlock_wait_restore_state() do { } while (0)
189 #endif
190
191 #define trace_set_current_state(state_value) \
192 do { \
193 if (tracepoint_enabled(sched_set_state_tp)) \
194 __trace_set_current_state(state_value); \
195 } while (0)
196
197 /*
198 * set_current_state() includes a barrier so that the write of current->__state
199 * is correctly serialised wrt the caller's subsequent test of whether to
200 * actually sleep:
201 *
202 * for (;;) {
203 * set_current_state(TASK_UNINTERRUPTIBLE);
204 * if (CONDITION)
205 * break;
206 *
207 * schedule();
208 * }
209 * __set_current_state(TASK_RUNNING);
210 *
211 * If the caller does not need such serialisation (because, for instance, the
212 * CONDITION test and condition change and wakeup are under the same lock) then
213 * use __set_current_state().
214 *
215 * The above is typically ordered against the wakeup, which does:
216 *
217 * CONDITION = 1;
218 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
219 *
220 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
221 * accessing p->__state.
222 *
223 * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is,
224 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
225 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
226 *
227 * However, with slightly different timing the wakeup TASK_RUNNING store can
228 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
229 * a problem either because that will result in one extra go around the loop
230 * and our @cond test will save the day.
231 *
232 * Also see the comments of try_to_wake_up().
233 */
234 #define __set_current_state(state_value) \
235 do { \
236 debug_normal_state_change((state_value)); \
237 trace_set_current_state(state_value); \
238 WRITE_ONCE(current->__state, (state_value)); \
239 } while (0)
240
241 #define set_current_state(state_value) \
242 do { \
243 debug_normal_state_change((state_value)); \
244 trace_set_current_state(state_value); \
245 smp_store_mb(current->__state, (state_value)); \
246 } while (0)
247
248 /*
249 * set_special_state() should be used for those states when the blocking task
250 * can not use the regular condition based wait-loop. In that case we must
251 * serialize against wakeups such that any possible in-flight TASK_RUNNING
252 * stores will not collide with our state change.
253 */
254 #define set_special_state(state_value) \
255 do { \
256 unsigned long flags; /* may shadow */ \
257 \
258 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
259 debug_special_state_change((state_value)); \
260 trace_set_current_state(state_value); \
261 WRITE_ONCE(current->__state, (state_value)); \
262 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
263 } while (0)
264
265 /*
266 * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
267 *
268 * RT's spin/rwlock substitutions are state preserving. The state of the
269 * task when blocking on the lock is saved in task_struct::saved_state and
270 * restored after the lock has been acquired. These operations are
271 * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
272 * lock related wakeups while the task is blocked on the lock are
273 * redirected to operate on task_struct::saved_state to ensure that these
274 * are not dropped. On restore task_struct::saved_state is set to
275 * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
276 *
277 * The lock operation looks like this:
278 *
279 * current_save_and_set_rtlock_wait_state();
280 * for (;;) {
281 * if (try_lock())
282 * break;
283 * raw_spin_unlock_irq(&lock->wait_lock);
284 * schedule_rtlock();
285 * raw_spin_lock_irq(&lock->wait_lock);
286 * set_current_state(TASK_RTLOCK_WAIT);
287 * }
288 * current_restore_rtlock_saved_state();
289 */
290 #define current_save_and_set_rtlock_wait_state() \
291 do { \
292 lockdep_assert_irqs_disabled(); \
293 raw_spin_lock(¤t->pi_lock); \
294 current->saved_state = current->__state; \
295 debug_rtlock_wait_set_state(); \
296 trace_set_current_state(TASK_RTLOCK_WAIT); \
297 WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \
298 raw_spin_unlock(¤t->pi_lock); \
299 } while (0);
300
301 #define current_restore_rtlock_saved_state() \
302 do { \
303 lockdep_assert_irqs_disabled(); \
304 raw_spin_lock(¤t->pi_lock); \
305 debug_rtlock_wait_restore_state(); \
306 trace_set_current_state(current->saved_state); \
307 WRITE_ONCE(current->__state, current->saved_state); \
308 current->saved_state = TASK_RUNNING; \
309 raw_spin_unlock(¤t->pi_lock); \
310 } while (0);
311
312 #define get_current_state() READ_ONCE(current->__state)
313
314 /*
315 * Define the task command name length as enum, then it can be visible to
316 * BPF programs.
317 */
318 enum {
319 TASK_COMM_LEN = 16,
320 };
321
322 extern void sched_tick(void);
323
324 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
325
326 extern long schedule_timeout(long timeout);
327 extern long schedule_timeout_interruptible(long timeout);
328 extern long schedule_timeout_killable(long timeout);
329 extern long schedule_timeout_uninterruptible(long timeout);
330 extern long schedule_timeout_idle(long timeout);
331 asmlinkage void schedule(void);
332 extern void schedule_preempt_disabled(void);
333 asmlinkage void preempt_schedule_irq(void);
334 #ifdef CONFIG_PREEMPT_RT
335 extern void schedule_rtlock(void);
336 #endif
337
338 extern int __must_check io_schedule_prepare(void);
339 extern void io_schedule_finish(int token);
340 extern long io_schedule_timeout(long timeout);
341 extern void io_schedule(void);
342
343 /* wrapper functions to trace from this header file */
344 DECLARE_TRACEPOINT(sched_set_state_tp);
345 extern void __trace_set_current_state(int state_value);
346 DECLARE_TRACEPOINT(sched_set_need_resched_tp);
347 extern void __trace_set_need_resched(struct task_struct *curr, int tif);
348
349 /**
350 * struct prev_cputime - snapshot of system and user cputime
351 * @utime: time spent in user mode
352 * @stime: time spent in system mode
353 * @lock: protects the above two fields
354 *
355 * Stores previous user/system time values such that we can guarantee
356 * monotonicity.
357 */
358 struct prev_cputime {
359 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
360 u64 utime;
361 u64 stime;
362 raw_spinlock_t lock;
363 #endif
364 };
365
366 enum vtime_state {
367 /* Task is sleeping or running in a CPU with VTIME inactive: */
368 VTIME_INACTIVE = 0,
369 /* Task is idle */
370 VTIME_IDLE,
371 /* Task runs in kernelspace in a CPU with VTIME active: */
372 VTIME_SYS,
373 /* Task runs in userspace in a CPU with VTIME active: */
374 VTIME_USER,
375 /* Task runs as guests in a CPU with VTIME active: */
376 VTIME_GUEST,
377 };
378
379 struct vtime {
380 seqcount_t seqcount;
381 unsigned long long starttime;
382 enum vtime_state state;
383 unsigned int cpu;
384 u64 utime;
385 u64 stime;
386 u64 gtime;
387 };
388
389 /*
390 * Utilization clamp constraints.
391 * @UCLAMP_MIN: Minimum utilization
392 * @UCLAMP_MAX: Maximum utilization
393 * @UCLAMP_CNT: Utilization clamp constraints count
394 */
395 enum uclamp_id {
396 UCLAMP_MIN = 0,
397 UCLAMP_MAX,
398 UCLAMP_CNT
399 };
400
401 extern struct root_domain def_root_domain;
402 extern struct mutex sched_domains_mutex;
403 extern void sched_domains_mutex_lock(void);
404 extern void sched_domains_mutex_unlock(void);
405
406 struct sched_param {
407 int sched_priority;
408 };
409
410 struct sched_info {
411 #ifdef CONFIG_SCHED_INFO
412 /* Cumulative counters: */
413
414 /* # of times we have run on this CPU: */
415 unsigned long pcount;
416
417 /* Time spent waiting on a runqueue: */
418 unsigned long long run_delay;
419
420 /* Max time spent waiting on a runqueue: */
421 unsigned long long max_run_delay;
422
423 /* Min time spent waiting on a runqueue: */
424 unsigned long long min_run_delay;
425
426 /* Timestamps: */
427
428 /* When did we last run on a CPU? */
429 unsigned long long last_arrival;
430
431 /* When were we last queued to run? */
432 unsigned long long last_queued;
433
434 #endif /* CONFIG_SCHED_INFO */
435 };
436
437 /*
438 * Integer metrics need fixed point arithmetic, e.g., sched/fair
439 * has a few: load, load_avg, util_avg, freq, and capacity.
440 *
441 * We define a basic fixed point arithmetic range, and then formalize
442 * all these metrics based on that basic range.
443 */
444 # define SCHED_FIXEDPOINT_SHIFT 10
445 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
446
447 /* Increase resolution of cpu_capacity calculations */
448 # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
449 # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
450
451 struct load_weight {
452 unsigned long weight;
453 u32 inv_weight;
454 };
455
456 /*
457 * The load/runnable/util_avg accumulates an infinite geometric series
458 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
459 *
460 * [load_avg definition]
461 *
462 * load_avg = runnable% * scale_load_down(load)
463 *
464 * [runnable_avg definition]
465 *
466 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
467 *
468 * [util_avg definition]
469 *
470 * util_avg = running% * SCHED_CAPACITY_SCALE
471 *
472 * where runnable% is the time ratio that a sched_entity is runnable and
473 * running% the time ratio that a sched_entity is running.
