xref: /linux/include/linux/sched.h (revision 4ff261e725d7376c12e745fdbe8a33cd6dbd5a83)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 #include <asm/processor.h>
14 #include <linux/thread_info.h>
15 #include <linux/preempt.h>
16 #include <linux/cpumask_types.h>
17 
18 #include <linux/cache.h>
19 #include <linux/irqflags_types.h>
20 #include <linux/smp_types.h>
21 #include <linux/pid_types.h>
22 #include <linux/sem_types.h>
23 #include <linux/shm.h>
24 #include <linux/kmsan_types.h>
25 #include <linux/mutex_types.h>
26 #include <linux/plist_types.h>
27 #include <linux/hrtimer_types.h>
28 #include <linux/timer_types.h>
29 #include <linux/seccomp_types.h>
30 #include <linux/nodemask_types.h>
31 #include <linux/refcount_types.h>
32 #include <linux/resource.h>
33 #include <linux/latencytop.h>
34 #include <linux/sched/prio.h>
35 #include <linux/sched/types.h>
36 #include <linux/signal_types.h>
37 #include <linux/spinlock.h>
38 #include <linux/syscall_user_dispatch_types.h>
39 #include <linux/mm_types_task.h>
40 #include <linux/netdevice_xmit.h>
41 #include <linux/task_io_accounting.h>
42 #include <linux/posix-timers_types.h>
43 #include <linux/restart_block.h>
44 #include <uapi/linux/rseq.h>
45 #include <linux/seqlock_types.h>
46 #include <linux/kcsan.h>
47 #include <linux/rv.h>
48 #include <linux/uidgid_types.h>
49 #include <linux/tracepoint-defs.h>
50 #include <asm/kmap_size.h>
51 
52 /* task_struct member predeclarations (sorted alphabetically): */
53 struct audit_context;
54 struct bio_list;
55 struct blk_plug;
56 struct bpf_local_storage;
57 struct bpf_run_ctx;
58 struct bpf_net_context;
59 struct capture_control;
60 struct cfs_rq;
61 struct fs_struct;
62 struct futex_pi_state;
63 struct io_context;
64 struct io_uring_task;
65 struct mempolicy;
66 struct nameidata;
67 struct nsproxy;
68 struct perf_event_context;
69 struct perf_ctx_data;
70 struct pid_namespace;
71 struct pipe_inode_info;
72 struct rcu_node;
73 struct reclaim_state;
74 struct robust_list_head;
75 struct root_domain;
76 struct rq;
77 struct sched_attr;
78 struct sched_dl_entity;
79 struct seq_file;
80 struct sighand_struct;
81 struct signal_struct;
82 struct task_delay_info;
83 struct task_group;
84 struct task_struct;
85 struct user_event_mm;
86 
87 #include <linux/sched/ext.h>
88 
89 /*
90  * Task state bitmask. NOTE! These bits are also
91  * encoded in fs/proc/array.c: get_task_state().
92  *
93  * We have two separate sets of flags: task->__state
94  * is about runnability, while task->exit_state are
95  * about the task exiting. Confusing, but this way
96  * modifying one set can't modify the other one by
97  * mistake.
98  */
99 
100 /* Used in tsk->__state: */
101 #define TASK_RUNNING			0x00000000
102 #define TASK_INTERRUPTIBLE		0x00000001
103 #define TASK_UNINTERRUPTIBLE		0x00000002
104 #define __TASK_STOPPED			0x00000004
105 #define __TASK_TRACED			0x00000008
106 /* Used in tsk->exit_state: */
107 #define EXIT_DEAD			0x00000010
108 #define EXIT_ZOMBIE			0x00000020
109 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
110 /* Used in tsk->__state again: */
111 #define TASK_PARKED			0x00000040
112 #define TASK_DEAD			0x00000080
113 #define TASK_WAKEKILL			0x00000100
114 #define TASK_WAKING			0x00000200
115 #define TASK_NOLOAD			0x00000400
116 #define TASK_NEW			0x00000800
117 #define TASK_RTLOCK_WAIT		0x00001000
118 #define TASK_FREEZABLE			0x00002000
119 #define __TASK_FREEZABLE_UNSAFE	       (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
120 #define TASK_FROZEN			0x00008000
121 #define TASK_STATE_MAX			0x00010000
122 
123 #define TASK_ANY			(TASK_STATE_MAX-1)
124 
125 /*
126  * DO NOT ADD ANY NEW USERS !
127  */
128 #define TASK_FREEZABLE_UNSAFE		(TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
129 
130 /* Convenience macros for the sake of set_current_state: */
131 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
132 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
133 #define TASK_TRACED			__TASK_TRACED
134 
135 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
136 
137 /* Convenience macros for the sake of wake_up(): */
138 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
139 
140 /* get_task_state(): */
141 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
142 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
143 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
144 					 TASK_PARKED)
145 
146 #define task_is_running(task)		(READ_ONCE((task)->__state) == TASK_RUNNING)
147 
148 #define task_is_traced(task)		((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
149 #define task_is_stopped(task)		((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
150 #define task_is_stopped_or_traced(task)	((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
151 
152 /*
153  * Special states are those that do not use the normal wait-loop pattern. See
154  * the comment with set_special_state().
155  */
156 #define is_special_task_state(state)					\
157 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED |	\
158 		    TASK_DEAD | TASK_FROZEN))
159 
160 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
161 # define debug_normal_state_change(state_value)				\
162 	do {								\
163 		WARN_ON_ONCE(is_special_task_state(state_value));	\
164 		current->task_state_change = _THIS_IP_;			\
165 	} while (0)
166 
167 # define debug_special_state_change(state_value)			\
168 	do {								\
169 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
170 		current->task_state_change = _THIS_IP_;			\
171 	} while (0)
172 
173 # define debug_rtlock_wait_set_state()					\
174 	do {								 \
175 		current->saved_state_change = current->task_state_change;\
176 		current->task_state_change = _THIS_IP_;			 \
177 	} while (0)
178 
179 # define debug_rtlock_wait_restore_state()				\
180 	do {								 \
181 		current->task_state_change = current->saved_state_change;\
182 	} while (0)
183 
184 #else
185 # define debug_normal_state_change(cond)	do { } while (0)
186 # define debug_special_state_change(cond)	do { } while (0)
187 # define debug_rtlock_wait_set_state()		do { } while (0)
188 # define debug_rtlock_wait_restore_state()	do { } while (0)
189 #endif
190 
191 #define trace_set_current_state(state_value)                     \
192 	do {                                                     \
193 		if (tracepoint_enabled(sched_set_state_tp))      \
194 			__trace_set_current_state(state_value); \
195 	} while (0)
196 
197 /*
198  * set_current_state() includes a barrier so that the write of current->__state
199  * is correctly serialised wrt the caller's subsequent test of whether to
200  * actually sleep:
201  *
202  *   for (;;) {
203  *	set_current_state(TASK_UNINTERRUPTIBLE);
204  *	if (CONDITION)
205  *	   break;
206  *
207  *	schedule();
208  *   }
209  *   __set_current_state(TASK_RUNNING);
210  *
211  * If the caller does not need such serialisation (because, for instance, the
212  * CONDITION test and condition change and wakeup are under the same lock) then
213  * use __set_current_state().
214  *
215  * The above is typically ordered against the wakeup, which does:
216  *
217  *   CONDITION = 1;
218  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
219  *
220  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
221  * accessing p->__state.
222  *
223  * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is,
224  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
225  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
226  *
227  * However, with slightly different timing the wakeup TASK_RUNNING store can
228  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
229  * a problem either because that will result in one extra go around the loop
230  * and our @cond test will save the day.
231  *
232  * Also see the comments of try_to_wake_up().
233  */
234 #define __set_current_state(state_value)				\
235 	do {								\
236 		debug_normal_state_change((state_value));		\
237 		trace_set_current_state(state_value);			\
238 		WRITE_ONCE(current->__state, (state_value));		\
239 	} while (0)
240 
241 #define set_current_state(state_value)					\
242 	do {								\
243 		debug_normal_state_change((state_value));		\
244 		trace_set_current_state(state_value);			\
245 		smp_store_mb(current->__state, (state_value));		\
246 	} while (0)
247 
248 /*
249  * set_special_state() should be used for those states when the blocking task
250  * can not use the regular condition based wait-loop. In that case we must
251  * serialize against wakeups such that any possible in-flight TASK_RUNNING
252  * stores will not collide with our state change.
253  */
254 #define set_special_state(state_value)					\
255 	do {								\
256 		unsigned long flags; /* may shadow */			\
257 									\
258 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
259 		debug_special_state_change((state_value));		\
260 		trace_set_current_state(state_value);			\
261 		WRITE_ONCE(current->__state, (state_value));		\
262 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
263 	} while (0)
264 
265 /*
266  * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
267  *
268  * RT's spin/rwlock substitutions are state preserving. The state of the
269  * task when blocking on the lock is saved in task_struct::saved_state and
270  * restored after the lock has been acquired.  These operations are
271  * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
272  * lock related wakeups while the task is blocked on the lock are
273  * redirected to operate on task_struct::saved_state to ensure that these
274  * are not dropped. On restore task_struct::saved_state is set to
275  * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
276  *
277  * The lock operation looks like this:
278  *
279  *	current_save_and_set_rtlock_wait_state();
280  *	for (;;) {
281  *		if (try_lock())
282  *			break;
283  *		raw_spin_unlock_irq(&lock->wait_lock);
284  *		schedule_rtlock();
285  *		raw_spin_lock_irq(&lock->wait_lock);
286  *		set_current_state(TASK_RTLOCK_WAIT);
287  *	}
288  *	current_restore_rtlock_saved_state();
289  */
290 #define current_save_and_set_rtlock_wait_state()			\
291 	do {								\
292 		lockdep_assert_irqs_disabled();				\
293 		raw_spin_lock(&current->pi_lock);			\
294 		current->saved_state = current->__state;		\
295 		debug_rtlock_wait_set_state();				\
296 		trace_set_current_state(TASK_RTLOCK_WAIT);		\
297 		WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);		\
298 		raw_spin_unlock(&current->pi_lock);			\
299 	} while (0);
300 
301 #define current_restore_rtlock_saved_state()				\
302 	do {								\
303 		lockdep_assert_irqs_disabled();				\
304 		raw_spin_lock(&current->pi_lock);			\
305 		debug_rtlock_wait_restore_state();			\
306 		trace_set_current_state(current->saved_state);		\
307 		WRITE_ONCE(current->__state, current->saved_state);	\
308 		current->saved_state = TASK_RUNNING;			\
309 		raw_spin_unlock(&current->pi_lock);			\
310 	} while (0);
311 
312 #define get_current_state()	READ_ONCE(current->__state)
313 
314 /*
315  * Define the task command name length as enum, then it can be visible to
316  * BPF programs.
