1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "btree_cache.h"
5 #include "btree_io.h"
6 #include "btree_journal_iter.h"
7 #include "btree_node_scan.h"
8 #include "btree_update_interior.h"
9 #include "buckets.h"
10 #include "error.h"
11 #include "journal_io.h"
12 #include "recovery_passes.h"
13
14 #include <linux/kthread.h>
15 #include <linux/min_heap.h>
16 #include <linux/sched/sysctl.h>
17 #include <linux/sort.h>
18
19 struct find_btree_nodes_worker {
20 struct closure *cl;
21 struct find_btree_nodes *f;
22 struct bch_dev *ca;
23 };
24
found_btree_node_to_text(struct printbuf * out,struct bch_fs * c,const struct found_btree_node * n)25 static void found_btree_node_to_text(struct printbuf *out, struct bch_fs *c, const struct found_btree_node *n)
26 {
27 bch2_btree_id_level_to_text(out, n->btree_id, n->level);
28 prt_printf(out, " seq=%u journal_seq=%llu cookie=%llx ",
29 n->seq, n->journal_seq, n->cookie);
30 bch2_bpos_to_text(out, n->min_key);
31 prt_str(out, "-");
32 bch2_bpos_to_text(out, n->max_key);
33
34 if (n->range_updated)
35 prt_str(out, " range updated");
36
37 for (unsigned i = 0; i < n->nr_ptrs; i++) {
38 prt_char(out, ' ');
39 bch2_extent_ptr_to_text(out, c, n->ptrs + i);
40 }
41 }
42
found_btree_nodes_to_text(struct printbuf * out,struct bch_fs * c,found_btree_nodes nodes)43 static void found_btree_nodes_to_text(struct printbuf *out, struct bch_fs *c, found_btree_nodes nodes)
44 {
45 printbuf_indent_add(out, 2);
46 darray_for_each(nodes, i) {
47 found_btree_node_to_text(out, c, i);
48 prt_newline(out);
49 }
50 printbuf_indent_sub(out, 2);
51 }
52
found_btree_node_to_key(struct bkey_i * k,const struct found_btree_node * f)53 static void found_btree_node_to_key(struct bkey_i *k, const struct found_btree_node *f)
54 {
55 struct bkey_i_btree_ptr_v2 *bp = bkey_btree_ptr_v2_init(k);
56
57 set_bkey_val_u64s(&bp->k, sizeof(struct bch_btree_ptr_v2) / sizeof(u64) + f->nr_ptrs);
58 bp->k.p = f->max_key;
59 bp->v.seq = cpu_to_le64(f->cookie);
60 bp->v.sectors_written = 0;
61 bp->v.flags = 0;
62 bp->v.sectors_written = cpu_to_le16(f->sectors_written);
63 bp->v.min_key = f->min_key;
64 SET_BTREE_PTR_RANGE_UPDATED(&bp->v, f->range_updated);
65 memcpy(bp->v.start, f->ptrs, sizeof(struct bch_extent_ptr) * f->nr_ptrs);
66 }
67
bkey_journal_seq(struct bkey_s_c k)68 static inline u64 bkey_journal_seq(struct bkey_s_c k)
69 {
70 switch (k.k->type) {
71 case KEY_TYPE_inode_v3:
72 return le64_to_cpu(bkey_s_c_to_inode_v3(k).v->bi_journal_seq);
73 default:
74 return 0;
75 }
76 }
77
found_btree_node_cmp_cookie(const void * _l,const void * _r)78 static int found_btree_node_cmp_cookie(const void *_l, const void *_r)
79 {
80 const struct found_btree_node *l = _l;
81 const struct found_btree_node *r = _r;
82
83 return cmp_int(l->btree_id, r->btree_id) ?:
84 cmp_int(l->level, r->level) ?:
85 cmp_int(l->cookie, r->cookie);
86 }
87
88 /*
89 * Given two found btree nodes, if their sequence numbers are equal, take the
90 * one that's readable:
91 */
found_btree_node_cmp_time(const struct found_btree_node * l,const struct found_btree_node * r)92 static int found_btree_node_cmp_time(const struct found_btree_node *l,
93 const struct found_btree_node *r)
94 {
95 return cmp_int(l->seq, r->seq) ?:
96 cmp_int(l->journal_seq, r->journal_seq);
97 }
98
found_btree_node_cmp_pos(const void * _l,const void * _r)99 static int found_btree_node_cmp_pos(const void *_l, const void *_r)
100 {
101 const struct found_btree_node *l = _l;
102 const struct found_btree_node *r = _r;
103
104 return cmp_int(l->btree_id, r->btree_id) ?:
105 -cmp_int(l->level, r->level) ?:
106 bpos_cmp(l->min_key, r->min_key) ?:
107 -found_btree_node_cmp_time(l, r);
108 }
109
found_btree_node_cmp_pos_less(const void * l,const void * r,void * arg)110 static inline bool found_btree_node_cmp_pos_less(const void *l, const void *r, void *arg)
111 {
112 return found_btree_node_cmp_pos(l, r) < 0;
113 }
114
found_btree_node_swap(void * _l,void * _r,void * arg)115 static inline void found_btree_node_swap(void *_l, void *_r, void *arg)
116 {
117 struct found_btree_node *l = _l;
118 struct found_btree_node *r = _r;
119
120 swap(*l, *r);
121 }
122
123 static const struct min_heap_callbacks found_btree_node_heap_cbs = {
124 .less = found_btree_node_cmp_pos_less,
125 .swp = found_btree_node_swap,
126 };
127
try_read_btree_node(struct find_btree_nodes * f,struct bch_dev * ca,struct btree * b,struct bio * bio,u64 offset)128 static void try_read_btree_node(struct find_btree_nodes *f, struct bch_dev *ca,
129 struct btree *b, struct bio *bio, u64 offset)
130 {
131 struct bch_fs *c = container_of(f, struct bch_fs, found_btree_nodes);
132 struct btree_node *bn = b->data;
133
134 bio_reset(bio, ca->disk_sb.bdev, REQ_OP_READ);
135 bio->bi_iter.bi_sector = offset;
136 bch2_bio_map(bio, b->data, c->opts.block_size);
137
138 u64 submit_time = local_clock();
139 submit_bio_wait(bio);
140 bch2_account_io_completion(ca, BCH_MEMBER_ERROR_read, submit_time, !bio->bi_status);
141
142 if (bio->bi_status) {
143 bch_err_dev_ratelimited(ca,
144 "IO error in try_read_btree_node() at %llu: %s",
145 offset, bch2_blk_status_to_str(bio->bi_status));
146 return;
147 }
148
149 if (le64_to_cpu(bn->magic) != bset_magic(c))
150 return;
151
152 if (bch2_csum_type_is_encryption(BSET_CSUM_TYPE(&bn->keys))) {
153 if (!c->chacha20_key_set)
154 return;
155
156 struct nonce nonce = btree_nonce(&bn->keys, 0);
157 unsigned bytes = (void *) &bn->keys - (void *) &bn->flags;
158
159 bch2_encrypt(c, BSET_CSUM_TYPE(&bn->keys), nonce, &bn->flags, bytes);
160 }
161
162 if (btree_id_is_alloc(BTREE_NODE_ID(bn)))
163 return;
164
165 if (BTREE_NODE_LEVEL(bn) >= BTREE_MAX_DEPTH)
166 return;
167
168 if (BTREE_NODE_ID(bn) >= BTREE_ID_NR_MAX)
169 return;
170
171 bio_reset(bio, ca->disk_sb.bdev, REQ_OP_READ);
172 bio->bi_iter.bi_sector = offset;
173 bch2_bio_map(bio, b->data, c->opts.btree_node_size);
174
175 submit_time = local_clock();
176 submit_bio_wait(bio);
177 bch2_account_io_completion(ca, BCH_MEMBER_ERROR_read, submit_time, !bio->bi_status);
178
179 rcu_read_lock();
180 struct found_btree_node n = {
181 .btree_id = BTREE_NODE_ID(bn),
182 .level = BTREE_NODE_LEVEL(bn),
183 .seq = BTREE_NODE_SEQ(bn),
184 .cookie = le64_to_cpu(bn->keys.seq),
185 .min_key = bn->min_key,
186 .max_key = bn->max_key,
187 .nr_ptrs = 1,
188 .ptrs[0].type = 1 << BCH_EXTENT_ENTRY_ptr,
189 .ptrs[0].offset = offset,
190 .ptrs[0].dev = ca->dev_idx,
191 .ptrs[0].gen = bucket_gen_get(ca, sector_to_bucket(ca, offset)),
