xref: /linux/arch/x86/kernel/process.c (revision 4dd39ddeb68fbb6d068611f2cc647948dc7dfca0)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/cpu.h>
9 #include <linux/prctl.h>
10 #include <linux/slab.h>
11 #include <linux/sched.h>
12 #include <linux/sched/idle.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/init.h>
17 #include <linux/export.h>
18 #include <linux/pm.h>
19 #include <linux/tick.h>
20 #include <linux/random.h>
21 #include <linux/user-return-notifier.h>
22 #include <linux/dmi.h>
23 #include <linux/utsname.h>
24 #include <linux/stackprotector.h>
25 #include <linux/cpuidle.h>
26 #include <linux/acpi.h>
27 #include <linux/elf-randomize.h>
28 #include <linux/static_call.h>
29 #include <trace/events/power.h>
30 #include <linux/hw_breakpoint.h>
31 #include <linux/entry-common.h>
32 #include <asm/cpu.h>
33 #include <asm/cpuid/api.h>
34 #include <asm/apic.h>
35 #include <linux/uaccess.h>
36 #include <asm/mwait.h>
37 #include <asm/fpu/api.h>
38 #include <asm/fpu/sched.h>
39 #include <asm/fpu/xstate.h>
40 #include <asm/debugreg.h>
41 #include <asm/nmi.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mce.h>
44 #include <asm/vm86.h>
45 #include <asm/switch_to.h>
46 #include <asm/desc.h>
47 #include <asm/prctl.h>
48 #include <asm/spec-ctrl.h>
49 #include <asm/io_bitmap.h>
50 #include <asm/proto.h>
51 #include <asm/frame.h>
52 #include <asm/unwind.h>
53 #include <asm/tdx.h>
54 #include <asm/mmu_context.h>
55 #include <asm/msr.h>
56 #include <asm/shstk.h>
57 
58 #include "process.h"
59 
60 /*
61  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
62  * no more per-task TSS's. The TSS size is kept cacheline-aligned
63  * so they are allowed to end up in the .data..cacheline_aligned
64  * section. Since TSS's are completely CPU-local, we want them
65  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
66  */
67 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
68 	.x86_tss = {
69 		/*
70 		 * .sp0 is only used when entering ring 0 from a lower
71 		 * privilege level.  Since the init task never runs anything
72 		 * but ring 0 code, there is no need for a valid value here.
73 		 * Poison it.
74 		 */
75 		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
76 
77 #ifdef CONFIG_X86_32
78 		.sp1 = TOP_OF_INIT_STACK,
79 
80 		.ss0 = __KERNEL_DS,
81 		.ss1 = __KERNEL_CS,
82 #endif
83 		.io_bitmap_base	= IO_BITMAP_OFFSET_INVALID,
84 	 },
85 };
86 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
87 
88 DEFINE_PER_CPU(bool, __tss_limit_invalid);
89 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
90 
91 /*
92  * this gets called so that we can store lazy state into memory and copy the
93  * current task into the new thread.
94  */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)95 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
96 {
97 	/* fpu_clone() will initialize the "dst_fpu" memory */
98 	memcpy_and_pad(dst, arch_task_struct_size, src, sizeof(*dst), 0);
99 
100 #ifdef CONFIG_VM86
101 	dst->thread.vm86 = NULL;
102 #endif
103 
104 	return 0;
105 }
106 
107 #ifdef CONFIG_X86_64
arch_release_task_struct(struct task_struct * tsk)108 void arch_release_task_struct(struct task_struct *tsk)
109 {
110 	if (fpu_state_size_dynamic() && !(tsk->flags & (PF_KTHREAD | PF_USER_WORKER)))
111 		fpstate_free(x86_task_fpu(tsk));
112 }
113 #endif
114 
115 /*
116  * Free thread data structures etc..
117  */
exit_thread(struct task_struct * tsk)118 void exit_thread(struct task_struct *tsk)
119 {
120 	struct thread_struct *t = &tsk->thread;
121 
122 	if (test_thread_flag(TIF_IO_BITMAP))
123 		io_bitmap_exit(tsk);
124 
125 	free_vm86(t);
126 
127 	shstk_free(tsk);
128 	fpu__drop(tsk);
129 }
130 
set_new_tls(struct task_struct * p,unsigned long tls)131 static int set_new_tls(struct task_struct *p, unsigned long tls)
132 {
133 	struct user_desc __user *utls = (struct user_desc __user *)tls;
134 
135 	if (in_ia32_syscall())
136 		return do_set_thread_area(p, -1, utls, 0);
137 	else
138 		return do_set_thread_area_64(p, ARCH_SET_FS, tls);
139 }
140 
ret_from_fork(struct task_struct * prev,struct pt_regs * regs,int (* fn)(void *),void * fn_arg)141 __visible void ret_from_fork(struct task_struct *prev, struct pt_regs *regs,
142 				     int (*fn)(void *), void *fn_arg)
143 {
144 	schedule_tail(prev);
145 
146 	/* Is this a kernel thread? */
147 	if (unlikely(fn)) {
148 		fn(fn_arg);
149 		/*
150 		 * A kernel thread is allowed to return here after successfully
151 		 * calling kernel_execve().  Exit to userspace to complete the
152 		 * execve() syscall.
