1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/cpu.h>
9 #include <linux/prctl.h>
10 #include <linux/slab.h>
11 #include <linux/sched.h>
12 #include <linux/sched/idle.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/init.h>
17 #include <linux/export.h>
18 #include <linux/pm.h>
19 #include <linux/tick.h>
20 #include <linux/random.h>
21 #include <linux/user-return-notifier.h>
22 #include <linux/dmi.h>
23 #include <linux/utsname.h>
24 #include <linux/stackprotector.h>
25 #include <linux/cpuidle.h>
26 #include <linux/acpi.h>
27 #include <linux/elf-randomize.h>
28 #include <linux/static_call.h>
29 #include <trace/events/power.h>
30 #include <linux/hw_breakpoint.h>
31 #include <linux/entry-common.h>
32 #include <asm/cpu.h>
33 #include <asm/cpuid/api.h>
34 #include <asm/apic.h>
35 #include <linux/uaccess.h>
36 #include <asm/mwait.h>
37 #include <asm/fpu/api.h>
38 #include <asm/fpu/sched.h>
39 #include <asm/fpu/xstate.h>
40 #include <asm/debugreg.h>
41 #include <asm/nmi.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mce.h>
44 #include <asm/vm86.h>
45 #include <asm/switch_to.h>
46 #include <asm/desc.h>
47 #include <asm/prctl.h>
48 #include <asm/spec-ctrl.h>
49 #include <asm/io_bitmap.h>
50 #include <asm/proto.h>
51 #include <asm/frame.h>
52 #include <asm/unwind.h>
53 #include <asm/tdx.h>
54 #include <asm/mmu_context.h>
55 #include <asm/msr.h>
56 #include <asm/shstk.h>
57
58 #include "process.h"
59
60 /*
61 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
62 * no more per-task TSS's. The TSS size is kept cacheline-aligned
63 * so they are allowed to end up in the .data..cacheline_aligned
64 * section. Since TSS's are completely CPU-local, we want them
65 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
66 */
67 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
68 .x86_tss = {
69 /*
70 * .sp0 is only used when entering ring 0 from a lower
71 * privilege level. Since the init task never runs anything
72 * but ring 0 code, there is no need for a valid value here.
73 * Poison it.
74 */
75 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
76
77 #ifdef CONFIG_X86_32
78 .sp1 = TOP_OF_INIT_STACK,
79
80 .ss0 = __KERNEL_DS,
81 .ss1 = __KERNEL_CS,
82 #endif
83 .io_bitmap_base = IO_BITMAP_OFFSET_INVALID,
84 },
85 };
86 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
87
88 DEFINE_PER_CPU(bool, __tss_limit_invalid);
89 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
90
91 /*
92 * this gets called so that we can store lazy state into memory and copy the
93 * current task into the new thread.
94 */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)95 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
96 {
97 /* fpu_clone() will initialize the "dst_fpu" memory */
98 memcpy_and_pad(dst, arch_task_struct_size, src, sizeof(*dst), 0);
99
100 #ifdef CONFIG_VM86
101 dst->thread.vm86 = NULL;
102 #endif
103
104 return 0;
105 }
106
107 #ifdef CONFIG_X86_64
arch_release_task_struct(struct task_struct * tsk)108 void arch_release_task_struct(struct task_struct *tsk)
109 {
110 if (fpu_state_size_dynamic() && !(tsk->flags & (PF_KTHREAD | PF_USER_WORKER)))
111 fpstate_free(x86_task_fpu(tsk));
112 }
113 #endif
114
115 /*
116 * Free thread data structures etc..
117 */
exit_thread(struct task_struct * tsk)118 void exit_thread(struct task_struct *tsk)
119 {
120 struct thread_struct *t = &tsk->thread;
121
122 if (test_thread_flag(TIF_IO_BITMAP))
123 io_bitmap_exit(tsk);
124
125 free_vm86(t);
126
127 shstk_free(tsk);
128 fpu__drop(tsk);
129 }
130
set_new_tls(struct task_struct * p,unsigned long tls)131 static int set_new_tls(struct task_struct *p, unsigned long tls)
132 {
133 struct user_desc __user *utls = (struct user_desc __user *)tls;
134
135 if (in_ia32_syscall())
136 return do_set_thread_area(p, -1, utls, 0);
137 else
138 return do_set_thread_area_64(p, ARCH_SET_FS, tls);
139 }
140
ret_from_fork(struct task_struct * prev,struct pt_regs * regs,int (* fn)(void *),void * fn_arg)141 __visible void ret_from_fork(struct task_struct *prev, struct pt_regs *regs,
142 int (*fn)(void *), void *fn_arg)
143 {
144 schedule_tail(prev);
145
146 /* Is this a kernel thread? */
147 if (unlikely(fn)) {
148 fn(fn_arg);
149 /*
150 * A kernel thread is allowed to return here after successfully
151 * calling kernel_execve(). Exit to userspace to complete the
152 * execve() syscall.