192 };
193 rcu_read_unlock();
194
195 found_btree_node_to_key(&b->key, &n);
196
197 CLASS(printbuf, buf)();
198 if (!bch2_btree_node_read_done(c, ca, b, NULL, &buf)) {
199 /* read_done will swap out b->data for another buffer */
200 bn = b->data;
201 /*
202 * Grab journal_seq here because we want the max journal_seq of
203 * any bset; read_done sorts down to a single set and picks the
204 * max journal_seq
205 */
206 n.journal_seq = le64_to_cpu(bn->keys.journal_seq),
207 n.sectors_written = b->written;
208
209 mutex_lock(&f->lock);
210 if (BSET_BIG_ENDIAN(&bn->keys) != CPU_BIG_ENDIAN) {
211 bch_err(c, "try_read_btree_node() can't handle endian conversion");
212 f->ret = -EINVAL;
213 goto unlock;
214 }
215
216 if (darray_push(&f->nodes, n))
217 f->ret = -ENOMEM;
218 unlock:
219 mutex_unlock(&f->lock);
220 }
221 }
222
read_btree_nodes_worker(void * p)223 static int read_btree_nodes_worker(void *p)
224 {
225 struct find_btree_nodes_worker *w = p;
226 struct bch_fs *c = container_of(w->f, struct bch_fs, found_btree_nodes);
227 struct bch_dev *ca = w->ca;
228 unsigned long last_print = jiffies;
229 struct btree *b = NULL;
230 struct bio *bio = NULL;
231
232 b = __bch2_btree_node_mem_alloc(c);
233 if (!b) {
234 bch_err(c, "read_btree_nodes_worker: error allocating buf");
235 w->f->ret = -ENOMEM;
236 goto err;
237 }
238
239 bio = bio_alloc(NULL, buf_pages(b->data, c->opts.btree_node_size), 0, GFP_KERNEL);
240 if (!bio) {
241 bch_err(c, "read_btree_nodes_worker: error allocating bio");
242 w->f->ret = -ENOMEM;
243 goto err;
244 }
245
246 for (u64 bucket = ca->mi.first_bucket; bucket < ca->mi.nbuckets; bucket++)
247 for (unsigned bucket_offset = 0;
248 bucket_offset + btree_sectors(c) <= ca->mi.bucket_size;
249 bucket_offset += btree_sectors(c)) {
250 if (time_after(jiffies, last_print + HZ * 30)) {
251 u64 cur_sector = bucket * ca->mi.bucket_size + bucket_offset;
252 u64 end_sector = ca->mi.nbuckets * ca->mi.bucket_size;
253
254 bch_info(ca, "%s: %2u%% done", __func__,
255 (unsigned) div64_u64(cur_sector * 100, end_sector));
256 last_print = jiffies;
257 }
258
259 u64 sector = bucket * ca->mi.bucket_size + bucket_offset;
260
261 if (c->sb.version_upgrade_complete >= bcachefs_metadata_version_mi_btree_bitmap &&
262 !bch2_dev_btree_bitmap_marked_sectors(ca, sector, btree_sectors(c)))
263 continue;
264
265 try_read_btree_node(w->f, ca, b, bio, sector);
266 }
267 err:
268 if (b)
269 __btree_node_data_free(b);
270 kfree(b);
271 bio_put(bio);
272 enumerated_ref_put(&ca->io_ref[READ], BCH_DEV_READ_REF_btree_node_scan);
273 closure_put(w->cl);
274 kfree(w);
275 return 0;
276 }
277
read_btree_nodes(struct find_btree_nodes * f)278 static int read_btree_nodes(struct find_btree_nodes *f)
279 {
280 struct bch_fs *c = container_of(f, struct bch_fs, found_btree_nodes);
281 struct closure cl;
282 int ret = 0;
283
284 closure_init_stack(&cl);
285
286 for_each_online_member(c, ca, BCH_DEV_READ_REF_btree_node_scan) {
287 if (!(ca->mi.data_allowed & BIT(BCH_DATA_btree)))
288 continue;
289
290 struct find_btree_nodes_worker *w = kmalloc(sizeof(*w), GFP_KERNEL);
291 if (!w) {
292 enumerated_ref_put(&ca->io_ref[READ], BCH_DEV_READ_REF_btree_node_scan);
293 ret = -ENOMEM;