153 		 */
154 		regs->ax = 0;
155 	}
156 
157 	syscall_exit_to_user_mode(regs);
158 }
159 
copy_thread(struct task_struct * p,const struct kernel_clone_args * args)160 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
161 {
162 	unsigned long clone_flags = args->flags;
163 	unsigned long sp = args->stack;
164 	unsigned long tls = args->tls;
165 	struct inactive_task_frame *frame;
166 	struct fork_frame *fork_frame;
167 	struct pt_regs *childregs;
168 	unsigned long new_ssp;
169 	int ret = 0;
170 
171 	childregs = task_pt_regs(p);
172 	fork_frame = container_of(childregs, struct fork_frame, regs);
173 	frame = &fork_frame->frame;
174 
175 	frame->bp = encode_frame_pointer(childregs);
176 	frame->ret_addr = (unsigned long) ret_from_fork_asm;
177 	p->thread.sp = (unsigned long) fork_frame;
178 	p->thread.io_bitmap = NULL;
179 	clear_tsk_thread_flag(p, TIF_IO_BITMAP);
180 	p->thread.iopl_warn = 0;
181 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
182 
183 #ifdef CONFIG_X86_64
184 	current_save_fsgs();
185 	p->thread.fsindex = current->thread.fsindex;
186 	p->thread.fsbase = current->thread.fsbase;
187 	p->thread.gsindex = current->thread.gsindex;
188 	p->thread.gsbase = current->thread.gsbase;
189 
190 	savesegment(es, p->thread.es);
191 	savesegment(ds, p->thread.ds);
192 
193 	if (p->mm && (clone_flags & (CLONE_VM | CLONE_VFORK)) == CLONE_VM)
194 		set_bit(MM_CONTEXT_LOCK_LAM, &p->mm->context.flags);
195 #else
196 	p->thread.sp0 = (unsigned long) (childregs + 1);
197 	savesegment(gs, p->thread.gs);
198 	/*
199 	 * Clear all status flags including IF and set fixed bit. 64bit
200 	 * does not have this initialization as the frame does not contain
201 	 * flags. The flags consistency (especially vs. AC) is there
202 	 * ensured via objtool, which lacks 32bit support.
203 	 */
204 	frame->flags = X86_EFLAGS_FIXED;
205 #endif
206 
207 	/*
208 	 * Allocate a new shadow stack for thread if needed. If shadow stack,
209 	 * is disabled, new_ssp will remain 0, and fpu_clone() will know not to
210 	 * update it.
211 	 */
212 	new_ssp = shstk_alloc_thread_stack(p, clone_flags, args->stack_size);
213 	if (IS_ERR_VALUE(new_ssp))
214 		return PTR_ERR((void *)new_ssp);
215 
216 	fpu_clone(p, clone_flags, args->fn, new_ssp);
217 
218 	/* Kernel thread ? */
219 	if (unlikely(p->flags & PF_KTHREAD)) {
220 		p->thread.pkru = pkru_get_init_value();
221 		memset(childregs, 0, sizeof(struct pt_regs));
222 		kthread_frame_init(frame, args->fn, args->fn_arg);
223 		return 0;
224 	}
225 
226 	/*
227 	 * Clone current's PKRU value from hardware. tsk->thread.pkru
228 	 * is only valid when scheduled out.
229 	 */
230 	p->thread.pkru = read_pkru();
231 
232 	frame->bx = 0;
233 	*childregs = *current_pt_regs();
234 	childregs->ax = 0;
235 	if (sp)
236 		childregs->sp = sp;
237 
238 	if (unlikely(args->fn)) {
239 		/*
240 		 * A user space thread, but it doesn't return to
241 		 * ret_after_fork().
242 		 *
243 		 * In order to indicate that to tools like gdb,
244 		 * we reset the stack and instruction pointers.
245 		 *
246 		 * It does the same kernel frame setup to return to a kernel
247 		 * function that a kernel thread does.