153 */
154 regs->ax = 0;
155 }
156
157 syscall_exit_to_user_mode(regs);
158 }
159
copy_thread(struct task_struct * p,const struct kernel_clone_args * args)160 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
161 {
162 unsigned long clone_flags = args->flags;
163 unsigned long sp = args->stack;
164 unsigned long tls = args->tls;
165 struct inactive_task_frame *frame;
166 struct fork_frame *fork_frame;
167 struct pt_regs *childregs;
168 unsigned long new_ssp;
169 int ret = 0;
170
171 childregs = task_pt_regs(p);
172 fork_frame = container_of(childregs, struct fork_frame, regs);
173 frame = &fork_frame->frame;
174
175 frame->bp = encode_frame_pointer(childregs);
176 frame->ret_addr = (unsigned long) ret_from_fork_asm;
177 p->thread.sp = (unsigned long) fork_frame;
178 p->thread.io_bitmap = NULL;
179 clear_tsk_thread_flag(p, TIF_IO_BITMAP);
180 p->thread.iopl_warn = 0;
181 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
182
183 #ifdef CONFIG_X86_64
184 current_save_fsgs();
185 p->thread.fsindex = current->thread.fsindex;
186 p->thread.fsbase = current->thread.fsbase;
187 p->thread.gsindex = current->thread.gsindex;
188 p->thread.gsbase = current->thread.gsbase;
189
190 savesegment(es, p->thread.es);
191 savesegment(ds, p->thread.ds);
192
193 if (p->mm && (clone_flags & (CLONE_VM | CLONE_VFORK)) == CLONE_VM)
194 set_bit(MM_CONTEXT_LOCK_LAM, &p->mm->context.flags);
195 #else
196 p->thread.sp0 = (unsigned long) (childregs + 1);
197 savesegment(gs, p->thread.gs);
198 /*
199 * Clear all status flags including IF and set fixed bit. 64bit
200 * does not have this initialization as the frame does not contain
201 * flags. The flags consistency (especially vs. AC) is there
202 * ensured via objtool, which lacks 32bit support.
203 */
204 frame->flags = X86_EFLAGS_FIXED;
205 #endif
206
207 /*
208 * Allocate a new shadow stack for thread if needed. If shadow stack,
209 * is disabled, new_ssp will remain 0, and fpu_clone() will know not to
210 * update it.
211 */
212 new_ssp = shstk_alloc_thread_stack(p, clone_flags, args->stack_size);
213 if (IS_ERR_VALUE(new_ssp))
214 return PTR_ERR((void *)new_ssp);
215
216 fpu_clone(p, clone_flags, args->fn, new_ssp);
217
218 /* Kernel thread ? */
219 if (unlikely(p->flags & PF_KTHREAD)) {
220 p->thread.pkru = pkru_get_init_value();
221 memset(childregs, 0, sizeof(struct pt_regs));
222 kthread_frame_init(frame, args->fn, args->fn_arg);
223 return 0;
224 }
225
226 /*
227 * Clone current's PKRU value from hardware. tsk->thread.pkru
228 * is only valid when scheduled out.
229 */
230 p->thread.pkru = read_pkru();
231
232 frame->bx = 0;
233 *childregs = *current_pt_regs();
234 childregs->ax = 0;
235 if (sp)
236 childregs->sp = sp;
237
238 if (unlikely(args->fn)) {
239 /*
240 * A user space thread, but it doesn't return to
241 * ret_after_fork().
242 *
243 * In order to indicate that to tools like gdb,
244 * we reset the stack and instruction pointers.
245 *
246 * It does the same kernel frame setup to return to a kernel
247 * function that a kernel thread does.
248 */
249 childregs->sp = 0;
250 childregs->ip = 0;
251 kthread_frame_init(frame, args->fn, args->fn_arg);
252 return 0;
253 }
254
255 /* Set a new TLS for the child thread? */
256 if (clone_flags & CLONE_SETTLS)
257 ret = set_new_tls(p, tls);
258
259 if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
260 io_bitmap_share(p);
261
262 return ret;
263 }
264
pkru_flush_thread(void)265 static void pkru_flush_thread(void)
266 {
267 /*
268 * If PKRU is enabled the default PKRU value has to be loaded into
269 * the hardware right here (similar to context switch).
