1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include "cgroup-internal.h"
32
33 #include <linux/bpf-cgroup.h>
34 #include <linux/cred.h>
35 #include <linux/errno.h>
36 #include <linux/init_task.h>
37 #include <linux/kernel.h>
38 #include <linux/magic.h>
39 #include <linux/mutex.h>
40 #include <linux/mount.h>
41 #include <linux/pagemap.h>
42 #include <linux/proc_fs.h>
43 #include <linux/rcupdate.h>
44 #include <linux/sched.h>
45 #include <linux/sched/task.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/hashtable.h>
51 #include <linux/idr.h>
52 #include <linux/kthread.h>
53 #include <linux/atomic.h>
54 #include <linux/cpuset.h>
55 #include <linux/proc_ns.h>
56 #include <linux/nsproxy.h>
57 #include <linux/file.h>
58 #include <linux/fs_parser.h>
59 #include <linux/sched/cputime.h>
60 #include <linux/sched/deadline.h>
61 #include <linux/psi.h>
62 #include <net/sock.h>
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/cgroup.h>
66
67 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
68 MAX_CFTYPE_NAME + 2)
69 /* let's not notify more than 100 times per second */
70 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
71
72 /*
73 * To avoid confusing the compiler (and generating warnings) with code
74 * that attempts to access what would be a 0-element array (i.e. sized
75 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
76 * constant expression can be added.
77 */
78 #define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0)
79
80 /*
81 * cgroup_mutex is the master lock. Any modification to cgroup or its
82 * hierarchy must be performed while holding it.
83 *
84 * css_set_lock protects task->cgroups pointer, the list of css_set
85 * objects, and the chain of tasks off each css_set.
86 *
87 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
88 * cgroup.h can use them for lockdep annotations.
89 */
90 DEFINE_MUTEX(cgroup_mutex);
91 DEFINE_SPINLOCK(css_set_lock);
92
93 #if (defined CONFIG_PROVE_RCU || defined CONFIG_LOCKDEP)
94 EXPORT_SYMBOL_GPL(cgroup_mutex);
95 EXPORT_SYMBOL_GPL(css_set_lock);
96 #endif
97
98 struct blocking_notifier_head cgroup_lifetime_notifier =
99 BLOCKING_NOTIFIER_INIT(cgroup_lifetime_notifier);
100
101 DEFINE_SPINLOCK(trace_cgroup_path_lock);
102 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
103 static bool cgroup_debug __read_mostly;
104
105 /*
106 * Protects cgroup_idr and css_idr so that IDs can be released without
107 * grabbing cgroup_mutex.
108 */
109 static DEFINE_SPINLOCK(cgroup_idr_lock);
110
111 /*
112 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
113 * against file removal/re-creation across css hiding.
114 */
115 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
116
117 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
118
119 #define cgroup_assert_mutex_or_rcu_locked() \
120 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
121 !lockdep_is_held(&cgroup_mutex), \
122 "cgroup_mutex or RCU read lock required");
123
124 /*
125 * cgroup destruction makes heavy use of work items and there can be a lot
126 * of concurrent destructions. Use a separate workqueue so that cgroup
127 * destruction work items don't end up filling up max_active of system_wq
128 * which may lead to deadlock.
129 */
130 static struct workqueue_struct *cgroup_destroy_wq;
131
132 /* generate an array of cgroup subsystem pointers */
133 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
134 struct cgroup_subsys *cgroup_subsys[] = {
135 #include <linux/cgroup_subsys.h>
136 };
137 #undef SUBSYS
138
139 /* array of cgroup subsystem names */
140 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
141 static const char *cgroup_subsys_name[] = {
142 #include <linux/cgroup_subsys.h>
143 };
144 #undef SUBSYS
145
146 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
147 #define SUBSYS(_x) \
148 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
149 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
150 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
151 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
152 #include <linux/cgroup_subsys.h>
153 #undef SUBSYS
154
155 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
156 static struct static_key_true *cgroup_subsys_enabled_key[] = {
157 #include <linux/cgroup_subsys.h>
158 };
159 #undef SUBSYS
160
161 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
162 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
163 #include <linux/cgroup_subsys.h>
164 };
165 #undef SUBSYS
166
167 static DEFINE_PER_CPU(struct css_rstat_cpu, root_rstat_cpu);
168 static DEFINE_PER_CPU(struct cgroup_rstat_base_cpu, root_rstat_base_cpu);
169
170 /* the default hierarchy */
171 struct cgroup_root cgrp_dfl_root = {
172 .cgrp.self.rstat_cpu = &root_rstat_cpu,
173 .cgrp.rstat_base_cpu = &root_rstat_base_cpu,
174 };
175 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
176
177 /*
178 * The default hierarchy always exists but is hidden until mounted for the
179 * first time. This is for backward compatibility.
180 */
181 bool cgrp_dfl_visible;
182
183 /* some controllers are not supported in the default hierarchy */
184 static u16 cgrp_dfl_inhibit_ss_mask;
185
186 /* some controllers are implicitly enabled on the default hierarchy */
187 static u16 cgrp_dfl_implicit_ss_mask;
188
189 /* some controllers can be threaded on the default hierarchy */
190 static u16 cgrp_dfl_threaded_ss_mask;
191
192 /* The list of hierarchy roots */
193 LIST_HEAD(cgroup_roots);
194 static int cgroup_root_count;
195
196 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
197 static DEFINE_IDR(cgroup_hierarchy_idr);
198
199 /*
200 * Assign a monotonically increasing serial number to csses. It guarantees
201 * cgroups with bigger numbers are newer than those with smaller numbers.
202 * Also, as csses are always appended to the parent's ->children list, it
203 * guarantees that sibling csses are always sorted in the ascending serial
204 * number order on the list. Protected by cgroup_mutex.
205 */
206 static u64 css_serial_nr_next = 1;
207
208 /*
209 * These bitmasks identify subsystems with specific features to avoid
210 * having to do iterative checks repeatedly.
211 */
212 static u16 have_fork_callback __read_mostly;
213 static u16 have_exit_callback __read_mostly;
214 static u16 have_release_callback __read_mostly;
215 static u16 have_canfork_callback __read_mostly;
216
217 static bool have_favordynmods __ro_after_init = IS_ENABLED(CONFIG_CGROUP_FAVOR_DYNMODS);
218
219 /* cgroup namespace for init task */
220 struct cgroup_namespace init_cgroup_ns = {
221 .ns.count = REFCOUNT_INIT(2),
222 .user_ns = &init_user_ns,
223 .ns.ops = &cgroupns_operations,
224 .ns.inum = PROC_CGROUP_INIT_INO,
225 .root_cset = &init_css_set,
226 };
227
228 static struct file_system_type cgroup2_fs_type;
229 static struct cftype cgroup_base_files[];
230 static struct cftype cgroup_psi_files[];
231
232 /* cgroup optional features */
233 enum cgroup_opt_features {
234 #ifdef CONFIG_PSI
235 OPT_FEATURE_PRESSURE,
236 #endif
237 OPT_FEATURE_COUNT
238 };
239
240 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
241 #ifdef CONFIG_PSI
242 "pressure",
243 #endif
244 };
245
246 static u16 cgroup_feature_disable_mask __read_mostly;
247
248 static int cgroup_apply_control(struct cgroup *cgrp);
249 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
250 static void css_task_iter_skip(struct css_task_iter *it,
251 struct task_struct *task);
252 static int cgroup_destroy_locked(struct cgroup *cgrp);
253 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
254 struct cgroup_subsys *ss);
255 static void css_release(struct percpu_ref *ref);
256 static void kill_css(struct cgroup_subsys_state *css);
257 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
258 struct cgroup *cgrp, struct cftype cfts[],
259 bool is_add);
260
261 #ifdef CONFIG_DEBUG_CGROUP_REF
262 #define CGROUP_REF_FN_ATTRS noinline
263 #define CGROUP_REF_EXPORT(fn) EXPORT_SYMBOL_GPL(fn);
264 #include <linux/cgroup_refcnt.h>
265 #endif
266
267 /**
268 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
269 * @ssid: subsys ID of interest
270 *
271 * cgroup_subsys_enabled() can only be used with literal subsys names which
272 * is fine for individual subsystems but unsuitable for cgroup core. This
273 * is slower static_key_enabled() based test indexed by @ssid.
274 */
cgroup_ssid_enabled(int ssid)275 bool cgroup_ssid_enabled(int ssid)
276 {
277 if (!CGROUP_HAS_SUBSYS_CONFIG)
278 return false;
279
280 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
281 }
282
283 /**
284 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
285 * @cgrp: the cgroup of interest
286 *
287 * The default hierarchy is the v2 interface of cgroup and this function
288 * can be used to test whether a cgroup is on the default hierarchy for
289 * cases where a subsystem should behave differently depending on the
290 * interface version.
291 *
292 * List of changed behaviors:
293 *
294 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
295 * and "name" are disallowed.
296 *
297 * - When mounting an existing superblock, mount options should match.
298 *
299 * - rename(2) is disallowed.
300 *
301 * - "tasks" is removed. Everything should be at process granularity. Use
302 * "cgroup.procs" instead.
303 *
304 * - "cgroup.procs" is not sorted. pids will be unique unless they got
305 * recycled in-between reads.
306 *
307 * - "release_agent" and "notify_on_release" are removed. Replacement
308 * notification mechanism will be implemented.
309 *
310 * - "cgroup.clone_children" is removed.
311 *
312 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
313 * and its descendants contain no task; otherwise, 1. The file also
314 * generates kernfs notification which can be monitored through poll and
315 * [di]notify when the value of the file changes.
316 *
317 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
318 * take masks of ancestors with non-empty cpus/mems, instead of being
319 * moved to an ancestor.
320 *
321 * - cpuset: a task can be moved into an empty cpuset, and again it takes
322 * masks of ancestors.
323 *
324 * - blkcg: blk-throttle becomes properly hierarchical.
325 */
cgroup_on_dfl(const struct cgroup * cgrp)326 bool cgroup_on_dfl(const struct cgroup *cgrp)
327 {
328 return cgrp->root == &cgrp_dfl_root;
329 }
330
331 /* IDR wrappers which synchronize using cgroup_idr_lock */
cgroup_idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp_mask)332 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
333 gfp_t gfp_mask)
334 {
335 int ret;
336
337 idr_preload(gfp_mask);
338 spin_lock_bh(&cgroup_idr_lock);
339 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
340 spin_unlock_bh(&cgroup_idr_lock);
341 idr_preload_end();
342 return ret;
343 }
344
cgroup_idr_replace(struct idr * idr,void * ptr,int id)345 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
346 {
347 void *ret;
348
349 spin_lock_bh(&cgroup_idr_lock);
350 ret = idr_replace(idr, ptr, id);
351 spin_unlock_bh(&cgroup_idr_lock);
352 return ret;
353 }
354
cgroup_idr_remove(struct idr * idr,int id)355 static void cgroup_idr_remove(struct idr *idr, int id)
356 {
357 spin_lock_bh(&cgroup_idr_lock);
358 idr_remove(idr, id);
359 spin_unlock_bh(&cgroup_idr_lock);
360 }
361
cgroup_has_tasks(struct cgroup * cgrp)362 static bool cgroup_has_tasks(struct cgroup *cgrp)
363 {
364 return cgrp->nr_populated_csets;
365 }
366
cgroup_is_threaded(struct cgroup * cgrp)367 static bool cgroup_is_threaded(struct cgroup *cgrp)
368 {
369 return cgrp->dom_cgrp != cgrp;
370 }
371
372 /* can @cgrp host both domain and threaded children? */
cgroup_is_mixable(struct cgroup * cgrp)373 static bool cgroup_is_mixable(struct cgroup *cgrp)
374 {
375 /*
376 * Root isn't under domain level resource control exempting it from
377 * the no-internal-process constraint, so it can serve as a thread
378 * root and a parent of resource domains at the same time.
379 */
380 return !cgroup_parent(cgrp);
381 }
382
383 /* can @cgrp become a thread root? Should always be true for a thread root */
cgroup_can_be_thread_root(struct cgroup * cgrp)384 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
385 {
386 /* mixables don't care */
387 if (cgroup_is_mixable(cgrp))
388 return true;
389
390 /* domain roots can't be nested under threaded */
391 if (cgroup_is_threaded(cgrp))
392 return false;
393
394 /* can only have either domain or threaded children */
395 if (cgrp->nr_populated_domain_children)
396 return false;
397
398 /* and no domain controllers can be enabled */
399 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
400 return false;
401
402 return true;
403 }
404
405 /* is @cgrp root of a threaded subtree? */
cgroup_is_thread_root(struct cgroup * cgrp)406 static bool cgroup_is_thread_root(struct cgroup *cgrp)
407 {
408 /* thread root should be a domain */
409 if (cgroup_is_threaded(cgrp))
410 return false;
411
412 /* a domain w/ threaded children is a thread root */
413 if (cgrp->nr_threaded_children)
414 return true;
415
416 /*
417 * A domain which has tasks and explicit threaded controllers
418 * enabled is a thread root.
419 */
420 if (cgroup_has_tasks(cgrp) &&
421 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
422 return true;
423
424 return false;
425 }
426
427 /* a domain which isn't connected to the root w/o brekage can't be used */
cgroup_is_valid_domain(struct cgroup * cgrp)428 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
429 {
430 /* the cgroup itself can be a thread root */
431 if (cgroup_is_threaded(cgrp))
432 return false;
433
434 /* but the ancestors can't be unless mixable */
435 while ((cgrp = cgroup_parent(cgrp))) {
436 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
437 return false;
438 if (cgroup_is_threaded(cgrp))
439 return false;
440 }
441
442 return true;
443 }
444
445 /* subsystems visibly enabled on a cgroup */
cgroup_control(struct cgroup * cgrp)446 static u16 cgroup_control(struct cgroup *cgrp)
447 {
448 struct cgroup *parent = cgroup_parent(cgrp);
449 u16 root_ss_mask = cgrp->root->subsys_mask;
450
451 if (parent) {
452 u16 ss_mask = parent->subtree_control;
453
454 /* threaded cgroups can only have threaded controllers */
455 if (cgroup_is_threaded(cgrp))
456 ss_mask &= cgrp_dfl_threaded_ss_mask;
457 return ss_mask;
458 }
459
460 if (cgroup_on_dfl(cgrp))
461 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
462 cgrp_dfl_implicit_ss_mask);
463 return root_ss_mask;
464 }
465
466 /* subsystems enabled on a cgroup */
cgroup_ss_mask(struct cgroup * cgrp)467 static u16 cgroup_ss_mask(struct cgroup *cgrp)
468 {
469 struct cgroup *parent = cgroup_parent(cgrp);
470
471 if (parent) {
472 u16 ss_mask = parent->subtree_ss_mask;
473
474 /* threaded cgroups can only have threaded controllers */
475 if (cgroup_is_threaded(cgrp))
476 ss_mask &= cgrp_dfl_threaded_ss_mask;
477 return ss_mask;
478 }
479
480 return cgrp->root->subsys_mask;
481 }
482
483 /**
484 * cgroup_css - obtain a cgroup's css for the specified subsystem
485 * @cgrp: the cgroup of interest
486 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
487 *
488 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
489 * function must be called either under cgroup_mutex or rcu_read_lock() and
490 * the caller is responsible for pinning the returned css if it wants to
491 * keep accessing it outside the said locks. This function may return
492 * %NULL if @cgrp doesn't have @subsys_id enabled.
493 */
cgroup_css(struct cgroup * cgrp,struct cgroup_subsys * ss)494 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
495 struct cgroup_subsys *ss)
496 {
497 if (CGROUP_HAS_SUBSYS_CONFIG && ss)
498 return rcu_dereference_check(cgrp->subsys[ss->id],
499 lockdep_is_held(&cgroup_mutex));
500 else
501 return &cgrp->self;
502 }
503
504 /**
505 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
506 * @cgrp: the cgroup of interest
507 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
508 *
509 * Similar to cgroup_css() but returns the effective css, which is defined
510 * as the matching css of the nearest ancestor including self which has @ss
511 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
512 * function is guaranteed to return non-NULL css.
513 */
cgroup_e_css_by_mask(struct cgroup * cgrp,struct cgroup_subsys * ss)514 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
515 struct cgroup_subsys *ss)
516 {
517 lockdep_assert_held(&cgroup_mutex);
518
519 if (!ss)
520 return &cgrp->self;
521
522 /*
523 * This function is used while updating css associations and thus
524 * can't test the csses directly. Test ss_mask.
525 */
526 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
527 cgrp = cgroup_parent(cgrp);
528 if (!cgrp)
529 return NULL;
530 }
531
532 return cgroup_css(cgrp, ss);
533 }
534
535 /**
536 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
537 * @cgrp: the cgroup of interest
538 * @ss: the subsystem of interest
539 *
540 * Find and get the effective css of @cgrp for @ss. The effective css is
541 * defined as the matching css of the nearest ancestor including self which
542 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
543 * the root css is returned, so this function always returns a valid css.
544 *
545 * The returned css is not guaranteed to be online, and therefore it is the
546 * callers responsibility to try get a reference for it.
547 */
cgroup_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)548 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
549 struct cgroup_subsys *ss)
550 {
551 struct cgroup_subsys_state *css;
552
553 if (!CGROUP_HAS_SUBSYS_CONFIG)
554 return NULL;
555
556 do {
557 css = cgroup_css(cgrp, ss);
558
559 if (css)
560 return css;
561 cgrp = cgroup_parent(cgrp);
562 } while (cgrp);
563
564 return init_css_set.subsys[ss->id];
565 }
566
567 /**
568 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
569 * @cgrp: the cgroup of interest
570 * @ss: the subsystem of interest
571 *
572 * Find and get the effective css of @cgrp for @ss. The effective css is
573 * defined as the matching css of the nearest ancestor including self which
574 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
575 * the root css is returned, so this function always returns a valid css.
576 * The returned css must be put using css_put().
577 */
cgroup_get_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)578 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
579 struct cgroup_subsys *ss)
580 {
581 struct cgroup_subsys_state *css;
582
583 if (!CGROUP_HAS_SUBSYS_CONFIG)
584 return NULL;
585
586 rcu_read_lock();
587
588 do {
589 css = cgroup_css(cgrp, ss);
590
591 if (css && css_tryget_online(css))
592 goto out_unlock;
593 cgrp = cgroup_parent(cgrp);
594 } while (cgrp);
595
596 css = init_css_set.subsys[ss->id];
597 css_get(css);
598 out_unlock:
599 rcu_read_unlock();
600 return css;
601 }
602 EXPORT_SYMBOL_GPL(cgroup_get_e_css);
603
cgroup_get_live(struct cgroup * cgrp)604 static void cgroup_get_live(struct cgroup *cgrp)
605 {
606 WARN_ON_ONCE(cgroup_is_dead(cgrp));
607 cgroup_get(cgrp);
608 }
609
610 /**
611 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
612 * is responsible for taking the css_set_lock.
613 * @cgrp: the cgroup in question
614 */
__cgroup_task_count(const struct cgroup * cgrp)615 int __cgroup_task_count(const struct cgroup *cgrp)
616 {
617 int count = 0;
618 struct cgrp_cset_link *link;
619
620 lockdep_assert_held(&css_set_lock);
621
622 list_for_each_entry(link, &cgrp->cset_links, cset_link)
623 count += link->cset->nr_tasks;
624
625 return count;
626 }
627
628 /**
629 * cgroup_task_count - count the number of tasks in a cgroup.
630 * @cgrp: the cgroup in question
631 */
cgroup_task_count(const struct cgroup * cgrp)632 int cgroup_task_count(const struct cgroup *cgrp)
633 {
634 int count;
635
636 spin_lock_irq(&css_set_lock);
637 count = __cgroup_task_count(cgrp);
638 spin_unlock_irq(&css_set_lock);
639
640 return count;
641 }
642
kn_priv(struct kernfs_node * kn)643 static struct cgroup *kn_priv(struct kernfs_node *kn)
644 {
645 struct kernfs_node *parent;
646 /*
647 * The parent can not be replaced due to KERNFS_ROOT_INVARIANT_PARENT.
648 * Therefore it is always safe to dereference this pointer outside of a
649 * RCU section.
650 */
651 parent = rcu_dereference_check(kn->__parent,
652 kernfs_root_flags(kn) & KERNFS_ROOT_INVARIANT_PARENT);
653 return parent->priv;
654 }
655
of_css(struct kernfs_open_file * of)656 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
657 {
658 struct cgroup *cgrp = kn_priv(of->kn);
659 struct cftype *cft = of_cft(of);
660
661 /*
662 * This is open and unprotected implementation of cgroup_css().
663 * seq_css() is only called from a kernfs file operation which has
664 * an active reference on the file. Because all the subsystem
665 * files are drained before a css is disassociated with a cgroup,
666 * the matching css from the cgroup's subsys table is guaranteed to
667 * be and stay valid until the enclosing operation is complete.
668 */
669 if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
670 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
671 else
672 return &cgrp->self;
673 }
674 EXPORT_SYMBOL_GPL(of_css);
675
676 /**
677 * for_each_css - iterate all css's of a cgroup
678 * @css: the iteration cursor
679 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
680 * @cgrp: the target cgroup to iterate css's of
681 *
682 * Should be called under cgroup_mutex.
683 */
684 #define for_each_css(css, ssid, cgrp) \
685 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
686 if (!((css) = rcu_dereference_check( \
687 (cgrp)->subsys[(ssid)], \
688 lockdep_is_held(&cgroup_mutex)))) { } \
689 else
690
691 /**
692 * do_each_subsys_mask - filter for_each_subsys with a bitmask
693 * @ss: the iteration cursor
694 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
695 * @ss_mask: the bitmask
696 *
697 * The block will only run for cases where the ssid-th bit (1 << ssid) of
698 * @ss_mask is set.
699 */
700 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
701 unsigned long __ss_mask = (ss_mask); \
702 if (!CGROUP_HAS_SUBSYS_CONFIG) { \
703 (ssid) = 0; \
704 break; \
705 } \
706 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
707 (ss) = cgroup_subsys[ssid]; \
708 {
709
710 #define while_each_subsys_mask() \
711 } \
712 } \
713 } while (false)
714
715 /* iterate over child cgrps, lock should be held throughout iteration */
716 #define cgroup_for_each_live_child(child, cgrp) \
717 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
718 if (({ lockdep_assert_held(&cgroup_mutex); \
719 cgroup_is_dead(child); })) \
720 ; \
721 else
722
723 /* walk live descendants in pre order */
724 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
725 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
726 if (({ lockdep_assert_held(&cgroup_mutex); \
727 (dsct) = (d_css)->cgroup; \
728 cgroup_is_dead(dsct); })) \
729 ; \
730 else
731
732 /* walk live descendants in postorder */
733 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
734 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
735 if (({ lockdep_assert_held(&cgroup_mutex); \
736 (dsct) = (d_css)->cgroup; \
737 cgroup_is_dead(dsct); })) \
738 ; \
739 else
740
741 /*
742 * The default css_set - used by init and its children prior to any
743 * hierarchies being mounted. It contains a pointer to the root state
744 * for each subsystem. Also used to anchor the list of css_sets. Not
745 * reference-counted, to improve performance when child cgroups
746 * haven't been created.
747 */
748 struct css_set init_css_set = {
749 .refcount = REFCOUNT_INIT(1),
750 .dom_cset = &init_css_set,
751 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
752 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
753 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks),
754 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
755 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
756 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
757 .mg_src_preload_node = LIST_HEAD_INIT(init_css_set.mg_src_preload_node),
758 .mg_dst_preload_node = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node),
759 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
760
761 /*
762 * The following field is re-initialized when this cset gets linked
763 * in cgroup_init(). However, let's initialize the field
764 * statically too so that the default cgroup can be accessed safely
765 * early during boot.
766 */
767 .dfl_cgrp = &cgrp_dfl_root.cgrp,
768 };
769
770 static int css_set_count = 1; /* 1 for init_css_set */
771
css_set_threaded(struct css_set * cset)772 static bool css_set_threaded(struct css_set *cset)
773 {
774 return cset->dom_cset != cset;
775 }
776
777 /**
778 * css_set_populated - does a css_set contain any tasks?
779 * @cset: target css_set
780 *
781 * css_set_populated() should be the same as !!cset->nr_tasks at steady
782 * state. However, css_set_populated() can be called while a task is being
783 * added to or removed from the linked list before the nr_tasks is
784 * properly updated. Hence, we can't just look at ->nr_tasks here.
785 */
css_set_populated(struct css_set * cset)786 static bool css_set_populated(struct css_set *cset)
787 {
788 lockdep_assert_held(&css_set_lock);
789
790 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
791 }
792
793 /**
794 * cgroup_update_populated - update the populated count of a cgroup
795 * @cgrp: the target cgroup
796 * @populated: inc or dec populated count
797 *
798 * One of the css_sets associated with @cgrp is either getting its first
799 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
800 * count is propagated towards root so that a given cgroup's
801 * nr_populated_children is zero iff none of its descendants contain any
802 * tasks.
803 *
804 * @cgrp's interface file "cgroup.populated" is zero if both
805 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
806 * 1 otherwise. When the sum changes from or to zero, userland is notified
807 * that the content of the interface file has changed. This can be used to
808 * detect when @cgrp and its descendants become populated or empty.
809 */
cgroup_update_populated(struct cgroup * cgrp,bool populated)810 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
811 {
812 struct cgroup *child = NULL;
813 int adj = populated ? 1 : -1;
814
815 lockdep_assert_held(&css_set_lock);
816
817 do {
818 bool was_populated = cgroup_is_populated(cgrp);
819
820 if (!child) {
821 cgrp->nr_populated_csets += adj;
822 } else {
823 if (cgroup_is_threaded(child))
824 cgrp->nr_populated_threaded_children += adj;
825 else
826 cgrp->nr_populated_domain_children += adj;
827 }
828
829 if (was_populated == cgroup_is_populated(cgrp))
830 break;
831
832 cgroup1_check_for_release(cgrp);
833 TRACE_CGROUP_PATH(notify_populated, cgrp,
834 cgroup_is_populated(cgrp));
835 cgroup_file_notify(&cgrp->events_file);
836
837 child = cgrp;
838 cgrp = cgroup_parent(cgrp);
839 } while (cgrp);
840 }
841
842 /**
843 * css_set_update_populated - update populated state of a css_set
844 * @cset: target css_set
845 * @populated: whether @cset is populated or depopulated
846 *
847 * @cset is either getting the first task or losing the last. Update the
848 * populated counters of all associated cgroups accordingly.
849 */
css_set_update_populated(struct css_set * cset,bool populated)850 static void css_set_update_populated(struct css_set *cset, bool populated)
851 {
852 struct cgrp_cset_link *link;
853
854 lockdep_assert_held(&css_set_lock);
855
856 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
857 cgroup_update_populated(link->cgrp, populated);
858 }
859
860 /*
861 * @task is leaving, advance task iterators which are pointing to it so
862 * that they can resume at the next position. Advancing an iterator might
863 * remove it from the list, use safe walk. See css_task_iter_skip() for
864 * details.
865 */
css_set_skip_task_iters(struct css_set * cset,struct task_struct * task)866 static void css_set_skip_task_iters(struct css_set *cset,
867 struct task_struct *task)
868 {
869 struct css_task_iter *it, *pos;
870
871 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
872 css_task_iter_skip(it, task);
873 }
874
875 /**
876 * css_set_move_task - move a task from one css_set to another
877 * @task: task being moved
878 * @from_cset: css_set @task currently belongs to (may be NULL)
879 * @to_cset: new css_set @task is being moved to (may be NULL)
880 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
881 *
882 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
883 * css_set, @from_cset can be NULL. If @task is being disassociated
884 * instead of moved, @to_cset can be NULL.
885 *
886 * This function automatically handles populated counter updates and
887 * css_task_iter adjustments but the caller is responsible for managing
888 * @from_cset and @to_cset's reference counts.
889 */
css_set_move_task(struct task_struct * task,struct css_set * from_cset,struct css_set * to_cset,bool use_mg_tasks)890 static void css_set_move_task(struct task_struct *task,
891 struct css_set *from_cset, struct css_set *to_cset,
892 bool use_mg_tasks)
893 {
894 lockdep_assert_held(&css_set_lock);
895
896 if (to_cset && !css_set_populated(to_cset))
897 css_set_update_populated(to_cset, true);
898
899 if (from_cset) {
900 WARN_ON_ONCE(list_empty(&task->cg_list));
901
902 css_set_skip_task_iters(from_cset, task);
903 list_del_init(&task->cg_list);
904 if (!css_set_populated(from_cset))
905 css_set_update_populated(from_cset, false);
906 } else {
907 WARN_ON_ONCE(!list_empty(&task->cg_list));
908 }
909
910 if (to_cset) {
911 /*
912 * We are synchronized through cgroup_threadgroup_rwsem
913 * against PF_EXITING setting such that we can't race
914 * against cgroup_exit()/cgroup_free() dropping the css_set.
915 */
916 WARN_ON_ONCE(task->flags & PF_EXITING);
917
918 cgroup_move_task(task, to_cset);
919 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
920 &to_cset->tasks);
921 }
922 }
923
924 /*
925 * hash table for cgroup groups. This improves the performance to find
926 * an existing css_set. This hash doesn't (currently) take into
927 * account cgroups in empty hierarchies.