317  */
318 enum {
319 	TASK_COMM_LEN = 16,
320 };
321 
322 extern void sched_tick(void);
323 
324 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
325 
326 extern long schedule_timeout(long timeout);
327 extern long schedule_timeout_interruptible(long timeout);
328 extern long schedule_timeout_killable(long timeout);
329 extern long schedule_timeout_uninterruptible(long timeout);
330 extern long schedule_timeout_idle(long timeout);
331 asmlinkage void schedule(void);
332 extern void schedule_preempt_disabled(void);
333 asmlinkage void preempt_schedule_irq(void);
334 #ifdef CONFIG_PREEMPT_RT
335  extern void schedule_rtlock(void);
336 #endif
337 
338 extern int __must_check io_schedule_prepare(void);
339 extern void io_schedule_finish(int token);
340 extern long io_schedule_timeout(long timeout);
341 extern void io_schedule(void);
342 
343 /* wrapper functions to trace from this header file */
344 DECLARE_TRACEPOINT(sched_set_state_tp);
345 extern void __trace_set_current_state(int state_value);
346 DECLARE_TRACEPOINT(sched_set_need_resched_tp);
347 extern void __trace_set_need_resched(struct task_struct *curr, int tif);
348 
349 /**
350  * struct prev_cputime - snapshot of system and user cputime
351  * @utime: time spent in user mode
352  * @stime: time spent in system mode
353  * @lock: protects the above two fields
354  *
355  * Stores previous user/system time values such that we can guarantee
356  * monotonicity.
357  */
358 struct prev_cputime {
359 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
360 	u64				utime;
361 	u64				stime;
362 	raw_spinlock_t			lock;
363 #endif
364 };
365 
366 enum vtime_state {
367 	/* Task is sleeping or running in a CPU with VTIME inactive: */
368 	VTIME_INACTIVE = 0,
369 	/* Task is idle */
370 	VTIME_IDLE,
371 	/* Task runs in kernelspace in a CPU with VTIME active: */
372 	VTIME_SYS,
373 	/* Task runs in userspace in a CPU with VTIME active: */
374 	VTIME_USER,
375 	/* Task runs as guests in a CPU with VTIME active: */
376 	VTIME_GUEST,
377 };
378 
379 struct vtime {
380 	seqcount_t		seqcount;
381 	unsigned long long	starttime;
382 	enum vtime_state	state;
383 	unsigned int		cpu;
384 	u64			utime;
385 	u64			stime;
386 	u64			gtime;
387 };
388 
389 /*
390  * Utilization clamp constraints.
391  * @UCLAMP_MIN:	Minimum utilization
392  * @UCLAMP_MAX:	Maximum utilization
393  * @UCLAMP_CNT:	Utilization clamp constraints count
394  */
395 enum uclamp_id {
396 	UCLAMP_MIN = 0,
397 	UCLAMP_MAX,
398 	UCLAMP_CNT
399 };
400 
401 extern struct root_domain def_root_domain;
402 extern struct mutex sched_domains_mutex;
403 extern void sched_domains_mutex_lock(void);
404 extern void sched_domains_mutex_unlock(void);
405 
406 struct sched_param {
407 	int sched_priority;
408 };
409 
410 struct sched_info {
411 #ifdef CONFIG_SCHED_INFO
412 	/* Cumulative counters: */
413 
414 	/* # of times we have run on this CPU: */
415 	unsigned long			pcount;
416 
417 	/* Time spent waiting on a runqueue: */
418 	unsigned long long		run_delay;
419 
420 	/* Max time spent waiting on a runqueue: */
421 	unsigned long long		max_run_delay;
422 
423 	/* Min time spent waiting on a runqueue: */
424 	unsigned long long		min_run_delay;
425 
426 	/* Timestamps: */
427 
428 	/* When did we last run on a CPU? */
429 	unsigned long long		last_arrival;
430 
431 	/* When were we last queued to run? */
432 	unsigned long long		last_queued;
433 
434 #endif /* CONFIG_SCHED_INFO */
435 };
436 
437 /*
438  * Integer metrics need fixed point arithmetic, e.g., sched/fair
439  * has a few: load, load_avg, util_avg, freq, and capacity.
440  *
441  * We define a basic fixed point arithmetic range, and then formalize
442  * all these metrics based on that basic range.
443  */
444 # define SCHED_FIXEDPOINT_SHIFT		10
445 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
446 
447 /* Increase resolution of cpu_capacity calculations */
448 # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
449 # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
450 
451 struct load_weight {
452 	unsigned long			weight;
453 	u32				inv_weight;
454 };
455 
456 /*
457  * The load/runnable/util_avg accumulates an infinite geometric series
458  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
459  *
460  * [load_avg definition]
461  *
462  *   load_avg = runnable% * scale_load_down(load)
463  *
464  * [runnable_avg definition]
465  *
466  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
467  *
468  * [util_avg definition]
469  *
470  *   util_avg = running% * SCHED_CAPACITY_SCALE
471  *
472  * where runnable% is the time ratio that a sched_entity is runnable and
473  * running% the time ratio that a sched_entity is running.
474  *
475  * For cfs_rq, they are the aggregated values of all runnable and blocked
476  * sched_entities.
477  *
478  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
479  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
480  * for computing those signals (see update_rq_clock_pelt())
481  *
482  * N.B., the above ratios (runnable% and running%) themselves are in the
483  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
484  * to as large a range as necessary. This is for example reflected by
485  * util_avg's SCHED_CAPACITY_SCALE.
486  *
487  * [Overflow issue]
488  *
489  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
490  * with the highest load (=88761), always runnable on a single cfs_rq,
491  * and should not overflow as the number already hits PID_MAX_LIMIT.
492  *
493  * For all other cases (including 32-bit kernels), struct load_weight's
494  * weight will overflow first before we do, because:
495  *
496  *    Max(load_avg) <= Max(load.weight)
497  *
498  * Then it is the load_weight's responsibility to consider overflow
499  * issues.
500  */
501 struct sched_avg {
502 	u64				last_update_time;
503 	u64				load_sum;
504 	u64				runnable_sum;
505 	u32				util_sum;
506 	u32				period_contrib;
507 	unsigned long			load_avg;
508 	unsigned long			runnable_avg;
509 	unsigned long			util_avg;
510 	unsigned int			util_est;
511 } ____cacheline_aligned;
512 
513 /*
514  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
515  * updates. When a task is dequeued, its util_est should not be updated if its
516  * util_avg has not been updated in the meantime.
517  * This information is mapped into the MSB bit of util_est at dequeue time.
518  * Since max value of util_est for a task is 1024 (PELT util_avg for a task)
519  * it is safe to use MSB.
520  */
521 #define UTIL_EST_WEIGHT_SHIFT		2
522 #define UTIL_AVG_UNCHANGED		0x80000000
523 
524 struct sched_statistics {
525 #ifdef CONFIG_SCHEDSTATS
526 	u64				wait_start;
527 	u64				wait_max;
528 	u64				wait_count;
529 	u64				wait_sum;
530 	u64				iowait_count;
531 	u64				iowait_sum;
532 
533 	u64				sleep_start;
534 	u64				sleep_max;
535 	s64				sum_sleep_runtime;
536 
537 	u64				block_start;
538 	u64				block_max;
539 	s64				sum_block_runtime;
540 
541 	s64				exec_max;
542 	u64				slice_max;
543 
544 	u64				nr_migrations_cold;
545 	u64				nr_failed_migrations_affine;
546 	u64				nr_failed_migrations_running;
547 	u64				nr_failed_migrations_hot;
548 	u64				nr_forced_migrations;
549 
550 	u64				nr_wakeups;
551 	u64				nr_wakeups_sync;
552 	u64				nr_wakeups_migrate;
553 	u64				nr_wakeups_local;
554 	u64				nr_wakeups_remote;
555 	u64				nr_wakeups_affine;
556 	u64				nr_wakeups_affine_attempts;
557 	u64				nr_wakeups_passive;
558 	u64				nr_wakeups_idle;
559 
560 #ifdef CONFIG_SCHED_CORE
561 	u64				core_forceidle_sum;
562 #endif
563 #endif /* CONFIG_SCHEDSTATS */
564 } ____cacheline_aligned;
565 
566 struct sched_entity {
567 	/* For load-balancing: */
568 	struct load_weight		load;
569 	struct rb_node			run_node;
570 	u64				deadline;
571 	u64				min_vruntime;
572 	u64				min_slice;
573 
574 	struct list_head		group_node;
575 	unsigned char			on_rq;
576 	unsigned char			sched_delayed;
577 	unsigned char			rel_deadline;
578 	unsigned char			custom_slice;
579 					/* hole */
580 
581 	u64				exec_start;
582 	u64				sum_exec_runtime;
583 	u64				prev_sum_exec_runtime;
584 	u64				vruntime;
585 	union {
586 		/*
587 		 * When !@on_rq this field is vlag.
588 		 * When cfs_rq->curr == se (which implies @on_rq)
589 		 * this field is vprot. See protect_slice().
590 		 */
591 		s64                     vlag;
592 		u64                     vprot;
593 	};
594 	u64				slice;
595 
596 	u64				nr_migrations;
597 
598 #ifdef CONFIG_FAIR_GROUP_SCHED
599 	int				depth;
600 	struct sched_entity		*parent;
601 	/* rq on which this entity is (to be) queued: */
602 	struct cfs_rq			*cfs_rq;
603 	/* rq "owned" by this entity/group: */
604 	struct cfs_rq			*my_q;
605 	/* cached value of my_q->h_nr_running */
606 	unsigned long			runnable_weight;
607 #endif
608 
609 	/*
610 	 * Per entity load average tracking.
611 	 *
612 	 * Put into separate cache line so it does not
613 	 * collide with read-mostly values above.