270 */
271 pkru_write_default();
272 }
273
flush_thread(void)274 void flush_thread(void)
275 {
276 struct task_struct *tsk = current;
277
278 flush_ptrace_hw_breakpoint(tsk);
279 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
280
281 fpu_flush_thread();
282 pkru_flush_thread();
283 }
284
disable_TSC(void)285 void disable_TSC(void)
286 {
287 preempt_disable();
288 if (!test_and_set_thread_flag(TIF_NOTSC))
289 /*
290 * Must flip the CPU state synchronously with
291 * TIF_NOTSC in the current running context.
292 */
293 cr4_set_bits(X86_CR4_TSD);
294 preempt_enable();
295 }
296
enable_TSC(void)297 static void enable_TSC(void)
298 {
299 preempt_disable();
300 if (test_and_clear_thread_flag(TIF_NOTSC))
301 /*
302 * Must flip the CPU state synchronously with
303 * TIF_NOTSC in the current running context.
304 */
305 cr4_clear_bits(X86_CR4_TSD);
306 preempt_enable();
307 }
308
get_tsc_mode(unsigned long adr)309 int get_tsc_mode(unsigned long adr)
310 {
311 unsigned int val;
312
313 if (test_thread_flag(TIF_NOTSC))
314 val = PR_TSC_SIGSEGV;
315 else
316 val = PR_TSC_ENABLE;
317
318 return put_user(val, (unsigned int __user *)adr);
319 }
320
set_tsc_mode(unsigned int val)321 int set_tsc_mode(unsigned int val)
322 {
323 if (val == PR_TSC_SIGSEGV)
324 disable_TSC();
325 else if (val == PR_TSC_ENABLE)
326 enable_TSC();
327 else
328 return -EINVAL;
329
330 return 0;
331 }
332
333 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
334
set_cpuid_faulting(bool on)335 static void set_cpuid_faulting(bool on)
336 {
337
338 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
339 u64 msrval;
340
341 msrval = this_cpu_read(msr_misc_features_shadow);
342 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
343 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
344 this_cpu_write(msr_misc_features_shadow, msrval);
345 wrmsrq(MSR_MISC_FEATURES_ENABLES, msrval);
346 } else if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
347 if (on)
348 msr_set_bit(MSR_K7_HWCR, MSR_K7_HWCR_CPUID_USER_DIS_BIT);
349 else
350 msr_clear_bit(MSR_K7_HWCR, MSR_K7_HWCR_CPUID_USER_DIS_BIT);
351 }
352 }
353
disable_cpuid(void)354 static void disable_cpuid(void)
355 {
356 preempt_disable();
357 if (!test_and_set_thread_flag(TIF_NOCPUID)) {
358 /*
359 * Must flip the CPU state synchronously with
360 * TIF_NOCPUID in the current running context.
361 */
362 set_cpuid_faulting(true);
363 }
364 preempt_enable();
365 }
366
enable_cpuid(void)367 static void enable_cpuid(void)
368 {
369 preempt_disable();
370 if (test_and_clear_thread_flag(TIF_NOCPUID)) {
371 /*
372 * Must flip the CPU state synchronously with
373 * TIF_NOCPUID in the current running context.
374 */
375 set_cpuid_faulting(false);
376 }
377 preempt_enable();
378 }
379
get_cpuid_mode(void)380 static int get_cpuid_mode(void)
381 {
382 return !test_thread_flag(TIF_NOCPUID);
383 }
384
set_cpuid_mode(unsigned long cpuid_enabled)385 static int set_cpuid_mode(unsigned long cpuid_enabled)
386 {
387 if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
388 return -ENODEV;
389
390 if (cpuid_enabled)
391 enable_cpuid();
392 else
393 disable_cpuid();
394
395 return 0;
396 }
397
398 /*
399 * Called immediately after a successful exec.
400 */
arch_setup_new_exec(void)401 void arch_setup_new_exec(void)
402 {
403 /* If cpuid was previously disabled for this task, re-enable it. */
404 if (test_thread_flag(TIF_NOCPUID))
405 enable_cpuid();
406
407 /*
408 * Don't inherit TIF_SSBD across exec boundary when
409 * PR_SPEC_DISABLE_NOEXEC is used.