928 */
929 #define CSS_SET_HASH_BITS 7
930 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
931
css_set_hash(struct cgroup_subsys_state ** css)932 static unsigned long css_set_hash(struct cgroup_subsys_state **css)
933 {
934 unsigned long key = 0UL;
935 struct cgroup_subsys *ss;
936 int i;
937
938 for_each_subsys(ss, i)
939 key += (unsigned long)css[i];
940 key = (key >> 16) ^ key;
941
942 return key;
943 }
944
put_css_set_locked(struct css_set * cset)945 void put_css_set_locked(struct css_set *cset)
946 {
947 struct cgrp_cset_link *link, *tmp_link;
948 struct cgroup_subsys *ss;
949 int ssid;
950
951 lockdep_assert_held(&css_set_lock);
952
953 if (!refcount_dec_and_test(&cset->refcount))
954 return;
955
956 WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
957
958 /* This css_set is dead. Unlink it and release cgroup and css refs */
959 for_each_subsys(ss, ssid) {
960 list_del(&cset->e_cset_node[ssid]);
961 css_put(cset->subsys[ssid]);
962 }
963 hash_del(&cset->hlist);
964 css_set_count--;
965
966 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
967 list_del(&link->cset_link);
968 list_del(&link->cgrp_link);
969 if (cgroup_parent(link->cgrp))
970 cgroup_put(link->cgrp);
971 kfree(link);
972 }
973
974 if (css_set_threaded(cset)) {
975 list_del(&cset->threaded_csets_node);
976 put_css_set_locked(cset->dom_cset);
977 }
978
979 kfree_rcu(cset, rcu_head);
980 }
981
982 /**
983 * compare_css_sets - helper function for find_existing_css_set().
984 * @cset: candidate css_set being tested
985 * @old_cset: existing css_set for a task
986 * @new_cgrp: cgroup that's being entered by the task
987 * @template: desired set of css pointers in css_set (pre-calculated)
988 *
989 * Returns true if "cset" matches "old_cset" except for the hierarchy
990 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
991 */
compare_css_sets(struct css_set * cset,struct css_set * old_cset,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])992 static bool compare_css_sets(struct css_set *cset,
993 struct css_set *old_cset,
994 struct cgroup *new_cgrp,
995 struct cgroup_subsys_state *template[])
996 {
997 struct cgroup *new_dfl_cgrp;
998 struct list_head *l1, *l2;
999
1000 /*
1001 * On the default hierarchy, there can be csets which are
1002 * associated with the same set of cgroups but different csses.
1003 * Let's first ensure that csses match.
1004 */
1005 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
1006 return false;
1007
1008
1009 /* @cset's domain should match the default cgroup's */
1010 if (cgroup_on_dfl(new_cgrp))
1011 new_dfl_cgrp = new_cgrp;
1012 else
1013 new_dfl_cgrp = old_cset->dfl_cgrp;
1014
1015 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1016 return false;
1017
1018 /*
1019 * Compare cgroup pointers in order to distinguish between
1020 * different cgroups in hierarchies. As different cgroups may
1021 * share the same effective css, this comparison is always
1022 * necessary.
1023 */
1024 l1 = &cset->cgrp_links;
1025 l2 = &old_cset->cgrp_links;
1026 while (1) {
1027 struct cgrp_cset_link *link1, *link2;
1028 struct cgroup *cgrp1, *cgrp2;
1029
1030 l1 = l1->next;
1031 l2 = l2->next;
1032 /* See if we reached the end - both lists are equal length. */
1033 if (l1 == &cset->cgrp_links) {
1034 BUG_ON(l2 != &old_cset->cgrp_links);
1035 break;
1036 } else {
1037 BUG_ON(l2 == &old_cset->cgrp_links);
1038 }
1039 /* Locate the cgroups associated with these links. */
1040 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1041 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1042 cgrp1 = link1->cgrp;
1043 cgrp2 = link2->cgrp;
1044 /* Hierarchies should be linked in the same order. */
1045 BUG_ON(cgrp1->root != cgrp2->root);
1046
1047 /*
1048 * If this hierarchy is the hierarchy of the cgroup
1049 * that's changing, then we need to check that this
1050 * css_set points to the new cgroup; if it's any other
1051 * hierarchy, then this css_set should point to the
1052 * same cgroup as the old css_set.
1053 */
1054 if (cgrp1->root == new_cgrp->root) {
1055 if (cgrp1 != new_cgrp)
1056 return false;
1057 } else {
1058 if (cgrp1 != cgrp2)
1059 return false;
1060 }
1061 }
1062 return true;
1063 }
1064
1065 /**
1066 * find_existing_css_set - init css array and find the matching css_set
1067 * @old_cset: the css_set that we're using before the cgroup transition
1068 * @cgrp: the cgroup that we're moving into
1069 * @template: out param for the new set of csses, should be clear on entry
1070 */
find_existing_css_set(struct css_set * old_cset,struct cgroup * cgrp,struct cgroup_subsys_state ** template)1071 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1072 struct cgroup *cgrp,
1073 struct cgroup_subsys_state **template)
1074 {
1075 struct cgroup_root *root = cgrp->root;
1076 struct cgroup_subsys *ss;
1077 struct css_set *cset;
1078 unsigned long key;
1079 int i;
1080
1081 /*
1082 * Build the set of subsystem state objects that we want to see in the
1083 * new css_set. While subsystems can change globally, the entries here
1084 * won't change, so no need for locking.
1085 */
1086 for_each_subsys(ss, i) {
1087 if (root->subsys_mask & (1UL << i)) {
1088 /*
1089 * @ss is in this hierarchy, so we want the
1090 * effective css from @cgrp.
1091 */
1092 template[i] = cgroup_e_css_by_mask(cgrp, ss);
1093 } else {
1094 /*
1095 * @ss is not in this hierarchy, so we don't want
1096 * to change the css.
1097 */
1098 template[i] = old_cset->subsys[i];
1099 }
1100 }
1101
1102 key = css_set_hash(template);
1103 hash_for_each_possible(css_set_table, cset, hlist, key) {
1104 if (!compare_css_sets(cset, old_cset, cgrp, template))
1105 continue;
1106
1107 /* This css_set matches what we need */
1108 return cset;
1109 }
1110
1111 /* No existing cgroup group matched */
1112 return NULL;
1113 }
1114
free_cgrp_cset_links(struct list_head * links_to_free)1115 static void free_cgrp_cset_links(struct list_head *links_to_free)
1116 {
1117 struct cgrp_cset_link *link, *tmp_link;
1118
1119 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1120 list_del(&link->cset_link);
1121 kfree(link);
1122 }
1123 }
1124
1125 /**
1126 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1127 * @count: the number of links to allocate
1128 * @tmp_links: list_head the allocated links are put on
1129 *
1130 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1131 * through ->cset_link. Returns 0 on success or -errno.
1132 */
allocate_cgrp_cset_links(int count,struct list_head * tmp_links)1133 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1134 {
1135 struct cgrp_cset_link *link;
1136 int i;
1137
1138 INIT_LIST_HEAD(tmp_links);
1139
1140 for (i = 0; i < count; i++) {
1141 link = kzalloc(sizeof(*link), GFP_KERNEL);
1142 if (!link) {
1143 free_cgrp_cset_links(tmp_links);
1144 return -ENOMEM;
1145 }
1146 list_add(&link->cset_link, tmp_links);
1147 }
1148 return 0;
1149 }
1150
1151 /**
1152 * link_css_set - a helper function to link a css_set to a cgroup
1153 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1154 * @cset: the css_set to be linked
1155 * @cgrp: the destination cgroup
1156 */
link_css_set(struct list_head * tmp_links,struct css_set * cset,struct cgroup * cgrp)1157 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1158 struct cgroup *cgrp)
1159 {
1160 struct cgrp_cset_link *link;
1161
1162 BUG_ON(list_empty(tmp_links));
1163
1164 if (cgroup_on_dfl(cgrp))
1165 cset->dfl_cgrp = cgrp;
1166
1167 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1168 link->cset = cset;
1169 link->cgrp = cgrp;
1170
1171 /*
1172 * Always add links to the tail of the lists so that the lists are
1173 * in chronological order.
1174 */
1175 list_move_tail(&link->cset_link, &cgrp->cset_links);
1176 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1177
1178 if (cgroup_parent(cgrp))
1179 cgroup_get_live(cgrp);
1180 }
1181
1182 /**
1183 * find_css_set - return a new css_set with one cgroup updated
1184 * @old_cset: the baseline css_set
1185 * @cgrp: the cgroup to be updated
1186 *
1187 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1188 * substituted into the appropriate hierarchy.
1189 */
find_css_set(struct css_set * old_cset,struct cgroup * cgrp)1190 static struct css_set *find_css_set(struct css_set *old_cset,
1191 struct cgroup *cgrp)
1192 {
1193 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1194 struct css_set *cset;
1195 struct list_head tmp_links;
1196 struct cgrp_cset_link *link;
1197 struct cgroup_subsys *ss;
1198 unsigned long key;
1199 int ssid;
1200
1201 lockdep_assert_held(&cgroup_mutex);
1202
1203 /* First see if we already have a cgroup group that matches
1204 * the desired set */
1205 spin_lock_irq(&css_set_lock);
1206 cset = find_existing_css_set(old_cset, cgrp, template);
1207 if (cset)
1208 get_css_set(cset);
1209 spin_unlock_irq(&css_set_lock);
1210
1211 if (cset)
1212 return cset;
1213
1214 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1215 if (!cset)
1216 return NULL;
1217
1218 /* Allocate all the cgrp_cset_link objects that we'll need */
1219 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1220 kfree(cset);
1221 return NULL;
1222 }
1223
1224 refcount_set(&cset->refcount, 1);
1225 cset->dom_cset = cset;
1226 INIT_LIST_HEAD(&cset->tasks);
1227 INIT_LIST_HEAD(&cset->mg_tasks);
1228 INIT_LIST_HEAD(&cset->dying_tasks);
1229 INIT_LIST_HEAD(&cset->task_iters);
1230 INIT_LIST_HEAD(&cset->threaded_csets);
1231 INIT_HLIST_NODE(&cset->hlist);
1232 INIT_LIST_HEAD(&cset->cgrp_links);
1233 INIT_LIST_HEAD(&cset->mg_src_preload_node);
1234 INIT_LIST_HEAD(&cset->mg_dst_preload_node);
1235 INIT_LIST_HEAD(&cset->mg_node);
1236
1237 /* Copy the set of subsystem state objects generated in
1238 * find_existing_css_set() */
1239 memcpy(cset->subsys, template, sizeof(cset->subsys));
1240
1241 spin_lock_irq(&css_set_lock);
1242 /* Add reference counts and links from the new css_set. */
1243 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1244 struct cgroup *c = link->cgrp;
1245
1246 if (c->root == cgrp->root)
1247 c = cgrp;
1248 link_css_set(&tmp_links, cset, c);
1249 }
1250
1251 BUG_ON(!list_empty(&tmp_links));
1252
1253 css_set_count++;
1254
1255 /* Add @cset to the hash table */
1256 key = css_set_hash(cset->subsys);
1257 hash_add(css_set_table, &cset->hlist, key);
1258
1259 for_each_subsys(ss, ssid) {
1260 struct cgroup_subsys_state *css = cset->subsys[ssid];
1261
1262 list_add_tail(&cset->e_cset_node[ssid],
1263 &css->cgroup->e_csets[ssid]);
1264 css_get(css);
1265 }
1266
1267 spin_unlock_irq(&css_set_lock);
1268
1269 /*
1270 * If @cset should be threaded, look up the matching dom_cset and
1271 * link them up. We first fully initialize @cset then look for the
1272 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1273 * to stay empty until we return.
1274 */
1275 if (cgroup_is_threaded(cset->dfl_cgrp)) {
1276 struct css_set *dcset;
1277
1278 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1279 if (!dcset) {
1280 put_css_set(cset);
1281 return NULL;
1282 }
1283
1284 spin_lock_irq(&css_set_lock);
1285 cset->dom_cset = dcset;
1286 list_add_tail(&cset->threaded_csets_node,
1287 &dcset->threaded_csets);
1288 spin_unlock_irq(&css_set_lock);
1289 }
1290
1291 return cset;
1292 }
1293
cgroup_root_from_kf(struct kernfs_root * kf_root)1294 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1295 {
1296 struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv;
1297
1298 return root_cgrp->root;
1299 }
1300
cgroup_favor_dynmods(struct cgroup_root * root,bool favor)1301 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor)
1302 {
1303 bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS;
1304
1305 /* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */
1306 if (favor && !favoring) {
1307 rcu_sync_enter(&cgroup_threadgroup_rwsem.rss);
1308 root->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1309 } else if (!favor && favoring) {
1310 rcu_sync_exit(&cgroup_threadgroup_rwsem.rss);
1311 root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
1312 }
1313 }
1314
cgroup_init_root_id(struct cgroup_root * root)1315 static int cgroup_init_root_id(struct cgroup_root *root)
1316 {
1317 int id;
1318
1319 lockdep_assert_held(&cgroup_mutex);
1320
1321 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1322 if (id < 0)
1323 return id;
1324
1325 root->hierarchy_id = id;
1326 return 0;
1327 }
1328
cgroup_exit_root_id(struct cgroup_root * root)1329 static void cgroup_exit_root_id(struct cgroup_root *root)
1330 {
1331 lockdep_assert_held(&cgroup_mutex);
1332
1333 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1334 }
1335
cgroup_free_root(struct cgroup_root * root)1336 void cgroup_free_root(struct cgroup_root *root)
1337 {
1338 kfree_rcu(root, rcu);
1339 }
1340
cgroup_destroy_root(struct cgroup_root * root)1341 static void cgroup_destroy_root(struct cgroup_root *root)
1342 {
1343 struct cgroup *cgrp = &root->cgrp;
1344 struct cgrp_cset_link *link, *tmp_link;
1345 int ret;
1346
1347 trace_cgroup_destroy_root(root);
1348
1349 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1350
1351 BUG_ON(atomic_read(&root->nr_cgrps));
1352 BUG_ON(!list_empty(&cgrp->self.children));
1353
1354 ret = blocking_notifier_call_chain(&cgroup_lifetime_notifier,
1355 CGROUP_LIFETIME_OFFLINE, cgrp);
1356 WARN_ON_ONCE(notifier_to_errno(ret));
1357
1358 /* Rebind all subsystems back to the default hierarchy */
1359 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1360
1361 /*
1362 * Release all the links from cset_links to this hierarchy's
1363 * root cgroup
1364 */
1365 spin_lock_irq(&css_set_lock);
1366
1367 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1368 list_del(&link->cset_link);
1369 list_del(&link->cgrp_link);
1370 kfree(link);
1371 }
1372
1373 spin_unlock_irq(&css_set_lock);
1374
1375 WARN_ON_ONCE(list_empty(&root->root_list));
1376 list_del_rcu(&root->root_list);
1377 cgroup_root_count--;
1378
1379 if (!have_favordynmods)
1380 cgroup_favor_dynmods(root, false);
1381
1382 cgroup_exit_root_id(root);
1383
1384 cgroup_unlock();
1385
1386 kernfs_destroy_root(root->kf_root);
1387 cgroup_free_root(root);
1388 }
1389
1390 /*
1391 * Returned cgroup is without refcount but it's valid as long as cset pins it.
1392 */
__cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1393 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset,
1394 struct cgroup_root *root)
1395 {
1396 struct cgroup *res_cgroup = NULL;
1397
1398 if (cset == &init_css_set) {
1399 res_cgroup = &root->cgrp;
1400 } else if (root == &cgrp_dfl_root) {
1401 res_cgroup = cset->dfl_cgrp;
1402 } else {
1403 struct cgrp_cset_link *link;
1404 lockdep_assert_held(&css_set_lock);
1405
1406 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1407 struct cgroup *c = link->cgrp;
1408
1409 if (c->root == root) {
1410 res_cgroup = c;
1411 break;
1412 }
1413 }
1414 }
1415
1416 /*
1417 * If cgroup_mutex is not held, the cgrp_cset_link will be freed
1418 * before we remove the cgroup root from the root_list. Consequently,
1419 * when accessing a cgroup root, the cset_link may have already been
1420 * freed, resulting in a NULL res_cgroup. However, by holding the
1421 * cgroup_mutex, we ensure that res_cgroup can't be NULL.
1422 * If we don't hold cgroup_mutex in the caller, we must do the NULL
1423 * check.
1424 */
1425 return res_cgroup;
1426 }
1427
1428 /*
1429 * look up cgroup associated with current task's cgroup namespace on the
1430 * specified hierarchy
1431 */
1432 static struct cgroup *
current_cgns_cgroup_from_root(struct cgroup_root * root)1433 current_cgns_cgroup_from_root(struct cgroup_root *root)
1434 {
1435 struct cgroup *res = NULL;
1436 struct css_set *cset;
1437
1438 lockdep_assert_held(&css_set_lock);
1439
1440 rcu_read_lock();
1441
1442 cset = current->nsproxy->cgroup_ns->root_cset;
1443 res = __cset_cgroup_from_root(cset, root);
1444
1445 rcu_read_unlock();
1446
1447 /*
1448 * The namespace_sem is held by current, so the root cgroup can't
1449 * be umounted. Therefore, we can ensure that the res is non-NULL.
1450 */
1451 WARN_ON_ONCE(!res);
1452 return res;
1453 }
1454
1455 /*
1456 * Look up cgroup associated with current task's cgroup namespace on the default
1457 * hierarchy.
1458 *
1459 * Unlike current_cgns_cgroup_from_root(), this doesn't need locks:
1460 * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu
1461 * pointers.
1462 * - css_set_lock is not needed because we just read cset->dfl_cgrp.
1463 * - As a bonus returned cgrp is pinned with the current because it cannot
1464 * switch cgroup_ns asynchronously.
1465 */
current_cgns_cgroup_dfl(void)1466 static struct cgroup *current_cgns_cgroup_dfl(void)
1467 {
1468 struct css_set *cset;
1469
1470 if (current->nsproxy) {
1471 cset = current->nsproxy->cgroup_ns->root_cset;
1472 return __cset_cgroup_from_root(cset, &cgrp_dfl_root);
1473 } else {
1474 /*
1475 * NOTE: This function may be called from bpf_cgroup_from_id()
1476 * on a task which has already passed exit_task_namespaces() and
1477 * nsproxy == NULL. Fall back to cgrp_dfl_root which will make all
1478 * cgroups visible for lookups.
1479 */
1480 return &cgrp_dfl_root.cgrp;
1481 }
1482 }
1483
1484 /* look up cgroup associated with given css_set on the specified hierarchy */
cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1485 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1486 struct cgroup_root *root)
1487 {
1488 lockdep_assert_held(&css_set_lock);
1489
1490 return __cset_cgroup_from_root(cset, root);
1491 }
1492
1493 /*
1494 * Return the cgroup for "task" from the given hierarchy. Must be
1495 * called with css_set_lock held to prevent task's groups from being modified.
1496 * Must be called with either cgroup_mutex or rcu read lock to prevent the
1497 * cgroup root from being destroyed.
1498 */
task_cgroup_from_root(struct task_struct * task,struct cgroup_root * root)1499 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1500 struct cgroup_root *root)
1501 {
1502 /*
1503 * No need to lock the task - since we hold css_set_lock the
1504 * task can't change groups.
1505 */
1506 return cset_cgroup_from_root(task_css_set(task), root);
1507 }
1508
1509 /*
1510 * A task must hold cgroup_mutex to modify cgroups.
1511 *
1512 * Any task can increment and decrement the count field without lock.
1513 * So in general, code holding cgroup_mutex can't rely on the count
1514 * field not changing. However, if the count goes to zero, then only
1515 * cgroup_attach_task() can increment it again. Because a count of zero
1516 * means that no tasks are currently attached, therefore there is no
1517 * way a task attached to that cgroup can fork (the other way to
1518 * increment the count). So code holding cgroup_mutex can safely
1519 * assume that if the count is zero, it will stay zero. Similarly, if
1520 * a task holds cgroup_mutex on a cgroup with zero count, it
1521 * knows that the cgroup won't be removed, as cgroup_rmdir()
1522 * needs that mutex.
1523 *
1524 * A cgroup can only be deleted if both its 'count' of using tasks
1525 * is zero, and its list of 'children' cgroups is empty. Since all
1526 * tasks in the system use _some_ cgroup, and since there is always at
1527 * least one task in the system (init, pid == 1), therefore, root cgroup
1528 * always has either children cgroups and/or using tasks. So we don't
1529 * need a special hack to ensure that root cgroup cannot be deleted.
1530 *
1531 * P.S. One more locking exception. RCU is used to guard the
1532 * update of a tasks cgroup pointer by cgroup_attach_task()
1533 */
1534
1535 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1536
cgroup_file_name(struct cgroup * cgrp,const struct cftype * cft,char * buf)1537 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1538 char *buf)
1539 {
1540 struct cgroup_subsys *ss = cft->ss;
1541
1542 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1543 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1544 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1545
1546 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1547 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1548 cft->name);
1549 } else {
1550 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1551 }
1552 return buf;
1553 }
1554
1555 /**
1556 * cgroup_file_mode - deduce file mode of a control file
1557 * @cft: the control file in question
1558 *
1559 * S_IRUGO for read, S_IWUSR for write.
1560 */
cgroup_file_mode(const struct cftype * cft)1561 static umode_t cgroup_file_mode(const struct cftype *cft)
1562 {
1563 umode_t mode = 0;
1564
1565 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1566 mode |= S_IRUGO;
1567
1568 if (cft->write_u64 || cft->write_s64 || cft->write) {
1569 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1570 mode |= S_IWUGO;
1571 else
1572 mode |= S_IWUSR;
1573 }
1574
1575 return mode;
1576 }
1577
1578 /**
1579 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1580 * @subtree_control: the new subtree_control mask to consider
1581 * @this_ss_mask: available subsystems
1582 *
1583 * On the default hierarchy, a subsystem may request other subsystems to be
1584 * enabled together through its ->depends_on mask. In such cases, more
1585 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1586 *
1587 * This function calculates which subsystems need to be enabled if
1588 * @subtree_control is to be applied while restricted to @this_ss_mask.
1589 */
cgroup_calc_subtree_ss_mask(u16 subtree_control,u16 this_ss_mask)1590 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1591 {
1592 u16 cur_ss_mask = subtree_control;
1593 struct cgroup_subsys *ss;
1594 int ssid;
1595
1596 lockdep_assert_held(&cgroup_mutex);
1597
1598 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1599
1600 while (true) {
1601 u16 new_ss_mask = cur_ss_mask;
1602
1603 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1604 new_ss_mask |= ss->depends_on;
1605 } while_each_subsys_mask();
1606
1607 /*
1608 * Mask out subsystems which aren't available. This can
1609 * happen only if some depended-upon subsystems were bound
1610 * to non-default hierarchies.
1611 */
1612 new_ss_mask &= this_ss_mask;
1613
1614 if (new_ss_mask == cur_ss_mask)
1615 break;
1616 cur_ss_mask = new_ss_mask;
1617 }
1618
1619 return cur_ss_mask;
1620 }
1621
1622 /**
1623 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1624 * @kn: the kernfs_node being serviced
1625 *
1626 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1627 * the method finishes if locking succeeded. Note that once this function
1628 * returns the cgroup returned by cgroup_kn_lock_live() may become
1629 * inaccessible any time. If the caller intends to continue to access the
1630 * cgroup, it should pin it before invoking this function.
1631 */
cgroup_kn_unlock(struct kernfs_node * kn)1632 void cgroup_kn_unlock(struct kernfs_node *kn)
1633 {
1634 struct cgroup *cgrp;
1635
1636 if (kernfs_type(kn) == KERNFS_DIR)
1637 cgrp = kn->priv;
1638 else
1639 cgrp = kn_priv(kn);
1640
1641 cgroup_unlock();
1642
1643 kernfs_unbreak_active_protection(kn);
1644 cgroup_put(cgrp);
1645 }
1646
1647 /**
1648 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1649 * @kn: the kernfs_node being serviced
1650 * @drain_offline: perform offline draining on the cgroup
1651 *
1652 * This helper is to be used by a cgroup kernfs method currently servicing
1653 * @kn. It breaks the active protection, performs cgroup locking and
1654 * verifies that the associated cgroup is alive. Returns the cgroup if
1655 * alive; otherwise, %NULL. A successful return should be undone by a
1656 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1657 * cgroup is drained of offlining csses before return.
1658 *
1659 * Any cgroup kernfs method implementation which requires locking the
1660 * associated cgroup should use this helper. It avoids nesting cgroup
1661 * locking under kernfs active protection and allows all kernfs operations
1662 * including self-removal.
1663 */
cgroup_kn_lock_live(struct kernfs_node * kn,bool drain_offline)1664 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1665 {
1666 struct cgroup *cgrp;
1667
1668 if (kernfs_type(kn) == KERNFS_DIR)
1669 cgrp = kn->priv;
1670 else
1671 cgrp = kn_priv(kn);
1672
1673 /*
1674 * We're gonna grab cgroup_mutex which nests outside kernfs
1675 * active_ref. cgroup liveliness check alone provides enough
1676 * protection against removal. Ensure @cgrp stays accessible and
1677 * break the active_ref protection.
1678 */
1679 if (!cgroup_tryget(cgrp))
1680 return NULL;
1681 kernfs_break_active_protection(kn);
1682
1683 if (drain_offline)
1684 cgroup_lock_and_drain_offline(cgrp);
1685 else
1686 cgroup_lock();
1687
1688 if (!cgroup_is_dead(cgrp))
1689 return cgrp;
1690
1691 cgroup_kn_unlock(kn);
1692 return NULL;
1693 }
1694
cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)1695 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1696 {
1697 char name[CGROUP_FILE_NAME_MAX];
1698
1699 lockdep_assert_held(&cgroup_mutex);
1700
1701 if (cft->file_offset) {
1702 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1703 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1704
1705 spin_lock_irq(&cgroup_file_kn_lock);
1706 cfile->kn = NULL;
1707 spin_unlock_irq(&cgroup_file_kn_lock);
1708
1709 timer_delete_sync(&cfile->notify_timer);
1710 }
1711
1712 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1713 }
1714
1715 /**
1716 * css_clear_dir - remove subsys files in a cgroup directory
1717 * @css: target css
1718 */
css_clear_dir(struct cgroup_subsys_state * css)1719 static void css_clear_dir(struct cgroup_subsys_state *css)
1720 {
1721 struct cgroup *cgrp = css->cgroup;
1722 struct cftype *cfts;
1723
1724 if (!(css->flags & CSS_VISIBLE))
1725 return;
1726
1727 css->flags &= ~CSS_VISIBLE;
1728
1729 if (css_is_self(css)) {
1730 if (cgroup_on_dfl(cgrp)) {
1731 cgroup_addrm_files(css, cgrp,
1732 cgroup_base_files, false);
1733 if (cgroup_psi_enabled())
1734 cgroup_addrm_files(css, cgrp,
1735 cgroup_psi_files, false);
1736 } else {
1737 cgroup_addrm_files(css, cgrp,
1738 cgroup1_base_files, false);
1739 }
1740 } else {
1741 list_for_each_entry(cfts, &css->ss->cfts, node)
1742 cgroup_addrm_files(css, cgrp, cfts, false);
1743 }
1744 }
1745
1746 /**
1747 * css_populate_dir - create subsys files in a cgroup directory
1748 * @css: target css
1749 *
1750 * On failure, no file is added.
1751 */
css_populate_dir(struct cgroup_subsys_state * css)1752 static int css_populate_dir(struct cgroup_subsys_state *css)
1753 {
1754 struct cgroup *cgrp = css->cgroup;
1755 struct cftype *cfts, *failed_cfts;
1756 int ret;
1757
1758 if (css->flags & CSS_VISIBLE)
1759 return 0;
1760
1761 if (css_is_self(css)) {
1762 if (cgroup_on_dfl(cgrp)) {
1763 ret = cgroup_addrm_files(css, cgrp,
1764 cgroup_base_files, true);
1765 if (ret < 0)
1766 return ret;
1767
1768 if (cgroup_psi_enabled()) {
1769 ret = cgroup_addrm_files(css, cgrp,
1770 cgroup_psi_files, true);
1771 if (ret < 0) {
1772 cgroup_addrm_files(css, cgrp,
1773 cgroup_base_files, false);
1774 return ret;
1775 }
1776 }
1777 } else {
1778 ret = cgroup_addrm_files(css, cgrp,
1779 cgroup1_base_files, true);
1780 if (ret < 0)
1781 return ret;
1782 }
1783 } else {
1784 list_for_each_entry(cfts, &css->ss->cfts, node) {
1785 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1786 if (ret < 0) {
1787 failed_cfts = cfts;
1788 goto err;
1789 }
1790 }
1791 }
1792
1793 css->flags |= CSS_VISIBLE;
1794
1795 return 0;
1796 err:
1797 list_for_each_entry(cfts, &css->ss->cfts, node) {
1798 if (cfts == failed_cfts)
1799 break;
1800 cgroup_addrm_files(css, cgrp, cfts, false);
1801 }
1802 return ret;
1803 }
1804
rebind_subsystems(struct cgroup_root * dst_root,u16 ss_mask)1805 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1806 {
1807 struct cgroup *dcgrp = &dst_root->cgrp;
1808 struct cgroup_subsys *ss;
1809 int ssid, ret;
1810 u16 dfl_disable_ss_mask = 0;
1811
1812 lockdep_assert_held(&cgroup_mutex);
1813
1814 do_each_subsys_mask(ss, ssid, ss_mask) {
1815 /*
1816 * If @ss has non-root csses attached to it, can't move.
1817 * If @ss is an implicit controller, it is exempt from this
1818 * rule and can be stolen.
1819 */
1820 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1821 !ss->implicit_on_dfl)
1822 return -EBUSY;
1823
1824 /* can't move between two non-dummy roots either */
1825 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1826 return -EBUSY;
1827
1828 /*
1829 * Collect ssid's that need to be disabled from default
1830 * hierarchy.
1831 */
1832 if (ss->root == &cgrp_dfl_root)
1833 dfl_disable_ss_mask |= 1 << ssid;
1834
1835 } while_each_subsys_mask();
1836
1837 if (dfl_disable_ss_mask) {
1838 struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1839
1840 /*
1841 * Controllers from default hierarchy that need to be rebound
1842 * are all disabled together in one go.