614 	 */
615 	struct sched_avg		avg;
616 };
617 
618 struct sched_rt_entity {
619 	struct list_head		run_list;
620 	unsigned long			timeout;
621 	unsigned long			watchdog_stamp;
622 	unsigned int			time_slice;
623 	unsigned short			on_rq;
624 	unsigned short			on_list;
625 
626 	struct sched_rt_entity		*back;
627 #ifdef CONFIG_RT_GROUP_SCHED
628 	struct sched_rt_entity		*parent;
629 	/* rq on which this entity is (to be) queued: */
630 	struct rt_rq			*rt_rq;
631 	/* rq "owned" by this entity/group: */
632 	struct rt_rq			*my_q;
633 #endif
634 } __randomize_layout;
635 
636 typedef bool (*dl_server_has_tasks_f)(struct sched_dl_entity *);
637 typedef struct task_struct *(*dl_server_pick_f)(struct sched_dl_entity *);
638 
639 struct sched_dl_entity {
640 	struct rb_node			rb_node;
641 
642 	/*
643 	 * Original scheduling parameters. Copied here from sched_attr
644 	 * during sched_setattr(), they will remain the same until
645 	 * the next sched_setattr().
646 	 */
647 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
648 	u64				dl_deadline;	/* Relative deadline of each instance	*/
649 	u64				dl_period;	/* Separation of two instances (period) */
650 	u64				dl_bw;		/* dl_runtime / dl_period		*/
651 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
652 
653 	/*
654 	 * Actual scheduling parameters. Initialized with the values above,
655 	 * they are continuously updated during task execution. Note that
656 	 * the remaining runtime could be < 0 in case we are in overrun.
657 	 */
658 	s64				runtime;	/* Remaining runtime for this instance	*/
659 	u64				deadline;	/* Absolute deadline for this instance	*/
660 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
661 
662 	/*
663 	 * Some bool flags:
664 	 *
665 	 * @dl_throttled tells if we exhausted the runtime. If so, the
666 	 * task has to wait for a replenishment to be performed at the
667 	 * next firing of dl_timer.
668 	 *
669 	 * @dl_yielded tells if task gave up the CPU before consuming
670 	 * all its available runtime during the last job.
671 	 *
672 	 * @dl_non_contending tells if the task is inactive while still
673 	 * contributing to the active utilization. In other words, it
674 	 * indicates if the inactive timer has been armed and its handler
675 	 * has not been executed yet. This flag is useful to avoid race
676 	 * conditions between the inactive timer handler and the wakeup
677 	 * code.
678 	 *
679 	 * @dl_overrun tells if the task asked to be informed about runtime
680 	 * overruns.
681 	 *
682 	 * @dl_server tells if this is a server entity.
683 	 *
684 	 * @dl_defer tells if this is a deferred or regular server. For
685 	 * now only defer server exists.
686 	 *
687 	 * @dl_defer_armed tells if the deferrable server is waiting
688 	 * for the replenishment timer to activate it.
689 	 *
690 	 * @dl_server_active tells if the dlserver is active(started).
691 	 * dlserver is started on first cfs enqueue on an idle runqueue
692 	 * and is stopped when a dequeue results in 0 cfs tasks on the
693 	 * runqueue. In other words, dlserver is active only when cpu's
694 	 * runqueue has atleast one cfs task.
695 	 *
696 	 * @dl_defer_running tells if the deferrable server is actually
697 	 * running, skipping the defer phase.
698 	 */
699 	unsigned int			dl_throttled      : 1;
700 	unsigned int			dl_yielded        : 1;
701 	unsigned int			dl_non_contending : 1;
702 	unsigned int			dl_overrun	  : 1;
703 	unsigned int			dl_server         : 1;
704 	unsigned int			dl_server_active  : 1;
705 	unsigned int			dl_defer	  : 1;
706 	unsigned int			dl_defer_armed	  : 1;
707 	unsigned int			dl_defer_running  : 1;
708 	unsigned int			dl_server_idle    : 1;
709 
710 	/*
711 	 * Bandwidth enforcement timer. Each -deadline task has its
712 	 * own bandwidth to be enforced, thus we need one timer per task.
713 	 */
714 	struct hrtimer			dl_timer;
715 
716 	/*
717 	 * Inactive timer, responsible for decreasing the active utilization
718 	 * at the "0-lag time". When a -deadline task blocks, it contributes
719 	 * to GRUB's active utilization until the "0-lag time", hence a
720 	 * timer is needed to decrease the active utilization at the correct
721 	 * time.
722 	 */
723 	struct hrtimer			inactive_timer;
724 
725 	/*
726 	 * Bits for DL-server functionality. Also see the comment near
727 	 * dl_server_update().
728 	 *
729 	 * @rq the runqueue this server is for
730 	 *
731 	 * @server_has_tasks() returns true if @server_pick return a
732 	 * runnable task.
733 	 */
734 	struct rq			*rq;
735 	dl_server_has_tasks_f		server_has_tasks;
736 	dl_server_pick_f		server_pick_task;
737 
738 #ifdef CONFIG_RT_MUTEXES
739 	/*
740 	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
741 	 * pi_se points to the donor, otherwise points to the dl_se it belongs
742 	 * to (the original one/itself).
743 	 */
744 	struct sched_dl_entity *pi_se;
745 #endif
746 };
747 
748 #ifdef CONFIG_UCLAMP_TASK
749 /* Number of utilization clamp buckets (shorter alias) */
750 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
751 
752 /*
753  * Utilization clamp for a scheduling entity
754  * @value:		clamp value "assigned" to a se
755  * @bucket_id:		bucket index corresponding to the "assigned" value
756  * @active:		the se is currently refcounted in a rq's bucket
757  * @user_defined:	the requested clamp value comes from user-space
758  *
759  * The bucket_id is the index of the clamp bucket matching the clamp value
760  * which is pre-computed and stored to avoid expensive integer divisions from
761  * the fast path.
762  *
763  * The active bit is set whenever a task has got an "effective" value assigned,
764  * which can be different from the clamp value "requested" from user-space.
765  * This allows to know a task is refcounted in the rq's bucket corresponding
766  * to the "effective" bucket_id.
767  *
768  * The user_defined bit is set whenever a task has got a task-specific clamp
769  * value requested from userspace, i.e. the system defaults apply to this task
770  * just as a restriction. This allows to relax default clamps when a less
771  * restrictive task-specific value has been requested, thus allowing to
772  * implement a "nice" semantic. For example, a task running with a 20%
773  * default boost can still drop its own boosting to 0%.
774  */
775 struct uclamp_se {
776 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
777 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
778 	unsigned int active		: 1;
779 	unsigned int user_defined	: 1;
780 };
781 #endif /* CONFIG_UCLAMP_TASK */
782 
783 union rcu_special {
784 	struct {
785 		u8			blocked;
786 		u8			need_qs;
787 		u8			exp_hint; /* Hint for performance. */
788 		u8			need_mb; /* Readers need smp_mb(). */
789 	} b; /* Bits. */
790 	u32 s; /* Set of bits. */
791 };
792 
793 enum perf_event_task_context {
794 	perf_invalid_context = -1,
795 	perf_hw_context = 0,
796 	perf_sw_context,
797 	perf_nr_task_contexts,
798 };
799 
800 /*
801  * Number of contexts where an event can trigger:
802  *      task, softirq, hardirq, nmi.
803  */
804 #define PERF_NR_CONTEXTS	4
805 
806 struct wake_q_node {
807 	struct wake_q_node *next;
808 };
809 
810 struct kmap_ctrl {
811 #ifdef CONFIG_KMAP_LOCAL
812 	int				idx;
813 	pte_t				pteval[KM_MAX_IDX];
814 #endif
815 };
816 
817 struct task_struct {
818 #ifdef CONFIG_THREAD_INFO_IN_TASK
819 	/*
820 	 * For reasons of header soup (see current_thread_info()), this
821 	 * must be the first element of task_struct.
822 	 */
823 	struct thread_info		thread_info;
824 #endif
825 	unsigned int			__state;
826 
827 	/* saved state for "spinlock sleepers" */
828 	unsigned int			saved_state;
829 
830 	/*
831 	 * This begins the randomizable portion of task_struct. Only
832 	 * scheduling-critical items should be added above here.
833 	 */
834 	randomized_struct_fields_start
835 
836 	void				*stack;
837 	refcount_t			usage;
838 	/* Per task flags (PF_*), defined further below: */
839 	unsigned int			flags;
840 	unsigned int			ptrace;
841 
842 #ifdef CONFIG_MEM_ALLOC_PROFILING
843 	struct alloc_tag		*alloc_tag;
844 #endif
845 
846 	int				on_cpu;
847 	struct __call_single_node	wake_entry;
848 	unsigned int			wakee_flips;
849 	unsigned long			wakee_flip_decay_ts;
850 	struct task_struct		*last_wakee;
851 
852 	/*
853 	 * recent_used_cpu is initially set as the last CPU used by a task
854 	 * that wakes affine another task. Waker/wakee relationships can
855 	 * push tasks around a CPU where each wakeup moves to the next one.
856 	 * Tracking a recently used CPU allows a quick search for a recently
857 	 * used CPU that may be idle.
858 	 */
859 	int				recent_used_cpu;
860 	int				wake_cpu;
861 	int				on_rq;
862 
863 	int				prio;
864 	int				static_prio;
865 	int				normal_prio;
866 	unsigned int			rt_priority;
867 
868 	struct sched_entity		se;
869 	struct sched_rt_entity		rt;
870 	struct sched_dl_entity		dl;
871 	struct sched_dl_entity		*dl_server;
872 #ifdef CONFIG_SCHED_CLASS_EXT
873 	struct sched_ext_entity		scx;
874 #endif
875 	const struct sched_class	*sched_class;
876 
877 #ifdef CONFIG_SCHED_CORE
878 	struct rb_node			core_node;
879 	unsigned long			core_cookie;
880 	unsigned int			core_occupation;
881 #endif
882 
883 #ifdef CONFIG_CGROUP_SCHED
884 	struct task_group		*sched_task_group;
885 #endif
886 
887 
888 #ifdef CONFIG_UCLAMP_TASK
889 	/*
890 	 * Clamp values requested for a scheduling entity.
891 	 * Must be updated with task_rq_lock() held.