248 		 */
249 		childregs->sp = 0;
250 		childregs->ip = 0;
251 		kthread_frame_init(frame, args->fn, args->fn_arg);
252 		return 0;
253 	}
254 
255 	/* Set a new TLS for the child thread? */
256 	if (clone_flags & CLONE_SETTLS)
257 		ret = set_new_tls(p, tls);
258 
259 	if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
260 		io_bitmap_share(p);
261 
262 	return ret;
263 }
264 
pkru_flush_thread(void)265 static void pkru_flush_thread(void)
266 {
267 	/*
268 	 * If PKRU is enabled the default PKRU value has to be loaded into
269 	 * the hardware right here (similar to context switch).
270 	 */
271 	pkru_write_default();
272 }
273 
flush_thread(void)274 void flush_thread(void)
275 {
276 	struct task_struct *tsk = current;
277 
278 	flush_ptrace_hw_breakpoint(tsk);
279 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
280 
281 	fpu_flush_thread();
282 	pkru_flush_thread();
283 }
284 
disable_TSC(void)285 void disable_TSC(void)
286 {
287 	preempt_disable();
288 	if (!test_and_set_thread_flag(TIF_NOTSC))
289 		/*
290 		 * Must flip the CPU state synchronously with
291 		 * TIF_NOTSC in the current running context.
292 		 */
293 		cr4_set_bits(X86_CR4_TSD);
294 	preempt_enable();
295 }
296 
enable_TSC(void)297 static void enable_TSC(void)
298 {
299 	preempt_disable();
300 	if (test_and_clear_thread_flag(TIF_NOTSC))
301 		/*
302 		 * Must flip the CPU state synchronously with
303 		 * TIF_NOTSC in the current running context.
304 		 */
305 		cr4_clear_bits(X86_CR4_TSD);
306 	preempt_enable();
307 }
308 
get_tsc_mode(unsigned long adr)309 int get_tsc_mode(unsigned long adr)
310 {
311 	unsigned int val;
312 
313 	if (test_thread_flag(TIF_NOTSC))
314 		val = PR_TSC_SIGSEGV;
315 	else
316 		val = PR_TSC_ENABLE;
317 
318 	return put_user(val, (unsigned int __user *)adr);
319 }
320 
set_tsc_mode(unsigned int val)321 int set_tsc_mode(unsigned int val)
322 {
323 	if (val == PR_TSC_SIGSEGV)
324 		disable_TSC();
325 	else if (val == PR_TSC_ENABLE)
326 		enable_TSC();
327 	else
328 		return -EINVAL;
329 
330 	return 0;
331 }
332 
333 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
334 
set_cpuid_faulting(bool on)335 static void set_cpuid_faulting(bool on)
336 {
337 
338 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
339 		u64 msrval;
340 
341 		msrval = this_cpu_read(msr_misc_features_shadow);
342 		msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
343 		msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
344 		this_cpu_write(msr_misc_features_shadow, msrval);
345 		wrmsrq(MSR_MISC_FEATURES_ENABLES, msrval);
346 	} else if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
347 		if (on)
348 			msr_set_bit(MSR_K7_HWCR, MSR_K7_HWCR_CPUID_USER_DIS_BIT);
349 		else
350 			msr_clear_bit(MSR_K7_HWCR, MSR_K7_HWCR_CPUID_USER_DIS_BIT);
351 	}
352 }
353 
disable_cpuid(void)354 static void disable_cpuid(void)
355 {
356 	preempt_disable();
357 	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
358 		/*
359 		 * Must flip the CPU state synchronously with
360 		 * TIF_NOCPUID in the current running context.
361 		 */
362 		set_cpuid_faulting(true);
363 	}
364 	preempt_enable();
365 }
366 
enable_cpuid(void)367 static void enable_cpuid(void)
368 {
369 	preempt_disable();
370 	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
371 		/*
372 		 * Must flip the CPU state synchronously with
373 		 * TIF_NOCPUID in the current running context.
374 		 */
375 		set_cpuid_faulting(false);
376 	}
377 	preempt_enable();
378 }
379 
get_cpuid_mode(void)380 static int get_cpuid_mode(void)
381 {
382 	return !test_thread_flag(TIF_NOCPUID);
383 }
384 
set_cpuid_mode(unsigned long cpuid_enabled)385 static int set_cpuid_mode(unsigned long cpuid_enabled)
386 {
387 	if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
388 		return -ENODEV;
389 
390 	if (cpuid_enabled)
391 		enable_cpuid();
392 	else
393 		disable_cpuid();
394 
395 	return 0;
396 }
397 
398 /*
399  * Called immediately after a successful exec.
400  */
arch_setup_new_exec(void)401 void arch_setup_new_exec(void)
402 {
403 	/* If cpuid was previously disabled for this task, re-enable it. */
404 	if (test_thread_flag(TIF_NOCPUID))
405 		enable_cpuid();
406 
407 	/*
408 	 * Don't inherit TIF_SSBD across exec boundary when
409 	 * PR_SPEC_DISABLE_NOEXEC is used.