1843 */
1844 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1845 WARN_ON(cgroup_apply_control(scgrp));
1846 cgroup_finalize_control(scgrp, 0);
1847 }
1848
1849 do_each_subsys_mask(ss, ssid, ss_mask) {
1850 struct cgroup_root *src_root = ss->root;
1851 struct cgroup *scgrp = &src_root->cgrp;
1852 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1853 struct css_set *cset, *cset_pos;
1854 struct css_task_iter *it;
1855
1856 WARN_ON(!css || cgroup_css(dcgrp, ss));
1857
1858 if (src_root != &cgrp_dfl_root) {
1859 /* disable from the source */
1860 src_root->subsys_mask &= ~(1 << ssid);
1861 WARN_ON(cgroup_apply_control(scgrp));
1862 cgroup_finalize_control(scgrp, 0);
1863 }
1864
1865 /* rebind */
1866 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1867 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1868 ss->root = dst_root;
1869
1870 spin_lock_irq(&css_set_lock);
1871 css->cgroup = dcgrp;
1872 WARN_ON(!list_empty(&dcgrp->e_csets[ss->id]));
1873 list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id],
1874 e_cset_node[ss->id]) {
1875 list_move_tail(&cset->e_cset_node[ss->id],
1876 &dcgrp->e_csets[ss->id]);
1877 /*
1878 * all css_sets of scgrp together in same order to dcgrp,
1879 * patch in-flight iterators to preserve correct iteration.
1880 * since the iterator is always advanced right away and
1881 * finished when it->cset_pos meets it->cset_head, so only
1882 * update it->cset_head is enough here.
1883 */
1884 list_for_each_entry(it, &cset->task_iters, iters_node)
1885 if (it->cset_head == &scgrp->e_csets[ss->id])
1886 it->cset_head = &dcgrp->e_csets[ss->id];
1887 }
1888 spin_unlock_irq(&css_set_lock);
1889
1890 /* default hierarchy doesn't enable controllers by default */
1891 dst_root->subsys_mask |= 1 << ssid;
1892 if (dst_root == &cgrp_dfl_root) {
1893 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1894 } else {
1895 dcgrp->subtree_control |= 1 << ssid;
1896 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1897 }
1898
1899 ret = cgroup_apply_control(dcgrp);
1900 if (ret)
1901 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1902 ss->name, ret);
1903
1904 if (ss->bind)
1905 ss->bind(css);
1906 } while_each_subsys_mask();
1907
1908 kernfs_activate(dcgrp->kn);
1909 return 0;
1910 }
1911
cgroup_show_path(struct seq_file * sf,struct kernfs_node * kf_node,struct kernfs_root * kf_root)1912 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1913 struct kernfs_root *kf_root)
1914 {
1915 int len = 0;
1916 char *buf = NULL;
1917 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1918 struct cgroup *ns_cgroup;
1919
1920 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1921 if (!buf)
1922 return -ENOMEM;
1923
1924 spin_lock_irq(&css_set_lock);
1925 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1926 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1927 spin_unlock_irq(&css_set_lock);
1928
1929 if (len == -E2BIG)
1930 len = -ERANGE;
1931 else if (len > 0) {
1932 seq_escape(sf, buf, " \t\n\\");
1933 len = 0;
1934 }
1935 kfree(buf);
1936 return len;
1937 }
1938
1939 enum cgroup2_param {
1940 Opt_nsdelegate,
1941 Opt_favordynmods,
1942 Opt_memory_localevents,
1943 Opt_memory_recursiveprot,
1944 Opt_memory_hugetlb_accounting,
1945 Opt_pids_localevents,
1946 nr__cgroup2_params
1947 };
1948
1949 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1950 fsparam_flag("nsdelegate", Opt_nsdelegate),
1951 fsparam_flag("favordynmods", Opt_favordynmods),
1952 fsparam_flag("memory_localevents", Opt_memory_localevents),
1953 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot),
1954 fsparam_flag("memory_hugetlb_accounting", Opt_memory_hugetlb_accounting),
1955 fsparam_flag("pids_localevents", Opt_pids_localevents),
1956 {}
1957 };
1958
cgroup2_parse_param(struct fs_context * fc,struct fs_parameter * param)1959 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1960 {
1961 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1962 struct fs_parse_result result;
1963 int opt;
1964
1965 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1966 if (opt < 0)
1967 return opt;
1968
1969 switch (opt) {
1970 case Opt_nsdelegate:
1971 ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1972 return 0;
1973 case Opt_favordynmods:
1974 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1975 return 0;
1976 case Opt_memory_localevents:
1977 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1978 return 0;
1979 case Opt_memory_recursiveprot:
1980 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1981 return 0;
1982 case Opt_memory_hugetlb_accounting:
1983 ctx->flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1984 return 0;
1985 case Opt_pids_localevents:
1986 ctx->flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS;
1987 return 0;
1988 }
1989 return -EINVAL;
1990 }
1991
of_peak(struct kernfs_open_file * of)1992 struct cgroup_of_peak *of_peak(struct kernfs_open_file *of)
1993 {
1994 struct cgroup_file_ctx *ctx = of->priv;
1995
1996 return &ctx->peak;
1997 }
1998
apply_cgroup_root_flags(unsigned int root_flags)1999 static void apply_cgroup_root_flags(unsigned int root_flags)
2000 {
2001 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
2002 if (root_flags & CGRP_ROOT_NS_DELEGATE)
2003 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
2004 else
2005 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
2006
2007 cgroup_favor_dynmods(&cgrp_dfl_root,
2008 root_flags & CGRP_ROOT_FAVOR_DYNMODS);
2009
2010 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
2011 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
2012 else
2013 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
2014
2015 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
2016 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
2017 else
2018 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
2019
2020 if (root_flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
2021 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
2022 else
2023 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
2024
2025 if (root_flags & CGRP_ROOT_PIDS_LOCAL_EVENTS)
2026 cgrp_dfl_root.flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS;
2027 else
2028 cgrp_dfl_root.flags &= ~CGRP_ROOT_PIDS_LOCAL_EVENTS;
2029 }
2030 }
2031
cgroup_show_options(struct seq_file * seq,struct kernfs_root * kf_root)2032 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
2033 {
2034 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
2035 seq_puts(seq, ",nsdelegate");
2036 if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS)
2037 seq_puts(seq, ",favordynmods");
2038 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
2039 seq_puts(seq, ",memory_localevents");
2040 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
2041 seq_puts(seq, ",memory_recursiveprot");
2042 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
2043 seq_puts(seq, ",memory_hugetlb_accounting");
2044 if (cgrp_dfl_root.flags & CGRP_ROOT_PIDS_LOCAL_EVENTS)
2045 seq_puts(seq, ",pids_localevents");
2046 return 0;
2047 }
2048
cgroup_reconfigure(struct fs_context * fc)2049 static int cgroup_reconfigure(struct fs_context *fc)
2050 {
2051 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2052
2053 apply_cgroup_root_flags(ctx->flags);
2054 return 0;
2055 }
2056
init_cgroup_housekeeping(struct cgroup * cgrp)2057 static void init_cgroup_housekeeping(struct cgroup *cgrp)
2058 {
2059 struct cgroup_subsys *ss;
2060 int ssid;
2061
2062 INIT_LIST_HEAD(&cgrp->self.sibling);
2063 INIT_LIST_HEAD(&cgrp->self.children);
2064 INIT_LIST_HEAD(&cgrp->cset_links);
2065 INIT_LIST_HEAD(&cgrp->pidlists);
2066 mutex_init(&cgrp->pidlist_mutex);
2067 cgrp->self.cgroup = cgrp;
2068 cgrp->self.flags |= CSS_ONLINE;
2069 cgrp->dom_cgrp = cgrp;
2070 cgrp->max_descendants = INT_MAX;
2071 cgrp->max_depth = INT_MAX;
2072 prev_cputime_init(&cgrp->prev_cputime);
2073
2074 for_each_subsys(ss, ssid)
2075 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
2076
2077 #ifdef CONFIG_CGROUP_BPF
2078 for (int i = 0; i < ARRAY_SIZE(cgrp->bpf.revisions); i++)
2079 cgrp->bpf.revisions[i] = 1;
2080 #endif
2081
2082 init_waitqueue_head(&cgrp->offline_waitq);
2083 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
2084 }
2085
init_cgroup_root(struct cgroup_fs_context * ctx)2086 void init_cgroup_root(struct cgroup_fs_context *ctx)
2087 {
2088 struct cgroup_root *root = ctx->root;
2089 struct cgroup *cgrp = &root->cgrp;
2090
2091 INIT_LIST_HEAD_RCU(&root->root_list);
2092 atomic_set(&root->nr_cgrps, 1);
2093 cgrp->root = root;
2094 init_cgroup_housekeeping(cgrp);
2095
2096 /* DYNMODS must be modified through cgroup_favor_dynmods() */
2097 root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS;
2098 if (ctx->release_agent)
2099 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
2100 if (ctx->name)
2101 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
2102 if (ctx->cpuset_clone_children)
2103 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
2104 }
2105
cgroup_setup_root(struct cgroup_root * root,u16 ss_mask)2106 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2107 {
2108 LIST_HEAD(tmp_links);
2109 struct cgroup *root_cgrp = &root->cgrp;
2110 struct kernfs_syscall_ops *kf_sops;
2111 struct css_set *cset;
2112 int i, ret;
2113
2114 lockdep_assert_held(&cgroup_mutex);
2115
2116 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2117 0, GFP_KERNEL);
2118 if (ret)
2119 goto out;
2120
2121 /*
2122 * We're accessing css_set_count without locking css_set_lock here,
2123 * but that's OK - it can only be increased by someone holding
2124 * cgroup_lock, and that's us. Later rebinding may disable
2125 * controllers on the default hierarchy and thus create new csets,
2126 * which can't be more than the existing ones. Allocate 2x.
2127 */
2128 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2129 if (ret)
2130 goto cancel_ref;
2131
2132 ret = cgroup_init_root_id(root);
2133 if (ret)
2134 goto cancel_ref;
2135
2136 kf_sops = root == &cgrp_dfl_root ?
2137 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2138
2139 root->kf_root = kernfs_create_root(kf_sops,
2140 KERNFS_ROOT_CREATE_DEACTIVATED |
2141 KERNFS_ROOT_SUPPORT_EXPORTOP |
2142 KERNFS_ROOT_SUPPORT_USER_XATTR |
2143 KERNFS_ROOT_INVARIANT_PARENT,
2144 root_cgrp);
2145 if (IS_ERR(root->kf_root)) {
2146 ret = PTR_ERR(root->kf_root);
2147 goto exit_root_id;
2148 }
2149 root_cgrp->kn = kernfs_root_to_node(root->kf_root);
2150 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2151 root_cgrp->ancestors[0] = root_cgrp;
2152
2153 ret = css_populate_dir(&root_cgrp->self);
2154 if (ret)
2155 goto destroy_root;
2156
2157 ret = css_rstat_init(&root_cgrp->self);
2158 if (ret)
2159 goto destroy_root;
2160
2161 ret = rebind_subsystems(root, ss_mask);
2162 if (ret)
2163 goto exit_stats;
2164
2165 ret = blocking_notifier_call_chain(&cgroup_lifetime_notifier,
2166 CGROUP_LIFETIME_ONLINE, root_cgrp);
2167 WARN_ON_ONCE(notifier_to_errno(ret));
2168
2169 trace_cgroup_setup_root(root);
2170
2171 /*
2172 * There must be no failure case after here, since rebinding takes
2173 * care of subsystems' refcounts, which are explicitly dropped in
2174 * the failure exit path.
2175 */
2176 list_add_rcu(&root->root_list, &cgroup_roots);
2177 cgroup_root_count++;
2178
2179 /*
2180 * Link the root cgroup in this hierarchy into all the css_set
2181 * objects.
2182 */
2183 spin_lock_irq(&css_set_lock);
2184 hash_for_each(css_set_table, i, cset, hlist) {
2185 link_css_set(&tmp_links, cset, root_cgrp);
2186 if (css_set_populated(cset))
2187 cgroup_update_populated(root_cgrp, true);
2188 }
2189 spin_unlock_irq(&css_set_lock);
2190
2191 BUG_ON(!list_empty(&root_cgrp->self.children));
2192 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2193
2194 ret = 0;
2195 goto out;
2196
2197 exit_stats:
2198 css_rstat_exit(&root_cgrp->self);
2199 destroy_root:
2200 kernfs_destroy_root(root->kf_root);
2201 root->kf_root = NULL;
2202 exit_root_id:
2203 cgroup_exit_root_id(root);
2204 cancel_ref:
2205 percpu_ref_exit(&root_cgrp->self.refcnt);
2206 out:
2207 free_cgrp_cset_links(&tmp_links);
2208 return ret;
2209 }
2210
cgroup_do_get_tree(struct fs_context * fc)2211 int cgroup_do_get_tree(struct fs_context *fc)
2212 {
2213 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2214 int ret;
2215
2216 ctx->kfc.root = ctx->root->kf_root;
2217 if (fc->fs_type == &cgroup2_fs_type)
2218 ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2219 else
2220 ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2221 ret = kernfs_get_tree(fc);
2222
2223 /*
2224 * In non-init cgroup namespace, instead of root cgroup's dentry,
2225 * we return the dentry corresponding to the cgroupns->root_cgrp.
2226 */
2227 if (!ret && ctx->ns != &init_cgroup_ns) {
2228 struct dentry *nsdentry;
2229 struct super_block *sb = fc->root->d_sb;
2230 struct cgroup *cgrp;
2231
2232 cgroup_lock();
2233 spin_lock_irq(&css_set_lock);
2234
2235 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2236
2237 spin_unlock_irq(&css_set_lock);
2238 cgroup_unlock();
2239
2240 nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2241 dput(fc->root);
2242 if (IS_ERR(nsdentry)) {
2243 deactivate_locked_super(sb);
2244 ret = PTR_ERR(nsdentry);
2245 nsdentry = NULL;
2246 }
2247 fc->root = nsdentry;
2248 }
2249
2250 if (!ctx->kfc.new_sb_created)
2251 cgroup_put(&ctx->root->cgrp);
2252
2253 return ret;
2254 }
2255
2256 /*
2257 * Destroy a cgroup filesystem context.
2258 */
cgroup_fs_context_free(struct fs_context * fc)2259 static void cgroup_fs_context_free(struct fs_context *fc)
2260 {
2261 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2262
2263 kfree(ctx->name);
2264 kfree(ctx->release_agent);
2265 put_cgroup_ns(ctx->ns);
2266 kernfs_free_fs_context(fc);
2267 kfree(ctx);
2268 }
2269
cgroup_get_tree(struct fs_context * fc)2270 static int cgroup_get_tree(struct fs_context *fc)
2271 {
2272 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2273 int ret;
2274
2275 WRITE_ONCE(cgrp_dfl_visible, true);
2276 cgroup_get_live(&cgrp_dfl_root.cgrp);
2277 ctx->root = &cgrp_dfl_root;
2278
2279 ret = cgroup_do_get_tree(fc);
2280 if (!ret)
2281 apply_cgroup_root_flags(ctx->flags);
2282 return ret;
2283 }
2284
2285 static const struct fs_context_operations cgroup_fs_context_ops = {
2286 .free = cgroup_fs_context_free,
2287 .parse_param = cgroup2_parse_param,
2288 .get_tree = cgroup_get_tree,
2289 .reconfigure = cgroup_reconfigure,
2290 };
2291
2292 static const struct fs_context_operations cgroup1_fs_context_ops = {
2293 .free = cgroup_fs_context_free,
2294 .parse_param = cgroup1_parse_param,
2295 .get_tree = cgroup1_get_tree,
2296 .reconfigure = cgroup1_reconfigure,
2297 };
2298
2299 /*
2300 * Initialise the cgroup filesystem creation/reconfiguration context. Notably,
2301 * we select the namespace we're going to use.
2302 */
cgroup_init_fs_context(struct fs_context * fc)2303 static int cgroup_init_fs_context(struct fs_context *fc)
2304 {
2305 struct cgroup_fs_context *ctx;
2306
2307 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2308 if (!ctx)
2309 return -ENOMEM;
2310
2311 ctx->ns = current->nsproxy->cgroup_ns;
2312 get_cgroup_ns(ctx->ns);
2313 fc->fs_private = &ctx->kfc;
2314 if (fc->fs_type == &cgroup2_fs_type)
2315 fc->ops = &cgroup_fs_context_ops;
2316 else
2317 fc->ops = &cgroup1_fs_context_ops;
2318 put_user_ns(fc->user_ns);
2319 fc->user_ns = get_user_ns(ctx->ns->user_ns);
2320 fc->global = true;
2321
2322 if (have_favordynmods)
2323 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
2324
2325 return 0;
2326 }
2327
cgroup_kill_sb(struct super_block * sb)2328 static void cgroup_kill_sb(struct super_block *sb)
2329 {
2330 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2331 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2332
2333 /*
2334 * If @root doesn't have any children, start killing it.
2335 * This prevents new mounts by disabling percpu_ref_tryget_live().
2336 *
2337 * And don't kill the default root.
2338 */
2339 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2340 !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2341 percpu_ref_kill(&root->cgrp.self.refcnt);
2342 cgroup_put(&root->cgrp);
2343 kernfs_kill_sb(sb);
2344 }
2345
2346 struct file_system_type cgroup_fs_type = {
2347 .name = "cgroup",
2348 .init_fs_context = cgroup_init_fs_context,
2349 .parameters = cgroup1_fs_parameters,
2350 .kill_sb = cgroup_kill_sb,
2351 .fs_flags = FS_USERNS_MOUNT,
2352 };
2353
2354 static struct file_system_type cgroup2_fs_type = {
2355 .name = "cgroup2",
2356 .init_fs_context = cgroup_init_fs_context,
2357 .parameters = cgroup2_fs_parameters,
2358 .kill_sb = cgroup_kill_sb,
2359 .fs_flags = FS_USERNS_MOUNT,
2360 };
2361
2362 #ifdef CONFIG_CPUSETS_V1
2363 enum cpuset_param {
2364 Opt_cpuset_v2_mode,
2365 };
2366
2367 static const struct fs_parameter_spec cpuset_fs_parameters[] = {
2368 fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode),
2369 {}
2370 };
2371
cpuset_parse_param(struct fs_context * fc,struct fs_parameter * param)2372 static int cpuset_parse_param(struct fs_context *fc, struct fs_parameter *param)
2373 {
2374 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2375 struct fs_parse_result result;
2376 int opt;
2377
2378 opt = fs_parse(fc, cpuset_fs_parameters, param, &result);
2379 if (opt < 0)
2380 return opt;
2381
2382 switch (opt) {
2383 case Opt_cpuset_v2_mode:
2384 ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
2385 return 0;
2386 }
2387 return -EINVAL;
2388 }
2389
2390 static const struct fs_context_operations cpuset_fs_context_ops = {
2391 .get_tree = cgroup1_get_tree,
2392 .free = cgroup_fs_context_free,
2393 .parse_param = cpuset_parse_param,
2394 };
2395
2396 /*
2397 * This is ugly, but preserves the userspace API for existing cpuset
2398 * users. If someone tries to mount the "cpuset" filesystem, we
2399 * silently switch it to mount "cgroup" instead
2400 */
cpuset_init_fs_context(struct fs_context * fc)2401 static int cpuset_init_fs_context(struct fs_context *fc)
2402 {
2403 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2404 struct cgroup_fs_context *ctx;
2405 int err;
2406
2407 err = cgroup_init_fs_context(fc);
2408 if (err) {
2409 kfree(agent);
2410 return err;
2411 }
2412
2413 fc->ops = &cpuset_fs_context_ops;
2414
2415 ctx = cgroup_fc2context(fc);
2416 ctx->subsys_mask = 1 << cpuset_cgrp_id;
2417 ctx->flags |= CGRP_ROOT_NOPREFIX;
2418 ctx->release_agent = agent;
2419
2420 get_filesystem(&cgroup_fs_type);
2421 put_filesystem(fc->fs_type);
2422 fc->fs_type = &cgroup_fs_type;
2423
2424 return 0;
2425 }
2426
2427 static struct file_system_type cpuset_fs_type = {
2428 .name = "cpuset",
2429 .init_fs_context = cpuset_init_fs_context,
2430 .parameters = cpuset_fs_parameters,
2431 .fs_flags = FS_USERNS_MOUNT,
2432 };
2433 #endif
2434
cgroup_path_ns_locked(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2435 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2436 struct cgroup_namespace *ns)
2437 {
2438 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2439
2440 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2441 }
2442
cgroup_path_ns(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2443 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2444 struct cgroup_namespace *ns)
2445 {
2446 int ret;
2447
2448 cgroup_lock();
2449 spin_lock_irq(&css_set_lock);
2450
2451 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2452
2453 spin_unlock_irq(&css_set_lock);
2454 cgroup_unlock();
2455
2456 return ret;
2457 }
2458 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2459
2460 /**
2461 * cgroup_attach_lock - Lock for ->attach()
2462 * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem
2463 *
2464 * cgroup migration sometimes needs to stabilize threadgroups against forks and
2465 * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
2466 * implementations (e.g. cpuset), also need to disable CPU hotplug.
2467 * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
2468 * lead to deadlocks.
2469 *
2470 * Bringing up a CPU may involve creating and destroying tasks which requires
2471 * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
2472 * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
2473 * write-locking threadgroup_rwsem, the locking order is reversed and we end up
2474 * waiting for an on-going CPU hotplug operation which in turn is waiting for
2475 * the threadgroup_rwsem to be released to create new tasks. For more details:
2476 *
2477 * http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
2478 *
2479 * Resolve the situation by always acquiring cpus_read_lock() before optionally
2480 * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
2481 * CPU hotplug is disabled on entry.
2482 */
cgroup_attach_lock(bool lock_threadgroup)2483 void cgroup_attach_lock(bool lock_threadgroup)
2484 {
2485 cpus_read_lock();
2486 if (lock_threadgroup)
2487 percpu_down_write(&cgroup_threadgroup_rwsem);
2488 }
2489
2490 /**
2491 * cgroup_attach_unlock - Undo cgroup_attach_lock()
2492 * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem
2493 */
cgroup_attach_unlock(bool lock_threadgroup)2494 void cgroup_attach_unlock(bool lock_threadgroup)
2495 {
2496 if (lock_threadgroup)
2497 percpu_up_write(&cgroup_threadgroup_rwsem);
2498 cpus_read_unlock();
2499 }
2500
2501 /**
2502 * cgroup_migrate_add_task - add a migration target task to a migration context
2503 * @task: target task
2504 * @mgctx: target migration context
2505 *
2506 * Add @task, which is a migration target, to @mgctx->tset. This function
2507 * becomes noop if @task doesn't need to be migrated. @task's css_set
2508 * should have been added as a migration source and @task->cg_list will be
2509 * moved from the css_set's tasks list to mg_tasks one.
2510 */
cgroup_migrate_add_task(struct task_struct * task,struct cgroup_mgctx * mgctx)2511 static void cgroup_migrate_add_task(struct task_struct *task,
2512 struct cgroup_mgctx *mgctx)
2513 {
2514 struct css_set *cset;
2515
2516 lockdep_assert_held(&css_set_lock);
2517
2518 /* @task either already exited or can't exit until the end */
2519 if (task->flags & PF_EXITING)
2520 return;
2521
2522 /* cgroup_threadgroup_rwsem protects racing against forks */
2523 WARN_ON_ONCE(list_empty(&task->cg_list));
2524
2525 cset = task_css_set(task);
2526 if (!cset->mg_src_cgrp)
2527 return;
2528
2529 mgctx->tset.nr_tasks++;
2530
2531 list_move_tail(&task->cg_list, &cset->mg_tasks);
2532 if (list_empty(&cset->mg_node))
2533 list_add_tail(&cset->mg_node,
2534 &mgctx->tset.src_csets);
2535 if (list_empty(&cset->mg_dst_cset->mg_node))
2536 list_add_tail(&cset->mg_dst_cset->mg_node,
2537 &mgctx->tset.dst_csets);
2538 }
2539
2540 /**
2541 * cgroup_taskset_first - reset taskset and return the first task
2542 * @tset: taskset of interest
2543 * @dst_cssp: output variable for the destination css
2544 *
2545 * @tset iteration is initialized and the first task is returned.
2546 */
cgroup_taskset_first(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2547 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2548 struct cgroup_subsys_state **dst_cssp)
2549 {
2550 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2551 tset->cur_task = NULL;
2552
2553 return cgroup_taskset_next(tset, dst_cssp);
2554 }
2555
2556 /**
2557 * cgroup_taskset_next - iterate to the next task in taskset
2558 * @tset: taskset of interest
2559 * @dst_cssp: output variable for the destination css
2560 *
2561 * Return the next task in @tset. Iteration must have been initialized
2562 * with cgroup_taskset_first().
2563 */
cgroup_taskset_next(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2564 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2565 struct cgroup_subsys_state **dst_cssp)
2566 {
2567 struct css_set *cset = tset->cur_cset;
2568 struct task_struct *task = tset->cur_task;
2569
2570 while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
2571 if (!task)
2572 task = list_first_entry(&cset->mg_tasks,
2573 struct task_struct, cg_list);
2574 else
2575 task = list_next_entry(task, cg_list);
2576
2577 if (&task->cg_list != &cset->mg_tasks) {
2578 tset->cur_cset = cset;
2579 tset->cur_task = task;
2580
2581 /*
2582 * This function may be called both before and
2583 * after cgroup_migrate_execute(). The two cases
2584 * can be distinguished by looking at whether @cset
2585 * has its ->mg_dst_cset set.
2586 */
2587 if (cset->mg_dst_cset)
2588 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2589 else
2590 *dst_cssp = cset->subsys[tset->ssid];
2591
2592 return task;
2593 }
2594
2595 cset = list_next_entry(cset, mg_node);
2596 task = NULL;
2597 }
2598
2599 return NULL;
2600 }
2601
2602 /**
2603 * cgroup_migrate_execute - migrate a taskset
2604 * @mgctx: migration context
2605 *
2606 * Migrate tasks in @mgctx as setup by migration preparation functions.
2607 * This function fails iff one of the ->can_attach callbacks fails and
2608 * guarantees that either all or none of the tasks in @mgctx are migrated.
2609 * @mgctx is consumed regardless of success.
2610 */
cgroup_migrate_execute(struct cgroup_mgctx * mgctx)2611 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2612 {
2613 struct cgroup_taskset *tset = &mgctx->tset;
2614 struct cgroup_subsys *ss;
2615 struct task_struct *task, *tmp_task;
2616 struct css_set *cset, *tmp_cset;
2617 int ssid, failed_ssid, ret;
2618
2619 /* check that we can legitimately attach to the cgroup */
2620 if (tset->nr_tasks) {
2621 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2622 if (ss->can_attach) {
2623 tset->ssid = ssid;
2624 ret = ss->can_attach(tset);
2625 if (ret) {
2626 failed_ssid = ssid;
2627 goto out_cancel_attach;
2628 }
2629 }
2630 } while_each_subsys_mask();
2631 }
2632
2633 /*
2634 * Now that we're guaranteed success, proceed to move all tasks to
2635 * the new cgroup. There are no failure cases after here, so this
2636 * is the commit point.
2637 */
2638 spin_lock_irq(&css_set_lock);
2639 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2640 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2641 struct css_set *from_cset = task_css_set(task);
2642 struct css_set *to_cset = cset->mg_dst_cset;
2643
2644 get_css_set(to_cset);
2645 to_cset->nr_tasks++;
2646 css_set_move_task(task, from_cset, to_cset, true);
2647 from_cset->nr_tasks--;
2648 /*
2649 * If the source or destination cgroup is frozen,
2650 * the task might require to change its state.
2651 */
2652 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2653 to_cset->dfl_cgrp);
2654 put_css_set_locked(from_cset);
2655
2656 }
2657 }
2658 spin_unlock_irq(&css_set_lock);
2659
2660 /*
2661 * Migration is committed, all target tasks are now on dst_csets.
2662 * Nothing is sensitive to fork() after this point. Notify
2663 * controllers that migration is complete.
2664 */
2665 tset->csets = &tset->dst_csets;
2666
2667 if (tset->nr_tasks) {
2668 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2669 if (ss->attach) {
2670 tset->ssid = ssid;
2671 ss->attach(tset);
2672 }
2673 } while_each_subsys_mask();
2674 }
2675
2676 ret = 0;
2677 goto out_release_tset;
2678
2679 out_cancel_attach:
2680 if (tset->nr_tasks) {
2681 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2682 if (ssid == failed_ssid)
2683 break;
2684 if (ss->cancel_attach) {
2685 tset->ssid = ssid;
2686 ss->cancel_attach(tset);
2687 }
2688 } while_each_subsys_mask();
2689 }
2690 out_release_tset:
2691 spin_lock_irq(&css_set_lock);
2692 list_splice_init(&tset->dst_csets, &tset->src_csets);
2693 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2694 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2695 list_del_init(&cset->mg_node);
2696 }
2697 spin_unlock_irq(&css_set_lock);
2698
2699 /*
2700 * Re-initialize the cgroup_taskset structure in case it is reused
2701 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2702 * iteration.
2703 */
2704 tset->nr_tasks = 0;
2705 tset->csets = &tset->src_csets;
2706 return ret;
2707 }
2708
2709 /**
2710 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2711 * @dst_cgrp: destination cgroup to test
2712 *
2713 * On the default hierarchy, except for the mixable, (possible) thread root
2714 * and threaded cgroups, subtree_control must be zero for migration
2715 * destination cgroups with tasks so that child cgroups don't compete
2716 * against tasks.
2717 */
cgroup_migrate_vet_dst(struct cgroup * dst_cgrp)2718 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2719 {
2720 /* v1 doesn't have any restriction */
2721 if (!cgroup_on_dfl(dst_cgrp))
2722 return 0;
2723
2724 /* verify @dst_cgrp can host resources */
2725 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2726 return -EOPNOTSUPP;
2727
2728 /*
2729 * If @dst_cgrp is already or can become a thread root or is
2730 * threaded, it doesn't matter.
