1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/nfs/dir.c
4 *
5 * Copyright (C) 1992 Rick Sladkey
6 *
7 * nfs directory handling functions
8 *
9 * 10 Apr 1996 Added silly rename for unlink --okir
10 * 28 Sep 1996 Improved directory cache --okir
11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
12 * Re-implemented silly rename for unlink, newly implemented
13 * silly rename for nfs_rename() following the suggestions
14 * of Olaf Kirch (okir) found in this file.
15 * Following Linus comments on my original hack, this version
16 * depends only on the dcache stuff and doesn't touch the inode
17 * layer (iput() and friends).
18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
19 */
20
21 #include <linux/compat.h>
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/errno.h>
25 #include <linux/stat.h>
26 #include <linux/fcntl.h>
27 #include <linux/string.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/mm.h>
31 #include <linux/sunrpc/clnt.h>
32 #include <linux/nfs_fs.h>
33 #include <linux/nfs_mount.h>
34 #include <linux/pagemap.h>
35 #include <linux/pagevec.h>
36 #include <linux/namei.h>
37 #include <linux/mount.h>
38 #include <linux/swap.h>
39 #include <linux/sched.h>
40 #include <linux/kmemleak.h>
41 #include <linux/xattr.h>
42 #include <linux/hash.h>
43
44 #include "delegation.h"
45 #include "iostat.h"
46 #include "internal.h"
47 #include "fscache.h"
48
49 #include "nfstrace.h"
50
51 /* #define NFS_DEBUG_VERBOSE 1 */
52
53 static int nfs_opendir(struct inode *, struct file *);
54 static int nfs_closedir(struct inode *, struct file *);
55 static int nfs_readdir(struct file *, struct dir_context *);
56 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58 static void nfs_readdir_clear_array(struct folio *);
59 static int nfs_do_create(struct inode *dir, struct dentry *dentry,
60 umode_t mode, int open_flags);
61
62 const struct file_operations nfs_dir_operations = {
63 .llseek = nfs_llseek_dir,
64 .read = generic_read_dir,
65 .iterate_shared = nfs_readdir,
66 .open = nfs_opendir,
67 .release = nfs_closedir,
68 .fsync = nfs_fsync_dir,
69 };
70
71 const struct address_space_operations nfs_dir_aops = {
72 .free_folio = nfs_readdir_clear_array,
73 };
74
75 #define NFS_INIT_DTSIZE PAGE_SIZE
76
77 static struct nfs_open_dir_context *
alloc_nfs_open_dir_context(struct inode * dir)78 alloc_nfs_open_dir_context(struct inode *dir)
79 {
80 struct nfs_inode *nfsi = NFS_I(dir);
81 struct nfs_open_dir_context *ctx;
82
83 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT);
84 if (ctx != NULL) {
85 ctx->attr_gencount = nfsi->attr_gencount;
86 ctx->dtsize = NFS_INIT_DTSIZE;
87 spin_lock(&dir->i_lock);
88 if (list_empty(&nfsi->open_files) &&
89 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
90 nfs_set_cache_invalid(dir,
91 NFS_INO_INVALID_DATA |
92 NFS_INO_REVAL_FORCED);
93 list_add_tail_rcu(&ctx->list, &nfsi->open_files);
94 memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf));
95 spin_unlock(&dir->i_lock);
96 return ctx;
97 }
98 return ERR_PTR(-ENOMEM);
99 }
100
put_nfs_open_dir_context(struct inode * dir,struct nfs_open_dir_context * ctx)101 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
102 {
103 spin_lock(&dir->i_lock);
104 list_del_rcu(&ctx->list);
105 spin_unlock(&dir->i_lock);
106 kfree_rcu(ctx, rcu_head);
107 }
108
109 /*
110 * Open file
111 */
112 static int
nfs_opendir(struct inode * inode,struct file * filp)113 nfs_opendir(struct inode *inode, struct file *filp)
114 {
115 int res = 0;
116 struct nfs_open_dir_context *ctx;
117
118 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
119
120 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
121
122 ctx = alloc_nfs_open_dir_context(inode);
123 if (IS_ERR(ctx)) {
124 res = PTR_ERR(ctx);
125 goto out;
126 }
127 filp->private_data = ctx;
128 out:
129 return res;
130 }
131
132 static int
nfs_closedir(struct inode * inode,struct file * filp)133 nfs_closedir(struct inode *inode, struct file *filp)
134 {
135 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
136 return 0;
137 }
138
139 struct nfs_cache_array_entry {
140 u64 cookie;
141 u64 ino;
142 const char *name;
143 unsigned int name_len;
144 unsigned char d_type;
145 };
146
147 struct nfs_cache_array {
148 u64 change_attr;
149 u64 last_cookie;
150 unsigned int size;
151 unsigned char folio_full : 1,
152 folio_is_eof : 1,
153 cookies_are_ordered : 1;
154 struct nfs_cache_array_entry array[] __counted_by(size);
155 };
156
157 struct nfs_readdir_descriptor {
158 struct file *file;
159 struct folio *folio;
160 struct dir_context *ctx;
161 pgoff_t folio_index;
162 pgoff_t folio_index_max;
163 u64 dir_cookie;
164 u64 last_cookie;
165 loff_t current_index;
166
167 __be32 verf[NFS_DIR_VERIFIER_SIZE];
168 unsigned long dir_verifier;
169 unsigned long timestamp;
170 unsigned long gencount;
171 unsigned long attr_gencount;
172 unsigned int cache_entry_index;
173 unsigned int buffer_fills;
174 unsigned int dtsize;
175 bool clear_cache;
176 bool plus;
177 bool eob;
178 bool eof;
179 };
180
nfs_set_dtsize(struct nfs_readdir_descriptor * desc,unsigned int sz)181 static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz)
182 {
183 struct nfs_server *server = NFS_SERVER(file_inode(desc->file));
184 unsigned int maxsize = server->dtsize;
185
186 if (sz > maxsize)
187 sz = maxsize;
188 if (sz < NFS_MIN_FILE_IO_SIZE)
189 sz = NFS_MIN_FILE_IO_SIZE;
190 desc->dtsize = sz;
191 }
192
nfs_shrink_dtsize(struct nfs_readdir_descriptor * desc)193 static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc)
194 {
195 nfs_set_dtsize(desc, desc->dtsize >> 1);
196 }
197
nfs_grow_dtsize(struct nfs_readdir_descriptor * desc)198 static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc)
199 {
200 nfs_set_dtsize(desc, desc->dtsize << 1);
201 }
202
nfs_readdir_folio_init_array(struct folio * folio,u64 last_cookie,u64 change_attr)203 static void nfs_readdir_folio_init_array(struct folio *folio, u64 last_cookie,
204 u64 change_attr)
205 {
206 struct nfs_cache_array *array;
207
208 array = kmap_local_folio(folio, 0);
209 array->change_attr = change_attr;
210 array->last_cookie = last_cookie;
211 array->size = 0;
212 array->folio_full = 0;
213 array->folio_is_eof = 0;
214 array->cookies_are_ordered = 1;
215 kunmap_local(array);
216 }
217
218 /*
219 * we are freeing strings created by nfs_add_to_readdir_array()
220 */
nfs_readdir_clear_array(struct folio * folio)221 static void nfs_readdir_clear_array(struct folio *folio)
222 {
223 struct nfs_cache_array *array;
224 unsigned int i;
225
226 array = kmap_local_folio(folio, 0);
227 for (i = 0; i < array->size; i++)
228 kfree(array->array[i].name);
229 array->size = 0;
230 kunmap_local(array);
231 }
232
nfs_readdir_folio_reinit_array(struct folio * folio,u64 last_cookie,u64 change_attr)233 static void nfs_readdir_folio_reinit_array(struct folio *folio, u64 last_cookie,
234 u64 change_attr)
235 {
236 nfs_readdir_clear_array(folio);
237 nfs_readdir_folio_init_array(folio, last_cookie, change_attr);
238 }
239
240 static struct folio *
nfs_readdir_folio_array_alloc(u64 last_cookie,gfp_t gfp_flags)241 nfs_readdir_folio_array_alloc(u64 last_cookie, gfp_t gfp_flags)
242 {
243 struct folio *folio = folio_alloc(gfp_flags, 0);
244 if (folio)
245 nfs_readdir_folio_init_array(folio, last_cookie, 0);
246 return folio;
247 }
248
nfs_readdir_folio_array_free(struct folio * folio)249 static void nfs_readdir_folio_array_free(struct folio *folio)
250 {
251 if (folio) {
252 nfs_readdir_clear_array(folio);
253 folio_put(folio);
254 }
255 }
256
nfs_readdir_array_index_cookie(struct nfs_cache_array * array)257 static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array)
258 {
259 return array->size == 0 ? array->last_cookie : array->array[0].cookie;
260 }
261
nfs_readdir_array_set_eof(struct nfs_cache_array * array)262 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
263 {
264 array->folio_is_eof = 1;
265 array->folio_full = 1;
266 }
267
nfs_readdir_array_is_full(struct nfs_cache_array * array)268 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
269 {
270 return array->folio_full;
271 }
272
273 /*
274 * the caller is responsible for freeing qstr.name
275 * when called by nfs_readdir_add_to_array, the strings will be freed in
276 * nfs_clear_readdir_array()
277 */
nfs_readdir_copy_name(const char * name,unsigned int len)278 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
279 {
280 const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
281
282 /*
283 * Avoid a kmemleak false positive. The pointer to the name is stored
284 * in a page cache page which kmemleak does not scan.
285 */
286 if (ret != NULL)
287 kmemleak_not_leak(ret);
288 return ret;
289 }
290
nfs_readdir_array_maxentries(void)291 static size_t nfs_readdir_array_maxentries(void)
292 {
293 return (PAGE_SIZE - sizeof(struct nfs_cache_array)) /
294 sizeof(struct nfs_cache_array_entry);
295 }
296
297 /*
298 * Check that the next array entry lies entirely within the page bounds
299 */
nfs_readdir_array_can_expand(struct nfs_cache_array * array)300 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
301 {
302 if (array->folio_full)
303 return -ENOSPC;
304 if (array->size == nfs_readdir_array_maxentries()) {
305 array->folio_full = 1;
306 return -ENOSPC;
307 }
308 return 0;
309 }
310
nfs_readdir_folio_array_append(struct folio * folio,const struct nfs_entry * entry,u64 * cookie)311 static int nfs_readdir_folio_array_append(struct folio *folio,
312 const struct nfs_entry *entry,
313 u64 *cookie)
314 {
315 struct nfs_cache_array *array;
316 struct nfs_cache_array_entry *cache_entry;
317 const char *name;
318 int ret = -ENOMEM;
319
320 name = nfs_readdir_copy_name(entry->name, entry->len);
321
322 array = kmap_local_folio(folio, 0);
323 if (!name)
324 goto out;
325 ret = nfs_readdir_array_can_expand(array);
326 if (ret) {
327 kfree(name);
328 goto out;
329 }
330
331 array->size++;
332 cache_entry = &array->array[array->size - 1];
333 cache_entry->cookie = array->last_cookie;
334 cache_entry->ino = entry->ino;
335 cache_entry->d_type = entry->d_type;
336 cache_entry->name_len = entry->len;
337 cache_entry->name = name;
338 array->last_cookie = entry->cookie;
339 if (array->last_cookie <= cache_entry->cookie)
340 array->cookies_are_ordered = 0;
341 if (entry->eof != 0)
342 nfs_readdir_array_set_eof(array);
343 out:
344 *cookie = array->last_cookie;
345 kunmap_local(array);
346 return ret;
347 }
348
349 #define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14)
350 /*
351 * Hash algorithm allowing content addressible access to sequences
352 * of directory cookies. Content is addressed by the value of the
353 * cookie index of the first readdir entry in a page.
354 *
355 * We select only the first 18 bits to avoid issues with excessive
356 * memory use for the page cache XArray. 18 bits should allow the caching
357 * of 262144 pages of sequences of readdir entries. Since each page holds
358 * 127 readdir entries for a typical 64-bit system, that works out to a
359 * cache of ~ 33 million entries per directory.