892 	 */
893 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
894 	/*
895 	 * Effective clamp values used for a scheduling entity.
896 	 * Must be updated with task_rq_lock() held.
897 	 */
898 	struct uclamp_se		uclamp[UCLAMP_CNT];
899 #endif
900 
901 	struct sched_statistics         stats;
902 
903 #ifdef CONFIG_PREEMPT_NOTIFIERS
904 	/* List of struct preempt_notifier: */
905 	struct hlist_head		preempt_notifiers;
906 #endif
907 
908 #ifdef CONFIG_BLK_DEV_IO_TRACE
909 	unsigned int			btrace_seq;
910 #endif
911 
912 	unsigned int			policy;
913 	unsigned long			max_allowed_capacity;
914 	int				nr_cpus_allowed;
915 	const cpumask_t			*cpus_ptr;
916 	cpumask_t			*user_cpus_ptr;
917 	cpumask_t			cpus_mask;
918 	void				*migration_pending;
919 	unsigned short			migration_disabled;
920 	unsigned short			migration_flags;
921 
922 #ifdef CONFIG_PREEMPT_RCU
923 	int				rcu_read_lock_nesting;
924 	union rcu_special		rcu_read_unlock_special;
925 	struct list_head		rcu_node_entry;
926 	struct rcu_node			*rcu_blocked_node;
927 #endif /* #ifdef CONFIG_PREEMPT_RCU */
928 
929 #ifdef CONFIG_TASKS_RCU
930 	unsigned long			rcu_tasks_nvcsw;
931 	u8				rcu_tasks_holdout;
932 	u8				rcu_tasks_idx;
933 	int				rcu_tasks_idle_cpu;
934 	struct list_head		rcu_tasks_holdout_list;
935 	int				rcu_tasks_exit_cpu;
936 	struct list_head		rcu_tasks_exit_list;
937 #endif /* #ifdef CONFIG_TASKS_RCU */
938 
939 #ifdef CONFIG_TASKS_TRACE_RCU
940 	int				trc_reader_nesting;
941 	int				trc_ipi_to_cpu;
942 	union rcu_special		trc_reader_special;
943 	struct list_head		trc_holdout_list;
944 	struct list_head		trc_blkd_node;
945 	int				trc_blkd_cpu;
946 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
947 
948 	struct sched_info		sched_info;
949 
950 	struct list_head		tasks;
951 	struct plist_node		pushable_tasks;
952 	struct rb_node			pushable_dl_tasks;
953 
954 	struct mm_struct		*mm;
955 	struct mm_struct		*active_mm;
956 	struct address_space		*faults_disabled_mapping;
957 
958 	int				exit_state;
959 	int				exit_code;
960 	int				exit_signal;
961 	/* The signal sent when the parent dies: */
962 	int				pdeath_signal;
963 	/* JOBCTL_*, siglock protected: */
964 	unsigned long			jobctl;
965 
966 	/* Used for emulating ABI behavior of previous Linux versions: */
967 	unsigned int			personality;
968 
969 	/* Scheduler bits, serialized by scheduler locks: */
970 	unsigned			sched_reset_on_fork:1;
971 	unsigned			sched_contributes_to_load:1;
972 	unsigned			sched_migrated:1;
973 	unsigned			sched_task_hot:1;
974 
975 	/* Force alignment to the next boundary: */
976 	unsigned			:0;
977 
978 	/* Unserialized, strictly 'current' */
979 
980 	/*
981 	 * This field must not be in the scheduler word above due to wakelist
982 	 * queueing no longer being serialized by p->on_cpu. However:
983 	 *
984 	 * p->XXX = X;			ttwu()
985 	 * schedule()			  if (p->on_rq && ..) // false
986 	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
987 	 *   deactivate_task()		      ttwu_queue_wakelist())
988 	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
989 	 *
990 	 * guarantees all stores of 'current' are visible before
991 	 * ->sched_remote_wakeup gets used, so it can be in this word.
992 	 */
993 	unsigned			sched_remote_wakeup:1;
994 #ifdef CONFIG_RT_MUTEXES
995 	unsigned			sched_rt_mutex:1;
996 #endif
997 
998 	/* Bit to tell TOMOYO we're in execve(): */
999 	unsigned			in_execve:1;
1000 	unsigned			in_iowait:1;
1001 #ifndef TIF_RESTORE_SIGMASK
1002 	unsigned			restore_sigmask:1;
1003 #endif
1004 #ifdef CONFIG_MEMCG_V1
1005 	unsigned			in_user_fault:1;
1006 #endif
1007 #ifdef CONFIG_LRU_GEN
1008 	/* whether the LRU algorithm may apply to this access */
1009 	unsigned			in_lru_fault:1;
1010 #endif
1011 #ifdef CONFIG_COMPAT_BRK
1012 	unsigned			brk_randomized:1;
1013 #endif
1014 #ifdef CONFIG_CGROUPS
1015 	/* disallow userland-initiated cgroup migration */
1016 	unsigned			no_cgroup_migration:1;
1017 	/* task is frozen/stopped (used by the cgroup freezer) */
1018 	unsigned			frozen:1;
1019 #endif
1020 #ifdef CONFIG_BLK_CGROUP
1021 	unsigned			use_memdelay:1;
1022 #endif
1023 #ifdef CONFIG_PSI
1024 	/* Stalled due to lack of memory */
1025 	unsigned			in_memstall:1;
1026 #endif
1027 #ifdef CONFIG_PAGE_OWNER
1028 	/* Used by page_owner=on to detect recursion in page tracking. */
1029 	unsigned			in_page_owner:1;
1030 #endif
1031 #ifdef CONFIG_EVENTFD
1032 	/* Recursion prevention for eventfd_signal() */
1033 	unsigned			in_eventfd:1;
1034 #endif
1035 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1036 	unsigned			pasid_activated:1;
1037 #endif
1038 #ifdef CONFIG_X86_BUS_LOCK_DETECT
1039 	unsigned			reported_split_lock:1;
1040 #endif
1041 #ifdef CONFIG_TASK_DELAY_ACCT
1042 	/* delay due to memory thrashing */
1043 	unsigned                        in_thrashing:1;
1044 #endif
1045 	unsigned			in_nf_duplicate:1;
1046 #ifdef CONFIG_PREEMPT_RT
1047 	struct netdev_xmit		net_xmit;
1048 #endif
1049 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
1050 
1051 	struct restart_block		restart_block;
1052 
1053 	pid_t				pid;
1054 	pid_t				tgid;
1055 
1056 #ifdef CONFIG_STACKPROTECTOR
1057 	/* Canary value for the -fstack-protector GCC feature: */
1058 	unsigned long			stack_canary;
1059 #endif
1060 	/*
1061 	 * Pointers to the (original) parent process, youngest child, younger sibling,
1062 	 * older sibling, respectively.  (p->father can be replaced with
1063 	 * p->real_parent->pid)
1064 	 */
1065 
1066 	/* Real parent process: */
1067 	struct task_struct __rcu	*real_parent;
1068 
1069 	/* Recipient of SIGCHLD, wait4() reports: */
1070 	struct task_struct __rcu	*parent;
1071 
1072 	/*
1073 	 * Children/sibling form the list of natural children:
1074 	 */
1075 	struct list_head		children;
1076 	struct list_head		sibling;
1077 	struct task_struct		*group_leader;
1078 
1079 	/*
1080 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
1081 	 *
1082 	 * This includes both natural children and PTRACE_ATTACH targets.
1083 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
1084 	 */
1085 	struct list_head		ptraced;
1086 	struct list_head		ptrace_entry;
1087 
1088 	/* PID/PID hash table linkage. */
1089 	struct pid			*thread_pid;
1090 	struct hlist_node		pid_links[PIDTYPE_MAX];
1091 	struct list_head		thread_node;
1092 
1093 	struct completion		*vfork_done;
1094 
1095 	/* CLONE_CHILD_SETTID: */
1096 	int __user			*set_child_tid;
1097 
1098 	/* CLONE_CHILD_CLEARTID: */
1099 	int __user			*clear_child_tid;
1100 
1101 	/* PF_KTHREAD | PF_IO_WORKER */
1102 	void				*worker_private;
1103 
1104 	u64				utime;
1105 	u64				stime;
1106 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1107 	u64				utimescaled;
1108 	u64				stimescaled;
1109 #endif
1110 	u64				gtime;
1111 	struct prev_cputime		prev_cputime;
1112 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1113 	struct vtime			vtime;
1114 #endif
1115 
1116 #ifdef CONFIG_NO_HZ_FULL
1117 	atomic_t			tick_dep_mask;
1118 #endif
1119 	/* Context switch counts: */
1120 	unsigned long			nvcsw;
1121 	unsigned long			nivcsw;
1122 
1123 	/* Monotonic time in nsecs: */
1124 	u64				start_time;
1125 
1126 	/* Boot based time in nsecs: */
1127 	u64				start_boottime;
1128 
1129 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1130 	unsigned long			min_flt;
1131 	unsigned long			maj_flt;
1132 
1133 	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
1134 	struct posix_cputimers		posix_cputimers;
1135 
1136 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1137 	struct posix_cputimers_work	posix_cputimers_work;
1138 #endif
1139 
1140 	/* Process credentials: */
1141 
1142 	/* Tracer's credentials at attach: */
1143 	const struct cred __rcu		*ptracer_cred;
1144 
1145 	/* Objective and real subjective task credentials (COW): */
1146 	const struct cred __rcu		*real_cred;
1147 
1148 	/* Effective (overridable) subjective task credentials (COW): */
1149 	const struct cred __rcu		*cred;
1150 
1151 #ifdef CONFIG_KEYS
1152 	/* Cached requested key. */
1153 	struct key			*cached_requested_key;
1154 #endif
1155 
1156 	/*
1157 	 * executable name, excluding path.
1158 	 *
1159 	 * - normally initialized begin_new_exec()
1160 	 * - set it with set_task_comm()
1161 	 *   - strscpy_pad() to ensure it is always NUL-terminated and
1162 	 *     zero-padded
1163 	 *   - task_lock() to ensure the operation is atomic and the name is
1164 	 *     fully updated.