2731 */
2732 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2733 return 0;
2734
2735 /* apply no-internal-process constraint */
2736 if (dst_cgrp->subtree_control)
2737 return -EBUSY;
2738
2739 return 0;
2740 }
2741
2742 /**
2743 * cgroup_migrate_finish - cleanup after attach
2744 * @mgctx: migration context
2745 *
2746 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2747 * those functions for details.
2748 */
cgroup_migrate_finish(struct cgroup_mgctx * mgctx)2749 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2750 {
2751 struct css_set *cset, *tmp_cset;
2752
2753 lockdep_assert_held(&cgroup_mutex);
2754
2755 spin_lock_irq(&css_set_lock);
2756
2757 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2758 mg_src_preload_node) {
2759 cset->mg_src_cgrp = NULL;
2760 cset->mg_dst_cgrp = NULL;
2761 cset->mg_dst_cset = NULL;
2762 list_del_init(&cset->mg_src_preload_node);
2763 put_css_set_locked(cset);
2764 }
2765
2766 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2767 mg_dst_preload_node) {
2768 cset->mg_src_cgrp = NULL;
2769 cset->mg_dst_cgrp = NULL;
2770 cset->mg_dst_cset = NULL;
2771 list_del_init(&cset->mg_dst_preload_node);
2772 put_css_set_locked(cset);
2773 }
2774
2775 spin_unlock_irq(&css_set_lock);
2776 }
2777
2778 /**
2779 * cgroup_migrate_add_src - add a migration source css_set
2780 * @src_cset: the source css_set to add
2781 * @dst_cgrp: the destination cgroup
2782 * @mgctx: migration context
2783 *
2784 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2785 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2786 * up by cgroup_migrate_finish().
2787 *
2788 * This function may be called without holding cgroup_threadgroup_rwsem
2789 * even if the target is a process. Threads may be created and destroyed
2790 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2791 * into play and the preloaded css_sets are guaranteed to cover all
2792 * migrations.
2793 */
cgroup_migrate_add_src(struct css_set * src_cset,struct cgroup * dst_cgrp,struct cgroup_mgctx * mgctx)2794 void cgroup_migrate_add_src(struct css_set *src_cset,
2795 struct cgroup *dst_cgrp,
2796 struct cgroup_mgctx *mgctx)
2797 {
2798 struct cgroup *src_cgrp;
2799
2800 lockdep_assert_held(&cgroup_mutex);
2801 lockdep_assert_held(&css_set_lock);
2802
2803 /*
2804 * If ->dead, @src_set is associated with one or more dead cgroups
2805 * and doesn't contain any migratable tasks. Ignore it early so
2806 * that the rest of migration path doesn't get confused by it.
2807 */
2808 if (src_cset->dead)
2809 return;
2810
2811 if (!list_empty(&src_cset->mg_src_preload_node))
2812 return;
2813
2814 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2815
2816 WARN_ON(src_cset->mg_src_cgrp);
2817 WARN_ON(src_cset->mg_dst_cgrp);
2818 WARN_ON(!list_empty(&src_cset->mg_tasks));
2819 WARN_ON(!list_empty(&src_cset->mg_node));
2820
2821 src_cset->mg_src_cgrp = src_cgrp;
2822 src_cset->mg_dst_cgrp = dst_cgrp;
2823 get_css_set(src_cset);
2824 list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
2825 }
2826
2827 /**
2828 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2829 * @mgctx: migration context
2830 *
2831 * Tasks are about to be moved and all the source css_sets have been
2832 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2833 * pins all destination css_sets, links each to its source, and append them
2834 * to @mgctx->preloaded_dst_csets.
2835 *
2836 * This function must be called after cgroup_migrate_add_src() has been
2837 * called on each migration source css_set. After migration is performed
2838 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2839 * @mgctx.
2840 */
cgroup_migrate_prepare_dst(struct cgroup_mgctx * mgctx)2841 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2842 {
2843 struct css_set *src_cset, *tmp_cset;
2844
2845 lockdep_assert_held(&cgroup_mutex);
2846
2847 /* look up the dst cset for each src cset and link it to src */
2848 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2849 mg_src_preload_node) {
2850 struct css_set *dst_cset;
2851 struct cgroup_subsys *ss;
2852 int ssid;
2853
2854 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2855 if (!dst_cset)
2856 return -ENOMEM;
2857
2858 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2859
2860 /*
2861 * If src cset equals dst, it's noop. Drop the src.
2862 * cgroup_migrate() will skip the cset too. Note that we
2863 * can't handle src == dst as some nodes are used by both.
2864 */
2865 if (src_cset == dst_cset) {
2866 src_cset->mg_src_cgrp = NULL;
2867 src_cset->mg_dst_cgrp = NULL;
2868 list_del_init(&src_cset->mg_src_preload_node);
2869 put_css_set(src_cset);
2870 put_css_set(dst_cset);
2871 continue;
2872 }
2873
2874 src_cset->mg_dst_cset = dst_cset;
2875
2876 if (list_empty(&dst_cset->mg_dst_preload_node))
2877 list_add_tail(&dst_cset->mg_dst_preload_node,
2878 &mgctx->preloaded_dst_csets);
2879 else
2880 put_css_set(dst_cset);
2881
2882 for_each_subsys(ss, ssid)
2883 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2884 mgctx->ss_mask |= 1 << ssid;
2885 }
2886
2887 return 0;
2888 }
2889
2890 /**
2891 * cgroup_migrate - migrate a process or task to a cgroup
2892 * @leader: the leader of the process or the task to migrate
2893 * @threadgroup: whether @leader points to the whole process or a single task
2894 * @mgctx: migration context
2895 *
2896 * Migrate a process or task denoted by @leader. If migrating a process,
2897 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2898 * responsible for invoking cgroup_migrate_add_src() and
2899 * cgroup_migrate_prepare_dst() on the targets before invoking this
2900 * function and following up with cgroup_migrate_finish().
2901 *
2902 * As long as a controller's ->can_attach() doesn't fail, this function is
2903 * guaranteed to succeed. This means that, excluding ->can_attach()
2904 * failure, when migrating multiple targets, the success or failure can be
2905 * decided for all targets by invoking group_migrate_prepare_dst() before
2906 * actually starting migrating.
2907 */
cgroup_migrate(struct task_struct * leader,bool threadgroup,struct cgroup_mgctx * mgctx)2908 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2909 struct cgroup_mgctx *mgctx)
2910 {
2911 struct task_struct *task;
2912
2913 /*
2914 * The following thread iteration should be inside an RCU critical
2915 * section to prevent tasks from being freed while taking the snapshot.
2916 * spin_lock_irq() implies RCU critical section here.
2917 */
2918 spin_lock_irq(&css_set_lock);
2919 task = leader;
2920 do {
2921 cgroup_migrate_add_task(task, mgctx);
2922 if (!threadgroup)
2923 break;
2924 } while_each_thread(leader, task);
2925 spin_unlock_irq(&css_set_lock);
2926
2927 return cgroup_migrate_execute(mgctx);
2928 }
2929
2930 /**
2931 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2932 * @dst_cgrp: the cgroup to attach to
2933 * @leader: the task or the leader of the threadgroup to be attached
2934 * @threadgroup: attach the whole threadgroup?
2935 *
2936 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2937 */
cgroup_attach_task(struct cgroup * dst_cgrp,struct task_struct * leader,bool threadgroup)2938 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2939 bool threadgroup)
2940 {
2941 DEFINE_CGROUP_MGCTX(mgctx);
2942 struct task_struct *task;
2943 int ret = 0;
2944
2945 /* look up all src csets */
2946 spin_lock_irq(&css_set_lock);
2947 rcu_read_lock();
2948 task = leader;
2949 do {
2950 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2951 if (!threadgroup)
2952 break;
2953 } while_each_thread(leader, task);
2954 rcu_read_unlock();
2955 spin_unlock_irq(&css_set_lock);
2956
2957 /* prepare dst csets and commit */
2958 ret = cgroup_migrate_prepare_dst(&mgctx);
2959 if (!ret)
2960 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2961
2962 cgroup_migrate_finish(&mgctx);
2963
2964 if (!ret)
2965 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2966
2967 return ret;
2968 }
2969
cgroup_procs_write_start(char * buf,bool threadgroup,bool * threadgroup_locked)2970 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2971 bool *threadgroup_locked)
2972 {
2973 struct task_struct *tsk;
2974 pid_t pid;
2975
2976 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2977 return ERR_PTR(-EINVAL);
2978
2979 /*
2980 * If we migrate a single thread, we don't care about threadgroup
2981 * stability. If the thread is `current`, it won't exit(2) under our
2982 * hands or change PID through exec(2). We exclude
2983 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2984 * callers by cgroup_mutex.
2985 * Therefore, we can skip the global lock.
2986 */
2987 lockdep_assert_held(&cgroup_mutex);
2988 *threadgroup_locked = pid || threadgroup;
2989 cgroup_attach_lock(*threadgroup_locked);
2990
2991 rcu_read_lock();
2992 if (pid) {
2993 tsk = find_task_by_vpid(pid);
2994 if (!tsk) {
2995 tsk = ERR_PTR(-ESRCH);
2996 goto out_unlock_threadgroup;
2997 }
2998 } else {
2999 tsk = current;
3000 }
3001
3002 if (threadgroup)
3003 tsk = tsk->group_leader;
3004
3005 /*
3006 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
3007 * If userland migrates such a kthread to a non-root cgroup, it can
3008 * become trapped in a cpuset, or RT kthread may be born in a
3009 * cgroup with no rt_runtime allocated. Just say no.
3010 */
3011 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
3012 tsk = ERR_PTR(-EINVAL);
3013 goto out_unlock_threadgroup;
3014 }
3015
3016 get_task_struct(tsk);
3017 goto out_unlock_rcu;
3018
3019 out_unlock_threadgroup:
3020 cgroup_attach_unlock(*threadgroup_locked);
3021 *threadgroup_locked = false;
3022 out_unlock_rcu:
3023 rcu_read_unlock();
3024 return tsk;
3025 }
3026
cgroup_procs_write_finish(struct task_struct * task,bool threadgroup_locked)3027 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked)
3028 {
3029 struct cgroup_subsys *ss;
3030 int ssid;
3031
3032 /* release reference from cgroup_procs_write_start() */
3033 put_task_struct(task);
3034
3035 cgroup_attach_unlock(threadgroup_locked);
3036
3037 for_each_subsys(ss, ssid)
3038 if (ss->post_attach)
3039 ss->post_attach();
3040 }
3041
cgroup_print_ss_mask(struct seq_file * seq,u16 ss_mask)3042 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
3043 {
3044 struct cgroup_subsys *ss;
3045 bool printed = false;
3046 int ssid;
3047
3048 do_each_subsys_mask(ss, ssid, ss_mask) {
3049 if (printed)
3050 seq_putc(seq, ' ');
3051 seq_puts(seq, ss->name);
3052 printed = true;
3053 } while_each_subsys_mask();
3054 if (printed)
3055 seq_putc(seq, '\n');
3056 }
3057
3058 /* show controllers which are enabled from the parent */
cgroup_controllers_show(struct seq_file * seq,void * v)3059 static int cgroup_controllers_show(struct seq_file *seq, void *v)
3060 {
3061 struct cgroup *cgrp = seq_css(seq)->cgroup;
3062
3063 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
3064 return 0;
3065 }
3066
3067 /* show controllers which are enabled for a given cgroup's children */
cgroup_subtree_control_show(struct seq_file * seq,void * v)3068 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
3069 {
3070 struct cgroup *cgrp = seq_css(seq)->cgroup;
3071
3072 cgroup_print_ss_mask(seq, cgrp->subtree_control);
3073 return 0;
3074 }
3075
3076 /**
3077 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3078 * @cgrp: root of the subtree to update csses for
3079 *
3080 * @cgrp's control masks have changed and its subtree's css associations
3081 * need to be updated accordingly. This function looks up all css_sets
3082 * which are attached to the subtree, creates the matching updated css_sets
3083 * and migrates the tasks to the new ones.
3084 */
cgroup_update_dfl_csses(struct cgroup * cgrp)3085 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3086 {
3087 DEFINE_CGROUP_MGCTX(mgctx);
3088 struct cgroup_subsys_state *d_css;
3089 struct cgroup *dsct;
3090 struct css_set *src_cset;
3091 bool has_tasks;
3092 int ret;
3093
3094 lockdep_assert_held(&cgroup_mutex);
3095
3096 /* look up all csses currently attached to @cgrp's subtree */
3097 spin_lock_irq(&css_set_lock);
3098 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3099 struct cgrp_cset_link *link;
3100
3101 /*
3102 * As cgroup_update_dfl_csses() is only called by
3103 * cgroup_apply_control(). The csses associated with the
3104 * given cgrp will not be affected by changes made to
3105 * its subtree_control file. We can skip them.
3106 */
3107 if (dsct == cgrp)
3108 continue;
3109
3110 list_for_each_entry(link, &dsct->cset_links, cset_link)
3111 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
3112 }
3113 spin_unlock_irq(&css_set_lock);
3114
3115 /*
3116 * We need to write-lock threadgroup_rwsem while migrating tasks.
3117 * However, if there are no source csets for @cgrp, changing its
3118 * controllers isn't gonna produce any task migrations and the
3119 * write-locking can be skipped safely.
3120 */
3121 has_tasks = !list_empty(&mgctx.preloaded_src_csets);
3122 cgroup_attach_lock(has_tasks);
3123
3124 /* NULL dst indicates self on default hierarchy */
3125 ret = cgroup_migrate_prepare_dst(&mgctx);
3126 if (ret)
3127 goto out_finish;
3128
3129 spin_lock_irq(&css_set_lock);
3130 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets,
3131 mg_src_preload_node) {
3132 struct task_struct *task, *ntask;
3133
3134 /* all tasks in src_csets need to be migrated */
3135 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3136 cgroup_migrate_add_task(task, &mgctx);
3137 }
3138 spin_unlock_irq(&css_set_lock);
3139
3140 ret = cgroup_migrate_execute(&mgctx);
3141 out_finish:
3142 cgroup_migrate_finish(&mgctx);
3143 cgroup_attach_unlock(has_tasks);
3144 return ret;
3145 }
3146
3147 /**
3148 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3149 * @cgrp: root of the target subtree
3150 *
3151 * Because css offlining is asynchronous, userland may try to re-enable a
3152 * controller while the previous css is still around. This function grabs
3153 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3154 */
cgroup_lock_and_drain_offline(struct cgroup * cgrp)3155 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3156 __acquires(&cgroup_mutex)
3157 {
3158 struct cgroup *dsct;
3159 struct cgroup_subsys_state *d_css;
3160 struct cgroup_subsys *ss;
3161 int ssid;
3162
3163 restart:
3164 cgroup_lock();
3165
3166 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3167 for_each_subsys(ss, ssid) {
3168 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3169 DEFINE_WAIT(wait);
3170
3171 if (!css || !percpu_ref_is_dying(&css->refcnt))
3172 continue;
3173
3174 cgroup_get_live(dsct);
3175 prepare_to_wait(&dsct->offline_waitq, &wait,
3176 TASK_UNINTERRUPTIBLE);
3177
3178 cgroup_unlock();
3179 schedule();
3180 finish_wait(&dsct->offline_waitq, &wait);
3181
3182 cgroup_put(dsct);
3183 goto restart;
3184 }
3185 }
3186 }
3187
3188 /**
3189 * cgroup_save_control - save control masks and dom_cgrp of a subtree
3190 * @cgrp: root of the target subtree
3191 *
3192 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3193 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3194 * itself.
3195 */
cgroup_save_control(struct cgroup * cgrp)3196 static void cgroup_save_control(struct cgroup *cgrp)
3197 {
3198 struct cgroup *dsct;
3199 struct cgroup_subsys_state *d_css;
3200
3201 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3202 dsct->old_subtree_control = dsct->subtree_control;
3203 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3204 dsct->old_dom_cgrp = dsct->dom_cgrp;
3205 }
3206 }
3207
3208 /**
3209 * cgroup_propagate_control - refresh control masks of a subtree
3210 * @cgrp: root of the target subtree
3211 *
3212 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3213 * ->subtree_control and propagate controller availability through the
3214 * subtree so that descendants don't have unavailable controllers enabled.
3215 */
cgroup_propagate_control(struct cgroup * cgrp)3216 static void cgroup_propagate_control(struct cgroup *cgrp)
3217 {
3218 struct cgroup *dsct;
3219 struct cgroup_subsys_state *d_css;
3220
3221 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3222 dsct->subtree_control &= cgroup_control(dsct);
3223 dsct->subtree_ss_mask =
3224 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3225 cgroup_ss_mask(dsct));
3226 }
3227 }
3228
3229 /**
3230 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3231 * @cgrp: root of the target subtree
3232 *
3233 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3234 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3235 * itself.
3236 */
cgroup_restore_control(struct cgroup * cgrp)3237 static void cgroup_restore_control(struct cgroup *cgrp)
3238 {
3239 struct cgroup *dsct;
3240 struct cgroup_subsys_state *d_css;
3241
3242 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3243 dsct->subtree_control = dsct->old_subtree_control;
3244 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3245 dsct->dom_cgrp = dsct->old_dom_cgrp;
3246 }
3247 }
3248
css_visible(struct cgroup_subsys_state * css)3249 static bool css_visible(struct cgroup_subsys_state *css)
3250 {
3251 struct cgroup_subsys *ss = css->ss;
3252 struct cgroup *cgrp = css->cgroup;
3253
3254 if (cgroup_control(cgrp) & (1 << ss->id))
3255 return true;
3256 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3257 return false;
3258 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3259 }
3260
3261 /**
3262 * cgroup_apply_control_enable - enable or show csses according to control
3263 * @cgrp: root of the target subtree
3264 *
3265 * Walk @cgrp's subtree and create new csses or make the existing ones
3266 * visible. A css is created invisible if it's being implicitly enabled
3267 * through dependency. An invisible css is made visible when the userland
3268 * explicitly enables it.
3269 *
3270 * Returns 0 on success, -errno on failure. On failure, csses which have
3271 * been processed already aren't cleaned up. The caller is responsible for
3272 * cleaning up with cgroup_apply_control_disable().
3273 */
cgroup_apply_control_enable(struct cgroup * cgrp)3274 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3275 {
3276 struct cgroup *dsct;
3277 struct cgroup_subsys_state *d_css;
3278 struct cgroup_subsys *ss;
3279 int ssid, ret;
3280
3281 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3282 for_each_subsys(ss, ssid) {
3283 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3284
3285 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3286 continue;
3287
3288 if (!css) {
3289 css = css_create(dsct, ss);
3290 if (IS_ERR(css))
3291 return PTR_ERR(css);
3292 }
3293
3294 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3295
3296 if (css_visible(css)) {
3297 ret = css_populate_dir(css);
3298 if (ret)
3299 return ret;
3300 }
3301 }
3302 }
3303
3304 return 0;
3305 }
3306
3307 /**
3308 * cgroup_apply_control_disable - kill or hide csses according to control
3309 * @cgrp: root of the target subtree
3310 *
3311 * Walk @cgrp's subtree and kill and hide csses so that they match
3312 * cgroup_ss_mask() and cgroup_visible_mask().
3313 *
3314 * A css is hidden when the userland requests it to be disabled while other
3315 * subsystems are still depending on it. The css must not actively control
3316 * resources and be in the vanilla state if it's made visible again later.
3317 * Controllers which may be depended upon should provide ->css_reset() for
3318 * this purpose.
3319 */
cgroup_apply_control_disable(struct cgroup * cgrp)3320 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3321 {
3322 struct cgroup *dsct;
3323 struct cgroup_subsys_state *d_css;
3324 struct cgroup_subsys *ss;
3325 int ssid;
3326
3327 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3328 for_each_subsys(ss, ssid) {
3329 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3330
3331 if (!css)
3332 continue;
3333
3334 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3335
3336 if (css->parent &&
3337 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3338 kill_css(css);
3339 } else if (!css_visible(css)) {
3340 css_clear_dir(css);
3341 if (ss->css_reset)
3342 ss->css_reset(css);
3343 }
3344 }
3345 }
3346 }
3347
3348 /**
3349 * cgroup_apply_control - apply control mask updates to the subtree
3350 * @cgrp: root of the target subtree
3351 *
3352 * subsystems can be enabled and disabled in a subtree using the following
3353 * steps.
3354 *
3355 * 1. Call cgroup_save_control() to stash the current state.
3356 * 2. Update ->subtree_control masks in the subtree as desired.
3357 * 3. Call cgroup_apply_control() to apply the changes.
3358 * 4. Optionally perform other related operations.
3359 * 5. Call cgroup_finalize_control() to finish up.
3360 *
3361 * This function implements step 3 and propagates the mask changes
3362 * throughout @cgrp's subtree, updates csses accordingly and perform
3363 * process migrations.
3364 */
cgroup_apply_control(struct cgroup * cgrp)3365 static int cgroup_apply_control(struct cgroup *cgrp)
3366 {
3367 int ret;
3368
3369 cgroup_propagate_control(cgrp);
3370
3371 ret = cgroup_apply_control_enable(cgrp);
3372 if (ret)
3373 return ret;
3374
3375 /*
3376 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3377 * making the following cgroup_update_dfl_csses() properly update
3378 * css associations of all tasks in the subtree.
3379 */
3380 return cgroup_update_dfl_csses(cgrp);
3381 }
3382
3383 /**
3384 * cgroup_finalize_control - finalize control mask update
3385 * @cgrp: root of the target subtree
3386 * @ret: the result of the update
3387 *
3388 * Finalize control mask update. See cgroup_apply_control() for more info.
3389 */
cgroup_finalize_control(struct cgroup * cgrp,int ret)3390 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3391 {
3392 if (ret) {
3393 cgroup_restore_control(cgrp);
3394 cgroup_propagate_control(cgrp);
3395 }
3396
3397 cgroup_apply_control_disable(cgrp);
3398 }
3399
cgroup_vet_subtree_control_enable(struct cgroup * cgrp,u16 enable)3400 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3401 {
3402 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3403
3404 /* if nothing is getting enabled, nothing to worry about */
3405 if (!enable)
3406 return 0;
3407
3408 /* can @cgrp host any resources? */
3409 if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3410 return -EOPNOTSUPP;
3411
3412 /* mixables don't care */
3413 if (cgroup_is_mixable(cgrp))
3414 return 0;
3415
3416 if (domain_enable) {
3417 /* can't enable domain controllers inside a thread subtree */
3418 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3419 return -EOPNOTSUPP;
3420 } else {
3421 /*
3422 * Threaded controllers can handle internal competitions
3423 * and are always allowed inside a (prospective) thread
3424 * subtree.
3425 */
3426 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3427 return 0;
3428 }
3429
3430 /*
3431 * Controllers can't be enabled for a cgroup with tasks to avoid
3432 * child cgroups competing against tasks.
3433 */
3434 if (cgroup_has_tasks(cgrp))
3435 return -EBUSY;
3436
3437 return 0;
3438 }
3439
3440 /* change the enabled child controllers for a cgroup in the default hierarchy */
cgroup_subtree_control_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3441 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3442 char *buf, size_t nbytes,
3443 loff_t off)
3444 {
3445 u16 enable = 0, disable = 0;
3446 struct cgroup *cgrp, *child;
3447 struct cgroup_subsys *ss;
3448 char *tok;
3449 int ssid, ret;
3450
3451 /*
3452 * Parse input - space separated list of subsystem names prefixed
3453 * with either + or -.
3454 */
3455 buf = strstrip(buf);
3456 while ((tok = strsep(&buf, " "))) {
3457 if (tok[0] == '\0')
3458 continue;
3459 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3460 if (!cgroup_ssid_enabled(ssid) ||
3461 strcmp(tok + 1, ss->name))
3462 continue;
3463
3464 if (*tok == '+') {
3465 enable |= 1 << ssid;
3466 disable &= ~(1 << ssid);
3467 } else if (*tok == '-') {
3468 disable |= 1 << ssid;
3469 enable &= ~(1 << ssid);
3470 } else {
3471 return -EINVAL;
3472 }
3473 break;
3474 } while_each_subsys_mask();
3475 if (ssid == CGROUP_SUBSYS_COUNT)
3476 return -EINVAL;
3477 }
3478
3479 cgrp = cgroup_kn_lock_live(of->kn, true);
3480 if (!cgrp)
3481 return -ENODEV;
3482
3483 for_each_subsys(ss, ssid) {
3484 if (enable & (1 << ssid)) {
3485 if (cgrp->subtree_control & (1 << ssid)) {
3486 enable &= ~(1 << ssid);
3487 continue;
3488 }
3489
3490 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3491 ret = -ENOENT;
3492 goto out_unlock;
3493 }
3494 } else if (disable & (1 << ssid)) {
3495 if (!(cgrp->subtree_control & (1 << ssid))) {
3496 disable &= ~(1 << ssid);
3497 continue;
3498 }
3499
3500 /* a child has it enabled? */
3501 cgroup_for_each_live_child(child, cgrp) {
3502 if (child->subtree_control & (1 << ssid)) {
3503 ret = -EBUSY;
3504 goto out_unlock;
3505 }
3506 }
3507 }
3508 }
3509
3510 if (!enable && !disable) {
3511 ret = 0;
3512 goto out_unlock;
3513 }
3514
3515 ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3516 if (ret)
3517 goto out_unlock;
3518
3519 /* save and update control masks and prepare csses */
3520 cgroup_save_control(cgrp);
3521
3522 cgrp->subtree_control |= enable;
3523 cgrp->subtree_control &= ~disable;
3524
3525 ret = cgroup_apply_control(cgrp);
3526 cgroup_finalize_control(cgrp, ret);
3527 if (ret)
3528 goto out_unlock;
3529
3530 kernfs_activate(cgrp->kn);
3531 out_unlock:
3532 cgroup_kn_unlock(of->kn);
3533 return ret ?: nbytes;
3534 }
3535
3536 /**
3537 * cgroup_enable_threaded - make @cgrp threaded
3538 * @cgrp: the target cgroup
3539 *
3540 * Called when "threaded" is written to the cgroup.type interface file and
3541 * tries to make @cgrp threaded and join the parent's resource domain.
3542 * This function is never called on the root cgroup as cgroup.type doesn't
3543 * exist on it.
3544 */
cgroup_enable_threaded(struct cgroup * cgrp)3545 static int cgroup_enable_threaded(struct cgroup *cgrp)
3546 {
3547 struct cgroup *parent = cgroup_parent(cgrp);
3548 struct cgroup *dom_cgrp = parent->dom_cgrp;
3549 struct cgroup *dsct;
3550 struct cgroup_subsys_state *d_css;
3551 int ret;
3552
3553 lockdep_assert_held(&cgroup_mutex);
3554
3555 /* noop if already threaded */
3556 if (cgroup_is_threaded(cgrp))
3557 return 0;
3558
3559 /*
3560 * If @cgroup is populated or has domain controllers enabled, it
3561 * can't be switched. While the below cgroup_can_be_thread_root()
3562 * test can catch the same conditions, that's only when @parent is
3563 * not mixable, so let's check it explicitly.
3564 */
3565 if (cgroup_is_populated(cgrp) ||
3566 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3567 return -EOPNOTSUPP;
3568
3569 /* we're joining the parent's domain, ensure its validity */
3570 if (!cgroup_is_valid_domain(dom_cgrp) ||
3571 !cgroup_can_be_thread_root(dom_cgrp))
3572 return -EOPNOTSUPP;
3573
3574 /*
3575 * The following shouldn't cause actual migrations and should
3576 * always succeed.