360 */
nfs_readdir_folio_cookie_hash(u64 cookie)361 static pgoff_t nfs_readdir_folio_cookie_hash(u64 cookie)
362 {
363 if (cookie == 0)
364 return 0;
365 return hash_64(cookie, 18);
366 }
367
nfs_readdir_folio_validate(struct folio * folio,u64 last_cookie,u64 change_attr)368 static bool nfs_readdir_folio_validate(struct folio *folio, u64 last_cookie,
369 u64 change_attr)
370 {
371 struct nfs_cache_array *array = kmap_local_folio(folio, 0);
372 int ret = true;
373
374 if (array->change_attr != change_attr)
375 ret = false;
376 if (nfs_readdir_array_index_cookie(array) != last_cookie)
377 ret = false;
378 kunmap_local(array);
379 return ret;
380 }
381
nfs_readdir_folio_unlock_and_put(struct folio * folio)382 static void nfs_readdir_folio_unlock_and_put(struct folio *folio)
383 {
384 folio_unlock(folio);
385 folio_put(folio);
386 }
387
nfs_readdir_folio_init_and_validate(struct folio * folio,u64 cookie,u64 change_attr)388 static void nfs_readdir_folio_init_and_validate(struct folio *folio, u64 cookie,
389 u64 change_attr)
390 {
391 if (folio_test_uptodate(folio)) {
392 if (nfs_readdir_folio_validate(folio, cookie, change_attr))
393 return;
394 nfs_readdir_clear_array(folio);
395 }
396 nfs_readdir_folio_init_array(folio, cookie, change_attr);
397 folio_mark_uptodate(folio);
398 }
399
nfs_readdir_folio_get_locked(struct address_space * mapping,u64 cookie,u64 change_attr)400 static struct folio *nfs_readdir_folio_get_locked(struct address_space *mapping,
401 u64 cookie, u64 change_attr)
402 {
403 pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
404 struct folio *folio;
405
406 folio = filemap_grab_folio(mapping, index);
407 if (IS_ERR(folio))
408 return NULL;
409 nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
410 return folio;
411 }
412
nfs_readdir_folio_last_cookie(struct folio * folio)413 static u64 nfs_readdir_folio_last_cookie(struct folio *folio)
414 {
415 struct nfs_cache_array *array;
416 u64 ret;
417
418 array = kmap_local_folio(folio, 0);
419 ret = array->last_cookie;
420 kunmap_local(array);
421 return ret;
422 }
423
nfs_readdir_folio_needs_filling(struct folio * folio)424 static bool nfs_readdir_folio_needs_filling(struct folio *folio)
425 {
426 struct nfs_cache_array *array;
427 bool ret;
428
429 array = kmap_local_folio(folio, 0);
430 ret = !nfs_readdir_array_is_full(array);
431 kunmap_local(array);
432 return ret;
433 }
434
nfs_readdir_folio_set_eof(struct folio * folio)435 static void nfs_readdir_folio_set_eof(struct folio *folio)
436 {
437 struct nfs_cache_array *array;
438
439 array = kmap_local_folio(folio, 0);
440 nfs_readdir_array_set_eof(array);
441 kunmap_local(array);
442 }
443
nfs_readdir_folio_get_next(struct address_space * mapping,u64 cookie,u64 change_attr)444 static struct folio *nfs_readdir_folio_get_next(struct address_space *mapping,
445 u64 cookie, u64 change_attr)
446 {
447 pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
448 struct folio *folio;
449
450 folio = __filemap_get_folio(mapping, index,
451 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
452 mapping_gfp_mask(mapping));
453 if (IS_ERR(folio))
454 return NULL;
455 nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
456 if (nfs_readdir_folio_last_cookie(folio) != cookie)
457 nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
458 return folio;
459 }
460
461 static inline
is_32bit_api(void)462 int is_32bit_api(void)
463 {
464 #ifdef CONFIG_COMPAT
465 return in_compat_syscall();
466 #else
467 return (BITS_PER_LONG == 32);
468 #endif
469 }
470
471 static
nfs_readdir_use_cookie(const struct file * filp)472 bool nfs_readdir_use_cookie(const struct file *filp)
473 {
474 if ((filp->f_mode & FMODE_32BITHASH) ||
475 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
476 return false;
477 return true;
478 }
479
nfs_readdir_seek_next_array(struct nfs_cache_array * array,struct nfs_readdir_descriptor * desc)480 static void nfs_readdir_seek_next_array(struct nfs_cache_array *array,
481 struct nfs_readdir_descriptor *desc)
482 {
483 if (array->folio_full) {
484 desc->last_cookie = array->last_cookie;
485 desc->current_index += array->size;
486 desc->cache_entry_index = 0;
487 desc->folio_index++;
488 } else
489 desc->last_cookie = nfs_readdir_array_index_cookie(array);
490 }
491
nfs_readdir_rewind_search(struct nfs_readdir_descriptor * desc)492 static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc)
493 {
494 desc->current_index = 0;
495 desc->last_cookie = 0;
496 desc->folio_index = 0;
497 }
498
nfs_readdir_search_for_pos(struct nfs_cache_array * array,struct nfs_readdir_descriptor * desc)499 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
500 struct nfs_readdir_descriptor *desc)
501 {
502 loff_t diff = desc->ctx->pos - desc->current_index;
503 unsigned int index;
504
505 if (diff < 0)
506 goto out_eof;
507 if (diff >= array->size) {
508 if (array->folio_is_eof)
509 goto out_eof;
510 nfs_readdir_seek_next_array(array, desc);
511 return -EAGAIN;
512 }
513
514 index = (unsigned int)diff;
515 desc->dir_cookie = array->array[index].cookie;
516 desc->cache_entry_index = index;
517 return 0;
518 out_eof:
519 desc->eof = true;
520 return -EBADCOOKIE;
521 }
522
nfs_readdir_array_cookie_in_range(struct nfs_cache_array * array,u64 cookie)523 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
524 u64 cookie)
525 {
526 if (!array->cookies_are_ordered)
527 return true;
528 /* Optimisation for monotonically increasing cookies */
529 if (cookie >= array->last_cookie)
530 return false;
531 if (array->size && cookie < array->array[0].cookie)
532 return false;
533 return true;
534 }
535
nfs_readdir_search_for_cookie(struct nfs_cache_array * array,struct nfs_readdir_descriptor * desc)536 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
537 struct nfs_readdir_descriptor *desc)
538 {
539 unsigned int i;
540 int status = -EAGAIN;
541
542 if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
543 goto check_eof;
544
545 for (i = 0; i < array->size; i++) {
546 if (array->array[i].cookie == desc->dir_cookie) {
547 if (nfs_readdir_use_cookie(desc->file))
548 desc->ctx->pos = desc->dir_cookie;
549 else
550 desc->ctx->pos = desc->current_index + i;
551 desc->cache_entry_index = i;
552 return 0;
553 }
554 }
555 check_eof:
556 if (array->folio_is_eof) {
557 status = -EBADCOOKIE;
558 if (desc->dir_cookie == array->last_cookie)
559 desc->eof = true;
560 } else
561 nfs_readdir_seek_next_array(array, desc);
562 return status;
563 }
564
nfs_readdir_search_array(struct nfs_readdir_descriptor * desc)565 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
566 {
567 struct nfs_cache_array *array;
568 int status;
569
570 array = kmap_local_folio(desc->folio, 0);
571
572 if (desc->dir_cookie == 0)
573 status = nfs_readdir_search_for_pos(array, desc);
574 else
575 status = nfs_readdir_search_for_cookie(array, desc);
576
577 kunmap_local(array);
578 return status;
579 }
580
581 /* Fill a page with xdr information before transferring to the cache page */
nfs_readdir_xdr_filler(struct nfs_readdir_descriptor * desc,__be32 * verf,u64 cookie,struct page ** pages,size_t bufsize,__be32 * verf_res)582 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
583 __be32 *verf, u64 cookie,
584 struct page **pages, size_t bufsize,
585 __be32 *verf_res)
586 {
587 struct inode *inode = file_inode(desc->file);
588 struct nfs_readdir_arg arg = {
589 .dentry = file_dentry(desc->file),
590 .cred = desc->file->f_cred,
591 .verf = verf,
592 .cookie = cookie,
593 .pages = pages,
594 .page_len = bufsize,
595 .plus = desc->plus,
596 };
597 struct nfs_readdir_res res = {
598 .verf = verf_res,
599 };
600 unsigned long timestamp, gencount;
601 int error;
602
603 again:
604 timestamp = jiffies;
605 gencount = nfs_inc_attr_generation_counter();
606 desc->dir_verifier = nfs_save_change_attribute(inode);
607 error = NFS_PROTO(inode)->readdir(&arg, &res);
608 if (error < 0) {
609 /* We requested READDIRPLUS, but the server doesn't grok it */
610 if (error == -ENOTSUPP && desc->plus) {
611 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
612 desc->plus = arg.plus = false;
613 goto again;
614 }
615 goto error;
616 }
617 desc->timestamp = timestamp;
618 desc->gencount = gencount;
619 error:
620 return error;
621 }
622
xdr_decode(struct nfs_readdir_descriptor * desc,struct nfs_entry * entry,struct xdr_stream * xdr)623 static int xdr_decode(struct nfs_readdir_descriptor *desc,
624 struct nfs_entry *entry, struct xdr_stream *xdr)
625 {
626 struct inode *inode = file_inode(desc->file);
627 int error;
628
629 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
630 if (error)
631 return error;
632 entry->fattr->time_start = desc->timestamp;
633 entry->fattr->gencount = desc->gencount;
634 return 0;
635 }
636
637 /* Match file and dirent using either filehandle or fileid
638 * Note: caller is responsible for checking the fsid
639 */
640 static
nfs_same_file(struct dentry * dentry,struct nfs_entry * entry)641 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
642 {
643 struct inode *inode;
644 struct nfs_inode *nfsi;
645
646 if (d_really_is_negative(dentry))
647 return 0;
648
649 inode = d_inode(dentry);
650 if (is_bad_inode(inode) || NFS_STALE(inode))
651 return 0;
652
653 nfsi = NFS_I(inode);
654 if (entry->fattr->fileid != nfsi->fileid)
655 return 0;
656 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
657 return 0;
658 return 1;
659 }
660
661 #define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL)
662
nfs_use_readdirplus(struct inode * dir,struct dir_context * ctx,unsigned int cache_hits,unsigned int cache_misses)663 static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx,
664 unsigned int cache_hits,
665 unsigned int cache_misses)
666 {
667 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
668 return false;
669 if (NFS_SERVER(dir)->flags & NFS_MOUNT_FORCE_RDIRPLUS)
670 return true;
671 if (ctx->pos == 0 ||
672 cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD)
673 return true;
674 return false;
675 }
676
677 /*
678 * This function is called by the getattr code to request the
679 * use of readdirplus to accelerate any future lookups in the same
680 * directory.
681 */
nfs_readdir_record_entry_cache_hit(struct inode * dir)682 void nfs_readdir_record_entry_cache_hit(struct inode *dir)
683 {
684 struct nfs_inode *nfsi = NFS_I(dir);
685 struct nfs_open_dir_context *ctx;
686
687 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
688 S_ISDIR(dir->i_mode)) {
689 rcu_read_lock();
690 list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
691 atomic_inc(&ctx->cache_hits);
692 rcu_read_unlock();
693 }
694 }
695
696 /*
697 * This function is mainly for use by nfs_getattr().
698 *
699 * If this is an 'ls -l', we want to force use of readdirplus.
700 */
nfs_readdir_record_entry_cache_miss(struct inode * dir)701 void nfs_readdir_record_entry_cache_miss(struct inode *dir)
702 {
703 struct nfs_inode *nfsi = NFS_I(dir);
704 struct nfs_open_dir_context *ctx;
705
706 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
707 S_ISDIR(dir->i_mode)) {
708 rcu_read_lock();
709 list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
710 atomic_inc(&ctx->cache_misses);
711 rcu_read_unlock();
712 }
713 }
714
nfs_lookup_advise_force_readdirplus(struct inode * dir,unsigned int flags)715 static void nfs_lookup_advise_force_readdirplus(struct inode *dir,
716 unsigned int flags)
717 {
718 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
719 return;
720 if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL))
721 return;
722 nfs_readdir_record_entry_cache_miss(dir);
723 }
724
725 static
nfs_prime_dcache(struct dentry * parent,struct nfs_entry * entry,unsigned long dir_verifier)726 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
727 unsigned long dir_verifier)
728 {
729 struct qstr filename = QSTR_INIT(entry->name, entry->len);
730 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
731 struct dentry *dentry;
732 struct dentry *alias;
733 struct inode *inode;
734 int status;
735
736 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
737 return;
738 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
739 return;
740 if (filename.len == 0)
741 return;
742 /* Validate that the name doesn't contain any illegal '\0' */
743 if (strnlen(filename.name, filename.len) != filename.len)
744 return;
745 /* ...or '/' */
746 if (strnchr(filename.name, filename.len, '/'))
747 return;
748 if (filename.name[0] == '.') {
749 if (filename.len == 1)
750 return;
751 if (filename.len == 2 && filename.name[1] == '.')