1165 	 */
1166 	char				comm[TASK_COMM_LEN];
1167 
1168 	struct nameidata		*nameidata;
1169 
1170 #ifdef CONFIG_SYSVIPC
1171 	struct sysv_sem			sysvsem;
1172 	struct sysv_shm			sysvshm;
1173 #endif
1174 #ifdef CONFIG_DETECT_HUNG_TASK
1175 	unsigned long			last_switch_count;
1176 	unsigned long			last_switch_time;
1177 #endif
1178 	/* Filesystem information: */
1179 	struct fs_struct		*fs;
1180 
1181 	/* Open file information: */
1182 	struct files_struct		*files;
1183 
1184 #ifdef CONFIG_IO_URING
1185 	struct io_uring_task		*io_uring;
1186 #endif
1187 
1188 	/* Namespaces: */
1189 	struct nsproxy			*nsproxy;
1190 
1191 	/* Signal handlers: */
1192 	struct signal_struct		*signal;
1193 	struct sighand_struct __rcu		*sighand;
1194 	sigset_t			blocked;
1195 	sigset_t			real_blocked;
1196 	/* Restored if set_restore_sigmask() was used: */
1197 	sigset_t			saved_sigmask;
1198 	struct sigpending		pending;
1199 	unsigned long			sas_ss_sp;
1200 	size_t				sas_ss_size;
1201 	unsigned int			sas_ss_flags;
1202 
1203 	struct callback_head		*task_works;
1204 
1205 #ifdef CONFIG_AUDIT
1206 #ifdef CONFIG_AUDITSYSCALL
1207 	struct audit_context		*audit_context;
1208 #endif
1209 	kuid_t				loginuid;
1210 	unsigned int			sessionid;
1211 #endif
1212 	struct seccomp			seccomp;
1213 	struct syscall_user_dispatch	syscall_dispatch;
1214 
1215 	/* Thread group tracking: */
1216 	u64				parent_exec_id;
1217 	u64				self_exec_id;
1218 
1219 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1220 	spinlock_t			alloc_lock;
1221 
1222 	/* Protection of the PI data structures: */
1223 	raw_spinlock_t			pi_lock;
1224 
1225 	struct wake_q_node		wake_q;
1226 
1227 #ifdef CONFIG_RT_MUTEXES
1228 	/* PI waiters blocked on a rt_mutex held by this task: */
1229 	struct rb_root_cached		pi_waiters;
1230 	/* Updated under owner's pi_lock and rq lock */
1231 	struct task_struct		*pi_top_task;
1232 	/* Deadlock detection and priority inheritance handling: */
1233 	struct rt_mutex_waiter		*pi_blocked_on;
1234 #endif
1235 
1236 	struct mutex			*blocked_on;	/* lock we're blocked on */
1237 
1238 #ifdef CONFIG_DETECT_HUNG_TASK_BLOCKER
1239 	/*
1240 	 * Encoded lock address causing task block (lower 2 bits = type from
1241 	 * <linux/hung_task.h>). Accessed via hung_task_*() helpers.
1242 	 */
1243 	unsigned long			blocker;
1244 #endif
1245 
1246 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1247 	int				non_block_count;
1248 #endif
1249 
1250 #ifdef CONFIG_TRACE_IRQFLAGS
1251 	struct irqtrace_events		irqtrace;
1252 	unsigned int			hardirq_threaded;
1253 	u64				hardirq_chain_key;
1254 	int				softirqs_enabled;
1255 	int				softirq_context;
1256 	int				irq_config;
1257 #endif
1258 #ifdef CONFIG_PREEMPT_RT
1259 	int				softirq_disable_cnt;
1260 #endif
1261 
1262 #ifdef CONFIG_LOCKDEP
1263 # define MAX_LOCK_DEPTH			48UL
1264 	u64				curr_chain_key;
1265 	int				lockdep_depth;
1266 	unsigned int			lockdep_recursion;
1267 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1268 #endif
1269 
1270 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1271 	unsigned int			in_ubsan;
1272 #endif
1273 
1274 	/* Journalling filesystem info: */
1275 	void				*journal_info;
1276 
1277 	/* Stacked block device info: */
1278 	struct bio_list			*bio_list;
1279 
1280 	/* Stack plugging: */
1281 	struct blk_plug			*plug;
1282 
1283 	/* VM state: */
1284 	struct reclaim_state		*reclaim_state;
1285 
1286 	struct io_context		*io_context;
1287 
1288 #ifdef CONFIG_COMPACTION
1289 	struct capture_control		*capture_control;
1290 #endif
1291 	/* Ptrace state: */
1292 	unsigned long			ptrace_message;
1293 	kernel_siginfo_t		*last_siginfo;
1294 
1295 	struct task_io_accounting	ioac;
1296 #ifdef CONFIG_PSI
1297 	/* Pressure stall state */
1298 	unsigned int			psi_flags;
1299 #endif
1300 #ifdef CONFIG_TASK_XACCT
1301 	/* Accumulated RSS usage: */
1302 	u64				acct_rss_mem1;
1303 	/* Accumulated virtual memory usage: */
1304 	u64				acct_vm_mem1;
1305 	/* stime + utime since last update: */
1306 	u64				acct_timexpd;
1307 #endif
1308 #ifdef CONFIG_CPUSETS
1309 	/* Protected by ->alloc_lock: */
1310 	nodemask_t			mems_allowed;
1311 	/* Sequence number to catch updates: */
1312 	seqcount_spinlock_t		mems_allowed_seq;
1313 	int				cpuset_mem_spread_rotor;
1314 #endif
1315 #ifdef CONFIG_CGROUPS
1316 	/* Control Group info protected by css_set_lock: */
1317 	struct css_set __rcu		*cgroups;
1318 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1319 	struct list_head		cg_list;
1320 #endif
1321 #ifdef CONFIG_X86_CPU_RESCTRL
1322 	u32				closid;
1323 	u32				rmid;
1324 #endif
1325 #ifdef CONFIG_FUTEX
1326 	struct robust_list_head __user	*robust_list;
1327 #ifdef CONFIG_COMPAT
1328 	struct compat_robust_list_head __user *compat_robust_list;
1329 #endif
1330 	struct list_head		pi_state_list;
1331 	struct futex_pi_state		*pi_state_cache;
1332 	struct mutex			futex_exit_mutex;
1333 	unsigned int			futex_state;
1334 #endif
1335 #ifdef CONFIG_PERF_EVENTS
1336 	u8				perf_recursion[PERF_NR_CONTEXTS];
1337 	struct perf_event_context	*perf_event_ctxp;
1338 	struct mutex			perf_event_mutex;
1339 	struct list_head		perf_event_list;
1340 	struct perf_ctx_data __rcu	*perf_ctx_data;
1341 #endif
1342 #ifdef CONFIG_DEBUG_PREEMPT
1343 	unsigned long			preempt_disable_ip;
1344 #endif
1345 #ifdef CONFIG_NUMA
1346 	/* Protected by alloc_lock: */
1347 	struct mempolicy		*mempolicy;
1348 	short				il_prev;
1349 	u8				il_weight;
1350 	short				pref_node_fork;
1351 #endif
1352 #ifdef CONFIG_NUMA_BALANCING
1353 	int				numa_scan_seq;
1354 	unsigned int			numa_scan_period;
1355 	unsigned int			numa_scan_period_max;
1356 	int				numa_preferred_nid;
1357 	unsigned long			numa_migrate_retry;
1358 	/* Migration stamp: */
1359 	u64				node_stamp;
1360 	u64				last_task_numa_placement;
1361 	u64				last_sum_exec_runtime;
1362 	struct callback_head		numa_work;
1363 
1364 	/*
1365 	 * This pointer is only modified for current in syscall and
1366 	 * pagefault context (and for tasks being destroyed), so it can be read
1367 	 * from any of the following contexts:
1368 	 *  - RCU read-side critical section
1369 	 *  - current->numa_group from everywhere
1370 	 *  - task's runqueue locked, task not running
1371 	 */
1372 	struct numa_group __rcu		*numa_group;
1373 
1374 	/*
1375 	 * numa_faults is an array split into four regions:
1376 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1377 	 * in this precise order.
1378 	 *
1379 	 * faults_memory: Exponential decaying average of faults on a per-node
1380 	 * basis. Scheduling placement decisions are made based on these
1381 	 * counts. The values remain static for the duration of a PTE scan.
1382 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1383 	 * hinting fault was incurred.
1384 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1385 	 * during the current scan window. When the scan completes, the counts
1386 	 * in faults_memory and faults_cpu decay and these values are copied.
1387 	 */
1388 	unsigned long			*numa_faults;
1389 	unsigned long			total_numa_faults;
1390 
1391 	/*
1392 	 * numa_faults_locality tracks if faults recorded during the last
1393 	 * scan window were remote/local or failed to migrate. The task scan
1394 	 * period is adapted based on the locality of the faults with different
1395 	 * weights depending on whether they were shared or private faults
1396 	 */
1397 	unsigned long			numa_faults_locality[3];
1398 
1399 	unsigned long			numa_pages_migrated;
1400 #endif /* CONFIG_NUMA_BALANCING */
1401 
1402 #ifdef CONFIG_RSEQ
1403 	struct rseq __user *rseq;
1404 	u32 rseq_len;
1405 	u32 rseq_sig;
1406 	/*
1407 	 * RmW on rseq_event_mask must be performed atomically
1408 	 * with respect to preemption.
1409 	 */
1410 	unsigned long rseq_event_mask;
1411 # ifdef CONFIG_DEBUG_RSEQ
1412 	/*
1413 	 * This is a place holder to save a copy of the rseq fields for
1414 	 * validation of read-only fields. The struct rseq has a
1415 	 * variable-length array at the end, so it cannot be used
1416 	 * directly. Reserve a size large enough for the known fields.