294 goto err;
295 }
296
297 w->cl = &cl;
298 w->f = f;
299 w->ca = ca;
300
301 struct task_struct *t = kthread_create(read_btree_nodes_worker, w, "read_btree_nodes/%s", ca->name);
302 ret = PTR_ERR_OR_ZERO(t);
303 if (ret) {
304 enumerated_ref_put(&ca->io_ref[READ], BCH_DEV_READ_REF_btree_node_scan);
305 kfree(w);
306 bch_err_msg(c, ret, "starting kthread");
307 break;
308 }
309
310 closure_get(&cl);
311 enumerated_ref_get(&ca->io_ref[READ], BCH_DEV_READ_REF_btree_node_scan);
312 wake_up_process(t);
313 }
314 err:
315 while (closure_sync_timeout(&cl, sysctl_hung_task_timeout_secs * HZ / 2))
316 ;
317 return f->ret ?: ret;
318 }
319
nodes_overlap(const struct found_btree_node * l,const struct found_btree_node * r)320 static bool nodes_overlap(const struct found_btree_node *l,
321 const struct found_btree_node *r)
322 {
323 return (l->btree_id == r->btree_id &&
324 l->level == r->level &&
325 bpos_gt(l->max_key, r->min_key));
326 }
327
handle_overwrites(struct bch_fs * c,struct found_btree_node * l,found_btree_nodes * nodes_heap)328 static int handle_overwrites(struct bch_fs *c,
329 struct found_btree_node *l,
330 found_btree_nodes *nodes_heap)
331 {
332 struct found_btree_node *r;
333
334 while ((r = min_heap_peek(nodes_heap)) &&
335 nodes_overlap(l, r)) {
336 int cmp = found_btree_node_cmp_time(l, r);
337
338 if (cmp > 0) {
339 if (bpos_cmp(l->max_key, r->max_key) >= 0)
340 min_heap_pop(nodes_heap, &found_btree_node_heap_cbs, NULL);
341 else {
342 r->range_updated = true;
343 r->min_key = bpos_successor(l->max_key);
344 r->range_updated = true;
345 min_heap_sift_down(nodes_heap, 0, &found_btree_node_heap_cbs, NULL);
346 }
347 } else if (cmp < 0) {
348 BUG_ON(bpos_eq(l->min_key, r->min_key));
349
350 l->max_key = bpos_predecessor(r->min_key);
351 l->range_updated = true;
352 } else if (r->level) {
353 min_heap_pop(nodes_heap, &found_btree_node_heap_cbs, NULL);
354 } else {
355 if (bpos_cmp(l->max_key, r->max_key) >= 0)
356 min_heap_pop(nodes_heap, &found_btree_node_heap_cbs, NULL);
357 else {
358 r->range_updated = true;
359 r->min_key = bpos_successor(l->max_key);
360 r->range_updated = true;
361 min_heap_sift_down(nodes_heap, 0, &found_btree_node_heap_cbs, NULL);
362 }
363 }
364
365 cond_resched();
366 }
367
368 return 0;
369 }
370
bch2_scan_for_btree_nodes(struct bch_fs * c)371 int bch2_scan_for_btree_nodes(struct bch_fs *c)
372 {
373 struct find_btree_nodes *f = &c->found_btree_nodes;
374 struct printbuf buf = PRINTBUF;
375 found_btree_nodes nodes_heap = {};
376 size_t dst;
377 int ret = 0;
378
379 if (f->nodes.nr)
380 return 0;
381
382 mutex_init(&f->lock);
383
384 ret = read_btree_nodes(f);
385 if (ret)
386 return ret;
387
388 if (!f->nodes.nr) {
389 bch_err(c, "%s: no btree nodes found", __func__);
390 ret = -EINVAL;
391 goto err;
392 }
393
394 if (0 && c->opts.verbose) {
395 printbuf_reset(&buf);
396 prt_printf(&buf, "%s: nodes found:\n", __func__);
397 found_btree_nodes_to_text(&buf, c, f->nodes);
398 bch2_print_str(c, KERN_INFO, buf.buf);
399 }
400
401 sort_nonatomic(f->nodes.data, f->nodes.nr, sizeof(f->nodes.data[0]), found_btree_node_cmp_cookie, NULL);
402
403 dst = 0;
404 darray_for_each(f->nodes, i) {
405 struct found_btree_node *prev = dst ? f->nodes.data + dst - 1 : NULL;