752 return;
753 }
754 filename.hash = full_name_hash(parent, filename.name, filename.len);
755
756 dentry = d_lookup(parent, &filename);
757 again:
758 if (!dentry) {
759 dentry = d_alloc_parallel(parent, &filename, &wq);
760 if (IS_ERR(dentry))
761 return;
762 }
763 if (!d_in_lookup(dentry)) {
764 /* Is there a mountpoint here? If so, just exit */
765 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
766 &entry->fattr->fsid))
767 goto out;
768 if (nfs_same_file(dentry, entry)) {
769 if (!entry->fh->size)
770 goto out;
771 nfs_set_verifier(dentry, dir_verifier);
772 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
773 if (!status)
774 nfs_setsecurity(d_inode(dentry), entry->fattr);
775 trace_nfs_readdir_lookup_revalidate(d_inode(parent),
776 dentry, 0, status);
777 goto out;
778 } else {
779 trace_nfs_readdir_lookup_revalidate_failed(
780 d_inode(parent), dentry, 0);
781 d_invalidate(dentry);
782 dput(dentry);
783 dentry = NULL;
784 goto again;
785 }
786 }
787 if (!entry->fh->size) {
788 d_lookup_done(dentry);
789 goto out;
790 }
791
792 nfs_set_verifier(dentry, dir_verifier);
793 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
794 alias = d_splice_alias(inode, dentry);
795 d_lookup_done(dentry);
796 if (alias) {
797 if (IS_ERR(alias))
798 goto out;
799 nfs_set_verifier(alias, dir_verifier);
800 dput(dentry);
801 dentry = alias;
802 }
803 trace_nfs_readdir_lookup(d_inode(parent), dentry, 0);
804 out:
805 dput(dentry);
806 }
807
nfs_readdir_entry_decode(struct nfs_readdir_descriptor * desc,struct nfs_entry * entry,struct xdr_stream * stream)808 static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc,
809 struct nfs_entry *entry,
810 struct xdr_stream *stream)
811 {
812 int ret;
813
814 if (entry->fattr->label)
815 entry->fattr->label->len = NFS4_MAXLABELLEN;
816 ret = xdr_decode(desc, entry, stream);
817 if (ret || !desc->plus)
818 return ret;
819 nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier);
820 return 0;
821 }
822
823 /* Perform conversion from xdr to cache array */
nfs_readdir_folio_filler(struct nfs_readdir_descriptor * desc,struct nfs_entry * entry,struct page ** xdr_pages,unsigned int buflen,struct folio ** arrays,size_t narrays,u64 change_attr)824 static int nfs_readdir_folio_filler(struct nfs_readdir_descriptor *desc,
825 struct nfs_entry *entry,
826 struct page **xdr_pages, unsigned int buflen,
827 struct folio **arrays, size_t narrays,
828 u64 change_attr)
829 {
830 struct address_space *mapping = desc->file->f_mapping;
831 struct folio *new, *folio = *arrays;
832 struct xdr_stream stream;
833 struct folio *scratch;
834 struct xdr_buf buf;
835 u64 cookie;
836 int status;
837
838 scratch = folio_alloc(GFP_KERNEL, 0);
839 if (scratch == NULL)
840 return -ENOMEM;
841
842 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
843 xdr_set_scratch_folio(&stream, scratch);
844
845 do {
846 status = nfs_readdir_entry_decode(desc, entry, &stream);
847 if (status != 0)
848 break;
849
850 status = nfs_readdir_folio_array_append(folio, entry, &cookie);
851 if (status != -ENOSPC)
852 continue;
853
854 if (folio->mapping != mapping) {
855 if (!--narrays)
856 break;
857 new = nfs_readdir_folio_array_alloc(cookie, GFP_KERNEL);
858 if (!new)
859 break;
860 arrays++;
861 *arrays = folio = new;
862 } else {
863 new = nfs_readdir_folio_get_next(mapping, cookie,
864 change_attr);
865 if (!new)
866 break;
867 if (folio != *arrays)
868 nfs_readdir_folio_unlock_and_put(folio);
869 folio = new;
870 }
871 desc->folio_index_max++;
872 status = nfs_readdir_folio_array_append(folio, entry, &cookie);
873 } while (!status && !entry->eof);
874
875 switch (status) {
876 case -EBADCOOKIE:
877 if (!entry->eof)
878 break;
879 nfs_readdir_folio_set_eof(folio);
880 fallthrough;
881 case -EAGAIN:
882 status = 0;
883 break;
884 case -ENOSPC:
885 status = 0;
886 if (!desc->plus)
887 break;
888 while (!nfs_readdir_entry_decode(desc, entry, &stream))
889 ;
890 }
891
892 if (folio != *arrays)
893 nfs_readdir_folio_unlock_and_put(folio);
894
895 folio_put(scratch);
896 return status;
897 }
898
nfs_readdir_free_pages(struct page ** pages,size_t npages)899 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
900 {
901 while (npages--)
902 put_page(pages[npages]);
903 kfree(pages);
904 }
905
906 /*
907 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
908 * to nfs_readdir_free_pages()
909 */
nfs_readdir_alloc_pages(size_t npages)910 static struct page **nfs_readdir_alloc_pages(size_t npages)
911 {
912 struct page **pages;
913 size_t i;
914
915 pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
916 if (!pages)
917 return NULL;
918 for (i = 0; i < npages; i++) {
919 struct page *page = alloc_page(GFP_KERNEL);
920 if (page == NULL)
921 goto out_freepages;
922 pages[i] = page;
923 }
924 return pages;
925
926 out_freepages:
927 nfs_readdir_free_pages(pages, i);
928 return NULL;
929 }
930
nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor * desc,__be32 * verf_arg,__be32 * verf_res,struct folio ** arrays,size_t narrays)931 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
932 __be32 *verf_arg, __be32 *verf_res,
933 struct folio **arrays, size_t narrays)
934 {
935 u64 change_attr;
936 struct page **pages;
937 struct folio *folio = *arrays;
938 struct nfs_entry *entry;
939 size_t array_size;
940 struct inode *inode = file_inode(desc->file);
941 unsigned int dtsize = desc->dtsize;
942 unsigned int pglen;
943 int status = -ENOMEM;
944
945 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
946 if (!entry)
947 return -ENOMEM;
948 entry->cookie = nfs_readdir_folio_last_cookie(folio);
949 entry->fh = nfs_alloc_fhandle();
950 entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
951 entry->server = NFS_SERVER(inode);
952 if (entry->fh == NULL || entry->fattr == NULL)
953 goto out;
954
955 array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
956 pages = nfs_readdir_alloc_pages(array_size);
957 if (!pages)
958 goto out;
959
960 change_attr = inode_peek_iversion_raw(inode);
961 status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages,
962 dtsize, verf_res);
963 if (status < 0)
964 goto free_pages;
965
966 pglen = status;
967 if (pglen != 0)
968 status = nfs_readdir_folio_filler(desc, entry, pages, pglen,
969 arrays, narrays, change_attr);
970 else
971 nfs_readdir_folio_set_eof(folio);
972 desc->buffer_fills++;
973
974 free_pages:
975 nfs_readdir_free_pages(pages, array_size);
976 out:
977 nfs_free_fattr(entry->fattr);
978 nfs_free_fhandle(entry->fh);
979 kfree(entry);
980 return status;
981 }
982
nfs_readdir_folio_put(struct nfs_readdir_descriptor * desc)983 static void nfs_readdir_folio_put(struct nfs_readdir_descriptor *desc)
984 {
985 folio_put(desc->folio);
986 desc->folio = NULL;
987 }
988
989 static void
nfs_readdir_folio_unlock_and_put_cached(struct nfs_readdir_descriptor * desc)990 nfs_readdir_folio_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
991 {
992 folio_unlock(desc->folio);
993 nfs_readdir_folio_put(desc);
994 }
995
996 static struct folio *
nfs_readdir_folio_get_cached(struct nfs_readdir_descriptor * desc)997 nfs_readdir_folio_get_cached(struct nfs_readdir_descriptor *desc)
998 {
999 struct address_space *mapping = desc->file->f_mapping;
1000 u64 change_attr = inode_peek_iversion_raw(mapping->host);
1001 u64 cookie = desc->last_cookie;
1002 struct folio *folio;
1003
1004 folio = nfs_readdir_folio_get_locked(mapping, cookie, change_attr);
1005 if (!folio)
1006 return NULL;
1007 if (desc->clear_cache && !nfs_readdir_folio_needs_filling(folio))
1008 nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
1009 return folio;
1010 }
1011
1012 /*
1013 * Returns 0 if desc->dir_cookie was found on page desc->page_index
1014 * and locks the page to prevent removal from the page cache.
1015 */
find_and_lock_cache_page(struct nfs_readdir_descriptor * desc)1016 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
1017 {
1018 struct inode *inode = file_inode(desc->file);
1019 struct nfs_inode *nfsi = NFS_I(inode);
1020 __be32 verf[NFS_DIR_VERIFIER_SIZE];
1021 int res;
1022
1023 desc->folio = nfs_readdir_folio_get_cached(desc);
1024 if (!desc->folio)
1025 return -ENOMEM;
1026 if (nfs_readdir_folio_needs_filling(desc->folio)) {
1027 /* Grow the dtsize if we had to go back for more pages */
1028 if (desc->folio_index == desc->folio_index_max)
1029 nfs_grow_dtsize(desc);
1030 desc->folio_index_max = desc->folio_index;
1031 trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf,
1032 desc->last_cookie,
1033 desc->folio->index, desc->dtsize);
1034 res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
1035 &desc->folio, 1);
1036 if (res < 0) {
1037 nfs_readdir_folio_unlock_and_put_cached(desc);
1038 trace_nfs_readdir_cache_fill_done(inode, res);
1039 if (res == -EBADCOOKIE || res == -ENOTSYNC) {
1040 invalidate_inode_pages2(desc->file->f_mapping);
1041 nfs_readdir_rewind_search(desc);
1042 trace_nfs_readdir_invalidate_cache_range(
1043 inode, 0, MAX_LFS_FILESIZE);
1044 return -EAGAIN;
1045 }
1046 return res;
1047 }
1048 /*
1049 * Set the cookie verifier if the page cache was empty
1050 */
1051 if (desc->last_cookie == 0 &&
1052 memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) {
1053 memcpy(nfsi->cookieverf, verf,
1054 sizeof(nfsi->cookieverf));
1055 invalidate_inode_pages2_range(desc->file->f_mapping, 1,
1056 -1);
1057 trace_nfs_readdir_invalidate_cache_range(
1058 inode, 1, MAX_LFS_FILESIZE);
1059 }
1060 desc->clear_cache = false;
1061 }
1062 res = nfs_readdir_search_array(desc);
1063 if (res == 0)
1064 return 0;
1065 nfs_readdir_folio_unlock_and_put_cached(desc);
1066 return res;
1067 }
1068
1069 /* Search for desc->dir_cookie from the beginning of the page cache */
readdir_search_pagecache(struct nfs_readdir_descriptor * desc)1070 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
1071 {
1072 int res;
1073
1074 do {
1075 res = find_and_lock_cache_page(desc);
1076 } while (res == -EAGAIN);
1077 return res;
1078 }
1079
1080 #define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL)
1081
1082 /*
1083 * Once we've found the start of the dirent within a page: fill 'er up...
1084 */
nfs_do_filldir(struct nfs_readdir_descriptor * desc,const __be32 * verf)1085 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
1086 const __be32 *verf)
1087 {
1088 struct file *file = desc->file;
1089 struct nfs_cache_array *array;
1090 unsigned int i;
1091 bool first_emit = !desc->dir_cookie;
1092
1093 array = kmap_local_folio(desc->folio, 0);
1094 for (i = desc->cache_entry_index; i < array->size; i++) {
1095 struct nfs_cache_array_entry *ent;
1096
1097 /*
1098 * nfs_readdir_handle_cache_misses return force clear at
1099 * (cache_misses > NFS_READDIR_CACHE_MISS_THRESHOLD) for
1100 * readdir heuristic, NFS_READDIR_CACHE_MISS_THRESHOLD + 1
1101 * entries need be emitted here.
1102 */
1103 if (first_emit && i > NFS_READDIR_CACHE_MISS_THRESHOLD + 2) {
1104 desc->eob = true;
1105 break;
1106 }
1107
1108 ent = &array->array[i];
1109 if (!dir_emit(desc->ctx, ent->name, ent->name_len,
1110 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
1111 desc->eob = true;
1112 break;
1113 }
1114 memcpy(desc->verf, verf, sizeof(desc->verf));
1115 if (i == array->size - 1) {
1116 desc->dir_cookie = array->last_cookie;
1117 nfs_readdir_seek_next_array(array, desc);
1118 } else {
1119 desc->dir_cookie = array->array[i + 1].cookie;
1120 desc->last_cookie = array->array[0].cookie;
1121 }
1122 if (nfs_readdir_use_cookie(file))
1123 desc->ctx->pos = desc->dir_cookie;
1124 else
1125 desc->ctx->pos++;
1126 }
1127 if (array->folio_is_eof)
1128 desc->eof = !desc->eob;
1129
1130 kunmap_local(array);
1131 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1132 (unsigned long long)desc->dir_cookie);
1133 }
1134
1135 /*
1136 * If we cannot find a cookie in our cache, we suspect that this is
1137 * because it points to a deleted file, so we ask the server to return
1138 * whatever it thinks is the next entry. We then feed this to filldir.
1139 * If all goes well, we should then be able to find our way round the
1140 * cache on the next call to readdir_search_pagecache();
1141 *
1142 * NOTE: we cannot add the anonymous page to the pagecache because
1143 * the data it contains might not be page aligned. Besides,
1144 * we should already have a complete representation of the
1145 * directory in the page cache by the time we get here.
1146 */
uncached_readdir(struct nfs_readdir_descriptor * desc)1147 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1148 {
1149 struct folio **arrays;
1150 size_t i, sz = 512;
1151 __be32 verf[NFS_DIR_VERIFIER_SIZE];
1152 int status = -ENOMEM;
1153
1154 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1155 (unsigned long long)desc->dir_cookie);
1156
1157 arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1158 if (!arrays)
1159 goto out;
1160 arrays[0] = nfs_readdir_folio_array_alloc(desc->dir_cookie, GFP_KERNEL);
1161 if (!arrays[0])
1162 goto out;
1163
1164 desc->folio_index = 0;
1165 desc->cache_entry_index = 0;
1166 desc->last_cookie = desc->dir_cookie;
1167 desc->folio_index_max = 0;
1168
1169 trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie,
1170 -1, desc->dtsize);
1171
1172 status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1173 if (status < 0) {
1174 trace_nfs_readdir_uncached_done(file_inode(desc->file), status);
1175 goto out_free;
1176 }
1177
1178 for (i = 0; !desc->eob && i < sz && arrays[i]; i++) {
1179 desc->folio = arrays[i];
1180 nfs_do_filldir(desc, verf);
1181 }
1182 desc->folio = NULL;
1183
1184 /*
1185 * Grow the dtsize if we have to go back for more pages,
1186 * or shrink it if we're reading too many.
1187 */
1188 if (!desc->eof) {
1189 if (!desc->eob)
1190 nfs_grow_dtsize(desc);
1191 else if (desc->buffer_fills == 1 &&
1192 i < (desc->folio_index_max >> 1))
1193 nfs_shrink_dtsize(desc);
1194 }
1195 out_free:
1196 for (i = 0; i < sz && arrays[i]; i++)
1197 nfs_readdir_folio_array_free(arrays[i]);
1198 out:
1199 if (!nfs_readdir_use_cookie(desc->file))
1200 nfs_readdir_rewind_search(desc);
1201 desc->folio_index_max = -1;
1202 kfree(arrays);
1203 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1204 return status;
1205 }
1206
nfs_readdir_handle_cache_misses(struct inode * inode,struct nfs_readdir_descriptor * desc,unsigned int cache_misses,bool force_clear)1207 static bool nfs_readdir_handle_cache_misses(struct inode *inode,
1208 struct nfs_readdir_descriptor *desc,
1209 unsigned int cache_misses,
1210 bool force_clear)
1211 {
1212 if (desc->ctx->pos == 0 || !desc->plus)
1213 return false;
1214 if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear)
1215 return false;
1216 trace_nfs_readdir_force_readdirplus(inode);
1217 return true;
1218 }
1219
1220 /* The file offset position represents the dirent entry number. A
1221 last cookie cache takes care of the common case of reading the
1222 whole directory.
1223 */
nfs_readdir(struct file * file,struct dir_context * ctx)1224 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1225 {
1226 struct dentry *dentry = file_dentry(file);
1227 struct inode *inode = d_inode(dentry);
1228 struct nfs_inode *nfsi = NFS_I(inode);
1229 struct nfs_open_dir_context *dir_ctx = file->private_data;
1230 struct nfs_readdir_descriptor *desc;
1231 unsigned int cache_hits, cache_misses;
1232 bool force_clear;
1233 int res;
1234
1235 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1236 file, (long long)ctx->pos);
1237 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1238
1239 /*
1240 * ctx->pos points to the dirent entry number.
1241 * *desc->dir_cookie has the cookie for the next entry. We have
1242 * to either find the entry with the appropriate number or
1243 * revalidate the cookie.