474 *
475 * For cfs_rq, they are the aggregated values of all runnable and blocked
476 * sched_entities.
477 *
478 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
479 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
480 * for computing those signals (see update_rq_clock_pelt())
481 *
482 * N.B., the above ratios (runnable% and running%) themselves are in the
483 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
484 * to as large a range as necessary. This is for example reflected by
485 * util_avg's SCHED_CAPACITY_SCALE.
486 *
487 * [Overflow issue]
488 *
489 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
490 * with the highest load (=88761), always runnable on a single cfs_rq,
491 * and should not overflow as the number already hits PID_MAX_LIMIT.
492 *
493 * For all other cases (including 32-bit kernels), struct load_weight's
494 * weight will overflow first before we do, because:
495 *
496 * Max(load_avg) <= Max(load.weight)
497 *
498 * Then it is the load_weight's responsibility to consider overflow
499 * issues.
500 */
501 struct sched_avg {
502 u64 last_update_time;
503 u64 load_sum;
504 u64 runnable_sum;
505 u32 util_sum;
506 u32 period_contrib;
507 unsigned long load_avg;
508 unsigned long runnable_avg;
509 unsigned long util_avg;
510 unsigned int util_est;
511 } ____cacheline_aligned;
512
513 /*
514 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
515 * updates. When a task is dequeued, its util_est should not be updated if its
516 * util_avg has not been updated in the meantime.
517 * This information is mapped into the MSB bit of util_est at dequeue time.
518 * Since max value of util_est for a task is 1024 (PELT util_avg for a task)
519 * it is safe to use MSB.
520 */
521 #define UTIL_EST_WEIGHT_SHIFT 2
522 #define UTIL_AVG_UNCHANGED 0x80000000
523
524 struct sched_statistics {
525 #ifdef CONFIG_SCHEDSTATS
526 u64 wait_start;
527 u64 wait_max;
528 u64 wait_count;
529 u64 wait_sum;
530 u64 iowait_count;
531 u64 iowait_sum;
532
533 u64 sleep_start;
534 u64 sleep_max;
535 s64 sum_sleep_runtime;
536
537 u64 block_start;
538 u64 block_max;
539 s64 sum_block_runtime;
540
541 s64 exec_max;
542 u64 slice_max;
543
544 u64 nr_migrations_cold;
545 u64 nr_failed_migrations_affine;
546 u64 nr_failed_migrations_running;
547 u64 nr_failed_migrations_hot;
548 u64 nr_forced_migrations;
549
550 u64 nr_wakeups;
551 u64 nr_wakeups_sync;
552 u64 nr_wakeups_migrate;
553 u64 nr_wakeups_local;
554 u64 nr_wakeups_remote;
555 u64 nr_wakeups_affine;
556 u64 nr_wakeups_affine_attempts;
557 u64 nr_wakeups_passive;
558 u64 nr_wakeups_idle;
559
560 #ifdef CONFIG_SCHED_CORE
561 u64 core_forceidle_sum;
562 #endif
563 #endif /* CONFIG_SCHEDSTATS */
564 } ____cacheline_aligned;
565
566 struct sched_entity {
567 /* For load-balancing: */
568 struct load_weight load;
569 struct rb_node run_node;
570 u64 deadline;
571 u64 min_vruntime;
572 u64 min_slice;
573
574 struct list_head group_node;
575 unsigned char on_rq;
576 unsigned char sched_delayed;
577 unsigned char rel_deadline;
578 unsigned char custom_slice;
579 /* hole */
580
581 u64 exec_start;
582 u64 sum_exec_runtime;
583 u64 prev_sum_exec_runtime;
584 u64 vruntime;
585 union {
586 /*
587 * When !@on_rq this field is vlag.
588 * When cfs_rq->curr == se (which implies @on_rq)
589 * this field is vprot. See protect_slice().
590 */
591 s64 vlag;
592 u64 vprot;
593 };
594 u64 slice;
595
596 u64 nr_migrations;
597
598 #ifdef CONFIG_FAIR_GROUP_SCHED
599 int depth;
600 struct sched_entity *parent;
601 /* rq on which this entity is (to be) queued: */
602 struct cfs_rq *cfs_rq;
603 /* rq "owned" by this entity/group: */
604 struct cfs_rq *my_q;
605 /* cached value of my_q->h_nr_running */
606 unsigned long runnable_weight;
607 #endif
608
609 /*
610 * Per entity load average tracking.
611 *
612 * Put into separate cache line so it does not
613 * collide with read-mostly values above.
614 */
615 struct sched_avg avg;
616 };
617
618 struct sched_rt_entity {
619 struct list_head run_list;
620 unsigned long timeout;
621 unsigned long watchdog_stamp;
622 unsigned int time_slice;
623 unsigned short on_rq;
624 unsigned short on_list;
625
626 struct sched_rt_entity *back;
627 #ifdef CONFIG_RT_GROUP_SCHED
628 struct sched_rt_entity *parent;
629 /* rq on which this entity is (to be) queued: */
630 struct rt_rq *rt_rq;
631 /* rq "owned" by this entity/group: */
632 struct rt_rq *my_q;
633 #endif
634 } __randomize_layout;
635
636 typedef bool (*dl_server_has_tasks_f)(struct sched_dl_entity *);
637 typedef struct task_struct *(*dl_server_pick_f)(struct sched_dl_entity *);
638
639 struct sched_dl_entity {
640 struct rb_node rb_node;
641
642 /*
643 * Original scheduling parameters. Copied here from sched_attr
644 * during sched_setattr(), they will remain the same until
645 * the next sched_setattr().
646 */
647 u64 dl_runtime; /* Maximum runtime for each instance */
648 u64 dl_deadline; /* Relative deadline of each instance */
649 u64 dl_period; /* Separation of two instances (period) */
650 u64 dl_bw; /* dl_runtime / dl_period */
651 u64 dl_density; /* dl_runtime / dl_deadline */
652
653 /*
654 * Actual scheduling parameters. Initialized with the values above,
655 * they are continuously updated during task execution. Note that
656 * the remaining runtime could be < 0 in case we are in overrun.
657 */
658 s64 runtime; /* Remaining runtime for this instance */
659 u64 deadline; /* Absolute deadline for this instance */
660 unsigned int flags; /* Specifying the scheduler behaviour */
661
662 /*
663 * Some bool flags:
664 *
665 * @dl_throttled tells if we exhausted the runtime. If so, the
666 * task has to wait for a replenishment to be performed at the
667 * next firing of dl_timer.
668 *
669 * @dl_yielded tells if task gave up the CPU before consuming
670 * all its available runtime during the last job.
671 *
672 * @dl_non_contending tells if the task is inactive while still
673 * contributing to the active utilization. In other words, it
674 * indicates if the inactive timer has been armed and its handler
675 * has not been executed yet. This flag is useful to avoid race
676 * conditions between the inactive timer handler and the wakeup
677 * code.
678 *
679 * @dl_overrun tells if the task asked to be informed about runtime
680 * overruns.
681 *
682 * @dl_server tells if this is a server entity.
683 *
684 * @dl_defer tells if this is a deferred or regular server. For
685 * now only defer server exists.
686 *
687 * @dl_defer_armed tells if the deferrable server is waiting
688 * for the replenishment timer to activate it.
689 *
690 * @dl_server_active tells if the dlserver is active(started).
691 * dlserver is started on first cfs enqueue on an idle runqueue
692 * and is stopped when a dequeue results in 0 cfs tasks on the
693 * runqueue. In other words, dlserver is active only when cpu's
694 * runqueue has atleast one cfs task.
695 *
696 * @dl_defer_running tells if the deferrable server is actually
697 * running, skipping the defer phase.
698 */
699 unsigned int dl_throttled : 1;
700 unsigned int dl_yielded : 1;
701 unsigned int dl_non_contending : 1;
702 unsigned int dl_overrun : 1;
703 unsigned int dl_server : 1;
704 unsigned int dl_server_active : 1;
705 unsigned int dl_defer : 1;
706 unsigned int dl_defer_armed : 1;
707 unsigned int dl_defer_running : 1;
708 unsigned int dl_server_idle : 1;
709
710 /*
711 * Bandwidth enforcement timer. Each -deadline task has its
712 * own bandwidth to be enforced, thus we need one timer per task.
713 */
714 struct hrtimer dl_timer;
715
716 /*
717 * Inactive timer, responsible for decreasing the active utilization
718 * at the "0-lag time". When a -deadline task blocks, it contributes
719 * to GRUB's active utilization until the "0-lag time", hence a
720 * timer is needed to decrease the active utilization at the correct
721 * time.
722 */
723 struct hrtimer inactive_timer;
724
725 /*
726 * Bits for DL-server functionality. Also see the comment near
727 * dl_server_update().
728 *
729 * @rq the runqueue this server is for
730 *
731 * @server_has_tasks() returns true if @server_pick return a
732 * runnable task.
733 */
734 struct rq *rq;
735 dl_server_has_tasks_f server_has_tasks;
736 dl_server_pick_f server_pick_task;
737
738 #ifdef CONFIG_RT_MUTEXES
739 /*
740 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
741 * pi_se points to the donor, otherwise points to the dl_se it belongs
742 * to (the original one/itself).