406
407 if (prev &&
408 prev->cookie == i->cookie) {
409 if (prev->nr_ptrs == ARRAY_SIZE(prev->ptrs)) {
410 bch_err(c, "%s: found too many replicas for btree node", __func__);
411 ret = -EINVAL;
412 goto err;
413 }
414 prev->ptrs[prev->nr_ptrs++] = i->ptrs[0];
415 } else {
416 f->nodes.data[dst++] = *i;
417 }
418 }
419 f->nodes.nr = dst;
420
421 sort_nonatomic(f->nodes.data, f->nodes.nr, sizeof(f->nodes.data[0]), found_btree_node_cmp_pos, NULL);
422
423 if (0 && c->opts.verbose) {
424 printbuf_reset(&buf);
425 prt_printf(&buf, "%s: nodes after merging replicas:\n", __func__);
426 found_btree_nodes_to_text(&buf, c, f->nodes);
427 bch2_print_str(c, KERN_INFO, buf.buf);
428 }
429
430 swap(nodes_heap, f->nodes);
431
432 {
433 /* darray must have same layout as a heap */
434 min_heap_char real_heap;
435 BUILD_BUG_ON(sizeof(nodes_heap.nr) != sizeof(real_heap.nr));
436 BUILD_BUG_ON(sizeof(nodes_heap.size) != sizeof(real_heap.size));
437 BUILD_BUG_ON(offsetof(found_btree_nodes, nr) != offsetof(min_heap_char, nr));
438 BUILD_BUG_ON(offsetof(found_btree_nodes, size) != offsetof(min_heap_char, size));
439 }
440
441 min_heapify_all(&nodes_heap, &found_btree_node_heap_cbs, NULL);
442
443 if (nodes_heap.nr) {
444 ret = darray_push(&f->nodes, *min_heap_peek(&nodes_heap));
445 if (ret)
446 goto err;
447
448 min_heap_pop(&nodes_heap, &found_btree_node_heap_cbs, NULL);
449 }
450
451 while (true) {
452 ret = handle_overwrites(c, &darray_last(f->nodes), &nodes_heap);
453 if (ret)
454 goto err;
455
456 if (!nodes_heap.nr)
457 break;
458
459 ret = darray_push(&f->nodes, *min_heap_peek(&nodes_heap));
460 if (ret)
461 goto err;
462
463 min_heap_pop(&nodes_heap, &found_btree_node_heap_cbs, NULL);
464 }
465
466 for (struct found_btree_node *n = f->nodes.data; n < &darray_last(f->nodes); n++)
467 BUG_ON(nodes_overlap(n, n + 1));
468
469 if (0 && c->opts.verbose) {
470 printbuf_reset(&buf);
471 prt_printf(&buf, "%s: nodes found after overwrites:\n", __func__);
472 found_btree_nodes_to_text(&buf, c, f->nodes);
473 bch2_print_str(c, KERN_INFO, buf.buf);
474 } else {
475 bch_info(c, "btree node scan found %zu nodes after overwrites", f->nodes.nr);
476 }
477
478 eytzinger0_sort(f->nodes.data, f->nodes.nr, sizeof(f->nodes.data[0]), found_btree_node_cmp_pos, NULL);
479 err:
480 darray_exit(&nodes_heap);
481 printbuf_exit(&buf);
482 return ret;
483 }
484
found_btree_node_range_start_cmp(const void * _l,const void * _r)485 static int found_btree_node_range_start_cmp(const void *_l, const void *_r)
486 {
487 const struct found_btree_node *l = _l;
488 const struct found_btree_node *r = _r;
489
490 return cmp_int(l->btree_id, r->btree_id) ?:
491 -cmp_int(l->level, r->level) ?:
492 bpos_cmp(l->max_key, r->min_key);
493 }
494
495 #define for_each_found_btree_node_in_range(_f, _search, _idx) \
496 for (size_t _idx = eytzinger0_find_gt((_f)->nodes.data, (_f)->nodes.nr, \
497 sizeof((_f)->nodes.data[0]), \
498 found_btree_node_range_start_cmp, &search); \
499 _idx < (_f)->nodes.nr && \
500 (_f)->nodes.data[_idx].btree_id == _search.btree_id && \
501 (_f)->nodes.data[_idx].level == _search.level && \
502 bpos_lt((_f)->nodes.data[_idx].min_key, _search.max_key); \
503 _idx = eytzinger0_next(_idx, (_f)->nodes.nr))