1244 */
1245 nfs_revalidate_mapping(inode, file->f_mapping);
1246
1247 res = -ENOMEM;
1248 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1249 if (!desc)
1250 goto out;
1251 desc->file = file;
1252 desc->ctx = ctx;
1253 desc->folio_index_max = -1;
1254
1255 spin_lock(&file->f_lock);
1256 desc->dir_cookie = dir_ctx->dir_cookie;
1257 desc->folio_index = dir_ctx->page_index;
1258 desc->last_cookie = dir_ctx->last_cookie;
1259 desc->attr_gencount = dir_ctx->attr_gencount;
1260 desc->eof = dir_ctx->eof;
1261 nfs_set_dtsize(desc, dir_ctx->dtsize);
1262 memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1263 cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0);
1264 cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0);
1265 force_clear = dir_ctx->force_clear;
1266 spin_unlock(&file->f_lock);
1267
1268 if (desc->eof) {
1269 res = 0;
1270 goto out_free;
1271 }
1272
1273 desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses);
1274 force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses,
1275 force_clear);
1276 desc->clear_cache = force_clear;
1277
1278 do {
1279 res = readdir_search_pagecache(desc);
1280
1281 if (res == -EBADCOOKIE) {
1282 res = 0;
1283 /* This means either end of directory */
1284 if (desc->dir_cookie && !desc->eof) {
1285 /* Or that the server has 'lost' a cookie */
1286 res = uncached_readdir(desc);
1287 if (res == 0)
1288 continue;
1289 if (res == -EBADCOOKIE || res == -ENOTSYNC)
1290 res = 0;
1291 }
1292 break;
1293 }
1294 if (res == -ETOOSMALL && desc->plus) {
1295 nfs_zap_caches(inode);
1296 desc->plus = false;
1297 desc->eof = false;
1298 continue;
1299 }
1300 if (res < 0)
1301 break;
1302
1303 nfs_do_filldir(desc, nfsi->cookieverf);
1304 nfs_readdir_folio_unlock_and_put_cached(desc);
1305 if (desc->folio_index == desc->folio_index_max)
1306 desc->clear_cache = force_clear;
1307 } while (!desc->eob && !desc->eof);
1308
1309 spin_lock(&file->f_lock);
1310 dir_ctx->dir_cookie = desc->dir_cookie;
1311 dir_ctx->last_cookie = desc->last_cookie;
1312 dir_ctx->attr_gencount = desc->attr_gencount;
1313 dir_ctx->page_index = desc->folio_index;
1314 dir_ctx->force_clear = force_clear;
1315 dir_ctx->eof = desc->eof;
1316 dir_ctx->dtsize = desc->dtsize;
1317 memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1318 spin_unlock(&file->f_lock);
1319 out_free:
1320 kfree(desc);
1321
1322 out:
1323 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1324 return res;
1325 }
1326
nfs_llseek_dir(struct file * filp,loff_t offset,int whence)1327 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1328 {
1329 struct nfs_open_dir_context *dir_ctx = filp->private_data;
1330
1331 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1332 filp, offset, whence);
1333
1334 switch (whence) {
1335 default:
1336 return -EINVAL;
1337 case SEEK_SET:
1338 if (offset < 0)
1339 return -EINVAL;
1340 spin_lock(&filp->f_lock);
1341 break;
1342 case SEEK_CUR:
1343 if (offset == 0)
1344 return filp->f_pos;
1345 spin_lock(&filp->f_lock);
1346 offset += filp->f_pos;
1347 if (offset < 0) {
1348 spin_unlock(&filp->f_lock);
1349 return -EINVAL;
1350 }
1351 }
1352 if (offset != filp->f_pos) {
1353 filp->f_pos = offset;
1354 dir_ctx->page_index = 0;
1355 if (!nfs_readdir_use_cookie(filp)) {
1356 dir_ctx->dir_cookie = 0;
1357 dir_ctx->last_cookie = 0;
1358 } else {
1359 dir_ctx->dir_cookie = offset;
1360 dir_ctx->last_cookie = offset;
1361 }
1362 dir_ctx->eof = false;
1363 }
1364 spin_unlock(&filp->f_lock);
1365 return offset;
1366 }
1367
1368 /*
1369 * All directory operations under NFS are synchronous, so fsync()
1370 * is a dummy operation.
1371 */
nfs_fsync_dir(struct file * filp,loff_t start,loff_t end,int datasync)1372 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1373 int datasync)
1374 {
1375 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1376
1377 nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1378 return 0;
1379 }
1380
1381 /**
1382 * nfs_force_lookup_revalidate - Mark the directory as having changed
1383 * @dir: pointer to directory inode
1384 *
1385 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1386 * full lookup on all child dentries of 'dir' whenever a change occurs
1387 * on the server that might have invalidated our dcache.
1388 *
1389 * Note that we reserve bit '0' as a tag to let us know when a dentry
1390 * was revalidated while holding a delegation on its inode.
1391 *
1392 * The caller should be holding dir->i_lock
1393 */
nfs_force_lookup_revalidate(struct inode * dir)1394 void nfs_force_lookup_revalidate(struct inode *dir)
1395 {
1396 NFS_I(dir)->cache_change_attribute += 2;
1397 }
1398 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1399
1400 /**
1401 * nfs_verify_change_attribute - Detects NFS remote directory changes
1402 * @dir: pointer to parent directory inode
1403 * @verf: previously saved change attribute
1404 *
1405 * Return "false" if the verifiers doesn't match the change attribute.
1406 * This would usually indicate that the directory contents have changed on
1407 * the server, and that any dentries need revalidating.
1408 */
nfs_verify_change_attribute(struct inode * dir,unsigned long verf)1409 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1410 {
1411 return (verf & ~1UL) == nfs_save_change_attribute(dir);
1412 }
1413
nfs_set_verifier_delegated(unsigned long * verf)1414 static void nfs_set_verifier_delegated(unsigned long *verf)
1415 {
1416 *verf |= 1UL;
1417 }
1418
1419 #if IS_ENABLED(CONFIG_NFS_V4)
nfs_unset_verifier_delegated(unsigned long * verf)1420 static void nfs_unset_verifier_delegated(unsigned long *verf)
1421 {
1422 *verf &= ~1UL;
1423 }
1424 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1425
nfs_test_verifier_delegated(unsigned long verf)1426 static bool nfs_test_verifier_delegated(unsigned long verf)
1427 {
1428 return verf & 1;
1429 }
1430
nfs_verifier_is_delegated(struct dentry * dentry)1431 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1432 {
1433 return nfs_test_verifier_delegated(dentry->d_time);
1434 }
1435
nfs_set_verifier_locked(struct dentry * dentry,unsigned long verf)1436 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1437 {
1438 struct inode *inode = d_inode(dentry);
1439 struct inode *dir = d_inode_rcu(dentry->d_parent);
1440
1441 if (!dir || !nfs_verify_change_attribute(dir, verf))
1442 return;
1443 if (NFS_PROTO(dir)->have_delegation(dir, FMODE_READ, 0) ||
1444 (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ, 0)))
1445 nfs_set_verifier_delegated(&verf);
1446 dentry->d_time = verf;
1447 }
1448
1449 /**
1450 * nfs_set_verifier - save a parent directory verifier in the dentry
1451 * @dentry: pointer to dentry
1452 * @verf: verifier to save
1453 *
1454 * Saves the parent directory verifier in @dentry. If the inode has
1455 * a delegation, we also tag the dentry as having been revalidated
1456 * while holding a delegation so that we know we don't have to
1457 * look it up again after a directory change.
1458 */
nfs_set_verifier(struct dentry * dentry,unsigned long verf)1459 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1460 {
1461
1462 spin_lock(&dentry->d_lock);
1463 nfs_set_verifier_locked(dentry, verf);
1464 spin_unlock(&dentry->d_lock);
1465 }
1466 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1467
1468 #if IS_ENABLED(CONFIG_NFS_V4)
nfs_clear_verifier_file(struct inode * inode)1469 static void nfs_clear_verifier_file(struct inode *inode)
1470 {
1471 struct dentry *alias;
1472 struct inode *dir;
1473
1474 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1475 spin_lock(&alias->d_lock);
1476 dir = d_inode_rcu(alias->d_parent);
1477 if (!dir ||
1478 !NFS_PROTO(dir)->have_delegation(dir, FMODE_READ, 0))
1479 nfs_unset_verifier_delegated(&alias->d_time);
1480 spin_unlock(&alias->d_lock);
1481 }
1482 }
1483
nfs_clear_verifier_directory(struct inode * dir)1484 static void nfs_clear_verifier_directory(struct inode *dir)
1485 {
1486 struct dentry *this_parent;
1487 struct dentry *dentry;
1488 struct inode *inode;
1489
1490 if (hlist_empty(&dir->i_dentry))
1491 return;
1492 this_parent =
1493 hlist_entry(dir->i_dentry.first, struct dentry, d_u.d_alias);
1494
1495 spin_lock(&this_parent->d_lock);
1496 nfs_unset_verifier_delegated(&this_parent->d_time);
1497 dentry = d_first_child(this_parent);
1498 hlist_for_each_entry_from(dentry, d_sib) {
1499 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1500 continue;
1501 inode = d_inode_rcu(dentry);
1502 if (inode &&
1503 NFS_PROTO(inode)->have_delegation(inode, FMODE_READ, 0))
1504 continue;
1505 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1506 nfs_unset_verifier_delegated(&dentry->d_time);
1507 spin_unlock(&dentry->d_lock);
1508 }
1509 spin_unlock(&this_parent->d_lock);
1510 }
1511
1512 /**
1513 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1514 * @inode: pointer to inode
1515 *
1516 * Iterates through the dentries in the inode alias list and clears
1517 * the tag used to indicate that the dentry has been revalidated
1518 * while holding a delegation.
1519 * This function is intended for use when the delegation is being
1520 * returned or revoked.
1521 */
nfs_clear_verifier_delegated(struct inode * inode)1522 void nfs_clear_verifier_delegated(struct inode *inode)
1523 {
1524 if (!inode)
1525 return;
1526 spin_lock(&inode->i_lock);
1527 if (S_ISREG(inode->i_mode))
1528 nfs_clear_verifier_file(inode);
1529 else if (S_ISDIR(inode->i_mode))
1530 nfs_clear_verifier_directory(inode);
1531 spin_unlock(&inode->i_lock);
1532 }
1533 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1534 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1535
nfs_dentry_verify_change(struct inode * dir,struct dentry * dentry)1536 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry)
1537 {
1538 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) &&
1539 d_really_is_negative(dentry))
1540 return dentry->d_time == inode_peek_iversion_raw(dir);
1541 return nfs_verify_change_attribute(dir, dentry->d_time);
1542 }
1543
1544 /*
1545 * A check for whether or not the parent directory has changed.
1546 * In the case it has, we assume that the dentries are untrustworthy
1547 * and may need to be looked up again.
1548 * If rcu_walk prevents us from performing a full check, return 0.
1549 */
nfs_check_verifier(struct inode * dir,struct dentry * dentry,int rcu_walk)1550 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1551 int rcu_walk)
1552 {
1553 if (IS_ROOT(dentry))
1554 return 1;
1555 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1556 return 0;
1557 if (!nfs_dentry_verify_change(dir, dentry))
1558 return 0;
1559
1560 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1561 if (nfs_mapping_need_revalidate_inode(dir)) {
1562 if (rcu_walk)
1563 return 0;
1564 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1565 return 0;
1566 }
1567 if (!nfs_dentry_verify_change(dir, dentry))
1568 return 0;
1569 return 1;
1570 }
1571
1572 /*
1573 * Use intent information to check whether or not we're going to do
1574 * an O_EXCL create using this path component.
1575 */
nfs_is_exclusive_create(struct inode * dir,unsigned int flags)1576 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1577 {
1578 if (NFS_PROTO(dir)->version == 2)
1579 return 0;
1580 return (flags & (LOOKUP_CREATE | LOOKUP_EXCL)) ==
1581 (LOOKUP_CREATE | LOOKUP_EXCL);
1582 }
1583
1584 /*
1585 * Inode and filehandle revalidation for lookups.
1586 *
1587 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1588 * or if the intent information indicates that we're about to open this
1589 * particular file and the "nocto" mount flag is not set.
1590 *
1591 */
1592 static
nfs_lookup_verify_inode(struct inode * inode,unsigned int flags)1593 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1594 {
1595 struct nfs_server *server = NFS_SERVER(inode);
1596 int ret;
1597
1598 if (IS_AUTOMOUNT(inode))
1599 return 0;
1600
1601 if (flags & LOOKUP_OPEN) {
1602 switch (inode->i_mode & S_IFMT) {
1603 case S_IFREG:
1604 /* A NFSv4 OPEN will revalidate later */
1605 if (server->caps & NFS_CAP_ATOMIC_OPEN)
1606 goto out;
1607 fallthrough;
1608 case S_IFDIR:
1609 if (server->flags & NFS_MOUNT_NOCTO)
1610 break;
1611 /* NFS close-to-open cache consistency validation */
1612 goto out_force;
1613 }
1614 }
1615
1616 /* VFS wants an on-the-wire revalidation */
1617 if (flags & LOOKUP_REVAL)
1618 goto out_force;
1619 out:
1620 if (inode->i_nlink > 0 ||
1621 (inode->i_nlink == 0 &&
1622 test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags)))
1623 return 0;
1624 else
1625 return -ESTALE;
1626 out_force:
1627 if (flags & LOOKUP_RCU)
1628 return -ECHILD;
1629 ret = __nfs_revalidate_inode(server, inode);
1630 if (ret != 0)
1631 return ret;
1632 goto out;
1633 }
1634
nfs_mark_dir_for_revalidate(struct inode * inode)1635 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1636 {
1637 spin_lock(&inode->i_lock);
1638 nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1639 spin_unlock(&inode->i_lock);
1640 }
1641
1642 /*
1643 * We judge how long we want to trust negative
1644 * dentries by looking at the parent inode mtime.
1645 *
1646 * If parent mtime has changed, we revalidate, else we wait for a
1647 * period corresponding to the parent's attribute cache timeout value.
1648 *
1649 * If LOOKUP_RCU prevents us from performing a full check, return 1
1650 * suggesting a reval is needed.
1651 *
1652 * Note that when creating a new file, or looking up a rename target,
1653 * then it shouldn't be necessary to revalidate a negative dentry.
1654 */
1655 static inline
nfs_neg_need_reval(struct inode * dir,struct dentry * dentry,unsigned int flags)1656 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1657 unsigned int flags)
1658 {
1659 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1660 return 0;
1661 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1662 return 1;
1663 /* Case insensitive server? Revalidate negative dentries */
1664 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1665 return 1;
1666 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1667 }
1668
1669 static int
nfs_lookup_revalidate_done(struct inode * dir,struct dentry * dentry,struct inode * inode,int error)1670 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1671 struct inode *inode, int error)
1672 {
1673 switch (error) {
1674 case 1:
1675 break;
1676 case -ETIMEDOUT:
1677 if (inode && (IS_ROOT(dentry) ||
1678 NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL))
1679 error = 1;
1680 break;
1681 case -ESTALE:
1682 case -ENOENT:
1683 error = 0;
1684 fallthrough;
1685 default:
1686 /*
1687 * We can't d_drop the root of a disconnected tree:
1688 * its d_hash is on the s_anon list and d_drop() would hide
1689 * it from shrink_dcache_for_unmount(), leading to busy
1690 * inodes on unmount and further oopses.