743 */
744 struct sched_dl_entity *pi_se;
745 #endif
746 };
747
748 #ifdef CONFIG_UCLAMP_TASK
749 /* Number of utilization clamp buckets (shorter alias) */
750 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
751
752 /*
753 * Utilization clamp for a scheduling entity
754 * @value: clamp value "assigned" to a se
755 * @bucket_id: bucket index corresponding to the "assigned" value
756 * @active: the se is currently refcounted in a rq's bucket
757 * @user_defined: the requested clamp value comes from user-space
758 *
759 * The bucket_id is the index of the clamp bucket matching the clamp value
760 * which is pre-computed and stored to avoid expensive integer divisions from
761 * the fast path.
762 *
763 * The active bit is set whenever a task has got an "effective" value assigned,
764 * which can be different from the clamp value "requested" from user-space.
765 * This allows to know a task is refcounted in the rq's bucket corresponding
766 * to the "effective" bucket_id.
767 *
768 * The user_defined bit is set whenever a task has got a task-specific clamp
769 * value requested from userspace, i.e. the system defaults apply to this task
770 * just as a restriction. This allows to relax default clamps when a less
771 * restrictive task-specific value has been requested, thus allowing to
772 * implement a "nice" semantic. For example, a task running with a 20%
773 * default boost can still drop its own boosting to 0%.
774 */
775 struct uclamp_se {
776 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
777 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
778 unsigned int active : 1;
779 unsigned int user_defined : 1;
780 };
781 #endif /* CONFIG_UCLAMP_TASK */
782
783 union rcu_special {
784 struct {
785 u8 blocked;
786 u8 need_qs;
787 u8 exp_hint; /* Hint for performance. */
788 u8 need_mb; /* Readers need smp_mb(). */
789 } b; /* Bits. */
790 u32 s; /* Set of bits. */
791 };
792
793 enum perf_event_task_context {
794 perf_invalid_context = -1,
795 perf_hw_context = 0,
796 perf_sw_context,
797 perf_nr_task_contexts,
798 };
799
800 /*
801 * Number of contexts where an event can trigger:
802 * task, softirq, hardirq, nmi.
803 */
804 #define PERF_NR_CONTEXTS 4
805
806 struct wake_q_node {
807 struct wake_q_node *next;
808 };
809
810 struct kmap_ctrl {
811 #ifdef CONFIG_KMAP_LOCAL
812 int idx;
813 pte_t pteval[KM_MAX_IDX];
814 #endif
815 };
816
817 struct task_struct {
818 #ifdef CONFIG_THREAD_INFO_IN_TASK
819 /*
820 * For reasons of header soup (see current_thread_info()), this
821 * must be the first element of task_struct.
822 */
823 struct thread_info thread_info;
824 #endif
825 unsigned int __state;
826
827 /* saved state for "spinlock sleepers" */
828 unsigned int saved_state;
829
830 /*
831 * This begins the randomizable portion of task_struct. Only
832 * scheduling-critical items should be added above here.
833 */
834 randomized_struct_fields_start
835
836 void *stack;
837 refcount_t usage;
838 /* Per task flags (PF_*), defined further below: */
839 unsigned int flags;
840 unsigned int ptrace;
841
842 #ifdef CONFIG_MEM_ALLOC_PROFILING
843 struct alloc_tag *alloc_tag;
844 #endif
845
846 int on_cpu;
847 struct __call_single_node wake_entry;
848 unsigned int wakee_flips;
849 unsigned long wakee_flip_decay_ts;
850 struct task_struct *last_wakee;
851
852 /*
853 * recent_used_cpu is initially set as the last CPU used by a task
854 * that wakes affine another task. Waker/wakee relationships can
855 * push tasks around a CPU where each wakeup moves to the next one.
856 * Tracking a recently used CPU allows a quick search for a recently
857 * used CPU that may be idle.
858 */
859 int recent_used_cpu;
860 int wake_cpu;
861 int on_rq;
862
863 int prio;
864 int static_prio;
865 int normal_prio;
866 unsigned int rt_priority;
867
868 struct sched_entity se;
869 struct sched_rt_entity rt;
870 struct sched_dl_entity dl;
871 struct sched_dl_entity *dl_server;
872 #ifdef CONFIG_SCHED_CLASS_EXT
873 struct sched_ext_entity scx;
874 #endif
875 const struct sched_class *sched_class;
876
877 #ifdef CONFIG_SCHED_CORE
878 struct rb_node core_node;
879 unsigned long core_cookie;
880 unsigned int core_occupation;
881 #endif
882
883 #ifdef CONFIG_CGROUP_SCHED
884 struct task_group *sched_task_group;
885 #endif
886
887
888 #ifdef CONFIG_UCLAMP_TASK
889 /*
890 * Clamp values requested for a scheduling entity.
891 * Must be updated with task_rq_lock() held.
892 */
893 struct uclamp_se uclamp_req[UCLAMP_CNT];
894 /*
895 * Effective clamp values used for a scheduling entity.
896 * Must be updated with task_rq_lock() held.
897 */
898 struct uclamp_se uclamp[UCLAMP_CNT];
899 #endif
900
901 struct sched_statistics stats;
902
903 #ifdef CONFIG_PREEMPT_NOTIFIERS
904 /* List of struct preempt_notifier: */
905 struct hlist_head preempt_notifiers;
906 #endif
907
908 #ifdef CONFIG_BLK_DEV_IO_TRACE
909 unsigned int btrace_seq;
910 #endif
911
912 unsigned int policy;
913 unsigned long max_allowed_capacity;
914 int nr_cpus_allowed;
915 const cpumask_t *cpus_ptr;
916 cpumask_t *user_cpus_ptr;
917 cpumask_t cpus_mask;
918 void *migration_pending;
919 unsigned short migration_disabled;
920 unsigned short migration_flags;
921
922 #ifdef CONFIG_PREEMPT_RCU
923 int rcu_read_lock_nesting;
924 union rcu_special rcu_read_unlock_special;
925 struct list_head rcu_node_entry;
926 struct rcu_node *rcu_blocked_node;
927 #endif /* #ifdef CONFIG_PREEMPT_RCU */
928
929 #ifdef CONFIG_TASKS_RCU
930 unsigned long rcu_tasks_nvcsw;
931 u8 rcu_tasks_holdout;
932 u8 rcu_tasks_idx;
933 int rcu_tasks_idle_cpu;
934 struct list_head rcu_tasks_holdout_list;
935 int rcu_tasks_exit_cpu;
936 struct list_head rcu_tasks_exit_list;
937 #endif /* #ifdef CONFIG_TASKS_RCU */
938
939 #ifdef CONFIG_TASKS_TRACE_RCU
940 int trc_reader_nesting;
941 int trc_ipi_to_cpu;
942 union rcu_special trc_reader_special;
943 struct list_head trc_holdout_list;
944 struct list_head trc_blkd_node;
945 int trc_blkd_cpu;
946 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
947
948 struct sched_info sched_info;
949
950 struct list_head tasks;
951 struct plist_node pushable_tasks;
952 struct rb_node pushable_dl_tasks;
953
954 struct mm_struct *mm;
955 struct mm_struct *active_mm;
956 struct address_space *faults_disabled_mapping;
957
958 int exit_state;
959 int exit_code;
960 int exit_signal;
961 /* The signal sent when the parent dies: */
962 int pdeath_signal;
963 /* JOBCTL_*, siglock protected: */
964 unsigned long jobctl;
965
966 /* Used for emulating ABI behavior of previous Linux versions: */
967 unsigned int personality;
968
969 /* Scheduler bits, serialized by scheduler locks: */
970 unsigned sched_reset_on_fork:1;
971 unsigned sched_contributes_to_load:1;
972 unsigned sched_migrated:1;
973 unsigned sched_task_hot:1;
974
975 /* Force alignment to the next boundary: */
976 unsigned :0;
977
978 /* Unserialized, strictly 'current' */
979
980 /*
981 * This field must not be in the scheduler word above due to wakelist
982 * queueing no longer being serialized by p->on_cpu. However:
983 *
984 * p->XXX = X; ttwu()
985 * schedule() if (p->on_rq && ..) // false
986 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
987 * deactivate_task() ttwu_queue_wakelist())
988 * p->on_rq = 0; p->sched_remote_wakeup = Y;
989 *
990 * guarantees all stores of 'current' are visible before
991 * ->sched_remote_wakeup gets used, so it can be in this word.