410 */
411 if (test_thread_flag(TIF_SSBD) &&
412 task_spec_ssb_noexec(current)) {
413 clear_thread_flag(TIF_SSBD);
414 task_clear_spec_ssb_disable(current);
415 task_clear_spec_ssb_noexec(current);
416 speculation_ctrl_update(read_thread_flags());
417 }
418
419 mm_reset_untag_mask(current->mm);
420 }
421
422 #ifdef CONFIG_X86_IOPL_IOPERM
switch_to_bitmap(unsigned long tifp)423 static inline void switch_to_bitmap(unsigned long tifp)
424 {
425 /*
426 * Invalidate I/O bitmap if the previous task used it. This prevents
427 * any possible leakage of an active I/O bitmap.
428 *
429 * If the next task has an I/O bitmap it will handle it on exit to
430 * user mode.
431 */
432 if (tifp & _TIF_IO_BITMAP)
433 tss_invalidate_io_bitmap();
434 }
435
tss_copy_io_bitmap(struct tss_struct * tss,struct io_bitmap * iobm)436 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
437 {
438 /*
439 * Copy at least the byte range of the incoming tasks bitmap which
440 * covers the permitted I/O ports.
441 *
442 * If the previous task which used an I/O bitmap had more bits
443 * permitted, then the copy needs to cover those as well so they
444 * get turned off.
445 */
446 memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
447 max(tss->io_bitmap.prev_max, iobm->max));
448
449 /*
450 * Store the new max and the sequence number of this bitmap
451 * and a pointer to the bitmap itself.
452 */
453 tss->io_bitmap.prev_max = iobm->max;
454 tss->io_bitmap.prev_sequence = iobm->sequence;
455 }
456
457 /**
458 * native_tss_update_io_bitmap - Update I/O bitmap before exiting to user mode
459 */
native_tss_update_io_bitmap(void)460 void native_tss_update_io_bitmap(void)
461 {
462 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
463 struct thread_struct *t = ¤t->thread;
464 u16 *base = &tss->x86_tss.io_bitmap_base;
465
466 if (!test_thread_flag(TIF_IO_BITMAP)) {
467 native_tss_invalidate_io_bitmap();
468 return;
469 }
470
471 if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
472 *base = IO_BITMAP_OFFSET_VALID_ALL;
473 } else {
474 struct io_bitmap *iobm = t->io_bitmap;
475
476 if (WARN_ON_ONCE(!iobm)) {
477 clear_thread_flag(TIF_IO_BITMAP);
478 native_tss_invalidate_io_bitmap();
479 }
480
481 /*
482 * Only copy bitmap data when the sequence number differs. The
483 * update time is accounted to the incoming task.
484 */
485 if (tss->io_bitmap.prev_sequence != iobm->sequence)
486 tss_copy_io_bitmap(tss, iobm);
487
488 /* Enable the bitmap */
489 *base = IO_BITMAP_OFFSET_VALID_MAP;
490 }
491
492 /*
493 * Make sure that the TSS limit is covering the IO bitmap. It might have
494 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
495 * access from user space to trigger a #GP because the bitmap is outside
496 * the TSS limit.
497 */
498 refresh_tss_limit();
499 }
500 #else /* CONFIG_X86_IOPL_IOPERM */
switch_to_bitmap(unsigned long tifp)501 static inline void switch_to_bitmap(unsigned long tifp) { }
502 #endif
503
504 #ifdef CONFIG_SMP
505
506 struct ssb_state {
507 struct ssb_state *shared_state;
508 raw_spinlock_t lock;
509 unsigned int disable_state;
510 unsigned long local_state;
511 };
512
513 #define LSTATE_SSB 0
514
515 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
516
speculative_store_bypass_ht_init(void)517 void speculative_store_bypass_ht_init(void)
518 {
519 struct ssb_state *st = this_cpu_ptr(&ssb_state);
520 unsigned int this_cpu = smp_processor_id();
521 unsigned int cpu;
522
523 st->local_state = 0;
524
525 /*
526 * Shared state setup happens once on the first bringup
527 * of the CPU. It's not destroyed on CPU hotunplug.
528 */
529 if (st->shared_state)
530 return;
531
532 raw_spin_lock_init(&st->lock);
533
534 /*
535 * Go over HT siblings and check whether one of them has set up the
536 * shared state pointer already.
537 */
538 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
539 if (cpu == this_cpu)
540 continue;
541
542 if (!per_cpu(ssb_state, cpu).shared_state)
543 continue;
544
545 /* Link it to the state of the sibling: */
546 st->shared_state = per_cpu(ssb_state, cpu).shared_state;
547 return;
548 }
549
550 /*
551 * First HT sibling to come up on the core. Link shared state of
552 * the first HT sibling to itself. The siblings on the same core
553 * which come up later will see the shared state pointer and link
554 * themselves to the state of this CPU.