1691 */
1692 if (inode && IS_ROOT(dentry))
1693 error = 1;
1694 break;
1695 }
1696 trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error);
1697 return error;
1698 }
1699
1700 static int
nfs_lookup_revalidate_negative(struct inode * dir,struct dentry * dentry,unsigned int flags)1701 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1702 unsigned int flags)
1703 {
1704 int ret = 1;
1705 if (nfs_neg_need_reval(dir, dentry, flags)) {
1706 if (flags & LOOKUP_RCU)
1707 return -ECHILD;
1708 ret = 0;
1709 }
1710 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1711 }
1712
1713 static int
nfs_lookup_revalidate_delegated(struct inode * dir,struct dentry * dentry,struct inode * inode)1714 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1715 struct inode *inode)
1716 {
1717 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1718 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1719 }
1720
nfs_lookup_revalidate_dentry(struct inode * dir,const struct qstr * name,struct dentry * dentry,struct inode * inode,unsigned int flags)1721 static int nfs_lookup_revalidate_dentry(struct inode *dir, const struct qstr *name,
1722 struct dentry *dentry,
1723 struct inode *inode, unsigned int flags)
1724 {
1725 struct nfs_fh *fhandle;
1726 struct nfs_fattr *fattr;
1727 unsigned long dir_verifier;
1728 int ret;
1729
1730 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1731
1732 ret = -ENOMEM;
1733 fhandle = nfs_alloc_fhandle();
1734 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1735 if (fhandle == NULL || fattr == NULL)
1736 goto out;
1737
1738 dir_verifier = nfs_save_change_attribute(dir);
1739 ret = NFS_PROTO(dir)->lookup(dir, dentry, name, fhandle, fattr);
1740 if (ret < 0)
1741 goto out;
1742
1743 /* Request help from readdirplus */
1744 nfs_lookup_advise_force_readdirplus(dir, flags);
1745
1746 ret = 0;
1747 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1748 goto out;
1749 if (nfs_refresh_inode(inode, fattr) < 0)
1750 goto out;
1751
1752 nfs_setsecurity(inode, fattr);
1753 nfs_set_verifier(dentry, dir_verifier);
1754
1755 ret = 1;
1756 out:
1757 nfs_free_fattr(fattr);
1758 nfs_free_fhandle(fhandle);
1759
1760 /*
1761 * If the lookup failed despite the dentry change attribute being
1762 * a match, then we should revalidate the directory cache.
1763 */
1764 if (!ret && nfs_dentry_verify_change(dir, dentry))
1765 nfs_mark_dir_for_revalidate(dir);
1766 return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1767 }
1768
1769 /*
1770 * This is called every time the dcache has a lookup hit,
1771 * and we should check whether we can really trust that
1772 * lookup.
1773 *
1774 * NOTE! The hit can be a negative hit too, don't assume
1775 * we have an inode!
1776 *
1777 * If the parent directory is seen to have changed, we throw out the
1778 * cached dentry and do a new lookup.
1779 */
1780 static int
nfs_do_lookup_revalidate(struct inode * dir,const struct qstr * name,struct dentry * dentry,unsigned int flags)1781 nfs_do_lookup_revalidate(struct inode *dir, const struct qstr *name,
1782 struct dentry *dentry, unsigned int flags)
1783 {
1784 struct inode *inode;
1785 int error = 0;
1786
1787 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1788 inode = d_inode(dentry);
1789
1790 if (!inode)
1791 return nfs_lookup_revalidate_negative(dir, dentry, flags);
1792
1793 if (is_bad_inode(inode)) {
1794 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1795 __func__, dentry);
1796 goto out_bad;
1797 }
1798
1799 if ((flags & LOOKUP_RENAME_TARGET) && d_count(dentry) < 2 &&
1800 nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1801 goto out_bad;
1802
1803 if (nfs_verifier_is_delegated(dentry))
1804 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1805
1806 /* Force a full look up iff the parent directory has changed */
1807 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1808 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1809 error = nfs_lookup_verify_inode(inode, flags);
1810 if (error) {
1811 if (error == -ESTALE)
1812 nfs_mark_dir_for_revalidate(dir);
1813 goto out_bad;
1814 }
1815 goto out_valid;
1816 }
1817
1818 if (flags & LOOKUP_RCU)
1819 return -ECHILD;
1820
1821 if (NFS_STALE(inode))
1822 goto out_bad;
1823
1824 return nfs_lookup_revalidate_dentry(dir, name, dentry, inode, flags);
1825 out_valid:
1826 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1827 out_bad:
1828 if (flags & LOOKUP_RCU)
1829 return -ECHILD;
1830 return nfs_lookup_revalidate_done(dir, dentry, inode, error);
1831 }
1832
1833 static int
__nfs_lookup_revalidate(struct dentry * dentry,unsigned int flags)1834 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1835 {
1836 if (flags & LOOKUP_RCU) {
1837 if (dentry->d_fsdata == NFS_FSDATA_BLOCKED)
1838 return -ECHILD;
1839 } else {
1840 /* Wait for unlink to complete - see unblock_revalidate() */
1841 wait_var_event(&dentry->d_fsdata,
1842 smp_load_acquire(&dentry->d_fsdata)
1843 != NFS_FSDATA_BLOCKED);
1844 }
1845 return 0;
1846 }
1847
nfs_lookup_revalidate(struct inode * dir,const struct qstr * name,struct dentry * dentry,unsigned int flags)1848 static int nfs_lookup_revalidate(struct inode *dir, const struct qstr *name,
1849 struct dentry *dentry, unsigned int flags)
1850 {
1851 if (__nfs_lookup_revalidate(dentry, flags))
1852 return -ECHILD;
1853 return nfs_do_lookup_revalidate(dir, name, dentry, flags);
1854 }
1855
block_revalidate(struct dentry * dentry)1856 static void block_revalidate(struct dentry *dentry)
1857 {
1858 /* old devname - just in case */
1859 kfree(dentry->d_fsdata);
1860
1861 /* Any new reference that could lead to an open
1862 * will take ->d_lock in lookup_open() -> d_lookup().
1863 * Holding this lock ensures we cannot race with
1864 * __nfs_lookup_revalidate() and removes and need
1865 * for further barriers.
1866 */
1867 lockdep_assert_held(&dentry->d_lock);
1868
1869 dentry->d_fsdata = NFS_FSDATA_BLOCKED;
1870 }
1871
unblock_revalidate(struct dentry * dentry)1872 static void unblock_revalidate(struct dentry *dentry)
1873 {
1874 store_release_wake_up(&dentry->d_fsdata, NULL);
1875 }
1876
1877 /*
1878 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1879 * when we don't really care about the dentry name. This is called when a
1880 * pathwalk ends on a dentry that was not found via a normal lookup in the
1881 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1882 *
1883 * In this situation, we just want to verify that the inode itself is OK
1884 * since the dentry might have changed on the server.
1885 */
nfs_weak_revalidate(struct dentry * dentry,unsigned int flags)1886 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1887 {
1888 struct inode *inode = d_inode(dentry);
1889 int error = 0;
1890
1891 /*
1892 * I believe we can only get a negative dentry here in the case of a
1893 * procfs-style symlink. Just assume it's correct for now, but we may
1894 * eventually need to do something more here.
1895 */
1896 if (!inode) {
1897 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1898 __func__, dentry);
1899 return 1;
1900 }
1901
1902 if (is_bad_inode(inode)) {
1903 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1904 __func__, dentry);
1905 return 0;
1906 }
1907
1908 error = nfs_lookup_verify_inode(inode, flags);
1909 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1910 __func__, inode->i_ino, error ? "invalid" : "valid");
1911 return !error;
1912 }
1913
1914 /*
1915 * This is called from dput() when d_count is going to 0.
1916 */
nfs_dentry_delete(const struct dentry * dentry)1917 static int nfs_dentry_delete(const struct dentry *dentry)
1918 {
1919 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1920 dentry, dentry->d_flags);
1921
1922 /* Unhash any dentry with a stale inode */
1923 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1924 return 1;
1925
1926 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1927 /* Unhash it, so that ->d_iput() would be called */
1928 return 1;
1929 }
1930 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1931 /* Unhash it, so that ancestors of killed async unlink
1932 * files will be cleaned up during umount */
1933 return 1;
1934 }
1935 return 0;
1936
1937 }
1938
1939 /* Ensure that we revalidate inode->i_nlink */
nfs_drop_nlink(struct inode * inode,unsigned long gencount)1940 static void nfs_drop_nlink(struct inode *inode, unsigned long gencount)
1941 {
1942 struct nfs_inode *nfsi = NFS_I(inode);
1943
1944 spin_lock(&inode->i_lock);
1945 /* drop the inode if we're reasonably sure this is the last link */
1946 if (inode->i_nlink > 0 && gencount == nfsi->attr_gencount)
1947 drop_nlink(inode);
1948 nfsi->attr_gencount = nfs_inc_attr_generation_counter();
1949 nfs_set_cache_invalid(
1950 inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1951 NFS_INO_INVALID_NLINK);
1952 spin_unlock(&inode->i_lock);
1953 }
1954
1955 /*
1956 * Called when the dentry loses inode.
1957 * We use it to clean up silly-renamed files.
1958 */
nfs_dentry_iput(struct dentry * dentry,struct inode * inode)1959 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1960 {
1961 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1962 unsigned long gencount = READ_ONCE(NFS_I(inode)->attr_gencount);
1963 nfs_complete_unlink(dentry, inode);
1964 nfs_drop_nlink(inode, gencount);
1965 }
1966 iput(inode);
1967 }
1968
nfs_d_release(struct dentry * dentry)1969 static void nfs_d_release(struct dentry *dentry)
1970 {
1971 /* free cached devname value, if it survived that far */
1972 if (unlikely(dentry->d_fsdata)) {
1973 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1974 WARN_ON(1);
1975 else
1976 kfree(dentry->d_fsdata);
1977 }
1978 }
1979
1980 const struct dentry_operations nfs_dentry_operations = {
1981 .d_revalidate = nfs_lookup_revalidate,
1982 .d_weak_revalidate = nfs_weak_revalidate,
1983 .d_delete = nfs_dentry_delete,
1984 .d_iput = nfs_dentry_iput,
1985 .d_automount = nfs_d_automount,
1986 .d_release = nfs_d_release,
1987 };
1988 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1989
nfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1990 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1991 {
1992 struct dentry *res;
1993 struct inode *inode = NULL;
1994 struct nfs_fh *fhandle = NULL;
1995 struct nfs_fattr *fattr = NULL;
1996 unsigned long dir_verifier;
1997 int error;
1998
1999 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
2000 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
2001
2002 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
2003 return ERR_PTR(-ENAMETOOLONG);
2004
2005 /*
2006 * If we're doing an exclusive create, optimize away the lookup
2007 * but don't hash the dentry.