3577 */
3578 cgroup_save_control(cgrp);
3579
3580 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3581 if (dsct == cgrp || cgroup_is_threaded(dsct))
3582 dsct->dom_cgrp = dom_cgrp;
3583
3584 ret = cgroup_apply_control(cgrp);
3585 if (!ret)
3586 parent->nr_threaded_children++;
3587
3588 cgroup_finalize_control(cgrp, ret);
3589 return ret;
3590 }
3591
cgroup_type_show(struct seq_file * seq,void * v)3592 static int cgroup_type_show(struct seq_file *seq, void *v)
3593 {
3594 struct cgroup *cgrp = seq_css(seq)->cgroup;
3595
3596 if (cgroup_is_threaded(cgrp))
3597 seq_puts(seq, "threaded\n");
3598 else if (!cgroup_is_valid_domain(cgrp))
3599 seq_puts(seq, "domain invalid\n");
3600 else if (cgroup_is_thread_root(cgrp))
3601 seq_puts(seq, "domain threaded\n");
3602 else
3603 seq_puts(seq, "domain\n");
3604
3605 return 0;
3606 }
3607
cgroup_type_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3608 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3609 size_t nbytes, loff_t off)
3610 {
3611 struct cgroup *cgrp;
3612 int ret;
3613
3614 /* only switching to threaded mode is supported */
3615 if (strcmp(strstrip(buf), "threaded"))
3616 return -EINVAL;
3617
3618 /* drain dying csses before we re-apply (threaded) subtree control */
3619 cgrp = cgroup_kn_lock_live(of->kn, true);
3620 if (!cgrp)
3621 return -ENOENT;
3622
3623 /* threaded can only be enabled */
3624 ret = cgroup_enable_threaded(cgrp);
3625
3626 cgroup_kn_unlock(of->kn);
3627 return ret ?: nbytes;
3628 }
3629
cgroup_max_descendants_show(struct seq_file * seq,void * v)3630 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3631 {
3632 struct cgroup *cgrp = seq_css(seq)->cgroup;
3633 int descendants = READ_ONCE(cgrp->max_descendants);
3634
3635 if (descendants == INT_MAX)
3636 seq_puts(seq, "max\n");
3637 else
3638 seq_printf(seq, "%d\n", descendants);
3639
3640 return 0;
3641 }
3642
cgroup_max_descendants_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3643 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3644 char *buf, size_t nbytes, loff_t off)
3645 {
3646 struct cgroup *cgrp;
3647 int descendants;
3648 ssize_t ret;
3649
3650 buf = strstrip(buf);
3651 if (!strcmp(buf, "max")) {
3652 descendants = INT_MAX;
3653 } else {
3654 ret = kstrtoint(buf, 0, &descendants);
3655 if (ret)
3656 return ret;
3657 }
3658
3659 if (descendants < 0)
3660 return -ERANGE;
3661
3662 cgrp = cgroup_kn_lock_live(of->kn, false);
3663 if (!cgrp)
3664 return -ENOENT;
3665
3666 cgrp->max_descendants = descendants;
3667
3668 cgroup_kn_unlock(of->kn);
3669
3670 return nbytes;
3671 }
3672
cgroup_max_depth_show(struct seq_file * seq,void * v)3673 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3674 {
3675 struct cgroup *cgrp = seq_css(seq)->cgroup;
3676 int depth = READ_ONCE(cgrp->max_depth);
3677
3678 if (depth == INT_MAX)
3679 seq_puts(seq, "max\n");
3680 else
3681 seq_printf(seq, "%d\n", depth);
3682
3683 return 0;
3684 }
3685
cgroup_max_depth_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3686 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3687 char *buf, size_t nbytes, loff_t off)
3688 {
3689 struct cgroup *cgrp;
3690 ssize_t ret;
3691 int depth;
3692
3693 buf = strstrip(buf);
3694 if (!strcmp(buf, "max")) {
3695 depth = INT_MAX;
3696 } else {
3697 ret = kstrtoint(buf, 0, &depth);
3698 if (ret)
3699 return ret;
3700 }
3701
3702 if (depth < 0)
3703 return -ERANGE;
3704
3705 cgrp = cgroup_kn_lock_live(of->kn, false);
3706 if (!cgrp)
3707 return -ENOENT;
3708
3709 cgrp->max_depth = depth;
3710
3711 cgroup_kn_unlock(of->kn);
3712
3713 return nbytes;
3714 }
3715
cgroup_events_show(struct seq_file * seq,void * v)3716 static int cgroup_events_show(struct seq_file *seq, void *v)
3717 {
3718 struct cgroup *cgrp = seq_css(seq)->cgroup;
3719
3720 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3721 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3722
3723 return 0;
3724 }
3725
cgroup_stat_show(struct seq_file * seq,void * v)3726 static int cgroup_stat_show(struct seq_file *seq, void *v)
3727 {
3728 struct cgroup *cgroup = seq_css(seq)->cgroup;
3729 struct cgroup_subsys_state *css;
3730 int dying_cnt[CGROUP_SUBSYS_COUNT];
3731 int ssid;
3732
3733 seq_printf(seq, "nr_descendants %d\n",
3734 cgroup->nr_descendants);
3735
3736 /*
3737 * Show the number of live and dying csses associated with each of
3738 * non-inhibited cgroup subsystems that is bound to cgroup v2.
3739 *
3740 * Without proper lock protection, racing is possible. So the
3741 * numbers may not be consistent when that happens.
3742 */
3743 rcu_read_lock();
3744 for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) {
3745 dying_cnt[ssid] = -1;
3746 if ((BIT(ssid) & cgrp_dfl_inhibit_ss_mask) ||
3747 (cgroup_subsys[ssid]->root != &cgrp_dfl_root))
3748 continue;
3749 css = rcu_dereference_raw(cgroup->subsys[ssid]);
3750 dying_cnt[ssid] = cgroup->nr_dying_subsys[ssid];
3751 seq_printf(seq, "nr_subsys_%s %d\n", cgroup_subsys[ssid]->name,
3752 css ? (css->nr_descendants + 1) : 0);
3753 }
3754
3755 seq_printf(seq, "nr_dying_descendants %d\n",
3756 cgroup->nr_dying_descendants);
3757 for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) {
3758 if (dying_cnt[ssid] >= 0)
3759 seq_printf(seq, "nr_dying_subsys_%s %d\n",
3760 cgroup_subsys[ssid]->name, dying_cnt[ssid]);
3761 }
3762 rcu_read_unlock();
3763 return 0;
3764 }
3765
3766 #ifdef CONFIG_CGROUP_SCHED
3767 /**
3768 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
3769 * @cgrp: the cgroup of interest
3770 * @ss: the subsystem of interest
3771 *
3772 * Find and get @cgrp's css associated with @ss. If the css doesn't exist
3773 * or is offline, %NULL is returned.
3774 */
cgroup_tryget_css(struct cgroup * cgrp,struct cgroup_subsys * ss)3775 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
3776 struct cgroup_subsys *ss)
3777 {
3778 struct cgroup_subsys_state *css;
3779
3780 rcu_read_lock();
3781 css = cgroup_css(cgrp, ss);
3782 if (css && !css_tryget_online(css))
3783 css = NULL;
3784 rcu_read_unlock();
3785
3786 return css;
3787 }
3788
cgroup_extra_stat_show(struct seq_file * seq,int ssid)3789 static int cgroup_extra_stat_show(struct seq_file *seq, int ssid)
3790 {
3791 struct cgroup *cgrp = seq_css(seq)->cgroup;
3792 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3793 struct cgroup_subsys_state *css;
3794 int ret;
3795
3796 if (!ss->css_extra_stat_show)
3797 return 0;
3798
3799 css = cgroup_tryget_css(cgrp, ss);
3800 if (!css)
3801 return 0;
3802
3803 ret = ss->css_extra_stat_show(seq, css);
3804 css_put(css);
3805 return ret;
3806 }
3807
cgroup_local_stat_show(struct seq_file * seq,struct cgroup * cgrp,int ssid)3808 static int cgroup_local_stat_show(struct seq_file *seq,
3809 struct cgroup *cgrp, int ssid)
3810 {
3811 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3812 struct cgroup_subsys_state *css;
3813 int ret;
3814
3815 if (!ss->css_local_stat_show)
3816 return 0;
3817
3818 css = cgroup_tryget_css(cgrp, ss);
3819 if (!css)
3820 return 0;
3821
3822 ret = ss->css_local_stat_show(seq, css);
3823 css_put(css);
3824 return ret;
3825 }
3826 #endif
3827
cpu_stat_show(struct seq_file * seq,void * v)3828 static int cpu_stat_show(struct seq_file *seq, void *v)
3829 {
3830 int ret = 0;
3831
3832 cgroup_base_stat_cputime_show(seq);
3833 #ifdef CONFIG_CGROUP_SCHED
3834 ret = cgroup_extra_stat_show(seq, cpu_cgrp_id);
3835 #endif
3836 return ret;
3837 }
3838
cpu_local_stat_show(struct seq_file * seq,void * v)3839 static int cpu_local_stat_show(struct seq_file *seq, void *v)
3840 {
3841 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3842 int ret = 0;
3843
3844 #ifdef CONFIG_CGROUP_SCHED
3845 ret = cgroup_local_stat_show(seq, cgrp, cpu_cgrp_id);
3846 #endif
3847 return ret;
3848 }
3849
3850 #ifdef CONFIG_PSI
cgroup_io_pressure_show(struct seq_file * seq,void * v)3851 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3852 {
3853 struct cgroup *cgrp = seq_css(seq)->cgroup;
3854 struct psi_group *psi = cgroup_psi(cgrp);
3855
3856 return psi_show(seq, psi, PSI_IO);
3857 }
cgroup_memory_pressure_show(struct seq_file * seq,void * v)3858 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3859 {
3860 struct cgroup *cgrp = seq_css(seq)->cgroup;
3861 struct psi_group *psi = cgroup_psi(cgrp);
3862
3863 return psi_show(seq, psi, PSI_MEM);
3864 }
cgroup_cpu_pressure_show(struct seq_file * seq,void * v)3865 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3866 {
3867 struct cgroup *cgrp = seq_css(seq)->cgroup;
3868 struct psi_group *psi = cgroup_psi(cgrp);
3869
3870 return psi_show(seq, psi, PSI_CPU);
3871 }
3872
pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,enum psi_res res)3873 static ssize_t pressure_write(struct kernfs_open_file *of, char *buf,
3874 size_t nbytes, enum psi_res res)
3875 {
3876 struct cgroup_file_ctx *ctx = of->priv;
3877 struct psi_trigger *new;
3878 struct cgroup *cgrp;
3879 struct psi_group *psi;
3880
3881 cgrp = cgroup_kn_lock_live(of->kn, false);
3882 if (!cgrp)
3883 return -ENODEV;
3884
3885 cgroup_get(cgrp);
3886 cgroup_kn_unlock(of->kn);
3887
3888 /* Allow only one trigger per file descriptor */
3889 if (ctx->psi.trigger) {
3890 cgroup_put(cgrp);
3891 return -EBUSY;
3892 }
3893
3894 psi = cgroup_psi(cgrp);
3895 new = psi_trigger_create(psi, buf, res, of->file, of);
3896 if (IS_ERR(new)) {
3897 cgroup_put(cgrp);
3898 return PTR_ERR(new);
3899 }
3900
3901 smp_store_release(&ctx->psi.trigger, new);
3902 cgroup_put(cgrp);
3903
3904 return nbytes;
3905 }
3906
cgroup_io_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3907 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3908 char *buf, size_t nbytes,
3909 loff_t off)
3910 {
3911 return pressure_write(of, buf, nbytes, PSI_IO);
3912 }
3913
cgroup_memory_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3914 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3915 char *buf, size_t nbytes,
3916 loff_t off)
3917 {
3918 return pressure_write(of, buf, nbytes, PSI_MEM);
3919 }
3920
cgroup_cpu_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3921 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3922 char *buf, size_t nbytes,
3923 loff_t off)
3924 {
3925 return pressure_write(of, buf, nbytes, PSI_CPU);
3926 }
3927
3928 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
cgroup_irq_pressure_show(struct seq_file * seq,void * v)3929 static int cgroup_irq_pressure_show(struct seq_file *seq, void *v)
3930 {
3931 struct cgroup *cgrp = seq_css(seq)->cgroup;
3932 struct psi_group *psi = cgroup_psi(cgrp);
3933
3934 return psi_show(seq, psi, PSI_IRQ);
3935 }
3936
cgroup_irq_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3937 static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of,
3938 char *buf, size_t nbytes,
3939 loff_t off)
3940 {
3941 return pressure_write(of, buf, nbytes, PSI_IRQ);
3942 }
3943 #endif
3944
cgroup_pressure_show(struct seq_file * seq,void * v)3945 static int cgroup_pressure_show(struct seq_file *seq, void *v)
3946 {
3947 struct cgroup *cgrp = seq_css(seq)->cgroup;
3948 struct psi_group *psi = cgroup_psi(cgrp);
3949
3950 seq_printf(seq, "%d\n", psi->enabled);
3951
3952 return 0;
3953 }
3954
cgroup_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3955 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of,
3956 char *buf, size_t nbytes,
3957 loff_t off)
3958 {
3959 ssize_t ret;
3960 int enable;
3961 struct cgroup *cgrp;
3962 struct psi_group *psi;
3963
3964 ret = kstrtoint(strstrip(buf), 0, &enable);
3965 if (ret)
3966 return ret;
3967
3968 if (enable < 0 || enable > 1)
3969 return -ERANGE;
3970
3971 cgrp = cgroup_kn_lock_live(of->kn, false);
3972 if (!cgrp)
3973 return -ENOENT;
3974
3975 psi = cgroup_psi(cgrp);
3976 if (psi->enabled != enable) {
3977 int i;
3978
3979 /* show or hide {cpu,memory,io,irq}.pressure files */
3980 for (i = 0; i < NR_PSI_RESOURCES; i++)
3981 cgroup_file_show(&cgrp->psi_files[i], enable);
3982
3983 psi->enabled = enable;
3984 if (enable)
3985 psi_cgroup_restart(psi);
3986 }
3987
3988 cgroup_kn_unlock(of->kn);
3989
3990 return nbytes;
3991 }
3992
cgroup_pressure_poll(struct kernfs_open_file * of,poll_table * pt)3993 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3994 poll_table *pt)
3995 {
3996 struct cgroup_file_ctx *ctx = of->priv;
3997
3998 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3999 }
4000
cgroup_pressure_release(struct kernfs_open_file * of)4001 static void cgroup_pressure_release(struct kernfs_open_file *of)
4002 {
4003 struct cgroup_file_ctx *ctx = of->priv;
4004
4005 psi_trigger_destroy(ctx->psi.trigger);
4006 }
4007
cgroup_psi_enabled(void)4008 bool cgroup_psi_enabled(void)
4009 {
4010 if (static_branch_likely(&psi_disabled))
4011 return false;
4012
4013 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
4014 }
4015
4016 #else /* CONFIG_PSI */
cgroup_psi_enabled(void)4017 bool cgroup_psi_enabled(void)
4018 {
4019 return false;
4020 }
4021
4022 #endif /* CONFIG_PSI */
4023
cgroup_freeze_show(struct seq_file * seq,void * v)4024 static int cgroup_freeze_show(struct seq_file *seq, void *v)
4025 {
4026 struct cgroup *cgrp = seq_css(seq)->cgroup;
4027
4028 seq_printf(seq, "%d\n", cgrp->freezer.freeze);
4029
4030 return 0;
4031 }
4032
cgroup_freeze_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4033 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
4034 char *buf, size_t nbytes, loff_t off)
4035 {
4036 struct cgroup *cgrp;
4037 ssize_t ret;
4038 int freeze;
4039
4040 ret = kstrtoint(strstrip(buf), 0, &freeze);
4041 if (ret)
4042 return ret;
4043
4044 if (freeze < 0 || freeze > 1)
4045 return -ERANGE;
4046
4047 cgrp = cgroup_kn_lock_live(of->kn, false);
4048 if (!cgrp)
4049 return -ENOENT;
4050
4051 cgroup_freeze(cgrp, freeze);
4052
4053 cgroup_kn_unlock(of->kn);
4054
4055 return nbytes;
4056 }
4057
__cgroup_kill(struct cgroup * cgrp)4058 static void __cgroup_kill(struct cgroup *cgrp)
4059 {
4060 struct css_task_iter it;
4061 struct task_struct *task;
4062
4063 lockdep_assert_held(&cgroup_mutex);
4064
4065 spin_lock_irq(&css_set_lock);
4066 cgrp->kill_seq++;
4067 spin_unlock_irq(&css_set_lock);
4068
4069 css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
4070 while ((task = css_task_iter_next(&it))) {
4071 /* Ignore kernel threads here. */
4072 if (task->flags & PF_KTHREAD)
4073 continue;
4074
4075 /* Skip tasks that are already dying. */
4076 if (__fatal_signal_pending(task))
4077 continue;
4078
4079 send_sig(SIGKILL, task, 0);
4080 }
4081 css_task_iter_end(&it);
4082 }
4083
cgroup_kill(struct cgroup * cgrp)4084 static void cgroup_kill(struct cgroup *cgrp)
4085 {
4086 struct cgroup_subsys_state *css;
4087 struct cgroup *dsct;
4088
4089 lockdep_assert_held(&cgroup_mutex);
4090
4091 cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
4092 __cgroup_kill(dsct);
4093 }
4094
cgroup_kill_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4095 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
4096 size_t nbytes, loff_t off)
4097 {
4098 ssize_t ret = 0;
4099 int kill;
4100 struct cgroup *cgrp;
4101
4102 ret = kstrtoint(strstrip(buf), 0, &kill);
4103 if (ret)
4104 return ret;
4105
4106 if (kill != 1)
4107 return -ERANGE;
4108
4109 cgrp = cgroup_kn_lock_live(of->kn, false);
4110 if (!cgrp)
4111 return -ENOENT;
4112
4113 /*
4114 * Killing is a process directed operation, i.e. the whole thread-group
4115 * is taken down so act like we do for cgroup.procs and only make this
4116 * writable in non-threaded cgroups.
4117 */
4118 if (cgroup_is_threaded(cgrp))
4119 ret = -EOPNOTSUPP;
4120 else
4121 cgroup_kill(cgrp);
4122
4123 cgroup_kn_unlock(of->kn);
4124
4125 return ret ?: nbytes;
4126 }
4127
cgroup_file_open(struct kernfs_open_file * of)4128 static int cgroup_file_open(struct kernfs_open_file *of)
4129 {
4130 struct cftype *cft = of_cft(of);
4131 struct cgroup_file_ctx *ctx;
4132 int ret;
4133
4134 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
4135 if (!ctx)
4136 return -ENOMEM;
4137
4138 ctx->ns = current->nsproxy->cgroup_ns;
4139 get_cgroup_ns(ctx->ns);
4140 of->priv = ctx;
4141
4142 if (!cft->open)
4143 return 0;
4144
4145 ret = cft->open(of);
4146 if (ret) {
4147 put_cgroup_ns(ctx->ns);
4148 kfree(ctx);
4149 }
4150 return ret;
4151 }
4152
cgroup_file_release(struct kernfs_open_file * of)4153 static void cgroup_file_release(struct kernfs_open_file *of)
4154 {
4155 struct cftype *cft = of_cft(of);
4156 struct cgroup_file_ctx *ctx = of->priv;
4157
4158 if (cft->release)
4159 cft->release(of);
4160 put_cgroup_ns(ctx->ns);
4161 kfree(ctx);
4162 }
4163
cgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4164 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
4165 size_t nbytes, loff_t off)
4166 {
4167 struct cgroup_file_ctx *ctx = of->priv;
4168 struct cgroup *cgrp = kn_priv(of->kn);
4169 struct cftype *cft = of_cft(of);
4170 struct cgroup_subsys_state *css;
4171 int ret;
4172
4173 if (!nbytes)
4174 return 0;
4175
4176 /*
4177 * If namespaces are delegation boundaries, disallow writes to
4178 * files in an non-init namespace root from inside the namespace
4179 * except for the files explicitly marked delegatable -
4180 * eg. cgroup.procs, cgroup.threads and cgroup.subtree_control.
4181 */
4182 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
4183 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
4184 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
4185 return -EPERM;
4186
4187 if (cft->write)
4188 return cft->write(of, buf, nbytes, off);
4189
4190 /*
4191 * kernfs guarantees that a file isn't deleted with operations in
4192 * flight, which means that the matching css is and stays alive and
4193 * doesn't need to be pinned. The RCU locking is not necessary
4194 * either. It's just for the convenience of using cgroup_css().
4195 */
4196 rcu_read_lock();
4197 css = cgroup_css(cgrp, cft->ss);
4198 rcu_read_unlock();
4199
4200 if (cft->write_u64) {
4201 unsigned long long v;
4202 ret = kstrtoull(buf, 0, &v);
4203 if (!ret)
4204 ret = cft->write_u64(css, cft, v);
4205 } else if (cft->write_s64) {
4206 long long v;
4207 ret = kstrtoll(buf, 0, &v);
4208 if (!ret)
4209 ret = cft->write_s64(css, cft, v);
4210 } else {
4211 ret = -EINVAL;
4212 }
4213
4214 return ret ?: nbytes;
4215 }
4216
cgroup_file_poll(struct kernfs_open_file * of,poll_table * pt)4217 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
4218 {
4219 struct cftype *cft = of_cft(of);
4220
4221 if (cft->poll)
4222 return cft->poll(of, pt);
4223
4224 return kernfs_generic_poll(of, pt);
4225 }
4226
cgroup_seqfile_start(struct seq_file * seq,loff_t * ppos)4227 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
4228 {
4229 return seq_cft(seq)->seq_start(seq, ppos);
4230 }
4231
cgroup_seqfile_next(struct seq_file * seq,void * v,loff_t * ppos)4232 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
4233 {
4234 return seq_cft(seq)->seq_next(seq, v, ppos);
4235 }
4236
cgroup_seqfile_stop(struct seq_file * seq,void * v)4237 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
4238 {
4239 if (seq_cft(seq)->seq_stop)
4240 seq_cft(seq)->seq_stop(seq, v);
4241 }
4242
cgroup_seqfile_show(struct seq_file * m,void * arg)4243 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
4244 {
4245 struct cftype *cft = seq_cft(m);
4246 struct cgroup_subsys_state *css = seq_css(m);
4247
4248 if (cft->seq_show)
4249 return cft->seq_show(m, arg);
4250
4251 if (cft->read_u64)
4252 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
4253 else if (cft->read_s64)
4254 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
4255 else
4256 return -EINVAL;
4257 return 0;
4258 }
4259
4260 static struct kernfs_ops cgroup_kf_single_ops = {
4261 .atomic_write_len = PAGE_SIZE,
4262 .open = cgroup_file_open,
4263 .release = cgroup_file_release,
4264 .write = cgroup_file_write,
4265 .poll = cgroup_file_poll,
4266 .seq_show = cgroup_seqfile_show,
4267 };
4268
4269 static struct kernfs_ops cgroup_kf_ops = {
4270 .atomic_write_len = PAGE_SIZE,
4271 .open = cgroup_file_open,
4272 .release = cgroup_file_release,
4273 .write = cgroup_file_write,
4274 .poll = cgroup_file_poll,
4275 .seq_start = cgroup_seqfile_start,
4276 .seq_next = cgroup_seqfile_next,
4277 .seq_stop = cgroup_seqfile_stop,
4278 .seq_show = cgroup_seqfile_show,
4279 };
4280
cgroup_file_notify_timer(struct timer_list * timer)4281 static void cgroup_file_notify_timer(struct timer_list *timer)
4282 {
4283 cgroup_file_notify(container_of(timer, struct cgroup_file,
4284 notify_timer));
4285 }
4286
cgroup_add_file(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype * cft)4287 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
4288 struct cftype *cft)
4289 {
4290 char name[CGROUP_FILE_NAME_MAX];
4291 struct kernfs_node *kn;
4292 struct lock_class_key *key = NULL;
4293
4294 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4295 key = &cft->lockdep_key;
4296 #endif
4297 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
4298 cgroup_file_mode(cft),
4299 current_fsuid(), current_fsgid(),
4300 0, cft->kf_ops, cft,
4301 NULL, key);
4302 if (IS_ERR(kn))
4303 return PTR_ERR(kn);
4304
4305 if (cft->file_offset) {
4306 struct cgroup_file *cfile = (void *)css + cft->file_offset;
4307
4308 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
4309
4310 spin_lock_irq(&cgroup_file_kn_lock);
4311 cfile->kn = kn;
4312 spin_unlock_irq(&cgroup_file_kn_lock);
4313 }
4314
4315 return 0;
4316 }
4317
4318 /**
4319 * cgroup_addrm_files - add or remove files to a cgroup directory
4320 * @css: the target css
4321 * @cgrp: the target cgroup (usually css->cgroup)
4322 * @cfts: array of cftypes to be added
4323 * @is_add: whether to add or remove
4324 *
4325 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
4326 * For removals, this function never fails.
4327 */
cgroup_addrm_files(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype cfts[],bool is_add)4328 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
4329 struct cgroup *cgrp, struct cftype cfts[],
4330 bool is_add)
4331 {
4332 struct cftype *cft, *cft_end = NULL;
4333 int ret = 0;
4334
4335 lockdep_assert_held(&cgroup_mutex);
4336
4337 restart:
4338 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4339 /* does cft->flags tell us to skip this file on @cgrp? */
4340 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4341 continue;
4342 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4343 continue;
4344 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4345 continue;
4346 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4347 continue;
4348 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4349 continue;
4350 if (is_add) {
4351 ret = cgroup_add_file(css, cgrp, cft);
4352 if (ret) {
4353 pr_warn("%s: failed to add %s, err=%d\n",
4354 __func__, cft->name, ret);
4355 cft_end = cft;
4356 is_add = false;
4357 goto restart;
4358 }
4359 } else {
4360 cgroup_rm_file(cgrp, cft);
4361 }
4362 }
4363 return ret;
4364 }
4365
cgroup_apply_cftypes(struct cftype * cfts,bool is_add)4366 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4367 {
4368 struct cgroup_subsys *ss = cfts[0].ss;
4369 struct cgroup *root = &ss->root->cgrp;
4370 struct cgroup_subsys_state *css;
4371 int ret = 0;
4372
4373 lockdep_assert_held(&cgroup_mutex);
4374
4375 /* add/rm files for all cgroups created before */
4376 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4377 struct cgroup *cgrp = css->cgroup;
4378
4379 if (!(css->flags & CSS_VISIBLE))
4380 continue;
4381
4382 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4383 if (ret)
4384 break;
4385 }
4386
4387 if (is_add && !ret)
4388 kernfs_activate(root->kn);
4389 return ret;
4390 }
4391
cgroup_exit_cftypes(struct cftype * cfts)4392 static void cgroup_exit_cftypes(struct cftype *cfts)
4393 {
4394 struct cftype *cft;
4395
4396 for (cft = cfts; cft->name[0] != '\0'; cft++) {
4397 /* free copy for custom atomic_write_len, see init_cftypes() */
4398 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4399 kfree(cft->kf_ops);
4400 cft->kf_ops = NULL;
4401 cft->ss = NULL;
4402
4403 /* revert flags set by cgroup core while adding @cfts */
4404 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL |
4405 __CFTYPE_ADDED);
4406 }
4407 }
4408
cgroup_init_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4409 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4410 {
4411 struct cftype *cft;
4412 int ret = 0;
4413
4414 for (cft = cfts; cft->name[0] != '\0'; cft++) {
4415 struct kernfs_ops *kf_ops;
4416
4417 WARN_ON(cft->ss || cft->kf_ops);
4418
4419 if (cft->flags & __CFTYPE_ADDED) {
4420 ret = -EBUSY;
4421 break;
4422 }
4423
4424 if (cft->seq_start)
4425 kf_ops = &cgroup_kf_ops;
4426 else
4427 kf_ops = &cgroup_kf_single_ops;
4428
4429 /*
4430 * Ugh... if @cft wants a custom max_write_len, we need to
4431 * make a copy of kf_ops to set its atomic_write_len.
4432 */
4433 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4434 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4435 if (!kf_ops) {
4436 ret = -ENOMEM;
4437 break;
4438 }
4439 kf_ops->atomic_write_len = cft->max_write_len;
4440 }
4441
4442 cft->kf_ops = kf_ops;
4443 cft->ss = ss;
4444 cft->flags |= __CFTYPE_ADDED;
4445 }
4446
4447 if (ret)
4448 cgroup_exit_cftypes(cfts);
4449 return ret;
4450 }
4451
cgroup_rm_cftypes_locked(struct cftype * cfts)4452 static void cgroup_rm_cftypes_locked(struct cftype *cfts)
4453 {
4454 lockdep_assert_held(&cgroup_mutex);
4455
4456 list_del(&cfts->node);
4457 cgroup_apply_cftypes(cfts, false);
4458 cgroup_exit_cftypes(cfts);
4459 }
4460
4461 /**
4462 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4463 * @cfts: zero-length name terminated array of cftypes
4464 *
4465 * Unregister @cfts. Files described by @cfts are removed from all
4466 * existing cgroups and all future cgroups won't have them either. This
4467 * function can be called anytime whether @cfts' subsys is attached or not.
4468 *
4469 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4470 * registered.
4471 */
cgroup_rm_cftypes(struct cftype * cfts)4472 int cgroup_rm_cftypes(struct cftype *cfts)
4473 {
4474 if (!cfts || cfts[0].name[0] == '\0')
4475 return 0;
4476
4477 if (!(cfts[0].flags & __CFTYPE_ADDED))
4478 return -ENOENT;
4479
4480 cgroup_lock();
4481 cgroup_rm_cftypes_locked(cfts);
4482 cgroup_unlock();
4483 return 0;
4484 }
4485
4486 /**
4487 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4488 * @ss: target cgroup subsystem
4489 * @cfts: zero-length name terminated array of cftypes
4490 *
4491 * Register @cfts to @ss. Files described by @cfts are created for all
4492 * existing cgroups to which @ss is attached and all future cgroups will
4493 * have them too. This function can be called anytime whether @ss is
4494 * attached or not.
4495 *
4496 * Returns 0 on successful registration, -errno on failure. Note that this
4497 * function currently returns 0 as long as @cfts registration is successful
4498 * even if some file creation attempts on existing cgroups fail.
4499 */
cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4500 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4501 {
4502 int ret;
4503
4504 if (!cgroup_ssid_enabled(ss->id))
4505 return 0;
4506
4507 if (!cfts || cfts[0].name[0] == '\0')
4508 return 0;
4509
4510 ret = cgroup_init_cftypes(ss, cfts);
4511 if (ret)
4512 return ret;
4513
4514 cgroup_lock();
4515
4516 list_add_tail(&cfts->node, &ss->cfts);
4517 ret = cgroup_apply_cftypes(cfts, true);
4518 if (ret)
4519 cgroup_rm_cftypes_locked(cfts);
4520
4521 cgroup_unlock();
4522 return ret;
4523 }
4524
4525 /**
4526 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4527 * @ss: target cgroup subsystem
4528 * @cfts: zero-length name terminated array of cftypes
4529 *
4530 * Similar to cgroup_add_cftypes() but the added files are only used for
4531 * the default hierarchy.
4532 */
cgroup_add_dfl_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4533 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4534 {
4535 struct cftype *cft;
4536
4537 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4538 cft->flags |= __CFTYPE_ONLY_ON_DFL;
4539 return cgroup_add_cftypes(ss, cfts);
4540 }
4541
4542 /**
4543 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4544 * @ss: target cgroup subsystem
4545 * @cfts: zero-length name terminated array of cftypes
4546 *
4547 * Similar to cgroup_add_cftypes() but the added files are only used for
4548 * the legacy hierarchies.
4549 */
cgroup_add_legacy_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4550 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4551 {
4552 struct cftype *cft;
4553
4554 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4555 cft->flags |= __CFTYPE_NOT_ON_DFL;
4556 return cgroup_add_cftypes(ss, cfts);
4557 }
4558
4559 /**
4560 * cgroup_file_notify - generate a file modified event for a cgroup_file
4561 * @cfile: target cgroup_file
4562 *
4563 * @cfile must have been obtained by setting cftype->file_offset.