992 */
993 unsigned sched_remote_wakeup:1;
994 #ifdef CONFIG_RT_MUTEXES
995 unsigned sched_rt_mutex:1;
996 #endif
997
998 /* Bit to tell TOMOYO we're in execve(): */
999 unsigned in_execve:1;
1000 unsigned in_iowait:1;
1001 #ifndef TIF_RESTORE_SIGMASK
1002 unsigned restore_sigmask:1;
1003 #endif
1004 #ifdef CONFIG_MEMCG_V1
1005 unsigned in_user_fault:1;
1006 #endif
1007 #ifdef CONFIG_LRU_GEN
1008 /* whether the LRU algorithm may apply to this access */
1009 unsigned in_lru_fault:1;
1010 #endif
1011 #ifdef CONFIG_COMPAT_BRK
1012 unsigned brk_randomized:1;
1013 #endif
1014 #ifdef CONFIG_CGROUPS
1015 /* disallow userland-initiated cgroup migration */
1016 unsigned no_cgroup_migration:1;
1017 /* task is frozen/stopped (used by the cgroup freezer) */
1018 unsigned frozen:1;
1019 #endif
1020 #ifdef CONFIG_BLK_CGROUP
1021 unsigned use_memdelay:1;
1022 #endif
1023 #ifdef CONFIG_PSI
1024 /* Stalled due to lack of memory */
1025 unsigned in_memstall:1;
1026 #endif
1027 #ifdef CONFIG_PAGE_OWNER
1028 /* Used by page_owner=on to detect recursion in page tracking. */
1029 unsigned in_page_owner:1;
1030 #endif
1031 #ifdef CONFIG_EVENTFD
1032 /* Recursion prevention for eventfd_signal() */
1033 unsigned in_eventfd:1;
1034 #endif
1035 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1036 unsigned pasid_activated:1;
1037 #endif
1038 #ifdef CONFIG_X86_BUS_LOCK_DETECT
1039 unsigned reported_split_lock:1;
1040 #endif
1041 #ifdef CONFIG_TASK_DELAY_ACCT
1042 /* delay due to memory thrashing */
1043 unsigned in_thrashing:1;
1044 #endif
1045 unsigned in_nf_duplicate:1;
1046 #ifdef CONFIG_PREEMPT_RT
1047 struct netdev_xmit net_xmit;
1048 #endif
1049 unsigned long atomic_flags; /* Flags requiring atomic access. */
1050
1051 struct restart_block restart_block;
1052
1053 pid_t pid;
1054 pid_t tgid;
1055
1056 #ifdef CONFIG_STACKPROTECTOR
1057 /* Canary value for the -fstack-protector GCC feature: */
1058 unsigned long stack_canary;
1059 #endif
1060 /*
1061 * Pointers to the (original) parent process, youngest child, younger sibling,
1062 * older sibling, respectively. (p->father can be replaced with
1063 * p->real_parent->pid)
1064 */
1065
1066 /* Real parent process: */
1067 struct task_struct __rcu *real_parent;
1068
1069 /* Recipient of SIGCHLD, wait4() reports: */
1070 struct task_struct __rcu *parent;
1071
1072 /*
1073 * Children/sibling form the list of natural children:
1074 */
1075 struct list_head children;
1076 struct list_head sibling;
1077 struct task_struct *group_leader;
1078
1079 /*
1080 * 'ptraced' is the list of tasks this task is using ptrace() on.
1081 *
1082 * This includes both natural children and PTRACE_ATTACH targets.
1083 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
1084 */
1085 struct list_head ptraced;
1086 struct list_head ptrace_entry;
1087
1088 /* PID/PID hash table linkage. */
1089 struct pid *thread_pid;
1090 struct hlist_node pid_links[PIDTYPE_MAX];
1091 struct list_head thread_node;
1092
1093 struct completion *vfork_done;
1094
1095 /* CLONE_CHILD_SETTID: */
1096 int __user *set_child_tid;
1097
1098 /* CLONE_CHILD_CLEARTID: */
1099 int __user *clear_child_tid;
1100
1101 /* PF_KTHREAD | PF_IO_WORKER */
1102 void *worker_private;
1103
1104 u64 utime;
1105 u64 stime;
1106 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1107 u64 utimescaled;
1108 u64 stimescaled;
1109 #endif
1110 u64 gtime;
1111 struct prev_cputime prev_cputime;
1112 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1113 struct vtime vtime;
1114 #endif
1115
1116 #ifdef CONFIG_NO_HZ_FULL
1117 atomic_t tick_dep_mask;
1118 #endif
1119 /* Context switch counts: */
1120 unsigned long nvcsw;
1121 unsigned long nivcsw;
1122
1123 /* Monotonic time in nsecs: */
1124 u64 start_time;
1125
1126 /* Boot based time in nsecs: */
1127 u64 start_boottime;
1128
1129 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1130 unsigned long min_flt;
1131 unsigned long maj_flt;
1132
1133 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1134 struct posix_cputimers posix_cputimers;
1135
1136 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1137 struct posix_cputimers_work posix_cputimers_work;
1138 #endif
1139
1140 /* Process credentials: */
1141
1142 /* Tracer's credentials at attach: */
1143 const struct cred __rcu *ptracer_cred;
1144
1145 /* Objective and real subjective task credentials (COW): */
1146 const struct cred __rcu *real_cred;
1147
1148 /* Effective (overridable) subjective task credentials (COW): */
1149 const struct cred __rcu *cred;
1150
1151 #ifdef CONFIG_KEYS
1152 /* Cached requested key. */
1153 struct key *cached_requested_key;
1154 #endif
1155
1156 /*
1157 * executable name, excluding path.
1158 *
1159 * - normally initialized begin_new_exec()
1160 * - set it with set_task_comm()
1161 * - strscpy_pad() to ensure it is always NUL-terminated and
1162 * zero-padded
1163 * - task_lock() to ensure the operation is atomic and the name is
1164 * fully updated.
1165 */
1166 char comm[TASK_COMM_LEN];
1167
1168 struct nameidata *nameidata;
1169
1170 #ifdef CONFIG_SYSVIPC
1171 struct sysv_sem sysvsem;
1172 struct sysv_shm sysvshm;
1173 #endif
1174 #ifdef CONFIG_DETECT_HUNG_TASK
1175 unsigned long last_switch_count;
1176 unsigned long last_switch_time;
1177 #endif
1178 /* Filesystem information: */
1179 struct fs_struct *fs;
1180
1181 /* Open file information: */
1182 struct files_struct *files;
1183
1184 #ifdef CONFIG_IO_URING
1185 struct io_uring_task *io_uring;
1186 #endif
1187
1188 /* Namespaces: */
1189 struct nsproxy *nsproxy;
1190
1191 /* Signal handlers: */
1192 struct signal_struct *signal;
1193 struct sighand_struct __rcu *sighand;
1194 sigset_t blocked;
1195 sigset_t real_blocked;
1196 /* Restored if set_restore_sigmask() was used: */
1197 sigset_t saved_sigmask;
1198 struct sigpending pending;
1199 unsigned long sas_ss_sp;
1200 size_t sas_ss_size;
1201 unsigned int sas_ss_flags;
1202
1203 struct callback_head *task_works;
1204
1205 #ifdef CONFIG_AUDIT
1206 #ifdef CONFIG_AUDITSYSCALL
1207 struct audit_context *audit_context;
1208 #endif
1209 kuid_t loginuid;
1210 unsigned int sessionid;
1211 #endif
1212 struct seccomp seccomp;
1213 struct syscall_user_dispatch syscall_dispatch;
1214
1215 /* Thread group tracking: */
1216 u64 parent_exec_id;
1217 u64 self_exec_id;
1218
1219 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1220 spinlock_t alloc_lock;
1221
1222 /* Protection of the PI data structures: */
1223 raw_spinlock_t pi_lock;
1224
1225 struct wake_q_node wake_q;
1226
1227 #ifdef CONFIG_RT_MUTEXES
1228 /* PI waiters blocked on a rt_mutex held by this task: */
1229 struct rb_root_cached pi_waiters;
1230 /* Updated under owner's pi_lock and rq lock */
1231 struct task_struct *pi_top_task;
1232 /* Deadlock detection and priority inheritance handling: */
1233 struct rt_mutex_waiter *pi_blocked_on;
1234 #endif
1235
1236 struct mutex *blocked_on; /* lock we're blocked on */
1237
1238 #ifdef CONFIG_DETECT_HUNG_TASK_BLOCKER
1239 /*
1240 * Encoded lock address causing task block (lower 2 bits = type from
1241 * <linux/hung_task.h>). Accessed via hung_task_*() helpers.