2008 */
2009 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
2010 return NULL;
2011
2012 res = ERR_PTR(-ENOMEM);
2013 fhandle = nfs_alloc_fhandle();
2014 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
2015 if (fhandle == NULL || fattr == NULL)
2016 goto out;
2017
2018 dir_verifier = nfs_save_change_attribute(dir);
2019 trace_nfs_lookup_enter(dir, dentry, flags);
2020 error = NFS_PROTO(dir)->lookup(dir, dentry, &dentry->d_name,
2021 fhandle, fattr);
2022 if (error == -ENOENT) {
2023 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
2024 dir_verifier = inode_peek_iversion_raw(dir);
2025 goto no_entry;
2026 }
2027 if (error < 0) {
2028 res = ERR_PTR(error);
2029 goto out;
2030 }
2031 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2032 res = ERR_CAST(inode);
2033 if (IS_ERR(res))
2034 goto out;
2035
2036 /* Notify readdir to use READDIRPLUS */
2037 nfs_lookup_advise_force_readdirplus(dir, flags);
2038
2039 no_entry:
2040 nfs_set_verifier(dentry, dir_verifier);
2041 res = d_splice_alias(inode, dentry);
2042 if (res != NULL) {
2043 if (IS_ERR(res))
2044 goto out;
2045 nfs_set_verifier(res, dir_verifier);
2046 dentry = res;
2047 }
2048 out:
2049 trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
2050 nfs_free_fattr(fattr);
2051 nfs_free_fhandle(fhandle);
2052 return res;
2053 }
2054 EXPORT_SYMBOL_GPL(nfs_lookup);
2055
nfs_d_prune_case_insensitive_aliases(struct inode * inode)2056 void nfs_d_prune_case_insensitive_aliases(struct inode *inode)
2057 {
2058 /* Case insensitive server? Revalidate dentries */
2059 if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE))
2060 d_prune_aliases(inode);
2061 }
2062 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases);
2063
2064 #if IS_ENABLED(CONFIG_NFS_V4)
2065 static int nfs4_lookup_revalidate(struct inode *, const struct qstr *,
2066 struct dentry *, unsigned int);
2067
2068 const struct dentry_operations nfs4_dentry_operations = {
2069 .d_revalidate = nfs4_lookup_revalidate,
2070 .d_weak_revalidate = nfs_weak_revalidate,
2071 .d_delete = nfs_dentry_delete,
2072 .d_iput = nfs_dentry_iput,
2073 .d_automount = nfs_d_automount,
2074 .d_release = nfs_d_release,
2075 };
2076 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
2077
create_nfs_open_context(struct dentry * dentry,int open_flags,struct file * filp)2078 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
2079 {
2080 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
2081 }
2082
do_open(struct inode * inode,struct file * filp)2083 static int do_open(struct inode *inode, struct file *filp)
2084 {
2085 nfs_fscache_open_file(inode, filp);
2086 return 0;
2087 }
2088
nfs_finish_open(struct nfs_open_context * ctx,struct dentry * dentry,struct file * file,unsigned open_flags)2089 static int nfs_finish_open(struct nfs_open_context *ctx,
2090 struct dentry *dentry,
2091 struct file *file, unsigned open_flags)
2092 {
2093 int err;
2094
2095 err = finish_open(file, dentry, do_open);
2096 if (err)
2097 goto out;
2098 if (S_ISREG(file_inode(file)->i_mode))
2099 nfs_file_set_open_context(file, ctx);
2100 else
2101 err = -EOPENSTALE;
2102 out:
2103 return err;
2104 }
2105
nfs_atomic_open(struct inode * dir,struct dentry * dentry,struct file * file,unsigned open_flags,umode_t mode)2106 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
2107 struct file *file, unsigned open_flags,
2108 umode_t mode)
2109 {
2110 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2111 struct nfs_open_context *ctx;
2112 struct dentry *res;
2113 struct iattr attr = { .ia_valid = ATTR_OPEN };
2114 struct inode *inode;
2115 unsigned int lookup_flags = 0;
2116 unsigned long dir_verifier;
2117 bool switched = false;
2118 int created = 0;
2119 int err;
2120
2121 /* Expect a negative dentry */
2122 BUG_ON(d_inode(dentry));
2123
2124 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
2125 dir->i_sb->s_id, dir->i_ino, dentry);
2126
2127 err = nfs_check_flags(open_flags);
2128 if (err)
2129 return err;
2130
2131 /* NFS only supports OPEN on regular files */
2132 if ((open_flags & O_DIRECTORY)) {
2133 if (!d_in_lookup(dentry)) {
2134 /*
2135 * Hashed negative dentry with O_DIRECTORY: dentry was
2136 * revalidated and is fine, no need to perform lookup
2137 * again
2138 */
2139 return -ENOENT;
2140 }
2141 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
2142 goto no_open;
2143 }
2144
2145 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2146 return -ENAMETOOLONG;
2147
2148 if (open_flags & O_CREAT) {
2149 struct nfs_server *server = NFS_SERVER(dir);
2150
2151 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
2152 mode &= ~current_umask();
2153
2154 attr.ia_valid |= ATTR_MODE;
2155 attr.ia_mode = mode;
2156 }
2157 if (open_flags & O_TRUNC) {
2158 attr.ia_valid |= ATTR_SIZE;
2159 attr.ia_size = 0;
2160 }
2161
2162 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
2163 d_drop(dentry);
2164 switched = true;
2165 dentry = d_alloc_parallel(dentry->d_parent,
2166 &dentry->d_name, &wq);
2167 if (IS_ERR(dentry))
2168 return PTR_ERR(dentry);
2169 if (unlikely(!d_in_lookup(dentry)))
2170 return finish_no_open(file, dentry);
2171 }
2172
2173 ctx = create_nfs_open_context(dentry, open_flags, file);
2174 err = PTR_ERR(ctx);
2175 if (IS_ERR(ctx))
2176 goto out;
2177
2178 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
2179 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
2180 if (created)
2181 file->f_mode |= FMODE_CREATED;
2182 if (IS_ERR(inode)) {
2183 err = PTR_ERR(inode);
2184 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2185 put_nfs_open_context(ctx);
2186 d_drop(dentry);
2187 switch (err) {
2188 case -ENOENT:
2189 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
2190 dir_verifier = inode_peek_iversion_raw(dir);
2191 else
2192 dir_verifier = nfs_save_change_attribute(dir);
2193 nfs_set_verifier(dentry, dir_verifier);
2194 d_splice_alias(NULL, dentry);
2195 break;
2196 case -EISDIR:
2197 case -ENOTDIR:
2198 goto no_open;
2199 case -ELOOP:
2200 if (!(open_flags & O_NOFOLLOW))
2201 goto no_open;
2202 break;
2203 /* case -EINVAL: */
2204 default:
2205 break;
2206 }
2207 goto out;
2208 }
2209 file->f_mode |= FMODE_CAN_ODIRECT;
2210
2211 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
2212 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2213 put_nfs_open_context(ctx);
2214 out:
2215 if (unlikely(switched)) {
2216 d_lookup_done(dentry);
2217 dput(dentry);
2218 }
2219 return err;
2220
2221 no_open:
2222 res = nfs_lookup(dir, dentry, lookup_flags);
2223 if (!res) {
2224 inode = d_inode(dentry);
2225 if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2226 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
2227 res = ERR_PTR(-ENOTDIR);
2228 else if (inode && S_ISREG(inode->i_mode))
2229 res = ERR_PTR(-EOPENSTALE);
2230 } else if (!IS_ERR(res)) {
2231 inode = d_inode(res);
2232 if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2233 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
2234 dput(res);
2235 res = ERR_PTR(-ENOTDIR);
2236 } else if (inode && S_ISREG(inode->i_mode)) {
2237 dput(res);
2238 res = ERR_PTR(-EOPENSTALE);
2239 }
2240 }
2241 if (switched) {
2242 d_lookup_done(dentry);
2243 if (!res)
2244 res = dentry;
2245 else
2246 dput(dentry);
2247 }
2248 return finish_no_open(file, res);
2249 }
2250 EXPORT_SYMBOL_GPL(nfs_atomic_open);
2251
2252 static int
nfs4_lookup_revalidate(struct inode * dir,const struct qstr * name,struct dentry * dentry,unsigned int flags)2253 nfs4_lookup_revalidate(struct inode *dir, const struct qstr *name,
2254 struct dentry *dentry, unsigned int flags)
2255 {
2256 struct inode *inode;
2257
2258 if (__nfs_lookup_revalidate(dentry, flags))
2259 return -ECHILD;
2260
2261 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
2262
2263 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2264 goto full_reval;
2265 if (d_mountpoint(dentry))
2266 goto full_reval;
2267
2268 inode = d_inode(dentry);
2269
2270 /* We can't create new files in nfs_open_revalidate(), so we
2271 * optimize away revalidation of negative dentries.
2272 */
2273 if (inode == NULL)
2274 goto full_reval;
2275
2276 if (nfs_verifier_is_delegated(dentry) ||
2277 nfs_have_directory_delegation(inode))
2278 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2279
2280 /* NFS only supports OPEN on regular files */
2281 if (!S_ISREG(inode->i_mode))
2282 goto full_reval;
2283
2284 /* We cannot do exclusive creation on a positive dentry */
2285 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2286 goto reval_dentry;
2287
2288 /* Check if the directory changed */
2289 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2290 goto reval_dentry;
2291
2292 /* Let f_op->open() actually open (and revalidate) the file */
2293 return 1;
2294 reval_dentry:
2295 if (flags & LOOKUP_RCU)
2296 return -ECHILD;
2297 return nfs_lookup_revalidate_dentry(dir, name, dentry, inode, flags);
2298
2299 full_reval:
2300 return nfs_do_lookup_revalidate(dir, name, dentry, flags);
2301 }
2302
2303 #endif /* CONFIG_NFSV4 */
2304
nfs_atomic_open_v23(struct inode * dir,struct dentry * dentry,struct file * file,unsigned int open_flags,umode_t mode)2305 int nfs_atomic_open_v23(struct inode *dir, struct dentry *dentry,
2306 struct file *file, unsigned int open_flags,
2307 umode_t mode)
2308 {
2309 struct dentry *res = NULL;
2310 /* Same as look+open from lookup_open(), but with different O_TRUNC
2311 * handling.
2312 */
2313 int error = 0;
2314
2315 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2316 return -ENAMETOOLONG;
2317
2318 if (open_flags & O_CREAT) {
2319 error = nfs_do_create(dir, dentry, mode, open_flags);
2320 if (!error) {
2321 file->f_mode |= FMODE_CREATED;
2322 return finish_open(file, dentry, NULL);
2323 } else if (error != -EEXIST || open_flags & O_EXCL)
2324 return error;
2325 }
2326 if (d_in_lookup(dentry)) {
2327 /* The only flags nfs_lookup considers are
2328 * LOOKUP_EXCL and LOOKUP_RENAME_TARGET, and
2329 * we want those to be zero so the lookup isn't skipped.
2330 */
2331 res = nfs_lookup(dir, dentry, 0);
2332 }
2333 return finish_no_open(file, res);
2334
2335 }
2336 EXPORT_SYMBOL_GPL(nfs_atomic_open_v23);
2337
2338 struct dentry *
nfs_add_or_obtain(struct dentry * dentry,struct nfs_fh * fhandle,struct nfs_fattr * fattr)2339 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2340 struct nfs_fattr *fattr)
2341 {
2342 struct dentry *parent = dget_parent(dentry);
2343 struct inode *dir = d_inode(parent);
2344 struct inode *inode;
2345 struct dentry *d;
2346 int error;
2347
2348 d_drop(dentry);
2349
2350 if (fhandle->size == 0) {
2351 error = NFS_PROTO(dir)->lookup(dir, dentry, &dentry->d_name,
2352 fhandle, fattr);
2353 if (error)
2354 goto out_error;
2355 }
2356 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2357 if (!(fattr->valid & NFS_ATTR_FATTR)) {
2358 struct nfs_server *server = NFS_SB(dentry->d_sb);
2359 error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2360 fattr, NULL);
2361 if (error < 0)
2362 goto out_error;
2363 }
2364 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2365 d = d_splice_alias(inode, dentry);
2366 out:
2367 dput(parent);
2368 return d;
2369 out_error:
2370 d = ERR_PTR(error);
2371 goto out;
2372 }
2373 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2374
2375 /*
2376 * Code common to create, mkdir, and mknod.
2377 */
nfs_instantiate(struct dentry * dentry,struct nfs_fh * fhandle,struct nfs_fattr * fattr)2378 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2379 struct nfs_fattr *fattr)
2380 {
2381 struct dentry *d;
2382
2383 d = nfs_add_or_obtain(dentry, fhandle, fattr);
2384 if (IS_ERR(d))
2385 return PTR_ERR(d);
2386
2387 /* Callers don't care */
2388 dput(d);
2389 return 0;
2390 }
2391 EXPORT_SYMBOL_GPL(nfs_instantiate);
2392
2393 /*
2394 * Following a failed create operation, we drop the dentry rather
2395 * than retain a negative dentry. This avoids a problem in the event
2396 * that the operation succeeded on the server, but an error in the
2397 * reply path made it appear to have failed.
2398 */
nfs_do_create(struct inode * dir,struct dentry * dentry,umode_t mode,int open_flags)2399 static int nfs_do_create(struct inode *dir, struct dentry *dentry,
2400 umode_t mode, int open_flags)
2401 {
2402 struct iattr attr;
2403 int error;
2404
2405 open_flags |= O_CREAT;
2406
2407 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2408 dir->i_sb->s_id, dir->i_ino, dentry);
2409
2410 attr.ia_mode = mode;
2411 attr.ia_valid = ATTR_MODE;
2412 if (open_flags & O_TRUNC) {
2413 attr.ia_size = 0;
2414 attr.ia_valid |= ATTR_SIZE;
2415 }
2416
2417 trace_nfs_create_enter(dir, dentry, open_flags);
2418 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2419 trace_nfs_create_exit(dir, dentry, open_flags, error);
2420 if (error != 0)
2421 goto out_err;
2422 return 0;
2423 out_err:
2424 d_drop(dentry);
2425 return error;
2426 }
2427
nfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)2428 int nfs_create(struct mnt_idmap *idmap, struct inode *dir,
2429 struct dentry *dentry, umode_t mode, bool excl)
2430 {
2431 return nfs_do_create(dir, dentry, mode, excl ? O_EXCL : 0);
2432 }
2433 EXPORT_SYMBOL_GPL(nfs_create);
2434
2435 /*
2436 * See comments for nfs_proc_create regarding failed operations.
2437 */
2438 int
nfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)2439 nfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
2440 struct dentry *dentry, umode_t mode, dev_t rdev)
2441 {
2442 struct iattr attr;
2443 int status;
2444
2445 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2446 dir->i_sb->s_id, dir->i_ino, dentry);
2447
2448 attr.ia_mode = mode;
2449 attr.ia_valid = ATTR_MODE;
2450
2451 trace_nfs_mknod_enter(dir, dentry);
2452 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2453 trace_nfs_mknod_exit(dir, dentry, status);
2454 if (status != 0)
2455 goto out_err;
2456 return 0;
2457 out_err:
2458 d_drop(dentry);
2459 return status;
2460 }
2461 EXPORT_SYMBOL_GPL(nfs_mknod);
2462
2463 /*
2464 * See comments for nfs_proc_create regarding failed operations.
2465 */
nfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)2466 struct dentry *nfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
2467 struct dentry *dentry, umode_t mode)
2468 {
2469 struct iattr attr;
2470 struct dentry *ret;
2471
2472 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2473 dir->i_sb->s_id, dir->i_ino, dentry);
2474
2475 attr.ia_valid = ATTR_MODE;
2476 attr.ia_mode = mode | S_IFDIR;
2477
2478 trace_nfs_mkdir_enter(dir, dentry);
2479 ret = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2480 trace_nfs_mkdir_exit(dir, dentry, PTR_ERR_OR_ZERO(ret));
2481 return ret;
2482 }
2483 EXPORT_SYMBOL_GPL(nfs_mkdir);
2484
nfs_dentry_handle_enoent(struct dentry * dentry)2485 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2486 {
2487 if (simple_positive(dentry))
2488 d_delete(dentry);
2489 }
2490
nfs_dentry_remove_handle_error(struct inode * dir,struct dentry * dentry,int error)2491 static void nfs_dentry_remove_handle_error(struct inode *dir,
2492 struct dentry *dentry, int error)
2493 {
2494 switch (error) {
2495 case -ENOENT:
2496 if (d_really_is_positive(dentry))
2497 d_delete(dentry);
2498 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2499 break;
2500 case 0:
2501 nfs_d_prune_case_insensitive_aliases(d_inode(dentry));
2502 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2503 }
2504 }
2505
nfs_rmdir(struct inode * dir,struct dentry * dentry)2506 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2507 {
2508 int error;
2509
2510 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2511 dir->i_sb->s_id, dir->i_ino, dentry);
2512
2513 trace_nfs_rmdir_enter(dir, dentry);
2514 if (d_really_is_positive(dentry)) {
2515 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2516 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2517 /* Ensure the VFS deletes this inode */
2518 switch (error) {
2519 case 0:
2520 clear_nlink(d_inode(dentry));
2521 break;
2522 case -ENOENT:
2523 nfs_dentry_handle_enoent(dentry);
2524 }
2525 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2526 } else
2527 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2528 nfs_dentry_remove_handle_error(dir, dentry, error);
2529 trace_nfs_rmdir_exit(dir, dentry, error);
2530
2531 return error;
2532 }
2533 EXPORT_SYMBOL_GPL(nfs_rmdir);
2534
2535 /*
2536 * Remove a file after making sure there are no pending writes,
2537 * and after checking that the file has only one user.
2538 *
2539 * We invalidate the attribute cache and free the inode prior to the operation
2540 * to avoid possible races if the server reuses the inode.
2541 */
nfs_safe_remove(struct dentry * dentry)2542 static int nfs_safe_remove(struct dentry *dentry)
2543 {
2544 struct inode *dir = d_inode(dentry->d_parent);
2545 struct inode *inode = d_inode(dentry);
2546 int error = -EBUSY;
2547
2548 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2549
2550 /* If the dentry was sillyrenamed, we simply call d_delete() */
2551 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2552 error = 0;
2553 goto out;
2554 }
2555
2556 trace_nfs_remove_enter(dir, dentry);
2557 if (inode != NULL) {
2558 unsigned long gencount = READ_ONCE(NFS_I(inode)->attr_gencount);
2559
2560 error = NFS_PROTO(dir)->remove(dir, dentry);
2561 if (error == 0)
2562 nfs_drop_nlink(inode, gencount);
2563 } else
2564 error = NFS_PROTO(dir)->remove(dir, dentry);
2565 if (error == -ENOENT)
2566 nfs_dentry_handle_enoent(dentry);
2567 trace_nfs_remove_exit(dir, dentry, error);
2568 out:
2569 return error;
2570 }
2571
2572 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
2573 * belongs to an active ".nfs..." file and we return -EBUSY.