555 */
556 st->shared_state = st;
557 }
558
559 /*
560 * Logic is: First HT sibling enables SSBD for both siblings in the core
561 * and last sibling to disable it, disables it for the whole core. This how
562 * MSR_SPEC_CTRL works in "hardware":
563 *
564 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
565 */
amd_set_core_ssb_state(unsigned long tifn)566 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
567 {
568 struct ssb_state *st = this_cpu_ptr(&ssb_state);
569 u64 msr = x86_amd_ls_cfg_base;
570
571 if (!static_cpu_has(X86_FEATURE_ZEN)) {
572 msr |= ssbd_tif_to_amd_ls_cfg(tifn);
573 wrmsrq(MSR_AMD64_LS_CFG, msr);
574 return;
575 }
576
577 if (tifn & _TIF_SSBD) {
578 /*
579 * Since this can race with prctl(), block reentry on the
580 * same CPU.
581 */
582 if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
583 return;
584
585 msr |= x86_amd_ls_cfg_ssbd_mask;
586
587 raw_spin_lock(&st->shared_state->lock);
588 /* First sibling enables SSBD: */
589 if (!st->shared_state->disable_state)
590 wrmsrq(MSR_AMD64_LS_CFG, msr);
591 st->shared_state->disable_state++;
592 raw_spin_unlock(&st->shared_state->lock);
593 } else {
594 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
595 return;
596
597 raw_spin_lock(&st->shared_state->lock);
598 st->shared_state->disable_state--;
599 if (!st->shared_state->disable_state)
600 wrmsrq(MSR_AMD64_LS_CFG, msr);
601 raw_spin_unlock(&st->shared_state->lock);
602 }
603 }
604 #else
amd_set_core_ssb_state(unsigned long tifn)605 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
606 {
607 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
608
609 wrmsrq(MSR_AMD64_LS_CFG, msr);
610 }
611 #endif
612
amd_set_ssb_virt_state(unsigned long tifn)613 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
614 {
615 /*
616 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
617 * so ssbd_tif_to_spec_ctrl() just works.
618 */
619 wrmsrq(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
620 }
621
622 /*
623 * Update the MSRs managing speculation control, during context switch.
624 *
625 * tifp: Previous task's thread flags
626 * tifn: Next task's thread flags
627 */
__speculation_ctrl_update(unsigned long tifp,unsigned long tifn)628 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
629 unsigned long tifn)
630 {
631 unsigned long tif_diff = tifp ^ tifn;
632 u64 msr = x86_spec_ctrl_base;
633 bool updmsr = false;
634
635 lockdep_assert_irqs_disabled();
636
637 /* Handle change of TIF_SSBD depending on the mitigation method. */
638 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
639 if (tif_diff & _TIF_SSBD)
640 amd_set_ssb_virt_state(tifn);
641 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
642 if (tif_diff & _TIF_SSBD)
643 amd_set_core_ssb_state(tifn);
644 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
645 static_cpu_has(X86_FEATURE_AMD_SSBD)) {
646 updmsr |= !!(tif_diff & _TIF_SSBD);
647 msr |= ssbd_tif_to_spec_ctrl(tifn);
648 }
649
650 /* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
651 if (IS_ENABLED(CONFIG_SMP) &&
652 static_branch_unlikely(&switch_to_cond_stibp)) {
653 updmsr |= !!(tif_diff & _TIF_SPEC_IB);
654 msr |= stibp_tif_to_spec_ctrl(tifn);
655 }
656
657 if (updmsr)
658 update_spec_ctrl_cond(msr);
659 }
660
speculation_ctrl_update_tif(struct task_struct * tsk)661 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
662 {
663 if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
664 if (task_spec_ssb_disable(tsk))
665 set_tsk_thread_flag(tsk, TIF_SSBD);
666 else
667 clear_tsk_thread_flag(tsk, TIF_SSBD);
668
669 if (task_spec_ib_disable(tsk))
670 set_tsk_thread_flag(tsk, TIF_SPEC_IB);
671 else
672 clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
673 }
674 /* Return the updated threadinfo flags*/
675 return read_task_thread_flags(tsk);
676 }
677
speculation_ctrl_update(unsigned long tif)678 void speculation_ctrl_update(unsigned long tif)
679 {
680 unsigned long flags;