1242 */
1243 unsigned long blocker;
1244 #endif
1245
1246 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1247 int non_block_count;
1248 #endif
1249
1250 #ifdef CONFIG_TRACE_IRQFLAGS
1251 struct irqtrace_events irqtrace;
1252 unsigned int hardirq_threaded;
1253 u64 hardirq_chain_key;
1254 int softirqs_enabled;
1255 int softirq_context;
1256 int irq_config;
1257 #endif
1258 #ifdef CONFIG_PREEMPT_RT
1259 int softirq_disable_cnt;
1260 #endif
1261
1262 #ifdef CONFIG_LOCKDEP
1263 # define MAX_LOCK_DEPTH 48UL
1264 u64 curr_chain_key;
1265 int lockdep_depth;
1266 unsigned int lockdep_recursion;
1267 struct held_lock held_locks[MAX_LOCK_DEPTH];
1268 #endif
1269
1270 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1271 unsigned int in_ubsan;
1272 #endif
1273
1274 /* Journalling filesystem info: */
1275 void *journal_info;
1276
1277 /* Stacked block device info: */
1278 struct bio_list *bio_list;
1279
1280 /* Stack plugging: */
1281 struct blk_plug *plug;
1282
1283 /* VM state: */
1284 struct reclaim_state *reclaim_state;
1285
1286 struct io_context *io_context;
1287
1288 #ifdef CONFIG_COMPACTION
1289 struct capture_control *capture_control;
1290 #endif
1291 /* Ptrace state: */
1292 unsigned long ptrace_message;
1293 kernel_siginfo_t *last_siginfo;
1294
1295 struct task_io_accounting ioac;
1296 #ifdef CONFIG_PSI
1297 /* Pressure stall state */
1298 unsigned int psi_flags;
1299 #endif
1300 #ifdef CONFIG_TASK_XACCT
1301 /* Accumulated RSS usage: */
1302 u64 acct_rss_mem1;
1303 /* Accumulated virtual memory usage: */
1304 u64 acct_vm_mem1;
1305 /* stime + utime since last update: */
1306 u64 acct_timexpd;
1307 #endif
1308 #ifdef CONFIG_CPUSETS
1309 /* Protected by ->alloc_lock: */
1310 nodemask_t mems_allowed;
1311 /* Sequence number to catch updates: */
1312 seqcount_spinlock_t mems_allowed_seq;
1313 int cpuset_mem_spread_rotor;
1314 #endif
1315 #ifdef CONFIG_CGROUPS
1316 /* Control Group info protected by css_set_lock: */
1317 struct css_set __rcu *cgroups;
1318 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1319 struct list_head cg_list;
1320 #endif
1321 #ifdef CONFIG_X86_CPU_RESCTRL
1322 u32 closid;
1323 u32 rmid;
1324 #endif
1325 #ifdef CONFIG_FUTEX
1326 struct robust_list_head __user *robust_list;
1327 #ifdef CONFIG_COMPAT
1328 struct compat_robust_list_head __user *compat_robust_list;
1329 #endif
1330 struct list_head pi_state_list;
1331 struct futex_pi_state *pi_state_cache;
1332 struct mutex futex_exit_mutex;
1333 unsigned int futex_state;
1334 #endif
1335 #ifdef CONFIG_PERF_EVENTS
1336 u8 perf_recursion[PERF_NR_CONTEXTS];
1337 struct perf_event_context *perf_event_ctxp;
1338 struct mutex perf_event_mutex;
1339 struct list_head perf_event_list;
1340 struct perf_ctx_data __rcu *perf_ctx_data;
1341 #endif
1342 #ifdef CONFIG_DEBUG_PREEMPT
1343 unsigned long preempt_disable_ip;
1344 #endif
1345 #ifdef CONFIG_NUMA
1346 /* Protected by alloc_lock: */
1347 struct mempolicy *mempolicy;
1348 short il_prev;
1349 u8 il_weight;
1350 short pref_node_fork;
1351 #endif
1352 #ifdef CONFIG_NUMA_BALANCING
1353 int numa_scan_seq;
1354 unsigned int numa_scan_period;
1355 unsigned int numa_scan_period_max;
1356 int numa_preferred_nid;
1357 unsigned long numa_migrate_retry;
1358 /* Migration stamp: */
1359 u64 node_stamp;
1360 u64 last_task_numa_placement;
1361 u64 last_sum_exec_runtime;
1362 struct callback_head numa_work;
1363
1364 /*
1365 * This pointer is only modified for current in syscall and
1366 * pagefault context (and for tasks being destroyed), so it can be read
1367 * from any of the following contexts:
1368 * - RCU read-side critical section
1369 * - current->numa_group from everywhere
1370 * - task's runqueue locked, task not running
1371 */
1372 struct numa_group __rcu *numa_group;
1373
1374 /*
1375 * numa_faults is an array split into four regions:
1376 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1377 * in this precise order.
1378 *
1379 * faults_memory: Exponential decaying average of faults on a per-node
1380 * basis. Scheduling placement decisions are made based on these
1381 * counts. The values remain static for the duration of a PTE scan.
1382 * faults_cpu: Track the nodes the process was running on when a NUMA
1383 * hinting fault was incurred.
1384 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1385 * during the current scan window. When the scan completes, the counts
1386 * in faults_memory and faults_cpu decay and these values are copied.
1387 */
1388 unsigned long *numa_faults;
1389 unsigned long total_numa_faults;
1390
1391 /*
1392 * numa_faults_locality tracks if faults recorded during the last
1393 * scan window were remote/local or failed to migrate. The task scan
1394 * period is adapted based on the locality of the faults with different
1395 * weights depending on whether they were shared or private faults
1396 */
1397 unsigned long numa_faults_locality[3];
1398
1399 unsigned long numa_pages_migrated;
1400 #endif /* CONFIG_NUMA_BALANCING */
1401
1402 #ifdef CONFIG_RSEQ
1403 struct rseq __user *rseq;
1404 u32 rseq_len;
1405 u32 rseq_sig;
1406 /*
1407 * RmW on rseq_event_mask must be performed atomically
1408 * with respect to preemption.
1409 */
1410 unsigned long rseq_event_mask;
1411 # ifdef CONFIG_DEBUG_RSEQ
1412 /*
1413 * This is a place holder to save a copy of the rseq fields for
1414 * validation of read-only fields. The struct rseq has a
1415 * variable-length array at the end, so it cannot be used
1416 * directly. Reserve a size large enough for the known fields.
1417 */
1418 char rseq_fields[sizeof(struct rseq)];
1419 # endif
1420 #endif
1421
1422 #ifdef CONFIG_SCHED_MM_CID
1423 int mm_cid; /* Current cid in mm */
1424 int last_mm_cid; /* Most recent cid in mm */
1425 int migrate_from_cpu;
1426 int mm_cid_active; /* Whether cid bitmap is active */
1427 struct callback_head cid_work;
1428 #endif
1429
1430 struct tlbflush_unmap_batch tlb_ubc;
1431
1432 /* Cache last used pipe for splice(): */
1433 struct pipe_inode_info *splice_pipe;
1434
1435 struct page_frag task_frag;
1436
1437 #ifdef CONFIG_TASK_DELAY_ACCT
1438 struct task_delay_info *delays;
1439 #endif
1440
1441 #ifdef CONFIG_FAULT_INJECTION
1442 int make_it_fail;
1443 unsigned int fail_nth;
1444 #endif
1445 /*
1446 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1447 * balance_dirty_pages() for a dirty throttling pause:
1448 */
1449 int nr_dirtied;
1450 int nr_dirtied_pause;
1451 /* Start of a write-and-pause period: */
1452 unsigned long dirty_paused_when;
1453
1454 #ifdef CONFIG_LATENCYTOP
1455 int latency_record_count;
1456 struct latency_record latency_record[LT_SAVECOUNT];
1457 #endif
1458 /*
1459 * Time slack values; these are used to round up poll() and
1460 * select() etc timeout values. These are in nanoseconds.