410 	 */
411 	if (test_thread_flag(TIF_SSBD) &&
412 	    task_spec_ssb_noexec(current)) {
413 		clear_thread_flag(TIF_SSBD);
414 		task_clear_spec_ssb_disable(current);
415 		task_clear_spec_ssb_noexec(current);
416 		speculation_ctrl_update(read_thread_flags());
417 	}
418 
419 	mm_reset_untag_mask(current->mm);
420 }
421 
422 #ifdef CONFIG_X86_IOPL_IOPERM
switch_to_bitmap(unsigned long tifp)423 static inline void switch_to_bitmap(unsigned long tifp)
424 {
425 	/*
426 	 * Invalidate I/O bitmap if the previous task used it. This prevents
427 	 * any possible leakage of an active I/O bitmap.
428 	 *
429 	 * If the next task has an I/O bitmap it will handle it on exit to
430 	 * user mode.
431 	 */
432 	if (tifp & _TIF_IO_BITMAP)
433 		tss_invalidate_io_bitmap();
434 }
435 
tss_copy_io_bitmap(struct tss_struct * tss,struct io_bitmap * iobm)436 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
437 {
438 	/*
439 	 * Copy at least the byte range of the incoming tasks bitmap which
440 	 * covers the permitted I/O ports.
441 	 *
442 	 * If the previous task which used an I/O bitmap had more bits
443 	 * permitted, then the copy needs to cover those as well so they
444 	 * get turned off.
445 	 */
446 	memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
447 	       max(tss->io_bitmap.prev_max, iobm->max));
448 
449 	/*
450 	 * Store the new max and the sequence number of this bitmap
451 	 * and a pointer to the bitmap itself.
452 	 */
453 	tss->io_bitmap.prev_max = iobm->max;
454 	tss->io_bitmap.prev_sequence = iobm->sequence;
455 }
456 
457 /**
458  * native_tss_update_io_bitmap - Update I/O bitmap before exiting to user mode
459  */
native_tss_update_io_bitmap(void)460 void native_tss_update_io_bitmap(void)
461 {
462 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
463 	struct thread_struct *t = &current->thread;
464 	u16 *base = &tss->x86_tss.io_bitmap_base;
465 
466 	if (!test_thread_flag(TIF_IO_BITMAP)) {
467 		native_tss_invalidate_io_bitmap();
468 		return;
469 	}
470 
471 	if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
472 		*base = IO_BITMAP_OFFSET_VALID_ALL;
473 	} else {
474 		struct io_bitmap *iobm = t->io_bitmap;
475 
476 		if (WARN_ON_ONCE(!iobm)) {
477 			clear_thread_flag(TIF_IO_BITMAP);
478 			native_tss_invalidate_io_bitmap();
479 		}
480 
481 		/*
482 		 * Only copy bitmap data when the sequence number differs. The
483 		 * update time is accounted to the incoming task.
484 		 */
485 		if (tss->io_bitmap.prev_sequence != iobm->sequence)
486 			tss_copy_io_bitmap(tss, iobm);
487 
488 		/* Enable the bitmap */
489 		*base = IO_BITMAP_OFFSET_VALID_MAP;
490 	}
491 
492 	/*
493 	 * Make sure that the TSS limit is covering the IO bitmap. It might have
494 	 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
495 	 * access from user space to trigger a #GP because the bitmap is outside
496 	 * the TSS limit.
497 	 */
498 	refresh_tss_limit();
499 }
500 #else /* CONFIG_X86_IOPL_IOPERM */
switch_to_bitmap(unsigned long tifp)501 static inline void switch_to_bitmap(unsigned long tifp) { }
502 #endif
503 
504 #ifdef CONFIG_SMP
505 
506 struct ssb_state {
507 	struct ssb_state	*shared_state;
508 	raw_spinlock_t		lock;
509 	unsigned int		disable_state;
510 	unsigned long		local_state;
511 };
512 
513 #define LSTATE_SSB	0
514 
515 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
516 
speculative_store_bypass_ht_init(void)517 void speculative_store_bypass_ht_init(void)
518 {
519 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
520 	unsigned int this_cpu = smp_processor_id();
521 	unsigned int cpu;
522 
523 	st->local_state = 0;
524 
525 	/*
526 	 * Shared state setup happens once on the first bringup
527 	 * of the CPU. It's not destroyed on CPU hotunplug.
528 	 */
529 	if (st->shared_state)
530 		return;
531 
532 	raw_spin_lock_init(&st->lock);
533 
534 	/*
535 	 * Go over HT siblings and check whether one of them has set up the
536 	 * shared state pointer already.