1417 	 */
1418 	char				rseq_fields[sizeof(struct rseq)];
1419 # endif
1420 #endif
1421 
1422 #ifdef CONFIG_SCHED_MM_CID
1423 	int				mm_cid;		/* Current cid in mm */
1424 	int				last_mm_cid;	/* Most recent cid in mm */
1425 	int				migrate_from_cpu;
1426 	int				mm_cid_active;	/* Whether cid bitmap is active */
1427 	struct callback_head		cid_work;
1428 #endif
1429 
1430 	struct tlbflush_unmap_batch	tlb_ubc;
1431 
1432 	/* Cache last used pipe for splice(): */
1433 	struct pipe_inode_info		*splice_pipe;
1434 
1435 	struct page_frag		task_frag;
1436 
1437 #ifdef CONFIG_TASK_DELAY_ACCT
1438 	struct task_delay_info		*delays;
1439 #endif
1440 
1441 #ifdef CONFIG_FAULT_INJECTION
1442 	int				make_it_fail;
1443 	unsigned int			fail_nth;
1444 #endif
1445 	/*
1446 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1447 	 * balance_dirty_pages() for a dirty throttling pause:
1448 	 */
1449 	int				nr_dirtied;
1450 	int				nr_dirtied_pause;
1451 	/* Start of a write-and-pause period: */
1452 	unsigned long			dirty_paused_when;
1453 
1454 #ifdef CONFIG_LATENCYTOP
1455 	int				latency_record_count;
1456 	struct latency_record		latency_record[LT_SAVECOUNT];
1457 #endif
1458 	/*
1459 	 * Time slack values; these are used to round up poll() and
1460 	 * select() etc timeout values. These are in nanoseconds.
1461 	 */
1462 	u64				timer_slack_ns;
1463 	u64				default_timer_slack_ns;
1464 
1465 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1466 	unsigned int			kasan_depth;
1467 #endif
1468 
1469 #ifdef CONFIG_KCSAN
1470 	struct kcsan_ctx		kcsan_ctx;
1471 #ifdef CONFIG_TRACE_IRQFLAGS
1472 	struct irqtrace_events		kcsan_save_irqtrace;
1473 #endif
1474 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1475 	int				kcsan_stack_depth;
1476 #endif
1477 #endif
1478 
1479 #ifdef CONFIG_KMSAN
1480 	struct kmsan_ctx		kmsan_ctx;
1481 #endif
1482 
1483 #if IS_ENABLED(CONFIG_KUNIT)
1484 	struct kunit			*kunit_test;
1485 #endif
1486 
1487 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1488 	/* Index of current stored address in ret_stack: */
1489 	int				curr_ret_stack;
1490 	int				curr_ret_depth;
1491 
1492 	/* Stack of return addresses for return function tracing: */
1493 	unsigned long			*ret_stack;
1494 
1495 	/* Timestamp for last schedule: */
1496 	unsigned long long		ftrace_timestamp;
1497 	unsigned long long		ftrace_sleeptime;
1498 
1499 	/*
1500 	 * Number of functions that haven't been traced
1501 	 * because of depth overrun:
1502 	 */
1503 	atomic_t			trace_overrun;
1504 
1505 	/* Pause tracing: */
1506 	atomic_t			tracing_graph_pause;
1507 #endif
1508 
1509 #ifdef CONFIG_TRACING
1510 	/* Bitmask and counter of trace recursion: */
1511 	unsigned long			trace_recursion;
1512 #endif /* CONFIG_TRACING */
1513 
1514 #ifdef CONFIG_KCOV
1515 	/* See kernel/kcov.c for more details. */
1516 
1517 	/* Coverage collection mode enabled for this task (0 if disabled): */
1518 	unsigned int			kcov_mode;
1519 
1520 	/* Size of the kcov_area: */
1521 	unsigned int			kcov_size;
1522 
1523 	/* Buffer for coverage collection: */
1524 	void				*kcov_area;
1525 
1526 	/* KCOV descriptor wired with this task or NULL: */
1527 	struct kcov			*kcov;
1528 
1529 	/* KCOV common handle for remote coverage collection: */
1530 	u64				kcov_handle;
1531 
1532 	/* KCOV sequence number: */
1533 	int				kcov_sequence;
1534 
1535 	/* Collect coverage from softirq context: */
1536 	unsigned int			kcov_softirq;
1537 #endif
1538 
1539 #ifdef CONFIG_MEMCG_V1
1540 	struct mem_cgroup		*memcg_in_oom;
1541 #endif
1542 
1543 #ifdef CONFIG_MEMCG
1544 	/* Number of pages to reclaim on returning to userland: */
1545 	unsigned int			memcg_nr_pages_over_high;
1546 
1547 	/* Used by memcontrol for targeted memcg charge: */
1548 	struct mem_cgroup		*active_memcg;
1549 
1550 	/* Cache for current->cgroups->memcg->objcg lookups: */
1551 	struct obj_cgroup		*objcg;
1552 #endif
1553 
1554 #ifdef CONFIG_BLK_CGROUP
1555 	struct gendisk			*throttle_disk;
1556 #endif
1557 
1558 #ifdef CONFIG_UPROBES
1559 	struct uprobe_task		*utask;
1560 #endif
1561 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1562 	unsigned int			sequential_io;
1563 	unsigned int			sequential_io_avg;
1564 #endif
1565 	struct kmap_ctrl		kmap_ctrl;
1566 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1567 	unsigned long			task_state_change;
1568 # ifdef CONFIG_PREEMPT_RT
1569 	unsigned long			saved_state_change;
1570 # endif
1571 #endif
1572 	struct rcu_head			rcu;
1573 	refcount_t			rcu_users;
1574 	int				pagefault_disabled;
1575 #ifdef CONFIG_MMU
1576 	struct task_struct		*oom_reaper_list;
1577 	struct timer_list		oom_reaper_timer;
1578 #endif
1579 #ifdef CONFIG_VMAP_STACK
1580 	struct vm_struct		*stack_vm_area;
1581 #endif
1582 #ifdef CONFIG_THREAD_INFO_IN_TASK
1583 	/* A live task holds one reference: */
1584 	refcount_t			stack_refcount;
1585 #endif
1586 #ifdef CONFIG_LIVEPATCH
1587 	int patch_state;
1588 #endif
1589 #ifdef CONFIG_SECURITY
1590 	/* Used by LSM modules for access restriction: */
1591 	void				*security;
1592 #endif
1593 #ifdef CONFIG_BPF_SYSCALL
1594 	/* Used by BPF task local storage */
1595 	struct bpf_local_storage __rcu	*bpf_storage;
1596 	/* Used for BPF run context */
1597 	struct bpf_run_ctx		*bpf_ctx;
1598 #endif
1599 	/* Used by BPF for per-TASK xdp storage */
1600 	struct bpf_net_context		*bpf_net_context;
1601 
1602 #ifdef CONFIG_KSTACK_ERASE
1603 	unsigned long			lowest_stack;
1604 #endif
1605 #ifdef CONFIG_KSTACK_ERASE_METRICS
1606 	unsigned long			prev_lowest_stack;
1607 #endif
1608 
1609 #ifdef CONFIG_X86_MCE
1610 	void __user			*mce_vaddr;
1611 	__u64				mce_kflags;
1612 	u64				mce_addr;
1613 	__u64				mce_ripv : 1,
1614 					mce_whole_page : 1,
1615 					__mce_reserved : 62;
1616 	struct callback_head		mce_kill_me;
1617 	int				mce_count;
1618 #endif
1619 
1620 #ifdef CONFIG_KRETPROBES
1621 	struct llist_head               kretprobe_instances;
1622 #endif
1623 #ifdef CONFIG_RETHOOK
1624 	struct llist_head               rethooks;
1625 #endif
1626 
1627 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1628 	/*
1629 	 * If L1D flush is supported on mm context switch
1630 	 * then we use this callback head to queue kill work
1631 	 * to kill tasks that are not running on SMT disabled
1632 	 * cores
1633 	 */
1634 	struct callback_head		l1d_flush_kill;
1635 #endif
1636 
1637 #ifdef CONFIG_RV
1638 	/*
1639 	 * Per-task RV monitor, fixed in CONFIG_RV_PER_TASK_MONITORS.
1640 	 * If memory becomes a concern, we can think about a dynamic method.
1641 	 */
1642 	union rv_task_monitor		rv[CONFIG_RV_PER_TASK_MONITORS];
1643 #endif
1644 
1645 #ifdef CONFIG_USER_EVENTS
1646 	struct user_event_mm		*user_event_mm;
1647 #endif
1648 
1649 	/* CPU-specific state of this task: */
1650 	struct thread_struct		thread;
1651 
1652 	/*
1653 	 * New fields for task_struct should be added above here, so that
1654 	 * they are included in the randomized portion of task_struct.
1655 	 */
1656 	randomized_struct_fields_end
1657 } __attribute__ ((aligned (64)));
1658 
1659 #ifdef CONFIG_SCHED_PROXY_EXEC
1660 DECLARE_STATIC_KEY_TRUE(__sched_proxy_exec);
sched_proxy_exec(void)1661 static inline bool sched_proxy_exec(void)
1662 {
1663 	return static_branch_likely(&__sched_proxy_exec);
1664 }
1665 #else
sched_proxy_exec(void)1666 static inline bool sched_proxy_exec(void)
1667 {
1668 	return false;
1669 }
1670 #endif
1671 
1672 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1673 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1674 
__task_state_index(unsigned int tsk_state,unsigned int tsk_exit_state)1675 static inline unsigned int __task_state_index(unsigned int tsk_state,
1676 					      unsigned int tsk_exit_state)
1677 {
1678 	unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1679 
1680 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1681 
1682 	if ((tsk_state & TASK_IDLE) == TASK_IDLE)
1683 		state = TASK_REPORT_IDLE;
1684 
1685 	/*
1686 	 * We're lying here, but rather than expose a completely new task state
1687 	 * to userspace, we can make this appear as if the task has gone through
1688 	 * a regular rt_mutex_lock() call.
1689 	 * Report frozen tasks as uninterruptible.