681
682 /* Forced update. Make sure all relevant TIF flags are different */
683 local_irq_save(flags);
684 __speculation_ctrl_update(~tif, tif);
685 local_irq_restore(flags);
686 }
687
688 /* Called from seccomp/prctl update */
speculation_ctrl_update_current(void)689 void speculation_ctrl_update_current(void)
690 {
691 preempt_disable();
692 speculation_ctrl_update(speculation_ctrl_update_tif(current));
693 preempt_enable();
694 }
695
cr4_toggle_bits_irqsoff(unsigned long mask)696 static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
697 {
698 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
699
700 newval = cr4 ^ mask;
701 if (newval != cr4) {
702 this_cpu_write(cpu_tlbstate.cr4, newval);
703 __write_cr4(newval);
704 }
705 }
706
__switch_to_xtra(struct task_struct * prev_p,struct task_struct * next_p)707 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
708 {
709 unsigned long tifp, tifn;
710
711 tifn = read_task_thread_flags(next_p);
712 tifp = read_task_thread_flags(prev_p);
713
714 switch_to_bitmap(tifp);
715
716 propagate_user_return_notify(prev_p, next_p);
717
718 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
719 arch_has_block_step()) {
720 unsigned long debugctl, msk;
721
722 rdmsrq(MSR_IA32_DEBUGCTLMSR, debugctl);
723 debugctl &= ~DEBUGCTLMSR_BTF;
724 msk = tifn & _TIF_BLOCKSTEP;
725 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
726 wrmsrq(MSR_IA32_DEBUGCTLMSR, debugctl);
727 }
728
729 if ((tifp ^ tifn) & _TIF_NOTSC)
730 cr4_toggle_bits_irqsoff(X86_CR4_TSD);
731
732 if ((tifp ^ tifn) & _TIF_NOCPUID)
733 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
734
735 if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
736 __speculation_ctrl_update(tifp, tifn);
737 } else {
738 speculation_ctrl_update_tif(prev_p);
739 tifn = speculation_ctrl_update_tif(next_p);
740
741 /* Enforce MSR update to ensure consistent state */
742 __speculation_ctrl_update(~tifn, tifn);
743 }
744 }
745
746 /*
747 * Idle related variables and functions
748 */
749 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
750 EXPORT_SYMBOL(boot_option_idle_override);
751
752 /*
753 * We use this if we don't have any better idle routine..
754 */
default_idle(void)755 void __cpuidle default_idle(void)
756 {
757 raw_safe_halt();
758 raw_local_irq_disable();
759 }
760 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
761 EXPORT_SYMBOL(default_idle);
762 #endif
763
764 DEFINE_STATIC_CALL_NULL(x86_idle, default_idle);
765
x86_idle_set(void)766 static bool x86_idle_set(void)
767 {
768 return !!static_call_query(x86_idle);
769 }
770
771 #ifndef CONFIG_SMP
play_dead(void)772 static inline void __noreturn play_dead(void)
773 {
774 BUG();
775 }
776 #endif
777
arch_cpu_idle_enter(void)778 void arch_cpu_idle_enter(void)
779 {
780 tsc_verify_tsc_adjust(false);
781 local_touch_nmi();
782 }
783
arch_cpu_idle_dead(void)784 void __noreturn arch_cpu_idle_dead(void)
785 {
786 play_dead();
787 }
788
789 /*
790 * Called from the generic idle code.
791 */
arch_cpu_idle(void)792 void __cpuidle arch_cpu_idle(void)
793 {
794 static_call(x86_idle)();
795 }
796 EXPORT_SYMBOL_GPL(arch_cpu_idle);
797
798 #ifdef CONFIG_XEN
xen_set_default_idle(void)799 bool xen_set_default_idle(void)
800 {
801 bool ret = x86_idle_set();
802
803 static_call_update(x86_idle, default_idle);
804
805 return ret;
806 }
807 #endif
808
809 struct cpumask cpus_stop_mask;
810
stop_this_cpu(void * dummy)811 void __noreturn stop_this_cpu(void *dummy)
812 {
813 struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
814 unsigned int cpu = smp_processor_id();
815
816 local_irq_disable();
817
818 /*
819 * Remove this CPU from the online mask and disable it
820 * unconditionally. This might be redundant in case that the reboot
821 * vector was handled late and stop_other_cpus() sent an NMI.
822 *
823 * According to SDM and APM NMIs can be accepted even after soft
824 * disabling the local APIC.