537 	 */
538 	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
539 		if (cpu == this_cpu)
540 			continue;
541 
542 		if (!per_cpu(ssb_state, cpu).shared_state)
543 			continue;
544 
545 		/* Link it to the state of the sibling: */
546 		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
547 		return;
548 	}
549 
550 	/*
551 	 * First HT sibling to come up on the core.  Link shared state of
552 	 * the first HT sibling to itself. The siblings on the same core
553 	 * which come up later will see the shared state pointer and link
554 	 * themselves to the state of this CPU.
555 	 */
556 	st->shared_state = st;
557 }
558 
559 /*
560  * Logic is: First HT sibling enables SSBD for both siblings in the core
561  * and last sibling to disable it, disables it for the whole core. This how
562  * MSR_SPEC_CTRL works in "hardware":
563  *
564  *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
565  */
amd_set_core_ssb_state(unsigned long tifn)566 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
567 {
568 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
569 	u64 msr = x86_amd_ls_cfg_base;
570 
571 	if (!static_cpu_has(X86_FEATURE_ZEN)) {
572 		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
573 		wrmsrq(MSR_AMD64_LS_CFG, msr);
574 		return;
575 	}
576 
577 	if (tifn & _TIF_SSBD) {
578 		/*
579 		 * Since this can race with prctl(), block reentry on the
580 		 * same CPU.
581 		 */
582 		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
583 			return;
584 
585 		msr |= x86_amd_ls_cfg_ssbd_mask;
586 
587 		raw_spin_lock(&st->shared_state->lock);
588 		/* First sibling enables SSBD: */
589 		if (!st->shared_state->disable_state)
590 			wrmsrq(MSR_AMD64_LS_CFG, msr);
591 		st->shared_state->disable_state++;
592 		raw_spin_unlock(&st->shared_state->lock);
593 	} else {
594 		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
595 			return;
596 
597 		raw_spin_lock(&st->shared_state->lock);
598 		st->shared_state->disable_state--;
599 		if (!st->shared_state->disable_state)
600 			wrmsrq(MSR_AMD64_LS_CFG, msr);
601 		raw_spin_unlock(&st->shared_state->lock);
602 	}
603 }
604 #else
amd_set_core_ssb_state(unsigned long tifn)605 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
606 {
607 	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
608 
609 	wrmsrq(MSR_AMD64_LS_CFG, msr);
610 }
611 #endif
612 
amd_set_ssb_virt_state(unsigned long tifn)613 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
614 {
615 	/*
616 	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
617 	 * so ssbd_tif_to_spec_ctrl() just works.
618 	 */
619 	wrmsrq(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
620 }
621 
622 /*
623  * Update the MSRs managing speculation control, during context switch.
624  *
625  * tifp: Previous task's thread flags
626  * tifn: Next task's thread flags
627  */
__speculation_ctrl_update(unsigned long tifp,unsigned long tifn)628 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
629 						      unsigned long tifn)
630 {
631 	unsigned long tif_diff = tifp ^ tifn;
632 	u64 msr = x86_spec_ctrl_base;
633 	bool updmsr = false;
634 
635 	lockdep_assert_irqs_disabled();
636 
637 	/* Handle change of TIF_SSBD depending on the mitigation method. */
638 	if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
639 		if (tif_diff & _TIF_SSBD)
640 			amd_set_ssb_virt_state(tifn);
641 	} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
642 		if (tif_diff & _TIF_SSBD)
643 			amd_set_core_ssb_state(tifn);
644 	} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
645 		   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
646 		updmsr |= !!(tif_diff & _TIF_SSBD);
647 		msr |= ssbd_tif_to_spec_ctrl(tifn);
648 	}
649 
650 	/* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
651 	if (IS_ENABLED(CONFIG_SMP) &&
652 	    static_branch_unlikely(&switch_to_cond_stibp)) {
653 		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
654 		msr |= stibp_tif_to_spec_ctrl(tifn);
655 	}
656 
657 	if (updmsr)
658 		update_spec_ctrl_cond(msr);
659 }
660 
speculation_ctrl_update_tif(struct task_struct * tsk)661 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
662 {
663 	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
664 		if (task_spec_ssb_disable(tsk))
665 			set_tsk_thread_flag(tsk, TIF_SSBD);
666 		else
667 			clear_tsk_thread_flag(tsk, TIF_SSBD);
668 
669 		if (task_spec_ib_disable(tsk))