1461 */
1462 u64 timer_slack_ns;
1463 u64 default_timer_slack_ns;
1464
1465 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1466 unsigned int kasan_depth;
1467 #endif
1468
1469 #ifdef CONFIG_KCSAN
1470 struct kcsan_ctx kcsan_ctx;
1471 #ifdef CONFIG_TRACE_IRQFLAGS
1472 struct irqtrace_events kcsan_save_irqtrace;
1473 #endif
1474 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1475 int kcsan_stack_depth;
1476 #endif
1477 #endif
1478
1479 #ifdef CONFIG_KMSAN
1480 struct kmsan_ctx kmsan_ctx;
1481 #endif
1482
1483 #if IS_ENABLED(CONFIG_KUNIT)
1484 struct kunit *kunit_test;
1485 #endif
1486
1487 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1488 /* Index of current stored address in ret_stack: */
1489 int curr_ret_stack;
1490 int curr_ret_depth;
1491
1492 /* Stack of return addresses for return function tracing: */
1493 unsigned long *ret_stack;
1494
1495 /* Timestamp for last schedule: */
1496 unsigned long long ftrace_timestamp;
1497 unsigned long long ftrace_sleeptime;
1498
1499 /*
1500 * Number of functions that haven't been traced
1501 * because of depth overrun:
1502 */
1503 atomic_t trace_overrun;
1504
1505 /* Pause tracing: */
1506 atomic_t tracing_graph_pause;
1507 #endif
1508
1509 #ifdef CONFIG_TRACING
1510 /* Bitmask and counter of trace recursion: */
1511 unsigned long trace_recursion;
1512 #endif /* CONFIG_TRACING */
1513
1514 #ifdef CONFIG_KCOV
1515 /* See kernel/kcov.c for more details. */
1516
1517 /* Coverage collection mode enabled for this task (0 if disabled): */
1518 unsigned int kcov_mode;
1519
1520 /* Size of the kcov_area: */
1521 unsigned int kcov_size;
1522
1523 /* Buffer for coverage collection: */
1524 void *kcov_area;
1525
1526 /* KCOV descriptor wired with this task or NULL: */
1527 struct kcov *kcov;
1528
1529 /* KCOV common handle for remote coverage collection: */
1530 u64 kcov_handle;
1531
1532 /* KCOV sequence number: */
1533 int kcov_sequence;
1534
1535 /* Collect coverage from softirq context: */
1536 unsigned int kcov_softirq;
1537 #endif
1538
1539 #ifdef CONFIG_MEMCG_V1
1540 struct mem_cgroup *memcg_in_oom;
1541 #endif
1542
1543 #ifdef CONFIG_MEMCG
1544 /* Number of pages to reclaim on returning to userland: */
1545 unsigned int memcg_nr_pages_over_high;
1546
1547 /* Used by memcontrol for targeted memcg charge: */
1548 struct mem_cgroup *active_memcg;
1549
1550 /* Cache for current->cgroups->memcg->objcg lookups: */
1551 struct obj_cgroup *objcg;
1552 #endif
1553
1554 #ifdef CONFIG_BLK_CGROUP
1555 struct gendisk *throttle_disk;
1556 #endif
1557
1558 #ifdef CONFIG_UPROBES
1559 struct uprobe_task *utask;
1560 #endif
1561 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1562 unsigned int sequential_io;
1563 unsigned int sequential_io_avg;
1564 #endif
1565 struct kmap_ctrl kmap_ctrl;
1566 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1567 unsigned long task_state_change;
1568 # ifdef CONFIG_PREEMPT_RT
1569 unsigned long saved_state_change;
1570 # endif
1571 #endif
1572 struct rcu_head rcu;
1573 refcount_t rcu_users;
1574 int pagefault_disabled;
1575 #ifdef CONFIG_MMU
1576 struct task_struct *oom_reaper_list;
1577 struct timer_list oom_reaper_timer;
1578 #endif
1579 #ifdef CONFIG_VMAP_STACK
1580 struct vm_struct *stack_vm_area;
1581 #endif
1582 #ifdef CONFIG_THREAD_INFO_IN_TASK
1583 /* A live task holds one reference: */
1584 refcount_t stack_refcount;
1585 #endif
1586 #ifdef CONFIG_LIVEPATCH
1587 int patch_state;
1588 #endif
1589 #ifdef CONFIG_SECURITY
1590 /* Used by LSM modules for access restriction: */
1591 void *security;
1592 #endif
1593 #ifdef CONFIG_BPF_SYSCALL
1594 /* Used by BPF task local storage */
1595 struct bpf_local_storage __rcu *bpf_storage;
1596 /* Used for BPF run context */
1597 struct bpf_run_ctx *bpf_ctx;
1598 #endif
1599 /* Used by BPF for per-TASK xdp storage */
1600 struct bpf_net_context *bpf_net_context;
1601
1602 #ifdef CONFIG_KSTACK_ERASE
1603 unsigned long lowest_stack;
1604 #endif
1605 #ifdef CONFIG_KSTACK_ERASE_METRICS
1606 unsigned long prev_lowest_stack;
1607 #endif
1608
1609 #ifdef CONFIG_X86_MCE
1610 void __user *mce_vaddr;
1611 __u64 mce_kflags;
1612 u64 mce_addr;
1613 __u64 mce_ripv : 1,
1614 mce_whole_page : 1,
1615 __mce_reserved : 62;
1616 struct callback_head mce_kill_me;
1617 int mce_count;
1618 #endif
1619
1620 #ifdef CONFIG_KRETPROBES
1621 struct llist_head kretprobe_instances;
1622 #endif
1623 #ifdef CONFIG_RETHOOK
1624 struct llist_head rethooks;
1625 #endif
1626
1627 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1628 /*
1629 * If L1D flush is supported on mm context switch
1630 * then we use this callback head to queue kill work
1631 * to kill tasks that are not running on SMT disabled
1632 * cores
1633 */
1634 struct callback_head l1d_flush_kill;
1635 #endif
1636
1637 #ifdef CONFIG_RV
1638 /*
1639 * Per-task RV monitor, fixed in CONFIG_RV_PER_TASK_MONITORS.
1640 * If memory becomes a concern, we can think about a dynamic method.
1641 */
1642 union rv_task_monitor rv[CONFIG_RV_PER_TASK_MONITORS];
1643 #endif
1644
1645 #ifdef CONFIG_USER_EVENTS
1646 struct user_event_mm *user_event_mm;
1647 #endif
1648
1649 /* CPU-specific state of this task: */
1650 struct thread_struct thread;
1651
1652 /*
1653 * New fields for task_struct should be added above here, so that
1654 * they are included in the randomized portion of task_struct.
1655 */
1656 randomized_struct_fields_end
1657 } __attribute__ ((aligned (64)));
1658
1659 #ifdef CONFIG_SCHED_PROXY_EXEC
1660 DECLARE_STATIC_KEY_TRUE(__sched_proxy_exec);
sched_proxy_exec(void)1661 static inline bool sched_proxy_exec(void)
1662 {
1663 return static_branch_likely(&__sched_proxy_exec);
1664 }
1665 #else
sched_proxy_exec(void)1666 static inline bool sched_proxy_exec(void)
1667 {
1668 return false;
1669 }
1670 #endif
1671
1672 #define TASK_REPORT_IDLE (TASK_REPORT + 1)
1673 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1674
__task_state_index(unsigned int tsk_state,unsigned int tsk_exit_state)1675 static inline unsigned int __task_state_index(unsigned int tsk_state,
1676 unsigned int tsk_exit_state)
1677 {
1678 unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1679
1680 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1681
1682 if ((tsk_state & TASK_IDLE) == TASK_IDLE)
1683 state = TASK_REPORT_IDLE;
1684
1685 /*
1686 * We're lying here, but rather than expose a completely new task state
1687 * to userspace, we can make this appear as if the task has gone through
1688 * a regular rt_mutex_lock() call.
1689 * Report frozen tasks as uninterruptible.
1690 */
1691 if ((tsk_state & TASK_RTLOCK_WAIT) || (tsk_state & TASK_FROZEN))
1692 state = TASK_UNINTERRUPTIBLE;
1693
1694 return fls(state);
1695 }
1696
task_state_index(struct task_struct * tsk)1697 static inline unsigned int task_state_index(struct task_struct *tsk)
1698 {
1699 return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1700 }
1701
task_index_to_char(unsigned int state)1702 static inline char task_index_to_char(unsigned int state)
1703 {
1704 static const char state_char[] = "RSDTtXZPI";
1705
1706 BUILD_BUG_ON(TASK_REPORT_MAX * 2 != 1 << (sizeof(state_char) - 1));
1707
1708 return state_char[state];
1709 }
1710
task_state_to_char(struct task_struct * tsk)1711 static inline char task_state_to_char(struct task_struct *tsk)
1712 {
1713 return task_index_to_char(task_state_index(tsk));
1714 }
1715
1716 extern struct pid *cad_pid;
1717
1718 /*
1719 * Per process flags
1720 */
1721 #define PF_VCPU 0x00000001 /* I'm a virtual CPU */
1722 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1723 #define PF_EXITING 0x00000004 /* Getting shut down */
1724 #define PF_POSTCOREDUMP 0x00000008 /* Coredumps should ignore this task */
1725 #define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
1726 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1727 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1728 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1729 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1730 #define PF_DUMPCORE 0x00000200 /* Dumped core */
1731 #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1732 #define PF_MEMALLOC 0x00000800 /* Allocating memory to free memory. See memalloc_noreclaim_save() */
1733 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1734 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1735 #define PF_USER_WORKER 0x00004000 /* Kernel thread cloned from userspace thread */
1736 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1737 #define PF_KCOMPACTD 0x00010000 /* I am kcompactd */
1738 #define PF_KSWAPD 0x00020000 /* I am kswapd */
1739 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocations inherit GFP_NOFS. See memalloc_nfs_save() */
1740 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocations inherit GFP_NOIO. See memalloc_noio_save() */
1741 #define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1742 * I am cleaning dirty pages from some other bdi. */
1743 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1744 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1745 #define PF__HOLE__00800000 0x00800000
1746 #define PF__HOLE__01000000 0x01000000
1747 #define PF__HOLE__02000000 0x02000000
1748 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
1749 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1750 #define PF_MEMALLOC_PIN 0x10000000 /* Allocations constrained to zones which allow long term pinning.
1751 * See memalloc_pin_save() */
1752 #define PF_BLOCK_TS 0x20000000 /* plug has ts that needs updating */
1753 #define PF__HOLE__40000000 0x40000000
1754 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1755
1756 /*
1757 * Only the _current_ task can read/write to tsk->flags, but other
1758 * tasks can access tsk->flags in readonly mode for example
1759 * with tsk_used_math (like during threaded core dumping).
1760 * There is however an exception to this rule during ptrace
1761 * or during fork: the ptracer task is allowed to write to the
1762 * child->flags of its traced child (same goes for fork, the parent
1763 * can write to the child->flags), because we're guaranteed the
1764 * child is not running and in turn not changing child->flags
1765 * at the same time the parent does it.