504
bch2_btree_node_is_stale(struct bch_fs * c,struct btree * b)505 bool bch2_btree_node_is_stale(struct bch_fs *c, struct btree *b)
506 {
507 struct find_btree_nodes *f = &c->found_btree_nodes;
508
509 struct found_btree_node search = {
510 .btree_id = b->c.btree_id,
511 .level = b->c.level,
512 .min_key = b->data->min_key,
513 .max_key = b->key.k.p,
514 };
515
516 for_each_found_btree_node_in_range(f, search, idx)
517 if (f->nodes.data[idx].seq > BTREE_NODE_SEQ(b->data))
518 return true;
519 return false;
520 }
521
bch2_btree_has_scanned_nodes(struct bch_fs * c,enum btree_id btree)522 int bch2_btree_has_scanned_nodes(struct bch_fs *c, enum btree_id btree)
523 {
524 int ret = bch2_run_print_explicit_recovery_pass(c, BCH_RECOVERY_PASS_scan_for_btree_nodes);
525 if (ret)
526 return ret;
527
528 struct found_btree_node search = {
529 .btree_id = btree,
530 .level = 0,
531 .min_key = POS_MIN,
532 .max_key = SPOS_MAX,
533 };
534
535 for_each_found_btree_node_in_range(&c->found_btree_nodes, search, idx)
536 return true;
537 return false;
538 }
539
bch2_get_scanned_nodes(struct bch_fs * c,enum btree_id btree,unsigned level,struct bpos node_min,struct bpos node_max)540 int bch2_get_scanned_nodes(struct bch_fs *c, enum btree_id btree,
541 unsigned level, struct bpos node_min, struct bpos node_max)
542 {
543 if (btree_id_is_alloc(btree))
544 return 0;
545
546 struct find_btree_nodes *f = &c->found_btree_nodes;
547
548 int ret = bch2_run_print_explicit_recovery_pass(c, BCH_RECOVERY_PASS_scan_for_btree_nodes);
549 if (ret)
550 return ret;
551
552 if (c->opts.verbose) {
553 struct printbuf buf = PRINTBUF;
554
555 prt_str(&buf, "recovery ");
556 bch2_btree_id_level_to_text(&buf, btree, level);
557 prt_str(&buf, " ");
558 bch2_bpos_to_text(&buf, node_min);
559 prt_str(&buf, " - ");
560 bch2_bpos_to_text(&buf, node_max);
561
562 bch_info(c, "%s(): %s", __func__, buf.buf);
563 printbuf_exit(&buf);
564 }
565
566 struct found_btree_node search = {
567 .btree_id = btree,
568 .level = level,
569 .min_key = node_min,
570 .max_key = node_max,
571 };
572
573 for_each_found_btree_node_in_range(f, search, idx) {
574 struct found_btree_node n = f->nodes.data[idx];
575
576 n.range_updated |= bpos_lt(n.min_key, node_min);
577 n.min_key = bpos_max(n.min_key, node_min);
578
579 n.range_updated |= bpos_gt(n.max_key, node_max);
580 n.max_key = bpos_min(n.max_key, node_max);
581
582 struct { __BKEY_PADDED(k, BKEY_BTREE_PTR_VAL_U64s_MAX); } tmp;
583
584 found_btree_node_to_key(&tmp.k, &n);
585
586 if (c->opts.verbose) {
587 struct printbuf buf = PRINTBUF;
588 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&tmp.k));
589 bch_verbose(c, "%s(): recovering %s", __func__, buf.buf);
590 printbuf_exit(&buf);
591 }
592
593 BUG_ON(bch2_bkey_validate(c, bkey_i_to_s_c(&tmp.k),
594 (struct bkey_validate_context) {
595 .from = BKEY_VALIDATE_btree_node,
596 .level = level + 1,
597 .btree = btree,
598 }));
599
600 ret = bch2_journal_key_insert(c, btree, level + 1, &tmp.k);
601 if (ret)
602 return ret;
603 }
604
605 return 0;
606 }
607
bch2_find_btree_nodes_exit(struct find_btree_nodes * f)608 void bch2_find_btree_nodes_exit(struct find_btree_nodes *f)
609 {
610 darray_exit(&f->nodes);
611 }
612