670 			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
671 		else
672 			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
673 	}
674 	/* Return the updated threadinfo flags*/
675 	return read_task_thread_flags(tsk);
676 }
677 
speculation_ctrl_update(unsigned long tif)678 void speculation_ctrl_update(unsigned long tif)
679 {
680 	unsigned long flags;
681 
682 	/* Forced update. Make sure all relevant TIF flags are different */
683 	local_irq_save(flags);
684 	__speculation_ctrl_update(~tif, tif);
685 	local_irq_restore(flags);
686 }
687 
688 /* Called from seccomp/prctl update */
speculation_ctrl_update_current(void)689 void speculation_ctrl_update_current(void)
690 {
691 	preempt_disable();
692 	speculation_ctrl_update(speculation_ctrl_update_tif(current));
693 	preempt_enable();
694 }
695 
cr4_toggle_bits_irqsoff(unsigned long mask)696 static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
697 {
698 	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
699 
700 	newval = cr4 ^ mask;
701 	if (newval != cr4) {
702 		this_cpu_write(cpu_tlbstate.cr4, newval);
703 		__write_cr4(newval);
704 	}
705 }
706 
__switch_to_xtra(struct task_struct * prev_p,struct task_struct * next_p)707 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
708 {
709 	unsigned long tifp, tifn;
710 
711 	tifn = read_task_thread_flags(next_p);
712 	tifp = read_task_thread_flags(prev_p);
713 
714 	switch_to_bitmap(tifp);
715 
716 	propagate_user_return_notify(prev_p, next_p);
717 
718 	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
719 	    arch_has_block_step()) {
720 		unsigned long debugctl, msk;
721 
722 		rdmsrq(MSR_IA32_DEBUGCTLMSR, debugctl);
723 		debugctl &= ~DEBUGCTLMSR_BTF;
724 		msk = tifn & _TIF_BLOCKSTEP;
725 		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
726 		wrmsrq(MSR_IA32_DEBUGCTLMSR, debugctl);
727 	}
728 
729 	if ((tifp ^ tifn) & _TIF_NOTSC)
730 		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
731 
732 	if ((tifp ^ tifn) & _TIF_NOCPUID)
733 		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
734 
735 	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
736 		__speculation_ctrl_update(tifp, tifn);
737 	} else {
738 		speculation_ctrl_update_tif(prev_p);
739 		tifn = speculation_ctrl_update_tif(next_p);
740 
741 		/* Enforce MSR update to ensure consistent state */
742 		__speculation_ctrl_update(~tifn, tifn);
743 	}
744 }
745 
746 /*
747  * Idle related variables and functions
748  */
749 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
750 EXPORT_SYMBOL(boot_option_idle_override);
751 
752 /*
753  * We use this if we don't have any better idle routine..
754  */
default_idle(void)755 void __cpuidle default_idle(void)
756 {
757 	raw_safe_halt();
758 	raw_local_irq_disable();
759 }
760 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
761 EXPORT_SYMBOL(default_idle);
762 #endif
763 
764 DEFINE_STATIC_CALL_NULL(x86_idle, default_idle);
765 
x86_idle_set(void)766 static bool x86_idle_set(void)
767 {
768 	return !!static_call_query(x86_idle);
769 }
770 
771 #ifndef CONFIG_SMP
play_dead(void)772 static inline void __noreturn play_dead(void)
773 {
774 	BUG();
775 }
776 #endif
777 
arch_cpu_idle_enter(void)778 void arch_cpu_idle_enter(void)
779 {
780 	tsc_verify_tsc_adjust(false);
781 	local_touch_nmi();
782 }
783 
arch_cpu_idle_dead(void)784 void __noreturn arch_cpu_idle_dead(void)
785 {
786 	play_dead();
787 }
788 
789 /*
790  * Called from the generic idle code.
791  */
arch_cpu_idle(void)792 void __cpuidle arch_cpu_idle(void)
793 {
794 	static_call(x86_idle)();
795 }
796 EXPORT_SYMBOL_GPL(arch_cpu_idle);
797 
798 #ifdef CONFIG_XEN
xen_set_default_idle(void)799 bool xen_set_default_idle(void)
800 {
801 	bool ret = x86_idle_set();
802 
803 	static_call_update(x86_idle, default_idle);
804 
805 	return ret;
806 }
807 #endif
808 
809 struct cpumask cpus_stop_mask;
810 
stop_this_cpu(void * dummy)811 void __noreturn stop_this_cpu(void *dummy)
812 {
813 	struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
814 	unsigned int cpu = smp_processor_id();
815 
816 	local_irq_disable();
817 
818 	/*
819 	 * Remove this CPU from the online mask and disable it
820 	 * unconditionally. This might be redundant in case that the reboot
821 	 * vector was handled late and stop_other_cpus() sent an NMI.
822 	 *
823 	 * According to SDM and APM NMIs can be accepted even after soft
824 	 * disabling the local APIC.