4564 */
cgroup_file_notify(struct cgroup_file * cfile)4565 void cgroup_file_notify(struct cgroup_file *cfile)
4566 {
4567 unsigned long flags;
4568
4569 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4570 if (cfile->kn) {
4571 unsigned long last = cfile->notified_at;
4572 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4573
4574 if (time_in_range(jiffies, last, next)) {
4575 timer_reduce(&cfile->notify_timer, next);
4576 } else {
4577 kernfs_notify(cfile->kn);
4578 cfile->notified_at = jiffies;
4579 }
4580 }
4581 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4582 }
4583
4584 /**
4585 * cgroup_file_show - show or hide a hidden cgroup file
4586 * @cfile: target cgroup_file obtained by setting cftype->file_offset
4587 * @show: whether to show or hide
4588 */
cgroup_file_show(struct cgroup_file * cfile,bool show)4589 void cgroup_file_show(struct cgroup_file *cfile, bool show)
4590 {
4591 struct kernfs_node *kn;
4592
4593 spin_lock_irq(&cgroup_file_kn_lock);
4594 kn = cfile->kn;
4595 kernfs_get(kn);
4596 spin_unlock_irq(&cgroup_file_kn_lock);
4597
4598 if (kn)
4599 kernfs_show(kn, show);
4600
4601 kernfs_put(kn);
4602 }
4603
4604 /**
4605 * css_next_child - find the next child of a given css
4606 * @pos: the current position (%NULL to initiate traversal)
4607 * @parent: css whose children to walk
4608 *
4609 * This function returns the next child of @parent and should be called
4610 * under either cgroup_mutex or RCU read lock. The only requirement is
4611 * that @parent and @pos are accessible. The next sibling is guaranteed to
4612 * be returned regardless of their states.
4613 *
4614 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4615 * css which finished ->css_online() is guaranteed to be visible in the
4616 * future iterations and will stay visible until the last reference is put.
4617 * A css which hasn't finished ->css_online() or already finished
4618 * ->css_offline() may show up during traversal. It's each subsystem's
4619 * responsibility to synchronize against on/offlining.
4620 */
css_next_child(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * parent)4621 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4622 struct cgroup_subsys_state *parent)
4623 {
4624 struct cgroup_subsys_state *next;
4625
4626 cgroup_assert_mutex_or_rcu_locked();
4627
4628 /*
4629 * @pos could already have been unlinked from the sibling list.
4630 * Once a cgroup is removed, its ->sibling.next is no longer
4631 * updated when its next sibling changes. CSS_RELEASED is set when
4632 * @pos is taken off list, at which time its next pointer is valid,
4633 * and, as releases are serialized, the one pointed to by the next
4634 * pointer is guaranteed to not have started release yet. This
4635 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4636 * critical section, the one pointed to by its next pointer is
4637 * guaranteed to not have finished its RCU grace period even if we
4638 * have dropped rcu_read_lock() in-between iterations.
4639 *
4640 * If @pos has CSS_RELEASED set, its next pointer can't be
4641 * dereferenced; however, as each css is given a monotonically
4642 * increasing unique serial number and always appended to the
4643 * sibling list, the next one can be found by walking the parent's
4644 * children until the first css with higher serial number than
4645 * @pos's. While this path can be slower, it happens iff iteration
4646 * races against release and the race window is very small.
4647 */
4648 if (!pos) {
4649 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4650 } else if (likely(!(pos->flags & CSS_RELEASED))) {
4651 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4652 } else {
4653 list_for_each_entry_rcu(next, &parent->children, sibling,
4654 lockdep_is_held(&cgroup_mutex))
4655 if (next->serial_nr > pos->serial_nr)
4656 break;
4657 }
4658
4659 /*
4660 * @next, if not pointing to the head, can be dereferenced and is
4661 * the next sibling.
4662 */
4663 if (&next->sibling != &parent->children)
4664 return next;
4665 return NULL;
4666 }
4667
4668 /**
4669 * css_next_descendant_pre - find the next descendant for pre-order walk
4670 * @pos: the current position (%NULL to initiate traversal)
4671 * @root: css whose descendants to walk
4672 *
4673 * To be used by css_for_each_descendant_pre(). Find the next descendant
4674 * to visit for pre-order traversal of @root's descendants. @root is
4675 * included in the iteration and the first node to be visited.
4676 *
4677 * While this function requires cgroup_mutex or RCU read locking, it
4678 * doesn't require the whole traversal to be contained in a single critical
4679 * section. Additionally, it isn't necessary to hold onto a reference to @pos.
4680 * This function will return the correct next descendant as long as both @pos
4681 * and @root are accessible and @pos is a descendant of @root.
4682 *
4683 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4684 * css which finished ->css_online() is guaranteed to be visible in the
4685 * future iterations and will stay visible until the last reference is put.
4686 * A css which hasn't finished ->css_online() or already finished
4687 * ->css_offline() may show up during traversal. It's each subsystem's
4688 * responsibility to synchronize against on/offlining.
4689 */
4690 struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4691 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4692 struct cgroup_subsys_state *root)
4693 {
4694 struct cgroup_subsys_state *next;
4695
4696 cgroup_assert_mutex_or_rcu_locked();
4697
4698 /* if first iteration, visit @root */
4699 if (!pos)
4700 return root;
4701
4702 /* visit the first child if exists */
4703 next = css_next_child(NULL, pos);
4704 if (next)
4705 return next;
4706
4707 /* no child, visit my or the closest ancestor's next sibling */
4708 while (pos != root) {
4709 next = css_next_child(pos, pos->parent);
4710 if (next)
4711 return next;
4712 pos = pos->parent;
4713 }
4714
4715 return NULL;
4716 }
4717 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4718
4719 /**
4720 * css_rightmost_descendant - return the rightmost descendant of a css
4721 * @pos: css of interest
4722 *
4723 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4724 * is returned. This can be used during pre-order traversal to skip
4725 * subtree of @pos.
4726 *
4727 * While this function requires cgroup_mutex or RCU read locking, it
4728 * doesn't require the whole traversal to be contained in a single critical
4729 * section. Additionally, it isn't necessary to hold onto a reference to @pos.
4730 * This function will return the correct rightmost descendant as long as @pos
4731 * is accessible.
4732 */
4733 struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state * pos)4734 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4735 {
4736 struct cgroup_subsys_state *last, *tmp;
4737
4738 cgroup_assert_mutex_or_rcu_locked();
4739
4740 do {
4741 last = pos;
4742 /* ->prev isn't RCU safe, walk ->next till the end */
4743 pos = NULL;
4744 css_for_each_child(tmp, last)
4745 pos = tmp;
4746 } while (pos);
4747
4748 return last;
4749 }
4750
4751 static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state * pos)4752 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4753 {
4754 struct cgroup_subsys_state *last;
4755
4756 do {
4757 last = pos;
4758 pos = css_next_child(NULL, pos);
4759 } while (pos);
4760
4761 return last;
4762 }
4763
4764 /**
4765 * css_next_descendant_post - find the next descendant for post-order walk
4766 * @pos: the current position (%NULL to initiate traversal)
4767 * @root: css whose descendants to walk
4768 *
4769 * To be used by css_for_each_descendant_post(). Find the next descendant
4770 * to visit for post-order traversal of @root's descendants. @root is
4771 * included in the iteration and the last node to be visited.
4772 *
4773 * While this function requires cgroup_mutex or RCU read locking, it
4774 * doesn't require the whole traversal to be contained in a single critical
4775 * section. Additionally, it isn't necessary to hold onto a reference to @pos.
4776 * This function will return the correct next descendant as long as both @pos
4777 * and @cgroup are accessible and @pos is a descendant of @cgroup.
4778 *
4779 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4780 * css which finished ->css_online() is guaranteed to be visible in the
4781 * future iterations and will stay visible until the last reference is put.
4782 * A css which hasn't finished ->css_online() or already finished
4783 * ->css_offline() may show up during traversal. It's each subsystem's
4784 * responsibility to synchronize against on/offlining.
4785 */
4786 struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4787 css_next_descendant_post(struct cgroup_subsys_state *pos,
4788 struct cgroup_subsys_state *root)
4789 {
4790 struct cgroup_subsys_state *next;
4791
4792 cgroup_assert_mutex_or_rcu_locked();
4793
4794 /* if first iteration, visit leftmost descendant which may be @root */
4795 if (!pos)
4796 return css_leftmost_descendant(root);
4797
4798 /* if we visited @root, we're done */
4799 if (pos == root)
4800 return NULL;
4801
4802 /* if there's an unvisited sibling, visit its leftmost descendant */
4803 next = css_next_child(pos, pos->parent);
4804 if (next)
4805 return css_leftmost_descendant(next);
4806
4807 /* no sibling left, visit parent */
4808 return pos->parent;
4809 }
4810
4811 /**
4812 * css_has_online_children - does a css have online children
4813 * @css: the target css
4814 *
4815 * Returns %true if @css has any online children; otherwise, %false. This
4816 * function can be called from any context but the caller is responsible
4817 * for synchronizing against on/offlining as necessary.
4818 */
css_has_online_children(struct cgroup_subsys_state * css)4819 bool css_has_online_children(struct cgroup_subsys_state *css)
4820 {
4821 struct cgroup_subsys_state *child;
4822 bool ret = false;
4823
4824 rcu_read_lock();
4825 css_for_each_child(child, css) {
4826 if (child->flags & CSS_ONLINE) {
4827 ret = true;
4828 break;
4829 }
4830 }
4831 rcu_read_unlock();
4832 return ret;
4833 }
4834
css_task_iter_next_css_set(struct css_task_iter * it)4835 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4836 {
4837 struct list_head *l;
4838 struct cgrp_cset_link *link;
4839 struct css_set *cset;
4840
4841 lockdep_assert_held(&css_set_lock);
4842
4843 /* find the next threaded cset */
4844 if (it->tcset_pos) {
4845 l = it->tcset_pos->next;
4846
4847 if (l != it->tcset_head) {
4848 it->tcset_pos = l;
4849 return container_of(l, struct css_set,
4850 threaded_csets_node);
4851 }
4852
4853 it->tcset_pos = NULL;
4854 }
4855
4856 /* find the next cset */
4857 l = it->cset_pos;
4858 l = l->next;
4859 if (l == it->cset_head) {
4860 it->cset_pos = NULL;
4861 return NULL;
4862 }
4863
4864 if (it->ss) {
4865 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4866 } else {
4867 link = list_entry(l, struct cgrp_cset_link, cset_link);
4868 cset = link->cset;
4869 }
4870
4871 it->cset_pos = l;
4872
4873 /* initialize threaded css_set walking */
4874 if (it->flags & CSS_TASK_ITER_THREADED) {
4875 if (it->cur_dcset)
4876 put_css_set_locked(it->cur_dcset);
4877 it->cur_dcset = cset;
4878 get_css_set(cset);
4879
4880 it->tcset_head = &cset->threaded_csets;
4881 it->tcset_pos = &cset->threaded_csets;
4882 }
4883
4884 return cset;
4885 }
4886
4887 /**
4888 * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4889 * @it: the iterator to advance
4890 *
4891 * Advance @it to the next css_set to walk.
4892 */
css_task_iter_advance_css_set(struct css_task_iter * it)4893 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4894 {
4895 struct css_set *cset;
4896
4897 lockdep_assert_held(&css_set_lock);
4898
4899 /* Advance to the next non-empty css_set and find first non-empty tasks list*/
4900 while ((cset = css_task_iter_next_css_set(it))) {
4901 if (!list_empty(&cset->tasks)) {
4902 it->cur_tasks_head = &cset->tasks;
4903 break;
4904 } else if (!list_empty(&cset->mg_tasks)) {
4905 it->cur_tasks_head = &cset->mg_tasks;
4906 break;
4907 } else if (!list_empty(&cset->dying_tasks)) {
4908 it->cur_tasks_head = &cset->dying_tasks;
4909 break;
4910 }
4911 }
4912 if (!cset) {
4913 it->task_pos = NULL;
4914 return;
4915 }
4916 it->task_pos = it->cur_tasks_head->next;
4917
4918 /*
4919 * We don't keep css_sets locked across iteration steps and thus
4920 * need to take steps to ensure that iteration can be resumed after
4921 * the lock is re-acquired. Iteration is performed at two levels -
4922 * css_sets and tasks in them.
4923 *
4924 * Once created, a css_set never leaves its cgroup lists, so a
4925 * pinned css_set is guaranteed to stay put and we can resume
4926 * iteration afterwards.
4927 *
4928 * Tasks may leave @cset across iteration steps. This is resolved
4929 * by registering each iterator with the css_set currently being
4930 * walked and making css_set_move_task() advance iterators whose
4931 * next task is leaving.
4932 */
4933 if (it->cur_cset) {
4934 list_del(&it->iters_node);
4935 put_css_set_locked(it->cur_cset);
4936 }
4937 get_css_set(cset);
4938 it->cur_cset = cset;
4939 list_add(&it->iters_node, &cset->task_iters);
4940 }
4941
css_task_iter_skip(struct css_task_iter * it,struct task_struct * task)4942 static void css_task_iter_skip(struct css_task_iter *it,
4943 struct task_struct *task)
4944 {
4945 lockdep_assert_held(&css_set_lock);
4946
4947 if (it->task_pos == &task->cg_list) {
4948 it->task_pos = it->task_pos->next;
4949 it->flags |= CSS_TASK_ITER_SKIPPED;
4950 }
4951 }
4952
css_task_iter_advance(struct css_task_iter * it)4953 static void css_task_iter_advance(struct css_task_iter *it)
4954 {
4955 struct task_struct *task;
4956
4957 lockdep_assert_held(&css_set_lock);
4958 repeat:
4959 if (it->task_pos) {
4960 /*
4961 * Advance iterator to find next entry. We go through cset
4962 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4963 * the next cset.
4964 */
4965 if (it->flags & CSS_TASK_ITER_SKIPPED)
4966 it->flags &= ~CSS_TASK_ITER_SKIPPED;
4967 else
4968 it->task_pos = it->task_pos->next;
4969
4970 if (it->task_pos == &it->cur_cset->tasks) {
4971 it->cur_tasks_head = &it->cur_cset->mg_tasks;
4972 it->task_pos = it->cur_tasks_head->next;
4973 }
4974 if (it->task_pos == &it->cur_cset->mg_tasks) {
4975 it->cur_tasks_head = &it->cur_cset->dying_tasks;
4976 it->task_pos = it->cur_tasks_head->next;
4977 }
4978 if (it->task_pos == &it->cur_cset->dying_tasks)
4979 css_task_iter_advance_css_set(it);
4980 } else {
4981 /* called from start, proceed to the first cset */
4982 css_task_iter_advance_css_set(it);
4983 }
4984
4985 if (!it->task_pos)
4986 return;
4987
4988 task = list_entry(it->task_pos, struct task_struct, cg_list);
4989
4990 if (it->flags & CSS_TASK_ITER_PROCS) {
4991 /* if PROCS, skip over tasks which aren't group leaders */
4992 if (!thread_group_leader(task))
4993 goto repeat;
4994
4995 /* and dying leaders w/o live member threads */
4996 if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4997 !atomic_read(&task->signal->live))
4998 goto repeat;
4999 } else {
5000 /* skip all dying ones */
5001 if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
5002 goto repeat;
5003 }
5004 }
5005
5006 /**
5007 * css_task_iter_start - initiate task iteration
5008 * @css: the css to walk tasks of
5009 * @flags: CSS_TASK_ITER_* flags
5010 * @it: the task iterator to use
5011 *
5012 * Initiate iteration through the tasks of @css. The caller can call
5013 * css_task_iter_next() to walk through the tasks until the function
5014 * returns NULL. On completion of iteration, css_task_iter_end() must be
5015 * called.
5016 */
css_task_iter_start(struct cgroup_subsys_state * css,unsigned int flags,struct css_task_iter * it)5017 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
5018 struct css_task_iter *it)
5019 {
5020 unsigned long irqflags;
5021
5022 memset(it, 0, sizeof(*it));
5023
5024 spin_lock_irqsave(&css_set_lock, irqflags);
5025
5026 it->ss = css->ss;
5027 it->flags = flags;
5028
5029 if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
5030 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
5031 else
5032 it->cset_pos = &css->cgroup->cset_links;
5033
5034 it->cset_head = it->cset_pos;
5035
5036 css_task_iter_advance(it);
5037
5038 spin_unlock_irqrestore(&css_set_lock, irqflags);
5039 }
5040
5041 /**
5042 * css_task_iter_next - return the next task for the iterator
5043 * @it: the task iterator being iterated
5044 *
5045 * The "next" function for task iteration. @it should have been
5046 * initialized via css_task_iter_start(). Returns NULL when the iteration
5047 * reaches the end.
5048 */
css_task_iter_next(struct css_task_iter * it)5049 struct task_struct *css_task_iter_next(struct css_task_iter *it)
5050 {
5051 unsigned long irqflags;
5052
5053 if (it->cur_task) {
5054 put_task_struct(it->cur_task);
5055 it->cur_task = NULL;
5056 }
5057
5058 spin_lock_irqsave(&css_set_lock, irqflags);
5059
5060 /* @it may be half-advanced by skips, finish advancing */
5061 if (it->flags & CSS_TASK_ITER_SKIPPED)
5062 css_task_iter_advance(it);
5063
5064 if (it->task_pos) {
5065 it->cur_task = list_entry(it->task_pos, struct task_struct,
5066 cg_list);
5067 get_task_struct(it->cur_task);
5068 css_task_iter_advance(it);
5069 }
5070
5071 spin_unlock_irqrestore(&css_set_lock, irqflags);
5072
5073 return it->cur_task;
5074 }
5075
5076 /**
5077 * css_task_iter_end - finish task iteration
5078 * @it: the task iterator to finish
5079 *
5080 * Finish task iteration started by css_task_iter_start().
5081 */
css_task_iter_end(struct css_task_iter * it)5082 void css_task_iter_end(struct css_task_iter *it)
5083 {
5084 unsigned long irqflags;
5085
5086 if (it->cur_cset) {
5087 spin_lock_irqsave(&css_set_lock, irqflags);
5088 list_del(&it->iters_node);
5089 put_css_set_locked(it->cur_cset);
5090 spin_unlock_irqrestore(&css_set_lock, irqflags);
5091 }
5092
5093 if (it->cur_dcset)
5094 put_css_set(it->cur_dcset);
5095
5096 if (it->cur_task)
5097 put_task_struct(it->cur_task);
5098 }
5099
cgroup_procs_release(struct kernfs_open_file * of)5100 static void cgroup_procs_release(struct kernfs_open_file *of)
5101 {
5102 struct cgroup_file_ctx *ctx = of->priv;
5103
5104 if (ctx->procs.started)
5105 css_task_iter_end(&ctx->procs.iter);
5106 }
5107
cgroup_procs_next(struct seq_file * s,void * v,loff_t * pos)5108 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
5109 {
5110 struct kernfs_open_file *of = s->private;
5111 struct cgroup_file_ctx *ctx = of->priv;
5112
5113 if (pos)
5114 (*pos)++;
5115
5116 return css_task_iter_next(&ctx->procs.iter);
5117 }
5118
__cgroup_procs_start(struct seq_file * s,loff_t * pos,unsigned int iter_flags)5119 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
5120 unsigned int iter_flags)
5121 {
5122 struct kernfs_open_file *of = s->private;
5123 struct cgroup *cgrp = seq_css(s)->cgroup;
5124 struct cgroup_file_ctx *ctx = of->priv;
5125 struct css_task_iter *it = &ctx->procs.iter;
5126
5127 /*
5128 * When a seq_file is seeked, it's always traversed sequentially
5129 * from position 0, so we can simply keep iterating on !0 *pos.
5130 */
5131 if (!ctx->procs.started) {
5132 if (WARN_ON_ONCE((*pos)))
5133 return ERR_PTR(-EINVAL);
5134 css_task_iter_start(&cgrp->self, iter_flags, it);
5135 ctx->procs.started = true;
5136 } else if (!(*pos)) {
5137 css_task_iter_end(it);
5138 css_task_iter_start(&cgrp->self, iter_flags, it);
5139 } else
5140 return it->cur_task;
5141
5142 return cgroup_procs_next(s, NULL, NULL);
5143 }
5144
cgroup_procs_start(struct seq_file * s,loff_t * pos)5145 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
5146 {
5147 struct cgroup *cgrp = seq_css(s)->cgroup;
5148
5149 /*
5150 * All processes of a threaded subtree belong to the domain cgroup
5151 * of the subtree. Only threads can be distributed across the
5152 * subtree. Reject reads on cgroup.procs in the subtree proper.
5153 * They're always empty anyway.
5154 */
5155 if (cgroup_is_threaded(cgrp))
5156 return ERR_PTR(-EOPNOTSUPP);
5157
5158 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
5159 CSS_TASK_ITER_THREADED);
5160 }
5161
cgroup_procs_show(struct seq_file * s,void * v)5162 static int cgroup_procs_show(struct seq_file *s, void *v)
5163 {
5164 seq_printf(s, "%d\n", task_pid_vnr(v));
5165 return 0;
5166 }
5167
cgroup_may_write(const struct cgroup * cgrp,struct super_block * sb)5168 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
5169 {
5170 int ret;
5171 struct inode *inode;
5172
5173 lockdep_assert_held(&cgroup_mutex);
5174
5175 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
5176 if (!inode)
5177 return -ENOMEM;
5178
5179 ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE);
5180 iput(inode);
5181 return ret;
5182 }
5183
cgroup_procs_write_permission(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,struct cgroup_namespace * ns)5184 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
5185 struct cgroup *dst_cgrp,
5186 struct super_block *sb,
5187 struct cgroup_namespace *ns)
5188 {
5189 struct cgroup *com_cgrp = src_cgrp;
5190 int ret;
5191
5192 lockdep_assert_held(&cgroup_mutex);
5193
5194 /* find the common ancestor */
5195 while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
5196 com_cgrp = cgroup_parent(com_cgrp);
5197
5198 /* %current should be authorized to migrate to the common ancestor */
5199 ret = cgroup_may_write(com_cgrp, sb);
5200 if (ret)
5201 return ret;
5202
5203 /*
5204 * If namespaces are delegation boundaries, %current must be able
5205 * to see both source and destination cgroups from its namespace.
5206 */
5207 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
5208 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
5209 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
5210 return -ENOENT;
5211
5212 return 0;
5213 }
5214
cgroup_attach_permissions(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,bool threadgroup,struct cgroup_namespace * ns)5215 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
5216 struct cgroup *dst_cgrp,
5217 struct super_block *sb, bool threadgroup,
5218 struct cgroup_namespace *ns)
5219 {
5220 int ret = 0;
5221
5222 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
5223 if (ret)
5224 return ret;
5225
5226 ret = cgroup_migrate_vet_dst(dst_cgrp);
5227 if (ret)
5228 return ret;
5229
5230 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
5231 ret = -EOPNOTSUPP;
5232
5233 return ret;
5234 }
5235
__cgroup_procs_write(struct kernfs_open_file * of,char * buf,bool threadgroup)5236 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
5237 bool threadgroup)
5238 {
5239 struct cgroup_file_ctx *ctx = of->priv;
5240 struct cgroup *src_cgrp, *dst_cgrp;
5241 struct task_struct *task;
5242 const struct cred *saved_cred;
5243 ssize_t ret;
5244 bool threadgroup_locked;
5245
5246 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
5247 if (!dst_cgrp)
5248 return -ENODEV;
5249
5250 task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked);
5251 ret = PTR_ERR_OR_ZERO(task);
5252 if (ret)
5253 goto out_unlock;
5254
5255 /* find the source cgroup */
5256 spin_lock_irq(&css_set_lock);
5257 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
5258 spin_unlock_irq(&css_set_lock);
5259
5260 /*
5261 * Process and thread migrations follow same delegation rule. Check
5262 * permissions using the credentials from file open to protect against
5263 * inherited fd attacks.
5264 */
5265 saved_cred = override_creds(of->file->f_cred);
5266 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
5267 of->file->f_path.dentry->d_sb,
5268 threadgroup, ctx->ns);
5269 revert_creds(saved_cred);
5270 if (ret)
5271 goto out_finish;
5272
5273 ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
5274
5275 out_finish:
5276 cgroup_procs_write_finish(task, threadgroup_locked);
5277 out_unlock:
5278 cgroup_kn_unlock(of->kn);
5279
5280 return ret;
5281 }
5282
cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5283 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
5284 char *buf, size_t nbytes, loff_t off)
5285 {
5286 return __cgroup_procs_write(of, buf, true) ?: nbytes;
5287 }
5288
cgroup_threads_start(struct seq_file * s,loff_t * pos)5289 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
5290 {
5291 return __cgroup_procs_start(s, pos, 0);
5292 }
5293
cgroup_threads_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5294 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
5295 char *buf, size_t nbytes, loff_t off)
5296 {
5297 return __cgroup_procs_write(of, buf, false) ?: nbytes;
5298 }
5299
5300 /* cgroup core interface files for the default hierarchy */
5301 static struct cftype cgroup_base_files[] = {
5302 {
5303 .name = "cgroup.type",
5304 .flags = CFTYPE_NOT_ON_ROOT,
5305 .seq_show = cgroup_type_show,
5306 .write = cgroup_type_write,
5307 },
5308 {
5309 .name = "cgroup.procs",
5310 .flags = CFTYPE_NS_DELEGATABLE,
5311 .file_offset = offsetof(struct cgroup, procs_file),
5312 .release = cgroup_procs_release,
5313 .seq_start = cgroup_procs_start,
5314 .seq_next = cgroup_procs_next,
5315 .seq_show = cgroup_procs_show,
5316 .write = cgroup_procs_write,
5317 },
5318 {
5319 .name = "cgroup.threads",
5320 .flags = CFTYPE_NS_DELEGATABLE,
5321 .release = cgroup_procs_release,
5322 .seq_start = cgroup_threads_start,
5323 .seq_next = cgroup_procs_next,
5324 .seq_show = cgroup_procs_show,
5325 .write = cgroup_threads_write,
5326 },
5327 {
5328 .name = "cgroup.controllers",
5329 .seq_show = cgroup_controllers_show,
5330 },
5331 {
5332 .name = "cgroup.subtree_control",
5333 .flags = CFTYPE_NS_DELEGATABLE,
5334 .seq_show = cgroup_subtree_control_show,
5335 .write = cgroup_subtree_control_write,
5336 },
5337 {
5338 .name = "cgroup.events",
5339 .flags = CFTYPE_NOT_ON_ROOT,
5340 .file_offset = offsetof(struct cgroup, events_file),
5341 .seq_show = cgroup_events_show,
5342 },
5343 {
5344 .name = "cgroup.max.descendants",
5345 .seq_show = cgroup_max_descendants_show,
5346 .write = cgroup_max_descendants_write,
5347 },
5348 {
5349 .name = "cgroup.max.depth",
5350 .seq_show = cgroup_max_depth_show,
5351 .write = cgroup_max_depth_write,
5352 },
5353 {
5354 .name = "cgroup.stat",
5355 .seq_show = cgroup_stat_show,
5356 },
5357 {
5358 .name = "cgroup.freeze",
5359 .flags = CFTYPE_NOT_ON_ROOT,
5360 .seq_show = cgroup_freeze_show,
5361 .write = cgroup_freeze_write,
5362 },
5363 {
5364 .name = "cgroup.kill",
5365 .flags = CFTYPE_NOT_ON_ROOT,
5366 .write = cgroup_kill_write,
5367 },
5368 {
5369 .name = "cpu.stat",
5370 .seq_show = cpu_stat_show,
5371 },
5372 {
5373 .name = "cpu.stat.local",
5374 .seq_show = cpu_local_stat_show,
5375 },
5376 { } /* terminate */
5377 };
5378
5379 static struct cftype cgroup_psi_files[] = {
5380 #ifdef CONFIG_PSI
5381 {
5382 .name = "io.pressure",
5383 .file_offset = offsetof(struct cgroup, psi_files[PSI_IO]),
5384 .seq_show = cgroup_io_pressure_show,
5385 .write = cgroup_io_pressure_write,
5386 .poll = cgroup_pressure_poll,
5387 .release = cgroup_pressure_release,
5388 },
5389 {
5390 .name = "memory.pressure",
5391 .file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]),
5392 .seq_show = cgroup_memory_pressure_show,
5393 .write = cgroup_memory_pressure_write,
5394 .poll = cgroup_pressure_poll,
5395 .release = cgroup_pressure_release,
5396 },
5397 {
5398 .name = "cpu.pressure",
5399 .file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]),
5400 .seq_show = cgroup_cpu_pressure_show,
5401 .write = cgroup_cpu_pressure_write,
5402 .poll = cgroup_pressure_poll,
5403 .release = cgroup_pressure_release,
5404 },
5405 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
5406 {
5407 .name = "irq.pressure",
5408 .file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]),
5409 .seq_show = cgroup_irq_pressure_show,
5410 .write = cgroup_irq_pressure_write,
5411 .poll = cgroup_pressure_poll,
5412 .release = cgroup_pressure_release,
5413 },
5414 #endif
5415 {
5416 .name = "cgroup.pressure",
5417 .seq_show = cgroup_pressure_show,
5418 .write = cgroup_pressure_write,
5419 },
5420 #endif /* CONFIG_PSI */
5421 { } /* terminate */
5422 };
5423
5424 /*
5425 * css destruction is four-stage process.
5426 *
5427 * 1. Destruction starts. Killing of the percpu_ref is initiated.
5428 * Implemented in kill_css().
5429 *
5430 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5431 * and thus css_tryget_online() is guaranteed to fail, the css can be
5432 * offlined by invoking offline_css(). After offlining, the base ref is
5433 * put. Implemented in css_killed_work_fn().
5434 *
5435 * 3. When the percpu_ref reaches zero, the only possible remaining
5436 * accessors are inside RCU read sections. css_release() schedules the
5437 * RCU callback.