2574 *
2575 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
2576 */
nfs_unlink(struct inode * dir,struct dentry * dentry)2577 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2578 {
2579 int error;
2580
2581 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2582 dir->i_ino, dentry);
2583
2584 trace_nfs_unlink_enter(dir, dentry);
2585 spin_lock(&dentry->d_lock);
2586 if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED,
2587 &NFS_I(d_inode(dentry))->flags)) {
2588 spin_unlock(&dentry->d_lock);
2589 /* Start asynchronous writeout of the inode */
2590 write_inode_now(d_inode(dentry), 0);
2591 error = nfs_sillyrename(dir, dentry);
2592 goto out;
2593 }
2594 /* We must prevent any concurrent open until the unlink
2595 * completes. ->d_revalidate will wait for ->d_fsdata
2596 * to clear. We set it here to ensure no lookup succeeds until
2597 * the unlink is complete on the server.
2598 */
2599 error = -ETXTBSY;
2600 if (WARN_ON(dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2601 WARN_ON(dentry->d_fsdata == NFS_FSDATA_BLOCKED)) {
2602 spin_unlock(&dentry->d_lock);
2603 goto out;
2604 }
2605 block_revalidate(dentry);
2606
2607 spin_unlock(&dentry->d_lock);
2608 error = nfs_safe_remove(dentry);
2609 nfs_dentry_remove_handle_error(dir, dentry, error);
2610 unblock_revalidate(dentry);
2611 out:
2612 trace_nfs_unlink_exit(dir, dentry, error);
2613 return error;
2614 }
2615 EXPORT_SYMBOL_GPL(nfs_unlink);
2616
2617 /*
2618 * To create a symbolic link, most file systems instantiate a new inode,
2619 * add a page to it containing the path, then write it out to the disk
2620 * using prepare_write/commit_write.
2621 *
2622 * Unfortunately the NFS client can't create the in-core inode first
2623 * because it needs a file handle to create an in-core inode (see
2624 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
2625 * symlink request has completed on the server.
2626 *
2627 * So instead we allocate a raw page, copy the symname into it, then do
2628 * the SYMLINK request with the page as the buffer. If it succeeds, we
2629 * now have a new file handle and can instantiate an in-core NFS inode
2630 * and move the raw page into its mapping.
2631 */
nfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)2632 int nfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
2633 struct dentry *dentry, const char *symname)
2634 {
2635 struct folio *folio;
2636 char *kaddr;
2637 struct iattr attr;
2638 unsigned int pathlen = strlen(symname);
2639 int error;
2640
2641 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2642 dir->i_ino, dentry, symname);
2643
2644 if (pathlen > PAGE_SIZE)
2645 return -ENAMETOOLONG;
2646
2647 attr.ia_mode = S_IFLNK | S_IRWXUGO;
2648 attr.ia_valid = ATTR_MODE;
2649
2650 folio = folio_alloc(GFP_USER, 0);
2651 if (!folio)
2652 return -ENOMEM;
2653
2654 kaddr = folio_address(folio);
2655 memcpy(kaddr, symname, pathlen);
2656 if (pathlen < PAGE_SIZE)
2657 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2658
2659 trace_nfs_symlink_enter(dir, dentry);
2660 error = NFS_PROTO(dir)->symlink(dir, dentry, folio, pathlen, &attr);
2661 trace_nfs_symlink_exit(dir, dentry, error);
2662 if (error != 0) {
2663 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2664 dir->i_sb->s_id, dir->i_ino,
2665 dentry, symname, error);
2666 d_drop(dentry);
2667 folio_put(folio);
2668 return error;
2669 }
2670
2671 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2672
2673 /*
2674 * No big deal if we can't add this page to the page cache here.
2675 * READLINK will get the missing page from the server if needed.
2676 */
2677 if (filemap_add_folio(d_inode(dentry)->i_mapping, folio, 0,
2678 GFP_KERNEL) == 0) {
2679 folio_mark_uptodate(folio);
2680 folio_unlock(folio);
2681 }
2682
2683 folio_put(folio);
2684 return 0;
2685 }
2686 EXPORT_SYMBOL_GPL(nfs_symlink);
2687
2688 int
nfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)2689 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2690 {
2691 struct inode *inode = d_inode(old_dentry);
2692 int error;
2693
2694 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2695 old_dentry, dentry);
2696
2697 trace_nfs_link_enter(inode, dir, dentry);
2698 d_drop(dentry);
2699 if (S_ISREG(inode->i_mode))
2700 nfs_sync_inode(inode);
2701 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2702 if (error == 0) {
2703 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2704 ihold(inode);
2705 d_add(dentry, inode);
2706 }
2707 trace_nfs_link_exit(inode, dir, dentry, error);
2708 return error;
2709 }
2710 EXPORT_SYMBOL_GPL(nfs_link);
2711
2712 static void
nfs_unblock_rename(struct rpc_task * task,struct nfs_renamedata * data)2713 nfs_unblock_rename(struct rpc_task *task, struct nfs_renamedata *data)
2714 {
2715 struct dentry *new_dentry = data->new_dentry;
2716
2717 unblock_revalidate(new_dentry);
2718 }
2719
nfs_rename_is_unsafe_cross_dir(struct dentry * old_dentry,struct dentry * new_dentry)2720 static bool nfs_rename_is_unsafe_cross_dir(struct dentry *old_dentry,
2721 struct dentry *new_dentry)
2722 {
2723 struct nfs_server *server = NFS_SB(old_dentry->d_sb);
2724
2725 if (old_dentry->d_parent != new_dentry->d_parent)
2726 return false;
2727 if (server->fh_expire_type & NFS_FH_RENAME_UNSAFE)
2728 return !(server->fh_expire_type & NFS_FH_NOEXPIRE_WITH_OPEN);
2729 return true;
2730 }
2731
2732 /*
2733 * RENAME
2734 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2735 * different file handle for the same inode after a rename (e.g. when
2736 * moving to a different directory). A fail-safe method to do so would
2737 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2738 * rename the old file using the sillyrename stuff. This way, the original
2739 * file in old_dir will go away when the last process iput()s the inode.
2740 *
2741 * FIXED.
2742 *
2743 * It actually works quite well. One needs to have the possibility for
2744 * at least one ".nfs..." file in each directory the file ever gets
2745 * moved or linked to which happens automagically with the new
2746 * implementation that only depends on the dcache stuff instead of
2747 * using the inode layer
2748 *
2749 * Unfortunately, things are a little more complicated than indicated
2750 * above. For a cross-directory move, we want to make sure we can get
2751 * rid of the old inode after the operation. This means there must be
2752 * no pending writes (if it's a file), and the use count must be 1.
2753 * If these conditions are met, we can drop the dentries before doing
2754 * the rename.
2755 */
nfs_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)2756 int nfs_rename(struct mnt_idmap *idmap, struct inode *old_dir,
2757 struct dentry *old_dentry, struct inode *new_dir,
2758 struct dentry *new_dentry, unsigned int flags)
2759 {
2760 struct inode *old_inode = d_inode(old_dentry);
2761 struct inode *new_inode = d_inode(new_dentry);
2762 unsigned long new_gencount = 0;
2763 struct dentry *dentry = NULL;
2764 struct rpc_task *task;
2765 bool must_unblock = false;
2766 int error = -EBUSY;
2767
2768 if (flags)
2769 return -EINVAL;
2770
2771 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2772 old_dentry, new_dentry,
2773 d_count(new_dentry));
2774
2775 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2776 /*
2777 * For non-directories, check whether the target is busy and if so,
2778 * make a copy of the dentry and then do a silly-rename. If the
2779 * silly-rename succeeds, the copied dentry is hashed and becomes
2780 * the new target.
2781 */
2782 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2783 /* We must prevent any concurrent open until the unlink
2784 * completes. ->d_revalidate will wait for ->d_fsdata
2785 * to clear. We set it here to ensure no lookup succeeds until
2786 * the unlink is complete on the server.
2787 */
2788 error = -ETXTBSY;
2789 if (WARN_ON(new_dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2790 WARN_ON(new_dentry->d_fsdata == NFS_FSDATA_BLOCKED))
2791 goto out;
2792
2793 spin_lock(&new_dentry->d_lock);
2794 if (d_count(new_dentry) > 2) {
2795 int err;
2796
2797 spin_unlock(&new_dentry->d_lock);
2798
2799 /* copy the target dentry's name */
2800 dentry = d_alloc(new_dentry->d_parent,
2801 &new_dentry->d_name);
2802 if (!dentry)
2803 goto out;
2804
2805 /* silly-rename the existing target ... */
2806 err = nfs_sillyrename(new_dir, new_dentry);
2807 if (err)
2808 goto out;
2809
2810 new_dentry = dentry;
2811 new_inode = NULL;
2812 } else {
2813 block_revalidate(new_dentry);
2814 must_unblock = true;
2815 new_gencount = NFS_I(new_inode)->attr_gencount;
2816 spin_unlock(&new_dentry->d_lock);
2817 }
2818
2819 }
2820
2821 if (S_ISREG(old_inode->i_mode) &&
2822 nfs_rename_is_unsafe_cross_dir(old_dentry, new_dentry))
2823 nfs_sync_inode(old_inode);
2824 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry,
2825 must_unblock ? nfs_unblock_rename : NULL);
2826 if (IS_ERR(task)) {
2827 if (must_unblock)
2828 unblock_revalidate(new_dentry);
2829 error = PTR_ERR(task);
2830 goto out;
2831 }
2832
2833 error = rpc_wait_for_completion_task(task);
2834 if (error != 0) {
2835 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2836 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2837 smp_wmb();
2838 } else
2839 error = task->tk_status;
2840 rpc_put_task(task);
2841 /* Ensure the inode attributes are revalidated */
2842 if (error == 0) {
2843 spin_lock(&old_inode->i_lock);
2844 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2845 nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2846 NFS_INO_INVALID_CTIME |
2847 NFS_INO_REVAL_FORCED);
2848 spin_unlock(&old_inode->i_lock);
2849 }
2850 out:
2851 trace_nfs_rename_exit(old_dir, old_dentry,
2852 new_dir, new_dentry, error);
2853 if (!error) {
2854 if (new_inode != NULL)
2855 nfs_drop_nlink(new_inode, new_gencount);
2856 /*
2857 * The d_move() should be here instead of in an async RPC completion
2858 * handler because we need the proper locks to move the dentry. If
2859 * we're interrupted by a signal, the async RPC completion handler
2860 * should mark the directories for revalidation.