825 	 */
826 	set_cpu_online(cpu, false);
827 	disable_local_APIC();
828 	mcheck_cpu_clear(c);
829 
830 	/*
831 	 * Use wbinvd on processors that support SME. This provides support
832 	 * for performing a successful kexec when going from SME inactive
833 	 * to SME active (or vice-versa). The cache must be cleared so that
834 	 * if there are entries with the same physical address, both with and
835 	 * without the encryption bit, they don't race each other when flushed
836 	 * and potentially end up with the wrong entry being committed to
837 	 * memory.
838 	 *
839 	 * Test the CPUID bit directly because the machine might've cleared
840 	 * X86_FEATURE_SME due to cmdline options.
841 	 */
842 	if (c->extended_cpuid_level >= 0x8000001f && (cpuid_eax(0x8000001f) & BIT(0)))
843 		wbinvd();
844 
845 	/*
846 	 * This brings a cache line back and dirties it, but
847 	 * native_stop_other_cpus() will overwrite cpus_stop_mask after it
848 	 * observed that all CPUs reported stop. This write will invalidate
849 	 * the related cache line on this CPU.
850 	 */
851 	cpumask_clear_cpu(cpu, &cpus_stop_mask);
852 
853 #ifdef CONFIG_SMP
854 	if (smp_ops.stop_this_cpu) {
855 		smp_ops.stop_this_cpu();
856 		BUG();
857 	}
858 #endif
859 
860 	for (;;) {
861 		/*
862 		 * Use native_halt() so that memory contents don't change
863 		 * (stack usage and variables) after possibly issuing the
864 		 * wbinvd() above.
865 		 */
866 		native_halt();
867 	}
868 }
869 
870 /*
871  * Prefer MWAIT over HALT if MWAIT is supported, MWAIT_CPUID leaf
872  * exists and whenever MONITOR/MWAIT extensions are present there is at
873  * least one C1 substate.
874  *
875  * Do not prefer MWAIT if MONITOR instruction has a bug or idle=nomwait
876  * is passed to kernel commandline parameter.
877  */
prefer_mwait_c1_over_halt(void)878 static __init bool prefer_mwait_c1_over_halt(void)
879 {
880 	const struct cpuinfo_x86 *c = &boot_cpu_data;
881 	u32 eax, ebx, ecx, edx;
882 
883 	/* If override is enforced on the command line, fall back to HALT. */
884 	if (boot_option_idle_override != IDLE_NO_OVERRIDE)
885 		return false;
886 
887 	/* MWAIT is not supported on this platform. Fallback to HALT */
888 	if (!cpu_has(c, X86_FEATURE_MWAIT))
889 		return false;
890 
891 	/* Monitor has a bug or APIC stops in C1E. Fallback to HALT */
892 	if (boot_cpu_has_bug(X86_BUG_MONITOR) || boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
893 		return false;
894 
895 	cpuid(CPUID_LEAF_MWAIT, &eax, &ebx, &ecx, &edx);
896 
897 	/*
898 	 * If MWAIT extensions are not available, it is safe to use MWAIT
899 	 * with EAX=0, ECX=0.
900 	 */
901 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED))
902 		return true;
903 
904 	/*
905 	 * If MWAIT extensions are available, there should be at least one
906 	 * MWAIT C1 substate present.
907 	 */
908 	return !!(edx & MWAIT_C1_SUBSTATE_MASK);
909 }
910 
911 /*
912  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
913  * with interrupts enabled and no flags, which is backwards compatible with the
914  * original MWAIT implementation.
915  */
mwait_idle(void)916 static __cpuidle void mwait_idle(void)
917 {
918 	if (need_resched())
919 		return;
920 
921 	x86_idle_clear_cpu_buffers();
922 
923 	if (!current_set_polling_and_test()) {
924 		const void *addr = &current_thread_info()->flags;
925 
926 		alternative_input("", "clflush (%[addr])", X86_BUG_CLFLUSH_MONITOR, [addr] "a" (addr));
927 		__monitor(addr, 0, 0);
928 		if (need_resched())
929 			goto out;
930 
931 		__sti_mwait(0, 0);
932 		raw_local_irq_disable();
933 	}
934 
935 out:
936 	__current_clr_polling();
937 }
938 
select_idle_routine(void)939 void __init select_idle_routine(void)
940 {
941 	if (boot_option_idle_override == IDLE_POLL) {
942 		if (IS_ENABLED(CONFIG_SMP) && __max_threads_per_core > 1)
943 			pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
944 		return;
945 	}
946 
947 	/* Required to guard against xen_set_default_idle() */
948 	if (x86_idle_set())
949 		return;
950 
951 	if (prefer_mwait_c1_over_halt()) {
952 		pr_info("using mwait in idle threads\n");
953 		static_call_update(x86_idle, mwait_idle);
954 	} else if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) {
955 		pr_info("using TDX aware idle routine\n");
956 		static_call_update(x86_idle, tdx_halt);
957 	} else {
958 		static_call_update(x86_idle, default_idle);
959 	}
960 }
961 
amd_e400_c1e_apic_setup(void)962 void amd_e400_c1e_apic_setup(void)
963 {
964 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
965 		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
966 		local_irq_disable();
967 		tick_broadcast_force();
968 		local_irq_enable();
969 	}
970 }
971 
arch_post_acpi_subsys_init(void)972 void __init arch_post_acpi_subsys_init(void)
973 {
974 	u32 lo, hi;
975 
976 	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
977 		return;
978 
979 	/*
980 	 * AMD E400 detection needs to happen after ACPI has been enabled. If
981 	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
982 	 * MSR_K8_INT_PENDING_MSG.