825 */
826 set_cpu_online(cpu, false);
827 disable_local_APIC();
828 mcheck_cpu_clear(c);
829
830 /*
831 * Use wbinvd on processors that support SME. This provides support
832 * for performing a successful kexec when going from SME inactive
833 * to SME active (or vice-versa). The cache must be cleared so that
834 * if there are entries with the same physical address, both with and
835 * without the encryption bit, they don't race each other when flushed
836 * and potentially end up with the wrong entry being committed to
837 * memory.
838 *
839 * Test the CPUID bit directly because the machine might've cleared
840 * X86_FEATURE_SME due to cmdline options.
841 */
842 if (c->extended_cpuid_level >= 0x8000001f && (cpuid_eax(0x8000001f) & BIT(0)))
843 wbinvd();
844
845 /*
846 * This brings a cache line back and dirties it, but
847 * native_stop_other_cpus() will overwrite cpus_stop_mask after it
848 * observed that all CPUs reported stop. This write will invalidate
849 * the related cache line on this CPU.
850 */
851 cpumask_clear_cpu(cpu, &cpus_stop_mask);
852
853 #ifdef CONFIG_SMP
854 if (smp_ops.stop_this_cpu) {
855 smp_ops.stop_this_cpu();
856 BUG();
857 }
858 #endif
859
860 for (;;) {
861 /*
862 * Use native_halt() so that memory contents don't change
863 * (stack usage and variables) after possibly issuing the
864 * wbinvd() above.
865 */
866 native_halt();
867 }
868 }
869
870 /*
871 * Prefer MWAIT over HALT if MWAIT is supported, MWAIT_CPUID leaf
872 * exists and whenever MONITOR/MWAIT extensions are present there is at
873 * least one C1 substate.
874 *
875 * Do not prefer MWAIT if MONITOR instruction has a bug or idle=nomwait
876 * is passed to kernel commandline parameter.
877 */
prefer_mwait_c1_over_halt(void)878 static __init bool prefer_mwait_c1_over_halt(void)
879 {
880 const struct cpuinfo_x86 *c = &boot_cpu_data;
881 u32 eax, ebx, ecx, edx;
882
883 /* If override is enforced on the command line, fall back to HALT. */
884 if (boot_option_idle_override != IDLE_NO_OVERRIDE)
885 return false;
886
887 /* MWAIT is not supported on this platform. Fallback to HALT */
888 if (!cpu_has(c, X86_FEATURE_MWAIT))
889 return false;
890
891 /* Monitor has a bug or APIC stops in C1E. Fallback to HALT */
892 if (boot_cpu_has_bug(X86_BUG_MONITOR) || boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
893 return false;
894
895 cpuid(CPUID_LEAF_MWAIT, &eax, &ebx, &ecx, &edx);
896
897 /*
898 * If MWAIT extensions are not available, it is safe to use MWAIT
899 * with EAX=0, ECX=0.
900 */
901 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED))
902 return true;
903
904 /*
905 * If MWAIT extensions are available, there should be at least one
906 * MWAIT C1 substate present.
907 */
908 return !!(edx & MWAIT_C1_SUBSTATE_MASK);
909 }
910
911 /*
912 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
913 * with interrupts enabled and no flags, which is backwards compatible with the
914 * original MWAIT implementation.
915 */
mwait_idle(void)916 static __cpuidle void mwait_idle(void)
917 {
918 if (need_resched())
919 return;
920
921 x86_idle_clear_cpu_buffers();
922
923 if (!current_set_polling_and_test()) {
924 const void *addr = ¤t_thread_info()->flags;
925
926 alternative_input("", "clflush (%[addr])", X86_BUG_CLFLUSH_MONITOR, [addr] "a" (addr));
927 __monitor(addr, 0, 0);
928 if (need_resched())
929 goto out;
930
931 __sti_mwait(0, 0);
932 raw_local_irq_disable();
933 }
934
935 out:
936 __current_clr_polling();
937 }
938
select_idle_routine(void)939 void __init select_idle_routine(void)
940 {
941 if (boot_option_idle_override == IDLE_POLL) {
942 if (IS_ENABLED(CONFIG_SMP) && __max_threads_per_core > 1)
943 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
944 return;
945 }
946
947 /* Required to guard against xen_set_default_idle() */
948 if (x86_idle_set())
949 return;
950
951 if (prefer_mwait_c1_over_halt()) {
952 pr_info("using mwait in idle threads\n");
953 static_call_update(x86_idle, mwait_idle);
954 } else if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) {
955 pr_info("using TDX aware idle routine\n");
956 static_call_update(x86_idle, tdx_halt);
957 } else {
958 static_call_update(x86_idle, default_idle);
959 }
960 }
961
amd_e400_c1e_apic_setup(void)962 void amd_e400_c1e_apic_setup(void)
963 {
964 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
965 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
966 local_irq_disable();
967 tick_broadcast_force();
968 local_irq_enable();
969 }
970 }
971
arch_post_acpi_subsys_init(void)972 void __init arch_post_acpi_subsys_init(void)
973 {
974 u32 lo, hi;
975
976 if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
977 return;
978
979 /*
980 * AMD E400 detection needs to happen after ACPI has been enabled. If
981 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
982 * MSR_K8_INT_PENDING_MSG.