1690 	 */
1691 	if ((tsk_state & TASK_RTLOCK_WAIT) || (tsk_state & TASK_FROZEN))
1692 		state = TASK_UNINTERRUPTIBLE;
1693 
1694 	return fls(state);
1695 }
1696 
task_state_index(struct task_struct * tsk)1697 static inline unsigned int task_state_index(struct task_struct *tsk)
1698 {
1699 	return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1700 }
1701 
task_index_to_char(unsigned int state)1702 static inline char task_index_to_char(unsigned int state)
1703 {
1704 	static const char state_char[] = "RSDTtXZPI";
1705 
1706 	BUILD_BUG_ON(TASK_REPORT_MAX * 2 != 1 << (sizeof(state_char) - 1));
1707 
1708 	return state_char[state];
1709 }
1710 
task_state_to_char(struct task_struct * tsk)1711 static inline char task_state_to_char(struct task_struct *tsk)
1712 {
1713 	return task_index_to_char(task_state_index(tsk));
1714 }
1715 
1716 extern struct pid *cad_pid;
1717 
1718 /*
1719  * Per process flags
1720  */
1721 #define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1722 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1723 #define PF_EXITING		0x00000004	/* Getting shut down */
1724 #define PF_POSTCOREDUMP		0x00000008	/* Coredumps should ignore this task */
1725 #define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1726 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1727 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1728 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1729 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1730 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1731 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1732 #define PF_MEMALLOC		0x00000800	/* Allocating memory to free memory. See memalloc_noreclaim_save() */
1733 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1734 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1735 #define PF_USER_WORKER		0x00004000	/* Kernel thread cloned from userspace thread */
1736 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1737 #define PF_KCOMPACTD		0x00010000	/* I am kcompactd */
1738 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1739 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocations inherit GFP_NOFS. See memalloc_nfs_save() */
1740 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocations inherit GFP_NOIO. See memalloc_noio_save() */
1741 #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
1742 						 * I am cleaning dirty pages from some other bdi. */
1743 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1744 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1745 #define PF__HOLE__00800000	0x00800000
1746 #define PF__HOLE__01000000	0x01000000
1747 #define PF__HOLE__02000000	0x02000000
1748 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1749 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1750 #define PF_MEMALLOC_PIN		0x10000000	/* Allocations constrained to zones which allow long term pinning.
1751 						 * See memalloc_pin_save() */
1752 #define PF_BLOCK_TS		0x20000000	/* plug has ts that needs updating */
1753 #define PF__HOLE__40000000	0x40000000
1754 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1755 
1756 /*
1757  * Only the _current_ task can read/write to tsk->flags, but other
1758  * tasks can access tsk->flags in readonly mode for example
1759  * with tsk_used_math (like during threaded core dumping).
1760  * There is however an exception to this rule during ptrace
1761  * or during fork: the ptracer task is allowed to write to the
1762  * child->flags of its traced child (same goes for fork, the parent
1763  * can write to the child->flags), because we're guaranteed the
1764  * child is not running and in turn not changing child->flags
1765  * at the same time the parent does it.
1766  */
1767 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1768 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1769 #define clear_used_math()			clear_stopped_child_used_math(current)
1770 #define set_used_math()				set_stopped_child_used_math(current)
1771 
1772 #define conditional_stopped_child_used_math(condition, child) \
1773 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1774 
1775 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1776 
1777 #define copy_to_stopped_child_used_math(child) \
1778 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1779 
1780 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1781 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1782 #define used_math()				tsk_used_math(current)
1783 
is_percpu_thread(void)1784 static __always_inline bool is_percpu_thread(void)
1785 {
1786 	return (current->flags & PF_NO_SETAFFINITY) &&
1787 		(current->nr_cpus_allowed  == 1);
1788 }
1789 
1790 /* Per-process atomic flags. */
1791 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1792 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1793 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1794 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1795 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1796 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1797 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1798 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1799 
1800 #define TASK_PFA_TEST(name, func)					\
1801 	static inline bool task_##func(struct task_struct *p)		\
1802 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1803 
1804 #define TASK_PFA_SET(name, func)					\
1805 	static inline void task_set_##func(struct task_struct *p)	\
1806 	{ set_bit(PFA_##name, &p->atomic_flags); }
1807 
1808 #define TASK_PFA_CLEAR(name, func)					\
1809 	static inline void task_clear_##func(struct task_struct *p)	\
1810 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1811 
TASK_PFA_TEST(NO_NEW_PRIVS,no_new_privs)1812 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1813 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1814 
1815 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1816 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1817 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1818 
1819 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1820 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1821 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1822 
1823 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1824 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1825 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1826 
1827 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1828 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1829 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1830 
1831 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1832 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1833 
1834 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1835 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1836 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1837 
1838 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1839 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1840 
1841 static inline void
1842 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1843 {
1844 	current->flags &= ~flags;
1845 	current->flags |= orig_flags & flags;
1846 }
1847 
1848 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1849 extern int task_can_attach(struct task_struct *p);
1850 extern int dl_bw_alloc(int cpu, u64 dl_bw);
1851 extern void dl_bw_free(int cpu, u64 dl_bw);
1852 
1853 /* do_set_cpus_allowed() - consider using set_cpus_allowed_ptr() instead */
1854 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1855 
1856 /**
1857  * set_cpus_allowed_ptr - set CPU affinity mask of a task
1858  * @p: the task
1859  * @new_mask: CPU affinity mask
1860  *
1861  * Return: zero if successful, or a negative error code
1862  */
1863 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1864 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1865 extern void release_user_cpus_ptr(struct task_struct *p);
1866 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1867 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1868 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1869 
1870 extern int yield_to(struct task_struct *p, bool preempt);
1871 extern void set_user_nice(struct task_struct *p, long nice);
1872 extern int task_prio(const struct task_struct *p);
1873 
1874 /**
1875  * task_nice - return the nice value of a given task.
1876  * @p: the task in question.
1877  *
1878  * Return: The nice value [ -20 ... 0 ... 19 ].
1879  */
task_nice(const struct task_struct * p)1880 static inline int task_nice(const struct task_struct *p)
1881 {
1882 	return PRIO_TO_NICE((p)->static_prio);
1883 }
1884 
1885 extern int can_nice(const struct task_struct *p, const int nice);
1886 extern int task_curr(const struct task_struct *p);
1887 extern int idle_cpu(int cpu);
1888 extern int available_idle_cpu(int cpu);
1889 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1890 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1891 extern void sched_set_fifo(struct task_struct *p);
1892 extern void sched_set_fifo_low(struct task_struct *p);
1893 extern void sched_set_normal(struct task_struct *p, int nice);
1894 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1895 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1896 extern struct task_struct *idle_task(int cpu);
1897 
1898 /**
1899  * is_idle_task - is the specified task an idle task?
1900  * @p: the task in question.
1901  *
1902  * Return: 1 if @p is an idle task. 0 otherwise.
1903  */
is_idle_task(const struct task_struct * p)1904 static __always_inline bool is_idle_task(const struct task_struct *p)
1905 {
1906 	return !!(p->flags & PF_IDLE);
1907 }
1908 
1909 extern struct task_struct *curr_task(int cpu);
1910 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1911 
1912 void yield(void);
1913 
1914 union thread_union {
1915 	struct task_struct task;
1916 #ifndef CONFIG_THREAD_INFO_IN_TASK
1917 	struct thread_info thread_info;
1918 #endif
1919 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1920 };
1921 
1922 #ifndef CONFIG_THREAD_INFO_IN_TASK
1923 extern struct thread_info init_thread_info;
1924 #endif
1925 
1926 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1927 
1928 #ifdef CONFIG_THREAD_INFO_IN_TASK
1929 # define task_thread_info(task)	(&(task)->thread_info)
1930 #else
1931 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1932 #endif
1933 
1934 /*
1935  * find a task by one of its numerical ids
1936  *
1937  * find_task_by_pid_ns():
1938  *      finds a task by its pid in the specified namespace
1939  * find_task_by_vpid():
1940  *      finds a task by its virtual pid
1941  *
1942  * see also find_vpid() etc in include/linux/pid.h
1943  */
1944 
1945 extern struct task_struct *find_task_by_vpid(pid_t nr);
1946 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1947 
1948 /*
1949  * find a task by its virtual pid and get the task struct
1950  */
1951 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1952 
1953 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1954 extern int wake_up_process(struct task_struct *tsk);
1955 extern void wake_up_new_task(struct task_struct *tsk);
1956 
1957 extern void kick_process(struct task_struct *tsk);
1958 
1959 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1960 #define set_task_comm(tsk, from) ({			\
1961 	BUILD_BUG_ON(sizeof(from) != TASK_COMM_LEN);	\
1962 	__set_task_comm(tsk, from, false);		\
1963 })
1964 
1965 /*
1966  * - Why not use task_lock()?
1967  *   User space can randomly change their names anyway, so locking for readers
1968  *   doesn't make sense. For writers, locking is probably necessary, as a race
1969  *   condition could lead to long-term mixed results.
1970  *   The strscpy_pad() in __set_task_comm() can ensure that the task comm is
1971  *   always NUL-terminated and zero-padded. Therefore the race condition between
1972  *   reader and writer is not an issue.
1973  *
1974  * - BUILD_BUG_ON() can help prevent the buf from being truncated.
1975  *   Since the callers don't perform any return value checks, this safeguard is
1976  *   necessary.
1977  */
1978 #define get_task_comm(buf, tsk) ({			\
1979 	BUILD_BUG_ON(sizeof(buf) < TASK_COMM_LEN);	\
1980 	strscpy_pad(buf, (tsk)->comm);			\
1981 	buf;						\
1982 })
1983 
scheduler_ipi(void)1984 static __always_inline void scheduler_ipi(void)
1985 {
1986 	/*
1987 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1988 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1989 	 * this IPI.
1990 	 */
1991 	preempt_fold_need_resched();
1992 }
1993 
1994 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1995 
1996 /*
1997  * Set thread flags in other task's structures.
1998  * See asm/thread_info.h for TIF_xxxx flags available:
1999  */
set_tsk_thread_flag(struct task_struct * tsk,int flag)2000 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2001 {
2002 	set_ti_thread_flag(task_thread_info(tsk), flag);
2003 }
2004 
clear_tsk_thread_flag(struct task_struct * tsk,int flag)2005 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2006 {
2007 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2008 }
2009 
update_tsk_thread_flag(struct task_struct * tsk,int flag,bool value)2010 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2011 					  bool value)
2012 {
2013 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
2014 }
2015 
test_and_set_tsk_thread_flag(struct task_struct * tsk,int flag)2016 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2017 {
2018 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2019 }
2020 
test_and_clear_tsk_thread_flag(struct task_struct * tsk,int flag)2021 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2022 {
2023 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2024 }
2025 
test_tsk_thread_flag(struct task_struct * tsk,int flag)2026 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2027 {
2028 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2029 }
2030 
set_tsk_need_resched(struct task_struct * tsk)2031 static inline void set_tsk_need_resched(struct task_struct *tsk)
2032 {
2033 	if (tracepoint_enabled(sched_set_need_resched_tp) &&
2034 	    !test_tsk_thread_flag(tsk, TIF_NEED_RESCHED))
2035 		__trace_set_need_resched(tsk, TIF_NEED_RESCHED);
2036 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2037 }
2038 
clear_tsk_need_resched(struct task_struct * tsk)2039 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2040 {
2041 	atomic_long_andnot(_TIF_NEED_RESCHED | _TIF_NEED_RESCHED_LAZY,
2042 			   (atomic_long_t *)&task_thread_info(tsk)->flags);
2043 }
2044 
test_tsk_need_resched(struct task_struct * tsk)2045 static inline int test_tsk_need_resched(struct task_struct *tsk)
2046 {
2047 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2048 }
2049 
2050 /*
2051  * cond_resched() and cond_resched_lock(): latency reduction via
2052  * explicit rescheduling in places that are safe. The return
2053  * value indicates whether a reschedule was done in fact.