5438 *
5439 * 4. After the grace period, the css can be freed. Implemented in
5440 * css_free_rwork_fn().
5441 *
5442 * It is actually hairier because both step 2 and 4 require process context
5443 * and thus involve punting to css->destroy_work adding two additional
5444 * steps to the already complex sequence.
5445 */
css_free_rwork_fn(struct work_struct * work)5446 static void css_free_rwork_fn(struct work_struct *work)
5447 {
5448 struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5449 struct cgroup_subsys_state, destroy_rwork);
5450 struct cgroup_subsys *ss = css->ss;
5451 struct cgroup *cgrp = css->cgroup;
5452
5453 percpu_ref_exit(&css->refcnt);
5454 css_rstat_exit(css);
5455
5456 if (!css_is_self(css)) {
5457 /* css free path */
5458 struct cgroup_subsys_state *parent = css->parent;
5459 int id = css->id;
5460
5461 ss->css_free(css);
5462 cgroup_idr_remove(&ss->css_idr, id);
5463 cgroup_put(cgrp);
5464
5465 if (parent)
5466 css_put(parent);
5467 } else {
5468 /* cgroup free path */
5469 atomic_dec(&cgrp->root->nr_cgrps);
5470 if (!cgroup_on_dfl(cgrp))
5471 cgroup1_pidlist_destroy_all(cgrp);
5472 cancel_work_sync(&cgrp->release_agent_work);
5473 bpf_cgrp_storage_free(cgrp);
5474
5475 if (cgroup_parent(cgrp)) {
5476 /*
5477 * We get a ref to the parent, and put the ref when
5478 * this cgroup is being freed, so it's guaranteed
5479 * that the parent won't be destroyed before its
5480 * children.
5481 */
5482 cgroup_put(cgroup_parent(cgrp));
5483 kernfs_put(cgrp->kn);
5484 psi_cgroup_free(cgrp);
5485 kfree(cgrp);
5486 } else {
5487 /*
5488 * This is root cgroup's refcnt reaching zero,
5489 * which indicates that the root should be
5490 * released.
5491 */
5492 cgroup_destroy_root(cgrp->root);
5493 }
5494 }
5495 }
5496
css_release_work_fn(struct work_struct * work)5497 static void css_release_work_fn(struct work_struct *work)
5498 {
5499 struct cgroup_subsys_state *css =
5500 container_of(work, struct cgroup_subsys_state, destroy_work);
5501 struct cgroup_subsys *ss = css->ss;
5502 struct cgroup *cgrp = css->cgroup;
5503
5504 cgroup_lock();
5505
5506 css->flags |= CSS_RELEASED;
5507 list_del_rcu(&css->sibling);
5508
5509 if (!css_is_self(css)) {
5510 struct cgroup *parent_cgrp;
5511
5512 css_rstat_flush(css);
5513
5514 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5515 if (ss->css_released)
5516 ss->css_released(css);
5517
5518 cgrp->nr_dying_subsys[ss->id]--;
5519 /*
5520 * When a css is released and ready to be freed, its
5521 * nr_descendants must be zero. However, the corresponding
5522 * cgrp->nr_dying_subsys[ss->id] may not be 0 if a subsystem
5523 * is activated and deactivated multiple times with one or
5524 * more of its previous activation leaving behind dying csses.
5525 */
5526 WARN_ON_ONCE(css->nr_descendants);
5527 parent_cgrp = cgroup_parent(cgrp);
5528 while (parent_cgrp) {
5529 parent_cgrp->nr_dying_subsys[ss->id]--;
5530 parent_cgrp = cgroup_parent(parent_cgrp);
5531 }
5532 } else {
5533 struct cgroup *tcgrp;
5534
5535 /* cgroup release path */
5536 TRACE_CGROUP_PATH(release, cgrp);
5537
5538 css_rstat_flush(&cgrp->self);
5539
5540 spin_lock_irq(&css_set_lock);
5541 for (tcgrp = cgroup_parent(cgrp); tcgrp;
5542 tcgrp = cgroup_parent(tcgrp))
5543 tcgrp->nr_dying_descendants--;
5544 spin_unlock_irq(&css_set_lock);
5545
5546 /*
5547 * There are two control paths which try to determine
5548 * cgroup from dentry without going through kernfs -
5549 * cgroupstats_build() and css_tryget_online_from_dir().
5550 * Those are supported by RCU protecting clearing of
5551 * cgrp->kn->priv backpointer.
5552 */
5553 if (cgrp->kn)
5554 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5555 NULL);
5556 }
5557
5558 cgroup_unlock();
5559
5560 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5561 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5562 }
5563
css_release(struct percpu_ref * ref)5564 static void css_release(struct percpu_ref *ref)
5565 {
5566 struct cgroup_subsys_state *css =
5567 container_of(ref, struct cgroup_subsys_state, refcnt);
5568
5569 INIT_WORK(&css->destroy_work, css_release_work_fn);
5570 queue_work(cgroup_destroy_wq, &css->destroy_work);
5571 }
5572
init_and_link_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)5573 static void init_and_link_css(struct cgroup_subsys_state *css,
5574 struct cgroup_subsys *ss, struct cgroup *cgrp)
5575 {
5576 lockdep_assert_held(&cgroup_mutex);
5577
5578 cgroup_get_live(cgrp);
5579
5580 memset(css, 0, sizeof(*css));
5581 css->cgroup = cgrp;
5582 css->ss = ss;
5583 css->id = -1;
5584 INIT_LIST_HEAD(&css->sibling);
5585 INIT_LIST_HEAD(&css->children);
5586 css->serial_nr = css_serial_nr_next++;
5587 atomic_set(&css->online_cnt, 0);
5588
5589 if (cgroup_parent(cgrp)) {
5590 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5591 css_get(css->parent);
5592 }
5593
5594 BUG_ON(cgroup_css(cgrp, ss));
5595 }
5596
5597 /* invoke ->css_online() on a new CSS and mark it online if successful */
online_css(struct cgroup_subsys_state * css)5598 static int online_css(struct cgroup_subsys_state *css)
5599 {
5600 struct cgroup_subsys *ss = css->ss;
5601 int ret = 0;
5602
5603 lockdep_assert_held(&cgroup_mutex);
5604
5605 if (ss->css_online)
5606 ret = ss->css_online(css);
5607 if (!ret) {
5608 css->flags |= CSS_ONLINE;
5609 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5610
5611 atomic_inc(&css->online_cnt);
5612 if (css->parent) {
5613 atomic_inc(&css->parent->online_cnt);
5614 while ((css = css->parent))
5615 css->nr_descendants++;
5616 }
5617 }
5618 return ret;
5619 }
5620
5621 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
offline_css(struct cgroup_subsys_state * css)5622 static void offline_css(struct cgroup_subsys_state *css)
5623 {
5624 struct cgroup_subsys *ss = css->ss;
5625
5626 lockdep_assert_held(&cgroup_mutex);
5627
5628 if (!(css->flags & CSS_ONLINE))
5629 return;
5630
5631 if (ss->css_offline)
5632 ss->css_offline(css);
5633
5634 css->flags &= ~CSS_ONLINE;
5635 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5636
5637 wake_up_all(&css->cgroup->offline_waitq);
5638
5639 css->cgroup->nr_dying_subsys[ss->id]++;
5640 /*
5641 * Parent css and cgroup cannot be freed until after the freeing
5642 * of child css, see css_free_rwork_fn().
5643 */
5644 while ((css = css->parent)) {
5645 css->nr_descendants--;
5646 css->cgroup->nr_dying_subsys[ss->id]++;
5647 }
5648 }
5649
5650 /**
5651 * css_create - create a cgroup_subsys_state
5652 * @cgrp: the cgroup new css will be associated with
5653 * @ss: the subsys of new css
5654 *
5655 * Create a new css associated with @cgrp - @ss pair. On success, the new
5656 * css is online and installed in @cgrp. This function doesn't create the
5657 * interface files. Returns 0 on success, -errno on failure.
5658 */
css_create(struct cgroup * cgrp,struct cgroup_subsys * ss)5659 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5660 struct cgroup_subsys *ss)
5661 {
5662 struct cgroup *parent = cgroup_parent(cgrp);
5663 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5664 struct cgroup_subsys_state *css;
5665 int err;
5666
5667 lockdep_assert_held(&cgroup_mutex);
5668
5669 css = ss->css_alloc(parent_css);
5670 if (!css)
5671 css = ERR_PTR(-ENOMEM);
5672 if (IS_ERR(css))
5673 return css;
5674
5675 init_and_link_css(css, ss, cgrp);
5676
5677 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5678 if (err)
5679 goto err_free_css;
5680
5681 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5682 if (err < 0)
5683 goto err_free_css;
5684 css->id = err;
5685
5686 err = css_rstat_init(css);
5687 if (err)
5688 goto err_free_css;
5689
5690 /* @css is ready to be brought online now, make it visible */
5691 list_add_tail_rcu(&css->sibling, &parent_css->children);
5692 cgroup_idr_replace(&ss->css_idr, css, css->id);
5693
5694 err = online_css(css);
5695 if (err)
5696 goto err_list_del;
5697
5698 return css;
5699
5700 err_list_del:
5701 list_del_rcu(&css->sibling);
5702 err_free_css:
5703 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5704 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5705 return ERR_PTR(err);
5706 }
5707
5708 /*
5709 * The returned cgroup is fully initialized including its control mask, but
5710 * it doesn't have the control mask applied.
5711 */
cgroup_create(struct cgroup * parent,const char * name,umode_t mode)5712 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5713 umode_t mode)
5714 {
5715 struct cgroup_root *root = parent->root;
5716 struct cgroup *cgrp, *tcgrp;
5717 struct kernfs_node *kn;
5718 int i, level = parent->level + 1;
5719 int ret;
5720
5721 /* allocate the cgroup and its ID, 0 is reserved for the root */
5722 cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL);
5723 if (!cgrp)
5724 return ERR_PTR(-ENOMEM);
5725
5726 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5727 if (ret)
5728 goto out_free_cgrp;
5729
5730 /* create the directory */
5731 kn = kernfs_create_dir_ns(parent->kn, name, mode,
5732 current_fsuid(), current_fsgid(),
5733 cgrp, NULL);
5734 if (IS_ERR(kn)) {
5735 ret = PTR_ERR(kn);
5736 goto out_cancel_ref;
5737 }
5738 cgrp->kn = kn;
5739
5740 init_cgroup_housekeeping(cgrp);
5741
5742 cgrp->self.parent = &parent->self;
5743 cgrp->root = root;
5744 cgrp->level = level;
5745
5746 /*
5747 * Now that init_cgroup_housekeeping() has been called and cgrp->self
5748 * is setup, it is safe to perform rstat initialization on it.
5749 */
5750 ret = css_rstat_init(&cgrp->self);
5751 if (ret)
5752 goto out_kernfs_remove;
5753
5754 ret = psi_cgroup_alloc(cgrp);
5755 if (ret)
5756 goto out_stat_exit;
5757
5758 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
5759 cgrp->ancestors[tcgrp->level] = tcgrp;
5760
5761 /*
5762 * New cgroup inherits effective freeze counter, and
5763 * if the parent has to be frozen, the child has too.
5764 */
5765 cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5766 if (cgrp->freezer.e_freeze) {
5767 /*
5768 * Set the CGRP_FREEZE flag, so when a process will be
5769 * attached to the child cgroup, it will become frozen.
5770 * At this point the new cgroup is unpopulated, so we can
5771 * consider it frozen immediately.
5772 */
5773 set_bit(CGRP_FREEZE, &cgrp->flags);
5774 set_bit(CGRP_FROZEN, &cgrp->flags);
5775 }
5776
5777 if (notify_on_release(parent))
5778 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5779
5780 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5781 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5782
5783 cgrp->self.serial_nr = css_serial_nr_next++;
5784
5785 ret = blocking_notifier_call_chain_robust(&cgroup_lifetime_notifier,
5786 CGROUP_LIFETIME_ONLINE,
5787 CGROUP_LIFETIME_OFFLINE, cgrp);
5788 ret = notifier_to_errno(ret);
5789 if (ret)
5790 goto out_psi_free;
5791
5792 /* allocation complete, commit to creation */
5793 spin_lock_irq(&css_set_lock);
5794 for (i = 0; i < level; i++) {
5795 tcgrp = cgrp->ancestors[i];
5796 tcgrp->nr_descendants++;
5797
5798 /*
5799 * If the new cgroup is frozen, all ancestor cgroups get a new
5800 * frozen descendant, but their state can't change because of
5801 * this.
5802 */
5803 if (cgrp->freezer.e_freeze)
5804 tcgrp->freezer.nr_frozen_descendants++;
5805 }
5806 spin_unlock_irq(&css_set_lock);
5807
5808 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5809 atomic_inc(&root->nr_cgrps);
5810 cgroup_get_live(parent);
5811
5812 /*
5813 * On the default hierarchy, a child doesn't automatically inherit
5814 * subtree_control from the parent. Each is configured manually.
5815 */
5816 if (!cgroup_on_dfl(cgrp))
5817 cgrp->subtree_control = cgroup_control(cgrp);
5818
5819 cgroup_propagate_control(cgrp);
5820
5821 return cgrp;
5822
5823 out_psi_free:
5824 psi_cgroup_free(cgrp);
5825 out_stat_exit:
5826 css_rstat_exit(&cgrp->self);
5827 out_kernfs_remove:
5828 kernfs_remove(cgrp->kn);
5829 out_cancel_ref:
5830 percpu_ref_exit(&cgrp->self.refcnt);
5831 out_free_cgrp:
5832 kfree(cgrp);
5833 return ERR_PTR(ret);
5834 }
5835
cgroup_check_hierarchy_limits(struct cgroup * parent)5836 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5837 {
5838 struct cgroup *cgroup;
5839 int ret = false;
5840 int level = 0;
5841
5842 lockdep_assert_held(&cgroup_mutex);
5843
5844 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5845 if (cgroup->nr_descendants >= cgroup->max_descendants)
5846 goto fail;
5847
5848 if (level >= cgroup->max_depth)
5849 goto fail;
5850
5851 level++;
5852 }
5853
5854 ret = true;
5855 fail:
5856 return ret;
5857 }
5858
cgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)5859 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5860 {
5861 struct cgroup *parent, *cgrp;
5862 int ret;
5863
5864 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5865 if (strchr(name, '\n'))
5866 return -EINVAL;
5867
5868 parent = cgroup_kn_lock_live(parent_kn, false);
5869 if (!parent)
5870 return -ENODEV;
5871
5872 if (!cgroup_check_hierarchy_limits(parent)) {
5873 ret = -EAGAIN;
5874 goto out_unlock;
5875 }
5876
5877 cgrp = cgroup_create(parent, name, mode);
5878 if (IS_ERR(cgrp)) {
5879 ret = PTR_ERR(cgrp);
5880 goto out_unlock;
5881 }
5882
5883 /*
5884 * This extra ref will be put in css_free_rwork_fn() and guarantees
5885 * that @cgrp->kn is always accessible.
5886 */
5887 kernfs_get(cgrp->kn);
5888
5889 ret = css_populate_dir(&cgrp->self);
5890 if (ret)
5891 goto out_destroy;
5892
5893 ret = cgroup_apply_control_enable(cgrp);
5894 if (ret)
5895 goto out_destroy;
5896
5897 TRACE_CGROUP_PATH(mkdir, cgrp);
5898
5899 /* let's create and online css's */
5900 kernfs_activate(cgrp->kn);
5901
5902 ret = 0;
5903 goto out_unlock;
5904
5905 out_destroy:
5906 cgroup_destroy_locked(cgrp);
5907 out_unlock:
5908 cgroup_kn_unlock(parent_kn);
5909 return ret;
5910 }
5911
5912 /*
5913 * This is called when the refcnt of a css is confirmed to be killed.
5914 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5915 * initiate destruction and put the css ref from kill_css().
5916 */
css_killed_work_fn(struct work_struct * work)5917 static void css_killed_work_fn(struct work_struct *work)
5918 {
5919 struct cgroup_subsys_state *css =
5920 container_of(work, struct cgroup_subsys_state, destroy_work);
5921
5922 cgroup_lock();
5923
5924 do {
5925 offline_css(css);
5926 css_put(css);
5927 /* @css can't go away while we're holding cgroup_mutex */
5928 css = css->parent;
5929 } while (css && atomic_dec_and_test(&css->online_cnt));
5930
5931 cgroup_unlock();
5932 }
5933
5934 /* css kill confirmation processing requires process context, bounce */
css_killed_ref_fn(struct percpu_ref * ref)5935 static void css_killed_ref_fn(struct percpu_ref *ref)
5936 {
5937 struct cgroup_subsys_state *css =
5938 container_of(ref, struct cgroup_subsys_state, refcnt);
5939
5940 if (atomic_dec_and_test(&css->online_cnt)) {
5941 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5942 queue_work(cgroup_destroy_wq, &css->destroy_work);
5943 }
5944 }
5945
5946 /**
5947 * kill_css - destroy a css
5948 * @css: css to destroy
5949 *
5950 * This function initiates destruction of @css by removing cgroup interface
5951 * files and putting its base reference. ->css_offline() will be invoked
5952 * asynchronously once css_tryget_online() is guaranteed to fail and when
5953 * the reference count reaches zero, @css will be released.
5954 */
kill_css(struct cgroup_subsys_state * css)5955 static void kill_css(struct cgroup_subsys_state *css)
5956 {
5957 lockdep_assert_held(&cgroup_mutex);
5958
5959 if (css->flags & CSS_DYING)
5960 return;
5961
5962 /*
5963 * Call css_killed(), if defined, before setting the CSS_DYING flag
5964 */
5965 if (css->ss->css_killed)
5966 css->ss->css_killed(css);
5967
5968 css->flags |= CSS_DYING;
5969
5970 /*
5971 * This must happen before css is disassociated with its cgroup.
5972 * See seq_css() for details.
5973 */
5974 css_clear_dir(css);
5975
5976 /*
5977 * Killing would put the base ref, but we need to keep it alive
5978 * until after ->css_offline().
5979 */
5980 css_get(css);
5981
5982 /*
5983 * cgroup core guarantees that, by the time ->css_offline() is
5984 * invoked, no new css reference will be given out via
5985 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5986 * proceed to offlining css's because percpu_ref_kill() doesn't
5987 * guarantee that the ref is seen as killed on all CPUs on return.
5988 *
5989 * Use percpu_ref_kill_and_confirm() to get notifications as each
5990 * css is confirmed to be seen as killed on all CPUs.
5991 */
5992 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5993 }
5994
5995 /**
5996 * cgroup_destroy_locked - the first stage of cgroup destruction
5997 * @cgrp: cgroup to be destroyed
5998 *
5999 * css's make use of percpu refcnts whose killing latency shouldn't be
6000 * exposed to userland and are RCU protected. Also, cgroup core needs to
6001 * guarantee that css_tryget_online() won't succeed by the time
6002 * ->css_offline() is invoked. To satisfy all the requirements,
6003 * destruction is implemented in the following two steps.
6004 *
6005 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
6006 * userland visible parts and start killing the percpu refcnts of
6007 * css's. Set up so that the next stage will be kicked off once all
6008 * the percpu refcnts are confirmed to be killed.
6009 *
6010 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
6011 * rest of destruction. Once all cgroup references are gone, the
6012 * cgroup is RCU-freed.
6013 *
6014 * This function implements s1. After this step, @cgrp is gone as far as
6015 * the userland is concerned and a new cgroup with the same name may be
6016 * created. As cgroup doesn't care about the names internally, this
6017 * doesn't cause any problem.
6018 */
cgroup_destroy_locked(struct cgroup * cgrp)6019 static int cgroup_destroy_locked(struct cgroup *cgrp)
6020 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
6021 {
6022 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
6023 struct cgroup_subsys_state *css;
6024 struct cgrp_cset_link *link;
6025 int ssid, ret;
6026
6027 lockdep_assert_held(&cgroup_mutex);
6028
6029 /*
6030 * Only migration can raise populated from zero and we're already
6031 * holding cgroup_mutex.
6032 */
6033 if (cgroup_is_populated(cgrp))
6034 return -EBUSY;
6035
6036 /*
6037 * Make sure there's no live children. We can't test emptiness of
6038 * ->self.children as dead children linger on it while being
6039 * drained; otherwise, "rmdir parent/child parent" may fail.
6040 */
6041 if (css_has_online_children(&cgrp->self))
6042 return -EBUSY;
6043
6044 /*
6045 * Mark @cgrp and the associated csets dead. The former prevents
6046 * further task migration and child creation by disabling
6047 * cgroup_kn_lock_live(). The latter makes the csets ignored by
6048 * the migration path.
6049 */
6050 cgrp->self.flags &= ~CSS_ONLINE;
6051
6052 spin_lock_irq(&css_set_lock);
6053 list_for_each_entry(link, &cgrp->cset_links, cset_link)
6054 link->cset->dead = true;
6055 spin_unlock_irq(&css_set_lock);
6056
6057 /* initiate massacre of all css's */
6058 for_each_css(css, ssid, cgrp)
6059 kill_css(css);
6060
6061 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
6062 css_clear_dir(&cgrp->self);
6063 kernfs_remove(cgrp->kn);
6064
6065 if (cgroup_is_threaded(cgrp))
6066 parent->nr_threaded_children--;
6067
6068 spin_lock_irq(&css_set_lock);
6069 for (tcgrp = parent; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
6070 tcgrp->nr_descendants--;
6071 tcgrp->nr_dying_descendants++;
6072 /*
6073 * If the dying cgroup is frozen, decrease frozen descendants
6074 * counters of ancestor cgroups.
6075 */
6076 if (test_bit(CGRP_FROZEN, &cgrp->flags))
6077 tcgrp->freezer.nr_frozen_descendants--;
6078 }
6079 spin_unlock_irq(&css_set_lock);
6080
6081 cgroup1_check_for_release(parent);
6082
6083 ret = blocking_notifier_call_chain(&cgroup_lifetime_notifier,
6084 CGROUP_LIFETIME_OFFLINE, cgrp);
6085 WARN_ON_ONCE(notifier_to_errno(ret));
6086
6087 /* put the base reference */
6088 percpu_ref_kill(&cgrp->self.refcnt);
6089
6090 return 0;
6091 };
6092
cgroup_rmdir(struct kernfs_node * kn)6093 int cgroup_rmdir(struct kernfs_node *kn)
6094 {
6095 struct cgroup *cgrp;
6096 int ret = 0;
6097
6098 cgrp = cgroup_kn_lock_live(kn, false);
6099 if (!cgrp)
6100 return 0;
6101
6102 ret = cgroup_destroy_locked(cgrp);
6103 if (!ret)
6104 TRACE_CGROUP_PATH(rmdir, cgrp);
6105
6106 cgroup_kn_unlock(kn);
6107 return ret;
6108 }
6109
6110 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
6111 .show_options = cgroup_show_options,
6112 .mkdir = cgroup_mkdir,
6113 .rmdir = cgroup_rmdir,
6114 .show_path = cgroup_show_path,
6115 };
6116
cgroup_init_subsys(struct cgroup_subsys * ss,bool early)6117 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
6118 {
6119 struct cgroup_subsys_state *css;
6120
6121 pr_debug("Initializing cgroup subsys %s\n", ss->name);
6122
6123 cgroup_lock();
6124
6125 idr_init(&ss->css_idr);
6126 INIT_LIST_HEAD(&ss->cfts);
6127
6128 /* Create the root cgroup state for this subsystem */
6129 ss->root = &cgrp_dfl_root;
6130 css = ss->css_alloc(NULL);
6131 /* We don't handle early failures gracefully */
6132 BUG_ON(IS_ERR(css));
6133 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
6134
6135 /*
6136 * Root csses are never destroyed and we can't initialize
6137 * percpu_ref during early init. Disable refcnting.
6138 */
6139 css->flags |= CSS_NO_REF;
6140
6141 if (early) {
6142 /* allocation can't be done safely during early init */
6143 css->id = 1;
6144 } else {
6145 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
6146 BUG_ON(css->id < 0);
6147
6148 BUG_ON(ss_rstat_init(ss));
6149 BUG_ON(css_rstat_init(css));
6150 }
6151
6152 /* Update the init_css_set to contain a subsys
6153 * pointer to this state - since the subsystem is
6154 * newly registered, all tasks and hence the
6155 * init_css_set is in the subsystem's root cgroup. */
6156 init_css_set.subsys[ss->id] = css;
6157
6158 have_fork_callback |= (bool)ss->fork << ss->id;
6159 have_exit_callback |= (bool)ss->exit << ss->id;
6160 have_release_callback |= (bool)ss->release << ss->id;
6161 have_canfork_callback |= (bool)ss->can_fork << ss->id;
6162
6163 /* At system boot, before all subsystems have been
6164 * registered, no tasks have been forked, so we don't
6165 * need to invoke fork callbacks here. */
6166 BUG_ON(!list_empty(&init_task.tasks));
6167
6168 BUG_ON(online_css(css));
6169
6170 cgroup_unlock();
6171 }
6172
6173 /**
6174 * cgroup_init_early - cgroup initialization at system boot
6175 *
6176 * Initialize cgroups at system boot, and initialize any
6177 * subsystems that request early init.
6178 */
cgroup_init_early(void)6179 int __init cgroup_init_early(void)
6180 {
6181 static struct cgroup_fs_context __initdata ctx;
6182 struct cgroup_subsys *ss;
6183 int i;
6184
6185 ctx.root = &cgrp_dfl_root;
6186 init_cgroup_root(&ctx);
6187 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
6188
6189 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
6190
6191 for_each_subsys(ss, i) {
6192 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
6193 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
6194 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
6195 ss->id, ss->name);
6196 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
6197 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
6198 WARN(ss->early_init && ss->css_rstat_flush,
6199 "cgroup rstat cannot be used with early init subsystem\n");
6200
6201 ss->id = i;
6202 ss->name = cgroup_subsys_name[i];
6203 if (!ss->legacy_name)
6204 ss->legacy_name = cgroup_subsys_name[i];
6205
6206 if (ss->early_init)
6207 cgroup_init_subsys(ss, true);
6208 }
6209 return 0;
6210 }
6211
6212 /**
6213 * cgroup_init - cgroup initialization
6214 *
6215 * Register cgroup filesystem and /proc file, and initialize
6216 * any subsystems that didn't request early init.
6217 */
cgroup_init(void)6218 int __init cgroup_init(void)
6219 {
6220 struct cgroup_subsys *ss;
6221 int ssid;
6222
6223 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
6224 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
6225 BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files));
6226 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
6227
6228 BUG_ON(ss_rstat_init(NULL));
6229
6230 get_user_ns(init_cgroup_ns.user_ns);
6231
6232 cgroup_lock();
6233
6234 /*
6235 * Add init_css_set to the hash table so that dfl_root can link to
6236 * it during init.
6237 */
6238 hash_add(css_set_table, &init_css_set.hlist,
6239 css_set_hash(init_css_set.subsys));
6240
6241 cgroup_bpf_lifetime_notifier_init();
6242
6243 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
6244
6245 cgroup_unlock();
6246
6247 for_each_subsys(ss, ssid) {
6248 if (ss->early_init) {
6249 struct cgroup_subsys_state *css =
6250 init_css_set.subsys[ss->id];
6251
6252 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
6253 GFP_KERNEL);
6254 BUG_ON(css->id < 0);
6255 } else {
6256 cgroup_init_subsys(ss, false);
6257 }
6258
6259 list_add_tail(&init_css_set.e_cset_node[ssid],
6260 &cgrp_dfl_root.cgrp.e_csets[ssid]);
6261
6262 /*
6263 * Setting dfl_root subsys_mask needs to consider the
6264 * disabled flag and cftype registration needs kmalloc,
6265 * both of which aren't available during early_init.
6266 */
6267 if (!cgroup_ssid_enabled(ssid))
6268 continue;
6269
6270 if (cgroup1_ssid_disabled(ssid))
6271 pr_info("Disabling %s control group subsystem in v1 mounts\n",
6272 ss->legacy_name);
6273
6274 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
6275
6276 /* implicit controllers must be threaded too */
6277 WARN_ON(ss->implicit_on_dfl && !ss->threaded);
6278
6279 if (ss->implicit_on_dfl)
6280 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
6281 else if (!ss->dfl_cftypes)
6282 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
6283
6284 if (ss->threaded)
6285 cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
6286
6287 if (ss->dfl_cftypes == ss->legacy_cftypes) {
6288 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
6289 } else {
6290 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
6291 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
6292 }
6293
6294 if (ss->bind)
6295 ss->bind(init_css_set.subsys[ssid]);
6296
6297 cgroup_lock();
6298 css_populate_dir(init_css_set.subsys[ssid]);
6299 cgroup_unlock();
6300 }
6301
6302 /* init_css_set.subsys[] has been updated, re-hash */
6303 hash_del(&init_css_set.hlist);
6304 hash_add(css_set_table, &init_css_set.hlist,
6305 css_set_hash(init_css_set.subsys));
6306
6307 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
6308 WARN_ON(register_filesystem(&cgroup_fs_type));
6309 WARN_ON(register_filesystem(&cgroup2_fs_type));
6310 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
6311 #ifdef CONFIG_CPUSETS_V1
6312 WARN_ON(register_filesystem(&cpuset_fs_type));
6313 #endif
6314
6315 return 0;
6316 }
6317
cgroup_wq_init(void)6318 static int __init cgroup_wq_init(void)
6319 {
6320 /*
6321 * There isn't much point in executing destruction path in
6322 * parallel. Good chunk is serialized with cgroup_mutex anyway.
6323 * Use 1 for @max_active.
6324 *
6325 * We would prefer to do this in cgroup_init() above, but that
6326 * is called before init_workqueues(): so leave this until after.