1766 */
1767 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1768 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1769 #define clear_used_math() clear_stopped_child_used_math(current)
1770 #define set_used_math() set_stopped_child_used_math(current)
1771
1772 #define conditional_stopped_child_used_math(condition, child) \
1773 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1774
1775 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1776
1777 #define copy_to_stopped_child_used_math(child) \
1778 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1779
1780 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1781 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1782 #define used_math() tsk_used_math(current)
1783
is_percpu_thread(void)1784 static __always_inline bool is_percpu_thread(void)
1785 {
1786 return (current->flags & PF_NO_SETAFFINITY) &&
1787 (current->nr_cpus_allowed == 1);
1788 }
1789
1790 /* Per-process atomic flags. */
1791 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1792 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1793 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1794 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1795 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1796 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1797 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1798 #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1799
1800 #define TASK_PFA_TEST(name, func) \
1801 static inline bool task_##func(struct task_struct *p) \
1802 { return test_bit(PFA_##name, &p->atomic_flags); }
1803
1804 #define TASK_PFA_SET(name, func) \
1805 static inline void task_set_##func(struct task_struct *p) \
1806 { set_bit(PFA_##name, &p->atomic_flags); }
1807
1808 #define TASK_PFA_CLEAR(name, func) \
1809 static inline void task_clear_##func(struct task_struct *p) \
1810 { clear_bit(PFA_##name, &p->atomic_flags); }
1811
TASK_PFA_TEST(NO_NEW_PRIVS,no_new_privs)1812 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1813 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1814
1815 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1816 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1817 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1818
1819 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1820 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1821 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1822
1823 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1824 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1825 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1826
1827 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1828 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1829 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1830
1831 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1832 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1833
1834 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1835 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1836 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1837
1838 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1839 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1840
1841 static inline void
1842 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1843 {
1844 current->flags &= ~flags;
1845 current->flags |= orig_flags & flags;
1846 }
1847
1848 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1849 extern int task_can_attach(struct task_struct *p);
1850 extern int dl_bw_alloc(int cpu, u64 dl_bw);
1851 extern void dl_bw_free(int cpu, u64 dl_bw);
1852
1853 /* do_set_cpus_allowed() - consider using set_cpus_allowed_ptr() instead */
1854 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1855
1856 /**
1857 * set_cpus_allowed_ptr - set CPU affinity mask of a task
1858 * @p: the task
1859 * @new_mask: CPU affinity mask
1860 *
1861 * Return: zero if successful, or a negative error code
1862 */
1863 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1864 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1865 extern void release_user_cpus_ptr(struct task_struct *p);
1866 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1867 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1868 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1869
1870 extern int yield_to(struct task_struct *p, bool preempt);
1871 extern void set_user_nice(struct task_struct *p, long nice);
1872 extern int task_prio(const struct task_struct *p);
1873
1874 /**
1875 * task_nice - return the nice value of a given task.
1876 * @p: the task in question.
1877 *
1878 * Return: The nice value [ -20 ... 0 ... 19 ].
1879 */
task_nice(const struct task_struct * p)1880 static inline int task_nice(const struct task_struct *p)
1881 {
1882 return PRIO_TO_NICE((p)->static_prio);
1883 }
1884
1885 extern int can_nice(const struct task_struct *p, const int nice);
1886 extern int task_curr(const struct task_struct *p);
1887 extern int idle_cpu(int cpu);
1888 extern int available_idle_cpu(int cpu);
1889 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1890 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1891 extern void sched_set_fifo(struct task_struct *p);
1892 extern void sched_set_fifo_low(struct task_struct *p);
1893 extern void sched_set_normal(struct task_struct *p, int nice);
1894 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1895 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1896 extern struct task_struct *idle_task(int cpu);
1897
1898 /**
1899 * is_idle_task - is the specified task an idle task?
1900 * @p: the task in question.
1901 *
1902 * Return: 1 if @p is an idle task. 0 otherwise.
1903 */
is_idle_task(const struct task_struct * p)1904 static __always_inline bool is_idle_task(const struct task_struct *p)
1905 {
1906 return !!(p->flags & PF_IDLE);
1907 }
1908
1909 extern struct task_struct *curr_task(int cpu);
1910 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1911
1912 void yield(void);
1913
1914 union thread_union {
1915 struct task_struct task;
1916 #ifndef CONFIG_THREAD_INFO_IN_TASK
1917 struct thread_info thread_info;
1918 #endif
1919 unsigned long stack[THREAD_SIZE/sizeof(long)];
1920 };
1921
1922 #ifndef CONFIG_THREAD_INFO_IN_TASK
1923 extern struct thread_info init_thread_info;
1924 #endif
1925
1926 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1927
1928 #ifdef CONFIG_THREAD_INFO_IN_TASK
1929 # define task_thread_info(task) (&(task)->thread_info)
1930 #else
1931 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1932 #endif
1933
1934 /*
1935 * find a task by one of its numerical ids
1936 *
1937 * find_task_by_pid_ns():
1938 * finds a task by its pid in the specified namespace
1939 * find_task_by_vpid():
1940 * finds a task by its virtual pid
1941 *
1942 * see also find_vpid() etc in include/linux/pid.h
1943 */
1944
1945 extern struct task_struct *find_task_by_vpid(pid_t nr);
1946 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1947
1948 /*
1949 * find a task by its virtual pid and get the task struct
1950 */
1951 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1952
1953 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1954 extern int wake_up_process(struct task_struct *tsk);
1955 extern void wake_up_new_task(struct task_struct *tsk);
1956
1957 extern void kick_process(struct task_struct *tsk);
1958
1959 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1960 #define set_task_comm(tsk, from) ({ \
1961 BUILD_BUG_ON(sizeof(from) != TASK_COMM_LEN); \
1962 __set_task_comm(tsk, from, false); \
1963 })
1964
1965 /*
1966 * - Why not use task_lock()?
1967 * User space can randomly change their names anyway, so locking for readers
1968 * doesn't make sense. For writers, locking is probably necessary, as a race
1969 * condition could lead to long-term mixed results.
1970 * The strscpy_pad() in __set_task_comm() can ensure that the task comm is
1971 * always NUL-terminated and zero-padded. Therefore the race condition between
1972 * reader and writer is not an issue.
1973 *
1974 * - BUILD_BUG_ON() can help prevent the buf from being truncated.
1975 * Since the callers don't perform any return value checks, this safeguard is
1976 * necessary.
1977 */
1978 #define get_task_comm(buf, tsk) ({ \
1979 BUILD_BUG_ON(sizeof(buf) < TASK_COMM_LEN); \
1980 strscpy_pad(buf, (tsk)->comm); \
1981 buf; \
1982 })
1983
scheduler_ipi(void)1984 static __always_inline void scheduler_ipi(void)
1985 {
1986 /*
1987 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1988 * TIF_NEED_RESCHED remotely (for the first time) will also send
1989 * this IPI.
1990 */
1991 preempt_fold_need_resched();
1992 }
1993
1994 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1995
1996 /*
1997 * Set thread flags in other task's structures.
1998 * See asm/thread_info.h for TIF_xxxx flags available:
1999 */
set_tsk_thread_flag(struct task_struct * tsk,int flag)2000 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2001 {
2002 set_ti_thread_flag(task_thread_info(tsk), flag);
2003 }
2004
clear_tsk_thread_flag(struct task_struct * tsk,int flag)2005 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2006 {
2007 clear_ti_thread_flag(task_thread_info(tsk), flag);
2008 }
2009
update_tsk_thread_flag(struct task_struct * tsk,int flag,bool value)2010 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2011 bool value)
2012 {
2013 update_ti_thread_flag(task_thread_info(tsk), flag, value);
2014 }
2015
test_and_set_tsk_thread_flag(struct task_struct * tsk,int flag)2016 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2017 {
2018 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2019 }
2020
test_and_clear_tsk_thread_flag(struct task_struct * tsk,int flag)2021 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2022 {
2023 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2024 }
2025
test_tsk_thread_flag(struct task_struct * tsk,int flag)2026 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2027 {
2028 return test_ti_thread_flag(task_thread_info(tsk), flag);
2029 }
2030
set_tsk_need_resched(struct task_struct * tsk)2031 static inline void set_tsk_need_resched(struct task_struct *tsk)
2032 {
2033 if (tracepoint_enabled(sched_set_need_resched_tp) &&
2034 !test_tsk_thread_flag(tsk, TIF_NEED_RESCHED))
2035 __trace_set_need_resched(tsk, TIF_NEED_RESCHED);
2036 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2037 }
2038
clear_tsk_need_resched(struct task_struct * tsk)2039 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2040 {
2041 atomic_long_andnot(_TIF_NEED_RESCHED | _TIF_NEED_RESCHED_LAZY,
2042 (atomic_long_t *)&task_thread_info(tsk)->flags);
2043 }
2044
test_tsk_need_resched(struct task_struct * tsk)2045 static inline int test_tsk_need_resched(struct task_struct *tsk)
2046 {
2047 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2048 }
2049
2050 /*
2051 * cond_resched() and cond_resched_lock(): latency reduction via
2052 * explicit rescheduling in places that are safe. The return
2053 * value indicates whether a reschedule was done in fact.