983 */
984 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
985 if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
986 return;
987
988 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
989
990 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
991 mark_tsc_unstable("TSC halt in AMD C1E");
992
993 if (IS_ENABLED(CONFIG_GENERIC_CLOCKEVENTS_BROADCAST_IDLE))
994 static_branch_enable(&arch_needs_tick_broadcast);
995 pr_info("System has AMD C1E erratum E400. Workaround enabled.\n");
996 }
997
idle_setup(char * str)998 static int __init idle_setup(char *str)
999 {
1000 if (!str)
1001 return -EINVAL;
1002
1003 if (!strcmp(str, "poll")) {
1004 pr_info("using polling idle threads\n");
1005 boot_option_idle_override = IDLE_POLL;
1006 cpu_idle_poll_ctrl(true);
1007 } else if (!strcmp(str, "halt")) {
1008 /* 'idle=halt' HALT for idle. C-states are disabled. */
1009 boot_option_idle_override = IDLE_HALT;
1010 } else if (!strcmp(str, "nomwait")) {
1011 /* 'idle=nomwait' disables MWAIT for idle */
1012 boot_option_idle_override = IDLE_NOMWAIT;
1013 } else {
1014 return -EINVAL;
1015 }
1016
1017 return 0;
1018 }
1019 early_param("idle", idle_setup);
1020
arch_align_stack(unsigned long sp)1021 unsigned long arch_align_stack(unsigned long sp)
1022 {
1023 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1024 sp -= get_random_u32_below(8192);
1025 return sp & ~0xf;
1026 }
1027
arch_randomize_brk(struct mm_struct * mm)1028 unsigned long arch_randomize_brk(struct mm_struct *mm)
1029 {
1030 if (mmap_is_ia32())
1031 return randomize_page(mm->brk, SZ_32M);
1032
1033 return randomize_page(mm->brk, SZ_1G);
1034 }
1035
1036 /*
1037 * Called from fs/proc with a reference on @p to find the function
1038 * which called into schedule(). This needs to be done carefully
1039 * because the task might wake up and we might look at a stack
1040 * changing under us.
1041 */
__get_wchan(struct task_struct * p)1042 unsigned long __get_wchan(struct task_struct *p)
1043 {
1044 struct unwind_state state;
1045 unsigned long addr = 0;
1046
1047 if (!try_get_task_stack(p))
1048 return 0;
1049
1050 for (unwind_start(&state, p, NULL, NULL); !unwind_done(&state);
1051 unwind_next_frame(&state)) {
1052 addr = unwind_get_return_address(&state);
1053 if (!addr)
1054 break;
1055 if (in_sched_functions(addr))
1056 continue;
1057 break;
1058 }
1059
1060 put_task_stack(p);
1061
1062 return addr;
1063 }
1064
SYSCALL_DEFINE2(arch_prctl,int,option,unsigned long,arg2)1065 SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
1066 {
1067 switch (option) {
1068 case ARCH_GET_CPUID:
1069 return get_cpuid_mode();
1070 case ARCH_SET_CPUID:
1071 return set_cpuid_mode(arg2);
1072 case ARCH_GET_XCOMP_SUPP:
1073 case ARCH_GET_XCOMP_PERM:
1074 case ARCH_REQ_XCOMP_PERM:
1075 case ARCH_GET_XCOMP_GUEST_PERM:
1076 case ARCH_REQ_XCOMP_GUEST_PERM:
1077 return fpu_xstate_prctl(option, arg2);
1078 }
1079
1080 if (!in_ia32_syscall())
1081 return do_arch_prctl_64(current, option, arg2);
1082
1083 return -EINVAL;
1084 }
1085
SYSCALL_DEFINE0(ni_syscall)1086 SYSCALL_DEFINE0(ni_syscall)
1087 {
1088 return -ENOSYS;
1089 }
1090