6327 */
6328 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
6329 BUG_ON(!cgroup_destroy_wq);
6330 return 0;
6331 }
6332 core_initcall(cgroup_wq_init);
6333
cgroup_path_from_kernfs_id(u64 id,char * buf,size_t buflen)6334 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
6335 {
6336 struct kernfs_node *kn;
6337
6338 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6339 if (!kn)
6340 return;
6341 kernfs_path(kn, buf, buflen);
6342 kernfs_put(kn);
6343 }
6344
6345 /*
6346 * cgroup_get_from_id : get the cgroup associated with cgroup id
6347 * @id: cgroup id
6348 * On success return the cgrp or ERR_PTR on failure
6349 * Only cgroups within current task's cgroup NS are valid.
6350 */
cgroup_get_from_id(u64 id)6351 struct cgroup *cgroup_get_from_id(u64 id)
6352 {
6353 struct kernfs_node *kn;
6354 struct cgroup *cgrp, *root_cgrp;
6355
6356 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6357 if (!kn)
6358 return ERR_PTR(-ENOENT);
6359
6360 if (kernfs_type(kn) != KERNFS_DIR) {
6361 kernfs_put(kn);
6362 return ERR_PTR(-ENOENT);
6363 }
6364
6365 rcu_read_lock();
6366
6367 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6368 if (cgrp && !cgroup_tryget(cgrp))
6369 cgrp = NULL;
6370
6371 rcu_read_unlock();
6372 kernfs_put(kn);
6373
6374 if (!cgrp)
6375 return ERR_PTR(-ENOENT);
6376
6377 root_cgrp = current_cgns_cgroup_dfl();
6378 if (!cgroup_is_descendant(cgrp, root_cgrp)) {
6379 cgroup_put(cgrp);
6380 return ERR_PTR(-ENOENT);
6381 }
6382
6383 return cgrp;
6384 }
6385 EXPORT_SYMBOL_GPL(cgroup_get_from_id);
6386
6387 /*
6388 * proc_cgroup_show()
6389 * - Print task's cgroup paths into seq_file, one line for each hierarchy
6390 * - Used for /proc/<pid>/cgroup.
6391 */
proc_cgroup_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)6392 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
6393 struct pid *pid, struct task_struct *tsk)
6394 {
6395 char *buf;
6396 int retval;
6397 struct cgroup_root *root;
6398
6399 retval = -ENOMEM;
6400 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6401 if (!buf)
6402 goto out;
6403
6404 rcu_read_lock();
6405 spin_lock_irq(&css_set_lock);
6406
6407 for_each_root(root) {
6408 struct cgroup_subsys *ss;
6409 struct cgroup *cgrp;
6410 int ssid, count = 0;
6411
6412 if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible))
6413 continue;
6414
6415 cgrp = task_cgroup_from_root(tsk, root);
6416 /* The root has already been unmounted. */
6417 if (!cgrp)
6418 continue;
6419
6420 seq_printf(m, "%d:", root->hierarchy_id);
6421 if (root != &cgrp_dfl_root)
6422 for_each_subsys(ss, ssid)
6423 if (root->subsys_mask & (1 << ssid))
6424 seq_printf(m, "%s%s", count++ ? "," : "",
6425 ss->legacy_name);
6426 if (strlen(root->name))
6427 seq_printf(m, "%sname=%s", count ? "," : "",
6428 root->name);
6429 seq_putc(m, ':');
6430 /*
6431 * On traditional hierarchies, all zombie tasks show up as
6432 * belonging to the root cgroup. On the default hierarchy,
6433 * while a zombie doesn't show up in "cgroup.procs" and
6434 * thus can't be migrated, its /proc/PID/cgroup keeps
6435 * reporting the cgroup it belonged to before exiting. If
6436 * the cgroup is removed before the zombie is reaped,
6437 * " (deleted)" is appended to the cgroup path.
6438 */
6439 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
6440 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
6441 current->nsproxy->cgroup_ns);
6442 if (retval == -E2BIG)
6443 retval = -ENAMETOOLONG;
6444 if (retval < 0)
6445 goto out_unlock;
6446
6447 seq_puts(m, buf);
6448 } else {
6449 seq_puts(m, "/");
6450 }
6451
6452 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
6453 seq_puts(m, " (deleted)\n");
6454 else
6455 seq_putc(m, '\n');
6456 }
6457
6458 retval = 0;
6459 out_unlock:
6460 spin_unlock_irq(&css_set_lock);
6461 rcu_read_unlock();
6462 kfree(buf);
6463 out:
6464 return retval;
6465 }
6466
6467 /**
6468 * cgroup_fork - initialize cgroup related fields during copy_process()
6469 * @child: pointer to task_struct of forking parent process.
6470 *
6471 * A task is associated with the init_css_set until cgroup_post_fork()
6472 * attaches it to the target css_set.
6473 */
cgroup_fork(struct task_struct * child)6474 void cgroup_fork(struct task_struct *child)
6475 {
6476 RCU_INIT_POINTER(child->cgroups, &init_css_set);
6477 INIT_LIST_HEAD(&child->cg_list);
6478 }
6479
6480 /**
6481 * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer
6482 * @f: file corresponding to cgroup_dir
6483 *
6484 * Find the cgroup from a file pointer associated with a cgroup directory.
6485 * Returns a pointer to the cgroup on success. ERR_PTR is returned if the
6486 * cgroup cannot be found.
6487 */
cgroup_v1v2_get_from_file(struct file * f)6488 static struct cgroup *cgroup_v1v2_get_from_file(struct file *f)
6489 {
6490 struct cgroup_subsys_state *css;
6491
6492 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6493 if (IS_ERR(css))
6494 return ERR_CAST(css);
6495
6496 return css->cgroup;
6497 }
6498
6499 /**
6500 * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports
6501 * cgroup2.
6502 * @f: file corresponding to cgroup2_dir
6503 */
cgroup_get_from_file(struct file * f)6504 static struct cgroup *cgroup_get_from_file(struct file *f)
6505 {
6506 struct cgroup *cgrp = cgroup_v1v2_get_from_file(f);
6507
6508 if (IS_ERR(cgrp))
6509 return ERR_CAST(cgrp);
6510
6511 if (!cgroup_on_dfl(cgrp)) {
6512 cgroup_put(cgrp);
6513 return ERR_PTR(-EBADF);
6514 }
6515
6516 return cgrp;
6517 }
6518
6519 /**
6520 * cgroup_css_set_fork - find or create a css_set for a child process
6521 * @kargs: the arguments passed to create the child process
6522 *
6523 * This functions finds or creates a new css_set which the child
6524 * process will be attached to in cgroup_post_fork(). By default,
6525 * the child process will be given the same css_set as its parent.
6526 *
6527 * If CLONE_INTO_CGROUP is specified this function will try to find an
6528 * existing css_set which includes the requested cgroup and if not create
6529 * a new css_set that the child will be attached to later. If this function
6530 * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6531 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6532 * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6533 * to the target cgroup.
6534 */
cgroup_css_set_fork(struct kernel_clone_args * kargs)6535 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6536 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6537 {
6538 int ret;
6539 struct cgroup *dst_cgrp = NULL;
6540 struct css_set *cset;
6541 struct super_block *sb;
6542
6543 if (kargs->flags & CLONE_INTO_CGROUP)
6544 cgroup_lock();
6545
6546 cgroup_threadgroup_change_begin(current);
6547
6548 spin_lock_irq(&css_set_lock);
6549 cset = task_css_set(current);
6550 get_css_set(cset);
6551 if (kargs->cgrp)
6552 kargs->kill_seq = kargs->cgrp->kill_seq;
6553 else
6554 kargs->kill_seq = cset->dfl_cgrp->kill_seq;
6555 spin_unlock_irq(&css_set_lock);
6556
6557 if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6558 kargs->cset = cset;
6559 return 0;
6560 }
6561
6562 CLASS(fd_raw, f)(kargs->cgroup);
6563 if (fd_empty(f)) {
6564 ret = -EBADF;
6565 goto err;
6566 }
6567 sb = fd_file(f)->f_path.dentry->d_sb;
6568
6569 dst_cgrp = cgroup_get_from_file(fd_file(f));
6570 if (IS_ERR(dst_cgrp)) {
6571 ret = PTR_ERR(dst_cgrp);
6572 dst_cgrp = NULL;
6573 goto err;
6574 }
6575
6576 if (cgroup_is_dead(dst_cgrp)) {
6577 ret = -ENODEV;
6578 goto err;
6579 }
6580
6581 /*
6582 * Verify that we the target cgroup is writable for us. This is
6583 * usually done by the vfs layer but since we're not going through
6584 * the vfs layer here we need to do it "manually".
6585 */
6586 ret = cgroup_may_write(dst_cgrp, sb);
6587 if (ret)
6588 goto err;
6589
6590 /*
6591 * Spawning a task directly into a cgroup works by passing a file
6592 * descriptor to the target cgroup directory. This can even be an O_PATH
6593 * file descriptor. But it can never be a cgroup.procs file descriptor.
6594 * This was done on purpose so spawning into a cgroup could be
6595 * conceptualized as an atomic
6596 *
6597 * fd = openat(dfd_cgroup, "cgroup.procs", ...);
6598 * write(fd, <child-pid>, ...);
6599 *
6600 * sequence, i.e. it's a shorthand for the caller opening and writing
6601 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us
6602 * to always use the caller's credentials.
6603 */
6604 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6605 !(kargs->flags & CLONE_THREAD),
6606 current->nsproxy->cgroup_ns);
6607 if (ret)
6608 goto err;
6609
6610 kargs->cset = find_css_set(cset, dst_cgrp);
6611 if (!kargs->cset) {
6612 ret = -ENOMEM;
6613 goto err;
6614 }
6615
6616 put_css_set(cset);
6617 kargs->cgrp = dst_cgrp;
6618 return ret;
6619
6620 err:
6621 cgroup_threadgroup_change_end(current);
6622 cgroup_unlock();
6623 if (dst_cgrp)
6624 cgroup_put(dst_cgrp);
6625 put_css_set(cset);
6626 if (kargs->cset)
6627 put_css_set(kargs->cset);
6628 return ret;
6629 }
6630
6631 /**
6632 * cgroup_css_set_put_fork - drop references we took during fork
6633 * @kargs: the arguments passed to create the child process
6634 *
6635 * Drop references to the prepared css_set and target cgroup if
6636 * CLONE_INTO_CGROUP was requested.
6637 */
cgroup_css_set_put_fork(struct kernel_clone_args * kargs)6638 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6639 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6640 {
6641 struct cgroup *cgrp = kargs->cgrp;
6642 struct css_set *cset = kargs->cset;
6643
6644 cgroup_threadgroup_change_end(current);
6645
6646 if (cset) {
6647 put_css_set(cset);
6648 kargs->cset = NULL;
6649 }
6650
6651 if (kargs->flags & CLONE_INTO_CGROUP) {
6652 cgroup_unlock();
6653 if (cgrp) {
6654 cgroup_put(cgrp);
6655 kargs->cgrp = NULL;
6656 }
6657 }
6658 }
6659
6660 /**
6661 * cgroup_can_fork - called on a new task before the process is exposed
6662 * @child: the child process
6663 * @kargs: the arguments passed to create the child process
6664 *
6665 * This prepares a new css_set for the child process which the child will
6666 * be attached to in cgroup_post_fork().
6667 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6668 * callback returns an error, the fork aborts with that error code. This
6669 * allows for a cgroup subsystem to conditionally allow or deny new forks.
6670 */
cgroup_can_fork(struct task_struct * child,struct kernel_clone_args * kargs)6671 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6672 {
6673 struct cgroup_subsys *ss;
6674 int i, j, ret;
6675
6676 ret = cgroup_css_set_fork(kargs);
6677 if (ret)
6678 return ret;
6679
6680 do_each_subsys_mask(ss, i, have_canfork_callback) {
6681 ret = ss->can_fork(child, kargs->cset);
6682 if (ret)
6683 goto out_revert;
6684 } while_each_subsys_mask();
6685
6686 return 0;
6687
6688 out_revert:
6689 for_each_subsys(ss, j) {
6690 if (j >= i)
6691 break;
6692 if (ss->cancel_fork)
6693 ss->cancel_fork(child, kargs->cset);
6694 }
6695
6696 cgroup_css_set_put_fork(kargs);
6697
6698 return ret;
6699 }
6700
6701 /**
6702 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6703 * @child: the child process
6704 * @kargs: the arguments passed to create the child process
6705 *
6706 * This calls the cancel_fork() callbacks if a fork failed *after*
6707 * cgroup_can_fork() succeeded and cleans up references we took to
6708 * prepare a new css_set for the child process in cgroup_can_fork().
6709 */
cgroup_cancel_fork(struct task_struct * child,struct kernel_clone_args * kargs)6710 void cgroup_cancel_fork(struct task_struct *child,
6711 struct kernel_clone_args *kargs)
6712 {
6713 struct cgroup_subsys *ss;
6714 int i;
6715
6716 for_each_subsys(ss, i)
6717 if (ss->cancel_fork)
6718 ss->cancel_fork(child, kargs->cset);
6719
6720 cgroup_css_set_put_fork(kargs);
6721 }
6722
6723 /**
6724 * cgroup_post_fork - finalize cgroup setup for the child process
6725 * @child: the child process
6726 * @kargs: the arguments passed to create the child process
6727 *
6728 * Attach the child process to its css_set calling the subsystem fork()
6729 * callbacks.
6730 */
cgroup_post_fork(struct task_struct * child,struct kernel_clone_args * kargs)6731 void cgroup_post_fork(struct task_struct *child,
6732 struct kernel_clone_args *kargs)
6733 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6734 {
6735 unsigned int cgrp_kill_seq = 0;
6736 unsigned long cgrp_flags = 0;
6737 bool kill = false;
6738 struct cgroup_subsys *ss;
6739 struct css_set *cset;
6740 int i;
6741
6742 cset = kargs->cset;
6743 kargs->cset = NULL;
6744
6745 spin_lock_irq(&css_set_lock);
6746
6747 /* init tasks are special, only link regular threads */
6748 if (likely(child->pid)) {
6749 if (kargs->cgrp) {
6750 cgrp_flags = kargs->cgrp->flags;
6751 cgrp_kill_seq = kargs->cgrp->kill_seq;
6752 } else {
6753 cgrp_flags = cset->dfl_cgrp->flags;
6754 cgrp_kill_seq = cset->dfl_cgrp->kill_seq;
6755 }
6756
6757 WARN_ON_ONCE(!list_empty(&child->cg_list));
6758 cset->nr_tasks++;
6759 css_set_move_task(child, NULL, cset, false);
6760 } else {
6761 put_css_set(cset);
6762 cset = NULL;
6763 }
6764
6765 if (!(child->flags & PF_KTHREAD)) {
6766 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6767 /*
6768 * If the cgroup has to be frozen, the new task has
6769 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6770 * get the task into the frozen state.
6771 */
6772 spin_lock(&child->sighand->siglock);
6773 WARN_ON_ONCE(child->frozen);
6774 child->jobctl |= JOBCTL_TRAP_FREEZE;
6775 spin_unlock(&child->sighand->siglock);
6776
6777 /*
6778 * Calling cgroup_update_frozen() isn't required here,
6779 * because it will be called anyway a bit later from
6780 * do_freezer_trap(). So we avoid cgroup's transient
6781 * switch from the frozen state and back.
6782 */
6783 }
6784
6785 /*
6786 * If the cgroup is to be killed notice it now and take the
6787 * child down right after we finished preparing it for
6788 * userspace.
6789 */
6790 kill = kargs->kill_seq != cgrp_kill_seq;
6791 }
6792
6793 spin_unlock_irq(&css_set_lock);
6794
6795 /*
6796 * Call ss->fork(). This must happen after @child is linked on
6797 * css_set; otherwise, @child might change state between ->fork()
6798 * and addition to css_set.
6799 */
6800 do_each_subsys_mask(ss, i, have_fork_callback) {
6801 ss->fork(child);
6802 } while_each_subsys_mask();
6803
6804 /* Make the new cset the root_cset of the new cgroup namespace. */
6805 if (kargs->flags & CLONE_NEWCGROUP) {
6806 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6807
6808 get_css_set(cset);
6809 child->nsproxy->cgroup_ns->root_cset = cset;
6810 put_css_set(rcset);
6811 }
6812
6813 /* Cgroup has to be killed so take down child immediately. */
6814 if (unlikely(kill))
6815 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6816
6817 cgroup_css_set_put_fork(kargs);
6818 }
6819
6820 /**
6821 * cgroup_exit - detach cgroup from exiting task
6822 * @tsk: pointer to task_struct of exiting process
6823 *
6824 * Description: Detach cgroup from @tsk.
6825 *
6826 */
cgroup_exit(struct task_struct * tsk)6827 void cgroup_exit(struct task_struct *tsk)
6828 {
6829 struct cgroup_subsys *ss;
6830 struct css_set *cset;
6831 int i;
6832
6833 spin_lock_irq(&css_set_lock);
6834
6835 WARN_ON_ONCE(list_empty(&tsk->cg_list));
6836 cset = task_css_set(tsk);
6837 css_set_move_task(tsk, cset, NULL, false);
6838 cset->nr_tasks--;
6839 /* matches the signal->live check in css_task_iter_advance() */
6840 if (thread_group_leader(tsk) && atomic_read(&tsk->signal->live))
6841 list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6842
6843 if (dl_task(tsk))
6844 dec_dl_tasks_cs(tsk);
6845
6846 WARN_ON_ONCE(cgroup_task_frozen(tsk));
6847 if (unlikely(!(tsk->flags & PF_KTHREAD) &&
6848 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
6849 cgroup_update_frozen(task_dfl_cgroup(tsk));
6850
6851 spin_unlock_irq(&css_set_lock);
6852
6853 /* see cgroup_post_fork() for details */
6854 do_each_subsys_mask(ss, i, have_exit_callback) {
6855 ss->exit(tsk);
6856 } while_each_subsys_mask();
6857 }
6858
cgroup_release(struct task_struct * task)6859 void cgroup_release(struct task_struct *task)
6860 {
6861 struct cgroup_subsys *ss;
6862 int ssid;
6863
6864 do_each_subsys_mask(ss, ssid, have_release_callback) {
6865 ss->release(task);
6866 } while_each_subsys_mask();
6867
6868 if (!list_empty(&task->cg_list)) {
6869 spin_lock_irq(&css_set_lock);
6870 css_set_skip_task_iters(task_css_set(task), task);
6871 list_del_init(&task->cg_list);
6872 spin_unlock_irq(&css_set_lock);
6873 }
6874 }
6875
cgroup_free(struct task_struct * task)6876 void cgroup_free(struct task_struct *task)
6877 {
6878 struct css_set *cset = task_css_set(task);
6879 put_css_set(cset);
6880 }
6881
cgroup_disable(char * str)6882 static int __init cgroup_disable(char *str)
6883 {
6884 struct cgroup_subsys *ss;
6885 char *token;
6886 int i;
6887
6888 while ((token = strsep(&str, ",")) != NULL) {
6889 if (!*token)
6890 continue;
6891
6892 for_each_subsys(ss, i) {
6893 if (strcmp(token, ss->name) &&
6894 strcmp(token, ss->legacy_name))
6895 continue;
6896
6897 static_branch_disable(cgroup_subsys_enabled_key[i]);
6898 pr_info("Disabling %s control group subsystem\n",
6899 ss->name);
6900 }
6901
6902 for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6903 if (strcmp(token, cgroup_opt_feature_names[i]))
6904 continue;
6905 cgroup_feature_disable_mask |= 1 << i;
6906 pr_info("Disabling %s control group feature\n",
6907 cgroup_opt_feature_names[i]);
6908 break;
6909 }
6910 }
6911 return 1;
6912 }
6913 __setup("cgroup_disable=", cgroup_disable);
6914
enable_debug_cgroup(void)6915 void __init __weak enable_debug_cgroup(void) { }
6916
enable_cgroup_debug(char * str)6917 static int __init enable_cgroup_debug(char *str)
6918 {
6919 cgroup_debug = true;
6920 enable_debug_cgroup();
6921 return 1;
6922 }
6923 __setup("cgroup_debug", enable_cgroup_debug);
6924
cgroup_favordynmods_setup(char * str)6925 static int __init cgroup_favordynmods_setup(char *str)
6926 {
6927 return (kstrtobool(str, &have_favordynmods) == 0);
6928 }
6929 __setup("cgroup_favordynmods=", cgroup_favordynmods_setup);
6930
6931 /**
6932 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6933 * @dentry: directory dentry of interest
6934 * @ss: subsystem of interest
6935 *
6936 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6937 * to get the corresponding css and return it. If such css doesn't exist
6938 * or can't be pinned, an ERR_PTR value is returned.
6939 */
css_tryget_online_from_dir(struct dentry * dentry,struct cgroup_subsys * ss)6940 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6941 struct cgroup_subsys *ss)
6942 {
6943 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6944 struct file_system_type *s_type = dentry->d_sb->s_type;
6945 struct cgroup_subsys_state *css = NULL;
6946 struct cgroup *cgrp;
6947
6948 /* is @dentry a cgroup dir? */
6949 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6950 !kn || kernfs_type(kn) != KERNFS_DIR)
6951 return ERR_PTR(-EBADF);
6952
6953 rcu_read_lock();
6954
6955 /*
6956 * This path doesn't originate from kernfs and @kn could already
6957 * have been or be removed at any point. @kn->priv is RCU
6958 * protected for this access. See css_release_work_fn() for details.
6959 */
6960 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6961 if (cgrp)
6962 css = cgroup_css(cgrp, ss);
6963
6964 if (!css || !css_tryget_online(css))
6965 css = ERR_PTR(-ENOENT);
6966
6967 rcu_read_unlock();
6968 return css;
6969 }
6970
6971 /**
6972 * css_from_id - lookup css by id
6973 * @id: the cgroup id
6974 * @ss: cgroup subsys to be looked into
6975 *
6976 * Returns the css if there's valid one with @id, otherwise returns NULL.
6977 * Should be called under rcu_read_lock().
6978 */
css_from_id(int id,struct cgroup_subsys * ss)6979 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6980 {
6981 WARN_ON_ONCE(!rcu_read_lock_held());
6982 return idr_find(&ss->css_idr, id);
6983 }
6984
6985 /**
6986 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6987 * @path: path on the default hierarchy
6988 *
6989 * Find the cgroup at @path on the default hierarchy, increment its
6990 * reference count and return it. Returns pointer to the found cgroup on
6991 * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already
6992 * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory.
6993 */
cgroup_get_from_path(const char * path)6994 struct cgroup *cgroup_get_from_path(const char *path)
6995 {
6996 struct kernfs_node *kn;
6997 struct cgroup *cgrp = ERR_PTR(-ENOENT);
6998 struct cgroup *root_cgrp;
6999
7000 root_cgrp = current_cgns_cgroup_dfl();
7001 kn = kernfs_walk_and_get(root_cgrp->kn, path);
7002 if (!kn)
7003 goto out;
7004
7005 if (kernfs_type(kn) != KERNFS_DIR) {
7006 cgrp = ERR_PTR(-ENOTDIR);
7007 goto out_kernfs;
7008 }
7009
7010 rcu_read_lock();
7011
7012 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
7013 if (!cgrp || !cgroup_tryget(cgrp))
7014 cgrp = ERR_PTR(-ENOENT);
7015
7016 rcu_read_unlock();
7017
7018 out_kernfs:
7019 kernfs_put(kn);
7020 out:
7021 return cgrp;
7022 }
7023 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
7024
7025 /**
7026 * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd
7027 * @fd: fd obtained by open(cgroup_dir)
7028 *
7029 * Find the cgroup from a fd which should be obtained
7030 * by opening a cgroup directory. Returns a pointer to the
7031 * cgroup on success. ERR_PTR is returned if the cgroup
7032 * cannot be found.
7033 */
cgroup_v1v2_get_from_fd(int fd)7034 struct cgroup *cgroup_v1v2_get_from_fd(int fd)
7035 {
7036 CLASS(fd_raw, f)(fd);
7037 if (fd_empty(f))
7038 return ERR_PTR(-EBADF);
7039
7040 return cgroup_v1v2_get_from_file(fd_file(f));
7041 }
7042
7043 /**
7044 * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports
7045 * cgroup2.
7046 * @fd: fd obtained by open(cgroup2_dir)
7047 */
cgroup_get_from_fd(int fd)7048 struct cgroup *cgroup_get_from_fd(int fd)
7049 {
7050 struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd);
7051
7052 if (IS_ERR(cgrp))
7053 return ERR_CAST(cgrp);
7054
7055 if (!cgroup_on_dfl(cgrp)) {
7056 cgroup_put(cgrp);
7057 return ERR_PTR(-EBADF);
7058 }
7059 return cgrp;
7060 }
7061 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
7062
power_of_ten(int power)7063 static u64 power_of_ten(int power)
7064 {
7065 u64 v = 1;
7066 while (power--)
7067 v *= 10;
7068 return v;
7069 }
7070
7071 /**
7072 * cgroup_parse_float - parse a floating number
7073 * @input: input string
7074 * @dec_shift: number of decimal digits to shift
7075 * @v: output
7076 *
7077 * Parse a decimal floating point number in @input and store the result in
7078 * @v with decimal point right shifted @dec_shift times. For example, if
7079 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
7080 * Returns 0 on success, -errno otherwise.
7081 *
7082 * There's nothing cgroup specific about this function except that it's
7083 * currently the only user.
7084 */
cgroup_parse_float(const char * input,unsigned dec_shift,s64 * v)7085 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
7086 {
7087 s64 whole, frac = 0;
7088 int fstart = 0, fend = 0, flen;
7089
7090 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
7091 return -EINVAL;
7092 if (frac < 0)
7093 return -EINVAL;
7094
7095 flen = fend > fstart ? fend - fstart : 0;
7096 if (flen < dec_shift)
7097 frac *= power_of_ten(dec_shift - flen);
7098 else
7099 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
7100
7101 *v = whole * power_of_ten(dec_shift) + frac;
7102 return 0;
7103 }
7104
7105 /*
7106 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
7107 * definition in cgroup-defs.h.
7108 */
7109 #ifdef CONFIG_SOCK_CGROUP_DATA
7110
cgroup_sk_alloc(struct sock_cgroup_data * skcd)7111 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
7112 {
7113 struct cgroup *cgroup;
7114
7115 rcu_read_lock();
7116 /* Don't associate the sock with unrelated interrupted task's cgroup. */
7117 if (in_interrupt()) {
7118 cgroup = &cgrp_dfl_root.cgrp;
7119 cgroup_get(cgroup);
7120 goto out;
7121 }
7122
7123 while (true) {
7124 struct css_set *cset;
7125
7126 cset = task_css_set(current);
7127 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
7128 cgroup = cset->dfl_cgrp;
7129 break;
7130 }
7131 cpu_relax();
7132 }
7133 out:
7134 skcd->cgroup = cgroup;
7135 cgroup_bpf_get(cgroup);
7136 rcu_read_unlock();
7137 }
7138
cgroup_sk_clone(struct sock_cgroup_data * skcd)7139 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
7140 {
7141 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
7142
7143 /*
7144 * We might be cloning a socket which is left in an empty
7145 * cgroup and the cgroup might have already been rmdir'd.
7146 * Don't use cgroup_get_live().
7147 */
7148 cgroup_get(cgrp);
7149 cgroup_bpf_get(cgrp);
7150 }
7151
cgroup_sk_free(struct sock_cgroup_data * skcd)7152 void cgroup_sk_free(struct sock_cgroup_data *skcd)
7153 {
7154 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
7155
7156 cgroup_bpf_put(cgrp);
7157 cgroup_put(cgrp);
7158 }
7159
7160 #endif /* CONFIG_SOCK_CGROUP_DATA */
7161
7162 #ifdef CONFIG_SYSFS
show_delegatable_files(struct cftype * files,char * buf,ssize_t size,const char * prefix)7163 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
7164 ssize_t size, const char *prefix)
7165 {
7166 struct cftype *cft;
7167 ssize_t ret = 0;
7168
7169 for (cft = files; cft && cft->name[0] != '\0'; cft++) {
7170 if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
7171 continue;
7172
7173 if (prefix)
7174 ret += snprintf(buf + ret, size - ret, "%s.", prefix);
7175
7176 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
7177
7178 if (WARN_ON(ret >= size))
7179 break;
7180 }
7181
7182 return ret;
7183 }
7184
delegate_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)7185 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
7186 char *buf)
7187 {
7188 struct cgroup_subsys *ss;
7189 int ssid;
7190 ssize_t ret = 0;
7191
7192 ret = show_delegatable_files(cgroup_base_files, buf + ret,
7193 PAGE_SIZE - ret, NULL);
7194 if (cgroup_psi_enabled())
7195 ret += show_delegatable_files(cgroup_psi_files, buf + ret,
7196 PAGE_SIZE - ret, NULL);
7197
7198 for_each_subsys(ss, ssid)
7199 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
7200 PAGE_SIZE - ret,
7201 cgroup_subsys_name[ssid]);
7202
7203 return ret;
7204 }
7205 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
7206
features_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)7207 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
7208 char *buf)
7209 {
7210 return snprintf(buf, PAGE_SIZE,
7211 "nsdelegate\n"
7212 "favordynmods\n"
7213 "memory_localevents\n"
7214 "memory_recursiveprot\n"
7215 "memory_hugetlb_accounting\n"
7216 "pids_localevents\n");
7217 }
7218 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
7219
7220 static struct attribute *cgroup_sysfs_attrs[] = {
7221 &cgroup_delegate_attr.attr,
7222 &cgroup_features_attr.attr,
7223 NULL,
7224 };
7225
7226 static const struct attribute_group cgroup_sysfs_attr_group = {
7227 .attrs = cgroup_sysfs_attrs,
7228 .name = "cgroup",
7229 };
7230
cgroup_sysfs_init(void)7231 static int __init cgroup_sysfs_init(void)
7232 {
7233 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
7234 }
7235 subsys_initcall(cgroup_sysfs_init);
7236
7237 #endif /* CONFIG_SYSFS */
7238