2054 * cond_resched_lock() will drop the spinlock before scheduling,
2055 */
2056 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2057 extern int __cond_resched(void);
2058
2059 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2060
2061 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2062
_cond_resched(void)2063 static __always_inline int _cond_resched(void)
2064 {
2065 return static_call_mod(cond_resched)();
2066 }
2067
2068 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2069
2070 extern int dynamic_cond_resched(void);
2071
_cond_resched(void)2072 static __always_inline int _cond_resched(void)
2073 {
2074 return dynamic_cond_resched();
2075 }
2076
2077 #else /* !CONFIG_PREEMPTION */
2078
_cond_resched(void)2079 static inline int _cond_resched(void)
2080 {
2081 return __cond_resched();
2082 }
2083
2084 #endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
2085
2086 #else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
2087
_cond_resched(void)2088 static inline int _cond_resched(void)
2089 {
2090 return 0;
2091 }
2092
2093 #endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
2094
2095 #define cond_resched() ({ \
2096 __might_resched(__FILE__, __LINE__, 0); \
2097 _cond_resched(); \
2098 })
2099
2100 extern int __cond_resched_lock(spinlock_t *lock);
2101 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2102 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2103
2104 #define MIGHT_RESCHED_RCU_SHIFT 8
2105 #define MIGHT_RESCHED_PREEMPT_MASK ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2106
2107 #ifndef CONFIG_PREEMPT_RT
2108 /*
2109 * Non RT kernels have an elevated preempt count due to the held lock,
2110 * but are not allowed to be inside a RCU read side critical section
2111 */
2112 # define PREEMPT_LOCK_RESCHED_OFFSETS PREEMPT_LOCK_OFFSET
2113 #else
2114 /*
2115 * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2116 * cond_resched*lock() has to take that into account because it checks for
2117 * preempt_count() and rcu_preempt_depth().
2118 */
2119 # define PREEMPT_LOCK_RESCHED_OFFSETS \
2120 (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2121 #endif
2122
2123 #define cond_resched_lock(lock) ({ \
2124 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2125 __cond_resched_lock(lock); \
2126 })
2127
2128 #define cond_resched_rwlock_read(lock) ({ \
2129 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2130 __cond_resched_rwlock_read(lock); \
2131 })
2132
2133 #define cond_resched_rwlock_write(lock) ({ \
2134 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2135 __cond_resched_rwlock_write(lock); \
2136 })
2137
2138 #ifndef CONFIG_PREEMPT_RT
__get_task_blocked_on(struct task_struct * p)2139 static inline struct mutex *__get_task_blocked_on(struct task_struct *p)
2140 {
2141 struct mutex *m = p->blocked_on;
2142
2143 if (m)
2144 lockdep_assert_held_once(&m->wait_lock);
2145 return m;
2146 }
2147
__set_task_blocked_on(struct task_struct * p,struct mutex * m)2148 static inline void __set_task_blocked_on(struct task_struct *p, struct mutex *m)
2149 {
2150 WARN_ON_ONCE(!m);
2151 /* The task should only be setting itself as blocked */
2152 WARN_ON_ONCE(p != current);
2153 /* Currently we serialize blocked_on under the mutex::wait_lock */
2154 lockdep_assert_held_once(&m->wait_lock);
2155 /*
2156 * Check ensure we don't overwrite existing mutex value
2157 * with a different mutex. Note, setting it to the same
2158 * lock repeatedly is ok.
2159 */
2160 WARN_ON_ONCE(p->blocked_on && p->blocked_on != m);
2161 p->blocked_on = m;
2162 }
2163
set_task_blocked_on(struct task_struct * p,struct mutex * m)2164 static inline void set_task_blocked_on(struct task_struct *p, struct mutex *m)
2165 {
2166 guard(raw_spinlock_irqsave)(&m->wait_lock);
2167 __set_task_blocked_on(p, m);
2168 }
2169
__clear_task_blocked_on(struct task_struct * p,struct mutex * m)2170 static inline void __clear_task_blocked_on(struct task_struct *p, struct mutex *m)
2171 {
2172 WARN_ON_ONCE(!m);
2173 /* Currently we serialize blocked_on under the mutex::wait_lock */
2174 lockdep_assert_held_once(&m->wait_lock);
2175 /*
2176 * There may be cases where we re-clear already cleared
2177 * blocked_on relationships, but make sure we are not
2178 * clearing the relationship with a different lock.
2179 */
2180 WARN_ON_ONCE(m && p->blocked_on && p->blocked_on != m);
2181 p->blocked_on = NULL;
2182 }
2183
clear_task_blocked_on(struct task_struct * p,struct mutex * m)2184 static inline void clear_task_blocked_on(struct task_struct *p, struct mutex *m)
2185 {
2186 guard(raw_spinlock_irqsave)(&m->wait_lock);
2187 __clear_task_blocked_on(p, m);
2188 }
2189 #else
__clear_task_blocked_on(struct task_struct * p,struct rt_mutex * m)2190 static inline void __clear_task_blocked_on(struct task_struct *p, struct rt_mutex *m)
2191 {
2192 }
2193
clear_task_blocked_on(struct task_struct * p,struct rt_mutex * m)2194 static inline void clear_task_blocked_on(struct task_struct *p, struct rt_mutex *m)
2195 {
2196 }
2197 #endif /* !CONFIG_PREEMPT_RT */
2198
need_resched(void)2199 static __always_inline bool need_resched(void)
2200 {
2201 return unlikely(tif_need_resched());
2202 }
2203
2204 /*
2205 * Wrappers for p->thread_info->cpu access. No-op on UP.
2206 */
2207 #ifdef CONFIG_SMP
2208
task_cpu(const struct task_struct * p)2209 static inline unsigned int task_cpu(const struct task_struct *p)
2210 {
2211 return READ_ONCE(task_thread_info(p)->cpu);
2212 }
2213
2214 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2215
2216 #else
2217
task_cpu(const struct task_struct * p)2218 static inline unsigned int task_cpu(const struct task_struct *p)
2219 {
2220 return 0;
2221 }
2222
set_task_cpu(struct task_struct * p,unsigned int cpu)2223 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2224 {
2225 }
2226
2227 #endif /* CONFIG_SMP */
2228
task_is_runnable(struct task_struct * p)2229 static inline bool task_is_runnable(struct task_struct *p)
2230 {
2231 return p->on_rq && !p->se.sched_delayed;
2232 }
2233
2234 extern bool sched_task_on_rq(struct task_struct *p);
2235 extern unsigned long get_wchan(struct task_struct *p);
2236 extern struct task_struct *cpu_curr_snapshot(int cpu);
2237
2238 /*
2239 * In order to reduce various lock holder preemption latencies provide an
2240 * interface to see if a vCPU is currently running or not.
2241 *
2242 * This allows us to terminate optimistic spin loops and block, analogous to
2243 * the native optimistic spin heuristic of testing if the lock owner task is
2244 * running or not.
2245 */
2246 #ifndef vcpu_is_preempted
vcpu_is_preempted(int cpu)2247 static inline bool vcpu_is_preempted(int cpu)
2248 {
2249 return false;
2250 }
2251 #endif
2252
2253 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2254 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2255
2256 #ifndef TASK_SIZE_OF
2257 #define TASK_SIZE_OF(tsk) TASK_SIZE
2258 #endif
2259
owner_on_cpu(struct task_struct * owner)2260 static inline bool owner_on_cpu(struct task_struct *owner)
2261 {
2262 /*
2263 * As lock holder preemption issue, we both skip spinning if
2264 * task is not on cpu or its cpu is preempted
2265 */
2266 return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2267 }
2268
2269 /* Returns effective CPU energy utilization, as seen by the scheduler */
2270 unsigned long sched_cpu_util(int cpu);
2271
2272 #ifdef CONFIG_SCHED_CORE
2273 extern void sched_core_free(struct task_struct *tsk);
2274 extern void sched_core_fork(struct task_struct *p);
2275 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2276 unsigned long uaddr);
2277 extern int sched_core_idle_cpu(int cpu);
2278 #else
sched_core_free(struct task_struct * tsk)2279 static inline void sched_core_free(struct task_struct *tsk) { }
sched_core_fork(struct task_struct * p)2280 static inline void sched_core_fork(struct task_struct *p) { }
sched_core_idle_cpu(int cpu)2281 static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); }
2282 #endif
2283
2284 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2285
2286 #ifdef CONFIG_MEM_ALLOC_PROFILING
alloc_tag_save(struct alloc_tag * tag)2287 static __always_inline struct alloc_tag *alloc_tag_save(struct alloc_tag *tag)
2288 {
2289 swap(current->alloc_tag, tag);
2290 return tag;
2291 }
2292
alloc_tag_restore(struct alloc_tag * tag,struct alloc_tag * old)2293 static __always_inline void alloc_tag_restore(struct alloc_tag *tag, struct alloc_tag *old)
2294 {
2295 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
2296 WARN(current->alloc_tag != tag, "current->alloc_tag was changed:\n");
2297 #endif
2298 current->alloc_tag = old;
2299 }
2300 #else
2301 #define alloc_tag_save(_tag) NULL
2302 #define alloc_tag_restore(_tag, _old) do {} while (0)
2303 #endif
2304
2305 #endif
2306