983 	 */
984 	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
985 	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
986 		return;
987 
988 	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
989 
990 	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
991 		mark_tsc_unstable("TSC halt in AMD C1E");
992 
993 	if (IS_ENABLED(CONFIG_GENERIC_CLOCKEVENTS_BROADCAST_IDLE))
994 		static_branch_enable(&arch_needs_tick_broadcast);
995 	pr_info("System has AMD C1E erratum E400. Workaround enabled.\n");
996 }
997 
idle_setup(char * str)998 static int __init idle_setup(char *str)
999 {
1000 	if (!str)
1001 		return -EINVAL;
1002 
1003 	if (!strcmp(str, "poll")) {
1004 		pr_info("using polling idle threads\n");
1005 		boot_option_idle_override = IDLE_POLL;
1006 		cpu_idle_poll_ctrl(true);
1007 	} else if (!strcmp(str, "halt")) {
1008 		/* 'idle=halt' HALT for idle. C-states are disabled. */
1009 		boot_option_idle_override = IDLE_HALT;
1010 	} else if (!strcmp(str, "nomwait")) {
1011 		/* 'idle=nomwait' disables MWAIT for idle */
1012 		boot_option_idle_override = IDLE_NOMWAIT;
1013 	} else {
1014 		return -EINVAL;
1015 	}
1016 
1017 	return 0;
1018 }
1019 early_param("idle", idle_setup);
1020 
arch_align_stack(unsigned long sp)1021 unsigned long arch_align_stack(unsigned long sp)
1022 {
1023 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1024 		sp -= get_random_u32_below(8192);
1025 	return sp & ~0xf;
1026 }
1027 
arch_randomize_brk(struct mm_struct * mm)1028 unsigned long arch_randomize_brk(struct mm_struct *mm)
1029 {
1030 	if (mmap_is_ia32())
1031 		return randomize_page(mm->brk, SZ_32M);
1032 
1033 	return randomize_page(mm->brk, SZ_1G);
1034 }
1035 
1036 /*
1037  * Called from fs/proc with a reference on @p to find the function
1038  * which called into schedule(). This needs to be done carefully
1039  * because the task might wake up and we might look at a stack
1040  * changing under us.
1041  */
__get_wchan(struct task_struct * p)1042 unsigned long __get_wchan(struct task_struct *p)
1043 {
1044 	struct unwind_state state;
1045 	unsigned long addr = 0;
1046 
1047 	if (!try_get_task_stack(p))
1048 		return 0;
1049 
1050 	for (unwind_start(&state, p, NULL, NULL); !unwind_done(&state);
1051 	     unwind_next_frame(&state)) {
1052 		addr = unwind_get_return_address(&state);
1053 		if (!addr)
1054 			break;
1055 		if (in_sched_functions(addr))
1056 			continue;
1057 		break;
1058 	}
1059 
1060 	put_task_stack(p);
1061 
1062 	return addr;
1063 }
1064 
SYSCALL_DEFINE2(arch_prctl,int,option,unsigned long,arg2)1065 SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
1066 {
1067 	switch (option) {
1068 	case ARCH_GET_CPUID:
1069 		return get_cpuid_mode();
1070 	case ARCH_SET_CPUID:
1071 		return set_cpuid_mode(arg2);
1072 	case ARCH_GET_XCOMP_SUPP:
1073 	case ARCH_GET_XCOMP_PERM:
1074 	case ARCH_REQ_XCOMP_PERM:
1075 	case ARCH_GET_XCOMP_GUEST_PERM:
1076 	case ARCH_REQ_XCOMP_GUEST_PERM:
1077 		return fpu_xstate_prctl(option, arg2);
1078 	}
1079 
1080 	if (!in_ia32_syscall())
1081 		return do_arch_prctl_64(current, option, arg2);
1082 
1083 	return -EINVAL;
1084 }
1085 
SYSCALL_DEFINE0(ni_syscall)1086 SYSCALL_DEFINE0(ni_syscall)
1087 {
1088 	return -ENOSYS;
1089 }
1090