2054  * cond_resched_lock() will drop the spinlock before scheduling,
2055  */
2056 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2057 extern int __cond_resched(void);
2058 
2059 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2060 
2061 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2062 
_cond_resched(void)2063 static __always_inline int _cond_resched(void)
2064 {
2065 	return static_call_mod(cond_resched)();
2066 }
2067 
2068 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2069 
2070 extern int dynamic_cond_resched(void);
2071 
_cond_resched(void)2072 static __always_inline int _cond_resched(void)
2073 {
2074 	return dynamic_cond_resched();
2075 }
2076 
2077 #else /* !CONFIG_PREEMPTION */
2078 
_cond_resched(void)2079 static inline int _cond_resched(void)
2080 {
2081 	return __cond_resched();
2082 }
2083 
2084 #endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
2085 
2086 #else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
2087 
_cond_resched(void)2088 static inline int _cond_resched(void)
2089 {
2090 	return 0;
2091 }
2092 
2093 #endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
2094 
2095 #define cond_resched() ({			\
2096 	__might_resched(__FILE__, __LINE__, 0);	\
2097 	_cond_resched();			\
2098 })
2099 
2100 extern int __cond_resched_lock(spinlock_t *lock);
2101 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2102 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2103 
2104 #define MIGHT_RESCHED_RCU_SHIFT		8
2105 #define MIGHT_RESCHED_PREEMPT_MASK	((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2106 
2107 #ifndef CONFIG_PREEMPT_RT
2108 /*
2109  * Non RT kernels have an elevated preempt count due to the held lock,
2110  * but are not allowed to be inside a RCU read side critical section
2111  */
2112 # define PREEMPT_LOCK_RESCHED_OFFSETS	PREEMPT_LOCK_OFFSET
2113 #else
2114 /*
2115  * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2116  * cond_resched*lock() has to take that into account because it checks for
2117  * preempt_count() and rcu_preempt_depth().
2118  */
2119 # define PREEMPT_LOCK_RESCHED_OFFSETS	\
2120 	(PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2121 #endif
2122 
2123 #define cond_resched_lock(lock) ({						\
2124 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2125 	__cond_resched_lock(lock);						\
2126 })
2127 
2128 #define cond_resched_rwlock_read(lock) ({					\
2129 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2130 	__cond_resched_rwlock_read(lock);					\
2131 })
2132 
2133 #define cond_resched_rwlock_write(lock) ({					\
2134 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2135 	__cond_resched_rwlock_write(lock);					\
2136 })
2137 
2138 #ifndef CONFIG_PREEMPT_RT
__get_task_blocked_on(struct task_struct * p)2139 static inline struct mutex *__get_task_blocked_on(struct task_struct *p)
2140 {
2141 	struct mutex *m = p->blocked_on;
2142 
2143 	if (m)
2144 		lockdep_assert_held_once(&m->wait_lock);
2145 	return m;
2146 }
2147 
__set_task_blocked_on(struct task_struct * p,struct mutex * m)2148 static inline void __set_task_blocked_on(struct task_struct *p, struct mutex *m)
2149 {
2150 	WARN_ON_ONCE(!m);
2151 	/* The task should only be setting itself as blocked */
2152 	WARN_ON_ONCE(p != current);
2153 	/* Currently we serialize blocked_on under the mutex::wait_lock */
2154 	lockdep_assert_held_once(&m->wait_lock);
2155 	/*
2156 	 * Check ensure we don't overwrite existing mutex value
2157 	 * with a different mutex. Note, setting it to the same
2158 	 * lock repeatedly is ok.
2159 	 */
2160 	WARN_ON_ONCE(p->blocked_on && p->blocked_on != m);
2161 	p->blocked_on = m;
2162 }
2163 
set_task_blocked_on(struct task_struct * p,struct mutex * m)2164 static inline void set_task_blocked_on(struct task_struct *p, struct mutex *m)
2165 {
2166 	guard(raw_spinlock_irqsave)(&m->wait_lock);
2167 	__set_task_blocked_on(p, m);
2168 }
2169 
__clear_task_blocked_on(struct task_struct * p,struct mutex * m)2170 static inline void __clear_task_blocked_on(struct task_struct *p, struct mutex *m)
2171 {
2172 	WARN_ON_ONCE(!m);
2173 	/* Currently we serialize blocked_on under the mutex::wait_lock */
2174 	lockdep_assert_held_once(&m->wait_lock);
2175 	/*
2176 	 * There may be cases where we re-clear already cleared
2177 	 * blocked_on relationships, but make sure we are not
2178 	 * clearing the relationship with a different lock.
2179 	 */
2180 	WARN_ON_ONCE(m && p->blocked_on && p->blocked_on != m);
2181 	p->blocked_on = NULL;
2182 }
2183 
clear_task_blocked_on(struct task_struct * p,struct mutex * m)2184 static inline void clear_task_blocked_on(struct task_struct *p, struct mutex *m)
2185 {
2186 	guard(raw_spinlock_irqsave)(&m->wait_lock);
2187 	__clear_task_blocked_on(p, m);
2188 }
2189 #else
__clear_task_blocked_on(struct task_struct * p,struct rt_mutex * m)2190 static inline void __clear_task_blocked_on(struct task_struct *p, struct rt_mutex *m)
2191 {
2192 }
2193 
clear_task_blocked_on(struct task_struct * p,struct rt_mutex * m)2194 static inline void clear_task_blocked_on(struct task_struct *p, struct rt_mutex *m)
2195 {
2196 }
2197 #endif /* !CONFIG_PREEMPT_RT */
2198 
need_resched(void)2199 static __always_inline bool need_resched(void)
2200 {
2201 	return unlikely(tif_need_resched());
2202 }
2203 
2204 /*
2205  * Wrappers for p->thread_info->cpu access. No-op on UP.
2206  */
2207 #ifdef CONFIG_SMP
2208 
task_cpu(const struct task_struct * p)2209 static inline unsigned int task_cpu(const struct task_struct *p)
2210 {
2211 	return READ_ONCE(task_thread_info(p)->cpu);
2212 }
2213 
2214 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2215 
2216 #else
2217 
task_cpu(const struct task_struct * p)2218 static inline unsigned int task_cpu(const struct task_struct *p)
2219 {
2220 	return 0;
2221 }
2222 
set_task_cpu(struct task_struct * p,unsigned int cpu)2223 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2224 {
2225 }
2226 
2227 #endif /* CONFIG_SMP */
2228 
task_is_runnable(struct task_struct * p)2229 static inline bool task_is_runnable(struct task_struct *p)
2230 {
2231 	return p->on_rq && !p->se.sched_delayed;
2232 }
2233 
2234 extern bool sched_task_on_rq(struct task_struct *p);
2235 extern unsigned long get_wchan(struct task_struct *p);
2236 extern struct task_struct *cpu_curr_snapshot(int cpu);
2237 
2238 /*
2239  * In order to reduce various lock holder preemption latencies provide an
2240  * interface to see if a vCPU is currently running or not.
2241  *
2242  * This allows us to terminate optimistic spin loops and block, analogous to
2243  * the native optimistic spin heuristic of testing if the lock owner task is
2244  * running or not.
2245  */
2246 #ifndef vcpu_is_preempted
vcpu_is_preempted(int cpu)2247 static inline bool vcpu_is_preempted(int cpu)
2248 {
2249 	return false;
2250 }
2251 #endif
2252 
2253 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2254 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2255 
2256 #ifndef TASK_SIZE_OF
2257 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2258 #endif
2259 
owner_on_cpu(struct task_struct * owner)2260 static inline bool owner_on_cpu(struct task_struct *owner)
2261 {
2262 	/*
2263 	 * As lock holder preemption issue, we both skip spinning if
2264 	 * task is not on cpu or its cpu is preempted
2265 	 */
2266 	return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2267 }
2268 
2269 /* Returns effective CPU energy utilization, as seen by the scheduler */
2270 unsigned long sched_cpu_util(int cpu);
2271 
2272 #ifdef CONFIG_SCHED_CORE
2273 extern void sched_core_free(struct task_struct *tsk);
2274 extern void sched_core_fork(struct task_struct *p);
2275 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2276 				unsigned long uaddr);
2277 extern int sched_core_idle_cpu(int cpu);
2278 #else
sched_core_free(struct task_struct * tsk)2279 static inline void sched_core_free(struct task_struct *tsk) { }
sched_core_fork(struct task_struct * p)2280 static inline void sched_core_fork(struct task_struct *p) { }
sched_core_idle_cpu(int cpu)2281 static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); }
2282 #endif
2283 
2284 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2285 
2286 #ifdef CONFIG_MEM_ALLOC_PROFILING
alloc_tag_save(struct alloc_tag * tag)2287 static __always_inline struct alloc_tag *alloc_tag_save(struct alloc_tag *tag)
2288 {
2289 	swap(current->alloc_tag, tag);
2290 	return tag;
2291 }
2292 
alloc_tag_restore(struct alloc_tag * tag,struct alloc_tag * old)2293 static __always_inline void alloc_tag_restore(struct alloc_tag *tag, struct alloc_tag *old)
2294 {
2295 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
2296 	WARN(current->alloc_tag != tag, "current->alloc_tag was changed:\n");
2297 #endif
2298 	current->alloc_tag = old;
2299 }
2300 #else
2301 #define alloc_tag_save(_tag)			NULL
2302 #define alloc_tag_restore(_tag, _old)		do {} while (0)
2303 #endif
2304 
2305 #endif
2306