2861 */
2862 d_move(old_dentry, new_dentry);
2863 nfs_set_verifier(old_dentry,
2864 nfs_save_change_attribute(new_dir));
2865 } else if (error == -ENOENT)
2866 nfs_dentry_handle_enoent(old_dentry);
2867
2868 /* new dentry created? */
2869 if (dentry)
2870 dput(dentry);
2871 return error;
2872 }
2873 EXPORT_SYMBOL_GPL(nfs_rename);
2874
2875 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2876 static LIST_HEAD(nfs_access_lru_list);
2877 static atomic_long_t nfs_access_nr_entries;
2878
2879 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2880 module_param(nfs_access_max_cachesize, ulong, 0644);
2881 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2882
nfs_access_free_entry(struct nfs_access_entry * entry)2883 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2884 {
2885 put_group_info(entry->group_info);
2886 kfree_rcu(entry, rcu_head);
2887 smp_mb__before_atomic();
2888 atomic_long_dec(&nfs_access_nr_entries);
2889 smp_mb__after_atomic();
2890 }
2891
nfs_access_free_list(struct list_head * head)2892 static void nfs_access_free_list(struct list_head *head)
2893 {
2894 struct nfs_access_entry *cache;
2895
2896 while (!list_empty(head)) {
2897 cache = list_entry(head->next, struct nfs_access_entry, lru);
2898 list_del(&cache->lru);
2899 nfs_access_free_entry(cache);
2900 }
2901 }
2902
2903 static unsigned long
nfs_do_access_cache_scan(unsigned int nr_to_scan)2904 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2905 {
2906 LIST_HEAD(head);
2907 struct nfs_inode *nfsi, *next;
2908 struct nfs_access_entry *cache;
2909 long freed = 0;
2910
2911 spin_lock(&nfs_access_lru_lock);
2912 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2913 struct inode *inode;
2914
2915 if (nr_to_scan-- == 0)
2916 break;
2917 inode = &nfsi->vfs_inode;
2918 spin_lock(&inode->i_lock);
2919 if (list_empty(&nfsi->access_cache_entry_lru))
2920 goto remove_lru_entry;
2921 cache = list_entry(nfsi->access_cache_entry_lru.next,
2922 struct nfs_access_entry, lru);
2923 list_move(&cache->lru, &head);
2924 rb_erase(&cache->rb_node, &nfsi->access_cache);
2925 freed++;
2926 if (!list_empty(&nfsi->access_cache_entry_lru))
2927 list_move_tail(&nfsi->access_cache_inode_lru,
2928 &nfs_access_lru_list);
2929 else {
2930 remove_lru_entry:
2931 list_del_init(&nfsi->access_cache_inode_lru);
2932 smp_mb__before_atomic();
2933 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2934 smp_mb__after_atomic();
2935 }
2936 spin_unlock(&inode->i_lock);
2937 }
2938 spin_unlock(&nfs_access_lru_lock);
2939 nfs_access_free_list(&head);
2940 return freed;
2941 }
2942
2943 unsigned long
nfs_access_cache_scan(struct shrinker * shrink,struct shrink_control * sc)2944 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2945 {
2946 int nr_to_scan = sc->nr_to_scan;
2947 gfp_t gfp_mask = sc->gfp_mask;
2948
2949 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2950 return SHRINK_STOP;
2951 return nfs_do_access_cache_scan(nr_to_scan);
2952 }
2953
2954
2955 unsigned long
nfs_access_cache_count(struct shrinker * shrink,struct shrink_control * sc)2956 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2957 {
2958 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2959 }
2960
2961 static void
nfs_access_cache_enforce_limit(void)2962 nfs_access_cache_enforce_limit(void)
2963 {
2964 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2965 unsigned long diff;
2966 unsigned int nr_to_scan;
2967
2968 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2969 return;
2970 nr_to_scan = 100;
2971 diff = nr_entries - nfs_access_max_cachesize;
2972 if (diff < nr_to_scan)
2973 nr_to_scan = diff;
2974 nfs_do_access_cache_scan(nr_to_scan);
2975 }
2976
__nfs_access_zap_cache(struct nfs_inode * nfsi,struct list_head * head)2977 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2978 {
2979 struct rb_root *root_node = &nfsi->access_cache;
2980 struct rb_node *n;
2981 struct nfs_access_entry *entry;
2982
2983 /* Unhook entries from the cache */
2984 while ((n = rb_first(root_node)) != NULL) {
2985 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2986 rb_erase(n, root_node);
2987 list_move(&entry->lru, head);
2988 }
2989 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2990 }
2991
nfs_access_zap_cache(struct inode * inode)2992 void nfs_access_zap_cache(struct inode *inode)
2993 {
2994 LIST_HEAD(head);
2995
2996 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2997 return;
2998 /* Remove from global LRU init */
2999 spin_lock(&nfs_access_lru_lock);
3000 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
3001 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
3002
3003 spin_lock(&inode->i_lock);
3004 __nfs_access_zap_cache(NFS_I(inode), &head);
3005 spin_unlock(&inode->i_lock);
3006 spin_unlock(&nfs_access_lru_lock);
3007 nfs_access_free_list(&head);
3008 }
3009 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
3010
access_cmp(const struct cred * a,const struct nfs_access_entry * b)3011 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b)
3012 {
3013 struct group_info *ga, *gb;
3014 int g;
3015
3016 if (uid_lt(a->fsuid, b->fsuid))
3017 return -1;
3018 if (uid_gt(a->fsuid, b->fsuid))
3019 return 1;
3020
3021 if (gid_lt(a->fsgid, b->fsgid))
3022 return -1;
3023 if (gid_gt(a->fsgid, b->fsgid))
3024 return 1;
3025
3026 ga = a->group_info;
3027 gb = b->group_info;
3028 if (ga == gb)
3029 return 0;
3030 if (ga == NULL)
3031 return -1;
3032 if (gb == NULL)
3033 return 1;
3034 if (ga->ngroups < gb->ngroups)
3035 return -1;
3036 if (ga->ngroups > gb->ngroups)
3037 return 1;
3038
3039 for (g = 0; g < ga->ngroups; g++) {
3040 if (gid_lt(ga->gid[g], gb->gid[g]))
3041 return -1;
3042 if (gid_gt(ga->gid[g], gb->gid[g]))
3043 return 1;
3044 }
3045 return 0;
3046 }
3047
nfs_access_search_rbtree(struct inode * inode,const struct cred * cred)3048 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
3049 {
3050 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
3051
3052 while (n != NULL) {
3053 struct nfs_access_entry *entry =
3054 rb_entry(n, struct nfs_access_entry, rb_node);
3055 int cmp = access_cmp(cred, entry);
3056
3057 if (cmp < 0)
3058 n = n->rb_left;
3059 else if (cmp > 0)
3060 n = n->rb_right;
3061 else
3062 return entry;
3063 }
3064 return NULL;
3065 }
3066
nfs_access_login_time(const struct task_struct * task,const struct cred * cred)3067 static u64 nfs_access_login_time(const struct task_struct *task,
3068 const struct cred *cred)
3069 {
3070 const struct task_struct *parent;
3071 const struct cred *pcred;
3072 u64 ret;
3073
3074 rcu_read_lock();
3075 for (;;) {
3076 parent = rcu_dereference(task->real_parent);
3077 pcred = __task_cred(parent);
3078 if (parent == task || cred_fscmp(pcred, cred) != 0)
3079 break;
3080 task = parent;
3081 }
3082 ret = task->start_time;
3083 rcu_read_unlock();
3084 return ret;
3085 }
3086
nfs_access_get_cached_locked(struct inode * inode,const struct cred * cred,u32 * mask,bool may_block)3087 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
3088 {
3089 struct nfs_inode *nfsi = NFS_I(inode);
3090 u64 login_time = nfs_access_login_time(current, cred);
3091 struct nfs_access_entry *cache;
3092 bool retry = true;
3093 int err;
3094
3095 spin_lock(&inode->i_lock);
3096 for(;;) {
3097 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3098 goto out_zap;
3099 cache = nfs_access_search_rbtree(inode, cred);
3100 err = -ENOENT;
3101 if (cache == NULL)
3102 goto out;
3103 /* Found an entry, is our attribute cache valid? */
3104 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3105 break;
3106 if (!retry)
3107 break;
3108 err = -ECHILD;
3109 if (!may_block)
3110 goto out;
3111 spin_unlock(&inode->i_lock);
3112 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
3113 if (err)
3114 return err;
3115 spin_lock(&inode->i_lock);
3116 retry = false;
3117 }
3118 err = -ENOENT;
3119 if ((s64)(login_time - cache->timestamp) > 0)
3120 goto out;
3121 *mask = cache->mask;
3122 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
3123 err = 0;
3124 out:
3125 spin_unlock(&inode->i_lock);
3126 return err;
3127 out_zap:
3128 spin_unlock(&inode->i_lock);
3129 nfs_access_zap_cache(inode);
3130 return -ENOENT;
3131 }
3132
nfs_access_get_cached_rcu(struct inode * inode,const struct cred * cred,u32 * mask)3133 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
3134 {
3135 /* Only check the most recently returned cache entry,
3136 * but do it without locking.
3137 */
3138 struct nfs_inode *nfsi = NFS_I(inode);
3139 u64 login_time = nfs_access_login_time(current, cred);
3140 struct nfs_access_entry *cache;
3141 int err = -ECHILD;
3142 struct list_head *lh;
3143
3144 rcu_read_lock();
3145 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3146 goto out;
3147 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
3148 cache = list_entry(lh, struct nfs_access_entry, lru);
3149 if (lh == &nfsi->access_cache_entry_lru ||
3150 access_cmp(cred, cache) != 0)
3151 cache = NULL;
3152 if (cache == NULL)
3153 goto out;
3154 if ((s64)(login_time - cache->timestamp) > 0)
3155 goto out;
3156 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3157 goto out;
3158 *mask = cache->mask;
3159 err = 0;
3160 out:
3161 rcu_read_unlock();
3162 return err;
3163 }
3164
nfs_access_get_cached(struct inode * inode,const struct cred * cred,u32 * mask,bool may_block)3165 int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
3166 u32 *mask, bool may_block)
3167 {
3168 int status;
3169
3170 status = nfs_access_get_cached_rcu(inode, cred, mask);
3171 if (status != 0)
3172 status = nfs_access_get_cached_locked(inode, cred, mask,
3173 may_block);
3174
3175 return status;
3176 }
3177 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
3178
nfs_access_add_rbtree(struct inode * inode,struct nfs_access_entry * set,const struct cred * cred)3179 static void nfs_access_add_rbtree(struct inode *inode,
3180 struct nfs_access_entry *set,
3181 const struct cred *cred)
3182 {
3183 struct nfs_inode *nfsi = NFS_I(inode);
3184 struct rb_root *root_node = &nfsi->access_cache;
3185 struct rb_node **p = &root_node->rb_node;
3186 struct rb_node *parent = NULL;
3187 struct nfs_access_entry *entry;
3188 int cmp;
3189
3190 spin_lock(&inode->i_lock);
3191 while (*p != NULL) {
3192 parent = *p;
3193 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
3194 cmp = access_cmp(cred, entry);
3195
3196 if (cmp < 0)
3197 p = &parent->rb_left;
3198 else if (cmp > 0)
3199 p = &parent->rb_right;
3200 else
3201 goto found;
3202 }
3203 rb_link_node(&set->rb_node, parent, p);
3204 rb_insert_color(&set->rb_node, root_node);
3205 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3206 spin_unlock(&inode->i_lock);
3207 return;
3208 found:
3209 rb_replace_node(parent, &set->rb_node, root_node);
3210 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3211 list_del(&entry->lru);
3212 spin_unlock(&inode->i_lock);
3213 nfs_access_free_entry(entry);
3214 }
3215
nfs_access_add_cache(struct inode * inode,struct nfs_access_entry * set,const struct cred * cred)3216 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set,
3217 const struct cred *cred)
3218 {
3219 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
3220 if (cache == NULL)
3221 return;
3222 RB_CLEAR_NODE(&cache->rb_node);
3223 cache->fsuid = cred->fsuid;
3224 cache->fsgid = cred->fsgid;
3225 cache->group_info = get_group_info(cred->group_info);
3226 cache->mask = set->mask;
3227 cache->timestamp = ktime_get_ns();
3228
3229 /* The above field assignments must be visible
3230 * before this item appears on the lru. We cannot easily
3231 * use rcu_assign_pointer, so just force the memory barrier.
3232 */
3233 smp_wmb();
3234 nfs_access_add_rbtree(inode, cache, cred);
3235
3236 /* Update accounting */
3237 smp_mb__before_atomic();
3238 atomic_long_inc(&nfs_access_nr_entries);
3239 smp_mb__after_atomic();
3240
3241 /* Add inode to global LRU list */
3242 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
3243 spin_lock(&nfs_access_lru_lock);
3244 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
3245 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
3246 &nfs_access_lru_list);
3247 spin_unlock(&nfs_access_lru_lock);
3248 }
3249 nfs_access_cache_enforce_limit();
3250 }
3251 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
3252
3253 #define NFS_MAY_READ (NFS_ACCESS_READ)
3254 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
3255 NFS_ACCESS_EXTEND | \
3256 NFS_ACCESS_DELETE)
3257 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
3258 NFS_ACCESS_EXTEND)
3259 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
3260 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
3261 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
3262 static int
nfs_access_calc_mask(u32 access_result,umode_t umode)3263 nfs_access_calc_mask(u32 access_result, umode_t umode)
3264 {
3265 int mask = 0;
3266
3267 if (access_result & NFS_MAY_READ)
3268 mask |= MAY_READ;
3269 if (S_ISDIR(umode)) {
3270 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
3271 mask |= MAY_WRITE;
3272 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
3273 mask |= MAY_EXEC;
3274 } else if (S_ISREG(umode)) {
3275 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
3276 mask |= MAY_WRITE;
3277 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
3278 mask |= MAY_EXEC;
3279 } else if (access_result & NFS_MAY_WRITE)
3280 mask |= MAY_WRITE;
3281 return mask;
3282 }
3283
nfs_access_set_mask(struct nfs_access_entry * entry,u32 access_result)3284 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
3285 {
3286 entry->mask = access_result;
3287 }
3288 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
3289
nfs_do_access(struct inode * inode,const struct cred * cred,int mask)3290 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
3291 {
3292 struct nfs_access_entry cache;
3293 bool may_block = (mask & MAY_NOT_BLOCK) == 0;
3294 int cache_mask = -1;
3295 int status;
3296
3297 trace_nfs_access_enter(inode);
3298
3299 status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
3300 if (status == 0)
3301 goto out_cached;
3302
3303 status = -ECHILD;
3304 if (!may_block)
3305 goto out;
3306
3307 /*
3308 * Determine which access bits we want to ask for...
3309 */
3310 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND |
3311 nfs_access_xattr_mask(NFS_SERVER(inode));
3312 if (S_ISDIR(inode->i_mode))
3313 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
3314 else
3315 cache.mask |= NFS_ACCESS_EXECUTE;
3316 status = NFS_PROTO(inode)->access(inode, &cache, cred);
3317 if (status != 0) {
3318 if (status == -ESTALE) {
3319 if (!S_ISDIR(inode->i_mode))
3320 nfs_set_inode_stale(inode);
3321 else
3322 nfs_zap_caches(inode);
3323 }
3324 goto out;
3325 }
3326 nfs_access_add_cache(inode, &cache, cred);
3327 out_cached:
3328 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
3329 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
3330 status = -EACCES;
3331 out:
3332 trace_nfs_access_exit(inode, mask, cache_mask, status);
3333 return status;
3334 }
3335
nfs_open_permission_mask(int openflags)3336 static int nfs_open_permission_mask(int openflags)
3337 {
3338 int mask = 0;
3339
3340 if (openflags & __FMODE_EXEC) {
3341 /* ONLY check exec rights */
3342 mask = MAY_EXEC;
3343 } else {
3344 if ((openflags & O_ACCMODE) != O_WRONLY)
3345 mask |= MAY_READ;
3346 if ((openflags & O_ACCMODE) != O_RDONLY)
3347 mask |= MAY_WRITE;
3348 }
3349
3350 return mask;
3351 }
3352
nfs_may_open(struct inode * inode,const struct cred * cred,int openflags)3353 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
3354 {
3355 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
3356 }
3357 EXPORT_SYMBOL_GPL(nfs_may_open);
3358
nfs_execute_ok(struct inode * inode,int mask)3359 static int nfs_execute_ok(struct inode *inode, int mask)
3360 {
3361 struct nfs_server *server = NFS_SERVER(inode);
3362 int ret = 0;
3363
3364 if (S_ISDIR(inode->i_mode))
3365 return 0;
3366 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
3367 if (mask & MAY_NOT_BLOCK)
3368 return -ECHILD;
3369 ret = __nfs_revalidate_inode(server, inode);
3370 }
3371 if (ret == 0 && !execute_ok(inode))
3372 ret = -EACCES;
3373 return ret;
3374 }
3375
nfs_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)3376 int nfs_permission(struct mnt_idmap *idmap,
3377 struct inode *inode,
3378 int mask)
3379 {
3380 const struct cred *cred = current_cred();
3381 int res = 0;
3382
3383 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
3384
3385 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
3386 goto out;
3387 /* Is this sys_access() ? */
3388 if (mask & (MAY_ACCESS | MAY_CHDIR))
3389 goto force_lookup;
3390
3391 switch (inode->i_mode & S_IFMT) {
3392 case S_IFLNK:
3393 goto out;
3394 case S_IFREG:
3395 if ((mask & MAY_OPEN) &&
3396 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3397 return 0;
3398 break;
3399 case S_IFDIR:
3400 /*
3401 * Optimize away all write operations, since the server
3402 * will check permissions when we perform the op.
3403 */
3404 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3405 goto out;
3406 }
3407
3408 force_lookup:
3409 if (!NFS_PROTO(inode)->access)
3410 goto out_notsup;
3411
3412 res = nfs_do_access(inode, cred, mask);
3413 out:
3414 if (!res && (mask & MAY_EXEC))
3415 res = nfs_execute_ok(inode, mask);
3416
3417 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3418 inode->i_sb->s_id, inode->i_ino, mask, res);
3419 return res;
3420 out_notsup:
3421 if (mask & MAY_NOT_BLOCK)
3422 return -ECHILD;
3423
3424 res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3425 NFS_INO_INVALID_OTHER);
3426 if (res == 0)
3427 res = generic_permission(&nop_mnt_idmap, inode, mask);
3428 goto out;
3429 }
3430 EXPORT_SYMBOL_GPL(nfs_permission);
3431